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METHOD TO STUDY THE DYNAMICAL BEHAVIOUR 

OF A COMPLEX MECHANICAL STRUCTURE 

D.Drägulescu and M.Toth-Tascäu 

"Politehnica" University ofTimisoara, Faculty of Mechanical Engineering, Mechanical Department, 
BdMihai ViteazulNo.l, 1900 Timisoara, Romania, Tel: +40 56 204333, Fax:+40 56192062 

Abstract 

The paper presents a serial robot, treated as a mechanical structure made of flexible links, 
capable to accomplish some task in a three-dimensional working space. The method used for 
deformations calculus adjusts and applies the general approaches developed m the theory o 
structures dynamics to the usual methods for the robot modelling. The force-displacement 
relationship is obtained using the robot's stiffness matrix and the forces system acting on the end 
effector of the robot. Each link of the mechanical structure, modelled as a beam, is considered as a 
single flexible finit element. The stiffness matrix for an element is a square 12x12 one. So for a robot 
with n degrees of freedom, the stiffness matrix is 12nxl2n. Using the displacement s method and the 
geometric modelling of the robot, that is to say the transfer matrices between the links, a osft 
package was developed to compute the deformation matrix for each element as function of the 
torques acting on its joints. The exposed method is irrespective of the robot's architecture and 
number of its degrees of freedom. It can be used for any type of mechanical systems  

1. Introduction 

The paper approach is related to the direct influence of flexibility on accuracy of positioning. 

Like any other mechanism, a robot arm will deform under the action of a load. The robot's 

mechanical structure deformations cause a decrease in the real accuracy of the end effector 

positioning. 

The robots with flexible links are continuous dynamical systems having n degrees of freedom, 

whose motion is illustrated by a system of non-linear coupled differential equations, with variable 

coefficients, whose exact solution is almost impossible to derive. Hence, it is necessary that these 

continuous systems are idealized and discretized. In the present paper, a modified rigid finite element 

method is proposed to discretize flexible systems [1], [2], [7], [8], [9], [10]. A systematic modelling 

procedure for spatial flexible manipulators, with revolute and prismatic joints, using a modification 

of the finite element method is presented. The robot links are considered as beams, and each robot 

link is a flexible finite element. The structure nodes are the robot joints. 

- 7 - 



2. Force-displacement relationship for the robot structure in local reference frames 

In order to study the flexibility of a serial robot, its kinematic chain and attached reference 

frames Sb are considered. In order to derive the torque-displacement relationship, the techniques and 

methods already developed in theory of structures dynamics, were used 

While the robot task is accomplished, a forces system reduced at a torque x0
E? with respect to 

the fixed S0 reference frame, acts on the end effector. The equivalent torque acting on each joint i, 

expressed in its own reference frame Si is obtained with: 

-iT 

T   = (if)" 0) 

where J° is the Si reference frame Jacobian. In the figure 1, the reference frames attached to each 

link / of the robot in the joint /-/ are represented. 

y-2 link3 

end effector 

Fig. 1. Kinematic chain and reference frames attached to the robot links 

Let us consider a certain link / of the robot (fig2). Using the relationship (1), the torques T| 

with respect to S*, and x£} with respect to Si+h respectively, can be computed. But, the torque 

acting on the joint /' +1 can be expressed with respect to Ss reference frame using j|+,, the Si+] 

reference frame Jacobian with respect to Sj.- 

*;+1=j«i (2) 

Thus, the torque T; acting on the link of the robot, may be expressed by a 12x1 matrix: 

5i=[*N+i] (3) 



joint (i) 
D;:!->D|+, 

Fig.2. Torques acting on the link / of the robot 

The matrix (3) was obtained by putting together the torques acting on the joints ;' and i+1, 

expressed with respect to the S; reference frame. 

The torque, acting on the whole mechanical system, is than: 

l = [lI...Ii.-lnf <4> 

each of the torques ij being expressed with respect to its own Si reference frame. 

For each link / of the robot, with respect to its own Sj reference frame, a differential vector 

of displacement can be considered and expressed as a 6x1 matrix: 

D;=[d!5j]T (5) 

As in the torque case, the vectors Dj, and D, the last for the entire robot, can be draw: 

Di^DiDJ^f (6) 

D = [D1...Di...Dnf (7) 

If it is considered that the variations of the position and orientation of each robot link are due 

to the links flexibility, the vectors i and D are related to each other using the system stiffness matrix 

K: 

i = KD (8) 

where K is a quadratic symmetric matrix J2nxl2n, whose inverse generally exists and is called the 

system flexibility matrix f = K"1. Thus, the links deformations can be obtained from: 

D = K''i = fi (9) 

If the robot deformations vector is known, the deviations vector DEF from the imposed 

position and orientation of the robot end effector can be obtained using the Jacobian robot matrix Jr 

[3]- 
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The system's stifihess matrix is a diagonal matrix, whose elements are the stiffness matrices 

Äi (note that every Äj is expressed with respect to its own reference frame). 

K = 
K2 

(10) 

3. Force-displacement relationship for the robot structure with respect to the fixed 

reference frame 

The problem is to expresse the factors of the relation (8) with respect to the fixed global 

system So: 

t = KD (11) 

because the end effector motion, on which the displacements due to the links flexibility are reflected, 

is expressed with respect to the fixed system So, too. 

As concerne i, each element Tj can be easily tranformed with respect to the fixed system, 

i 
using the general matrix G^JJTT

1
 with which the Sj reference frame is positioned and orientated 

[3], The elements of the Gf matrix are used to compute the Jacobian matrix J°; of the Si reference 

frame with respect to So. In the same way, using the same Jacobian matrix J°;, the elements Di, of 

the matrix D will be computed with respect to the fixed system So . 

The problem is much more complicated in order to express the stiffness K matrix with 

respect to the fixed So system. For this, each Kj matrix must be transformed using a so-called 

geometric compatibility matrix C, with which the corresponding matrix with respect to the fixesd So 

system is: 

Ki = CTÄiC (12) 

where the C matrix is a 12x12 diagonal one: 

G? 

G? 

So. the system stiffness matrix with respect to the fixed So system is: 

- 10- 
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K, 

K-        *2 ^ 

K„ 

All the factors of the relation (11) are now known with respect to the fixesd S« system, and 

the problem is solved. 

4. Applications 

For the study of the links deformations of serial robots some soft packages were developed. 

The applications were made for two robots: KLOOS with 6 degrees of freedom and SCORBOT-ER 

III with 5 degrees of freedom. 

The required inputs are: 

•number of structure elements n (robot's links); 

•length of each link £■,; 

•cross-section shape of each link; 

• dimensions of the link's cross-section; 

•longitudinal and transversal elasticity modulus Ei; respectively G( of each link; 

•Hartenberg-Denavit parameters: a* %, 4,9; and expressions of tranfert matrices T/-1; 

•general matrix G°, at the considered moment; 

•torque x0
EV acting on the end effector. 

The computational sequences followed the exposed theory. 

5. Conclusions 

In the presented study, the serial robot is treated as an open kinematic chain, with flexible 

links, capable to accomplish some task in a tri-dimensional space. The method for deformations 

calculus adjusts and applies the general approaches developed in the theory of structures dynamics, 

to the usual methods for the robot modelling and dynamics. 

The proposed method can be applied to any open mechanical structure, having any degree of 

freedom, with both revolute and prismatic joints. Each robot link is considered as a single flexible 

finite element. The computational complexity is modest compared with other proposed algorithms. 

- 11 - 



The stiffiiess matrix for a robot element in 3-D is a 12x12 one and for the robot's structure 

with n elements is 12nxl2n, respectively. Based on the proposed method, some soft packages were 

developed in order to determine the torques matrix, the stiffiiess matrix and finally, the deformations 

(displacements) matrix. 

The mechanical structure deformations can be used to correct the position and orientation 

errors of the end effector, therefore, to obtain an improved accuracy. 
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LYAPUNOV EXPONENTS AND STRANGE ATTRACTORS 
IN THE DYNAMICS OF THE BUCKLED BEAM 

Daniela Dincä Baran 

National Institute for Aerospace Research " Elie Carafoli"-INCAS, 
Bucharest, Romania, 

220, Bd. Pacii, Sect. 6, Email: dbaran@aero.incas.ro 

Abstract In this paper we analyze and compare some results concerning the 
chaotic motions of the buckled beam (using three mathematical models Bernoulli- 
Euler, Rayleigh and Timoshenko ) by means of three different methods: maximum 
Lyapunov exponent, portraits in the phase plane, and the Melnikov function. 

1. INTRODUCTION 

The great developing of the numerical analysis of the dynamic 
systems emphasizes the following facts: 

The existence of a strong dependence of the initial conditions, 
described in the phase plane by attractors with a complicated geometrical 
structure (see for example in [1,2]). The strong dependence is usually 
proved by the help of the Lyapunov exponents [3,4,5], and the complexity 
of the geometrical structure of the attractors leads to the notion of strange 
attractor. Strange attractors are defined in many ways, but here we adopt 
the definition of Holmes and Guckenheimer [2]: an attractor is a strange 
attractor if it contains a homoclinical transverse orbit. 

The transversal vibration of a buckled beam is a well-known 
problem which leads to chaotic motion. Usually, to study this problem, the 
Bernoulli -Euler beam model was used. In this paper we adopt two more 
elaborated models: the Rayleigh model, which includes the rotatio inertia 
effect, and the Timoshenko model that includes both the rotatio inertia 
effect and the shear force effect, and remark the effects of these models. 

2. EQUATION OF MOTION 

Consider a buckled beam of length 1, simply supported, acted upon 
by an axial force P and a lateral load FCOSö*,. The equation of motion in 

- 13 - 



the Bernolli-Euler model including the membrane effect using non 
dimensional variables, is: 

V  ■   °  V      /r      if/   ,,,.«2  .^0  V ÖV       „ ,,     ' ^ + ^ + (r-kJ(V©)dO^ + c¥ = fcoso,. (!) 

Introducing the rotatio inertia effect equation (1) becomes (Rayleigh 
model): 

* "bW +y+(r-kJ<v«)) dö^+c- = fcos«,,. (2) 

Introducing the  shear force effect (2) becomes (Timoshenko 
model): 
52v   „      ,  x   d\      d\    _   , \, „„„, _S2v      dv 

- + c— + a^(b' + b->^+^+(r-kI^»3^^'-a 

,ov,5v,5v. ,_. 
b2 —-—b3 + b,-—= fcoscot (3) 

at3      ax2at      et4 v ' 
where: 

T = —        k = — Cl2 f_FP 
El     ' El     ' ^p AEI    ' El 

.        I . El IC     I El 
t>n=TT—       ,       P,  = -. ,       D, =• 

12A '    k'Gl2A L    k'A2Gl^pA 

b3=(^L)"2ck'AG    ,    b4=-Ä-    ,    b5 =    T 
i
        Vi   A ' '4        ,1/1,4 ' 5 p A 4    k'Gl4 5    k'AG 

The chaotic vibrations of the simply supported buckled beam are 
analyzed using the first approximation in the Galerkin method, developing 
the transversal displacement u(x,t) = h(t)sin ?a, with the following 
nonlinear equation of Duffing type: 

h-ß'h+aV =s(y!cos© t-8!h), i = 1,2,3 

h(0) = h0,   h(0) = h0 (4> 

' n   I I r.    I where the coefficients a ,ß ,y ,S   have slightly different values for 
the three mathematical models considered. 
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2. ANALYSIS AND RESULTS 

21 Obtaining the Bifurcation Values with the Melnikov method 

Equation (4) has, for s=0 a hyperbolic saddle point and a 
homoclinical orbit. For e>0 one associates to such an equation a real 
valued function, called the Melnikov function. One shows that if the 
Melnikov function is independent of 8 and has simple zeroes, then for s>0 
sufficiently small, the motion described by (4) becomes chaotic [2]. 

The Melnikov function for (4) is: 
3/2 

M.^J^Y,    ™> ■*"> '«     -4«B^ (5) 
V«;      cosh(7Kö/2Vßi)       3a' 

Introducing the notation: 

R. (©) - 4ßi
3/2cosh(-^L) / (3TO) V^öö (6) 

2Vßi 
the condition for homoclinical transverse intersection is: 

Ii->R;,i = 1,2,3. (7) 

Taking into account the form of the coefficients of the equation (4) 
for o=l one obtains the following inequality: 

R,>R2>R3. (8) 
This inequality reflects the different way in which the three models 

can perform chaotic motions: it is possible that under the same initial 
conditions and external loads some of the beams perform periodic motions 
and others perform chaotic ones. 

2.2. Lvapunov exponents 

The Lyapunov exponents are a sort of "measure" of the separation 
of a reference solution from a perturbed one. The principal information 
offered by these coefficients are: 

1. There is at least a positive exponent if the system has a chaotic 
evolution. 

2. All the Lyapunov coefficients are negative if the system has not a 
chaotic evolution. 
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We note that to draw the two conclusions below are sufficient to 
determine the greatest Lyapunov exponent, which is easier to calculate 
and many authors use this method to evaluate the strong dependence of 
the initial conditions [3], [10, 11, 12, 13, 14]. 

The expression of the maximum Lyapunov exponent is [3]: 
1     N      d. 

LN=—y>— (9) 

where At is the time step considered in the evaluation of the solution (and 
it is also the numerical integration time step), N is the number of such time 
steps considered, dj is the distance between the perturbed solution ant the 
unperturbed one at the i-th time moment, and d is the distance between 
the two solutions at the initial moment. 

We perform our analysis with the initial conditions hm = hjo =0.1, 
which are in a small neighborhood of the homoclinical saddle point of (4) 
when s=0. The evolution is analyzed using the maximum Lyapunov 
exponents L,, (/ = 1,2,3), Poincare maps and portraits in the phase planes. 

2.4. Conclusions 

l.When the maximum Lyapunov exponent is negative the evolution 
is periodic or cuasi-periodic. 

2. When the maximum Lyapunov exponent is positive The 
evolution is rather complex, we may say it is chaotic. 

3. There are cases in which for the same initial conditions and 
external loads we obtain periodic cuasi periodic motions for the Bernoulli 
and Rayleigh models and chaotic for the Timoshenko model. As a final 
remark, in this cases the Timoshenko beam is more sensible to chaotic 
motions than the other two models. 
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Lift Enhancement by Aerodynamic Multiparametric Optimization of a 
Wing-Strake Configuration 

Octavian Trifu 

National Institute of Aerospace Research "Elie Carafoli" 

Bd. Pacii 220, 77538, Bucharest 

An aerodynamic multiparametric optimization procedure, for the strakes optimum planfomi design, is 
presented. Its purpose is to define, through a numerical optimization process, the geometrical characteristics of 
these element"», in order to obtain a maximum lift increase for the complex aircraft configuration 
(fusclagc+wing+tails) on which they arc installed. Since its aerodynamic analysis module is based on 
approximate methods, the procedure is fast and may be useful especially in the initial stages of an aerodynamic 
design project. For a generic configuration strakes of larger and smaller area were optimized. Lift increases of 
about 14-18% were obtained accompanied by alterations of the longitudinal stability characteristics. Therefore 
the strakes optimization problem requires a careful attention and a niuln'disciplinary - aerodynamic and 
stability- treatment seems to be, as finally suggested, Us adequate solution. 

Nomenclature 
A = area of a panel 
ACp = difference between the upper and 

lower surface pressure coefficients 
CL = lift coefficient 
CD = drag coefficient 
Cm = pitching moment coefficient 
F* = aerodynamic force on a panel 
M = Mach number; number of chordwise 

panels 
p = optimization parameter 
Ap = pressure difference (constant) 

applied on panel 
N = normal force on a lifting surface 
{l = unit normal vector 
N = normal force (component) 
S = potential flow leading-edge suction 

force; area of a lifting surface 
SR = reference area 
s = segment on the horseshoe vortex 

associated to a panel 
Swred = planform area of the reduced wing 

(out of the fuselage) 
T = potential flow leading edge thrust 

force (component) 
ti = velocity 

a = angle of incidence 
Y = strength of a horseshoe vortex 
cp = disturbance potential of the analyzed 

flow 
A = leading edge sweepback angle 
u. = setting angle 
p = density 

'Senior Scientist, Aerodynamics Department 

Subscripts 
oo = frccstream conditions 
i = optimization parameter index 
j = panel chordwise index 
k = strip on wing's inner zone 
LE = leading-edge 
p = potential flow 
S = strake 
V = due to the rolled-up vortices 

Introduction 
For the "classical" aerodynamic designer, one of 

the main concerns is to avoid, as much as possible, 
the separation of the flow over the airplane's surface. 
However, since some beneficial effects, related to 
certain types of controlled separations were 
experimentally revealed1, numerous experimental 
and theoretical studies2"'4 were dedicated to this 
subject. Physical explanations were formulated and 
successful attempts to elaborate theoretical methods 
for a quantitative evaluation of the aerodynamic 
effects were made. 

Among other, the strakes arc an outcome of these 
studies. They arc small aspect ratio lifting surfaces, 
having sharp leading edges with large sweep angles, 
used in the modern aerodynamic design practice as 
vortex lift generators. When placed ahead of the 
leading edge of a wing with a smaller sweep angle 
and a larger aspect ratio (Fig. 1) the rolled-up 
(spiral) vortices, created by the separation of the flow 
at their sharp leading edges followed by a 
reattachment on the wing's upper side, produce 
nonlinear lift as a consequence of the depression 
acting on the strakes and also on a certain region of 
the wing (the augmentation effect). 
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strake 

edge forces 

augumentation 

wing 

rolle d--up vortex 

Fig. 1 The rolled-tip vortices associated with a stmke-wing 
configuration 

Thus, as a result of an aerodynamic synergistic 
effect, the lift of the wing+strakes combination is 
greater than the sum of the lifts produced separately 
by each of these components (Fig. 2). 

0 10 20 30 40 
Incidence (deg) 

Fig. 2 Synergistic effect in the case of astrakc.wing 
configuration 

Parametric studies11'13 revealed the influence of 
both: surface and shape of the nonlinear lift 
generators on the lift augmentation of various 
fuselage+wing configurations. Therefore, defining 
the geometrical details of the strakes, through an 
aerodynamic optimization process, will certainly 
maximize the benefits expected when such elements 
are installed on a given airplane. 

The relation that links the strake's shape with the 
aerodynamic characteristics of the whole 
configuration is implicit (nonlinear). Accordingly, 
the optimization procedure presented in this paper, is 
a numerical one. 

The Principle of the Optimization Procedure 
The purpose of the procedure for the optimum 

definition of the strakes15 is to find a planform for 
these elements that provides, for certain given flight 
conditions, the maximum lift for the airplane on 
which they are installed. Since an airplane's lift 
depends, among other, on the shape of its wing, that 
can be expressed with a number of geometrical 
parameters, it is possible to define a function 
including CL, thus having as variables those 
parameters. For the optimization process, this is the 
objective function and its variables are the 
optimization parameters. In the optimization process 
the search of one extreme (usually the minimum) of 
the objective function is performed, namely one looks 
for the values of the parameters for which that 
extreme value is reached. In the real situations, the 
domain where the optimization parameters are 
allowed to take their values is limited by a number of 
restrictions that arc meant to ensure the necessary 
physical consistency for the optimum solution. 

For an airplane having a complex configuration 
(fuselage+wing+tails) it is practically impossible to 
deduce an exact analytical relation between CL and 
the geometrical parameters that define its shape. 
Therefore, in such situations, numerical methods are 
used to determine the aerodynamic characteristics. 
Hence the nonlinear function that links the lift 
coefficient to the geometrical parameters is an 
implicit one. Accordingly, the optimization 
procedure of the configuration (in this case only a 
part of it - the strakes) must be also numerical. In 
principle (Fig.3), such a procedure is based upon an 
algorithm (of iterative nature) for the searching of 
the given objective function's minimum, in which an 
aerodynamic analysis module is included. This 
module calculates the aerodynamic characteristics of 
the configuration, corresponding to its current shape 
as defined by the optimization parameters, and 
provides them to the optimization algorithm. 

The Optimization 
Loop 

Fig. 3 The optimization procedure 

For a given set of flight conditions (altitude, 
speed,    incidence,    deflection    angles    of    the 
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aerodynamic controls), the aerodynamic analysis 
module determines the characteristics of the initial 
configuration, so that an initial value of the objective 
function can be computed. Then, using an 
optimization method, the parameters arc changed 
(within the limits of the imposed restrictions) and the 
modified configuration is aerodynamically analyzed, 
so that a new value is determined for the objective 
function. During the search for the optimum process 
only those variations of the parameters that produce 
a decrease of the objective function arc accepted. 
When at two successive optimization steps the 
variation of the objective function becomes smaller 
titan a certain error level, the search for the optimum 
is ceased. The corresponding values of the 
parameters arc those who define the optimum 
configuration. 

Since the procedure discussed here is conceived 
to determine the optimum planform of the strakes, 
the wing of the analyzed airplane is divided into two: 
an inner zone at the junction with the fuselage, 
corresponding to that region of the leading edge 
where the strakes are placed, and an outer zone (Fig. 
4). 

Fig.4. Definition of «he parameters for the strake's planfonn 
optinii/atinn 

The inner zone is divided spanwise in equally 
wide strips Ayk, and thus on its leading edge a 
number of intervals are defined by points that are 
initially equally spaced. During the optimization 
process these points are moved in a such manner that 
a strake "grows" on the leading edge of the wing's 
inner zone. The ratios between the chord of the wing 
with strakes (cSI) and the chord of the initial wing 
(without strakes - c0i) in the given; sections, are used 
as optimization parameters. The search of the 
strake's optimum planfonn is performed in (wo 
stages: 

• first, pi is increased and the other parameters p, 
determined from the condition that the strake's 
leading edge remains straight; 

• then, bv modifying individually, in a sequential 
manner, all the parameters (pi included) the 
final shape of the leading edge, in this wing's 
zone, is obtained. 

As mentioned, the initial and the modified values 
of the optimization parameters must satisfy certain 
restrictions. These are related to the lowest/highest 
allowable values for Pi and to the limits that restrict 
the variation of the leading-edge's sweep angle on 
the Ayk divisions of the inner zone. 

The value of each parameter is modified by the 
module which does the search for the objective 
function's minimum and the strake's configuration is 
updated, at each step, in the lifting surface geometry 
section of the aerodynamic analysis module. The 
geometrical characteristics of the fuselage, wing's 
outer zone and tails remain unchanged during the 
optimization process. This is also true for the relative 
position of the configuration's main parts (fuselage- 
wing-tail). 

The Aerodynamic Analysis Module 
The aerodynamic analysis module is derived from 

a program that calculates the air-flow characteristics 
around an airplane configuration: fuselage+lifting 
surfaces (wing, horizontal and vertical tails, etc.) at 
subsonic, subcritical speeds developed at N1AR •' 
upon the algorithm published by Hua18. It has two 
main sections: 
• One in which are determined, on the basis of the 

input data, the geometrical characteristics for the 
elements of the analyzed configuration. In this 
section arc also made the modifications of the 
wing's inner zone, according to the current 
values of the parameters at a certain moment 
during the optimization process; 

• The main section where the characteristics of the 
flow and the aerodynamic characteristics are 
computed. 

The analyzed flow is supposed to be hrviscid, 
steady,      subsonic,      subcritical,      with      small 
perturbations. The configuration's basic parts are 
treated in a simplified manner: 
.     The    fuselage     is     approximated     by     an 

axisymmetric body, closed at both ends, defined 
by the values of the circular section radius r; 

given at a number of stations Xi; 
• The lifting surfaces: supposed to be thin 

(without thickness), and defined by the root 
chord, an aspect ratio, a taper ratio, a sweep 
angle (at 25% chord), a setting angle and a 
dihedral angle. Each lifting surface may have a 
certain camber and/or twist and a pair of control 
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surfaces (deflected or nol).  The dala for the 
lifting    surfaces    must    correspond    lo    their 
"reduced" form (only the parts which arc outside 
the fuselage) 

The configuration may include only one fuselage 
(or equivalents - a store's body, for example) and an 
unlimited (in principle) number of lifting surfaces. 

The flow defined by the above stated hypothesis 
is   governed  by  the   potential   small   disturbance 
equation: 

a-M^)^+^+f-l=o.      (i) 
-1        -,2 2^ a  9    d  cp 

dxZ     ty1     dS 

The modeling of the flow is based on the 
summation of the effects produced by a distribution 
of point sources and doublets (for the fuselage) and 
horseshoe vortices (for the lifting surfaces) placed in 
the undisturbed U«, incident flow (Fig. 5). The sum 

of the potentials of these elementary singularities is 
the solution cp of equation (1). 

Horseshoe vortex 
on a wing panel 

Point source & doublet 
on the axis of a segment 
of the fuselage 

Fig. 5 The modelling of the perturbed flow around a discrerized 
airplane configuration 

The boundary condition, assumes that at any 
point on the external surface S of the analyzed 
configuration, the normal component of the local 

velocity V is zero: 

U- 0 (2) 

n - being the outward normal unit vector 

When V is substituted in equation (2) with the 
sum of the contributions (induced velocities) of all 
the singularities (sources, doublets, vortices), an 
integral equation is obtained, whose unknowns are 
their strength. The method of solution uses a 
technique which replaces the integral equation by a 
set of linear algebraic nonhomogenous equations. 
This is accomplished by dividing the body in 
tronconic segments (each associated with a point 
source and a point doublet) and the lifting surfaces in 
quadrilateral    panels    (each    associated    with    a 

horseshoe vortex) . Therefore the method belongs to 
the "first order Panel Methods" category. 

The coefficients of the algebraic nonhomogenous 
linear equations are calculated as functions of the 
configuration's geometrical characteristics and of the 
parameters that define the incident flow (M„, a, ß). 
The linear equation system is solved by a Gauss 
elimination with complete pivoting technique . 

Once the solution (the strengths of the elementary 
singularities), is obtained, the calculation of the 
velocity and pressure distributions is straightforward. 
The determination of the local and global 
aerodynamic forces and moments and of the 
corresponding aerodynamic coefficients is then 
immediate. 

Another possibility to simulate the perturbations 
produced by the presence of the fuselage, consists in 
replacing it by a lifting surface of very low aspect 
ratio, whose planform is, as much as possible, close 
to the xOy projection of the real item (the 
Betotserkovski model'9). Having certain advantages, 
as far as the accuracy of the calculated lift and the 
speed of the computations are concerned, this 
approximation was used in the present study. 

Due to the iterative nature of the optimization 
procedure, the low computer memory and time 
required to perform the aerodynamic analysis of the 
analyzed configuration was, in fact, one of the main 
arguments towards the decision to include this panel 
method in the aerodynamic module. Another strong 
argument was offered by the ability of this method to 
analyze configurations having a quite high degree of 
complexity. 

In the above described form, the method (and the 
corresponding computing module) was unable to 
evaluate the lift produced by the rolled-up vortices 
generated by the separation of the flow at the sharp 
leading and/or side edges of the lifting surfaces (the 
vortex ///?). Therefore, to meet the necessities of the 
strakes optimization process, the aerodynamic 
analysis algorithm was completed with the vortex lift 
quantitative evaluation capabilities15. 

^ 

Attached Flow 

Fig. 6 Principle of the leading-edge suction analogy 
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Due to its qualities (very good 
precision/computing time factor) the suction analogy 
method due to Polhamus3 was chosen to calculate 
this lift component. This method, despite its rather 
intuitive foundations, was remarkably validated by 
many experimental data, especially at subsonic 
speeds, and was largely adopted by the applied 
aerodynamics community. 

Polhamus assumed that: the normal 
(perpendicular) force on the upper side of a wing 
required to maintain a flow with reattachment about 
the rolled up vortices formed at its swept and sharp 
leading edges (Fig.6) is the same as the leading-edge 
suction force required to maintain the attached flow 
about the leading edge in the potential flow case, 

hence: 

Fig. 7 The chordwise division or the k-th strip on a lifting 
surface 

M = the number of chordwise divisions of the 

strip k 

Nv=SP=^X 
(3)      with: 

LE 

For the purposes of this study, the method of Lan 
and Mehrotra'ü was adopted to calculate, in a 
potential flow, the local suction force S,* acting on 
the leading edge of the strip k, obtained by the 
spanwise division of a thin lifting surface. This 
method uses the development in a Fourier series of 
the chordwise pressure distribution corresponding to 

that strip. 
On a panel j (belonging to the strip k) to which is 

associated the elementary horseshoe vortex with the 
strength 7^, the difference between the upper and the 
lower surface pressure coefficients is given by: 

ACPkj = 
Apkj     tyfikj 

-V^Akj 

where: 

Fkj = P< ■f« 'kjxricj-diskj 

(4) 

(5) 

xkj-xu* 
Xj=  (8) 

The use of a simple numerical integration rule 
(trapeze) for the calculation of the Fourier series 
coefficients proved to be satisfactory. 

0 

=ilf(9)de=iS(fi+fi+l)   (9) 
0 J=1 

and: 

0 

a,=lff(e).cos^.de = 
J    © J " © 

0 (10) 

iX[fXj^*)+fj+1^jH 
i = l 

where: 
© = ( (11) 

The ACpkj values distribution on each k strip is 
developed in a cosine Fourier series: 

f(9) = - ACp.sinO = a0 + / ^jCt 

the angle 0j, being defined by (Fig. 7): 

0: =arccos(l.-2.Xj) 

(6) 

(7) 

m = a number (> M) of equal divisions of the [0! 
- 9M] domain; (m = 20 was used) 

fj = m+1 values obtained by the interpolation of 
the    M    values    calculated    for    the    function 

f (e .) = - ACpkj. sin e j, on the fc-fh strip of the thin 

lifting surface. 

Near the leading edge, the variation of ACp is 
similar to that of the function: 
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ACpSrM 
and therefore: 

1 
Iim  -^ACp.sinO = C = an+,W 

j = l 

(12) 

(13) 

C being the leading-edge suction parameter. As a 
function of its value, the coefficient of the suction 
force on the k strip will be10: 

-At cSk = oCkV'-^HxrCOS'Vrt-)2 /cos2 A 'vLEk (14) 

Thus, according to Polhamus's model, the 
contribution of the rolled-up vortices to the normal 
aerodynamic force on the A--th strip of the lifting 
surface is: 

and to the thrust (axial) force (see relation 3): 

PTVk =PNVkCOsALEk 

(15) 

(16) 

These forces arc added to the normal and axial 
components, determined with the above described 
potential method, on the first panel (near the 
leading-edge) of each strip t 

Pzlk=Pzlk+PNVk 

Pxlk=Pxlk-PTVk 

(17) 

(18) 

Relation (18), that corrects the drag with the 
contribution of the leading edge suction, may not be 
applied on those lifting surfaces (or portions of their 
leading edge) where the flow separates and rolled-up 
vortices are formed, hence where relation (17) is 
applied. Relation (17) introduces also the influence 
of the vortex lift over the airplane's pitching 
moment. 

In the case of an airplane with strakes, the 
vortices generated at their leading-edges travel 
downstream, exerting an influence in the flowfietd. 
To take into account these effects, to the "ensemble" 
of singularities used to calculate the potential flow 
around the analyzed configuration, two symmetrical, 
free, semiinfinite line vortices were added, having 
the strength rs, the origins at R, L (Fig. 8) and 
passing (when a > 0°) above the wing. Their 
influence (perturbation velocities) was considered 
here only on the outer zone of the wing and on the 
airplane's tail. 

Schematized 
trailing parts of the 
rolled-up vortices 

Areas where the depression 
generated by the rolled-up 
vortices is acting 

Fig. 8 Elements of the model used in the vortex-lift calculations 

The coordinates of R, L and the strength rs are 
calculated according to  the  indications  given by 
Mendenhall et.al.20, by using the vortex-lifl spanwise 
distribution.   Thus,   the  strength  of the  two  free 
vortices,     which     will     be    referred    here     as 
supplementary vortices, can be determined using the 
relations: 

SRV„ 
-CNVcos(u + u0) r«=- 

where: 
4d 

-NV ~ ' (ccs).dy 

(19) 

(20) 

and the distance d, gives the spanwise location: 

b, 

(c.cs).y.dy J< 

/ 

(21) 

(c.cs).dy 

A simple numerical integration is used to 
evaluate the integrals of (20, 21) on the semispan b, 
of the wing's inner zone, divided in the k strips. In 
the expressions of the integrands, cs is the suction 
force coefficient (relation 14) and c is the local chord 
(strake included). The points R and L, are placed 
near the intersection point of the strake's and the 
wing's leading-edges (for details, on the calculation 
of their coordinates, sec Ref. 15). 

As seen, for the calculation of the position and 
the strength of the supplementary vortices, the 
suction force distribution on the strake's leading- 
edge must be known. Hence, an iterative method of 
solution must be applied. In a first approximation, 
the flow around the airplane's configuration (with 
strakes) is calculated without taking into 
consideration the  influence  of the  supplementary 

- 26 



vortices. After the suction force distribution and, 
based on it (relations 19-21) the characteristics of 
these vortices, are determined, their influence can 
also be considered, in a new computational cycle. 
The iterations are stopped when two successive 
values determined for rs satisfy an imposed relative 
error level (2% was used). 

All the elements related to the calculation of the 
vortex-lifi generated by the strakes (including the 
influences over the rest of the airplane's 
configuration) were introduced in the algorithm of 
the aerodynamic analysis module. To validate the 
accuracy and the efficiency of these modifications, 
several numerical tests were performed on a number 
of straight or delta wings and on a complete airplane 
configuration (without and with strakes). 

Flg.9 Lift coefficient variation 'with incidence for the 
configuration of FIg.8, without (-s) and with (+s) strakes. 
Comparison of computed (c) and experimental (e) data 

For instance, in the case of the generic fighter of 
Ref. 13 (Fig. 8), the results given by the aerodynamic 
analysis module, for the configurations without and 
with strakes, are represented in Fig. 9. The 
agreement of the calculated and the experimental CL 
data is good up to a = 12° for the basic 
configuration, and up to a = 20° for the 
configuration with strakes. In the first situation, the 
experimental lift becomes almost constant for a > 
12°, due to the enlargement of the separation regions 
on the wing's upper side and in the second situation 
the occurrence, at a > 16- 18°,of the vortex 
beakdown causes, due to a reduced vortex-lift 
contribution, a decrease in the experimental lift 
curve slope. Although the above described flow 
model is unable to evaluate separation or vortex 
breakdown effects, the numerical tests confirmed that 
the updated version of the aerodynamic analysis 
module   has   the   capacity   to   determine,   with 

reasonable accuracy, up to the breakdown incidence. 
the contribution of the strakes to the aerodynamic 
characteristics of an airplane on which such elements 
are installed. 

The Optimization Method 
As specified in section 2, besidles the 

aerodynamic analysis module, a very important 
component of the optimization procedure is the 
optimization module, in which the former is 
repeatedly called during the process of searching the 
minimum of the objective function 

Since the planform of the strakes can be defined 
with a relatively small number of parameters, an 
optimization algorithm, based on the One 
Dimensional Searching (ODS) method21 was adopted 
to perform the present study. Although is usually 
slower than the gradient methods, it is quite 
satisfactory for the problems with few parameters 
because it does not require the calculation of the 
objective function derivatives and provides an easy 
way to impose the necessary restrictions. Its 
straightforward principle is illustrated in Fig. 10 for 
the two parameter case. 

OF increases 

LF increases 

OF hits a restriction 'pi 

Fig. 10 The principle of the One Dimensional Searching 
optimization method 

• For the strakes planform optimization, 4 
parameters (p, - 4), as defined in figure 4, are used 
here. On the starboard wing, their index increases in 
the positive sense of the Oy axis. At the beginning of 
the optimization process, the value of all the four 
parameters is 1.0, and at the end, their values are 
greater than 1.0, but do not exceed the domain 
bounded by the imposed restrictions. As already 
mentioned, the restrictions are set on: 
• the minimum allowed values for p. Thus, 

without exception, during the whole 
optimization process, the parameters must 
satisfy: 

Pi > 1.0 (i = 1, 4) (22) 
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the maximum value of the parameter pi which 
cannot exceed a given limit. In this study, this 
way, a maximum attainable limit of 80° was set 
for the value of the mean sweep angle of the 
optimized strake's leading-edge, 
the lower/upper limits for the local sweep angle 
of the leading-edge (AL») on the four Ayk strips 
in which each strake is divided. The values 
indicated in Table 1 were used to perform the 
optimizations presented in section 5. 

Table 1 The limits imposed on the local sweep angle of the 
strake's leading edge 

Strip 1 2 3 4 
AL*(°) 5+90 104-90 15+90 20+90 

A simple relation links the coordinates Xi of the 
points that define the segments on strake's leading- 
edge and the local sweep angle A^. Also, x; and p; 

are directly related. Therefore, the restrictions of 
Table 1 are applied, in fact, on the values of the 
optimization parameters 

Since the purpose of this procedure is to enhance 
the lift of an airplane with strakes by optimizing 
their planform, the following expression of the 
objective function was considered suitable: 

3 

OF = k1*^-+k2*|Cm| + 2]gi (23) 

where: 

gi = 

gi - penalty function, defined by: 

0... when, p;. is. inside, the. restricted, domain 

1.03* OFv... when, p,-. is. outside, the. domain. 

(24) 

OFv - the value of the objective function at the 
previous optimization step 

ki, k2 = weight coefficients (> 0) 

During the optimization process the minimum of 
the objective function OF is searched, thus, given the 
relation (23), the optimum configuration must have a 
higher CL. The term containing the absolute value of 
Cm was included to reduce, as far as possible, the 
variation of the pitching moment caused by the 
addition of the strakes to the initial configuration. 

Results 
Based on the presented optimization procedure, 

the computer code SAO (Strakes Aerodynamic 
Optimization) was written (in FORTRAN). The code 
was used to analyze the advantages / disadvantages 

of matching optimum shaped strakes on some 
existent configurations. To illustrate the capabilities 
and the limits of the optimization procedure, in this 
section are presented several results obtained with 
the jet-fighter type generic configuration of Ref. 13. 
The subsonic version, without strakes, was used as 
the initial configuration in these calculations. 

As specified in section 3, in the present study 
Belotserkovski's method19 was adopted to 
approximate the influence of the fuselage over the 
flow around the airplane's fuselage, so that the entire 
equivalent configuration is composed only of lifting 
surfaces. The two zones of the wing (Fig.4) were 
considered as two adjacent lifting surfaces. A xOy 
plane view of the initial configuration, showing its 
division into panels, is presented in Fig. 11. The 
geometrical data, required as input by the SAO code, 
were measured directly on the figures of Ref. 13 with 
an inherent degree of approximation. 

Fig. 11. The initial configuration 

All the strakes planform optimizations with this 
initial configuration were performed for the same 
symmetrical flight conditions: M„ = 0.40, a=16°, all 
aerodynamic controls at zero deflection. Strakes with 
larger dimensions (Ss = 16.8% Sftw) and of reduced 
dimensions (Ss = 5.6% Sw™d) were studied, for 
several values of the weight coefficient k2 (relation 
23). Since the semispan of the larger strake is 
22.56% of the reduced wing semispan, for an 
average leading -edge sweep angle of 80°, the 
restriction on the upper value of p] is 2.01. With the 
same average leading-edge sweep angle, the 
semispan of the small strake must be 13.03% of the 
reduced wing semispan and ]m« = 1.58. In Table 2 
are given the characteristics of the cases selected to 
be presented in this section. 

Table 2 Characteristics of the test cases 
No. Config. Ss/Swred k2 i| max. 

1 1.1 0.168 0.00 2.01 
2 1.2 0.168 0.30 2.01 
3 2.1 0.056 0.00 1.58 
4 2.2 0.056 1.00 1.58 
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The values of the parameters (pi - P4), the 
aircraft's aerodynamic coefficients CL, CD, Cm for 
the initial and the optimized configurations, along 
with the reductions of the objective function are 
given in Tables 3a, 3b. 

Table 3a Optimization results for the tore c strokes 

Param. 

Configuration 
Initial 1.1 1.2 

Pi 1.0000 1.9992 2.0076 

P2 1.0000 1.8341 1.5141 

P3 1.0000 1.8817 1.5628 

P4 1.0000 1.3726 1.3367 

CL 0.9972 1.1772 1.1828 

CD 0.2992 0.3531 0.3534 

Cm -0.0878 0.1746 0.1533 

AOF(%) - 15.28 15.56 

Table 3b Optimization results for the small strakcs 

Param. 

Configuration 

Initial 2.1 2.2 

Pi 1.0000 1.5788 1.4578 

Xh 1.0000 1.1551 1.4839 

p3 1.0000 0.3421 1.1547 

P4 1.0000 0.8729 1.1710 

CL 1.0030 1.1456 1.1000 

CD 0.3008 0.3421 0.3318 

Cm -0.0910 0.0401 0.0002 

AOF(%) - 12.45 17.18 

obtained with the large strakes, but, even if the drag 
penalty is reasonable (also 18%) in these cases, the 
variation of the pitching moment coefficient is too 
large (almost 300%), reaching high positive 
(unacceptable) values. In the case of the 
configuration 1.2, obtained for k2=0.3, the variation 
of Cm is somewhat smaller (near 275%), but still 
much too large. With k2 > 0.3 in the objective 
function used for the large strakes optimization, the 
Cm variation could have been reduced, but the 
obtainable lift increase would have been only around 
10% or even less. Thus, in the case of the large 
strakes, the lift enhancement, obtained as a result of 
the optimization, is accompanied by important 
modifications of the pitching moment which cause 
unacceptable alterations of the airplane's stability. 

For all the cases, in the optimization module 
(ODS method) the parameter's variation step and its 
decrease ratio (for a new cycle) were set to 0.08^ 
respectively 0.7. In these conditions, to reach the 10" 
limit (for the step's value) at which the minimum 
search process was ended, 140 -160 steps (according 
to each case) were necessary. The procedure proved 
itself to be quite fast since, on a Pentium/lOOMHz, 
16MB RAM system, one execution of the SAO code 
required 166 to 253 CPU seconds. Figure 12 shows 
the variation of the objective function during the 
optimization process in which the configuration 1.2 
was defined. The decreasing evolution is interrupted 
by peaks which mark the steps where a parameter 
exits the restricted domain inside which the 
minimum may be searched In this case the process 
ended after 160 steps, the minimum being found at 
the step 153. 

The results of Tables 3a, 3b indicate that through 
optimization, the objective function was reduced by 
12 - 17%, and consequently increases of 9 - 18% 
were obtained for CL. The small differences in the 
data given in Tables 3a, 3b for the initial 
configuration are due to the different ways in which 
the wing was approximated for the large / small 
strakes. The greater lift increases (around 18%) were 

50 100 
Optimization Steps 

Fig. 12. Variatton of the Objective Function during the 
optimization of the configuration 1.2 

Although their surface is three times smaller, the 
optimum strakes with reduced dimensions (Table 3b) 
produce however a 9-14% increase of the lift, with a 
10-13% drag penalty and only a 100-144% variation 
of the pitching moment. For instance, in the case of 
the configuration 2.2, obtained with k2= 1.0, the 
optimum strakes produce a 9% lift increase and 
reduce to zero the pitching moment (in the 
conditions in which the optimization was 
performed). 

Fig. 13 Plane view of the optimum configuration 1.1 
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Plane projections of the optimum configurations 
of Table 2 are shown in Fig. 13 - 16. It may be 
noticed that, in general, the optimum strakes have a 
S shaped leading-edge. The obvious difference 
between the dimensions of the large and small 
strakes as well as the effect produced on their shape 
by the different Rvalues, are also evident. 
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Fig. 14 Plane view of the optimum configuration 1.2 Fig. 17 Variation of CL with incidence, calculated for the initial 
(o) and the optimized configurations of Table 2 

Fig. IS Plane view of the optimum configuration 2.1 

Fig. 16 Plane view of the optimum configuration 2.2 

Since the optimizations were done at a given 
angle of incidence (<x=16°), the aerodynamic 
coefficients of the optimum configurations were also 
computed in a larger incidence domain (0.01° SaS 
28°), to enable the necessary evaluation of their off 
design behaviour. The results are those represented 
in Fig. 17- 19. 
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Fig. 18 Variation of CD with incidence, calculated for the initial 
(o) and the optimized configurations of Table 2 

According to these theoretical results, on the 
whole analyzed range of incidences, all the 
configurations with optimum strakes have a better 
lift than the initial configuration (Fig. 17). The above 
discussed influences of k2 and of the strakes area 
over the lift increase are proportionally maintained at 
all incidences. The drag penalties are reasonable 
(Fig. 18) and are also different as a consequence of 
the higher lift effects on the induced drag. 

The variation of Cm (Fig. 19) indicates that both 
configurations having large strakes (1.1, 1.2) are 
unstable at any of the analyzed incidences. Even in 
the case of the configurations with small strakes, the 
unstable behaviour is present, especially for a > 8°. 
But, for instance, if the moment reference point (the 
airplane's gravity center) is changed from the 
previously considered position at 15%MAC, to 
10%MAC, the Cm variation, calculated for the 
configuration 2.2 (Fig. 20) shows an improvement, 
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with a stable behaviour up to a =16°. This may be a 
possible solution to preserve/improve the 
longitudinal static stability of an airplane with 
strakes. 

Fig.19 Variation of CD with Incidence, calculated for the Initial 
(o) and the optimized configurations of Table 2 

Incidence (deg) 

Fig. 20 Variation of Cm with incidence, calculated for the Initial 
(o) and the optimized configuration 2.2. The Cm2.21 value» 

were obtained with the moment reference point at 10%MAC 

Conclusions 
The presented numerical procedure, performing a 

lift enhancing aerodynamic optimization of the 
strakes placed at the leading edge of an airplane's 
wing, is operational. Its aerodynamic analysis 
module uses a first order panel method to compute 
the potential flow around the airplane's 
configuration and the suction analogy method to 
evaluate the effects of the rolled-up vortices 
generated by the strakes. Therefore, the procedure is 
fast, and may be useful especially in the initial stages 
of an aerodynamic design process. 

An optimum found with this procedure is not 
necessarily a global optimum, but rather is a local 
one. However, the optimum configuration has a 
smaller value for the objective function, so that is 
better than the initial configuration. The planform of 
the optimum strakes and consequently their 
contribution to the modifications of the aerodynamic 
characteristics of the analyzed airplane, depend upon 

the initial configuration, the objective function, the 
number and nature of the considered optimization 
parameters and the restrictions that are imposed 
upon them. Also, when the ODS method is used to 
perform the optimization, the values of the 
parameter's variation step and of its decrease ratio 
exert an influence upon the searching process, and 
certainly may lead to another local minimum. 

In the studied cases, the lift increases, obtained 
by optimizing the strakes, were as high as 18%, at 
the price of reasonable drag penalties and, especially, 
of unacceptable large variations of the airplane's 
pitching moment. Theoretically, is was demonstrated 
that reducing by a factor of 3 the area of the strakes, 
for the same value of the average leading-edge sweep 
angle, the lift increase is only 4% lower, but the 
pitching moment (i.e. stability) problems are much 
closer to a solution if, for instance, a shift of the 
gravity center is feasible. Thus, to perform a realistic 
optimization of the strakes planform, a 
multidisciplinary (aerodynamic + stability) approach 
seems to be necessary. 

