
i mi nil inn ii mi i
PB96-149760 Information is our business.

PERFORMANCE AND FAULT-TOLERANCE IN A CACHE
FOR DISTRIBUTED FILE SERVICE

19970623 133

STANFORD UNIV., CA

_.-,-~Tr-,ä A

DEC 90
T:T:

U.S. DEPARTMENT OF COMMERCE
National Technical Information Service

iPlOTriISÜTICftI ST&TEMFffT ft

Approved for public release;
Distribution Unlimited

December 1990 Report No. STAN-CS-91-1363

thesis

minium in mimr
PB96-149760

Performance and Fault-Tolerance in a Cache
for Distributed File Service

by

Cary Gordon Gray

Department of Computer Science

Stanford University

Stanford, California 94305

REPRODUCED BY: NTlS
U.S. Department of Commerce

National Technical Information Service
Springfield. Virginia 22161

PERFORMANCE AND FAULT-TOLERANCE IN A CACHE

FOR DISTRIBUTED FILE SERVICE

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

By

Cary Gordon Gray

December 1990

© Copyright 1990 by Cary Gordon Gray

All Rights Reserved

NTIS is authorized to reproduce and sell this
report. Permission (or further reproduction
must be obtained from the copyright owner.

11

Abstract

Caching data on client workstations can improve the performance of file service in a

distributed system. Distributed systems, though, are subject to host crashes and com-

munication failures, and techniques that are commonly used to improve the performance

of file caching do not tolerate these failures. This dissertation describes how high perfor-

mance can be obtained from caching while still tolerating failures and providing at least

the same level of coherence, availability, and reliability that the file service would have

without caching.

Leasing is a time-based mechanism that guarantees that access to cached data is co-

herent with respect to arbitrary communication. The requirements for leasing to function

correctly are stated, and it is shown how those requirements can be efficiently satisfied

in a practical system that has both host crashes and lost messages. Leasing's perfor-

mance is evaluated using both closed-form estimates and trace-driven simulation. For

the pattern of access to files in V and similar systems, performance is very good for lease

terms of just a few seconds; terms of this duration also give acceptable bounds on delays

added due to failures. Several previous mechanisms for cache coherence are included as

special cases of leasing, and leasing also allows a range of policies that can accommodate

different access patterns. In addition, leasing can be extended to work with multi-level

caching, with replicated data, and in conjunction with transactions.

A prototype file-service cache has been implemented for the V distributed operating

system; the cache's design is described, and its performance is evaluated based on traces

of file-system access. Three techniques enable the cache to reduce traffic by as much as

60% compared to a simpler cache: using leasing for coherence, distinguishing among a few

classes of files, and caching information about files along with their contents. In contrast

with other designs, the prototype achieves this reduction in traffic without sacrificing

coherence, reliability, or availability.

in

IV

Acknowledgements

This research was done within the Distributed Systems Group at Stanford University,

headed by Professor David Cheriton; I would like to thank the many members of DSG

in the years I was associated with it for making it an interesting place to work and for

teaching me so much about computer systems and research. Special thanks are due to

those who provided software that contributed directly to my work: William Lees, whose

first implementation of the caching server, as a class project, provided a starting point

for my work; Ed Sznyter, for his work on the V's virtual memory system; Ross Finlayson,

Mike Nishimoto, Peter Brundrett, Paul Roy, and Tim Mann for their contributions to

the file-server software.

The Andrew benchmark, on which one of the traces in Chapter 3 is based, was

graciously provided by M. Satyanarayanan of Carnegie-Mellon University.

Portions of Chapter 2 were previously published, in revised form, as [30], and appear

here by permission of the ACM; the material that appears here represents my own work.

During part of time at Stanford, I was supported by an NSF Graduate Fellowship

and a TRW Fellowship Augmentation Grant. This work was also supported in part by

the Defense Advanced Research Projects Agency under contract N00039-84-C-0211, by

National Science Foundation Grant DCR-83-52048, and by Digital Equipment Corpora-

tion.

Technical and financial support seem small compared to the moral support and friend-

ship that kept me going as my doctoral work dragged on for far too long. Within DSG, I

am especially grateful for both the encouragement and instruction I received from Mar-

vin Theimer, Ross Finlayson, Bruce Hitson, Steve Deering, and Joe Pallas: without their

encouragement I am sure I would have given up. Joe, in particular, endured far more

interruption to his work than anyone else, and contributed more than I could ever repay.

Gio Wiederhold and Jim Gray saw value in my work when I was unsure that I had any-

thing worth saying. I am also grateful to all of my readers for their encouragement, wise

suggestions, and quick response during the final push.

Much joy in my time at Stanford was provided by my extended family at church

in Palo Alto, who put up with me, cared for me, and helped me keep everything in

perspective. Joel Dager, Glenn Bates, and Howard Lin unwittingly kept me sane through

some very difficult times. John Wilson's help and companionship during the actual

writing were absolutely invaluable.

I am very grateful to my parents for their support and practical suggestions, and for

their patience when mine was exhausted. My wife Emily endured my graduate studies

dragging on for much longer than anticipated, and me being less than pleasant to live

with during a significant portion of that time; I can not thank her enough.

vi

Contents

Abstract in

Acknowledgements v

List of Tables x

List of Figures xii

1 Introduction 1

1.1 Caching and performance 2

1.2 Tolerating failures 2

1.3 Contributions of this dissertation 5

2 Coherence 7

2.1 Background 7

2.1.1 Defining coherence ' 8

2.1.2 What are reads and writes? 9

2.1.3 Related concepts 10

2.1.4 Restrictions . 10

2.2 Leasing 11

2.2.1 Conditions for correctness 11

2.2.2 Coping with failures 13

2.2.3 Other coherence mechanisms as special cases 14

2.3 Performance 14

2.3.1 Analytical model 15

2.3.2 V file service 18

2.3.3 Sharing, granularity, and multiple leases 23

2.4 Additional considerations 24

Vll

2.4.1 Options for lease management 24

2.4.2 Other applications 27

2.4.3 Write-back caches 28

2.5 Summary 29

3 A File Cache for the V-System 31

3.1 Background 31

3.1.1 File service 32

3.1.2 Memory service 34

3.2 The caching server 35

3.2.1 Description 36

3.2.2 Traffic measurements 39

3.3 Temporary data 48

3.3.1 Caching server support for temporary data 48

3.3.2 Comparison with delayed write 49

3.4 Caching descriptor information 56

3.5 Using leasing for coherence . 61

3.5.1 Performance 61

3.5.2 Implementation details 63

3.6 Additional issues for caching in V 69

3.6.1 Limitations 69

3.6.2 Performance 70

3.6.3 Security 71

3.7 Applying the results to other systems 72

3.8 Summary 74

4 Additional uses for leasing 77

4.1 Caching in very large systems 78

4.2 Caching and atomic transactions 79

4.2.1 Concurrency control 79

4.2.2 Atomic commit processing 81

4.3 Improving availability 84

4.3.1 Caching replicated data 84

4.3.2 Coherence and availability 87

4.4 Summary 90

vm

5 Related work 91

5.1 Coherence 91

5.1.1 Multiprocessors 91

5.1.2 Distributed memory 92

5.1.3 Distributed naming 92

5.1.4 Replicated data 93

5.2 File access patterns . 94

5.3 Caching file systems 95

5.3.1 Sprite 96

5.3.2 Andrew 96

5.3.3 MFS and Echo 97

5.3.4 Others 98

5.4 Other uses of time 99

5.5 Summary 99

6 Conclusion 101

6.1 Results-.:.• '. 101

6.2 Future research 103

A Full trace data 105

A.l Configuration traced 105

A.2 Data included 106

A.3 The data i 107

Bibliography 115

IX

List of Tables

2.1 Performance model parameters 16

2.2 Parameters for file caching in V 18

2.3 Effect of separating extensions for file groups 23

3.1 Contents of a version descriptor. . 37

3.2 Traffic without caching 42

3.3 Traffic with the basic cache 43

3.4 Traffic without caching, by file class 45

3.5 Traffic with the basic cache, by file class 46

3.6 Traffic for cache with temporary support, by file class 50

3.7 Traffic for cache with temporary support 51

3.8 Traffic for cache with 30-second delayed write 55

3.9 Synchronous commit traffic 56

3.10 Contents of a node in the naming tree 57

3.11 Traffic with descriptor caching 60

3.12 Traffic with descriptor caching and 10-second leases 62

5.1 Data included in trace studies 94

A.l f sbuild: Traffic with no caching 109

A.2 f sbuild: Traffic for basic cache 109

A.3 f sbuild: Traffic for directory /descriptor caching 110

A.4 f sbuild: Traffic for special temporary support 110

A.5 f sbuild: Lease extensions required, 10-second term 110

A.6 af sbench: Traffic with no caching Ill

A.7 af sbench: Traffic for basic cache. Ill

A.8 af sbench: Traffic for directory/descriptor caching 112

A.9 af sbench: Traffic for special temporary support 112

XI

A. 10 af sbench: Lease extensions required, 10-second term 112

A.11 latex: Traffic with no caching 113

A. 12 latex: Traffic for basic cache 113

A.13 latex: Traffic for directory/descriptor caching 114

A.14 latex: Lease extensions required, 10-second term 114

Xll

List of Figures

2.1 Potentially incoherent access 8

2.2 An example of caching using leasing 12

2.3 Traffic for coherence in V 19

2.4 Average delay for coherence in V 20

2.5 Traffic for coherence with 50 msec network latency 21

2.6 Average delay for coherence with 50 msec network latency 22

3.1 Servers and protocols involved in file caching 35

3.2 Traffic without caching , 42

3.3 Traffic with the basic cache 43

3.4 Traffic without caching, by file class 45

3.5 Traffic with the basic cache, by file class 46

3.6 Traffic for cache with temporary support, by file class 50

3.7 Traffic for cache with temporary support 51

3.8 Lifetime of newly written data in all files (cumulative) 53

3.9 Lifetime of newly written data in non-temporary files (cumulative). ... 53

3.10 Traffic for 30-second delayed write vs. temporary support 55

3.11 Traffic with descriptor caching 61

3.12 Traffic with descriptor caching and 10-second leases 62

3.13 An uncertain ordering of operations 65

xni

XIV

Chapter 1

Introduction

File storage is an important service in a general purpose computing system, whether

that system is centralized or distributed. Files provide a basis for sharing data among

users and applications as well as for preserving data over an extended period. Overall

performance in many applications is limited by the performance of the file service.

Several trends in distributed systems are increasing the pressure on performance of

distributed file systems. First, as systems grow to include hundreds or even thousands of

hosts, a server needs to be able to support a larger number of clients. Second, as systems

spread beyond local area networks, increased communication latency adds to response

time. Finally, as processor speed increases, the delays for communication with a remote

server and for access to secondary storage account for a larger fraction of the response

time.

Caching file data on client workstations can significantly improve the performance and

scalability of a distributed file service, as systems such as Andrew [35] and Sprite [50]

have demonstrated. These systems, though, typically trade the robustness of the file

service for additional performance gains from caching. Commonly used techniques for

boosting cache performance sacrifice the coherence, reliability or availability of the file

service, particularly in the presence of the partial failures that characterize distributed

systems.

This dissertation focuses on the problem of obtaining caching's performance bene-

fits without making these sacrifices. It presents leasing, a fault-tolerant mechanism for

cache coherence, and describes a prototype file cache that uses leasing along with other

techniques to provide both high performance and robustness.

2 CHAPTER 1. INTRODUCTION

1.1 Caching and performance

File-service performance is measured in terms of either throughput or response time.

Throughput can be viewed in terms of capacity of shared resources: how many clients

can a server or network support? Efforts to construct systems with very large numbers

of clients call for supporting as many clients per server as possible, in order to minimize

the number of servers for reasons of both cost and manageability.

Response time measures how long it takes to complete some task. The contribution

of file operations to response time includes time for communication, for processing and

device access at the server, and also for queueing when the server is congested. Response

time also includes computation and possibly other activities in addition to file operations.

For the systems examined by Lazowska, et al, [40] communication delays were a very

small fraction of total response time. However, when either communication latency

increases, as on a wide-area network, or processors get faster, the delays for remote access

to files can become a significant fraction of response time. Large numbers of clients add

queueing delays as shared servers become congested, further increasing response time.

Caching data on clients can both increase server capacity and reduce response time.

Server capacity increases because the use of cached data lowers the number of requests

that a client makes of the server. Response time also benefits from the reduction in

traffic: the client waits for a smaller number of synchronous operations to be performed

by the server, and the queueing delays for those operations are also shorter.

1.2 Tolerating failures

Distributed systems experience failures: hosts can crash, and communications can be

disrupted. The failures experienced by a distributed system are different from those

in a centralized system. When the host crashes in a centralized system, all processing

ceases. In a distributed system, however, a host crash is only a partial failure, and

processing on other hosts continues, possibly unaware that any failure has occurred. A

distributed system is also subject to communication failures: a message can be sent but

never received. Lost messages and host crashes cannot always be distinguished, as either

manifests itself as the failure to receive an expected response from another host.

In addition, these partial failures occur more frequently in a distributed system than

do crashes of a centralized system, simply because there are more components that can

1.2. TOLERATING FAILURES 3

fail. Furthermore, workstations are commonly placed in relatively hostile environments—

e.g., offices, where the temperature and power supply are not controlled as well as in a

machine room, and where users have ready access to switches and cables. Communication

failures become more likely as a network grows in terms of either distance or number of

hosts. Failures must be expected in any distributed system of nontrivial size.

A robust distributed system must tolerate these failures: parts of the system that are

not directly affected by a failure should continue to function correctly. For a distributed

file service, tolerating failures requires preserving three properties: availability, coherence,

and reliability.

Availability. A partial failure should not unnecessarily make file data unavailable to

the remaining system. A client should be able to access a file whenever it can communi-

cate with the server that stores the file.1 Because client failures are more common, the

failure of one client should not make any file unaccessible to other clients.

Coherence. To facilitate sharing, access to file data should be coherent. Informally,

coherence implies the same behavior as in the absence of caches: reading a file returns

the data most recently written to it. The problem arises when a file that is already in

one client's cache is written by another client. The cached copy now differs from that

stored by the file server, and the system must guarantee that subsequent reads return

the server's data instead of that in the cache.2 Coherence should be preserved in spite of

failures.

Reliability. The possibility of partial failures makes the reliability of the file service

more important. Because a partial failure may not be noticed by a user or application,

confusion can result if the failure causes data to be lost. Users and applications need the

assurance that both the data they write and the data they read will persist in spite of

noncatastrophic failures.3

To illustrate the need for reliability, let us consider the policy of delayed write em-

ployed in many centralized Unix systems [66], in which newly written file data is allowed

xOr, for a replicated file, when it can communicate with the required set of servers.
2 A more precise definition of coherence is developed in Chapter 2. At this point, please note that

coherence is a basic property expressed in terms of individual operations, each on a single data item;
coherence should not be confused with, for example, database integrity, which is expressed in terms of
groups of operations (transactions) and the relationships among the values of multiple items.

3Host crashes and lost messages are anticipated; other types of failures, such as a disk head crash,
might still be regarded as catastrophic and result in loss of data.

4 CHAPTER 1. INTRODUCTION

to remain in volatile memory for a limited time before it is written to disk. Delayed write

improves performance in two ways. First, it reduces the demand on disks, because a sig-

nificant fraction of file data is short-lived: if a block is rewritten or a file deleted within

the delay period, then a write to disk can be avoided. Second, it lowers response time,

because a write operation returns as soon as the data has been copied into a file-system

buffer, without having to wait for a slow disk write.

Delayed write introduces the risk of losing recently written data if the system crashes.

The potential loss is therefore limited by periodically writing all dirty buffers to disk,

typically at an interval of thirty seconds. In a centralized system,' it is unlikely that a

user fails to observe a failure in which he loses data. The crash must occur within thirty

seconds of the lost write, which means a user may unknowingly lose only data written

within thirty seconds before logging out, or written by background processes while the

user is not logged in. Any program processing the (soon-to-be) lost data is terminated

by the crash; any writes it performed that depended on the lost data are younger than

the delay interval and so are probably lost as well. Manual intervention can be used to

recover for simple interactive activities, particularly when the user is a programmer-.

In a distributed system, it is more likely that a failure goes undetected by a particular

user. If commands are remotely executed at hosts selected by the system (as in [64]), a

user will not notice if a remote host crashes immediately after he executes a command

there. Similarly, a user will not notice the failure of a file server if it recovers before he

next uses it. A user that is not aware that data has been lost will not take appropriate

action to recover from the loss.

The problem of undetected failures is worse for programs than for human users.

Consider a program that reads from one file, then writes to another, with the requirement

that the output file always reflect some prior state of the input. If the program reads

newly written data from the input file shortly before the server storing it crashes, losing

the input data, the program can continue to execute and successfully write an inconsistent

version of the output file on a different server.4 Such possibilities make it difficult to

construct robust applications.

Or the same server, if the computation is long enough for the server to recover.

1.3. CONTRIBUTIONS OF THIS DISSERTATION 5

1.3 Contributions of this dissertation

This dissertation examines the use of caching in providing a distributed file service that is

scalable and high-performance, and that tolerates common failures without compromising

the coherence, availability, or reliability of file storage.

Chapter 2 addressed the problem of efficiently maintaining the coherence of caches in

the face of failures. It describes leasing as a solution to this problem, and states require-

ments for leasing to function correctly in spite of partial failures. A simple analytical

model for leasing's performance is developed, and that model shows that leasing can

perform quite well for file-service access patterns while still giving acceptable failure-case

behavior. The conditions for correctness allow a range of policies for managing leases, so

that leasing can accommodate other access patterns as well.

A prototype file-service cache that has been built for the V distributed system is

described and evaluated in Chapter 3. The evaluation is in terms of server traffic, based

on analyzing traces of file-system access collected in the V-system. Three enhancements

allow the prototype to reduce traffic without losing robustness: distinguishing temporary

from other files, caching information about files, as well as their contents, and using

leasing for coherence.

Chapter 4 explores issues beyond the scope of the prototype. It describes how leasing

can support multi-level caches in systems of very large scale, and it examines how leasing

could be used for caching in a storage service based on transactions or with replicated

data.

CHAPTER 1. INTRODUCTION

Chapter 2

Coherence

Intuitively, caches are coherent1 if each read of a data item returns the value most recently

written to that item. Coherence implies that the results of operations on files are not

affected by the use of caching in the system. This property is important because it keeps

the model of file service simple, while allowing data to be shared via files.

Existing approaches to .ensuring coherence have one of three shortcomings. Some

methods depend on reliable communication, and so do not tolerate failures. Other ap-

proaches require a coherence check on each read access, and so do not perform well.

Finally, some approaches work only by forbidding all updates to cacheable data, and so

are of limited applicability.

This chapter describes and evaluates leasing, a mechanism for coherence that tolerates

both site and communications failures. The first section explores the problem of coherence

in greater detail and identifies the aspects of the problem that are the focus of the

remainder of the chapter. Section 2.2 describes leasing, and Section 2.3 analyzes its

performance for distributed file service. Finally, Section 2.4 examines several extensions

to the basic mechanism.

2.1 Background

The potential for incoherent access arises from the fact that caching a data item creates

an additional copy of it. If the cached copy comes to differ in value from the one stored

2To minimize confusion, we use the term coherence for the property that is also commonly labelled
consistency in descriptions of file systems or memory systems. Unfortunately, consistency denotes a
different concept in the literature on databases (e.g., [21, 32]), and the term has been used somewhat
inconsistently in the literature on file caching (e.g., [36, 50, 59]). See section 2.1.3 for more details.

CHAPTER 2. COHERENCE

time

Figure 2.1: Potentially incoherent access.

by the file server, reading from the cached copy can produce anomalous results. For

example, consider the events depicted in Figure 2.1. User (or application) A reads from

a file via the cache on one workstation, and then B writes to the same file from some

other host. B somehow informs A of the write, so that when A next reads from the file,

A expects to see what B wrote. The system must somehow ensure that A's final read

returns the latest value instead of the old version in the cache.

2.1.1 Defining coherence

The most commonly given definition is that a system is coherent if each read of an item

returns the value most recently written to that item (e.g., [12, 42]). In a distributed

system, though, events are not totally ordered [38], so that "most recently" is not well-

defined, and a more precise definition is needed.

What coherence requires is that the results of a set of operations performed with

caches not differ detectably from what they would be if there were only one copy of

each item—i.e., if there were no caches. A precise definition of coherence is based on

two partial orderings of operations in a system's execution. One ordering is based on

observable events, such as the sending or receiving of a message, or an agent performing

a series of actions sequentially [38]. In Figure 2.1, the "written"' message from B to A

allows A to observe that B's write occurs before the final read is requested. The second

partial order, which we call the version order is determined by the results of operations:

each read operation returns a value from a write operation that immediately precedes

2.1. BACKGROUND 9

it in the version order, and the read precedes the operation which overwrites the value.

Whenever these two orders conflict, it appears that an operation has been performed

out-of-order. We therefore describe a file service as coherent with respect to a particular

set of observable orderings on operations if the observable and version orderings produced

are always compatible.2

There are several possible choices for the set of observable orderings. One possibility

is to limit observations to reading and writing files; another is to consider only messages

sent within the computer system's communications network. If either of these standards

is chosen, however, access will not appear coherent to users who communicate by other

means. In practice users do engage in such communication: users converse with each

other, or a single user may employ more than one host. Consequently, a distributed file

service needs to ensure that access is coherent with respect to arbitrary communication,

not just communication via files or via the distributed system's network. Within the

rest of this dissertation, therefore, we use "coherence" as shorthand for "coherence with

respect to arbitrary communication."

2.1.2 What are reads and writes?

Within this chapter we consider a very simple abstract file service in which each oper-

ation is either a read or a write of a single data item, and individual read and write

operations are performed atomically.3 In relating the operations of an actual file system

to this model, those factors must be considered. First, other operations can be viewed

as a sequence of reads and writes that is performed in a batch by the server. Second,

the operations that correspond to read and write from the standpoint of coherence are

determined by the visibility of those operations with respect to each other. For example,

in Unix systems, the readO and write() system calls are reads and writes from the

standpoint of coherence because the effects of a write() are visible to any subsequent

readO of the same data.4 In the V file system, however, opening a file for reading gives

access to a snapshot of its state at the time of the open, and writes to an open file become

visible to subsequent opens only after the file is committed (usually by closing it). For

the purposes of coherence, then, read and write in V correspond to file open and commit.

We also need to distinguish the atomic event of performing an operation from among

the series of events involved in processing it. Each operation comprises at least four
2 More formally, if the directed graph of their union is acyclic.
3This abstraction is also a common model for a computer's memory system.
4Because of buffering, the same is not true for the freadO and feriteO library calls.

10 CHAPTER 2. COHERENCE

communication events, the sending and receiving of each of the request and result, in

addition to some sequence of processing by the server or cache. An operation is performed

by whatever step in the processing both determines its result and allows that result to

be visible. For a write, in particular, the result is first made visible either when the

server returns an indication of success to the writer or when the written value is returned

to a reader. It is possible for a server to record a write to disk yet, for a reason such

as maintaining coherence, not make it visible for some time thereafter. In such a case

performing the write is tied to its visibility, rather than some other point in its processing.

2.1.3 Related concepts

Coherence is a primitive property expressed in terms of individual operations, each on a

single data item; it should not be confused with more sophisticated constraints in terms

of multiple items or multiple operations. Database integrity, for example, can require

that relationships be maintained among the values of multiple items. Similarly, serial-

izability of transactions imposes a logical ordering on groups of operations. Enforcing

properties such as multi-item integrity constraints or serializability of transactions re-

quires additional mechanisms. Coherence guarantees only that the results of operations

are the same as they would be if there were only one copy of each data item.

2.1.4 Restrictions

For simplicity, we limit our description in the next section to caches for which all writes

go through to the file server and to nonvolatile storage, so that newly written data

becomes visible and persistent at the same time. This property simplifies the writing of

robust applications, because a program can assume that any data it reads will not be lost

due to a host crash.5 Coherence is simplified for write-through caches because all write

operations are performed synchronously by the server, ensuring that clients already see

a consistent ordering of writes. Write-back caches do not involve the server in handling

each write request, so that the coherence mechanism for such caches must guarantee their

order. Section 2.4.3 describes how leasing can provide coherence for caches that are not

write-through, which may be appropriate in contexts other than plain file service.

6Some consider write-through to be prohibitively expensive for file service. In the V-system, however,
writes become visible to other programs only when the writer closes or explicitly commits the file, so
that write-through applies only to close and commit operations. Section 3.7 considers how the cost of
write-through can be minimized in other systems.

2.2. LEASING 11

The analysis of performance in Section 2.3 is also oriented toward a simple file service.

In addition to assuming write-through caches, it focuses on the cases for operation rates

and lease terms characteristic of file access in a workstation-based system such as V.

