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Abstract 

Caching data on client workstations can improve the performance of file service in a 

distributed system. Distributed systems, though, are subject to host crashes and com- 

munication failures, and techniques that are commonly used to improve the performance 

of file caching do not tolerate these failures. This dissertation describes how high perfor- 

mance can be obtained from caching while still tolerating failures and providing at least 

the same level of coherence, availability, and reliability that the file service would have 

without caching. 

Leasing is a time-based mechanism that guarantees that access to cached data is co- 

herent with respect to arbitrary communication. The requirements for leasing to function 

correctly are stated, and it is shown how those requirements can be efficiently satisfied 

in a practical system that has both host crashes and lost messages. Leasing's perfor- 

mance is evaluated using both closed-form estimates and trace-driven simulation. For 

the pattern of access to files in V and similar systems, performance is very good for lease 

terms of just a few seconds; terms of this duration also give acceptable bounds on delays 

added due to failures. Several previous mechanisms for cache coherence are included as 

special cases of leasing, and leasing also allows a range of policies that can accommodate 

different access patterns. In addition, leasing can be extended to work with multi-level 

caching, with replicated data, and in conjunction with transactions. 

A prototype file-service cache has been implemented for the V distributed operating 

system; the cache's design is described, and its performance is evaluated based on traces 

of file-system access. Three techniques enable the cache to reduce traffic by as much as 

60% compared to a simpler cache: using leasing for coherence, distinguishing among a few 

classes of files, and caching information about files along with their contents. In contrast 

with other designs, the prototype achieves this reduction in traffic without sacrificing 

coherence, reliability, or availability. 
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Chapter 1 

Introduction 

File storage is an important service in a general purpose computing system, whether 

that system is centralized or distributed. Files provide a basis for sharing data among 

users and applications as well as for preserving data over an extended period. Overall 

performance in many applications is limited by the performance of the file service. 

Several trends in distributed systems are increasing the pressure on performance of 

distributed file systems. First, as systems grow to include hundreds or even thousands of 

hosts, a server needs to be able to support a larger number of clients. Second, as systems 

spread beyond local area networks, increased communication latency adds to response 

time. Finally, as processor speed increases, the delays for communication with a remote 

server and for access to secondary storage account for a larger fraction of the response 

time. 

Caching file data on client workstations can significantly improve the performance and 

scalability of a distributed file service, as systems such as Andrew [35] and Sprite [50] 

have demonstrated. These systems, though, typically trade the robustness of the file 

service for additional performance gains from caching. Commonly used techniques for 

boosting cache performance sacrifice the coherence, reliability or availability of the file 

service, particularly in the presence of the partial failures that characterize distributed 

systems. 

This dissertation focuses on the problem of obtaining caching's performance bene- 

fits without making these sacrifices. It presents leasing, a fault-tolerant mechanism for 

cache coherence, and describes a prototype file cache that uses leasing along with other 

techniques to provide both high performance and robustness. 
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1.1     Caching and performance 

File-service performance is measured in terms of either throughput or response time. 

Throughput can be viewed in terms of capacity of shared resources: how many clients 

can a server or network support? Efforts to construct systems with very large numbers 

of clients call for supporting as many clients per server as possible, in order to minimize 

the number of servers for reasons of both cost and manageability. 

Response time measures how long it takes to complete some task. The contribution 

of file operations to response time includes time for communication, for processing and 

device access at the server, and also for queueing when the server is congested. Response 

time also includes computation and possibly other activities in addition to file operations. 

For the systems examined by Lazowska, et al, [40] communication delays were a very 

small fraction of total response time. However, when either communication latency 

increases, as on a wide-area network, or processors get faster, the delays for remote access 

to files can become a significant fraction of response time. Large numbers of clients add 

queueing delays as shared servers become congested, further increasing response time. 

Caching data on clients can both increase server capacity and reduce response time. 

Server capacity increases because the use of cached data lowers the number of requests 

that a client makes of the server. Response time also benefits from the reduction in 

traffic: the client waits for a smaller number of synchronous operations to be performed 

by the server, and the queueing delays for those operations are also shorter. 

1.2     Tolerating failures 

Distributed systems experience failures: hosts can crash, and communications can be 

disrupted. The failures experienced by a distributed system are different from those 

in a centralized system. When the host crashes in a centralized system, all processing 

ceases. In a distributed system, however, a host crash is only a partial failure, and 

processing on other hosts continues, possibly unaware that any failure has occurred. A 

distributed system is also subject to communication failures: a message can be sent but 

never received. Lost messages and host crashes cannot always be distinguished, as either 

manifests itself as the failure to receive an expected response from another host. 

In addition, these partial failures occur more frequently in a distributed system than 

do crashes of a centralized system, simply because there are more components that can 
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fail. Furthermore, workstations are commonly placed in relatively hostile environments— 

e.g., offices, where the temperature and power supply are not controlled as well as in a 

machine room, and where users have ready access to switches and cables. Communication 

failures become more likely as a network grows in terms of either distance or number of 

hosts. Failures must be expected in any distributed system of nontrivial size. 

A robust distributed system must tolerate these failures: parts of the system that are 

not directly affected by a failure should continue to function correctly. For a distributed 

file service, tolerating failures requires preserving three properties: availability, coherence, 

and reliability. 

Availability. A partial failure should not unnecessarily make file data unavailable to 

the remaining system. A client should be able to access a file whenever it can communi- 

cate with the server that stores the file.1 Because client failures are more common, the 

failure of one client should not make any file unaccessible to other clients. 

Coherence. To facilitate sharing, access to file data should be coherent. Informally, 

coherence implies the same behavior as in the absence of caches: reading a file returns 

the data most recently written to it. The problem arises when a file that is already in 

one client's cache is written by another client. The cached copy now differs from that 

stored by the file server, and the system must guarantee that subsequent reads return 

the server's data instead of that in the cache.2 Coherence should be preserved in spite of 

failures. 

Reliability. The possibility of partial failures makes the reliability of the file service 

more important. Because a partial failure may not be noticed by a user or application, 

confusion can result if the failure causes data to be lost. Users and applications need the 

assurance that both the data they write and the data they read will persist in spite of 

noncatastrophic failures.3 

To illustrate the need for reliability, let us consider the policy of delayed write em- 

ployed in many centralized Unix systems [66], in which newly written file data is allowed 

xOr, for a replicated file, when it can communicate with the required set of servers. 
2 A more precise definition of coherence is developed in Chapter 2. At this point, please note that 

coherence is a basic property expressed in terms of individual operations, each on a single data item; 
coherence should not be confused with, for example, database integrity, which is expressed in terms of 
groups of operations (transactions) and the relationships among the values of multiple items. 

3Host crashes and lost messages are anticipated; other types of failures, such as a disk head crash, 
might still be regarded as catastrophic and result in loss of data. 
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to remain in volatile memory for a limited time before it is written to disk. Delayed write 

improves performance in two ways. First, it reduces the demand on disks, because a sig- 

nificant fraction of file data is short-lived: if a block is rewritten or a file deleted within 

the delay period, then a write to disk can be avoided. Second, it lowers response time, 

because a write operation returns as soon as the data has been copied into a file-system 

buffer, without having to wait for a slow disk write. 

Delayed write introduces the risk of losing recently written data if the system crashes. 

The potential loss is therefore limited by periodically writing all dirty buffers to disk, 

typically at an interval of thirty seconds. In a centralized system,' it is unlikely that a 

user fails to observe a failure in which he loses data. The crash must occur within thirty 

seconds of the lost write, which means a user may unknowingly lose only data written 

within thirty seconds before logging out, or written by background processes while the 

user is not logged in. Any program processing the (soon-to-be) lost data is terminated 

by the crash; any writes it performed that depended on the lost data are younger than 

the delay interval and so are probably lost as well. Manual intervention can be used to 

recover for simple interactive activities, particularly when the user is a programmer-. 

In a distributed system, it is more likely that a failure goes undetected by a particular 

user. If commands are remotely executed at hosts selected by the system (as in [64]), a 

user will not notice if a remote host crashes immediately after he executes a command 

there. Similarly, a user will not notice the failure of a file server if it recovers before he 

next uses it. A user that is not aware that data has been lost will not take appropriate 

action to recover from the loss. 

The problem of undetected failures is worse for programs than for human users. 

Consider a program that reads from one file, then writes to another, with the requirement 

that the output file always reflect some prior state of the input. If the program reads 

newly written data from the input file shortly before the server storing it crashes, losing 

the input data, the program can continue to execute and successfully write an inconsistent 

version of the output file on a different server.4 Such possibilities make it difficult to 

construct robust applications. 

Or the same server, if the computation is long enough for the server to recover. 
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1.3     Contributions of this dissertation 

This dissertation examines the use of caching in providing a distributed file service that is 

scalable and high-performance, and that tolerates common failures without compromising 

the coherence, availability, or reliability of file storage. 

Chapter 2 addressed the problem of efficiently maintaining the coherence of caches in 

the face of failures. It describes leasing as a solution to this problem, and states require- 

ments for leasing to function correctly in spite of partial failures. A simple analytical 

model for leasing's performance is developed, and that model shows that leasing can 

perform quite well for file-service access patterns while still giving acceptable failure-case 

behavior. The conditions for correctness allow a range of policies for managing leases, so 

that leasing can accommodate other access patterns as well. 

A prototype file-service cache that has been built for the V distributed system is 

described and evaluated in Chapter 3. The evaluation is in terms of server traffic, based 

on analyzing traces of file-system access collected in the V-system. Three enhancements 

allow the prototype to reduce traffic without losing robustness: distinguishing temporary 

from other files, caching information about files, as well as their contents, and using 

leasing for coherence. 

Chapter 4 explores issues beyond the scope of the prototype. It describes how leasing 

can support multi-level caches in systems of very large scale, and it examines how leasing 

could be used for caching in a storage service based on transactions or with replicated 

data. 
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Chapter 2 

Coherence 

Intuitively, caches are coherent1 if each read of a data item returns the value most recently 

written to that item. Coherence implies that the results of operations on files are not 

affected by the use of caching in the system. This property is important because it keeps 

the model of file service simple, while allowing data to be shared via files. 

Existing approaches to .ensuring coherence have one of three shortcomings. Some 

methods depend on reliable communication, and so do not tolerate failures. Other ap- 

proaches require a coherence check on each read access, and so do not perform well. 

Finally, some approaches work only by forbidding all updates to cacheable data, and so 

are of limited applicability. 

This chapter describes and evaluates leasing, a mechanism for coherence that tolerates 

both site and communications failures. The first section explores the problem of coherence 

in greater detail and identifies the aspects of the problem that are the focus of the 

remainder of the chapter. Section 2.2 describes leasing, and Section 2.3 analyzes its 

performance for distributed file service. Finally, Section 2.4 examines several extensions 

to the basic mechanism. 

2.1     Background 

The potential for incoherent access arises from the fact that caching a data item creates 

an additional copy of it. If the cached copy comes to differ in value from the one stored 

2To minimize confusion, we use the term coherence for the property that is also commonly labelled 
consistency in descriptions of file systems or memory systems. Unfortunately, consistency denotes a 
different concept in the literature on databases (e.g., [21, 32]), and the term has been used somewhat 
inconsistently in the literature on file caching (e.g., [36, 50, 59]). See section 2.1.3 for more details. 
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time 

Figure 2.1: Potentially incoherent access. 

by the file server, reading from the cached copy can produce anomalous results. For 

example, consider the events depicted in Figure 2.1. User (or application) A reads from 

a file via the cache on one workstation, and then B writes to the same file from some 

other host. B somehow informs A of the write, so that when A next reads from the file, 

A expects to see what B wrote. The system must somehow ensure that A's final read 

returns the latest value instead of the old version in the cache. 

2.1.1    Defining coherence 

The most commonly given definition is that a system is coherent if each read of an item 

returns the value most recently written to that item (e.g., [12, 42]). In a distributed 

system, though, events are not totally ordered [38], so that "most recently" is not well- 

defined, and a more precise definition is needed. 

What coherence requires is that the results of a set of operations performed with 

caches not differ detectably from what they would be if there were only one copy of 

each item—i.e., if there were no caches. A precise definition of coherence is based on 

two partial orderings of operations in a system's execution. One ordering is based on 

observable events, such as the sending or receiving of a message, or an agent performing 

a series of actions sequentially [38]. In Figure 2.1, the "written"' message from B to A 

allows A to observe that B's write occurs before the final read is requested. The second 

partial order, which we call the version order is determined by the results of operations: 

each read operation returns a value from a write operation that immediately precedes 
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it in the version order, and the read precedes the operation which overwrites the value. 

Whenever these two orders conflict, it appears that an operation has been performed 

out-of-order. We therefore describe a file service as coherent with respect to a particular 

set of observable orderings on operations if the observable and version orderings produced 

are always compatible.2 

There are several possible choices for the set of observable orderings. One possibility 

is to limit observations to reading and writing files; another is to consider only messages 

sent within the computer system's communications network. If either of these standards 

is chosen, however, access will not appear coherent to users who communicate by other 

means. In practice users do engage in such communication: users converse with each 

other, or a single user may employ more than one host. Consequently, a distributed file 

service needs to ensure that access is coherent with respect to arbitrary communication, 

not just communication via files or via the distributed system's network. Within the 

rest of this dissertation, therefore, we use "coherence" as shorthand for "coherence with 

respect to arbitrary communication." 

2.1.2    What are reads and writes? 

Within this chapter we consider a very simple abstract file service in which each oper- 

ation is either a read or a write of a single data item, and individual read and write 

operations are performed atomically.3 In relating the operations of an actual file system 

to this model, those factors must be considered. First, other operations can be viewed 

as a sequence of reads and writes that is performed in a batch by the server. Second, 

the operations that correspond to read and write from the standpoint of coherence are 

determined by the visibility of those operations with respect to each other. For example, 

in Unix systems, the readO and write() system calls are reads and writes from the 

standpoint of coherence because the effects of a write() are visible to any subsequent 

readO of the same data.4 In the V file system, however, opening a file for reading gives 

access to a snapshot of its state at the time of the open, and writes to an open file become 

visible to subsequent opens only after the file is committed (usually by closing it). For 

the purposes of coherence, then, read and write in V correspond to file open and commit. 

We also need to distinguish the atomic event of performing an operation from among 

the series of events involved in processing it.   Each operation comprises at least four 
2 More formally, if the directed graph of their union is acyclic. 
3This abstraction is also a common model for a computer's memory system. 
4Because of buffering, the same is not true for the freadO and feriteO library calls. 
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communication events, the sending and receiving of each of the request and result, in 

addition to some sequence of processing by the server or cache. An operation is performed 

by whatever step in the processing both determines its result and allows that result to 

be visible. For a write, in particular, the result is first made visible either when the 

server returns an indication of success to the writer or when the written value is returned 

to a reader. It is possible for a server to record a write to disk yet, for a reason such 

as maintaining coherence, not make it visible for some time thereafter. In such a case 

performing the write is tied to its visibility, rather than some other point in its processing. 

2.1.3 Related concepts 

Coherence is a primitive property expressed in terms of individual operations, each on a 

single data item; it should not be confused with more sophisticated constraints in terms 

of multiple items or multiple operations. Database integrity, for example, can require 

that relationships be maintained among the values of multiple items. Similarly, serial- 

izability of transactions imposes a logical ordering on groups of operations. Enforcing 

properties such as multi-item integrity constraints or serializability of transactions re- 

quires additional mechanisms. Coherence guarantees only that the results of operations 

are the same as they would be if there were only one copy of each data item. 

2.1.4 Restrictions 

For simplicity, we limit our description in the next section to caches for which all writes 

go through to the file server and to nonvolatile storage, so that newly written data 

becomes visible and persistent at the same time. This property simplifies the writing of 

robust applications, because a program can assume that any data it reads will not be lost 

due to a host crash.5 Coherence is simplified for write-through caches because all write 

operations are performed synchronously by the server, ensuring that clients already see 

a consistent ordering of writes. Write-back caches do not involve the server in handling 

each write request, so that the coherence mechanism for such caches must guarantee their 

order. Section 2.4.3 describes how leasing can provide coherence for caches that are not 

write-through, which may be appropriate in contexts other than plain file service. 

6Some consider write-through to be prohibitively expensive for file service. In the V-system, however, 
writes become visible to other programs only when the writer closes or explicitly commits the file, so 
that write-through applies only to close and commit operations. Section 3.7 considers how the cost of 
write-through can be minimized in other systems. 
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The analysis of performance in Section 2.3 is also oriented toward a simple file service. 

In addition to assuming write-through caches, it focuses on the cases for operation rates 

and lease terms characteristic of file access in a workstation-based system such as V. 

2.2    Leasing 

A lease is a contract that gives its holder specified rights over property for a limited 

period of time. In the context of caching, a lease grants to its holder authority over 

writes to the covered data item during the term of the lease, such that the grantor must 

obtain approval from the leaseholder before allowing the item to be written. When a 

cache fetches data from a file, it also obtains from the server a lease that covers the data; 

that lease prohibits any write to that data during the lease's term unless the server first 

obtains the approval of the cache. When a client writes to a file, the server requests 

approval of the write from the holders of all unexpired leases covering the written data: 

the write must be delayed until all leases have either expired or had approval granted. 

Before it grants approval of a write, the cache invalidates its local copy of the data. 

When the file is read from again within the term of the lease, the cache provides 

immediate access to the file without communicating with the server. After the lease 

expires, however, the cache has no assurance that the file has not been written; the cache 

therefore queries the server to learn of writes occurring since its lease expired and to 

obtain an extension of the lease. 

Figure 2.2 provides an example of how leasing works. As in the previous example, 

A reads a file via a cache, and the cache fetches the data from the server. In addition 

to the data, however, the cache obtains a lease over the file, which allows a subsequent 

read during the lease's term to be done without communicating with the server. After 

the lease expires, the cache requests an extension, which the server grants. 

When B attempts to write the file during the term of the lease, the server requests 

the approval of the leaseholder, A, and delays performing the write until A's approval is 

received. B's final write request, received after the lease has expired, is processed without 

having to obtain approval from A. 

2.2.1    Conditions for correctness 

A pair of conditions is sufficient to ensure that reads return coherent data, and these 

conditions divide responsibility between server and client. First, the server must honor 
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Figure 2.2: An example of caching using leasing. 

the leases it grants: 

The server must not perform a write of an item while there exists an 

unexpired lease covering it whose holder has not approved the write. 

On the client's side, the cache knows data is current only if it holds a lease over it when 
it is read: 

A cache may return its copy of a data item in response to a read only if it 

holds a lease over the item whose term includes the interval from the time the 

item was fetched or validated to some time after the read request is received, 

and the cache has not approved a write during that interval. 

These conditions neatly partition responsibility between the client and server, with 

the exception of one detail. While most events, such as the granting of a lease or approval 

of a write, involve exchanging a message and so are ordered at both sites, the expiration 

of a lease is not: instead, cache and server must measure the term with imperfect local 

clocks. If the clocks are synchronized to differ by at most e, the term can be expressed as 

ending when the server clock reads T, and the cache may safely return the covered data 
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as long as the client clock reads less than T — e. Without synchronized clocks, the term 

is communicated as its duration t, and the client makes a somewhat larger allowance for 

the (bounded) relative drift of the timers and for communication delay. The minimum 

required is that the client clock not run "too slow" relative to the server clock. 

2.2.2    Coping with failures 

Each client's coherence depends only on itself and the server. No loss of messages can 

compromise correctness, because the correctness conditions for both the cache and the 

server can be satisfied without communication. The server can satisfy its condition by 

delaying a write until leases expire. The cache's condition is met as long as no reads 

return cached data; reading cached data is therefore allowed only during the term of a 

previously obtained lease and when the cache is able to communicate with the server. 

The impact on one client of another client's failure is limited to possibly increased 

delay for writes, but only until the failed client's leases have expired. That delay can 

be bounded by the server by limiting the terms of the leases it grants. In addition, the 

server needs to avoid starvation of writes: while a write is waiting for approval or for 

leases to expire, the server limits the terms of new or extended leases. The server can thus 

guarantee a maximum acceptable delay for writes in the event of failure of a component 

not critical to the operation, simply by limiting the terms of leases. 

The server must honor the leases it grants even across crashes; some record of leases 

must therefore be kept on non-volatile storage. However, both the volume of data kept 

and frequency with which it is written can be reduced by observing that only an upper 

bound on when leases expire is required to ensure correctness. In the extreme case, the 

server could store just a maximum term and then delay any write requests during that 

interval following recovery.6 The expense of maintaining a more detailed record in order 

to reduce the hold-down interval is probably not justified in most cases, since the added 

delay is no worse than that caused by failure of a client. For the terms we examine in 

Section 2.3.2 the hold-down is not an odious constraint. 

Concern for availability, then gives us a constraint on how long a term may be: the 

term is an upper bound on the delay coherence can introduce in the event of failure 

pertaining to another client, and that delay is experienced only on writes. A sufficiently 

short term also allows reduction in the amount of nonvolatile bookkeeping required of 

6If a minimum time to recover is known, that interval may be subtracted from the hold-down period. 
For many systems, in fact, we expect that the time to recover will exceed the maximum term, in which 
case no hold-down is required. 
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the server, at the expense of the same added delay for writes after a server crash. 

2.2.3     Other coherence mechanisms as special cases 

Several of the mechanisms previously used for coherence in distributed file systems can be 

expressed as special cases of leasing. Schemes that require a check on each use of cached 

data (as in, for example, the first version of the Andrew file system [58]) correspond to 

a term of zero duration; they incur a high level of overhead for extensions, but add no 

delay to writes in the event of a failure. Mechanisms that depend on reliably notifying 

caches of writes (as in the later version of Andrew [35]) correspond to an infinite term, in 

which case coherence can be preserved only at the cost of unbounded delay—effectively 

unavailability—for writes in the event of a failure. The caching of only immutable data 

(as in the Cedar file system [60]) also corresponds to an infinite term, but because writes 

are not supported, it causes no problems. 