For a better handling of the Cm limitations, it 
will, perhaps, be useful to introduce the semispan of 
the strakes in the set of optimization parameters. 
Also, for a more accurate description of the strake's 
leading-edge shape, it may be worth-while to 
increase the number of segments into which this is 
divided, hence the number of parameters. In this 
case, a gradient type optimization method would 
probably be mandatory. 
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Abstract 

In the precision tracking tasks (landing, aerial refuelling, bombing, etc.) can appear the Pilot 
Induced Oscillations ( PIO ) which currently are associated with the control t-me^lay 

Referring to Mc Ruer paper /I/, into the pilot-vehicle closed-loop systems PIO s can be divided 
into three convenient categories ( essentially linear, quasi-linear andnon-linear/nonsta * onary yTJey 
can be results of excessive lags from high pilot gam or path gam shapmg, rate and surface position 
limits and non-linear effects due to aerodynamic configurations. 

This paper considers an qualitative treatment of PIO's phenomena and outlines cumulatwe 
effects of the control time-delay ( xp -the pilot effective lag and /or rm - the control time-delay.n the 
resulting low-order models 141), separately or together with non-linear saturating actuators effect or 

^otSS^ZZ^^ —pie of the landing task with two distinct 

PhaSeScSf aCL system containing time-delay and other effects described by the 

following equations: 

x(f) = Ax(t) + bf(u) 

y(t) = Cx(t) 

X(s) = O(s), s s[-t0,0], to = max(Tp,Xm) 
where state vector contains velocity, pitch attitude, incidence and pitch rate: . 
x = [V,9,a,q]T   or   x = [V,T)a,q]T with y flight-path angle. The control vector contains eUfTOr 

angle u = [6e]. 

Three cases are employed to treat PIO's phenomena. 
Case! - cumulative effect of the pilot lag (xp ), and control time-delay (tm), where: 

f(u) = ui(t-tm) + u2(t) 

with: 
u1=6e(t) = kaa(t) + kqq(t) 

u2 different for each landing phase: 
- approach       u2(t) = kpG(t- xp) 
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-flare u2(t) = kpy(t- xp) 

(see/4/,/5/). 
Case 2 - control time-delay and effect of surface position limits with : 
f(u) = g(u(t-Tp) 

and 

f(u) = {     U    .l^"0 
[sgn u  |uj > u0 

(see/2/). 

Case 3 - control time-delay (xp   or im ),   and loss of lift modelled by introduction of a 
hypothetical relay 
where : 

f(u) = u(t-t) 

and 
aij = h(L), L = Laa +■ Lqq + L0 sgn(a -ac) 

(see/3/). 
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Abstract 

The stability of a spinning liquid-filled spacecraft is investigated in the present paper. 
Using Ritz modal superposition method, the attitude dynamic equations were given and thus 
the Liapunov direct method was employed to obtain a sufficient condition for stability. Three 
kinds of characteristic modals, modals of free motion of inviscid fluid, modals of slosh motion, 
modals of non-slosh motion, have been investigated and all characteristic problems can be 
solved numerically by FEM or BEM. It was demonstrated that the viscosity of fluid plays a 
dissipative effect for large Reynolds number, the slosh motion plays a destabilizing role and 
the non-slosh model of fluid takes no effect on the stability criterion. 

Keywords: Dynamics of spacecraft, liquid sloshing, stability of motion 

1    Introduction 
It is known that liquid slosh in a spin-stabilized spacecraft is a dynamically unstable source which 
will cause the vehicle in nutational instability under certain parameterized conditions. LEASAT, 
a geosynchronous spacecraft with liquid apogee motor, launched in September 1984, experienced 
attitude control motion instability during the pre-apogee injection phase. It was found that the 
instability is due to the interaction between the liquid motion and the attitude control. This 
experience demonstrated that the analysis of dynamic interaction between liquid motion and the 
attitude control is important in the attitude control design of these spacecraft. 

For a non-spinning system, or say liquid slosh in a three-axis stabilized spacecraft, theory and 
solution methods have been well developed'1'. The characteristic problem of liquid sloshing in tanks 
can be solved numerically either by finite element method or by boundary element method' • 1. 
Liquid sloshing in the coupled system can be represented accurately by an equivalent mechanical 
model. It was found that there exists a "stability center"'4' 5l which indicates the stability condition 
of the fluid-spacecraft and also demonstrates the instability effect of liquid slosh. 

Study of liquid motion in rotating containers is more complex than that in motionless containers 
due to the effect of Coriolis force. Mathematically, the kinds of the characteristic equations of liquid 
motions are different. The former is of elliptic or hyperbolic one depending on a parameter but the 
latter is of Laplacian'6'. Analytic solution seems only available to the liquid motion in a cylindric 
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container with coaxially cylindric free surface in steady state '7- 8l. Pfeiffer191 introduced the concept 
of homogeneous vorticity to the problem of partially filled containers and Ebert '1Ql modified the 
theory, thus the problem is governed by the Laplace equation, which can be solved numerically 
similar to the non-spinning problem. However, it should be noted that using Pfeiffer's method will 
lead to a result of fictitious instability of liquid motion in certain parameterized conditions due to 
the introduction of homogeneous vorticity assumption12, U'12). This means that the homogeneous 
vorticity assumption is not valid in all the parameterized space. Mclntyre and Tanner1131 developed 
a finite element method to the characteristic problem of liquid motion without any assumption for 
the vortex flow. This model has been extensively used to study the effects of liquid motion on 
the attitude dynamics and control of INTELSAT VI, a dual-spin spacecraft with a liquid apogee 
motor'1^ 15) jo stujy the nutational frequency, the nutation time constant and the attitude 
stability of a spinning spacecraft with a viscous fluid, a boundary-layer model has been suggested1 

and the solution is obtained by solving three boundary-value problems: an inviscid fluid problem, 
a boundary-layer problem, and a viscous correction problem, which can be established by using 
multi-time-scale method. However, the solution process is tedious and the solution is so complex 
that it is hard to find the effect of liquid motion, especially on spacecraft stability. 

To investigate the attitude stability of spacecraft under the effect of liquid motion, Liapunov's 
direct method can be employed which is more simpler but more powerful to study the effect of 
liquid motion on stability. The establishment of Liapunov function might exclude the effect of the 
gyroscopic term in dynamic equations because it is well known that its stabilizing effect will vanish 
when damping is introduced in the system'161. This exclusion undoubtedly simplifies the stability 
analysis. The boundary-layer model, in fact, includes not only the slosh motion, but also the vortex 
motion and further the viscous modification. Therefore, the model leads the problem to be very 

complicated. 
The stability of a spinning spacecraft with fluid was investigated in this paper. It was demon- 

strated that the viscous term in Navier-Stokes equation only plays a dissipative role when using 
Liapunov's direct method. A stability criterion was obtained, which is .^.sufficient condition for 
stability and the effect of gyroscopic term is disregarded. When we decomposed the fluid motion 
into slosh part and non-slosh part, it was demonstrated that the non-slosh motion has no effect on 
the stability. Despite that the stability criterion given here is a sufficient condition, it is concise 
indeed and shows the effect of slosh on stability very clear. 

2    General Modal Superposition 

An analytical model is developed for the spacecraft configuration shown in Figure 1. The tank is 
onset on the spin axis and is partially filled with liquid. The tank is of rotational symmetry but 
its contour may be of arbitrary shape. Two coordinate systems, the space-fixed coordinate system 
XYZ and the body-fixed coordinate system xyz are set up respectively with origin at the point o. 

Assume that the steady state motion of the system is that both the rigid body and the liquid 
rotate about z axis (coaxial to Z axis in steady state) with constant angular velocity w0. The 
perturbational motion of the rigid body is assumed to be in nutation about point o. Therefore, 
the linearized Navier-Stokes equation, imcompressibility, kinematic and dynamic conditions on free 
surface, no-slip condition on cavity wall, compose a boundary value problem: 

^ + 2fio x u + V- = G + " A u,   V u = 0,   in V 
at p 
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Figure 1: Coordinate systems 

u = 0, 
at 

on dVw 

u'n=öF' plp = B^ ondV' (1) 

G = -Ö x r - v{sk x 0 ■ r - (fi0 x r) • (J2' x r)} 

where u is the relative velocity of the liquid with respect to the tank, r the position vector of liquid 
particle, fi0 = ^ok the constant angular velocity where k is the unit vector of 2, axis, ß = fi0 + fi' 
the angular velocity of rigid body in motion, p the liquid density, p the liquid pressure disturbance, 
v the kinematic viscosity, f the wave-height along the outer normal direction n of the free surface 
dVj, V the liquid domain, dVw the liquid boundary on cavity wall, g the thrust acceleration, and 
© the nutation angle vector, related with the angular velocity by ft' = 0 + Lj0k x 0, 0 derivative 
about time t with reference to o-xyz. 

When we use Liapunov's direct method to analyze the stability problem, the construction of 
Liapunov function may be arbitrary, leading to different sufficient conditions for stability, which 
will undoubtedly enlarge the stability domain in parameterized space for good choice of function, 
the better the larger, tending to the domain whose boundary indicates the necessary and sufficient 
conditions for stability. In our problem, since the construction of Liapunov function does not need 
to know the exact solution of the fluid motion, the fluid motion in Liapunov function may be 
described by any physical characters, e.g., the perturbed angular momentum of the fluid, the fluid 
vorticity'1'', etc.. 

Let the fluid motion in Liapunov function be expressed by Ritz expression as 

u = £U,-(*,j,, *)*(*),      P = J2Pi(x,y,z)qt(t),      ( = £ Äi(x,y,s),,-(i) (2) 

with modals satisfying 
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V ■ U,- = 0, in V 

U,= 0, ondK,        i = l,2,---,n (3) 

U,--n = fli,   Pi/p = BHh  ondVj 

which indicates that the solutions ( 2) satisfy the imcompressible condition (v-u = 0), the kinematic 
and dynamic conditions on free surface (u • n = d£/dt,p/p = B£), and the no-slip condition on 
cavity wall (u = 0). 

Substitute the expression ( 2) of u, p, and f into the linearized Navier-Stokes equation (the first 
of ( 1)), and scalar-product the equation by pU,- and then integrate the equation over the volume 

V, we have 

-u,0(bi+kxci)-® + kx(u2
0hi-gBj)-G = fiJ Ui-Audv        .' = l,2,---,n (4) 

where fi = pv is the dynamic viscosity and the coefficients have the following integral expressions: 

y = pfVi- U>,      dij =k-pfvUix Vjdv, kj=P I    BHiHjdS, 
JV JdVf 

ai = pf   HiTdS, b, = k • pJaVi ff,(r
2I - n)dS, c, = p f r x U,-d 

Jav,                              ' Jv 

(5) 

idv 
jav, 

The angular momentum equation of the total system with respect to point o, yields 

J • 0 - wo(CI xk-Jxk-kxJ)-0 + [w*(CI + k x J x k) - mgzcoA ■ © 
n 

+ I]{c,g; + wo(b,- + k x c;)<?; + k x (w^b; - sa,-)g,-} = 0 (6) 

where J = Aii + Bjj + Ckk is the inertia tensor of the total system with respect to o, i, j the unit 
vectors of x-, y-axis respectively, I the unit tensor , m the total mass, zca the z-coordinate of the 
mass center of the total system when neglecting the surface wave (f = 0). 

Introduce variable w = (8x,6!l,q
T)T, in which 0 = 8xi + $yj, and q = (?i---?„)T, equations 

( 4) and ( 6) can be rewritten in a matrix form, 

M,w - u;0D,w + K,w = f, (7) 

where 
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M.   = 

D,   = 

K, 

A 0 cM 
0 B < 
Cr cy M. 

0 -(C-A-B)   -(br-cv)T"l 
(C-A-B) 0 -(by+cI)

T 

(br-cv) (by + c.) 2D 

w^(C - B) - mszCG 0 -(wob» ~ 9*h)T 1 

0 wJ(C - A) - mgzcc    (^obr - 5a*)T 

-{ulby - gZy) ü^bj-gax K 

f,   =   (0,0,/i/ Ui-Audv,---,pJvUn-Aiidv)'1 

(8) 

where ar = (ci,*, • ■ •, an^)r, and the same definition to a;,, bx, bj,, cr and cy, M = [my], D = [</,-,-] 
and K = [fcy] denote n x rc matrice respectively. 

Since matrice M„ K, are symmetric and D3 ske-sr-symmetric, left-multiply the Eq. ( 7) by wT, 
and thus we construct function V as follows 

V = i(wTM,w -I- wrK,w) 

then we have the derivative of Liapunov function with respect to time t, 

dV dV [ 
Au 

(9) 

(10) 

in which the fluid motion is governed by Navier-Stokes equation. 
For large Reynolds number, Re > O(105), the boundary-layer approximation is appropriate. For 

INTELSAT VI parameters, the Reynolds number is greater than 106. In this case, the viscosity of 
fluid only affects in the boundary layer with very thin width. While in the interior liquid domain, 
the fluid motion can be seen as inviscid one. So we can choose modals which are characteristic 
solutions of the free motion of inviscid and incompressible fluid in spinning container as the Ritz 
modals in expression ( 2). 

The damping term on the right-hand side of Eq. ( 10) can be analyzed in dimensionless form, 
in which the damping term becomes 

— / u • Aadv = -5- /    u • —dS - -r- / >   ■=— • -%-dv 
Re Jv Re Jav,      on Re Jv f^ dxi   or, 

(11) 

where Reynolds number Re = a?/i/T, a, T the characteristic units of length and time respectively. 
For large Reynolds number. Re > O(105), the boundary-layer approximation can be applied. The 
width of the boundary-layer is in the order of Re~lf2. Thus the first term on the right-hand side 
of Eq. ( 11) is in the order of Re'1 while the second is in the order of Re'112. Therefore, the effect 
of the first term can be neglected in expression ( 11), the damping term is then a dissipative one, 
i.e., we may conclude from ( 10) and (11) that the following inequality holds for large Reynolds, 

dt ~ 
(12) 
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So, if both Ms and K, are positive definite, then V is positive and from inequality ( 12), V is a 
Liapunov function and thus the statement of stability for w and w is that if both M, and K, are 
positive definite, the system is stable for perturbation (w, w). 

One can prove that M, is positive definite when one establishes a positive function V, 

r=-/(0xr + u)2(im=: JwTM,w (13) 

Hence, 7" > 0. The case that T = 0 but w ^ 0 only exists when ©xr + u = 0in liquid domain, 
which indicates that the liquid keeps rotating like a rigid body around Z-axis with angular velocity 
wo, not affected by the nutation of the container. In physical view, this case only exists for an 
inviscid fluid (no drag effect) contained in a spherical cavity with which the center is just located 
at the point o (no variation of container configuration due to nutation). In general, T' is equal to 
zero if and only if w = 0 holds except the mentioned case. So, M, is a positive definite matrix and 
therefore, the sufficient condition of stability for w and w becomes that'K, is a positive definite 
matrix. 

3    Complex Modal Superposition 

In practice, it is known that if one takes the eigenfunctions of the characteristic motion of spinning 
liquid as Ritz's modals, then complex modals could be chosen due to mathematical simplicity. 
Employing complex modals, the fluid motion can be expressed as follows: 

u=£iW+u-<j-), P=tl(p^+p:^ e=i;W+™ (14) 
,=1 l i=l l i=\ i 

where (•)* denotes the conjugate of (•). 
Similarly, substitute the expression (14) of u, p and £ into the linearized Navier-Stokes equation 

and scalar-left-product the equation by pU* and then integrate the equation over the volume V, 
we have 

EK« - WijSj + kjQj + m-j-gj - 2w0<£j9j + %/) 

+c*-0-u;o(b- + kxc")-0 + kx(a;o
2b;-5an-© = ^y"u;-Au    t = l,2,---,n    (15) 

where the coefficients have the following integral expression: 

my = \p I U- ■ UA  4; = ik-pJVU*xUA   kii = \pl    BH-H,dS 

m« = \pl U, ■ Ujdv.  4 = lk ■ p fv U,- x \J,dv,   hi = \pl    BHtHjdS (16) 
2   Jv t   Jav, 

and the expression of a,-, b,-, c,- are in the same form as those in ( 5) despite the modals in the 
integral kernels are complex in the present case. 

The angular momentum equation of the total system then becomes 
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J • © - wb(CI xk-Jxk-kxJ).0 + K2(CI + k x J x k) - mgzcal] ■ © 

1^ 
+i£{c,<7,- + w0(b; +kx a)qi + k x (wjb,- -ffa,)<z,} 

1A +- £{< ft + "o(b* + k x c')4r + k x (ugb? - 5a*)gD = 0 
2 i=i 

(17) 

Decompose Eq. (15) and (17) into two parts, the real part and the imaginary part, respectively, 
and introduce variable w = (6X, 6„ qT

R, qJ)T, in which qH = Re{q}, q, = Im{q}, we can take Eq. 
( 15) and ( 17) in a matrix form (7) with coefficient matnce, 

M,   = 

A 
0 

0 
B C«.v. 

—c 

CRS    cR,y   MR + MR  -MI-MI 

-c/4,   -c/,v   Mf-M;    MR-MR 

D,  = 

K,  = 

0 -(C-A-B)   -{bx-cyfR    [bx-cy)l 
(C-A-B) 

(br - Cs)fl 
HK-cv)i 

0 -(by + cr)S    (by + cE)J (lg) 

(by + Cl)fl      2DH + 2DH   -2D,-2D, 
-(b, + c)/     2D,-2D,    2DR-2DH 

w2(C_S)-m^CG 0 -(«Sby-fl^r)5 Kbv-^)/ 
0 wg((7 - A) - mgzca (w^-ffa.^ -Kbr-jfar), 

-{*&>,-ga,)n («jgb,-^)n           KR + KR -K/-K/ 
(ufo-ja,)/ -(«gb,-sa,)/           K,-K, KR-KR 

where (•)* = &{■}, (•)/ = Ml- , .,..»*• 
Also Ma K, are symmetric and D, is skew-symmetric. It can be proved that M, is positive 

definite,'too. Left-multiply the Eq. ( 7) by wr, yields Eq. (10) and function V has the «planem 
( 9). Therefore, we obtain a sufficient condition of stability for w and w which states that it K, 
expressed in ( 18) is positive definite, the system is stable for perturbation (w,w). 

4    Characteristic Motion of Fluid 
Consider a free motion of inviscid fluid in container, G = 0, we have the boundary-value problem 

as follows, 

at 9 
u ■ n = 0, 

3f 
on dVw 

(19) 

u'n = m' p^p = B^ on dV/ 

There are two ways to get the characteristic solution: (i) From ( 19) to get the characteristic 
problem directlv; (ii) decompose the free motion into two parts, slosh motion and non-slosh motion, 
get two corresponding boundary-value problems respectively and then establish the characteristic 

problems respectively. 
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4.1    Method 1. Direct Derivation 

Let u = ioUe"*, p = Peiat, f = ffe'<", the characteristic problem of ( 19) becomes 

,¥T . „• „     „ .     P -a'U + 2iail0 x U + v~ = 0,   V U = 0,   in V 
P 

ü-n = 0, önöK„ (20) 
U-n = tf,  P/p = BH, ondV; 

The eigenvalues <r, and the corresponding eigenfunctions (U,-, P{, Hi) have the following proper- 
ties: 

(i) All eigenvalues <r; are real. 
(ii) If (a, U, P, ff) is a characteristic solution of ( 20), so is (-a, U", P', H'). 
(iii) Orthogonality of the characteristic solutions: 

°i°i L Ur ■Vido+ /   BHTHjdS = 0,   i?j,   t,j€ Z+ 

-WjJVfUjdo + J   BHiHjdS = 0, Vi,j€Z+ 

Numerical methods will depend on the establishment of a variational formula. Since the linear 
Euler's equation (first of ( 19)) can be derived into the following form: 

£u + V v - = 0 
P 

where operators £, 2? denote 

(21) 

03 Q iJ2^ Qf 

e=dP+4^dt'    Z?(f) = ^-2noX-+4Ro(n0-f) (22) 

respectively, the characteristic problem ( 20) becomes 

V • V„ V $ = 0,     in V 

n • Z>„ V $ + g£* = 0,   on dV} 

(23) 

where $ is introduced as 

P - - B 
io\J = V,y$,     - = -4*,     ff=--i^$ (24) 

and P„, £„, £^. denote 

tva{f) = -o-2f-2zanoxf + 4n0(n0.f) 
6,   =   -ia(a2 - 4UQ) 

£',   =   aV-4u;0
2) = JCT4 
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respectively. Characteristic problem ( 23) can be converted into an extreme-value problem with a 

variational formula, 

-v-?>/„, ^ (26) 

In expanding $ we have chosen the azimuthal wave number to be one. Although other azimuthal 
modes may exist in the fluid, they can have no effect on the spacecraft motion since the forces due to 
the pressure and the drag at the cavity wall integrate to zero. Let $ = <p{r,z)eis, a straightforward 

calculation shows ( 26) have the form 

where r = a/2uo, B' = ftT(ghtf, nr = n • r°, £3 = 8™0
2£2, 5, ÖS, 8S, are liquid domain, 

boundary and free surface on the longitudinal section, corresponding to V, dV, and dVj, respec- 
tively. Using finite element method and setting the first variation of ( 27) to be zero, the problem 
( 23) is reduced to determine the eigenvalues of a matrix polynomial 

(r*A + T2B + rC + D)$ = 0 (28) 

where $ denotes an array of nodal variables of <p{r,z). 

4.2    Method 2. Decomposition into Slosh Motion and Non-Slosh Mo- 

tion 
Decompose the fluid motion ( 19) into two parts, the slosh motion and the non-slosh motion, 

u = UW + uW,p = J>W + P(n\ £ = l(", £(n) = 0 (29) 

both motions are governed by the following boundary-value problems respectively: 

^ + v^=0,   vu«>=0,   inV 
at p 

u's» • n = 0, on 8VW (30) 

u<*>-n = §,   pW/p=B(;,   ondVj 
at 

^ + 2n0xu<n> + V— = 0,   vu<n»=0,   inV 
at p 

u<"> .n^O, on 8V„ (31) 

u(n) • n = 0,     p(n) = 0,     on dVj 

Let u = iffUe"', p = Pe"", ( = Heict, the characteristic problem of ( 30) becomes 
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-<r2U« + v~ = 0,    V • U(s) = 0,    in V 
P 

Uw • n = 0, on dVw (32) 

Uw-n = ff,   P^/p^BH,   ondVj 

while the characteristic problem of ( 31) becomes 

p(") 
-<r2U<n> + 2i<rn0 x U(n) + V = 0,   V U[n) =0,   in V 

P 
U(n) • n = 0, on dVw (33) 

U(n» • n = 0,      P<n> = 0,      on ÖY, 

The eigenvalues a\'' and the corresponding eigenfunctions (U, P, H)\'' have the following prop- 
erties: 

(i) All eigenvalues cr\' are real. 
(ii) If (<r2, CJ, P, #)w is a characteristic solution of ( 32), so is (a2, U*, P', #*)<*>. 
(iii) Orthogonality: 

Jv(U- ■ Vi)Vdv = 0, i* j,   J8V> BHfHjdS = a) JV(U? • U^Ä, V*,i 

jf (U.- - U,-)««*» = 0, i ? j,   U, BHtfjdS = a) /„(U,- • U,-)w<fo,Vi, j 

For the non-slosh characteristic motion, the properties are 
(i) All eigenvalues er>n' are real and |oj   | < 2aj0. 
(ii) If (<7, U, />)<"> is a characteristic solution of ( 33), so is (-<r, U*, P')<n'. 
(iii) Orthogonality: 

j^U'-U^H^O,     ijtj,     /v(U,- • U^Wcto = 0,     Vi,j,     i,j6 2+ 

For numerical solution, since U'5' can be assumed to be potential, U'3' = V$t then P^/p = 
<72$, ( 32) is reduced to have 

A* = 0, in V 

1^ = 0, ondK, ; (34) 
an 

d$ 
~ = H,   <r1$ = BH,   ondV, 
on 

which can be solved either by finite element method or by boundary element method due to $ is 
a Laplacian. 

Also, employing the variational formula ( 27) where the last integral on free surface is omitted, 
( 33) can be solved by finite element method. 
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5    Stability of Spacecraft Motion 
In stability analysis, we employ both slosh and non-slosh modes to express the fluid motion, 

u = i;kui*+u:9;)w+i:5(uJ«+u:?r)w 

P = Ek^+w^+E^w+^v)«-» (35) 
i, 

i=i - 

Then in derivation of Eq.  ( 7), introduce w = {9x,Bv,q
{R)T,ql/)T,q{R] ,q^ )T and the stiffness 

matrix K, becomes 
rul{C-B)-mgzca 0 0 -(u%v + g\)T  0   0 

•         0                 <4(C - A) - mgzcG   -{<& + g*)T 0             0   0 
0                       -(<4v + g\)                  K 0            0   0 

-l«8i/ + ffA)                       0                           0 K            0   0 
0                              0                          0 0            0   0 
0                              0                          0 0            0   0 

where K = diag(ku- ■ •, k„,), A = (Aj, • ■ ■, An.)T, u = fa, • • •,f„.)r and 

it,- = pit f ' rBHfds,     \i=p*l   r2Hids,     i* = p* [   rhH.ds (37) 
^  Jas,                             Jas,                           Jes, 

The Liapunow function V, if we introduce two variables y = w, z = (8X, 6y, q^, qj)T, becomes 

K,= (36) 

V=1-(yTM,y + zTK',z) (38) 

K',= (39) 

and thus we obtain a sufficient condition of stability for variables y and z which states that if 

r wg(C -B)- mgzcG 0 0 -(wgf + ?A)T 

0 . wg(C - A) - mff2cG   -(w-V + sAf 
0 -(u*v + g\) K 

-(wgiz + yA) 0 0 

is definite positive, the system is stable for partial variables (y,z). The stability criterion can be 
derived as 

0 
0 
K 

w0
2(C - B) - mgzcG - T. r(w°Vi + 9Xi? > ° 

i=i ft'' 

w0
2(C - A) - mgzcG - L r^fo + 9^f > ° 

i=i K< 

(40) 

Here, the stability criterion ( 40) shows that the effect of non-slosh motion of liquid can be 
disregarded. The slosh motion of liquid only plays a destabilizing role. The stability criterion 
( 40) also can be seen as an extension of the corresponding three-axis stabilized spacecraft problem 
because if we let wo = 0, ( 40) becomes the necessary and sufficient condition of stability! '. 
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Figure 2: Stability on AjC vs gju„a (a = b) 

6    Numerical Results 

For simplicity, two case.» are considered. 

6.1    Destabilization Effect of Fluid Slosh 

Stability, criterion ( 40) shows that the last term representing the effect of liquid slosh plays a 
destabibnng role since the first two terms in inequality ( 40) demonstrate the stability statement 
without fluid slosh. Assume that A = B, the dimensionless of ( 40) becomes 

C        ufa        £T        '••*- ">o° 

where a = mzcGajC, ß = pnasjC and 

A, = f   r2Hids,    v{ = f   r'zHtds 
Jas, Jas, 

with normalization 

/    ry/r* + (g/uZdFHfds = 1 
JdS* 

(41) 

(42) 

(43) 

Let the container be spheroid with horizontal and vertical semi-axis a, b, respectively, filling 
ratio 7, container position from point o to container center oc, h0, Fig. 2 shows that the stability 
domains (below the critic curves) in parameterized plane {g/w$a,A/C) when the effect of liquid 
slosh is excluded (ß = 0) and included respectively. It is assumed in Fig. 2 that both a and 0 are 
independent of parameters AjC and g/ui^a. 

6.2    Neglecting the Effect of Rigid Body 

Assume that the shell of the rigid container is thin enough to neglect its mass and inertia momenta. 
Fig. 3 give the stability domains in parameterized plane (g/u>la, h0), showing the destabilizing effect 
of slosh. 
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Figure 3: Stability on ho/a vs g/ui^a (a — b) 
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Fig. 4 demonstrate the stability criteria for ZCG and zcs = ZCG + E^iff/woami tfle stability 
center defined in three-axis stabilized problem, in which zCG (ß = 0) indicates the extreme value of 
total mass center position for stability when slosh effect is excluded. It shows that the maximum 
r-coordinate of zCs for stability tends to zero as gju\a tends larger, in agreement with the result 

from the three-axis problem'5'. 
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Figure 4:   Stability on zee/'o. and zcs/o- vs g/uj^a (a = 6) 
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TOWERS AND CRANES IN LINEARIZED ELASTICITY : 

AN ASYMPTOTIC STUDY 

D. CIORANESCU - J. SAINT JEAN PAULIN 

Towers   and   cranes    are    spatial   structures   where one   global 
dimension    is    large    compared    with    the    others.    The material    is 

periodically    distributed    along    bars    or    layers    with    a very    small 
thickness. 

We study here the linearized elasticity system and the dependence 

of the displacement on the three smali parameters characterizing these 

structures : their width, the size of the period and the thickness of their 

constitutive elements (bars or layers). The same structures have 
already been studied for thermal problems in [7]. 

The technics used to pass to the limit are close to those used to 

study networks, see [5]. It is interesting to point out the kind of duality 

which relates these two types of structures. Towers and cranes involve 

a beam aspect (material concentrated in one dimension) whereas a 

network involves a plate aspect (material concentrated in a two 
dimensional  domain). 

§1 - STATEMENT OF THE  PROBLEM 

1.1. Notations 

ff-i-f. T) 
x (0,L) 

Figure 1 

We consider the domain 
e ^    (   e 

2 J * {' ~2 
The structure we study here is 

contained in Qe, it is formed by 

four vertical bars of thickness 

e5/2 and length L and by 

horizontal bars periodically 

distributed along (0,L) with 

period e. A period   is   the   cube 

Ye = co   x (O.e) 
E e      v      ' 

where 
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e    e )   (    e     e 
CO  =|- — , —   x , — 

2     2)   \    2     2 
In    this    cube    the    material    is 
concentrated    in    bars    located 
along  the  edges.  We  denote  the 
material by YjE*,the   cross-section 
of the  horizontal  bars  is  (e8/2)  x 
(e6/2)   and   that   of   the   vertical 
bars  in   (e5/2) x (e5/2).   We   can 

characterize    our    structure    by 

pointing  out that in  a  period we 

have very few material and a big 

hole which is denoted Tjt* . 
Figure 2 

The crane (or the tall structure) Ogc   c Qe is henceforth obtained as 

in   the directions   0x3    (see fig. 1). the union of translates of YgE* 
There are Ne = L/E such periods in 
N E is an integer. 

Q:r   .Of course we choose e such that 

Denote 

sl, <z3» - {" - ev2>' <w3> * v*,'} 

n 

;•  '///. ■/'■:■:■/>' ..■;. 

y 

% ■'■  / 

/ 
/. 

"'■ /f/<: ■ ■/"/' 

a. 
Figure 3 

As it can be seen from fig. 2, Sse(z3) is the union of the four shaded 

squares if e5/2 < z3 < e (1 - 5/2) (fig. 3.a.) and S|e (z3) is the shaded area 
in fig. 3,b. if 0 < z3 < e5/2 or e (1 - 5/2) < z3 < e.  In the sequel we shall 
use  the  following     result     which     is     a  simple     consequence     of    the 

definition    of    st„(Zo) : 
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Proposition    1.1. We have 

z   dz1 dz2 = z2 dz, dz2 z1 z2 dz1 dz2 = 0 

S5e <23> 
S5£ <z3> S6£ <z3> 

21   dZ1  dZ2 = Z2  dZ1   dZ2 

S6E <Z3> 
S5E <23> 

We    can    extend sfe(z3)    by   periodicity   on (0,L).    We   shall    use   the 

notation  : • 

it   =  S* (0) = S* ( e ) 
5 hl ÖE 

which is independent of e. 

In the following we make use of the convention of summation on 

repeated indices. As a rule greek indices take the values 1 and 2 and 
latin indices the values 1, 2 and 3. Also whenever a geometric domain 

has e = 1, we drop the index 1 to simplify the notations (ex : fiSc= fl5 c , 

Q1 =Q„.). 

1.2.  Variational    formulation    of   the problem 

Consider the system of linearized elasticity on Qs f 

 (a         = F.   in  n 
ax. [ "kh axh      '        5£ 

u6E = 0  on re x {0} - bottom of the crane 

(1.1.) du e 
i        —— n   = 0  on  r   x {L} - top of the crane 
i3kh     ax 3 5 

au 

h 

ee 

8,k 

iotkh ax. 
n   = G     on 3T\    (boundary of the crane 

a i o£ 

except the top and bottom bases) 
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Here 1/5 is the displacement. Fe is the applied body force, Gee is the 
surface force. 

Introduce the stress tensor 

(1.2) 
ee ee 

a8,ij = VYkh<U6) 

where 

Y    (v) - — 'kh v '      2 
k        h 

3x.     9x. V    h X.J 

is the linearized strain tensor. 

Then system (1.1.) can be written as 

(1.3) 

3       ee e e 
  0  .. + F.  =0       in     Q 
ax,  5-'J     ' 5£ 

ee ee e 
a .. n. - G.    on 8T. 

et e 
u5  = 0   on    r   x {0} 

o 5 

1% r,3 -° on r!x-<L> 

We also give a weak formulation of problem (1.1.)- 
For this purpose, let us introduce the space 

V'E ={(peH1(QJl9 = 0 on rjx{0}} 

which is a Hubert space for the H1   norm.- 

Then the weak equivalent form of system (1.1) is 
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(1.4) 

6E 8 

6 ÖE 

VWV Yij(v)dx = F  v dx + 

8e <3£ 

Ge v dx     V v e V8 

5e 

3T & 

We make the following assumptions : 

i )     Fe e   L2 (Qe) 
ii)     Gee e L2 (DT5

e
c ) 

iiijajj^h   are   the   elasticity  coefficients  and  satisfy  the   symmetry  and 
coercivity  conditions   : 

C-5) aijkh = ajikh = akhij    vi.J.k-h 

(1.6) 
fthere exists CQ > O such that 

C_ v.. v.. < a... v.. vbU *.    O     ij    ij ijkh     ij    kh 
for all v = {v..} such that v.. = v.. 

Under these hypotheses by the Lax-Milgram theorem, there exists 
u8g  solution of system (1.4), this solution is unique. 

We are interested in the dependence of u" on e (the length of the 
horizontal bars), e (the period in the X3 direction) and 5 (which measures 
the thickness of the bars in the unit cell). 

First we fix e and 8 and let e -> 0. Then with 8 fixed, we let e -» 0 
(this is the homogenization step). Finally we give the limit for 8 -> 0. 

§2 - LIMIT   FOR   e   -> 0 

With e and S fixed, we let e -> O. This is a technique which is 
similar to those used for plates (Caillerie [2], Ciarlet - Destuynder [3]) 
and for beams (Cimetiere - Geymonat - Le Dret - Raoult - Tutek [4], 
Trabucho - Viano [ 7 ] ) . It consists in the transformation of the 
domain Qg into fts'E = && , a fixed domain independent of e, by a 

dilatation in the x-|  and x^  directions. 
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Introduce  the  new variables 

fz   = x   /e j    a a 

123  = X3 

and   transform   any   vector  function   <De  defined  on  06
e
£ into   a   vector 

function * defined on n5e by 

-1     e, 

VZ1'Z2'Z3) = e     *a(eZ1'eZ2'Z3) 

-2     e. 
d>3(Zl,z2, z3) = e"  *3(eZl, ez2, z3) 

With these transformations, equation  (1.1.) becomes  : 

(2.1.) 

where 

/ . 1 a [ 
e 

3*Pl 
r 1 a [ 

e 3V 
r 1 5 

e 

V ^ 

Wi«{us) + 3Z Lai3SaYTa(
U6>J 

^ [2e aiß3a ?3a <"'«> + 4    C26 3i33a \« <"'.>]) " 

ff   =e F 
a <x 

(2.2.) 2 

lf3 = e    F3 

Define now 

(2.3.)      a£
5 .. = aijto Yta (u'8) + 2e ajj3a Y3a (uj + e2 a.j33 Y33 (U',). 

With this notation,  (2.1)  is written as  : 

(2.4.) 
(   A     9        E DE 

= f.   in   Q, 

The boundary conditions derived from (1.1) are 
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(2.5.) 

• e"1 °E
5.iß 

nß = Oi   on   3T5£ 

■     u* = O  on   rg x {O} 

l    °E
5.i3 

= 0   on   r8
x <1> 

where 

g   =G "et a 

^3 = e G3 

Theorem    2.1. 

Let us assume that for e —> 0 we have 

(2.6.) 

f * 2 
fa       ->  f*      in     L   (Q)   weak 

ef. 

eg. 

f,   in     L   (Q)   weak 

g^   in    L   (3T5£)   weak 

g*    in   L2 (a~TSe)    weak. 

Then 

with 

3       E 
u6  -^   Ug     in   H   (Q   )   weak 

u*„   =   V   (z,)   in   n 6, a a  x   3' 

3V. 
6E 

ÖV, 

^■3     = " Zl   iT   (Z3}    ■    Z2  iT   ^  + V3   (23>    iP    fi5E 

The   functions   Vj   satisfy   respectively 
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(2.8) 

av 
V  6H

2(0,L),V(0) = -^(0) = 0 
3z3 

Z1 dz! dz2 

S<2, 

3\a% dz, = 
x+n 

3z23z2       3 ,(3^ 

/•L 

Z   «PdZ3 + 

9- - d23 - az3   
3 

V?eH2(0,L),f(0) = -^(0) = 0 
3Z3 

(2.9) 

V, e H1 (0,L). V_(0) = O 
3 

av 3 ay Up. 
mes S(z ) -— dz3 = 3/3z3az3     3    n(3X+2n) 

3T V dz. 

.Vye H (O.L). V(0) = 0 

where 

£. (z3> f dz. dz  + 
a       1        i- % dS ■        ^W = f

3 
dZ! dZ2 

S(z3) •'astzg) S(z,) 

W z   f dz, dz + 
a   3      1       ' 

Za^dS 

SU,) •'astzg) 

Remark   2.2        Hypothesis (2.6) implies that 

F
e = 0(1) . F! = e'1 0(1) , a" - e 0(1) , G" = 0(1) 
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B&mm^l Note that the initial problem is given on a domain n° where 
the material is concentrated along bars, in fact Q«( is a kind of «^^ 

domam w,th big holes. Nevertheless the limit equations for e -, 0 are qiven 
on a non perforated domain, ie on the interval ]0,L[. But the holes are stil 
present m the coefficients of the equations (2.8) (2.9) because S(z,) 
depends on e. As we saw in §1 (fig. 3) the shape S(z3) depends on the value 
of 23 m the cell of height £. Moreover S(z3) also depends on 5 (which gives 
the th.ckness of the bars). For the sake of simplicity in the present section 
we drop the indices e and 5. 

Proof   of   theorem   7.1 

The proof consists in several steps. We begin by establishing a priori 
estimates on u5 and y..( u5' ). Then we study the displacements and prove 
formula (2.7). In order to obtain the limit systems (2.8), (2.9) we introduce 
the moments, give their limit equations as e -» 0 and express them in terms 
of limit stresses. Finally by using the geometry of the cross-section S(z3) 
and particular test functions, we derive systems (2.8) and (2.9). 

1- A   priori   estimate«? 

Let us take cp = ( e-1 u<, , e-1 u< 2 , us
c
3 )  as  a  test function in system 

(2.3) - (2.6). Using the coercivity of the tensor (aijkh) and Korn's inequality, 
it   follows 

(2.12) 

i   E i -3 lu I <ce 
H <V 

L <V 

L (v 
^33^'   2 5Ce"3 

which   implies   successively 
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(2.13) 

3     £ £ 1 
e   u8 —> i^    in    H (Cl& )    weak 

e-»o 

with   u5   =0   on   r x {0} 
o 5 

2. Limit   of   displacements 

From (2.13) it follows : 

3u, 
(2.14) 

6,a 3u, 
s.j 

8z. 9z 
Vj = 1,2,3 Va = 1,2 

i) Take first j = a = 1, and then j = a = 2. We get : 

■ Uj 1 (z)   =  i^ (z2 , z3) independent of z1 

Uj2 (z)   =   i^2 (z1 , z3) independent of z2 

ii) Now with a = 1, j = 2   we have : 

du 5,1 
du. 

(z, • Z3>   = 
8,2 

3z. 
(Z1   ' Z3> 

But the left handside is independent of z-| and the right handside is 

independent of Z2, hence both terms depend only on Z3. So us
c*, and u^*2 

have the form : 

(2.15) 
\,   (^■Z3)--Z2U(Z3)+V1<Z3> 

lU«  <Z1   ■ V = +  Z1   U  (Z3}  +  V2  <*3> 
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iij)   Finally take j  =  3  and  successively  a = 1  and a   =  2  in  (2.14).  Using 
(2.15) we get 

(2-16) 

du     dv,     au53 
z + +   = o 

2  dz3       dz3        3Zi 

dU dV2 9U8.3 rt z.   — +   +   =  0 
1    dZ3 dZ3 3Z2 

Differentiate    now the first equation in Z2, the second one in z-|   and 

add 

2    E- 

9z19z2 

= 0 

9U8 3 
hence —— is independent of z2 and from (2.16) 

3u. 6.3 

3z. 
= *(z1,z3)-z. 

dU     dV, 

2   dZ3 ' dZ3 

Since <j> and V-| do not depend on Z2, we obtain 

dU 

dz„ 
= 0 

that   is 

u8i,   = - z2 U (0) + V, (z3) 

Now     using     the   boundary   condition   satisfied by u^*, , i.e. u6*,= 0 

on   Ts x {0}, it follows that 

U(0) = 0 = Vi (0) 
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so 

<*1   (Z1'Z2-Z3)=V1   (Z3) 

and 

us,2 ^v z2- z
3) - V2 <z3> 

with 
Va £  Hi (0,L)  and Va (O) = O 

Coming back to (2.16) we have : 

3U6
£3 dV, 9U6,3   _   _   ^2 

1TA    = "  d^ 3z2 dz3 

which   implies  that 
dV, dV, 

«,'i (Wa> " "'i dT «Si " ^2 di" ^> + Va tS>- 

Now by standard arguments, used in plate theory (see Ciarlet - 
Destuynder [3]) we get that Va can be identified with a function of H2(O.L) 

such that : 

V   (0) = 0  ,  —- (0) = 0 
3Z3 

which ends the proof of statement (2.7) of the theorem. 

3. Study   of   moments 
First from  (2.12)  and the definition  (2.3)  of a<  , we have the a priori 

estimate   : 

<2'17)   '"M'A,,/*" 

so : 

e a] ..      *    crE;i    in    L.2 {QJ     weak. 
e->0 S.ij       0_n      5'ij 8E 
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ntroduce 

i / r 

Ma,a 
H 

£ 

z  a „„  dz(   dz„ 
a    8,33        1         2 

JS(z3) 

2.18)    ■ \ 

f 

\33   dZ1    dZ2 
JS(z3) 

c c 

Qa,a 

-1 
= e Vs   dZ!    dZ2 

JS(z3) 

A consequence of the a priori estimate is that 

(2.19) 

eM.    -» Mr       in   L (0,L)     weak 

eN      -» Nr       in   L  (0,L)    weak 

,We shall prove a convergence result for eO§iCI and establish relations 

between the limits of eMg^, eN§ and eQ5a. For doing so, we use here a 

method derived from Caillerie's technique for plates (see [2] for details). 

However the asymptotic study of plates leads to equations in a 

(n- 1) - dimensional manifold whereas in our study we get equations in a 

1 - dimensional manifold. Thus there is a kind of duality between the two 

methods. Limit equations are obtained by an appropriate choice of test 
fuctions. 

i). Let us take the test function (0, 0, ez^ <p (z3)) with ipef in (2.4)   where 

r = {>|/€  H'(0,L), * (0) = 0} 

By integrating by parts we get: 
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rL 

eQ6.5a<PdZ3 + 

3<P 
eM,   — dz„ = 

S,a 3z„ 
Za(6f

3)  
dZ,   dZ2 

S(2, 

cpdz3 + 

-U" 

z   (eg.,) ds a v   a3 

3S(z3) 

<pdz, 

where 9S(z3) = 3r§ x {Z3}. Using the assumption (2.6) and the convergence 

(2.19) we get from (2.20) : 

eQs„ -Q;„   in IT' 5,« ^6, a 

and 

(2.21)     -      (Hia) + q_a = 
3z '. * dZ2 

S(z3) 

zo pg ds on  (O.L) 

^3S(23) 

ii) Choose now (cp, (z3 ), (p2 (z3 ),0) as a test function : 

-L 
5<P 

rf 
e Q    — dz, = 

5,a d 3 
*3 

fa dZ,  dZ2 

-S(z3) 

*LT 

<P„dz3 + 9    dS 

3S(z, 

«P«dZ3 

We pass to the limit and take successively q>,   =0 and <p2 
= n- anally 

we have : 

(2.22.) 3z, H«> = fa dZ1 dZ2 + 

S(23) 

g ds    on   (O.L) 

3s(z3) 

HJD-O 

iii) Multiply now equation (2.4) by the test function (0,0,(p(z3 )),<f€f 

/•L 
8cp 

eN. — dz, = 
s3z„     3 

ef3 dz, dz2 

S(z, 

cpdz, 
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and hence : 

(2.23) *,(N*' 

N8 (L) - 0 

f3 dzl dz2     on    (0,L) 

S<23> 

iv) Multiply equation (2.4) by (e   z, cp(z3), 0,0), cp e r and pass to the limit 

for e -» 0 : 

"'-/■/" 

o     <p(z3)dz-0 

O    •'Sfz.) 

so that 

°...1  d21   dZ2 " ° 
S(2,) 

The same calculation made with (0, e  z2 <p(z3 ),0) leads finally to 

(2.24) <j .    dz, dz„ = 0       Va 
8,ia 1        Z 

"S(z,) 

v) Take now (e2 z* <p(z3 ),0,0), <p e TT . We get for a = 1,2 successively 

z    c      dz    dz„ = 0      (no summation on a) 
a    5,1a        1        2 

'S(z3> 
.2 _2 Similarly with (O, e' z{ <p(z3 ),0) , cp e iT we have : 

(2.25) z   o      dz   dz   = 0 (no summation on a) 
a    8,2a        1       2 v 

S(Z,) 
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If we choose ( e   z, z2 <p(z3 ),0, 0), q> e r as a test  function we obtain 

£- 

(Z2O5.11+Z1O8,12
)<P(Z3)dZ = 0 

S(z-) 

so that : 

(22°S.11+Z1°5.12)dZ1   dZ2 = 0 

S(2,) 

hence by using (2.25) and the symmetry of oB
c *, we get 

Z2°«.11dZ1dZ2-° 
S(z3) 

The same calculation made by interchanging the roles of indices 1 et.2 
in the preceeding argument gives : 

Z1 °5,22 dZ1  dZ2 - ° 

'8U,) 

All   the  results  established  in  this  step  can  be   summarized  in  the 

following  formula  : 

(2.26) z    a 0   dz, dz. = 0 
a     &,ßp        1       2 

S(Zo) 

4 . Limit   of   stresses 

Our aim is to obtain the limit equations satisfied by u£ * . To do this, 
we use the equations satisfied by M* K , Q* a and N* . As can be seen from 
their definitions, we need to express a**33 in terms of u^ * . 
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Actually we shall prove that : 

(2-27) °S.33  = a33ja  bajpi °6,ip + [a3333 " a
33ja  bajpi a

ip33^ h3 (^ 

where (b . ,) is the inverse tensor of the tensor (a Kj ,). 
Indeed, from (2.3) we have : 

(2.28)      a .  - e   a. „ y„ (u.) = a. .  y . v ' S,ip ip33  '33  v   6' ipja Taj 

with 

(2.29) v«P-V
u«) 

Va3 
= 2e\3l

us> 

The coercivity of the tensor (ajjkh ) implies that the tensor (aiDJK ) is 
coercive too, therefore we can take the inverse in (2.28) i.e. 