2.2 Leasing

A lease is a contract that gives its holder specified rights over property for a limited

period of time. In the context of caching, a lease grants to its holder authority over

writes to the covered data item during the term of the lease, such that the grantor must

obtain approval from the leaseholder before allowing the item to be written. When a

cache fetches data from a file, it also obtains from the server a lease that covers the data;

that lease prohibits any write to that data during the lease's term unless the server first

obtains the approval of the cache. When a client writes to a file, the server requests

approval of the write from the holders of all unexpired leases covering the written data:

the write must be delayed until all leases have either expired or had approval granted.

Before it grants approval of a write, the cache invalidates its local copy of the data.

When the file is read from again within the term of the lease, the cache provides

immediate access to the file without communicating with the server. After the lease

expires, however, the cache has no assurance that the file has not been written; the cache

therefore queries the server to learn of writes occurring since its lease expired and to

obtain an extension of the lease.

Figure 2.2 provides an example of how leasing works. As in the previous example,

A reads a file via a cache, and the cache fetches the data from the server. In addition

to the data, however, the cache obtains a lease over the file, which allows a subsequent

read during the lease's term to be done without communicating with the server. After

the lease expires, the cache requests an extension, which the server grants.

When B attempts to write the file during the term of the lease, the server requests

the approval of the leaseholder, A, and delays performing the write until A's approval is

received. B's final write request, received after the lease has expired, is processed without

having to obtain approval from A.

2.2.1 Conditions for correctness

A pair of conditions is sufficient to ensure that reads return coherent data, and these

conditions divide responsibility between server and client. First, the server must honor

12 CHAPTER 2. COHERENCE

Server

time

I
date

extension
approve?

write

lease held j/g lease granted

Figure 2.2: An example of caching using leasing.

the leases it grants:

The server must not perform a write of an item while there exists an

unexpired lease covering it whose holder has not approved the write.

On the client's side, the cache knows data is current only if it holds a lease over it when
it is read:

A cache may return its copy of a data item in response to a read only if it

holds a lease over the item whose term includes the interval from the time the

item was fetched or validated to some time after the read request is received,

and the cache has not approved a write during that interval.

These conditions neatly partition responsibility between the client and server, with

the exception of one detail. While most events, such as the granting of a lease or approval

of a write, involve exchanging a message and so are ordered at both sites, the expiration

of a lease is not: instead, cache and server must measure the term with imperfect local

clocks. If the clocks are synchronized to differ by at most e, the term can be expressed as

ending when the server clock reads T, and the cache may safely return the covered data

2.2. LEASING 13

as long as the client clock reads less than T — e. Without synchronized clocks, the term

is communicated as its duration t, and the client makes a somewhat larger allowance for

the (bounded) relative drift of the timers and for communication delay. The minimum

required is that the client clock not run "too slow" relative to the server clock.

2.2.2 Coping with failures

Each client's coherence depends only on itself and the server. No loss of messages can

compromise correctness, because the correctness conditions for both the cache and the

server can be satisfied without communication. The server can satisfy its condition by

delaying a write until leases expire. The cache's condition is met as long as no reads

return cached data; reading cached data is therefore allowed only during the term of a

previously obtained lease and when the cache is able to communicate with the server.

The impact on one client of another client's failure is limited to possibly increased

delay for writes, but only until the failed client's leases have expired. That delay can

be bounded by the server by limiting the terms of the leases it grants. In addition, the

server needs to avoid starvation of writes: while a write is waiting for approval or for

leases to expire, the server limits the terms of new or extended leases. The server can thus

guarantee a maximum acceptable delay for writes in the event of failure of a component

not critical to the operation, simply by limiting the terms of leases.

The server must honor the leases it grants even across crashes; some record of leases

must therefore be kept on non-volatile storage. However, both the volume of data kept

and frequency with which it is written can be reduced by observing that only an upper

bound on when leases expire is required to ensure correctness. In the extreme case, the

server could store just a maximum term and then delay any write requests during that

interval following recovery.6 The expense of maintaining a more detailed record in order

to reduce the hold-down interval is probably not justified in most cases, since the added

delay is no worse than that caused by failure of a client. For the terms we examine in

Section 2.3.2 the hold-down is not an odious constraint.

Concern for availability, then gives us a constraint on how long a term may be: the

term is an upper bound on the delay coherence can introduce in the event of failure

pertaining to another client, and that delay is experienced only on writes. A sufficiently

short term also allows reduction in the amount of nonvolatile bookkeeping required of

6If a minimum time to recover is known, that interval may be subtracted from the hold-down period.
For many systems, in fact, we expect that the time to recover will exceed the maximum term, in which
case no hold-down is required.

14 CHAPTER 2. COHERENCE

the server, at the expense of the same added delay for writes after a server crash.

2.2.3 Other coherence mechanisms as special cases

Several of the mechanisms previously used for coherence in distributed file systems can be

expressed as special cases of leasing. Schemes that require a check on each use of cached

data (as in, for example, the first version of the Andrew file system [58]) correspond to

a term of zero duration; they incur a high level of overhead for extensions, but add no

delay to writes in the event of a failure. Mechanisms that depend on reliably notifying

caches of writes (as in the later version of Andrew [35]) correspond to an infinite term, in

which case coherence can be preserved only at the cost of unbounded delay—effectively

unavailability—for writes in the event of a failure. The caching of only immutable data

(as in the Cedar file system [60]) also corresponds to an infinite term, but because writes

are not supported, it causes no problems.

2.3 Performance

This section examines the performance of leasing, focusing especially on how the choice

of term affects performance. We have two goals for performance: high system throughput

and low application response time. Throughput is limited by the demands on bottleneck

resources, which previous studies [40, 50] have identified as the server CPU and, to a

lesser degree, the network. To a first approximation, the impact of coherence on both

throughput and response time can be evaluated in terms of message traffic: the demand

on the server and network is roughly proportional to the number of messages they handle,

and the delay added to operations is dominated by the latency for synchronous message
exchanges.

The first subsection develops a simple analytical model for predicting the contribu-

tions of leasing to load and delay; the next subsection applies this model to measurements

of file-system access in V and compares its predictions with results from trace simulation.

Both the predictions and simulation results show that leasing with terms of just a few

seconds performs quite well for V's file service, and that it continues to perform well

when the system is extended with faster processors and wide-area networks. The final

subsection examines several issues of lease management and how they affect sharing.

2.3. PERFORMANCE 15

2.3.1 Analytical model

Performance depends on several aspects of the system and the pattern of access to files.

We consider the simple case of a single server with TV clients, where each client's reads

and writes follow Poisson distributions with rates R and W, respectively,7 and all of the

files at each client are covered by a single lease. Each file written is shared by S caches.

The time for communication is split into two components, processing and propagation,

so that we can model a simple multicast facility [17]. Multicast messages are sent once,

and received with high probability by the intended recipients. A message requires rriproc

seconds of processing at both the sender and recipient, plus rriprap seconds for propagation

between them; so a message is received m^ap + 2mpTOC after it is sent. (These averages

include a normal level of retransmissions.) A unicast request and reply therefore takes

twice that time, 277^^ -f 4mproc. The time required to send a multicast message and

collect replies from its n recipients is denoted by mmu/tl(rc). For small n, such that the

effects of congestion and bookkeeping overhead are not large, this value is approximately

one round-trip time, to receive the first reply, plus for the sender to process the additional

n — 1 replies, giving

"Imidti(rc) = 2771^^ + (n + 3)771^0,;.

For a lease with term ts, the effective term tc during which the cache knows it holds

an unexpired lease is shortened by the time for the cache to learn of the lease as well as

an allowance e for imperfect clocks. Thus, this effective term is given by

tc = max(0, ts - {rriprap -f 2mproc) - e).

A term of less than rriprop + 2mproc + e cannot improve performance over a term of zero.

With these parameters, summarized in Table 2.1, we can derive estimates of perfor-

mance in the absence of failures.8 The analysis is simplified by ignoring queueing delays

due to congestion as well as the second-order effect of response time on request rate.

The message traffic for coherence has two components: that for supporting reads (by

extending leases) and that for obtaining approval of writes.

A cache requests an extension when it receives a read request and its lease has expired;

it receives an expected Rtc additional reads before the lease expires. The pair of messages

7Realistically, one would expect that both reads and writes would be clustered to a greater degree
than is represented in a Poisson distribution. As noted in section 2.3.2, this makes the estimates of
performance slightly pessimistic.

8Recall that the delay added by coherence in the event of a failure is bounded by the maximum term
of leases granted, and that only writes incur that delay.

16 CHAPTER 2. COHERENCE

Symbol Description

N number of clients (caches)
R rate of reads for each client
W rate of writes for each client
S number of caches in which a file is shared

TO. 'Prop propagation delay for a message
TOproc time to process a message (send or receive)

i^muiti(n) time to multicast a message and collect
replies from n recipients

c allowance for uncertainty in clocks

ts lease term (at server)
tc effective lease term at cache,

max(0,i5 - (mprcp + Vm^) - e)
tg(S) time to obtain approval from S leaseholders

Table 2.1: Performance model parameters.

to request and grant the extension are amortized over 1 + Rtc reads, so that the rate of

extension-related messages handled by the server is

2NR
xext —

and an average delay of

dread =

1 + Rtc

2(mpPop + 2mproc)

l + Rtc

is added to each read request.

To get approval for a write, the server multicasts the request for approval and pro-

cesses the replies from all of the leaseholders. When the writer is one of the leaseholders,

one approval message can be saved if the request for a write carries the implicit approval

of the requesting cache. For the common case of writes to files that are not shared, the

implicit approval eliminates approvals altogether. For a shared file, obtaining approval

requires the one multicast plus S - 1 approvals, for a total of S messages,9 and the time

ta(S) to gain approval is mmtäti(S - 1) for S > 1. There is benefit to seeking approval

only if the term remaining in the leases exceeds ta(S); otherwise both delay and traffic

axe lower if the server simply waits for the leases to expire. If the server term ts is less

than ta(S), then approval is never sought, giving write traffic of zero, and a delay of at

most ts. For larger ts, the delay is at most ta(S) and the traffic at most NSW. The

9Without multicast, each approval requires 2(S - 1) messages.

2.3. PERFORMANCE 17

actual traffic should be smaller, since when a write is requested it is likely that some of

the leases have expired or are closer than ta(S) to expiring, so that S approvals are not

always required. The difference is significant, however, only when ta(S) is a significant

fraction of the term or when the total delay is dominated by that for approval of writes.

When the two components are combined, there emerge two important thresholds for

the term. The first threshold is the point at which tc becomes non-zero; below this point

writes are penalized but reads do not benefit. The other threshold is when ts = ta{S),

below which traffic for writes is zero and delay increases linearly, and above which they

grow to NSW and ta(S), respectively. For file caching, the terms of primary interest are

much larger than either of these thresholds. For such terms the server's total traffic is

approximately
2NR Arr,TTr

xtotai = —-— + NSW
1 -\- Ktc

coherence-related messages per unit time, and the average delay that coherence adds to

each read or write is

dav9 = RTW
{ TTWc + Wia{S))-

The minimum total traffic is always either 2NR, for a term of zero, or NSW, for an

infinite term. To bound delay due to failures, though, the terms must be limited to fairly

short values, which raises the question of whether an acceptably short term will reduce

traffic below that for zero. For a term longer than ta(S), this is true if

2NR > , * + NSW.
1 -f Ktc

Defining a lease benefit factor as
2Ä

a = sw
the preceding condition holds if a > 1 and

1
tc >

R(a-1)'

A sufficiently long lease term will reduce server traffic whenever a is greater than one,

and larger values of a and R imply better performance for short terms.10

10Without multicast, the total number of approval related messages is 2N{S - 1)W, and a = E/(S -

1)W.

18
CHAPTER 2. COHERENCE

rate of reads R 1.44 /sec
rate of writes W 0.0399 /sec
message propagation time "^prap 1.0 msec
message processing time mproc 0.25 msec
allowance for clocks € 100 msec |

Table 2.2: Parameters for file caching in V.

2.3.2 V file service

This section applies the preceding analysis to data from the V-System as a concrete ex-

ample. Comparing the results with those from trace simulation provides some validation

for the model. The analysis indicates that terms of just a few seconds perform quite

well, while limiting the impact of failures, and that they continue to perform well with

increases in network latency or processor speed.

The parameters for the analysis are taken from the f sbuild trace of file access, which'

is described more fully in the next chapter and in Appendix A. The measured rates of

reads and writes" are given in Table 2.2, along with estimated times for communication.

The trace is of a single client, so that it contains no sharing.

Figure 2.3 shows the traffic generated by coherence as a function of the term, relative

to the traffic for a zero term—i.e., a check on each read access. The curve labelled trace

is the result of trace-driven simulation, while the others are from the analytical estimates,

with the various levels of sharing indicated. The trace and S = 1 curve are both for the

no-sharing case, and so should match; they are close, with trace showing lower traffic for

all but the very shortest terms. The estimated value is high because because actual traffic

is burstier than is reflected by a Poisson distribution; this burstiness gives the trace curve

a sharper and lower knee. The cross-over for terms near zero is due to two factors: first,

there is in reality a minimum time between operations of a few milliseconds, which the

Poisson distribution does not capture, and, second, the timestamps in the trace have a

granularity of ten milliseconds, which amplifies the difference between the measured and

Poisson interarrival times. Overall, though, the estimate produces reasonable results,

and can be expected to slightly overestimate traffic for terms in this range.

Coherence traffic drops off quickly from its peak for short terms, then flattens out.

hlo^lTl"" ratCS °fLP-?- ati?S ,that COmt " a read °r Write from the s^dpoint of coherence, not
block-level accesses. Additional information about the V file system can be found in Section 3.1 of the
next chapter.

2.3. PERFORMANCE 19

20.0 25.0 30.0
lease term (sec)

Figure 2.3: Traffic for coherence in V.

For example, a term of ten seconds produces about 5% as much coherence traffic as a

zero term, while a thirty second term reaches 2%. While there is a 60% drop in coherence

traffic between ten and thirty seconds, the server is handling enough other traffic that

the overall gain is much smaller. In the measured system, coherence accounts for 43%

of the all server traffic when the term is zero, so that increasing the term from zero to

ten seconds reduces overall traffic by more than 40%. The increase from ten to thirty

seconds, though, achieves a further drop of less than 2%. Recalling that the term is the

maximum delay that coherence can add to a write, and so is bounded by the acceptable

increase in delay in the event of a failure, terms of up to ten seconds seem reasonable,

and they are very effective at reducing traffic.

The other curves in Figure 2.3 give some idea of how sharing affects traffic. As for

the no-sharing case, the bulk of the gain from increasing the term comes for moderately

short terms. For higher degrees of sharing, though, the added traffic for approval of

writes limits the reductions. As the level of sharing increases, the minimum term to

reduce traffic below that for a zero term increases, and for a high enough level of sharing,

no reduction is possible.12

12 Realistically, OUT estimates for time and traffic to gain approval break down before the degree of

20 CHAPTER 2. COHERENCE

o
d>
w
E,
0
O c

0
JC o o

re
■o
©
re*

3.0 T-

20.0 25.0 30.0
lease term (sec)

Figure 2.4: Average delay for coherence in V.

The contribution of coherence to delay for each operation is shown in Figure 2.4. The

curves for different degrees of sharing are almost indistinguishable at the scale shown;

so only the curve for 5" = 1 is included. For a term of zero, a round-trip time of

2.5 milliseconds is added to each read; for longer terms, the delay falls of sharply, in the

same manner as the traffic. In the system measured, the application does 677 milliseconds

of other work for each read or write performed,13 so that even at 2.5 milliseconds per

operation the contribution of coherence is quite small. This matches the findings of

Lazowska, et al., [40], who report that in the absence of contention and on processors of

modest speed, the contribution to response time of even uncached remote file access is

fairly small fraction of the total. The major benefit of leasing in this case is the reduction

in server traffic, and with it a reduction in contention for server resources.

The results presented so far are for a moderately slow processor (MicroVAX II) on

a local-area network, such that network latency is dwarfed by processing time; we now

sharing reaches twenty, because of contention for the network and for buffers; Danzig [18] derives much
more complicated estimates that do consider contention. The extant data on sharing (e.g., [49]) indicates,
however, that most sharing falls into one of two categories: files with a significant level of writing are
usually shared at very low degree, and files that are universally shared are very infrequently written.

"Recall that these reads and writes in V correspond to file open and close, not block level operations.

2.3. PERFORMANCE 21

S = 80
S = 40
S = 20
S = 10
S = 1

0.00
0.0 5.0 10.0 15.0 20.0 25.0 30.0

lease term (sec)

Figure 2.5: Traffic for coherence with 50 msec network latency.

consider how leasing affects performance on a higher-latency network or with faster pro-

cessors, such that this is no longer the case.

Figure 2.5 shows server traffic with all parameters as before, except for the message

latency rriprop, which is increased to 50 milliseconds, as might be seen on a wide-area

network. The only significant change is that the traffic for the higher degrees of sharing

has a lower peak for short terms. Traffic for approvals is reduced because the time to

obtain approval ta(S) is longer, so that the server more often forgoes seeking approval in

favor of simply waiting for less that ta{S).

The effect on delay is much greater, as shown in Figure 2.6: though the curve is

qualitatively similar, the absolute delay per operation reflects the much higher round-

trip time of 100 milliseconds. A zero term adds a round-trip time to each operation;

in this case the almost 100 milliseconds per 677 milliseconds of computation increases

response time by almost 15%. At a term of ten seconds, the added delay has fallen to

6.5 milliseconds per operation, or only about 1%, So modest terms for leases continue to

perform well at the sort of latency expected for a high-performance wide-area network.

When processor speed is increased, the rates of operations increase, which gives the

curves sharper and lower knees. In terms of traffic and added delay, fairly short terms

22 CHAPTER 2. COHERENCE

o
CD

100

F 90
CD o c 80
CD
k.

CD 70
O
o
o 60
>»
CO
CD

50
T>
CD 40
CO
k.

CD > 30
CO

20

10

20.0 25.0 30.0
lease term (sec)

Figure 2.6: Average delay for coherence with 50 msec network latency.

should therefore perform even better. However, as the average time between operations

decreases, the relative contribution of delay for coherence to response time increases. For

example, if a faster processor increases the operation rate by a factor of five,14 the time

between operations falls to 135 milliseconds. On the local area network considered earlier,

communication delays are still small compared to other computation. Delay is much more

significant on the higher-latency network: a term of zero adds 100 milliseconds to the

135 millisecond response time, or nearly 75%. A term of ten seconds, though, brings the

contribution of coherence down to 1.4 milliseconds per operation, or slightly over one

percent.

In summary, the excellent performance for leasing with modest terms extends to faster

processors and to higher-latency networks, and leasing has a larger impact on response

time. Terms of on the order of ten seconds yield a significant reduction in total server

traffic compared to a zero term (check-on-use), while longer terms provide little additional

improvement. On local-area networks or with moderately slow processors, response time

14The time between operations is spent in more than just processing; it includes some time for I/O
and communication, at lease for cache misses. A five-fold speedup therefore requires a much greater
than five-fold increase in processor speed.

2.3. PERFORMANCE 23

public private combined
reads/sec 0.475 0.962 1.437
writes/sec 0 0.399 0.399
extensions/sec (est.) 0.0833 0.0914 0.0944
extensions/sec (trace) 0.0529 0.0496 0.0675

Table 2.3: Effect of separating extensions for file groups.

is dominated by other computation, so that the delays for coherence do not significantly

contribute to response time. As either network latency or processor speed increases,

though, the message round-trip time becomes significant compared to the amount of

' processing per operation, and the on-use coherence checks required by a zero lease term

become a significant contributor to response time. Under these conditions, fairly short

terms offer a significant improvement in response time.

2.3.3 Sharing, granularity, and multiple leases

The preceding analysis appears to assume that each client holds a single lease over all data

its at the server, which raises the issues of the granularity at which leases are specified

and the extent to which they are grouped for management. It also suggests the question

of how performance is affected if a client's files are split between multiple servers.

From the standpoint of minimizing both traffic and delay, a client should seek to

amortize each communication with the server over as many operations—and, therefore,

as many items—as possible. Whenever it must request any extension from a server, the

cache should request extension of all leases it holds from that server. Because traffic

is bursty, doing so significantly reduces traffic. The files in the previously analyzed

trace can be grouped by whether they are in the public or private portion of the name

space. Table 2.3 shows the operation rates for these two groups; it adds the rate of lease

extensions with a ten second term, figured by both the analytical estimates and trace

simulation. The sum of the rates for separate extensions is nearly twice that for when

extensions for both groups are combined. So when extensions can be combined, doing

so significantly reduces the coherence traffic. If they cannot be combined, however, as

when the two groups are stored on different servers, the total coherence traffic is larger,

but still a small share of total file-server traffic.

The question of granularity in specifying leases is equivalent to the previously studied

24 CHAPTER 2. COHERENCE

problem of lock granularity in database systems [56]. A fine grain increases overhead, in

memory, network bandwidth, and processing. A coarse grain increases contention, which

in leasing takes the form of false sharing when a cache holds a lease over an item of which

it has no copy.

False sharing also results when a cache holds a lease over data that the client is no

longer using. One cause of this is that the lease term may extend beyond the period of

interest, which provides additional motivation for keeping terms short. Another cause

is the grouping of extension requests recommended above. To minimize false sharing,

a cache should relinquish its lease when sharing is detected for items in which it is no

longer interested; i.e., when a cache receives a request to approve a write to an item that

has not been accessed recently, the cache should relinquish its lease of that item (and

any related items) instead of granting approval while retaining the lease.

2.4 Additional considerations

2.4.1 Options for lease management

Leases ensure coherence as long as the server and cache satisfy the conditions in Sec-

tion 2.2.1, and these conditions leave considerable flexibility. In addition to initially

setting the term, the server is free to extend a lease's term, and even to send an un-

solicited message to the leaseholder informing it of the extension. Also, the server is

not required to seek approval for a write; it can choose instead to wait for the lease to

expire. When the number of leaseholders is high or it is probable that some leaseholder

has failed, such a lazy approach to writes may perform better than attempting to acquire

approvals. While waiting, the server can write the new data to disk, provided it ensures

that it does not become visible before the lease expires.

The client controls a different set of options. For example, it chooses when to obtain

and relinquish leases, in the same way that it chooses which data to retain in its cache.

In addition, the client decides when to request that a lease be extended: when it expires,

to avoid delay for read operations, or when the covered data is next used, to reduce the

load on the server. One virtue of the latter option is that it imposes no load when a

client is idle. If, however, the client requests extension whenever the lease is about to

expire, reads incur no delay for coherence, since the lease does not expire; this reduction

in delay is purchased at the cost of higher server traffic and insensitivity to changes in

client activity. The client can do any of three things when it receives a request to approve

2.4. ADDITIONAL CONSIDERATIONS 25

a write: it can grant approval, retaining the lease; it can allow the write to proceed by

relinquishing its lease; or it can ignore the request, forcing the server to wait for lease to

expire.

An example: installed files

As an example of how this flexibility can be exploited, consider publicly installed files,

such as libraries and commands. These files account for a significant portion of access,

but that access is almost exclusively reads; writes to installed files do occur, but only

infrequently, and then typically encapsulated within some sort of explicit installation

procedure. Installed files also account for most sharing, especially universal sharing: as

the system grows larger, these files would be expected to be shared by some constant

fraction of the clients, so that the number of leaseholders grows with the number of

clients.

When the number of clients is large, the few write operations that are requested per-

form very poorly. A single request for approval elicits a reply from each of the clients, and

the resulting implosion of messages to the server increases the likelihood that some of the

approvals are lost due to either network congestion or buffer overruns [18]. Retransmis-

sions increase both the delay and the traffic on the server well above those estimated in

our performance analysis. Furthermore, all of this effort may be futile: when the number

of clients is large, it becomes likely that some client is unreachable, such that the server

must wait for that client's lease to expire before the write can proceed.

This poor behavior for writes is avoided if the server does not seek approval for writes,

but instead simply waits for the leases to expire. Since all that the server then needs

is the latest time of expiration, it does not even need to record the identities of the

leaseholders, lowering the overhead of its bookkeeping. The cost of doing so is increased

latency for the infrequent writes.

If the server gives the same expiration time to all of its clients, though, it runs the

risk of synchronizing them so that they all the server runs the risk of synchronizing the

clients, so that they all request extension together—and the implosion is not eliminated,

but instead shifted to the extension traffic. When multicast is available, the server can

avoid most requests for extensions by periodically multicasting an extension to the group

of interested clients; a single multicast message per term then replaces a request and

response for each active client. By multicasting before the term expires, the server can

keep clients' leases from expiring, so that the contribution of coherence to response time

26 CHAPTER 2. COHERENCE

is minimized. The only requests for extension that the server receives are those for newly

started clients and for clients that miss an occasional (datagram) multicast.