2.3     Performance 

This section examines the performance of leasing, focusing especially on how the choice 

of term affects performance. We have two goals for performance: high system throughput 

and low application response time. Throughput is limited by the demands on bottleneck 

resources, which previous studies [40, 50] have identified as the server CPU and, to a 

lesser degree, the network. To a first approximation, the impact of coherence on both 

throughput and response time can be evaluated in terms of message traffic: the demand 

on the server and network is roughly proportional to the number of messages they handle, 

and the delay added to operations is dominated by the latency for synchronous message 
exchanges. 

The first subsection develops a simple analytical model for predicting the contribu- 

tions of leasing to load and delay; the next subsection applies this model to measurements 

of file-system access in V and compares its predictions with results from trace simulation. 

Both the predictions and simulation results show that leasing with terms of just a few 

seconds performs quite well for V's file service, and that it continues to perform well 

when the system is extended with faster processors and wide-area networks. The final 

subsection examines several issues of lease management and how they affect sharing. 
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2.3.1    Analytical model 

Performance depends on several aspects of the system and the pattern of access to files. 

We consider the simple case of a single server with TV clients, where each client's reads 

and writes follow Poisson distributions with rates R and W, respectively,7 and all of the 

files at each client are covered by a single lease. Each file written is shared by S caches. 

The time for communication is split into two components, processing and propagation, 

so that we can model a simple multicast facility [17]. Multicast messages are sent once, 

and received with high probability by the intended recipients. A message requires rriproc 

seconds of processing at both the sender and recipient, plus rriprap seconds for propagation 

between them; so a message is received m^ap + 2mpTOC after it is sent.  (These averages 

include a normal level of retransmissions.) A unicast request and reply therefore takes 

twice that time, 277^^ -f 4mproc.   The time required to send a multicast message and 

collect replies from its n recipients is denoted by mmu/tl(rc).  For small n, such that the 

effects of congestion and bookkeeping overhead are not large, this value is approximately 

one round-trip time, to receive the first reply, plus for the sender to process the additional 

n — 1 replies, giving 

"Imidti(rc) = 2771^^ + (n + 3)771^0,;. 

For a lease with term ts, the effective term tc during which the cache knows it holds 

an unexpired lease is shortened by the time for the cache to learn of the lease as well as 

an allowance e for imperfect clocks. Thus, this effective term is given by 

tc = max(0, ts - {rriprap -f 2mproc) - e). 

A term of less than rriprop + 2mproc + e cannot improve performance over a term of zero. 

With these parameters, summarized in Table 2.1, we can derive estimates of perfor- 

mance in the absence of failures.8 The analysis is simplified by ignoring queueing delays 

due to congestion as well as the second-order effect of response time on request rate. 

The message traffic for coherence has two components: that for supporting reads (by 

extending leases) and that for obtaining approval of writes. 

A cache requests an extension when it receives a read request and its lease has expired; 

it receives an expected Rtc additional reads before the lease expires. The pair of messages 

7Realistically, one would expect that both reads and writes would be clustered to a greater degree 
than is represented in a Poisson distribution. As noted in section 2.3.2, this makes the estimates of 
performance slightly pessimistic. 

8Recall that the delay added by coherence in the event of a failure is bounded by the maximum term 
of leases granted, and that only writes incur that delay. 
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Symbol     Description 

N number of clients (caches) 
R rate of reads for each client 
W rate of writes for each client 
S number of caches in which a file is shared 

TO. 'Prop propagation delay for a message 
TOproc       time to process a message (send or receive) 

i^muiti(n)    time to multicast a message and collect 
replies from n recipients 

c allowance for uncertainty in clocks 

ts lease term (at server) 
tc effective lease term at cache, 

max(0,i5 - (mprcp + Vm^) - e) 
tg(S)       time to obtain approval from S leaseholders 

Table 2.1: Performance model parameters. 

to request and grant the extension are amortized over 1 + Rtc reads, so that the rate of 

extension-related messages handled by the server is 

2NR 
xext — 

and an average delay of 

dread = 

1 + Rtc 

2(mpPop + 2mproc) 

l + Rtc 

is added to each read request. 

To get approval for a write, the server multicasts the request for approval and pro- 

cesses the replies from all of the leaseholders. When the writer is one of the leaseholders, 

one approval message can be saved if the request for a write carries the implicit approval 

of the requesting cache. For the common case of writes to files that are not shared, the 

implicit approval eliminates approvals altogether. For a shared file, obtaining approval 

requires the one multicast plus S - 1 approvals, for a total of S messages,9 and the time 

ta(S) to gain approval is mmtäti(S - 1) for S > 1. There is benefit to seeking approval 

only if the term remaining in the leases exceeds ta(S); otherwise both delay and traffic 

axe lower if the server simply waits for the leases to expire. If the server term ts is less 

than ta(S), then approval is never sought, giving write traffic of zero, and a delay of at 

most ts. For larger ts, the delay is at most ta(S) and the traffic at most NSW.  The 

9Without multicast, each approval requires 2(S - 1) messages. 
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actual traffic should be smaller, since when a write is requested it is likely that some of 

the leases have expired or are closer than ta(S) to expiring, so that S approvals are not 

always required. The difference is significant, however, only when ta(S) is a significant 

fraction of the term or when the total delay is dominated by that for approval of writes. 

When the two components are combined, there emerge two important thresholds for 

the term. The first threshold is the point at which tc becomes non-zero; below this point 

writes are penalized but reads do not benefit. The other threshold is when ts = ta{S), 

below which traffic for writes is zero and delay increases linearly, and above which they 

grow to NSW and ta(S), respectively. For file caching, the terms of primary interest are 

much larger than either of these thresholds.  For such terms the server's total traffic is 

approximately 
2NR        Arr,TTr 

xtotai = —-— + NSW 
1 -\- Ktc 

coherence-related messages per unit time, and the average delay that coherence adds to 

each read or write is 

dav9 = RTW
{ TTWc       + Wia{S))- 

The minimum total traffic is always either 2NR, for a term of zero, or NSW, for an 

infinite term. To bound delay due to failures, though, the terms must be limited to fairly 

short values, which raises the question of whether an acceptably short term will reduce 

traffic below that for zero. For a term longer than ta(S), this is true if 

2NR > ,      *   + NSW. 
1 -f Ktc 

Defining a lease benefit factor as 
2Ä 

a = sw 
the preceding condition holds if a > 1 and 

1 
tc > 

R(a-1)' 

A sufficiently long lease term will reduce server traffic whenever a is greater than one, 

and larger values of a and R imply better performance for short terms.10 

10Without multicast, the total number of approval related messages is 2N{S - 1)W, and a = E/(S - 

1)W. 
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rate of reads R 1.44 /sec 
rate of writes W 0.0399 /sec 
message propagation time "^prap 1.0 msec 
message processing time mproc 0.25 msec 
allowance for clocks € 100 msec     | 

Table 2.2: Parameters for file caching in V. 

2.3.2    V file service 

This section applies the preceding analysis to data from the V-System as a concrete ex- 

ample. Comparing the results with those from trace simulation provides some validation 

for the model. The analysis indicates that terms of just a few seconds perform quite 

well, while limiting the impact of failures, and that they continue to perform well with 

increases in network latency or processor speed. 

The parameters for the analysis are taken from the f sbuild trace of file access, which' 

is described more fully in the next chapter and in Appendix A.  The measured rates of 

reads and writes" are given in Table 2.2, along with estimated times for communication. 

The trace is of a single client, so that it contains no sharing. 

Figure 2.3 shows the traffic generated by coherence as a function of the term, relative 

to the traffic for a zero term—i.e., a check on each read access. The curve labelled trace 

is the result of trace-driven simulation, while the others are from the analytical estimates, 

with the various levels of sharing indicated. The trace and S = 1 curve are both for the 

no-sharing case, and so should match; they are close, with trace showing lower traffic for 

all but the very shortest terms. The estimated value is high because because actual traffic 

is burstier than is reflected by a Poisson distribution; this burstiness gives the trace curve 

a sharper and lower knee. The cross-over for terms near zero is due to two factors: first, 

there is in reality a minimum time between operations of a few milliseconds, which the 

Poisson distribution does not capture, and, second, the timestamps in the trace have a 

granularity of ten milliseconds, which amplifies the difference between the measured and 

Poisson interarrival times.   Overall, though, the estimate produces reasonable results, 

and can be expected to slightly overestimate traffic for terms in this range. 

Coherence traffic drops off quickly from its peak for short terms, then flattens out. 

hlo^lTl"" ratCS °fLP-?- ati?S ,that COmt " a read °r Write from the s^dpoint of coherence, not 
block-level accesses. Additional information about the V file system can be found in Section 3.1 of the 
next chapter. 
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Figure 2.3: Traffic for coherence in V. 

For example, a term of ten seconds produces about 5% as much coherence traffic as a 

zero term, while a thirty second term reaches 2%. While there is a 60% drop in coherence 

traffic between ten and thirty seconds, the server is handling enough other traffic that 

the overall gain is much smaller. In the measured system, coherence accounts for 43% 

of the all server traffic when the term is zero, so that increasing the term from zero to 

ten seconds reduces overall traffic by more than 40%. The increase from ten to thirty 

seconds, though, achieves a further drop of less than 2%. Recalling that the term is the 

maximum delay that coherence can add to a write, and so is bounded by the acceptable 

increase in delay in the event of a failure, terms of up to ten seconds seem reasonable, 

and they are very effective at reducing traffic. 

The other curves in Figure 2.3 give some idea of how sharing affects traffic. As for 

the no-sharing case, the bulk of the gain from increasing the term comes for moderately 

short terms. For higher degrees of sharing, though, the added traffic for approval of 

writes limits the reductions. As the level of sharing increases, the minimum term to 

reduce traffic below that for a zero term increases, and for a high enough level of sharing, 

no reduction is possible.12 

12 Realistically, OUT estimates for time and traffic to gain approval break down before the degree of 
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Figure 2.4: Average delay for coherence in V. 

The contribution of coherence to delay for each operation is shown in Figure 2.4. The 

curves for different degrees of sharing are almost indistinguishable at the scale shown; 

so only the curve for 5" = 1 is included. For a term of zero, a round-trip time of 

2.5 milliseconds is added to each read; for longer terms, the delay falls of sharply, in the 

same manner as the traffic. In the system measured, the application does 677 milliseconds 

of other work for each read or write performed,13 so that even at 2.5 milliseconds per 

operation the contribution of coherence is quite small. This matches the findings of 

Lazowska, et al., [40], who report that in the absence of contention and on processors of 

modest speed, the contribution to response time of even uncached remote file access is 

fairly small fraction of the total. The major benefit of leasing in this case is the reduction 

in server traffic, and with it a reduction in contention for server resources. 

The results presented so far are for a moderately slow processor (MicroVAX II) on 

a local-area network, such that network latency is dwarfed by processing time; we now 

sharing reaches twenty, because of contention for the network and for buffers; Danzig [18] derives much 
more complicated estimates that do consider contention. The extant data on sharing (e.g., [49]) indicates, 
however, that most sharing falls into one of two categories: files with a significant level of writing are 
usually shared at very low degree, and files that are universally shared are very infrequently written. 

"Recall that these reads and writes in V correspond to file open and close, not block level operations. 



2.3.   PERFORMANCE 21 

S = 80 
S = 40 
S = 20 
S = 10 
S = 1 

0.00 
0.0        5.0       10.0      15.0 20.0      25.0      30.0 

lease term (sec) 

Figure 2.5: Traffic for coherence with 50 msec network latency. 

consider how leasing affects performance on a higher-latency network or with faster pro- 

cessors, such that this is no longer the case. 

Figure 2.5 shows server traffic with all parameters as before, except for the message 

latency rriprop, which is increased to 50 milliseconds, as might be seen on a wide-area 

network. The only significant change is that the traffic for the higher degrees of sharing 

has a lower peak for short terms. Traffic for approvals is reduced because the time to 

obtain approval ta(S) is longer, so that the server more often forgoes seeking approval in 

favor of simply waiting for less that ta{S). 

The effect on delay is much greater, as shown in Figure 2.6: though the curve is 

qualitatively similar, the absolute delay per operation reflects the much higher round- 

trip time of 100 milliseconds. A zero term adds a round-trip time to each operation; 

in this case the almost 100 milliseconds per 677 milliseconds of computation increases 

response time by almost 15%. At a term of ten seconds, the added delay has fallen to 

6.5 milliseconds per operation, or only about 1%, So modest terms for leases continue to 

perform well at the sort of latency expected for a high-performance wide-area network. 

When processor speed is increased, the rates of operations increase, which gives the 

curves sharper and lower knees. In terms of traffic and added delay, fairly short terms 
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Figure 2.6: Average delay for coherence with 50 msec network latency. 

should therefore perform even better. However, as the average time between operations 

decreases, the relative contribution of delay for coherence to response time increases. For 

example, if a faster processor increases the operation rate by a factor of five,14 the time 

between operations falls to 135 milliseconds. On the local area network considered earlier, 

communication delays are still small compared to other computation. Delay is much more 

significant on the higher-latency network: a term of zero adds 100 milliseconds to the 

135 millisecond response time, or nearly 75%. A term of ten seconds, though, brings the 

contribution of coherence down to 1.4 milliseconds per operation, or slightly over one 

percent. 

In summary, the excellent performance for leasing with modest terms extends to faster 

processors and to higher-latency networks, and leasing has a larger impact on response 

time. Terms of on the order of ten seconds yield a significant reduction in total server 

traffic compared to a zero term (check-on-use), while longer terms provide little additional 

improvement. On local-area networks or with moderately slow processors, response time 

14The time between operations is spent in more than just processing; it includes some time for I/O 
and communication, at lease for cache misses. A five-fold speedup therefore requires a much greater 
than five-fold increase in processor speed. 
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public private combined 
reads/sec 0.475 0.962 1.437 
writes/sec 0 0.399 0.399 
extensions/sec (est.) 0.0833 0.0914 0.0944 
extensions/sec (trace) 0.0529 0.0496 0.0675 

Table 2.3: Effect of separating extensions for file groups. 

is dominated by other computation, so that the delays for coherence do not significantly 

contribute to response time. As either network latency or processor speed increases, 

though, the message round-trip time becomes significant compared to the amount of 

' processing per operation, and the on-use coherence checks required by a zero lease term 

become a significant contributor to response time. Under these conditions, fairly short 

terms offer a significant improvement in response time. 

2.3.3     Sharing, granularity, and multiple leases 

The preceding analysis appears to assume that each client holds a single lease over all data 

its at the server, which raises the issues of the granularity at which leases are specified 

and the extent to which they are grouped for management. It also suggests the question 

of how performance is affected if a client's files are split between multiple servers. 

From the standpoint of minimizing both traffic and delay, a client should seek to 

amortize each communication with the server over as many operations—and, therefore, 

as many items—as possible. Whenever it must request any extension from a server, the 

cache should request extension of all leases it holds from that server. Because traffic 

is bursty, doing so significantly reduces traffic. The files in the previously analyzed 

trace can be grouped by whether they are in the public or private portion of the name 

space. Table 2.3 shows the operation rates for these two groups; it adds the rate of lease 

extensions with a ten second term, figured by both the analytical estimates and trace 

simulation. The sum of the rates for separate extensions is nearly twice that for when 

extensions for both groups are combined. So when extensions can be combined, doing 

so significantly reduces the coherence traffic. If they cannot be combined, however, as 

when the two groups are stored on different servers, the total coherence traffic is larger, 

but still a small share of total file-server traffic. 

The question of granularity in specifying leases is equivalent to the previously studied 
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problem of lock granularity in database systems [56]. A fine grain increases overhead, in 

memory, network bandwidth, and processing. A coarse grain increases contention, which 

in leasing takes the form of false sharing when a cache holds a lease over an item of which 

it has no copy. 

False sharing also results when a cache holds a lease over data that the client is no 

longer using. One cause of this is that the lease term may extend beyond the period of 

interest, which provides additional motivation for keeping terms short. Another cause 

is the grouping of extension requests recommended above. To minimize false sharing, 

a cache should relinquish its lease when sharing is detected for items in which it is no 

longer interested; i.e., when a cache receives a request to approve a write to an item that 

has not been accessed recently, the cache should relinquish its lease of that item (and 

any related items) instead of granting approval while retaining the lease. 

2.4    Additional considerations 

2.4.1     Options for lease management 

Leases ensure coherence as long as the server and cache satisfy the conditions in Sec- 

tion 2.2.1, and these conditions leave considerable flexibility. In addition to initially 

setting the term, the server is free to extend a lease's term, and even to send an un- 

solicited message to the leaseholder informing it of the extension. Also, the server is 

not required to seek approval for a write; it can choose instead to wait for the lease to 

expire. When the number of leaseholders is high or it is probable that some leaseholder 

has failed, such a lazy approach to writes may perform better than attempting to acquire 

approvals. While waiting, the server can write the new data to disk, provided it ensures 

that it does not become visible before the lease expires. 

The client controls a different set of options. For example, it chooses when to obtain 

and relinquish leases, in the same way that it chooses which data to retain in its cache. 

In addition, the client decides when to request that a lease be extended: when it expires, 

to avoid delay for read operations, or when the covered data is next used, to reduce the 

load on the server. One virtue of the latter option is that it imposes no load when a 

client is idle. If, however, the client requests extension whenever the lease is about to 

expire, reads incur no delay for coherence, since the lease does not expire; this reduction 

in delay is purchased at the cost of higher server traffic and insensitivity to changes in 

client activity. The client can do any of three things when it receives a request to approve 
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a write: it can grant approval, retaining the lease; it can allow the write to proceed by 

relinquishing its lease; or it can ignore the request, forcing the server to wait for lease to 

expire. 

An example: installed files 

As an example of how this flexibility can be exploited, consider publicly installed files, 

such as libraries and commands. These files account for a significant portion of access, 

but that access is almost exclusively reads; writes to installed files do occur, but only 

infrequently, and then typically encapsulated within some sort of explicit installation 

procedure. Installed files also account for most sharing, especially universal sharing: as 

the system grows larger, these files would be expected to be shared by some constant 

fraction of the clients, so that the number of leaseholders grows with the number of 

clients. 

When the number of clients is large, the few write operations that are requested per- 

form very poorly. A single request for approval elicits a reply from each of the clients, and 

the resulting implosion of messages to the server increases the likelihood that some of the 

approvals are lost due to either network congestion or buffer overruns [18]. Retransmis- 

sions increase both the delay and the traffic on the server well above those estimated in 

our performance analysis. Furthermore, all of this effort may be futile: when the number 

of clients is large, it becomes likely that some client is unreachable, such that the server 

must wait for that client's lease to expire before the write can proceed. 

This poor behavior for writes is avoided if the server does not seek approval for writes, 

but instead simply waits for the leases to expire. Since all that the server then needs 

is the latest time of expiration, it does not even need to record the identities of the 

leaseholders, lowering the overhead of its bookkeeping. The cost of doing so is increased 

latency for the infrequent writes. 

If the server gives the same expiration time to all of its clients, though, it runs the 

risk of synchronizing them so that they all the server runs the risk of synchronizing the 

clients, so that they all request extension together—and the implosion is not eliminated, 

but instead shifted to the extension traffic. When multicast is available, the server can 

avoid most requests for extensions by periodically multicasting an extension to the group 

of interested clients; a single multicast message per term then replaces a request and 

response for each active client. By multicasting before the term expires, the server can 

keep clients' leases from expiring, so that the contribution of coherence to response time 
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is minimized. The only requests for extension that the server receives are those for newly 

started clients and for clients that miss an occasional (datagram) multicast. 

Without multicast, the server can still manage extension traffic, but not quite so 

simply. For the server to send unsolicited extensions, it must keep a record of the lease- 

holders, iterating through the list to send extensions. It can spread the extensions out in 

time, so that there are not bursts. Handling client requests for extensions requires looking 

up in the list, which either is expensive or requires a more sophisticated data structure 

' than is suitable for small numbers of leaseholders. The server's other option is to not 

record the leaseholders, as with multicast, in which case it advances the latest-expiration 

time whenever an extension is requested. 

There is still the potential for congestion when a write does occur. By continuing 

to send extensions, though, with the modified items explicitly excepted, the only extra 

traffic generated is for read accesses in the interval between the sending of the extension 

message and the expiration. This traffic includes queries to determine whether the data 

has changed, up until the write is performed, and cache misses to fetch the modified data 

thereafter. The latter traffic is unavoidable in any case. 

Installed files are easily identified, residing in a few system directories, so that they can 

be specified as part of the file server's configuration to take advantage of these different 

policies. The result is that the cost of maintaining coherence on installed files becomes 

very low, with the only penalty being the increased delay incurred by the infrequent 

installations. When other groups of files that can be identified, knowledge of their access 

pattern can also be exploited. For example, when data is updated only periodically, 

leases can be granted to expire at the time of the next update, so that approvals need 

not be sought. 

Adaptive policies 

Some of the policy options can also be selected dynamically in response to access pat- 

terns. In fact, two simple cases of adaptation were already considered in the analysis of 

performance. By requesting extensions only when data is read, rather than periodically, 

the set of leases automatically represents the recent pattern of access, reducing the level 

of false sharing. By seeking approval only when the time to obtain it is less than the 

time remaining in a lease's term, the server automatically seeks approval less often as 

the level of sharing increases. 

More explicit adaptations are also possible. The server can switch automatically to 
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treating a file as installed when the degree of sharing exceeds a configured threshold. 

Doing so allows the server to reduce the amount of state it keeps locally, since it does not 

have to keep the leaseholders' identities, in addition to eliminating traffic for approvals. 

The server can easily switch back to normal handling by ceasing to send 'unsolicited 

extensions and resuming keeping track of the clients that request extensions. Once the 

last unsolicited extension has expired, handling can revert to normal, or, if the number 

of clients requesting extension exceeds the threshold, the server can continue to treat the 

files as installed. 

