
11111111111111
PB96-149729

NTS
Information is our business.

EFFICIENCY IN INSTANTIATING OBJECTS FROM
RELATIONAL DATABASES THROUGH VIEWS

Bim 136

STANFORD UNIV., CA

DEC 90

U.S. DEPARTMENT OF COMMERCE
National Technical Information Service

DISTfoSUTlON STAlufliWT A

Approved for public release;
Jjiz.ixih-c'oc.n Unlimited

December 1990 Report No. STAN-CS-90-1346
Thesis

PB96-149729

Efficiency in Instantiating Objects from
Relational Databases Through Views

by

Byung Suk Lee

Department of Computer Science

Stanford University
Stanford, California 94305

REPRODUCED BY: KTIS
U s Department of Commerce

National Technical Information Service
Springfield, Virginia 22161

REPORT DOCUMENTATION PAGE
ftittk remaning buftftn for tftnc

Form Approvtd

OMB No. 0704-0188

raw»coti*coonot infomwttona«gmiwd to «»triaoj hour coritWM.indudtno,«wtwwtfor wwwino, wwraniom. i—fttyny iimum iti
_ tiMtissa ModoO. and competing Mid idvKwmo, ttwj coMoctton of fcifunMUon. SoräcoiwnontifMifdlii9t!itaibwdtnoMlNiaitoroMo0wiiMClof«.

inMnmon nf iiifiiiiimtinr YT'ulIriiiiiBiitlni fnr rUnnri Tt-ti rninttn TIT rfnfiinijim •initnmrtin limrti fllrinnnw fnr Inf nnrnrtnn Oiwitw «id llmmi. nil Jjll___
D»»u I mnw>. SMltt «04. Artmoton. VA 11201*301. «nd to ihtOffk« of Mwi«otiw«rtindOudo«t.r>«CMf»^*«d^—~~"

1. AGENCY USE ONLY (Uiw blank) 2. REPORT DATE

December 1990
3. REPORT TYPE ANO DATES COVERED

Thesis, from 1988 to 1990
4. TITLE AND SUBTITLE

Efficiency in Instantiating Objects from Relational
Databases through Views

«. AUTHOR(S)

Byung Suk Lee

5. FUNDING NUMBERS

N039-84-C-0211

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Stanford'University Department of Computer Science

Stanford, CA 94305 •

PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND AODRESS(ES)

DARPA
Arlington, VA

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The approach of instantiating objects from relational databases through views

provides an effective mechanism for building object-oriented applications on top of
relational databases. However, a system built in such a framework has the overhead
of interfacing between two different models - an object-oriented model and the
relational model - in terms of both functionality and performance. We address two
important problems: the outer join problem and the instantiation efficiency problem.

14. SUBJECT TERMS

VieW-objects, relational databases, outer join, relational
fragment, nested relation, client-server architecture.

15. NUMBER OF PAGES

147
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

18. SECURITY CLASSIFICATION
OF THIS PAGE

19. SECURITY CLASSIFICATION
OF ABSTRACT

20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)

EFFICIENCY IN INSTANTIATING OBJECTS FROM

RELATIONAL DATABASES THROUGH VIEWS

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

By

Byung Suk Lee

December 1990

© Copyright 1990 by Byung Suk Lee

All Rights Reserved

NHS is authorized to reproduce and sell this
report Permission lor further reproduction
must be obtained from the copyright owner.

11

I certify that I have read this dissertation and that in my

opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

Gio Wiederhold
(Principal Advisor)

I certify that I have read this dissertation and that in my

opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

Mark Linton

I certify that I have read this dissertation and that in my

opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

Witold Litwin

I certify that I have read this dissertation and that in my

opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

Kincho Law

Approved for the University Committee on Graduate

Studies:

Dean of Graduate Studies

ui

Abstract

An integration of objects and databases provides a framework in which applications

take advantage of the high productivity and reusability of an object-oriented soft-

ware, and at the same time the sharability and maintainability of databases. One of

the approaches for achieving this integration is to instantiate objects from relational

databases through views. In this approach, a view is defined by a relational query

and a function for mapping between object attributes and relation attributes. The

query is used to materialize the necessary data into a relation from database, and the

function is used to restructure the materialized relation into objects.

The approach of instantiating objects from relational databases through views

provides an effective mechanism for building object-oriented applications on top of

relational databases. However, a system built in such a framework has the overhead of

interfacing between two different models - an object-oriented model and the relational

model - in terms of both functionality and performance. In this thesis, we address two

important problems: the outer join problem and the instantiation efficiency problem.

Outer join problem: In instantiating objects, tuples that should be retrieved

from databases may be lost if we allow only inner joins. Hence it becomes necessary

to evaluate certain join operations of the query by outer joins, left outer joins in

particular. On the other hand, we sometimes retrieve unwanted nulls from nulls

stored in databases, even if there is no null inserted during query processing. In this

case, it is necessary to filter some relations with selection conditions which eliminate

the tuples containing null attributes in order to prevent the retrieval of unwanted

nulls. We develop a mechanism for making the system generate those left outer joins

and filters as needed rather than requiring that a programmer specifies it manually

IV

as part of the query for every view definition. We also address how to reduce the

number of left outer joins and filters for reducing the query processing time.

Instantiation efficiency problem: Since the advent of the relational databases,

it has been universally accepted that a query result is retrieved as a single flat rela-

tion (a table). Such a relation is neither normalized nor nested if the query includes

joins and has redundancies. This single table concept is not useful in our framework

because a client wants to retrieve object instances. Rather, a single flat relation con-

tains data redundantly inserted just to make the query result 'fiat'. These redundant

data convey no extra information but only degrade the performance of the system.

This fact motivated us to look into different methods which reduce the amount of

data that the system must handle to instantiate objects, without diminishing the

amount of information to be retrieved. In this thesis, we present two alternative

methods which retrieve a query result in less redundant structures than a single flat

relation. Our result demonstrates that these two methods incur far less cost than

the method of retrieving a single flat relation. We assume a computing environ-

ment that is a client-server architecture, where relational databases reside on servers

and applications reside on connected workstations. Main memory database systems

will benefit most from our work, although our work is useful for secondary storage

database systems as well.

Acknowledgements

I would like to thank my advisor, Gio Wiederhold for his support and guidance, and

for his patience and encouragement throughout this work. He always gave me his

hand when I was in need, which helped me to overcome difficulties several times.

I also like to thank my reading committee, Mark Linton, Witold Litwin, and

Kincho Law, for their willingness to serve on my committee and for their fruitful

comments and advice.

I am grateful to my colleagues in the KSYS group. Keith Hall spent so many

days to set up and maintain the computing environment for the group, even though

he was busy enough with his dissertation work alone. Peter Rathmann and Tore

Risch greatly helped me with their technical opinions on my questions. Some of their

comments were critical to the progress of my work. Peter Rathmann also helped me

out of many troubles with LaTeX'ing this draft. Ki-Joon Han, Arthur Keller, and

Linda DeMichiel reviewed all or part of the draft and gave good comments. It was

fortunate of me to have these competent and knowledgeable colleagues around me.

Finally, I would like to thank my wife Hye-Young for her sacrifice and endurance

during all my years as a graduate student, my daughter Sonah for having been healthy

and happy, and my parents for their prayers and concerns.

This research has been performed as part of the KBMS project, supported by

DARPA Contract No. N039-84-C-0211. This research was also partially sponsored

by the Center for Integrated Facility Engineering at the Stanford University.

VI

Contents

Abstract iv

Acknowledgements vi

1 Introduction 1

1.1 Outer Join Problem 2

1.2 Instantiation Efficiency Problem 2

1.3 Organization of the Thesis 3

2 Background Framework 4

2.1 Introduction 4

2.2 Integration of Objects and Databases 4

2.3 Two Perspectives of the Relation Storage Approach 5

2.4 Instantiating Objects from Relations through Views 7

2.5 Object Instantiation Time 9

2.6 View-object Framework 10

2.6.1 View-objects 11

2.6.2 Related Work on View-objects 12

3 Outer Joins and Filters in a View-Query 14

3.1 Introduction • 14

3.2 Problem Formulation 14

3.2.1 The Two Operators 14

3.2.2 Motivation 15

vii

3.2.3 Problem Statements 18

3.2.4 Our Approach '. . 18

3.3 System Model 19

3.3.1 Object Type Model 20

3.3.2 Data Model 23

3.3.3 View Model 24

3.4 Development of the Mechanism 30

3.4.1 Overview 30

3.4.2 Joins within a Derived Relation 31

3.4.3 Mapping Non-null Options to Non-null Constraints on the Query

Result 32

3.4.4 Prescribing Joins and Generating Non-null Filters 34

3.4.5 Reducing the Number of Left Outer Joins and Non-null Filters 35

3.4.6 Summary of the Mechanism 38

3.5 Summary 40

4 Efficiently Instantiating Objects 42

4.1 Introduction 42

4.2 Problem Formulation 42

4.2.1 Environment: a Remote Main Memory Database Server 42

4.2.2 Motivation: Redundant Subtuples of a Single Flat Relation . . 44

4.2.3 Problem Statements 46

4.2.4 Our Approach 47

4.3 Development of Object Instantiation Methods . 47

4.3.1 Overview of the Three Object Instantiation Methods 48

4.3.2 Materialization in the SFR Method and RF Method 53

4.3.3 Translation in the SFR Method and RF Method 58

4.3.4 The SNR Method 80

4.3.5 Data Transmitted in Different Methods 82

4.4 Development of a Cost Model 84

4.4.1 A Platform for Cost Modeling 84

viii

4.4.2 Derivation of Cost Formulas 90

4.5 Comparison of Costs 99

4.5.1 Input Data Parameters 100

4.5.2 Overall Comparison using Simulation 103

4.5.3 Dependency on Selectivity and Extra Join Attribute Ratio . . 106

4.6 Summary and Future Work 112

4.6.1 Summary 112

4.6.2 Future Work 113

5 Conclusion 118

A Measurement of Cost Parameters 120

A.l Main Memory Cost parameters 120

A.2 Network Communication Cost Parameters 122

Bibliography 125

IX

List of Tables

2.1 View-object framework 10

4.1 Main memory cost parameters (CPU time) 86

4.2 Communication cost parameters (elapsed time) 86

4.3 Data Parameters 87

4.4 Distribution of cost items 100

4.5 Costs evaluated using Random Data Parameters 105

4.6 Costs evaluated using the sample values of data parameters 107

4.7 Costs evaluated using random data parameter values with biased cti/s
and Pus Ill

List of Figures

2.1 Two perspectives of relation storage approach 6

2.2 An example of instantiating an object type through views 8

3.1 The concept of a pivot relation 20

3.2 An example object type 22

3.3 The O-tree of the Programmer object type 22

3.4 A sample database 25

3.5 Mapping between objects and relations 26

3.6 The query graph for the Programmer object 26

3.7 The query graph for the Programmer object with joins and non-null

filters 40

4.1 Duplicate subtuples 44

4.2 Null subtuples 45

4.3 Overall processes of object instantiation 49

4.4 Example relations and query 51

4.5 Examples of a SFR, RF, and SNR 52

4.6 Tuples emitted from base relations 55

4.7 The structure of a chained bucket hashing for duplicate elimination 57

4.8 SFR nesting process 59

4.9 RF nesting process 60

4.10 An example of object type, view, and O-tree 62

4.11 An example of a nesting format and its nesting format tree 63

4.12 The structure of a single nested relation 64

xi

4.13 An example of nesting a single flat relation 66

4.14 The structure of a chained bucket hashing index 70

4.15 An example of nesting a set of relation fragments 72

4.16 An example of an assembly plan 73

4.17 oijvs. ßij 89

4.18 An example of T* and 7*. 97

4.19 Examples of high vs. low values of selectivity 101

4.20 Examples of high vs. low values of EJA ratios 102

4.21 A sample query for random values of data parameters 103

4.22 A sample query for observing dependency on a13 and pj3 108

4.23 Costs evaluated using the sample values of data parameters 109

4.24 Domain HL and domain LH vs. Domain FF (full ranges) 110

A.l Average round trip time vs. data size on the LAN and WAN 124

xa

Chapter 1

Introduction

We have seen increasing effort for supporting object-oriented applications with databases.

One of the approaches for this effort is to instantiate objects from relational databases

through views [14, 16, 17, 19, 8, 10, 12]. A view is defined by a relational query and a

function for mapping between object attributes and relation attributes. The query is

used to materialize the necessary data into a relation from databases, and the function

is used to restructure the materialized relation into objects.

The approach of instantiating objects from relational databases through views

provides, an effective mechanism for building object-oriented applications on top of

relational databases. Example applications are engineering design software such as

computer-aided design (CAD) or computer-aided software engineering (CASE). These

applications become more effective by utilizing the locality and information encapsu-

lation available from an object-oriented approach. Complex objects [29, 30, 31, 44,

45, 46, 24] are typically needed in these applications. Relational databases provide

sharing and flexibility, whose benefit becomes magnificent as the size of databases

become larger. A system built in such a framework has the overhead of interfacing

between two different models - an object-oriented model and the relational model -

in terms of both functionality and performance. In this thesis, we address two im-

portant problems: outer join [37] problem and instantiation efficiency problem. The

outer join problem is a functionality problem as well a performance problem, while

the instantiation efficiency problem is entirely a performance problem.

2 CHAPTER 1. INTRODUCTION

1.1 Outer Join Problem

In instantiating objects, some particular conditions arise that are not so common

in traditional relational database operations. First of all, as will be shown in Sec-

tion 3.2.2.1, it often happens that we lose tuples that should be retrieved from

databases, if we allow only inner joins. Hence, it becomes necessary to evaluate some

joins of the query by outer joins. In particular we need unidirectional outer joins such

as left outer joins [37]. On the other hand, we sometimes retrieve unwanted nulls from

nulls stored in databases, even if there is no null inserted during query processing.

In this case, it is necessary to filter some relations with selection conditions which

eliminate the tuples containing null attributes to prevent the retrieval of unwanted

nulls.

It is desirable to make the system generate those left outer joins and filters as

needed rather than requiring that a programmer specifies them manually as part of

the query for every view definition. We develop such a mechanism in the first part of

this thesis.

Without optimization, declarative approaches such as SQL queries and views are

not practical. However, optimization of queries with outer joins has rarely been

treated. Since left outer joins are not symmetric, they inhibit a query optimizer from

attempting to reorder joins for more efficient query processing. Furthermore, appli-

cation of non-null filters is not free. It incurs the cost of evaluating the corresponding

selection predicates on a base relation. We show that, for certain cases that occur

frequently, these two operators can be avoided without affecting the query result.

1.2 Instantiation Efficiency Problem

The client-server architecture is becoming a standard architecture in modern comput-

ing environment. In the client-server architecture, object-oriented applications run

on client workstations and access data stored in remote database servers. A view

pertinent to an object type contains a relational query, which is delivered to a remote

database server; The query result is retrieved from a server and is restructured into

1.3. ORGANIZATION OF THE THESIS 3

nested relations [70, 71, 72] by a client.

Since the advent of the relational databases [26], it has been universally accepted

to retrieve a query result as a single flat relation or a table. In fact, one of the

advantages of the relational model is that it enables us to apply the same language (a

relational query) uniformly on both base relations and query results. However, this

concept is not useful in our work because what a client wants to retrieve is a nested

relation, not a flat relation. Rather, a single flat relation contains data redundantly

inserted just to make the query result 'flat'. These redundant data convey no extra

information but only degrade the performance of the system. Certainly it will be

more efficient to manipulate less data as long as we retrieve the same information.

In the second part of this thesis, we present two alternative methods of instan-

tiating objects from remote relational databases through views. The two methods

retrieve a query result in other structures than a single fiat relation. One method

retrieves a set of relation fragments and the other method retrieves a single nested

relation. We will demonstrate that these two methods incur far less cost than the

method of retrieving a single flat relation.

1.3 Organization of the Thesis

Following this introduction, we describe the background framework of our work in

Chapter 2. Then, the outer join problem and the instantiation efficiency problem are

addressed respectively in Chapter 3 and Chapter 4. We develop a rigorous system

model within Chapter 3. The system model is developed basically for providing a

basis for solving the outer join problem but is also used for the instantiation efficiency

problem. Finally, conclusion follows in Chapter 5.

Chapter 2

Background Framework

2.1 Introduction

In this chapter, we provide the framework upon which this thesis stands. We start

from a general framework for integrating objects and databases and categorize the

general framework in Section 2.2 through Section 2.5. Two different dimensions are

used to categorize the general framework: integration approach and binding time.

Meanwhile, we narrow down our focus to the view-object framework, which is de-

scribed in Section 2.6. The view-object framework is what this thesis is built upon.

2.2 Integration of Objects and Databases

We distinguish two alternative approaches to the integration of objects and databases:

the direct object storage approach and the indirect base relation storage approach. In

the object storage approach, an object-oriented model is used uniformly for appli-

cations and persistent storage [3, 1, 2, 5, 6, 89]; objects are retrieved and stored as

objects. In the relation storage approach, an object-oriented model is used for the

applications while a relational storage model is used for persistent storage [4, 8, 9,

10, 11, 12, 19, 22], and objects are retrieved by evaluating queries to databases1.

1 There are some systems which cannot be put strictly in either of these two categories. For
Example, PCLOS [20] allows both possibilities. The storage can be relational, object-oriented, or

2.3. TWO PERSPECTIVES OF THE RELATION STORAGE APPROACH 5

The relation storage approach incurs the overhead of mapping between different

models [14, 25], but is useful for large databases since the relation storage approach

supports sharing of different user views better than the object storage approach.

Direct storage of objects is simple, but inhibits sharability .[14]. For example, let

us assume two users define Employee objects differently as Employee(neune, salary)

and Employee(name, department) respectively. In the object storage approach, the

two Employee objects are stored separately. To provide sharing requires a separate

mechanism for identifying the owners. In the relation storage approach however, this

problem does not occur because the information to support the two Employee objects

is stored in a single relation Employee(name, salary, department), and their owners

are distinguished by the database view mechanism.

2.3 Two Perspectives of the Relation Storage Ap-

proach

We observed two different perspectives within the relation storage approach: object-

centered [4, 9, 11, 12] and relation-centered [19, 22]. In.object-centered perspective,

relation Schemas are generated from given object Schemas, i.e., types and their hierar-

chy. Relations are the destination for storing objects, and objects are decomposed into

relations using the concept of normalization. On the other hand, in relation-centered

perspective, object schemas are defined from given relation schemas. Relations are

the source for generating objects, and objects are composed from relations. The com-

position of objects is useful for building object-oriented applications on top of existing

relational databases2. The two perspectives may look like the two sides of the same

coin, but they differ in terms of design approach. Figure 2.1 shows the two perspec-

tives. In Figure 2.1a, the Project-manager type is mapped to the Project-manager

relation. There exists a separate relation for each corresponding object type. In

Figure 2.1b, there does not exist a separate Project-manager relation in the given

even a file system [21].
2 We cannot throw away the relational data model in a decade. Remember that the IMS hierar-

chical data model implementation is still prevalent while we call the relational model 'conventional'.

CHAPTER 2. BACKGROUND FRAMEWORK

Type Employee
fis-a

Type Project-manager
■Ij-generates

Relation Employee(ssn, ...)
Relation Project-manager(ssn, ...)

(a) Object-centered perspective

Type Employee
| is-a

Type Project-manager
ftdefined-from

Relation Employee(ssn, ...)
Relation Project(..., manager-ssn, ...)

(b) Relation-centered perspective

Figure 2.1: Two perspectives of relation storage approach

database. Rather, the Project-manager type is denned as an abstraction through

views, such as defining a join between the Employee relation and Project relation

along the manager-ssn foreign key. The join retrieves only the employees that are

managing one or more projects. Let us consider the Project-manager as a derived

relation of the Employee and Project relations. Note the derived relation is analo-

gous to the intensional database (IDB) relation [32, 34] used in the integration of the

logic-based model and relational model [34, 35, 36]. For example, the IDB relation of

the Project-manager is written as follows using the notion of Datalog [32].

Project-manager(ssn, • • •) : - Employee(ssn, ■ • •) & Project(- • •,manager-ssn, • • •) &

ssn = manager-ssn.

We use the relation-centered perspective throughout this thesis but the result is ap-

plicable to the object-centered perspective as well, particularly during execution (op-

erationally).

2.4. INSTANTIATING OBJECTS FROM RELATIONS THROUGH VIEWS 7

2.4 Instantiating Objects from Relations through

Views

Views provide a user-defined subset of a large database. Thus, as mentioned in Sec-

tion 2.3, views are used as a tool for providing sharing and abstraction in interfacing

between an object-oriented model and the relational model. We also want to use

the views for instantiating objects from relations. To achieve this, views should pro-

vide mapping between heterogeneous structures of the two models. The mapping is

done by linking object attributes to corresponding relation attributes. Objects have

a more complex structure than relations. For instance, objects support aggregation

hierarchies [88, 72] through an is-part-of relationship3. Hence objects have a nested

structure, which is different from nested tuples because the type of an attribute can

be a reference to another object. Therefore, given relation attributes, it is difficult to

map the relation attributes to object attributes without explicitly specified mapping

information. We thus need to extend the views by adding additional component for

the mapping, that is, an attribute mapping function.

Figure 2.2 shows an example of instantiating objects through such an extended

view. The object type defines the structure of objects to be retrieved from the

database. The query part of the view, what we call a view-query, specifies how to ma-

terialize the objects from the relational database. The join between the Employee re-

lation and the Child relation has the semantics of nesting such as "For each Employee

tuple, retrieve the matching tuple in the Child relation." The outer relation is called

a source relation and the inner relation is called a destination relation in our work.

The attribute mapping part of the view shows the aggregation hierarchy of object

attributes and their mapping to relation attributes. The mapping is one-to-one as

long as there is no derived attribute among the object attributes. We use the key at-

tribute of one of the relations as the source of the object identifier (oid). In Figure 2.2,

the key ssn of the Employee relation is retrieved to become the oid of the Employee

3Objects also support a generalization hierarchy through is-a relationship, inheriting part of the
attributes from parent objects. We regarded the inherited attributes as well as the local attributes
uniformly as belonging to the objects.

CHAPTER 2. BACKGROUND FRAMEWORK

Database schema: /* Underlined attributes are keys. */
Employeefssn, e_name, sex, degree, salary, dept#)
Engineerfssn, specialty, experience)
Department(dept #, d_name, manager_ssn, address)
Childfssn. c_name. sex, birth-date)

Object Type Employee /* [] denotes a tuple. */
[name: string, dept: Department,
children: [name: string, birthDate: string]]

View:

• Query expressed in relational algebra:
n{ssn,ejname,dept#,cJiame,birth.date} Employee JC^ Child

• Mapping between object attributes and relation attributes:

: is-part-of
: maps-to

e birthDate

ssn e_name dept# <ssn,c_name> c_name birth_date

Figure 2.2: An example of instantiating an object type through views

2.5. OBJECT INSTANTIATION TIME 9

object. Object id's are not explicitly denned in the type definition but assumed to

exist implicitly. The dept attribute of an Employee object has type Department. We

call an attribute whose type is another object type a reference attribute. In object-

oriented paradigm, a reference is implemented with the oid of the referenced object.

In our framework, the value of a reference attribute is retrieved from the key of a

database relation which is mapped to the oid of the referenced object. Thus, in Fig-

ure 2.2, the dept attribute of an Employee object is retrieved from the dept# of the

Department relation, if we assume that there exists a type Department whose object

id is retrieved from the dept# of the Department relation. The children attribute

defines a subobject of the Employee object, and each subobject has its own attributes

- name and birthDate. Here a 'subobject' is denned as an object which does not have

its own type definition but has its structure contained in another object which again

may be a subobject of another object. Like the Employee object, a children subob-

ject is assumed to have its object id, but the object id is not actually retrieved from

a database relation. The id's of the children subobjects are needed for a different

purpose, which will be discussed in Section 3.4.3.

2.5 Object Instantiation Time

The integration of objects and databases can be distinguished according to another

dimension - the binding time [51, 52] of an object type. Given an object type, we

define its binding time as the time when its instances are retrieved from databases

into an application space.

A binding time can be distinguished into early binding and late binding. Early

binding is a compiled approach. That is, all instances of an object type are retrieved

all at once prior to the usage by an application program. In this sense, the early

binding is similar to caching [59, 60] or prefetching [61]. Once all instances of an

object type are retrieved, an application does not incur the cost of retrieving the

instances of the same object type unless the retrieved instances are invalidated by

the change of the data stored in databases. Early binding becomes a feasible idea if

an application works in a canned transaction in which it is possible to preanalyze the

10 CHAPTER 2. BACKGROUND FRAMEWORK

Object storage Base relation storage
Object-centered Relation-centered

Early binding View-objects
Late binding

Table 2.1: View-object framework

set of objects that will be used by an application. On the other hand, there may be

a situation in which the loading time for instantiating all instances of an object type

is significant but this loading time does not pay off because the application does not

use all the retrieved instances. In case only a small subset of the retrieved objects are

used, late binding is more appropriate. Late binding is an interpreted approach.

That is, instances of an object type are retrieved one at a time on demand during

the execution of the application program. Late binding makes it possible for an

application to retrieve only the objects that are actually needed during execution and

hence takes less main memory space than early binding. However, if all the instances

turn out to be used during the execution of an application, late binding strategy

becomes worse than early binding by incurring as many object requests to databases

as the number of used objects. Note that the early binding incurs the object request

only once for a given object type as long as the retrieved instances remain valid.

From a system design point of view, we can think of a range of choice between

the early binding and the late binding, i.e., between the compiled approach and

the interpreted approach. This is analogous to the interpreted-compiled range (I-

C range) in interfacing the Prolog with relational databases [53]. The criteria of

choosing between the I-C range are the execution time and memory space. That is,

ideally we want to retrieve the minimum number of objects that are needed by an

application at the minimum number of object requests.

2.6 View-object Framework

2.6. VIEW-OBJECT FRAMEWORK 11

2.6.1 View-objects

In [14], Wiederhold proposed database views as a tool for "connecting between object

concepts in programming languages and view concepts in database systems". A view

is denned by an external schema at the external level of the ANSI/SPARC architecture

[27, 28]. Different groups of users can have different views on the same database.

A view has been used as a mechanism for mapping between the- different external

Schemas of different user views and the conceptual schema of the entire database

in two ways. The goal of the view mechanism is twofold: windowing and security.

Users access the same database through different 'windows' defined by different views.

Query formulation is simplified by enabling a user to write a query as if a view were

just another base relation. At the same time, users are restricted to access only a

subset of a database, defined by a view4. The goal of windowing emphasizes using

views as a tool for materializing a subset of data from relations, while the goal of

security puts more emphasis on using views as a tool for managing a database system.

Wiederhold's proposal of view-objects put more emphasis on the goal of window-

ing, that is, using views as a tool for materializing view-objects from relations. A

principal way of storing relations is to normalize them into nonredundant, unambigu-

ously updatable form - Boyce-Codd-normal Form, for example. A materialized view

is only in the first normal form and is closer to an 'object' in the sense that related

attributes are brought together. For example, the view of the Employee object type

in Figure 2.2 brings together, when materialized, the information about an employee

and the information about the employee's children. Note that the attributes of an

entity denoting a real world object are decomposed into the attributes of normalized

relations in a database design process. We can say that a view is used to Ireassemble'

the decomposed attributes into the attributes of the entity.