Without multicast, the server can still manage extension traffic, but not quite so

simply. For the server to send unsolicited extensions, it must keep a record of the lease-

holders, iterating through the list to send extensions. It can spread the extensions out in

time, so that there are not bursts. Handling client requests for extensions requires looking

up in the list, which either is expensive or requires a more sophisticated data structure

' than is suitable for small numbers of leaseholders. The server's other option is to not

record the leaseholders, as with multicast, in which case it advances the latest-expiration

time whenever an extension is requested.

There is still the potential for congestion when a write does occur. By continuing

to send extensions, though, with the modified items explicitly excepted, the only extra

traffic generated is for read accesses in the interval between the sending of the extension

message and the expiration. This traffic includes queries to determine whether the data

has changed, up until the write is performed, and cache misses to fetch the modified data

thereafter. The latter traffic is unavoidable in any case.

Installed files are easily identified, residing in a few system directories, so that they can

be specified as part of the file server's configuration to take advantage of these different

policies. The result is that the cost of maintaining coherence on installed files becomes

very low, with the only penalty being the increased delay incurred by the infrequent

installations. When other groups of files that can be identified, knowledge of their access

pattern can also be exploited. For example, when data is updated only periodically,

leases can be granted to expire at the time of the next update, so that approvals need

not be sought.

Adaptive policies

Some of the policy options can also be selected dynamically in response to access pat-

terns. In fact, two simple cases of adaptation were already considered in the analysis of

performance. By requesting extensions only when data is read, rather than periodically,

the set of leases automatically represents the recent pattern of access, reducing the level

of false sharing. By seeking approval only when the time to obtain it is less than the

time remaining in a lease's term, the server automatically seeks approval less often as

the level of sharing increases.

More explicit adaptations are also possible. The server can switch automatically to

2.4. ADDITIONAL CONSIDERATIONS 27

treating a file as installed when the degree of sharing exceeds a configured threshold.

Doing so allows the server to reduce the amount of state it keeps locally, since it does not

have to keep the leaseholders' identities, in addition to eliminating traffic for approvals.

The server can easily switch back to normal handling by ceasing to send 'unsolicited

extensions and resuming keeping track of the clients that request extensions. Once the

last unsolicited extension has expired, handling can revert to normal, or, if the number

of clients requesting extension exceeds the threshold, the server can continue to treat the

files as installed.

Another possible adaptation is for the server to dynamically change the term of which

leases are granted. The only durations to consider, though, are zero and the maximum

allowed, because any term in between them produces both higher traffic and increased

delay. The switch to a zero term should be made when either a falls below one or the

minimum for tc exceeds the maximum allowed term. To estimate these values the server

must have the actual rate of reads, which is known only to the caches; to allow the server

to estimate the rate of reads, each cache would have to include in its request for extension

the number of reads it has handled since the last request. The access patterns measured in

V suggest that such switches would be extremely rare, since a very high degree of sharing

is required to bring a below one; the need for switching is even smaller if installed files

are configured for the special handling described above. For V or a similar system, then,

the benefit from changing the term is probably too small to be worth supporting.

2.4.2 Other applications

The problem of coherence arises in contexts other than file caching, including multi-

processor memory systems (e.g., [65]) and distributed shared memories (e.g., [42]). What

these applications have in common with file caching is the need to support a memory

system that has multiple access paths and potentially multiple copies of data items.

These other applications have not traditionally considered partial failures; however, as

larger multiprocessors are built and their interconnects more resemble networks, there is a

growing need to address the potential for component failures. Leasing could prove useful

in providing coherence in these contexts. The access patterns and time constraints may

be quite different from those we have considered for file service; the trade-offs between

delay and traffic would also differ. Performance could be in a region of the curves that

we have not explored, where the time to obtain approval and the portion of the term

lost to clock error and communication delays are a significant fraction of the term. The

28 CHAPTER 2. COHERENCE

trade-offs among different policies for extension and approval would need to be explored

for these parameters, and possibly with a different distribution of operation arrivals.

2.4.3 Write-back caches

Some applications for coherence either do not require recoverability or provide it by other

means. For example, a distributed virtual memory has no sense of persistence,15 and in a

transaction-processing system recoverability is enforced at a larger grain than individual

operations. For such applications, leasing can be extended to support write-back caches,

though it is then not possible to maintain coherence across all failures.

Write-back caches require a second kind of lease: a write lease authorizes its holder

to read and write a data item during its term, provided it writes back any dirty items

before the lease expires or is relinquished. Unlike the previously described read leases,

though, a write lease is exclusive: all other leases over an item must be relinquished or

expire before a write lease can be granted. Conversely, a write lease must be relinquished

before a read lease—even with zero term—over the same item can be granted.

Because the system is not recoverable, coherence can not be assured for many failures.

A client crash may lose newly written data; the only way to restore coherence in such a

case is to undo all actions causally dependent on the lost writes, which is not generally

possible. Either a communication failure or a server crash can prevent a cache from

writing back data before its write lease expires. Either of these failures forces the cache

and the server to compromise. If the cache keeps the dirty data, coherence is violated,

since the server may grant conflicting leases, but discarding the data is also undesirable.

The server (after recovering, if it crashed) is faced with a choice of waiting for the cache to

write back the data, thereby preserving coherence but losing availability of the covered

data, or allowing further progress by granting new leases and leaving the cache with

inconsistent data. From a practical standpoint, the best that can be done is to give the

cache a chance to write back before other leases are granted; doing so reduces the chance

of lost writes, but does not eliminate it.

A few other practical suggestions should be noted. When a write lease is about to

expire but its holder has not finished writing back the data, the server should extend

the lease as long as it is making progress. Also, in order to avoid conflicting claims from

clients after a server crash, the server should record write leases on nonvolatile storage,

"Though some do support checkpointing.
1 The exception is transaction processing systems, which are considered in Section 4.2.

2.5. SUMMARY 29

so that it can honor any that have not expired when it recovers, and so that it can at

least attempt to avoid data loss from those that have expired. This requirement raises

the cost of supporting leases over that for write-through caches, where only an upper

bound on the terms was required.

2.5 Summary

Coherent access is essential in order for file-service caching to be easily usable. Real

distributed systems experience partial failures; so a practical solution to the problem of

ensuring coherence must function correctly in spite of such failures. Leasing guarantees

cache coherence even in the presence of crashes and lost messages, and it does so without

reducing the availability of file service below that of the file service without caches.

Because it makes explicit use of time, leasing does depend on well-behaved, though not

perfect, local clocks.

Analytical estimates can be used to predict how the choice of lease term affects

performance. How the long the term can be is restricted by the fact that the term is

also the maximum delay that coherence can add to an operation when there is a failure.

Generally, the best performance is given by either a term of zero or of the maximum

acceptable length. A zero term is favored when writes to shared data dominate reads

and when the rate of access is low. Otherwise, both server load and response time

decrease as the length of the term increases.

For file service, a fairly short term yields excellent performance along with acceptable

degradation in the event of a failure. For the access patterns measured in the V-system,

a term of around ten seconds greatly reduces both server traffic and per-operation delay,

and the additional gain from even a much longer term is very small. These results still

hold when processor speed or network latency is increased.

Finally, leasing is flexible. It supports other policy choices in addition to selection

of the term, and those options can adapt it for different access patterns and different

trade-offs in performance. Furthermore, the mechanism is easily extended to support

write-back caches, and it should be useful in other applications as well as in distributed

file service.

30 CHAPTER 2. COHERENCE

Chapter 3

A File Cache for the V-System

This chapter describes a prototype file-service cache for the V distributed operating sys-

tem. The design is evaluated in terms file-server traffic, based on analysis and simulation

using traces collected with an instrumented cache. A very simple cache significantly re-

duces read traffic; the prototype's extensions to this basic cache yield further reductions

in traffic of as much as 60% without compromising the robustness of the file service.

The first section describes the context for the prototype, and Section 3.2 introduces

the basic cache design and the measurements that are the basis for evaluating perfor-

mance. Each of the next three sections describes an extension to the cache design and

evaluates its contribution to improved performance; those extensions are additional sup-

port for temporary files, for caching of descriptor information, and for maintaining co-

herence using leasing. Section 3.6 considers additional issues of the design as a whole,

Section 3.7 discusses how the results generalize to systems other than V.

3.1 Background

The V-system is a distributed operating system based on the client-server model, with ac-

cess to servers via location-transparent interprocess communication (message passing) [9,

14]. The V kernel provides a minimal set of services, with most operating-system ser-

vices provided by user-level server programs. Where possible, services share common

protocols, the most pervasive of which are the naming protocol [16, 46] and the I/O

protocol [13]. The naming protocol defines a single global name space for all systems

services, and application programs communicate directly with servers to resolve names

and to invoke operations, in contrast with the clerk model of many systems, in which

31

32 CHAPTER 3. A FILE CACHE FOR THE V-SYSTEM

each host has a local instance of each service, and an application program communicates

only with that local representative.

Adding caching to V's file service involves two existing services, the file service and

the kernel's memory service. This section describes the aspects of these services that are

relevant to file caching.1

3.1.1 File service

File service in V is defined by a common interface that is supported by a variety of servers,

such as a gateway providing access to the file system of a Unix host as well as the native

V file servers. Other services can also conform to this interface, such as user-information,

news, version or configuration management, and database services. To the extent that

these services conform to the file-service interface, it should be possible to cache data

from them using the same mechanism as for more traditional file service.

The interface for file service has three components: naming, I/O, and descriptor
access.

Naming. The naming protocol provides a single tree of names seen by all programs

executing on all hosts throughout the system. Names are interpreted by the servers

implementing the named objects; clients cache hints as to the servers implementing

different subtrees of the name space so that an operation on a named object can be

efficiently invoked. By convention, a file server executing on host hostname implements

the subtree of names rooted at /storage/hostname.2

Because names are interpreted by the servers, not the clients, a name can be viewed as

a query against the server or servers that implement it. One use of queries is to support

generic names. Instead of having a single binding, a generic name is bound to a set of

objects; each operation using the name, however, acts on only one member of the set. For

example, the root of the standard subtree of publicly available files is the generic name

/storage/any, and an application uses that prefix to reference public files. There can

be more than one server providing a copy of the public tree under that name, but each

request is handled by only one server. Similarly, most file servers support the generic

name /storage/local; an application can use this name to find local file storage.

*In the interest of clarity and simplicity, the descriptions here differ from the existing implementations
in a few details that do not affect the nature of the results.

2For historical reasons, the current implementation uses ' [' both for the root character and for the
prefix for defined names. The descriptions here use V for the root and "/.' for defined names.

3.1. BACKGROUND 33

The client naming library also supports defined names that are inherited by child

programs. Defined names are used to designate specific functions and as convenient

nicknames. For example, V,sjs is used as the root of the standard subtree of public

files, '/.imp as a suitable place for temporary files, and '/.home as the user's home directory.

Default bindings for the standard names are provided as part of initializing a workstation,

within standard library routines, or as a side-effect of logging in. These names can be

rebound and others bound by the users. Most names are looked up relative to some

defined name or the current directory, which is itself usually reached relative to some

defined name.

I/O. The I/O protocol provides block-level access to objects specified by low-level iden-

tifiers called handles. A handle is usually obtained by performing an open operation with

the name of the desired object; the handle returned identifies the server implementing

the object. The open operation also returns a set of attributes of the object, such as its

block size, its length, and whether it supports random or only sequential access. The I/O

objects provided by file service correspond to open files, and they share the properties of

allowing random access and behaving like storage, such that reading a block returns the

previously written value. Other I/O objects, such as a network interface, do not share

these properties.

An open file in V is treated as a transaction. Opening a file for reading provides an

immutable snapshot of its contents, and when an open file is written, the modified blocks

become visible to subsequent opens only after the open file is committed, which normally

occurs when it is closed. This property implies that an application program or user never

has to deal with a partially written file, even if a failure occurs while it is being written.

Descriptors and directories. For each name in the name space, there can be a

descriptor, which is a tagged record of attributes corresponding to that name. For

traditional file service, a descriptor includes the final component of the name, permission

and ownership information, and other attributes such as the file's size and last-modified

time. The attributes can differ for other servers.

Directories are read using the I/O protocol, with a block corresponding to the de-

scriptor for each name in the directory. In general, though, a client cannot resolve names

by reading and interpreting directories. First, not all directories are readable: access

controls can prohibit reading a directory, even when the user is permitted to look up

names in it. Also, because a name is interpreted by the server, a directory need not be

34 CHAPTER 3. A FILE CACHE FOR THE V-SYSTEM

enumerable at all: the server might compute a result using the tail of the name as an

argument. Finally, directories that can be read do not necessarily contain any low-level

identifiers that a client could use to for resolving the names in it.

3.1.2 Memory service

The virtual memory provided by the V kernel is all based on mapped I/O. An address

space consists of a set of bindings, each from a region of pages into a range of blocks

in an I/O object. The pages are specified by address and length, and the blocks by a

handle and block offset. Page-in and page-out are done as reads and writes using the

I/O protocol. In order to be mappable, an I/O object needs to have the same properties

as an open file, plus it must have fixed-size blocks of a size compatible with the page size

(i.e., one size is an integral multiple of the other).

Two other features of the memory service complete the base for file caching. First,

an address space can be created and its bindings manipulated without any processes

executing in it; operations identify the address space using an I/O handle. Second, the

memory server can create handles for an address space by which it can be read or written

using the I/O protocol. For I/O using these handles, each page is a block, and handles

can be created with restricted (e.g., read-only) access. Reading and writing address

spaces has long been used for non-paged program loading and for debugging. An address

space accessed in this manner can be larger than the processor address space; the I/O

protocol presently limits an object to 232 blocks (pages).

These features combine to enable the caching of file blocks using the memory service.

A program can open a file, create an address space and bind the open file to it in its

entirety, and then create a handle with which to read or write the address space. For

I/O, the handle for the address space is equivalent to the handle for the open file; the

only differences are that it can be more restrictive in the access it allows and that the

block size corresponds to the page size, which can differ from that of the open file. Blocks

are faulted in as necessary to satisfy read requests, and a commit causes any modified

pages to be written to the bound open file before the commit request is forwarded to the
file server.

When the address space is created, an alternate file handle can be specified to field

non-I/O operations against the address space; the memory server substitutes the al-

ternate handle in the request and forwards the operation to the server it indicates for

processing. Close operations, including commits, are also forwarded to the alternate

3.2. THE CACHING SERVER 35

naming

fappL)

i/o

fcaching)^.
JcserverV

A vm

[memoryui -
VserveL/

naming +
coherence

i/o

client host server host

Figure 3.1: Servers and protocols involved in file caching.

handle after any required flushing is completed. The default for the alternate handle is

the bound file handle, so that all operations behave as if they were requested directly of

the file server.

Caching in this manner has a few limitations: it is inconvenient, as each program

has to explicitly set up caching for each file it uses, and it is inefficient, since no caching

occurs across program invocations.

3.2 The caching server

A process-level caching server on each workstation provides the additional functionality

needed to make caching of open files practical: naming, re-use, management of the cache,

and coherence. The caching server fields naming requests, and when a file is opened it

arranges for block access via the local memory server in the manner described above.

The caching server operates at the level of naming operations and whole files, while the

memory server handles all of the block-level access to open files. Figure 3.1 shows an

application and the servers involved in caching a file, along with the protocols and pattern

of communication.

This section describes the caching server at a basic level of functionality that serves

as a starting point for the improvements detailed in subsequent section; it also serves as

a baseline against which the performance of those improvements is compared. The basic

cache handles only file contents; it makes no effort to cache information about files, such

as that contained in their descriptors, nor does it cache directories. The basic cache also

uses on-use checks to ensure coherence, and it treats all cached files uniformly.

36 CHAPTER 3. A FILE CACHE FOR THE V-SYSTEM

3.2.1 Description

In order to cache data, the caching server must intercept the naming requests destined for

the file servers. The prototype has not addressed the problem of transparent naming, as

doing so would require major extensions or changes to the way names are resolved in V.

Instead, the caching server on each workstation implements the portion of the naming

tree with the prefix /cache/Aostname/read-write, and it strips this prefix from the

name in a request to determine the real name of the object on which to operate. An

application routes a naming request through the cache by adding the prefix to the name of

the operand. In actual practice the added prefix is not obtrusive: it can be hidden in the

binding of defined names such as '/.sys or '/.home, so that the user does not normally need

to be aware of it. Also, each caching server implements the generic name /cache/local as

an alias for /cache/hostname, so that the defined names can be bound without reference

to a specific host.

Data structures. The caching server's central data structure is a tree of the names

for which it has cached data. Each node in the tree contains the node's name, links to its

parent and children, and a list of any versions of the corresponding file that are currently

cached.3 The descriptor for each version includes distinct handles by which it identified

to the different servers, the identity of the user who opened it, a version tag, and flags

indicating its mode and status. The contents of a version descriptor are summarized in

Table 3.1.

Opening files. When it receives an open request, the caching server looks up the name

in its tree to see if the file is already cached. If the name is not found, the caching server

makes the open request itself after stripping its prefix from the name, so that the request

will be fielded by the correct file server. The user identity and mode of the original

request are unchanged, so that the file server can check permission just as it would for

a request directly from an application. If this open request fails (i.e., the file does not

exist or the user does not have permission to open it), the caching server simply returns

the indication of failure to the requesting application.

If the open is successful, the caching server attempts to set up caching from the

handle returned by the file server: it asks the memory server to create a new address

space and to bind the open file handle to it in its entirety. If the memory server indicates

3In the interest of brevity, we omit from our description some of the fields in naming nodes and
version descriptors, used for purposes such as managing the cache's contents.

3.2. THE CACHING SERVER 37

Field Meaning

name Points to the naming node for this file.
FShandle Handle returned by the file server when the file

was opened.
VMhandle Handle for the address space into which the open

file is bound; returned by the memory server when
the address space is created.

CShandle Handle by which the memory server identifies the
open file to the caching server; provided by the
caching server.

mode Indicates whether the file as opened at the file
server is writable

user The user who originally opened the file.
idle Indicates whether any application presently has

this version open.
status Indicates whether this version is past, current, or

future.
tag Version identifier used in coherence checks.

Table 3.1: Contents of a version descriptor.

that the open file is not cacheable, however, the caching server returns the handle to

the application so that all further interaction for the open file is directly between the

application and the file server. Access to non-cacheable files is therefore supported, with

the only cost being a small amount of additional overhead when the file is first opened.

When the open file is successfully bound into its own address space, the caching server

adds the name to its in-memory tree and allocates a descriptor for the version. It sets

the name, FShandle and VMhandle, and it allocates a new value for the CShandle, and

it fills in the mode and user from the original request. If the,file is opened for writing,

its status is future, since it represents a not-yet-committed version of the file; the status

for a read-only open is current. For a read-only open, the server also requests from the

file server a version tag corresponding to the handle, which it stores in the naming node;

the tag is 128 bits that the server can interpret later to determine whether the version is

current.4 Finally, the caching server flags the version as busy, requests from the memory

server another handle for the address space, and returns that handle to the application.

4As presently implemented, the version tag is obtained by reading the file descriptor from the server
and extracting suitable fields; e.g., for the Unix-based file server these are the inode number and modified
time for the inode.

38 CHAPTER 3. A FILE CACHE FOR THE V-SYSTEM

I/O operations. The application uses its handle for the address space for all of its

operations on the open file. This handle points to the memory server, and reads and

writes are handled without involving the caching server.

The caching server specifies its CShandle as the alternate handle when it creates the

address space into which the open file is bound. Because the memory server forwards

all requests other than reads and writes to the alternate handle, these requests are in-

tercepted by the caching server. When the caching server receives one of these requests,

it maps from the CShandle to the corresponding FShandle and makes the corresponding

request of the file server. The caching server then returns the result to the application;

if the result includes a name (e.g., mapping from an open file handle to its name), the

caching server first adds its prefix to the name.

The caching server intercepts closes and commits by the same mechanism. Before

forwarding a commit, the memory server writes out to the file server any modified pages;

the caching server therefore completes the commit by sending the request to the FShandle,

setting a flag in the request to indicate that the file should remain open. After the

commit, the caching server requests a new version tag from the file server and stores it in

the descriptor. It then invalidates any version marked as current: its status is changed

to past, and if it is idle it is discarded by releasing the corresponding address space

and closing the corresponding handle at the file server. If the commit is part of a close

operation, the version's status is changed to current, and it is flagged as idle.

When the application closes a file that it has had open for reading, the caching server

marks the version as idle if the flags supplied by the memory server indicate that no

other application has it open. When a past version is idled, it is discarded.

Reopening cached files. When an open is requested for which the name exists in the

tree, the caching server searches the list of versions for one that can be used to satisfy the

request. If the requested mode is read-only, then any current version is usable. When a

file is being opened for writing, then in addition to being current, the cached version must

be both writable and idle as well. If no usable version is found, the request is treated as

a cache miss, otherwise the caching server queries the server with the name, mode, and

version tag to determine that (a) the version tag is not out-of-date, and (b) the requesting

user has permission for the open. If this coherence check returns STALE-DATA, the current

version is invalidated and processing continues as for a cache miss; any other error result

3.2. THE CACHING SERVER 39

(including NO_PERMISSION) is returned to the application.5 If the check returns OK, the

caching server obtains from the memory server another handle for the corresponding

address space and returns it to the application. The handle returned to the application

has only the access rights requested in the open mode: a read-only open receives only

read rights, even if the cached open file is writable.

Other naming operations. For any other naming request it receives, the caching

server strips its prefix from the name and issues the modified request. The results are

returned to the application, after modifying any name in the results to.include the caching

server's prefix.

This basic cache provides a starting point; its level of functionality is quite similar to

the first version of the Andrew file system [58] as well as to that of Sprite file [50] without

delayed write. (A more detailed comparison with these and other systems appears in

Chapter 5.)

The basic cache introduces no problems with respect to failures. Data is always

written through to the file server before it is committed; so a client crash cannot cause

data loss. Likewise, applications on a client host can read and write data whenever it

can communicate with the file server, which is the same availability as in the absence of

caching.

The caching server requires no special status with the file servers; it uses the same

interface as other clients of the file service, with the only addition being the on-open

coherence and permission check. In particular, a file server does not have to trust the

caching servers to enforce protections, since the file server still enforces protections on

each open that it processes. The users of a caching server must trust it to act on their

behalf and to enforce protections between multiple users on a single host.

3.2.2 Traffic measurements

Throughout this chapter, the impact of design choices is evaluated in terms of the traffic

handled by the file server. The counts of operations are based on traces collected using

5Presently, the caching server requires that the version have the same user for read-only opens as well,
and the coherence check is performed by reading the descriptor and comparing the stored fields. The
modified time for the attributes (instead of the contents) is used, so that if the permissions have changed
the check returns STALE-DATA, forcing a cache miss, and the normal permission check is performed as
part of handling the miss. In a similar manner, an extra cache miss occurs when a second user opens
a file already in the cache. In the V installation at Stanford, neither of these cases occurs frequently
enough to produce a perceptible degradation in performance.

40 CHAPTER 3. A FILE CACHE FOR THE V-SYSTEM

an instrumented version of the caching server that records all file-service operations that

it processes or invokes. The trace entry for each operation includes the operation, its

outcome, the full names of its operands, and a timestamp. Individual reads and writes

are not traced, since they are handled by the memory server instead of the caching server;

however, counts of blocks read from and written to the cache are included in the record

for each close. Reads and writes handled by the file server are not captured, but could

be estimated. A few other operations on open files are not traced, but their use can be

reliably determined for the traces presented here. More detailed information about the

trace data and estimates appears in Appendix A.

Measurements from three traces are presented here. Each captures an activity on a

single workstation. The activities traced are:

f sbuild Set up working directories for a private version of one of the V file servers,

then compile it, edit a header file, and recompile.

afsbench The Andrew file system benchmark [35], modified to run under V: copy a

directory subtree, scan all of the directories and files in the new copy, and compile

sources in it.

latex Format a conference paper by running the MjpC program twice.

Two of these traces, f sbuild and latex, capture normal activities under V, while the

other, af sbench, is of a synthetic benchmark. All three represent intense bursts of

activity corresponding to the peak, rather than average, rate for an interactive user.

While most of a user's time is spent in less intense activity, the greater part of the load

on file service is generated in bursts of activity like those traced.

All three traces described here were collected on a Micro VAX II workstation with

sixteen megabytes of memory, accessing files from a variety of remote file servers, as is

common in V. Apart from the traced activity, only normal system functions were active

on the traced workstation, and they generated no file operations. All traces were collected

starting with a cold cache, and none required any replacement of data in the cache.

For conciseness, all of the measurements are presented with the operations are grouped

into the following categories:

read One-kilobyte blocks read.

write One-kilobyte blocks written.

3.2. THE CACHING SERVER 41

commit Operations that commit a visible change, such as a close after writing, or

file creation or removal.

naming read Other operations that read naming or descriptor information, such as

opening an existing file or reading a descriptor.

misc. Miscellaneous operations, such as non-committing closes or file truncation.

coherence Operations required to ensure cache coherence.