Another possible adaptation is for the server to dynamically change the term of which 

leases are granted. The only durations to consider, though, are zero and the maximum 

allowed, because any term in between them produces both higher traffic and increased 

delay. The switch to a zero term should be made when either a falls below one or the 

minimum for tc exceeds the maximum allowed term. To estimate these values the server 

must have the actual rate of reads, which is known only to the caches; to allow the server 

to estimate the rate of reads, each cache would have to include in its request for extension 

the number of reads it has handled since the last request. The access patterns measured in 

V suggest that such switches would be extremely rare, since a very high degree of sharing 

is required to bring a below one; the need for switching is even smaller if installed files 

are configured for the special handling described above. For V or a similar system, then, 

the benefit from changing the term is probably too small to be worth supporting. 

2.4.2     Other applications 

The problem of coherence arises in contexts other than file caching, including multi- 

processor memory systems (e.g., [65]) and distributed shared memories (e.g., [42]). What 

these applications have in common with file caching is the need to support a memory 

system that has multiple access paths and potentially multiple copies of data items. 

These other applications have not traditionally considered partial failures; however, as 

larger multiprocessors are built and their interconnects more resemble networks, there is a 

growing need to address the potential for component failures. Leasing could prove useful 

in providing coherence in these contexts. The access patterns and time constraints may 

be quite different from those we have considered for file service; the trade-offs between 

delay and traffic would also differ. Performance could be in a region of the curves that 

we have not explored, where the time to obtain approval and the portion of the term 

lost to clock error and communication delays are a significant fraction of the term. The 
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trade-offs among different policies for extension and approval would need to be explored 

for these parameters, and possibly with a different distribution of operation arrivals. 

2.4.3    Write-back caches 

Some applications for coherence either do not require recoverability or provide it by other 

means. For example, a distributed virtual memory has no sense of persistence,15 and in a 

transaction-processing system recoverability is enforced at a larger grain than individual 

operations. For such applications, leasing can be extended to support write-back caches, 

though it is then not possible to maintain coherence across all failures. 

Write-back caches require a second kind of lease: a write lease authorizes its holder 

to read and write a data item during its term, provided it writes back any dirty items 

before the lease expires or is relinquished. Unlike the previously described read leases, 

though, a write lease is exclusive: all other leases over an item must be relinquished or 

expire before a write lease can be granted. Conversely, a write lease must be relinquished 

before a read lease—even with zero term—over the same item can be granted. 

Because the system is not recoverable, coherence can not be assured for many failures. 

A client crash may lose newly written data; the only way to restore coherence in such a 

case is to undo all actions causally dependent on the lost writes, which is not generally 

possible. Either a communication failure or a server crash can prevent a cache from 

writing back data before its write lease expires. Either of these failures forces the cache 

and the server to compromise. If the cache keeps the dirty data, coherence is violated, 

since the server may grant conflicting leases, but discarding the data is also undesirable. 

The server (after recovering, if it crashed) is faced with a choice of waiting for the cache to 

write back the data, thereby preserving coherence but losing availability of the covered 

data, or allowing further progress by granting new leases and leaving the cache with 

inconsistent data. From a practical standpoint, the best that can be done is to give the 

cache a chance to write back before other leases are granted; doing so reduces the chance 

of lost writes, but does not eliminate it. 

A few other practical suggestions should be noted. When a write lease is about to 

expire but its holder has not finished writing back the data, the server should extend 

the lease as long as it is making progress. Also, in order to avoid conflicting claims from 

clients after a server crash, the server should record write leases on nonvolatile storage, 

"Though some do support checkpointing. 
1 The exception is transaction processing systems, which are considered in Section 4.2. 
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so that it can honor any that have not expired when it recovers, and so that it can at 

least attempt to avoid data loss from those that have expired. This requirement raises 

the cost of supporting leases over that for write-through caches, where only an upper 

bound on the terms was required. 

2.5     Summary 

Coherent access is essential in order for file-service caching to be easily usable. Real 

distributed systems experience partial failures; so a practical solution to the problem of 

ensuring coherence must function correctly in spite of such failures. Leasing guarantees 

cache coherence even in the presence of crashes and lost messages, and it does so without 

reducing the availability of file service below that of the file service without caches. 

Because it makes explicit use of time, leasing does depend on well-behaved, though not 

perfect, local clocks. 

Analytical estimates can be used to predict how the choice of lease term affects 

performance. How the long the term can be is restricted by the fact that the term is 

also the maximum delay that coherence can add to an operation when there is a failure. 

Generally, the best performance is given by either a term of zero or of the maximum 

acceptable length. A zero term is favored when writes to shared data dominate reads 

and when the rate of access is low. Otherwise, both server load and response time 

decrease as the length of the term increases. 

For file service, a fairly short term yields excellent performance along with acceptable 

degradation in the event of a failure. For the access patterns measured in the V-system, 

a term of around ten seconds greatly reduces both server traffic and per-operation delay, 

and the additional gain from even a much longer term is very small. These results still 

hold when processor speed or network latency is increased. 

Finally, leasing is flexible. It supports other policy choices in addition to selection 

of the term, and those options can adapt it for different access patterns and different 

trade-offs in performance. Furthermore, the mechanism is easily extended to support 

write-back caches, and it should be useful in other applications as well as in distributed 

file service. 
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Chapter 3 

A File Cache for the V-System 

This chapter describes a prototype file-service cache for the V distributed operating sys- 

tem. The design is evaluated in terms file-server traffic, based on analysis and simulation 

using traces collected with an instrumented cache. A very simple cache significantly re- 

duces read traffic; the prototype's extensions to this basic cache yield further reductions 

in traffic of as much as 60% without compromising the robustness of the file service. 

The first section describes the context for the prototype, and Section 3.2 introduces 

the basic cache design and the measurements that are the basis for evaluating perfor- 

mance. Each of the next three sections describes an extension to the cache design and 

evaluates its contribution to improved performance; those extensions are additional sup- 

port for temporary files, for caching of descriptor information, and for maintaining co- 

herence using leasing. Section 3.6 considers additional issues of the design as a whole, 

Section 3.7 discusses how the results generalize to systems other than V. 

3.1    Background 

The V-system is a distributed operating system based on the client-server model, with ac- 

cess to servers via location-transparent interprocess communication (message passing) [9, 

14]. The V kernel provides a minimal set of services, with most operating-system ser- 

vices provided by user-level server programs. Where possible, services share common 

protocols, the most pervasive of which are the naming protocol [16, 46] and the I/O 

protocol [13]. The naming protocol defines a single global name space for all systems 

services, and application programs communicate directly with servers to resolve names 

and to invoke operations, in contrast with the clerk model of many systems, in which 

31 
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each host has a local instance of each service, and an application program communicates 

only with that local representative. 

Adding caching to V's file service involves two existing services, the file service and 

the kernel's memory service. This section describes the aspects of these services that are 

relevant to file caching.1 

3.1.1    File service 

File service in V is defined by a common interface that is supported by a variety of servers, 

such as a gateway providing access to the file system of a Unix host as well as the native 

V file servers. Other services can also conform to this interface, such as user-information, 

news, version or configuration management, and database services. To the extent that 

these services conform to the file-service interface, it should be possible to cache data 

from them using the same mechanism as for more traditional file service. 

The interface for file service has three components:   naming, I/O, and descriptor 
access. 

Naming. The naming protocol provides a single tree of names seen by all programs 

executing on all hosts throughout the system. Names are interpreted by the servers 

implementing the named objects; clients cache hints as to the servers implementing 

different subtrees of the name space so that an operation on a named object can be 

efficiently invoked. By convention, a file server executing on host hostname implements 

the subtree of names rooted at /storage/hostname.2 

Because names are interpreted by the servers, not the clients, a name can be viewed as 

a query against the server or servers that implement it. One use of queries is to support 

generic names. Instead of having a single binding, a generic name is bound to a set of 

objects; each operation using the name, however, acts on only one member of the set. For 

example, the root of the standard subtree of publicly available files is the generic name 

/storage/any, and an application uses that prefix to reference public files. There can 

be more than one server providing a copy of the public tree under that name, but each 

request is handled by only one server. Similarly, most file servers support the generic 

name /storage/local; an application can use this name to find local file storage. 

*In the interest of clarity and simplicity, the descriptions here differ from the existing implementations 
in a few details that do not affect the nature of the results. 

2For historical reasons, the current implementation uses ' [' both for the root character and for the 
prefix for defined names. The descriptions here use V for the root and "/.' for defined names. 
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The client naming library also supports defined names that are inherited by child 

programs. Defined names are used to designate specific functions and as convenient 

nicknames. For example, V,sjs is used as the root of the standard subtree of public 

files, '/.imp as a suitable place for temporary files, and '/.home as the user's home directory. 

Default bindings for the standard names are provided as part of initializing a workstation, 

within standard library routines, or as a side-effect of logging in. These names can be 

rebound and others bound by the users. Most names are looked up relative to some 

defined name or the current directory, which is itself usually reached relative to some 

defined name. 

I/O. The I/O protocol provides block-level access to objects specified by low-level iden- 

tifiers called handles. A handle is usually obtained by performing an open operation with 

the name of the desired object; the handle returned identifies the server implementing 

the object. The open operation also returns a set of attributes of the object, such as its 

block size, its length, and whether it supports random or only sequential access. The I/O 

objects provided by file service correspond to open files, and they share the properties of 

allowing random access and behaving like storage, such that reading a block returns the 

previously written value. Other I/O objects, such as a network interface, do not share 

these properties. 

An open file in V is treated as a transaction. Opening a file for reading provides an 

immutable snapshot of its contents, and when an open file is written, the modified blocks 

become visible to subsequent opens only after the open file is committed, which normally 

occurs when it is closed. This property implies that an application program or user never 

has to deal with a partially written file, even if a failure occurs while it is being written. 

Descriptors and directories. For each name in the name space, there can be a 

descriptor, which is a tagged record of attributes corresponding to that name. For 

traditional file service, a descriptor includes the final component of the name, permission 

and ownership information, and other attributes such as the file's size and last-modified 

time. The attributes can differ for other servers. 

Directories are read using the I/O protocol, with a block corresponding to the de- 

scriptor for each name in the directory. In general, though, a client cannot resolve names 

by reading and interpreting directories. First, not all directories are readable: access 

controls can prohibit reading a directory, even when the user is permitted to look up 

names in it. Also, because a name is interpreted by the server, a directory need not be 
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enumerable at all: the server might compute a result using the tail of the name as an 

argument. Finally, directories that can be read do not necessarily contain any low-level 

identifiers that a client could use to for resolving the names in it. 

3.1.2    Memory service 

The virtual memory provided by the V kernel is all based on mapped I/O. An address 

space consists of a set of bindings, each from a region of pages into a range of blocks 

in an I/O object. The pages are specified by address and length, and the blocks by a 

handle and block offset. Page-in and page-out are done as reads and writes using the 

I/O protocol. In order to be mappable, an I/O object needs to have the same properties 

as an open file, plus it must have fixed-size blocks of a size compatible with the page size 

(i.e., one size is an integral multiple of the other). 

Two other features of the memory service complete the base for file caching. First, 

an address space can be created and its bindings manipulated without any processes 

executing in it; operations identify the address space using an I/O handle. Second, the 

memory server can create handles for an address space by which it can be read or written 

using the I/O protocol. For I/O using these handles, each page is a block, and handles 

can be created with restricted (e.g., read-only) access. Reading and writing address 

spaces has long been used for non-paged program loading and for debugging. An address 

space accessed in this manner can be larger than the processor address space; the I/O 

protocol presently limits an object to 232 blocks (pages). 

These features combine to enable the caching of file blocks using the memory service. 

A program can open a file, create an address space and bind the open file to it in its 

entirety, and then create a handle with which to read or write the address space. For 

I/O, the handle for the address space is equivalent to the handle for the open file; the 

only differences are that it can be more restrictive in the access it allows and that the 

block size corresponds to the page size, which can differ from that of the open file. Blocks 

are faulted in as necessary to satisfy read requests, and a commit causes any modified 

pages to be written to the bound open file before the commit request is forwarded to the 
file server. 

When the address space is created, an alternate file handle can be specified to field 

non-I/O operations against the address space; the memory server substitutes the al- 

ternate handle in the request and forwards the operation to the server it indicates for 

processing.   Close operations, including commits, are also forwarded to the alternate 
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Figure 3.1: Servers and protocols involved in file caching. 

handle after any required flushing is completed. The default for the alternate handle is 

the bound file handle, so that all operations behave as if they were requested directly of 

the file server. 

Caching in this manner has a few limitations: it is inconvenient, as each program 

has to explicitly set up caching for each file it uses, and it is inefficient, since no caching 

occurs across program invocations. 

3.2     The caching server 

A process-level caching server on each workstation provides the additional functionality 

needed to make caching of open files practical: naming, re-use, management of the cache, 

and coherence. The caching server fields naming requests, and when a file is opened it 

arranges for block access via the local memory server in the manner described above. 

The caching server operates at the level of naming operations and whole files, while the 

memory server handles all of the block-level access to open files. Figure 3.1 shows an 

application and the servers involved in caching a file, along with the protocols and pattern 

of communication. 

This section describes the caching server at a basic level of functionality that serves 

as a starting point for the improvements detailed in subsequent section; it also serves as 

a baseline against which the performance of those improvements is compared. The basic 

cache handles only file contents; it makes no effort to cache information about files, such 

as that contained in their descriptors, nor does it cache directories. The basic cache also 

uses on-use checks to ensure coherence, and it treats all cached files uniformly. 



36 CHAPTER 3.   A FILE CACHE FOR THE V-SYSTEM 

3.2.1     Description 

In order to cache data, the caching server must intercept the naming requests destined for 

the file servers. The prototype has not addressed the problem of transparent naming, as 

doing so would require major extensions or changes to the way names are resolved in V. 

Instead, the caching server on each workstation implements the portion of the naming 

tree with the prefix /cache/Aostname/read-write, and it strips this prefix from the 

name in a request to determine the real name of the object on which to operate. An 

application routes a naming request through the cache by adding the prefix to the name of 

the operand. In actual practice the added prefix is not obtrusive: it can be hidden in the 

binding of defined names such as '/.sys or '/.home, so that the user does not normally need 

to be aware of it. Also, each caching server implements the generic name /cache/local as 

an alias for /cache/hostname, so that the defined names can be bound without reference 

to a specific host. 

Data structures. The caching server's central data structure is a tree of the names 

for which it has cached data. Each node in the tree contains the node's name, links to its 

parent and children, and a list of any versions of the corresponding file that are currently 

cached.3 The descriptor for each version includes distinct handles by which it identified 

to the different servers, the identity of the user who opened it, a version tag, and flags 

indicating its mode and status. The contents of a version descriptor are summarized in 

Table 3.1. 

Opening files. When it receives an open request, the caching server looks up the name 

in its tree to see if the file is already cached. If the name is not found, the caching server 

makes the open request itself after stripping its prefix from the name, so that the request 

will be fielded by the correct file server. The user identity and mode of the original 

request are unchanged, so that the file server can check permission just as it would for 

a request directly from an application. If this open request fails (i.e., the file does not 

exist or the user does not have permission to open it), the caching server simply returns 

the indication of failure to the requesting application. 

If the open is successful, the caching server attempts to set up caching from the 

handle returned by the file server: it asks the memory server to create a new address 

space and to bind the open file handle to it in its entirety. If the memory server indicates 

3In the interest of brevity, we omit from our description some of the fields in naming nodes and 
version descriptors, used for purposes such as managing the cache's contents. 
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Field Meaning 

name Points to the naming node for this file. 
FShandle Handle returned by the file server when the file 

was opened. 
VMhandle Handle for the address space into which the open 

file is bound; returned by the memory server when 
the address space is created. 

CShandle Handle by which the memory server identifies the 
open file to the caching server; provided by the 
caching server. 

mode Indicates whether the file as opened at the file 
server is writable 

user The user who originally opened the file. 
idle Indicates whether any application presently has 

this version open. 
status Indicates whether this version is past, current, or 

future. 
tag Version identifier used in coherence checks. 

Table 3.1: Contents of a version descriptor. 

that the open file is not cacheable, however, the caching server returns the handle to 

the application so that all further interaction for the open file is directly between the 

application and the file server. Access to non-cacheable files is therefore supported, with 

the only cost being a small amount of additional overhead when the file is first opened. 

When the open file is successfully bound into its own address space, the caching server 

adds the name to its in-memory tree and allocates a descriptor for the version. It sets 

the name, FShandle and VMhandle, and it allocates a new value for the CShandle, and 

it fills in the mode and user from the original request. If the,file is opened for writing, 

its status is future, since it represents a not-yet-committed version of the file; the status 

for a read-only open is current. For a read-only open, the server also requests from the 

file server a version tag corresponding to the handle, which it stores in the naming node; 

the tag is 128 bits that the server can interpret later to determine whether the version is 

current.4 Finally, the caching server flags the version as busy, requests from the memory 

server another handle for the address space, and returns that handle to the application. 

4As presently implemented, the version tag is obtained by reading the file descriptor from the server 
and extracting suitable fields; e.g., for the Unix-based file server these are the inode number and modified 
time for the inode. 
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I/O operations. The application uses its handle for the address space for all of its 

operations on the open file. This handle points to the memory server, and reads and 

writes are handled without involving the caching server. 

The caching server specifies its CShandle as the alternate handle when it creates the 

address space into which the open file is bound. Because the memory server forwards 

all requests other than reads and writes to the alternate handle, these requests are in- 

tercepted by the caching server. When the caching server receives one of these requests, 

it maps from the CShandle to the corresponding FShandle and makes the corresponding 

request of the file server. The caching server then returns the result to the application; 

if the result includes a name (e.g., mapping from an open file handle to its name), the 

caching server first adds its prefix to the name. 

The caching server intercepts closes and commits by the same mechanism. Before 

forwarding a commit, the memory server writes out to the file server any modified pages; 

the caching server therefore completes the commit by sending the request to the FShandle, 

setting a flag in the request to indicate that the file should remain open. After the 

commit, the caching server requests a new version tag from the file server and stores it in 

the descriptor. It then invalidates any version marked as current: its status is changed 

to past, and if it is idle it is discarded by releasing the corresponding address space 

and closing the corresponding handle at the file server. If the commit is part of a close 

operation, the version's status is changed to current, and it is flagged as idle. 

When the application closes a file that it has had open for reading, the caching server 

marks the version as idle if the flags supplied by the memory server indicate that no 

other application has it open. When a past version is idled, it is discarded. 

Reopening cached files. When an open is requested for which the name exists in the 

tree, the caching server searches the list of versions for one that can be used to satisfy the 

request. If the requested mode is read-only, then any current version is usable. When a 

file is being opened for writing, then in addition to being current, the cached version must 

be both writable and idle as well. If no usable version is found, the request is treated as 

a cache miss, otherwise the caching server queries the server with the name, mode, and 

version tag to determine that (a) the version tag is not out-of-date, and (b) the requesting 

user has permission for the open. If this coherence check returns STALE-DATA, the current 

version is invalidated and processing continues as for a cache miss; any other error result 
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(including NO_PERMISSION) is returned to the application.5 If the check returns OK, the 

caching server obtains from the memory server another handle for the corresponding 

address space and returns it to the application. The handle returned to the application 

has only the access rights requested in the open mode: a read-only open receives only 

read rights, even if the cached open file is writable. 

Other naming operations. For any other naming request it receives, the caching 

server strips its prefix from the name and issues the modified request. The results are 

returned to the application, after modifying any name in the results to.include the caching 

server's prefix. 

This basic cache provides a starting point; its level of functionality is quite similar to 

the first version of the Andrew file system [58] as well as to that of Sprite file [50] without 

delayed write. (A more detailed comparison with these and other systems appears in 

Chapter 5.) 

The basic cache introduces no problems with respect to failures. Data is always 

written through to the file server before it is committed; so a client crash cannot cause 

data loss. Likewise, applications on a client host can read and write data whenever it 

can communicate with the file server, which is the same availability as in the absence of 

caching. 

The caching server requires no special status with the file servers; it uses the same 

interface as other clients of the file service, with the only addition being the on-open 

coherence and permission check. In particular, a file server does not have to trust the 

caching servers to enforce protections, since the file server still enforces protections on 

each open that it processes. The users of a caching server must trust it to act on their 

behalf and to enforce protections between multiple users on a single host. 

3.2.2    Traffic measurements 

Throughout this chapter, the impact of design choices is evaluated in terms of the traffic 

handled by the file server. The counts of operations are based on traces collected using 

5Presently, the caching server requires that the version have the same user for read-only opens as well, 
and the coherence check is performed by reading the descriptor and comparing the stored fields. The 
modified time for the attributes (instead of the contents) is used, so that if the permissions have changed 
the check returns STALE-DATA, forcing a cache miss, and the normal permission check is performed as 
part of handling the miss. In a similar manner, an extra cache miss occurs when a second user opens 
a file already in the cache. In the V installation at Stanford, neither of these cases occurs frequently 
enough to produce a perceptible degradation in performance. 
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an instrumented version of the caching server that records all file-service operations that 

it processes or invokes. The trace entry for each operation includes the operation, its 

outcome, the full names of its operands, and a timestamp. Individual reads and writes 

are not traced, since they are handled by the memory server instead of the caching server; 

however, counts of blocks read from and written to the cache are included in the record 

for each close. Reads and writes handled by the file server are not captured, but could 

be estimated. A few other operations on open files are not traced, but their use can be 

reliably determined for the traces presented here. More detailed information about the 

trace data and estimates appears in Appendix A. 

Measurements from three traces are presented here. Each captures an activity on a 

single workstation. The activities traced are: 

f sbuild Set up working directories for a private version of one of the V file servers, 

then compile it, edit a header file, and recompile. 

afsbench The Andrew file system benchmark [35], modified to run under V: copy a 

directory subtree, scan all of the directories and files in the new copy, and compile 

sources in it. 

latex Format a conference paper by running the MjpC program twice. 