Objects that we are dealing with in this thesis are view-objects because the ob-

jects are instantiated by materializing a view. In our work, a view-object is a complex

object which is implemented by a nested relation and supports references among ob-

jects. Table 2.1 illustrates where a view-object belongs to among the two-dimensional

4 It is typical that a database administrator has the privilege of maintaining the security of a
database system through this view mechanism by assigning views to each group of users.

12 CHAPTER 2. BACKGROUND FRAMEWORK

categories of the framework that were discussed in Section 2.2 through Section 2.5.

The view-object framework belongs to the relation-centered perspective of the rela-

tion storage approach. Early binding is assumed, that is, the results of a view-query

are retrieved all at once into an application workspace and restructured into objects.

The client-server architecture is appropriate for supporting the view-object frame-

work [14]. In this architecture, a subset of the database content residing on a server

is retrieved to a client workstation and used to provide objects (after necessary re-

structuring) during the execution of an application.

2.6.2 Related Work on View-objects

In [14], a view-object generator was proposed as an important component of the

system implementing the view-object concept. Based on this proposal, Barsalou et al.

[15, 16, 17] implemented a view-object generator in their Penguin project [22, 23, 24].

Besides, Cohen [18] implemented a different kind of view-object generator in his OBI

project.

2.6.2.1 Penguin

Penguin is an expert database system being built at the Stanford University for

applications in the areas of biomedical engineering, civil engineering, and electrical

engineering. In the Penguin project, Barsalou et al. implemented a view-object gen-

erator using a structural data model [13]. The structural data model is essentially

a relational data model and is augmented with connections. The connections repre-

sent interrelational constraints such as referential integrity constraints and cardinality

constraints. Barsalou et al. used an object template as a tool for formulating a view-

query. An object template is a data structure with different attributes (or slots).

Users formulate a view by designating a pivot relation [16, 17] and selecting connec-

tions to follow among the connections to neighboring relations. For manipulating the

overlapping views of multiple objects, the object templates are configured into a hier-

archy. When an object needs to be instantiated, users select the corresponding object

template and specify selection conditions on a set of relations defined in the object

2.6. VIEW-OBJECT FRAMEWORK 13

template. The system then formulates a SQL query and delivers it to the database.

The query result is restructured into view-objects using a NEST [70] procedure. At

the time of this writing, a second prototyping of the Penguin project is still ongoing

work at the Stanford University.

2.6.2.2 OBI

OBI is a 'Prolog-based view-object-oriented database' designed and implemented at

the David Sarnoff Research Center5. The goal of the OBI project was to design

and implement a Prolog-based hybrid system of relational databases and object-

oriented databases. In OBI, Cohen designed a view-object manager and a direct

object manager as a dual system. The purpose of the dual approach was to make

it possible to move persistent data from relation storage to object storage back and

forth. OBI uses its own data definition and query language for the view-object

manager. The query language is similar to SQL and can express a predicate of domain

relational calculus within a query. In its implementation using Prolog, OBI queries

are translated into a Prolog goal and is executed by a standard Prolog execution

mechanism. Unlike the Penguin view-object generator, no separate NEST procedure

is necessary. The view-object manager materializes a nested relation directly out of

relational databases.

5A subsidiary of SRI International

Chapter 3

Outer Joins and Filters in a

View-Query

3.1 Introduction

In this chapter, we develop a mechanism for deciding on inner joins or outer joins,

and prescribing non-null filters for a view-query. We first formulate our problem in

a concrete manner in Section 3.2. Then, we develop a rigorous system model to

facilitate the mapping between objects and relations in Section 3.3. The mechanism

is developed in Section 3.4. A summary of this chapter follows in Section 3.5.

3.2 Problem Formulation

In this section we first introduce two operators: left outer join and non-null filters.

Then, we formulate a problem by exaplaining the motivation, objective, and our

approach to the problem.

3.2.1 The Two Operators

In Chapter 1, we mentioned the need for two operators for instantiating objects from

relational databases through views: a left outer join and a non-null filter. A left outer

14

3.2. PROBLEM FORMULATION 15

join is different from an inner join in that it retrieves null tuples when there is no

matching tuple in the destination relation for a given source relation. A non-null filter

is a selection condition for eliminating any nulls of an attribute from a base relation1.

Formal definitions of the left outer join and the non-null filter are as follows.

Definition 3.2.1 (Left Outer Join) Given two relations R± and R2, a left outer

join from Ri to R2, denoted by Ri IX R2, is defined as follows.

Ä1[XÄ2 = (Ä1CXÄ2)U((Ä1-nÄ1(Ä1XÄ2)) x A) (3.1)

where X denotes an inner join, 7TRJ (.RI XIR2) denotes the projection of Ri X R2 on

the attributes of R\, and A denotes a null tuple consisting of nulls for all attributes

of R2. In other words, R\ [X R2 produces the following set of tuples.
ABB

{< *i,*2 > l^i €'Äi Ata G RiM-i.AHi.B} U

{< fx,A >\ti € ÄiA ßt2{t2 € Ä2 A h.ABh.B)} (3.2)

where 8 denotes a comparison operator, i.e., 6 € {<, <,>,>, =, 7^}.

For the rest of this chapter, we use a small size join symbol (N) to denote a join which

can be (has not yet been determined to be) either an inner join (XI) or a left outer

join ([X).

Definition 3.2.2 (Non-null filter) A non-null filter is a conjunction of predicates

applicable to a base relation R, defined as follows.

R.AX ^ null A R.A2 ^ null A • • • A R.A{ ^ null (3.3)

where Ai, A2, • • ■, A{ are the attributes of R that are not allowed to have nulls.

3.2.2 Motivation

3.2.2.1 Why do we need left outer joins and non-null filters?

Objects are identified by their identifiers (oid's) only. In other words, an object exists

even if all its attributes are nulls as long as it has an object id. Let us consider

1A base relation is the relation defined by the relation schema of a database, neither a view nor
an intermediate relation.

16 CHAPTER 3. OUTER JOINS AND FILTERS IN A VIEW-QUERY

the objects of typ Employee shown in Figure 2.2. An Employee object exists only

if it has its oid retrieved from the ssn of the Employee relation. Assuming that the

Employee object allows null for its children attribute, what will happen if the join

between Employee relation and Child relation is evaluated by an inner join? Any

employee tuple that has no matching tuple in the Child relation will be discarded. In

other words, any employee without children will not be retrieved. Therefore, we must

evaluate the join by an outer join to prevent the loss of employees that do not have

children. Furthermore, what we need is not a bilateral outer join but a unilateral

outer join, because we are not interested in retrieving a Child tuple that has no

matching tuple in the Employee relation, that is, a child without parent. Therefore,

a left outer join is adequate assuming that the source, here the Employee, relation is

the left hand side operand of the join. We assume the source relation is always on the

left hand side of a join and thus use only left outer joins for the rest of this chapter.

Now let us assume the Employee objects prohibit nulls for the dept attribute since

a department affiliation is required of every employee. As mentioned in Section 2.4,

the dept attribute is retrieved from the dept# of the Employee relation. The join

between the Employee relation and Child relation is immaterial to the retrieval of

dept# attribute. Rather, nulls of the dept# attribute stored in the tuples of the

relation Employee should not be retrieved. Therefore, we must filter the Employee

relation with a selection condition 'dept# ^ null'. We call this selection condition

a non-null filter.

We see from the above examples that we frequently need left outer joins to prevent

the loss of wanted objects, and non-null filters to prevent the retrieval of unwanted

nulls.

3.2.2.2 Why do we want the system to do it?

Null-related semantics of object types are hard to understand and hence likely to

induce errors. For example, the Employee type definition shown in Figure 2.2 does

not distinguish between the semantics of 'employees and their zero or more children'

and the semantics of 'employees with at least one child'. A left outer join is needed

for the former while an inner join is needed for the latter. The distinction is entirely

3.2. PROBLEM FORMULATION 17

the programmer's responsibility. Even if the semantics is clear, it is an effort for

the programmer to determine the left outer joins and non-null filters given an object

type and the corresponding view, especially if the view defines many joins. Therefore

mechanization of the process is useful.

3.2.2.3 Why do we want to reduce the number of left outer joins and

non-null filters?

The view-query is processed more efficiently if we can eliminate a non-null filter

'R.A^ null' without affecting the query result, and thus avoid evaluating unnecessary

selection conditions. Sometimes it is known at the semantic level that the column A

of a relation R contains no null. An example is when A is the key of R and the entity

integrity [40] is preserved.

The query also becomes more efficient if we reduce the number of left outer joins

and still retrieve the same result. Sometimes left outer joins produce the same tuples

as inner joins. For example in Figure 2.2, if every employee has one or more children,

then the same tuples are produced by either join method. We know this fact at

the semantic level, provided that the system enforces the referential integrity [40]

from Employee. ssn to Child, ssn. As another example, let us consider the following

directed join graph.

Ri —► R2 —> R3 —► Ri

where the join from R2 to A3 is a left outer join and the others are inner joins. If it

is known that there always exists a matching tuple of R3 for every tuple of R2, then

the result of Äi XR2IX R3XRA is the same as Äi XR2XR3XRA. Now, if we

evaluate the join as an inner join, then the optimizer considers the three joins and

will choose the most efficient order of joins. Let us assume the join order becomes

#4 _> R3 _► R2 _► Rx in the optimal plan. On the other hand, if we evaluate the

join as a left outer join, the query optimizer can not consider reversing the order of

R2 [X R3 and thus can not obtain the same optimal plan. In general, converting

a left outer join to an inner join allows the query optimizer to deal with a larger

number of joins. This increases the number of alternative plans but will certainly

18 CHAPTER 3. 0 UTER JOINS AND FILTERS IN A VIEW- Q VERY

never generate less optimal plan than when left outer joins are evaluated as such and,

therefore, cannot be reordered.

3.2.3 Problem Statements

Our objective is thus to develop a mechanism for the system to decide whether the

joins of a query should be evaluated by inner joins or left outer joins when objects are

instantiated from relational databases through views. In addition, the system decides

which relations should be filtered through non-null filters. For efficiency reason, the

number of left outer joins and non-null filters should be reduced whenever possible.

3.2.4 Our Approach

The heterogeneity of the object-oriented model and the relational model causes several

difficulties in mapping between the two models [41]. Hence we cannot expect a simple

solution to our problems without a well-defined system model. The system model

should satisfy the following criteria.

• It provides the context in which we can develop a simple solution to the problem.

• It is based on a standard model and can be easily implemented in many existing

systems.

Given the system model, we develop a mechanism for solving the problem. We use

only one parameter that users should provide to the system. It is a non-null option

on the object attribute as will be explained in Section 3.3.1. Users do not even have

to know what a left outer joins is. To prevent losing nonmatching tuples when nulls

are allowed (by default), all joins of a query are initialized to left outer joins. The

semantics of the non-null options are interpreted as non-null constraints1 on object

attributes, and mapped to corresponding non-null constraints on the query result.

Then we replace some left outer joins by inner joins and add non-null filters to some

2These constraints require the existence of an object attribute given the oid of an object. We
would call this constraint as an existence constraint if this term were not already used in [32] to
mean the same concept as the referential integrity.

3.3. SYSTEM MODEL 19

relations accordingly. Finally, the number of left outer joins and non-null niters are

reduced using the integrity constraints of the data model.

The non-null options, and accordingly the non-null constraints, are used as the

correctness criterion of the mechanism. Sometimes there appears to be a conflict in

determing between a left outer join and an inner join. For example, let us consider

two different attributes A and B that are projected from the same relation R. If A

has a non-null constraint mapped from a non-null option on an object attribute but

B does not have such a non-null constraint, then the join to the relation R must be

an inner join for the non-null constraint on A to be satisfied while it does not have

to be an inner join for B. In this case, we require the mechanism to make sure that

no null value of A is retrieved, even if it also prevents null value of B from being

retrieved, and hence determine the join to the relation R to be an inner join. In

other words, the mechanism enforces the semantics of non-null options more strongly

than the semantics of the default option, which allows nulls. We call this correctness

criterion of the mechanism as a non-null correctness criterion.

3.3 System Model

The system model has three elements: an object type model, a view model, and a

data model. The object type model defines the structure of objects. No object type

model has gained universal acceptance [42, 43]. Therefore we define a model which

is common to many existing object-oriented models [1, 6, 8, 4, 5]. Note that we do

not deal with methods, but focus only on object structures. The data model uses the

relational model proposed by Codd [26]. The view model contains a relational query3

and defines a mapping between objects and relations. We restrict the query to an

acyclic select-project-join query with conjunctive join predicates.

3We do not assume the usage of any specific query language for our work.

20 CHAPTER 3. OUTER JOINS AND FILTERS IN A VIEW-QUERY

Relation Employee (ssn) <-^-> (id) Object Employee

(a) A pivot relation as a base relation

Relation Employee

I
ssnMmanager-ssn

I.
Relation Project

1:1
(ssn) <—:—> (id) Object Project-manager

(b) A pivot relation as a derived relation

Figure 3.1: The concept of a pivot relation

3.3.1 Object Type Model

Many existing object-oriented models support aggregation through nested structures

and references. For example, the Employee object of Figure 2.2 is an aggregation of

name, dept, and children where dept is a reference to a Department object, and

children is an aggregation of name and birthDate. The children attribute defines

an embedded substructure of the Employee object. Thus our object type has a similar

structure as the complex object [44, 45, 46].

We use value-oriented object id's [49, 50] and retrieve them from the keys of

relations4. Those relations providing object id's are called pivot relations [16, 17].

As discussed in Section 2.3, an object is mapped semantically to a derived relation

rather than a base relation if no base relation provides the same semantics as the

object type. Figure 3.1 illustrates these concepts. In Figure 3.1a, the Employee

relation is the pivot relation for the Employee object and provides its key ssn as the

object id. Figure 3.1b shows the derived relation Project-manager of Figure 2.1,

which becomes the pivot relation for the Project-manager object. It is defined by

Employee X Project, and the key ssn of Employee in the ioin result is
ssn=manager-«sn * J J

retrieved as the object id.

We do not consider derived attributes for our object type. Derived attributes have

4Tuple identifiers are usable as well. Otherwise we assume the system maintains a mapping
between system-generated object id's and the keys of the corresponding relations.

3.3. SYSTEM MODEL 21

no direct mapping to relation attributes and, therefore, are computed separately from

relation attributes.

An object type is defined formally as a tuple of attributes, [Ax, A2, • • •, X\, X2, • • •]

where each A{ is a simple attribute, and each A',- is a complex attribute. Each attribute

is either local to the object or inherited from its parent, and we consider both the

local and inherited attributes as 'defined' in an object type. An attribute is described

in Backus-Naur Form as follows.

attribute ::= simple attribute | complex attribute

simple attribute ::= internal attribute | external attribute

complex attribute ::= [attribute, attribute, •••]

A simple attribute has an atomic value or a set of atomic values. It is either

internal or external to the object. An internal attribute has a primitive data type

such as string, integer, etc., while an external (or reference) attribute has another

object type as its data type. The value of an external attribute is the oid of the

referenced object. A complex attribute defines a subobject or a set of subobjects by

embedding its type definition within the object type. In the same way as an object

id is mapped from the key of a pivot relation, a subobject also has an associated oid

which is mapped from the key of a base relation. However, the oid of a subobject is

not retrieved while the oid of its (super)object is retrieved from the key of a pivot

relation5.

We need a way of telling the system whether the value of an object attribute is

allowed to be null or not. This is done by attaching a non-null option to an object

attribute. This option deliberately declares that a null value is not allowed for the

attribute. It is equivalent to specifying the constraint of 'minimum cardinality > 0'

on the attribute6. Attributes without non-null options are allowed to have null values

by default.

An example is shown in Figure 3.2. The Project attribute defines its own at-

tributes and becomes a subobject of the Programmer object. It has its object id

5A subobject of an object is not a stand-alone object because it has no object id.
6Many commercial tools for building object-oriented system applications, KEE[47, 48] for exam-

ple, support this option.

22 CHAPTER 3. OUTER JOINS AND FILTERS IN A VIEW-QUERY

Type Programmer
[name: string non-null, dept: Department non-null, salary: integer,

manager: Employee, task: string,
Project: [title: string non-null, sponsor: string, leader: string,

depart: Department non-null]]

Figure 3.2: An example object type

Programmer

oid name dept salary manager task Project

oid title sponsor leader dept

Figure 3.3: The O-tree of the Programmer object type

mapped from the key of a pivot relation in the same way the Programmer object

does. However, only the id's of the Programmer objects are actually retrieved. This

Programmer object example will be used throughout the rest of this chapter.

Given an object type, we can build a tree consisting of its object attributes. We

call such a tree an O-tree and define it as follows.

Definition 3.3.1 (O-tree) The O-tree of an object 0 is a tree which has the fol-

lowing properties.

• Its root is labeled by l0\

• A leaf is labeled by a simple attribute of the object O.

• An intermediate node (non-leaf) is labeled by a complex attribute of the object

O.

An example of an O-tree is shown in Figure 3.3 for the Programmer type.

3.3. SYSTEM MODEL 23

Here we introduce two functions directly derivable from an object type: an object

set (Oset) and an object chain (Ochain). These two functions are used to facilitate

mapping between objects and relations.

Definition 3.3.2 (Oset) Given an object 0, Oset(0) is denned as a function re-

turning the set of the root of the O-tree and all of its non-leaf descendents.

For example, Oset(Programmer) returns {Programmer, Project}. Note that each

element of an Oset has its object id mapped to the key of a pivot relation.

Definition 3.3.3 (Ochain) Given an object O and a simple attribute s0 of the

object 0, 0chain(O,s0) is defined as a function returning the chain of nodes from

the root (0) of the O-tree to a descendent node labeled s0, i.e., 0.0\. • • • .0n.s0.

For example, Ochain(Programmer, title) returns Programmer.Project .title and

Ochain(Programmer, Project) returns Programmer.Project.

3.3.2 Data Model

Integrity constraints [38, 39, 40] are a part of the data model7. Two kinds of integrity

constraints are used in our work: referential integrity constraints and entity integrity

coststraints. As mentioned in Section 3.2.2.3, these integrity constraints are useful to

reduce the number of left outer joins and non-null filters.

The referential integrity constraint is defined as follows.

Definition 3.3.4 (Referential integrity constraint) A referential integrity con-

straint from R.A to S.B requires that if R.A is not null then there exists a matching

value of S.B. That is:

Va € R.A(a = null V 36 € S.B{a = b)) (3.4)

7In the Penguin project, which was introduced in Section 2.6.2.1, the connections of a struc-
tural data model provide the semantics of necessary integrity constraints, and therefore, integrity
constraints need not be specified separately by a database designer.

24 CHAPTER 3. 0 UTER JOINS AND FILTERS IN A VIEW-Q UERY

Let us denote the referential integrity constraint by an arrow as in R.A i—» S.B.

Our definition of the entity integrity constraint is more extensive than the defini-

tion used in [40].

Definition 3.3.5 (Entity Integrity constraint) An entity integrity constraint re-

quires one or more of the following conditions to be satisfied.

• Primary key constraint: R.A^ null if A is the primary key of R*.

• Range constraint: If R.A is not null then ai&i R.A 82a2 where a-i,a2 are non-null

constants, and 61,62 are '<' or '<'.

• Value constraint: R.A = a or R.A ^ a where a is a constant which may be null.

There can be other kinds of entity integrity constraint. For example, R.A can have

a type constraint such as 'the value of R.A must be an integer'. However, those

denned in Definition 3.3.5 are sufficient for our work. Figure 3.4 shows the schema,

the referential integrity constraints and the entity integrity constraints of a sample

database.

3.3.3 View Model

Figure 3.5 shows the components of the view model. A view consists of two

parts: a query part and a mapping part. The mapping part in turn consists of an

attribute mapping function (AMF) and a pivot description (PD). The AMF defines

the mapping between object attributes (S0) and relation attributes (5r). The PD

consists of a set of pivot relations (PS) and a pivot mapping function (PMF). The

PMF defines the mapping between the pivot relations and the (sub)objects9.

A high level language can be designed for defining a view. The view should be

preprocessed to generate the mapping part as well as the query.

3.3.3.1 Query Part

8In [40], only this constraint is used as the entity integrity constraint.
9Or equivalently, between the keys of the pivot relations and the id's of the (sub)objects.

3.3. SYSTEM MODEL 25

/* Underlined attributes are keys. */
Di vision (name, manager, super-division, location)
Dept(name, budget, phone#)
Empfssn, name, salary, dept)
Engineerfssn, degree, specialty)
Proj-Assign(emp, proj, task)
Project(proj#, dept, leader, sponsor)
Sponsor (name, phone#, address)
Proj-Title(proj#, title)

(a) Database schema

/* i—► denotes a referential integrity constraint. */
Division.manager t-> Emp.name
Division.super-division i—* Division.name
Dept .name i—*• Division.name
Emp.dept H-+ Dept .name
Engineer.ssn •—> Emp.ssn

Proj-Assign.emp H-* Engineer.ssn
Proj-Assign.proj >-» Project.proj#
Project.dept »—> Dept .name
Project .leader »-» Emp.ssn
Project.sponsor ^ Sponsor.name
Project-title.proj# *-* Project.proj#

(b) Referential integrity constraints

The keys of all relations shown in the database schema are disallowed from having
nulls. In addition, Emp.dept and Emp.name are prohibited from having nulls.

(c) Entity integrity constraints

Figure 3.4: A sample database

26 CHAPTER 3. OUTER JOINS AND FILTERS IN A VIEW-QUERY

Vif !W

Mapping part Query part

Pivotdescription Attribute mapping function
' I An

Pivot mapping function

 *- Oset {Ophain}= So-

V
Object

PS 1:1
ww

1:1 Sr

: consists of
generates

: defines

PS: the set of pivots Oset: object set Ochain: object chain

So: the set of Ochains of object attributes appearing in the object type

Sr: the set of relation attributes appearing in the query

Figure 3.5: Mapping between objects and relations

Programmerl
{name,salary,dept} ,, {manager}

impl^ *\JDeptlJ) ""VDivisionL

{name}

(deptj ^<^vi

(The keys of Engineerl and Projectl are mapped to the id's of the Programmer

object and the Project subobject respectively. Dotted lines denote pivots.)

Figure 3.6: The query graph for the Programmer object

3.3. SYSTEM MODEL 27

Figure 3.6 shows the query graph for the Programmer object. A query graph (QG)

is a directed connected graph. Each vertex is represented by the node of a relation

R labeled with a filter / and with the set of attributes -K projected from R. Two

occurrences of the same relation are distinguished by a tuple variable denoted as a

subscript. Each edge represents a join specified in the query. A join is either an

inner join or a left outer join. Since left outer joins are not symmetric, the edges are

directed.

3.3.3.2 Mapping Part

Now we give a more rigorous description of the mapping part. The set of object

attributes S0 of an object type 0 is represented as the set of Ochains as follows.

S0 = {0chain(0,50)|5o € Simple_attr(0)}

where Simple_attr(0) denotes the set of simple attributes of an object type O.

Ochain(O,s0) was defined in Definition 3.3.3. The set of relation attributes Sr is

defined as-follows.

Sr = {R.A\A C Attr(Ä)}

where R is a relation occurrence in the query part of a view and Attr(i?) denotes the

set of attributes of R.

Since we assume no derived attribute, there exists a one-to-one mapping between

S0 and ST. This mapping information is contained in the attribute mapping function.

The following example shows the mapping between the S0 and Sr of the Programmer

object.

Example 3.3.1 (Attribute Mapping Function (AMF))

28 CHAPTER 3. OUTER JOINS AND FILTERS IN A VIEW-QUERY

Programmer. name «-> Empi. name,

Programmer. dept «-> Empi. dept,

Programmer. salary <-» Empi. salary,

Programmer.manager <-> Division!.manager,

Programmer.task <-» Pro j-As signet ask,

Programmer.Project.title <-> Pro j-Tit lea. title,

Programmer. Proj ect. sponsor «-► Sponsor . name,

Programmer.Project.leader <-> Emp2.name,

Programmer. Pro j ect. depart <-* Pro j ect x. dept
D

As shown in Figure 3.1, a pivot relation is either a base relation or a derived rela-

tion. If it is a base relation, its key is mapped to the object id. If it is a derived rela-

tion, the key of one of its base relations is mapped to the object id. For example, the

query for the Programmer object has two pivot relations, Programmer! and Projecti.

Here Project! is a base relation and Programmer! is a derived relation denned by

(Engineers {Engineen „^ 0"task = "programming" Proj-Assign!». A
formal definition of a derived relation is as follows.

Definition 3.3.6 (Derived relation) A derived relation of an object type 0 is an

ordered pair (R*, E) where Rb is a base relation whose key is mapped to the oid of the

object type O, and E is a select-join10 expression such that, for arbitrary instances

of the relations in E:

• nKey(*l)£ C nKwoJfe

. ->3E\E> * E A nKey{Rb)E> = nKey(R6)£)

That is, the result of evaluating E produces a subset of the keys available from Rb

and there is no other select-join expression E' which, when evaluated, produces the
same set of keys.

For every object and its subobject, there always exists one and only one relation

occurrence whose key is mapped to the oid. In other words, there is a one-to-one
10Selection is not required while join is required.

3.3. SYSTEM MODEL 29

mapping between the object set denned in Definition 3.3.2 and the set of pivot re-

lations (PS). This mapping information is contained in the pivot mapping function.

For example, the mapping between the Oset and PS of the Programmer object is as

follows.

Example 3.3.2 (Pivot Mapping Function (PMF))

Programmer <-» Programme^, Project <-* Project^

D

As mentioned in Section 3.3.1, we associate value-oriented object id's with an

object and its subobjects. These oid's are invisible in the type definition and their

mappings to relation attributes are not explicitly specified in the attribute mapping

function. These mappings are derived from the information stored in the pivot de-

scription using the following algorithm.

Algorithm 3.3.1 (Mapping between oid's and relation attributes)

Input: Ochain, AMF without the mapping of oid's, PS, PMF.

Output: AMF with the mapping of oid's.

For each pivot relation p € PS begin

If p is a base relation

then append 'Ochain(0, PMF(p)).id «-> p.Key(p)' to AMF.

else /* p is a derived relation */ begin

Find the base relation Rb of p.

Append 'Ochain(0, PMF(p)).id~ Äfc.Key(Äb)' to AMF.

end.

end.

For example, given the set of pivot relations and the pivot mapping function of the

Programmer view, Algorithm 3.3.1 derives the following mappings between the id's

of the Programmer object and its Project subobject and their corresponding pivot

relation keys.

Example 3.3.3 (Addition to AMF)

Programmer.id «-* Engineeri.ssn,

30 CHAPTER 3. OUTER JOINS AND FILTERS IN A VIEW-QUERY

Programmer. Project, id «-» Project^ .proj#

D

These are appended to the AMF.

There is a constraint on the definition of the attribute mapping function. Let

us consider two object attributes s0 and sj which belong to the same node of an

O-tree and their mapped relation attributes AMF(ä0) and AMF^). Then AMF(^0)

and AMF(sx) must either belong to the same relation or there exists a one-to-one

cardinality relationship between them.

The attribute mapping function is essential for making it simple to map between

objects and relations, as will be demonstrated in the following section.

3.4 Development of the Mechanism

Now we describe the mechanism for prescribing joins in a query as inner joins or left

outer joins, and also for generating non-null filters for some relations in the query.

We first present an overview of our mechanism, and then discuss each step in detail.

3.4.1 Overview

There are two sources of nulls retrieved from databases. One is from the nulls stored

in the tuples, the other is from any outer join failure. Inner joins create nulls from

the first source only, while outer joins create nulls from both sources. Objects allow

nulls by default, and need only one kind of outer join, a left outer join, as explained in

Section 3.2.2.1. Therefore our strategy is to initialize all joins of a query as left outer

joins and then replace part of them by inner joins at each step of our mechanism.