Basic measurements

The baseline for comparison is the level of traffic with no cache, which is summarized

in Table 3.2. The same data is shown in Figure 3.2 in terms of the traffic ratio, which

is obtained by dividing each count by the total traffic for the trace. Reads dominate the

traffic for all three traces.

A second initial data point is the performance of the basic cache described in the

preceding subsection. Table 3.3 and Figure 3.3 show the traffic for such a cache. Traffic

is significantly reduced, mostly in blocks read. The savings in blocks read comes from

two sources: files that are read more than once, and files that are written and then read.

The gain for latex is more modest than for the other traces: because latex is much

shorter, its read traffic is dominated by the effects of starting with an empty cache.

Read traffic cannot be reduced any further: once a block was present in the cache,

it was never read from the server again. In all three cases the cache was large enough

to hold all of the data used over the entire trace. For longer-term operation, some cache

replacement would occur, but the additional reads required when a replaced block is later

read would be offset by a much smaller contribution from cold-start effects. Any further

reduction in traffic must therefore be found elsewhere. Three components of traffic stand

out as candidates: writes, naming reads, and coherence.

Traffic by file class

Files are not all alike. Breaking down the traffic measurements by file classes reveals very

different patterns of access. The classes considered here are:

Temporary files. Temporary files are commonly used to hold intermediate results,

either as an extension of a program's address space or for communication between

programs (such as between passes of a compiler). In many systems, including Unix

42 CHAPTER 3. A FILE CACHE FOR THE V-SYSTEM

fsbuild afsbench latex
read 73315 25025 1846
write 21237 3808 124
commit 1263 476 8
naming read 11297 3426 182
misc. 5269 952 90
total 112381 33687 2250
duration 7521 sec 1653 sec 263 sec.

Table 3.2: Traffic without caching.

~. 100-1-

.2
s
jo
S=
«0

80-

60-

40-

20-

misc.

naming read

commit

write

read

fsbuild afsbench latex

Figure 3.2: Traffic without caching.

3.2. THE CACHING SERVER 43

fsbuild afsbench latex
read 3284 1495 872
write 21237 3808 124
commit 1263 476 8
naming read 6147 2567 104
misc. 510 267 16
coherence 5150 j 859 78

total 37591 9472 1202
traffic ratio 33.5% 28.1% 53.4%

read traffic ratio 4.5% 6.0% 47.2%
max. cache size 9 MB 5 MB 3 MB

Table 3.3: Traffic with the basic cache.

T 60-1-

o
1
o 50-h

S

40f-

30-

20-

10-

Hf coherence

misc.

naming read

commit

write

read

fsbuild afsbench latex

Figure 3.3: Traffic with the basic cache.

44 CHAPTER 3. A FILE CACHE FOR THE V-SYSTEM

and V, one or more directories are provided, by convention, for temporary files;

others, such as Tops-20, allow a file to be tagged as temporary when it is created.

In either case, temporary files are easily identifiable.6

Installed files. In any system, there is a body of files that is not updated in normal

operation, but only when a new version is installed. Examples are the executable

form of commands, object code libraries, and on-line documentation; public source

code is often treated in a similar fashion. These files are widely shared among users,

-and some of them are very heavily accessed; that shared access, however, is predom-

inantly read-only, since installations are relatively infrequent. Installed files reside

in a fairly small set of public directories or subtrees, and for administrative reasons

(e.g., prevention and detection of unauthorized modification) it is usually desirable

to segregate installed files from other public files that are regularly updated.

Other files. The remaining files are grouped together. Note that the traces consid-

ered here include only user access to files, so that the measurements do not include

any access to files used in either the interface or implementation of system services.

These classes represent two different types of distinctions. Installed patterns are

distinguished by the pattern of access to them; they are semantically the same as other

files. The difference in access pattern suggests that separate tuning for them could

improve overall performance, but with no changes in functionality.

Temporary files differ in kind, to a degree that it is inaccurate to classify them as

files: one of the primary purposes of files is persistence, a property that temporaries

do not share. Including access to temporaries in overall file access patterns is therefore

misleading. This observation does not reduce the need for temporary data storage, nor

does it suggest that the interface to such storage should differ from that for files—

the common interface allows the substitution of one for the other. But the needs of

temporaries might be better met in ways other than reliable storage on disk.

Table 3.4 and Figure 3.4 break down by file class the traffic without caching. Within

any single trace, the traffic patterns differ greatly from class to class. For each class,

however, the makeup of its traffic is similar across all of the traces. Much of the difference

between traces is accounted for by different amounts of traffic for each file class. The

latex trace shows the largest variation: it uses no temporary files at all.

6There are Unix programs that create files in these directories (/tmp) that do require persistent
storage, such as the journal files generated by some editors. None of these programs exist in V; they
indicate a need for a different class of persistent "scratch" space, located in a different directory.

3.2. THE CACHING SERVER 45

fsbuild af sbench latex
tmp inst other tmp inst other inst other

read 13872 42265 17178 2625 17858 4542 1732 114
write 11596 0 9641 1773 0 2035 0 124
commit 1020 0 243 222 0 254 0 8
naming read 338 3970 6989 70 957 2399 72 110
misc. 338 3030 1901 70 480 402 70 20

total 27164 49265 35952 4760 19295 9632 1874 376
share of total 24.2% 43.8% 32.0% 14.1% 57.3% 28.6% 83.3% 16.7%

Table 3.4: Traffic without caching, by file class.

misc.

tmp inst other tmp inst other inst other
fsbuild afsbench latex

Figure 3.4: Traffic without caching, by file class.

46 CHAPTER 3. A FILE CACHE FOR THE V-SYSTEM

fsbuild afsbench latex
tmp inst other tmp inst other inst other

read 0 2763 521 0 1093 402 820 52
write 11596 0 9641 1773 0 2035 0 124
commit 1020 0 243 222 0 254 0 8
naming read 0 1034 5113 0 501 2066 12 92
misc. 338 94 78 70 24 173 10 6
coherence 338 2936 1876 70 456 333 60 18
total 13292 6827 17472 2135 2074 5263 902 300
traffic ratio 48.9% 13.9% 48.6% 44.9% 10.7% 54.6% 48.1% 79.8%
share of total 35.4% 18.2% 46.5% 22.5% 21.9% 55.6% 75.0% 25.0%

Table 3.5: Traffic with the basic cache, by file class.

I coherence

tmp inst other tmp inst other inst other
fsbuild afsbench latex

Figure 3.5: Traffic with the basic cache, by file class.

3.2. THE CACHING SERVER 47

That latex does not use temporary files reflects the more recent origin of the programs

it executes. Much use of temporaries in Unix software dates from a time when address

spaces and main memories were both more limited in size, so that it was common for

either code or intermediate results to exceed the available space. More modern programs

are more likely to retain intermediate results within their address space, and they are

less likely to require that code be split into multiple programs. It is therefore reasonable

to anticipate some decline in the use of temporary files as mofe modern software, such

as the T£}X formatter, displaces older programs, such as the Portable C Compiler used

in both f sbuild and af sbench. Their use is not expected to vanish altogether, however,

as there are reasons other than size constraints for separating a program into multiple

address spaces So the need will continue for efficient temporary storage that is globally

nameable and is sharable, and that is interchangeable with persistent files.

The same general observations hold for traffic with the basic cache, as Table 3.5

and Figure 3.5 show; in fact, the differences between classes are more pronounced with

caching. Temporary files produce little traffic apart from writes and commits: reads are

eliminated since all reads are of files just written. Installed files benefit from repeated

reading, though they also suffer the most from start-up misses in the latex trace; the

reuse of installed files produces a significant amount of coherence traffic. For the other

files, both writes and naming reads account for significant portions of the traffic; reads

are reduced both due to reuse and, as for temporary files, due to reading back newly

written data.

Sharing

The traces contain no data on sharing, since each is of a single user's activity on a single

workstation. We can make some general observations based on published measurements

of sharing in timesharing systems [11, 26, 37, 49, 65]. (A fuller discussion of these and

other measurement studies appears in Section 5.2.)

As previously noted, installed files are shared widely, and the most heavily accessed

of them are shared by all users. Temporary files are almost never shared among users;

most are accessed by only one or two processes. Sharing of other files is less uniform, but

most of the observed sharing is of files used in the interface to some service—such files

do not exist in V. Of the remaining files, most are accessed by only one user at a time.

A small fraction are shared among a small number of users, but the shared files are less

frequently written than those that are not shared. The decrease in frequency of writes

48 CHAPTER 3. A FILE CACHE FOR THE V-SYSTEM

with increased sharing is important, because it implies that more expensive writes, in

terms of number of approvals required, occur less often.

In most existing systems, a user is able to easily employ only one workstation at a

time, so that sharing among users does describe sharing among hosts. But a few systems,

including V, allow a user to invoke commands transparently on additional hosts [64].

Using this facility creates additional sharing between workstations. But the scheduling

of execution on other hosts clearly needs to consider cached data, which the existing V

mechanisms do not; measurements of sharing using the existing scheduling could not be

considered representative.

A simple approach to scheduling that would yield some locality of reference is one in

which a user employs a small set of hosts over an extended period, with hosts added to or

removed from the set as needed. Reusing the same set of hosts gives some benefit from

caching across multiple program executions, which is not likely if a new host is selected at

random for each command. Under such a scheduling policy, there is much more sharing,

including write-sharing, of other files, but each file is likely to be shared by only a small

number of workstations.

3.3 Temporary data

Temporary files account for a significant fraction of the traffic in two of the traces. With

the basic cache, most of the traffic for temporary files is the writes and commits required

to make them persist reliably, even though persistence is not required for temporary data.

The caching server eliminates almost all traffic for temporary files by providing additional

support for temporary data, taking advantage of the fact that persistence is not required.

The support required adds little to the complexity or size of the caching server. Special

handling for temporaries yields performance benefits comparable to delayed write, a

common approach to reducing write traffic, but without compromising the reliability of

file data as delayed write does.

3.3.1 Caching server support for temporary data

In addition to the subtree of cached files, each caching server provides a directory

/cache/hostname /tmp in which temporary files can be created, as an alternative to

caching such files from a file server. Because the files are implemented locally, the over-

head of creation, deletion, and checking coherence is avoided. These temporary files,

3.3. TEMPORARY DATA 49

however, are still globally accessible and sharable, since the}'' are within the shared name

space and are accessed via the standard I/O protocol.

The temporary support uses the memory server for block-level I/O, just as for cached

files. Because blocks are cached in virtual memory, there must be an open file to which

they can be paged. The caching server maintains a pool of anonymous open files for

this purpose, using one per temporary file created; they are recycled, however, requiring

only a truncation to zero length to clear their contents before they are reused. Because

• few temporary files are in use at one time, a small pool suffices, with the caching server

adding to it as needed. In addition, the caching server directs the memory server to not

write back dirty pages on commit. Blocks are written back to the file server only as

required for page replacement; with a memory of adequate size, no data from temporary

files is written out. The only traffic required for temporaries, then, is the creation and

deletion of files for the pool and the truncation each time a file in the pool is recycled.

Table 3.6 gives the traffic levels after adding temporary support to the basic cache;

Figure 3.6 presents the same data in terms of traffic ratio. Traffic for temporaries is

essentially eliminated. (The latex trace is not included, since it uses no temporary

files.) Combined traffic for all classes is presented in Table 3.7 and Figure 3.7. For

f sbuild, writes are reduced by 55% and committing operations by 80%; for afsbench

the reductions are 47% and 45%. Total traffic is reduced 34% for f sbuild and 22% for

afsbench.

The cost of support for temporary data is small. In the prototype, it adds four classes

that are implemented in about 825 additional lines of C++, of 11,000 lines for the entire

caching server (not including libraries). On a Micro VAX, the added code is less than eight

kilobytes out of the caching server's total of 140 kilobytes, plus roughly four kilobytes of

additional data at run-time.

3.3.2 Comparison with delayed write

We now compare our special support for temporary data with a more common approach

to reducing write traffic, delayed write. In centralized Unix systems, a write system call

returns as soon as the data has been copied to a system buffer, and it is written to disk

sometime later [66]. Delaying the write to disk lowers the latency for the write operation,

since the operation completes without waiting waiting for the disk, and it reduces the

level of traffic at the disk, since a significant fraction of newly written blocks are rewritten

or deleted within a short time. The performance improvement is potentially greater in a

50 CHAPTER 3. A FILE CACHE FOR THE V-SYSTEM

fsbuild afsbench
tmp inst other tmp inst other

read 0 2763 521 0 1093 402
write 0 0 9641 0 0 2035
commit 8 0 243 6 •o 254
naming read 0 1034 5113 0 501 2066
misc. 340 94 78 74 24 173
coherence 0 2936 1876 0 456 333
total 348 6827 17472 80 2074 5263

Table 3.6: Traffic for cache with temporary support, by file class.

T 60

o
5
o 50

2

40

30

20-

10-

llll coherence

misc.

naming read

commit

write

read

tmp inst other tmp inst other
fsbuild afsbench

Figure 3.6: Traffic for cache with temporary support, by file class.

3.3. TEMPORARY DATA 51

fsbuild afsbench
read 3284 1495
write 9641 2035
commit 251 260
naming read 6147 2567
misc. 512 271
coherence 4812 789

total 24647 7417
traffic ratio 21.9% 22.0%
relative to
basic cache 65.6% 78.3% 1

Table 3.7: Traffic for cache with temporary support.

o

o 50
3=

40--

30 —

20-

10-

coherence

misc.

naming read

commit

write

read

fsbuild afsbench

Figure 3.7: Traffic for cache with temporary support.

52 CHAPTER 3. A FILE CACHE FOR THE V-SYSTEM

distributed system, where the disk write becomes a write to a remote, shared file server.

Delayed write therefore plays a central role in several distributed file systems, including

Sprite [50], Burrows' MFS [11], and Echo [45]. Our design compares favorably with

delayed write in all three of reliability, complexity, and performance.

Reliability. The primary drawback of delayed write is that it places all newly written

data at risk of loss when a crash occurs. To limit the amount of loss that can occur, the

delay is bounded by having a system process periodically write out any dirty blocks; a

typical interval is thirty seconds. When a failure occurs, then, some of the data written

during the last thirty seconds can be lost. Section 1.2 points out that even if this risk were

acceptable in a centralized system, the nature of the failures that occur in a distributed

system make the risk unacceptable there: loss can result from the failure of any of client,

server, or network, and the loss of data due to a partial failure can go undetected. In

contrast, the only data placed at risk by the caching server's approach is that in temporary
files.

Complexity. The principal argument advanced against special support for temporaries

is that it adds unnecessary complexity. The implementation, however, can be quite

simple, as the prototype demonstrates. And any added complexity for applications is

hidden within standard library routines for creating temporary files.

Delayed write introduces complexity of its own. The cache coherence mechanism

must be prepared for the latest version of a file block to exist somewhere other than the

server. Coping with failures is much more complicated, since a recovering server must

somehow find blocks that have not been written back from client caches, and a cache

can find itself unable to write out committed data due to failure of either the server or

communications. The complexity filters up to the application or user, which must either

be prepared to cope with loss of data or take additional steps to ensure its persistence.

Performance. Delayed write has two main benefits for performance: reduced write

traffic, from avoiding writes of short-lived data, and lowered response time, since writes

do not wait for either remote communication or disk access.

For our traces, delayed write does not reduce traffic as much as does support for

temporaries. The reduction in write traffic depends on the lifetime of newly written

data, which for the traces is shown in Figure 3.8. For latex, no data lives for less than

two minutes; in the other traces, about half survives for under thirty seconds, while the

3.3. TEMPORARY DATA 53

0.70-r- fsbuild

5 0.60-
w
o
o 0.50 -

XI

"o
c 0.40 o

2 0.304-

0.00 +

 afsbench
— ■ — latex

/
I .

/ :'
c'

:'i
•V

0.20-1- *

0.10- j

30 60 90 120

lifetime (sec)

Figure 3.8: Lifetime of newly written data in all files (cumulative).

c 0.70
a»

S 0.60
tn

o
o 0.50

-O

'S
c 0.40

| 0.30

0.10

0.00

 fsbuild
 afsbench
— • — latex

0.20-f- r

.:/
"•' /
: /
' /

30 60 SO 120

lifetime (sec)

Figure 3.9: Lifetime of newly written data in non-temporary files (cumulative).

54 CHAPTER 3. A FILE CACHE FOR THE V-SYSTEM

remainder survives much longer. Figure 3.9 shows lifetimes of blocks written to non-

temporary files; there is little short-lived data in non-temporary files. Table 3.8 gives the

traffic for a simulated cache using a thirty second delay of all writes; for both f sbuild

and af sbench the write traffic is higher than with support for temporaries, because some

temporary files survive for more than thirty seconds,

Figure 3.10 shows traffic for a thirty second delay in comparison with that for sup-

porting temporary data directly. While write traffic is comparable, the support for tem-

poraries also eliminates most of the operations to create, commit, and delete temporaries

as well as all coherence checks. The higher commit and coherence traffic results in a

thirty second delay producing a slightly higher level of total traffic.

The other performance benefit claimed for delayed write is that it lowers response

time, since writes and closes are asynchronous. In V, however, block-level write operations

are already asynchronous—the only requirement being that they complete before the

commit. So the difference in response time for the two approaches depends on the number

of synchronous operations each requires. For delayed write, file creation and deletion

still require synchronous operations, while file commits are asynchronous; the support

for temporaries eliminates creation and deletion for temporaries while still requiring

synchronous commits of non-temporary files. Table 3.9 gives the number of synchronous

committing operations for both approaches. Delayed write shows a higher number of

these operations for all but the latex trace, and for that trace the number is quite small.

While the relative delay for these operations depends on how the server implements

them, we can conclude that any difference in response time for the two techniques can

be expected to be quite small, and that support for temporaries is likely to outperform

delayed write in many cases.

The traces are from execution on a fairly slow processor. With a much faster processor,

file lifetimes should decrease, which would improve slightly the relative performance of

delayed write. The lifetimes of temporary files are bounded by execution time; so a

greater share of temporaries would benefit from delayed write. The survival of other

files, however, normally depends on some human interaction, and so their lifetimes would

shorten less. To the extent that the speed of human interaction increases, however, the

risk from a crash also increases: more activity is subject to loss, with greater effort

required to recover, it, and, with reordering of delayed writes, the number of possible

states in which a user or application might find a set of files increases greatly. Even on

much faster processors, the cost of reliable file storage is expected to remain low.

3.3. TEMPORARY DATA 55

fsbuild afsbench latex
read 3284 1495 872
write 9984 2156 124
commit 1263 476 8
naming read 6147 2567 104
misc. 510 267 16
coherence 5150 859 78

total 26338 7820 1202
traffic ratio 23.4% 23.2% 53.4%
relative to
tmp support 107% 105% 100%

Table 3.8: Traffic for cache with 30-second delayed write.

^ 60T-

o
m
o
3=

CO

f$? coherence

misc.

naming read

commit

write

read

delayed tmp delayed tmp delayed tmp
fsbuild afsbench latex

Figure 3.10: Traffic for 30-second delayed write vs. temporary support.

56 CHAPTER 3. A FILE CACHE FOR THE V-SYSTEM

fsbuild afsbench latex

delayed write
file creation 412 176 0
file deletion 340 74 0
total 752 250 0
temporary support
file creation 76 103 0
file deletion 0 0 0
file commit 125 104 8
total 201 207 . 8

Table 3.9: Synchronous commit traffic.

In summary, special support for temporary data yields a substantial reduction in

traffic without sacrificing the reliability of the file service. Providing this support adds

very little complexity to the caching server, and preserving the robustness of file service

simplifies the writing of robust applications. This approach compares favorably in all

respects with the more common approach of delaying writes, which reduces write traffic

at the expense of reducing reliability for all files.

3.4 Caching descriptor information

The basic cache handles only the contents of files, but the file service also stores informa-

tion about files in the form of their descriptors. With file contents cached, a large portion

of the file-server traffic is for read-only access to descriptor information; in addition to

the explicit naming reads, each on-open coherence check also reads this information to

check the name and permissions. Table 3.7 shows that for the basic cache with tempo-

rary support, 15-45% of the remaining traffic falls in this category. Caching descriptor

information therefore offers an opportunity to significantly reduce traffic.

There are two consumers of the information about files: application programs and the

caching server itself. Applications read directories and descriptors; if the cache is to avoid

performing any of the naming reads or coherence checks, then it needs this information

to perform name lookups and permission checks.7 A significant fraction of those name

lookups fail: 18-48% of the names looked up in the traces are for files that do not exist.

7Even though the file server enforces permissions, the cache must also do so when permissions change
after a file is cached and when the cache is shared by multiple users.

3.4. CACHING DESCRIPTOR INFORMATION 57

Field Meaning

name The name of this node.
parent Pointer to its parent node.
children List of child nodes.
versions List of version decriptors for cached files.
descriptor The name's descriptor.
volatileValid Indicates whether the volatile attributes in the de-

scriptor are valid.
stableValid Indicates whether the stable attributes in the de-

scriptor are valid.
childList Valid Indicates whether children is a complete and valid

list of the children of this directory.
users Table of users known to have permission to look

up this node's name.

Table 3.10: Contents of a node in the naming tree.

This section describes and evaluates extensions to the basic cache to allow it to cache

descriptor information as well as the contents of files. The nodes within the naming tree

require additional fields in order to store this descriptor, which are listed in Table 3.10

along with the fields from the basic cache. In addition, a permissionChanged flag is added

to the descriptor for a file version.

When the caching server reads the descriptor for a file (or directory), it caches it

by copying it into the corresponding node of the in-memory naming tree and sets the

both atrribute flags to valid, he caching server reduces the frequency with which it must

read descriptors from the file server, however, by caching results of permission checks,

by caching entire directories in response to failed name lookups, and by partitioning the

information within a descriptor to invalidate as little as possible.

Caching permission information. A successful operation returns additional in-

formation implicitly along with its explicit result. In particular, a successful operation

that includes a name lookup implicitly indicates that the user has permission to look up

each component of the name. When a lookup operation at the file server succeeds, the

caching server adds the requesting user to the table for each node along the path. Sub-

sequent lookups by the same user can be permitted without having the actual descriptor

data. Similarly, the descriptor for each cached file version includes the user who opened

it and the mode in which it was opened, indicating that the same user has permission to

58 CHAPTER 3. A FILE CACHE FOR THE V-SYSTEM

open it again in the same or a more restricted mode. Caching these results of the open

request enable the caching server to handle a repeated open without having cached the

descriptor for every component of the path.

When the caching server needs only additional permission information to perform an

open, it can obtain that information by reading a single descriptor. For example, when

a second user attempts to open for reading a file that is already in the cache, reading

the file's descriptor by name provides implicitly an indication of the user's authorization

to name the file along with the explicit protection information from which the cache can

determine whether the user has permission to read it.

Handling failed name lookups. The cache handles failed name lookups by cach-

ing entire directories: if the name lookup fails in the cache's tree, then the named file

does not exist. A directory is cached, however, only after it is read by an application or

a name lookup within it fails. For example, when an application attempts to open for

reading a file that is not in the cache, the caching server attempts the open at the file

server. If that open fails, the caching server first returns the result to the application,

then reads and caches the directory. For each entry in the directory, it adds a node

to the naming tree, if not already present, and caches the descriptor in it; when it fin-

ishes reading the directory it sets the childListValid flag to indicate that the directory is

cached. Replying before reading the directory avoids increasing the latency of the failed

operation by the time required to read the directory. Caching only the directories where

lookups fail is quite effective: the majority of failed lookups result from path searches, in

which an application attempts to open a file in each directory in a list (the search path)

until it is found. Because paths are used repeatedly, the names that are not found are

clustered in a small number of directories.

The caching server could instead add a negative entry to its tree for each name that

it looks up but does not find, but caching entire directories is much more attractive than

keeping negative entries. First, caching the directories provides descriptor information

that can be used to satisfy other requests. Second, it yields a lower miss rate, because

once a directory is cached any name not found there can be handled locally, whereas a

negative entry covers only the same name; caching the directory amounts to prefetching

data for the search path. Third, the number of names not found and the number of

entries in their directories are comparable, so that the two alternatives require roughly

the same amount of storage. Finally, it is simpler for the cache and file server to maintain

coherence if they need deal only with names that do exist.

3.4. CACHING DESCRIPTOR INFORMATION 59

Partitioning descriptor information. Access to the attributes within a descrip-

tor is not uniform: different operations read and modify different subsets of them. The

caching server takes advantage of this fact by partitioning the attributes into a stable and

a volatile set that are invalidated independently. The permission information required for

most operations is changed only by explicit descriptor writes, which are infrequent, and

so is included in the stable set. The volatile set includes attributes, such as the size and

last-modified time, that are changed as a side-effect of more frequent operations, includ-

ing commits (for files) and file creation, deletion, and rename (for directories). While the

stable attributes alone are adequate for the caching server to perform many operations,

both sets must be valid for the cache to be able to satisfy a read of the descriptor.