Two of these traces, f sbuild and latex, capture normal activities under V, while the 

other, af sbench, is of a synthetic benchmark. All three represent intense bursts of 

activity corresponding to the peak, rather than average, rate for an interactive user. 

While most of a user's time is spent in less intense activity, the greater part of the load 

on file service is generated in bursts of activity like those traced. 

All three traces described here were collected on a Micro VAX II workstation with 

sixteen megabytes of memory, accessing files from a variety of remote file servers, as is 

common in V. Apart from the traced activity, only normal system functions were active 

on the traced workstation, and they generated no file operations. All traces were collected 

starting with a cold cache, and none required any replacement of data in the cache. 

For conciseness, all of the measurements are presented with the operations are grouped 

into the following categories: 

read One-kilobyte blocks read. 

write One-kilobyte blocks written. 
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commit Operations that commit a visible change, such as a close after writing, or 

file creation or removal. 

naming read Other operations that read naming or descriptor information, such as 

opening an existing file or reading a descriptor. 

misc. Miscellaneous operations, such as non-committing closes or file truncation. 

coherence Operations required to ensure cache coherence. 

Basic measurements 

The baseline for comparison is the level of traffic with no cache, which is summarized 

in Table 3.2. The same data is shown in Figure 3.2 in terms of the traffic ratio, which 

is obtained by dividing each count by the total traffic for the trace. Reads dominate the 

traffic for all three traces. 

A second initial data point is the performance of the basic cache described in the 

preceding subsection. Table 3.3 and Figure 3.3 show the traffic for such a cache. Traffic 

is significantly reduced, mostly in blocks read. The savings in blocks read comes from 

two sources: files that are read more than once, and files that are written and then read. 

The gain for latex is more modest than for the other traces: because latex is much 

shorter, its read traffic is dominated by the effects of starting with an empty cache. 

Read traffic cannot be reduced any further: once a block was present in the cache, 

it was never read from the server again. In all three cases the cache was large enough 

to hold all of the data used over the entire trace. For longer-term operation, some cache 

replacement would occur, but the additional reads required when a replaced block is later 

read would be offset by a much smaller contribution from cold-start effects. Any further 

reduction in traffic must therefore be found elsewhere. Three components of traffic stand 

out as candidates: writes, naming reads, and coherence. 

Traffic by file class 

Files are not all alike. Breaking down the traffic measurements by file classes reveals very 

different patterns of access. The classes considered here are: 

Temporary files. Temporary files are commonly used to hold intermediate results, 

either as an extension of a program's address space or for communication between 

programs (such as between passes of a compiler). In many systems, including Unix 
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fsbuild afsbench latex 
read 73315 25025 1846 
write 21237 3808 124 
commit 1263 476 8 
naming read 11297 3426 182 
misc. 5269 952 90 
total 112381 33687 2250 
duration 7521 sec 1653 sec 263 sec. 

Table 3.2: Traffic without caching. 
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Figure 3.2: Traffic without caching. 
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fsbuild afsbench latex 
read 3284 1495 872 
write 21237 3808 124 
commit 1263 476 8 
naming read 6147 2567 104 
misc. 510 267 16 
coherence 5150 j 859 78 

total 37591 9472 1202 
traffic ratio 33.5% 28.1% 53.4% 

read traffic ratio 4.5% 6.0% 47.2% 
max. cache size 9 MB 5 MB 3 MB 

Table 3.3: Traffic with the basic cache. 
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Figure 3.3: Traffic with the basic cache. 
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and V, one or more directories are provided, by convention, for temporary files; 

others, such as Tops-20, allow a file to be tagged as temporary when it is created. 

In either case, temporary files are easily identifiable.6 

Installed files. In any system, there is a body of files that is not updated in normal 

operation, but only when a new version is installed. Examples are the executable 

form of commands, object code libraries, and on-line documentation; public source 

code is often treated in a similar fashion. These files are widely shared among users, 

-and some of them are very heavily accessed; that shared access, however, is predom- 

inantly read-only, since installations are relatively infrequent. Installed files reside 

in a fairly small set of public directories or subtrees, and for administrative reasons 

(e.g., prevention and detection of unauthorized modification) it is usually desirable 

to segregate installed files from other public files that are regularly updated. 

Other files. The remaining files are grouped together. Note that the traces consid- 

ered here include only user access to files, so that the measurements do not include 

any access to files used in either the interface or implementation of system services. 

These classes represent two different types of distinctions. Installed patterns are 

distinguished by the pattern of access to them; they are semantically the same as other 

files. The difference in access pattern suggests that separate tuning for them could 

improve overall performance, but with no changes in functionality. 

Temporary files differ in kind, to a degree that it is inaccurate to classify them as 

files: one of the primary purposes of files is persistence, a property that temporaries 

do not share. Including access to temporaries in overall file access patterns is therefore 

misleading. This observation does not reduce the need for temporary data storage, nor 

does it suggest that the interface to such storage should differ from that for files— 

the common interface allows the substitution of one for the other. But the needs of 

temporaries might be better met in ways other than reliable storage on disk. 

Table 3.4 and Figure 3.4 break down by file class the traffic without caching. Within 

any single trace, the traffic patterns differ greatly from class to class. For each class, 

however, the makeup of its traffic is similar across all of the traces. Much of the difference 

between traces is accounted for by different amounts of traffic for each file class. The 

latex trace shows the largest variation: it uses no temporary files at all. 

6There are Unix programs that create files in these directories (/tmp) that do require persistent 
storage, such as the journal files generated by some editors. None of these programs exist in V; they 
indicate a need for a different class of persistent "scratch" space, located in a different directory. 
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fsbuild af sbench latex 
tmp inst other tmp inst other inst other 

read 13872 42265 17178 2625 17858 4542 1732 114 
write 11596 0 9641 1773 0 2035 0 124 
commit 1020 0 243 222 0 254 0 8 
naming read 338 3970 6989 70 957 2399 72 110 
misc. 338 3030 1901 70 480 402 70 20 

total 27164 49265 35952 4760 19295 9632 1874 376 
share of total 24.2% 43.8% 32.0% 14.1% 57.3% 28.6% 83.3% 16.7% 

Table 3.4: Traffic without caching, by file class. 
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fsbuild afsbench latex 

Figure 3.4: Traffic without caching, by file class. 
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fsbuild afsbench latex 
tmp inst other tmp inst other inst other 

read 0 2763 521 0 1093 402 820 52 
write 11596 0 9641 1773 0 2035 0 124 
commit 1020 0 243 222 0 254 0 8 
naming read 0 1034 5113 0 501 2066 12 92 
misc. 338 94 78 70 24 173 10 6 
coherence 338 2936 1876 70 456 333 60 18 
total 13292 6827 17472 2135 2074 5263 902 300 
traffic ratio 48.9% 13.9% 48.6% 44.9% 10.7% 54.6% 48.1% 79.8% 
share of total 35.4% 18.2% 46.5% 22.5% 21.9% 55.6% 75.0% 25.0% 

Table 3.5: Traffic with the basic cache, by file class. 
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Figure 3.5: Traffic with the basic cache, by file class. 
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That latex does not use temporary files reflects the more recent origin of the programs 

it executes. Much use of temporaries in Unix software dates from a time when address 

spaces and main memories were both more limited in size, so that it was common for 

either code or intermediate results to exceed the available space. More modern programs 

are more likely to retain intermediate results within their address space, and they are 

less likely to require that code be split into multiple programs. It is therefore reasonable 

to anticipate some decline in the use of temporary files as mofe modern software, such 

as the T£}X formatter, displaces older programs, such as the Portable C Compiler used 

in both f sbuild and af sbench. Their use is not expected to vanish altogether, however, 

as there are reasons other than size constraints for separating a program into multiple 

address spaces So the need will continue for efficient temporary storage that is globally 

nameable and is sharable, and that is interchangeable with persistent files. 

The same general observations hold for traffic with the basic cache, as Table 3.5 

and Figure 3.5 show; in fact, the differences between classes are more pronounced with 

caching. Temporary files produce little traffic apart from writes and commits: reads are 

eliminated since all reads are of files just written. Installed files benefit from repeated 

reading, though they also suffer the most from start-up misses in the latex trace; the 

reuse of installed files produces a significant amount of coherence traffic. For the other 

files, both writes and naming reads account for significant portions of the traffic; reads 

are reduced both due to reuse and, as for temporary files, due to reading back newly 

written data. 

Sharing 

The traces contain no data on sharing, since each is of a single user's activity on a single 

workstation. We can make some general observations based on published measurements 

of sharing in timesharing systems [11, 26, 37, 49, 65]. (A fuller discussion of these and 

other measurement studies appears in Section 5.2.) 

As previously noted, installed files are shared widely, and the most heavily accessed 

of them are shared by all users. Temporary files are almost never shared among users; 

most are accessed by only one or two processes. Sharing of other files is less uniform, but 

most of the observed sharing is of files used in the interface to some service—such files 

do not exist in V. Of the remaining files, most are accessed by only one user at a time. 

A small fraction are shared among a small number of users, but the shared files are less 

frequently written than those that are not shared. The decrease in frequency of writes 
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with increased sharing is important, because it implies that more expensive writes, in 

terms of number of approvals required, occur less often. 

In most existing systems, a user is able to easily employ only one workstation at a 

time, so that sharing among users does describe sharing among hosts. But a few systems, 

including V, allow a user to invoke commands transparently on additional hosts [64]. 

Using this facility creates additional sharing between workstations. But the scheduling 

of execution on other hosts clearly needs to consider cached data, which the existing V 

mechanisms do not; measurements of sharing using the existing scheduling could not be 

considered representative. 

A simple approach to scheduling that would yield some locality of reference is one in 

which a user employs a small set of hosts over an extended period, with hosts added to or 

removed from the set as needed. Reusing the same set of hosts gives some benefit from 

caching across multiple program executions, which is not likely if a new host is selected at 

random for each command. Under such a scheduling policy, there is much more sharing, 

including write-sharing, of other files, but each file is likely to be shared by only a small 

number of workstations. 

3.3     Temporary data 

Temporary files account for a significant fraction of the traffic in two of the traces. With 

the basic cache, most of the traffic for temporary files is the writes and commits required 

to make them persist reliably, even though persistence is not required for temporary data. 

The caching server eliminates almost all traffic for temporary files by providing additional 

support for temporary data, taking advantage of the fact that persistence is not required. 

The support required adds little to the complexity or size of the caching server. Special 

handling for temporaries yields performance benefits comparable to delayed write, a 

common approach to reducing write traffic, but without compromising the reliability of 

file data as delayed write does. 

3.3.1     Caching server support for temporary data 

In addition to the subtree of cached files, each caching server provides a directory 

/cache/hostname /tmp in which temporary files can be created, as an alternative to 

caching such files from a file server. Because the files are implemented locally, the over- 

head of creation, deletion, and checking coherence is avoided.   These temporary files, 
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however, are still globally accessible and sharable, since the}'' are within the shared name 

space and are accessed via the standard I/O protocol. 

The temporary support uses the memory server for block-level I/O, just as for cached 

files. Because blocks are cached in virtual memory, there must be an open file to which 

they can be paged. The caching server maintains a pool of anonymous open files for 

this purpose, using one per temporary file created; they are recycled, however, requiring 

only a truncation to zero length to clear their contents before they are reused. Because 

• few temporary files are in use at one time, a small pool suffices, with the caching server 

adding to it as needed. In addition, the caching server directs the memory server to not 

write back dirty pages on commit. Blocks are written back to the file server only as 

required for page replacement; with a memory of adequate size, no data from temporary 

files is written out. The only traffic required for temporaries, then, is the creation and 

deletion of files for the pool and the truncation each time a file in the pool is recycled. 

Table 3.6 gives the traffic levels after adding temporary support to the basic cache; 

Figure 3.6 presents the same data in terms of traffic ratio. Traffic for temporaries is 

essentially eliminated. (The latex trace is not included, since it uses no temporary 

files.) Combined traffic for all classes is presented in Table 3.7 and Figure 3.7. For 

f sbuild, writes are reduced by 55% and committing operations by 80%; for afsbench 

the reductions are 47% and 45%. Total traffic is reduced 34% for f sbuild and 22% for 

afsbench. 

The cost of support for temporary data is small. In the prototype, it adds four classes 

that are implemented in about 825 additional lines of C++, of 11,000 lines for the entire 

caching server (not including libraries). On a Micro VAX, the added code is less than eight 

kilobytes out of the caching server's total of 140 kilobytes, plus roughly four kilobytes of 

additional data at run-time. 

3.3.2    Comparison with delayed write 

We now compare our special support for temporary data with a more common approach 

to reducing write traffic, delayed write. In centralized Unix systems, a write system call 

returns as soon as the data has been copied to a system buffer, and it is written to disk 

sometime later [66]. Delaying the write to disk lowers the latency for the write operation, 

since the operation completes without waiting waiting for the disk, and it reduces the 

level of traffic at the disk, since a significant fraction of newly written blocks are rewritten 

or deleted within a short time. The performance improvement is potentially greater in a 
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fsbuild afsbench 
tmp inst other tmp inst other 

read 0 2763 521 0 1093 402 
write 0 0 9641 0 0 2035 
commit 8 0 243 6 •o 254 
naming read 0 1034 5113 0 501 2066 
misc. 340 94 78 74 24 173 
coherence 0 2936 1876 0 456 333 
total 348 6827 17472 80 2074 5263 

Table 3.6: Traffic for cache with temporary support, by file class. 
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Figure 3.6: Traffic for cache with temporary support, by file class. 
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fsbuild afsbench 
read 3284 1495 
write 9641 2035 
commit 251 260 
naming read 6147 2567 
misc. 512 271 
coherence 4812 789 

total 24647 7417 
traffic ratio 21.9% 22.0% 
relative to 
basic cache 65.6% 78.3% 1 

Table 3.7: Traffic for cache with temporary support. 
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Figure 3.7: Traffic for cache with temporary support. 
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distributed system, where the disk write becomes a write to a remote, shared file server. 

Delayed write therefore plays a central role in several distributed file systems, including 

Sprite [50], Burrows' MFS [11], and Echo [45]. Our design compares favorably with 

delayed write in all three of reliability, complexity, and performance. 

Reliability. The primary drawback of delayed write is that it places all newly written 

data at risk of loss when a crash occurs. To limit the amount of loss that can occur, the 

delay is bounded by having a system process periodically write out any dirty blocks; a 

typical interval is thirty seconds. When a failure occurs, then, some of the data written 

during the last thirty seconds can be lost. Section 1.2 points out that even if this risk were 

acceptable in a centralized system, the nature of the failures that occur in a distributed 

system make the risk unacceptable there: loss can result from the failure of any of client, 

server, or network, and the loss of data due to a partial failure can go undetected. In 

contrast, the only data placed at risk by the caching server's approach is that in temporary 
files. 

Complexity. The principal argument advanced against special support for temporaries 

is that it adds unnecessary complexity. The implementation, however, can be quite 

simple, as the prototype demonstrates. And any added complexity for applications is 

hidden within standard library routines for creating temporary files. 

Delayed write introduces complexity of its own. The cache coherence mechanism 

must be prepared for the latest version of a file block to exist somewhere other than the 

server. Coping with failures is much more complicated, since a recovering server must 

somehow find blocks that have not been written back from client caches, and a cache 

can find itself unable to write out committed data due to failure of either the server or 

communications. The complexity filters up to the application or user, which must either 

be prepared to cope with loss of data or take additional steps to ensure its persistence. 

Performance. Delayed write has two main benefits for performance: reduced write 

traffic, from avoiding writes of short-lived data, and lowered response time, since writes 

do not wait for either remote communication or disk access. 

For our traces, delayed write does not reduce traffic as much as does support for 

temporaries.   The reduction in write traffic depends on the lifetime of newly written 

data, which for the traces is shown in Figure 3.8. For latex, no data lives for less than 

two minutes; in the other traces, about half survives for under thirty seconds, while the 
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Figure 3.8: Lifetime of newly written data in all files (cumulative). 
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remainder survives much longer. Figure 3.9 shows lifetimes of blocks written to non- 

temporary files; there is little short-lived data in non-temporary files. Table 3.8 gives the 

traffic for a simulated cache using a thirty second delay of all writes; for both f sbuild 

and af sbench the write traffic is higher than with support for temporaries, because some 

temporary files survive for more than thirty seconds, 

Figure 3.10 shows traffic for a thirty second delay in comparison with that for sup- 

porting temporary data directly. While write traffic is comparable, the support for tem- 

poraries also eliminates most of the operations to create, commit, and delete temporaries 

as well as all coherence checks. The higher commit and coherence traffic results in a 

thirty second delay producing a slightly higher level of total traffic. 

The other performance benefit claimed for delayed write is that it lowers response 

time, since writes and closes are asynchronous. In V, however, block-level write operations 

are already asynchronous—the only requirement being that they complete before the 

commit. So the difference in response time for the two approaches depends on the number 

of synchronous operations each requires. For delayed write, file creation and deletion 

still require synchronous operations, while file commits are asynchronous; the support 

for temporaries eliminates creation and deletion for temporaries while still requiring 

synchronous commits of non-temporary files. Table 3.9 gives the number of synchronous 

committing operations for both approaches. Delayed write shows a higher number of 

these operations for all but the latex trace, and for that trace the number is quite small. 

While the relative delay for these operations depends on how the server implements 

them, we can conclude that any difference in response time for the two techniques can 

be expected to be quite small, and that support for temporaries is likely to outperform 

delayed write in many cases. 

The traces are from execution on a fairly slow processor. With a much faster processor, 

file lifetimes should decrease, which would improve slightly the relative performance of 

delayed write. The lifetimes of temporary files are bounded by execution time; so a 

greater share of temporaries would benefit from delayed write. The survival of other 

files, however, normally depends on some human interaction, and so their lifetimes would 

shorten less. To the extent that the speed of human interaction increases, however, the 

risk from a crash also increases: more activity is subject to loss, with greater effort 

required to recover, it, and, with reordering of delayed writes, the number of possible 

states in which a user or application might find a set of files increases greatly. Even on 

much faster processors, the cost of reliable file storage is expected to remain low. 
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fsbuild afsbench latex 
read 3284 1495 872 
write 9984 2156 124 
commit 1263 476 8 
naming read 6147 2567 104 
misc. 510 267 16 
coherence 5150 859 78 

total 26338 7820 1202 
traffic ratio 23.4% 23.2% 53.4% 
relative to 
tmp support 107% 105% 100% 

Table 3.8: Traffic for cache with 30-second delayed write. 
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Figure 3.10: Traffic for 30-second delayed write vs. temporary support. 
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fsbuild afsbench latex 

delayed write 
file creation 412 176 0 
file deletion 340 74 0 
total 752 250 0 
temporary support 
file creation 76 103 0 
file deletion 0 0 0 
file commit 125 104 8 
total 201 207 . 8 

Table 3.9: Synchronous commit traffic. 

In summary, special support for temporary data yields a substantial reduction in 

traffic without sacrificing the reliability of the file service. Providing this support adds 

very little complexity to the caching server, and preserving the robustness of file service 

simplifies the writing of robust applications. This approach compares favorably in all 

respects with the more common approach of delaying writes, which reduces write traffic 

at the expense of reducing reliability for all files. 

3.4    Caching descriptor information 

The basic cache handles only the contents of files, but the file service also stores informa- 

tion about files in the form of their descriptors. With file contents cached, a large portion 

of the file-server traffic is for read-only access to descriptor information; in addition to 

the explicit naming reads, each on-open coherence check also reads this information to 

check the name and permissions. Table 3.7 shows that for the basic cache with tempo- 

rary support, 15-45% of the remaining traffic falls in this category. Caching descriptor 

information therefore offers an opportunity to significantly reduce traffic. 

There are two consumers of the information about files: application programs and the 

caching server itself. Applications read directories and descriptors; if the cache is to avoid 

performing any of the naming reads or coherence checks, then it needs this information 

to perform name lookups and permission checks.7 A significant fraction of those name 

lookups fail: 18-48% of the names looked up in the traces are for files that do not exist. 

7Even though the file server enforces permissions, the cache must also do so when permissions change 
after a file is cached and when the cache is shared by multiple users. 
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Field Meaning 

name The name of this node. 
parent Pointer to its parent node. 
children List of child nodes. 
versions List of version decriptors for cached files. 
descriptor The name's descriptor. 
volatileValid Indicates whether the volatile attributes in the de- 

scriptor are valid. 
stableValid Indicates whether the stable attributes in the de- 

scriptor are valid. 
childList Valid Indicates whether children is a complete and valid 

list of the children of this directory. 
users Table of users known to have permission to look 

up this node's name. 

Table 3.10: Contents of a node in the naming tree. 

This section describes and evaluates extensions to the basic cache to allow it to cache 

descriptor information as well as the contents of files. The nodes within the naming tree 

require additional fields in order to store this descriptor, which are listed in Table 3.10 

along with the fields from the basic cache. In addition, a permissionChanged flag is added 

to the descriptor for a file version. 

When the caching server reads the descriptor for a file (or directory), it caches it 

by copying it into the corresponding node of the in-memory naming tree and sets the 

both atrribute flags to valid, he caching server reduces the frequency with which it must 

read descriptors from the file server, however, by caching results of permission checks, 

by caching entire directories in response to failed name lookups, and by partitioning the 

information within a descriptor to invalidate as little as possible. 

Caching permission information. A successful operation returns additional in- 

formation implicitly along with its explicit result. In particular, a successful operation 

that includes a name lookup implicitly indicates that the user has permission to look up 

each component of the name. When a lookup operation at the file server succeeds, the 

caching server adds the requesting user to the table for each node along the path. Sub- 

sequent lookups by the same user can be permitted without having the actual descriptor 

data. Similarly, the descriptor for each cached file version includes the user who opened 

it and the mode in which it was opened, indicating that the same user has permission to 
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open it again in the same or a more restricted mode. Caching these results of the open 

request enable the caching server to handle a repeated open without having cached the 

descriptor for every component of the path. 