The steps of our mechanism is as follows.

1. Compile the object type O and generate the object set (Oset) and the set of

Ochain(O,s0)'s for all the attributes defined in 0.

2. Preprocess the view and generate the query and the mapping part - AMF,

PMF, and PS.

3.4. DEVELOPMENT OF THE MECHANISM 31

3. Derive the mappings between object id's and the keys of pivot relations using

Algorithm 3.3.1, and add the result to the attribute mapping function.

4. Initialize all joins of the query as left outer joins.

5. Replace all joins within derived relations by inner joins. (See Section 3.4.2.)

6. Map non-null options on object attributes to non-null constraints on the query

result. Replace some joins by inner joins and add non-null filters to some

relations accordingly. (See Section 3.4.3 and Section 3.4.4.)

7. Find the left outer joins which produce the same tuples as inner joins due to

referential or entity integrity constraints, and replace those left outer joins by

inner joins. Find also the relations whose non-null filtered attributes cannot

have nulls due to entity integrity constraints, and remove the non-null filters

from those relations. (See Section 3.4.5.)

3.4.2 Joins within a Derived Relation

As mentioned in Section 2.3, a derived relation is a conceptual relation defined from

base relations via a select-join expression, and provides an abstraction of base relations

so that the semantics of the derived relation matches the semantics of the instantiated

objects.

All joins specified within a derived relation must be inner joins, as shown by the

following theorem.

Theorem 3.4.1 Let us consider an object type 0 and a derived relation (Ri,E)

defined according to Definition 3.3.6. If E = Ri H R2 * • • • * An, then all the joins

from Ri through Rn are inner joins.

Proof: If we assume a join from Ä; to Ri+i is a left outer join for an arbitrary

i G [l,n] while the others are inner joins, then the following is true.

nKey(Hi)(Ä1IXÄ2X ••• XRilX Ri+iX ••• 1X3fin)

32 CHAPTER 3. 0UTER JOINS AND FILTERS IN A VIEW-QUERY

That is, there exists another select-join expression which, when evaluated, produces

the same set of keys available from Ri. This violates the second condition required

of E in Definition 3.3.6. Therefore, all the joins in E must be inner joins. Q.E.D.

For example, given a derived relation:

(Engineer^ {Engineer ^^ 0"task='programming' Proj-Assigm})

which is defined to provide the semantics of the Programmer object, the join between

Engineeri and Proj-Assigna must be an inner join. If the join is evaluated as a

left outer join, it retrieves all tuples of Engineer^ not just those corresponding to

programmers, who are defined as the engineers working on a programming task in

the assigned projects.

Thus, given the set PS of pivot relations, we have the following algorithm.

Algorithm 3.4.1 (Joins within derived relations)

Input: query graph (QG) with all joins initialized as left outer joins, and the pivot

set (PS).

Output: query graph (QG') modified with inner joins.

1. For each derived relation {Rb,E) in the set of pivot relations (PS),

replace all joins in E by inner joins. .

3.4.3 Mapping Non-null Options to Non-null Constraints

on the Query Result

Let us consider an object 0 whose attribute s0 has a non-null option. The non-null

option requires that there should exist a non-null s0 given the oid of the object. Let us

denote this non-null constraint as O.id =» s0. If s0 is a simple attribute, it is non-null

if its value is not null. On the other hand if s0 is a complex attribute, it defines a

subobject. An object is non-null only if its oid is non-null. We thus interpret the

semantics of non-null so according to the following rule of non-null constraint.

Rule 3.4.1 (Non-null constraint) Let us consider 0chain(0,so) = CVOi- ■ • • 0n.so

If so has a non-null option then, given On.id,

• If s0 is a simple attribute, i.e., 0n.id => s0, then s0 cannot be null.

3.4. DEVELOPMENT OF THE MECHANISM 33

• If .so is a complex attribute, i.e., On.id =» s0.id, then s0.id cannot be null.

For example, given the Programmer object of Figure 3.2, the non-null options on name

and dept attributes are interpreted as Programmer. id => name and Programmer. id

=> dept, respectively, because name and dept are simple attributes. Besides, the

non-null options on title and depart are interpreted as Project.id => title

and Project.id => depart, respectively. Beware that they are not interpreted as

Programmer.id => title and Programmer.id => depart because title and depart

are the (direct) attributes of Project subobject instead of the Programmer object.

On the other hand, if there were a non-null option on Project, it would be interpreted

as Programmer.id => Project .id because Project is a complex attribute.

Can we map the non-null constraint denned by Rule 3.4.1 to the corresponding

non-null constraint on the query result? This is possible in our model because the

oid of each (sub)object always has a corresponding pivot relation key. The attribute

mapping function in Example 3.3.1 showed this correspondence for the Programmer

object. Using the correspondence, the non-null constraints on the name and dept

attributes of the Programmer object are mapped to Engineeri.ssn => Empi .name

and Engineeri.ssn => Empi.dept, respectively. Likewise, if Project had the non-

null option, its constraint would be mapped to Engineeri.ssn =4> Project!.proj#.

The non-null option on the title attribute is mapped not to Engineeri.ssn =£>

Proj-Titlei.title but to Project^proj# => Proj-Title^title because title

is defined not as an attribute of Programmer object but as an attribute of Project

subobject. For the same reason, the non-null option on the depart attribute of

Project is mapped to Projecti.proj# => Projecti.dept.

More formally, a non-null option on the attribute s0 of an object type 0 is trans-

lated into the non-null constraint on the query result as follows.

Algorithm 3.4.2 (Mapping non-null options)

Input: an object attribute s0 with a non-null option, attribute mapping function

(AMF), object chain (Ochain).

Output: a non-null constraint on the query result.

1. fio.n-so := Ochain(0, s0) = OQ.OI. • • ■ .On.s0.

34 CHAPTER 3. OUTER JOINS AND FILTERS IN A VIEW-QUERY

2. Rp.A := AMF(n0,n-id). /* A is always the key of Rp. */

3. If s0 is a simple attribute

then R,.B := AMF(no,n-So)

else Ä4.f? := AMF(fi0,n-so-id). /* If s0 is a complex attribute, B is the key of

R,. V

4. Output the constraint 'Rp.A =4> Rt.B\

3.4.4 Prescribing Joins and Generating Non-null Filters

With the non-null constraints on the query result, we translate them into the corre-

sponding inner joins and non-null filters of the query. Given the constraint 'Rp.A =>

R,.B: obtained from Algorithm 3.4.2, it is done as follows.

Algorithm 3.4.3 (Translating non-null constraints)

Input: query graph QG' from Algorithm 3.4.1, a non-null constraint Rp.A =>• R,.B

Output: query graph QG" modified with inner joins and a non-null filter.

1. Replace the filter /, on R, by /, A (B ^ null). /* Generate a non-null filter. */

2. /* Prescribe a join. */

(a) Find all directed join paths from Rp to R,.

(b) For each path found in Step 2a,

replace all joins on the path by inner joins.

For example, given the non-null constraints established in Section 3.4.3, the follow-

ing non-null filters are generated in the query of the Programmer object: Empi .name ^

null, Empi.dept ^ null, Projecti.dept ^ null, Proj-Titlei.title ^ null.

Besides, the following left outer joins are replaced by inner joins: Engineeri [X

Empi, Project! [X3 Proj-Titlei.

Now we prove the correctness of Algorithm 3.4.3 with the following theorem, base

on non-null the correctness criterion explained in Section 3.2.4.

3.4. DEVELOPMENT OF THE MECHANISM 35
*

Theorem 3.4.2 Given a join path Ri M R2 IX • • • M R^ and a non-null .constraint

R1.A1 => iln-Ai on the join result, the materialized join result satisfies this non-null

constraint if and only if all the joins are inner joins and Rn is filtered by An ^ null.

Proof:

// part: If all joins on the join path are inner joins, any nonmatching tuples are

discarded. Then, the attribute An in the join result can have nulls only if An is not a

join attribute and some tuples of Rn have null An. (If it is a join attribute, any tuple

of Rn with null An is discarded by an inner join.) However, tuples with null An are

removed from R^ by the given non-null filter. Therefore the constraint is satisfied.

Only if part: We prove this part by contradiction. Let us first assume Ri IX Ri+i

is a left outer join for some i although the constraint is satisfied and let Ri+i have

non-matching tuples. Then a null Rn.An is retrieved from the null tuples appended to

the tuples of Ri which have no matching tuples in Ri+i- This contradicts the assumed

constraint. Therefore all the joins must be inner joins. Next, let us assume Rn is

not filtered by An / null although the constraint is satisfied and all joins are inner

joins. Then null Rn.An is retrieved from the nulls stored in Rn.An if An is not a join

attribute. This contradicts the assumed constraint. Q.E.D.

3.4.5 Reducing the Number of Left Outer Joins and Non-

null Filters

We can remove unnecessary non-null filters and further reduce the number of left

outer joins by using integrity constraints.

3.4.5.1 Removing Unnecessary Non-null Filters

Considering entity integrity constraints, some non-null filters are removed if they are

defined on attributes which cannot have null. A typical case is when the attribute is a

key (primary key constraint) or any other non-null attribute designated in the schema

definition (value constraint). For example, we can remove Empi.name ^ null and

Empi.dept ^ null among the four non-null constraints generated in Section 3.4.4

36 CHAPTER 3. 0UTER JOINS AND FILTERS IN A VIEW-Q UERY

because, as it was shown in Figure 3.4c, those two attributes are key attributes and

hence prohibited from having nulls.

3.4.5.2 Further Reducing the Number of Left Outer Joins

We can also replace some left outer equijoins by inner equijoins if we consider refer-

ential integrity constraints. Since a referential integrity R.A H-> S.B allows R.A to be

null, we define a stronger condition by introducing a variable min as follows.

Definition 3.4.1 (min) Given a join Ri M Rj, let min*,- denote the minimum number

of matching tuples in Rj for each tuple in Ri. Note min^- is not necessarily the same

as minji.

Besides, some left outer non-equijoins can be replaced by inner non-equijoins if we

consider entity intergrity constraints such as range constraints.

Using only the semantics of min without considering the instances of relations11,

we define the following rules for deciding whether min is greater than zero or not.

MIN(Ä..A) denotes the minimum non-null value allowed for R.A, and MAX(R.A)

denotes the maximum non-null value allowed for R.A. MIN(Ä.A) and MAX(R.A)

are known from the range constraints or value constraints, if there are airy, on R.A.

Rule 3.4.2

• Given a single join predicate AOB for the join between two relations Ri and

Rj, minjj > 0 if Ri.A is a non-null attribute and one or more of the following

conditions are satisfied.

= '=' and Ri.A H-+ RJ.B and the filter /,- on Rj is empty, or

6 = '>' and lSm{Ri.A) > MAX(Rj.B), or

6 = '>' and MIN(J2i.4) > MAX{Rj.B), or

6 = '<' and MAX(Ri.A) < MIN{Rj.B), or

9 = '<' and MAX(Ri.A) < MIN(Ä,-.£), or

iii 1In other words, we ignore the fact that min may be accidentally greater than zero at the instance
level although it is judged to be equal to zero at the semantic level.

3.4. DEVELOPMENT OF THE MECHANISM 37

6 = V and (MIN(J2,-.A) > UAX{Rj.B) or MAX(ifc.A) < Mm(Rj.B)).

Otherwise minij = 012.

• Given a conjunctive join predicate A^B-y A ^42^2-^2 A ■ • • A AkOkBk for the join

between Ri and Äj, minij > 0 for the conjunction of join predicates if min^ > 0

for every single join predicate. Otherwise min,j = 0.

• Given a disjunctive join predicate AiBiBi V A2S2B2 V • • • V AkOkBk for the join

between Ri and Rj, min;.,- > 0 for the disjunction of join predicates if min^ > 0

for at least one join predicate. Otherwise min^- — 0.

• Given a join path between two relations, such as Ri M Ri+i M • • ■ M Rj,

minij > 0 if min^+i > 0 for k — i, ■ • •, j - 1. Otherwise min^- = 0.

If minij > 0 for a join path from Ri though Rj, we can replace all joins on the

path by inner joins and still get the same query result.

Now we describe an algorithm for reducing the number of left outer joins using

min. We also show the step of removing unnecessary non-null filters in the following

algorithm.

Algorithm 3.4.4 (Integrity-based reduction of left outer joins and non-null filters)

Input: query graph (QG") produced by Algorithm 3.4.3, and integrity constraints.

Output: modified query graph (QG"').

1. Remove 'R.A ^ null' such that A is a non-null attribute.

2. Find all join paths between pairs of nodes, such as Ri and Rj, whose minjj > 0.

3. For each join path found in Step 1,

replace all joins on the path with inner joins.

12minjj = 0 does not mean that ntiiWj is always equal to zero. Rather, it means that it is not
known at the semantic level whether mixnj is greater than zero.

38 CHAPTER 3. O UTER JOINS AND FILTERS IN A VIEW-Q VERY

As an example, in the query of Programmer object, we find a join path from

Engineer! to Division! for which all three joins have min > 0. This is because, as

shown in Figure 3.4, (1) there are referential integrities Engineer! • ssn ►-> Empi. ssn,

Empj.dept •-* Deptj .name, Depti .name i-» Division!. name, (2) there are integrity

constraints prohibiting nulls for Engineer 1.ssn, Empj.dept, and Deptj.name, and

(3) none of the relations on the join path has a non-empty filter. We also find a

join path from Proj-Assign to Project for which the min > 0. All these joins

are replaced by inner joins. Note Project! [X Emp2 and Projecta [X Sponsora

cannot be replaced by inner joins because Project .leader and Project.sponsor

are not non-null attributes.

3.4.6 Summary of the Mechanism

Given a query with initial left outer joins, the overall mechanism developed in Sec-
tion 3.4 is as follows.

Algorithm 3.4.5 (Summary)

Input: object type 0, view (query part and mapping part), relations and integrity

constratins.

Output: the query part prescribed with inner joins, left outer joins, and non-null
filters.

1. /* Preprocessing */

(a) Compile the object type O and generate the object set (Oset) and the set

of Ochain(0, s0)'s for all the attributes defined in 0.

(b) Generate the query and the mapping part, AMF, PMF, and PS, from the

view.

(c) Derive the mappings between object id's and the keys of pivot relations

using Algorithm 3.3.1, and add the result to the attribute mapping func-
tion.

(d) Initialize all joins of the query as left outer joins.

3.4. DEVELOPMENT OF THE MECHANISM 39

2. /* Replace all joins within derived relations with inner joins. */

For each derived relation {Rb,E) in the set of pivot relations (PS),

replace all joins in E by inner joins.

3. For each attribute s0 of the object 0 that has a non-null option,

(a) /* Map the non-null option to a non-null constraint on the query result */

i. fi0,n-So := 0chain(0,50) = 0o-0i. • •• .0„.s0.

ii. Rp.A := AMF(ü0,n-id). /* A is always the key of Rp. */

iii. If so is a simple attribute

then R..B := AMF(fi0,n^o)

else R,.B := AMF(fto,n-so-id). /* If s0 is a complex attribute, B is

the key of Rt. */

iv. Output the non-null constraint 'Rp.A =£• R,.B\

(b) /* Generate a non-null filter and prescribe a join. */

i. Replace the filter /, on R„ by /, A {B ^ null). /* Generate a non-null

filter. */

ii. /* Prescribe a join. */

A. Find all directed join paths from Rp to R„.

B. For each path found in' Step 3(b)iiA,

replace all joins on the path by inner joins.

4. /* Using the integrity constraint, remove all non-null filters which can be shown

to be redundant, and replace left outer joins if they prove to be equivalent to

inner joins. */

(a) Remove lR.A ^ null' such that A is a non-null attribute.

(b) Find all join paths between pairs of nodes, such as Ri and Rj, whose

miiiij > 0.

(c) For each join path found in Step 4b,

replace all joins on the path with inner joins.

40 CHAPTER 3. OUTER JOINS AND FILTERS IN A VIEW-QUERY

Programmer!
(name,salary,dept)
■«v i ^-i-~J} j ^- Jmanager}

<EmplJ——*\Deptl y—*VDivisionl

Figure 3.7: The query graph for the Programmer object with joins and non-null filters

The graph of the query for the Programmer object, labeled with joins and non-

null filters, is shown in Figure 3.7. All the joins of the query except those between

Projectj and Emp2 and between Project^ and Sponsori have been prescribed as

inner joins. Two non-null filters have been attached as the selection conditions on

the Project! and Pro j-Title! nodes.

3.5 Summary

We developed a mechanism for automatically prescribing inner or left outer joins

for the joins of a query used to instantiate objects from a relational database. It

also generates non-null filters for some of the relations in the query. We developed

a rigorous system model that facilitates the mapping between objects and relations.

The system model consists of an object type model, a view model, and a relational

data model. These models are based on a standard model or well-known models.

We added a few new components to the object type model and view model. These

components are easily implement able in existing systems.

The mechanism deals with an acyclic query graph. At first, all joins in the query

graph are initialized to left outer joins. Then the following joins are replaced by inner

joins: 1. Joins within a derived relation to provide the semantics of the object type;

3.5. SUMMARY 41

2. all joins lying on the path from a pivot key to an attribute which has a non-null

constraint on the query result. The non-null constraint is mapped from a non-null

option on an object attribute and enforces the semantics of the non-null option at the

relation level. Besides, non-null filters are generated for a relation attribute which

has non-null constraints on it. Finally, the number of left outer joins and non-null

filters is reduced whenever possible using the integrity constraints so that the query

is processed more efficiently.

Our result demonstrates how simple the mechanism becomes once the system

model is established. The only criterion for the mechanism to use is the non-null

option on object attributes, whose semantics is mapped to the non-null constraint on

the query result. The system uses the non-null correctness criterion to make sure that

the semantics of a non-null option is preserved, even if it prevents other attributes

without non-null options from having null values as well. The developed mechanism

covers all possible cases under the non-null correctness criterion.

Chapter 4

Efficiently Instantiating Objects

4.1 Introduction

This chapter addresses the second problem of this thesis, which is to improve the per-

formance of retrieving objects from a relational database residing on a remote server.

The key idea of the performance improvement is to reduce the amount of redundant

data that the system should handle in order to instantiate objects. We first formu-

late our concrete problem in Section 4.2. Secondly, we develop three different object

instantiation methods in Section 4.3. One is the conventional method of retrieving

a query result in the form of a single flat relation (table). The other two methods

retrieve a query result in structures that are different from, and less redundant than,

a single flat relation. Thirdly, we develop the cost models of the three different object

instantiation methods in Section 4.4, and compare their costs in Section 4.5. It is

followed by a summary of this chapter and a discussion of future work in Section 4.6.

4.2 Problem Formulation

4.2.1 Environment: a Remote Main Memory Database Server

The client-server architecture is becoming a standard architecture of modern comput-

ing environment by virtue of the recent development of high-speed computer network

42

4.2. PROBLEM FORMULATION 43

technology. Typically multiple clients and servers work in a request-response mode,

that is, clients make requests to servers and servers make responses to the clients.

The concept of a remote database server stemmed from this concept, where requests

are database queries and responses are query results.

In the earlier stage of the client-server architecture, network communication cost

has been a major performance concern in accessing a remote database server. How-

ever, this concern is becoming less meaningful these days because the communication

cost decreases rapidly since the advent of the high-speed computer network technol-

ogy such as Ethernet local area network (LAN) [66, 65] and NSF wide area network

(WAN) [67, 68]. Rather, the dominant cost of accessing a remote database server

is the cost of query materialization on the server, disk access cost in particular.

This statement is true as long as databases reside on a secondary storage device.

Nowadays however, the number of applications running on main memory databases

[78, 73, 74, 81, 75] is increasing as high density main memory chips are becoming

available at a lower cost. Here, a main memory database indicates that the entire

database or an actively used subset of a database fits within main memory at the

same time. (According to [62], "approximately 50 - 75 % of all disk accesses occur

on data stored on 2 - 3 % of the disk media".) If a main memory database is used,

the disk access cost disappears or is incurred rarely, and hence the CPU cost and the

network communication cost become dominant.

Considering all these facts, our work assumes the environment in which clients

access remote database servers where databases are relational and stored in main

memory. We assume a situation in which practically infinite main memory is available

so that no disk access is necessary at all during the entire object instantiation process.

Here we emphasize that we assume the availability of large main memory as the

environment which can benefit most from our work. The usefulness of the result of

our work is not restricted to main memory database systems.

44 CHAPTER 4. EFFICIENTLY INSTANTIATING OBJECTS

Rl

7^
R2 R3

(a) Join graph

Rl
1 *! ,1 ! Ü

\, / R2 \
R3

4 rl h si
2 Tl i. s?
* vT, H «^ •
a" r4 r{ «4
a! r« si

tl

JtL
JJ_
JtL
JJ_
JJ_

_tL
JJ_
JtL
JJ_
_tL
JtL
JO.
_tL
_tL
JJ_
J±
JJ_
JJ.
-1L
ti

ti_
_tL

I-4—d-
a iL
ja! iL

4-4 iL
4—i2.
a E2_

t _a! r2.
1J!_LL

«j l?
4-4
3 x3_
i_x3_
4-* ii.
4 E4_
a EL
^ E4_
aj r4
3| Eä.
^ rS
a E5_
ü_E5_
4—cS- iLai rS

_sL
JS2_
s3

q sä.
Jj si

sL
-s2_
-S3-

Jj sa-
il si

sL
R?

Ji3_
J4_

1} sS
sL
-si-

ll si.
JS_

fcj sS
sL
j£L

Ü si-
ll si

sS.

(b) Tuples of relation fragments (c) Tuples of a single flat relation

Figure 4.1: Duplicate subtuples

4.2.2 Motivation: Redundant Subtuples of a Single Flat

Relation

There are two kinds of redundant subtuples in the composite tuples of a query result

retrieved in the form of a single fiat relation: duplicate subtuples and null subtuples.

A single fiat relation contains duplicate subtuples among the composite tuples.

For example, let us consider a query whose join graph is shown in Figure 4.1a. Fig-

ure 4.1b shows five matching tuples r<, i = 1,2, ■ • •, 5 from R7 and five matching tuples

Si,i = l,2,---,5 from R3 for a tuple ta from R1. Once those matching tuples are

concatenated into composite tuples of Figure 4.1c, *a is duplicated 25 times and each

of rt-, i = 1,2, • • •, 5 are duplicated 5 times, just to make the query result 'fiat'.

As we discussed in Chapter 3, left outer joins are frequently needed to instantiate

objects from relational databases through views [63]. If there are outer joins in

the query, the materialized single fiat relation will contain null subtuples for any

4.2. PROBLEM FORMULATION 45

Rl JM. R2

(a) Join graph

Rl tl ! al
O i a?
t^ 1 ai
t4 ' a^
tS ; a<
tfi i a^
t7 1 a"
tR 1 a*
tQ ; n<;

tin , »u

tl ! al null
t? i a? null
rt 1 a^ null
t4 ' a^ null
tS ! a« aS ! rl
tfi 1 aC null
t7 1 a" null
tR ' a* null
K) \ aC mill

HO ialf mill R2 I aS I rl 1

(b) Tuples of relation fragments (c) Tuples of a single flat relation

Figure 4.2: Null subtuples

nonmatching subtuples. Figure 4.2 shows an example case. Given a left outer join

from Ri to i?2) there is only one matching tuple rj from R^. However, the semantics of

the left outer join requires that null tuples should be inserted in place of R2 tuples for

any dangling tuples1 of J2a. Therefore, there appear nine null subtuples in Figure 4.2c.

The amount of null subtuples become significant if an outer join is followed by other

(inner or outer) joins.

Those duplicate subtuples and null subtuples are inserted just to make the rela-

tion flat and do not carry any additional information. Moreover, they cause some

disadvantages compared to the case they are not materialized. First of all, redundant

subtuples incur the cost of materializing them. Besides, redundant subtuples increase

the amount of transmitted,data and thus increase the communication cost over net-

work without conveying any more information. Furthermore, the flat relation must

be restructured into a nested relation to become usable as objects. In other words,

we materialize and transmit redundant subtuples which are destined to be eliminated

in a restructuring process. Thus, the duplicate subtuples and null subtuples incur

the additional cost of materializing them, transmitting them, and eliminating them

JThat is, tuples which do not have any matching tuples in Ä2

46 CHAPTER 4. EFFICIENTLY INSTANTIATING OBJECTS

without any benefit compensating for these costs. This observation motivated us to

look for alternative methods which do not return a single flat relation as a query

result and thus enable us to avoid retrieving duplicate or null subtuples.

4.2.3 Problem Statements

Our purpose is to develop alternative methods of instantiating objects from relational

databases through views, and compare their costs to demonstrate that the alternative

methods are more efficient than the conventional method of retrieving a single flat

relation. Our major cost measure is the execution time. Required main memory space

is another important measure of cost. Main memory space is taken into consideration

in the development of object instantiation methods. However, cost comparison is

carried out using time as the only cost measure.

Queries are restricted to acyclic select-project-conjunctive join queries, in the same

way as in Chapter 3. For simplicity, we consider only inner joins in a query and do not

consider any left outer joins for the rest of this chapter. This simplification indeed

simplifies the developed algorithms and cost comparison tasks. Nevertheless these

simplifications does not prevent us from demonstrating that the alternative methods

are more efficient than the conventional method, as explained now. The semantics of

a left outer join is as follows.

R1IXR2 = (R1XR2)U((R1-R1XR2) x A) (4.1)

where A is a null tuple of R2, i.e., a tuple consisting of nulls for each column of

R2 and X denotes a semijoin. Equation 4.1 says that tuples produced from a left

outer join from Rj to R2 is equal to the tuples produced from an inner join plus the

concatenation of the tuples of Rx which do not have matching tuples in R2 and a null

tuple of R2. As mentioned in Section 4.2.2, inner joins are the source of duplicate

subtuples while outer joins are the source of null subtuples contained in a single fiat

relation query result. Therefore, a query without outer joins produces only duplicate

subtuples in its single flat relation result while a query with outer joins produces null

subtuples as well as the duplicate subtuples. Therefore, if the new methods that will

be introduced in this thesis are more efficient than the conventional method when we

4.3. DEVELOPMENT OF OBJECT INSTANTIATION METHODS 47

consider inner joins only, they are even more efficient for a query with outer joins as

well.

4.2.4 Our Approach

First, we describe three different object instantiation methods. One is the conven-

tional method of retrieving a query result in the form of a single flat relation and

is called the SFR method. The second method retrieves a query result as a set of

relation fragments, and is called the RF method. Relation fragments are materialized

from base relations by reducing them with selection, projection, and join operations.

Relation fragments should contain all information required for restructuring the rela-

tion fragments into a single nested relation. The third method retrieves a query result

as a single nested relation and is called the SNR method. A single nested relation is

a set of nested tuples, in which an attribute can define another relation.

Then, we develop the cost models of the three different object instantiation meth-

ods and compare their costs. In the client-server architecture, the object instantiation

cost is the sum of local processing cost and transmission cost. The local processing

cost is the total execution time spent on a server and a client. The transmission cost

is the time required to send a query result to a client over communication network.

Obviously, the transmission cost is more significant in the WAN environment than in

the LAN environment. Since our purpose is to compare the costs of different methods

rather than to estimate the costs precisely, the cost items common to all three meth-

ods are excluded from our cost model. Besides, we make necessary simplifications as

long as the simplifications do not invalidate the cost comparison result.