When the stable attributes are invalidated for a node, the valid-permissions flags

on all file versions on that node are cleared, and the table of users is cleared on all

descendants of the node. The table of users must also be cleared for a node and all of

its descendants when the node is renamed. Clearing the user tables requires touching all

descendants of a node, which might appear to be expensive. However, both changes to

stable attributes and the renaming of directories are much less frequent than the name

lookups supported by the table of users. Also, the cost of traversing the in-memory tree

is low, and it contains only those descendants for which some data is presently cached.

Comparison with interpreting directories. The caching server could cache direc-

tories in the same manner as files, and then perform name lookups by searching within

the cached directories. While this approach seems to require a minimum of mechanism,

several problems undermine its apparent simplicity.

The first problem is one of security: resolving names by searching directories requires

trusting the cache to enforce some restriction on access. In particular, when a user

has permission to look up names in a directory but not to read it, the server cannot

enforce the restriction, since the cache must be allowed to read the entire directory.8 The

problem of security is even greater when importing a foreign file system that imposes

its own access controls, using a different model from the native system. In contrast, the

approach to caching names used by the caching server does not require that file servers

trust caches to protect data.

A second problem with resolving names in this manner is that it presupposes that

8In principle, a user who does not have permission to read a directory but is allowed to look up names
could determine the directory's contents by enumerating the possible entries and attempting to look up
each; in practice, though, the difference in authorization is significant.

60 CHAPTER 3. A FILE CACHE FOR THE V-SYSTEM

fsbuild afsbench latex
read 3284 1495 872
write 9641 2035 124
commit 251 260 8
naming read 663 348 94
misc. 512 271 16
coherence 10638 2302 158
total 24989 6711 1272
traffic ratio 22.2% 19.9% 56.5%
relative to
tmp support 101% 90.5% 106%

Table 3.11: Traffic with descriptor caching.

a directory can always be read. But servers in V are allowed to implement directories

for which the result of an open (or other operation) is computed using the name as an

argument; it might not be possible to enumerate such a directory. The approach used

in the prototype supports such servers within the same framework as it does those with

more traditional directories.

The final problem with resolving names on clients is that it makes name lookup a

compound operation: the client separately fetches or checks the coherence of the direc-

tory for each component of the name. As a consequence, operations by name are not

necessarily atomic. Imposing concurrency control to ensure that operations are atomic

adds complexity and overhead.

Performance. Simulation of caching descriptors and directories yields the traffic levels

in Table 3.11 and Figure 3.11. Read-only access to descriptors is therefore reduced by

48-94% compared to that for the basic cache plus temporary support.

Total traffic, however, increases for two of the traces, and decreases only slightly for

the third. The reduction in naming reads is offset by the fact the most of the operations

saved still require a coherence check. The coherence checks in this case are less expensive

than those in earlier traffic measurements: in the earlier measurements, each coherence

operation includes a check of permission to name and open the file, while here it does

not. Caching descriptor information pays off significantly, then, only if the need for a

coherence check can be eliminated for a significant number of these operations.

3.5. USING LEASING FOR COHERENCE 61

~ 60-1-

o

50--

40--

30

20-

10--

coherence

misc.

naming read

commit

write

read

fsbuild afsbench latex

Figure 3.11: Traffic with descriptor caching.

3.5 Using leasing for coherence

3.5.1 Performance

Leasing provides an answer to the need to reduce the number of coherence checks. The

analysis in Chapter 2 shows that a term on the order of ten seconds greatly reduces

traffic, while also bounding the added delay when a failure occurs. Because the traces

contain no writes to shared data, the only coherence traffic is lease extensions. A simple

simulation with all files covered by a single lease with a term of ten seconds yields the

traffic shown in Table 3.12 and Figure 3.12; the number of coherence checks is reduced

by 89-95%.

Just as caching descriptors does not by itself reduce traffic, so also leasing cannot

reduce traffic without some caching of descriptor information. If only the contents of

files are cached, then each open request requires a request to the server in order to look

up the name and check for permission. The net effect of leasing without caching naming

and descriptor information is an increase in total traffic: leasing alone does not reduce

the number of requests for opening files, and it requires additional traffic to approve

updates. In combination, though, leasing and caching descriptors yield a reduction in

62 CHAPTER 3. A FILE CACHE FOR THE V-SYSTEM

fsbuild afs bench latex
read 3284 1495 872
write 9641 2035 124
commit 251 260 8
naming read 663 348 94
misc. 512 271 •16
coherence 508 123 17
total 14859 4532 1131
traffic ratio 13.2% 13.5% 50.3%
relative to
basic cache 39.5% 47.8% 94.1%
relative to
tmp support 1 60.2% 61.1% 94.1%

Table 3.12: Traffic with descriptor caching and 10-second leases.

~ 60-r-

o
15
o 50
3=
«0

40-

30--

20-

10-

coherence

misc.

naming read

commit

write

read

fsbuild afsbench latex

Figure 3.12: Traffic with descriptor caching and 10-second leases.

3.5. USING LEASING FOR COHERENCE 63

traffic of up to 40% relative to the basic cache with temporary support.

3.5.2 Implementation details

The general description of leasing in Chapter 2 omits many details that are important

in implementation. This section describes how leasing is implemented in the prototype

caching server, beginning with a description of file groups. It then describes the data

structures and processing by which clients keep track of update operations within each

file group. The section concludes with improvements suggested by experience in imple-

menting the prototype.

File groups

The prototype maintains coherence in terms of file groups, similar to the notion of a

volume in the Andrew file system [35]. A file group is simply a subtree of the global

name space, and a group is identified by the name of its root node. Groups are defined

by the administrator of the file server as part of the server's configuration. For example,

a public subtree of installed files might form one group, and the subtree below a user's

home directory another. Clients learn about groups as a side-effect of coherence requests:

a client adds a request for a lease to an operation, and the server's reply includes the

prefix of the relevant group as part of the reply.9

In the prototype leases are managed at the granularity of an entire file group. Coher-

ence for each file group is maintained separately, but lease requests or replies for multiple

groups can be batched into a single message. Because the processing for each group is

independent, though, the description that follows is in terms of a single group.

Keeping track of updates

The prototype's implementation of coherence employs two data structures in addition

to the records of leases at both the server and clients: a log of updates to each file

group, maintained by the server, and a list of pending update operations, maintained

by each client. The log provides the support needed to be able to extend a lease after

it has expired and to enable clients to disambiguate the order in which operations are

performed; the list of pending updates simplifies the client's processing of the log.

9The V file system is restricted to a tree, on top of which symbolic links are also supported. In a
file system that allows one link to a file, it would be necessary to restrict links to being within a single
volume, as is done in AFS.

64 CHAPTER 3. A FILE CACHE FOR THE V-SYSTEM

Some lease-related information is added to each message exchanged by the caching

server and file server. The client piggybacks a request to extend its leases on each

message it sends, and the file server piggybacks a lease extension on each of its messages.

In addition, to requests for update operations the client adds a tag value by which the

operation is identified while obtaining approvals, and the server adds a sequence number

by which it can be correlated with the log of updates.

When requesting approval of an update, the server sends to leaseholders the opera-

tion's request code, the names of its operands, and the tag value from the operation's

original request. A client uses the tag to identify the operation in its reply.

A client can request extension of a lease that has expired, in which case updates might

have been performed in the interval between the lease expiring and the extension being

granted. In order to extend the lease, the server must be able to tell the client which data

items have been modified. The prototype handles this information in the form of a log of

the update operations that have been performed on each file group. Each record in the

log denotes a single update operation and consists of a sequence number, the operation's

request code, the names of its operands, and its tag.10 The client combines reading the

log with each request to extend a lease: the client includes in the request the highest

sequence number that it has read from the log, and the server includes in the reply any

log records with a higher sequence number. To process the reply, the client

1. skips, based on sequence number, any log records that it has already processed,

2. processes each of the remaining records in order, invalidating cached data as re-

quired, and then

3. updates is record of the lease with the new expiration

In some cases, the client can use the information in the log to modify, rather than

invalidate, cached data. For example, upon reading a record for a rename operation,

the client can update its local naming tree instead of invalidating all data associated

with both the source and destination names. Updating the cache using the log avoids

unnecessarily discarding data from the cache, and it allows the client to keep current the

naming information for any files that are cached and the list of children for any directory

cached in its entirety.

10Recall that, in V, block-level read and write are not relevant for coherence, because read occurs
logically when the file is opened and write occurs when the file is closed.

3.5. USING LEASING FOR COHERENCE 65

time

J

time

Figure 3.13: An uncertain ordering of operations.

A client also relies on the log in order to ensure that it processes conflicting operations

in the same order as the server. The log is needed for this purpose because the order in

which messages are received by a client can be insufficient to determine the order of the

corresponding operations. For example, consider the sequence of events for a client that

reads a file at the approximately the same time that another client is writing it:

1. Client A sends a request to open file F for reading.

2. A receives a request to approve a commit to F by client B.

3. A sends approval of B's commit.

4. A receives the reply for its open request.

As Figure 3.13 shows, this sequence of events is consistent with either ordering for the

two operations. But A's next action depends on which order is correct: if the write was

performed first, as in the upper diagram, A should cache the newly read data, but if the

read was first, as in the lower diagram, the data should not be cached.

66 CHAPTER 3. A FILE CACHE FOR THE V-SYSTEM

This second case in Figure 3.13 also points out that when a client approves an update,

it cannot simply invalidate the affected data and forget about the operation; if it does,

it might apply operations to its cache in the wrong order. In order to ensure that each

operation is applied to the cache exactly once and in the correct order, the client does not

process any operation except when it reads the corresponding record from the log. The

client correlates the results of operations with the log entries using the sequence number

that the server includes with the result. For a write, the sequence number matches the

log entry for the update; for a read it matches the immediately preceding update.

There can be a significant interval between a client approving an update and the same

client reading the corresponding record in the log. During that interval, the client does

not know whether the operation has been performed, but the affected data is still marked

as valid in its cache. To prevent it from using the data in this period of uncertainty, the

client adds each a record for each update that it approves to its own list of pending

updates; the record includes the operation's request code and its operand, along with the

operation's tag. Before using cached data to satisfy any read request, the client checks for

a conflict between the requested read and each operation on the list of pending updates.

If a conflict is found, the client must query the server to determine whether the operation

has been performed; it can do so by requesting an extension to its lease.

The tag for each update operation provides the basis for keeping track of approved

updates. When a client requests an operation that might produce an update, the client

adds a unique tag value to the request, and it adds the operation to its list of approved

updates.11 The server includes the tag when it requests approval of the update from

another client; that client adds the operation to it list, then sends its approval, identifying

the approved update by its tag. A client removes an operation from its list when the

corresponding tag appears in a log entry.

Not every update that is approved actually results in a change. An update request

can be rejected by the server if, for example, the requesting user is not authorized to

perform it. Also, the requester sometimes does not know whether an operation will

produce an update: when opening a file for writing, the file is created only if it does not

exist. The file server inserts such an operation in its log of updates, but with a request

code of NCLOPERATION. The only action taken by the client upon reading a NOJDPERATION

log record is to remove the operation with the matching tag from its list of pending

operations.

11The tag is included for operations requested by caches. The file server supplies a tag if the operation
is requested via the normal application interface.

3.5. USING LEASING FOR COHERENCE 67

The cache has to be prepared to deal with failures when handling coherence messages.

A cache might encounter a discontinuity in reading the log, either because the server

crashed, and it stored the log only in volatile memory, or because the server discarded

old log entries before the cache had opportunity to read them. When the cache detects

that it may have missed some log entries, it must invalidate all cached data for the file

group if the lease has expired; if the leases has not expired, the cache discards any data

affected by the operations in its list of approved updates. To avoid missing log records

with limited memory devoted to the server log, the cache periodically queries the file

server, extending all of its leases to the present time, in order to read the log; this period

is presently set at five minutes.

The cache also has to be able to clear its list of pending updates. To allow it to do

so, each lease extension message from the server includes a list of the pending update

operations that the client has approved. After performing invalidations required by a

discontinuity in the log, the cache rebuilds its list of approved updates from the list in

the extension message. An operation for which the client receives no reply must be left

on the list of pending updates until either its outcome is learned from communication

with the server or all data it might affect has been invalidated in the cache.

Possible improvements

The prototype caching server includes the lease support described here, and the bulk of

it has been exercised with test scaffolding. At this writing, a file server that supports

leasing has been only partially implemented. Experience with the prototype suggests

several improvements that could simplify the implementation of leasing for both the

cache and file server and also improve performance when there is sharing.

Shorter identifiers. The use of character-string names throughout makes the proto-

type more complicated and less efficient than it might otherwise be. Elsewhere in V,

character-string names are the only persistent identifiers for named objects; the design

attempts to apply the same approach to caching, but it proves awkward. Managing

storage for variable-length strings is clumsy in C and C++, and frequent interpretation

and comparison of names is inefficient. The character-string names also inflate the size

of log entries. In an improved implementation, the server would assign a fixed-length

identifier to each node within a file group, and that identifier would replace the name in

most coherence messages. In a reply, the server would send along with character-string

68 CHAPTER 3. A FILE CACHE FOR THE V-SYSTEM

name for the path an array of the identifiers corresponding to each of the components;

the cache thus learns these identifiers as a side-effect of its operations. The identifiers

replace names in most log entries; a file commit, for example, would need just the iden-

tifier. For file deletion, the identifier of the parent is included along with that of the

deleted node. The creation of a node would specify the parent's identifier, that of the

new child, and the name component of the new child. A rename requires four identifiers

and one name component: the node moved, its old parent, its new parent, and the node

it replaces, if any, plus the component of its new name. Because they are local to a file

group, identifiers can be short, reducing the size of log entries in addition to simplifying

handling.

Finer grain for leasing. The prototype manages leases at the granularity of entire file

groups, which is adequate if write-sharing of file groups is not common, as in the traces.

We anticipate more sharing in the future, however, if a user is able to employ a set of

hosts over an extended period. Under this pattern of sharing the directories in the user's

working set are write-shared among those hosts, and that files within those directories

are also sequentially write-shared. To support such sharing well, the prototype needs

to be extended to allow the coverage of a lease to be specified at a finer grain than the

entire file group.

With short identifiers, it becomes practical to list the nodes in a file group that are

covered by a lease; the attributes for each node could be specified by an additional four

bits, one each for stable attributes, volatile attributes, file contents, or list of children.

Relinquishing leases. In addition to adding small units to a lease, the cache needs to

be able to indicate that it no longer holds a copy of (or an interest in) a data item. For

example, in response to a request for approval of an update, the cache might invalidate a

directory or descriptor that has not been recently accessed, and relinquish its lease so that

it is not required to approve future updates. Each leased operation, extension request,

or approval of an update includes a list of identifiers over which the sender relinquishes

its lease.

Relinquishing a lease produces the same sort of ordering problem as approving an

update. When a cache sends a message relinquishing its lease over some item, that

message might be received by the file server shortly after it has sent a reply (or other

message) that extends a lease over that same item. The correct order can be established

by treating the relinquish as an update: the client tags the request and adds it to its list of

3.6. ADDITIONAL ISSUES FOR CACHING IN V 69

pending updates, and the server inserts the relinquish into the log with the request code

NCLOPERATION. Unlike other NOJDPERATION records in the log, the cache must recognize

when it removes a relinquish operation from its list of approved updates and modify its

record of lease coverage.

Partial invalidation for file contents. When a file is updated, the prototype discards

all blocks cached from an old version of it. Data is needlessly invalidated if only a few

blocks of the file change, or if data is added only to its end. For the applications run in

V, this waste is not a problem—programs almost always write a file in its entirety. The

same is true for most Unix software, too. Other applications (in the future) might not

have this property; database updates commonly change only a few blocks in a large file.

Extending the coherence support to handle invalidating only part of a file is straight-

forward: all that is needed is to add to the log entry for a commit of a file version a list

of block ranges that are modified. The memory server interface, however, would need

extensions to allow partial invalidation from within an open file.

Write-broadcast for descriptor data. The most common operations change just a

couple of fields in a descriptor, such as the modified time and length. The new values for

these fields could be added to the log entry, effectively changing the caching of descriptor

information from write-invalidate to write-broadcast. Further study would be needed to

determine whether the reduction in cache misses on descriptor data is worth the increase

in the size of log records.

3.6 Additional issues for caching in V

3.6.1 Limitations

We have not considered here any details of block-level caching; the only assumption we

have made is that the cache is large enough to avoid any replacement. Effective caching

does depend on a number of matters at the block level, including cache size, the size of

transfers, replacement policy, and prefetch policy. For caching in RAM, the interactions

between file caching and virtual memory management must all be considered. These

concerns have been explored by others; Chapter 5 surveys this work.

The prototype does not address some issues of integrating file caching into V. In

practice, the most apparent weakness is that caching is not transparent with respect to

70 CHAPTER 3. A FILE CACHE FOR THE V-SYSTEM

naming, and so caching does not work well with remote execution and program migration.

In addition, the prototype performs poorly when a files is opened at one host and then

read or written at another, a situation that arises primarily from remote execution. Under

these circumstances, access should be via the cache co-located with the reader or writer

instead of the cache where the file was opened, but V presently has no mechanism to

support such a rebinding. Both of these problems—naming and rebinding of open files—

are fundamental to replication of data, not just caching, and solutions found in the more

general context should be applied to caching as well.

A full consideration of the implications of caching for file-server design is also beyond

the scope of this dissertation. With effective caching, writes outnumber reads; so writes

must be handled efficiently. Good response time depends especially on having low latency

for operations that commit data to persistent storage, which include changes to directories

and descriptors as well as commits of file versions. Logging updates to metadata, as in

Hagmann's reimplementation of the Cedar file system [33], reduces latency by reducing

the amount of seeking on disk. Latency can be further reduced by using nonvolatile RAM

for the tail of the commit log, or by placing the log on either a separate disk or, in a disk

array [54], on a separate set of heads.

3.6.2 Performance

Sharing. Because the traces include no write sharing, they generate no coherence traffic

other than lease extensions. Under the style of sharing anticipated in Section 3.2.2, lease

conflicts, and the attendant up date-approval traffic, should be common, but only for

small numbers of leaseholders. Most of the updates affect directories, and the sharing

could lead to thrashing if the entire directory were invalidated on each update. The

partitioning of descriptor contents, in Section 3.4, and the use of the log to update cached

directory information, in Section 3.5, both serve to minimize invalidation of descriptor

and directory information.

Response time. The performance evaluation presented in this chapter has been almost

exclusively in terms of traffic; response time has been largely ignored. The primary

contribution of the file service to response is the delay when an application must wait for

an operation to be performed at the file server. Much of that delay is from congestion at

the file server; it is minimized by reducing total traffic, which the design here does, and

by handling operations efficiently at the file server, which is outside our concern here.

3.6. ADDITIONAL ISSUES FOR CACHING IN V 71

There are three kinds of operations on which an application must wait: cache misses of

reads, commits, and coherence checks.

Cache misses are generally minimized by reductions in total read traffic, but they are

further lowered by prefetching data. Block-level reads dominate the read-only traffic;

prefetching for these is the responsibility of the memory server. The caching server

handles naming reads, and caching the entire directory after a name lookup fails is an

effective way to prefetch naming information for path searches. Only 23-46% of the

naming reads performed are cache misses, and majority of those are to open files not yet

cached.

The number of commits required is significantly reduced by the support for temporary

data, and those that remain are unavoidable if file storage is to be reliable. Fortunately,

commits are only a tiny fraction of the total traffic in our measurements. The delay for

commits depends mainly on the design of the file server, which needs to handle both

writes and commits efficiently. Commits of shared data also require approval of the

update, but the time to do so is in most cases dominated by the time for writing data

to disk.12 The delay for a commit is therefore not more than a few tens of milliseconds,

while the application engages in an average of 6-30 seconds of processing or other activity

per commit; the delay added in order to reliably commit data is on the order of only one

percent of the response time:

With leasing, the rate at which coherence checks are required is extremely small: at

most one check is required per term. These checks therefore account for much less than

one percent of the response time.

The caching server does several things in order to minimize response time: it reduces

total traffic, and therefore congestion; it avoids many cache misses on naming reads

by prefetching entire directories; it reduces the number of commits by its support for

temporary files; and it limits the delay to provide coherence to a very small fraction of

total response time. There is little more that the caching server can do; response time

depends to a large degree on the memory server and file server.

3.6.3 Security

In the prototype, the caching server does not require any special privilege from the file

servers; in particular, the file servers do not have to trust a cache to enforce access

12In the absence of failures; when a client crashes, the delay is bounded by the lease term. But such
failures are infrequent enough that they do not affect average performance.

72 CHAPTER 3. A FILE CACHE FOR THE V-SYSTEM

controls. The only special privilege that the cache requires is the ability to act on behalf

of applications that make requests of it; i.e., that it be able to present their credentials

to the file server. A user must, of course, trust a cache he is using to not abuse this

privilege, in the same way that he must trust any software he uses.

One aspect of maintaining security that we have not dealt with in full detail is that

of avoiding inadvertent disclosure through the coherence messages. A cache should see

only the union of what its users are authorized to see. The coherence log and pending

operations therefore must be filtered on a per-cache basis to avoid disclosure. The cache

must therefore register with the file server the users on whose behalf it is making requests.

The file server can collect these implicitly from the LEASEDJDPERATION requests it receives,

but there also need to be explicit requests available to the cache to add or remove a user

from the set, plus the means for the file server to challenge the cache to again present

the credentials for the users on whose behalf it is working.

3.7 Applying the results to other systems

This chapter has evaluated for performance the file service in V; there are two kinds

of differences that could limit the applicability of the -results here to other systems:

differences in the semantics of the operations and differences in the pattern of access.

Semantics. The most significant difference between V and many other file systems

is that it provides atomic open files. This affects performance in two ways: it reduces

the number of operations that require synchronous writes in order to guarantee recover-

ability, and it lowers the number of operations that are significant from the standpoint

of coherence. With some adaptation, however, the techniques described in this chapter

work just as well in systems that make data visible at the granularity of individual read

and write operations.

A guarantee of recoverability can be defined that requires very nearly the same num-

ber of synchronous writes as for V's atomic open files. Specifically, the file service can

guarantee that data has been written to nonvolatile storage whenever:

1. The writer closes the file,

2. The writing program otherwise commits the data,13 or

13Some versions of Unix provide the f sync call for this purpose.

3.7. APPLYING THE RESULTS TO OTHER SYSTEMS 73

3. The data is read by a program other than the writer.

The first two cases correspond to the guarantees in V, and they provide the writer

assurance that the writes will persist. The third case is necessary to guarantee to readers

that the data they read will also survive; it causes a read operation to incur added

delay only when it reads as-yet uncommitted data. This case occurs only when a file is

concurrently write-shared, which is very infrequent. The total number of synchronous

writes is thus very close to that in V.

Because the number of operations actually requiring commits is comparable, the

support for temporary files should be just as effective in reducing both traffic and delay.

Because writes to other files are not synchronous, however, the cache must be write-back

rather than write-through. In this case the data in the cache is not yet committed; so it

does not have the reliability problems noted in Section 1.2. Readers see only committed

data, and writers learn of failures when they close or otherwise commit the file. Leasing

for write-back caches is described in Section 2.4.3.

The semantics for files in V produce low rates of reads and writes from the standpoint

of coherence, because only opens and closes are counted. Most files are open, though, for

much less than ten seconds, so that a single lease term of that length will usually cover

all of the access while a file is open. The higher rate of writes can be handled by making

the cache write-back, as described above, and having all caches but the writer relinquish

their leases. The only case in which the higher rate of writes is still significant is when

a file is concurrently write-shared. Turning off caching during concurrent write-sharing,

as is done in Sprite [50], avoids extra traffic to approve writes; with leasing, caching is

easily turned off by using a term of zero length. As long as concurrent write-sharing is

rare, which measurements show it to be in Unix systems [65], the resulting traffic differs

very little from that for V.

Under these conditions, separate support for temporaries still yields a reduction in

traffic comparable to that achieved by delayed write. With recoverability guaranteed as

above, the number of commits—and the delay they incur—is small. It is possible to have

good performance without sacrificing robustness.

Access patterns. There are two reasons that access patterns in other systems might

differ significantly from those in the traces from V: the way that system services are

implemented and the applications running on the system.

None of the file access captured in the traces is for access to system services, since

74 CHAPTER 3. A FILE CACHE FOR THE V-SYSTEM

services in V are accessed by communicating directly with a server program, not by

reading or writing shared files. Most of the write-sharing observed in Unix systems,

though, is of files that serve as the interface to services such as printer spooling, user

information, system status, mail or news [11, 26, 65]. In such a system, there is more

write-sharing of files than is observed in V, but that sharing still represents a tiny fraction

of all file access. The result is only a small degradation in overall performance.