IJjK 

(2.30)       v . = b .' . (</ .   - e2 a. „ Y„ (u!) I v ' Yaj ajpi V   8,lp Ip33 '33   v   S-J 

Using again the definition (2.3) of a^ 33 and formulas (2.29) (2.30), the 
identity  (2.27)  follows  easily. 

5 . Limit    equations 

2 3v 9v 
Let v e H   (O.L), v(0) = 0, — (O) = 0 and multiply equation (2.21) by —. 

az3 az3 

Using the equation satisfied by Q% a . we have : 

(2.31) 
* 2 

• a v 

3z„ 

rL A 

&  vdz. + 
a 3 

S   -^-dz3 a dz„       3 

where 3^ and Sa are given by (2.10). 
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But using (2.27) and the definition (2.18) of M s  K 

*C ~i dz3 * a33jß 
bßjpi 

3z, JS(Z3) 

z   q.   dz. dz 
a    5,ip        I        z 

2 
9 V   w — dz, + 
.2 3 
3Z3 

+ [33333 ' a33jß bßjpi %33] 

2 
r  d v 

o    ^(z. 

z  V    (a ) — dz. 
a '33 v ö '       2 

3z, 

Note that the first right handside term vanishes. This is a consequence 
of (2.26) and of the explicit values of bKJpi . Indeed as a Jjkh are Lame 

constants we have 

b11P3 = b22C3 =° 

This result is contained in Annex 1 which also gives all the values of 

the tensor bajpl. 

We also have : 

(2.32)      A, = a3333 - a      b     a 
ji(3X + 2n) 

3 "    3333       33jß    ßjpi    ip33 ^ + ^ 

Recalling now formula (2.27) giving u\*z. in terms of V, we get 

/■«- 

(2.33) 
_t    d v 

5 %*  —2 dZ3 " 

+ A, 

ZaZßdZ1dZ2 

(z3) 

2       71*3* 
3z3     3z3 

z  dz. dz„. 
a        1        * 

S(z3) 

^   ^   *,. 
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From (2.31) (2.32) and Proposition 1.1, we obtain the limit 
equation  (2.8). 

The second limit equation (2.9) is derived from the equation (2.23) 

satisfied by N* , by an analogous argument using (2.24) and again 
Proposition   1.1. 

As a conclusion, remark that each Va is solution of a fourth order 

equation and V3 of a second order equation. These three equations are 

uncoupled . Existence and uniqueness of Vf are straightforward by 

Lax-Milgram  theorem. 

§3 - LIMIT  FOR   £ -» 0 

In this section we study the behaviour of u£ * (in fact of Vj) as E -> O. 

This is a homogenization process in a quite simple case, the equation 
verified by Vj  being  one-dimensional. 

Recalling Remark 2.3, we introduce the notations 

vi = v*- V^L- sa=sL.s(z,) = s;<z,). . i 5i ' Ba 8 *  37 

We prove : 

Theorem 3.1    Let e -» 0. Then 

8,a 
Vs      in    H   (O.L)   weak 

S,a \    •   i 

V*    -» V.,   in   H1 (0,L)    weak 
8,3 8,3 

and V5 j are characterized by the homogenized equations : 

X + \i 

(3.1) 

4 
a v 

i.a 

a,4 H (3A. + 2ji) 
^ + —   s* 

dZ3 

av, a3v, a2 vx o a 5;a o,ct 
Vio(0)._,0,.0;_(L,._^ 

3 3z3 

- 70 - 

(L) = O 

3z„ 



respectively 

(3.2) 

a2v 
5,3 X + H 

8       a  
2 

3Z
3 

v83(0) = o 

^(3X + 2\i) 

av 

J 53 

53 ^ 
  (L)   =  O 
3z3 

where 

(3.3) 

f*r /■ r 
- 1 * 

. 

**.- 
f dz, dz„ 
a       1       2 

dy + g ds dy 

Jo Jr8(y)   . o L3Z8(y)          - 

/• r re 
^3   = 

f3   d21   dZ2 
dy    ■ 

Jo 

r1 

[ \™               J 
/• r f1 /• 

% - Soc 
Za^dZ1dZ2 

dy + Z«%dS 

O .    ^5 (y) 
O J ai5(y) - 

dy 

where Zs(y) =Sf(y/e). The homogenized coefficients are defined by 

.1 r' 

(3.4)       qs = y,  dy1  dy2 

i8(y) 

am 
(y) dy 

(3.5) 
dy 

mes Lg(y) 

and 10 § is defined by 
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(3.6) 
3y 

y, dy, dy. 

1     2 

\   2          1 

M = 0 in (0,1) 

I 
1i)5--y    periodic in (0,1) and ID   -ly2 

dy = 0 

Eioof : concerning the second order system (2.9), the equation (3.2) (3.4) 
a simple consequence of a now classical case. 

is 

Let us consider the fourth order system (2.8).  It is obvious that it 
implies the a priori estimate 

(3.7) 

2        £ 

8,a 

3z„ 
^    C 

L2(O.L) 

where C is a constant independent of e. Therefore, up to a subsequence 

and 
U..    -»   V6,a    in     H    (0.L) 

3V. 
V,„(0> 

«.a 
6,a 3z„ 

(0)   .  O 

To obtain the equation satisfied by V* K we follow the usual variational 
method of Tartar in homogenization theory. Set 

S.a Z1 d2i dz2 

SS 'Z3l 

h.a 

dz„ 

which  satisfies the equation 
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(3.8) 

rL       2 

c.   —- dz   =  
5'°az2      3 n(3X+2n) 

O 3 

/■«- 

J,5.«<Pd23 + 

J      5'° 3z„    3 

o 3 

V(peH2(0,L) , (p(0) = — (0) = 0. 
3z3 

As 

J%> 

Z1 d2i * 2, d2, dZ2 

(0,1) x (0,1) 

we have from (3.7) 

(39)     *'«* "»"I.    in    L2<°'L); 

On the other hand 

(3.10) 
^s.a   -» ^,a     in L  (°-L) weak 

l ^5,ce     ~* ^8 a       in   L" ^0,L) Weak St3r 

and thus from system (2.8) we have in the limit 

(3.11) 

2 
d cp 

\«n dz3 = 
X+\i 

dZn 
ti(3X+2n) 

r 
J'5.a

Jf,dZ3 + <    -dz3 5,a    g^        3 

Let us consider the function lüg defined by system (3.6) and introduce 
the  functions 
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"3'W'X 
\* J 

ns(y) Z1 dzi dz2 

v  V" 

m 
ay 

Vz3>  = Vz3/e> 

It follows from (3.6) that : 

2    £ 

(3.12)      __ = 0 

3z„ 

and as e -> 0 we have the convergences (due to the periodicity) 

(3.13) 

«U)'; -» 1 z*   in   H2 (O.L) weak 
5 2 

all) 

9Z3 

a2<U)£ 

—> z.       in   H   (0,L) weak 

5 2 
- -4  1      in L  (0,L) weak 

3z„ 

e 

l'l5 1«  -> «'s in L   (0,L) weak star 

where qs is defined by (3.4). 

Let now cpe »(0,L). Multiply equation (3.8) by <p«Ulj and equation (3.12) 

by <p Vg K , integrating by parts we have : 
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O 3 3 ÖZ3 

"L SV" 2 

E 9(0 6,a 9 <P       E 
«   (2 —  + —  Vx  )   dz,  = 

&y     9z„     dz. ,2       6^ 3 

-O 3 3 3Z3 

     i   {   5"t     9    XÜ*   +       aK        
R(3^+2U) 5-a • 5 5-a dz. 

•'o 3 

(9 ID ,) }   dz3 

We pass to the limit for e -» O. Using convergences (3.9) (3.10) (3.1 

we get : 

,-L 
9cp 1    9 a>     2 

^(2^rz3 + ?^23)dz3 9z„ 9z„ 

qx(2r^- 

1W .2 

9(p 8.a        9 q> 
V»Jdza 

X+ii 

H(3X+2|i) 
[—      5".    9 z„   +      k.     —  (—<p zj] dz, l2 8,a   ~    3 5,a    -j_      *2 3 3 

Integrating again by parts and taking into account equation -(3.11) v\ 

have finally equation (3.1) and thus Theorem 3.1  is proved. 

The following result concerns the displacement u\ . The formula (2.' 

giving this displacement permits to construct the extension ii^ * on tr 

whole Q = (0,1) x (0,1) x (0,L) defined by : 

"£ = V* <23>        in Q 

av. 9V„ 

4s.3   =  - Z1   TT  "  Z2 TT 9z„ 9z„ 
+  V„ in   Q. 

A consequence of Theorem 3.1 is 
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Corollary  3.2      Let e -> O. Then : 

.^E, 

S.a %,        in  H   (Q). 

with 

4s3        in H   (Q) 

u.     =  V. in Q 
8,0 5,a 

S.a 1      3z 

aV5.1 9V8.2 u 

 Z2    ^7" "        ' 

where V5 is given by (3.1) (3.6). 

§4 -  LIMIT   FOR   5->Q 

The  last step in our asymptotic study of crane-like structures is the 
dependence on the thickness 5. We have : 

Theorem   4.1. 

Suppose  that f* and g* are smooth enough . Then if 8 -> 0 : 

(4.1)       V.     ->  V     in  H   (0,L)    weak 
8,a 

(4.2)       Vg3  ->   V3     in H   (O.L)    Weak 

where V   is characterized by the equations : 

(4.3) 

4    * 

u (3X + 2n)   9   Va 

4 (X + u)       3z
4 

°  3 

£■+ —      S       in (O.L) 
°      ^3 

3    • 
M d   V 

VB(0)--^<0)-0:—<L) 
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2    * 
,(3X + 2n)   3V3 

(4.4)      ■ 3 

3V
3' 

V, (0) - 0 ; —- (L) = 0 
i    3                           3Z3 

and 

T    =   lim 5'2     Jj, 

(4.5)      ■ 
8-»0 

g'   =  lim s'2    §. 
a                                    o,a 

6-»0 

Corollary   3.2 

Under the hypotheses of Theorem 4.1 : 

2 
u6a - ua   in   H   (Q) 

u8.3 -»   4»'   in   H' (Q) 

with 

u    =  V         in Q 
a            a 

3v*        avj 
u    _ . z   _1 - 2, — + V,        in Q 

1   *3        2  5z3         3 

Proof  of  theorem  4.1 

Let us begin with the second order equation (G 

shows that : 
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iq„ 
-1        2-35+25 

5   (2-5) 

hence 

5   q8 ~> 1 

and so (4.2) and (4.4) are proved. 

We consider now the fourth order system (3.1). We shall estimate q5. In 
order to do that we calculate first the integrai of y* over I5 (y). We obtain : 

cc 
(4.6)   a(y) = y, dy, dy2 = ■ 

ij(y) 

2 2 . 
5 5 5 5 
— (1 - 8 + —)        if — <y< 1 - — 
4 3; 2    y 2 

35      2   5 5 6 
5 (1 + 5 - —) if 0<y< — or 1 <y<1 

2 4' 2 2 

M 
BY 

Then   we    solve    system    (3.6)    explicitely    to    get    the    value    of 

which is present in the formula (3.4) of q.. 

Set 

h --Ws + j y2 

Then (3.6) can be rewritten as : 

(4.7) a(y) 

2 1   2 
a fc,-¥y> 

9y ay 

X    periodic in (0,1) 

O 

and (3.4) becomes : 
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(4.8)       qs   = a(y) —i <-a y - *5> dy 
3y 

Integrate   twice   system   (4.7) 

(4.9)       a(y) 

2   „ 1       2X 

a   (x5 - ¥ y ) 

ay 

=  k1 y + k2 

and the periodicity  requires  k-|   = 0. Thus from (4.8) we have 

qs = - k2 

Integrate once more (4.9)  : 

rY 

'2 hw^y2y^ 1 

a(y) 
dy + k, 

and   the   periodicity   requires 

1 
k2 = 

1 

a(y) 
dy 

and using (4.6) : 

1 - 8 

2     5 
2    ( 1\ 

1 - 5 + 
f o3 

35        2     S 
2 4 J 

hence 

-2 ,z   , 1 
5     q6   =   -5      k2   ->   T 

The proof is achieved if we use  (4.5). 
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Comments   on   hypothesis   (4.5) 

As f* and g* are sufficiently smooth we can calculate  5"* . and   g*     usinc 

formulas (3.3). As an example we obtain, if f.* is supposed independent of 8 

li m 8 
5->o 

f; dz, dz2 

•vy) 
dy 

.1 12 

7^°H(?'y*'° 
1/2 

.1/2 

-1/2 

['iK'-r^'iKI^'itri'^ 

^(ffv3>V3 

Similary, if g.* is independent of 8, we have 

S 

Iim5 

3W 

-1/2 

gi ds dy = - [g-^'.-^.oj + g^.l.o 
-    1/2 

.°i(zi'-¥'1') + fli(Zl4'1)]d2i+¥      |V(4'V0) 
1/2 

1/2 

+ ni fy ■ z2 - °)+ ai f- T • z2' -1)+ °i (i ' z2"1 dz2 + 

r-r 1   1 
a - 2'"   2'y3j 

+ 9- TT^HTF y.y3) + ^4'y3]jdy3 
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Formulas (3.3) giving J"* K and S * K both contain two terms. If f.* and 
g* are supposed independent of 5, these two terms do not have the same 
order in 5. As shown by the preceeding relations, the first term is 52 0(1) 
and the second one is 80(1). It follows that hypotheses (4.5) contain 
automatically a relative dependence between the 8 - order of f* and g*. In 
particular it implies that g* ~  6. 

If g* is of order 1, hypotheses (4.5) have to be modified, for instance : 

(4.5)1 

turns'1    5*    ,     J.'-limo'2   3\.\ 
a   j^o 5,a 3    t-*> 8'3 

8   = lim 5      S 
s->o S,a 

which will change (4.1) into 

(4.1)'      8 v5 -» Va  in   H  (0,L) weak 

but (4.2) and (4.3) remain unchanged. Moreover, in the limit equation (4.3), 

the right handside term no longer contains any limit of f*. 

Of course the result of Corollary 3.2 changes too : 

5 Ug'a -> uj  in H2 (Q) 

5 %    ■  -3 
u!  in H1 (Q) 

with 

ü  = V       in Q a a 

z. z      
1    ÖZ3 2    323 

in Q 
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§5 - APPLICATIONS   TO   OTHER   STRUCTURES 

5.1 - Towers 

Now the material is concentrated along layers on all the faces of the 

period (which in this case is an empty box). 

(A 

B 
E 

Passing to the limit with e -» 0, e -» 0 and 5 -» 0 we get the following 

result (the equivalent of Theorem 4.1) : 

Theorem   5.1 

Let us assume the hypotheses of Theorem 4.1. Then if 5 —» 0. the limit 

problems are : 

H (3X + 2ji) 3 Va 

(X * n)      8ZJ 

3V 

J   + —    S      in  (0,L) 
°    3z3        « 

Va{0) = — (0)-0 

and 

2u (33L + 2u.) a   V3 

(\ + u) 

V3 (O) = O 

az„ 
^3    in  (O.L) 

where 
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lim 8 8,i 

S     =   lim 5        Sx 

Proof 

The proof is the same as that of Theorem 4.1, the only difference being 

that 

S'' q, ->   1 

which come from the explicit calculation with the new Z§ (y). In this case 

S(z) is of the form 

mm. 
'mwM 

' £6/2 < z3 < i (1 - 6/2)       0 < z3 < £6/2 or £ (1 - 6/2) < z3 < £ 

and it can be shown that Proposition 1.1 still holds 

5.2 - Cranes   with   oblique   bars 

We consider the case when the period has the form 

Here on each lateral face there are two diagonal oblique bars and the 

cross section  S(Z3) is of the form 
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.~~Hli3 

One checks that Proposition 1.1   still holds and the equivalent of Theorem 
4.1 is now : 

Theorem   5.2 

The limit problem is : 

and 

with 

H (3X+^)  d   Va 

\ + H 

3V 

dz„ 

3    • 
a v 

3"" + —     S in   (O.L) 

2 
3 V 

V   (O) (O) - O ;  (L) =   (L) = O 
3z3 *4 *A 

(1+2^M3^*\=?:      in(0jL) 

(U(i) 9z„ 

9V3 
V   (O) = O ; -1 (L) = O 

3z3 

vi".  - lim   8      &.. 
I 5,i 

and 
€ =lim 5'2 3,'.« 

/2 

v/2 - /i arc tg /2 - /i 
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ANNEX 1 

Lemma : Suppose that 

aijkh = ^j5kh + M5ik5jh + 5ih5jk)- 

Then the tensor (b . f ) - the inverse of the tensor (a . . ) - satisfies 

(A.1) 

"Rjpt 

-b„ 
A. + 2n 

'1111 2222       4^()v+VL) 

X 
b1122 ~ b2211 

b1212"^ 

4\i (X + u) 

1 
1313 

.all the others = O 

Proof 

The tensor b ■ ,  is defined by the formulas : 

aipja Vaj - 4>ip  <=> Vaj = bKJpi <{>ip 

with : vaß = Vßa • 

Let us calculate for instance bn •. As aijkh are Lame constants we have 

>n-(X + 2n) Vn+^V22 

022 = ^^+^ + 2^)^22 

which gives 
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U2n X 
11    4\i(\ + \i)   "     4|i (X + »i)   22 

hence bn . — 0 if p*i andbipi, b1122 have the values given by (A1). 

Analogous calculations give the other values. 

86 



REFERENCES 

[1 ] N.S. BAKHAVALOV - G.P. PANASENKO - Averaged processes in periodic 

media, Moscow, Nauka 1984 (in Russian). 

[2] D. CAILLERIE - Etude de quelques problemes de perturbation en theorie 

de l'elasticite et de la conduction thermique, These d'Etat, Universite 

P. et M. CURIE, Paris 1982. 

[3] P.G. CIARLET - P. DESTUYNDER - A justification of the two-dimensional 

linear plate model, J. Meca.-T8 (1978), 315-344. 

[4] A. CIMETIERE - G. GEYMONAT - H. LE DRET - A. RAOULT - Z. TUTEK - 

Asymptotic theory and analysis for displacements and stress 

distribution in non linear elastic straight slender rods, J..Elasticity 19 

(1988),   111-161. 

[5] D. CIORANESCU - J. SAINT JEAN PAULIN -Tall structures, problem of 

towers and cranes in Proceedings of Int. Conf. on the Appl. of Multiple 

scaling in Mechanics,   RMA n°4, Masson , Paris (1987), 77-92. 

[6] D. CIORANESCU - J. SAINT JEAN PAULIN - Overall behaviour of elastic 

wireworks (to appear). 

[7] L. TRABUCHO - J.M. VIANO - Exitence and characterization of higher 

order terms in an asymptotic expansion method for linearized elastic 

beams (to appear). 

87 
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Abstract 

This paper presents a numerical method for the calculation of the pressure distribution, forces 
and moments on an airfoils in unsteady inviscid incompressible flow. The method involve vortex-shed 
model. The method is applied to an airfoil harmonically oscillating at high frequency with an amplitude. 
The flow characteristics have been calculated at successive time intervals. 

Introduction 

Numerical method for solution of unsteady flow over airfoil oscillating in compressible, 
inviscid flow field is dominated in this paper. The model is based on well known panel method in form 
developed for steady flow by Hess and Smith. Due to unsteadiness in addition to boundary conditions, 
additional conditions are necessary (Kelvin theorem) and Kutta condition is to be applied in unsteady 
form. This results with a nonlinear problem. 

Formulation of Problem and Boundary Conditions 

Inviscid incompressible fluid flow is described by one partial differential equation which 
satisfy law of fluid continuity (Laplace equation): 

__ + -—= 0 

Equation is the same for steady and unsteady flow. Hence, methods for steady flow can be 
applied in a solution procedure for unsteady flow. When is the panel method applied, direct calculation 
of the potential is not necessary. The problem is reduced on determination of the velocity field which 
must satisfy boundary condition of zero normal flow at the surface of airfoil. 

When the airfoil is moving relative to a steady undisturbed flow, this kinematics boundary 
condition must be expressed in form: 

fc(')-<^(4«(o=o 
where VF is the fluid velocity, Vs is the surface velocity and n is normal at the surface. 

When the airfoil is moving relative to a steady incompressible inviscid flow, circulation T(t) 
around airfoil varying with time t. Total circulation around airfoil and vortex wake must be zero 
(conservation of total circulation - Kelvin theorem), which is possible to achieve only if the circulation 



with intensity (dT/dt)8t is separated from trailing edge of airfoil in interval dt. This separate vorticity is 
carried out in downstream direction. 

Although not easily noticeable, direct relationship between this and Kutta condition for trailing 
edge still exist. Kutta condition can be expressed as equality of airfoil upper and lower side pressures on 
the trailing edge. 

4p(0L=/to-/»i=o 
where U and L denote upper and lower side of trailing edge, respectively (x/l -»1). On the basis of 

unsteady Bernoulli equation this equation can be transformed into: 

2fK-*t)-(«)=o 

or 

Therefore, above mentioned consistence of Kutta condition and vortex shedding model can be 
clearly seen. Namely, during time above mentioned circulation T(t) around airfoil is balanced by vortex 

shedding with intensity^ -VL), with mean velocity^ +VL J/2. 

Therefore, unsteadiness of the problem is taken into consideration through unsteady form of 
kinematics boundary condition, Kelvin theorem, unsteady Bernoulli equation, and unsteady form of 
Kutta condition for trailing edge. 

Discretization and Numerical Solution Procedure 

Solution of flow over airfoil (moving arbitrary), depending on time and starting from time t=0 
is calculated in successive time intervals t* (t0= 0, k=l,2,3...). Method is based on Hess-Smith method 
for steady flow. Fig. 1 shows model for the time tk. 

Airfoil contour in time tk is replaced by N linear elements. (oi)k and ft are uniform source and 
circulation distributions on i-th element (i=l,2,...,N), where (oi)k varies from one element to another, ft 
is the same for each element on airfoil and k denotes time %. Total circulation Tk is given as ft x (airfoil 
perimeter). 

An elementary vortex wake with length of At and pitch angle of ft in regard to the x-axis (to 
the free stream direction) is attached to the trailing edge. Length At and angle ft are arbitrary in first 
iteration. Their values will be determined as the part of the solution. Circulation in trailing edge vortex 

wake element is (/w)k, where: 

A*(y.)4=r*-r4., (D 

Hence, circulation on the element is equal to the difference between circulations around airfoil 
in times tw and tk, assuming that Tu has been already determined. Vortex wake consist of concentrated 
vortices formed by vorticity shed at earlier times, which is assumed to be transformed into discrete 
vortices. Concentrated vortices is moving with resulting velocity calculated in the center of each vortex 
at each successive time interval. Therefore, strength and positions of discrete vortices are regarded as 

known at time tk. 
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constant source 
distribution 

i-th panel 

U, ^k-2 ~ ^Jt-3 

^ i) 
rt-3_rt-4 

Figure 1. Solution at time tk 

Therefore in time tk there are N+3 unknowns (o;X (i=I,2,...,N), ft, \ and ft. They are 
determined by satisfying following conditions: 

•   N conditions of zero normal velocity component in external middle point at each segment of 
airfoil 

<T-).=° (3) 

where (V„-)*is total normal velocity component at the external middle point of j-th. element in time tk. 

• condition of equal pressures in middle points of two elements on an airfoil on both sides of 
trailing edge (unsteady Kutta condition): 

(F,X=(f'Jl+2(rt-rl_l)/(tk-t^) (4) 

where (Vn)tis total tangent velocity component at middle point of first element and (VIK)k is total 
tangent velocity component at middle point of N-th element in time tt. 

• trailing edge vortex wake element length and direction (Ak and ft ) are determined from 
condition that the element is tangent to the local resultant velocity and that its velocity is proportional to 
the local resulting velocity. If (U„X and (Ww)k are components of total velocity at middle point of 
trailing edge vortex wake element, excluding influence of the element on itself, then: 

(5) 

By taking into the consideration that the problem considers incompressible flow, formulas for 
velocities induced from source and vorticity distributions are the same as these for the steady case. 
Thus, steady Hess & Smith method can be modified for unsteady problem. 

If (cri)k and yt are normalized with respect to the / and U„, normalized disturbation velocities 
in the external surface middle point of j-th element induced by distributed sources and vortices on the 
airfoil can be expressed in form: 
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(6) 

where Aj; and Bi{ corresponding influence coefficients depending on instantaneous coordinates of i-th 

and j-th element. 

Normalized disturbing velocity components induced in the middle point of j-th element by 
linear trailing edge vortex wake element can be expressed in form: 

KW^v. er) 
Normalized disturbing velocity components induced in the middle point of j-th element by 

concentrated wake vortices fm(= Tm I Uj) induced in previous times can be expressed in form: 

K),=£c>r-     K)t
=iX.r" (8) 

where Cjm and Djm are corresponding influence coefficients. 

Total normalized disturbing velocity components are the sum of components given in 
equations (6) - (8). These total normalized disturbing velocity components are added to undisturbed 
flow components and replaced into basic equations (2) - (5). Basic set of equations is nonlinear 
therefore iterative procedure for its solution is accepted. 

Since A* and ft are assumed it leaves N linear equations from (3) and square equation from 
(4). N linear equations are solved to give (aiX (i=l,2,...,N) relatively to the ft. Then ft is determined 
from square equation (4). Once known (os)k (i=l,2,...,N) and ft, (U„X and (Ww)k can be determined and 
replaced into (5) to obtain new values of A* and ft. Procedure is repeated until Ak and ft are of 
requested accuracy. 

When intensities are determined, source and vortex distribution is known from (6) - (8). 
Pressure coefficient follows from unsteady form of Bernoulli equation: 

c   B1-H-±J» (9) 
Ul     Ul 0t 

where V is total velocity on external side of airfoil, and O is velocity potential. Forces and moment 
coefficients are obtained by direct integration of pressure distribution. 

In pressure coefficient computation 3$/3t must be determined. In the numerical method value 
of SOVdt in the middle point of j-th element in time tk is approximately equal to: 

fe^ 
*'JJ> 

(K),-KU 
■t. 

Velocity potential O is obtained by integrating velocity field along x-axis from infinity 
upstream of the airfoil and then over airfoil surface. 

Since solution in time tk is determined, model is applied for the time tk+) in the same way as 
this for time tk, with vortex vale computed in time h- Distributed vorticity in trailing edge vortex wake 
element in time t* is now considered as concentrated in vortex with strength (y«k Ak at the position in 
time tk+] determined by coordinates: 
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x = (xTE)k+-\cos9k+(Uw)k(tM-tk) 

* = {*TB\ +-A* sin^ +(Ww\(tk+i -tk) 

Resultant velocity in the center of each next concentrated vortex in vortex wake is calculated 
by solution at time tk, and their position in time tw directly follows. 

In this paper this numerical method is applied on an airfoil starting to oscillate about an angle 
of incidence at high frequency. 

Discussion of Results 

0       2      4      6       8 

Figure 2. Static and dynamic lift curve 

Computer program was developed from formulated numerical method. Flow over NACA 
0012 airfoil was modeled by using 20 linear elements. Airfoil oscillating at high frequency trough 
certain angle of attack is considered flow characteristics are computed in time interval from 0 to 30 sec. 

Figure 3. Influence of reduced frequency on unsteady lift curve 
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Fig. 2 shows static and dynamic lift curve resulting from the application of this numerical 
method. Dynamic lift curve is obtained by airfoil oscillating through angle of attack of 6°, with 

amplitude 5° and reduced frequency k=0.5. 

Dynamics lift curves for two reduced frequencies k=0.5 and k=0.15 based on obtained results 
are also shown (Fig. 3). In this case, airfoil oscillating through angle of attach of 2.5°, with amplitude of 
4°. Dynamic lift curve shape depending on reduced frequency can be seen from the figure. 

o^2,5+4sin(ot) 

k?1.0 

Figure 4. Computed vortex traces as a Junction of the reduced frequency k 

Vortex wake shape of airfoil oscillating through same angle of attack, with same amplitude, 
but with different reduced frequency obtained by this method is shown at Fig. 4. It is similar with one 

obtained by methods of visualization in tunnels. 

Conclusions 

Numerical method presented in this paper leads to inviscid flow field calculation over airfoil 
moving arbitrary in time if it is supposed that flow stays attached and that it is separated art trailing 
edge. Method is completely general although only results of oscillating at high frequencies are 

presented. 
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Abstract 

A method for calculating of the velocity field about a panel covered with 
constant oscillatory sources is briefly presented. 

The coupling formulae relating the steady and unsteady flows, available for 
bodies of revolution, is extended to the general case. 

A new method for calculating the oscillatory flow about a body or a 
combination of bodies is developed. It is based on the panel method and has the 
advantage of a good geometry approximation, but avoids the occurence of large 
influence coefficients matrices. 

1. Introduction 

The problem of predicting the unsteady aerodynamic forces on an aircraft is of 
great importance, both for design and estimating the performances. 

The usual way of investigating such problems is the Munk's slender body theory 
(Ref. 1). This method is based on the assumption that the flow is two dimensional in 
planes normal to the stream direction. Laitone (Ref. 2) and Stewartson (e. g., Ref. 3) also 
presented slender body theories. 

All these methods have the major drawback that they are valid only in the 
neighborhood of the body. Consequently, they cannot be used for calculating the 
interference problems. To this must be added the fact that the thickness effects are 
completely neglected. 

Recently, Wu, Garcia-Fogeda and Liu (Ref. 4) gave a method for calculating the 
flow about oscillating bodies of revolution in incompressible flow. In their theory, the 
authors take into account that the steady flow influences both the boundary condition 
and the pressure coefficient. 
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In 1992, Butoescu presented in Ref. 5 a method of calculating the induced 
potential and velocity about a panel of pulsating sources. In Ref. 6, the same author gave 
some numerical applications of the method, illustrating the potential and the velocity 
fields in the neighborhood of panels of different shapes, in steady and oscillatory 
regimes. Later, this method was successfully applied to isolated bodies (Ref. 7). 

Chen, Lee and Liu (Ref. 8) applied a panel method for calculating the 
aerodynamic characteristics of a combination of wings and bodies oscillating 
harmonically in subsonic flow, including the body wake effect. 

The efforts of the present author towards the study of the aerodynamic 
interference in unsteady flow were made difficult because of the computer limits. Then 
our atention was concerned to a step by step approach. The objective of the present 
study is the interference of twin bodies performing oscillations in subsonic flow. Thus 
we applied the panel method previously developed to the interference problem in order 
to see the main features of the flow. So we presented a method to avoid the increasing of 
the number of unknowns by assuming that the strength of the sources can be 
approximated by a trigonometric polynomial on every "slice" of the body. The 
developing of this method has not been finished yet, but the first results are encouraging. 

2. General Equations 

2.1 Wind-Fixed Coordinates 

Let us consider the coordinate system Oxyz, with x axis along the undisturbed 
flow. The total potential, 

0(x,y,z) = U„l x [x + cp„(x,y,z) + 5 x cp,(x,y,z) x eia"] (1) 

where, 

x = l-x , y = ly , z = lz (2) 

Here 1 denotes the reference length, 8 is the non-dimensional amplitude and <a is the 
angular frequency. 

If 8 «1, the füll potential equation splits into two equations, 

(l-Ml)^ + ^ + ^=F0(^,cp0y,..MJ (3a) 

(l-MD^^^-ZikMi^.k^cp^F.K^,..) 

(3b) 

U a„ 

where, 

The expressions of F0 and F, are not simple and they are not given herein. 
The Dressure coefficient reads, for 8 «1. 
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where, 

cP = cp0 + 8- CpJ-e- 

Cf0~YM>( 
\-1-1MI(2U0 + VI) 

Ct>=-2 l-^M*(2u0 + vJ 

1 

(4) 

Y-l 

"I 

(u.+i-kcp. + VjV,) 

vo = uoI + vJ + wok = gradcp0 

v, = u,i + v, j + w,k = grad <p, 

This expression of Cp is available at a given, fixed point in space. 

Let us now consider an elastic body oscillating harmonically and let P be a point 
on its surface, (B). Then this surface can be written, 

P = l-[P0(X,p.) + 8-P,(^)-eit0'] (5) 

The surface described by (5) with 8 = 0 will be refered to as the rest surface, 
(B0). Now a normal to (B) reads, 

n = n0(X,u) + S-fi1(^)-ei"' 

where 50(A,,ji) is the unit normal to (B0). 
Following Ref. 9 we can derive the boundary condition taking into account the 

actual position of P rather than its mean position on (B0). This is usually done by 

considering a Taylor expansion of vF about the mean position of P. We obtain finally, 
v^-n0 + n0i=0 

(6) 

where 

A = 4(P,V)v0]-n0-voirn1 

Similarly, we get the pressure coefficient on (B) as, 

C^-C^ + S-C^-e" 

where 

P°F0 yMl 
^Ml(2n0 + vl -1 

(7) 

(8) 

- 96 



C ,   =-2 I-V1
M:(2U0+^ -;[u,+i-k<P, +v„v,+ 

(9) 

+ P,(Vu0) + P,V(jv*)k 

As pointed out firstly by Hoffman and Platzer (Ref. 9), the formulae (6) to (9) will 
not reduce to the well-known slender body equations as 8 -> 0. 

Similar equations were obtained by Garcia-Fogeda and Liu (Ref. 10), but they are 
available only for bodies of revolution. These authors note that both (7) and (9) have 
singular terms at the body apices if P, * 0 there. This situation also occurs when the 
body surface is not smooth. Then the Taylor expansion previously used does not hold 
any more. To prevent this, the above mentioned authors propose to use the body-fixed 
coordinates. 

2.2 Body-Fixed Coordinates 

Following Garcia -Fogeda and Liu, a curvilinear coordinate system is introduced 
instead of the aerodynamic system : The x axis is taken along the mean body axis. Then 
all the above equations will become more complicated, but A and Cpl will not contain 
singular terms. 

The authors also proposed an alternative system, the pseudo-wind fixed 
coordinates, where x axis remains linear, but always attached to the body apex. The 
equations are then simpler, but the method is not valid when the body slope is 
discontinuous. 

3. Analysis 

3.1 The Integral Solution 

In the linearized form, F0 and F, are neglected. However, when using a body fixed 
system or a pseudo-body fixed system, the equation of the unsteady flow becomes again 
inhomogeneous, but, in principle, the solution can be obtained using a Green-function 
method. 

Then, we can write, 

9,(x.y,z) = -f fotp[iK(^-R\(5,T1>OdS (10) 

where, 

x„ = x-S » y» = y-Tl , z„ = z-£ ;  (4,ri,Qe(F0) 

R = Vx0
2 + ß2-r2 , r2=y^ , K = k^ 

In the above equations and henceforward, the - symbol on x,y,z is dropped. 
Equation (10) expresses the oscillatory flow in terms of a simple layer potential. In 

what follows, it will be called oscillatory -source potential. 
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On the other hand, equation (10) becomes, for k=0, the well-known steady flow 
equation satisfied by <p0 and the oscillatory source turns itself into a source distribution. 

The potential (10) steady or unsteady and the corresponding boundary condition 
(6) lead us to a Neumann problem, with q0 or q, unknowns. 

3.2 Potential and Velocities Induced by a Planar Quadrilateral Panel 

In order to solve the integral equation relating the normalwash and the strength of 
the source sheet, we shall discretize the body surface into a number of planar 
quadrilateral panels. On these panels the strength of the source layer is assumed to be 
constant. 

It is necessary to calculate the potential and the velocity field induced by a planar 
quadrilateral on which the oscillating sources are constantly distributed. 

The potential and the velocity field can be expressed as, 

q>(Q)=^-q-i., An 

u(Q)= — -q-(Iö+i-K-Iö-i-K-M.I„) 

v(Q) = £-q-(Iy3+i-K-Iy2) 

w(Q) = f-q-(Iö+i-K-IJ 
An 

where Q stands for (x,y,z) and 

I01= j^-exp[iK(Mx0-R)]dS 
(p) 

I„=J|^«p[iK(Mxa-R)]dS 
(p) 

\~= J|^exp[iK(Mx0-R)]dS 
(p) 

I.-= J|^exp[iic(Mx0-R)]dS 

01) 

(12) 

IR* 
(P) 

Here, m=2,3 and (P) is a planar domain. 
The above integrals cannot be expressed by means of usual functions. 
Fn Ref. 5 we dealt with the evaluation of cp and v. In that paper, we considered 

two cases, depending on the distance between Q and the panel: 
1) For large or moderate distances, a Gaussian quadrature will give good results. 
2) For small distances, a more elaborated analysis was performed. Finally, we 

obtained expressions for cp,u,v,w which can be evaluated numerically even when Q is 
located at an infinitely small distance to the panel. These formulae are not given here 
because they are too complex, but they reveal some important characteristics as: 
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(a) the "steady effect" can be de coupled, so that for a = 0, the method is exact; 
(b) the "steady effect" generates a jump of the normal velocity across the panel, 

which is a function of its incidence and Mach number; but on the other hand, the 
incidence influence is small, if |a| < 30° ; 

(c) a singular behaviour occurs along the panel sides, but it is not only because of 
the "steady effect", but also because of a non-steady singular term. 

The method proposed in Ref. 5 was analysed in Ref. 6, to establish: 
- the convergence and precision of the approximate methods with respect to the 

Gaussian integration points number; 
- the effect of panel incidence on the induced field; 
- the field pattern about a panel; 
- the effects of the panel shape on the flow field; 
- the Mach no. and reduced frequency effects on the flow field. 

3.3 The Panel Solution of the Problem 

After paneling of the (F0) surface, we can write, 

If we have a combination of NB bodies, the potential reads, 
NB 

<P..,(Q) = X<P.«(Q) 

and a similar equation for vllol(Q). We can write now the boundary condition (6) and so 
we obtain a system of linear equations with qu unknowns. 

3.4. The Modified Panel Method 

As we can see, the number of unknowns increases when there are more than one 
body. In order to avoid the large number of equations, a new method is proposed. 

Suppose we have just one body. The extension to the more general case of the 
interference of NB bodies is very easy to apply as we have already shown in the other 
paragraph. 

The body is divided into NS "slices" with the exception of the two body apices 
which are usually excluded. 

For the sake of simplicity, the body is supposed to be symmetrical with respect to 
the v=0 plane and the (un)steady flow also symmetrical with respect to the same plane. 

The source distribution will be written as, 

NF 

q,(P) = 5>(_I>NMcos(j -1)0 , P e(Bs) (14) 



where (B.) is the /-th "slice", and 9 is the shown in fig. 1. 
Then equation (10) becomes, 

i       NS      NF 

cp(M) = -—XX V.)W-i |K(M - P) ■ cos(j- l)9dSP 

Here M is a point in space and 

exp[JK-(M,x,-R)] 
R 

Let us put, 

Om=--±- fK(M-P)cos(j-l)9dSp 
471 <BJ, (15) 

m = (i-l)NS + j     ;     NT = NS-NF 

Similar relations can be written for v so that we finally obtain, 

(p(M) = £am-a>„(M) 
m=l 

NT 

v(M) = Xa»-V»(M) 
(16) 

Now the functions On and V„ can be evaluated numerically.    Consider that the 
"slice" (B() is divided into N domains (fig. 2), 

(Bl) = (b„)u(bn)u...u(b„) 

so that on each interval (b^), the sign of cos(j-l)9 is unchanged. Then, 

*-(M) = X(-^) • JK(M - p)C0S(J - VMST * 

«Xcos(j-l)»:i[-^)-  Jk(M-P)dSp] 
(16) 

(bin) 

where (bin) is a planar panel approximating (bin). In (16) 9^ is a mean value of 9 in 
(b, J. But the factor in the brackets (i. e. [...]) can be evaluated using the procedure 

given at paragraph 3.2. Of course, Vm can be estimated in a similar way. 
The coefficients am remain still unknown. To find them, we must apply the 

boundary condition. For this purpose we take NF points as collocation points on each 
"slice". Let's out. 
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l = (n-l)-NF + m , n = l,2,...NS, m = l,2,...NF 

Then we will define, 

C^V^-n, 

where nl is the unit normal vector on (B) at each NT collocation point. 
We have obtained a linear system, 

NT 

IX-C^w, (17) 

1 = 1,2,...NT 

where w, is the unknown normalwash. 
This system can be solved using an available procedure. So, the source 

distribution (14) is determined. Then we can find the potential and the velocity using 
equation (16). The pressure coefficient is given by equation (8). 

4. Results 

The results presented herein are the first ones obtained with the proposed method, 
so that a further verification and validation are necessary. 

The method was tested on both isolated bodies and the configuration shown in 
fig. l,forl=landd=0.1 

The basic body geometry presented here was very simple, i. e. a parabolic spindle 
(Ref. 4), described by 

R(x)=2-f x-(l-x) , 0<x£l , x = 0.1. 
The steady flow corresponds to a = 0 and the unsteady flow is described by the 

rigid modes, 

P^iP/^k-e'®' 

P;=±P,"= j-e1" 

where P,' stands for lower body movement, while    P" stands for the upper body 

movement. 
In fig. 3 is shown the unsteady pressure distribution on the isolated paraboloid for 

M = 0 and for k = 0.5 . The continuous line represents the present method and the dotted 
line shows the values obtained by applying the Stewartson's method. 

Figs. 4 and 5 refer to the configuration with d=0.1, in steady and unsteady flows. 
All the curves refer to the lower body. 
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5. Conclusions 

A method for calculating the velocity field induced by a constant strength 
oscillatory sources distributed over a planar panel was briefly presented. 

The coupling formulas relating the steady and unsteady flows, available only for 
axisymmetric bodies, was extended to the general geometry. 

A modified panel method for calculating the oscillatory flow about a body and a 
body combination was presented. It has the advantage of a good paneling of the bodies, 
without being necessary to store large matrices. The method can be extended to the wing 
body combination as well. In this case, the method could be improved, to render the 
jump of the velocity at the wing root. Therefore, one more term added to the Fourier- like 
source strength distribution is desirable. It could be represented by a combination of 
Heaviside step functions. 

All the numerical results now available are the first ones obtained, so that a further 
systematic investigation and validation should be made. 
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AN INVERSE INTEGRAL METHOD   FOR 

SEPARATED TURBULENT BOUNDARY LAYERS 

by H Dumitrescu' , Al. Dumitrache" 

ABSTRACT 

A method designed to calculate incompressible turbulent boundary layers with strong adverse pressure 

gradients, attendant separation and reattachment is presented The boundary-layer method is a two- 

dimensional planar inverse integral technique based on a pressure gradient-velocity defect correlation 

and the extended Coles analytical description of attached and separated boundary-layer velocity 

profiles. Predictions by this method for boundary-layer properties and separation, and reattachment 

locations agree well with experimental data 

1. INTRODUCTION 

So far significant progress has been made in the solution of time-dependent, ensemble- 

averaged Navier-Stokes equations for turbulent flow. The Navier-Stokes approach, however, is 

presently too expensive for much of the technical community and, although complex flows can be 

solved, flirther advances in numerical techniques and computer, technology are needed before this 

approach can be used routinely. 

In the meantime, problems involving viscous-inviscid interaction with and without separation 

are commonplace and must be confronted. One approach to solve these problems is to use an inviscid 

solution for the region away from the body, a viscous solution near the body, and match the two of 

some location and in some fashion Besides the problem of where and how to match these solutions 

is the problem of dealing with the singularity in the boundary-layer equations at the point of separation 

if the pressure is prescribed as a boundary condition in the usual direct method of calculation 

Catherall and Mangier [1] demonstrated that these singularities at the separation and possible 

reattachment points can be removed by prescribing the displacement thickness or the wall shear-stress 

distribution in place of the pressure distribution This is the so-called inverse boundary-layer method 

It is obvious that massive separated regions (occurring, for example, on circular cylinders or on 

configurations with a blunt base) cannot be handled   Separated flows which still fit within the 

National Institute for Aerospace Research "Eiie Carafoli"- Bucharest 
Institute of Applied Mathematics "Caius lacob" - Bucharest 
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boundary - layer concept can, however, be dealt with. Here the term boundary-layer concept means 

that the normal pressure gradients are negligible and that the dividing streamline, which separates the 

reverse flow from the downstream direction moving flow, is reasonably close to the body surface. 

Inverse methods for two-dimensional flows using integral approaches have been developed in 

the past, from 1973 onwards [2], [3], [4], [5], [6], [7], [8] These methods have been classified into 

three categories [5]. All three use the standard Kärmän momentum integral equation; it is the choice 

of the second integral equation that distinguishes one method from the other Thus, the second 

equation can be : a moment of momentum equation [2] - [10], a kinetic energy equation [6], [7], 

[11] or an entrainment equation [12], [13]. The boundary - layer method described in this paper 

differs from the integral method previously cited in that it uses the well-known correlation between 

the Clauser (pressure-gradient) parameter ß and the velocity-defect parameter G, as closure 

equation. This closure type is similar to that used in Das method [14]. 

The main advantage of the proposed method is the fact that it needs a minimal amount of 

computer storage and time, being suitable for practical design computations. The use ofthat approach 

in association with a calculation procedure for the inviscid flow is straight forward. 

The details of this method will be described and compared with the test cases including both 

separating and reattaching flows. 

2. CALCULATION METHOD 

The turbulent boundary-layer calculation method presented herein is an inverse method for 

separated flow. The key feature of this method is the use of a new closure equation as the desired 

third relation. The method also uses an extension of the Coles' velocity profile family to include 

velocity profiles in separated flow. This allows for the development of auxiliary relations necessary for 

calculating turbulent boundary layers with separation. 

2.1 VELOCITY PROFILE FAMILY AND AUXILIARY EQUATIONS 

As velocity profile family, Coles family has been used for the present work The Coles velocity 

are employed in an extended form [2] to describe unseparated and separated velocity profiles The 

Coles profiles in the defect form including reversed flows are given by 

v.-u   ,r     2(*y) „ , y ~JJ^ = "~hcos[-jj-lTlnj (1) 
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where Vr = U, I (k(Je) = \cr j / [kC, )[\cf | / 2)'' \ 

V„=(/Tn/(*r/J=Frn,  A = 0.4 

and n is Coles' wake parameter. 

Approaching separation, the quantity Vr tends to zero (vT -> o) at the same time, the wake 

parameter n achieves infinite large values (TT-»•»). In order to avoid numerical problems in this 

region, a new variable % has been defined, which stays finite even at separation {VH=\I2). A 

precise meaning can now be given to the terms separation and reattachment They will be taken to be 

the points where the variable \ is exactly 0.5. This improvement results in stable computations in the 

vici nity of separation 

The Coles velocity profiles provide the relationship for the skin friction by considering them 

for y = 5 , 

t*H% + 2 -7- + const. (2) 
* 1 T 

Differentiation of the above equation with respect to the coordinate parallel to the wall, x, 

gives one wall-friction equation for \ 

d5    28 dVB 

dx    vT   dx 

dVT     5  due .,. 

dx     U.  dx 

Using the definition of displacement thickness and integrating the velocity profile, Eq. (1), we 

obtain 

KJT = V,.+VB (4) 

Differentiating Eq. (4) and rearranging results in 

Af>*     ÄÄff (5) 
dx dx dx       dx 

Now, the traditional momentum integral equation is converted to the variables V, and Vu via the 

velocity profiles, Eq. (1). The resulting equation is 
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where 

A=VT+Vß 

D=\.5V£+3.n9VBVT+2Vf 

Dp = WB + 3.119V1 

Da=4VT+W9VB 

2.2 PRESSURE GRADIENT - VELOCITY FORM FACTOR CORRELATION 

Several empirical correlations to relate the velocity form factor 

f   5, 
io[[U.-U)/Ur]

2dy    H_ 1/2   ! 