4.3 Development of Object Instantiation Meth-

ods

In this section, we first give an overview of the SFR, RF, and SNR method, and then

give a detailed description of each step of the three methods. Since our objective is

to show that the RF method and the SNR method are more efficient than the SFR

48 CHAPTER 4. EFFICIENTLY INSTANTIATING OBJECTS

method, we make the SFR method as efficient as possible to avoid an}' bias in favor

of the RF method or the SNR method. As will be explained, the SNR method is

essentially the same as the RF method except that nesting step is carried out by a

server. Therefore, we first focus on the SFR and RF method in Section 4.3.2 through

Section 4.3.3, and then discuss the SNR method separately in Section 4.3.4.

4.3.1 Overview of the Three Object Instantiation Methods

We give here a brief, abstract overview of the object instantiation steps of three

different methods: the SFR method, RF method, and SNR method, focusing on the

distinction among the methods. First we describe the processes of each step of the

three methods and show an example of a single flat relation, relation fragments, and

a single nested relation to help readers understand the distinction among them.

4.3.1.1 Overview of the Processes

Figure 4.3 illustrates the processes of the three object instantiation methods. The

overall process is divided into three phases: materialization, transmission, and trans-

lation. The process of each phase is different for each method.

SFR method: A query is materialized into a single flat relation by a server, trans-

mitted as such, and is translated into objects by a client. Translation is done in two

steps: nesting and reference resolution. In the nesting step, a retrieved single flat

relation is restructured into a nested relation by our implementation of the NEST

[70] operator. The reference resolution step is needed to resolve references among

objects, thus configuring the retrieved objects into a network of references.

RF method: A query is materialized into a set of relation fragments by a server,

transmitted as such, and is translated into objects by a client. As in the SFR method,

translation is done in two steps, nesting and reference resolution, but a different pro-

cess is used for the nesting step due to the different structure of retrieved data. Since

a client receives no separate information for Unking tuples among relation fragments,

the first thing for a client to do is to create necessary linkage information. In our

work, it is done by creating indexes on join attributes. Once indexes are created, joins

4.3. DEVELOPMENT OF OBJECT INSTANTIATION METHODS 49

»

(a) Server

transmission

(objects)

(b) Client

(RF Nesting: Join purge —** Assembly planning ""•* Index creation "~*" Navigational join)

Figure 4.3: Overall processes of object instantiation

50 CHAPTER 4. EFFICIENTLY INSTANTIATING OBJECTS

are performed starting from each tuple of the pivot relation fragment and navigating

along the joins to linked relation fragments. The result of the navigational join is

a single nested relation, the same one that would be produced by the nesting step

of the SFR method. The reference resolution step is the same as that of the SFR

method because it works on the same nested relation.

SNR method: A query is materialized into a single nested relation, transmitted as

such, and is translated into objects by a client. We had once looked into materializing

a query directly into a single nested relation. However, this direct approach inhibits

join ordering by a query optimizer because the order of nested subrelations in a single

nested relation is not necessary the same as the join order chosen by a query optimizer.

In other words, reordering of joins for more efficient processing of the query can not

be attempted. Hence, we decided to take an indirect approach in which a server

first materializes a query result using the SFR or RF method and then nest the query

result into a single nested relation.

A client does not have to do the nesting step of translation but does only the

reference resolution step. The reference resolution step is the same as that of the

SFR method and RF method. Therefore, the SNR method uses the same process as

the SFR or RF method except that the nesting step of translation has been moved to

a server. Telling in advance, the result of our work showed that the nesting of relation

fragments is cheaper than the nesting of a single fiat relation. Figure 4.3 shows the

nesting step using relation fragments.

4.3.1.2 Examples of a SFR, RF, and SNR

Let us consider an example database containing the three relations shown in Fig-

ure 4.4a. Figure 4.5 shows the examples of a single flat relation, relation fragments,

and a single nested relation, which would be materialized from the same query shown

in Figure 4.4b. Each of the relation fragment is materialized from a corresponding

base relation. Column values labeled with an asterisk (*) denote redundant column

values for each method.

We see that the single flat relation contains duplicate subtuples. For example,

4.3. DEVELOPMENT OF OBJECT INSTANTIATION METHODS 51

a. Relations:

DEPT(dno, dname, mgr, sec, loc, parentdiv)

EMP(eno, ename, salary, dept, esex, degree, ebdate, addr)

CHILD(parent, cname, ebdate, csex, school)

b. Query:

n j j AA c„Wh(DEPT X EMP x CHILD) ^{dnOjdnamejename^QQr^namejScliool}^ dbo=dePt eno=pBrent

Figure 4.4: Example relations and query

three of the four "Sales" department names in the dname column are redundant dupli-

cates. On the other hand, the relation fragments contain no such duplicate subtuple.

However, we note that the eno, dept attributes of the relation fragment from the base

relation EMP, and the parent attribute of the relation fragment from the base relation

CHILD have never been specified in the projection set of the query. Nevertheless these

attributes must be materialized to make the linkage among the tuples of the three

relation fragments possible on a client. In other words, 'extra' attributes are materi-

alized in addition to the projection set in the query and are required to perform 'joins'

among the relation fragments in the nesting step. Hence we call those attributes as

extra join attributes. As for the single nested relation, obviously it contains less num-

ber of redundant subtuples than the single flat relation, but the example shows that

it still contains some redundant subtuples. In the example, Steve works for both the

Sales department and the Purchase department and therefore, the name Steve, his

address, and his child's name and child's school appear twice in two different nested

tuples. We call this source of redundant data contained in a single nested relation as

multiple occurrences of subtuples.

In the rest of this chapter, we shall adopt the following notations. We denote a

single flat relation as T (meaning a 'Table'), a relation fragment as F; (meaning a

'Fragment'), and a nested subrelation within a single nested relation as Si (meaning

a 'Subrelation').

52 CHAPTER 4. EFFICIENTLY INSTANTIATING OBJECTS

dno dname ename addr cname school

16 Sales Steve 701A Welch Rd., Palo Alto Tom Bing Nursery School
16* Sales* Steve* 701A Welch Rd., Palo Alto* Mike Escondido Elementary School
16* Sales* Ronald 370 Hillside Drive, Redwood City Jennifer Stanford University
16* Sales* Ronald* 370 Hillside Drive, Redwood City* Irene McDonald High School
21 Purchase Steve* 701A Welch Rd., Palo Alto* Tom* Bing Nursery School*

21* Purchase* Steve* 701A Welch Rd., Palo Alto* Mike* Escondido Elementary School*
21* Purchase* Andy 1090 Psyche Dr., Los Altos Hills Kirk U.C. Berkeley

(a) Single flat relation (SFR): Duplicate subtuples (*)

dno dname

16 Sales
21 Purchase

from DEPT

eno ename addr dept

125* Steve 701A Welch Rd., Palo Alto 16*
124* Ronald 370 Hillside Drive, Redwood City 16*
125* Steve 701A Welch Rd., Palo Alto 21*
126* Andy 1090 Psyche Dr., Los Altos Hills 21*

from EMP

parent cname school
124* Jennifer Stanford University
124* Irene McDonald High School
125* Tom Bing Nursery School
125* Mike Escondido Elementary School
126* Kirk U.C. Berkeley

from CHILD

(b) Relation fragments (RF's): Extra join attributes (*)

dno dname ename addr cname | school

16 Sales Steve 701A Welch Rd., Palo Alto Tom Bing Nursery School
Mike Escondido Elementary School

(Ronald 370 Hillside Drive, Redwood City Jennifer Stanford University
Irene McDonald High School

21 Purchase Steve* 701A Welch Rd., Palo Alto* Tom* Bing Nursery School*
Mike* Escondido Elementary School*

Andy 11090 Psyche Dr., Los Altos Hills Kirk U.C. Berkeley

(c) Single nested relation (SNR): Multiple occurrence of subtuples (*) < duplicate subtuples

Figure 4.5: Examples of a SFR, RF, and SNR

4.3. DEVELOPMENT OF OBJECT INSTANTIATION METHODS 53

4.3.2 Materialization in the SFR Method and RF Method

In the materialization phase of the SFR method and the RF method, a query is

materialized into a single flat relation or a set of relation fragments depending on

the method. The materialization phase consists of two steps: query processing and

duplicate elimination. In main memory databases, the choice of query processing

strategies [86, 87, 77, 79, 80, 82, 85] is based on the criteria of the number of CPU

cycles and memory space efficiency rather than the number of disk accesses and

disk space efficiency. The results of comparing different query processing strategies

obtained by some researchers [86, 87, 77] showed that hash-based query processing

strategies are faster than others when large main memory is available. On the other

hand, a main memory database system used in OBE [75, 85, 80] implemented a

pipelined nested loop join [85, 80] with array indexes and obtained good performance

in both time and memory «pace. One advantage of using this join algorithm is that

it does not create intermediate relations during query processing.

4.3.2.1 Query Processing for a Single Flat Relation (SFR)

Whichever join algorithm may be used for query processing, a join between two

relations, R\ X R2, produces the following set of tuples.

{(i&)l'i € Ri,t2 € Ä2,ii.i?ifca Wi = M*i U &)>*2 = **•(** U C2)} (4-2)

where iti,i — 1,2, denotes the set of attributes of R± that are specified in the projection

set of the query, and £;,i = 1,2, denotes the set of attributes that are needed for

subsequent join computations. Note that join attributes (77;) are discarded unless

they are elements of 7rt- U £;.

If we use the pipelined nested loop join strategy which showed successful perfor-

mance in OBE, the join processing algorithm becomes as follows.

Algorithm 4.3.1 (SFR Query processing)

Input: base relations Ri,i — 1,2, • • • ,n, and a query

Output: a set of composite tuples of the query result.

54 CHAPTER 4. EFFICIENTLY INSTANTIATING OBJECTS

Procedure:

Let $,• denote a conjunction of join predicates between Ri and R1} ■ • ■, i^-i, respec-

tively. Each R{ is assumed to have already been filtered by applicable selection

conditions.

For each tt £ Ri

For each t2 € R2 satisfying $2

For each tn € Rn satisfying $n

Output ti.vj || t2.r2 || ••• || *„.*„. /* || denotes 'concatenation'. */

4.3.2.2 Query Processing for Relation Fragments (RF)

We focus on how Algorithm 4.3.1 should be modified to materialize a set of relation

fragments instead of a single flat relation, rather than inventing a different algorithm.

First of all, the single Output statement in Algorithm 4.3.1 must be decomposed

into multiple Output statements, i.e., one Output for each relation fragment. Sec-

ondly, join attributes (77;'s) should be materialized in addition to Xj U & so that a

client can build indexes on the join attributes. Thus, a join between two relations,

.ßi X R2, should produce the following set of tuples.

{(*i*2>l*l € #1>*2 € R2,t1.7Jl6t2.Jl2,t'1 = ti.(lTi U (l UT?I),*2 = M7^ U C* Ulfe)} (4.3)

where 77,- denotes the set of join attributes. Accordingly, the Output statement of

Algorithm 4.3.1 is modified to Output ti.(TXUi/i); fc-foUifc);" * * 5 *n.(7rnU77n). Thirdly,

a tuple from an outer nested loop need not be emitted unless it is a new tuple. For

example, £1 € R\ in the outermost loop need be emitted only once for each completion

of all of its inner loops. We can use switches which denote whether a new tuple has

been obtained from the outer loop, to avoid these unnecessary emissions.

The following algorithm shows a pipelined nested loop join algorithm modified

from Algorithm 4.3.1 to the above discussion, i.e., using multiple output statements,

emitting necessary join attributes, and using switches (SW's) to avoid unnecessary

emission of tuples.

4.3. DEVELOPMENT OF OBJECT INSTANTIATION METHODS 55

tl t2 t3 t4 tl t2 t3 t4

(a) SFR query processing (b) RF query processing

Figure 4.6: Tuples emitted from base relations

Algorithm 4.3.2 (RF Query processing)

Input: base relations Ri,i = 1,2, •■• ,n, and a query

Output: a set of relation fragments Fi, i = 1,2, ■ ■ •, n.

Procedure:

Let #j denote a conjunction of join predicates between Ri and Ri, ■ ■ ■ ,Ri-i, respec-

tively. Each Ri is assumed to have already been filtered by applicable selection

conditions.

For each t\ € R\,

Set SWi.

For each i2 € -R2 satisfying $2,

Set SW2.

For each tn £ Rn satisfying $„,

Set SWn.

For each SW;, i = 1,2, • • •, n,

If SWj is set then begin

Output ti.(lTi UTji).

Reset SW,.

end

Note that some of the attributes emitted for a relation fragment are extra join

56 CHAPTER 4. EFFICIENTLY INSTANTIATING OBJECTS

attributes, that is, not specified in the projection set of the query but are still needed

to build the linkage among the relation fragments in the translation phase. Here

comes a formal definition of extra join attributes.

Definition 4.3.1 (Extra join attributes) Given the set of attributes Ti of a rela-

tion fragment F{ and a projection set V specified in the query, T{ - V is the set of

extra join attributes of F,-.

4.3.2.3 Tuples Emitted from Query Processing

We see, by comparing Algorithm 4.3.1 and Algorithm 4.3.2, that there is little dif-

ference in the cost of the query processing itself. The query processings of both the

SFR method and the RF method execute the same nested loops. That is, if the car-

dinalities of the relations Ri, i = 1,2, • • •, nf are Ni} i = 1,2, • • •, ns, both algorithms

take 0(N1N2 • • ■ Nnj) time. However, the numbers of tuples that are actually emit-

ted from each base relation by the output statement are different in each algorithm.

Figure 4.6 illustrates this difference. In Algorithm 4.3.1, the tuples from each base

relation that satisfy all join conditions are emitted as a composite tuple once for every

innermost loop execution. Therefore, NjN2--- Nn} composite tuples are emitted for

the entire loops. On the other hand, in Algorithm 4.3.2, a tuple from a base relation

is emitted only if the execution of its inner loops has been completed. Therefore,

Algorithm 4.3.2 never emits more tuples than Algorithm 4.3.1.

4.3.2.4 Duplicate Elimination

The query result has duplicates if there are duplicate tuples in the base relations

specified in the query. Besides, projections performed in a query processing can

produce duplicate tuples in the query result. These duplicate tuples result in duplicate

objects when they are translated into objects. We disallow any duplicate objects to

be instantiated from a database because duplicate objects are regarded as separate

objects in an object-oriented model. Therefore, duplicate tuples are removed from the

final query result. Duplicate elimination can be done either using sorting or hashing.

Given a relation of N tuples, a sorting costs 0(JVlog2 N) and a hashing costs 0(N/B)

4.3. DEVELOPMENT OF OBJECT INSTANTIATION METHODS 57

Header
tuple

tuple

tuple

tuple

tuple =a

tuple
^

tuple

tuple
21

tuple
^

~1' denotes a null pointer.

Figure 4.7: The structure of a chained bucket hashing for duplicate elimination

where B is the size of a bucket header. It is anticipated that hashing be faster than

sorting. Another advantage of hashing is that hashing can be pipelined between

query processing and transmission because hashing is processed tuple by tuple. That

is, each tuple of the final query result can be hashed immediately as soon as it is

available and a tuple which has no duplicate in the already hashed set of tuples can

be transmitted immediately. On the other hand, if sorting is used, all tuples of the

final query result must be collected before sorting can start.

We use a simple chained bucket hashing [94] (alias, an open hashing [95]), whose

structure is shown in Figure 4.7. The bucket header is an array of pointers to chains

of buckets. Each bucket in a chain is a record of two entries - a tuple and a pointer

to the next bucket. Given this structure, the algorithm for eliminating duplicates in

pipelining with transmission becomes as follows.

Algorithm 4.3.3 (Duplicate elimination)

1. Allocate a hashing bucket header.

2. For each tuple t0 output from the query processor,

(a) Compute a hashed address h(t0) using the entire tuple as the input where

h is a hashing function.

58 CHAPTER 4. EFFICIENTLY INSTANTIATING OBJECTS

(b) i. Traverse the chain of buckets starting from the header located at the

address h(t0).

For each bucket visited,

A. Compare the tuple tc with the tuple £& contained in the bucket.

B. If 10 = tb then go to Step 2c.

ii. /* No same tuple as t0 was found in the chain. */

Insert a new bucket containing t0 into the chain and transmit t„.

(c) Continue.

In Algorithm 4.3.3, actual tuples are stored in hashing buckets. We can reduce the

memory space allocated for hashing buckets if we store pointers to the tuples of base

relations instead of the tuples emitted from a query processor. This method certainly

reduces the memory space allocated for buckets, but requires the reading of base

tuples and projection on them every time a query result tuple is to be compared with

the bucket entry. We will assume the storage of actual tuples for our cost modeling.

4.3.3 Translation in the SFR Method and RF Method

In the translation phase, a received query result is restructured into objects that can

be used by the application. The translation process depends on the structure of the

objects defined by the object model. In our work, objects realize the aggregation hi-

erarchy [88, 89] through nested structure and references among objects. It motivated

us to design the complete process of translation in two steps, nesting and reference

resolution, as mentioned in Section 4.3.1. In the nesting step, we restructure the

retrieved relation or relation fragments into a nested relation. In the reference reso-

lution step, references among objects are resolved by making pointer linkages among

the nested relations.

Figure 4.8 and Figure 4.9 illustrate the nesting processes of the SFR method

and the RF method, respectively. The nesting step is carried out differently for the

SFR method and the RF method. In the SFR method, it is done by decomposing

received tuples into subtuples corresponding to different nested subrelations, and

assembling the decomposed subtuples into nested tuples. On the other hand in the

4.3. DEVELOPMENT OF OBJECT INSTANTIATION METHODS 59

V, V, Vs

SFR

T 5, ▼ 5, T 5s T

SNR

Figure 4.8: SFR nesting process

RF method, it is done by creating indexes on the join attributes of the relation

fragments and performing navigational join. Navigation starts from the pivot relation

fragment and follows the joins of the query to find matching tuples in the joined

relation fragments. At least one matching tuple always exists in each relation fragment

because the relation fragments have already been fully reduced by the same join

operations on a server. The matching tuples thus found are assembled into nested

tuples according to an assembly plan generated by comparing the join tree and the

nesting format tree. The join purge step chooses only one of the conjunctive join

predicates from each join in the join tree.

The reference resolution step is out of our scope because its process is specific to

the object schema defined by the application. Besides, omitting this step does not

affect the cost comparison result because the reference resolution processes of the RF

method and SFR method are identical.

60 CHAPTER 4. EFFICIENTLY INSTANTIATING OBJECTS

Join tree

plAp2

Fl rz

p3* p4

F3
p5Ap6 F4

Join purge

£

Index creation

Relation fragments

Fl

index index

r
\ \
\ \
\ \
\ \
x \ \
* x \
v \ \

F2 F3MF4

\ \\ \ / /
\ \. ' ' I

« SI ^ S2 ty S3 f

Purged join tree

Pi
Fl rz

•* mm . .pi

F3
P5

F4

Assembly planning

Assembly plan

SI =TT Fl

S2=TTF2

S3=TT(F3MF4)

Nesting format tree

SI

S2 S3

\^. I Navigational join

Single nested relation

Figure 4.9: RF nesting process

4.3. DEVELOPMENT OF OBJECT INSTANTIATION METHODS 61

4.3.3.1 Generation of a Nesting Format

A nesting format [72] is a string interpreted as the schema of a nested relation. It

provides the information necessary to restructure a fiat relation or a set of relation

fragments into a nested relation. We denote the nesting of subrelations with paren-

theses such as A(BC)(D(E))2.

We can build an O-tree, given the type definition of an object 0. An example

is shown in Figure 4.10c for the object type shown in Figure 4.10a. Given this 0-

tree and the attribute mapping function whose mapping is shown in Figure 4.10c,

the nesting format for restructuring the result of the query shown in Figure 4.10b is

generated in the following procedure. (Object type, O-tree, and attribute mapping

function have been denned in Part I.)

Algorithm 4.3.4 (Generation of a nesting format)

Input: O-tree, and attribute mapping function (AMF)

Output: a nesting format

Procedure:

1. Starting from the root of the O-tree, recursively replace each node by the list

of its children.

2. Replace each object attribute in the list produced by Step 1 by the correspond-

ing relation attribute mapped by the AMF.

3. Strip off the outermost parentheses from the list produced in Step 2.

Figure 4.10c shows an example of the mapping between object attributes and

relation attributes appearing in a query. Let us assume the schema of the retrieved

relation is KADEHGIJ. Step 1 of Algorithm 4.3.4 generates (oidA0(DoE0(H0Go))(IoJo)),

which is replaced by (KA(DE(HG))(IJ)) in Step 2 and becomes KA(DE(HG))IJ in Step 3.

This format becomes the schema of the nested relation. For example, HG is mapped

to H0G0 which is nested within a complex attribute F0. F0 is nested within a complex

attribute B0, which is an attribute of O. These two levels of nesting is reflected by

the two levels of parentheses in the generated nesting format.

2In [72], the same format is denoted as A(BC) * (D(E)*)*.

62 CHAPTER 4. EFFICIENTLY INSTANTIATING OBJECTS

a. Object type: ('simple' denotes a literal such as an integer, string, etc., or an
object id (oid). Its value can be an atomic literal or a set of atomic literals.)

Type 0
[A0 : simple,
B0: [D0: simple, E0: simple,

F0: [H0: simple, G0: simple]],
C0'- \I0'- simple, J0: simple]]

b. Query:

• Select-project-join expression:

nKADEHGlj(CriKAD'M X <72DG'EN X <73HGP X <T4A'IL'Q X CT5LJS)
D'SD G'»G 101' L'SL

where 6 £ {=,?, <,<,>,>}.

• Join graph of the query:

c. O-tree, and mapping of its attributes to relation attributes: (0 is the object
type, oid denotes an object id, and the other capital letters subscripted with o
denote object attributes.)

O-tree

ir y V V u

E H G I J

attribute mapping

relation attributes
(projection set)

Figure 4.10: An example of object type, view, and O-tree

4.3. DEVELOPMENT OF OBJECT INSTANTIATION METHODS 63

a. Flat relation schema: KADEHGIJ

b. Nesting format: KA(DE(HG))(IJ)

c. Nesting format tree:

Figure 4.11: An example of a nesting format and its nesting format tree

We can draw out the hierarchy of nested subrelations from a nesting format. An

example is shown in Figure 4.11. The root of the tree represents a subrelation which

is not nested within any other subrelation, and its descendents represents subrelations

nested within their parents. We call such a tree as a nesting format tree. In particular,

the subrelation represented by the root is called a pivot subrelation because the root

always contains an attribute which is mapped to an oid.

4.3.3.2 The Structure of a Single Nested Relation

For both the SFR method and the RF method, searching is required every time a

tuple is to be inserted into an output single nested relation. The tuple is inserted only

if there does not exist the same tuple in the single nested relation. Hence, the number

of searchings performed is always greater than the number of insertions performed. In

particular, a large portion of tuples that are attempted for insertion are discarded for

the SFR method if the number of duplicate subtuples in a single flat relation is large.

Considering these facts, the structure of a single nested relation was determined to

show good searching performance.

64 CHAPTER 4. EFFICIENTLY INSTANTIATING OBJECTS

Node structure: tuple subrell subrel2 subreln lc re

^ : nil subreli: subrelation. lc: left child re: right child

Figure 4.12: The structure of a single nested relation

4.3. DEVELOPMENT OF OBJECT INSTANTIATION METHODS 65

Figure 4.12 shows the structure of a single nested relation used for our work.

Each nested subrelation is implemented as a binary search tree. The root SNR node

contains only the pointer to the root of the binary search tree representing the pivot

subrelation. Each node of a binary search tree contains a tuple value, pointers to the

roots of the nested binary search trees, and pointers to its left child and right child.

Both searching and insertion of a tuple within a nested subrelation take 0(log2 N)

time where N is the number of tuples currently inserted in a binary search tree.

4.3.3.3 Nesting of a Single Flat Relation

In [70], NEST was introduced as an operator for restructuring a flat relation into a

nested relation. Similar concepts were also described in [71, 72]. Our nesting process

described here is an instance of implementing the NEST operator.

Figure 4.13 shows an example of the relation instance before and after the nesting

step. The single flat relation of Figure 4.13a was obtained by evaluating the query

in Figure 4.10b on a set of relation instances. In Figure 4.13b, IJ is independent of

DEHG, but is dependent only on KA. SFR nesting can be performed pipelined with

the reception of the tuples from a server. Each received tuple is decomposed into

subtuples where each subtuple is an instance of each node of the nesting format tree.

Each subtuple is then inserted into an output single nested relation. Since there may

exist duplicate subtuples in a single flat relation, it must be checked before insertion if

there already exists the same subtuple in the single nested relation. Figure 4.12 shows

the result of inserting the first three tuples of the single flat relation of Figure 4.13a

into an empty single nested relation. Figure 4.13b shows the nested tuples of the final

single nested relation schematically.

An algorithm for the SFR nesting step is as follows.

Algorithm 4.3.5 (SFR Nesting)

Input: received tuples of a single flat relation, and a nesting format tree (NFT).

Output: A single nested relation (SNR).

Procedure:

1. Allocate an empty (root only) single nested relation SNR.

66 CHAPTER 4. EFFICIENTLY INSTANTIATING OBJECTS

K AD E H GIJ
k2 a2 d4 e2 h2 03 «1 Jl

h «i <*2 e2 h^ 02 i2 n
h as <*5 e4 h, 9l *2 j2

k2 02 d5 e4 h 9\ *i ji
h ai d2 e2 A-4 52 »2 j2

h o-z d5 e4 A5 9i i2 j2

kx Oi d2 e2 Ä,2 9z i2 3A

kz 03 d5 e4 Ai 9i *2 JA

h Ol d2 e2 A2 93 i2 j2

h o3 ds e4 A5 9\ i-2 3A

k2 a2 d5 e4 Ax 9\ *i 3\

(a) Retrieved single flat relation (before nesting starts)

K A (D E(H G)) (I J)

«2 <L2

d4 e2 A2 93

d$ e4
Ai Pi

A5 Pi

»i ii

k-i ai d2 e2
A2 03

A4 92

i2J2
*2 J4

kz a3 dz e4
Ai pi

As Pi

»2 J2

*2 J4

(b) Single nested relation (after nesting completes)

(c) Nesting format tree

Figure 4.13: An example of nesting a single flat relation

4.3. DEVELOPMENT OF OBJECT INSTANTIATION METHODS 67

2. wp := the root of the empty SNR.

3. up := the root of NFT.

4. For each tuple tT received from a server,

Assemble(wp,up,'n.UptT). /* Project tT on up. */

In Algorithm 4.3.5, Assemble^, zti, £,) inserts a tuple U into a binary search tree

whose root is the node pointed by W{.Ui - the Ui field of an insertion entry node W{.

This binary search tree belongs to a nested subrelation Si corresponding to the node

Ui of the nesting format tree.

Algorithm 4.3.6 (Assemble_SFR)

Input: a node (tu») of SNR, a node (u{) of NFT, and a tuple £,- to be inserted.

Output: SNR with U inserted if U is new.

Procedure:

1. wT := the node pointed by W{.u;.

/* wT is the root of a binary search tree to be searched. */

2. If (toe := Search(uv,ii)) = NOTJOUND

then Insert-tuples(u;i,Ui,*»-)

else /* There exists U already. */

(a) * := the set of u^'s children (uc) in NFT.

(b) If * = { } then Return

else

For each uc £ It,

Assemble(u;c,uc,HUctT). /* Project tT on uc. */

In Algorithm 4.3.6, Search(u;r, U) finds a SNR node whose tuple value = U among

the nodes of the binary search tree rooted by wr, and returns NOT_FOUND if no

tuple U is found or returns the SNR node containing the tuple U if one is found.