One activity missing from the traces is access to large databases, which would produce

different patterns of both operations and sharing. The details of the access pattern

depend on the structure of the interface to the database, including whether data is

accessed via shared files or through a database server. Generally, though, database access

would probably increase the amount of sharing, and it would make partial invalidation

of file contents more important than it is in the traces. Two of the issues arising in

supporting database access, caching structured data and supporting transactions, are

taken up in the next chapter.

3.8 Summary

This chapter has described, a prototype cache for file service in the V distributed op-

erating system and evaluated its performance in terms of traffic based on traces of file

access. Three enhancements to the basic cache design .boost its performance without

compromising the reliability, availability, or coherence of the file service.

First, special support for temporary data reduces write traffic by 46-54% in the traces

that use temporary files, and it also eliminates coherence and committing operations for

these files, for an overall reduction in traffic of 20-35%. Special handling for temporary

files yields a gain in performance comparable to that obtained by delaying for thirty

seconds writes to all files. Unlike delayed write, though, support for temporaries obtains

improved performance without sacrificing the reliability of permanent files.

The second and third improvements, caching of descriptor information and using

leasing to maintain coherence, are effective only in combination; together they reduce

traffic by as much as 40%. Caching information from descriptors allows the caching

server to handle name lookups and permission checks for cached data, and caching entire

directories enables it to also handle lookups of names that do not exist, which are quite

common. The caching server reduces the frequency with which it needs to read descriptors

and directories by caching the results of name lookups; it reads an entire directory only

3.8. SUMMARY 75

when an application requests it or when a name lookup fails. Also, the caching server

avoids having to refetch data by invalidating only part of the information in a descriptor

in response to most updates, and by using the log of coherence information to update,

rather than invalidate, cached directories whenever possible. The use of leases with a

ten-second term eliminates the need for a coherence check on most reads of cached data.

In combination, these three improvements to the basic cache reduce traffic by 60%

and 52% for the f sbuild and af sbench traces. The remaining trace, latex, improves

only 6% overall, but this is because over 75% of its traffic is reads that no cache can

avoid.

While the evaluation here has focused on traffic, the reductions in traffic should

produce corresponding reductions in queueing delays at server CPU and disk, yielding

good response time. Given the traffic remaining from the cache, low delay depends on the

file server handling writes and committing operations with low latency, and on effective

prefetching by the block-level cache.

76 CHAPTER 3. A FILE CACHE FOR THE V-SYSTEM

Chapter 4

Additional uses for leasing

The preceding chapters have focused on using caching to improve the performance of

a traditional file service. This chapter expands the scope of leasing beyond that of the

V-system file cache in the preceding chapter. It develops leasing in three directions:

Scaling up. The prototype increases the number of clients that a server or network

can support by reducing the traffic per client by a factor of up to seven. Section 4.1

looks at how secondary caches can be used when a system grows very large or

spreads over a wide-area network.

Other storage services. The file service that the prototype supports is only one

possible storage service, and a fairly primitive one at that. One might ask whether

the techniques for caching described here could be applied in other storage ser-

vices. An important feature of many more sophisticated storage services, such as

databases, is support for atomic transactions. Transactions are a useful extension

to even basic file service, particularly in a distributed system, since they simplify

the development of robust applications. Section 4.2 considers problems in making

caching efficiently support transactions.

Availability. In the description of leasing, availability was considered as a constraint:

the availability of the file service had to be preserved at the level provided in the

absence of caching. But for some cases the availability provided by a single file

serve is not high enough. Section 4.3 considers two routes to increased availability:

replication of servers, which was ignored in Chapter 2, and taking advantage of

cached data by trading coherence to gain availability.

77

78 CHAPTER 4. ADDITIONAL USES FOR LEASING

4.1 Caching in very large systems

Chapter 1 identified a trend toward large systems—either in number of client hosts or

in geographical scope—as a motivation for caching. A large system typically consists

of clusters of hosts on local area networks, with the clusters connected by a wider-area

network.

The prototype cache improves scalability in both senses. A larger number of clients

can be supported by a server or network, since the traffic per client is reduced to as little as

13% ofthat without caching, or 40% ofthat with the basic cache. Synchronous requests—

read misses, coherence checks, and commits—incur delay for round-trip communication;

the prototype especially reduces the frequency of these requests.

Scalability can be further improved by using a secondary cache to mediate a client's

access to file servers outside the local cluster. The secondary cache is very similar to the

prototype caching server in the preceding chapter, except that it is responsible for the

portion of the naming tree corresponding to file servers outside the cluster. Secondary

caches allow inter-cluster messages for reads and coherence to be amortized over multiple

clients within a cluster, reducing both server load per client and communication delay

per operation. Secondary caches also reduce the number of clients for which a file server

must keep state, because the server is accessed directly by (and grants leases to) only

clients within its cluster and secondary caches in other clusters.

Coherence within a cluster is handled by subleasing. Once it holds a lease from the

remote file server, the secondary cache can grant subleases to its clients. The term of a

sublease must be contained within that of the lease under which it is granted. Also, the

secondary cache cannot approve an update or relinquish its lease until it has obtained

the same action from the holders of its subleases.

While the prototype caches only in RAM, a secondary cache could benefit more from

also caching on disk. The secondary cache can then be larger, to yield a higher hit rate.

Also, the latency to access a local disk compares much more favorably to the latency of a

wide-area network than to that of a local-area network. Also, the speed of writes to the

cache's disk is not critical to performance, since data needs to be written to disk only

when it is not invalid but would otherwise be discarded; most access would still be from

RAM.

When the clusters are not tightly coupled, but instead form a federation of au-

tonomous systems, the secondary cache serves as a file-service gateway. One function

of such a gateway is the translation of identifiers, such as those for users, between the

4.2. CACHING AND ATOMIC TRANSACTIONS 79

systems. In the naming design for extending V to wide-area use [16], the gateway's func-

tion is combined with that of a liaison server that resolves names outside the local system.

From the standpoint of access control, the prototype's strategy of caching results works

well for the gateway, too, since the cache does not have to understand the policies of the

remote system, nor must the remote file servers trust the cache to enforce protections.

In summary, secondary caches further increase the scalability of a caching file service,

and the approaches used in the prototype, including leasing, work well for secondary

caches.

4.2 Caching and atomic transactions

Many applications of storage services that benefit from atomic transactions would also

benefit from the improved performance offered by caching. Two parts of the support for

transactions require adaptation to work efficiently with caching: concurrency control and

atomic commit processing.

4.2.1 Concurrency control

For a system with caches, coherence defines what is a correct logical order for read and

write operations in order to ensure that caching does not affect the results of operations.

Transactions typically impose on the order of operations the constraint of serializability:

the logical order must be equivalent to one in which the operations in separate transac-

tions are not interleaved. Cache coherence and transactional concurrency control could

be implemented independently, but then there would be two mechanisms attempting

to impose an order on operations. At best the result is duplicated effort; at worst the

attempts conflict, since the two orders are not necessarily the same. For transactions,

then, concurrency control takes the place of cache coherence.1

Leasing can be applied to concurrency control in much the same way as to coherence.

1 Actually, the notion .of coherence is not completely displaced. Non-transactional access can be viewed
as a series of degenerate transactions, where each consists of a single operation and commits when the
operation's result is returned. Such a system is trivially serializable: operations can be executed in
any order at all, as long as each is atomic. Coherence constrains the order of these transactions: if
one transaction is observed to commit before a second is initiated, then the first transaction must also
precede the second in the serialization order. The notion of coherence as an additional constraint on
serialization order generalizes to compound transactions.

That serializability allows transactions to execute "out of order" is commonly overlooked because
two-phase locking, the most commonly used technique for concurrency control, does not allow such
anomalous behavior.

80 CHAPTER 4. ADDITIONAL USES FOR LEASING

In particular, a lease can allow a cache to grant locks locally, so that a lock can be

claimed and released repeatedly without communication with the server. A cache can

grant read or write locks when it holds a lease of the corresponding mode. The cache

cannot relinquish the lease, allow it to expire, or approve a conflicting update while the

lock is held, however, or the lock must be broken and the transaction aborted.

The fact that transactions can be aborted, though, allows a cache to grant a lock

without holding an unexpired lease, at the risk of having to later abort the transaction

if an update occurs. In particular, if a lease has expired, the cache could optimistically

grant the lock before seeking an extension, so that execution of the transaction does not

have to wait for the server to grant the extension. The cache can also allow a lease to

expire while a lock is held. Before the transaction commits, though, the cache must

extend the lease, aborting the transaction if any conflicting update has occurred. With

a limit on the period for which the lease is allowed to have lapsed, this approach could

be described as boundedly optimistic concurrency control.

Additional support is required for write locks when a transaction might access an

item through more than one cache. When the item is accessed through the first cache,

that cache obtains a lease and grants a lock; later, the same transaction, executing on

a different host, tries to access the same item through a second cache, and the lease

requested by the second cache conflicts with that held by the first. To handle this case,

each request for a lease needs to include an identifier for the transaction, if any, that is

requesting the lock, and the file server includes the transaction's identifier in its request

that the first leaseholder relinquish its lease. If the requesting transaction is the same

one that holds the lock,2 then the cache relinquishes its lease, but indicates that the item

is locked by the requesting transaction. The file server records the write lock3 as held

by the transaction, then grants the requested lease. Any item that is write-locked and

shared has the lock recorded at the file server; there can be one write lease or many read

leases over the item, but all leaseholders know the identity of the transaction holding the

lock.

Multiversion concurrency control methods, surveyed in [10], are a natural fit with

caching, since the caches do cause additional version to exist, whether or not the server

maintains multiple versions. Read leases, in fact, correspond quite closely to multiversion

read locks, and the collection of approvals for an update to upgrading write locks to

certification locks. Granting either read or write locks for an item should be avoided

2Or, for nested transactions, the requester is a subtransaction of the one holding the lock.
3For there to be a conflict, one of the requests had to be for a write lock.

4.2. CACHING AND ATOMIC TRANSACTIONS 81

while an update is pending against it, since the transaction receiving such a lock is likely

to conflict with the one waiting to commit, and one of them will have to be aborted.

This contrasts with the non-transactional model in Chapter 2, where reads are allowed

while an update is pending; the difference is that there each operation is a separate

transaction, and the read "commits" immediately with no possibility of conflict with the

pending write. Under multiversion locking, an updating transaction must retain all of its

locks—and hence the cache its leases—until commit, while a read-only transaction can

release them once the last read is performed:

Under multiversion locking, read and write locks do not conflict; so a cache can still

hold a read lease for an item that is write locked. The cache must know the identity

of the transaction holding the write lock, however, because reads by that transaction

return a different version. If an item is not shared, read and write leases can be used

as before, giving the right to grant both read and write locks. When an item is shared,

however, only read leases are used for the committed version, with the leasing over any

uncommitted version managed separately. All holders of read leases on the committed

version must approve the granting of a new write lock, at which time they and the file

server record the identity of the transaction holding the lock. When the new version is

committed, approval is again required from the caches holding leases over the committed

version, which invalidate their old copy of the committed version and discard their record

of the lock.

Other concurrency control methods can also be adapted for caching and leasing,

including timestamp-based and hybrid methods. Some special care is required in selecting

timestamps, especially for multiversion methods, in order to preserve coherence between

transactions; the details of adapting these methods are not included here.

4.2.2 Atomic commit processing

A transaction that involves more than one server must employ an atomic commit protocol

to ensure that all of the participating servers come to the same decision about whether the

transaction commits or aborts. In order to accommodate caching, existing protocols for

atomic commit can be extended to cope with leasing and to allow caches as participants.

As an example, consider two-phase commit [31]. One of the sites involved in a transac-

tion is designated as the coordinator for the transaction. When the transaction attempts

to commit, the coordinator sends a prepare-to-commit message to the other participants.

Each of them writes any modified data to stable storage and logs the prepare-to-commit

82 CHAPTER 4. ADDITIONAL USES FOR LEASING

before replying prepared to the coordinator. After it has received a reply from all of the

participants, the coordinator sends them a commit message. Each participant then logs

the transaction as committed and releases any locks it holds.4

If for some reason a participant is unable to commit the transaction, it replies to the

prepare-to-commit with an indication that the transaction must abort. Upon receiving

such a reply the coordinator sends an abort message to all participants, which log the

transaction as aborted and abort its local effects. The coordinator can send an abort

message at any time before it sends a commit; it does so, for example, if a participant

fails to respond in time to a prepare-to-commit.

From the time it sends a prepared message until it has logged either a commit or an

abort, a participant is uncertain as to the transaction's outcome. Locks must be held

through this in-doubt period. Also, a failure during this period requires additional effort

during recovery to learn of the outcome, and leaves that transaction blocked, with its

locks held, until the participant is able to learn of the outcome. Because a transaction is

blocked while in doubt, and because of the additional costs for recovery from failures, it

is desirable to keep the period of uncertainty short.

Leasing and atomic commit

Leases can lengthen the in-doubt period, because a transaction cannot commit while there

is still a lease outstanding against data it writes. A server participating in a transaction

could ensure this by delaying its reply to the prepare-to-commit until it has obtained

approval for each lease that has not expired. If this delay is significantly longer than the

time to perform the required writes to the log, the period during which other participants

are uncertain of the transaction's outcome is lengthened. Also, if the delay is too long,

the coordinator will time out and abort the transaction. When a leaseholder has crashed

or is unreachable, the delay can be up to the term of the lease, which may be a long time.

The period for which locks are held cannot be reduced, but the period of uncertainty

can be shortened. Each participant replies promptly to the prepare-to-commit, but

includes in its reply the latest expiration time for an outstanding lease. The coordinator

includes the latest of these times in its commit message. Participants can then record the

transaction to be committed as of the indicated time: its eventual outcome is known, but

write locks must still must be held until the commit time.5 A participant that receives

4In single-value locking, read locks can be released when the participant replies to the prepare-to-
commit; under multiversion locking they must be held until all of the certification locks are obtained.

5For multiversion locking, all locks, including read locks, must be held. The certification locks held

4.2. CACHING AND ATOMIC TRANSACTIONS 83

approval for update that lowers its maximum expiration time can inform the coordinator,

which can send a new commit message with an earlier as-of time. Participants that receive

this message may release their locks at that earlier time.

As in the absence of transactions, the term of leases determines how much a client

failure can degrade the performance of other clients. When a leaseholder fails, it can

cause a transaction to block for the term of the lease; any transaction conflicting with

the blocked one is also blocked.

Caches as participants

An atomic commit protocol requires votes from all of the participants in a transaction,

which includes the caches as well as the file servers. The handling of the voting must be

modified to allow for caches as participants.

In the first round, the coordinator sends the prepare-to-commit to all participants,

including caching servers. File servers vote in the normal manner. When a caching

server receives a prepare-to-commit, it writes back any data that is still dirty, with the

same transaction identifier, then sends a cache-prepare-to-commit to each file server from

which it cached data for the transaction, whether read or written. The file server replies

to the cache as it would if the message had come from the coordinator, but on the basis

of the additional information about reads and writes that it has received from the cache;6

a file server that previously replied to the coordinator as prepared can later reply to a

cache as aborting. A cache replies to the coordinator as prepared only if all of the writes

succeed and each server replies to it as prepared. In order to keep the coordinator from

timing out while all this is happening, the cache may need to send it messages indicating

that it is not yet prepared to commit.

In summary, caching can also efficiently support atomic transactions on multiple

items. Leasing enables the caches to handle many of the locking requests, so that it

reduces server traffic for concurrency control in the same way that it reduces coherence

traffic in a non-transactional setting. Furthermore, encapsulating a group of operations

within a transaction can amplify caching's reduction of response time: each transaction

incurs only once the delay for a synchronous write to the server's nonvolatile storage,

whereas several operations might require separate commits if they were not part of a single

prohibit both reading and writing by other transactions.
6The server can release read locks when it first responds to the prepare-to-commit, but it must

maintain information about them until the commit or abort decision is received from the coordinator,
so that it can detect conflicts with locks granted by caches.

84 CHAPTER 4. ADDITIONAL USES FOR LEASING

transaction. The prospects are good for exploiting caching to improve the performance

of storage services that provide transaction management.

4.3 Improving availability

Previous chapters have assumed that each file is stored at only one server, and the

attention paid to availability has been limited to ensuring that adding client caching

does not reduce availability. The level of availability provided by a single server is not

always high enough, however, in which case data can be replicated at multiple servers to

increase its availability.

This section considers two questions concerning caching and availabilit)'. The first is

the problem of maintaining cache coherence when data is replicated. The second is how

coherence might be explicitly traded off to increase availability.

4.3.1 Caching replicated data

Caching and replicated data

Replicating data offers the possibility of increased availability, reliability, and perfor-

mance. Caching is a special case of replication with the goal of improving performance,

especially for reads; cache coherence corresponds to notion of mutual consistency for

replicated data. Cache coherence could in principle be handled by simply treating caches

in the same way as persistent replicas. There are several reasons, though, that caches

need to be treated differently. First, copies in caches are transient, while replication

techniques usually assume that the set of copies of an item does not change frequently.

The fixed set of replicas is also intended to enhance reliability, which caches do not, since

their copies may be discarded at any time. Finally, the number of caches can be very

large, while replication is usually targeted at a small number of copies.

A variety of approaches to replication are surveyed in [10] and [19]; leasing can be

used for cache coherence in conjunction with several of these methods. How leasing is

used depends on the patterns of communication between a client and the servers, and

on how the requirements of leasing can be met by the servers. It also depends on the

guarantee of coherence made for access to the replicas: some methods, such as available

copies algorithms, do not tolerate communications failures, and so are not usable in the

environments targeted by this research, while other algorithms, such as virtual partition,

are coherent only with respect to restricted communication, so that a discussion of caching

4.3. IMPROVING AVAILABILITY 85

from them would be dominated by describing the guarantees that caches can make. Two

approaches that do fit well with our concerns for coherence and for fault-tolerance are

quorum consensus and primary site; these serve as examples of how leasing interacts with

replication.

Quorum consensus. Quorum consensus (also known as weighted voting) was intro-

duced by Gifford [28]. Each replica is assigned some number of votes, and votes must

be collected for each read or write. A read requires contacting sites for which the total

number of votes constitutes a read quorum to determine which sites hold the current

version; similarly, a write must be performed at sites with at least a write quorum of the

votes.

Leasing is easily combined with replication by quorum consensus: holding a lease in

effect caches a server's votes. To know that its copy of an item is current, a cache needs

to know that it is the most recent among a read quorum of the replicas. The cache can

know this by holding a set of leases covering a read quorum. When it obtains a lease, the

cache must also retrieve from each of the replicas it contacts the number of votes, so that

it can determine when it has a quorum, and a version number for that replica, so that

it can determine which is the most recent version, just as a non-caching client would.

Because the term limits the frequency with which votes are required for reading, the high

overhead of reads under quorum consensus is greatly reduced. Write-back caching wor,ks

in a similar manner: in order to hold dirty data, a cache must hold write leases covering

a write quorum of the replicas.

The cost of maintaining coherence when caching replicated data depends on the num-

ber of servers in the quorums. For example, the load for extending (read) leases is spread

among the servers. If there are ns servers storing an item, and a read quorum contains qR

servers, then a cache must hold qR leases over an item. The cache requests qR extensions

per term, and the cache also must approve a separate update of each of the qR replicas

when the item is written. The traffic handled by the client and by the network therefore

increases with replication. Because each client obtains leases from only a read quorum

qR of the ns servers, the coherence traffic handled by each server decreases to an average

of qR/ns extensions per client per term.

In the case of a system consisting of clusters of workstations and servers connected

by a wide-area network, subleasing can be used to reduce the non-local traffic, just as

for non-replicated data. The gateway cache obtains leases over the remote replicas and

participates in local votes on their behalf; in this case, the lease functions as a proxy.

86 CHAPTER 4. ADDITIONAL USES FOR LEASING

If this is done, though, duplicate votes can result if there is more than one gateway

in a cluster or if a client communicates with the remote server directly as well as with

the local gateway. To prevent this, each server's votes need to be accompanied by an

identifier for the server so that the client collecting votes can discard duplicates. The

gateway also needs to monitor the status of the local replicas, so that it can obtain leases

over additional remote replicas to make up the read quorum when the local replica is

unavailable. It can do this either by seeking additional leases in response to a repeated

request for votes (leases) from'a client, or by maintaining a lease over the local replicas

and seeking additional leases when it is unable to extend it.

Primary site

Primary site methods designate a single site to handle all of the concurrency control and

version management for a given data item. If the primary site fails, a new primary is

elected from among the surviving replicas.7 Failure of the primary is, of course, detected

by timeout: an election must be held each timeout interval, and a site must cease to

function as the primary if it not reelected within the interval. The cost of these periodic

elections can be reduced by using a simple protocol to reelect the existing primary,

resorting to a more general election only when the reelection fails. .

Leasing under a primary site scheme is simple: all clients obtain their leases from

the primary site, and a client handles coherence exactly as for non-replicated data. The

only interaction between leasing and coherence in this case is the restrictions that leasing

imposes on the servers: a newly elected primary must honor any leases granted by its

predecessor. This can be ensured by having the primary inform one or more secondaries

before it grants each lease or extension, just as writes must be made to at least one

secondary site in order to prevent them from being lost. The leasing constraint can also

be enforced by having the new primary delay writes for the maximum term, just as for

a single server recovering after a crash.

Leasing can also be used among the replicas. For example, a secondary site can obtain

a lease from the primary and in turn grant subleases to clients. The load for extensions

messages can then be shared among the servers instead of being concentrated on the

primary; the costs of doing so are additional approvals required for updates and, due to

the constraint of subleasing, slightly shorter terms for clients.

7 Schemes in which a new primary cannot be dynamically selected are degenerate cases of quorum
consensus, with all votes held by a single site.

4.3. IMPROVING AVAILABILITY 87

Behavior very similar to the periodic election of a primary site can also be obtained

by using leases among replicas in conjunction with quorum consensus. If a server holds

leases over a read quorum of the replicas (including its own), then it is assured that its

copy is current. On the basis' of these leases, the server can grant a sublease to a client;

the server can, in fact, grant a single lease over the replicated item rather than a set of

leases over the separate replicas, such that the client can ignore the fact of replication in

maintaining coherence. A client then needs to communicate with only one of the servers

to be able to cache data for reading. Like primary site, this scheme keeps the cost of

reading data low, because a client needs to communicate with only one server in order

to cache data for reading. It also eliminates the need for a separate election mechanism;

lease extensions take the place of voting. The cost for using leases among the replicas is

an increased in the degree of sharing, because servers as well as clients hold leases over

an item, and therefore increased cost for writes.

Write leases can mimic more closely the centralized behavior of an elected primary

site. The election is effected by one site obtaining write leases over a write quorum of the

replicas. During the term of those leases, the site holding them controls all access to the

covered items, and only that site can grant leases to clients. In comparison with separate

election of a primary site, this scheme has the virtue of reusing the same mechanism

required to support clients; the management of leases, though, would need to incorporate

the techniques from election protocols to ensure that some site does eventually obtain a

quorum.

In summary, leasing can guarantee coherence when caching replicated data, and it

can even be used among replicas to reduce the cost of read access.

4.3.2 Coherence and availability

With a large enough cache, it is likely that a workstation has cached a copy of the files

that its user is working with,- such that the cache might be able to provide access to them

even when the file server is not available. When the server is inaccessible, though, the

cache cannot ensure that access is coherent. Any gain in availability must therefore be

purchased by sacrificing the guarantee of coherence.

How the trade-off between coherence and availability is made depends on the circum-

stances, of which there are two general types. The first case includes applications that

function correctly with stale data, and so can normally operate with relaxed requirements

for coherence. The second case includes specific circumstances in which the decision to

88 CHAPTER 4. ADDITIONAL USES FOR LEASING

accept incoherence is made at the time of access, because the need for immediate access

to data outweighs the risk of possible incoherence.

Relaxed requirements

For some applications, reading stale data is not an error. For example, in normal opera-

tion, a user does not care about executing the latest version of a system utility program,

provided the version used is not "too old." Similarly, when reading a computer bulletin

board, it is acceptable if articles do not appear immediately, as long as they appear in a

reasonably timely manner. Support for incoherent access to replicated data, to increase

availability or performance or to reduce costs, has been considered for information re-

trieval systems (e.g., [2, 29]), as have relaxed serializability constraints for transactions

(e.g., [19, 23, 27]). Alonso, et al, [2] propose a number of criteria for the distance allowed

between a copy and the true version of the data. The most practical of their proposals

is in terms of the maximum time since the data was current.

It is important to note that it is the application, not the data, that determines when

incoherent access is allowed. The same data when accessed for different purposes can

have different requirements: for example, a user perusing stock prices is satisfied with

recent prices, but when making a trade the same user demands current information.

The bound on how stale data can be needs to be specified on each request. In V's

file service, this could be done by embedding a modifier within the name: for example,

/storage/any/bin/latex :stale=lh would indicate that a version up to one hour old is

acceptable. The modifier need not be obtrusive; including it on directories in the search

path for program loading suffices to indicate that a slightly stale version of a system

program can be used.