When the caching server needs only additional permission information to perform an 

open, it can obtain that information by reading a single descriptor. For example, when 

a second user attempts to open for reading a file that is already in the cache, reading 

the file's descriptor by name provides implicitly an indication of the user's authorization 

to name the file along with the explicit protection information from which the cache can 

determine whether the user has permission to read it. 

Handling failed name lookups. The cache handles failed name lookups by cach- 

ing entire directories: if the name lookup fails in the cache's tree, then the named file 

does not exist. A directory is cached, however, only after it is read by an application or 

a name lookup within it fails. For example, when an application attempts to open for 

reading a file that is not in the cache, the caching server attempts the open at the file 

server. If that open fails, the caching server first returns the result to the application, 

then reads and caches the directory. For each entry in the directory, it adds a node 

to the naming tree, if not already present, and caches the descriptor in it; when it fin- 

ishes reading the directory it sets the childListValid flag to indicate that the directory is 

cached. Replying before reading the directory avoids increasing the latency of the failed 

operation by the time required to read the directory. Caching only the directories where 

lookups fail is quite effective: the majority of failed lookups result from path searches, in 

which an application attempts to open a file in each directory in a list (the search path) 

until it is found. Because paths are used repeatedly, the names that are not found are 

clustered in a small number of directories. 

The caching server could instead add a negative entry to its tree for each name that 

it looks up but does not find, but caching entire directories is much more attractive than 

keeping negative entries. First, caching the directories provides descriptor information 

that can be used to satisfy other requests. Second, it yields a lower miss rate, because 

once a directory is cached any name not found there can be handled locally, whereas a 

negative entry covers only the same name; caching the directory amounts to prefetching 

data for the search path. Third, the number of names not found and the number of 

entries in their directories are comparable, so that the two alternatives require roughly 

the same amount of storage. Finally, it is simpler for the cache and file server to maintain 

coherence if they need deal only with names that do exist. 
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Partitioning descriptor information. Access to the attributes within a descrip- 

tor is not uniform: different operations read and modify different subsets of them. The 

caching server takes advantage of this fact by partitioning the attributes into a stable and 

a volatile set that are invalidated independently. The permission information required for 

most operations is changed only by explicit descriptor writes, which are infrequent, and 

so is included in the stable set. The volatile set includes attributes, such as the size and 

last-modified time, that are changed as a side-effect of more frequent operations, includ- 

ing commits (for files) and file creation, deletion, and rename (for directories). While the 

stable attributes alone are adequate for the caching server to perform many operations, 

both sets must be valid for the cache to be able to satisfy a read of the descriptor. 

When the stable attributes are invalidated for a node, the valid-permissions flags 

on all file versions on that node are cleared, and the table of users is cleared on all 

descendants of the node. The table of users must also be cleared for a node and all of 

its descendants when the node is renamed. Clearing the user tables requires touching all 

descendants of a node, which might appear to be expensive. However, both changes to 

stable attributes and the renaming of directories are much less frequent than the name 

lookups supported by the table of users. Also, the cost of traversing the in-memory tree 

is low, and it contains only those descendants for which some data is presently cached. 

Comparison with interpreting directories. The caching server could cache direc- 

tories in the same manner as files, and then perform name lookups by searching within 

the cached directories. While this approach seems to require a minimum of mechanism, 

several problems undermine its apparent simplicity. 

The first problem is one of security: resolving names by searching directories requires 

trusting the cache to enforce some restriction on access. In particular, when a user 

has permission to look up names in a directory but not to read it, the server cannot 

enforce the restriction, since the cache must be allowed to read the entire directory.8 The 

problem of security is even greater when importing a foreign file system that imposes 

its own access controls, using a different model from the native system. In contrast, the 

approach to caching names used by the caching server does not require that file servers 

trust caches to protect data. 

A second problem with resolving names in this manner is that it presupposes that 

8In principle, a user who does not have permission to read a directory but is allowed to look up names 
could determine the directory's contents by enumerating the possible entries and attempting to look up 
each; in practice, though, the difference in authorization is significant. 
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fsbuild afsbench latex 
read 3284 1495 872 
write 9641 2035 124 
commit 251 260 8 
naming read 663 348 94 
misc. 512 271 16 
coherence 10638 2302 158 
total 24989 6711 1272 
traffic ratio 22.2% 19.9% 56.5% 
relative to 
tmp support 101% 90.5% 106% 

Table 3.11: Traffic with descriptor caching. 

a directory can always be read. But servers in V are allowed to implement directories 

for which the result of an open (or other operation) is computed using the name as an 

argument; it might not be possible to enumerate such a directory. The approach used 

in the prototype supports such servers within the same framework as it does those with 

more traditional directories. 

The final problem with resolving names on clients is that it makes name lookup a 

compound operation: the client separately fetches or checks the coherence of the direc- 

tory for each component of the name. As a consequence, operations by name are not 

necessarily atomic. Imposing concurrency control to ensure that operations are atomic 

adds complexity and overhead. 

Performance. Simulation of caching descriptors and directories yields the traffic levels 

in Table 3.11 and Figure 3.11. Read-only access to descriptors is therefore reduced by 

48-94% compared to that for the basic cache plus temporary support. 

Total traffic, however, increases for two of the traces, and decreases only slightly for 

the third. The reduction in naming reads is offset by the fact the most of the operations 

saved still require a coherence check. The coherence checks in this case are less expensive 

than those in earlier traffic measurements: in the earlier measurements, each coherence 

operation includes a check of permission to name and open the file, while here it does 

not. Caching descriptor information pays off significantly, then, only if the need for a 

coherence check can be eliminated for a significant number of these operations. 
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Figure 3.11: Traffic with descriptor caching. 

3.5     Using leasing for coherence 

3.5.1     Performance 

Leasing provides an answer to the need to reduce the number of coherence checks. The 

analysis in Chapter 2 shows that a term on the order of ten seconds greatly reduces 

traffic, while also bounding the added delay when a failure occurs. Because the traces 

contain no writes to shared data, the only coherence traffic is lease extensions. A simple 

simulation with all files covered by a single lease with a term of ten seconds yields the 

traffic shown in Table 3.12 and Figure 3.12; the number of coherence checks is reduced 

by 89-95%. 

Just as caching descriptors does not by itself reduce traffic, so also leasing cannot 

reduce traffic without some caching of descriptor information. If only the contents of 

files are cached, then each open request requires a request to the server in order to look 

up the name and check for permission. The net effect of leasing without caching naming 

and descriptor information is an increase in total traffic: leasing alone does not reduce 

the number of requests for opening files, and it requires additional traffic to approve 

updates.   In combination, though, leasing and caching descriptors yield a reduction in 
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fsbuild afs bench latex 
read 3284 1495 872 
write 9641 2035 124 
commit 251 260 8 
naming read 663 348 94 
misc. 512 271 •16 
coherence 508 123 17 
total 14859 4532 1131 
traffic ratio 13.2% 13.5% 50.3% 
relative to 
basic cache 39.5% 47.8% 94.1% 
relative to 
tmp support 1 60.2% 61.1% 94.1% 

Table 3.12: Traffic with descriptor caching and 10-second leases. 
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Figure 3.12: Traffic with descriptor caching and 10-second leases. 
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traffic of up to 40% relative to the basic cache with temporary support. 

3.5.2     Implementation details 

The general description of leasing in Chapter 2 omits many details that are important 

in implementation. This section describes how leasing is implemented in the prototype 

caching server, beginning with a description of file groups. It then describes the data 

structures and processing by which clients keep track of update operations within each 

file group. The section concludes with improvements suggested by experience in imple- 

menting the prototype. 

File groups 

The prototype maintains coherence in terms of file groups, similar to the notion of a 

volume in the Andrew file system [35]. A file group is simply a subtree of the global 

name space, and a group is identified by the name of its root node. Groups are defined 

by the administrator of the file server as part of the server's configuration. For example, 

a public subtree of installed files might form one group, and the subtree below a user's 

home directory another. Clients learn about groups as a side-effect of coherence requests: 

a client adds a request for a lease to an operation, and the server's reply includes the 

prefix of the relevant group as part of the reply.9 

In the prototype leases are managed at the granularity of an entire file group. Coher- 

ence for each file group is maintained separately, but lease requests or replies for multiple 

groups can be batched into a single message. Because the processing for each group is 

independent, though, the description that follows is in terms of a single group. 

Keeping track of updates 

The prototype's implementation of coherence employs two data structures in addition 

to the records of leases at both the server and clients: a log of updates to each file 

group, maintained by the server, and a list of pending update operations, maintained 

by each client. The log provides the support needed to be able to extend a lease after 

it has expired and to enable clients to disambiguate the order in which operations are 

performed; the list of pending updates simplifies the client's processing of the log. 

9The V file system is restricted to a tree, on top of which symbolic links are also supported. In a 
file system that allows one link to a file, it would be necessary to restrict links to being within a single 
volume, as is done in AFS. 
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Some lease-related information is added to each message exchanged by the caching 

server and file server. The client piggybacks a request to extend its leases on each 

message it sends, and the file server piggybacks a lease extension on each of its messages. 

In addition, to requests for update operations the client adds a tag value by which the 

operation is identified while obtaining approvals, and the server adds a sequence number 

by which it can be correlated with the log of updates. 

When requesting approval of an update, the server sends to leaseholders the opera- 

tion's request code, the names of its operands, and the tag value from the operation's 

original request. A client uses the tag to identify the operation in its reply. 

A client can request extension of a lease that has expired, in which case updates might 

have been performed in the interval between the lease expiring and the extension being 

granted. In order to extend the lease, the server must be able to tell the client which data 

items have been modified. The prototype handles this information in the form of a log of 

the update operations that have been performed on each file group. Each record in the 

log denotes a single update operation and consists of a sequence number, the operation's 

request code, the names of its operands, and its tag.10 The client combines reading the 

log with each request to extend a lease: the client includes in the request the highest 

sequence number that it has read from the log, and the server includes in the reply any 

log records with a higher sequence number. To process the reply, the client 

1. skips, based on sequence number, any log records that it has already processed, 

2. processes each of the remaining records in order, invalidating cached data as re- 

quired, and then 

3. updates is record of the lease with the new expiration 

In some cases, the client can use the information in the log to modify, rather than 

invalidate, cached data. For example, upon reading a record for a rename operation, 

the client can update its local naming tree instead of invalidating all data associated 

with both the source and destination names. Updating the cache using the log avoids 

unnecessarily discarding data from the cache, and it allows the client to keep current the 

naming information for any files that are cached and the list of children for any directory 

cached in its entirety. 

10Recall that, in V, block-level read and write are not relevant for coherence, because read occurs 
logically when the file is opened and write occurs when the file is closed. 
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Figure 3.13: An uncertain ordering of operations. 

A client also relies on the log in order to ensure that it processes conflicting operations 

in the same order as the server. The log is needed for this purpose because the order in 

which messages are received by a client can be insufficient to determine the order of the 

corresponding operations. For example, consider the sequence of events for a client that 

reads a file at the approximately the same time that another client is writing it: 

1. Client A sends a request to open file F for reading. 

2. A receives a request to approve a commit to F by client B. 

3. A sends approval of B's commit. 

4. A receives the reply for its open request. 

As Figure 3.13 shows, this sequence of events is consistent with either ordering for the 

two operations. But A's next action depends on which order is correct: if the write was 

performed first, as in the upper diagram, A should cache the newly read data, but if the 

read was first, as in the lower diagram, the data should not be cached. 
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This second case in Figure 3.13 also points out that when a client approves an update, 

it cannot simply invalidate the affected data and forget about the operation; if it does, 

it might apply operations to its cache in the wrong order. In order to ensure that each 

operation is applied to the cache exactly once and in the correct order, the client does not 

process any operation except when it reads the corresponding record from the log. The 

client correlates the results of operations with the log entries using the sequence number 

that the server includes with the result. For a write, the sequence number matches the 

log entry for the update; for a read it matches the immediately preceding update. 

There can be a significant interval between a client approving an update and the same 

client reading the corresponding record in the log. During that interval, the client does 

not know whether the operation has been performed, but the affected data is still marked 

as valid in its cache. To prevent it from using the data in this period of uncertainty, the 

client adds each a record for each update that it approves to its own list of pending 

updates; the record includes the operation's request code and its operand, along with the 

operation's tag. Before using cached data to satisfy any read request, the client checks for 

a conflict between the requested read and each operation on the list of pending updates. 

If a conflict is found, the client must query the server to determine whether the operation 

has been performed; it can do so by requesting an extension to its lease. 

The tag for each update operation provides the basis for keeping track of approved 

updates. When a client requests an operation that might produce an update, the client 

adds a unique tag value to the request, and it adds the operation to its list of approved 

updates.11 The server includes the tag when it requests approval of the update from 

another client; that client adds the operation to it list, then sends its approval, identifying 

the approved update by its tag. A client removes an operation from its list when the 

corresponding tag appears in a log entry. 

Not every update that is approved actually results in a change. An update request 

can be rejected by the server if, for example, the requesting user is not authorized to 

perform it. Also, the requester sometimes does not know whether an operation will 

produce an update: when opening a file for writing, the file is created only if it does not 

exist. The file server inserts such an operation in its log of updates, but with a request 

code of NCLOPERATION. The only action taken by the client upon reading a NOJDPERATION 

log record is to remove the operation with the matching tag from its list of pending 

operations. 

11The tag is included for operations requested by caches. The file server supplies a tag if the operation 
is requested via the normal application interface. 
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The cache has to be prepared to deal with failures when handling coherence messages. 

A cache might encounter a discontinuity in reading the log, either because the server 

crashed, and it stored the log only in volatile memory, or because the server discarded 

old log entries before the cache had opportunity to read them. When the cache detects 

that it may have missed some log entries, it must invalidate all cached data for the file 

group if the lease has expired; if the leases has not expired, the cache discards any data 

affected by the operations in its list of approved updates. To avoid missing log records 

with limited memory devoted to the server log, the cache periodically queries the file 

server, extending all of its leases to the present time, in order to read the log; this period 

is presently set at five minutes. 

The cache also has to be able to clear its list of pending updates. To allow it to do 

so, each lease extension message from the server includes a list of the pending update 

operations that the client has approved. After performing invalidations required by a 

discontinuity in the log, the cache rebuilds its list of approved updates from the list in 

the extension message. An operation for which the client receives no reply must be left 

on the list of pending updates until either its outcome is learned from communication 

with the server or all data it might affect has been invalidated in the cache. 

Possible improvements 

The prototype caching server includes the lease support described here, and the bulk of 

it has been exercised with test scaffolding. At this writing, a file server that supports 

leasing has been only partially implemented. Experience with the prototype suggests 

several improvements that could simplify the implementation of leasing for both the 

cache and file server and also improve performance when there is sharing. 

Shorter identifiers. The use of character-string names throughout makes the proto- 

type more complicated and less efficient than it might otherwise be. Elsewhere in V, 

character-string names are the only persistent identifiers for named objects; the design 

attempts to apply the same approach to caching, but it proves awkward. Managing 

storage for variable-length strings is clumsy in C and C++, and frequent interpretation 

and comparison of names is inefficient. The character-string names also inflate the size 

of log entries. In an improved implementation, the server would assign a fixed-length 

identifier to each node within a file group, and that identifier would replace the name in 

most coherence messages. In a reply, the server would send along with character-string 
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name for the path an array of the identifiers corresponding to each of the components; 

the cache thus learns these identifiers as a side-effect of its operations. The identifiers 

replace names in most log entries; a file commit, for example, would need just the iden- 

tifier. For file deletion, the identifier of the parent is included along with that of the 

deleted node. The creation of a node would specify the parent's identifier, that of the 

new child, and the name component of the new child. A rename requires four identifiers 

and one name component: the node moved, its old parent, its new parent, and the node 

it replaces, if any, plus the component of its new name. Because they are local to a file 

group, identifiers can be short, reducing the size of log entries in addition to simplifying 

handling. 

Finer grain for leasing. The prototype manages leases at the granularity of entire file 

groups, which is adequate if write-sharing of file groups is not common, as in the traces. 

We anticipate more sharing in the future, however, if a user is able to employ a set of 

hosts over an extended period. Under this pattern of sharing the directories in the user's 

working set are write-shared among those hosts, and that files within those directories 

are also sequentially write-shared. To support such sharing well, the prototype needs 

to be extended to allow the coverage of a lease to be specified at a finer grain than the 

entire file group. 

With short identifiers, it becomes practical to list the nodes in a file group that are 

covered by a lease; the attributes for each node could be specified by an additional four 

bits, one each for stable attributes, volatile attributes, file contents, or list of children. 

Relinquishing leases. In addition to adding small units to a lease, the cache needs to 

be able to indicate that it no longer holds a copy of (or an interest in) a data item. For 

example, in response to a request for approval of an update, the cache might invalidate a 

directory or descriptor that has not been recently accessed, and relinquish its lease so that 

it is not required to approve future updates. Each leased operation, extension request, 

or approval of an update includes a list of identifiers over which the sender relinquishes 

its lease. 

Relinquishing a lease produces the same sort of ordering problem as approving an 

update. When a cache sends a message relinquishing its lease over some item, that 

message might be received by the file server shortly after it has sent a reply (or other 

message) that extends a lease over that same item. The correct order can be established 

by treating the relinquish as an update: the client tags the request and adds it to its list of 
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pending updates, and the server inserts the relinquish into the log with the request code 

NCLOPERATION. Unlike other NOJDPERATION records in the log, the cache must recognize 

when it removes a relinquish operation from its list of approved updates and modify its 

record of lease coverage. 

Partial invalidation for file contents. When a file is updated, the prototype discards 

all blocks cached from an old version of it. Data is needlessly invalidated if only a few 

blocks of the file change, or if data is added only to its end. For the applications run in 

V, this waste is not a problem—programs almost always write a file in its entirety. The 

same is true for most Unix software, too. Other applications (in the future) might not 

have this property; database updates commonly change only a few blocks in a large file. 

Extending the coherence support to handle invalidating only part of a file is straight- 

forward: all that is needed is to add to the log entry for a commit of a file version a list 

of block ranges that are modified. The memory server interface, however, would need 

extensions to allow partial invalidation from within an open file. 

Write-broadcast for descriptor data. The most common operations change just a 

couple of fields in a descriptor, such as the modified time and length. The new values for 

these fields could be added to the log entry, effectively changing the caching of descriptor 

information from write-invalidate to write-broadcast. Further study would be needed to 

determine whether the reduction in cache misses on descriptor data is worth the increase 

in the size of log records. 

3.6     Additional issues for caching in V 

3.6.1    Limitations 

We have not considered here any details of block-level caching; the only assumption we 

have made is that the cache is large enough to avoid any replacement. Effective caching 

does depend on a number of matters at the block level, including cache size, the size of 

transfers, replacement policy, and prefetch policy. For caching in RAM, the interactions 

between file caching and virtual memory management must all be considered. These 

concerns have been explored by others; Chapter 5 surveys this work. 

The prototype does not address some issues of integrating file caching into V.   In 

practice, the most apparent weakness is that caching is not transparent with respect to 
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naming, and so caching does not work well with remote execution and program migration. 

In addition, the prototype performs poorly when a files is opened at one host and then 

read or written at another, a situation that arises primarily from remote execution. Under 

these circumstances, access should be via the cache co-located with the reader or writer 

instead of the cache where the file was opened, but V presently has no mechanism to 

support such a rebinding. Both of these problems—naming and rebinding of open files— 

are fundamental to replication of data, not just caching, and solutions found in the more 

general context should be applied to caching as well. 

A full consideration of the implications of caching for file-server design is also beyond 

the scope of this dissertation. With effective caching, writes outnumber reads; so writes 

must be handled efficiently. Good response time depends especially on having low latency 

for operations that commit data to persistent storage, which include changes to directories 

and descriptors as well as commits of file versions. Logging updates to metadata, as in 

Hagmann's reimplementation of the Cedar file system [33], reduces latency by reducing 

the amount of seeking on disk. Latency can be further reduced by using nonvolatile RAM 

for the tail of the commit log, or by placing the log on either a separate disk or, in a disk 

array [54], on a separate set of heads. 

3.6.2     Performance 

Sharing. Because the traces include no write sharing, they generate no coherence traffic 

other than lease extensions. Under the style of sharing anticipated in Section 3.2.2, lease 

conflicts, and the attendant up date-approval traffic, should be common, but only for 

small numbers of leaseholders. Most of the updates affect directories, and the sharing 

could lead to thrashing if the entire directory were invalidated on each update. The 

partitioning of descriptor contents, in Section 3.4, and the use of the log to update cached 

directory information, in Section 3.5, both serve to minimize invalidation of descriptor 

and directory information. 

Response time. The performance evaluation presented in this chapter has been almost 

exclusively in terms of traffic; response time has been largely ignored. The primary 

contribution of the file service to response is the delay when an application must wait for 

an operation to be performed at the file server. Much of that delay is from congestion at 

the file server; it is minimized by reducing total traffic, which the design here does, and 

by handling operations efficiently at the file server, which is outside our concern here. 
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There are three kinds of operations on which an application must wait: cache misses of 

reads, commits, and coherence checks. 

Cache misses are generally minimized by reductions in total read traffic, but they are 

further lowered by prefetching data. Block-level reads dominate the read-only traffic; 

prefetching for these is the responsibility of the memory server. The caching server 

handles naming reads, and caching the entire directory after a name lookup fails is an 

effective way to prefetch naming information for path searches. Only 23-46% of the 

naming reads performed are cache misses, and majority of those are to open files not yet 

cached. 