1 -    „    \-jr~ <    to     Clauser's    pressure    gradient     parameter 
H{U.-U)/Ux]dy       H   V'f 

\    o j 

~~T~Hx    haVe appeared '" the literature Tw0 ß -G relations are comparatively well known, 

one given by Mellor and Gibson [ 15] in tabular form, and the other given by Nash [ 16] explicitly as 

G = 6.l(j3+1.8l)1/2-1.7 (7). 

For the present work Mellor and Gibson's relation was approximated by an expression similar 

to Nash's but with different values of the numerical constants, namely 

G = 5.8824(ß +0.8802)"2 +1.1108 (8) 

Initially Nash's expression was used, as it had proved very satisfactory in earlier work, but it 

became apparent that it did not agree with Cole's data for zero pressure gradient, nor did it give the 

best possible fit to what seemed the most reliable sets of measurements, namely those of Bradshaw 

[ 17] and Herring and Norbury [ 18]. 

Reference to Coles's paper [19] and Smith and Walker's experimental data [20] indicated that 

Nash's value of G (= 6.5) for zero pressure gradient was rather too low and Head and Galbraith [21] 

modified his ß - G relation so that it gave the best fit to measurements of Bradshaw and Herring and 

Norbury. This procedure gave the following expression 

0 = 4.8285(0 + 1.0717) "2 + 1.8438 (9) 
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Comparison between three ß - G correlations and experimental values is shown in Fig. 1. 

Near separation ß and G go to infinity and their inverse values 1 / ß and VG were plotted in the 

(1/J3.1/C) - plane in Fig 2. Fig. 2 suggests that the same curve can be used in the vicinity of 

separation, both before and after flow detaching. In the present work the expression of Nash, which 

gives values located between the other two curves, is used to relate the absolute values of ß and G 

With ß -G relation established, the third equation can now be derived, which provides 

closure to our inverse method. From the definitions of the pressure gradient parameter and the 

velocity form factor we have 

8* dp   _     8'       1  dU. 
ß~\t„\dx~   frrlvr\k

2U.   dx 

(10) 

'/I 

where h = 1.5A + 0.11WT + 0.32 lFr
2 /A 

Note that the sign of ß is governed by the sign of the pressure or velocity gradient. The 

absolute values of t, and Cf are used in Eqs. (10) so that the signs of ß and G are not affected when 

separation occurs and rv, respectively Cf, changes sign. 

Eliminating 5 * from Eq. (10) through Eq. (4) and substituting for ß from the experimental 

correlation (7), one obtains 

_Lf^ = _0.026974(G2 + 34(7-64.46)^- 00 
Uc   dx v <5A 

dS  dVB   dVT dU„ 
Equations (3), (5), (6) and (11) can be solved simultaneously for -^-^7- ~^T and   dx 

The derivates of 8, VT and U„ are retained for the following reasons. Solving a differential equation in 

VT will produce better results for wall shear or skin friction; a differential equation in 8 will give 

better results for integral thickness and shape factor; and a differential equation in Ue will predict the 

dVB   . 
boundary layer edge velocity correctly as necessary in an inverse method   Therefore,    ^    is 

eliminated in favor of the other derivatives using Eq. (3). Following this elimination, Eqs. (5) and (6) 

simplify to: 
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dx 
- + /(, 

d8_ 
dx 

+ A, 
dUe 

dx (12) 

dVT 

~dx~ 
+ Ä, 

dx 
dU. 

+ B^dx-B (13) 

Equation (11) can be viewed in the same form as Eqs. (12) and (13), where the first two 

coefficients are zero and the right side of Eq. (11) can be denoted as Q. 

There are now three ordinary differential equation Eqs - (11), (12), and (13) - which can be 

solved simultaneously for three variables - V^, 5  and Ue - after applying Cramer's rule. 

The origin of these three relations are: 

- momentum equation, displacement thickness equation and ß -G equation. 

4 Al 4" 
~dUT' 

dS ~ A* 

*■ Ä, ß, d8 
dx 

= B< 

0 0 1 

- 
. dx _ 

cj 

(14) 

After solving them at each spatial step in the streamwise direction, the fourth variables VB is 

obtained from the displacement thickness relation Eq. (4), 

VB=S'/S-VT (15) 

and the skin friction coefficient follows from 

Once "j-, S, Ut and VB are computed at any streamwise location, computing the momentum 

thickness 0  and then the shape factor is straightforward Integration of the velocity profile (1) yields 

0 =5* -8{2Vf +3.\7S6VTVB + 1..5F,2) (16) 

2.3 COMPUTATIONAL SCHEME 

It is convenient to nondimensionalize the final working equations before applying them to a set 

of experiments This transformation helps free the computations from dependence of any particular 

unit. For this, the following dimensionless variables have been selected 
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_    X  _    li    _   5   ,_.    5*   -    0 

where Z, is reference length, usually length of the body, and <^, is a reference velocity, usually the 

velocity at entrance. 

The three first-order nonlinear ordinary differential equations (ODE) can be solved using any 

ODE solver to obtain VT, 8 and V. Notice that a direct output of this solution is Vj., the skin friction 

parameter that determines the skin friction coefficient via Cf =2k2VT\VT\. Thus, our method yields 

separation and reattachment points directly where the skin friction vanishes, while the Karman-type 

integral methods must resort to correlations of shape factor and momentum thickness to infer 

separation- 

3 COMPARISONS WITH EXPERIMENTS 

The parameters that are important for comparison with experimental data are: velocity V, skin 

friction Cf, and momentum thickness 0 . The distribution of displacement thickness S , which is the 

input to our method, will also be shown for each test case. 

A Separated Flow: Figure 3 presents the results for the separated flow of Simpson et al [22]. 

The overall predictions for all parameters are quite good. There are slight deviations in the momentum 

thickness curve, after separation, being not an outcome of the solution of our ODEs, but rather, it is 

calculated as a byproduct from the algebraic Eq. (16). 

Flow Separation on a Cylinder: Figure 4 presents results for the boundary layer separation 

on a cylinder in axially symmetric flow conducted by Moses [23]. Since the flow is axisymmetric, and 

our theory is two-dimensional, slight deviations in skin friction and pressure coefficient curves are 

observed in the beginning. However, all other parameters show quite good agreement with 

experimental data. Pressure measurements had been reported well into the separation region, and the 

pressure coefficient prediction looks excellent in the separated region. 

Flow with Separation Bubble: Figures 5 and 6 present results for two flows (different 

Reynolds number) with separation bubble [24]. These two flows differ from the other cases in that 

they entail boundary layer separation and subsequent reattachment on a curved surface Simulations of 

these two flows are much more complex than the ones already discussed, because the theory should 

be able to handle both the separation and the reattachment regions. The computation must be carried 

through the separation bubble into the reattachment region. The experimental data are presented as 

surface shear stress rw instead of skin friction Cf We compared our theory against this parameter 

Our prediction of r,v is good in the increasing region, but it somewhat overpredicts the data in the 
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decreasing region due to inadequate input of the distribution of displacement thickness. Very few data 

are available for displacement thickness in that region, even though the flow is undergoing 

transformation from acceleration to deceleration in that region. There are seven r„. data points 

available before X = 0.1, but only three 8 'data points are available from the experiment in the same 

region One must input sufficient points to accurately capture the sharp rise and fall of rw that occurs 

in this very narrow region However, the overall trend of r„. computation matches with the 

experiment. Separation and reattachment (denoted as S and R in figures) agree very closely with the 

experimental results The experimental separation points for these two flows are at X= 0,4978 m and 

X= 0,447 m respectively, and our computed separation points are at X = 0,504 m and X = 0,468 m, 

respectively Similarly, the experimental reattachment points are at X = 1,006 m and X = 0,986 m, 

respectively, whereas our method computes reattachment at X = 1,086 m and X = 1,022 m, 

respectively. The overall prediction for Fand Q are very good. In addition to the test cases just 

discussed, we have tested the method against a variety of separated and reattached flows . All results 

have shown good agreement with experimental data 

4. CONCLUSIONS 

A practical integral method has been presented for computing separated and reattached 

turbulent boundary layer flows. Relative to earlier methods, the new inverse formulation have the 

advantages that it is based on an improved pressure gradient. Velocity defect friction correlation valid 

for attached and separated flows, replaces the unstable wake parameter n with the stable parameter 

VB and is simpler to apply. The method may be attractive due to its low computing time and costs 
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Fig. 1 Comparison between three ß -G correlations and experimental values 

Fig 2 ß - G correlations near separation. 

Fig.3 Comparison between theoretical and experimental results for the flow of Simpson et al. [22]. 

Fig.4 Comparison between theoretical and experimental results for the flow of Moses [23]. 

Fig.5 Comparison between theoretical and experimental results for the flow of Serpa et al. [24], 

Flow 1. 

Fig.6 Comparison between theoretical and experimental results for the flow of Serpa et al. [24], 

Flow 2. 
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Abstract - The first purpose of this paper is to present our experience in non- 
linear dynamical systems with chaotic behaviour approach according to a system 
conception. In the second part, the main problems that appear in transmission on chaotic 
carrier are reported. The dead-beat synchronization, or exact synchronization infinite 
time is presented. We propose control methods for chaotic synchronization in uniformly 
connected systems. In the last part of the paper some chaotical behaviour in 
semiconductor devices are reported. 

1. Introduction in Nonlinear Dynamical Systems 

In the electrical engineering community, in recent years, much interest 
has been devoted to the study of the dynamics of circuits and systems that 
exhibit a chaotic behaviour. 

A dynamical system is one which changes with time; what change is 
the state of the system. Mathematically, a dynamical system consists of a space 
of states (called the state space or phase space) and a rule, called the dynamic 
for determining which state corresponds at a given future time to a given 
present state. A deterministic dynamical system is one whose state at any time 
is completely determined by its initial state and dynamic. It may have a 
continuous or discrete state space and a continuous-time or discrete-time 
dynamic [1]. , _    , , .        c 

A continuous-time dynamical system can be defined by a system ot 
ordinary differential equations of the form: 

X(0 = F(X(0,0 <u> 
where X(0 e ST is called the state, X(f0) = Xodenotes the initial condition and 
the map F(V):9T x <R -» 9T is continuous almost everywhere on 9T x <R+ 

and globally Lipschfc Then, for each <X0,ro)eW x«t, there exists a 

continuous function   q>(-;X0,f0):3l+ -»9t"   such that  <p(fo;X0,f0) = X0   and 
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<P^Xo>'o) = F(<P((';X0,ro),0 . The function <p(.;X0,fo)is called the solution or 
trajectory through (XQ ,/O) of the differential equation (1.1). 

The vector field F of a dynamical system generates a flow that maps a 
point in the state space to its image after t seconds. If the vector field F of a 
continous-time deterministic dynamical system depends only on the state and is 
independent of time t, then the system is said to be autonomous and may be 
written as: X{t) = F(X(0) or, simply: X = F(X). 

A discrete-time dynamical system is defined by a system of difference 
equations of the form: 

X(fc + 1) = G(X(*),*) (1.2) 
where X{k) e JR" is called the state, X(ko) = Xo is the initial condition, and 

G(V):3T x Z+ -^ 9T maps the current state X(k) into the next state X(k+1), 

where ko eZ . By analogy with the continous-time case, the function 

<P(-;Xo,ro);Z+->9T such that cp(£ ;Xo,k0) = XQ and 

(?(k + l;Xo,ko) = G((f>(k;Xoko),k) is called the solution or the trajectory 

through (Xo,£) of difference equation (1.2). The image 

{(p(k;Xo,ko) e 9T \k e Z+) in 9T of the trajectory through (Xo,kJ is called an 

orbit through  (Xo,£ ). If the map of the discrete-time dinamical system 

depends only on the state X(k), and is independent ofk, then the system is said 
to be autonomous and may be written more simply as: 

X(£+1)=G(X(£)) where: G():SR" -> SR". 

A trajectory of a dynamical system from an initial  state X settles 
0 ' 

possibly after some transient, onto a set of points called a limit set. The limit 
set corresponds to the asymptotic behaviour of the system as t -> +oo   and is 

called the steady state response. From a experimentalist's point of view chaos 
may be defined as a bounded steady-state behaviour which is not an echilibrum 
point, not periodic and not quasiperiodic. The local behaviour of the vector 
field along a trajectory (p,(Xo) of an autonomous continuous-time dynamical 

system is governed by the linearized dynamics: x = DxF(<pf(X ))x. This is a 

linear time-varying system whose state transition matrix <J>,(Xo) maps a point 

xointo x(t) = $(Xo)xo. Note that <D, is a linear operator. The singular values 

<* (0>a2(0>...>a„(0 of 0( are defined as the square roots of the 

eigenvalues of 0"$, where Of is the complex conjugate transpose of 

O .The stability of a steady-state orbit is governed by the average local rates 
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of expansion and contraction of volumes of the state-space close to the orbit. 

The Liapunov (LE) exponents X. are defined by X,, =lim-lnaj(0, whenever 

this limit exists. The LEs are a property of a steady-state trajectory. The set 
to.,/ = L2,..,/i} is called the Liapunov spectrum. The Liapunov spectrum may 

be used to identify attractors, as summarized in Table 1. 

Table 1. 

Steady state Limit set Spectrum LEs Dimension 

DC fixed point spike at DC 0>Xl >...^xn 0 

Periodic closed curve 

fundamental 
plus 

integer 
harmonics 

\=0 

o>\>...>xn 
1 

Quasiperiodic K-torus 
incommensurate 

frequencies 0>^+]>...>\, 
K 

Chaotic fractal broad 
spectrum 

X{>0 

(=1 

non-integer 

Many non-linear dynamical systems in various fields have been clarified 
to exhibit chaotic oscillations and recently applications of chaos to engineering 
systems attract many researchers'attentions. 

There are at least two reasons for studding unstable and chaotic circuits. 
Taking the traditional view that instability is unacceptable, it is important to 
know if this sort of behaviour can be present in an experimental situation in 
order to avoid it. From a more optimistic view, if a mode of operation is well 
understood and clarified, it can be of engineering use. The understanding of a 
chaotic behaviour opens new possibilities of operating regimes that can help to 
optimise design. 

Electronic circuits exhibiting chaotic behaviour can be exploited as a 
basic components of emerging classes of complex dynamic electronic networks 
and systems, including cellular networks and secure communication systems 
based on chaos synchronization. 

Cellular neural networks (CNN) are non-linear continous computing- 
array structures well suited for non-linear signal processing. A CNN is a high 
dimensional dynamic non-linear system having a local interconnection of 
simple circuits units called cells, or artificial neurones. 
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2. COMMUNICATION ON CHAOTIC CARIER 

We try to use chaotic signals to transmit information on a chaotic carrier. 
The motivation for this is the privacy of the communication and the advantages 
to transmit a broadband signal. The purposes of this procedure are to broaden 
the spectrum of the transmitted signal (to protect against electro-magnetical 
perturbations) and to hide the information in the chaotic signal. To assure all of 
these we use a master-slave configuration adapted to communication systems. 
In order tö receive de transmitted signal, it is necessary to synchronize the 
sender and the receiver. We consider a set-up where a master system drives a 
slave system in order to impose its wave forms. This situation is depicted 
schematically in Fig. 2.1. 

Master system y(t) 
Slave system 

y'(t) 
)     l 

Fig. 2.1. Master-slave configuration adapted to communication systems. 

Both systems should be thought of as being dynamical and non-linear. In 
general, the slave system closely resembles the master system. The transmitted 
signal y(t) may have the effect to force the output y'(t) of the slave system to 
copy its wave form [5]. The signal y(t) represents the only interaction between 
the two systems and the initial state of the two systems is not co-ordinated. The 
time evolution of dynamic system depends on its initial state, so we cannot 
expect y'(t) to be identical to y(t). If the time t -» oo the influence of the initial 
state can be expected to fade away. So we can construct the follow definition 
for synchronization between our two systems: 

The slave system synchronizes with the master system if 
1/(0 - XOl -> ° when t -» oo, for any combination of initial states of the 
master and slave system. Usually, the notion of synchronization is used for 
periodic signals, in our case it means that, asymptotically, y'(t) copies the 
irregular behaviour of y(t). A chaotic system has sensitive dependence on 
initial conditions [4]. This means that even if the two system in Fig. 2.1 are 
perfectly identical, and if they are started at almost identical states, after some 
time, the two time evolution become completely uncorrelated and definition is 
far from being satisfied. This is the case as long as the two systems do not 
interact. But if the interaction between master and slave exist, the interaction 
may be able to force synchronization. 
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2.1 Discrete-Time Synchronization 

Consider a second order chaotic system, represented by the following 

equations [3]: 
xl(k + l) = l-coc?(k) + x2(k) (2-1-a) 

System exhibit chaotic behaviour in a large neighbourhood of the 
parameter values a = 1.4 and ß = 0.3. 

We assume the system (2.1) to be the transmitter and we select its 

output as: 
y(k) = \-ax$(k) (22) 

The receiver is then defined by: 
*l(* + l) = *2(*) + >W (23a) 

%(*+5aA(*) (2;7
3;b) 

From (2.1)-(2.3), the synchronization error Ax,-(*) = *,-(*)-*/(«) is 

governed by: 
Ax1(* + l) = Ax2(*) (2-4-a) 

Ax2(Jk + l) = ^iW (24b) 

so tending to zero for |/?| < 1. 

2.2 Synchronization in Composite Chaotic Systems 

Many secure communication methods using chaotic synchronization are 
developed now. Composite systems and non-linear networks exhibit various 
non-linear phenomena such bifurcation and chaotic behaviour. It is impossible 
to synthesis a composite system such that some specified subsystems are 
synchronized and other subsystems are not, and for solving this problem 
feedback control is very useful [2]. 

We consider uniformly connected discrete-time composite systems with 
additive interactions; N is the number of subsystems, we assume^that all have 
same dynamically characteristics and each subsystem S; (i=l,2,...,N) is 
described as follows: 

*,(* + 1) = /[*,(*)] + g[*i(*),*2W, >*AK*)] + but{k) (2.5) 
where x,(k) is the local state of Si,/ represent non-linear characteristic of 
each subsystems and g represent the effect of interaction. 

A control objective is to synchronize subsystems Sß,Sj2,--;Sjm 

chaotically in (2.5). 
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2.3 Application to Secure Communications Systems 

This section deals a synthesis of a secure communication between 
subsystems Si and S2 using chaotically synchronizing control. Each subsystem 
consists a synchronization part, a modulation part and a demodulation part as 
shown in Fig. 2.2. 

Subsystem Si Subsystem S2 

Sync. 

Demod. 

Mod. Hin 

C21(k) 

C12(k) 

ni2irl    Sync. 

Si(k) 

Informational Signal 

Demod. 

I Mod. 

t2(k) 

Recovered Signal 

Fig. 2.2. Secure communication system. 

Each part is described as follows: 
• Synchronization part: 

xi(k + l) = f[xi(k)] + bui(k) 
• Modulation part: 

Zi(K +1) = g[*/(*U(*),"v(*)] + ssi(k +1) 

wt (k + 1) = p[Xj {k),wt (k)] + rpt (k) 

• Demodulation part: 

tt (k) = vi(*)-/fo(*-l).vi(*-l)l 
V 

r {k) - 
%i w - A*i (k - 2^i (k -'). v/ (* - 2)1 

£ 

Since the transmitted signals ci2(k) and c2i(k) may be observed by 
someone, it is very important that the informational signal s;(k) can not be 
recovered from them. 
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3 CHAOS in SEMICONDUCTOR DEVICES 

3.1 A dynamical system analysis for a photoconductor 

Taking into account the transport and relaxation (i.e. generation- 
recombination) phenomena in an extrinsic P-type semiconductor photoresistor, 
assuming the spatial uniformity conditions (in the simplest case of a bar with 
the length L) [6], two differential equations are describing the dynamics of both 
(local) the p hole concentration and the E electrical field strength; in any 
given spatial position in the device we have: 

dp/dt = Y-NAO + p-(k-NA0 - r-NA.) 
dE/dt = (l/6)(J-pq0Vd) 

where: 
NA = the acceptor concentration y = the optical irradiation coefficient 
ND ~ the donor concentration k = the impact ionisation coefficient 
NAO = the neutral acceptor concentration r = the recombination coefficient 
NA* = the ionised acceptor concentration e = the dielectric constant 

NA» = NA - NAo qo = the elementary charge 
Vd = p,p-E = the drift velocity of holes with (j.p mobility 

J is the electrical current density considered here as a drive quantity in order to 
avoid the electrical external circuit relations. Assuming the local electric charge 
neutrality we have: ND + p - NA» = 0. 

The equations determine both the steady-state response and the dynamic 
response of the extrinsic photoconductor. In accordance with the dynamical 
system theory we shall consider the state vector X = (p, E) and we have the 
associated dynamical system dX/dt = g (X,t), that is bidimensional and non- 
autonomous because by modulated light it has y = y(t). At the end the system 
is: 

dp/dt = -[A(E)-p2 + B(E)p + C(E)] 
dE/dt = (1/e )• [J - qo-Hp(E)-E-p] 

A = k(E)+r(E) 
B = y(t) + r(E)-ND +k(E>N ;        N = ND-NA 

C = y(t)-N 
The   dependences   of  the   ionisation,   recombination   and   mobility 

coefficients on the electric field have been mentioned. One can neglect these 
dependencies at weak electric fields. 

The numerical simulation by time discretisation shows how fast the 
system goes towards the steady state by a step type drive function y(t), when 
the system becomes autonomous. In other specific drive conditions a chaotic 
behaviour might appear. In each case the evolution, after an iteration number 

- 129 - 



T, is appreciated by the variation of the informational entropy regarding the 
system state: 

AS = (T / ln2) X(Xo ) 
where X(X0 ) is the Liapunov index calculated for the initial state X0 

?,(X0) = (l/T>En=o,Tln|j(Xn)| 
where J is the Jacobian of the transformation:    X„+i= F(Xn) resulted by 
temporal discretisation. 

A big complication appears when the photoconductor is not spatially 
uniform ( as it is in the case of junction devices); in this case: p = p(x), E=E(x), 
0<x<L and the dynamical system is infinite-dimensional with great numerical 
calculus difficulties. 

3.2 Nonlinearities in semiconductor diodes 

Detailed measurements have been performed [7] in the RLC series 
oscillator circuit having as non-linear element the semiconductor diode. The 
differential equation of this problem is: 

.   Ld2q/dt2 + Rdq/dt + V = A -sinrat 
where q is the electrical charge and V = q/C(V) is the voltage across the diode 
capacitance C = Cd + Q, , including both the diffusion Cd and the barrier Cb 

capacitance. 
At forward bias, the diffusion capacitance   Cd(V,x) = Cd0(x>exp(V/VT) 

dominates; x is the minority carriers life time and VT is the thermal voltage. 
At reverse bias the barrier capacitance Cb dominates. 

Cb(V) = CM ■ (1 - V/0)"1/(m+2)    m = 1 for linearly graded junction, 
m = 0 for abrupt junction 

-2<m<0 for hyperabrupt junction (varicap) 
The associated dynamical system has as state vector X= [q,dq/dt]. The 

above mentioned experiment has been repeated with the varicap diode BB-125 
manufactured by Baneasa S.A., in a circuit with R = 47 Q / 10 Q. and L=0.9 
mH; the first bifurcation phenomena of the diode voltage amplitude could been 
noticed around the frequency of 750 kHz. The different level amplitudes have a 
double period (subarmonics). The control parameter was A = 0.1... 5 V. 

The- frequency domain at which one can notice the bifurcations 
corresponds to a period of the driving signal T = In/a = tr / (0.1 ... 0.6) where 
tr is the recovery time from the forward to reverse conduction. This time is 
conditioned by the storage time of the mobile charge at the forward-reverse 
switching and creates the delay "necessary " for the apparition of multiple 
bifurcations and of chaos This scenery could be an experimental method to 
evaluate the life and storage time, otherwise determined by classical non- 
chaotically methods 
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CONCLUSION 

In order to understand chaotic circuits theory, it is important to consider 
the following problems: theoretical evidence for chaos, classifications of chaos 
and route fo chaos. 

We introduced the problem of discrete-time chaos synchronization. A 
first significant feature of numerical chaos synchronization concerns the fact 
that it can be applied to numerical secure communications. We proposed 
methods for synchronizing composite chaotically systems. Many patterns can 
be realised by changing a feedback structure. 

In the last part of the paper we reports existence of chaotical behaviour 
in semiconductor devices due non-linearities of the material parameters. 
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THE INTEGRATION OF THE NONLINEAR DIFFERENTIAL 
EQUATIONS THAT DESCRIBE STRAIGHT MOTION 

OF THE AUTOMOTIVES 
Col.prof.univ.dr.ing. ION COPAE 

Cpt.asist.univ.drd.ing. LUCIAN MATEI 
Military Technical Academy, Bucuresti 

The experimental research [1] show that the automotive's work is 
accompanied by some static nonlinearities (due to the driver's action upon the 
throttle, and by tracks irregularities) as well as by some dynamic nonlinearities 
(if one takes into account the aerodynamic resistance, and/or estimating the 
rolling resistance coefficient as to be dependent upon the square of the motion 
speed). The example given in fig.l represents the position of the throttle v. 
time, and one can se the nonlinearities input by the driver. 

"jary*"* "j 

I 1 I I I 1    I I I I I II     I I 1 I I I I ■ I 1 I I I I 1 

Fig.l 

28 32 36 
Time [s] 

Both of the types of static nonlinearities above mentioned are treated 
using the methods of the automatic system theory. Considering the study 
methodology to be unique, this paper intends to deal only with nonlinearities 
input by the driver. Some experimental researches shown that the driver acts 
the throttle in some specific ways (requested by the needs of the motion), but 
always the throttle position is varying between a minimum and a maximum 
value. So, one can say that the static nonlinearities input by the driver have 
different forms, some of them being presented in fig.2. 

y ii 

a) 

A(-b,c) 
4 B (b,c) 

D(-b,-c)   C(b,-c) 
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According to automatic system theory the static nonlinearities presented 
in fig.2 are some relay type nonlinearities. Thus, in fig.2,a is represented the 
ideal relay type function; it corresponds to a sudden press of the throttle by the 
driver starting from the minimum position (-c) and ending to the maximum 
position (c); as a matter of fact, the maximum displacement of the throttle is 
2c, but the automatic system theory methodology asks for a middlepoint. This 
characteristic neglects the inertia in acting the throttle (actually, the answer of 
the command lever of the injection pump), and the constant positioning of it in 
the neighborhood of the origin; so it can be concluded in to dealing with an 
ideal relay-type characteristic (without sensitiveness and histeresis 
characteristic). 

In fig.2,b there is presented a relay-type characteristic, but also having 
sensitiveness and without histeresis behavior. This shows that the driver doesn't 
act the throttle along the area of 2 b -length in the neighborhood of the origin. 
Actually this gives the sensitiveness property of the function. Also, is 
considered the sudden press of the throtüe, neglecting the inertia. 

In fig.2,c is represented a relay-type static nonlinearity without 
sensitiveness and without histeresis, but taking into account the inertia of the 
throttle' mechanism; the same characteristic is used to represent a smooth press 
of the throttle. 

In fig.2,d is represented a relay-typpe static nonlinearity, having 
histeresis and a sensitiveness area. This illustrates the next behavior of the 
driver: on DC area he keeps the throttle constant, then he presses it suddenly 
CB (neglecting inertia), then he keeps it constant on BA and finally he releases 
the throttle on AD (also neglecting inertia). Obviously, there are a lot of some 
other ways in acting the throttle, so there are a lot of other static 
nonlineartities. In fig.2, the input value x(t) could represent the fluctuation of 
the speed in car motion, that the driver would like to keep constant, and the 
output value y(t) represents the throttle position. The relay-type static 
characteristics in fig.2 are mathematically described by analytic expressions, 
eg. static nonlinearities of the fig.2,a and fig.2,d are: 

y(0 = c-sgn[x(0] (1) 
respectively 

y(t) = 

-c,pentru 

c, pentnr 

x(0 < -b 

|x(r)|<0    si    !^>o 

x(t)>b 

\x(ti<b si 

dt 

dx(Q 
dt 

(2) 

<0 

Considering the dynamic system made of engine, automotive, terrain and 
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driver as an automatic system of engine speed regulation (actually, the 
vehicle's speed), the dynamic nonlinearities are included in the differential 
equation of vehicle' motion written as: 

(3) 

where: v-vehicle's speed, ^-gravity, 8-coefficient of angular motion of the 
masses, Ft -tractive force, Ga -vehicle's weight, 8 -global resistance coefficient, 
k -aerodynamic resistance coefficient, S -frontal section of the vehicle, t -time. 

The global resistance coefficient is: 

Y = / cosoc + sinoc = (fp + ft)cosa ± since (4) 

where fp and ft are the resistance coefficient due to the propeller and due to 
the soil respectively. 

Generally fp is given by: 

fp =a+bv + cv2 (5) 

where a, b, c belong to propeller's type. 
Considering (4)-*-(5), equation (3) becomes: 

— = -£-JFt -\Ga(a+bv+cv2 +/,)cosa± sina -kSv2 jj (6) 

A nonlinear system's functioning analysis could be made using several 
methods; the most used is the harmonic signal developed on Fourier 
trigonometric serial, supposed to be an input. In practice, only the first term of 
Fourier serial is considered. Also, could be used a computer numerical methods 
or some exact analytical calculus (where possible). Suppose the driver should 
keep a constant speed. So he is to follow the speed fluctuations Av regarding 
an imposed speed vo (so the engine's speed fluctuates with Aco reported to 
coo). If he doesn't shift the gears, then: 

U     ^ 
Av     A(cor-rr) H 

■Tv 
Aco 
— = 9 (7) 

v0       cororr        Wo_ coc 

H 

where cor, rr are the wheel's angular speed and the tire radius respectively. 
Consequently, U is the transmission ratio and <p is the relative angular speed of 
the engine. Suppose the driver is acting the throttle like in fig.2,c. So, y(t) is 
the function that describes the throttle motion and x(f) is the engine's angular 
speed variation. The equation that describes above mentioned nonlinearity is: 
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x(0 = r(P(0 = *i<p(0 (8) 

where c/b represents the tangent of the angle made by AB with the positive 
axis Ox {c/b =k\). 

Considering a noninertial angular speed regulator, the dynamic system 
made of the engine (non-overcharged), vehicle, terrain and driver is described 
[2], [3] by: 

dy(t) _Q3-kmkc 

df 

drKO 

Vw 

k 8i 
<P(0-r— iKO-7^0(0 

vm 

df tf tf 

(9) 

where: t(.) -time constants, k(.) -self-levelling coefficients, gn -irregularity 
degree of the angular speed regulator (ASR), r|-relative stroke of the speed 
regulator coupling, (p-relative angular speed of the engine, 0Q -amplifying 
coefficients, k -ASR's lever ratio, T -relative position of the throttle; a- 
terrain's reaction. 

In fig.3...5 are presented the results obtained for engine speed decrease 
of 100 RPM relative to stationary speed of 1719 RPM (wich corresponding to 
15.2 kph). The driver wants to keep constant speed, so he presses the throttle. 
As a result, the tension of ASR's resort increases, disrupting the 
counterweights former equilibrium. As a fact, the displacement z of the ASR's 
coupling decreases, creating an increase of the rack stroke h. 

z [mm] 1.9 

1.8 

1.7 

l.f 

Fig-3 

— ^- -i    — r—-i    '   '• 

——""■" —« s=—— -— 

\^, T b/ A. 

7 \y t[s] 

0.5 1.5 

Thus, the engine's torque Me (fig.5) and its speed (consequently -the 
car's speed) increases. As soon as is no more inertia in coupling's motion (that 
was previously pulled out of its equilibrium status), after about 0.2 s it trends to 
restore itself to the former position (maintain force is higher than restore 
force), so its displacement begins to raise (fig.3). As a fact, the phenomenon 
are similar but the fluctuations are opposite: rack's stroke and engine's torque 
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start to decrease (fig.4 and fig.5 respectively). In the end of the transient 
process all the functions involved reach the initial values and the driver assures 
15.2 kph. 
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Fig.4 
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For the presented figures, the calculus was made for 3 different values of 
k\ (curve 1 is for A" =1, curve 2 is for k =1.5 and curve 3 for k =2); the higher 
is k the more sudden is pressed the throttle. 

Both given example and eq. (6) could be solved using a numeric 
method. For instance eq. (6) can be written: 

dv(0 , 2 dv(0 —Y = -A1v(t)-A2v2(t) + A3 => -JY 
at at 

f(0 (10) 

Using Runge-Kutta-Merson method, the transient process represents, 
generally speaking, the solution of a vectorial differential equations. 

x'(0=/(x,0 (11) 

having x(f) vector as unknown and f(x,r) as field vector. 
The recurrence relations of the method are: 

xk+i =xk +0,5(1:1+4*4 +*5)    ;ic = 0,1,2,- 
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where the vectors k\,..., k$ are: 

1 1 1 
ki=-hf{xk,tk)\k2 =-hf(xk +khtk +-h) 

k3 =-hf(xk +-ki+-k2,tk +-h) 

k4 =-hf(xk +-ki+-k3,tk +-h) 

k5 =-3hf(xk +-*i --k3 +6k4,tk +h) 

(13) 

(14) 

(15) 

(16) 

where h is the integration step and xo =x(0) is the initial condition given for 
f=0. 

Fig.6 presents 
differential 
equation's solution, 
when considering 
the dynamic non- 
linearities (curve 1) 
or neglecting them 
(curve 2). 

Fig.6 
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On a problem of evolution 
magnetic field in a given flow 

Anton Soloi 
Department of Mathematics, Technical Military Academy, 

Bucharest, Regina Maria Bvd., No.81-83, P.O. Code 75275, Romania 

Abstract 
This work presents the approximations of solutions of stochastic Cauchy problem for 

the magnetic field in a generalised random velocity field. 

Introduction 

The problem is to describe the evolution of the initial magnetic field (HQCX))^ R3 in a 
given flow (Mt, x))(t^)g R xR-, of conducting fluid. Many physicists are interested in describing 

the magnetic field in a turbulent flow, (see |1], [2]) 
It is been know that initial intensity of magnetic field (H0(x))    _ 3 in a given flow 

Mt, x))(t x)e R xR3 with magnetically permeability u, in the absence a external perturbation, is 

change in accordance with the following evolution equation; this equation of evolution can be 
directly obtained from the Maxwell equations, and it can be written as follows: 

|H; = iuAH' +v^B' -vJtfj; i=l,2,3.       (1) 

divH = 0 (2) 
H(0,x) = H0(x)        (3) 

where IV := H'ft, x) is the i-th coordinate of the magnetic field H; t and x := (x', x2, x3) are 

time and space variables; v{t, x) := (v1 (t, x), v2^ x), v3(t, x)l is the velocity of the fluid and u. 

is magnetically permeability constant. 
The fluid is assumed to be incompressible, i.e. Vv(t, x) = 0. 
We use the notations Vv := v' { + v2  + \\;   f ; := -^-f; and A for the Laplacian in 

the space variable. 
Many physicists are interested in describing the magnetic field in a turbulent flow (see 

e.g. 111, f 2| and the reference there). In order to give a mathematical model of the 
phenomenon, they write a random field in place of the vector-field v(t, x) in Eq. 1, and hence 
they derive an equation for the mean (and sometimes for the second and higher moments) of 
the random magnetic field they obtain. 

Instead of a generalised random field v(t, <o, x\ physicists usually take a "short 
correlated" random field v5(t, ©, x), that is v5(t, a, x) - Wiener standard process, which is 
considered for small 8 > 0 as a good interpretation (approximation) of the turbulent velocity 
flow. Taking simple "short correlated" random fields (as appi-oximations of a white noise) the 
system (l)-(3) can be solved for the magnetic field Hg (or for its mean) approximately 
explicitly. In this hypothesis equations (l)-(3) is transformed in a system of stochastic partial 
differential equations, but the problem of existence and uniquess of solution of this system is 
not be solved. In some works (see e.g. [10] and the references there) the limit (as 5 -> 0) of 
the mean and the second moment of the magnetic field are studied and the equations for them 
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are derived. Almost interesting results of this theory is Steinbach-Krause-Rodler equation for 
mean. ... 

It turned out that these equations contain surprising new second order terms, wrucft 
were not expected by Eq. 1. Using the theory of stochastic partial differential equations build 
up by Pardoux and Krylov and Rozovkii, one can study problems like (l)-(3) not only with 
short correlated random field vö,having nice sample paths, but with generalised random fields 
v(t, co, x) as well. A stochastic Cauchy problem for the magnetic field in a generalised random 
velocity field is considered by Rozovskii in [10]. 

An existence and uniqueness theorem and estimates for the solutions are presented, 
without formulating any connection with the earlier results with short correlated random fields 
v5. There is such a gap in both the physical and the mathematical literature of the field. 

Namely, though the analogy with Wong_Zakai type approximations for stochastic 
differential equations is obvious,up till now it has not been proved that H5(t, co, x) -> H(t co. x) 
in some reasonable topology, as vg -»v. 

Our aim is now to fill this gap. 
We consider here the case when: 

vJ(t, co, x) := f bJHs, x)dWk(s, co), j = 1,2,3     (4) 

v^t, co, x) := J* bf (s, x)dw|(s, co), j = 1,2,3     (5) 
where VV := (W1,..., Wd H is a d} -dimensional Wiener process, W5 is a symmetric good 

approximation for W, and Wk, bJ
g

k are measurable real functions for every 
j 1=1,2,3; k = 17oT; 8>0. 

If in equation (1) with v^t, co, x), satisfying (4), formally differentiate in sense Ito and 
use the solenoid propriety of field H and its coefficients, we obtained: 

dH^j^AHi + iCbb^H^ldtt- 

+j-i(bb^H^ -b*b*^ + ibJ^H', -bfrb^ri + $>$%*]<» 
+fbikHJ -b^H*: Wk; i=l,2,3 
\ xJ xJ / 

For vg(t, co. x) we obtained: 

dH5 = y AH5dt + (b^4 -bjffc^ )dWk
5; M ,2,3 

]. Notions, Notations and Definitions. 

Definition 1.1. Let 9 := (Q, Jf{Ji >«a>,P) be a complete probability space equipped 
with a complete right-continuous filtration {j*t }fi>0 such that *and x0 contain the P-null 
subsets of Q, and J*{ '=r\ -*s, Vt ä 0. 

t>s 
Then 9 is called a stochastic basis. 
We use a stochastic basis 98 := (Q5> Jg, {-% }rä0P6) for every 8 > 0, and the random 

elements indexed bv 5 are defined on 95 throughout the paper. 
Definition 1.2. We say that a stochastic process (v(t, co))^, taking values in Banach 

space V, is a bounded variation process if: 
v(£i'mMt0lv<" (a-s) Vt > o,   Mft) := sup 

where supremum is taken over all {0 = tJJ < tj <... < tjj = t} of interval [0,t]. 
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Definition 1.3. We say that stochastic process (Aft, a))^Q is a progressive measurable 
process (or well-measurable process) in L(U, V) if: 
♦ V(t <B) e [0,«.) x Q.    A(t co) e L(U, V) 
♦ the process (A(t, (o)u)m is a progressive measurable process in V. 

T et H he a Hubert space and V,V two Banach space such that V is continuously and 
dense embedding in H while H is continuously and dense embedding in V. We suppose that 

Vv £ V, Vh e H, 3k > 0   |(v, h)| <k|v|v|h| v/. 
Definition 1.4. 
In this conditions we may unique defined a linear bounded functional over V by: 

Vv e V', v e V, 3hn e H: |hn - vy|y/ -> 0 and (v, v') := Em (v, hn) 

We suppose that linear bounded operator T : V' -> V* is bijectiv. Then T have o 
bounded inverse T"1 : V* -»V and we may identify the space V with space V by T 

Definition 1.5. The triple (V,rLV) with above propriety, together with scalar product 
m H and with the duality between V and V is called the normal triple. 

Remark 1.6. If V is a Banach space continuously and dense embedding in Hubert space 
H we may identify (through scalar product in H) with its dual H'. We write 

vcji^i-rc^v* 
where H*c__V* is adjunct of \'<^H. 

If V is a reflexive space then (1) is a normal triple. 
dotation 1.7. We denote by nv) the set of ^-adapted strongly continuous stochastic 

processes, with bounded variation in Banach space V. 
We denote by ^(V) the set of increasing jr-adapted strongly continuous stochastic 

processes, with bounded variation in Banach space V. 
Let T be a finite stopping time and V es£(R). 
Definition 1.8. We say that stochastic process V€ C([0, T];H0)n^'2(dV,Hi)if: 

♦ v is a jr-adapted process, 
♦ v is strongly continuous in H„ 

♦ Jo|v(t)|VidV(t)<co   (a.s.) 

dotation 1.9. We denote by ^(E) the set of strong continuous locale martingale 
(M(t), jpt>0 taking values in separable Hubert space E and M(0) = 0 e E. 

Notation 1.10. If M ;= {M(t, &)}m is a continuous serniniartingale in the 
d-dimensiona! Euclidean space Rd, then M(t) = M(t)+M(t) where we denote by M and by M 
its locale martingale part starting from 0 and its bounded variation part, respectively. 

By (M>(0 we denote quadratic variation of semimartingale M over the interval [0,fJ. 
We denote by SV(E) the set of continuous semimartingales, taking values in E. 
For everj' M g S^(E) its locale martingale part M and its bounded variation part M is 

uniqueness determined. 

,   ._. dotation 1.11. The total variation of martingale part M over the interval [0,f] is denoted 
by |M (t). 

/       Notation 1.12. We denote by y- the o-algebra of optional subsets of [0, ~) xQ and by 

j?[Rd j the c-algebra of Borel sets of the d-dimensional Euclidean space Rd. 

Notation 1.13. Wc fix an orthonormal basis in Rd, and x,,..., xd are the coordinates 
and |x| is the norm of x e Rd. We use the notation Dp := £. if p := T^ and for the identity 

if p-0, where the derivatives are understood in the generalised sense. We also use the notation: 
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D?:=—:—— —   wherey:=fii,...,id) and |y| :=ii + 12 + - +Jd - 
dx1

l*c2-...axd
a 

Notation 1.14. Let V be a Banach space. 
Then C([0, T]; V) denotes the Banach space of strongly continuous functions 

f: 10. T| -»V with the supremum norm. Space Lp([0, T]; V) denotes (for p > 1) the Banach 
space of strongly Lebcsque measurable functions g : [0, T] —> V with 

|g| := [ f   ]g(t)|ydt jp < » where |u| v is *e norm of u in V. 

The class of strongly continuous stochastic processes (u(t, m))te [0 Tj taking valued in V 

is denoted by #V 
Notation 1.15. Let U be a Banach space which is continuously and densely embedded 

into Banach space V, and (h(t, fo))te[0.T] is an increasing .sr-adapted continuos random 

process. 
If (u(t, e>))te [0 T] is an jr-adapted strongly continuous process in V such that: 

^|u(t)ßdh(t)<~   (a.s.) 

we denote that u e eVnj*2(dh)U, and when h(t) = t we write ^'ni2U. 
Definition 1.1 fi. Let Ag and a5 be random elements in a metric space (X, p) for every 

5 > 0. We sav that As - a6 in (X, p) (w.r. to Pg) if: 
Ve > 0,     lim P5(p(A5, a5) > e) = 0 

8->0 
where p is metric in space X. 

Definition 1.17. We say that Ag is tight in X, uniformly in 8 > 0, if Ag is a random 
element in X and: 

Ve > 0,    V5 > 0, there exists a compact Kg in X such that: P£(Ag « Kg) < e 
Definition 1.19. Let A5 be a random element in normed space (X, |- |x) for V5 > 0. 
We say that Ag is Pg-bounded for 5 > 0 if: 

lim   supPs(|A5|xäL)=0. 
L-»°°   5>0       v        ' ' 

Definition 1.20. Let (Fg(t, ©))te lQT], (fg(t, fl»))te [0J] be random processes in Banach 

space V for every S > 0. We say that Fg - f5 in 8V (w.r. to Pg) if: 

VE > 0.     lim P5 sup |F5(t) - f5(t)| v ä e   = 0. 
s-*o    Vt<r / 

Definition 1.21. Let (Agft, «a))te [0J], (a5(t ©))te [0T] be random processes in 
L(U, V), where U, V are Banach spaces and L(U,V) is the locally convex vector space of 
bounded linear operator mapping U into V with the topology of strong pointwise convergence; 
thai means: 
Vu e U, Anu -^ Au strongly convergent in V, we say An -» A strongly convergent in L(u, V) 

We say that Ag - a5 in eL(U,V), if: Vu e U,    A5u - a5u in gV. 
Definition 1.22. \*t (hs(t, m))te (0T] be an .^-adapted increasing cadlag process, and 

(F5(t. ©))te [0Tj, (fg(t ©))te [0T] random processes in Banach space V for every 8 > 0. 

We say that Fg - fg in _2p(dhg)V, if: 

Ve > 0,      lim Pgf \l |FS -fg|^dhs(s) > e) = 0 

Definition 1.23. T.-et (As(t,m))te[0T],(a5(t,co))tfc[0T] be random processes in LfU.V). 
We say that Ag ~ a5 in 5p(dhg)UU, V), if: Vu e U,  Agu - agu in .sp(dh5)V. 
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If h5(t co) s t we write j?.pV and 5pL(U; V) in place of _&p(dh5)V and 5p(dh5)L(U, V) 
Nutation 1.24. Let m > 0 be an integer. Then Lp"(r, p) denotes the subspace of locally 

p-integrable real functions f: Rd -> R whose derivatives up to the order m are locally 
p-integrable such that: 

|lWp:=    2   Lc;;'|r(x)pH(x)DTf(x)|Pdx      <~ 

where C"':=: ml    ,,  ,    peN*. 

By Wp(r, p) we denote the closure in norm | ■ | m px p of the space Lp(r, p). 
We know that the space Wp'fr p) is a Banach space with the above norm, (for p=2 it is 

a separable Hubert space) For m=0 and p=2 this is the Hubert space of those measurable 
functions on Rd which are square-integrable with respect to the measure r2(x)dx. For this 
space we use the notation L2(r). It is not difficult to show that the operator: 

is positive and self-adjoit in L2(r). Vfe L2(r),    (f^^fj+f^p2^) =(^f)äO. 

Let {Ha}rep R be the scale of Hubert space constructed from L2(r) by the operator ß-. 

We know ([17]) that in some hypothesis (I, ) the space C^f Rd1 is dense in Wm(r, p\ 

for every integer m. Moreover for k < m + 4 we have W" (r, p) = Hn as set, and norms in 
W"(r, p) and Hn are equivalent. By this we identify the Banach space W?(r, p) and Hn for all 
integer n e [0, m + 4]. For n<0 we set w£(r, p) := Hn. 