A cache that uses leasing can easily support stale reads alongside coherent access.

The only change required is to the condition the client checks before returning cached

data: instead of requiring an unexpired lease, it requires a lease that expired not more

that T3taie seconds ago, where Tatau is the bound specified by the application. A default

of TstaU = 0 provides coherent access to those applications that require it.

Accepting stale reads increases availability because data remains readable for a limited

period without requiring communication with the server. The length of that period is

the bound on how stale data can be and still be acceptable. With a long enough bound,

then, accepting stale reads can keep data available for reading across brief communication

outages or server crashes. This approach holds promise, but only for those applications

4.3. IMPROVING AVAILABILITY 89

in which the acceptability of stale data can be identified in advance. Applications that

normally require coherent access do not benefit.

Specific circumstances

A user might not be willing to sacrifice coherence for continued access to files until he is

faced with the file server being unavailable. For example, when a user attempts to read a

file in order to begin editing it, the read can fail with an indication that the server is not

available. Faced with this result, the user might prefer to proceed by reading the cached

copy of the file, instead of waiting for the server to return to operation. It is possible that

the user does not require a guarantee of coherence from the cache, since he may be able

to determine from the file's contents or other knowledge that the cached copy is current,

or at least very likely to be.

The cache manager can help the user decide how to proceed by making available

information about the contents of the cache. In addition to showing what data is present,

the cache manager should also indicate when each item was last known to be current.

The prototype in Chapter 3 could be easily extended for this purpose with an additional

tree of names, rooted at-/cache/Ziostname/contents. Each directory within this tree

would contain only those names for which data is caches, and each directory entry would

consist of a set of flags indicating which of the possible data is present8 and the time at

which the lease covering it expires (or expired). A user can determine both what is in

the cache and how stale it might be by listing these directories.

Two extensions would increase the number of situations in which the cache can be

used to provide access to otherwise unavailable data. The first extension is to support

writing to the cache in addition to reading from it, so as to support a wider range of

activities. The writes clearly cannot be committed until the file server is again accessible,

but the risk of loss may still be low enough for some uses.

The other possible extension would lower the risk from incoherent access by detecting

it when communication with the file server has been restored, and providing the oppor-

tunity to resolve (or correct) any conflicting operations. Because sharing is rare, conflicts

would also be rare, so that corrective action would seldom be required.

Handling conflicts is very important, though, when data is written to the cache, be-

cause a conflict can prevent writes from committing. For example, a user might write to

8In the prototype, the fragments of data are the stable attributes in the descriptor, the volatile
attributes, and the file's contents or the list if the directory's children.

90 CHAPTER 4. ADDITIONAL USES FOR LEASING

a cached copy of a file while unable to communicate with the server, and after communi-

cation is restored, the cache attempts to commit the writes to the server. If another user,

though, has changed permissions for the file, the first user might no longer be authorized

to write it, so that the write-back must fail. Fully exploiting caching for increasing avail-

ability would require developing techniques to detect conflicts and tools to resolve them,

which are beyond the scope of this dissertation.

4.4 Summary

This chapter has broadened the scope of results from previous chapters. First, coherence

for secondary caches, which improve the scalability of the system, is easily provided us-

ing subleasing. Second, support for atomic transactions does not negate the performance

benefit of caching, and leasing can be used to provide efficient concurrency control. Fi-

nally, the approaches taken here to caching are applicable when higher availability is

needed; leasing is compatible with replicating data at file servers for greater availability,

and the coherence of caches can be traded off to make data available even when file

servers are not accessible. Taken together, these results strongly suggest that caching—

particularly with leasing—can be expected to work well in a wider range of circumstances

than those considered in earlier chapters.

Chapter 5

Related work

This chapter surveys related work in four areas:

• maintaining coherence in contexts other than file service,

• measurements of file-system access patterns,

• other caching file systems, and

• uses of time that are similar to leasing.

5.1 Coherence

The problem of coherence arises in several contexts other than file caching: shared mem-

ory multiprocessors, distributed shared memory, replicated data, and distributed name

service.

5.1.1 Multiprocessors

Shared-memory multiprocessors use caches to reduce contention for the common bus and

memory. A variety of protocols have been implemented or proposed, some for implemen-

tation in hardware, others for a combination of hardware and software. Descriptions of

several of these protocols can be found in [3] and [65]. The focus of multiprocessor work

has been on details other than notification, such as the representation of cache directo-

ries and evaluation of write-invalidate versus write-broadcast approaches. The coherence

mechanisms use reliable notification, since the designs do not attempt to tolerate partial

failures.

91

92 CHAPTER 5. RELATED WORK

Several projects are designing multiprocessors intended to accommodate hundreds or

thousands of processors (e.g. [15]). As such systems grow larger, the ability to tolerate

partial failures will become more important, but research on caching in multiprocessors

has given little attention to partial failures.

5.1.2 Distributed memory

A shared memory can be implemented even when the underlying hardware does not

support it. Li and Hudak [41, 42], for example, describe providing shared memory among

processes on different workstations connected by a local-area network. The techniques

used depend on reliable notification, and so do not tolerate crashes or communication

failures. Leasing could be used in this context, using the extension for write-back caches

described in Section 2.4.3. The access pattern and allowable delays differ from those of

file service; further evaluation would be required to determine performance.

In the Mirage [24] distributed shared memory, reliable notification is augmented with

a timer, but for a different purpose from that in leasing. In Mirage the time specifies a

minimum period for a page to remain resident at a site before it is released; the interval

can be increased to reduce thrashing on a write-shared page. Within the framework of

leasing, this amounts to having a minimum time after acquiring or extending a lease

before the leaseholder is willing to relinquish the lease or approve an update.

5.1.3 Distributed naming

Time-based methods resembling leasing have also been used in at least two distributed

naming systems. Lampson describes a global directory service [39] in which client caches

discard entries at a server-specified time. Servers are forbidden from modifying an entry

before it expires. This condition is equivalent to our policy for leases over installed

files. Lampson makes no provision, however, for requesting approval of'updates or for

extending the term for already cached data.

Name services more commonly use cached data as hints, for which coherence need not

be guaranteed, since stale data can be detected when it is used. In the Internet Domain

Name Service [47], for example, a name server specifies a time-to-live for the data it

returns, and clients cache the data for that period. The data may be modified during

that interval, however, and any inconsistency that results must be detected and corrected

by other means. Terry [62, 63] discusses in more detail the caching of hints for name

5.1. COHERENCE 93

interpretation, including the use of on-use and periodic checks as options in maintaining

the accuracy of the cache at the desired level. Using hints shifts the cost of ensuring that

data is correct to each access, with no restrictions or load imposed on updates; hints can

perform very well when the cost of verifying a hint is small. Leases, in contrast, limit

the cost per access to checking whether the lease has expired and extending it when it

expires, but shift the burden partially to updates, which must obtain approvals or wait

for leases to expire.

5.1.4 Replicated data

As previously noted, caches are replicas, and so techniques for maintaining the mutual

consistency of replicas can be used for cache coherence. For example, Gifford's description

of weighted voting [28] proposes treating caches as weak representatives with no votes,

which has the same behavior as leasing with a zero term. Any vote assignment that

assigns a read quorum to a cache is equivalent to an infinite-term lease, since the cache

must approve every update. Leases can be viewed as temporarily assigned votes, but

with much simpler reassignment than in more general schemes for adjusting quorums [8,

34].

Most other algorithms for replication are coherent only with respect to communication

via the file service; i.e., operations may appear to be performed out-of-order if there users

or application programs exchange communicate by means other than reading and writing

files. In contrast, leasing and voting methods make the stronger guarantee of coherence

with respect to arbitrary communication, including communication via channels outside

the computing system.

Furthermore, available copies algorithms, including virtual partition, are poorly suited

for the conditions presented by large-scale caching. In particular, each change to the set

of available copies incurs significant overhead. With caching, though, the set of replicas

for a particular file changes often as clients cache new files and discard others from their

caches. Supporting a large number of clients compounds the problem, since it increases

the frequency of changes to the set of accessible replicas. In contrast, leasing is designed

to efficiently handle frequent change in the set of clients.

94 CHAPTER 5. RELATED WORK

Ousterhout Kent Thompson Floyd Burrows Chapter 3
naming no no some yes yes yes
failed operations no no no no yes yes
descriptor access no no no no yes yes
file lifetimes yes no yes yes no yes
program loading some no no yes no yes
file classes no no yes yes some yes
long-term trace yes yes yes yes yes no
sharing yes yes yes yes yes no

Table 5.1: Data included in trace studies.

5.2 File access patterns

There have been a number of previous studies of file access. Most of the measurements

reported have been collected on centralized Unix systems in academic environments [11,

25, 26, 37, 48, 53, 65], but there have also been measurements on IBM mainframes [55,

61] and on Multics [49]. Our comparison here focuses on the Unix measurements, since

they are more directly comparable to those collected in V, and they include more relevant

information.

Most of the Unix studies collected traces of file-system access over periods of several

days. These trace studies are:

• Ousterhout, et ai, [53] with additional simulation results in [50]

• Kent [37]

• Thompson [65]

• Floyd [25, 26]

• Burrows [11]

Table 5.1 summarizes the data included in each of these plus the traces from Chapter 3.

Mogul [48] reports counts of operations over a period of several days.

Three of these studies, Ousterhout, Kent, and Thompson, focus on access to file

contents. All three use the traces to drive simulations of block-level caching to explore

effects of block size, cache size, read-ahead, write policy, and coherence. Thompson's

analysis is the most thorough and is the only one of these three to include operations other

5.3. CACHING FILE SYSTEMS 95

than reads and writes in the traffic analyzed. Burrows reports on a simple simulation of

whole-file caching used as an initial test of the feasibility of caching.

Most of the studies report data on sharing among users; the exceptions are Kent's,

which reports on simultaneous sharing among processes, and ours, which includes data

from only one user. A study of sharing in Multics [49] describes sharing among user login

sessions.1 The caching simulations place each user on a separate workstation. They all

find simultaneous write-sharing to be rare; sequential sharing, in which a file is written

by one user and eventually read by some other, is fairly common. Floyd and the Multics

study provide additional data about files that are shared. A small number of widely-

shared files account for a large portion of the read traffic; these files would be included in

our installed class. Also, temporary files are almost never shared. Most sharing of non-

installed files is among small numbers of users; the exceptions are identified by Burrows

and Thompson as files used in the interface to system services.

Our measurements attempt to give a more complete picture of a client's file-system

access than just reads and writes; only our traces include all three of failed operations,

descriptor access, and program loading. Each of these three is shown to be a significant

share of the load whenever it is measured. Mogul and Burrows both find descriptor reads

to be common, and Burrows also reports that 18% of all name lookups fail. Kent also

traces disk accesses, and he notes that half of the disk I/O is not accounted for by file

reads or writes, but is the result of paging or directory and descriptor access.

In summary, the measurements presented here differ from the other studies in their

focus. The traces in V do not attempt to capture either long-term patterns or sharing

among users that the other studies describe. Instead of focusing on access to file contents,

Chapter 3 looks at the full set of operations requested by clients. Also, the analysis here

explores the different effects of caching on classes of files more fully than do the other

studies.

5.3 Caching file systems

Several other distributed file systems employing caching have been built. This section

looks at three of them in some detail, and compares the issues that they address and the

techniques they use with those in this dissertation.

1In the terminology of Multics, it reports sharing of segments among processes.

96 CHAPTER 5. RELATED WORK

5.3.1 Sprite

Sprite's file system [50] uses RAM to cache file contents on both servers and clients.

Sprite is similar to the basic cache in Chapter 3 in that it makes no attempt to cache

naming or descriptor information. Nelson estimates that traffic could be reduced by up

to half if it did cache that information [51]. Sprite differs from the basic cache in two

important ways: its use of delayed write and its coherence mechanism.

Sprite makes use of delayed write on all files in order to reduce both traffic and

response time, sacrificing reliability for improved performance. This contrasts with our

special handling for temporaries and reliable commit for all others.

Though Sprite makes no distinctions in operation, Nelson [51] does report measure-

ments with writes delayed for only temporary files. When nontemporary files are written

through on close, network traffic is 70-109% of that for a thirty second delay on all files.

Nelson's measurements of elapsed time are difficult to interpret, since they reflect a disk

organization that handles writes very inefficiently: writing one file block often requires

writing two disk blocks, with no attempt made to avoid a seek between them. For server

policies providing some insulation from this defect, elapsed time with only temporaries

delayed is within 5% of that when all files are delayed. In Sprite the creation, deletion,

opens and closes for temporary files are still being handled by the file server; performance

would be even better under our design, which handles those operations within the cache.

Sprite provides coherence with respect to arbitrary communication, but at the gran-

ularity of individual read and write system calls instead of file open and close as in our

design. .The mechanism is a hybrid, querying the file server on each open and using

reliable notification while a file is open. To avoid thrashing, client caching is disabled

when a file is concurrently write-shared. Because Sprite depends on reliable notification,

it does not tolerate communication failures.

The information for maintaining coherence is kept in the server's RAM; so it is lost

when the server crashes. Welch [67] describes the protocol by which a server attempts

to recover this state by broadcasting a query to clients. This protocol does not tolerate

communication failures, and during recovery a malicious client can interfere with the

guarantee of coherence to other clients.

5.3.2 Andrew

The Andrew file system (AFS) is a shared file service intended to augment the local

file system of a workstation. There have been two major versions of the Andrew file

5.3. CACHING FILE SYSTEMS 97

system [35, 58], which share the property of caching whole files on local disk. Coherence

is provided at the granularity of file open and close, as in V, though in Andrew the choice

was primarily made to simplify implementation.

The first version, AFS-1 [58], is equivalent to the basic cache, with all naming per-

formed by the servers, and a coherence check on each open. The servers in AFS-1 had

inadequate capacity, for two primary reasons: a high level of traffic, with 65% of the

requests for coherence checks and 27% to read descriptors, and an inefficient implemen-

tation of the servers.

The second version, AFS-2 [35], made several changes to reduce the load on servers.

The file servers were reimplemented in a much more efficient manner, and caching of

directories and descriptors was added, with reliable notification used to maintain coher-

ence. Cached directories are interpreted by clients to look up names. (The representation

of directories was also changed to make lookups much more efficient.)

The use of reliable notification means that AFS-2 cannot tolerate communication

failures. When a server's attempt to notify a cache about an update fails, based on the

transport-level timeout, the server discards its record that the client had the file or direc-

tory cached and then proceeds with the write [36]. This leaves stale data in the client's

cache, and the client learns of the error only when it next attempts to communicate with

the server. During the interval that it is using stale data, a client may continue to read

and write files from other servers. To limit the duration of inconsistencies, each client

queries its servers every ten minutes to synchronize its clock.

There is some class-specific handling of files under AFS. AFS is intended to augment

a local file system; temporaries and copies of some installed files are placed in the local

file system instead of AFS to reduce the demand. This also means that those files cannot

be shared. Also, installed files are placed in separate read-only volumes to allow them

to be replicated and to eliminate the need to maintain records of clients using them.

Updates to these volumes must be made through a different mechanism from that used

for writable files.

5.3.3 MFS and Echo

Burrows' MFS [11] was developed concurrently with this work. It seeks to provide co-

herent access to a shared Unix file system with a similar degree of reliability. Data is

cached on local disk and in the existing Unix buffer cache, using the Unix file-system data

structures. The NFS protocol [57] is used to access the file servers, with a separate token

98 CHAPTER 5. RELATED WORK

server used to ensure coherence. MFS uses the thirty-second delay on writes normally

provided by the Unix kernel, and so can suffer undetected loss of recently written data

when a client crashes.

The tokens in MFS are very similar to leases for write-back caching, but without the

emphasis on time that is central to leasing. Because a token is revoked when the server's

RPC to the client times out, the token scheme does not tolerate communication failures,

and the guarantee provided is comparable to that of AFS-2. Burrows does mention

the possibility of timing out tokens, but does not discuss the tradeoffs in selecting the

term. MFS is able to specify tokens at the granularity of individual bytes within files,

and Burrows describes efficient server data structures for maintaining them. Security

is discussed in more detail than it is here, since Byzantine clients are a more serious

problem when attempting to recover with write-back caches.

The Echo file system [45] uses the same approach to coherence as MFS, but with com-

munication failures handled correctly. Echo uses a primary-site approach to replication,

with lease information replicated at the secondaries [44]. Its designers discuss several

options for extending leases, but the trade-offs with length of term are not quantified.

They also do not consider the special handling that we provide for installed files.

5.3.4 Others

The Cedar file system CFS [60] avoids the problem of maintaining coherence by limiting

sharing to immutable files. Because shared data cannot change, no coherence mechanism

is required. Instead, selection of versions to cache is made by an application that estab-

lishes a name space local to the workstation. Caching of immutable data can also be

expressed as a special case of leasing with an infinite term, which in this case is acceptable

since writes are prohibited.

RFS [7] is similar to Sprite, using a version check on each open and disabling caching

when concurrent write-sharing is detected. The major differences from Sprite are that

caches are write-through, that caching is enabled more quickly after write-sharing ends.

No description of failure-handling is provided.

Coda [59] extends AFS-2 with support for replication and for disconnected operation

when the file servers are not available. Coda does not guarantee coherence of either

caches or replicas in the presence of communication failures, yet a workstation continues

to access files in the cache and on other servers without giving any indication that a

failure has occurred. Only some inconsistencies are detected after the fact; no effort

5.4. OTHER USES OF TIME 99

is made to check for read-write conflicts. As a consequence, many applications (such

as Unix make) cannot be safely run on top of the Coda file system. Coda's approach

stands in contrast with that described in Chapter 4, which makes any use of stale data

safe. Coda does include tools for resolving conflicts that it does detect, and for caching

a desired set of files before intentionally disconnecting a portable host from the network.

The FileNet system [20] employs caching for data with an access pattern very different

from the other systems considered here. The rate of access is very low, with the rate

of reads measured being around one per ten seconds, and the lowest measured ratio of

reads to writes is greater than forty; in addition, files shift between periods of read-only

access and periods of update. To minimize server traffic, the FileNet system tracks the

rates of reads and writes for each file and switches between the equivalent of leasing with

terms of zero and infinity. The formula used for deciding when to switch is similar to the

estimates for traffic developed here.

5.4 Other uses of time

Leasing's use of time is far from unique: timeout is a standard technique in commu-

nication protocols for detecting lost messages, and timeouts are often the only means

available for detecting host or process crashes in distributed systems, including database

systems. Some database systems use timeouts to detect deadlocks as well [1]. Leasing

differs from timeout, though, in that it uses time not so much to detect failures as to

make guarantees in spite of them. In this respect, leasing is similar to protocols such as

SCMP [43] that use either explicit time or bounded packet lifetime in order to suppress

duplicates.

5.5 Summary

This research differs from previous work in its focus, and the resulting cache design is

distinguished by the techniques used to improve its performance.

The first difference in focus is the insistence on robustness: caching is not allowed

to compromise the coherence, reliability, or availability of the file service. Furthermore,

communication failures must be tolerated, not just host crashes.

The other difference in focus is the treatment of file service as a whole, instead of

limiting interest to reading and writing file contents. This broader concern manifests

100 CHAPTER 5. RELATED WORK

itself in the caching of naming and descriptor information in the prototype and in the

extensions in Chapter 4 to support transactions, concurrency control, and replication.

The cache design has two distinctive features. It ensures coherence by leasing, with

its emphasis on the explicit use of time. The design also distinguishes two classes of files,

temporary and installed, and exploits their differences to improve performance.

Chapter 6

Conclusion

6.1 Results

This dissertation has shown how to use caching of file-system data on clients to improve

the scalability and performance of a distributed file service without reducing its ability

to tolerate either host or communications failures. Analysis of the performance of a

prototype file-service cache for the V-system shows that it achieves a substantial reduction

in server traffic without decreasing the file system's reliability, availability, or coherence.

Three techniques make possible this combination of performance and fault-tolerance:

using leasing for coherence, recognizing file classes, and caching metadata as well as file

contents.

Leasing. Leasing guarantees coherence with respect to arbitrary communication, even

in the face of host crashes and communication failures. Furthermore, a faulty or even

malicious client cannot compromise the coherence of other clients' caches. The only

effect that one client's failure has on another client is that writes to shared files might be

delayed for up to the term of a lease. Instead of depending on reliable communication,

leasing requires only that the client and server have reasonably well-behaved clocks.

The mechanisms previously used for file cache coherence can be expressed as special

cases of leasing, where the term is of either infinite or zero duration. Leasing makes

the use of time explicit, which allows a range of trade-offs between normal performance

and worst-case performance after a failure. For the patterns of access that have been

measured in file systems, an analytical model shows that leases with terms of just a

few seconds make the contribution of coherence to both traffic and response time very

small, while also providing a reasonable bound on the added delay after a client failure.

101

102 CHAP TER 6. CONCL USION

Trace-driven simulation confirms this result, and the model indicates that performance

remains good as processor speed or network latency increases.

Leasing is also flexible. The conditions for correctness allow a variety of policies for

managing leases, making different trade-offs between traffic and response time or read and

write performance. Maintaining the coherence of multi-level caches through subleasing

supports scaling to very large systems. Leasing is also compatible with replicating data at

multiple servers, and it can work together with a framework that, when acceptable, allows

access to possibly inconsistent data in order to increase availability. Finally, leasing can

be used within a transaction-processing system to allow caches to perform concurrency

control.

File classes. Not all files are the same, and recognizing the differences for just a few

classes of files offers substantial improvements in performance. Recognizing installed files

and using a different policy for managing the leases over them can reduce the traffic per

client and avoid pathological behavior on the updates to them, at the expense of increas-

ing the latency for those infrequent updates. Similarly, providing additional support for

temporary data reduces traffic for writes and for file creation and deletion; the overall

reduction in traffic compares favorably with that achieved by delaying for up to thirty

seconds writes to all files. Unlike delayed write, though, special handling for temporaries

reduces traffic without sacrificing the reliability of storage for non-temporary files.

Caching metadata. File service includes more than just access to the contents of

files. Once file contents have been cached, a significant fraction of the traffic handled by

a file server reads information about files. For the traces analyzed in Chapter 3, caching

naming information and descriptors makes possible a reduction in traffic of up to 40%

compared to caching only file contents, though that benefit also depends on the use of

leasing to avoid coherence checks. A detail that has escaped previous research is the

significance of caching to handle failed name lookups.

Together, these techniques yield a traffic ratio of 13-50%, an improvement of as much

as 60% compared to a basic cache that does not use them. Some features of the design

presented in Chapter 3 are specific to the V-system, as are details of the analysis of

performance. Similar results, however, would be expected for other systems, especially

with a similar workload.

6.2. FUTURE RESEARCH 103

6.2 Future research

Coherence. Chapter 2 noted the difficulty in defining precisely what is meant by co-

herence. The notion of coherence with respect to a set of possible observations needs to

be formalized more completely and, if possible, unified with the notions of transaction

serializability and of different levels of coherence in multiprocessor memory systems.

Also, the usefulness and performance of leasing needs exploration in other applications

of caching, such as distributed shared memory or scalable multiprocessors, where failure-

handling has not yet received much attention.

Sharing in distributed systems. The evaluation of cache performance would be

much more solid with data on the sharing that actually does occur in distributed systems.

Traces of file access in distributed systems would be very useful, especially if made in a

system that allows users to easily employ multiple hosts. The scheduling of programs in

such a system also needs to be reconsidered in light of caching.

No measurements have been published for access patterns in wide-area file systems,

but such data is needed in order to evaluate the effectiveness of multi-level caching in

such a setting.

File server design and performance. Cache performance is only one factor in the

overall performance of a file service; the performance of the file server is also very impor-

tant. Caching not only reduces the average demand placed on the server by each client,

but it changes the nature of that load as well. With effective caching, the file server's

load is dominated by writes, reversing the conventional wisdom that reads should be

optimized at the expense of writes. Response time is especially dependent on the latency

of commit operations. The performance of server design alternatives needs to be devalu-

ated in light of caching. Of particular interest are the different uses of logging described

by Finlayson [22], by Hagmann [33], and by Ousterhout and Douglis [52], and the use

of different storage technologies, such as nonvolatile RAM, disk arrays, and write-once

disks.

Caching in other contexts. Finally, research is needed to determine the potential

for caching in other storage services, such as databases, in which the techniques from

Chapter 4 could be used to support caching and transactions together. The possibility of

caching in an object-oriented database is especially attractive, though access to relational

104 CHAPTER 6. CONCLUSION

databases within a distributed environment could also benefit.

Appendix A

Full trace data

This appendix provides more detailed information about the traces used in Chapter 3.

A.l Configuration traced

All three traces described here were collected on a Micro VAX II workstation with sixteen

megabytes of memory; several different remote file servers were used. The caching server

used for tracing corresponds to the basic cache plus temporary support. All traces were

collected 'with the workstation otherwise idle, except for normal system overhead; the

file servers were under their normal loads. Each trace begins with the cache completely

empty.