Algorithm 4.3.7 (Search)

Input: A node (wi) of a binary search tree and a tuple U to be searched for.

68 CHAPTER 4. EFFICIENTLY INSTANTIATING OBJECTS

Output: Return NOT_FOUND or a found node.

Procedure:

If Wi = nil then return NOT_FOUND

else if Wi.tuple = U then return iu,

else if (wi.tuple < U) then return(Search(w;.LChild, U))

else return(Search(wi.RChild, U)).

Insert-tuples(wj,Ui,ii) inserts tuple U into the binary search tree whose root is

the node pointed by wi.Ui, and also inserts all of £;'s nested subtuples corresponding

to ii,'s descendents obtained from the nesting format tree.

Algorithm 4.3.8 (Insert-tuples)

Input: A node (w;) of SNR, a node (ut-) of NFT, and a tuple U to be inserted.

Output: U is inserted into the nested subrelation whose root is pointed by Wi.Ui, and

all of £;'s nested tuples are inserted into ui's nested subrelations.

Procedure:

1. we := lnseTt(wi,Ui,ti). /* Insert the tuple U. */

2. /* Insert t^'s nested subtuples. */

f := {uc\uc is a child of u{ in the NFT.}

If * = { } then Return

else

For each uc € ^,

Insert-tuples(ti;e, uc, tr.uc).

Insert^, U{, tj) inserts tt- into the binary search tree whose root is pointed by Wi.Ui

and returns the inserted node.

Algorithm 4.3.9 (Insert)

Input: A node (w^ of SNR, a node (u;) of NFT, and a tuple U to be inserted.

Output: Returns the inserted node.

Procedure:

4.3. DEVELOPMENT OF OBJECT INSTANTIATION METHODS 69

Allocate an empty node we.

Copy t{ to we.tuple.

w := the node pointed by Wi.Ui

/* w is the root of the binary search tree into which u>i is to be inserted. */

If w = nil /* An empty nested subrelation. */

then Wi.Ui := the address of we. /* Insert we. */

else while we is not inserted begin

if U < w. tuple then

if (w := the node pointed by w.lc) = nil

then insert we as the left child of w

else

if (w := the node pointed by W.TC) = nil

then insert we as the right child of w

end

Return we.

4.3.3.4 Index Structure for Relation Fragments: Chained Bucket Hashing

Since no linkage information among the relation fragments is retrieved from a server

in the RF method, a client has to build necessary linkage information using the

received relation fragments. Our method is to create indexes on the join attributes

of the relation fragments. In the main-memory resident environment, the choice of

an appropriate index structure is based on the criteria of the number of CPU cycles

and memory space efficiency. In [76, 77], Lehman et al. showed the performance

comparison of different index structures of the following category.

• Order-preserving indexes: Array [74], AVL Tree [90], B Tree [91], T Tree [76, 77].

• Randomizing (hashing) indexes: Linear Hashing [93], Modified Linear Hashing

[76, 77], Extended Hashing [92], Chained Bucket Hashing.

The performance was compared for the index insertion (or equivalently, creation),

random search, a query of mixed operations, range query, scan, deletion, and for the

index memory utilization - the ratio between the memory allocated and the memory

70 CHAPTER 4. EFFICIENTLY INSTANTIATING OBJECTS

f" »tuple f ^ tuple

—PSuple^
^ /^~*tuple/^~**tuple

v-»tuple >—»tuple ^-»tuple

Figure 4.14: The structure of a chained bucket hashing index

actually containing data. According to their result, the Chained Bucket Hashing

shows the best performance in all the above operations except the range querj', for

which any kind of hashing index is inappropriate. Since we need only creation and

random search of indexes, the inability of supporting range queries causes no problem.

The Chained Bucket Hashing requires approximately 1.2 to 1.5 times more memory

than the other indexes. We assume this is hot significant and do not worry about

memory overflow because indexes are built on relation fragments which have already

been fully reduced before being transmitted. We thus choose to use the Chained

Bucket Hashing index.

Figure 4.14 shows the structure of a chained bucket hashing index used in our

work. It is configured of a bucket header table and chained buckets linked to each

header. Note that, unlike the chained bucket hashing of Figure 4.7, each bucket

header and chained bucket contains a pointer to a tuple instead of an actual tuple

[76, 77]. Storing pointers reduces the main memory space allocated for the hashing

table. Those pointers are used to extract attribute values when needed. We pay the

price of additional pointer followings rather than dupHcating the tuples of relation

fragments in the buckets. It was observed in [76] that the Chained Bucket Hashing

index organized in this structure shows the best storage cost/performance ratio when

the size of the bucket header table is approximately a half of the number of tuples to

4.3. DEVELOPMENT OF OBJECT INSTANTIATION METHODS 71

be indexed.

4.3.3.5 Nesting of Relation Fragments

Nesting of retrieved relation fragments is performed in four steps: join purge, assembly

planning, index creation, and navigational join. Figure 4.15 shows an example of the

data structure in each step of nesting relation fragments. The relation fragments were

obtained from the same query (Figure 4.10b) that was used to obtain the single flat

relation of Figure 4.13a.

4.3.3.5.1 Join purge In the join purge step, we remove any redundant join pred-

icates from the joins specified in the query, leaving only the minimal number of joins.

A conjunction of join predicates in a query can be reduced to a single join predicate

by choosing one of them arbitrarily. This reduction does not affect the result of the

nesting step. The following theorem shows it.

Theorem 4.3.1 Let us consider a conjunctive join predicate A^diB-i A A262B2 A

• ■ • A An6nBn between two relation fragments F-y and F2 that have been retrieved

from a server in the RF method. Then, for an arbitrary pair of tuples (tx,t2) where

ti€Fut2€F2,

{t1.A161t2.B1) A {h.A2S2t2.B2) A • • • A (ti.AAij.Bn) (4-4)

if and only if

ti.Ai6it2.Bi for some i G [l,n] (4.5)

Proof: Since the 'only if part is obvious, we prove only the 'if part.

If part: Let us assume Equation 4.4 is not satisfied although Equation 4.5 is satisfied.

Then, there exists at least one j G [1, n] such that j ^ i and ->(ti.Aj6jt2.Bj). However,

if U.AjBjU.Bj is false, tx $ Fi if t2 G F2 and t2 £ F2 if U G F1 by the definition of

join. It contradicts with the given assumption that tj G F\ and t2 G F2. Q.E.D.

It will be good in practice to select the join predicate which takes the minimum

computation time, such as an equijoin on integer attributes.

72 CHAPTER 4. EFFICIENTLY INSTANTIATING OBJECTS

K AD' D G' E #G
&2 02 <^4 dc, g\ e4 ^i 5i 4' 7 I' IJ
k\ ai d,2 ^2 52 e2 ^4 52 0-3 %2 h *1 Jl
k3 a3 d5 ^2 53 62 ^•5 5i ttl »2 ^3 *3 J2
k2 a2 d5 <£» 53 e2 ^2 53 0,2 ii ^1 *3 J4

(a) Relation fragments (before nesting starts)

(b) After index creation

K A {D E(H G)) (7 J)

d$ e2 ^2 53

k2 a2 »i ii

d5 e4
^1 5i

^•5 5l

Aij ax rf2 e2
^2 53

^•4 52

«2 J2

»2j4

&3 o-z ^5 ^4
^1 5i

^•5 5i

12 J2

»2 J4

(c) After navigational join (nesting completes)

Figure 4.15: An example of nesting a set of relation fragments

4.3. DEVELOPMENT OF OBJECT INSTANTIATION METHODS 73

IT

IT

DG'E A'JL^ ^ M !-,£ n

HG\ LJ ^HG \ s
(a) Join tree (b) Nesting format tree

IT: projection ^C : join

Figure 4.16: An example of an assembly plan

Since we are dealing with an acyclic query, the join graph of a query is always a

tree rooted by the pivot relation fragment. From now on, we use the term join tree

interchangeably with join graph.

4.3.3.5.2 Assembly planning In this step, a plan of how to assemble the tuples

which will be collected from the navigational joins is set up. An assembly plan is a

transformation from the nodes of a join tree to the nodes of a nesting format tree.

Figure 4.16 contrasts the join tree and the nesting format tree for the object and view

shown in Figure 4.10. As illustrated in Figure 4.16, a node of a nesting format tree is

obtained from one or more nodes of a join tree via relational projections and joins. A

node of a join tree represents a relation fragment while a node of a nesting format tree

represents a nested subrelation of a single nested relation. Joins are needed only if a

node of the nesting format tree has a schema which is not a subset of the schema of

any relation fragment but is split into the Schemas of two or more relation fragments.

For example, the IJ node is split into two relation fragments A'lL' and LJ. A join is

needed to merge the relation fragments A'lL' and LJ into the nested subrelation IJ.

Projections are used to remove the extra join attributes. Note that there must exist

one and only one matching tuple of LJ for each tuple of A'lL'. Otherwise I and J

cannot belong to the same node of the nesting format tree.

74 CHAPTER 4. EFFICIENTLY INSTANTIATING OBJECTS

In the following discussion, we denote a node of a join tree as v{ and a node of

nesting format tree as u.;. Note there is a one-to-one mapping between the set of

relation fragments {F{} and the set of the nodes {v{} of a join tree, and between the

set of nested subrelations {SJ and the set of the nodes {u{} of a nesting format tree.

Let us introduce here two functions denning these one-to-one mappings - RFJT from

{Fi} to {vi} and NSRNFT from {£<} to {u{} - for later use.

An assembly plan is defined as a set of expressions of the following form.

u :=Uu(v1Xv2---Xvk)

where IIU denotes the projection on the schema of u. For example, we obtain the

following assembly plan from the join tree and nesting format tree of Figure 4.16.

Example 4.3.1 (Assembly plan)

KA := IIKAKAD'

DE := nDEDG'E

HG := HG

IJ := IIIJ(A'IL' X LJ)

In a more abstract form, we consider an assembly plan AP as a function of the nodes

of a join tree (or equivalently, relation fragments), i.e., u = AP(UX,T;2, ••-,«*). We use

the same function AP for both the schema of the nodes of the join tree and nesting

format tree and their instance tuples. For example, AP(A'IL', LJ) returns IJ and

AP(a3Z2Z3,Z3j2) returns i2J2-

The algorithm for generating an assembly plan is as follows.

Algorithm 4.3.10 (Assembly planning)

Input: a join tree (JT), a nesting format tree (NFT).

Output: an assembly plan (AP).

Procedure:

4.3. DEVELOPMENT OF OBJECT INSTANTIATION METHODS 75

1. For each node v newly visited (not marked as 'visited') while traversing JT

starting from the root,

(a) Find a node u in NFT whose schema is a subset of the schema of v.

(b) If a node u is found then

i. If u = v then add u := v to AP

else add u := Huv to AP

ii. Mark v as 'visited'.

else

i. Find the set of nodes {v = vx,v2,' *' >vk} °^ a minimal subtree of JT

rooted by v such that the union of the schema of Vi, v2, ■ ■ ■, vk contains

the schema of u.

ii. Add u := IIu(i>i Xv2 • • • Xvk) to the AP.

iii. Mark i>i, v2, • • • ,vk as 'visited'.

4.3.3.5.3 Index creation Once redundant joins are removed, indexes are created

on the join attribute of each relation fragment except the pivot relation fragment. For

example, given the relation fragments of Figure 4.15, indexes are created on DG'E.D,

HG.G, A'lL'.A, and LJ.L. KAD' is the pivot relation fragment. Index creation can start

only when the entire tuples of a relation fragment are available because a hashing

index requires the number of indexed tuples to be known before an index is created.

Since the tuples of relation fragments are transmitted in row-wise order, i.e., different

tuples from different relation fragments are intermixed, the index creation on relation

fragments can start only after all relation fragments are received. Given the structure

of the chained bucket hashing index described in Section 4.3.3.4, the algorithm of

creating an index is as follows.

Algorithm 4.3.11 (Index creation using hashing)

Input: a relation fragment Fi, and a join attribute A{ of F{.

Output: a chained bucket hashing index on the attribute A; of Fi.

Procedure:

76 CHAPTER 4. EFFICIENTLY INSTANTIATING OBJECTS

1. Allocate a bucket header table.

2. Scan the column A{ of F{ linearly.

For each scanned value of Fi.Ai,

(a) Compute the hashed address h(Fi.Ai) where h is a hashing function.

(b) Insert the value of F{.Ai into the hashing index at the address h(Fi.Ai).

I* No duplicate checking is done. */

4.3.3.5.4 Navigational join Once indexes are created and an assembly plan is

generated, we perform navigational joins on the relation fragments. The navigational

join starts from each tuple of the pivot relation fragment and follows the joins of

the join tree to find matching tuples from all relation fragments. For example in

Figure 4.15, we perform joins starting from each tuple of KAD' and find matching

tuples from DG'E and A'lL' respectively. Then, for each matching tuple of DG'E and '

A'lL' found in previous joins, matching tuples are found from HG and LJ respectively.

Note that there always exist one or more matching tuples because non-matching

tuples have already been discarded in the materialization phase.

The set of matching tuples thus found are assembled into a nested tuple according

to the assembly plan generated by Algorithm 4.3.10. For example, starting from the

third tuple of KAD', [k3a3d5], the following set of matching tuples are found from each

relation fragment as the result of navigation.

Example 4.3.2 (Matching tuples [k3a3ds])

• [k3a3d5] from KAD'.

• [^501 e4] fr°m DG'E-

• [hi9i], [fagi] from HG.

• [«13*2*3] from A'lL'.

• [faj2],[JaJ4] from LJ.

D

4.3. DEVELOPMENT OF OBJECT INSTANTIATION METHODS 77

These tuples are assembled into one nested tuple in the last row of Figure 4.15c. Given

the assembly plan shown in Example 4.3.1, {k3a3d5} is projected on the projection

set KA, [d5g1e4\ is projected on DE. [/ii^i] and [h5gi] are not projected because their

projection set is the same as the schema of the relation fragment HG. [0.3^3] from A'lL'

is merged with [Z3j2] and [/3j4] from LJ respectively, and projected on IJ to produce

\i2j2] and \i2ji)- Duplicate checking is required when the tuples are assembled into

a nested tuple because projections may produce duplicate subtuples. Carrying out

navigational joins in this way for all tuples of the pivot relation fragment, we obtain

the nested relation shown in Figure 4.15c.

The following algorithm describes the procedure of a navigational join more rig-

orously.

Algorithm 4.3.12 (Navigational join)

Input: relation fragments-Fi,i - 1,2, • • • ,n(.FY is the pivot relation fragment.); in-

dexes on the join attributes of Fi}i = 2,3, • • • ,n; a join tree (JT), a nesting format

tree (NFT), and an assembly plan (AP).

Output: a single nested relation (SNR).

Procedure:

1. Allocate an empty single nested relation SNR.

2. wp := the root of the empty SNR.

3. up := the root of NFT.

4. For each tp € Fi, /* Fi is the pivot relation fragment */.

Assemble(tüp, up, tp).

Assemble^, Up, tp) starts navigation from tp and collects the set of tuples {U\ti €

Fi,i - 2,3, • • • ,n}, that satisfy the join conditions among Fi, F2, • • ■, Fn. Then, it

inserts tp and the collected set of matching tuples into a single nested relation. For

each insertion, it first finds, from the assembly plan, the set of relation fragments that

are to be merged to produce the tuple to be inserted and their associated assembly

plan expression. Secondly, the assembly plan expression is executed on those tuples to

78 CHAPTER 4. EFFICIENTLY INSTANTIATING OBJECTS

be merged. Only projection is performed if no merging is prescribed in the assembly

plan expression. Thirdly, the resulting tuples are inserted to corresponding nested

subrelations. Every insertion is preceded by a searching for checking if there already

exists a duplicate tuple.

Algorithm 4.3.13 (AssembleJtF)

Input: A node (u\) of the SNR, a node («,-) of the NFT, a join tree (JT), an assembly

plan (AP), and a tuple t0 from which we start navigation.

Output: SNR with newly inserted tuples.

Procedure:

1. wT := the node pointed by W{.Ui.

/* wT is the root of the binary search tree of the nested subrelation to be

searched. */

2. Find V = {v1,v2,---,vk} from AP such that m = AP^,^, • • • ,vk) .

I* k > 1 if and only if a merging is required. */

3. /* Let Fi be RFJT"1^) for v{ € V, and let $t be the join predicate between

Fi and F5 where RFJT(i^) is the parent of RFJT(Fi) in JT. */

/* Find the tuples from FuF2r--,Fk that match t0- */

For each <a G Match(i0,i
?i, $i),

For each t2 € Match(*a, F2, $2),

For each tk £ Match(ifc_1; Fk, $k),

(a) te := AP(tl5t2, • • .,**). /* Execute the assembly plan. */

(b) If {wc := Search(tt;r)ic)) = NOTJOUND

then wc := Insert(u;,-,Uj, tc).

(c) * := the set of Ui's children in NFT.

(d) If * = {} then return

else For each uc € *,

Assemble(ix;c, uc, tc).

4.3. DEVELOPMENT OF OBJECT INSTANTIATION METHODS 79

where Search and Insert are the same algorithms as Algorithm 4.3.7 and Algo-

rithm 4.3.9, respectively. No duplicate checking is performed if no projection is

required in the assembly plan, although it is not explicitly shown in Algorithm 4.3.13.

Given a tuple U € Fi} the matching tuples in another relation fragment Fj, which

is connected to F{ through a join condition Ai6Aj, are collected as follows.

Algorithm 4.3.14 (Match)

Input: a tuple U € Fi, a relation fragment Fj, and a join condition U.Adtj.B where

Output: {tj\tj € Fj,U.Adtj.B}.

Procedure:

1. Compute the address of a bucket header using U.A as the hashing key.

2. For each bucket from the bucket header through the end of the chain,

(a) If U.AÖtj.B is satisfied then collect the pointer to tj, where tj € Fj is

a tuple pointed by the bucket entry. (Remember that each bucket entry

contains a pointer to a tuple.)

If the Match process and its subsequent process (the execution of AP, searching for

checking duplicates, and insertion to SNR) are pipelined, the pointer to tj is not

collected but passed to projection operator to compute tj.-Kj.

4.3.3.5.5 Summary In summary, the nesting of relation fragments into a single

nested relation is performed as follows.

Algorithm 4.3.15 (RF nesting)

Input: a set of relation fragments, a nesting format tree, and a join tree.

Output: a single nested relation.

Procedure:

1. Purge the joins of the join tree by removing all join predicates from conjunctive

join predicates except one arbitrarily selected join.

80 CHAPTER 4. EFFICIENTLY INSTANTIATING OBJECTS

2. Generate an assembly plan by comparing the join tree and the nesting format
tree.

3. Create indexes on the join attribute of each relation fragment except the pivot

relation fragment.

4. For each tuple of the pivot relation fragment,

Perform navigation along the joins of the join tree and find the set of match-

ing tuples from each relation fragment, and assemble the set of matching

tuples into a nested tuple according to the assembly plan.

4.3.4 The SNR Method

As mentioned in Section 4.-3.-1, the materialization of a single nested relation is per-

formed as the materialization of relation fragments followed by the nesting of relation

fragments into a single nested relation. Hence it is sufficient to focus only on the

modifications needed to adapt the RF method to the SNR method, that is, to move

the nesting step to a server and transmit a single nested relation.

Query processing is exactly the same as that of the RF method and therefore,

Algorithm 4.3.2 can be used without modification if we use the pipelined nested loop

join algorithm. The process of eliminating duplicate tuples from materialized relation

fragments is also the same as the one shown in Algorithm 4.3.3 except that tuples

are written to an output buffer instead of being transmitted to a client.

Once the tuples of the relation fragments are collected, they are restructured

into a single nested relation on a server. The same steps as those of the RF nesting

described in Section 4.3.3.5 are used except that the navigational join step is modified

so that matching tuples are not only assembled into nested tuples but also transmitted

to a client. According to Algorithm 4.3.13, the tuples of nested subrelations are

transmitted in a depth-first search order of the nesting format tree. Delimiters are

needed to distinguish between the tuples of different nested subrelations. For example,

the stream of data transmitted for the single nested relation of Figure 4.15c is as

follows. '(' and ')' are delimiters.

4.3. DEVELOPMENT OF OBJECT INSTANTIATION METHODS 81

Example 4.3.3

Header: {KA{DE{HG))(IJ))

Data:

(k2a2{d4e2(h2g3))(d5e4(h1g1h5g1))(i1j1))(k1al(d2e2(h2g3h4g2)){i2hi2J4)}

(k3a3(d5eA(h1g1h5g1))(i2J2i2J4)}

D

where (KA(DE(HG))(IJ)) is a header describing the format of the data stream

following the header. A data stream consists of segments. A segment contains the

tuples that will belong to the same nested subrelation when they are assembled into

a single nested relation by a client. Example 4.3.3 shows three segments starting with

kia.i,k2a.2, and £30.3, respectively.

What remains for a client to complete the nesting process is to parse the received

data stream and assemble the extracted tuples into a single nested relation. Algo-

rithm 4.3.16 describes the assembly process. For each tuple U read from the data

stream, U is inserted as a nested subtuple of the previous tuple if U is preceded by

'('. Otherwise, U is inserted in the same nested subrelation as the previous tuple. In

the following algorithm, w0 is the current insertion entry node and w0 is the latest

inserted node. The current insertion entry node is moved one level up for each ')'. We

assume the availability of a function named 'Super' which returns the (super)node

for which the node wp is a nested subtuple. For example, if wp is the node containing

the tuple <Z4e2 in the single nested relation of Figure 4.12, then Super(tup) returns the

node containing the tuple ^o^-

Algorithm 4.3.16 (Assemble_SNR)

Input: formatted stream of tuples of a single nested relation, nesting format tree

(NFT).

Output: an assembled single nested relation.

Procedure:

1. Allocate an empty single nested relation (SNR).

2. w0 := the root of the empty SNR.

82 CHAPTER 4. EFFICIENTLY INSTANTIATING OBJECTS

3. For each data item d read from the data stream,

• If d = '(' then wp := w0.

• If d = U (a tuple) then

Find the schema Si of U from the header.

up := NSRNFT(Si).

w0 := Insert(ix;p,Up, £,•).

• If d = ')' then i/;0 := IüP; WP : = Super(top).

where the process of the Insert is shown in Algorithm 4.3.9. Note we do not need

searching preceding an insertion because duplicates have already been eliminated on

a server.

Summarizing, the object instantiation process of the SNR method is executed in

the following steps.

• Materialization: Query processing, duplicate elimination, join purge, assembly

planning, index creation, and navigational join (and transmission).

• Translation: assembly and reference resolution.

4.3.5 Data Transmitted in Different Methods

In the transmission phase, data prepared by a server is transmitted to the client

which sent a query to the server. As mentioned in Section 4.3.2, transmission oc-

curs pipelined with the materialization process. That is, tuples of the materialized

query result are transmitted as soon as they become available. As discussed in Sec-

tion 4.3.1.2, the structure of transmitted data differs for each of the three object in-

stantiation methods, and have different set of redundant data. The RF method and

the SNR method obviously remove redundant data transmitted in the SFR method.

However, they still have their own source of redundant data.

4.3.5.1 Sources of Redundant Data in the RF and SNR Methods

In the RF method, some relation fragments contain extra join attributes. For example,

the relation fragment A'lL' shown in Figure 4.15a contains two join attributes A'

4.3. DEVELOPMENT OF OBJECT INSTANTIATION METHODS 83

and L'. As illustrated in Figure 4.6, the number of tuples emitted for each relation

fragment by the query processor is never larger than that for a single flat relation.

Besides, if a relation fragment contains no extra join attribute, it is guaranteed that

the duplicate elimination step eliminates more tuples from the relation fragment than

from the single flat relation that would be retrieved by the SFR method for the same

query. In other words, the relation fragment does not contain more tuples than the

corresponding single flat relation. An exception may occur if a relation fragment does

have extra join attributes whose combined domain cardinality (the number of distinct

values) is higher than the combined domain cardinality of the other attributes. In

that case, it may happen that less tuples are eliminated from the relation fragment.

We anticipate that this situation happens rarely.

In the SNR method, a server transmits a linearized stream of nested tuples. The

stream of data contains no duplicate subtuples unlike the SFR method3, and no ex-

tra join attribute unlike the RF method. However, a subtuple is transmitted multiple

times if it belongs to multiple tuples of the transmitted nested relation. This phe-

nomenon occurs when there is a many-to-many cardinality relationships between two

joined relations. For example in the formatted stream of Example 4.3.3, the tuple

h2gz of the subrelation HG appears as the subtuples of two different tuples of DE.

Likewise, h^gi and h^gi also appear twice in different tuples of the nested relation.

4.3.5.2 Trade-offs between Different Methods

It is certain that the method which incurs the minimum transmission cost is the one

that produces the least amount of redundant data. We observe that the RF method

has a trade-off with the SFR method depending on which is larger between the amount

of redundant data eliminated by the fragmented materialization of query result and

the amount of redundant data introduced due to the extra join attributes. Besides,

there is a trade-off between the RF method and the SNR method depending on which

is larger between the overhead of the extra join attributes in the RF method and the

overhead of the multiple subtuple occurrences in the SNR method. On the other

hand, the SNR method always transmits less amount of data than the SFR method

3and no null subtuples if we were considering outer joins

84 CHAPTER 4. EFFICIENTLY INSTANTIATING OBJECTS

because a single nested relation cannot have more tuples than its corresponding single

fiat relation.

We anticipate that, in practical cases, the transmission costs of the RF method and

the SNR method are comparable, and either method can be more efficient depending

on the query. Besides, we anticipate that the redundancy due to the extra join

attributes in the RF method is insignificant compared to the redundancy of the

duplicate subtuples in the SFR method.

4.4 Development of a Cost Model

4.4.1 A Platform for Cost Modeling

In this section, we develop cost formulas for each step of the three object instantiation

methods. It is a too complicated task to obtain a cost model of main memory-resident

operations [85] if it is ever possible. As for the cost model of disk-based operations, it

is sufficient to count the number of page reads/writes in accessing disks, or including

the cost of buffer management together if higher precision is needed. However, the

cost of main memory-resident operations depends on so many factors such as the

hardware used, programming language, programming style, and system load. Our

purpose is to compare the costs of different object instantiation methods, rather than

to estimate the costs. In other words, our concern is to find out which method among

the SFR, RF, and SNR methods is the winner given a couple of different situations

within our range of interest.

Thus, we make necessary approximations and simplifications in the forthcoming

cost modeling and cost comparison. First, as mentioned in Section 4.2.4, the cost

items that are common to all three methods are excluded from consideration. More

specifically, we omit the query processing cost from the materialization phase and the

reference resolution cost from the translation phase. Secondly, we exclude the cost

of accessing schema information from our cost models and consider only the cost of

operations on data tuples. Schema access cost becomes negligible when the number

of manipulated tuples becomes large enough. Thirdly, we ignore the effect of the

4.4. DEVELOPMENT OF A COST MODEL 85

difference in the speed of a server and a client. Even if their speeds are noticeably

different, its effect on the cost comparison result is minimal in the environment where

the network communication cost is significant.

We consider only complex queries - queries with one or more joins - to develop our

cost model. In other words, we consider only the case of rif > 1 in our cost model,

where nj is the number of relation fragments. The SFR, RF, and SNR methods

become identical if a query is a simple query, i.e., has no join. That is, the base

relation specified in a simple query is reduced to a selected and projected fragment,

transmitted to a client, and linked to other objects through reference resolution step.