Notation 1.25. For an integer neN, let C°-n := C^f [0, T] xRd ) denote the space of 

continuous real functions f: [0, T] xRd -> F whose partial derivatives in x up to the order n are 
continuous in (t, x) e [0, T] x Rd. The topology on C0*" is induced by the family of seminorms 

r>0, pn,r(f):=sup     sup      X   |D?f(t, x)j. 
M0,t]    |x|<3r    \y\<n 

Let C°>~ := C°>~( [0, T] xRd) = n C°>n with the topology induced by the family of 

seminorms pry for all positive integers n,r. 
Note that C0-" and C0-°° are Frechet spaces with the metrics: 

PTlVv):=£jF-^^LinC0>n 
1 ^5 2r l+Pnj(u-v) 

and, respectively: p^fu, v) := £ ^p^fu, v) in C°>~. 
n-l '■ 

Tlie following generalisation of Ito's formula plays a very important role in the theory of 
stochastic differential equations.([5]) 

Let (Vj(t, to))fe0, i = 1,2 be two progressive measurable stochastic processes taking 
values in V* such that: 

i = 1,2   yä(t) := Jj v"(s)dV(s) + hi(s) 

where (v*( t, co))      is a progressive measurable stochastic processes, taking values in V*, 

h;g S./(H) andVe j£(R). 
Let (v^'t, co))&0, i - 1, 2 be two progressive measurable stochastic processes taking 

values in V such that v^t) = yiit)   dV x dP   a.p.t. (t, co) e [0, t(co)] X Q and 
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f T I d       2 

♦ Jo Idr™ 
♦ lim sup 

8—>°°t<r 

I v I      1 v* I        I v I     • I v. I    „are (a.s) locally integrable (w.r with dV(t)) where x be a 
I   i I V I   i I v*''      v    I   11 V 
stopping time. Then exist a subset o! cr Q. such that P [of ) * 0 and %Q/y ,(t) is a strongly 

continuous process taking values in H and: V© e Q , Vt e [0, x(co)] 

(yi<t>.y2<t>) = (yi(0).y2(0>) +JQ (v1(s),v;(s))dv(s)+^ (v2(S),v;(s))dv(s)+ 

+j 0 (v 1 <s). dMs)) + Jo (y2<s). dh! <s)) + (h t, h2 )(t) 
This formula may be obtained by Ito's formula ([5]) using relation: 

(yi.y2)=^(|yi+y2r-|yi-y2l2) 
Definition 1.26. The family fy8(t) : 8 > 0} of d,-dimensional stochastic processes is 

called a good approximation (with accompanying process S)of the continuous semimartingale 

v(t) if: 
1) the process (y5(t))ß0 is an jrr adapted stochastic process with absolutely continuous 
trajectories for every 5 >0, such that: 

(t)dt < <*>    , 

ysW - yi(t) |= °    "* pfobability, 

♦ lim sup Is^(t)-S«(t)| = 0   in probabUity 
6->~t<r ' ' 

for every i, j - 1 dj, where S=(SÜ) is a stochastic process with absolutely trajectory and: 

S£(t) := H (yks) -yjj« )dyi(s) - \ < f, y* > (0 

2) The family of random variables: 
{Jo|y1(t)-yk(t)||^yi(t)|dt:5>o} 

is bounded in probability for every i,j := 1,   ., dt 

3) V(t, ©) -= [0,T] xfi; i,j = MT, 3K > 0, |^SW(t)| < K 
Notation 1.27. We write f - g in R* if me Lebesgue integrals of the real functions fand 

g arc the same. We take v e Wf^r, P) and usc ** notation fZg if 3h Lebesgue integrable 
function such that:      f - g + h and 

VxeRd, |h(x)|<K    X    r2(x)|p(x)|2M|D?v(x)|2 

where K is a constant called relation constant. 

2. Preliminaries. Stochastic Partial Differential Equations -Unbounded Coefficients. 

In this section we quote some important notions and results from [7] and [5] which we 
need in the sequel, (cf. with [4], [5], [7]) 

In the next sections we deal with stochastic Cauchy problems of the form: 
du(t, co, x) = (DpCaPlO, co, x)Dlu(t, co, x)) + f(t, co, x))dV(t, ©H 

+(bf (t, B>, x)DPu(t, CD, x) +gi(t, co, x) jdMKt, co)      (2.1) 

u(0, co, x) = u0(co, x)       (2.2) 
given on a stochastic basis e, where V is an increasing jr-adapted continuous process, M1 is a 

continuous j^-semimartingale, u0 is an j^x^R*1) measurable real function on QxRd, 
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aP<J, bf, f and g, are axjg\ Rd j measurable functions on [0, T] X Q x Rd for every p,q:=0,...,d 

i:-l,...,dr We denote by ^the CT-algebra of well measurable sets. 
Considering such equations, assume that d<M)(t) < KdV( 0 and d|JMJ((t) « dV(t;4 where 

K be a constant, and that f' ( 4J J dV(s) < ~>. 

Definition 2.1. The stochastic process (u(t))te [0 T] is called a generalised solution to the 
problem (l)-(2) if: 
♦ u e £L2(r)r>^2(dV)w}(r, p; 

♦ Vte [0,Un e C~ (u(t),Ti)0 = (u0,ti) + ^ {(-l.)P(aMDqu(s)5Dpri)0 + (^S),n)o}dV(s)4 

+ f0 j(bfDpu(s),Tijo + (gi,Ti)0|dMi(s)        (a.s) 

where (, )0 is the scalar product in LjfR*1 ]. We use the notation: p:= %(1 +„)(p). 

In order to formulate an existence and uniqueness theorem for the problem (l)-(2) we 
assume the following: 
(Jt)      Ir-iplTlDTr) <K; IpM^D^ <K, V|-y| <n+l, onRd 

3£>0:   sup   f^ + £^W 

(J2)      For all (t, co,x) e [0, T] xQxRd, p,q:=0,...,d ; i:=l,...,d, we have: 
VJY| <n, V|ß| <n+l, \DW*(t,G>,x)\ <K|p(x)|^-H, |Dßbf(t,G>,x)j <K|p(x)|P-lßl 

(J3)      V(t,co,x)e [0,T]xQxRd,3Ä.>0 such that: 

X  (^"(t o, x.) -bf(t, ca,x)b|(t a>, x)Qij(t, o)")8ke1 > Ap2(x) £ e£ 
..     kJ:=l ^ y fc=l 

where Q'-'(t) is a predictibil stochastic process such that: 
for all t e [0, T] and P-almost ate Q : (M\ M-J )(t) = Q^ V(t) 

Theorem 2.2 Assume (JX-T.,). Then the Cauchy problem (2. l)-(2.2) has a unique 
generalised solution u. Moreover u e gWj(r, py\s2(dV)w2+1(r, p). 

Tliis theorem is proved in [7] in the special case when V(t) — t and M(t) is a Wiener 
process. In [5] is proved the general case when V(t) and M(t) is driving processes. 

In the last of section we quote the main result from [5]. 

Let 85 for V8 > 0. be a stochastic basis. 

^t Af, B*, Bf\ F5, Gsi, G J> and ." b£, bf >, f^ b jj? _^(R
d )_ 

-measurable functions on [0,T]xQ5 x Rd for every V5 > 0, i= l,d1;k= l,d2;p,q=0,d 
Assume that for VT| e C^(Rd) the processes 

(B^(t), ri)0, (b|(t), n)„, (G5i(t), ri)0, (gSi(t), ri)0 admit the stochastic differentials: 

d(B^(t), TI)0 = (B ^(t), T!)0dN|(t) 

d(b|(t),Ti)0 = (bjjf(f), n)odn|(t) 

d(G5i(t), ri)0 = (G*;(t), n)0dN|(t) 

d(g5i(0,n)o = (gS)(0,n)odn|(t) 
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Vt e [0, T], i=l, d, where (.,.)„ denotes the scalar product in L2(Rd) and Ng(t), rtg(t) are 
continuous jrgf-semimartingale for V5 > 0, k = 1,62 

We are given .^"5, -adapted continuous increasing processes H5(t), 115(1), continuous 
jr§t-semimartingales M8(t), m8(t) and continuous J^st-adapted processes cs (t),rfi (t) of 
bounded variation for V5 > 0; i, j = 1, d]; k = 1,62- 

For V5 > 0 we consider the Cauchy problems: 
dus(t, x) = (öP(A

P
S\ x)Dqu5(t, x)] + F5(t, x))dH5(t>+ 

+(BP(tx)DpU5(t,x) + G5i(tx))°dM5(t)    (2.3) 

u5(0,x) = u50(x) (2.4) 

<tv5(t, x) = (Dp^a|q(t, x)Dqv5(t, x))+fs(x)]dhg(t)+ (bs(t, x)DPv5(t,x)+gs(t, x)) °dm5(t>4 

+^([bs, b5j]
P(t, x)Dpv5(t, x) + ba(t, x)Dpg5i(t, x) -b|(t, x)Dpgj(t, x))dCy(t>^ 

+(b8f
)(t,x)DpV5(t,x) + g*)(t,x))dr^k(t)      (2.5) 

v5(0,x)=v50(x) (2.6) 
with f go -measurable random variables U50, vgo in Lj (rX where: 

[ba,b«S]
Pftx)'-(^^-b|^)ftxX P=M 

fB^t, x)DpU5(t,x) ■+ Ga(t, x) j o dM5(t) := (ßa(t, x)Dpu5(t, x) + Ga(t, x))dM5(t)+ 

4(ß&ft xJDp^ft xPqUgftx)) +Ba(t,x)DpG5j(t, x))d(M5, M{)(1)+ 

+l(B6ik)ft x)DP»s(t, x) + of(t, X))d(l4, N|)(t) 

(ba(l,x)Dpv5(t,x) + ga(t,x))odm|(t) := (ba(t,x)DPv5(t,x) + ga(t,x))dm5(t)+ 

+i(b& (1, x)DP(b|(t, x)Dqv6(t, x)) +bä(t, x)Dpg5j(t, x)]d(m5, mJ
5)(t)+ 

+|(bgf }(t, x)Dpv5(t, x) + g|\t, x)]d^mi n| y%) 

Further, c^ = -eg1 for Vt, to5,5, i, j. 
From the assumptions below it follows, in particular, that the problems (2.3)-(2.4) and 

(2.5)-(2.6) are meaningful in the sense of Definition 2.1. 
Let m e N*. We assume that the following conditions are satisfied: 

1J       For V5 > 0 we have: 

|DrA^q(t,ß)5,x)|<K|p(x)P+^W 

[D^lA§Vco5,x)| <K5|p(x)|P^-hll 

|DßB|(tö>5,X)|<K|p(x)|Hßl 

D7Bg10(l,o)g,x)|^K|p(x)|P-M 

|D^2bs(t,«)5,x)|<K|p<x)rlr2| 

- 145 - 



D^bgk)(t,tD5,x) <K|P(X)|P-|T2I 

p,q = 0,d;i=l,di;k = l,d2;(t,(fl5;x)e [0,T]xß5xRd; 

f-YJ ^m;|Yi| £m+l;.|Y2| <m + 2;|ß| <max(m+l,2); p=X[i>+oo)(p);q=Z[i,+o»)(q); 
where K5 and K are constants. 

Moreover 
u80€ W^+1(r,p); andugoe W™+,(r,p); (a.s) 

NUp^NiLup^ 
~(k) 
G5i 

(k) 
g5i 

nv,p 
SK5|f8! 'm+l,r,p SK;|ggi| lm+2,r,p <K; 

<K)i=l,dI;k=l,d2;(t,co6)e [0,T]xn5 
tn+l,r,p 

I2)       DYAPq(t,x)~DTaPq(t;x)inL2(dHs)R    w.r.toP5 

Drl B|(t, x) - D"flb|(t, x) in & R    w.r. to Pg 

DYB^(t, x) - D^b Jk)(t, x) in r R    w.r. to Ps 

for all: IT] <m;|yi| <m + l;and p, q=0,d;i=l,d1;k = l, d2. 
Moreover: 

F5(t) - fs(t) in ^2(dH S)W2 (r, p)    w.r to P 5 

GSi(t) - g8i(t) in rWj(r, p) w.r. to P5 

of {t) ~g|}(t) in srW™ (r,p) w.r. to P5  
»50 ~ v50 m W|f(r, p) w.r. to P5) i = 1, dj; k = 1, d2 

I3) If we defined following operators: 

L5(t)u2 :=DP[a5^(t)D<lu2) 

MSi(t)u! ^b^ODPuj 

foru! € Wj1+1(r,p)andu2 e W^frp), and the operator Mg™ }(t) is the adjoint of 
Mg;(t) with respect to the duality defined by the scalar product in W™(r, p); then stochastic 
processes: 

L5(t)u2; M5i(t)ui; M^^^uj; M^(t)ui; f5(t); gjj?(t); 

are tight in c[ [0, T]; W^r, p) uniformly in 5 > 0; i=l, dj ;k = 1, d2 and the stochastic 

processes: Ms(0u2; gsj(t) are tight inCMO.T]; W™+1(r,p) juniformly in5>0; i=l,d,. 

I„) There exist a constant % >0 such that: 

Vft(oö,x)€ [0,T]xfl5xRd; V(e1)...,ed)e Rd => £ A^o^x)^ > *p2(x) X G2 

JJt=i 1=1 
Ij ) The problem (2.5)-(2-6) has a generalised solution V5, V6 > 0 such that: 

v5 is tight in c([0, T]; W2
n+2(rJ p)luniformry in 5 > 0; 

Jo lvslm+3.r.pdhS<») » Pg-bounded in W^r.p). 

\ ) Hg(t) - h5(t); M5(t) - ml
5(t); N5(t) - n5(t); C5

J(t) - c£(t); R*(t) - rf{t) in 8R 

w.r. to P5; i, j = 1, d 1; k = 1, d2 where stochastic processes Cg'(t), Rg (t) are defined by: 
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C#(t) := (m1
5-M1

5)Mi(t) + (m^-M1
5,M

J
5)(t) + |(/M1

s,M
J

5)(t)-(m,
5,m

J
5)(t) 

R*(t) := (ml
5 - Ms )N|(t) + (m^ - M1^ N*)(t) + i((M^ N*)(t) - (m^, n|)(t) 

L) The random variables 

lcsll(T>; rf (T); 4 (T); m^-MU •  Ng (T Im's-MJsl-imiro^Mis)^);  
(N|}(T); (nl^Cr'); ||n|||(T); H5(T);h5(T 

are P5-bounded, V8>0; ij-l,d1;k=l,d2 
T8) I,et ^5, ^s are two P5-bounded random variables: V5 > 0 

d^M^OS^sdHga); d||M1
5|(t)«dH6(t); d(N|}(t)<^5dH<t); 

■TH|Mi||" d(m1
5)(t)<^dh5(t); d{n|)(t)S^5dh5(t); ^[igfj dHs(s)<~. 

Theorem 2.3. ([5]) Assume (J,), (I, - Ig). Then there exists a unique generalised 
solution (us(t, ©))(t>m)6 fo,T]xn of the Problem (2.3H2.4) for every 5 > 0 with Mowing 
proprieties: 

1)       u5 e «W^r, p)m2(dH5)W5,+1 (r, p) 

>e 1 = 0 2) Ve >0 => lim P5 sup |u5(t)-v5(t)| 
&-**>    I'tsx **      , 

3) Ve>0 =>Km P8(jJ |u8-v5|^+UpdH5(s) äeJ = 0 

i. 7%e Formulation of the Result 

To formulate the result of mis section let m e N* and let r, p be positive weight 

functions. We suppose the following: 
(Ij) The weight functions r and p satisfies the conditions : 

r-
1p'^DYr| <K; |pM-"1D?p| <K, v|Y| <m+4, on Rd 

3e>0:   sup   fe + pööj«- 
\x-y\<£ 

(Ij) The partial derivatives in x of bs(x), b'k(t, X) up to the order m+4 are functions, 

such that VT>0;V(t,x)e [0,T]xRd;V|y| <m + 4;V5>0 we have: 

DYb6'(t,x) <KT|p(x)|1-W;   DV(t,x) sKT|p(x)|1-W; j-1,2,3; i=1 ,d-, 

(Ij ) For every 5 > 0 , for almost every (t, x) e [0,«) x R  : (w.r to Lebesgue measure) 

5x3 b1i
1(t.x)+b2i

9(t,x)+bf3(t,x) = 0; 1=1,2,3 
Sx1 

(L)Vxe R3;V|y|<m + 2;VT>0=> 

lim sup 
5->0 t>T 

DTrb^i(t,x)-D'rbJ
5(t,x) = 0;j = 1,2,3; i=1,d1 in probability. 
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dt+ 

We consider the following Cauchy problems:. 

dHJj = i|i2AH^dt+ (b^HJj -bf rfxJ )dWk; 1=1,2,3    (3.1) 

divHg = 0; i=l,2,3 (3.2) 
H5(0,x)=H50(x), (3.3) 

dH1 = iV AH* + ifbb'^H1, t -b* b1^. + ibfrb^H1, -bH* jH1 + Ab^H1 

12^ 2 XJXK       XJ x1     2 XJ    xi X1XJ 2   XJ   x1 

+fb*HJ -b^H1 jWk; i=l,2,3 (3.4) 

divll' = 0 ; i=l,2,3 (3.5) 
H(0,x) = H0(x) (3.6) 

where H50, HQ are j/0
measuraDfe random variables in W™"*" (r, p) for every 8>0, i=l,2,3. 

Moreover we assume: 
(Ij)   divHgQfx) = 0 for almost every x e R3 (w.r to the Lebesgue measure in R3) and 

lim   HL - HJJ        = 0 in probability, for i=l,2,3 

Definition 3.1 (cf.[5]) 

The random functions H8(t, x) = f Hg(t, x), Hg(t, x), Hg(t, x) J and 

H(t x) = (H^t, x), H2(t, x), H3(t, x)  are called generalised solutions of the problems 

(3.1)-(33) and(3.4H3.6), respectively, if: 
♦ (Hi(t)) . (ul(t)) e fL2(r)r>52 wl(r, p) for every T > 0, 1=1,2,3 and 

v   °  Vte[0,T]'V Ae[0,T] 
♦ for P-almost co e Q: 

fa* *)„ = Kn)o "A H^Sx^xJ )0
ds+ 

+lo(b*j(s)4(s)-bf(s)H^j(s),r,]odw|(s), 1=1,2,3       (3.7) 

?(H^j(t),T|)   =0, 1=1,2,3 (3.8) 
)= 

and: 

ds+ 
0 

(Hi(t),n)o =-[* ^xk(s)Hbb*ns)^Uxii)ods+ 

+Jo (-*jk(8)b*ixj <S
)
H1

<
S

>+ib * (^(sÄ), n) ods+ 

+Jo (t>*(s)HJ(s)-bik(s)HJtJ(s),ri) dWk(s); 1=1,2,3       (3.9) 

ifrf.aXTi)   =0; 1=1,2,3 (3.10) 
j=l V   xJ JQ 

hold for all t ä 0 and every r\ e CQ (R3), where (.,.)0 denotes the scalar product in L2(R3), 
the last integral in the right side of the equality ( 3.7) is a Lebesgue-Stieltjes integral for every 
rft <= fi, and the last integral in the right side of equality (3.9) is understood in Ito's sense. 

Remark 3.1. By the assumptions (Ij )-(I,) it is not difficult to show that if 

H5 = (Hg, Hg, Hg J is a function on [0, »)xÜxR3 such that 
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f H^t) j e «L2(r)n^2wij(r, p); VT £: 0 

and almost surely (3.1) holds for all t, then almost surely (3.2) also holds for all t > 0. 

Theorem 3.2. Let (Wgft))^ be a symmetric good approximation (i.e. with 
accompanying process S:=0) of the Wiener process (W(t))fe0. Assume (I,) -(Is). 

Then the problem (3.1) -(3:3 ) has a unique generalised solution (H5(t))fe r0^ for 

every 8 > 0 and the problem (3.4) -(3.6 ) has a unique generalised solution (H(t))te [0>Tj. 
The coordinate processes: 

(4«) , (HXO ) e eW™+3(r, p)ns2Wf+4(r, p), VT > 0 
V   °    /te[0,T]  V Ae[0,T] l *■ 

and: 
VT > 0, i = 1,2,3    lim   sup I H's(t) - H'(t) I        = 0 in probability. 

6->o t<rr' lm'r'P 

4. The Proof of Theorem 3.2. 

The existence and the uniqueness of the generalised solution (Hsft))^ r0T, of the 

problem (3.7)-(3.9) follows from the assumption (I,)-(L,) by virtue of Theorem 2.2. Moreover, 
by Theorem 2.2 H, H5 € eW™+3(r, p)n.s2W™+4(r, P). 

It is not difficult to show mat first two conditions of the Theorem 2.2 are verified. 
For the last condition we note: X := \i~2 sup p2(x) and by (I,) we have: 

uUb*(b« , +b*2 +b*3 jo^-tf =V2-Xp^0 

Similarly we may verify the conditions of theorem 2.3 for the problem (3.7)-(39). 
By the definition of the generalised solution, for P5-almost every (flge £2g we write 

the relations (3.7) and (3.9). With the following notation: 

L5 := -^DpDp,    Ma(t) := (-lpbJ^Dp =: (-l)Pb* pDp, 
L5 := -^Dp[ji2Dp + (bb*)Dq],    Mad) := (-l)Pb&(P)Dp. 

and with the notation in Section 2 we have: 

(H5(0, n)0 = (Hso, n)0 + H (L5H5(s); Ti)0ds+J* (M&(s)HM t^aW^s)* 

+1 J* (MsM8j(»)Hs(8),Tl)o«i(w1
8,wi)(8) + if0 (M*)(s)H5(s),Ti)od{w1

55N|)(s) (4.1) 

<H(t),r,)o =(H0,n)0 + Ji (W^^Jo^ + Jo (^(«^(sX^j^W^sH 

+j* (MaMgWHsfc), n^d^wk wi)(s) + c|(s))+ 

+J* (M*)(s)Hs(s),tl)od(|(w^N^+rJ(g))     (4.2) 

hold for all t e [0, T], r\ e q5 (RA
 ). 

For n € C~fRd) we define:    AmTi := X   (-l)McS,DTfr2p2,'r'D7Ti) 
n     ; Han V j 

Note that: Amr, e C~(Rd ) and Vu e \V™(r, p), (u, Amr,)0 = (u, r|)m. 
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Consequently, replacing r\ in the above equalities by Am*! we get that P§-almost every 
©5 s Q§ equalities (4.1) and (4.2) are true with all the scalar product (-, )0 are replaced by 
scalar product ( , )m, we note this equation by (4.1)' and (4.2)'. 

For every u, v € C~ f Rd ) we have (L5(t)u, v)m = (Ls(t)u, Amv)0. 

By integration by parts and using the derivation rule for products we get the estimate: 

(L5(t)u,v)m<K   £ X (pV DpD?2u,Dp(r2p2|r|DTv)) 

fr"1 pH-PDTu, p-M+PDp (T2
P

2
WDV\) ) 

\l\<m    Yl+72=T 
where K is a constant which does not depend on 5. 

Hence making use of the hypotheses (It) of the weight functions r and p we get: 
(L5(t)u,v)m <LK/|u|nH.ljr>p|v|nH.ljrjp     (4.3) 

Set Hex := W™*"^, p), for a := 0,1,2,3. Then, identifying H0 with its dual Hj, by 
the help of scalar product in HQ , we have: 

H3c^H2v-JIlt^H0 sHÖ-^H^ri;^^ 
where Ha'JH'+j is the adjoint of the continuous and dense injection Ha+it-»Ha. We use the 
notation (•, •) for the scalar product in H, and also for the duality between Ha and H«. 

By (3.14) the linear operator As(t): Hi -» H* defined by: 
V5 > 0, V(t, o>5) e [0, T] x Qs,    (A5(t)u, v) := (Ls(t)u, v)m 

is a bounded linear operator, and its operator norm is bounded by the constant K (uniformly in 
t,cis, 5) In the same way as we get (4.3), we obtain from (I,) and (i,) that: 

(a5(t)u,v) :=(L6(t)u,v) <K|u|m+up|v|m+ljr>p 

(Bs(t)u,v) .•=(Ma(t)u,y)m SK!u|m+1)r;P|v|mirjP 

(b5(t)u,v) := (Ms(t)u,v)    SKiulm+^pMm^p 

(B^OMv) := (M^tKv)^ SKlul^^M^^p 

(bf (t)u,v) ^(Mf^vj^ ^K|u|m+1)r)p|v|m>r>p 

(B5i(j)(t>u, vj := (M5iM5j(t)u, vj    <K|u|m+i^p\v\m+1^p 

(bS(j)Wu'v) -(MaMg(t)u,vJ    SK|u|ItH.liIJ>|v|nH.lirjp 

(CSJOKV) ^(MsMgjCtyu-MgjMsCtKv)    =£K|u|ra+1>r5p|v|m;rjP 

(caj(t)u, v) := JMaMjjj(t)u-M5jM&(t)u, v^ < K|u| mlAp \v\m^p      (4.4) 

for aDte [0,T],a>5e Q5,u,ve C^fRdj,i,j = I7d7,k := l~d^,8>0. 

Consequently as(t), B^^t), bgj^t) are bounded linear operators from Hj into H* 

and Bg^t), bsi(t), BgfO). bgf(t), Cgy(t), cg^t) are bounded linear operators from Hj into Ho 
for every t e [0, T], rag e Qg, 5 > 0 and their operator norms are bounded by K, uniformly in 
t co5,8. 

In the same way we get also that for all u,ve C^f Rd j 

(M5i(t)u,v)m <K|u|m^p|v|m+1;I;P 
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JMg^tKv)    <K|u|mjrip|v|m+U;P 

forallte L0,T]:ö>5e Qg^ve C^RdJ,i,j=l~d7,ö >0. 
Consequently the operators Ba(t) and b5i(t) are bounded linear operators also from H 

into H* and their operator norms are bounded by K, uniformly in t, CO5,5 . 
Note that BS(])(t): Hi -»H* is the composition of the operators B5j(t): Hj -> H0 

and B^t): H0 -> H*{, that means: B5i(j)(t) :=Ba(t)B5j(t). 
Note also that C5ij(t) = B8i(t)B5j(t)-B5j(t)B5i(t) := [Bs(t),B8j(t)] • 
Similarly Bsj^W^BgiWBgjCt) andcaj(t) = [bSi(t),b5j(t)] . 
Hence, by the equations (4.1)' and (4.2)' we can see that H5 and H are solutions on 

[O.TJofthe stochastic evolution equations: 
H5(t) = Hso + Jl A5H5(s)ds +Jj Bä(s)H5(s)dW5(s) + ± J^ B8i(j)(s)H5(s)d{ W5, WJ

8)(s>+- 

+ifoB*)(s)H5(s)d(w5,N|)(s)       (4.5) 

H(t) := H0 + £ agisMs)* + JJ b5i(s)H(s)dWi(s) + \ \\ bäö)H(s)d(W, WJ)(s>* 

+i £ csjHWdcS +ffl b«(s)H(s)d(i(Wi „|) + If (s))      (4.6) 

considered in the normal triple Hj<--»Ho =HQC-*H* . 
By stochastic differential of B^ := (-l^b**5 we have, for P5-almost every e>5 e Q8 

JRd B5\(t,x)T,(x)dx = |Rd B^O.xWx^+jJ, (jRd BJ?)(s,x)n(x)dx)dN|(S) 

for all t € [0, T] and for every r\ e C^Rd \ Substituting DpHAmr| in place of r\ we get: 

(Ms(tKr|)m = (M5i(0)v, n)m + Jo (M^(s)v, r^dN^s) 

i.e.:wehave: (BSi(t)v;ri) = (B5i(0)v,Ti)+J^B5^)(s)v,n)dN8(s) 
For every v, r\ s C% a Hi and hence for every v, r\ e H2 by (3.15). In the same way we can 
show that (bsj(t)v,ri) have the stochastic differentials: 

Vv,r|€ Hi, d(b5i<t)v,Tl) = (bg}(t)v,r|)dn|(t) 

We can verify the conditions of Theorem 2.3 by using the following lemmas. 
|v| a denotes the norm of v in H« and |v|_a is the norm of v in H„. Recall that (•, •) 

denotes the scalar product in Hg and the duality between Ha and Ha. 

Lemma 4.1 Let L, M, N be differential operators of the form: 
L := Dp(aP<J(x)Dq),    M := bP(x)Dp,    N := cP(x)Dp> where aP<l, bP, cP are real functions 
on Rd (p,q:=0,...,d) 

1) Letv:=0,1,2. Suppose that: 
Vx e Rd Vf-yj <m + v, |DTaP<l(x)| <K|p(x)|P+^,    |Dn>P(x)| £K|p(x)|H?l 

Then:  Vv, <D e C~(RdY |(Lv,3>)| <K'|v| 1+V|0>| J_V,    |(MV, <J>)| <K'|V| 1+V1<&U- 

2) Suppose that:    Vx e Rd, V|v| <max(m, 2), V|ß| < max(m, 1) 
|DPCJ(X)| <K|p(x)|Hßl, |D^c°(x)| <K|p(x)|-M 

Then:  Vv,*e C^(^Rd), Va= 0,±1,    |(Nv,<fr)| ^K'lvlji&li^. 
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The constant K' in the above statements depends only on v, m, k, on the weight 
functions r, p and on the dimension d. 

Proof 
1) |(Dp(aPcJDqv), <E>)| < |{-l)P(aPqDqV,DpO)| < |(Dv(aP<lDqv),D-vDpO)| < 

< iDvfaPlDqV)! • |IVV*| < K'|v| 1+v|*| t_v, 
|(bPDpv,*)| s|(DvbPDpV,D-v»)| s|DybPDpv| ■ |D_V*| £K'|vli+vl*l-v 
2) Let us prove only the case a := -1. The rest of Lemma is obvious. 
Let v be an arbitrary generalised function from H_j. Then v = (I - A)u and 

3u e H\ : |u| j = |v|_j, where I is the identity and A is the Laplace operator. 
Therefore: 

(ckDkv,*) =-(a-A)u,Dk(><I>)) =-[DpUJDPDkfck(&)) <IK'|u|,|0|2 = K'|V|_I|«D|2 

Remark 4.2 Note that under the conditions of statement 2) of the above lemma, M is a 
bounded linear operator from H« into Ha_ j for a = 0, ±1. 

Lemma 4.3 Let LgO), Ms(t), Ng(t) be differential operators of the form 
L5(t) := Dp(aPq(x)Dq),    M5(t) := b|(x)Dp,    N5(t) := c|(x)Dp 

for every 8 > 0, where a5 , bg, cg are measurable functions on [0, T] xßg xRd. 
Suppose that for all (t, co5, x) e [0, Tl x Q5 x Rd and 8 > 0: 

Vj^m, jmaf(t,©6,x)|<K|p{x)|P^-H 

V|Yi|<m + l, |ü1ribg(l,a>&x)| <K|p(x)|Mril 
For Hs(t) be an increasing continuous random process for every 8 > 0. 
1) If DYa|q(t, x) - 0 in .S2(dH5)R (w.r. to P5) for all jy\ < m, then: 

Vv € W^+1(r, p), V8 > 0, L5v - 0 in s2(äHsyW^~1 (T, p) (w.r. to P5) 
2) If: Vx 6 Rd, V|7i I < m +1, p = 0,..., d Drl b|(t, x) - 0 in gR (w.r. to P5 ) 

then:    a) Vu, e W^+1 (r, p),   M5(t)oi - 0 and Mf }(t)ui - 0 in gW™(r, p), 
b)        Vu2 e Wf+V, p),    M5(t)u2 - 0 in m%+l(r, p) (w.r. to P5), 

where Mö     (t) is the adjoint of Mg(t) in the duality determined by the scalar product in 
W?(r,p). 

Proof We only prove that Vu j e W^+1 (r, p),     M™ '(Ouj - 0 in «W^r, p). 
The rest of Lemma is similarly proved. Obviously, 

2 
I5:=sup Mr >(t)U1 =sup    sup 

o  t^r |v|0si 
M8    ;(tVi,v      =sup    sup   |(Ul,M5(t)v)|2. 

t<rr  |v|0si 
Hence, by integration by parts and by using property (I,) of the weight functions r and 

p we get: I6 <k j   ,   sup g5(t,x)f(x)dx, (4.7) 
R    t<rr 

where: g5(t,x):=        £ £ |p(x)|2M-2P|DYlb5'(t,x)|2 

|YJ |<jtiax(m,r)   P~° 

f(x):=     £      r2(x)!p(x)|2K2l DI^IU^X) 
2 

|Y2|Sffl+l 

By the assumption of the lemma we have Vx e Rd, gg(t, x) - 0 in gR (w.r. to Pg) and 
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Hence, by ChebysheVs inequality we have: Vui e W™+1 (r, p),     M5     (t)uj ~ 0 in 

V(t ©5, x) e [0, T] x Qs x Rd, V5 > 0,    gs(t, x) < K 
Therefore: Vx e Rd. V5 > 0,   lim E5 sup gs(t, x) = 0 and Eg sup g5(t, x) < K, where 

5->o     t<r t^r 
E5 denotes the expectation with respect to P5. Thus from (4.7) we have, by Lebesgue's 
theorem on dominated convergence: 

limsup E5I5 <Klimsup f d   Es sup g5(t,x) kx)dx = 0 
5->0 5-^0     R   V      t^T ) 

i Chebysh 
*W^(r,p) (w.r. toP5).D 

Lemma 4.4 Let L be a differential operator of the form L - Dp(aP<l(x)Dq), where 
a^ is a measurable function on R* for every p, q := 0, d. Assume that: 

Vxe Rd,V|-yi <m, |DTaW<x)| <K|p(x)|^-H 

VxeRd
!V9:=(91,...(ed)eRd3^>0,    £  aW(x)9p8q >Xp2(x) £ 8?     (4.8) 

p,q=l j=l 
Then: Vv e tt{ := W^+^r,p),3K' > 0: (Lv,v) + £|v|2 ^K'M2 

where K' is a constant which depends only on d, A, m, r, p and on the constant K above. 
Proof By the definition of the scalar product in W™(r, p) (which is extended by 

continuity to the duality between Wf+1 (r, p) and W™"1 (r, p) = W(™+1)  ) and by using the 
property (T,) of the weight functions r and p we have: 

(Lv,v)= Z   C?(-l)PjRd JDY3P<l(x)Dqv(x)Dp(r2(x)p2W(x)DMx)))dx< 

< 2   C^|Rd r2(x)|p(x)|2NaJ1(x)(D1DYv(x))(DjDMx))dX+k|v|0|v|i = 

- 2   C^j dp-2(x)aJ1(x)(r(x)|p(x)|M+1D1DMx))(r(x)|p(x)|l^+1DjpMx)Jdx+k|v|0|v|] 

l7)Sm 
where k is a constant, depending on d, m, K and on the weight functions r and p. Hence by 

(3.19) and by the inequality: kl^M, ^f M?+ ^|v|2) we have: 

(Lv,v)£-A.  E   C?"f d   ir2(x)|p(x)|2W+1|DjDMx)|2dx + k|v|0|v|1< 
M<3n K    j=l 

£-A.|v|2+k0|v|2 + ||v|2 + g|v|2<||v|2+K'|v|2, 

with K7 := kn + fer, where ko is a constant depending on X, d, m. □ 
Lemma 4.5 Let L. M, N be differential operators of the form: 

L := Dp(aP(l(x)Dq),    M := bP(x)Dp,    N := cP(x)Dp, where aPI, bP, cP are measurable real 
functions on Rd for p,q:=0,...,d. 

1) Assume that: 
Vx e Rd, VH <m, |ß| <max(m. 1), |DPCJ(X)| <K|p(x)|Hßt,    |D?C°(X)| SK|p(x)|-W 

Then:  VveH, := W^frp^aK'X), |(Nv,v)| <K'|vlo 
2) Assume that: 

Vxe Rd V|ß| <max(m+l,2), |Dßb>(x)| <K|p(x)|Hßl, |DPoJ(x)| <K|p(x)|Hßl 

Vx e Rd, VH <m+1, |DH>°(x)| <K|p(x)|-M, |mC°(x)| £K|p(x)|-h    (4.9) 

Then:   VvfiHb    |(Mv,Nv) + (v,MNv)| <K'|v| 
3) Suppose the assumptions of 2). Assume moreover that: 
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Vx e Rd, V|Y| < m, |DTaM(x)| < K|p(x)|^~H (4.10) 

Then:   VveH2:     |(Lv,Mv) + (v.MLv)| 5SK/|v|2, (4.11) 

where constant K' in the statements depends only on K, m, d and on the weight functions r, p. 
Proof 
We prove only 3). The statements 1) and 2) can be proved in the same fashion. 

Assume first that Vp, q := ÖTd, aPI e C^(Rd j. We use the notations: 

f      ■   ■=   d     -JLf    f —   d 9 d d  f 

Note that to prove 3) it suffices to show that for every integer n = 0, m 

VveCo(R4rVnfaV)..       ...fbkvk) + r2p2X   Jb^O    1        Z0 
V     J K      ^JM-m    v        yii-in 1-'    V    ^       yJkAj...in 

with a relation constant K depending only on K, m and d. 
Obviously: 

i! := r2p2nfA) -.fbkvk) =r2p2nfaJ1v1) b\,  {  +r2p2nfaJ1v,) g 
v       ■'jii-.m    ^ yii. in \        'ji^in        I'"k v        Vjij...in 

where g := (bkvk ) - b'H'y    j . By integration by parts: 
•        Ai-in ' 

r2p2n('aJ1v1) g— (ahn)        (rVng) = Up^fA) |r_1PI_nfr2P2ng) 
/j'l   >n V        -M]   inV /j     ^ V        /i,...inj V ,/j 

Taking into account property (Ij) of the weight functions and the assumptions 
(3.20)-(3.21)wehave: 

Vx e Rd, 

Vx e Rd, 

v        'ij-in 

r-y-^rVng] 

<K'    £    rpH|DTv| 
|Y)<m+l 

<K7    X    rpM|D?v| 

where K' is a constant depending onfy on K, m, d, r, p. Hence: r2p2n(a'1v1 j gZO and 
>■ -'ill...in 

consequently: IjZr V"(A) 
'Jij-in 

b*v; 
jii-m l-'k 

Using property (I,) and the assumptions (4.9)-(4.10) again, we have: 

l2='2P2nvi,..i„|bk(A),   I ^21+122 
'*kx • m 

where:   I21 :=r2
P

2nv. ^ bjpfaJ1v1 j       .        and   I22-r2p2%  ^(aO 
1 pv-        /jh,...^...^ 1'""     \        ■/jki1...in 

By integration by parts, we have: 

v * F'k^        /jij...ip..jn v l /kV       /jij.-in 

= _r2p2nbkv •     .nk(aJlVll +Q 

where Q := -(r2p2nbk j v;    :  (a-'^ ] . By condition (IJ and (4.9)-(4.10) we can 
"• -"k     '        V / ii,    in 'jij.in 

show that I21Z0, QZO. Therefore:   I2ZI22Z-r2p2nbkvil ...inkf a^v, J__ 
Jl,...in 
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HenceI = Ii +I2^0 by(4.10). In the general case of coefficients aPl wetakea 

non-negative kernel r\ e C^( Rd | such that | d T](x)dx = 1 and define: 

Vc>0, 4 := jRd a%   cy)q(y)dy, a£(x) :={Rd aP(x-ey)ri(y)dy, Le :=Dp^afqDq 

Obviously a|'q e C^( Rd) and by using the property (IJ we can see that agQ satisfy 

the assumption (4.10) for every e > 0, with some constant K which does not depend on e. 
Consequently, by virtue of what we have proved above: 

Ve > 0, Vv€ C~(Rd },    |(Lev, Mv) + (v, MLev)| < K'|v|\ 

Letting here E^Owe get (4.11) for every v e C^f Rd ). and hence we can get (4.11) 

for every v 6 Wf2(r,p).D 
Using now Lemmas 4.1 and 4.2 we can see that Equations (3.7) and (3.9) satisfy the 

assumptions (Lj and (LJ of Theorem 2.3 . Moreover by lemmas 4.4 and 4.5 we can verify the 
assumption (14). The assumption (I,) and (1;HV) of Theorem 2.3 are obviously satisfied. 

Hence we can finish the proof of Theorem 3.2 by applying Theorem 2.3.D 
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Abstract In the specific literature, the rocket rudder actuators are mathematically treated as 
linear systems. Reality strongly infirm the linear character of these systems, whose structural 
elements generally have a non-linear behaviour. 

The paper concerns with the evaluation of the pneumatic amplifier non-linear characteristics 
on the stability of the rudder actuator of an air-air rocket. Giving up the simplifying hypotheses 
which are usually adopted at rocket rudder actuators modelling, a non-linear mathematical model is 
elaborated, which takes into account the real variation of the working agent pressures inside the 
pneumatic cylinder chambers. On the basis of this mathematical model, using the description 
function method, the existence and the nature of the periodic solutions is analysed, for the equation 
of harmonic equilibrium. 

The harmonic equilibrium equation solving is realised by numeric, graphic and analytic 
methods, in the specific conditions of some significant flying regimes. 

1. Introduction 

The specific literature treating the analysis and synthesis of rocket rudder 
actuators[2], [3] is based on a series of ideal, simple or approximate models for the physical 
processes which characterise these systems dynamics. In these conditions, the dynamic 
behaviour of the rocket rudder actuator is described, from the mathematical point view, by 
stationary linear differential equations system.. The analysis of actuator stability, under the 
hypothesis of small angular displacement of rocket rudder, in the proximity of the 
equilibrium position, is performed on the basis of this linear model. Mainly, the results 
obtained in such conditions could be satisfactory regarding a reasonable concordance 
between theory and experiment. It is also possible the occurrence of the situation in which 
the hypotheses adopted for the linear model could be unacceptable, leading to great 
differences with respect to the results obtained on the basis of the non-linear model. 

Further, giving up the simplifying hypotheses adopted on pneumatic amplifier 
modelling, a non-linear mathematical model will be adopted, which consist the basis of the 
rocket rudder actuator stability analysis. 

2. Mathematical modelling of rocket rudder actuator 

The actuator consists in a electronic amplifier (A), a non-linear pressure amplifier 
(AP), a pneumatic cylinder (CP), a mechanical transmission (TM) and a linear displacement 
transducer (TP), connected as in the block schema represented in fig. 1. 
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r A 
Ai AP 

(EN) 
P CP 

If —* TM 

TP 

Fig.l. Block schema of non-linear actuator 

The mathematical modelling on the physical processes consisting the functional basis 
of rocket rudder actuator structural elements, lead on the non-linear differential equations 

system 
Ai = ka(u-ur); 

dx, 
= c ' c' T2^1 

'C    dt2 
+ 2^cTc-f + xt=kcAi; 

at 

dy = J_ 
dt    Sn 

Qf 0 + s)xt-r—P 
4>k    J 

eVp   dp 

2kpk   dt 

d2y   ,     dy 0 
mPdt^+kfvi+asy=pSp: 

where 
P = Pl~P2 

'1 + x 

Pi-' 

e-Xt 

Lpk.Pi^PkB : 

1 + 1|K2 + 4(I^
2 

_k_ 
k-1 

Pk ■ Pi>PkB; 

(1) 

p2 

1-xt 

e + xt 

1 
V   k 

Pk.P2^PkB 

Pa+jK2Pa2+4 IzV2 

E + Xt 

k-1 

Pk.   P2>PkB, 

(2) 

k 

2 N,k-1 

k+1 
n\ 
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The non-linear feature of equations system (1) is given by the relations (2) which 
express the real variations of working agent pressures inside the pneumatic cylinder 
chambers, function of jet tube relative displacement. On the basis of relations (2), taking 
into account the second equation of system (1), in fig.2 we represented the pressure loss on 
pneumatic cylinder piston, versus command electric current differential. 

Px10-5[Pal «o 

*0 

s^c 

-H 
/y 

! y 
Ai0 

JcS 
-Po 

30 <0 

&IX103 [A] 

Fig.2. Non-linear characteristic on the pneumatic amplifier 

The non-linear characteristic of the pneumatic amplifier may be taken as linear on 
intervals and assimilated with the characteristic of a non-linear element with saturation. 

3. Formulation of harmonic linearisation problem of rocket rudder actuator 

In order to study the rocket rudder actuator stability when the non-linear pneumatic 
amplifier is considered, the method of description function [1], [4], [5] will be used. This 
method is based on the hypothesis of separability, which consists in the possibility of 
performing system structural splitting into a linear subsystem and a non-linear subsystem. 

Structural splitting of rocket rudder actuator is performed on the basis of block 
schema given in fig. 1, of the equations system (1) and the non-linear characteristic showed 
in fig.2. Thus, the equivalent structural schema of the non-linear actuator takes the form 
showed in fig. 3. 

^0 y\ 
>, e p, WL{s) 

ß 
r J/. 0      «0 

Fig.3. The equivalent structural schema of the non-linear actuator 

The operator WL (s) represents the linear part transfer function of the non-linear 
actuator. This transfer function takes the form 
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W    /s\ - L _ r (4) 
LW    (TC2S2+2SCTCS + IXAS3+BS2+CS+D)' 

where 
kL =2krpkSpkcQ0(l+£); A=sV0mp ; B = s (kfvV0 + kQ0mps) ; 

C = eVoas+k(2PkSP+kfvQ0e2); D = kQ0as£
2 . 

The relations between parameters of the non-linear characteristics represented in 
fig.2 and 3, are 

s0=-^-r;no=p0;  ßc=fu (6) 
kaKp Kp 

At the equivalent structural schema, represented in fig.3, the functional relation 
input-output which characterises the non-linear pneumatic amplifier, is p = f(e), where f is 
a continuous and monotonous function on intervals, also, univalent and symmetric with 
respect to the plane (e , p). 

The complex characteristic equation (s = jco) of the non-linear rocket rudder actuator 

(harmonic equilibrium equation) takes the form 
1 + S(Ä)WL(jco) = 0, __(7) 

where Ä represents the relative amplitude of non-linear element input signal, and S( A) is 
the harmonic complex relative operator (description function), which can be expressed with 

the relation  
S(Ä) = ä(A) + jb(A). GO 

In (8), a(K) and b(A) represent the description function coefficients, which can be 

determined [1] by the help of the expressions 

ä(A) = - 
7t HM arcsin=r + t=, 1 

A     " 
A>1;b(A) = 0. (9) 

Taking account of (8), the harmonic equilibrium equation (7) is equivalent with the 
non-linear real equations system 

ä(Ä)=-Re[WL1r>)];j {10) 

b(Ä) = - Im [WL
1
(JCO)].J 

Weather the non-linear equations system (10) have solutions, then the non-linear 

actuator is excited oscillating with pulsation co k and amplitude Ak. 

4. Analysis of existence and nature of periodic solutions 
of harmonic equilibrium equation 

As the expressions of the description function relative coefficients, and these of the 
real and imaginary parts of the reversed transfer operator of the linear subsystem, are 
intricate, the analytical determination of non-linear equations system (10) solutions, is not 
possible! Therefore, in order to find these solutions, numeric or graphic methods could be 
used. The analysis of equations system (10) periodic solutions existence, lays on the basis 
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of the pneumatic mechanism functional and constructive features, for an air-air rocket 
which flies in some significant regime. 

The numeric solving of non-linear equations system (10) by Newton-Raphson 
method, tead to the solutions showed in taWe \. 

Table 1 

Excited 
oscillations 
parameters 

Rocket flight regime 

H=15km H=20km 
M=0,5 M=2,5 M=0,5 M=2,5 

Ak 2,85 2,01 2,82 2,40 
Ak[rad] 0,005 0,003 0,005 0,004 

cok[rad/s] 353,4 408,9 354,6 381,1 

Note: Ak=AkE0. 
The periodic solutions existence shows the fact that an oscillating working regime is 

induced in the non-linear actuator. 
From the analysis on the values presented in table 1 results that for the same flight 

height, the excited oscillations pulsation increases and their amplitude decreases in 
supersonic regime, compared to the values obtained for the subsonic regime. In subsonic 
regime, when rocket flight height increases , the excited oscillations pulsation increases 
very slow, almost not significant, while their amplitude remains at the same level. On other 
hand, in supersonic regime, while rocket flight height increases, the excited oscillations 
pulsation decreases while their amplitude increases very slow. 