The traces were collected without kernel support for virtual memory, using a process-

level memory server for block-level caching. The absence of virtual memory affects the

measurements in three ways. First, execution is slightly slower, because the overhead for

the process-level server is higher than that for a kernel memory server, in both context

switching and in copying of data. Second, program loading generates a higher level

of reads than would be expected from demand paging. Third, the process-level memory

server used for the traces transfers whole files only, which inflates the number of reads and

the cache size. None of these significantly affects the issues considered in this dissertation.

Partial transfers would yield a slightly lower traffic ratio for reads than is reported in

Chapter 3, which can only increase the significance of the improvements described there.

105

106 APPENDIX A. FULL TRACE DATA

A.2 Data included

The traces include a record for each operation handled by the caching server, and for

each operation it requested of the file server. Reads and writes are not traced, but each

close record contains the number of one-kilobyte blocks read from or written to the cache.

The operations within each group reported in Chapter 3 are:

commit These operations all commit an update to the file system.

open - create Create a new file by opening it for writing.

close - commit Commit writes to a file.

create directory Create a new directory.

remove/rename Remove or rename a file.

write named descriptor Modify the descriptor for a file or directory, usually

to change permissions.

naming read This group of operations all require resolving a name or other reading

of descriptors, but produce no changes.

open - read Open a file for reading.

reopen - write Open an existing file for writing.

get file name Get the name of an open file. In V, this is invoked as part of the

program loading sequence.

read descriptor Read the descriptor of an already-open file.

read named descriptor Read a descriptor by name.

directory open Open a directory for reading.

directory read Read a single entry from a directory.

name not found Operations that failed because the named file or directory did

not exist. Mostly opens for reading and descriptor reads.

misc. The remaining operations neither require reading descriptors nor commit a

visible change.

truncate Truncate an open file.

A.3. THE DATA 107

close - no change Close a file without committing any writes, usually because

it was open only for reading.

directory close Close a directory after reading it.

Some operations are not included in the trace; their use was determined or estimated

from the data that is included. Truncate and get-file-name are not traced at all, but

their use could be reliably determined by examining the traces. For directory reading,

only the open is recorded, and the number of entries read was determined by examining

the directories after the trace completed.

The trace also does not include counts of blocks read from or written to the file

server; these counts are estimated from the counts of blocks accessed from the cache. In

the activities traced, most blocks that are accessed are read or written only once for each

time the file is opened; so that the number of distinct blocks accessed from an open file

is very close to the number of block accesses. Because no cache replacement is required,

the number of blocks read or written from the server is the maximum number of blocks

read or written for a single open at the cache. For a few cases in which blocks from a

file are read repeatedly, the number of blocks in the file is used as the number of blocks

read from the server.

A.3 The data

The data for each trace appears in five tables.

Traffic with no caching. These counts are of the operations that applications re-

quested of the cache, which would all be handled by the file server if there were no

cache.

Traffic for basic cache. Only reads, writes, opens and closes change when the basic

cache is used, and on-open coherence checks are added. Counts of blocks read and written

by the file server are not included in the traces, but can be determined from the file sizes,

since the memory server used for the traces does only whole-file transfers.

Write traffic for a thirty-second delay is based on lifetimes in the traces, measured

from the time a version is committed to the time it was overwritten or deleted. Note

that this underestimates traffic for a typical implementation of delayed write, in which

any dirty blocks are written out every thirty seconds: the average delay in such an

108 APPENDIX A. FULL TRACE DATA

implementation is fifteen seconds. The comparison in Section 3.3 is therefore biased in

favor of delayed write, yet the special support for temporaries compares favorably.

Traffic with descriptor caching. The data reported for descriptor caching is based

on a simple simulation in which the entire directory is read when a name is not found

or when an application reads the directory. Coherence is still checked on each use of

descriptor data except for the reads within a directory.

Traffic with special temporary support. These counts are determined directly from

the traces. The table is omitted for latex, because it uses not temporary files.

Lease extensions. The figures reported here are from a separate simulation. The first

column reports on traffic if extensions are requested separately as needed, the second if

an extension is piggybacked on each committing operation.

Counts of extensions are shown for installed and other files both separately and if

combined; the totals are significantly lower when combined. Temporary files are not

included, since the special support for them eliminates the need for coherence.

A.3. THE DATA 109

operation tmp installed other

read (kB) 13872 42265 17178

write (kB) 11596 0 9641

truncate 0 0 0

open - read 338 3030 1901

open - create 340 0 72

reopen - write 0 0 53

close - no change 338 3030 1901

close - commit 340 0 125

create directory 0 0 3

remove/rename 340 0 17

get file name 0 401 0

read descriptor 0 7 170

read named descriptor 0 192 629
write named descriptor 0 0 26

directory open 0 0 0

directory read 0 0 0

directory close 0 0 0

name not found 0 340 4236

Table A.l: f sbuild: Traffic with no caching.

operation tmp installed other

read (kB) 0 2763 512

write (kB)
with 30-sec. delay

11596
2284

0
0

9641
7700

truncate o- 0 0

open - read 0 94 78
open - create 340 0 72

reopen - write 0 0 0
close - no change 338 94 78
close - commit 340 0 125

coherence check 338 2936 1876
max. cache size 9 MB

Table A.2: f sbuild: Traffic for basic cache.

110 APPENDIX A. FULL TRACE DATA

operation tmp installed other

get file name 0 0 0
read descriptor 0 1 8
read named descriptor 0 5 107
write named descriptor 0 0 26
directory open 0 4 10
directory read 0 173 155
directory close 0 4 10
name not found 0 4 10

coherence check 338 3862 6776

Table A.3: f sbuild: Traffic for directory/descriptor caching.

operation tmp

read (kB) 0
write (kB) 0
truncate 336
open - read 0
open - create 4
reopen - write 0
close - no change 4
close - commit 0
remove/rename 4

coherence check 0

Table A.4: f sbuild: Traffic for special temporary support.

files included
separate

extensions
piggybacked
extensions

installed 398 398
other 373 233
combined 508 388

Table A.5: f sbuild: Lease extensions required, 10-second term.

A.3. THE DATA 111

operation tmp installed other

read (kB) 2625 17858 4542
write (kB) 1773 0 2035
truncate 0 0 0
open - read 70 480 402
open - create 74 0 102

reopen - write 0 0 2
close - no change 70 480 402
close - commit 74 0 104
create directory 0 0 20
remove/rename 74 0 6
get file name 0 476 0
read descriptor 0 1 27
read named descriptor 0 0 258
write named descriptor 0 0 22
directory open 0 0 96
directory read 0 0 793
directory close 0 0 96
name not found 0 0 725

Table A.6: af sbench: Traffic with no caching.

operation tmp installed other

read (kB) 0 1093 402
write (kB)
with 30-sec. delay

1773
545

0
0

2035
1611

truncate 0 0 0
open - read 0 24 71
open - create 74 0 102
reopen - write 0 0 0
close - no change 70 24 173
close - commit 74 0 104

coherence check 70 456 333
max. cache size 5 MB

Table A. 7: af sbench: Traffic for basic cache.

112 APPENDIX A. FULL TRACE DATA

operation tmp installed other

get file name 0 0 0
read descriptor 0 1 4
read named descriptor 0 0 22
write named descriptor 0 0 22
directory open 0 0 32
director}' read 0 0 151
directory close 0 0 32
name not found 0 0 11
coherence check 70 932 1370

Table A.8: af sbench: Traffic for directory/descriptor caching.

operation tmp

read (kB) 0
write (kB) 0
truncate 71
open - read 0
open - create 3
reopen - write 0
close - no change 3.
close - commit 0
remove/rename 3

coherence check 0

Table A.9: af sbench: Traffic for special temporary support.

files included
separate

extensions
piggybacked
extensions

installed 96 96
other 107 49
combined 123 67

Table A.10: af sbench: Lease extensions required, 10-second term.

A.3. THE DATA 113

operation tmp installed other

read (kB) 1732 114

write (kB) 0 124

truncate 0 0

open - read 70 20

open - create 0 0

reopen - write 0 8
close - no change 70 20
close - commit 0 8
remove/rename 0 0
create directory 0 0

get file name 2 0
read descriptor 0 0
read named descriptor 0 0
write named descriptor 0 0
directory open 0 0

directory read 0 0

directory close 0 0
name not found 0 82

Table A.11: latex: Traffic with no caching.

operation tmp installed other

read (kB) 820 52
write (kB)
with 30-sec. delay

0
0

124
124

truncate 0 0
open - read 10 6
open -.create 0 0
reopen - write 0 4
close - no change 10 6
close - commit 0 8

coherence check 60 18
max. cache size 3 MB

Table A.12: latex: Traffic for basic cache.

114 APPENDIX A. FULL TRACE DATA

operation tmp installed other

get file name 0 0
read descriptor 0 0
read named descriptor 0 0
write named descriptor 0 0
directory open 0 2
directory read 0 68
directory close 0 2
name not found 0 2
coherence check 62 96

Table A.13: latex: Traffic for directory/descriptor caching.

files included
separate

extensions
piggybacked
extensions

installed 12 12
other 17 13
combined 17 13

Table A.14: latex: Lease extensions required, 10-second term.

Bibliography

[1] R. Agrawal, M.J. Carey, and L.W. McVoy.

The performance of alternative strategies for dealing with deadlocks in database

management systems.

IEEE Transactions on Software Engineering, SE-13(12):1348-1363, December 1987.

[2] Rafael Alonso, Daniel Barbara, Hector Garcia-Molina, and Soraya Abad.

Quasi-copies: Efficient data sharing for information retrieval systems.

In J.W. Schmidt, S. Ceri, and M. Missikoff, editors, Advances in Database Technology

— EDBT '88, number 303 in Lecture Notes in Computer Science, pages 443-468,

Venice, Italy, March 1988. Springer-Verlag.

[3] James Archibald and Jean-Loup Baer.

Cache coherence protocols: Evaluation using a multiprocessor simulation model.

ACM Transactions on Computer Systems, 4(4):273-298, November 1986.

[4] Association for Computing Machinery.

Proceedings of the Tenth ACM Symposium on Operating Systems Principles, Orcas

Island, Washington, December 1985.

Published as Operating Systems Review, 19(5).

[5] Association for Computing Machinery.

Proceedings of the Fifth Annual ACM Symposium on the Principles of Distributed

Computing, Calgary, Alberta, August 1986.

115

116 BIBLIOGRAPHY

[6] Association for Computing Machinery.

Proceedings of the Twelfth ACM Symposium on Operating Systems Principles, Litch-

field Park, Arizona, December 1989.

Published as Operating Systems Review, 23(5).

[7] M. J. Bach, M. W. Luppi, A. S. Melamed, and K. Yueh.

A remote-file cache for RFS.

In Proceedings of the Summer 1987 Usenix Conference, pages 273-279, Phoenix,

Arizona, June 1987. Usenix Association.

[8] Daniel Barbara, Hector Garcia-Molina, and Annemarie Spauster.

Increasing availability under mutual exclusion constraints with dynamic vote reas-

signment.

ACM Transactions on Computer Systems, 7(4):394-426, November 1989.

[9] Eric J. Berglund.

An introduction to the V-System.

IEEE Micro, pages 35-52, August 1986.

[10] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman.

Concurrency Control and Recovery in Database Systems.

Addison-Wesley, 1987.

[11] Michael Burrows.

Efficient data sharing.

Technical Report No. 153, Computer Laboratory, University of Cambridge, Decem-

ber 1988.

The author's Ph.D. thesis.

[12] L.M. Censier and P. Feautrier.

A new solution to coherence problems in multicache systems.

IEEE Transactions on Computers, C-27(12):1112-1118, December 1978.

BIBLIOGRAPHY 117

[13] David R. Cheriton.

UIO: A uniform I/O system interface for distributed systems.

ACM Transactions on Computer Systems, 5(l):12-46, February 1987.

[14] David R. Cheriton.

The V distributed system.

Communications of the ACM, 31(3):314-333, March 1988.

[15] David R. Cheriton, Hendrik A. Goosen, and Patrick D. Boyle.

Multi-level shared caching techniques for scalability in VMP-MC.

In Proceedings of the 16th International Symposium on Computer Architecture, pages

16-24. ACM SIGARCH, IEEE Computer Society, May 1989.

[16] David R. Cheriton and Timothy P. Mann.

Decentralizing a global naming service for improved performance and fault tolerance.

ACM Transactions on Computer Systems, 7(2):147-183, May 1989.

[17] David R. Cheriton and Willy Zwaenepoel.

Distributed process groups in the V kernel.

ACM Transactions on Computer Systems, 3(2):77-107, May 1985.

[18] Peter B. Danzig.

Finite buffers and fast multicast.

In Proceedings of the 1989 SIGMETRICS and PERFORMANCE '89 International

Conference on Measurement and Modeling of Computer Systems, pages 108-117.

ACM SIGMETRICS and IFIP WG 7.3, May 1989.

Also published as Performance Evaluation Review 17(1).

[19] Susan B. Davidson, Hector Garcia-Molina, and Dale Skeen. '

Consistency in partitioned networks.

ACM Computing Surveys, 17(3):341-370, September 1985.

118 BIBLIOGRAPHY

[20] David A. Edwards and Martin S. McKendry.

Exploiting read-mostly workloads in the FileNet file system.

In Proceedings of the Twelfth ACM Symposium on Operating Systems Principles [6],

pages 58-70.

[21] K.P. Eswaran, J.N. Gray, R.A. Lorie, and I.L. Traiger.

The notions of consistency and predicate locks in a database system.

Communications of the ACM, 19(ll):624-633, November 1976.

[22] Ross Stuart Finalyson.

A log file service exploiting write-once storage.

Technical Report STAN-CS-89-1272, Stanford University, Department of Computer

Science, July 1989.

The author's Ph.D. thesis.

[23] M.J. Fischer and A. Michael.

Sacrificing serializability to attain high availability of data in an unreliable network.

In Proceedings of the ACM SIGACT-SIGMOD Symposium on the Principles of

Database Systems, pages 70-75, New York, May 1982. Association for Computing

Machinery.

[24] Brett D. Fleisch and Gerald J. Popek.

Mirage: A coherent distributed shared memory design.

In Proceedings of the Twelfth ACM Symposium on Operating Systems Principles [6],

pages 211-223.

[25] Rick Floyd.

Directory reference patterns in a UNIX environment.

Technical Report TR 179, University of Rochester, Department of Computer Sci-

ence, August 1986.

[26] Rick Floyd.

Short-term file reference patterns in a UNIX environment.

Technical Report TR 177, University of Rochester, Department of Computer Sci-

ence, March 1986.

BIBLIOGRAPHY 119

[27] Hector Garcia-Molina and Gio Wiederhold.

Read-only transactions in a distributed database.

ACM Transactions on Database Systems, 7(2):209-234, June 1982.

[28] David K. Gifford.

Weighted voting for replicated data.

In Proceedings of the Seventh ACM Symposium on Operating Systems Principles,

pages 150-162, Pacific Grove, California, December 1979. Association for Computing

Machinery.

Published as Operating Systems Review, 13(5).

[29] H.M. Gladney.

Data replicas in distributed information services.

ACM Transactions on Database Systems, 14(l):75—97, March 1989.

[30] Cary G. Gray and David R. Cheriton.

Leases: An efficient fault-tolerant mechanism for distributed file cache consistency.

In Proceedings of the Twelfth ACM Symposium on Operating Systems Principles [6],

pages 202-210.

[31] James N. Gray.

Notes on database operating systems.

In R. Bayer, R.M. Graham, and F. Seegmüller, editors, Operating Systems: An

Advanced Course, pages 393-481. Springer-Verlag, 1979.

[32] J.N. Gray, R.A. Lorie, G.R. Putsolu, and I.L Traiger.

Granularity of locks and degrees of consistency in a shared data base.

In G.M. Nijssen, editor, Modelling in Data Base Management Systems, pages 365-

394. North-Holland, 1976.

120 BIBLIOGRAPHY

[33] Robert Hagmann.

Reimplementing the Cedar file system using logging and group commit.

In Proceedings of the Eleventh ACM Symposium on Operating Systems Principles,

pages 155-162, Austin, Texas, December 1987. Association for Computing Machin-

ery.

Published as Operating Systems Review, 21(5).

[34] Maurice P. Herlihy.

Dynamic quorum adjustment for partitioned data.

ACM Transactions on Database Systems, 12(2):170-194, June 1987.

[35] John H. Howard, Michael L. Kazar, Sherri G. Menees, David A. Nichols, M. Satya-

narayanan, Robert N. Sidebotham, and Michael J. West.

Scale and performance in a distributed file system.

A CM Transactions on Computer Systems, 6(1):51-81, February 1988.

[36] Michael Leon Kazar.

Synchronization and caching issues in the Andrew file system.

Technical Report CMU-ITC-058, Information Technology Center, Carnegie Mellon

University, June 1987.

[37] Christopher A. Kent.

Cache coherence in distributed systems.

Research Report 87/4, Digital Equipment Corporation Western Research Labora-

tory, December 1987.

A slightly revised version of the author's Ph.D. thesis.

[38] Leslie Lamport.

Time, clocks, and the ordering of events in a distributed system.

Communications of the ACM, 21(7):558-565, July 1978.

[39] Butler W. Lampson.

Designing a global name service.

In Proceedings of the Fifth Annual ACM Symposium on the Principles of Distributed

Computing [5], pages 1-10.

BIBLIOGRAPHY 121

[40] Edward D. Lazowska, John Zahorjan, David R. Cheriton, and Willy Zwaenepoel.

File access performance of diskless workstations.

ACM Transactions on Computer Systems, 4(3):238-268, August 1986.

[41] Kai Li and Paul Hudak.

Memory coherence in shared virtual memory systems.

In Proceedings of the Fifth Annual ACM Symposium on the Principles of Distributed

Computing [5], pages 229-239.

[42] Kai Li and Paul Hudak.

Memory coherence in shared virtual memory systems.

ACM Transactions on Computer Systems, 7(4):321-359, November 1989.

[43] Barbara Liskov, Liuba Shrira, and John Wroclawski.

Efficient at-most-once messages based on synchronized clocks.

In Proceedings of SIGCOMM '90 Symposium on Communications Architectures and

Protocols, pages 41-49. Association for Computing Machinery, September 1990.

Published as Computer Communications Review, 20(4).

[44] Timothy Mann.

Personal communication (electronic mail), July 1989.

[45] Timothy Mann, Andy Hisgen, and Garret Swart.

An algorithm for data replication.

Research Report 46, Digital Equipment Corporation Systems Research Center, June

1989.

[46] Timothy Paul Mann.

Decentralized naming in distributed computer systems.

Technical Report STAN-CS-87-1179, Stanford University, Department of Computer

Science, September 1987.

The author's Ph.D. thesis.

122 BIBLIOGRAPHY

[47] P. Mockapetris.

Domain names — concepts and facilities.

Request for Comments 1034, Network Information Center, SRI International, Menlo

Park, CA, November 1987.

[48] Jeffrey Clifford Mogul.

Representing information about files.

Technical Report STAN-CS-86-1103, Stanford University, Department of Computer

Science, March 1986.

The author's Ph.D. thesis.

[49] Warren A. Montgomery.

Measurements of sharing in MULTICS.

In Proceedings of the Sixth A CM Symposium on Operating Systems Principles, pages

85-90, West Lafayette, Indiana, November 1977. Association for Computing Machin-

ery.

Published as Operating Systems Review, 11(5).

[50] Michael N. Nelson, Brent B. Welch, and John K. Ousterhout.

Caching in the Sprite network file system.

ACM Transactions on Computer Systems, 6(l):134-154, February 1988.

[51] Michael Newell Nelson.

Physical memory management in a network operating system.

Technical Report UCB/CSD 88/471, Computer Science Division (EECS), University

of California, November 1988.

The author's Ph.D. thesis.

[52] John Ousterhout and Fred Doughs.

Beating the I/O bottleneck: A case for log-structured file systems.

Operating Systems Review, 23(l):ll-28, January 1989.

BIBLIOGRAPHY 123

[53] John K. Ousterhout, Herve Da Costa, David Harrison, John A. Kunze, Mike Kupfer,

and James G. Thompson.

A trace-driven analysis of the UNIX 4.2 BSD file system.

In Proceedings of the Tenth ACM Symposium on Operating Systems Principles [4],

pages 15-24.

[54] David A. Patterson, Garth Gibson, and Randy H. Katz.

A case for redundant arrays of inexpensive disks (RAID).

In ACM SIGMOD International Conference on Management of Data, pages 109—

116, Chicago, Illinois, June 1988. ACM SIGMOD.

[55] J. M. Porcar.

File migration in distributed computer systems.

PROGRES Report 82.6, University of California at Berkeley, Electronics Research

Laboratory, July 1982.

The author's Ph.D. thesis.

[56] Daniel R. Ries and Michael Stonebraker.

Locking granularity revisited.

ACM Transactions on Database Systems, 4(2):210-227, June 1979.

[57] Rüssel Sandberg, David Goldberg, Steve Kleiman, Dan Walsh, and Bob Lyon.

Design and implementation of the Sun network filesystem.

In Proceedings of the Summer 1985 Usenix Conference, pages 119-130, Portland,

Oregon, June 1985. Usenix Association.

[58] M. Satyanarayanan, John H. Howard, David A. Nichols, Robert N. Sidebotham,

Alfred Z. Spector, and Michael J. West.

The ITC distributed file system: Principles and design.

In Proceedings of the Tenth ACM Symposium on Operating Systems Principles [4],

pages 35-50.

124 BIBLIOGRAPHY

[59] Mahdev Satyanarayanan, James J. Kistler, Puneet Kumar, Maria E. Okasaki,

Ellen H. Siegel, and David C. Steere.

Coda: A highly available file system for a distributed workstation environment.

IEEE Transactions on Computers, 39(4):447-459, April 1990.

[60] Michael D. Schroeder, David K. Gifford, and Roger M. Needham.

A caching file system for a programmer's workstation. •

In Proceedings of the Tenth ACM Symposium on Operating Systems Principles [4],

pages 25-34.

[61] Alan Jay Smith.

Disk cache—miss ratio analysis and design considerations.

A CM Transactions on Computer Systems, 3(3):161-203, August 1985.

[62] Douglas B. Terry.

Caching hints in distributed systems.

IEEE Transactions on Software Engineering, SE-13(l):48-54, January 1987.

[63] Douglas Brian Terry.

Distributed name servers: Naming and caching in large distributed computing en-

vironments.

Technical Report UCB/CSD 85/228, Computer Science Division (EECS), University

of California, March 1985.

The author's Ph.D. thesis.

[64] Marvin M. Theimer, Keith A. Lantz, and David R. Cheriton.

Preemptable remote execution facilities for the V-System.

In Proceedings of the Tenth ACM Symposium on Operating Systems Principles [4],

pages 2-12.

[65] James Gordon Thompson.

Efficient analysis of caching systems.

Technical Report UCB/CSD 87/374, Computer Science Division (EECS), University

of California, October 1987.

The author's Ph.D. thesis.

BIBLIOGRAPHY 125

[66] Ken Thompson.

UNIX implementation.

The Bell System Technical Journal, 57(6):1931-1946, July-August 1978.

[67] Brent Ballinger Welch.

Naming, state management, and user-level extensions in the Sprite distributed file

system.

Technical Report UCB/CSD 90/567, Computer Science Division (EECS), University

of California, April 1990.

The author's Ph.D. thesis.

Reproduced by NTIS

So"öfl)

0 0>£+f
0 £ o ^

§>E§ S o o o
M- a—

♦5 4 4.-1.

£|^°
EEi-0
CosS
0 O OS

oocg
cw =

rf = 73

■n c O r
^3-0 C

Zo.iE

National Technical Information Service
Springfield, VA 22161

This report was printed specifically for your order
from nearly 3 million titles available in our collection.

For economy and efficiency, NTIS does not maintain stock of its vast
collection of technical reports. Rather, most documents are printed for
each order. Documents that are not in electronic format are reproduced
from master archival copies and are the best possible reproductions
available. If you have any questions concerning this document or any
order you have placed with NTIS, please call our Customer Service
Department at (703) 487-4660.

About NTIS
NTIS collects scientific, technical, engineering, and business related
information — then organizes, maintains, and disseminates that
information in a variety of formats — from microfiche to online services.
The NTIS collection of nearly 3 million titles includes reports describing
research conducted or sponsored by federal agencies and their
contractors; statistical and business information; U.S. military
publications; audiovisual products; computer software and electronic
databases developed by federal agencies; training tools; and technical
reports prepared by research organizations worldwide. Approximately
100,000 new titles are added and indexed into the NTIS collection
annually.

For more information about NTIS products and services, call NTIS
at (703) 487-4650 and request the free NTIS Catalog of Products

and Services, PR-827LPG, or visit the NTIS Web site
http://www.ntis.gov.

NTIS
Your indispensable resource for government-sponsored

information—U.S. and worldwide