Nesting step is not needed for the single fragment.

4.4.1.1 Cost Parameters

Table 4.1 and Table 4.2 show the values of cost parameters for elementary main

memory operations and network communications, respectively, that are used in our

cost formulas. We have experimented with both the CPU time and elapsed time for

measuring main memory cost parameters. Our experiment showed that the elapsed

time varied significantly at every run depending on the system load. On the other

hand, the CPU time was measured to be stable. Therefore, we chose the CPU time

as an appropriate measure of the main memory execution time. As for the network

communication time, CPU time did not show any noticeable difference between LAN

and WAN while elapsed time did show a big (20 times) difference. Our experiment

showed that most of the elapsed time for a WAN was spent on the communication

network which carries the data. Local processes were blocked until data arrives. On

the other hand, we verified that most of the elapsed time for a LAN was spent on

local hosts for sending and receiving data. These facts lead us to the conclusion that

the elapsed time was more appropriate for measuring communication cost parameters.

Thus, we used different measures for the main memory cost parameters and commu-

nication cost parameters. Appendix A explains how the values of the cost parameters

were obtained. Precisely speaking, the values of the cost parameters of main memory

operations are different on a server and a client. Nevertheless we use the same cost

values for both the server and the client as an approximation.

86 CHAPTER 4. EFFICIENTLY INSTANTIATING OBJECTS

Parameter

Cbi

Can

Ccb

ce

Cfi

Che

Cpi

Jpb

Description

The cost of elementary binary search operation
(compare and move left or right).

The cost of comparing two tuples.

The initial cost of copying a tuple.

The per-byte cost of copying a tuple.

The cost of evaluating a join predicate (equijoin on
attributes of type integer).

The per-byte cost of folding a tuple into an integer.

The cost of hashed address computation using an
integer hashing key.

The cost of allocating memory within workspace.

The cost of moving (reading or writing) a pointer.

The initial cost of performing a projection on a tu-
ple.

The per-byte cost of performing a projection on a
tuple.

The initial cost of computing an integer hashing key
from a scanned relation column.
The per-tuple cost of computing an integer hashing
key from a scanned relation column.

Value

19 //sec

9.2 //sec

11 //sec

0.17 //sec/byte

16 //sec

0.92 //sec/byte

9.5 //sec

1.2 //sec

0.88 //sec

4.3j //sec

1.1 //sec/byte

17 //sec

14 //sec/tuple

Table 4.1: Main memory cost parameters (CPU time)

Parameter Description Value

LAN WAN
Ci

Ch

The latency of sending a message.

The per-byte data transmission cost.

2.5 msec

3.4 //sec/byte

53 msec

60 //sec/byte

Table 4.2: Communication cost parameters (elapsed time)

4.4. DEVELOPMENT OF A COST MODEL 87

SFR(T)
Parameter Description

dt

The cardinality after duplicate elimination.

The ratio between the cardinality after duplicate elimination and the
cardinality before duplicate elimination. (dt < 1.)

Tuple size.

RF (Ft, i = 1,2, • • •, n/ where Ft is the pivot relation fragment)

Nu
du

Tu
PU

The number of relation fragments.

The cardinality of F; after duplicate elimination.

The ratio between the cardinality after duplicate elimination and the
cardinality before duplicate elimination. (dyt < 1.)

The domain cardinality - the number of distinct values - of the join
column of Fj for the join between F,- and Fj.

The tuple size of F{.

The extra join attribute (EJA) ratio, i.e., the ratio between the size
of extra join attributes in Fj and the tuple size of Fj. (pft < 1.)

SNR (Si, i = 1,2, • • •, ns where Sa is the pivot nested subrelation)

n,

Tti

The number of nested subrelations in a single nested relation.

The cardinality of Si.

The tuple size of Si.

Table 4.3: Data Parameters

We use the following short-hand notations in our cost formulas.

-'project

(4.6)

(4.7)

(T) = Cpi + CpbT for projecting a subtuple of size T bytes out of a tujll&)

Ccoi,can{N) = C„i + CgnN for scanning N tuples.

CcvpyiT) = Cd + CcbT for copying a tuple of size T bytes.

4.4.1.2 Data Parameters

The paramaters of the data transmitted in different object instantiation methods

are shown in Table 4.3.

88 CHAPTER 4. EFFICIENTLY INSTANTIATING OBJECTS

4.4.1.2.1 Alternative Parameters: ctij and /3y We define ay as the domain

selectivity of the join column of a relation fragment Fj, i.e., the average number of

tuples with the same value of a join column (after duplicate elimination), for the join

between Fi and Fj. Thus, the value of a;.,- is related to Nj. and D/r as follows.

Nf.
atj = -* (4.9)

Since relation fragments are fully reduced before they are joined again on a client,

two joined relation fragments F2- and Fj have the same domain cardinality of their

join columns, i.e., Dji{ = Dfir Hence, a.ij can be interpreted to denote the average

number of matching tuples in Fj for each tuple of Fi. We call a^j as selectivity from

Fi to Fj. Since Dfjt = 2?/y, the following is always true.

Nfl < Nhaij (4.10)

where the equality holds if and only if Dijt = Nfi, that is, all values in the join column '

of Fi for the join to Fi are unique.

ßij is defined as the average degree of nesting, i.e., the average number of tuples

in Sj for each tuple of Si where Sj is a direct nested subrelation of Si. Given 5,- and

its nested subrelation Sj, ßij can be interpreted as the ratio between Nti and N,..

ßü = ^ (4-11)

ßij > 1 since we are considering only inner joins.

Figure 4.17 contrasts ay's and /9y's in accordance with the join tree and the

nesting format tree of Figure 4.16. {a;,} maps onto {ßij}. Note some ay's map to

the same ßij if two or more relation fragments are merged to become a single nested

subrelation. For those ay's and /3y's that are mapping counterparts, ay ^ /3y in

general.

From Equation 4.11, we can derive the value of NSi as follows.

N<i = Nn II ßpi for i = 2,3, • • •, 7i, (4.12)
(NSRNFT(Sp).NSRNFT(S,)) e Pu

where Pu denotes the path from NSRNFT(5!) to NSRNFT(Si) in the nesting format

tree. That is, NSi is computed as Ntl multiplied by all /3pg's between Si and Si.

4.4. DEVELOPMENT OF A COST MODEL 89

KAD
an/ \<*i4

DGE A
<*23

IL

IL HG

(a) Join tree (b) Nesting format tree

KAD = F1 KA = 5i
DGE = F2 DE = 52

HG = F3 HG = S3

AIL = F4 LJ = 54

IL = Fs

Figure 4.17: ay vs. /3y

4.4.1.2.2 Relationships between Data Parameters Provided with the same

query, the data parameters of different methods shown in Table 4.3 are not indepen-

dent of one another but are related by some quantitative relationships. Let us now

discuss the relationships between different data parameters.

SFR vs. RF: It was indicated in Section 4.2.2 that the cardinality (Nt) of a

single flat relation increases monotonically with respect to the cardinality (N^) of

the pivot relation fragment multiplied by the ay's of all joins (F.-XF/s) in the

query, independent of the query shape. There are n} — 1 joins among the relation

fragments after the purging step of Algorithm 4.3.15. Hence,

Nt<Nfl II ' a«'i (4-13)
(BPJT(J'i),RPJT(Fj)) € B(JT)

where F(JT) denotes the set of the edges of the join tree JT. (RFJT(Fi), RFJT(F,)) €

E(3T) means that there is a join between F» and Fj. The equality holds true if (not

only if) there is no extra join attribute in Fj, i — 1,2, • • •, nf.

Since relation fragments may have extra join attributes while a single flat relation

has no such extra attribute, the following relationship exists between Tt and T^'s.

nt

Tt = Y.Ts^-Pu) (4.14)
t=i

SFR vs. SNR: We can think of Nt as the number of tuples generated when

we 'flatten' the nested tuples of a corresponding single flat relation. The cardinality

of the pivot subrelation Si is Ntl, and a single tuple of a nested subrelation Si is

90 CHAPTER 4. EFFICIENTLY INSTANTIATING OBJECTS

replicated ßij times when it is flattened with its nested subrelation Sj. Hence,

Nt = Ntl n ß* (4-15)
{NSRNFTtS^.NSRNPTtSy)) e E(NFT)

where £(NFT) denotes the set of edges in the nesting format tree NFT. (NSRNFT(S;),

NSRN,FT(5j)) € £(NFT) means that Sj is a (direct) nested subrelation of Sj.

The attributes of the flattened relation are composed of the atomic attributes of

the original nested relation. Since flattening does neither add nor remove any of the

atomic attributes, we obtain the following relationship between the tuple sizes of the

flat relation and the original nested relation.

r. = XX (4.i6)
k=i

RF vs. SNR: As mentioned in Section 4.3.3.5.2, the number of the nodes of join

tree is no more than the number of the nodes of a nesting format tree because two

or more relation fragments can be merged to a single nested subrelation of the single

nested relation. Hence,

n. < n} (4.17)

The cardinality of the pivot relation fragment and the cardinality of the pivot nested

subrelation are always equal because both contain the key of the pivot relation.

Nh=Ntl (4.18)

4.4.2 Derivation of Cost Formulas

In this section, we develop cost formulas of each step of object instantiation. Remem-

ber the query processing cost and the reference resolution cost are not included in

our partial cost model.

4.4.2.1 Duplicate Elimination Cost

The duplicate elimination process (Algorithm 4.3.3) is the same for all three methods

except that it is applied to a single flat relation for the SFR method, and to each

relation fragment for the RF or SNR method. Therefore, it is clear that the cost

4.4. DEVELOPMENT OF A COST MODEL 91

of the duplicate elimination is proportional to (Nt/dt)Tt for the SFR method and to

I*Li(Nji/dJi)Tfi for the RF or SNR method.

We make the following assumptions for the hashing of tuples which was described

in Algorithm 4.3.3.

• We allocate as many bucket headers as half of the cardinality of a hashed re-

lation (query processing output), and the cardinality of the hashed relation is

estimated by a query optimizer.

• The shift folding technique [83, 84] is used for the hashing of tuples. In this

technique, a tuple is partitioned into several parts of an integer size. All but the

last parts have the same length. The parts are then added together to obtain

an integer hashing key.

Given these assumptions, the cost of eliminating duplicate tuples from a hashed

relation is derived as follows. Let N be the cardinality of the relation after duplicate

elimination and T be the tuple size of the relation, and d be the ratio of the cardinality

after duplicate elimination over the cardinality before duplicate elimination (d < 1).

The allocation of a bucket header costs Cma. Step 2 of Algorithm 4.3.3 is repeated

N/d times. The cost of computing a hashed address using the shifted folding technique

is computed as a function of the tuple size T as follows.

Ctuphath(T) = CflT + Chc (4.19)

Among the N/d hashed tuples, N tuples are actually inserted and the other N/d— N

tuples are discared. Therefore, the probability of a tuple being inserted is d and the

probability of being discarded is 1 — d. If the same tuple already exists, it takes the

cost of traversing average half of a bucket chain Cmp + (Nb/2)(Cem + Cmp) where Nb

is the number of buckets inserted in the chain so far. Otherwise, it cost the traversal

of the entire bucket chain (Cmp + Nb(Cm + Cmp)), and the insertion of a new bucket

in the chain (Cma + Ccopy(r) ■+• 2Cmp).

Nb is obtained as follows. It was assumed that the size of a bucket header table

we allocate is 50% of the cardinality of the hashed relation. That is, N/2d headers

are allocated, and N hashed entries are eventually inserted into these headers. If

92 CHAPTER 4. EFFICIENTLY INSTANTIATING OBJECTS

N > N/2d, i.e., d > 1/2, all buckets headers are eventually filled, assuming the hash

function distributes a hashing key uniformly over the bucket header table. In this

case, the ultimate value of Nb becomes N/(N/2d) = 2d. Otherwise, if d < 1/2, only

TV bucket headers out of N/2d headers are filled and the ultimate value of Nb becomes

1. As for the intermediate value of Nb in the middle of insertions, we use half of the

ultimate value as an expected value. Thus,

Nb = MAX (d, i) (4.20)

The cost of transmitting the inserted tuple is part of the transmission cost and is

not included here. Thus, the cost of inserting a hashed tuple into a chain of hashing

buckets is computed as a function of T and d as follows.

Ctupinsertid, T) = d{Cmp + Nh(Cm + Cmp) + Cma + Ccop3/(T) + 2Cmp) +

(1 - d)(Cmp + ~(Ccm + Cmp)) (4.21)

where the value of Nb is computed as follows.

Using Equation 4.19 and Equation 4.21, the SFR duplicate elimination cost is

computed as follows.

Nt
Csfrde = Cma + -j-(Ctuphash(Tt) + Ctupinsert{^t,Tt)) (4.22)

The cost of eliminating duplicate tuples from relation fragments Fj, i = 1,2,•■•, n/,

is computed as follows.

X Nt
Crfde = £(Cma + -f-iCtuphaihiTfi) + Ctupin,„t{dfi, Tfi))) (4.23)

Since the query result of the SNR method is also a set of relation fragments, its

duplicate elimination cost is the same as that of the RF method except that it incurs

the additional cost of writing non-duplicate tuples to an output buffer instead of

transmitting, them to a client as in the RF method. The cost of writing non-duplicate

tuples from a relation fragment F; to an output buffer is C,coPy(7/i)7Vy.. Thus, the

cost of eliminating duplicate tuples from Fi, i = 1,2, • • •, nf, to be used in the SNR

method is computed as follows.
nt

C.nTde = CTfde + £ CawiTfi)Nti (4.24)
i=i

4.4. DEVELOPMENT OF A COST MODEL 93

4.4.2.2 Nesting Cost

4.4.2.2.1 Binary Search Tree Searching and Insertion Costs The searching

(Algorithm 4.3.7) and insertion of one tuple (Algorithm 4.3.9) are used commonly

for all three object instantiation methods. Hence, we deal with their cost formulas

separately here. We assume all binary search trees implementing nested subrelations

are well-balanced. In fact, well-balanced trees are common and degenerate trees are

very rare [94]. Even if a binary tree should be balanced sometimes, a tree balancing

involves only pointer movements and incurs negligible cost.

Let M be the number of tuples that are attempted to be inserted into a binary

search tree. Every attempt of insertion requires one searching to check if the same

tuple has already been inserted into the binary search tree. Let N denote the number

of tuples that are actually inserted into a binary search tree. According to Knuth [94],

a single searching requires about 1.386log2 k comparisons (k is the number of nodes

currently in the binary search tree) for a well-balanced binary search tree, considering

both a successful search and an unsuccessful search. If we assume the insertion of the

N tuples out of M tuples occurs at a regular interval, the value of k is incremented at

every M/N insertion attempts. Then, the total searching cost for inserting N tuples

out of the attempted M tuples is computed as follows.

N M
Cun^arcHiM, N) = £(— 1.386Cfa log2 k) (4.25)

k=l iv

Insertion cost is the sum of the cost of an unsuccessful searching and the cost of

inserting a node as a leaf of the binary search tree. An unsuccessful searching of a

binary search tree requires log2(k +1) comparisons. Node insertion at the leaf requires

the allocation of an empty node (Cmo), copying tuple into the node {Ccopy(T)), and

writing a pointer to the node in the parent node (Cmp). Thus, the total cost of

inserting N tuples to a binary search tree is computed as follows.

C^^N, T) = £(Cb5 log2(* + 1) + Cma + Ccopy{T) + Cmp) (4.26)
fc=i

There will be Nti tuples inserted into a nested subrelation Si of the final output sin-

gle nested relation. Let S^i) denote the nested subrelation such that NSRNFT(Spor(i))

94 CHAPTER 4. EFFICIENTLY INSTANTIATING OBJECTS

is the parent of NSRNFT(5;). Then, there exist Nt ... binary search trees implement-

ing the nested subrelation Si, i.e., one binary search tree for each tuple of Spar(i). Let

Mti denote the number of tuples that are attempted to be inserted into Si. If we as-

sume tuples are uniformly distributed into every binary search tree of Si, MtJN, ,;)

tuples are attempted for insertion and NSi/NSpaT{.. tuples are actually inserted into

each binary search tree of Si. Thus, the total cost of inserting Nti tuples into 5; out

of the attempted Mti tuples is computed as follows.

Ctisearch(Mti,Nti,Ntpar(i)) = iVVr(i)CWn,eflrch(7r^-1 Tz-*-) (4.27)
•N. ..'N. ,.,

Nt.
CMiinsert(Nsi,Tti,Nlpar(i)) = N^^Cbininserti^: ~ ,TSi) (4.28)

4.4.2.2.2 SFR Nesting Cost We consider only the costs of projecting tuples,

searching tuples (Algorithm 4.3.7), and inserting tuples (Algorithm 4.3.8), which are

the operations on data tuples and whose costs are dominant.

According to Algorithm 4.3.5, Nt tuples are assembled to a single nested relation.

Each one of the Nt tuples is decomposed into subtuples belonging to different nested

subrelations Si, S2, ■ ■ •, Sn, by projections. For each of the Nt tuples, the projection of

the tuple on the schema of Si costs Cproj^T^). The searching of Si for the projected

subtuple costs Csitearch(Nt, N,{, Ntpar{i)), and the insertion of the projected subtuple

into Si costs Cninsert(Nti,TSi, N,rar{i)). Hence, the total cost of assembling Nt tuples

of a single flat relation into a single nested relation is computed as follows.

Csfmest = £ (Cpnjtti (T.t) Nt + C,i,eareh(Nt, N«, Nlpar(i)) + C.un.„t(Nti, Tti, Ntfar(i)))

(4.29)

4.4.2.2.3 RF Nesting Cost We ignore the costs of the join purge step and the

assembly planning step because they are not operations on data tuples. Accordingly,

we approximate the RF nesting cost as the sum of the index creation cost and the

navigational join cost.

Crfnett — Cix„t + CnaVjn (4.30)

4.4. DEVELOPMENT OF A COST MODEL 95

The number of joins among the relation fragments is always one less than the

number of the relation fragments (n/ — 1) after the join purge step.

Index creation (Algorithm 4.3.11): For a relation fragment Fi, the cost of bucket

header allocation is Cma- The linear scan costs CcoUca^N^). As for the hashing of

join column, we assume all join attributes are integers so that no folding is required.

For each of the Nj scanned join column values, hashing computation costs Che and

insertion to a hashing bucket chain takes the cost of allocating a bucket (Cma), writing

a pointer (Cmp) to the tuple containing the hashed attribute, and two pointer writings

(2Cmp) to make connections to other buckets. Note we do not need to scan the entire

chain of buckets because no duplicate checking is required. Hence, the cost of creating

7i/ — 1 indexes on Fi.A^s for i — 2,3, • • •, nf, where J*\ is the pivot relation fragment,

is computed as follows.

Cixcrt = ^(Cma + CcoLca^Nft) + (Chc + Cma + ZCmp)Nfi) (4.31)
t=2

Navigational join (Algorithm 4.3.12): The allocation of an empty single nested

relation costs Cma. As for the assembly cost (Algorithm 4.3.13), we consider only

the costs of following operations on data tuples: the cost of finding matching tuples

(Algorithm 4.3.14), the cost of executing assembly plans (AP) on the found tuples,

and the cost of inserting (Algorithm 4.3.9) the resulting tuples into the single nested

relation after checking for duplicate tuples (Algorithm 4.3.7).

Matching (Algorithm 4.3.14): The cost of Match(fi, Fj,U.A6tj.B), denoted by

Cmatchij, is computed as follows. First, hashing of a join column costs Che- Let Nb

denote the expected length of the chain of buckets including the header bucket. Then,

in Step 2, it costs Nb(2Cmp + Ce) to follow the chain of buckets - one Cmp for reading

a pointer to a tuple tj € Fj, the other Cmp for reading the pointer to next bucket,

and Ce for evaluating the join predicate U.AOtj.B. ccij tuples of Fj are collected from

Ma.tch(ti,Fj,ti.AOtj.B). The collection of matching tuples incurs only the cost of

writing ctij pointers (Cmpa.ij). Thus, the cost of finding matching tuples of Fj for

each tuple £{ of Fi is computed as a function of a.ij as follows.

Cnatchii K) = 0^ + Nb{2Cmp + C€) + Cmpaij (4.32)

96 CHAPTER 4. EFFICIENTLY INSTANTIATING OBJECTS

where the value of Nb is obtained as:

Nb = MAX(Nf]/Dfi],2) (4.33)

= MAX (atJ-, 2) by Equation 4.9 (4.34)

• in the same way we obtained the ultimate value of Nb for Equation 4.20. As mentioned

in Section 4.3.3.4, we assume the allocate bucket header size is 50% of the cardinality

of a hashed relation fragment.

The cost of the entire matching process is the sum of the cost of linear scan on the

pivot relation fragment {CcoUcan(Nh)) and the cost of finding matching tuples from

the other relation fragments.

Cmatch = CcoUcaniNfr) -f ^Z LftCmatchi^]) (4.35)

tgLeaf(JT)

where Leaf(JT) denotes the set of the leaves of the join tree JT and Lfi is obtained
as follows.

Lu = Nh JJ op, (4.36)
(RFJT(*■,,), RFJT(F,)> e Plt-

where Pu is a path from RFJT(Fj) to RFJT(Fi).

Execution of assembly plans (Step 3a of Algorithm 4.3.13): The tuples of rela-

tion fragments that are found by the matching process are merged according to the

prescription of the assembly plan. Let mt- be the number of relation fragments whose

tuples are merged to produce tuples to be inserted into a nested subrelation Si, and

let T',.,3 = 1,2, • • • ,m.i, denote the size of the attributes projected from each one of

the to-be-merged relation fragments. Then, the following equation holds true.

^ = E^. (4.37)

The case of merging two tuples from two relation fragments requires two projections

on the tuples. Extending from this case, the cost ofmerging mi tuples from m; relation

fragments into the tuple of a nested subrelation Si is obtained as Yr^i CprOJect(T^.).

This formula can be rewritten as a function of Tti and m; using Equation 4.8 and

Equation 4.37.

CapextCi{Tti,mi) = {im - l)Cjn + <Wet(r,,.) (4.38)

4.4. DEVELOPMENT OF A COST MODEL 97

Ql2 »23
Fz

"36
Fe *\ -f*2

a14 "25

F< F5

(a) Join tree

012 023
53 ^1 22

Bu Ö25

s4 s5

(b) Nesting format tree

5a = ILF1 ri = {Fi} 7i = l

S2 = IL{F2 tx Fi) r2 = {F2,F3} 72 = ai2a23

53 = HF6 r3 = {F6} 73 = "36

54 = HF4 r4 = W 74 = <*14

55 = UF5 r5 = m 75 = "25

(c) Assembly plan (d) r partition (e)7i

Figure 4.18: An example of Tk and 7*

Since ne nested subrelations are produced out of n/ relation fragments, n/ — nt

mergings occur. It depends on a query to determine which relation fragments are

merged to produce each nested subrelation 5». Let us consider a set of n/ — 1 a^-'s

that are defined on nf relation fragments. We define a partition on this set, i.e.,

[r1|r2|---|r„.] where each Tk,k = 1,2, • • • ,n,, is the set of JVs that are merged

to produce tuples to be inserted into a nested subrelation 5*. Let 7* denote the

combined value of the a^-'s to the Fj's belonging to Tk and be defined as follows.

Ik = II avJ where ati = 1 (4.39)

Figure 4.18 shows an example of Tk and 7*. Note the mk of Equation 4.38 is equal

to the number of Fj's in Tk-

Given Equation 4.39, the total cost of executing assembly plans is computed as

follows.

'apexec = Y,MiiCapexeCi(T,i,mi) (4.40)
»=i

98 CHAPTER 4. EFFICIENTLY INSTANTIATING OBJECTS

where My,, is the number of tuples produced for Si and computed as follows.

Mfi = Nfl I] 7P (4.41)
NSRNFT(Sp) € FU

where Pu is the path from NSRNFT^), which is the root of the nesting format tree,

to NSRNFT(Si).

Searching (Algorithm 4.3.7) and Insertion (Algorithm 4.3.9): The Mü tuples pro-

duced by the execution of assembly plans are attempted to be inserted-into a nested

subrelation S<. Then, the searching cost becomes YA=I C,iBeaTch(Mfi,NSi,Ntparii)) and

the insertion cost becomes £2^ Cann,„t{NSi, TM., N,paT(i)) using Equation 4.27 and

Equation 4.28.

Thus, the total cost of performing navigational joins on relation fragments is

obtained as follows.

n,

Cnavjn = Cmatch + Cope.ee + J2(C'"^rch(Mfi, Nti, NSpar{i)) + Ctiin,„t(Nt,., T.., N,paT(i)))

(4.42)
i=l

4.4.2.2.4 SNR Nesting Cost and Assembly Cost Nesting: As mentioned

in Section 4.3.4, the SNR method uses the same nesting process on a server as the

RF method except that the navigational join process is modified so that tuples that

are inserted into a single nested relation are transmitted to a client as well. The

transmission cost is considered separately in Section 4.4.2.3 and not considered here.

Since we ignore the difference between server speed and client speed, the SNR nesting

cost is the same as the RF nesting cost.

' rnrnest = Crfne,t (4.43)

Assembly (Algorithm 4.3.16): There is an additional cost of assembling the re-

ceived data stream into a single nested relation on a client. Considering the cost of

operations on tuples only, the cost of assembling the received data stream is computed

using Equation 4.28.

' anrataem = E Criu^tiN^T^N.^) (4.44)

4.5. COMPARISON OF COSTS 99

4.4.2.3 Transmission Cost

We use a simple model [64] of data transmission cost denned as follows .

Transmission cost = Ci + Cb x Size (4.45)

where Size is the number of bytes of the transmitted data.

In the SFR method, the amount of transmitted data is equal to the size (in bytes)

of a single flat relation, i.e., NtTt, and hence, the transmission cost is as follows.

C,frtx = Ci + ChNtTt (4.46)

On the other hand, in the RF method, the amount of transmitted data is the sum of

the sizes (N^Tj^i — 1,2, • ■ • ,ny) of relation fragments.

Crft^Ct + C^NfJf, (4.47)

In the SNR method, if we ignore the size of the header and delimiters because it is

trivial, the amount of transmitted data is the sum of the sizes (NSi Tti, i = 1,2, • • •, nB)

of nested subrelations.

c^t^a + af^N,^ (4.48)
t=l

4.5 Comparison of Costs

In this section, we compare the costs of the three different object instantiation meth-

ods using the cost model developed in Section 4.4.2. Table 4.4 shows the distribution

of cost items which have been used in our cost model. Note CqueTyproc and CTejre, are

not part of our cost model.

We first discuss the input data parameters that were used for cost comparison

and introduce the selectivity (a;j) and EJA ratios (pft) as the variant input data

parameters. Then, we present the results of cost comparison. We carried out the

cost comparison in two different ways: sample case test and simulation. We first

show the costs of the SFR, RF, and SNR methods by simulations using randomly

generated values of data parameters. Then, we compare the costs using sample data

100 CHAPTER 4. EFFICIENTLY INSTANTIATING OBJECTS

Method Server Network Client
SFR ^guert/proo W/rde Cgfrtx ^i/rne»() ^refres
RF ^gueryproci ^rfde CTftx ^rfnest] ^refres

SNR ^queryproci ^rfdej ^rfnett ^tnrtx ^anrataemi ^re/re»

Table 4.4: Distribution of cost items

parameters and observe the dependency of costs on the values of selectivities and

EJA ratios. The observed result is reinforced by another round of simulation using

random values of data parameters, this time with biases given to the domains of the

values of selectivities and EJA ratios relatively to the original domains.