In conformity with Loeb first rule [4], the excited oscillations characterised by the 
pairs of values (Ak ,co k), are stable if the following condition is satisfied 

where 

Sn=- 
'dJmfWjJjttJ    fdRe[Sj(A)]' 

Si(A) = -[S(A)]    = 

dco 

1(A) 

Jak\ 
dA 

>0, 

'Äk 

■ + J=7 
b(A) 

(11) 

(12) 
ä(A)2 + b(A)2    'ä(A)2 + b(A)2 

The Sj(A) operator, represents the relative reversed negative description function 
of the non-linear pneumatic amplifier. 

The validation of condition (11) is a difficult problem because of the intricate form 
of the expressions implied into the derivation procedure. One of the possibilities of avoiding 
the derivative computation, consists in graphic an analytic solving of equation (7), which, 
taking consideration of (12), can be expressed under the equivalent form 

WL(ia>) = S,(Ä). (13) 
The graphic and analytic solving of equation (13) is performed by Nyquist method 

with variable critic point [1], [4], and consists in a harmonic balance variant (Goldfarb) in 
the direct Nyquist plane. The transfer places WL(jco), co>0 and Sj(Ä) , Ä>1 are 
represented in fig.4, corresponding to the flight regimes indicated on the diagrams. 
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b) 
Fig.4. The transfer places WL(jco) and Sj(A) 
a) - subsonic regime; b) - supersonic regime 

Analysing the figure 4,a) results that in subsonic regime, near the origin of the 
complex plane, the transfer places WL1(jco) and WL2(J(a)' corresponding to the two flight 

height of the rocket, are practically the same. This observation confirms the fact that there 
are no significant differences in subsonic regime between the excited oscillations 
parameters, which appear in the non-linear actuator. Also, there are no significant 
differences between the excited oscillations parameters values, corresponding to the 
intersection points Pk1 and Pk2 and the values obtained by numerical method used. 

The evaluation of the periodic oscillations nature, on the basis of the represented 
transfer places (fig.4), is done by the help of Lobe second rule [4]. In conformity with this 
rale, the excited oscillation characterised by the pair of values (Ak, co k) is stable if starting 
from the intersection point of the two places on WL (jo) transfer place for increasing G> , the 

Sj(A) transfer place for A ascending remains at the left. The analysis of the diagrams 

- 161 



presented in fig.4, considering this rule, indicates the fact that for the two flight regimes, the 
excited oscillations which appear in non-linear actuator are stable (self excited oscillations). 

5. Conclusions 

The stability analysis based on the linear mathematical model, shows that for a 
properly choose of the functional and constructive parameters, the rocket rudder actuator is 
structural stable. The pneumatic amplifier non-linear characteristic induces a excited 
oscillation regime in rocket rudder actuator, which, in this case, is no longer global 
asymptotic stable. In spite of this fact, for the flight regimes of the rocket analysed in the 
paper, the excited oscillations are stable, their parameters taking values whose short time 
perturbation does not lead to their unbounded increase in time. 

List of symbols 

- u -  command signal; 
- ur- reaction signal; 
- uc-error signal; 
-k, - electronic amplifier transfer coefficient, 
- A i -electric current difference in electromagnetic converter coils; 
- ko - electromagnetic converter transfer coefficient; 
- Jc - electromagnetic converter time constant; 
- (je - electromagnetic converter damping factor; 
- kp- displacement transducer transfer coefficient; 

- p-K - working agent pressure; 
- Pi, Pi - pressures inside the pneumatic cylinder chambers; 
- p - pressure differential on the pneumatic cylinder piston; 
- pa - atmospheric pressure; 
- kr, - viscous friction coefficient for the pneumatic cylinder; 
- k - adiabatic exponent; 
- Xt - jet tube relative displacement; 

- (Tip-piston reduced mass; 

- Sp- piston effective section area; 

- Vo - pneumatic cylinder chambers volume; 
- y - piston displacement; 
- r - mechanical transmission transfer coefficient; 
- p - rudder braking angle; 
- as - aerodynamic load coefficient; 
- E ,Qo - actuator constructive parameters. 
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Numerical Simulation of Nonlinear Transient Aircraft Response 
During Ground Motion 

Vladimir ZELJKOVIC* & Stevan MAKSIMOVIC" 
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Abstract 

In this paper, the aircraft motion and stability during taxiing and take-off were analyzed. The 
equations for aircraft yawing , including nose wheel was derived, Certain terms in these 
equations of motion have nonlinear character, Nonlinear equation for aircraft yawing, 
including nose wheel motion are derived, Suitable numerical techniques are used to solve this 
nonlinear problem, Linearization of nonlinear elements is performed to analyze the stability 
condition. The effect of main parameters (castering nose wheels, centering spring and damper) 
to the aircraft motion (natural frequency and damping) was analyzed. Presented coupled 
(aircraft and nose wheel) equation and parameters variation are illustrated by calculation and 
the numerical simulation of aircraft motion on the light trainer aircraft, The various types of 
mrfpir input are applied for time response simulations. 
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The numerical integration in a given domain of a system of 

differential equations through the method of the norm 

minimization of the error matrix 

Author: cpt. cdor. eng. Mihai Olariu 

The Military Tehnical Academy, 
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Sector 5, Bucharest. 

This work presents some methods of integration lor systems of differential equations with 

variable coeficients like: the method of the matricial polinomial expression, the method of 

developement in Taylor series or the method of the norm minimization of the error matrix. The 

attained results and the conclusion drawn by using the three methods are analysed on a concrete 

3xemple. 

!n most of the orientation problems, for example in the position determination 

of a body reported to an inertia! referential system of axes, starting from the 

measurement of the angular velocities, a matricial system of differential equations 

must be integrated as follows: 

C(t)=C(t)-rö(t), (1) 

where:-C(t)€ M3(CR(T) j is the director cosines matrix; 
V   1   ' N 

- ffl (t) <= M3[ CR(T) I is the matrix associated the momentary angular 

/elocity vector. 

-CR
1(T) is the set of real functions with a continue derivative on the T 

interval. 

The theorem of existance and singleness for a system of differential 

equations with initial conditions given assures us that this system admits a unique 

solution on an interval. The no. (1) system admits an analytic solution only in certain 

conditions that are showed in the passages below. The numerical integration of the 

system can be done in two ways: 

1)- analytic methods that give the approximation of the solution under the 

form of an analytic expression on an interval; 
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2)- numerical methods, that give the solution under the form of a succession 

of values, starting from an initial value of the solution. 

Further on we will show in what conditions the no. 1 system admits an 

analytic solution. 

The method of the matricial polynomial expression 

The no. (1) system admits an analytic solution only if we have the equality of 

the matrices product: 

t t 

© (t) ■ J © (s)ds=(| ö (s)ds)-ffl (t), (2) 
o o 

The solution of the no. (1) system can be generalized because the rank of the matrix 

doesn t interfere in the demonstration that we will give below. But because third rank 

matrices interfere in solving this problem, we assume that the matrix 

C(t) e M31 Cp(T) J. We will demonstrate that the C(t) matrix, having the form below, 

is a solution of the given system: 

C(t) = C(0) 

ft ^|2       ft \3 

1 
l3+J ©(s)ds+— j co(s)ds    +— j (o(s)ds 

Vo Vo 
+ ...+- 

ml 
j ©(s)ds 

\m 

VO 

(3) 
We called this relation a matricial polynomial expression because the forms 

of the terms in the development of the C(t) matrix are matrices of different ranks. 

Calculating the derivative (the derived function) of the no. (3) relation we have: 

ft ^   ft 
C(t) = C(0) co(t) + 

2! 
CD 

+C(0){^fffl(t) 
\0 

~\2 

(t) j co(s)ds  + } cö(s)ds  ffl(t) 

v0 j   Vo / 

t Y   f* )      (x 

j rö(s)ds     + j rö(s)ds   co(t) } co(s)ds 

vo )       Vo 

j räls)ds 

vo 
rö(t)j + ...} (4) 

By replacing the relations no. (3) and (4) in the no. (1) system of differential 

equations and making the necessary reckonings, we obtain: 

C(t)-C(t)co(t) = 

= C(0) (to(t)-co(t)) + i«(t) 
ft 

J G)(s)ds 
I 
2 

ft            ] 
J o(s)ds ö(t) 

lo            J lo            J 
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+C(0){-[ro ff- <t) J öi(s)ds 

\2     ( 

+ 
0 

>2 
y 

j «>(s)ds ©(t) j co(s)ds 
\o 

+ 

-J J m(s)ds     m(t)]+ ...}. (5) 

If condition no. (2) respected, the differences from the right member of the 

no.5 relation are equal to zero. The demonstration backwards is easy to find. 

Meantime, from relation no. (3) can be noticed that for an effective estimation of the 

C(t) matrix we must limit to the calculation of a certain number of terms of its 

development. Usually, the matrix associated to the angular velocity vector does not 

respect relation (2) and that is why the following types of errors result: 

t 

-errors due to the not interchangeble matrices e> ft) si j ä (s)ds ; 

0 
-errors due to the truncation, because the fact the we limit to a certain number 

of terms, the first terms of relation (3). 

If the angular velocity vector is fixed, the error due to the fact that the no. (2) product 

is not interchangeble is zero as it will be shown furthur on; 

»Xft) = Oxof(t), Coyft)=G)y0f(t), C0Z(t) = COzof(t), (6) 

are the director cosines of the support of the a ft) vector. In this case the matrix 

associated to the angular velocity vector has the expression: 

co (t) =co0 f(t) (7) 

t t 
where: co0 e M3(R). So: j <o (s)ds =rä0 jf(s)ds . (8) 

0 o 
Considering the no.relation (8), relation (2) becomes: 

^o f(t)J ©o f(s)ds=coo f(t)Jf(s)ds-  j ©0 f(s)ds Coo f(t)=coD Jf(s)ds 
Vo 

f(t).(9) 

Relation no. (9) confirms the justness of the previous statement. This method of 

integration justifies its implementation on a system of calculus of a navigator from 

the following reason: at every interval of calculus these integrals are used: 

T T T 

9X = J cox(t)dt, 9y = J ©y(t)dt, 6Z = j coz(t)dt. (10) 
ooo 

They are natural information from an integrating speed gyroscope or from a laser 
speed gyroscope. 
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The method of development in Taylor series 
We intend to find a solution for the no. (1) system of differential equations, 

that approximates the exact one on a given interval with a certain error. If we 
aknowledge the C(t) solution can be developed in Taylor series around the point t„ 

under the form of a matricial polynomial expression, we have: 

If we note with Cft) the approximate form of the real solution, for t=t, and Vt^h, we 

have: 

C(l, ) =C<0,(<o)+C<"(«0)^«(.„)| + ..^»(«o)^ •       d* 
As it can be seen in relation no. (12), for establishing the C(t,) solution, we must find 

the constant matrices, symbolically noted : C^}, C«1'^),.... C«"^); h being 
constant. Using the given system of differential equations it can be written: 

C(1'' (u 1 = cf tn i rö I tft I . Further on the matrices of superior rank are calculated 

using the following relations: 

C(2)(t)=C(1)(t)ö(t)+C(t)ä(1)(t) = C(t)ca
2(t)+C(t)ö(1)(t) , (13) 

In relation no. (13) if t=t„ we have: 

C®(to)-c(to)[o»e(to)4Ä(1)(to)] - <14> 

For the third rank derivative, we derive relation (14) and obtain: 

C(3,(t) =C(t)[e>3 (t) + 2 rä (t) rö(1) (tW1) (t) e> (tW2) (t)], (15) 

respectively: 

C^(to) =c(to)[-3 (to) +2Ä(t0) ^ (t0)-
(1) (to) Ä (to)-(2) (to)] 

The proceeding can go on and other terms of higher rank can be taken from relation 

(12) according to the precision we want to provide to the calculus, but the 
expressions will be more complicated because of these derivations. The parameters 
„precision- and „calculus duration- are contradictory, the minimization of the error of 
approximation as much as possible leeds to an increase of the time of calculus and 
backwards, so we are forced to take from relation (11) such a number of terms so 
that we can obtain maximum of efficiency. Because of this cause we wont obtain the 
real value C(t,), but an approximation determined, the C2 approximation of the true 
C(t>) value can be found, using the same method. Finally, a table of values for the 
C(t) solution is obtained, in which, besides C(y all the values are approximated. 
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The method of the norm minimization of the error matrix 

Now. the problem of the integration of system no. (1) arises, but this time a 

solution of the followinq form is estimated: 

C(t)=Cw+C (0)^(1)1^(2)1 +C^ ■ + ...+C (s)Ü (16) 
11 2! s! 

whose coefficients C(0\ C°\ ..., C($i will be determined in conditions in which the error 

betwen the exact C(t) solution and its estimation is minimum. We take into 

consideration the fact that the matrix will have to be an orthogonal matrix, and the 

relations between its elements constitute the bands for determinating the extreme. 

Taking into account the orthogonality of the C(t) matrix the following relations can be 

written: 

rP = £ cki (t) CK (t)-5kl =0 , p=1,6 , for k=l=1, k=l=2, k=l=3, k=1 and 
H 

!=2 , k-1 and l=3, k=2 and l=3. (17) 

So ,for a certain estimation of the C(t) matrix, we note the norm of the error matrix 

through the relation: 

* 3 

0'.J 
as 

E   cik (s)cokj(s) 
k=1 

With the aid of relation no. (17) and r restrictions the 

this problem can be built: 

d Cy (s) 
ds , (18) 

.agrange function attached to 

Ue,r) = Jl 
A i i 

dC| (s) 

ds 
- Z  cjk (s)cokj(s) 

k=l 
ds- Li ApTp 

p=1 
(19) 

which depends on the c,j (t) elements of the C(t) matrix and on the Xp Lagranges 

multipliers. Its points of local minimum must be sought among the critical points of 

L(t, r) These points are given by the solutions of the system: 

3L(e,r) 

dc!: 

H^i J 
dc}- 

6   or, 

-I- 
p=1     dc 

v y ^o 

(20) ~Wf = -rp(.cii  j=0,l,J=1,2,3. 

Solving the no. (20) system we find the solution of no. (16) estimation. 

Further on we consider that a vehicle is simultaneously rolled with the 

foiiowing angular velocities: 
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Conclusions 

For the first two methods, the errors in the determination of the solution to the 

no. (1) system increase with the growth of the interval of integration. 

In the case of the method of developement in Taylor series, the solution of the 

system diverts far away from the real solution if the interval of integration increases. 

The lowest error is obtained in the case of the third method . An improvement 

of the calculus process, from the point of view of the error in determining the 

solution, can be done considering more terms in relations no. (3), (12), and (16) with 

the inconvenience of increasing the time of calculus. In a given situation a 

compromise can be done between the time of obtaining the solution and the number 

of terms considered in the approximate solution. 
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Abstract 

Efficiency and justification of hypergeometric functions application in achieving simple formulas used in 
numerical simulation of helicopter rotor blades theory are presented in this paper. 

First of all, basic equations of stream field over helicopter rotor are formulated, their decomposition is 
made and mean induced velocity harmonics are integrally presented. Theoretical basis of hypergeometric function 
application in transformation of integral equations of k - bladed rotor average induced velocity into special 
functions then follows. All necessary conditions for transformation hypergeometric functions into special functions 
are defined. 

Various variants of integral transformation of expressions obtained in that way are presented here by 
numerical simulation and convenient solutions arc found among them. This approach to effectivity of 
hypergeometric function application in helicopter rotor blades theory by numerical simulation allows achieving of 
synthetic method which can be used to define helicopter k - bladed main rotor optimal characteristics. 

Basic assumptions and mutual relations 

In practical rotor calculations based on disc theory it can be assumed that circulation along supporting 
line is constant over blade azimuth angle. This assumption does not cause large differences in induced velocity 
computation at small values of p , and it significantly simplifies the computation. 

This assumption is applied only for induced velocities calculation which represents the basis for further 

determination of actual values of angles of attack blade section and variable circulation  T(p,0)  which are 

necessary for rotor characteristics calculation. 
Let the k-bladed rotor with diameter 2R and center in origin of Cartesian system Oxyz be placed in 

undisturbed flow field with velocity V. Rotor is rotating around y-axis with angular velocity ft) . Direction of 
velocity V forms with xz plane arbitrary angle a. Rotor blade is presented by radial segment of supporting line 

with circulation varying with radius p(0 < p < /?) and with constant circulation over azimuth angle 0. 

It is assumed that free vortex elements separating from supporting line are moving in space Oxyz along 
with particles of undisturbed flow field forming vortex shade in form of pitched spiral surface. Induced velocity V 
is calculated in arbitrary point of xz plane. That point is defined by polar coordinates: radius r and azimuth angle 

v■• 
hi order to simplify the calculation dimensions coefficients defined by following expressions will be used: 

n      V       F       r -    p      „    p      -    r 
V =—-;   r = J-;   p = —;   p = —;   r = — 

a>R <oR2 R r R 
Induced velocity can be presented in following integral form [ 1 ]: 

k    \ffT ^    ._       k    \dT ^    ._ 
+ —=  —<t>„d p +   —G>„dp 

AnV{dp    p Anr\dp    q   H I a'p    p A7tr\dp 

where 

(21 
AnV 
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1  2?L2psinecosaM (3) 
p     2;r J L2(L + Lxcosa) 

O   = J_2f_J»c0Sg      tfg (4) 
"     2n{L(L + Lxcosa) 

and 
Lx = (p cos 0-1) cos y/ - p sin Ö sin ^; 

^ = (p cost? -1) sin y/ + p sinÖcosy/; L = ft+p2 -2pcos& 

Periodic functions (3) and (4) with period 2   have following characteristics 

<M-y) = <Mv);     «M-^-^W (5) 

and consequently 

0 o 
Therefore second term in expression (1) presents velocity field component symmetrical in regard \o x- 

axis. and third term presents velocity field component asymmetrical in regard to x-axis. Let the velocity v be 
presented in form of Fourie series progression: 

v = vr+ JT (Fcn cosny/ - Vsn sinny/) 

and coefficients determined as 

(6) 1 2" _1   r- 7„ =- [vcosny/dy/;   vs„ = - | v sin my dp 

by use of formula (1). By replacing t = y + <p expression (1) is transformed on bas.s of (3) and (6) into 

"" ArtV [ffp   " 

Anr J dp 
kk„„\ar (8) 

where 
1   f sinfsin/rtcosg Hf ^ , 1   r sin? üIH//£ ^uou   #i 

(10) 

(11) 

hcos/cos a 

1**1 1 2? 1 C = J. fJ-sinpsinnpo'ö;       S„ =- I -cosntpdO 
*{L °        . 

Integral (9) is calculated elementarily and integrals (10) are presented in form 

c°=1]\T" -i(cos*)-Mcos«')K 

s„ = £ Ur„ (cos^ff (i2) 

In expression (12)   T„{cos ip)^ cos nip  is first order Chebyshev polynomial. Polynomials Chebyshev are 

convenient because second equation from (8) is excluded. From (1) and (12) consequently follows: 

S„=±(S„-i-$„♦,) (13) 
■-z\ 

which correlates coefficients (7) and (8) 

where /?„, is value k„n for A7 = 1. 
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(14) 

Form equations (11) and (12) follows that nuclei Cn and S„ of integrals (9) and (10) arc not dependent of 
parameters characterizing rotor working order. Integral (12) allows transformation into hypergoemetnc function. It 
can be shown that integral (12) represents solution of Gauss differential equation : 

$t}-4)n"+[r-{a + ß + -()i;\n,-aßri = o 
with boundary conditions defined by nucleus (12) in form' 

,7(0) =-2 

/7'(0) = 2m(/77 + l) 

if 

£ = /32;   a = -m \   ß = m + A ;   y = \ 

It consequently follows that integral (12) represents hypergeometric function in form 

l° ; p)i| 
Hypergeometric function  Fin expression (17) is Legendre polynomial  Pm  for X = ^-2p2. Calculation of 
nucleus (14) by using Legendre polynomial has following form 

l° ; p>ij 
For smaller values of index m equation (18) gives elementary expressions of requested nuclei 

S1 = -2; 

53 = -2+4/5
z; 

55=-2+12p2-12p4; U7) 

S7 = -2 + 24p2 - 60p4 + 40pe 

Expression (16) can be rewritten in form 

(15) 

(10) 

'+1 =-2-Za">^: I2" (18) 
,,=1 

where 

where     (2p -1)!! = 1 • 3 • 5 • • • (2p -1) . 

For nuclei calculation for large values of index m it is convenient to use recurrence formula 

2/77 + 1 

m + T<1-*)*"-^ (19) 

Graphic representation of function 52m0. for different m are shown at Fig 1. 

2 

Fig. 1 
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In addition to convenient practical results (17), (18), (19). transformation of nucleus S2m_, in form (16) 

gives following integral representation of Legendre polynomial which contains Chebyshev polynomial in form 

,d0 
Pm(cosö) = -lj7-2m+1(p)^ 

where 

p = lfsin^cos0-l};   / = jl + si^|-2sin|cos£>:   0<9<n,   /w = 0,1,2, 

Since for p ) 1 according to (18) nuclei S2n)r, are zero, formula (10) can be transformed in form: 

Anr 

s2m + 1-     _ 

1+ sin ay      J
Qop 

For analyücal solution expression (20) can be rewritten in form 

k   I    cosa 

Anr ^1 + |sina|, 

'rVr 
&M*)*P 

(20) 

(21) 

where X = 1 - 2p2 and partial derivative of circulation can be expressed in Legendre progression. 

g=iv,M (22) 

and taking into consideration that Legendre polynomial is orthogonal on basis of equation (21) analytical 

expression is obtained: 

v,,, — 
cosa (23) 

Ttf 2/77 + 1^1+1 sin a \ 

winch shows that coefficient 7s2m+1is dependent only on one coefficient from expression (22), that with index 

H = m. It can be shown by using Gauss hypergeometric equations, in a similar way to transformation of equation 

(16). that integral (10) can be expressed by following hypergeometric function 

23m-"m\      ' V       2  2 

which can be transformed into first and second order of Legendre functions 

'lP    M-2f\   ; /5<1 

(-If4 

p>1 

(24) 

^2m - ' 
-Q    ,(2p2-l)   ;    /3>1 

(25) 

(26) 

On basis of expression (25) it is possible to achieve following recurrence formula 

For practical application of calculation function in expression (24) can be transformed into first and 
second order elliptic integrals by taking into consideration that they can be rewritten in following form: 

.,2 

By replacing (27) into/77 = 0 and m = 1, following equations are obtained: 
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s0 = \ 
P>1 -<-tfM 

and 

4 

4 " 

(28) 

;r/9 

i[2f(p)-/f(,5)] ; jS<i 

'^)-(w-D*(D|;    »1 
(29) 

Recurrence formula (26) with equations (28) and (29) allows easy determination of nuclei S2n for every 

m greater than zero. Transformation of (12) into (25) allows achieving of following integral representation of 
first and second order of Legendre function: 

P
mJ}~2x2) = li"{X) • °^<1< (30) 

°U2**-H-r ?'*-(*)■•  *>1 
(31) 

where 

and T2m{p) is first order Chedyshev polynomial with p =-(A-COS 6»-1) and / = -y/l + X2 - 2x COS 6>. 

When nuclei S„and coefficients  7S„    are once determined by using expression (9) it is possible to 

express nuclei Cn for even indices n = 2/77 on basis of expressions (13) and (16) through Legendre polynomial 

c    >»(l-2^)-^i(l-2^);      p<1 

l° ;      P > 1 
Nuclei C2m can be expressed as hypergeomelric functions by using assumptions (30): 

CZm =-2mp2Fl-m + -\,m+\2;pz\ 

For smaller values of index m elementary formulas are achieved: 

C2 = -2pz ; 

C4 = -4p2+6p2; 

C6 = -6/S
2+24,34-20/5

e; 

Ca = -8p2 +60p4 -120p6 +70p8 

Nuclei   C„ for odd indices ^ = 2m + ^ can be transformed by using expressions (13) and (25) into first 

and second order Jacobi functions which allows representation in form of elliptic integrals For smaller m follows- 

'     ~\ 

(32) 

(33) 

C. 

C3 = 

4 - 
—P 
TC 

Zn 

/3>1 

_4_ 

3?r 
'(l-4p2)/C(p)-(l-8p2)£(p) 

(5-^Hi)-(i-^fi ' 
/3<1 

P)1 

(34) 

(35) 
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Conclusion 

Efficiency of application of 
theory of hypcrgcomctric function in 
rotor theory is reflected in achieving 
simple formulas representing 
velocity harmonics and representing 
basis for further numerical analyses 
of unsteady flow over helicopter 
rotor blades. Use of analytical 
presentation of induced velocity 
components significantly reduces 
working time and increases accuracy 
of calculation. Efficiency of applied 
method is shown by example and 
presented method shows great 
advantage in regard to classic 
approach to the problem solution 
because working time is shortened. 
Results achieved by this method arc 
given by examples (Fig.2-5) 

7. 
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STRENGTH ANALYSIS OF AIRCRAFT STRUCTURES USING 
ELASTOPLASTIC FINITE ELEMENT ANALYSIS AND 

PROBABILISTIC APPROACH 

StevanMAKSIMOVIC 
Aeronautical Institute, Nisfca bb. 11133 Zarkovo, Belgrade, Yugoslavia 

& 
Vladimir MUKOVIC 

Lola Institute, Kneza Viseslava 70a, 1100«), Belgrade 

ABSTRACT 

This paper presents a numerical method for evaluating the structural reliability of the aircraft 
structural components when the nonlinear finite dement method (FEM) is used for the stress 
analysis. Reliability-based analysis and design describe the load, load effects and the strength 
as random variables so that safety is related to some measure of the probability that strength 
capacity exceeds loading. Possible errors in elastic-plastic stress-strain analysis at notches are 
resulting from the use of approximate, but relative simple, analysis techniques instead of more 
accurate, but more complex finite clement technique. Jn order to evaluate the accuracy the 
stresses at the complex structural components, both elastic and clastic-plastic finite element 
analyses are used. For this purpose 4-nodc shell finite element, based on third order shear 
deformation theory, is used As illustrative examples different kinds of aircraft structural 
elements are analyzed by reliability-based design procedures. For these examples very 
satisfactory results are obtained. This confirms the effectiveness of the proposed procedure. 
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Simple chemical processes due to an underlying chaotic bydrodyn arnica! 

How are considered. In such flows the non-turbulent, but time dependent 

velocity field leads to chaotic tracer dynamics, i.e., to Lagrangian chaos. 

Chemical reactions in such flows will act along the unstable manifold of the 

nonattracting chaotic saddle governing the dynamics. Thus it is natural to 

expect that fractal properties and chaos characteristics of the flow appear 

in the reaction equations, in fact the fractal dimension and the escape rate 

influence the concentration of the constituents. 

The flow chosen to illustrate these phenomena is an example of a two- 

dimensional time-periodic fluid motion, the case of the von Karman vortex 

street in the wake of a cylinder. We consider simple kkdic reaction models 

where two particles of different kind undergo a reaction if and only if they 

come within a given distance, which can be called the interaction range. We 

shall consider an autocatalitk; process A+B -* 'IB and a collisional reaction 

A + B -+ 2C. 
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ANALYSIS OF A NONLINEAR 
INTEGRAL EQUATION MODELLING 

INFECTION DISEASES 

Radu PRECUP and Eduard KIRR 

Faculty of Mathematics and Informatics 
University "Babe§-Bolyai", 3400 Cluj, Romania 

Abstract 

To describe the spread of virus diseases with contact rate that varies 
seasonally, the following delay integral equation has been proposed by K.L. 
Cooke and J.L. Kaplan 

:(*)=/    f(s,x(s))ds. 
Jt-T 

This model can also be interpreted as an evolution equation of a single 
species population. The purpose of this paper is to describe and improve 
recent results on this equation, obtained by the authors in the last decade. 
Our analysis is concerned with the existence, uniqueness, approximation 
and continuous dependence on data of the positive solutions of the initial- 
value problem, and of the periodic solutions. We use topological methods 
(fixed point theorems, continuation principle) and monotone iterative tech- 
niques. 

Keywords:  nonlinear integral equation,  positive solutions, periodic solutions, 
fixed point, continuation principle, monotone iterations, continuous dependence, 
population dynamics. 
AMS subject classification: 45G10, 45M15, 47H15. 

1    Introduction 

In this paper we are concerned with the following nonlinear delay integral equa- 
tion 

x(t)= f   f(s,x(s))ds. (1) 
Jt-T 
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This equation and similar others appear when investigating the spread of virus 
diseases or, more generally, the growth of single species populations. Delay equa- 
tions also arise from the study of materials with thermal- or shape-memory (see 
[28]). 

Several results regarding various mathematical aspects of Eq.(l), or of equa- 
tions of type (1), have been obtained by K.L. Cooke and J.L. Kaplan [1], H.L. 
Smith [2],[8], R.D. Nussbaum [3], J. Kaplan, M. Sorg and J. Yorke [4], S. Busen- 
berg and K. Cooke [5], R.W. Leggett and L.R. Williams [7],[9], A. Canada [11], D. 
Guo and V. Lakshmikantham [12], I.A. Rus [13], S.G. Hristova and D.D. Bainov 
[14], N.G. Kazakova and D.D. Bainov [15], A.M. Fink and J.A. Gatica [16], R. 
Precup [17],[20],[24], R. Torrejön [19], E. Kirr [21],[25], A. Canada and A. Zertiti 
[22],[23], Ait Dads, K. Ezzinbi and 0. Arino [26]. Eq.(l) also appears in the 
monographs [6],[10, Example 20.1] and [18]. 

Let us first describe the meaning of Eq.(l) in terms of epidemics. In this 
case, it is assumed that the total number of population members is constant; 
x (t) represents the proportion of infectives in population at time t, regarded as a 
continuous quantity; r is the length of time an individual remains infectious (du- 
ration of infectivity); f(t,x(t)) means the proportion of new infectives per unit 
time (instantaneous contact rate). Then, f (t,x(t))dt represents the proportion 
of individuals infected within the period t, t + dt. In consequence, the number of 
infectious individuals at time t equals the sum of all individuals infected between 
t — T and t. 

Let us now interpret Eq.(l) as a growth equation of a single species popula- 
tion when the birth rate varies seasonally. In this case, x (t) is the number of 
individuals of a single species population at time t, f (t, x (t)) is the number of 
new births per unit time, and r is the lifetime. It is assumed that each individual 
lives to the age r exactly and then dies. 

In this paper we report on two distinct problems on Eq.(l). In both cases, 
because of the biological interpretation, we shall be interested in positive solu- 
tions. 

(I) The initial-values problem (IVP) 
We look for positive continuous solutions x(t) of Eq.(l), for —r < t < T, when 
it is known the proportion <p (t) of infectives for —r < t < 0, i.e., 

x(t) = (p (t)   for - T < t < 0. (2) 

Obviously, we have to assume that <p (t) is a positive continuous function on 
[—T, 0] and satisfies 

<p(0) = J°J(a,<p(a))ds. (3) 

It is easy to see that, under assumption (3), problem (l)-(2) is equivalent with 
the following initial-values problem 
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x' (t) = / {t, x (t)) - f (t - T,X {t - T))   forO <t<T 

(4) 
x(t) = tp (t)   for - T < t < 0. 

(II) The periodic problem (PP) 

Because of seasonal factors, the rate f(t,x) may be a w-periodic function of t 
and, in such situations, one is interested in u;-periodic solutions of Eq.(l). 

I. THE INITIAL-VALUES PROBLEM 

2    Existence results 

A. Positive solutions in space. 
We are looking for solutions of (l)-(2) in the space C of all continuous functions 
x (t) satisfying x(t) > a for — T < t < T, where a > 0 is a given number. 

Let us list our assumptions: 

(al) / (t, x) is nonnegative and continuous for —r < t < T and x > a. 

(a2) ip (t) is continuous, satisfies (3) and <p{t)> a for — T < t < 0. 

(a3) There exists a continuous function g (t) such that 

/ (t, x) > g (t)   for — T < t < T and x > a 

and 

)ds > a for 0 < t < T. 
Jt-T 

(a4) There exists a positive continuous function h (x) on [a, co) such that 

/ (t, x) < h (x)   for 0 < t < T and x > a 

and ,oo 
T< (l/h(x))dx. 

Ju>(0) 

Denote b = <p (0) and let R0 be given by 

fRo 

Jb 

/•Ho 
T=        (l/h(x))dx. (5) 

Jb 

Theorem 2.1 ([17]).  Suppose (al)-(a4) are satisfied.  Then the problem (l)-(2) 
has at least one solution x (t) £ C. Moreover, any solution in C satisfies 

x{t)<RoforO<t<T. (6) 
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Proof. Let E be the Banach space of all continuous functions x (t) defined 
on [0,T], endowed with the uniform norm. Consider the closed convex set of E, 
K = {x € E; x (<) > a for 0 < t < T}, and let 

X = {x € E\ x(0) = bzndx(t)>afoTO<t<T}. 

Also consider the homotopy 

H:Kx[0,l]->X, 

H (x, A) (t) = (1 - A) b + X //_T / {a, x (s)) ds, 

where x(t) = x (*) for 0 < * < T and x (t) = tp (t) for -r < t < 0. By (a3) and 
b>a,H is well-defined, i.e., H (K x [0,1]) C X, while by means of Ascoli-Arzela 
theorem, it is completely continuous. 

Next we establish the a priori boundedness of the set of all solutions of equa- 
tions H (x, A) = x, A € [0,1]. Let x be such a solution. Then, for each t € [0,T], 
we have 

x'(t) = \f(t,X(t))-\f(t-T,x(t-T)). 

Since / is nonnegative, we get 

x' («) < A/ (t, x (*)). 

Further, by (a4), 
x' (t) < Xh (x (<)). 

It follows that 
f lx' is) fh (x (a))) ds<Xt<XT< T, 

Jo 

for all* € [0,T]. Hence 

rx(t) 
fX    {l/h{u))du<T forO <t<T 

Jb 

whence, by (5), we see that x satisfies (6). 
Therefore, if we choose any R > Ro, we have that H is an admissible (fixed 

point free on boundary) homotopy on the closure of the open bounded set of X, 

U = {x 6 X; x{t)<R for 0 < * < T} . 

On the other hand, the constant map if (.,0) = b is essential (see [27, Theorem 
2.2]). Consequently, by the topological transversality theorem ([27, Theorem 
2.5]), the map A = H (., 1) is essential too. It follows that A has at least one 
fixed point x G U. Clearly, a; is a solution of (l)-(2). □ 

Remark 2.1. Let us assume that instead of (a4) one has 
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(a4')   lim sup / (£, x) /x = 11 (t) uniformly in t € [0, T] and \i —  sup  ix (t) < oo. 

Then, choosing a > /x, we get ß > 0 such that 

/ (*, x) < ax + ß for 0 < t < T and x > a. (7) 

Hence (a4) is fulfilled by h (x) = ax + ß, and 

P (l//i (u)) du = oo. 

If in addition, in (a4'), we suppose // < 1/r (this is assumption (H5) in [12]), 
then taking LI < a < 1/T we can choose R > b such that 

aR + ß< R/T, (8) 

in order that A maps U into itself and so, in this situation, Theorem 2.1 follows 
directly by Schauder's fixed point theorem. Next we show that this is also true 
for an arbitrary value of ft. 

Indeed, let us use an equivalent norm on E, namely 

IMIs = 0
m^(lx (01 exP (-0*)) 

with a suitable positive number 6. By (8), we get 

A (x) (t) < T7 + /0* (ax (s) + ß)ds = 

T^ + ßt + a /„' x (s) exp (-0s) exp (6s) ds < r7 + ßT + a \\x\\$ ft exp (6s) ds < 

Tf + ßT + (a/e)\\x\\eexp{0t), 

where 7 =   max f (t,(p(t)). Thus 

A (x) (t) exp (-6t) < (a/6) \\x\\g + r7 + ßT. 

Now, if we choose 9 > a and R > b such that 

(a/6) R + Tf + ßT<R, 

we see that A maps {x € X; ||x||# < R} into itself and so Schauder's fixed point 
theorem applies. 

Let us now consider instead of (a4) a more restrictive condition than (a<T), 
namely 

(a4") There exists L > 0 such that 

\f(t,x)-f(t,y)\<L\x-y\ (9) 

for all t € [—T, T] and x, y 6 [a, 00). 
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Theorem 2.2 ([17]). Suppose (al)-(a3) and (a4") are satisfied. Then the problem 
(l)-(2) has a unique solution x (t) € C. Moreover, 

xn (t) -> x (t)   asn -»■ oo, uniformly in t € [0, T], 

wfrere z0 (*) = & and xn (t) = A (a;n_i) (<) /or n = 1,2,.... 

Proof. Similar arguments as in Remark 2.1 yield to the conclusion that the 
map A : X —> X is a contraction with respect to a suitable norm ||.||e. Thus, 
Banach's fixed point theorem is applicable. □ 

B. Positive solutions in a ball. 
Suppose we are interested in solutions x (t) € C of (l)-(2), in a given ball of E, 
sa,y of ray R. Obviously, in this situation, the contact rate / (t, x) may be known 

only for a < x < R. 
Let us list the hypotheses corresponding to this case. 

(hi) / (t, x) is nonnegative and continuous for — r < t < T and a < x < R. 

(h2) ip (t) is continuous, satisfies (3) and a < <p (t) < R for -T < t < 0. 

(h3) There exists a continuous function g (t) such that 

f(t,x)>g{t)   for - r < t < T and a < x < R 

and 
g(s)ds>a  for 0 < * < T. (10) 

/' Jt— 

(h4) There exists a positive continuous function h(x) on [a, R] such that 

f{t,x)<h(x)   for 0<i<Tand a<x <R (11) 

and 

T< I     (l/h{x))dx. (12) 
•M0) 

Theorem 2.3. Suppose (hl)-(h4) are satisfied. Then the problem (l)-(2) has at 
least one continuous solution x (t) such that a < x(t) < R for —T<t<T. In 
addition, any such solution satisfies (6). 

Proof. The proof is the same as for Theorem 2.1. There is only one difference, 
the fact that the homotopy H can be defined only on(/x [0,1]. D 

Let us now suppose that instead of (h4) the following condition is satisfied: 

(h4*) There exists L > 0 such that (9) holds for all t £ [-r, T\ and x, y € [a, R] ■ 

Theorem 2.4. Suppose (hl)-(h3) and (h4*) are satisfied. Then there exists T0, 
0 < T0 < T, such that (l)-(2) has a unique continuous solution x{i) on [-T,T0] 

satisfying a < x(t) < R for —r < t < T0. 
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Proof.      By (9), we obtain 

/ (^> x) < L (x — a) + max / (t, a) —: h (x)   for a < x < R. 

So (11) holds. Now we choose T0 <T such that 

T0< [     (l/h{x))dx, 
-Mo) 

and we apply Theorem 2.3 with Jo instead of T. Thus the existence of solutions 
is proved. To show the uniqueness, suppose x\ (t) and x2 (t) are two solutions on 
[—r, T0]. Then, by (9), we have 

MO-MOI</,UI/(s>M*))-/(*,M*))l<fe< 
LIt-T l5i(s) -x2(s)\ds < Lfo\x1(s) -x2(s)\ds, 

for 0 < t < T0- This, by GronwalFs inequality, implies xi (t) = x2 (t). □ 

3    Continuous dependence on data 

Suppose the data /, <p and r satisfy (hl)-(h4) and that the corresponding IVP, 
(l)-(2), has a unique continuous solution x (t) satisfying a < x (t) < R for — r < 
t <T. 

Let (rn) be a nonincreasing sequence of positive numbers and let (<pn) and 
(/„) be two sequences of nonnegative continuous functions denned on [—T„, 0] and 
[—T„, T] X [a, R], respectively. We suppose that 

a<¥n<R,     <fn(0) = J_Tnfn(s,tpn(s))ds,     Tn -> T, 

ifn —> ip  and fn—*f uniformly, 

i.e., for each e > 0 there is nc > 1 such that, for every n > ne, one has 

|r„ - r\ < e,   \Vn (t) - tp (t)\ <e  for - r„ < t < 0 

and 
|/n (<, x) - f (t, x)\<£  for - rn < t < T and a < x < R. 

Finally, let us consider the IVP corresponding to /„, tpn and rn : 

Xn (t) = f     fn (s, xn (s)) ds    for 0 < t < T, 
Jt-T„ 

Xn {t) = •■Pn {t)     for    - Tn  < t < 0, 
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denoted by (ln)-(2n). 
If inequality in (10) is strict, by Theorem 2.3, it follows that for sufficiently 

large n, say n > n0, (ln)-(2n) has at least one continuous solution xn (t) satisfying 

a<xn(t)<R for -rn<t<T. (14) 

The question is: if for each n we choose an arbitrary continuous solution xn (t) 
of (ln)-(2n) satisfying (14), does the sequence {xn (t)) converge to x (i) uniformly 
in t E [0,T]? The answer is positive as shows the following theorem essentially 

established in [25]. 

Theorem 3.1. Suppose (hl)-(h4) are satisfied and that (l)-(2) has a unique 
continuous solution x (t) such that a<x(t)<Ron [-r, T]. // the sequences (T„) , 
{tpn) and (/„) satisfy (13), and {xn (<)) is any sequence of continuous solutions of 

(ln)-(2n) satisfying (14), then 

xn (t) -> x (t) asn-> oo, uniformly in t 6 [0, T]. 

Proof. From (14) we have that (*„ (*)) is bounded in C [0, T]. On the other 

hand, by (13) and 

x'n(t) = fn(t,xn(t))-fn(t-r,xn(t-r))   torO<t<T, 

we easily see that the sequence «(<)) is also bounded in C [0, T]. Thus, the 
sequence (xn (f)) is equibounded and equicontinuous on [0,T]. By Ascoli-Arzela 
theorem, there is a convergent subsequence (xkji (t)) of (xn (t)). Suppose xkn (t) -* 
x(t) as n -» oo, uniformly in t G [0,T]. Now taking the limit as n -► oo in 
(lfc„) - (2fcn), we obtain that x{t) is solution of (l)-(2). Finally, the uniqueness 
of the solution implies x(t) = x (t) and that the entire sequence {x„ (i)) converges 

uniformly to x (t). □ 

4    Minimal and maximal solutions 

Theorem 4.1 ([24]). Suppose (al)-(a4) are satisfied.  In addition assume that 

f (t, x) is nondecreasing in x for a < x < Ro- Denote 

u0(t) = a,   Un{t) = A{un-1){t)   forO<t<T, n = l,2,.... 

Then, un(t) ->■ x* (t) as n -» oo, uniformly in t € [0,T], s. (t) is <Äe tnt'ntma/ 

solution of (l)-(2) m C, and 

a < «i (*) < - < un (t) < .» < *. (*) < #o  for 0 < t < T. 
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Proof. By Theorem 2.1, there exists in C at least one solution of (l)-(2). 
Moreover, any such solution x (t) satisfies a < x (t) < RQ for 0 < t < T. Let 
xi (t) £ C be an arbitrary solution. Then, a = uQ (t) < x, (t) < RQ for 0 < t < T. 
Since / (t, x) is nondecreasing in x for a < x < R0, it follows that the map A is 
nondecreasing on the interval [a, R0] of E. Thus, Ul (t) = A (u0) (t) <A(xx) (t) = 
xi (t). On the other hand, since A (K) C X, we have ux (t) = A (u0) (/) > a = 
u0 (t). Hence w0 (t) < Ul (t) < Xj (<) for 0 < t < T. Further, we inductively find 

a < U! (<) < u2 (<) < ... < Un (i) < ... < Xl (t)   for 0 < t < T. 

Since A is completely continuous, the sequence (un)n^ = A ((u„)„>0) must con- 

tain a subsequence, say (ufcJ, convergent to some x, £ X. Now taking into 
account the monotonicity of (un (*)), we easily see that the entire sequence (un) 
converges to x», uniformly on [Q,T], and 

«n (0 < a;* (0 < X! (t)   for 0 < t < T, n = 0,1,.... 

Letting n -► oo in A («„) (t) = wn+1 (t), we get A (x.) (<) = x» (i), i.e., x» (<) is a 
solution of (l)-(2). Finally, since inequality x, (t) < Xl (t) holds for any solution 
xi (t) e C, we see that x* (t) is the minimal solution in C of (l)-(2). Ü 

The next result deals with the existence and approximation of the maximal 
solution in C of (l)-(2). 

Theorem 4.2 ([24]). Suppose (al)-(a4) are satisfied. In addition assume that 
there is R> RQ such that 

f(t,R)<R/Tfor-r<t<T (15) 

{i.e., f (t, ip (<)) < R/T for-r<t<0 andf(t, R) < R/T for 0 < t < T), and 
f (t, x) is nondecreasing in x for a < x < R. Denote 

v0(t) = R,   vn(t) = A(vn-1)(t)   forQ <t<T,n = 1,2,.... 

Then, vn (t) -► x* (t) as n -» oo, uniformly in t £ [0,T], x* (/) is the maximal 
solution in C o/(l)-(2), and 

"<x* OO < ... < vn (t) < ... < Vl (t) < R forO<t< T. 

Proof. By (15), we have vx (t) < v0 (t) = R for 0 < t < T. Further the proof 
is analog with that of Theorem 4.1. □ 

Theorem 4.3. Suppose the assumptions of Theorem^.l are satisfied. In addition 
assume a > 0 and that there is a function x : [a/R0,1) -► R such that for all 
p £ [a/R0,1), t G [0,T] and x 6 [a, Ro] with px > a, one has 

1>X(P)>P   andf(t,px)>x(p)f(t,x). (16) 

Then (l)-(2) has a unique solution in C. 
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Proof. Let n (t) € C be any solution of (l)-(2). We will show that xi (t) = 
x. (t). Let Po = min (x. (i) /an (*)) • Since a < a;* (t) < i, (i) < i?o, we then 

have a/ßo < Po <~1~ Now we snow that /°o = 1- Suppose p0 < 1. Since a;» (i) > 
max {a, p0x1 (<)} = />0max W/>o,*i (t)} > a for 0 < * < T, by (16), we get 

x» (t) = A (x,) (t) > A ('po max {a/p0, xx (<)}) > 

x (po) A (max {a//>0, *i (*)}) > X (/*>) ^ (*i) (*) = X (/*>) Zi (*) • 

It follows po > X (Po), a contradiction. Therefore p0 = 1 and so z, (<) = Xi (t). O 

Remark 4.1. For x {p) = Pa-> a € (0,1), Theorem 4.3 becomes Theorem 4 in [24]. 
An other example of function x satisfying (16), is x (/>) = log (1 + ap) / log (1 + a), 
for / (t, x) of the form q (t) log (1 + x) (see [26, Example 17]). • 

Corollary 4.1. Suppose the assumptions of Theorems 4.2 and 4-3 are satisfied. 
Then, (l)-(2) has a unique solution x, (t) in C, and for any x0 (t) € E with 
a <x0(t) < RforO <t <T, one has xn (t) -» x, (t) asn-+oo, uniformly in 

t€ [0,T], wÄcrc »»(*) =-A(s„_i)(i)in = li2,-. 