The number of commits required is significantly reduced by the support for temporary 

data, and those that remain are unavoidable if file storage is to be reliable. Fortunately, 

commits are only a tiny fraction of the total traffic in our measurements. The delay for 

commits depends mainly on the design of the file server, which needs to handle both 

writes and commits efficiently. Commits of shared data also require approval of the 

update, but the time to do so is in most cases dominated by the time for writing data 

to disk.12 The delay for a commit is therefore not more than a few tens of milliseconds, 

while the application engages in an average of 6-30 seconds of processing or other activity 

per commit; the delay added in order to reliably commit data is on the order of only one 

percent of the response time: 

With leasing, the rate at which coherence checks are required is extremely small: at 

most one check is required per term. These checks therefore account for much less than 

one percent of the response time. 

The caching server does several things in order to minimize response time: it reduces 

total traffic, and therefore congestion; it avoids many cache misses on naming reads 

by prefetching entire directories; it reduces the number of commits by its support for 

temporary files; and it limits the delay to provide coherence to a very small fraction of 

total response time. There is little more that the caching server can do; response time 

depends to a large degree on the memory server and file server. 

3.6.3     Security 

In the prototype, the caching server does not require any special privilege from the file 

servers; in particular, the file servers do not have to trust a cache to enforce access 

12In the absence of failures; when a client crashes, the delay is bounded by the lease term. But such 
failures are infrequent enough that they do not affect average performance. 
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controls. The only special privilege that the cache requires is the ability to act on behalf 

of applications that make requests of it; i.e., that it be able to present their credentials 

to the file server. A user must, of course, trust a cache he is using to not abuse this 

privilege, in the same way that he must trust any software he uses. 

One aspect of maintaining security that we have not dealt with in full detail is that 

of avoiding inadvertent disclosure through the coherence messages. A cache should see 

only the union of what its users are authorized to see. The coherence log and pending 

operations therefore must be filtered on a per-cache basis to avoid disclosure. The cache 

must therefore register with the file server the users on whose behalf it is making requests. 

The file server can collect these implicitly from the LEASEDJDPERATION requests it receives, 

but there also need to be explicit requests available to the cache to add or remove a user 

from the set, plus the means for the file server to challenge the cache to again present 

the credentials for the users on whose behalf it is working. 

3.7    Applying the results to other systems 

This chapter has evaluated for performance the file service in V; there are two kinds 

of differences that could limit the applicability of the -results here to other systems: 

differences in the semantics of the operations and differences in the pattern of access. 

Semantics. The most significant difference between V and many other file systems 

is that it provides atomic open files. This affects performance in two ways: it reduces 

the number of operations that require synchronous writes in order to guarantee recover- 

ability, and it lowers the number of operations that are significant from the standpoint 

of coherence. With some adaptation, however, the techniques described in this chapter 

work just as well in systems that make data visible at the granularity of individual read 

and write operations. 

A guarantee of recoverability can be defined that requires very nearly the same num- 

ber of synchronous writes as for V's atomic open files. Specifically, the file service can 

guarantee that data has been written to nonvolatile storage whenever: 

1. The writer closes the file, 

2. The writing program otherwise commits the data,13 or 

13Some versions of Unix provide the f sync call for this purpose. 
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3. The data is read by a program other than the writer. 

The first two cases correspond to the guarantees in V, and they provide the writer 

assurance that the writes will persist. The third case is necessary to guarantee to readers 

that the data they read will also survive; it causes a read operation to incur added 

delay only when it reads as-yet uncommitted data. This case occurs only when a file is 

concurrently write-shared, which is very infrequent. The total number of synchronous 

writes is thus very close to that in V. 

Because the number of operations actually requiring commits is comparable, the 

support for temporary files should be just as effective in reducing both traffic and delay. 

Because writes to other files are not synchronous, however, the cache must be write-back 

rather than write-through. In this case the data in the cache is not yet committed; so it 

does not have the reliability problems noted in Section 1.2. Readers see only committed 

data, and writers learn of failures when they close or otherwise commit the file. Leasing 

for write-back caches is described in Section 2.4.3. 

The semantics for files in V produce low rates of reads and writes from the standpoint 

of coherence, because only opens and closes are counted. Most files are open, though, for 

much less than ten seconds, so that a single lease term of that length will usually cover 

all of the access while a file is open. The higher rate of writes can be handled by making 

the cache write-back, as described above, and having all caches but the writer relinquish 

their leases. The only case in which the higher rate of writes is still significant is when 

a file is concurrently write-shared. Turning off caching during concurrent write-sharing, 

as is done in Sprite [50], avoids extra traffic to approve writes; with leasing, caching is 

easily turned off by using a term of zero length. As long as concurrent write-sharing is 

rare, which measurements show it to be in Unix systems [65], the resulting traffic differs 

very little from that for V. 

Under these conditions, separate support for temporaries still yields a reduction in 

traffic comparable to that achieved by delayed write. With recoverability guaranteed as 

above, the number of commits—and the delay they incur—is small. It is possible to have 

good performance without sacrificing robustness. 

Access patterns. There are two reasons that access patterns in other systems might 

differ significantly from those in the traces from V: the way that system services are 

implemented and the applications running on the system. 

None of the file access captured in the traces is for access to system services, since 
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services in V are accessed by communicating directly with a server program, not by 

reading or writing shared files. Most of the write-sharing observed in Unix systems, 

though, is of files that serve as the interface to services such as printer spooling, user 

information, system status, mail or news [11, 26, 65]. In such a system, there is more 

write-sharing of files than is observed in V, but that sharing still represents a tiny fraction 

of all file access. The result is only a small degradation in overall performance. 

One activity missing from the traces is access to large databases, which would produce 

different patterns of both operations and sharing. The details of the access pattern 

depend on the structure of the interface to the database, including whether data is 

accessed via shared files or through a database server. Generally, though, database access 

would probably increase the amount of sharing, and it would make partial invalidation 

of file contents more important than it is in the traces. Two of the issues arising in 

supporting database access, caching structured data and supporting transactions, are 

taken up in the next chapter. 

3.8     Summary 

This chapter has described, a prototype cache for file service in the V distributed op- 

erating system and evaluated its performance in terms of traffic based on traces of file 

access. Three enhancements to the basic cache design .boost its performance without 

compromising the reliability, availability, or coherence of the file service. 

First, special support for temporary data reduces write traffic by 46-54% in the traces 

that use temporary files, and it also eliminates coherence and committing operations for 

these files, for an overall reduction in traffic of 20-35%. Special handling for temporary 

files yields a gain in performance comparable to that obtained by delaying for thirty 

seconds writes to all files. Unlike delayed write, though, support for temporaries obtains 

improved performance without sacrificing the reliability of permanent files. 

The second and third improvements, caching of descriptor information and using 

leasing to maintain coherence, are effective only in combination; together they reduce 

traffic by as much as 40%. Caching information from descriptors allows the caching 

server to handle name lookups and permission checks for cached data, and caching entire 

directories enables it to also handle lookups of names that do not exist, which are quite 

common. The caching server reduces the frequency with which it needs to read descriptors 

and directories by caching the results of name lookups; it reads an entire directory only 
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when an application requests it or when a name lookup fails. Also, the caching server 

avoids having to refetch data by invalidating only part of the information in a descriptor 

in response to most updates, and by using the log of coherence information to update, 

rather than invalidate, cached directories whenever possible. The use of leases with a 

ten-second term eliminates the need for a coherence check on most reads of cached data. 

In combination, these three improvements to the basic cache reduce traffic by 60% 

and 52% for the f sbuild and af sbench traces. The remaining trace, latex, improves 

only 6% overall, but this is because over 75% of its traffic is reads that no cache can 

avoid. 

While the evaluation here has focused on traffic, the reductions in traffic should 

produce corresponding reductions in queueing delays at server CPU and disk, yielding 

good response time. Given the traffic remaining from the cache, low delay depends on the 

file server handling writes and committing operations with low latency, and on effective 

prefetching by the block-level cache. 
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Chapter 4 

Additional uses for leasing 

The preceding chapters have focused on using caching to improve the performance of 

a traditional file service. This chapter expands the scope of leasing beyond that of the 

V-system file cache in the preceding chapter. It develops leasing in three directions: 

Scaling up. The prototype increases the number of clients that a server or network 

can support by reducing the traffic per client by a factor of up to seven. Section 4.1 

looks at how secondary caches can be used when a system grows very large or 

spreads over a wide-area network. 

Other storage services. The file service that the prototype supports is only one 

possible storage service, and a fairly primitive one at that. One might ask whether 

the techniques for caching described here could be applied in other storage ser- 

vices. An important feature of many more sophisticated storage services, such as 

databases, is support for atomic transactions. Transactions are a useful extension 

to even basic file service, particularly in a distributed system, since they simplify 

the development of robust applications. Section 4.2 considers problems in making 

caching efficiently support transactions. 

Availability. In the description of leasing, availability was considered as a constraint: 

the availability of the file service had to be preserved at the level provided in the 

absence of caching. But for some cases the availability provided by a single file 

serve is not high enough. Section 4.3 considers two routes to increased availability: 

replication of servers, which was ignored in Chapter 2, and taking advantage of 

cached data by trading coherence to gain availability. 

77 
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4.1     Caching in very large systems 

Chapter 1 identified a trend toward large systems—either in number of client hosts or 

in geographical scope—as a motivation for caching. A large system typically consists 

of clusters of hosts on local area networks, with the clusters connected by a wider-area 

network. 

The prototype cache improves scalability in both senses. A larger number of clients 

can be supported by a server or network, since the traffic per client is reduced to as little as 

13% ofthat without caching, or 40% ofthat with the basic cache. Synchronous requests— 

read misses, coherence checks, and commits—incur delay for round-trip communication; 

the prototype especially reduces the frequency of these requests. 

Scalability can be further improved by using a secondary cache to mediate a client's 

access to file servers outside the local cluster. The secondary cache is very similar to the 

prototype caching server in the preceding chapter, except that it is responsible for the 

portion of the naming tree corresponding to file servers outside the cluster. Secondary 

caches allow inter-cluster messages for reads and coherence to be amortized over multiple 

clients within a cluster, reducing both server load per client and communication delay 

per operation. Secondary caches also reduce the number of clients for which a file server 

must keep state, because the server is accessed directly by (and grants leases to) only 

clients within its cluster and secondary caches in other clusters. 

Coherence within a cluster is handled by subleasing. Once it holds a lease from the 

remote file server, the secondary cache can grant subleases to its clients. The term of a 

sublease must be contained within that of the lease under which it is granted. Also, the 

secondary cache cannot approve an update or relinquish its lease until it has obtained 

the same action from the holders of its subleases. 

While the prototype caches only in RAM, a secondary cache could benefit more from 

also caching on disk. The secondary cache can then be larger, to yield a higher hit rate. 

Also, the latency to access a local disk compares much more favorably to the latency of a 

wide-area network than to that of a local-area network. Also, the speed of writes to the 

cache's disk is not critical to performance, since data needs to be written to disk only 

when it is not invalid but would otherwise be discarded; most access would still be from 

RAM. 

When the clusters are not tightly coupled, but instead form a federation of au- 

tonomous systems, the secondary cache serves as a file-service gateway. One function 

of such a gateway is the translation of identifiers, such as those for users, between the 
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systems. In the naming design for extending V to wide-area use [16], the gateway's func- 

tion is combined with that of a liaison server that resolves names outside the local system. 

From the standpoint of access control, the prototype's strategy of caching results works 

well for the gateway, too, since the cache does not have to understand the policies of the 

remote system, nor must the remote file servers trust the cache to enforce protections. 

In summary, secondary caches further increase the scalability of a caching file service, 

and the approaches used in the prototype, including leasing, work well for secondary 

caches. 

4.2    Caching and atomic transactions 

Many applications of storage services that benefit from atomic transactions would also 

benefit from the improved performance offered by caching. Two parts of the support for 

transactions require adaptation to work efficiently with caching: concurrency control and 

atomic commit processing. 

4.2.1     Concurrency control 

For a system with caches, coherence defines what is a correct logical order for read and 

write operations in order to ensure that caching does not affect the results of operations. 

Transactions typically impose on the order of operations the constraint of serializability: 

the logical order must be equivalent to one in which the operations in separate transac- 

tions are not interleaved. Cache coherence and transactional concurrency control could 

be implemented independently, but then there would be two mechanisms attempting 

to impose an order on operations. At best the result is duplicated effort; at worst the 

attempts conflict, since the two orders are not necessarily the same. For transactions, 

then, concurrency control takes the place of cache coherence.1 

Leasing can be applied to concurrency control in much the same way as to coherence. 

1 Actually, the notion .of coherence is not completely displaced. Non-transactional access can be viewed 
as a series of degenerate transactions, where each consists of a single operation and commits when the 
operation's result is returned. Such a system is trivially serializable: operations can be executed in 
any order at all, as long as each is atomic. Coherence constrains the order of these transactions: if 
one transaction is observed to commit before a second is initiated, then the first transaction must also 
precede the second in the serialization order. The notion of coherence as an additional constraint on 
serialization order generalizes to compound transactions. 

That serializability allows transactions to execute "out of order" is commonly overlooked because 
two-phase locking, the most commonly used technique for concurrency control, does not allow such 
anomalous behavior. 
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In particular, a lease can allow a cache to grant locks locally, so that a lock can be 

claimed and released repeatedly without communication with the server. A cache can 

grant read or write locks when it holds a lease of the corresponding mode. The cache 

cannot relinquish the lease, allow it to expire, or approve a conflicting update while the 

lock is held, however, or the lock must be broken and the transaction aborted. 

The fact that transactions can be aborted, though, allows a cache to grant a lock 

without holding an unexpired lease, at the risk of having to later abort the transaction 

if an update occurs. In particular, if a lease has expired, the cache could optimistically 

grant the lock before seeking an extension, so that execution of the transaction does not 

have to wait for the server to grant the extension. The cache can also allow a lease to 

expire while a lock is held. Before the transaction commits, though, the cache must 

extend the lease, aborting the transaction if any conflicting update has occurred. With 

a limit on the period for which the lease is allowed to have lapsed, this approach could 

be described as boundedly optimistic concurrency control. 

Additional support is required for write locks when a transaction might access an 

item through more than one cache. When the item is accessed through the first cache, 

that cache obtains a lease and grants a lock; later, the same transaction, executing on 

a different host, tries to access the same item through a second cache, and the lease 

requested by the second cache conflicts with that held by the first. To handle this case, 

each request for a lease needs to include an identifier for the transaction, if any, that is 

requesting the lock, and the file server includes the transaction's identifier in its request 

that the first leaseholder relinquish its lease. If the requesting transaction is the same 

one that holds the lock,2 then the cache relinquishes its lease, but indicates that the item 

is locked by the requesting transaction. The file server records the write lock3 as held 

by the transaction, then grants the requested lease. Any item that is write-locked and 

shared has the lock recorded at the file server; there can be one write lease or many read 

leases over the item, but all leaseholders know the identity of the transaction holding the 

lock. 

Multiversion concurrency control methods, surveyed in [10], are a natural fit with 

caching, since the caches do cause additional version to exist, whether or not the server 

maintains multiple versions. Read leases, in fact, correspond quite closely to multiversion 

read locks, and the collection of approvals for an update to upgrading write locks to 

certification locks.   Granting either read or write locks for an item should be avoided 

2Or, for nested transactions, the requester is a subtransaction of the one holding the lock. 
3For there to be a conflict, one of the requests had to be for a write lock. 
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while an update is pending against it, since the transaction receiving such a lock is likely 

to conflict with the one waiting to commit, and one of them will have to be aborted. 

This contrasts with the non-transactional model in Chapter 2, where reads are allowed 

while an update is pending; the difference is that there each operation is a separate 

transaction, and the read "commits" immediately with no possibility of conflict with the 

pending write. Under multiversion locking, an updating transaction must retain all of its 

locks—and hence the cache its leases—until commit, while a read-only transaction can 

release them once the last read is performed: 

Under multiversion locking, read and write locks do not conflict; so a cache can still 

hold a read lease for an item that is write locked. The cache must know the identity 

of the transaction holding the write lock, however, because reads by that transaction 

return a different version. If an item is not shared, read and write leases can be used 

as before, giving the right to grant both read and write locks. When an item is shared, 

however, only read leases are used for the committed version, with the leasing over any 

uncommitted version managed separately. All holders of read leases on the committed 

version must approve the granting of a new write lock, at which time they and the file 

server record the identity of the transaction holding the lock. When the new version is 

committed, approval is again required from the caches holding leases over the committed 

version, which invalidate their old copy of the committed version and discard their record 

of the lock. 

Other concurrency control methods can also be adapted for caching and leasing, 

including timestamp-based and hybrid methods. Some special care is required in selecting 

timestamps, especially for multiversion methods, in order to preserve coherence between 

transactions; the details of adapting these methods are not included here. 

4.2.2    Atomic commit processing 

A transaction that involves more than one server must employ an atomic commit protocol 

to ensure that all of the participating servers come to the same decision about whether the 

transaction commits or aborts. In order to accommodate caching, existing protocols for 

atomic commit can be extended to cope with leasing and to allow caches as participants. 

As an example, consider two-phase commit [31]. One of the sites involved in a transac- 

tion is designated as the coordinator for the transaction. When the transaction attempts 

to commit, the coordinator sends a prepare-to-commit message to the other participants. 

Each of them writes any modified data to stable storage and logs the prepare-to-commit 
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before replying prepared to the coordinator. After it has received a reply from all of the 

participants, the coordinator sends them a commit message. Each participant then logs 

the transaction as committed and releases any locks it holds.4 

If for some reason a participant is unable to commit the transaction, it replies to the 

prepare-to-commit with an indication that the transaction must abort. Upon receiving 

such a reply the coordinator sends an abort message to all participants, which log the 

transaction as aborted and abort its local effects. The coordinator can send an abort 

message at any time before it sends a commit; it does so, for example, if a participant 

fails to respond in time to a prepare-to-commit. 

From the time it sends a prepared message until it has logged either a commit or an 

abort, a participant is uncertain as to the transaction's outcome. Locks must be held 

through this in-doubt period. Also, a failure during this period requires additional effort 

during recovery to learn of the outcome, and leaves that transaction blocked, with its 

locks held, until the participant is able to learn of the outcome. Because a transaction is 

blocked while in doubt, and because of the additional costs for recovery from failures, it 

is desirable to keep the period of uncertainty short. 

Leasing and atomic commit 

Leases can lengthen the in-doubt period, because a transaction cannot commit while there 

is still a lease outstanding against data it writes. A server participating in a transaction 

could ensure this by delaying its reply to the prepare-to-commit until it has obtained 

approval for each lease that has not expired. If this delay is significantly longer than the 

time to perform the required writes to the log, the period during which other participants 

are uncertain of the transaction's outcome is lengthened. Also, if the delay is too long, 

the coordinator will time out and abort the transaction. When a leaseholder has crashed 

or is unreachable, the delay can be up to the term of the lease, which may be a long time. 

The period for which locks are held cannot be reduced, but the period of uncertainty 

can be shortened. Each participant replies promptly to the prepare-to-commit, but 

includes in its reply the latest expiration time for an outstanding lease. The coordinator 

includes the latest of these times in its commit message. Participants can then record the 

transaction to be committed as of the indicated time: its eventual outcome is known, but 

write locks must still must be held until the commit time.5 A participant that receives 

4In single-value locking, read locks can be released when the participant replies to the prepare-to- 
commit; under multiversion locking they must be held until all of the certification locks are obtained. 

5For multiversion locking, all locks, including read locks, must be held. The certification locks held 
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approval for update that lowers its maximum expiration time can inform the coordinator, 

which can send a new commit message with an earlier as-of time. Participants that receive 

this message may release their locks at that earlier time. 

As in the absence of transactions, the term of leases determines how much a client 

failure can degrade the performance of other clients. When a leaseholder fails, it can 

cause a transaction to block for the term of the lease; any transaction conflicting with 

the blocked one is also blocked. 

Caches as participants 

An atomic commit protocol requires votes from all of the participants in a transaction, 

which includes the caches as well as the file servers. The handling of the voting must be 

modified to allow for caches as participants. 

In the first round, the coordinator sends the prepare-to-commit to all participants, 

including caching servers. File servers vote in the normal manner. When a caching 

server receives a prepare-to-commit, it writes back any data that is still dirty, with the 

same transaction identifier, then sends a cache-prepare-to-commit to each file server from 

which it cached data for the transaction, whether read or written. The file server replies 

to the cache as it would if the message had come from the coordinator, but on the basis 

of the additional information about reads and writes that it has received from the cache;6 

a file server that previously replied to the coordinator as prepared can later reply to a 

cache as aborting. A cache replies to the coordinator as prepared only if all of the writes 

succeed and each server replies to it as prepared. In order to keep the coordinator from 

timing out while all this is happening, the cache may need to send it messages indicating 

that it is not yet prepared to commit. 

In summary, caching can also efficiently support atomic transactions on multiple 

items. Leasing enables the caches to handle many of the locking requests, so that it 

reduces server traffic for concurrency control in the same way that it reduces coherence 

traffic in a non-transactional setting. Furthermore, encapsulating a group of operations 

within a transaction can amplify caching's reduction of response time: each transaction 

incurs only once the delay for a synchronous write to the server's nonvolatile storage, 

whereas several operations might require separate commits if they were not part of a single 

prohibit both reading and writing by other transactions. 
6The server can release read locks when it first responds to the prepare-to-commit, but it must 

maintain information about them until the commit or abort decision is received from the coordinator, 
so that it can detect conflicts with locks granted by caches. 
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transaction.  The prospects are good for exploiting caching to improve the performance 

of storage services that provide transaction management. 

4.3    Improving availability 

Previous chapters have assumed that each file is stored at only one server, and the 

attention paid to availability has been limited to ensuring that adding client caching 

does not reduce availability. The level of availability provided by a single server is not 

always high enough, however, in which case data can be replicated at multiple servers to 

increase its availability. 