4.5.1 Input Data Parameters

We used the data parameters of the RF method as the base set of input data pa-

rameters and derived the values of the data parameters of the SFR method and the

SNR method using the relationships we have developed in Section 4.4.1.2.2. Besides,

based on our discussion of the amount of transmitted data in Section 4.3.5, we have

chosen two data parameters, the selectivity (a»j's) and the extra join attribute (EJA)

ratio (/3/,'s), as the variant input parameters. The value of at-j is an indicator of the

overhead of the duplicate subtuples in the SFR method and the multiply occurring

subtuples in the SNR method. The value of pj{ is an indicator of the overhead due

to the extra join attributes in the RF method. The examples shown in Figure 4.19

and Figure 4.20 illustrate how the values of the selectivity and the EJA ratios affect

the costs of the three methods.

Figure 4.19a shows an example of high selectivities among three relation fragments.

Let us assume the two selectivities are the same and equal ton > 1. Then, the average

cardinality of a corresponding4 single flat relation is 2 x n x n where 2 is the cardinality

of the first relation fragment. The corresponding single nested relation contains 2

nested tuples, within which there exist 2 x n x n subtuples of DE. On the other hand,

the selectivities are equal to 1 in Figure 4.19b. In that case, both the single flat relation

*I.e., materialized for the same query on the same database

4.5. COMPARISON OF COSTS 101

RFt
KA B' "BC D' "DE

SNR>U
KA BC DE

SFRvl'
KA BC DE

(a) High selectivities

RF^
1 KA B' 'BCD' 1 D E 1

1 ' 1 1 ! 1 ' 1 ' 1 III

SNR^
KA BC DE

SFR^
KA BC DE

1

(b) Low selectivities

Figure 4.19: Examples of high vs. low values of selectivity

102 CHAPTER 4. EFFICIENTLY INSTANTIATING OBJECTS

RFL
AB B' C CD D' E

RFT
AB B'C CD

1 ! 1 i ■

1 i ' ■ ■

SNRT
A E

I

I

SFlT SNftl' SFRI
A E A B B' C CD

III!

1 !

i : i :

i :

AB B'C CD

(a) High EJA ratios (b) Low EJA ratios

Figure 4.20: Examples of high vs. low values of EJA ratios

4.5. COMPARISON OF COSTS 103

S2 1

SA O5

s3

/
/
/

\ \

Se Sr

(a) Join tree (b) Nesting format tree

Figure 4.21: A sample query for random values of data parameters

and single nested relation contain only two (=2x1x1) tuples. From these examples,

we observe that, given a set of relation fragments, higher selectivities increase the

cardinality of the single fiat relation and the cardinalities of nested subtuples of a

single nested relation, thus increasing the amount of data (in bytes). Figure 4.20a

shows an example of relation fragments with high EJA ratios. In the example, all

attributes except A and E are extra join attributes. In that case, the corresponding

single fiat relation and single nested relation contain only the two attributes A and

E. On the other hand, the relation fragments shown in Figure 4.20b have no extra

join attributes. In this case, all six attributes appear in the corresponding single fiat

relation and single nested relation. From these examples, we observe that, given a

set of relation fragments, higher EJA ratios decrease the tuple sizes of the single flat

relation and single nested relation, thus decreasing the amount of data (in bytes).

Certainly the costs depend upon the amount of data to be handled to retrieve the

same single nested relation. Therefore, higher selectivities and lower EJA ratios are

more advantageous to the RF method than the SFR or SFR methods in terms of

cost.

4.5.2 Overall Comparison using Simulation

We computed the average costs of the SFR, RF, and SNR methods, and tallied

the winning counts - the number of times each method incurred the minimum cost

104 CHAPTER 4. EFFICIENTLY INSTANTIATING OBJECTS

among the three methods. We used a query whose join tree is a complete binary tree

of 7 relations as shown in Figure 4.21. The domains of the random values of input

data parameters are as follows. (Let $ denote {< 1,2 >, < 1, 3 >, < 2,4 >, < 2,5 >

, < 3,6 >,< 3,7 >}.)

• 1.00 < atj < 10.00 for < i,j >e *.

• 0.00 <Pfi < 1.00 for i= 1,2, •••,7.

• 10 < Nh < 500,10 < Nf. < N^aij for j = 2,3, • • •, 7. (See Equation 4.10.)

• 10 <Tfj <500for j = 2,3,---,7.

• 0.50a1;,- < ßxi < 1.00axi for j = 2,3. (See Equation 4.18.),

0.50a;/ < ßi:j < l.öOoij for < i,j >e * and i ^ 1.

• 0.30 < d}. <dt< 1.00 for j = 1,2, • • •, 7.

The values of the other data parameters are obtained from these values using the

relationships between data parameters discussed in Section 4.4.1.2.2. As a simplifi-

cation, we assumed no merging of relation fragments in the nesting step. The effect

of ignoring the merging cost on the cost comparison result is negligible. Accordingly,

we used ^ = 1,7i = aij for < i,j >€ * and j ^ 1, and m; = 1 for i = 1,2, • • •, 7

(See Equation 4.38).

Table 4.5 shows the average values and the winning counts (in percentage) ob-

tained from 5000 random test cases for the transmission cost and the partial local

processing cost, respectively.

It was mentioned in Section 4.3.5 that the SNR transmission cost is always less

than the SFR transmission cost, but the RF transmission cost has a trade-off with

the SFR transmission cost. Our result showed that indeed the SNR transmission

always costed less than the SFR transmission. Moreover, it was observed that the

RF transmission costed less than the SFR transmission for all test cases, even though

there is a theoretical trade-off with the SFR method. The average value of the SFR

transmission cost was about 1500 times higher than that of the RF transmission

cost and about 1100 times higher than that of the SNR transmission cost. The

4.5. COMPARISON OF COSTS 105

Method
Transmission Partial local processing

Average
data size

Average cost #wins Average cost #wins
LAN WAN

SFR
RF

SNR

3413 Mbytes
2.4 Mbytes
3.2 Mbytes

3.2 hours
8.1 sees

11.1 sees

2.4 days
2.4 mins
3.2 mins

0%
67%
33%

.2.9 hours
15.2 sees
17.5 sees

0%
100%

0%

(Transmission time is elapsed time and local processing time is CPU time.)

Table 4.5: Costs evaluated using Random Data Parameters

transmission costs for the LAN and WAN showed the same relative costs among the

different methods except that the WAN incurred about 18 times higher cost than

LAN.

Since we assumed in our cost model that the server speed and the client speed are

the same, the SNR method always takes the same cost as the RF method and incurs

the additional cost (Equation 4.44) of assembling a single nested relation on a client.

Therefore, the RF local processing cost is always less than the SNR local processing

cost. Furthermore, our result showed that the RF local processing incurred less cost

than the SFR local processing for all test cases.

For the SFR, RF, and SNR method, the partial local processing cost is 0.9, 1.9, 1.6

times the LAN transmission cost while it is 0.05, 0.1, 0.1 times the WAN transmission

cost. If we consider the uncounted cost of query processing and reference resolution,

the local processing cost will be the major cost in the LAN environment and hardly

ignorable even in the WAN environment.

It is interesting to see that the SFR transmission cost was evaluated to be about

1400 and 1100 times higher than the RF transmission cost and the SNR transmission

cost, respectively, while the SFR partial local processing cost was evaluated to be only

590 and 600 times higher than the RF and SNR local processing cost. This difference

in the ratios is due to the use of the binary search tree to represent nested subrelations.

As mentioned in Section 4.3.3.2, a binary search tree incurs O(log2 N) time where

N is the number of nodes in the tree. On the other hand, the transmission cost for

transmitting those N tuples is linear with respect to N, i.e., O(N). This observation

106 CHAPTER 4. EFFICIENTLY INSTANTIATING OBJECTS

demonstrates that the benefits of the RF method and the SNR method become more

manifest in terms of reducing the transmission cost than the local processing cost.

4.5.3 Dependency on Selectivity and Extra Join Attribute

Ratio

4.5.3.1 Observation using Sample Case Test

We performed cost comparisons using sample values of data parameters and observed

the dependency of the costs on the values of a single a^ and the set of pfi,i =

1,2, • • •, 5. Figure 4.22 shows the join tree and the nesting format tree of a sample

query. The sample values of the input data parameters are as follows.

• Nu = 500,800,300,1200, 300 for i = 1,2, 3,4, 5, respectively.

• c*i2 = 3.0, a13 = 1.0 ~ 10.0, a34 = 4.0, a35 = 1.0

• ß12 = 2.7, Äs = 0.9a13,/334 = 3.8

• Tu = 200,300,250,100,400 for i = 1,2,3,4,5, respectively.

_ / 0.05,0.1,0.15,0.05,0.05 or
• Pfi - S n n „ „ „ „ for i = 1,2,3,4,5, respectively.

I 0.8,0.9,0.7,0.6,0.9 y

The other data parameters are computed from those input parameters using the

relationships between data parameters discussed in Section 4.4.1.2.2. We evaluated

the costs using those parameter values while varying the value of a13 from 1 through

10. The same evaluation has been repeated for the two different sets of pfi's.

Table 4.6 shows the result of the cost evaluation, and Figure 4.23 shows the graphs

of the costs of different methods with respect to the values of a13 for the two different

sets of p//s.

ai3: Increasing the value of a13 without changing the value of Dil3 is equivalent

to increasing the value of Nh. In the RF method, the increase of Nh increases the

size of F3 only and has no effect on the sizes of the other relation fragments. On the

other hand, its effect on increasing the number of duplicate subtuples in a single flat

4.5. COMPARISON OF COSTS 107

Transmission cost (unit: seconds)
LAN WAN

Low pj. High pfi Low pj{ High Pf.
"13 SFR RF SNR SFR RF SNR SFR RF SNR SFR RF SNR
1.0 18.0 2.2 3.0 3.5 2.2 0.6 317.9 39.4 53.4 62.4 39.4 10.9
2.0 36.0 2.5 4.5 7.1 2.5 1.0 635.8 43.9 79.1 124.7 43.9 18.1
3.0 54.0 2.7 5.9 10.6 2.7 1.4 953.7 48.4 104.9 187.0 48.4 25.3
4.0 72.1 3.0 7.4 14.1 3.0 1.8 1271.6 52.9 130.6 249.4 52.9 32.5
5.0 90.1 3.2 8.9 17.7 3.2 2.3 1589.5 57.4 156.3 311.7 57.4 39.7
6.0 108.1 3.5 10.3 21.2 3.5 2.7 1907.3 61.8 182.1 374.0 61.9 46.9
7.0 126.1 3.8 11.8 24.7 3.8 3.1 2225.2 66.4 207.8 436.4 66.4 54.1
8.0 144.1 4.0 13.2 28.2 4.0 3.5 2543.1 70.9 233.6 498.7 70.9 61.4
9.0 162.1 4.3 14.7 31.8 4.3 3.9 2861.0 75.4 259.3 561.0 75.4 68.6

10.0 180.1 4.5 16.2 35.3 4.5 4.3 3178.9 79.9 285.1 623.3 79.9 75.8

Partial local processing cost (unit: seconds)
Low pf{ High pfi

«13 SFR RF SNR SFR RF SNR
1.0 13.3 2.6 3.0 2.9 1.6 1.9
2.0 26.7 3.5 4.0 5.9 2.0 2.5
3.0 40.3 4.4 5.2 9.2 2.6 3.1
4.0 54.3 5.6 6.6 12.8 3.3 4.1
5.0 68.1 6.7 7.9 16.2 4.0 4.9
6.0 82.0 7.8 9.2 19.8 4.6 5.7
7.0 96.0 8.9 10.5 23.4 5.3 6.5
8.0 110.4 10.2 12.2 27.4 6.2 7.7
9.0 124.5 11.4 13.6 31.2 6.9 8.6

10.0 138.6 12.5 15.0 34.9 7.6 9.5

Table 4.6: Costs evaluated using the sample values of data parameters

108 CHAPTER 4. EFFICIENTLY INSTANTIATING OBJECTS

F5

c*35

F, <*13 F3

' «12
< "34

■

F2 FA

s, A3 S3

1
ßl2 • ' ß3A •

Si SA

(a) Join tree

51 = ILF1

52 = EF2

53 = JI(F3 M FB)
54 = n^4

(b) Nesting format tree (c) Assembly plan

Figure 4.22: A sample query for observing dependency on Q13 and ph

relation or multiply occurring subtuples in nested subrelations is more significant.

We can verify this fact from Equation 4.11, Equation 4.12, and Equation 4.15. That

is, the increase of Nh not only causes the increase of ß13 by Equation 4.11, but also

increases Nu according to Equation 4.12. Similarly, the increase of ßh is 'amplified'

by a factor of Ntlßl7ß2A{= 5130) if we compute Nt according to Equation 4.15. The

cost evaluation result showed that both the transmission cost and the partial local

processing cost increased linearly with respect to the value of a13, and the slope was

in the order of the SFR, SNR, and RF methods, from the highest first.

p/,: As for the values of pfi, a higher value of p^ increases the overhead due to

extra join attributes in the RF method while making the SFR method and the SNR

method more efficient by reducing the tuple size of a single flat relation and nested

subrelations, respectively, as we can see from Equation 4.14 and Equation 4.16. The

cost evaluation result showed that costs were less for the higher values of pu 's for

both the transmission cost and the local processing cost. One exception is the RF

transmission cost, in which case the transmission cost is independent of the values

of pfi's, as we can verify from Equation 4.47. In particular, the SNR transmission

incurred less cost than the RF transmission for the higher values of p^'s.

4.5. COMPARISON OF COSTS 109

Cost (seconds)
SFR

Cost (seconds)
SFR

SFR

SNR

2 3 4 5 6 7 8 9 10 a^b&13 °1

(a) LAN Transmission cost

2 3 4 5 6 7 8 9 10 ^P^13

(b) Partial local processing cost

a. xi Cost for lower values of extra join attribute ratios.

O O Cost for higher values of extra join attribute ratios.

(The abscissa denotes the value of ai3 and the ordinate denotes cost in seconds.
Lines labeled with boxes or circles are those obtained for lower or higher values of

pji's, respectively.)

Figure 4.23: Costs evaluated using the sample values of data parameters

110 CHAPTER 4. EFFICIENTLY INSTANTIATING OBJECTS

Domain FF: selectivity = 1.00 ~ 10.00, FJA ratio = 0.00 - 1.00
Domain HL: selectivity = 5.00 - 10.00, FJA ratio = 0.00 - 0.50
Domain LH: selectivity = 1.00 ~ 5.00, EJA ratio = 0.50-1.00

FJA ratios

1

0.5

tH

;Ä>

FF

.RFT
^ Selectivities

Figure 4.24: Domain HL and domain LH vs. Domain FF (full ranges)

4.5.3.2 Observation using Simulation

We carried out the cost evaluations using random values of data parameters with the

same domains as those used in Section 4.5.2, but this time for different domains of

a;/s and pfi's. The following two different domains were used for generating random

values of a;'s and Pft's.

• Domain HL: (Higher values of a^ and lower values of p^.)

5.00 < ai:i < 10.00 for < i,j >e * and 0.00 < pfi < 0.50 for i = 1,2, • • •, 7.

• Domain LH: (Lower values of a,j and higher values of pjr)

1.00 < oij < 5.00 for < i, j >e $ and 0.50 < pfi < 1.00 for i = 1, 2, • • •, 7.

Figure 4.24 contrasts the Domain HL and Domain LH with the domain of the full

range of values of a,j and p}i that were used in Section 4.5.2.

Table 4.7 shows the result of cost evaluations. For Domain HL, the RF method

showed more favorable result than the result shown in Tables 4.5 in terms of both

the average cost and the winning counts than the SFR or SNR method. On the

other hand, for domain LH, the RF method showed less favorable result. Thus, we

confirmed that the observations made in Section 4.5.3.1 are generally true for other

4.5. COMPARISON OF COSTS 111

Method

SFR
RF

SNR

Average
data size

33878 Mbytes
4.1 Mbytes
8.8 Mbytes

Transmission
Average cost
LAN

32.0 hours
14.0 sees
29.9 sees

WAN
23.5 days
4.1 mins
8.8 mins

(a) Domain HL (5.00 < a{j < 10.00,0.00 < Pii < 0.50)

#wins

0%
93%

7%

Partial local processing
Average cost

30.2 hours
31.7 sees
36.6 sees

#wins

0%
100%

0%

Method

SFR
RF

SNR

Transmission
Average
data size

47.0 Mbytes
0.86 Mbytes
0.53 Mbytes

Average cost
LAN

2.7 mins
2.9 sees
1.8 sees

WAN
46.9 mins
51.8 sees
31.8 sees

#wins

0%
22%
78%

Partial local processing
Average cost

2.0 mins
4.0 sees
4.6 sees

#wins

0.8%
99.2%

0%
(b) Domain LH (1.00 < aij < 5.00,0.50 < Pu < 1.00)

(Transmission time is elapsed time and local processing time is CPU time.)

Table 4.7: Costs evaluated using random data parameter values with biased o^'s and

112 CHAPTER 4. EFFICIENTLY INSTANTIATING OBJECTS

values of data parametes as well. It is interesting to note that, for Domain LJi, there

were some cases in which the SFR method won over the RF method in the partial

local processing cost.

4.6 Summary and Future Work

4.6.1 Summary

We have developed the mechanisms of three different methods for instantiating ob-

jects from a remote relational database server by materializing a view query and

restructuring the query result into a nested relation and resolving references among

them. The three different methods were the single flat relation (SFR) method, the

relation fragment (RF) method, and the single nested relation (SNR) method, named

after the data structure transmitted from a server to a client in each method.

Rigorous algorithms have been developed for each step of the object instantiation

process, mainly focusing on the transmission and the nesting step of the translation,

and a partial cost model has been developed. We have excluded the query processing

cost and the reference resolution cost to simplify our work, because these two costs are

the same in all three methods. We have performed cost comparisons using randomly

generated data parameter values; and using sample data parameter values for varying

values of a selectivity (a,-,-) and for higher and lower values of extra join attribute ratios

The result of the cost comparison demonstrated that the RF method and the

SNR method are more efficient than the common SFR method in terms of .both the

transmission cost and the local processing cost. Therefore, the RF and SNR methods

are useful not only for remote database systems but also for local database systems.

Besides, the RF and SNR methods are useful for disk-storage database systems as

well as main memory database systems although the benefit of the RF and SNR

methods is relatively less for the disk-storage database systems due to the significant

cost of disk accesses.

The RF method wins over the SNR method more frequently. Therefore, the RF

4.6. SUMMARY AND FUTURE WORK 113

method is the most preferred method if we have to choose one of the three methods.

There remains an optimization issue of choosing between the RF method and the

SNR method depending on the query and the speed of a server and a client. (If the

server runs slower than the client, it is more favorable to the RF method than the

SNR method because the SNR method performs the nesting step on a server. On the

other hand, if the server runs faster than the client, it is more favorable to the SNR

method. Note that we assumed that the server speed and the client speed are the

same for the cost comparison.)

We have not considered the possibility of main memory overflow in case the

amount of data retrieved as the result of a query exceeds the amount of available

main memory space. Concern about main memory overflow does not discourage the

use of the RF or SNR method because it is evident that the SFR method will suffer

more severely from the shortage of main memory space than the RF or SNR method

because the SFR method carries more redundant data.

4.6.2 Future Work

We discuss further work in two directions. First, the improvement of the efficiency of

the RF method and the SNR method, and secondly, handling left outer joins in each

of the three methods. Remember that we have dealt with only inner joins for a query

in this portion of our work.

4.6.2.1 Improving the Efficiency of the RF and SNR Methods

As mentioned in Section 4.3, we placed more effort in making the SFR method efficient

than the RF or SNR method because our objective was to demonstrate that the RF

method and the SNR method are more efficient than the SFR method. The RF

method and SNR method were designed to be rather simple than utmost efficient.

We present here some ideas that are worth pursuing to improve the efficiency of the

RF method and the SNR method.

In the current RF method, a client carries out the index creation and navigational

joins on relation fragments and hence a server must send extra join attributes to

114 CHAPTER 4. EFFICIENTLY INSTANTIATING OBJECTS

make those operations possible. As discussed in Section 4.3.5 and demonstrated in

Section 4.5.3.1, extra join attributes are the source of redundant data in the RF

method. One idea for avoiding the transmission of the extra join attributes is to have

a server send the necessary linkage information in the form of physical pointers to

the linked tuples of the other relations. In order to map between the heterogeneous

address spaces of a server and a client, offset addresses can be used as long as it can

be ensured that each relation fragment is allocated in a contiguous memory space.

Sending physical pointers will reduce the transmission cost by not sending extra join

attributes and the redundant tuples introduced by the extra join attributes. Moreover,

all a client has to do is to follow the pointers to build a single nested relation out

of the relation fragments. Thus, it reduces the load on a client. However, a server

has to pay the price of index creation and navigational join to produce the physical

pointers. A direct consequence of this requirement is that the duplicate elimination

step cannot be pipelined with the transmission of tuples and more load is placed on a

server. Besides, the transmission protocol becomes more complicated because, unlike

the case of sending extra join attributes, the number of physical pointers attached to

each tuple varies depending on the number of matching tuples.

As for the SNR method, the current SNR method has the overhead of dealing

with multiply occurring subtuples in nested subrelations. One idea of eliminating

these multiply occurring subtuples is to achieve more compaction of the transmitted

data by using backward pointers embedded in the formatted stream of nested tuples.

These backward pointers replace the actual tuples with pointers to the previously

sent identical tuples. It will make the transmission protocol and the assembly process

(Algorithm 4.3.16) more complicated, but will reduce the transmission cost.

The two ideas described so far have their major benefit in reducing the transmis-

sion cost. Therefore, these ideas are more useful in the wide area network (WAN)

environment where the transmission cost is the dominant cost.

Finally, we have used the RF materialization as an intermediate step of the SNR

materialization because, as mentioned in Section 4.3.1, a direct materialization dis-

ables the join reordering by a query optimizer. It will be worthwhile to compare

the cost reduction achievable by using the direct materialization of a single nested

4.6. SUMMARY AND FUTURE WORK 115

relation and the cost reduction achievable by utilizing the join reordering available

from a query optimizer.

4.6.2.2 Handling Left Outer Joins

We have simplified our work by not considering left outer joins in a query although

left outer joins are required frequently to prevent information loss. Thus, it will make

our work more complete if we discuss the handling of left outer joins in each step

of the different object instantiation methods, before ending this chapter. Since we

designed the SNR method using the same query materialization and nesting processes

as the RF method, we discuss only the SFR method and the RF method.

The consideration of left outer joins requires the handling of non-matching tuples

in the join evaluations of the query materialization step, and the processing of null

tuples in subsequent steps. We state briefly the key points of handling left outer joins

at each step.

In the SFR method, the query processing algorithm described in Algorithm 4.3.1

should be modified so that if a join is a left outer join and there exists no matching

tuple in the destination relation, null tuples are inserted in place of the tuples of the

destination relation and its child relations in the join tree.

For each U € Ri

if U satisfies $i then continue

else

Set U and all t,- € Rj's to null where Rj, j ^ i, are the relations in the

subtree of the join tree rooted by Ri\ Continue,

where 'continue' means to continue the nested loop join on the rest of the relations

that have not yet been processed. On the other hand, in the RF method, the query

processing algorithm described in Algorithm 4.3.2 should be modified so that if a join

is a left outer join and there exists no matching tuple in the destination relation,

the joins in a subtree of the join tree rooted by the destination relation are skipped.

Consequently, no null subtuple is inserted to any relation fragment.

For each U E Ri

116 CHAPTER 4. EFFICIENTLY INSTANTIATING OBJECTS

if U satisfies $, then continue

else

Skip all Rj's where Rj,j / i, are the relations in the subtree of the join

tree rooted by Ä,-; Continue.

Duplicate elimination process is the same as Algorithm 4.3.3.

A single nested relation which is produced by the nesting step does not contain

null subtuples at all. Therefore, the SFR nesting step as described in Algorithm 4.3.5

should be modified so that any decomposed subtuple all of whose column values are

nulls is discarded. To achieve this modification, we should place

'If U = A (a null tuple) then return.'

in front of
lwr := the root pointed by Wi.Ui

which is the first line of Algorithm 4.3.6.

The RF nesting needs some modifications as well. First of all, the join purge of

Section 4.3.3.5.1 is not applicable to a left outer join. Theorem 4.3.1 does not hold

for dangling tuples in the source relation of a left outer join. For example, given a left

outer join Fx IX F2 from a relation fragment Fx to another relation fragment
pi A p2 • ■ • A Pi ° e

F2 with conjunctive join predicates p^ A p2 A • • • A pk, it. is possible that some of the

dangling tuples in Fx appear to have matching tuples in F2 if only one of pj,p2 ■ ■ ■ ,pk

is evaluated, while in fact there exists no matching tuple for a conjunction of all

join predicates, px A p2 A • • • A pk. The assembly planning step (Section 4.3.3.5.2)

and the index creation (Section 4.3.3.5.3) step need no modification because they

have nothing to do with join evaluations. On the other hand, the navigational join

step (Section 4.3.3.5.4) performs join evaluations and thus should be modified to

distinguish between inner joins and left outer joins. Algorithm 4.3.14 (Match) always

returns one or more matching tuples if the evaluated join is an inner join but may

return no matching tuple if the evaluated join is a left outer join. Accordingly,

Algorithm 4.3.13 should be modified so that if Match(*i_!, Fi} $;) returns no matching

tuple and the evaluated join is a left outer join then skip the rest of the 'for each'

statements and set ti,ti+i, ■ • ■ ,tk to nulls before executing Step 3a through Step 3d.

4.6. SUMMARY AND FUTURE WORK 117

If we had considered the effect of nulls generated by left outer joins in our work,

the result of cost comparison would have appeared to be even more favorable to the

RF method and the SNR method. The reason is that, in a single flat relation, nulls

are duplicated in the same way the other tuples (which are not nulls) are duplicated.

Note that there is no duplicate tuple in a relation fragment or a single nested relation.

Chapter 5

Conclusion

In this thesis, we addressed two problems - outer join and instantiation efficiency

- in the view-object framewprk, i.e., in the framework of instantiating objects from

relational databases through views. First, we introduced the view-object framework

starting from a general framework of integrating objects and databases. Then, given

the framework, we made three major contributions as summarized below.

• We defined a rigorous system model in order to embody the concept of inter-

facing between objects and relations. The system model consists of three parts:

an object type model, a data model, and a view model. An object type defines

the nested structure of objects. The non-null option is used to specify object

attributes that are prohibited from being nulls. Data model uses the relational

model and includes integrity constraints as part of the model. A view consists

of a relational select-project-join query and an attribute mapping function for

mapping between object attributes and relation attributes. It was beyond our

scope to formulate a query or derive an attribute mapping function for a given

view, so that we assumed that a query and an attribute mapping function were

predefined in each pertinent object type. The system model thus developed

provided the basis for developing a simple solution to the outer join problem

and a part of the system model was used for the instantiation efficiency problem

as well.

118

119

• We developed a mechanism for having the system decide which join should be

an inner join and which join should be a left outer join, given a view-query,

and generate non-null filters on the relations specified in the view-query. Users

are required only to specify non-null constraints on object attributes whose

values should not be null. All joins in a view-query are initialized as left outer

joins. Those non-null constraints on object attributes are mapped to non-null

constraints on relation attributes of the query result. The non-null constraints

on relation attributes are then used to prescribe non-null filters on the attribute

of base relations and replace left outer joins sitting on the join path from a pivot

relation to the non-null constrained relations by inner joins. The remaining left

outer joins are further reduced into inner joins if certain integrity constraints

are satisfied. Besides, unnecessary non-null niters are eliminated.