Proof. From a = u0 (t) < x0 (t) < «0 (*) = R, one gets u„ (*) < i„ (i) < «„ (t) 
for n = 1,2,.... On the other hand, Theorems 4.2 and 4.3 imply that un{t) -> 
z, (t) and vn (t) -* i» (t) as n -» oo, uniformly in * G [0, T]. O 

The last result of this section refers to functions / (t, x) which are nonincreas- 

ing in x. 

Theorem 4.5. Suppose (al)-(a4) are satisfied. Denote 

R = max I Ro, max |ui (t)\ \ 
{      O<KT' J 

and suppose f (t, x) is nonincreasing inxforO<a<x<R. Also suppose that 
there is a function x : [a/R, 1) -► R such that for all p € [a/R, 1), t G [0,T] and 

a; G [a, i?] with px > a, one has 

l<x(?)<l//>  andf{t,px)<X(p)f{t,x)- (17) 

TTien, (l)-(2) has a unique solution x,(t) in C, 

a = u0 (t) < vx (t) < ... < u2n (t) < v2n+i (*) < - < *. (0 < - 

< «2n+l (t) < V2n (*) < - < «1 (*) < V0 (t) = R   for0<t< T, 

and un (t) -> xt (t), un (t) -+ z» (i) as n -» oo, uniformly in t € [0,T]. 
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Proof. By Theorem 4.1, there is in C at least one solution xx (t) of (l)-(2), and 
a < xx (i) < R0 for 0 < t < T. We have a = u0 (i) < xx (t) < v0 (t) = R, whence 
«i(*) < *i(*) < «!(<). By (a3), a < Vl(t). Also Ul(t) < max luJOl < R- 
Hence 

"o(0<«i(0<a;i(0^"i(')<«o(*). 

We then have successively, 

ß = WO (<) < Ui (*) < ... < U2n (<) < V2n+1 (0 < ... < X! (t) < ... 

(18) 
< u2n+1 (t) < v2n (t) < ... < Ul (t) < v0 (t) = R. 

Since A is completely continuous, there are two subsequences of (A (u2n-i)) and 
(A(v2n-i)), convergent to some y„{t) G X and y* (t) G X, respectively. Then, 
by (18), it follows that 

(19) 
"2n (<) -» ». (*) ,        U2„+l (<) ~> 2/* (t) , 

U2n+l{t)^y*{t),     V2n{t) ^ y* (t) , 

uniformly in t G [0, T], and 

y*{i) < xi (<) < 2/* (t) - 

By (19), we obtain 

Vm(t) = A(y,)(t)    aady.(t) = A{y*){t). 

Next we show that (17) implies y% (t) = y* (t). To do this, let 

/?o = omm(j/»(t)/j,*(f)). 

Obviously, a/R < p0 < 1. We will show that p0 = l. Suppose p0 < 1. Then (17) 
yields 

y* = A (y.) < A (po max {a//»0, y*}) < 

X (po) 4 (max {a/p0, y*}) < X {po) A (y*) = x (Po) y„. 

Thus, x (po) > l/po, a contradiction. Therefore, p0 = 1 as claimed. □ 

Remark 4.2. For x(p) = Aö£ (-1,0), Theorem 4.5 becomes Theorem 6 in 
[24]. 



II. THE PERIODIC PROBLEM 

5    Existence of periodic solutions 

We axe interested in periodic continuous solutions x (t) of Eq.(l), such that 0 < 
a < x (t) < R for all t G R. Our hypotheses are as follows: 

(HI) / (t, a;) is nonnegative and continuous for t £ R and a<x<R. 

(H2) There is u > 0 such that /(t + w,x) = /(*,*) for t € R and a < x < R. 

(H3) There exists a continuous function g (t) with period w such that 

/ {t, x)>g(t)   for 0 < t < u and a < x < R, 

and t 

/    g(s)ds>a for 0 < < < w. 

(H4) There is a positive continuous function h (i) for a < i < Ä, and a number 

b such that a < b < R, 

f (t, x)<h{x)   for 0 < t < u and a < x < R, 

fb
R(l/h(x))dx>u; 

and ,    , 
f(t,x)<b/T for 0 < t < w and b < x < R. U°) 

Theorem 5.1 ([20]). Suppose (H1)-(H4) are aafis/icd. ITien (1) Äas ai /easr one 
continuous solution x (t) with period u satisfying 

a < min x (t) < b  and   max x (t) < R. 
- 0<t<u> 0<Ko; 

Proof.      Let E be the Banach space of all continuous w-periodic functions x (t) 
on R, endowed with the uniform norm ||a;|| = max^ \x (t)\. Let 

•      K = {xeE; a<x (t)   for 0 < t < w} 

and . \ 
U=\xeK;   min x{t) < 6 and ||z|| < R\ ■ 

(_ 0<(<u' i 
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Obviously, K is a closed convex set of E, and U is bounded and open in K. We 
consider the homotopy 

H : 77 x [0,1] - K,   H(x,\)(t) = (l-\)a + \ft   f(s,x(s))ds. 
Jt — T 

By (H1)-(H3), H is well-defined and completely continuous. We claim that, for 
each A, #(., A) is fixed point free on the boundary dU of U with respect to K. 
Assume, by contradiction, that there would exist A G (0,1] and x € dU such that 
H (x, A) = x, that is 

x(t) = (l-\)a + \J    f(s,x(s))ds  iorteR. (21) 

Since x is on dU, we have either 

||a;|| = R  and    min x (t) < b, (22) 

or 

||i|| < R  and    mbi(i) = b. (23) 

First, suppose (22). Then, by differentiating (21), we get 

x'(t) = \f(i,x(t))-\f(t-T,x(t-T)). 

It follows 

*' (<) < A/ (*, x (*)) < \h (x (t)) <h(x (t)). 

Let t0 6 [0, u] be such that a; (t„) = ^n^ a; (*). Integration from *0 to t yields 

/ (a'(«)/A(*(s)))ds<<-io<w  fort0<t<t0+uj. 

Thus, 
/■*(*) 

/ ,  4 (1/h (u)) du<u>  foi t0<t<t0 + u. 

Since x (t0) < b, by (H4), we deduce that x(t) < R for t0<t< t0+u, equivalently 
for ah t € R. Therefore, ||x|| < R, a contradiction. Next, suppose (23). Let 
0 < t0 < u be such that * (*0) = mm x(t) = b. Then, by (21) and (20), we 
obtain 

b = x (to) = (1 - A) a + A //o°_T / (s, x (s)) ds < 

(1-X)b+Xb = b, 

again a contradiction. Thus, H is an admissible homotopy on 77. On the other 
hand, the constant map H(.,0) = a is essential because a € U. Consequently, 
by the topological transversality theorem, H (., 1) is essential too. D 
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6    Monotone iterative approximation 

Under the assumptions of Theorem 5.1, denote by A the completely continuous 
map from P = {x e E\ a < x (<) < R for 0 < t < w} into K, 

A{x)(t)= f f{s,x{s))ds, ten,xeP. 
Jt—T 

Theorem 6.1. Suppose (H1)-(H4) are satisfied. In addition suppose that a > 
0, f(t, x) is nonincreasing in x for a < x < R and there exists a function 
X : [a/R, 1) -» R satisfying (17) for all t € [0,w], p € [a/R, 1) and x € [a, R] 

with px > a. If 

A2 (R) (t)<R for0<t< w, (24) 

then (1) has a unique solution x* (t) e P. Moreover, the sequence v0(t) = 
Ä, un (t) = A («B_i (0), n = 1,2,..., converges to x* {t), uniformly in t € [0,w], 

a < V, (*) < «3 (<) < ». < «2n+l (*) < ••■ < ** (0 < - 

< l>2n (*) < ... < »4 (*) < «2 (*) < UO (*) = R- 

Proof. By Theorem 5.1, there exists at least one solution in P. Let x (t) € P 
be any solution of (1). Since f(t,x) is nonincreasing in x for a < x < R, from 
a < x{t) < R = v0(t),we get a < A{R) (i) <A(x)(t) = x (i). Then, 

a<A(Ä)(t)<x(*)<A2(i?)(i). 

This, by (24), yields 

a < A(Ä) (t) < A3(Ä) (t) <x(t)< A2(R) (t) < R. 

We successively obtain 

a < V! (t) < v3 (t) < ... < v2n+1 (<) < ••• < x (t) < ... 
(25) 

< v2n (t) < ... < v4 (t) < v2 (t) < v0 (t) = R. 

Since A is completely continuous, there are two subsequences of (u2n+i) and (v2„) 
uniformly convergent to some z* € P and x* € P, respectively. By (25) we 
see that the entire sequences (v2n+i) and (v2n) converge uniformly to x* and x*, 

respectively, and 
a<x.(t)<x (t) < x* (t) < R. 

Obviously, 
x» (t) = A {x*) (t)   and x* (*) - A (a;.) (t). 
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Now we prove that (17) implies ar, (t) = x* (t) for all t € R. To this end, let p0 = 

o<?<L, (X* ® lX* W • Clearly' ° < alR ^ Po < 1- We have to show that p0 = 1. 

Suppose £0 < 1. Since z„ (t) > ma,x{a, p0x* (t)} = p0max {a/p0,x* (t)} > a, by 
(17), we get 

x* = A(z.) <A(pomax{a/p0,x*}) < X{po) A(m&x{a/p0,x*}) < 

x(po)A(x") =x(p0)xt. 

It follows that x(po) > 1/Pa, a contradiction. Thus p0 = 1 as claimed. Conse- 
quently, x* (t) = x (t) = x* (t) and the proof is complete. D 

Corollary 6.1. Suppose the assumptions of Theorem 6.1 hold with 

A (a) (t)<R forO<t<u> (26) 

instead of'(24). Then (1) has a unique solution x* (t) € P and An (x0) (t) -> x* (t) 
as n —> oo, uniformly in t € [0, u], for any x0 (t) e P. 

Proof. Let us remark that (26) implies (24). Indeed, from a < A(R) (t) < 
A (a) (t), we get 

A2(a)(t)<A2(R)(t)<A(a)(t)<R, 

whence (24). Thus, Theorem 6.1 applies. 
Further, if x0 (t) is any function in P, then from a < x0 (t) < R, we obtain 

a<v1(t)<A{x0)(t)<A(a)(t) <R = vo(t). 

This yields 

a < V! (t) < A2 (x0) (t) < v2 (t) < A (a) (t) < R, 

and, in general, 

a<vi (t) < v3 (t) < ... < ü2[(n_1)/3]+1 (t) < 

An (x0) (t) < v2[n/2] (t) < ... < v2 (t) < v0 (*) = R, 

for n = 1,2,.... Since vn(t) -► x* (t), it follows that An (x0) (t) -» x* (t), as 
claimed. □ 

Remark 6.1. A sufficient condition for (26) is that f(t,a) < R/T for all t G R. 

For the next results, let us replace (H4) by the following assumption used in 
[12]: 

(H4')  / (t, X)<R/T  for 0 < t < u and a < x < R. 
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The following theorems complement the results in [12]. 

Theorem 6.2. Suppose (H1)-(H3) and (H4') are satisfied. In addition suppose 
a > 0, f(t,x) is nonincreasing in x for a < x < R, and there is a function 
X ■■ [a/R, 1) -> R satisfying (17) for all t G [0,w], p G [a/R, 1) and x G [a,R] 
with px > a. Then (1) has a unique solution x* (t) G P and An (x0) (t) —> x" (t) 
as n —*■ oo, uniformly in t € [0,o>], /or arc?/ a;0 (£) G P. 

Theorem 6.3. Suppose (H1)-(H3) and (H4') are satisfied. In addition suppose 
a > 0, f(t,x) is nondecreasing in x for a < x < R, and there is a function 
X : [a/R, 1) -> R satisfying (16J /or a// f G [0,w], /j G [a/R,l) and x G [a, R] 
with px > a. Then (1) has a unique solution x" (t) G P and An (x0) (t) -* x* (t) 
as n —> oo, uniformly in t G [0,w], /or arey x0 (£) 6 P. 

The proofs of Theorems 6.2 and 6.3 are similar with that of Theorem 6.1, so 
we omit the details. 

Remark 6.2. For X(p) = Pa, a G (-1,0), Theorems 6.1 and 6.2 have been 
established in [20]. Also, in [20], several examples can be found. 

The monotone iterative approximation of periodic solutions of Eq.(l), for the 
case when f (t, x) is nondecreasing in x, was discussed in [12]. 

Finally, for similar results by means of more subtle conditions than (a4) and 
(H4), we send to [21] and [25]. 
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Abstract 

The energetic illumination Ec produced by an infrared ra- 

diation source of a certain geometrical configuration and tempe- 

rature '■? in a point P of the (H) plane is calculated taking into 

account the contribution of each surface element ds (fig.l). 

fig.l 

dB       £>cos°t.cose.'S(Ö.c/S 

sCoso£ COS 9. ttÜ.dxJy 
t1 

CD 

(2) 
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b-* the detector is illuminated by a finite 

surface thermal gource 

i'he energetic illumination produced in P (fig.2) by an 

element ds is :• .    ~/ZA* 
c/£p=?ßL&>S%    es) 

As the source has finite 

dimensions we may write: 

where: 3 is the energetic 

brightness of the surface 

fig.2 

The solid angle in wich the surface dS1 is seen from 

the point P is:      c^Ct?       Z&J&S°^ 
— rZ 

The  relationship   (2)  may be written as: 

OtF~ ^2  (3) 

-   or c/£r>   sr  J&tyÄ"^ 

The  total energetic illumination in P is: 

(4) 

(.5) 

If B is constant over the entire surface,condition ful- 

filled by the thermal source for wich the temperature is the same 

in every point of the surface we may write: 

£DE^2- 

y/iiere £_   ffCQS&C&te   ^S _ Jl^^.a/ai 

(6) 

(7) 
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The Calculs of the Energetic Illumination 

Produced by an Infrared Radiation Source in a Space Point 

Kicoarä loan,Professor Doctor Engineer 
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Dumache Constantin.M.E,Quality Assurance 

Director,S.O.  OPTICA - S.A.  ximisoara 

1, Introduction 

In order to know the fraction of the radiated energy of 

a terraal source that reaches a radiation detector,the energetic 

illumination produced by the source in a space point where the 

detector is has to be calculated. 

In the solving of the problem,two cases may occur : 

a)  the detector is illuminated by thermal point source: 

~P~ ctS 
J<£      &'<=&> 

^y 

figfl 

and      c/<u3 = ^L CoS& 
r2 

we obtain: 

where: i2p - the energetic illumination of the point ? (figl) 

Ie - the energetic intensity of the point source. 
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M 
with   &llJ-  t-      _ the absorbtion coefficient. 

'i'he function f(x,y) to be integrated is defined as con- 

tinous is the domain S and the calculus of Ep can be performed 

only by noing the numerical calculus forraull. 

If the integrating domain is limited by curves defined 

by :  #= <f(y) }   2= fty)     withe f^Kf^)and the vertical 

lines -     V= a    V=&    the double integral becomes : 

JJ{c^)c/^Jy^pyJf(^y)^^jny)Jy 
Sr Q fy) ° 

Sr 

or 

whire the summ calculus in performed by known methods. 

Conclusion : The  ascertainment of the energetic illumi- 

nation produced by an infrared radiating body is a difficult or 

even almost impossible operation. In the paper two methode of 

solving the integral (l) for radiation sources of any geometrical 

shape by using numerical calculus methods are presented. 

An analysis is also performed on the situasions when a 

thermal source of finite dimensions can se considered a point so- 

urce and the error that occurs in the calculus in this case. 
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i'he expression (7) shows that the energetic illuminati- 

on produced by the surface 3, of brightness B,is a point 3?, is 
equal with the illumination produced by an equivalent surface S, 

of the same brightness and wich is seen from under the same solid 
angle, 'i'here fore, S map be replaced with a plane surface,analiti- 
cally expressed by the function:- y^fföB)   (in a rectangular sys- 
tem of coordinates-' or Y=yJC<$'&J Vis  a polar system of coordinates] 
the functions are defined and continous in a domain D limited by 

the curve/7, generated in the plane y=0  by the cone with the poini 

in P and the basis the surface 3 of the thermal body as it is seen 

from ? (fig.2). The relationship (6) establish a link between the 

energetic characteristics of the thermal source and those of the 

radiation detector. In the way rel.(6) was presented,we have not 

taken into account the undeaired effecte produced by the environ- 
ment (phenomena suchas absorbtion,dispersion,reflection,refraction 

and athers). The energetic brightness of the"body surface was defi- 

ned as: a Q~  c  -7—"£ 
" JT 

where   £  is the total emission coefficient; 
~7~  is the absolute temperature of the body. 
In many cases found in practice,the equivalent surface 

of the thermal source has not a regular shapes there fore the sol- 

ving of the integral (7) by mathematical methods is almost impo- 

ssible. In these cases,the solving may be done only by using nume- 

rical methods: 

M 
(3) 

(9) 

If   the  integrating domain  is  limited  by   curves  expressed by c?=y&) 

$^ f(i) or   P » fi(0J , f-ßW with ?&>&jfa> ov £&>&$&> 
and   the   vertical  lines  s=a,z=b  or  the   radiuses  <^-=^ and &^/3  the 
integrals     8)   and   (9)   become:, / 

S a      ¥>& 
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with 

and 
a 

F(Wc/0 - 2? ^J' * ^ 

(11) 

(12) 

(13) 

(14) 

o{ <c^/ 

Prom (13) and (14) one may see that the numerical solving 

of the integrals ia possible only if the values of ?(Zi) or F(©i) 

in the points Zi or 6±   Ci=l, 2,.. ♦ ,n) are known. 
The analytic expresions of the functions P(Zi) and F(©i) 

may be easily calculated for the cases in wich the surface ds' re- 

prezents a rectangle with the width much smaller than the lenght 

or a triangle with one side much smaller than the other two. 
In this way, by dividing the equivalent surface of the thermal body 
in elementar surfaces the calculus of the energetic illumination 

in P may be performed by using (13) or (14). 

2.Thermal source of rectangular shape 

The rectangular source with a 
dimension much bigger than the 
sthers are considered linear 

(fig.3) 
An element  of lenght dx has in   . 
a  certain direction an  energe- 
tic   intensity  cfJe=c/Iffux&>Sc> 

where  c/2m7x= SS-c/se- Je>-<^&. 
and I0  is  the  er.ergetic  inten- 
sity  in a  direction  rectangu- 
lar v/hith   the   surface  of  the 
source. 

The   energetic  illumination produced  in P is: 

tig.3 

£e' ,,2 
(15) 

O 
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where/       (20S& — 
A fr 

3y  integrating   the  relationship   (l5)t   wehave 

d     /-=* -i/o-^A2**2' 

P ~2(oUz "PtiW 
ordfc A 

~Jifi$j?_ 
(16) 

wich represents the energetic illumination produced by a 

thermal source of hight h and width £ /}>S in a Poilit 2, situa- 
ted at the distance "i/^^f2 

3. Triangle thermal source 

Let us consider a triangular source A3C. Vie shall cal- 
culate the energetic illumination Ep produced in a point P situa- 
ted at the distance 1 on the perpendicular line Considered in tiie 

point A at the source plane (fig.4) 
For this,an infinite 

small triangle shall be conside- 

red with the angle in A equal to 
d0 and the leght of the medin 
line P . This triangle may be con- 

sidered a circle sector of radi- 

us o , belonging to a circular 
disk centred in A. The contribu-'. 

tion of the circle sector at the 
illumination in P is proportional 

to its area by respect to an ima- 
ginary disk of radius p : 

_ 2. 
2J,.f dEc £f p^ol& (17) fig. 4' 

where £ - S/.3-P ■ (p ■*■£*? &  is the illumination produced by the disk 

source of radius P. 
.Vhith Ep in (17),we obtain:        2 

Prom fig.4,we have:' 

(13) 
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By making the final c.v.lcul3,wc obtain: 

4. The ITumeric Calculus of the Illumination 

Produced by Plane thermal Source of Mo 

Particular Shape 

In  the case when the radiant surface has no regular 
shape,numerical methods of calculus shall be used. 

4.1. '■'■'he Squivalent Surface of the Source 

in Rectangular Coordinates 

In order to obtain this,the radiant surface (fig.5) will 
be divided in rectangular 

portions of as small a width 

as posible, for wich the ex- 

pression of the illumination Oi  l 

produced in ? is given by(l6) 

The energetic illumination 
in ? is the sumra of the illu- 

minotions produced by each 

portin:    &  %®2 v 
" " Jak-** 

trJlk ■)dz~ 

*Jr> teid? (20) 
'ig. 5 

£3, 

In order to calculate (13),the interval(a,b) will be 
divided in n equal parts,of lenght S,so that: 

" *~      n with      Si  = a  + ib 
and,for i  = 0,     Z0  = a 

i  = n.,     Zn = a'+ n<?= b 
Let US. be  t.:ie  value   of  the  f unction & ^ty&J in   the  poirti 

Z=Z±   :      ftJ f{Q+i$) 
'i'he values  of y*»,with  i=0,l,2,..,,n are  known from  (16) 
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'■Wie   integral   (20)   may  be  written  aa: 
o 

or      Jf.-^,       «id /T£;-)fr where   fc". =* *?, 

,    I'rom   (21), two  calculus forrnullae  are   obtained: 

(23) 

and 

As  n  grows, the   forrnullae   (22)   and   (23)   are  mare  precise. 
Ij/j-kKS^tiiere  f ore i"-> Ü,   from   (21)  we may  sea  thai  they, give   the 
exact  value   of  the  integral   ^-20). 

Prom fig.5  we may sec  that  the   surface  defined by  the 
curves f((3) and *£& is  raplaced with the   sumrn of  the rectangular 

surfaces   of  basis  $=2t:-£c*-i'  and ^ight fä0?%r+   1>he   calculus e- 
rrors  that   occur by using the  forraullae   (22)   or   (23)   are: 

6 

Tsr !%Lr ?<+%+-+%]-Jf^* (25) 

adding  (24)  and  (25),we  obtain: 

Cy-^C5  =  ~~n—"^ /"A/ 
AE Y(3J is  a monotone function, the suinm of the errors is 

equal with the -area of a rectangle of width $*■ —~-  and higth^-^ 
In this case,the error given by (22) or (23) will not be bigger 

than the   one given by (26). 
She forrnullae *-22) and (23) may be used if l^h. For l>h 

from (10) one may sec that the numerical value of the expresion in 
brackets is wery small and the illumination in P may be calculated 

with the relation (l) - point source. 
Lfhe following problem may be considered1 to define a re- 

lationship between 1 and h so that by using relation, (l) in the 
calculus of the illumination,the error produced to remain smaller 

tham an imposed value. 
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?or  this,let  us  considered a point  source  placed in 0, 

with energetic characteristics 

similar  to  thase  of a rectan- 

gular  source,that  is: 

lrnox = -Ö/7- tf 
The   illumination produced  in 

P is; 
6 AS 
IF 

(27) 

If the surface to rectangular 

(fig.6),the illumination produ- 

ced in x* is: 

(23) 

fig.6 

oecome's: 

(29) 

Let    frh/t and  (23) he 

c -A&Lf-L- +-Lordfy&] 
As $<4   ,the expressions in brackets from (29)may be 

aproximated by their Taylor sery and from (29). 

She relative error that appears by using ,(27)iKst ead 

of (23) is: 

*r%j = £-£ foo?0 (31) 

With (27) and (30) in relation (31),we hawe: 

£1%1* ■ 5 <fQ0%>    C32) 

If X^t/C^ M    we notice that^^^ and all 

the sery terras, beginning with #*.** may be neglected (their  ^ 

summ is smaller that the imposed error), the error given by (32; 

is defined only by the fi3t term: 

Am- ~z '*        4n'/ = L^=2-,/^ 
/- gr h 

(33) 
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From (33) we obtain 0,66^-'<l/i for 1 £10 h (the dista- 

nce from source to the illuminated point is at least 10 times the 

hight of the source^. The error produced by using the formulla of 

the point sources in the calculus of tlie illumination produced by 
sources of finite dimensions is leas then 1% 

4.2. ghe Surface of the Source in 

Polar Coordinates 

let us supose that the area of the radiand surface limi- 

ted by a curve wich equation in polar coordinates is P*f(&} 

and by the radiuses fy=oC  and Q.=fi  taken from the pole m.der the 
angles«/ .rsspectavely ß with the polar axis (fig.7). 

%e calculus of the 

energetic illumination in 

the point ?  is performed by 
using relation (13). 

In this purpose, the sur- 

face considered is divided ■ 
in ii parts with the point 
angle 

AQ=fi=^     (34) 
n 

i*0t   i~°6 

We point  out that: 

and  from 

%e triangle OWN gives in 
* energetic illumination gi- 
ven by: 

or 

fig.7 

o>* 

(35) 

(3-5) 
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LotfMbe  the  function to be integrated and,as    a*■&(&) 

we  obtain: . fY&J ,     v 
# - fl&C) =      / ( (37) 

Where fc = f (of* i.d0) 
The values V^with i=0,l,2,...,n are known from (37)for 

The total illumination in'P is: 

Two cases may be discussed:when # is calculated in the 

point M or H of the curve P * P (&) 
There fore,the integral (36) becomes: 

Where jT/'-j?- or jf* * .£*-/  and /(&) ^ 'c' 
With the notations made above two aproximation formullae 

may be obtaind: 

and    ... .• 

The maximum error that occurs when using (38) or (39) is: 

One may sec that (40) in the area of triangle with the 

width (fi-o()//>>/l  ,whire R=l and the night %~ fo 
No matter what forraulla we use,(33) or ^39),the error is- 

smaller the one given by (40). 
In the case of circular shape plane sources,the energetic 

illumination may, also be calculated with the relation (l) if L^. ^ 

where P  represents a medium radius of the equivalent surface. 
If the source is a disk writh finite dimensions.the illu- 

mination" produced in the point ? situated at the distance 1 from 

the source is: 
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v/here d is the aource diameter. 
By using for the calculus relation (l),where: 

■./e obtain:     y - 
/  ^ 4 ^ (42) 

The relative error produced by calculating is: 

mi « Af /M£ (43) 

were , 

<*£:= £-£ »  f ^        (4A) 

By replacing (41) and (44) in (43) we have: - 

. ^X7' / (fj'^OX (45) 

If c//t^.f/{OoT  l%-10<J (the distance from the source to 
the illuminated point is at leas 10 tiroes the source diameter), 

the error produced by U3ing the point source formulla is££Q2f% 

5. Conclusions 

In .the paper we have presented two numerical methods of 

calculating the energetic illumination produced by a thermal 

source,in a certain point,by using coordinates system. 

We have also analysed the condition in wich finite di- 

mensions sources may-be considered pointsources,in order to use 

less complicated relations in the calculus. 
The ascertainment of the energetic illumination produced 

by a thermal source in a certain point in space is essential in 

picking up a reliable detector,wich may assure a maximum detec- 

tion and positioning distance. 
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Abstract. The paper is devoted to the sine approximation for the two- 
dimensional unsteady Navier-Stokes equations. To avoid the difficulty of choosing 
the trial function space satisfying the incompressible condition, we can consider 
the representation (12) of Navier-Stokes system. 

1 Introduction 
Sine methods, originally introduced and analyzed by Stenger [3], have been used 
on a variety of differential equations. They can be used to solve problems with 
boundary singularities, while maintaining their exponential convergence rate. 
The sine coefficient matrices are easy to assemble, requiring none of numerical 
integrations. 

This paper illustrates the application of a sine method to the approximate 
solution of Navier-Stokes equations on a rectangle. To avoid the difficulty of 
choosing the trial function space satisfying the incompressible condition, we can 
consider a representation of Navier-Stokes equations as in [1). The pressure is 
evaluated by solving a Poisson equation with an artificial boundary condition. 

We give, a brief overview of sine methods, after [3], in the first section and 
present the Navier-Stokes equations in the second section. In the last section, 
we consider the numerical scheme, illustrated by numerical experiments with the 
regularized lid driven cavity flow problem. 

2 Sine methods 
Corresponding to a function / defined on IR, the Whittaker's cardinal function 
C(f, h) is defined by 

CO 

c(f,h)(x)= £ f(kh)S(k,h)(x) (i) 
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whenever this series converges, where h > 0 is the stepsize and where 

*(M)(x)=^-»>> (s) 

In the case of the interval [0,1], instead of the basis functions (2) we now have 

s(k h) o $ (x) = si"[QrM)($(*)-^)] . , 

where $ (z) = log (737)- If F is analytic and bounded in the domain 

v={z:h(ih)\<d} w 
and 

|F(af)|<Car°(l-a:)0       on [0,1] 

where a > 0, C > 0, then if we take h = [TT^/ (aJV)]1/'2 and xk = r^j- we have 

IT       U        U - a:/J..f-„loe(a;/(l-*))-. 
< C^V«**»")"2 

*njv log (*/(i-*))-** 

If F does not vanish at 0 or at 1, the function 

G(x) = F(x) - (1 - x)F(0) - xF(l) (5) 

may. 
In addition, if F is analytic in the region V, if F € C2 [0,1] and if F" G 

Z,ipa [0,1], then 

-F(a-) ~ FN{x) = c_w_3 (1 - as) + c_/v-2aj (1 - x) + c_,v-iz2 (1 - xf +       (6) 

JV 

+x2(l-a;)2   Yl  CkS(k,h)o$(x) + cN+1x
3(l-x)2 + cN+2x

2{l-x) + cN+3x 
k=-N 

in which the ck are linear combinations of F and its first and second derivatives 
at (0,1) and xk, k = —N..N. Then taking h as above yields an approximation 
FN of F on [0,1] for which all three of F (x) - FN(x), F'(x) - F'N{x) and 
F" (x) - F& (x) are bounded by 

|error| < Ce~cN1'2 (7) 

where C and c are positive constants. 
In the case of Dirichlet or Neumann problems, the sine approximation pro- 

cedures are particularly powerful. As an example, let us consider the Dirichlet 
problem 

(Lu) (1) = «"(*)-/ = 0, 1 €(0,1) (8) 

- 211 - 



u(0) = «(l) = 0 

We may use the approximation UN given by (6), in which we set C_JV-3 = CJV+3 = 0 
in order that ujv satisfies the boundary conditions. The remaining Cj,j — —N — 
2,..., N + 2 are determined by solving the linear system of equations 

rl (LuN) (x) *fc (a-) dx = 0,        k = -N- 2,..., N + 2 
Jo 

where tyk are the coefficients of ck in (6). By means of the quadrature formula 

rl N+2 

g (x) dx ~h    Yl    x*(l ~ xk)9 (xk) 

f 
Jo 

L 0 fc=-yv-2 

of order (7), we get the linear system of 27V + 5 equations 

(l«jv) (ifc) = 0,        k = -N-2,...,N + 2 (9) 

for the 2N + 5 coefficients ck. The resulting approximation (6) may be used to 
accurately approximate u on [0,1], and by differentiating u^ once resp. twice, 
we get an accurate approximation to u' resp. u" on [0,1]. The errors satisfy 

\u (x) - uN (x)\ < C, JV3/2e-(*da">'/2 

\u'(x) - u'tf(x)\ < C2N
2e-(*daN>in 

\u" (x) - uN (ar)| < C3JVs/2e-("*»"),/2 

If u does not vanish at 0 or 1 we consider u^ as in (5). 
In the case of a Neumann problem, as an example 

(Lu)(z) = u"(x)-f=0, a; €(0,1) (10) 

u'(0) = ii'(l)=0 

where /„* / (x) dx = 0 and /0
X u (x) dx = 0 to fixing the value of u, (6) becomes 

UN(X) = C.N.2 + C-N-tXa (1 - xf + .T2 (1 - xfEt-N CkS(k, h) O $ (*) + 
+CN+iX

3 (1 - x)2 + Cyv+2l-2(3 - 2z) 

(11) 
As above, we get the linear system of 2N + 5 equations 

(LuN)(xk) = 0, k = -N-2,...,N+l 
N+2 

YJ    xk{\ - xk)uN {xk) = 0 
A--W-2 

for the 27V + 5 coefficients ck. 
In the above equations we have for S(k, h, x) = S(k, h) o <& (a?) 

S(k, h, xn) = Skn, -fs (Ar, A, xn) = j   (»-Ä"*i7i-n)    n ^ * 
da: 10 n — k 

(p {   (-i)"-^^-!) a(-i)"-*  / fr 
S" (fr, h,Xn) = \    (n-k)hxlp-XnY        VxKl-Xr.y^n-ky     "r* 

dx2 

~3h?xl(l-xn)2 
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3    Navier-Stokes equations 

The two-dimensional unsteady Navier-Stokes equations, in the representation 
analyzed by [1] for Fourier-Chebyshev spectral method are as follows 

dtU + (U ■ V) 11 - vVHJ + VP = / in Ü x (0, T] 

V*P + Q(U) = V-f inftx(0,r] 

U(x,0) = Uo(x) in ft (12) 

Dirichlet conditions on dCl 

where fl = (0,1) X (0,1), U = {UUU2)
T is the speed vector and P is the pressure 

d* = h di = 4'' = 2'2> and 0(f/) = H&U&Uj - dlUld2U2). 
The main advantage of this method is that the incompressibility condition 

does not appear explicitly in the first equation. Thus we avoid the difficult job 
of choosing in Galerkin's method the trial function space in which the divergence 
of every element vanishes everywhere. 

We have also to solve a Poisson equation for the pressure. Generally, there is 
no boundary condition for it. Thus we need an artificial boundary condition, as 
in our example where we adopt §£ = 0 on du. In addition to fixing the value of 
P, we require that /n P (x, t) dx = 0, Vt <E [0, T]. 

4    The numerical results 

We approximate U and P of (12) by the sine method: 

N+2        N+2 

i=-N-2j=-N-2 

where ioN is UiiN,U2tN or P , *,- , *,- are the coefficients of C)-, c, in (6) or fin 
and h = 0.75/iV1/2. 

We can use the values of the speed f/# ~ U(x, tn) and the pressure P$ ~ 
P(x,tn) at the time level n (and ra - 1 for U) to evaluate the speed at the next 
time level, Utfx ~ U(x,tn + At) by a semi-implicit scheme 

Ufrx - MS 
At 

i.e. by systems 

^-vV'U^ + 3-(U"N.V)Un
N-
l-(U^ -v)u^ +vp^pN 

Miiv + iuM2 = F (13) 

Here w = (u>,j)t-J-=_JV_2__JV+2 and Afi , M2 are matrices of (9) with homogeneous 
or nonhomogeneous Dirichlet conditions. 
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Next, we can evaluate the value of the pressure Pn+1 ~ P(x,tn + At) sepa- 

rately by the second formula of (12), which is a Neumann problem for Pn+l at 

each time, from a system of the type (13) too. 
We take as test problem the regularized lid driven cavity flow problem, that 

is the homogeneous problem (12) with the only non-homogeneous Dirichlet con- 

dition U, (n, U) = (l - (2a?i - if)64 ,xi 6 [0,1] • In this case the Neumann 
problem for P is consistent and our algorithm gives for N = 32, v - 0.001, 

M = 0.005 and fn+1 = 5 the picture in fig. 1. 
Our result preserves qualitatively the dynamical properties of the flow and it 

is in good concordance with [2], where the speed on the upper lid of the cavity 

was 16a:2 (1 - x) . 
The method is only conditionally stable due to the explicit treatment of the 

nonlinear terms, but the experiments show that the critical time step is not very 

restrictive with respect to v and N. 
About the accuracy, a comparison with the Chebyshev collocation method 

shows for the upper lid of the cavity a 10~3 error for Chebyshev while a 10~7 

error for sine method. 
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Figure 1: Speed vectors at t=5 
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Abstract. 

The homogenization method is applied to describe how a fluid behaves acoustically 

in a porous material. The linear theory leads to a Darcy's law involving a complex 

permeability tensor. The first order nonlinear correction of this law is performed. It is 

proved that it is quadratic with respect to the mean pressure gradient (or with respect 

to the bulk velocity) and cancels out if the material is macroscopically isotropic. 

1. - INTRODUCTION 

The nonlinear wave propagation through rigid porous materials has been the aim of 
many studies (Wilson 1988, Mclntosh 1990, Norris 1995). The source of nonlinearity 
may originate from the constitutive equation of the fluid or from the conservation equa- 
tions of mass, momentum... We are interested in the second problem. We consider 
a rigid porous structure saturated with a viscous compressible isothermic fluid. It is 
known that in many cases of practical concern, the pores are sufficiently small and 
the frequences are sufficiently low so that the thermal process in the pores is nearly 
isothermal (Wilson 1988). These assumptions are precisely used in the homogenization 
technique which is employed in this paper. Otherwise a rigid frame implies that the 
porous matrix of the material does not vibrate as the fluid in the material is being 
acoustically excited. It is assumed that the wavelength of the sound perturbation is 
much larger than the pores dimensions, so the material may be treated as a homoge- 
neous one with bulk properties. We employ the two-scale technique of homogenization 
for heterogeneous media with disparate length scales. Our objective is the nonlinear 
correction, for low velocities, to the linear Darcy's acoustic law. 

In first, section 2 deals with the statement of the problem. The equations of nonlinear 
acoustics in a viscous isothermic fluid are recalled. The basic idea of the homogenization 
and its implementation in the problem are given in section 3. Section 4 is devoted to the 
theory of linear acoustics, with exp (iuit) time dependence, in a rigid porous periodic 
medium using the homogenization method. Then the linear Darcy's law for the bulk 
acoustic filtration involves a complex permeability tensor depending on the frequency 
w. The nonlinear correction of this law for low velocities is the subject of section 5. It 
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is proved that the first order correction originates exclusively from the convection in 
the pores. The "apparent permeability" tensor of the relationship existing between the 
mean velocity and the macroscopic pressure gradient varies linearly with the mean fluid 
velocity if the bulk medium is anisotropic but in the case of bulk isotropy this correction 

cancels out. 

2. - STATEMENT OF THE PROBLEM 

We consider an infinite periodic rigid porous medium. The period of which is a paral- 
lelepiped cell homothetic with the ratio e < 1 of a basic period Y in which the fluid 
domain YF and the solid one Ys have a smooth boundary T. The pores elp of the struc- 
ture are interconnected so as to allow fluid flow through the material. The medium is 
saturated by a compressible fluid and we suppose that thermal effects may be neglected. 

We are interested in the small perturbations of the porous material in which the fluid 
is at rest. We denote by po the constant density, p0 the constant pressure and c0 = 
(dp/dpfj2 the constant sound velocity of the fluid at rest. The magnitude order of the 
acoustic perturbation is measured by the acoustic Mach number M, which is the ratio 
of the characteristic velocity chosen by the observer to the sound velocity c0. We assume 
that the Mach number is very small compared to unity : M < 1. The velocity V, the 
density pe and the pressure ps in the fluid are of the form : 

Ve=MVa,    p
c = p0+Mpa,    p*=p0 + MPa 

by assuming that the fluctuations are of order M. They satisfy the fluid mass and 
momentum conservation laws : 
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dpe 

-£- + divp*V*        =    0 dt 
dJL . V*W{\    _       dp*  .,x.^9   fdVf\ ^ -   W 
at + V>1^)  ~  -^- + (A + ^fe(^7J+^ä^7 

where Ä and fi axe the fluid viscosity coefficients, and using the Einstein summation 
convention, the constitutive law : 

p'=p(P<) 

and the non-slip condition on the solid surfaces : 

Vs = 0 

Thus the acoustic perturbation is governed in the fluid by : 

(!) ~dt~+p0 div ^ + M *'«(/»«?«) = o 

(2) dVai     dPa     _ d2Vai      (X^-,d(dVaj\ 

(3) P° = C°Pa + lM(j£)   Pl + OiM2) 

and the non-slip condition on the pores boundaries : 

(4) Va = 0. 

3. - HOMOGENIZATION PROCEDURE 

The homogenization (Sanchez-Palencia 1980, Levy 1987) is an asymptotic two-scale 
method for studying physical processes in a finely heterogeneous medium in order to 
obtain an equivalent macroscopic description. It is based on the existence of two well 
separated length scales, £ and L, the characteristic lengths of the microstructure and 
the macroprocess respectively. In this problem, I characterizes the dimensions of the 
physical period of the medium and L the wavelength of the sound propagation in the 
porous medium. It is assumed that I is much smaller than L and the asymptotic 
process is associated with the small parameter e = £/L. Under the hypothesis of a 
periodic geometry of the medium the homogenization furnishes a rigorous procedure for 
obtaining the macroscopic equations of the limit phenomenon as e tends to zero. Two 
space variables are introduced, the standard macroscopic one x = (xi,x2,x3) and the 
microscopic one y = x/e. The solution of the considered problem is searched in the form 
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of a double scale asymptotic expansion with the same periodicity as the medium, that 

means 

(5) Va=V°(t,x,y) + £V1{t,x,y) + .~ 

(6) pa=p°(t,x,y) + ep1(t,x,y) + ... 

(7) Pa = /*(*, x, y) + eP
u(t, x, y) + ... 

with V\ p\ p" Y-periodic with respect to the local stretched variable y, and | V | / | 
yi-i |f p'/p'-1, p"I//i_ ^bounded functions in the whole medium. Whereas dissipa- 
tion is'generally negligible in acoustics, on the contrary in a porous material the fluid 
viscosity cannot be neglected on account of the very small dimensions of the cavities. 
In order to take it into account at the pore level, the viscosity coefficients are assumed 
to be of order e2 (ß = e2fi, A = e2\). The usual homogenization procedure (Sanchez- 
Palencia 1980, Levy 1987) is to insert expansions (5)-(7) in equations^(l)-(4) taking 
care that, when applied to a function f(x,y), d/dxi becomes d/dxi + £ J^/cty^In ^e 

following, index x (or y) specifies partial derivative, for example Ay = fr/dyidyi- By 
identifying like powers of e, we obtain successive differential problems with respect to 
the local variable y (at this stage x is considered as a parameter). Let us remark that 
according to the condition of Y-periodicity, we may consider that y varies in the basic 
period Y, then the periodicity of a function means that it takes equal values on the 
opposite faces of dY. The solution of these local problems gives the local variations of 
Va,pa, pa and equations that relate them. The required homogenized equations that 
eliminate the explicit dependence on y, leaving us with equations in x, are obtained by 
averaging these relations on the period. 

4. - LINEAR THEORY 
The homogenization of equations (l)-(4) with M = 0 leads to the theory of linear 
acoustics in a rigid porous medium (Levy 1977, 1987, M. Firdaouss 1996). The first 
approximation of (2) is gradyp° = 0, so we obtain, using also the first approximation of 

(3): 

p0{t,x,y) = p°{t,x)   ,   p0*{t,x,y) = p0*(t,x)=p°(t,x)/cl. 

Then, the 0(e_1) approximation of (1), the O(s0) approximation of (2) and the 0(e°) 
approximation of (4) lead to the following differential problem which is to be solved m 

the basic period Y  : 

(8) divyV0 = 0    in YF 

(9) Po~df = ~9rad*P° ~ Qradyp1 + nAyV°    in YF 

(10) V°=0    onT. 
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We consider now time dependence of the form e""', we write : 

V° = 9{x,y)eiut,      p° = P\x,yy»\      p1 = P\x,y)j**, 

pD* = Ax.y)c,'ü",... 

In order to obtain a variational formulation of the problem, we define the Hubert space 
F of complex vectorial functions : 

F = {#, W E [H\YF)]\W Y - periodic, W = 0 on I\   div,W = o} 

with the scalar product 

(where _ is for the complex conjugate). 

The variational formulation of equations (8)-(10) is easily found by multiplying (9) by 

a test function W 6 F, integrating in YF, and using the Y -periodicity of the functions, 
it is : 

(Find V €W such that 
f   .      „ T=, , f   dVk dWk dP°   f    - 
i    iup0VkWkdy + p        — —±dy = --— /    Wkdy, VW € F . 

JYF JYF dVi dyj dxk JYF 

The existence and uniqueness of V are proved using the Lax-Milgram lemma, and on 
account of the linearity property, we can write 

(ii) y = -|^-(y,uO 

where v* is the unique solution of : 

( Find v* eF such that 
(12) <   f irnr j f    dvl dWk f    - x    ' \        wpovlWtdy + n        -Ä-^Ldy=        Widy,     W 6 F. 

<■ JYF JYF dyj   dVi     *     JYF 

Let us define the mean value f(x) in Yp, of f(x, y) : 

then we obtain, taking the mean value of (11) 

(13) V = -K(u)grad P°. 
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this is a linear Darcy's law, with the complex permeability tensor defined by : 

KX]=v\ 

The permeability tensor K depends on the frequency w and is completely defined by 
the microstructure. It is easy to prove the symmetry of the tensor K, as a matter of 
fact writing (12) with W - v> and the variational formulation of the v] determination 

with W = v1', we conclude that Kij = Kji. 

In order to emphasize the physical origin of the real and imaginary parts of the per- 
meability, let us suppose the isotropy of the medium, then the permeability is a scalar. 
Denoting by Jfci and k2 its real and imaginary part respectively, (13) may be written 

V = - [k^u) + ik2{u)} grad P° = -{e.v)grad P° 

with e = -grad P0/ | grad P° ], and v{y,u) G F, verifying (12), that is to say (Firdaouss 

1996) 

/   iWpQvkWkdy + ti I   p- ~-dy=  f   ekWkdy,     VW 6 F 
JYF JYF OVi   dVi JYF 

By taking W = v in this relation, we obtain the real part k\ and the imaginary part k2 

in the form 

, ,  \       l     f     dvk dvk 
il{u>)sS\Y]Jy/WiWi

dy 

k2(u) = -^77 /   v^kdy   ■ 
\Y I JYF 

Then the real part of the permeability may be associated with the viscous dissipation 
and the imaginary part with the inertia. Similar considerations are displayed in (Wilson 
1988). Though the subject of the study is the Darcy's law, let us note the second 
macroscopic law. Integrating in YF the 0(e°)approximation of (1), we obtain 

iw^z P° +p0divV = 0 

with 7T =| YF | / | Y i, the porosity of the medium. This equation and (13) lead to 
Helmholtz-like equation in porous media 

= 0. 
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5. - NONLINEAR CORRECTION OF THE DARCY'S LAW 

We wish to find corrections to the linear theory of section 4, which will include the 
nonlinear properties of the fluid in the material. As a matter of fact the homogenization 
method is used to predict the nonlinear correction of the Darcy's law. A similar study 
has been performed for the stationary filtration (Wodie 1991) in order to discuss the 
Forchheimer equation. 

We now deal with the homogenization of equations (l)-(4), neglecting the terms smaller 
than M. The 0(M) nonlinear terms lead to the first order correction of the asymptotic 
expansions (5)-(7). In order to take into account the nonlinearities at the pore level, we 
assume e2 <S M < e and asymptotic expansions of the form 

V°(t,x,y) + ^.tf>(t,x,y) + Va = 

pa = p°(t,x)+£ 

pa =p°*(t,x) + e 

+ 0(6) 

p1(t,x,y) + —ql(t,x,y) + . 

pi*(t1xiy)+™r1*(t,x,y) + ... 

+ 0(e2) 

+ 0(e2) 

Substituting these expansions into the governing system (l)-(4) yields to the next set 
of equations : 

(14) divyü° =0     in y> 

(15) "(g + O-£+"*.•?  ta* 

(16) '1=C^ + l(0)/*'    **' 

(17) u° = 0     on T. 

When V°, p° and p°* are harmonic function of t, the perturbation implies a time de- 
pendence of the form e2lut, we write : 

if = Ü(x,y)e2i»\     g1=Q1(x,y)e2,-t   . 