This section considers two questions concerning caching and availabilit)'. The first is 

the problem of maintaining cache coherence when data is replicated. The second is how 

coherence might be explicitly traded off to increase availability. 

4.3.1     Caching replicated data 

Caching and replicated data 

Replicating data offers the possibility of increased availability, reliability, and perfor- 

mance. Caching is a special case of replication with the goal of improving performance, 

especially for reads; cache coherence corresponds to notion of mutual consistency for 

replicated data. Cache coherence could in principle be handled by simply treating caches 

in the same way as persistent replicas. There are several reasons, though, that caches 

need to be treated differently. First, copies in caches are transient, while replication 

techniques usually assume that the set of copies of an item does not change frequently. 

The fixed set of replicas is also intended to enhance reliability, which caches do not, since 

their copies may be discarded at any time. Finally, the number of caches can be very 

large, while replication is usually targeted at a small number of copies. 

A variety of approaches to replication are surveyed in [10] and [19]; leasing can be 

used for cache coherence in conjunction with several of these methods. How leasing is 

used depends on the patterns of communication between a client and the servers, and 

on how the requirements of leasing can be met by the servers. It also depends on the 

guarantee of coherence made for access to the replicas: some methods, such as available 

copies algorithms, do not tolerate communications failures, and so are not usable in the 

environments targeted by this research, while other algorithms, such as virtual partition, 

are coherent only with respect to restricted communication, so that a discussion of caching 
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from them would be dominated by describing the guarantees that caches can make. Two 

approaches that do fit well with our concerns for coherence and for fault-tolerance are 

quorum consensus and primary site; these serve as examples of how leasing interacts with 

replication. 

Quorum consensus. Quorum consensus (also known as weighted voting) was intro- 

duced by Gifford [28]. Each replica is assigned some number of votes, and votes must 

be collected for each read or write. A read requires contacting sites for which the total 

number of votes constitutes a read quorum to determine which sites hold the current 

version; similarly, a write must be performed at sites with at least a write quorum of the 

votes. 

Leasing is easily combined with replication by quorum consensus: holding a lease in 

effect caches a server's votes. To know that its copy of an item is current, a cache needs 

to know that it is the most recent among a read quorum of the replicas. The cache can 

know this by holding a set of leases covering a read quorum. When it obtains a lease, the 

cache must also retrieve from each of the replicas it contacts the number of votes, so that 

it can determine when it has a quorum, and a version number for that replica, so that 

it can determine which is the most recent version, just as a non-caching client would. 

Because the term limits the frequency with which votes are required for reading, the high 

overhead of reads under quorum consensus is greatly reduced. Write-back caching wor,ks 

in a similar manner: in order to hold dirty data, a cache must hold write leases covering 

a write quorum of the replicas. 

The cost of maintaining coherence when caching replicated data depends on the num- 

ber of servers in the quorums. For example, the load for extending (read) leases is spread 

among the servers. If there are ns servers storing an item, and a read quorum contains qR 

servers, then a cache must hold qR leases over an item. The cache requests qR extensions 

per term, and the cache also must approve a separate update of each of the qR replicas 

when the item is written. The traffic handled by the client and by the network therefore 

increases with replication. Because each client obtains leases from only a read quorum 

qR of the ns servers, the coherence traffic handled by each server decreases to an average 

of qR/ns extensions per client per term. 

In the case of a system consisting of clusters of workstations and servers connected 

by a wide-area network, subleasing can be used to reduce the non-local traffic, just as 

for non-replicated data. The gateway cache obtains leases over the remote replicas and 

participates in local votes on their behalf; in this case, the lease functions as a proxy. 
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If this is done, though, duplicate votes can result if there is more than one gateway 

in a cluster or if a client communicates with the remote server directly as well as with 

the local gateway. To prevent this, each server's votes need to be accompanied by an 

identifier for the server so that the client collecting votes can discard duplicates. The 

gateway also needs to monitor the status of the local replicas, so that it can obtain leases 

over additional remote replicas to make up the read quorum when the local replica is 

unavailable. It can do this either by seeking additional leases in response to a repeated 

request for votes (leases) from'a client, or by maintaining a lease over the local replicas 

and seeking additional leases when it is unable to extend it. 

Primary site 

Primary site methods designate a single site to handle all of the concurrency control and 

version management for a given data item. If the primary site fails, a new primary is 

elected from among the surviving replicas.7 Failure of the primary is, of course, detected 

by timeout: an election must be held each timeout interval, and a site must cease to 

function as the primary if it not reelected within the interval. The cost of these periodic 

elections can be reduced by using a simple protocol to reelect the existing primary, 

resorting to a more general election only when the reelection fails.   . 

Leasing under a primary site scheme is simple: all clients obtain their leases from 

the primary site, and a client handles coherence exactly as for non-replicated data. The 

only interaction between leasing and coherence in this case is the restrictions that leasing 

imposes on the servers: a newly elected primary must honor any leases granted by its 

predecessor. This can be ensured by having the primary inform one or more secondaries 

before it grants each lease or extension, just as writes must be made to at least one 

secondary site in order to prevent them from being lost. The leasing constraint can also 

be enforced by having the new primary delay writes for the maximum term, just as for 

a single server recovering after a crash. 

Leasing can also be used among the replicas. For example, a secondary site can obtain 

a lease from the primary and in turn grant subleases to clients. The load for extensions 

messages can then be shared among the servers instead of being concentrated on the 

primary; the costs of doing so are additional approvals required for updates and, due to 

the constraint of subleasing, slightly shorter terms for clients. 

7 Schemes in which a new primary cannot be dynamically selected are degenerate cases of quorum 
consensus, with all votes held by a single site. 
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Behavior very similar to the periodic election of a primary site can also be obtained 

by using leases among replicas in conjunction with quorum consensus. If a server holds 

leases over a read quorum of the replicas (including its own), then it is assured that its 

copy is current. On the basis' of these leases, the server can grant a sublease to a client; 

the server can, in fact, grant a single lease over the replicated item rather than a set of 

leases over the separate replicas, such that the client can ignore the fact of replication in 

maintaining coherence. A client then needs to communicate with only one of the servers 

to be able to cache data for reading. Like primary site, this scheme keeps the cost of 

reading data low, because a client needs to communicate with only one server in order 

to cache data for reading. It also eliminates the need for a separate election mechanism; 

lease extensions take the place of voting. The cost for using leases among the replicas is 

an increased in the degree of sharing, because servers as well as clients hold leases over 

an item, and therefore increased cost for writes. 

Write leases can mimic more closely the centralized behavior of an elected primary 

site. The election is effected by one site obtaining write leases over a write quorum of the 

replicas. During the term of those leases, the site holding them controls all access to the 

covered items, and only that site can grant leases to clients. In comparison with separate 

election of a primary site, this scheme has the virtue of reusing the same mechanism 

required to support clients; the management of leases, though, would need to incorporate 

the techniques from election protocols to ensure that some site does eventually obtain a 

quorum. 

In summary, leasing can guarantee coherence when caching replicated data, and it 

can even be used among replicas to reduce the cost of read access. 

4.3.2     Coherence and availability 

With a large enough cache, it is likely that a workstation has cached a copy of the files 

that its user is working with,- such that the cache might be able to provide access to them 

even when the file server is not available. When the server is inaccessible, though, the 

cache cannot ensure that access is coherent. Any gain in availability must therefore be 

purchased by sacrificing the guarantee of coherence. 

How the trade-off between coherence and availability is made depends on the circum- 

stances, of which there are two general types. The first case includes applications that 

function correctly with stale data, and so can normally operate with relaxed requirements 

for coherence. The second case includes specific circumstances in which the decision to 
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accept incoherence is made at the time of access, because the need for immediate access 

to data outweighs the risk of possible incoherence. 

Relaxed requirements 

For some applications, reading stale data is not an error. For example, in normal opera- 

tion, a user does not care about executing the latest version of a system utility program, 

provided the version used is not "too old." Similarly, when reading a computer bulletin 

board, it is acceptable if articles do not appear immediately, as long as they appear in a 

reasonably timely manner. Support for incoherent access to replicated data, to increase 

availability or performance or to reduce costs, has been considered for information re- 

trieval systems (e.g., [2, 29]), as have relaxed serializability constraints for transactions 

(e.g., [19, 23, 27]). Alonso, et al, [2] propose a number of criteria for the distance allowed 

between a copy and the true version of the data. The most practical of their proposals 

is in terms of the maximum time since the data was current. 

It is important to note that it is the application, not the data, that determines when 

incoherent access is allowed. The same data when accessed for different purposes can 

have different requirements: for example, a user perusing stock prices is satisfied with 

recent prices, but when making a trade the same user demands current information. 

The bound on how stale data can be needs to be specified on each request. In V's 

file service, this could be done by embedding a modifier within the name: for example, 

/storage/any/bin/latex :stale=lh would indicate that a version up to one hour old is 

acceptable. The modifier need not be obtrusive; including it on directories in the search 

path for program loading suffices to indicate that a slightly stale version of a system 

program can be used. 

A cache that uses leasing can easily support stale reads alongside coherent access. 

The only change required is to the condition the client checks before returning cached 

data: instead of requiring an unexpired lease, it requires a lease that expired not more 

that T3taie seconds ago, where Tatau is the bound specified by the application. A default 

of TstaU = 0 provides coherent access to those applications that require it. 

Accepting stale reads increases availability because data remains readable for a limited 

period without requiring communication with the server. The length of that period is 

the bound on how stale data can be and still be acceptable. With a long enough bound, 

then, accepting stale reads can keep data available for reading across brief communication 

outages or server crashes. This approach holds promise, but only for those applications 
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in which the acceptability of stale data can be identified in advance.  Applications that 

normally require coherent access do not benefit. 

Specific circumstances 

A user might not be willing to sacrifice coherence for continued access to files until he is 

faced with the file server being unavailable. For example, when a user attempts to read a 

file in order to begin editing it, the read can fail with an indication that the server is not 

available. Faced with this result, the user might prefer to proceed by reading the cached 

copy of the file, instead of waiting for the server to return to operation. It is possible that 

the user does not require a guarantee of coherence from the cache, since he may be able 

to determine from the file's contents or other knowledge that the cached copy is current, 

or at least very likely to be. 

The cache manager can help the user decide how to proceed by making available 

information about the contents of the cache. In addition to showing what data is present, 

the cache manager should also indicate when each item was last known to be current. 

The prototype in Chapter 3 could be easily extended for this purpose with an additional 

tree of names, rooted at-/cache/Ziostname/contents. Each directory within this tree 

would contain only those names for which data is caches, and each directory entry would 

consist of a set of flags indicating which of the possible data is present8 and the time at 

which the lease covering it expires (or expired). A user can determine both what is in 

the cache and how stale it might be by listing these directories. 

Two extensions would increase the number of situations in which the cache can be 

used to provide access to otherwise unavailable data. The first extension is to support 

writing to the cache in addition to reading from it, so as to support a wider range of 

activities. The writes clearly cannot be committed until the file server is again accessible, 

but the risk of loss may still be low enough for some uses. 

The other possible extension would lower the risk from incoherent access by detecting 

it when communication with the file server has been restored, and providing the oppor- 

tunity to resolve (or correct) any conflicting operations. Because sharing is rare, conflicts 

would also be rare, so that corrective action would seldom be required. 

Handling conflicts is very important, though, when data is written to the cache, be- 

cause a conflict can prevent writes from committing. For example, a user might write to 

8In the prototype, the fragments of data are the stable attributes in the descriptor, the volatile 
attributes, and the file's contents or the list if the directory's children. 
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a cached copy of a file while unable to communicate with the server, and after communi- 

cation is restored, the cache attempts to commit the writes to the server. If another user, 

though, has changed permissions for the file, the first user might no longer be authorized 

to write it, so that the write-back must fail. Fully exploiting caching for increasing avail- 

ability would require developing techniques to detect conflicts and tools to resolve them, 

which are beyond the scope of this dissertation. 

4.4    Summary 

This chapter has broadened the scope of results from previous chapters. First, coherence 

for secondary caches, which improve the scalability of the system, is easily provided us- 

ing subleasing. Second, support for atomic transactions does not negate the performance 

benefit of caching, and leasing can be used to provide efficient concurrency control. Fi- 

nally, the approaches taken here to caching are applicable when higher availability is 

needed; leasing is compatible with replicating data at file servers for greater availability, 

and the coherence of caches can be traded off to make data available even when file 

servers are not accessible. Taken together, these results strongly suggest that caching— 

particularly with leasing—can be expected to work well in a wider range of circumstances 

than those considered in earlier chapters. 



Chapter 5 

Related work 

This chapter surveys related work in four areas: 

• maintaining coherence in contexts other than file service, 

• measurements of file-system access patterns, 

• other caching file systems, and 

• uses of time that are similar to leasing. 

5.1     Coherence 

The problem of coherence arises in several contexts other than file caching: shared mem- 

ory multiprocessors, distributed shared memory, replicated data, and distributed name 

service. 

5.1.1     Multiprocessors 

Shared-memory multiprocessors use caches to reduce contention for the common bus and 

memory. A variety of protocols have been implemented or proposed, some for implemen- 

tation in hardware, others for a combination of hardware and software. Descriptions of 

several of these protocols can be found in [3] and [65]. The focus of multiprocessor work 

has been on details other than notification, such as the representation of cache directo- 

ries and evaluation of write-invalidate versus write-broadcast approaches. The coherence 

mechanisms use reliable notification, since the designs do not attempt to tolerate partial 

failures. 
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Several projects are designing multiprocessors intended to accommodate hundreds or 

thousands of processors (e.g. [15]). As such systems grow larger, the ability to tolerate 

partial failures will become more important, but research on caching in multiprocessors 

has given little attention to partial failures. 

5.1.2 Distributed memory 

A shared memory can be implemented even when the underlying hardware does not 

support it. Li and Hudak [41, 42], for example, describe providing shared memory among 

processes on different workstations connected by a local-area network. The techniques 

used depend on reliable notification, and so do not tolerate crashes or communication 

failures. Leasing could be used in this context, using the extension for write-back caches 

described in Section 2.4.3. The access pattern and allowable delays differ from those of 

file service; further evaluation would be required to determine performance. 

In the Mirage [24] distributed shared memory, reliable notification is augmented with 

a timer, but for a different purpose from that in leasing. In Mirage the time specifies a 

minimum period for a page to remain resident at a site before it is released; the interval 

can be increased to reduce thrashing on a write-shared page. Within the framework of 

leasing, this amounts to having a minimum time after acquiring or extending a lease 

before the leaseholder is willing to relinquish the lease or approve an update. 

5.1.3 Distributed naming 

Time-based methods resembling leasing have also been used in at least two distributed 

naming systems. Lampson describes a global directory service [39] in which client caches 

discard entries at a server-specified time. Servers are forbidden from modifying an entry 

before it expires. This condition is equivalent to our policy for leases over installed 

files. Lampson makes no provision, however, for requesting approval of'updates or for 

extending the term for already cached data. 

Name services more commonly use cached data as hints, for which coherence need not 

be guaranteed, since stale data can be detected when it is used. In the Internet Domain 

Name Service [47], for example, a name server specifies a time-to-live for the data it 

returns, and clients cache the data for that period. The data may be modified during 

that interval, however, and any inconsistency that results must be detected and corrected 

by other means.   Terry [62, 63] discusses in more detail the caching of hints for name 
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interpretation, including the use of on-use and periodic checks as options in maintaining 

the accuracy of the cache at the desired level. Using hints shifts the cost of ensuring that 

data is correct to each access, with no restrictions or load imposed on updates; hints can 

perform very well when the cost of verifying a hint is small. Leases, in contrast, limit 

the cost per access to checking whether the lease has expired and extending it when it 

expires, but shift the burden partially to updates, which must obtain approvals or wait 

for leases to expire. 

5.1.4     Replicated data 

As previously noted, caches are replicas, and so techniques for maintaining the mutual 

consistency of replicas can be used for cache coherence. For example, Gifford's description 

of weighted voting [28] proposes treating caches as weak representatives with no votes, 

which has the same behavior as leasing with a zero term. Any vote assignment that 

assigns a read quorum to a cache is equivalent to an infinite-term lease, since the cache 

must approve every update. Leases can be viewed as temporarily assigned votes, but 

with much simpler reassignment than in more general schemes for adjusting quorums [8, 

34]. 

Most other algorithms for replication are coherent only with respect to communication 

via the file service; i.e., operations may appear to be performed out-of-order if there users 

or application programs exchange communicate by means other than reading and writing 

files. In contrast, leasing and voting methods make the stronger guarantee of coherence 

with respect to arbitrary communication, including communication via channels outside 

the computing system. 

Furthermore, available copies algorithms, including virtual partition, are poorly suited 

for the conditions presented by large-scale caching. In particular, each change to the set 

of available copies incurs significant overhead. With caching, though, the set of replicas 

for a particular file changes often as clients cache new files and discard others from their 

caches. Supporting a large number of clients compounds the problem, since it increases 

the frequency of changes to the set of accessible replicas. In contrast, leasing is designed 

to efficiently handle frequent change in the set of clients. 
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Ousterhout Kent Thompson Floyd Burrows Chapter 3 
naming no no some yes yes yes 
failed operations no no no no yes yes 
descriptor access no no no no yes yes 
file lifetimes yes no yes yes no yes 
program loading some no no yes no yes 
file classes no no yes yes some yes 
long-term trace yes yes yes yes yes no 
sharing yes yes yes yes yes no 

Table 5.1: Data included in trace studies. 

5.2    File access patterns 

There have been a number of previous studies of file access. Most of the measurements 

reported have been collected on centralized Unix systems in academic environments [11, 

25, 26, 37, 48, 53, 65], but there have also been measurements on IBM mainframes [55, 

61] and on Multics [49]. Our comparison here focuses on the Unix measurements, since 

they are more directly comparable to those collected in V, and they include more relevant 

information. 

Most of the Unix studies collected traces of file-system access over periods of several 

days. These trace studies are: 

• Ousterhout, et ai, [53] with additional simulation results in [50] 

• Kent [37] 

• Thompson [65] 

• Floyd [25, 26] 

• Burrows [11] 

Table 5.1 summarizes the data included in each of these plus the traces from Chapter 3. 

Mogul [48] reports counts of operations over a period of several days. 

Three of these studies, Ousterhout, Kent, and Thompson, focus on access to file 

contents. All three use the traces to drive simulations of block-level caching to explore 

effects of block size, cache size, read-ahead, write policy, and coherence. Thompson's 

analysis is the most thorough and is the only one of these three to include operations other 
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than reads and writes in the traffic analyzed. Burrows reports on a simple simulation of 

whole-file caching used as an initial test of the feasibility of caching. 

Most of the studies report data on sharing among users; the exceptions are Kent's, 

which reports on simultaneous sharing among processes, and ours, which includes data 

from only one user. A study of sharing in Multics [49] describes sharing among user login 

sessions.1 The caching simulations place each user on a separate workstation. They all 

find simultaneous write-sharing to be rare; sequential sharing, in which a file is written 

by one user and eventually read by some other, is fairly common. Floyd and the Multics 

study provide additional data about files that are shared. A small number of widely- 

shared files account for a large portion of the read traffic; these files would be included in 

our installed class. Also, temporary files are almost never shared. Most sharing of non- 

installed files is among small numbers of users; the exceptions are identified by Burrows 

and Thompson as files used in the interface to system services. 

Our measurements attempt to give a more complete picture of a client's file-system 

access than just reads and writes; only our traces include all three of failed operations, 

descriptor access, and program loading. Each of these three is shown to be a significant 

share of the load whenever it is measured. Mogul and Burrows both find descriptor reads 

to be common, and Burrows also reports that 18% of all name lookups fail. Kent also 

traces disk accesses, and he notes that half of the disk I/O is not accounted for by file 

reads or writes, but is the result of paging or directory and descriptor access. 

In summary, the measurements presented here differ from the other studies in their 

focus. The traces in V do not attempt to capture either long-term patterns or sharing 

among users that the other studies describe. Instead of focusing on access to file contents, 

Chapter 3 looks at the full set of operations requested by clients. Also, the analysis here 

explores the different effects of caching on classes of files more fully than do the other 

studies. 

5.3     Caching file systems 

Several other distributed file systems employing caching have been built. This section 

looks at three of them in some detail, and compares the issues that they address and the 

techniques they use with those in this dissertation. 

1In the terminology of Multics, it reports sharing of segments among processes. 



96 CHAPTER 5.   RELATED WORK 

5.3.1     Sprite 

Sprite's file system [50] uses RAM to cache file contents on both servers and clients. 

Sprite is similar to the basic cache in Chapter 3 in that it makes no attempt to cache 

naming or descriptor information. Nelson estimates that traffic could be reduced by up 

to half if it did cache that information [51]. Sprite differs from the basic cache in two 

important ways: its use of delayed write and its coherence mechanism. 

Sprite makes use of delayed write on all files in order to reduce both traffic and 

response time, sacrificing reliability for improved performance. This contrasts with our 

special handling for temporaries and reliable commit for all others. 

Though Sprite makes no distinctions in operation, Nelson [51] does report measure- 

ments with writes delayed for only temporary files. When nontemporary files are written 

through on close, network traffic is 70-109% of that for a thirty second delay on all files. 

Nelson's measurements of elapsed time are difficult to interpret, since they reflect a disk 

organization that handles writes very inefficiently: writing one file block often requires 

writing two disk blocks, with no attempt made to avoid a seek between them. For server 

policies providing some insulation from this defect, elapsed time with only temporaries 

delayed is within 5% of that when all files are delayed. In Sprite the creation, deletion, 

opens and closes for temporary files are still being handled by the file server; performance 

would be even better under our design, which handles those operations within the cache. 

Sprite provides coherence with respect to arbitrary communication, but at the gran- 

ularity of individual read and write system calls instead of file open and close as in our 

design. .The mechanism is a hybrid, querying the file server on each open and using 

reliable notification while a file is open. To avoid thrashing, client caching is disabled 

when a file is concurrently write-shared. Because Sprite depends on reliable notification, 

it does not tolerate communication failures. 