• We developed two new methods of instantiating objects from remote relational

databases, which are far more efficient than the conventional method of retriev-

ing a single flat relation (SFR). One of the two new methods retrieves a query

result as a set of relation fragments (RF's). The other method retrieves a query

result as a single nested relation (SNR). We called the two new methods as

the RF method and the SNR method while we called the conventional method

as the SFR method. The algorithms of the three object instantiation methods

(SFR, RF, and SNR) were described rigorously. Then, we derived cost formulas

based on the algorithms and compared the estimated costs of the three methods.

Two techniques were used for cost comparison: sample case test and simulation.

The cost comparison result showed that the RF method and the SNR method

are far more efficient than the SFR method for both the transmission cost and

the local processing cost.

Appendix A

Measurement of Cost Parameters

The values of cost parameters were measured using programs that are sufficiently

realistic to be part of an actual implementation. As mentioned in Section 4.4.1.1, we

use CPU time for main memory cost and an elapsed time for network communication
cost.

A.l Main Memory Cost parameters

We used Unix clock system call for measuring the CPU time of the elementary main

memory operations shown in Table 4.1. The time resolution of the clock is 1/60

seconds while main memory operations take as little as a few microseconds. The

poor resolution of clock made it impossible to measure the precise values of main

memory cost parameters. Moreover, the execution time varies every time the same

code is run, depending on the system load. Thus, we obtained the values shown in

Tables 4.1 by repeating the same code one million times and computing an average

value.

The cost parameter value varies depending on how many subprocedures are called

during execution. We can actually define as many subprocedures as we want. Ac-

cording to our experiment on Sun-3, the invocation of a subprocedure which requires

four arguments took about 5 to 6 (isecs, which is a large amount of time for a main

memory operation. Thus, we excluded the effect of subprocedure invocation from

120

A.l. MAIN MEMORY COST PARAMETERS 121

our measurement by writing a dummy subprocedure requiring the same set of input

parameters as a counterpart for each subprocedure and subtracting the time required

to invoke dummy subprocedures from the total time. This approach means that our

cost parameter values are the minimum values considering only the 'plain' code ex-

ecution time. One exception is that we did not subtract a subprocedure invocation

time if we judged that the code must use a subprocedure, intrinsically independently

of who writes the code.

Now we comment on some details of how each cost parameter was obtained.

• Cb„: We used an implementation of Algorithm 4.3.7 for tuple sizes of 100 to 500

bytes. Tuples were initialized with pseudo-randomly generated base-64 ASCII

strings. The values of Cb„ using those random tuples were measured to be

independent of the tuple size.

• Cm: We measured the time for comparing two tuples of size 100 to 500 bytes

where each tuple was initialized with pseudo-random base-64 ASCII string, and

obtained the same value independently of the tuple size.

• Cd, Cd,: We measured the time for copying a tuple of size 100 to 1000 bytes.

The measured time was linear with respect to the tuple size.

• Ce: The time for evaluating equijoins on attributes of type integer was measured

using a code written for more general joins including non-equijoins on non-

integer attributes. We used the type integer because it frequently happens

that joins are performed on key attributes and the key attributes are integers.

We used the address of the join attributes, and their sizes and types as input

parameters and did not count the time for obtaining those values themselves.

• Cff. Folding was done by dividing a tuple into integer segments and adding

up the values of the segments. The tuple size used was 100 to 500 bytes. The

measured time was proportional to the tuple size.

• Che: We measured the time for hashing computation on a psedo-randomly gen-

erated integer hashing key using two different hashing methods: the division

122 APPENDIX A. MEASUREMENT OF COST PARAMETERS

method and the multiplicative hashing method [94]. The value shown in Ta-

ble 4.1 is for the multiplicative hashing method.

• Cma: Our experiment showed that Unix memory allocator (malloc) takes about

130 fisec on Sun-3 without regard to the allocated memory size while the other

main memory operations takes only a couple of tens of miscroseconds. There-

fore, if we used malloc for our work, the memory management cost would be-

come dominant. However, it is a common practice to pre-allocate a working

space [9, 96] to facilitate faster memory allocation and garbage collection. Then,

memory allocation takes only the cost of moving a stack pointer within the pre-

allocated working space as long as the working space need not be expanded.

We assumed the usage of a working space mechanism.

• Cmp: The time for reading or writing a pointer value is so small that it hardly

affects the cost computation result. Nevertheless we use it for completeness.

• Cpi, Cpb: We measured time for projecting a tuple of size 500 bytes on a varying

number of 32 byte columns. The measured time was proportional to the total

size of projected subtuple.

• Cai, CBn: We measured the costs of reading a join column of size 8 bytes while

scanning a relation, and computing an integer hashing key from the read column

value. The size of a column (8 bytes) are reasonable because it is likely that join

attributes are of type (short or long) integer. We assumed tuples are allocated

contiguously within main memory. The measured time was linear with respect

to the number of scanned tuples.

A.2 Network Communication Cost Parameters

The values of network communication cost parameters (Ci, Cb) depend on the commu-

nication media. It is well known that the data rate is 10 Mbps for Ethernet [65] used

in the LAN environment. Cheriton and Williamson [69] measured the communication

latency (C/) and the per-byte communication cost (Cb) on an idle 10 Mbps Ethernet

A.2. NETWORK COMMUNICATION COST PARAMETERS 123

connecting two SUN-3/75's, and obtained Ci = 2.23 msec and Cb = 1.8/isec. As for

the WAN, in [66] it is stated that the data rate is about 56 Kbps for the highest speed

leased phone line in normal use while 1.544 Mbps Tl NSFnet [67, 68] lines are used

in a few places where the high cost (in terms of financial investment) is acceptable.

However, the current status of technological development has come to the point that

Tl lines are in practical usage for the NSFnet and the availability of T3 lines (45

Mbps) is promised in near future.

We measured the elapsed time for transmitting data from a SUN-3/60 on the

Stanford University Ethernet LAN to another SUN-3/60 on the same LAN, and also

to a SUN-4 on the University of Illinois via the Tl NSFnet WAN. The client part of

the code repeated the transmission of different amounts of data (0, IK, 4K, 8K, 12K,

16K bytes of data plus 10 bytes of header) 60000 times and averaged the measured

round trip times. The server part of the code was written to send an acknowledgement

so that the client part can measure the round trip time. The measured time is from

main memory to main memory. It does not include any disk access cost but does

include main memory execution time for iterations, buffer pointer movements, and

sending an acknowledgement.

Figure A.l shows the average elapsed round trip times measured for vaying data

sizes on the LAN and the WAN, respectively. The measured round trip times were

almost linear with respect to the amount of transmitted data. We computed the (ap-

proximate) values of the two communication cost parameters, C\ and Cb, by equating

the measured round trip times to 2 * Ci + Cb x Size for different values of Size = 10,

1034, 4106, 8202, 12298, and 16394 bytes. (We did not use 12298 and 16394 bytes

for the WAN.)

124 APPENDIX A. MEASUREMENT OF COST PARAMETERS

Average elapsed
round trip time (msec)

jg— Data size (Kbytes)

(a) Local area network (on the Stanford Ethernet)

Average elapsed
round trip time (msec)

jg— Data size (Kbytes)

(b) Wide area network (between the Stanford and the Illinois)

(The size of transmistted data is 10 bytes (header) larger than the data size.)

Figure A.l: Average round trip time vs. data size on the LAN and WAN

Bibliography

[1] F. Bancilhon, et al, "The Design and Implementation of 02, an Object-

Oriented Database System," in 'Advances in Object-Oriented Database Sys-

tems', Springer-Verlag, September 1988.

[2] 0. Deux, et al., "The Story of 02," IEEE Transactions on Knowledge and Data

Engineering, vol. 2, no. 1, March 1990, pp. 91-108.

[3] R. Agrawal, and N. Gehani, "ODE (Object Database and Environment): The

Language and the Data Model," Proceedings of the ACM SIGMOD International

Conference on Management of Data, Portland, Oregon, May-June 1989.

[4] D. Maier, and J. Stein, "Development of an Object-Oriented DBMS," Proceed-

ings of the OOPSLA International Conference on Object-Oriented Programming

Systems, Languages, and Applications, September 1986, pp. 472-482.

[5] S. Ford, et al., "Zeitgeist: Database Support for Object-Oriented Programming,"

Proceedings of the International Workshop on Object-Oriented Database Sys-

tems, 1988, pp. 23-42.

[6] W. Kim, N. Chou, and J. Garza, "Integrating an Object-Oriented Programming

System with a Database System," Proceedings of the OOPSLA International

Conference on Object-Oriented Programming Systems, Languages, and Appli-

cations, September 1988, pp. 142-152.

[7] W. Kim, J. Garza, N. Ballou, and D. Woelk, "Architecture 'of the OIRON Next-

Generation Database System," IEEE Transactions on Knowledge and Data En-

gineering, vol. 2, no. 1, March 1990, pp. 109-124.

125

126 BIBLIOGRAPHY

[8] D. Fishman, et al, "Iris: An Object-Oriented Database Management System,"

ACM Transactions on Office Information Systems, vol. 5, no. 1, January 1987,

pp. 48-69.

[9] K. Wilkinson, P. Lyngbaek, and W. Hasan, "The Iris Architecture and Imple-

mentation," IEEE Transactions on Knowledge and Data Engineering, vol. 2, no.

1, March 1990, pp. 63-75.

[10] M. Stonebraker, and L. Rowe, "The Design of POSTGRES," Proceedings of the

ACM SIGMOD International Conference on Management of Data, 1986, pp.

340-354.

[11] M. Stonebraker, L. Rowe, and M. Hirohama, "The Implementation of POST-

GRES," IEEE Transactions on Knowledge and Data Engineering, vol. 2, no. 1,

March 1990, pp. 125-142.

[12] T. Learmont, and R. Cattell, "An Object-Oriented Interface to a Relational

Database," Proceedings of the International Workshop on Object-Oriented

Database Systems, 1987.

[13] G. Wiederhold, "Database Design (2nd ed.)," McGraw-Hill Book Company,

1983.

[14] G. Wiederhold, "Views, Objects, and Databases," IEEE Computer, December

1986, pp. 37-44.

[15] T. Barsalou, W. Sujansky, and G. Wiederhold, "Expert database systems in

medicine—The PENGUIN project", Proceedings of the AAAI Spring Sympo-

sium on AI in Medicine, Stanford University, CA, March, 1990, pp. 14-18.

[16] T. Barsalou, and G. Wiederhold, "Complex objects for relational databases",

Computer Aided Design (Special issue on object-oriented techniques for CAD),

vol. 22, no. 8, 1990, pp. 458-468.

BIBLIOGRAPHY 127

[17] T. Barsalou, "View objects for relational databases", Ph.D. thesis, Medical In-

formation Sciences Program, Stanford University, 1990. (Also published as a

technical report No. STAN-CS-90-1310, Computer Science Department).

[18] B. Cohen, "Views and Objects in OBI: A Prolog-based View-Object-Oriented

Database," Technical report TR.PRRL-88-TR-005, SRI, March 1988.

[19] G. Wiederhold, T. Barsalou, and S. Chaudhuri, "Managing Objects in a Rela-

tional Framework," Technical report CS-89-1245, Stanford University, January

1989.

[20] A. Paepcke, "PCLOS: A Flexible Implementation of CLOS Persistence," Pro-

ceedings of the European Conference on Object-Oriented Programming, Oslo,

Norway, August 1988.

[21] Personal communication with Andreas Paepcke, Hewlett-Packard Labs., Palo

Alto, California, November 1990.

[22] K. Law, G. Wiederhold, T. Barsalou, N. Siambela, W. Sujansky, D. Zingmond,

and H. Singh, "An Architecture for Managing Design Objects in a Sharable

Relational Framework," International Journal of Systems Automation, Research

and Applications, International Society for Productivity Enhancement.

[23] K. Law, G. Wiederhold, T. Barsalou, N. Siambela, W. Sujansky, and D. Zing-

mond, "Managing Design Objects in a Sharable Relational Framework," Pro-

ceedings of the ASME International Conference on Computers in Engineering,

Boston, MA, 1990.

[24] K. Law, T. Barsalou, and G. Wiederhold, "Management of Complex Structural

Engineering Objects in a Relational Framework," Engineering with Computers,

6:81-92, 1990.

[25] W. Rubenstein, M. Kubicar, and R. Cattell, "Benchmarking Simple Database

Operation," Proceedings of the ACM SIGMOD International Conference on

Management of Data, May 1987.

128 BIBLIOGRAPHY

[26] E. Codd, "A Relational Model of Data for Large Shared Data Banks," Commu-

nications of the ACM, vol. 13, no. 6, June 1970.

[27] D. Tsichritzis, and A. Klug (eds.), "The ANSI/X3/SPARC DBMS Framework:

Report of the Study Group on Data Base Management Systems," Information

Systems 3, 1978.

[28] D. Jardine (ed.), "The ANSI/SPARC DBMS Model," Proceedings of the Second

SHARE Working Conference on Data Base Management Systems, Montreal,

Canada, April 26-30, 1976.

[29] R. Haskin, and R. Lorie, "On Extending the Functions of a Relational Database

System," Proceedings of the ACM SIGMOD International Conference on Man-

agement of Data, June 1982, pp. 207-212.

[30] R. Lorie, and W. Plouffe, "Complex Objects and Their Use in Design Transac-

tions," Proceedings of the IEEE Annual Meeting-Database Week: Engineering

Design Applications, May 1983, pp. 115-121.

[31] K. Dittrich, and R. Lorie, "Object-oriented Database Concepts for Engineering

Applications," Technical report RJ 4691 (50029), IBM Research Laboratory, San

Jose, CA 95193, May 1985.

[32] J. Ullman, "Principles of Database and Knowledge-Base Systems," Computer

Science Press, 1988.

[33] J. Ullman, "Database Theory-Past and Future," Proceedings of the ACM

SIGACT-SIGMOD Symposium on Principles of Database Systems, San Diego,

March 1987.

[34] K. Morris, J. Ullman, and A. Van Gelder, "Design Overview of the NAIL! Sys-

tem," Proceedings of the International Logic Programming Conference, 1986.

[35] S. Tsur, and C. Zaniolo, "LDL: A Logic-based Data-Language," Proceedings of

the 12th International Conference on Very Large Data Bases, Kyoto, August

1986.

BIBLIOGRAPHY 129

[36] D. Chimenti, A. O'Hare, R. Krishnamurthy, and C. Zaniolo, "An Overview of

the LDL System," IEEE Data Engineering, vol. 10, no. 4, December 1987.

[37] C. Date, "The Outer Join," Proceedings of the 2nd International Conference on

Databases, Cambridge, Britain, September 1983.

[38] E. Codd, "Extending the Relational Database Model to Capture More Meaning,"

ACM Transactions on Database Systems, vol. 4, no. 4, December 1979.

[39] C. Date, "Referential Integrity," Proceedings of the 7th International Conference

on Very Large Data Bases, Cannes, France, September 1981, pp. 2-12.

[40] C. Date, "An Introduction to Database Systems," vol. 1, Fourth edition,

Addison-Wesley Publishing Company, Inc., 1986.

[41] F. Bancilhon, "Object-Oriented Database Systems," Invited lecture, Proceed-

ings of the 7th ACM SIGART-SIGMOD-SIGACT Symposium on Principles of

Database Systems., Austin, Texas, March 1988.

[42] D. Maier, "Why Isn't There an Object-Oriented Data Model?," Proceedings of

the IFIP 11th World Computer Congress, San Francisco, California, September

1989.

[43] J. Joseph, S. Thatte, C. Thompson, and D. Wells, "Report on the Object-

Oriented Database Workshop," SIGMOD Record, vol. 18, no. 3, September 1989.

[44] W. Wilkes, P. Klahold, and G. Schlageter, "Complex and Composite Objects in

CAD/CAM Databases," Proceedings of the 5th IEEE International Conference

on Data Engineering, Los Angeles, February 1989.

[45] P. Buneman, S. Davidson, and A. Watters, "A Semantics for Complex Objects

and Approximate Queries," Proceedings of the ACM Symposium on Principles

of Database Systems, 1988.

130 BIBLIOGRAPHY

[46] W. Kim, J. Banerjee, and H. Chou, "Composite Object Support in an Object-

Oriented Database System," Proceedings of the OOPSLA International Confer-

ence on Object-Oriented Programming Systems, Languages, and Applications,

October 1987, pp. 118-125.

[47] "IntelliCorp KEE™ Software Development System User's Manual," Document

no. 3.0-U-l, Intellicorp, July 1986.

[48] R. Kempf, and M. Stelzner, "Teaching Object-Oriented Programming with the

KEE System," Proceedings of the OOPSLA International Conference on Object-

Oriented Programming Systems, Languages, and Applications, October 1987,

pp. 11 - 25.

[49] S. Khoshafian, and.G. Copeland, "Object Identity," Proceedings of the OOPSLA

International Conference on Object-Oriented Programming Systems, Languages,

and Applications, 1986.

[50] S. Abiteboul, and P. Kanellakis, "Object Identity as a Query Language Primi-

tive," Proceedings of the ACM SIGMOD International Conference on Manage-

ment of Data, Portland, Oregon, May-June 1989.

[51] G. Wiederhold, "Binding in Information Processing," Technical report no.

STAN-CS-81-851, Department of Computer Science, Stanford University, Stan-

ford, CA 94305, May 1981.

[52] T. Pratt, "Programming Languages: Design and Implementation (2nd ed.),"

Prentice-Hall, Inc., 1984.

[53] T. O'Hare, and A. Sheth, "The Interpreted-Compiled Range of AI/DB Systems,"

Technical Memo (unpublished), Paoli Research Center, Unisys Corp., July 1988.

[54] S. Ceri, G. Gottlob, and G. Wiederhold, "Interfacing Relational Databases and

Prolog Efficiently", IEEE Transactions on Software Engineering, February 1989.

BIBLIOGRAPHY 131

[55] S. Finkelstein, "Common Expression Analysis in Database Applications," Pro-

ceedings of the of ACM SIGMOD International Conference on Management of

Data, 1982.

[56] M. Jarke, "Common Subexpression Isolation in Multiple Query Optimization,"

in W. Kim, D. S. Reiner, and D. S. Batory (eds), 'Query Processing in Database

Systems,' Springer, 1984, pp. 191-205.

[57] P. Larson, and H. Yang, "Computing Queries from Derived Relations," Proceed-

ings of the of the 11th VLDB International Conference on Very Large Databases,

August 1985.

[58] T. Sellis, "Multiple-Query Optimization," ACM Transactions on Database Sys-

tems, vol. 13, no. 1, March 1988, pp. 23-52.

[59] A. Sheth, D. Buer, S. Rüssel, and S. Dao, "Cache Management System: Pre-

liminary Design and Evaluation Criteria," Technical Memo TM-8484/000/00,

West Coast Res. Center, Unisys Corp., 2400 Colorado Avenue, Santa Monica,

CA 90406, October 1988.

[60] M. Nelson, "Caching in the SPRITE Network File System," PhD Thesis, Uni-

versity of California at Berkeley, March 1988.

[61] H. Wedekind, and G. Zoerntlein, "Prefetching in Real time Database Applica-

tions," Proceedings of the of ACM SIGMOD International Conference on Man-

agement of Data, 1986.

[62] G. Dill, "Peripheral Semiconductor Storage - A Feasible Alternative To Disk

and Tape?," Hardcopy, vol. 7, no. 1, January 1987.

[63] B. Lee, and G. Wiederhold, "Outer Joins and Filters for Instantiating Objects

from Relational Databases through Views," Technical Report no. 30, Center for

Integrated Facility Engineering (CIFE), Stanford University, May 1990.

[64] P. Dwyer, and J. Larson, "Some Experiences with a Distributed Database

Testbed System," IEEE Proceedings, vol. 75, no. 5, May 1987, pp. 633-648.

132 BIBLIOGRAPHY

Also appear in Gupta, A. (ed.), 'Integration of Information Systems: Bridging

Heterogeneous Databases,' IEEE Press, 1989.

[65] A. Tanenbaum, "Computer Networks," 1st edition, Prentice-Hall, Inc., Engle-

wood Cliffs, New Jersey 07632, 1981.

[66] A. Tanenbaum, "Computer Networks," 2nd edition, Prentice-Hall, Inc., Engle-

wood Cliffs, New Jersey 07632, 1981.

[67] D. Comer, "Internetworking with TCP/IP: Principles, Protocols and Architec-

ture," Prentice-Hall, Inc. 1988.

[68] S. Reddy, "NSFnet Today: A New Implementation of a Vast Research Network"

LAN Magazine, June 1989.

[69] D. Cheriton and C. Williamson, "Network Measurement of the VMTP Request-

Response Protocol in the V Distributed System," Proceedings of the ACM SIG-

METRICS Conference on Measurement and Modeling of Computer Systems,

Banff, Alberta, Canada,' May 1987, pp. 216-225.

[70] P. Fischer, and S. Thomas, "Operators lor Non-First-Normal-Form Relations,"

Proceedings of the IEEE COMPSAC International Computer Software and Ap-

plication Conference, November 1983.

[71] M. Roth, H. Korth, and A. Silberschatz, "Theory of Non-First-Normal-Form

Relational Databases," Technical report no. TR-84-36, Department of Computer

Science, University of Texas at Austin, Austin, Texas 78712, December 1984. <

in TODS on "Nested relations'^

[72] S. Abiteboul, and N. Bidoit, "Non-First Normal Form Relations to Represent

Hierarchically Organized Data," Proceedings of the ACM SIGACT-SIGMOD

Symposium on Principles of Database Systems, April 1984.

[73] D. Bitton, "The Effect of Large Main Memory on Database Systems," Panel

report, Proceedings of the ACM SIGMOD International Conference on Manage-

ment of Data, 1986, pp. 337-339.

BIBLIOGRAPHY 133

[74] A. Ammann, M. Hanrahan, and R. Krishnamurthy, "Design of a Memory Resi-

dent DBMS," Proceedings of the IEEE COMPCON Conference, San Francisco,

February 1985

[75] K. Whang, et al., "OfBce-By-Example, An Integrated Office System and

Database Manager," ACM Transactions on Office Information Systems, vol. 5,

no. 4, October 1987, pp. 393-427.

[76] T. Lehman, and M. Carey, "A Study of Index Structures for Main Memory

Database Management Systems," Proceedings of the of the 12th International

Conference on Very Large Data Bases, Kyoto, August, 1986, pp. 294-303.

[77] T. Lehman, and M. Carey, "Query Processing in Main Memory Database Man-

agement Systems," Proceedings of the ACM SIGMOD International Conference

on Management of Data, 1986, pp. 239-250.

[78] H. Garcia-Molina, R. Lipton, and J. Valdes, "A Massive Memory Machine,"

Proceedings of the IEEE COMPCON Conference, 1984.

[79] D. Bitton and C. Turbyfill, "Performance Evaluation of Main Memory Database

Systems," Technical Report 86-731, Department of Computer Science, Cornell

University, Ithaca, New York, January 1986.

[80] D. Bitton, M. Hanrahan, and C. Turbyfill, "Performance of Complex Queries in

Main Memory Database Systems," Proceedings of the IEEE 3rd International

Conference on Data Engineering, 1987, pp. 72-81.

[81] M. Eich, "MARS: The Design of a Main Memory Database Machine," Pro-

ceedings of the 5th International Workshop on Database Machine, Karuizawa,

October 1987.

[82] A. Swami, "Optimization of Large Join Queries," Ph.D. Thesis, Report no.

STAN-CS-89-1262, Department of Computer Science, Stanford University, 1989.

[83] E. Horowitz, and S. Sahni, "Fundamentals of Data Structures," Computer Sci-

ence Press, Inc., 1976.

134 BIBLIOGRAPHY

[84] W. Mauer, and T. Lewis, "Hash Table Methods," ACM Computing Surveys, vol.

7, no. 1, March 1975, pp. 5-20.

[85] K. Whang, and R. Krishnamurthy, "Query Optimization in a Memory-Resident

Domain Relational Calculus Database System," ACM Transactions on Database

Systems, vol. 15, no. 1, March 1990.

[86] D. DeWitt, R. Katz, F. Olken, L. Shapiro, M. Stonebraker, and D. Wood, "Imple-

mentation Techniques for Main Memory Database Systems," Proceedings of the

ACM SIGMOD International Conference on Management of Data, June 1984,

pp. 1-8.

[87] L. Shapiro, "Join Processing in Database Systems with Large Main Memories,"

ACM Transactions on Database Systems, vol. 11, no. 3, September 1986, pp.

239-264.

[88] D. Tsichritzis, and F. Lochovsky, "Data Models," Prentice-Hall, Inc. 1982, pp.

210-225.

[89] W. Kim, "Architectural Issues in Object-oriented Databases," The Journal of

Object-oriented Programming, March 1990.

[90] A. Aho, J. Hopcroft and J. Ullman, "The Design and Analysis of Computer

Algorithms," Addison-Wesley Publishing Company, 1974.

[91] D. Comer, "The Ubiquitous B-Tree," ACM Computing Surveys, vol. 11, no. 2,

June 1979.

[92] R. Fagin, J. Nievergelt, N. Pippenger, and H. R. Strong, "Extendible Hashing: A

fast access method for dynamic files," ACM Transactions on Database Systems,

vol. 4, no. 3, September 1989, pp. 315-344.

[93] W. Litwin, "Linear Hashing: A New Toolf for File and Table Addressing," Pro-

ceedings of the 6th International Conference on Very Large Databases, Montreal,

Canada, October 1980.

BIBLIOGRAPHY 135

[94] D. Knuth, "The Art of Computer Programming, Vol 3: Sorting and Searching,"

Addison-Wesley, 1973.

[95] A. Aho, J. Hopcroft, and J. Ullman, "Data Structures and Algorithms," Addison-

Wesley Publishing Company, 1983.

[96] Personal communications with Janet Miller et al., the Iris project group, Hewlett-

Packard Company, Cupertino, CA, July 1990.

Reproduced by NTIS

0 = Ofl)

• igjfi

2£'°
£ O 0 C
EEK2
u 0 3+*
0 O OS

Ogco
rf = "ö

"E c ® c

National Technical Information Service
Springfield, VA 22161

This report was printed specifically for your order
from nearly 3 million titles available in our collection.

For economy and efficiency, NTIS does not maintain stock of its vast
collection of technical reports. Rather, most documents are printed for
each order. Documents that are not in electronic format are reproduced
from master archival copies and are the best possible reproductions
available. If you have any questions concerning this document or any
order you have placed with NTIS, please call our Customer Service
Department at (703) 487-4660.

About NTIS
NTIS collects scientific, technical, engineering, and business related
information — then organizes, maintains, and disseminates that
information in a variety of formats — from microfiche to online services.
The NTIS collection of nearly 3 million titles includes reports describing
research conducted or sponsored by federal agencies and their
contractors; statistical and business information; U.S. military
publications; audiovisual products; computer software and electronic
databases developed by federal agencies; training tools; and technical
reports prepared by research organizations worldwide. Approximately
100,000 new titles are added and indexed into the NTIS collection
annually.

For more information about NTIS products and services, call NTIS
at (703) 487-4650 and request the free NTIS Catalog of Products

and Services, PR-827LPG, or visit the NTIS Web site
http://www.ntis.gov.

NTIS
Your indispensable resource for government-sponsored

information—U.S. and worldwide