The information for maintaining coherence is kept in the server's RAM; so it is lost 

when the server crashes. Welch [67] describes the protocol by which a server attempts 

to recover this state by broadcasting a query to clients. This protocol does not tolerate 

communication failures, and during recovery a malicious client can interfere with the 

guarantee of coherence to other clients. 

5.3.2    Andrew 

The Andrew file system (AFS) is a shared file service intended to augment the local 

file system of a workstation.   There have been two major versions of the Andrew file 
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system [35, 58], which share the property of caching whole files on local disk. Coherence 

is provided at the granularity of file open and close, as in V, though in Andrew the choice 

was primarily made to simplify implementation. 

The first version, AFS-1 [58], is equivalent to the basic cache, with all naming per- 

formed by the servers, and a coherence check on each open. The servers in AFS-1 had 

inadequate capacity, for two primary reasons: a high level of traffic, with 65% of the 

requests for coherence checks and 27% to read descriptors, and an inefficient implemen- 

tation of the servers. 

The second version, AFS-2 [35], made several changes to reduce the load on servers. 

The file servers were reimplemented in a much more efficient manner, and caching of 

directories and descriptors was added, with reliable notification used to maintain coher- 

ence. Cached directories are interpreted by clients to look up names. (The representation 

of directories was also changed to make lookups much more efficient.) 

The use of reliable notification means that AFS-2 cannot tolerate communication 

failures. When a server's attempt to notify a cache about an update fails, based on the 

transport-level timeout, the server discards its record that the client had the file or direc- 

tory cached and then proceeds with the write [36]. This leaves stale data in the client's 

cache, and the client learns of the error only when it next attempts to communicate with 

the server. During the interval that it is using stale data, a client may continue to read 

and write files from other servers. To limit the duration of inconsistencies, each client 

queries its servers every ten minutes to synchronize its clock. 

There is some class-specific handling of files under AFS. AFS is intended to augment 

a local file system; temporaries and copies of some installed files are placed in the local 

file system instead of AFS to reduce the demand. This also means that those files cannot 

be shared. Also, installed files are placed in separate read-only volumes to allow them 

to be replicated and to eliminate the need to maintain records of clients using them. 

Updates to these volumes must be made through a different mechanism from that used 

for writable files. 

5.3.3    MFS and Echo 

Burrows' MFS [11] was developed concurrently with this work. It seeks to provide co- 

herent access to a shared Unix file system with a similar degree of reliability. Data is 

cached on local disk and in the existing Unix buffer cache, using the Unix file-system data 

structures. The NFS protocol [57] is used to access the file servers, with a separate token 
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server used to ensure coherence. MFS uses the thirty-second delay on writes normally 

provided by the Unix kernel, and so can suffer undetected loss of recently written data 

when a client crashes. 

The tokens in MFS are very similar to leases for write-back caching, but without the 

emphasis on time that is central to leasing. Because a token is revoked when the server's 

RPC to the client times out, the token scheme does not tolerate communication failures, 

and the guarantee provided is comparable to that of AFS-2. Burrows does mention 

the possibility of timing out tokens, but does not discuss the tradeoffs in selecting the 

term. MFS is able to specify tokens at the granularity of individual bytes within files, 

and Burrows describes efficient server data structures for maintaining them. Security 

is discussed in more detail than it is here, since Byzantine clients are a more serious 

problem when attempting to recover with write-back caches. 

The Echo file system [45] uses the same approach to coherence as MFS, but with com- 

munication failures handled correctly. Echo uses a primary-site approach to replication, 

with lease information replicated at the secondaries [44]. Its designers discuss several 

options for extending leases, but the trade-offs with length of term are not quantified. 

They also do not consider the special handling that we provide for installed files. 

5.3.4     Others 

The Cedar file system CFS [60] avoids the problem of maintaining coherence by limiting 

sharing to immutable files. Because shared data cannot change, no coherence mechanism 

is required. Instead, selection of versions to cache is made by an application that estab- 

lishes a name space local to the workstation. Caching of immutable data can also be 

expressed as a special case of leasing with an infinite term, which in this case is acceptable 

since writes are prohibited. 

RFS [7] is similar to Sprite, using a version check on each open and disabling caching 

when concurrent write-sharing is detected. The major differences from Sprite are that 

caches are write-through, that caching is enabled more quickly after write-sharing ends. 

No description of failure-handling is provided. 

Coda [59] extends AFS-2 with support for replication and for disconnected operation 

when the file servers are not available. Coda does not guarantee coherence of either 

caches or replicas in the presence of communication failures, yet a workstation continues 

to access files in the cache and on other servers without giving any indication that a 

failure has occurred.   Only some inconsistencies are detected after the fact; no effort 
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is made to check for read-write conflicts. As a consequence, many applications (such 

as Unix make) cannot be safely run on top of the Coda file system. Coda's approach 

stands in contrast with that described in Chapter 4, which makes any use of stale data 

safe. Coda does include tools for resolving conflicts that it does detect, and for caching 

a desired set of files before intentionally disconnecting a portable host from the network. 

The FileNet system [20] employs caching for data with an access pattern very different 

from the other systems considered here. The rate of access is very low, with the rate 

of reads measured being around one per ten seconds, and the lowest measured ratio of 

reads to writes is greater than forty; in addition, files shift between periods of read-only 

access and periods of update. To minimize server traffic, the FileNet system tracks the 

rates of reads and writes for each file and switches between the equivalent of leasing with 

terms of zero and infinity. The formula used for deciding when to switch is similar to the 

estimates for traffic developed here. 

5.4     Other uses of time 

Leasing's use of time is far from unique: timeout is a standard technique in commu- 

nication protocols for detecting lost messages, and timeouts are often the only means 

available for detecting host or process crashes in distributed systems, including database 

systems. Some database systems use timeouts to detect deadlocks as well [1]. Leasing 

differs from timeout, though, in that it uses time not so much to detect failures as to 

make guarantees in spite of them. In this respect, leasing is similar to protocols such as 

SCMP [43] that use either explicit time or bounded packet lifetime in order to suppress 

duplicates. 

5.5     Summary 

This research differs from previous work in its focus, and the resulting cache design is 

distinguished by the techniques used to improve its performance. 

The first difference in focus is the insistence on robustness: caching is not allowed 

to compromise the coherence, reliability, or availability of the file service. Furthermore, 

communication failures must be tolerated, not just host crashes. 

The other difference in focus is the treatment of file service as a whole, instead of 

limiting interest to reading and writing file contents.   This broader concern manifests 
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itself in the caching of naming and descriptor information in the prototype and in the 

extensions in Chapter 4 to support transactions, concurrency control, and replication. 

The cache design has two distinctive features. It ensures coherence by leasing, with 

its emphasis on the explicit use of time. The design also distinguishes two classes of files, 

temporary and installed, and exploits their differences to improve performance. 



Chapter 6 

Conclusion 

6.1     Results 

This dissertation has shown how to use caching of file-system data on clients to improve 

the scalability and performance of a distributed file service without reducing its ability 

to tolerate either host or communications failures. Analysis of the performance of a 

prototype file-service cache for the V-system shows that it achieves a substantial reduction 

in server traffic without decreasing the file system's reliability, availability, or coherence. 

Three techniques make possible this combination of performance and fault-tolerance: 

using leasing for coherence, recognizing file classes, and caching metadata as well as file 

contents. 

Leasing. Leasing guarantees coherence with respect to arbitrary communication, even 

in the face of host crashes and communication failures. Furthermore, a faulty or even 

malicious client cannot compromise the coherence of other clients' caches. The only 

effect that one client's failure has on another client is that writes to shared files might be 

delayed for up to the term of a lease. Instead of depending on reliable communication, 

leasing requires only that the client and server have reasonably well-behaved clocks. 

The mechanisms previously used for file cache coherence can be expressed as special 

cases of leasing, where the term is of either infinite or zero duration. Leasing makes 

the use of time explicit, which allows a range of trade-offs between normal performance 

and worst-case performance after a failure. For the patterns of access that have been 

measured in file systems, an analytical model shows that leases with terms of just a 

few seconds make the contribution of coherence to both traffic and response time very 

small, while also providing a reasonable bound on the added delay after a client failure. 
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Trace-driven simulation confirms this result, and the model indicates that performance 

remains good as processor speed or network latency increases. 

Leasing is also flexible. The conditions for correctness allow a variety of policies for 

managing leases, making different trade-offs between traffic and response time or read and 

write performance. Maintaining the coherence of multi-level caches through subleasing 

supports scaling to very large systems. Leasing is also compatible with replicating data at 

multiple servers, and it can work together with a framework that, when acceptable, allows 

access to possibly inconsistent data in order to increase availability. Finally, leasing can 

be used within a transaction-processing system to allow caches to perform concurrency 

control. 

File classes. Not all files are the same, and recognizing the differences for just a few 

classes of files offers substantial improvements in performance. Recognizing installed files 

and using a different policy for managing the leases over them can reduce the traffic per 

client and avoid pathological behavior on the updates to them, at the expense of increas- 

ing the latency for those infrequent updates. Similarly, providing additional support for 

temporary data reduces traffic for writes and for file creation and deletion; the overall 

reduction in traffic compares favorably with that achieved by delaying for up to thirty 

seconds writes to all files. Unlike delayed write, though, special handling for temporaries 

reduces traffic without sacrificing the reliability of storage for non-temporary files. 

Caching metadata. File service includes more than just access to the contents of 

files. Once file contents have been cached, a significant fraction of the traffic handled by 

a file server reads information about files. For the traces analyzed in Chapter 3, caching 

naming information and descriptors makes possible a reduction in traffic of up to 40% 

compared to caching only file contents, though that benefit also depends on the use of 

leasing to avoid coherence checks. A detail that has escaped previous research is the 

significance of caching to handle failed name lookups. 

Together, these techniques yield a traffic ratio of 13-50%, an improvement of as much 

as 60% compared to a basic cache that does not use them. Some features of the design 

presented in Chapter 3 are specific to the V-system, as are details of the analysis of 

performance. Similar results, however, would be expected for other systems, especially 

with a similar workload. 
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6.2     Future research 

Coherence. Chapter 2 noted the difficulty in defining precisely what is meant by co- 

herence. The notion of coherence with respect to a set of possible observations needs to 

be formalized more completely and, if possible, unified with the notions of transaction 

serializability and of different levels of coherence in multiprocessor memory systems. 

Also, the usefulness and performance of leasing needs exploration in other applications 

of caching, such as distributed shared memory or scalable multiprocessors, where failure- 

handling has not yet received much attention. 

Sharing in distributed systems. The evaluation of cache performance would be 

much more solid with data on the sharing that actually does occur in distributed systems. 

Traces of file access in distributed systems would be very useful, especially if made in a 

system that allows users to easily employ multiple hosts. The scheduling of programs in 

such a system also needs to be reconsidered in light of caching. 

No measurements have been published for access patterns in wide-area file systems, 

but such data is needed in order to evaluate the effectiveness of multi-level caching in 

such a setting. 

File server design and performance. Cache performance is only one factor in the 

overall performance of a file service; the performance of the file server is also very impor- 

tant. Caching not only reduces the average demand placed on the server by each client, 

but it changes the nature of that load as well. With effective caching, the file server's 

load is dominated by writes, reversing the conventional wisdom that reads should be 

optimized at the expense of writes. Response time is especially dependent on the latency 

of commit operations. The performance of server design alternatives needs to be devalu- 

ated in light of caching. Of particular interest are the different uses of logging described 

by Finlayson [22], by Hagmann [33], and by Ousterhout and Douglis [52], and the use 

of different storage technologies, such as nonvolatile RAM, disk arrays, and write-once 

disks. 

Caching in other contexts. Finally, research is needed to determine the potential 

for caching in other storage services, such as databases, in which the techniques from 

Chapter 4 could be used to support caching and transactions together. The possibility of 

caching in an object-oriented database is especially attractive, though access to relational 



104 CHAPTER 6.   CONCLUSION 

databases within a distributed environment could also benefit. 



Appendix A 

Full trace data 

This appendix provides more detailed information about the traces used in Chapter 3. 

A.l     Configuration traced 

All three traces described here were collected on a Micro VAX II workstation with sixteen 

megabytes of memory; several different remote file servers were used. The caching server 

used for tracing corresponds to the basic cache plus temporary support. All traces were 

collected 'with the workstation otherwise idle, except for normal system overhead; the 

file servers were under their normal loads. Each trace begins with the cache completely 

empty. 

The traces were collected without kernel support for virtual memory, using a process- 

level memory server for block-level caching. The absence of virtual memory affects the 

measurements in three ways. First, execution is slightly slower, because the overhead for 

the process-level server is higher than that for a kernel memory server, in both context 

switching and in copying of data. Second, program loading generates a higher level 

of reads than would be expected from demand paging. Third, the process-level memory 

server used for the traces transfers whole files only, which inflates the number of reads and 

the cache size. None of these significantly affects the issues considered in this dissertation. 

Partial transfers would yield a slightly lower traffic ratio for reads than is reported in 

Chapter 3, which can only increase the significance of the improvements described there. 
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A.2     Data included 

The traces include a record for each operation handled by the caching server, and for 

each operation it requested of the file server. Reads and writes are not traced, but each 

close record contains the number of one-kilobyte blocks read from or written to the cache. 

The operations within each group reported in Chapter 3 are: 

commit These operations all commit an update to the file system. 

open - create Create a new file by opening it for writing. 

close - commit Commit writes to a file. 

create directory Create a new directory. 

remove/rename Remove or rename a file. 

write named descriptor Modify the descriptor for a file or directory, usually 

to change permissions. 

naming read This group of operations all require resolving a name or other reading 

of descriptors, but produce no changes. 

open - read Open a file for reading. 

reopen - write Open an existing file for writing. 

get file name Get the name of an open file. In V, this is invoked as part of the 

program loading sequence. 

read descriptor Read the descriptor of an already-open file. 

read named descriptor Read a descriptor by name. 

directory open Open a directory for reading. 

directory read Read a single entry from a directory. 

name not found Operations that failed because the named file or directory did 

not exist. Mostly opens for reading and descriptor reads. 

misc. The remaining operations neither require reading descriptors nor commit a 

visible change. 

truncate Truncate an open file. 
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close - no change Close a file without committing any writes, usually because 

it was open only for reading. 

directory close Close a directory after reading it. 

Some operations are not included in the trace; their use was determined or estimated 

from the data that is included. Truncate and get-file-name are not traced at all, but 

their use could be reliably determined by examining the traces. For directory reading, 

only the open is recorded, and the number of entries read was determined by examining 

the directories after the trace completed. 

The trace also does not include counts of blocks read from or written to the file 

server; these counts are estimated from the counts of blocks accessed from the cache. In 

the activities traced, most blocks that are accessed are read or written only once for each 

time the file is opened; so that the number of distinct blocks accessed from an open file 

is very close to the number of block accesses. Because no cache replacement is required, 

the number of blocks read or written from the server is the maximum number of blocks 

read or written for a single open at the cache. For a few cases in which blocks from a 

file are read repeatedly, the number of blocks in the file is used as the number of blocks 

read from the server. 

A.3     The data 

The data for each trace appears in five tables. 

Traffic with no caching. These counts are of the operations that applications re- 

quested of the cache, which would all be handled by the file server if there were no 

cache. 

Traffic for basic cache. Only reads, writes, opens and closes change when the basic 

cache is used, and on-open coherence checks are added. Counts of blocks read and written 

by the file server are not included in the traces, but can be determined from the file sizes, 

since the memory server used for the traces does only whole-file transfers. 

Write traffic for a thirty-second delay is based on lifetimes in the traces, measured 

from the time a version is committed to the time it was overwritten or deleted. Note 

that this underestimates traffic for a typical implementation of delayed write, in which 

any dirty blocks are written out every thirty seconds:   the average delay in such an 
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implementation is fifteen seconds. The comparison in Section 3.3 is therefore biased in 

favor of delayed write, yet the special support for temporaries compares favorably. 

Traffic with descriptor caching. The data reported for descriptor caching is based 

on a simple simulation in which the entire directory is read when a name is not found 

or when an application reads the directory. Coherence is still checked on each use of 

descriptor data except for the reads within a directory. 

Traffic with special temporary support. These counts are determined directly from 

the traces. The table is omitted for latex, because it uses not temporary files. 

Lease extensions. The figures reported here are from a separate simulation. The first 

column reports on traffic if extensions are requested separately as needed, the second if 

an extension is piggybacked on each committing operation. 

Counts of extensions are shown for installed and other files both separately and if 

combined; the totals are significantly lower when combined. Temporary files are not 

included, since the special support for them eliminates the need for coherence. 
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operation tmp installed other 

read (kB) 13872 42265 17178 

write (kB) 11596 0 9641 

truncate 0 0 0 

open - read 338 3030 1901 

open - create 340 0 72 

reopen - write 0 0 53 

close - no change 338 3030 1901 

close - commit 340 0 125 

create directory 0 0 3 

remove/rename 340 0 17 

get file name 0 401 0 

read descriptor 0 7 170 

read named descriptor 0 192 629 
write named descriptor 0 0 26 

directory open 0 0 0 

directory read 0 0 0 

directory close 0 0 0 

name not found 0 340 4236 

Table A.l: f sbuild: Traffic with no caching. 

operation tmp installed other 

read (kB) 0 2763 512 

write (kB) 
with 30-sec. delay 

11596 
2284 

0 
0 

9641 
7700 

truncate o- 0 0 

open - read 0 94 78 
open - create 340 0 72 

reopen - write 0 0 0 
close - no change 338 94 78 
close - commit 340 0 125 

coherence check 338 2936 1876 
max. cache size 9 MB 

Table A.2: f sbuild: Traffic for basic cache. 
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operation tmp installed other 

get file name 0 0 0 
read descriptor 0 1 8 
read named descriptor 0 5 107 
write named descriptor 0 0 26 
directory open 0 4 10 
directory read 0 173 155 
directory close 0 4 10 
name not found 0 4 10 

coherence check 338 3862 6776 

Table A.3: f sbuild: Traffic for directory/descriptor caching. 

operation tmp 

read (kB) 0 
write (kB) 0 
truncate 336 
open - read 0 
open - create 4 
reopen - write 0 
close - no change 4 
close - commit 0 
remove/rename 4 

coherence check 0 

Table A.4: f sbuild: Traffic for special temporary support. 

files included 
separate 

extensions 
piggybacked 
extensions 

installed 398 398 
other 373 233 
combined 508 388 

Table A.5: f sbuild: Lease extensions required, 10-second term. 
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operation tmp installed other 

read (kB) 2625 17858 4542 
write (kB) 1773 0 2035 
truncate 0 0 0 
open - read 70 480 402 
open - create 74 0 102 

reopen - write 0 0 2 
close - no change 70 480 402 
close - commit 74 0 104 
create directory 0 0 20 
remove/rename 74 0 6 
get file name 0 476 0 
read descriptor 0 1 27 
read named descriptor 0 0 258 
write named descriptor 0 0 22 
directory open 0 0 96 
directory read 0 0 793 
directory close 0 0 96 
name not found 0 0 725 

Table A.6: af sbench: Traffic with no caching. 

operation tmp installed other 

read (kB) 0 1093 402 
write (kB) 
with 30-sec. delay 

1773 
545 

0 
0 

2035 
1611 

truncate 0 0 0 
open - read 0 24 71 
open - create 74 0 102 
reopen - write 0 0 0 
close - no change 70 24 173 
close - commit 74 0 104 

coherence check 70 456 333 
max. cache size 5 MB 

Table A. 7: af sbench: Traffic for basic cache. 
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operation tmp installed other 

get file name 0 0 0 
read descriptor 0 1 4 
read named descriptor 0 0 22 
write named descriptor 0 0 22 
directory open 0 0 32 
director}' read 0 0 151 
directory close 0 0 32 
name not found 0 0 11 
coherence check 70 932 1370 

Table A.8: af sbench: Traffic for directory/descriptor caching. 

operation tmp 

read (kB) 0 
write (kB) 0 
truncate 71 
open - read 0 
open - create 3 
reopen - write 0 
close - no change 3. 
close - commit 0 
remove/rename 3 

coherence check 0 

Table A.9: af sbench: Traffic for special temporary support. 

files included 
separate 

extensions 
piggybacked 
extensions 

installed 96 96 
other 107 49 
combined 123 67 

Table A.10: af sbench: Lease extensions required, 10-second term. 
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operation tmp installed other 

read (kB) 1732 114 

write (kB) 0 124 

truncate 0 0 

open - read 70 20 

open - create 0 0 

reopen - write 0 8 
close - no change 70 20 
close - commit 0 8 
remove/rename 0 0 
create directory 0 0 

get file name 2 0 
read descriptor 0 0 
read named descriptor 0 0 
write named descriptor 0 0 
directory open 0 0 

directory read 0 0 

directory close 0 0 
name not found 0 82 

Table A.11: latex: Traffic with no caching. 

operation tmp installed other 

read (kB) 820 52 
write (kB) 
with 30-sec. delay 

0 
0 

124 
124 

truncate 0 0 
open - read 10 6 
open -.create 0 0 
reopen - write 0 4 
close - no change 10 6 
close - commit 0 8 

coherence check 60 18 
max. cache size 3 MB 

Table A.12: latex: Traffic for basic cache. 
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operation tmp installed other 

get file name 0 0 
read descriptor 0 0 
read named descriptor 0 0 
write named descriptor 0 0 
directory open 0 2 
directory read 0 68 
directory close 0 2 
name not found 0 2 
coherence check 62 96 

Table A.13: latex: Traffic for directory/descriptor caching. 

files included 
separate 

extensions 
piggybacked 
extensions 

installed 12 12 
other 17 13 
combined 17 13 

Table A.14: latex: Lease extensions required, 10-second term. 
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