Then, using (11) U and Q1 are solutions of : 

divy U = 0    in Yp 

f        TT   .   W1 A   TT 9P°   dP°    m  &,? 2^0 «7, + -_ - ,AyUl = -Po — _ vf _j    in YF 

Ü = 0   on r. 
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The variational formulation of this problem may be obtained as in the previous section 

and on account of its linearity, we can write : 

(18) 
oxm dxn 

with Zmn=Znm the unique solution of 

( Find Zmn e F 

2iuPoZ?nWkdy+ 
YF 

v     JY 

dZfn dWk, 
-dy = 

YF dyj   dyj 2 JYF \
3   dVi        dVi J 

At once, we remark in view of equations (14)-(17) that the first order correction of the 
linear Darcy's law is due to the only convection terms in the momentum equation. We 
define now the mean velocity in the porous medium : 

v) = V* + *i&> . 

With (13) and (18) we can write 

(19) < v >,= -lUM^J" + MU^ -zf*. 

The nonlinear correction of the Darcy's law looks like a Forchheimer law, it involves a 

third order tensor T(w) such that 

M - 
limn - — & .    ■ 

Like the Zmn, T(w) depends only on the microstructure geometry. The correction 
is generally quadratic but it can be proved as in (Wodie 1991) that if the medium 
is macroscopically isotropic the tensor T(w) is zero and then the nonlinear correction 
must be re-examined. This result agrees with the description of (Mclntosh 1990) for 
the nonlinear wave propagation throught rigid porous materials for low velocities and 
isotropic media. 
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Abstract 

In this paper we give a short description of the physical model of the Bridgman- 
Stockbarger crystal growth system. This is followed by the presentation of the exist- 
ing mathematical models of the system, including equations governing the processes. 
Because these models describe the dopant field assuming that the interface is a math- 
em atic surface, wo continue with a new dopant field analysis proposal. In order to 
develope this analysis, we make two kind of hypothesis concerning the neighbourhood 
of the growth interface, which is a thin region, but not a mathematical surface. The 
first hypothesis is that in this region there is already a "periodic" structure formed by 
microcells like in crystal and the dispersion mechanism of the dopant is due also to 
convection of dopant by the microscopic velocity field in these microcells. The second 
hypothesis is that this region is like a. bed of randomly distributed spheres and the 
dispersion mechanism of dopant is due also to convection of the dopant, by the random 
velocity field generated at the microscale by the randomly distributed inclusions. In 
both situations we obtain a new effective convective-diffusive equation for this region. 
For realize this we used the method of homogenization, that is a multiple scale analysis 
in terms of a small ratio e between the characteristic micro and macroscales. 

1    The physical model of the Bridgman-Stockbarger 
crystal growth system 

The schematic of the system is presented in fig. 1. 
The system consists of two isothermal zones separated by a gradient region, which is radially 

adiabatic. 
The growth direction is considered to be aligned with the gravitational acceleration. 
The solidification front is located inside the gradient region. 
The charge extends sufficiently into the hot and cold zones so that heat transfer in the charge 
is quasi-steady and the growth rate is equal to charge lowering rate. 
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gradient region 

Figure 1: Schematic of the Bridgman-Stockbarger crystal growth system. 

2    Mathematical models for the Bridgman-Stockbarger 
crystal growth system.    Equations governing the 
process. 

Calculations made by Wang, G. in [1] have been extensively used for crystal growth 
experiments in this system.  The system has also been subject of the following modelling 
studies: [2],[3],[4],[5],[6]. 
The equations used in the above models are the following: 

(1) ~ + (üV)ü=-Vp + V2ü-f-6ez 

the non-dimensional transient momentum equations in the melt 

the non-dimensional energy equation in the melt 

(3) Vü = 0 

the non-dimensional mass continuity equation in the melt 

am at oz 

the non-dimensional energy equation in solid (crystal) 

5) — -^ = Pce--^ + V^c am at oz 
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the non-dimensional energy equation in crucible 

(6) ^ = Rnl(6fh-0c)      'for    *f < z 

the non-dimensional linearized radiative interaction between the crucible outer walls and the 

furnance in the hot zone 

(7) ^=0       for     -T<^<T 

the radially adiabatic condition in the gradient region 

(8) ^ = R<(9Jc-ec)       for    z<-*f 

the non-dimensional linearized radiative interaction between the crucible outer walls and the 

furnance in the cold zone 

the adiabatic condition on the top and bottom of the crucible 

ddm     kSp ks 89s 

the non-dimensional latent heat equation on the crystallization front. 

The list of symbols used in these equations: 
u - non-dimensional velocity vector (= vrs/v) 

v - velocity vector 
rs - radius of solid (crystal) 
R - position vector 
— - non-dimensional space variable 

v - kinematic viscosity 
/ - non-dimensional time (= Ti//r2

s) 

T - time 
p - non-dimensional pressure (= pr2

s/{pmV2)) 

p - pressure 
pm - density of the melt 
Ra - Rayleigh number (= gß{Th - Tm)r*/vam) 

q - gravitational acceleration 
ß - thermal expansion coefficient 

Th - hot temperature 
Tm - melting point temperature of the charge 
a,n - thermal diffusivity of the melt 
Pr - Prandtl number (= v/am) 
9 - non-dimensional temperature in the melt (= (T - Tm)/(7/, - Tm)) 
t, - unit vector parallel to gravitational acceleration 
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as - thermal diffusivity of solid (crystal) 

6S- non-dimensional temperature in solid (crystal) (= (T - Tm)l{Th - Tm)) 
PeSiC - Peclet number in solid, respectively in crucible (= Rrs/am) 
R - growth rate 
ac - thermal diffusivity in the crucible 

9C - non-dimensional temperature in crucible (= (T - Tm)/(Th - Tm)) 
Rn'h - linearized radiation number in hot zone (= 4ecclfrs/kc) 
sc - crucible emissivity 

kc - crucible thermal conductivity 

a - the Stefan-Boltzmann constant 

Ojh. - non-dimensional furnance temperature in hot zone 
Lg - gradient zone length 
Rn* - linearized radiation number in cold zone (- 4ecaT^rs/kc) 
Tc - cold zone temperature 

9jc - non-dimensional furnance temperature in cold zone 
ks - solid (crystal) thermal conductivity 
km - melt thermal conductivity 
n - direction normal to growth interface 

0m - non-dimensional melt temperature at the crystalization interface 
#5 - non-dimensional solid temperature at the crystalization interface 
St - Stefan number 

A#5_m - latent heat of solidification (= ks^- - &m^f) 
cc - heat capacity. 

Solutions of equations I to 10 requires simultaneous calculations of the velocity field it 
n the melt, the temperature fields in the melt and solid, the location and shape of the 
:.rystalization interface. 

For the steady state we can use the following methodology: 
Equations 6. 7, 8, 9 define boundary conditions on the outer walls of crucible. 
The. above boundary conditions are used in order to find a stationary solution 9C of the 
jquation 5 in the region defined by the outer walls of the crucible (Neumann problem). 
The values of the above stationary solution 6C on the inner walls of the crucible will be used 
.or finding the stationary solution of the non-dimensional energy equation in solid (crystal) 
?q.4 and liquid eq.2.  The location of the growth interface is given by the points on inner 
walls in which the temperature 9C is equal to zero (the crystalization temperature) and the 

shape is considered plane.  The temperature on the interface is equal to zero (the melting 
point temperature). 

The above boundary conditions and equation 4 define a stationary distribution of the tem- 
perature B\ in solid (crystal). The same boundary conditions and equation 2, in which at 

this step we neglect ü, define a stationary distribution of the temperature in the melt B^\ 
VV'hith the. above obtained temperature distribution in the melt ö^1' we find a stationary 

solution ü(1) of the equation 1 coresponding to the boundary condition «(1)|3 = 0. 
Using the velocity field M

(1)
 we find a stationary solution #(2) of equation 2 and with this 

,ve find a stationary solution ü('2) of equation 1 coresponding to the boundary condition 
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ö(-2)|a _ o. With ö(2) we find 6><3) and with Ö(3) we find u(3). We stop this iterative proces 

when 0(i) satisfies equation 10 with enough accuracy. 
The transport equation can be solved using Nekton solver. This solver is based on a spectr; 
element technique which decomposes the flow domain in standard finit element fashion an. 
expands the primitive variables using high-order Chebyshev polynomials. The convectiv 
and buoyancy terms are treated explicitly using a third-order Adams-Bashforth method am 
the diffusive terms are treated implicitly with a second order Crank-Nicolson scheme. 

Steady state temperature and velocity fields were obtained in the range of Ra = 0.1 - 
1.5 • 105. The results indicate the presence of two distinct corrective cells for Ra numbers u 
to 10\ a lower cell close to the growth interface driven by temperature gradients associate 
to the solidification front and an upper cell driven by lateral heat input into the melt. Tfc 
convective cells are effectively decoupled by the quiscent region separating the two.   A 
Ra > 104 the increase in the melt velocity and the interaction of the velocity field witi 
the top of the crucible leads to the appearance of two recirculating zones in the upper cell 
This suggests that with increasing Ra the upper cell will break into two and with furthei 
increases in Ra the flow in the upper cell will become unstable. It must be noted that tlw 
presence of two distinct cells is a consequence of the choice of hot and cold zone temperatures 
and the crucible material.  With decreasing hot and/or cold zone temperature the growth 
interface would move towards the hot zone and the two convective cells would interact. Ir. 
such conditions, the occurance of instability in the upper cell would be expected to directlj 

impact the growth process. 
Analysis of these results can provide the basis for protraction to other growth configurations 
where different convection patterns are present. Steady dopant field analysis in this mode 
is considered assuming that the interface is a mathematical surface. 

3    A new dopant field analysis proposal. 

An analysis of the dopant field in the context of Bridgman-Stockbarger crystal growtl 
system is justified by the fact that the unequal repartitioning of the dopant in the mcl 
influences the compositional uniformity of the grown material. The radial and axial dopant 
segregation in the crystal is determined by: convection in the melt, the value of the dopanl 
diffusivity in molten charge, morphology of the the solidification front. Crystals grown fron 
well mixed melts exhibit a non-linear variation of dopant concentration along the growtl 
axis (see [7]). Growth from quiscent melts results, after an initial transient, in uniform axia 
dopant concentration in the growing material (see [8]). During growth on earth in Bridgman 
Stockbarger system, the unavoidable temperature gradients in the charge generate buoyanc> 
driving forces (convection) which result in only nearly complet mixing of the melt [1]. Re- 
duction of the magnitude of the buoyancy forces through processing the semiconductors ii 
low gravity envinronments is a way for obtaining desired uniform dopant repartitioning ii 

the grown material [9]. 
Another way to obtain uniform dopant repartitioning in the growth material could be 

to compute the evolution in time of the dopant concentration for given growth rates and 
thermal conditions and to find from here how they influence the repartitioning of dopant, anc 
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in what way these conditions must be modified (generating control functions) in order to have 
the desired uniform repartitioning of the dopant in the melt at least in the neighbourhood 
of the crystallization front. In this way we hope to assure the uniform repartitioning of 
the dopant also in the grown material. This method requires dynamic description of the 
growth process from initial to final stages, inclusively dynamic description of the dopant 
concentration. In order to make such a description we complete the system of equations 1-10 
with the convective-diffusive equation of dopant concentration: 

(11) ^ + ^Vc = JD(W+|v2T) 
Or 1 

where c is the dopant concentration, v is the velocity field given by eq.l, D is the diffusion 
coefficient of dopant, kjD is the thermodiffusion coefficient, T is the temperature given by 
eq.2. The constant kj is called the thermodiffusion ratio and we can neglect it for small 
concentrations (see [10]). 

The equation 11 describes with accuracy the evolution of the dopant concentration in 
the upper cell and in quiscent zone, but in the lower cell, close to the growth interface, this 
equation must be improved because the growth interface is not realy a mathematical surface. 
The growth interface is a thin region which has one of the following characteristics: 

1. There is already a "periodic" structure, formed by microcells, like in crystal and the 
dispersion mecanism of the dopant is due also to convection of dopant by the microscopic 
velocity field in these microcells. 

2. This region is like a bed of randomly distributed fixed "spheres" and the dispersion 
mecanism of dopant is due also to convection of the dopant by the random velocity field 
generated at the microscale by the randomly distributed inclusions. 

In both situations we must deduce a new effective convective-diffusive equation for this 
region. 

In order to deduce the new macroscopic convective-diffusive equation in the neighbour- 
hood of the growth interface we use the method of homogenization, that is a multiple-scale 
perturbative analysis in terms of the small ratio e between the characteristic micro and macro 
length scales. The method was first proposed in 1978 by Bensoussan, Lions and Papanicolau 
in [11] and later extended in a series of books and articles [12-20]. 

In this method the dependent variables of the problem is assumed to be expressible as 
a regular expansion in terms of a small parameter e equal to the ratio of the microscale to 
macroscale characteristic lengths. Finally the macroscopic equation, which is satisfied by 
the leading-order term of that expansion, is expected to arise naturally from the ensuring 
regular perturbation analysis. 
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4 The macroscopic (effective) convective-diffusive e- 
quation for small concentration when we moddeling 
the thin region in the neighbourhood of the growth 
interface by a spatial periodical structure. 

For small concentrations, the microscopic convective-diffusive equation of dopant is 

dc 
(12) .      ^ + *Vc=DAc 

and the boundary condition 

(13) nVc = 0   on   du 

Here v = v(y) is the fluid velocity in a cell ft and is taken periodic, D is the diffusion 
coefficient, u denotes the "solid" part in a cell (the part which is already solid) a« denotes 
the boundary of the solid part and n indicates a unit vector normal to du, tl - fi - w. 

We consider the two length scales 1 and L corresponding to the cell size (i.e. the period ot 
the structure) and the size of the region in question, respectively. Assume that e-l/L«l- 
Now we introduce the following hierarchy of time scales 

i        l*        L     _£ (14) n = -,    r2 = -,    r3--,    TA- D 

where VQ is the characteristic value of the velocity field. 
There are two related non-dimensional numbers which appear here - the local and global 

Peclet numbers: ^ ^      ^      , 

(15) Pc> = 7r^   Pt° = 7r~D^~eltl 

representing the ratio between convection and diffusion locally and globally, respectively. 
We assume that convection and diffusion balance each other at the microscale, that means 

Pet = 0(1). In this case, Peg = Ofr1), what means that convection dominates diffusion at 

the macroscale. 
We note by R the macroscopic position vector, with |Ä| = 0(L).   Scaling the space 

variables according to 

(16) * = I 

we introduce the corresponding microscopic variables 

R     x 
(17) » = j = - 

Now we introduce the following three time scales: 

18) t = ~,    Ti = -   T2- 
T      T - - 
Ti T3 T4 
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Assume that the effective concentration c depends on £, x, y,t. 1\, T2 and can be expanded 
as follows: 

(19) c(e, x, y, t,TuT2) = ]T i\n(x. y, t, T,. T2) 
n=0 

The dependence on y will be assumed periodic and we assume that  L/ cndy = 0, for 
n=1.2v... where Q = fi — u>. 
For the time derivatives formulas 18 give: 

/om d       D f d       n     -i   d ->d 

(20) Fr = p[m+Pe'£    dT^+£'di 

and for the space derivatives formulas 16 and 17 give: 

Substituing 19 in 12, using 20, 21 and collecting equal powers of e on gets: 

(22) |Vo-«Vsco-| = 0 
(_ nVjfo = 0   on   du> v 

(23, (V1-^1-t^V?-2VJVsc0 + Pe;|| 
[ nVyCi + nvsc0 = 0    o?i    öOJ v 

r A.c. - «V,* - t = ,V Cl - 2V,V„Cl + P^ - V|C0 + % 
{ n\yC2 + nViCi =0   on   to v ' 

where wc have put 

(25) ü = PC,1J- 

A function c0 = co(x. 7'i,r2) satisfies 22. For such a solution of 22 equation 23 becomes 

(26) f AsCl-«VsCl-M = «V*Co + PC/fa 
\ nVjCi + nVäc0 = 0    on    dw 

The solvability condition for 26 gives 

(27) Pe,^- = - < Ü > V,c„ 

where we have 

(28) < ü >= jTyT /   ü(y)dy 

For the equation 26 we look for a solution of the form 

(29) c1(.f,j/./.r,,T2) = ^yJ^M^TuTi) 
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Substitutioning 29 in 26 we find 

(30) 
§7 + (üVj)* - Asx =< « > -ü 

(nVs)x = -ft 

The problem 30 has an unique stationary solution x = xiv) which is periodic and satisfies 
< ^ >= -±r jQl x(y)dy = 0. We consider this function x — x(y) and cT = xV^co. 
Substituting in 24 we find 

(31) 
AyC2 - üVyC2 - f = t»V,(*Vscb) - 2ViVs(xV,Co) + Pe,§* - A£c0 + fa 
nVyC7 = -nVxCi 

The solvability condition of the equation 31 gives 

f   dX^~ ]       f A   \ -^ r\h^-w\LniXiia)d^i 
or 

(33) 
8T2 

VsViCo /- < & > +2 < Vx > -77^77 /   nxder 
1" I ./9w 

Substituting c0 = c0(x,Ti,r2) in 20 and using 27, 33 we find that CQ satisfies the equation 

ÖC0 
(34)       p+ < v > VRCO = i? J- < x« > +2 < Vx > -w\Lnxd\ VfiV^co 

This is the macroscopic convective-diffusive equation of the dopant in the neighbourhood of 
the crystallization front. 
The quantity defined by 

(35) D* = D I- < XM > +2 < Vx > ~w\h xder 

is the diffusivity tensor in this region. 
The cxpresion of the effective diffusivity tensor for periodic porous media was subject of 
several papers, see for example [18],[20]. For the case of spatially periodic porous media a 
formula was first obtained by Brenner in [21]. Brenner considers that only the symmetric 
part of D* enters in the macroscopic equation 34. 

In order to find the symmetric part we consider Dij from 32 

(36) DM   = D "-w\Lx^di+w\Li^-w\LXinidir. 
and using Gauss formulas we find 

:37) Da = D ~ 17v7 /   Xiuidy + TTYI  /   T~ P I Jn' ln I hi vVj 
dy 
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The symmetric part DtJ is given by 

(38) Da = D JXJ 

1  l ( i      x      w-x   l  l f f9*',9^ 

The dispersion tensor given by 37 depends on the flow in the "pores" (fi ). To calculate the 
dispersion tensor on must solve the fi cell problem defined by 30. This linear fi cell problem 
defined by 30 can. in principle, be solved numerically for x f°r anY ^ ce'l geometry and 
velocity field v in the fi cell. 
For the velocity field v in the fi cell we have at least two choices: 
1) The velocity field v generated in fi cell by the macroscopic convective velocity field in 
lower cell clue to the gradient of temperature in the neighbourhood of the crystallization 
front. That is the Brikmann velocity field given by the equation 

(39) 
[ Vü = 0 

where a denotes the permeability of the thin region which in the dilute limite equals to the 
ratio between the fluid velocity and the force per unit volume exerted on the fluid by the 
solid w; fi is the dynamic viscosity; F = -bitfiaV; a is the radius of the solid part and V is 
the average of the convective velocity field in the neighbourhood of the crystallization front. 
2) The velocity field v of a very viscous flow past a sphere. 

The arguments for a velocity field v of an uniform very viscous flow past a sphere are: 
the high viscosity of the melt, in the neighbourhood of the crystallization front, the constant 
growth rate and the fact that we can approach the solid part of the cell fi by a sphere. The 
slow flow equation is 

f 0 = -Vi? + /iV2o 
<«) {v« = o 

For an axisymmetric flow (e, = V/\V\), using appropriate spherical polar coordinates 
(a: = rsindcos(p, y = rsin8simp,z = rcosd) we have in the plane tp = 7r/2: 

(41) v={vr{r,6),vg{r,6),0) 

We may automatical}' satisfy the condition Vt) = 0 by introducing Stokes stream function 
•0(r, 0) such that 

1     di> 1    dii> 
v    ' r'sinf) oU rsmV or 

In these conditions we have: 

(43) %' = -\V\ f 2r2 + — - 3ar j sin2'Q 

where for |V'| we take the average of the velocity field in the lower cell. 
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5 The effective convective-diffusive equation for small 
concentration in the case when we modelling the 
thin region in the neighbourhood of the growth 
interface by a fixed bed of randomly distributed 
spheres. 

We started again from the convective-difTusive equation for small concentrations 

dc 
(44) Y + üVc = DV2c 

In this equation c is the concentration of dopant, r is the time, ü is the random incompress- 
ible velocity field generated at the microscale by the randomly-distributed spheres which is 
statistically homogenous and infinitely extended, D is the diffusion coefficient. 

Following R. Mauri's considerations from [20] for a fixed bed of randomly distributed 
spheres we consider the two length scales 1 and L, indicating a typical correlation length of 
the random velocity field v generated at the microscale by the randomly-distributed spheroids 
and a characteristic linear dimension of the macroscale (size of the bed). We assume that 
e — l/L « 1 and we introduce the time scales 

2 I I2 L V 
(45) r1 = -,    r2 = -,    r3 = -,    r4 = - 

where V'u is the characteristic value of the velocity field. 
We consider the local and global Peclet numbers: 

and assume that convection and diffusion balance each other at the microscale, that means 
Pet = 0(1). In this case, Pes = 0(s_1), what means that convection dominates diffusion at 
the macroscale. 

Wc note by R the macroscopic position vector and we scale the space variables according 
to 

R 
(47) * = j 

The corresponding microscopic variables y is given by 

R 

Introducing the following three time scales: 

(48) y = j = 

(49) r = -,    T, = -   Ta=- 
r-i T3 T4 
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ion 

wc assume that the effective concentration c depends on e, x,y, t, Ti,T2 and can be expanded 
as follows: 

'DO 

(50) c(e, x,y,t, Tu T2) = Y, £"c"^';v' *'TuT^ 
n=0 

We note that the stationary random velocity field v depends only on y; each term cn in the 
expansion 50 is locally ergodic (expressible as a product of an ergodic y, t dependent funct 
by an x.Tu'T-i dependent part); the ensemble.average of cn denoted by < cn > satisfies 

(51) < cn >= c.Sn0 

and each cn is locally random. 
For the time derivatives we have: 

d      D ( d      n     , d       _2d 
(52 ^ = — U=- + Peie '-— + e 2- v   ' dr     L2 \dli all oi 

a.nd for the space derivatives: 

(53) V« = I (v, + l-^s) ,    VJ, = 1 (vl + |v,V, + ivj) 

Considering ü defined by 

(54) Ö = Pe,%- 

substituting 50 in 44, using 52, 53 and collecting equal powers of e on gets: 

(55) A^-üVjCo-^O    for    0(£-
2). 

1 Pi 

(56) Affc1-üVsci--^=üV*cü-2V,VjCö + /'e,^r    f°r   °(£_1) 

(57) Asc2-öVsc2--^ = üVec1-2VsVsc1+Pc/^-V^ + ö^  for  0(1) 

A function c$ = ^{x/F^l^) satisfies 55. For such a function 56 becomes 

dci       _ ,.,   dco 
(58) Asc, - üVyCi - — = «ViCo + -r£!^7 

Now we impose that equation 58 is solvable; that means that ensemble averages of its left 
hand side and right hand side are identically equal to each other. Using that ti is locally 
random we find: 

(59) Pel^ = ~<ü>V.icQ 

where < u > is the ensemble average of ü and is the effective dopant velocity. 
If we look for solution of equation 56 of the form 

(60) d(:r, </,/,, 7,, T2) = x{y,t)VM*,Ti,Ti) 
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we find 

(61) -^ + («Vph' - Agx =< w > -w 

Condition 51 for n=l implies that X satisfies also 

(62) < X >= 0 

If we consider \ satisfing 61, 62 and cx - A'Vjto equation 57 becomes 

(63) Ascj - üVfCj - ^ = wVs(xVäcö) - 2Vä.Vs(xVsCD) + Pe,^r - AsC° + ^ 
2 

We apply the solvability condition to this equation and considering that c2 is locally random 
we obtain 

(64) «r = E E ^- < XV > +2 < ^ >J ^ 

(65) ^ = [/- < P > +2 < VX >] V,VsCo 
Oi2 

Substituting c0 = c0{x.Ti,T2) in 52 we find that co satisfies the equation 

(66) ^+ < v > VfiCo = JD [/- < xü > +2 < Vx >] VflVÄco 

This is the macroscopic convective-diffusive equation of the dopant in the neighbourhood of 
the crystallization front if we assume that this is a fixed bed of randomly distributed spheres. 
The quantity defined by 
(67) D* = D [I- < & > +2 < Vx >] 

is the diffusivity tensor in this region. 
The symmetric part of this tensor is 

(68) Dij = D &ij i«^,«,»+(<g+!f>) 
The dispersion tensor depends on the flow. To calculate it one must solve the problem 

61, 62. This linear problem can, in principle, be solved. In the papers [20],[22] this linear 
problem is solved for a Brikmann velocity field given by the equations 

(Vp+*v-vK*v = F6(r) + 0(<l>) 
(by) \ Vw = 0 

where a denotes the permeability of the bed which, in the dilute limit, equals to the ratio 
between the fluid velocity and the force per unit volume exercited on the fluid by the bed 
particles; F = -6JT/M V; a is the radius of the solid part and V is the average of the convective 
velocity field in the neighbourhood of the crystallization front. 
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6    A conclusion 

A solution Co of the effective convective-diffnsive equation depends on the initial value, on 
the boundary condition and, via the velocity field v, on the thermal conditions (Th,Tc). 

Changing the thermal conditions at a moment r} we will have other solution c^ for which 
Co is an initial value and for which the boundary conditions are given by the values of ca on 
the boundary. In this way, changing the thermal conditions we hope to realize the desired 
uniform distribution of dopant. 
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On a Heat Transfer in Porous Media 
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Institute of Mathematics, Romanian Academy, P. 0. Box 1-764, 70700 Bucharest, Romania 

Abstract 

Macroscopic heat transfer in porous media, in the presence of thermal 

interfacial barriers between the fluid and the solid phases, is determined by 
using the homogenization method. The models are shown to belong to two 

main types: one-temperature and two-temperature field models. 

1   Introduction 

Usually the heat transfer in porous media is described by a single model. 

This is the case if we use the continuity of temperature and of the normal 

fluxes as boundary conditions between the fluid and the solid, cf. [l], [2]. 

There exists also a two-temperature filed model introduced in order to 

describe the case when the thermal conductivities of both phases are very 

different. [3], [4]. 

The aim of this paper is to determine the influence of the thermal inter- 

facial barrier on the structure of the macroscopic heat transfer equations. In 

order to do so we use the homogenization method, [5], [6]. 

In section 2 wc present a model problem. Such a. problem represents the 
steady heat conduction in a binary composite. Concluding we present, in 

section 3, the case of heat convection in porous media. 
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2    The model problem 

We consider a medium formed by two components, periodically distributed 

in space and such that the domain tt is formed by 0 = Qfi URr2 with: 

V being the cell of periodicity. 

For fixed T > 0 we are looking for the function T, - (^-1X2) defined in 

tt,i x Qr-2, solving: 

f -£(^Sr) = / ™ "« 

^?ff «,■ = s>h'(Teß - Tm) 

L = 0   on   dtt   a = 1,2 

0??. re,   «^tf (1) 

Here Fe denotes the common boundary between the two components, ri; is 

the outward normal to fLa., and If > 0 is the thermal interfacial barrier. This 

is a so-called Newton's boundary condition [7]. The coefficients k™ = £:g(f) 

and hs = h(~) are V'-periodic in the variable y = ~. 

As usual in the homogenization method we are searching for an asymp- 

totic expansion for Tsa of the form: 

Tea(x,y) = Ww) + sTil(x,y) + ...      y=-a = l,2 (2) 

where T^{x,y) are V'-periodic functions in y. 
The method consists of incorporating expansion (2) into (1), identifying 

the similar power in s and solving a set of boundary value problems in the 

characteristic cell Y. 
The homogenization process, s —> 0, produces a set of equations satisfied 

by r° which in fact represent the macroscopic behaviour of the heat transfer. 

First of all,we have at order t2: 
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4(^)g) = 0 m >'< 

[ T°   Y- periodic   (a = 1,2) 

By (3) T° is a function depending only on ;i\ namely T" = T^(x). o = 
We obtain a.t order -T1: 

(3) 

^)(f + f)„/%)^-a    /"   P = 0 
0    /or   j> > 1 

(4) 

T^   Y —periodic   ß ^ a   a-= 1,2 

The problem (4) has a V'-periodic solution, for p — 0, if and only if [5]: 

(r?-T«)Jh(y)ds = 0 (5) 

But h(y) > 0 and hence / h(y)ds   0, it results that T° is F-periodic if 

For p > 1, the problem (4) has a F-periodic solution, and consequently 
T['(x) ^ T°(x). For this reason p = 1 is the critical value for the order of 
magnitude of the thermal interface barrier. 

In the case p = 0 we have at order t°: 

. T2
y    Y- periodic   (a = 1,2) 

(6) 

On the other hand, for p = 0, the solution of (4) has the following form: 
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r)T° ,,,,,„ = !,,_, (a = 1,2) 
where wk

a is UK- solution of: 

my)(tki + ?£)ni = o on  r 

(7: 

(8) 

■w*    Y — periodic,    (a =1,2) 

Using (7) in (6) yields the macroscopic equation under the classical, form: 

(9) 
T° = 0   on   du 

and the homogenized coefficients: 

& 
1 

£ /*S(« fe«(*i' + 1 
3toi 

% 
w 

Remark 2.1 /ra the case, p = 0 toe obtain a one temperature model, equation 

(Ol- 
In the case p = 1 at order s° we have: 

_$_/>(££ + iÜVj = f   in v; 

AS(^ + lf)^ = fc(I?-^)    on    r,    /^«' ;n) 

T2    V — periodic,    a = 1,2 

in tfns casf introducing w* the solution of (8). the solution of (4) is also 

of the form 7^(.iv?/) = «'i^, (a = 1'2^   With the vdu( ^ T" ohtained' 
, the mean value of (11) yields two coupled macroscopic equations for the two 

temperature fi,clds T?[x) and T°2(x): 
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■£:(§?£)+ H[T?-T«) = ef 
< 

I -^(^J - ^(2?.-72°) = (!-«)/ 
:i2) 

ii-i W>ere Ö = y|.  The macroscopic coefficients arc: 

1 k» = ^jk^yi + W°)dy    ° = 1'2 
1 a 

(13) 

and 

H = '14) 

Remark 2.2 /n. cß.*e p = 1 we obtain a txoo-temperature model. Note also, 
that, in this case, the two equations are coupled. 

Following the same procedure, for p> 2, it is clear that we have at the 
macroscale: 

-£(*&!?) = '/ 

with the homogenized coefficients given by (13). 

(15) 

Remark 2.3 The case p> 3 gives us a two-scale temperature model, but 
without anny coupling term. That means that the thermal fluxes are inde- 
pendent in the two constituents. 

Part of the results of this section can be found in [8], [9]. 

3    Heat convection in porous media 

The problem of heat convection in porous media was extensively discussed 
in the case of a one temperature model, using or not using the homogenization 
method [1]. [2], [3], [4].   For heat convection in porous media it is necessar 
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to scale the thermal conductivity with the same factor as the velocity [1], in 
order to preserve the convection term in the macroscopic equation 

We suppose that all such rescalings were made. Consequently we start 
with our problem: 

( {pc)o^ + {pc)f^ = i;{K§t)   ^   ft«, 

Kd-^nk = eW(Teß-T£0)   on   Te,    a±ß (16) 

,T, = 0   on   du,    a = j\s 

where te subscript / and 5 denote the fluid and the solid phases, respec- 

tively. 
In problem (16) v denotes the velocity vector, given for example from the 

Darcy's law. In fact, we are interested only in the heat transfer problem. Of 
course, the convective term vVT is zero in the solid phase, the vector field v 
being zero in the solid. 

The results from the model problem can be applied to the present case 
without any difficulty. We are searching for the same asymptotic expansion 

(2). 
At order e~2 we obtain again the problem (3). This means that we have 

T° = T„V), * = /,«• 
At order e-1 we have the problem (4), because the e   -term from the 

convective one is zero. In fact it is clear that {pc]svkj^ is zero, form the 
previous conclusion. 

It results that p = 1 is the critical value for the thermal interfacial barrier. 
Consequently, for p = 0, we have the classical one-temperature model: 

(17 

T° = 0   on   dti 

where the mean value is defined by 

$ = TyJ <Ky)dy 
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ö = yi is the porosity, and the homogenized coefficients are given by (10) with 

kf and ks in the fluid and solid parts. 
In the case p = 1 we obtained a coupled system of two temperature equations, 

as those proposed in [3] [4]: 

Hpc)f(§ + vk^) = i:(k0-H(T<;-T°) 
(18) 

with H given by (14) and the conductivity coefficients (13). 
For p >2 we also have a two-temperature model, but without any interaction, 

as in the Section 2. 

4    Conclusions 

The correct model describing the heat transport in porous media is depending 
on the order of magnitude of the thermal interfacial barrier, or on conductance. It 
is clear that the macroscopic description of heat transfer in porous media strongly 
depends on the relative value of the barrier resistance. 

The problem of a correction between the difference in the thermal connductiv- 
ities of the fluid and the solid, and the thermal interfacial barrier, stands still. 
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REGARDING ON THE INTEGRATION OF THE NON-LINEAR 
DIFFERENTIAL EQUATIONS FOR THE ROCKET INCIDENCE 

VARIATION DURING THE FLIGHT 
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Technical Military Academy, Bucharest, ROMANIA 

ABSTRACT 
Our researches were developed starting from the rocket longitudinal plane motion 

equations system, taking into account the non-linear terms of the aerodynamical 
coefficients CX,CZ, Cm . 

It was obtained a differential, non-linear, non-homogenous equation, with variable 
coefficients, which allow to obtain the variation in time of the incidence angle. 

Using two numerical integration methods, the theoretical data (in many case 
studies) obtained by the proposed method are enough appropriate to the results of the 
general motion rocket study. 

It was elaborated a complex program to simulate the rocket flight in the resistant 
environment, which operates with a large aerodynamical, rocket, engine and launcher 
construction data basis. 

1. DIFFERENTIAL EQUATIONS SYSTEM OF ROCKET MOVEMENT 

d^e theoretical researches, tackled in our paper, for the flight stability 

evaluation and more generally to study the rocket behaviour on the trajectory are 

developed on the basis of the mathematical model of the rocket longitudinal 

movement in a resistant environment [2], [6]. It is considered the case of the 

rocket flight with aerodynamical stability. The rocket, like study object, is assumed 

with an axially symmetry configuration. 
The studies were elaborated for the rocket with and without spinning 

movement, which has a crossed wings aerodynamical configuration. 

Using intrinsic coordinates, the longitudinal movement equations of the 

rocket under the action of the thrust, weight, drag, lift, taking into account the 

principal aerodynamic moment, the damping moment of the pitching oscillations, 

the gas damping moment and the moment provided by the thrust gasdynamical 

asymmetry [6] (fig. 1) may be written as: 
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m ^ = cTcos(a-aT)-R-mg sine 

where 

m —= mg cos9-c^"sin(a-aT)-P-F^ 

a) 

Fig.1 

The aerodynamical coefficients   Cx, Cz, Cra are generally functions of 

Mach number, M and flight incidence, a. 
In the case of the stable rockets, with correct flight, the incidence being 

sufficiently small, it is assumed that the Cz, Cm coefficients functions may be 
expressed as linear functions depending on incidence; the Cx coefficient is 

considered that practically is invariable with the incidence. Thus, usually, in the 
case of the rocket with blocked commands, it is accepted the approximations: 

CX=C \0- \_/ y    —   V-- -j \-A. • C    =C   a (3) 
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It is known that during the fly the incidence may increase at great values, in 
the proximity of boundary value of linearity, a^, or over this value. In order to 

study the rocket behaviour at great incidence values or even in the proximity of 
critic flight works, it is necessary to take into account the non-linearity of the 
aerodynamic coefficients depending on the incidence. 

Our proposed mathematical model, developed to study the complex rocket 
behaviour on the trajectory at great incidences, consider for the aerodynamical 
coefficients the following expressions: 

Cx=Cx0+Ncc2,       N = CZ, 
2 2 

Cz =Cza + Czco+Cza + Cz a   +CZ co   +CZ  aco, (4) 
2 2 

cm "Cma + Cmco + Cma + Cma   +Cm co   +Cm aco. 

These aerodynamical coefficients are determined by the specific known methods 
in aerodynamics [2], [3]. 

It is necessary to point out that in the lift coefficient expression the 
proportional term with the incidence is more important comparative the others. A 
smaller importance have the terms with d and aco in the Cm coefficient 

expression. Thus, neglecting some terms that usually bring a smaller contribution 
in this complex study the movement equations system takes the following form: 

2 2 dv Pv  S ^ pv   S„o    2 — = aRcoscx-——Cx0- ——Cza   -gsin6 
at 2m 2m 

2 2 
d0 . pv   S _a        pv   S     m    2 

v—- = -gcos0 + aR sma + - C,a+- C,co 
dt K 2m     z        2m     z 

dco     pv2S^r   a       ^a2   2^1    pv2S^ 2 
„<D       2 

dm 
dF = 03 

dy -jf = vsinG dt 

dx ^ 
dt=vcose- 

Using the following notations: 

„     = <^    K    _ PSCX0 _pS     a pSi    a        ,        PS*     a2 

aR vKx-^r'Kz-2mCz'Km="27Cm'Km="^rCm' 

K    -^C«    K'   -PS^C"2   K      '    o 
^co-   2j      m'      <"> ~    2J       nl '     J~7  J^e' 

the equations system becomes: 
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— = aR -K„v2 -Kzv2a2 -gsine 
dt 

^ = -§cos0+f^ + KzvV + Kz4cD 
dt        v v v J 

^ = Kmv2a + K^v2a2
+K^v(ö + K^o3

2-Kjo> 
dt 

(7) 

dcp 
df 

dy 
dt 

= a> 

= vsinG 

dx 
^ = vcos9. 
dt 

This system (7) can be numeric integrated with given boundary conditions 
to calculate the incidence and the others flight parameters variations in time along 

the trajectory 

2. DIFFERENTIAL NON-LINEAR EQUATION OF INCIDENCE 

In order to evaluate the rocket flight stability, on the basis of the differential 
equations system (7), is useful to deduce a differential equation which allows to 

calculate the incidence variation on the trajectory. 
By adequate mathematical transformations [6] (with the approximations 

cos a = 1, sin a = a), it can be obtained the following equation : 

ä + A,d2+A2vd + A3väa + A4V a   +A5v a   +A6v a = Pv  , (8) 

where 

A K-Cpl 

^      aR    Kj       2K'a£    g n , gsin8 
2        z       2      v     1-K7f      2 '■to Z* C ' 

A3 = 

V v »        i^jf. C    y 

r \ 

V v  / 

2K' * 

Kz«c 

K, ■K, 

Vv 

A, =K,^rK'   -K'   - 
v   J 

YJJ    gcose 
1-KZ£C 

K, (9) 
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+ - 

z    c      r 

K*    2g 

K    + ^- + m 3 
V 

K 

^ V 
4 

V    J 
•K   v   -gsinG  + 

gsinG 
K 

2 
V    V 

+ 

1~KZ^C v   v 
KZ+^JCOSG-(K/V-K.) 

K      a„ 
1+   R 

v 3 
V    J 

+ ^KX 
v   z      vy 

n    /ir      t-    *,/\Scos9    gcos6f v     2        .   .)    g   sinGcosG 

+ 
l-K /      4 1    Ivztc v 

g   cos   0 + 
g   sinGcosG 

K7-cr 

This differential equation (8), which permit to determine the incidence angle, 
is a non-linear, of second order, non-homogeneous equation with variable 
coefficients. The stability analyse must be done at many Mach numbers and 
altitudes, in the suitable range of the flight real conditions of the rocket. 

The rocket flight stability studies, were also done using the linear model [6], 
which in a certain hypotheses, gives with a sufficient accuracy the variation of 
angle a on a short trajectory interval. Thus, in such case, in a more complete form, 
the incidence linear equation [5], [6] is 

2+Aiv7fT + Aov2a = F. (10) 
d2a 

dt"       *   * 

where the coefficients expressions are 

Ao = Km-KxKz + (Kx+Kz)^ + 2g^sin0-^ + 

1 
1-KZ^C 

K^ 
(K^ + ^fl^K, *,+ •££ Z{c" 

f 2 p2 \ 

~V 
J 

A1 = KZ+f| + 
Kyt z *c 1 

1-KZ^C 
Kt + h+2*MKsr + !£& vz^c" 

F = flc«6rKx + 2fife-S| + Kz%V«T KX 3R ^| + 2g ■% sin0 + 

(11) 

Jii + Kz4^+^+
aRaT + gcos^ 

v        z      v J       J v(l-Kz*c)  I   " 
J       Z ,^+KUI 

^c; ^ " v 

In a small time interval, hence on a short trajectory interval, the altitude and 
velocity have sufficient small variations as that the aerodynamic coefficients, air 
density, mass and the inertia moment can be substitute with constant average 
values. Therefore, the equation (10) becomes a constant coefficients equation, 
which provides an analytical solution [6]. In this way, it is possible to do a fast 
rocket flight stability analyse in suitable accuracy conditions. 
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3. RESULTS 
The results, in a graphic form, of some numerical applications, which were 

done with a study rocket DR = 127 mm (the mass and aerodynamical characteristics 

[5], [6]) are presented in fig.2-4, for a normal engine work. 

The equations system (7) and the differential equations (8) and (10) were 
numerical integrated by Adams Krälov and Runge- Kutta methods [5], [6] with the 

integration step 10_4s ( with minimum two magnitude orders smaller then incidence 
oscillating period). 

In the same initial conditionds ( 0=30°, ct=2°, <p=32°, co=0.7 rad/s, x=2.6 m, 
y=1.5 m), more dificults from flight stability point of view, the error between the 

results obtained by the two numerical integration methods doesn't exceed 5%, in the 

case of rockets with trajectory active period duration of seconds order (fig.4). 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8   *r<.l   3 

a 
11. 
tu io 

[rad/s] 

t[s] 

Fig .2 

'•■N 

* 
<4 

"i r~ 
i— non-finear model 

linear model 

a^roo^OI rad/s 

v.    -/ V 
\J   ■        : 

\y 
--^c-WnV-— 

0 0.3 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8   Hs]   1 

Fig.3 
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It is easy to observe that the linear method of incidence evaluation- 
differential equation (10) with constant coefficients (on a short trajectory arc), very 
simple to apply, gives results with a sufficient accuracy, comparative with 
numerical integration of the system (7), or equation (10) considered with variable 
coefficients [6], (fig.5). For instance, on a short time interval, 1,1+1,4 s, when the 
Mach number has the average value M=1, and the flight altitude is about 110.8 m, 
the differences between these methods are sufficiently small, from practically 
point of view [6]. 

• An important conclusion is that when a<a^, the non-linear and linear 

models give practically the same results. In this case the differential equation (10) 
can be useful in rocket flight stability studies. For <x>a^, the differences between 

the results obtained with these two models increase,  especially when the 
incidence values are in the proximity of acr. 

a,9, f,co-plane equations system - Adams Krälov method, 

a',9', ^P'.co-equation (10) with variable coefficient - Adams Krälov method, 

ct",8", !f ",co"- equation (10) with variable coefficient -Runge Kutta method. 

Fig.4 
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It was elaborated a complex program to simulate the rocket flight in the 
resistant environment, which operates with a large aerodynamical, rocket, engine 
and launcher construction data basis, for different rocket-engine works ( normal and 
perturbed works) [4], [5], [6]. 

The study pointed out also the presence of a trajectory initial critical period, 
its duration in presented diagrams being smaller then the pitching oscillations period. 
An important conclusion for the rocket engine is that the burning time must be longer 
than this initial critical period [6]. 

1.-equation (10) with variable coefficients - Runge Kutta method, 
2-longitudinal plane movement eq. system - Adams Krälov method, 
3-equation (10) with constant coefficients, on a short trajectory arc. 

Fig.5 
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ABSTRACT. The object of this paper is to show how the fixed point principles 

and the theory of Picard operators are used for the study of the following integral 

equations: 

1) an integral equation from Statistical Mechanics 

t(t) - 1 + A [ x{s)x{s - t)ds}   t e [0,1] 

where A € R; 

2) Chandrasekhar equation 

/■l    t 
c(i) = 1 + Xx(t) /   x{s)ds,   t € [0,1]. 

Jo i + s 

We obtain our results on the existence and uniqueness of solutions by a fixed 

point principle on cartesian product and the results on data dependende by the fibre 

contraction theorem. 
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1    INTRODUCTION 

The purpose of this paper is to present a unified treatment of some classes of nonlinear 

integral equations from Applied Mathematics. First, we give some abstract results en fixed point 

theory. After that, these results are applied to an integral equation from Statirika! Mechanics 

and to the //-equation of Chandrasekhar. Some open problem are formulated. 

2    BASIC NOTATIONS AND NOTIONS 

Let X be a nonempty set and A : X -¥ X an operator. In titis paper W.J shall use the 

following notations: 

P(X) := {A C X\ A ± 0}, 

FA '■— {x £ X\ A(x) — x) 'tne ^xed point set of A, 

I(A):={YeP(X)\A{Y)cY}. 

Definition 2.1 (Rus [26], [28], [30]). Let (X,d) be a metric space. An operator A : X -> X 

is (uniformly) Picard operator if there exists X* € X such that: 

(a) FA = {**}, 

(b) (An(xo))n£N converges (uniformly) to x", for all XQ 6 X. 

Definition 2.2 (Rus [26], [28], [30]). Let (X, d) be a metric space. An operator A : X -» X 

is (uniformly) weakly Picard operates if the sequence (j4n(zo))n€JV converges (uniformly) for all 

£0 € X and the limit (which may depend on x0) is a fixed point of A. 

If A is weakly Picard operator, then we consider the following operator 

A°°:X-*X,    A°°(x):= lim An(x). 
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3    FIXED POINT THEOREMS FOR OPERATORS ON 

CARTESIAN PRODUCT 

Let X be a set and A : X X X -> X an operator. A point x0 6 X is a fixed point of A iff 

x0 = A(x0,xo).. 

A point (x0, yo) £ X x X is called a coupled fixed point of A iff 

x0 = A{x0,yo),    yQ = A{y0,xo)- 

Remark 3.1. The fixed points of A are the fixed points of the following operator: 

X -¥ X,    x>-}A(x,x). 

Remark 3.2. If (i*, y*) is a fixed point of the operator 

XxX-^XxX,    (a, j0-*(/(*, y),/(*,y)) 

then y* = x*, and x* is a fixed point of A. 

Remark 3.3. The coupled fixed points of A are the fixed points of the operator 

XxX-^XxX,    (x,y)^(A{x,y),A(y,x)). 

Theorem 3.1. Let {X,d) be a complete metric space and A : X X X -> X. We suppose that: 

(i) there exists ai, a2 6 [0,1[, a := a\ + a2 < 1 such that 

d(A(xuyi),A(x2,y2)) < M(zi,x2) + a2d{yuy2), 

for all xl,x2,yi.,y2 € X. 

Then we have: 

(a) FA = {x'}; 

(b) for each XQ € X, the sequence 

xn := f(xn-i,xn-i),    n£N*, 

converges to x* and 
an 

d{xn)x*) < - d(x0,A{x0,x0)); 
1 — a 
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(c) for all x0l xi € X, the sequence 

x„+i ■- A(xn-i,xn),    n G N*, 

converges to x* and 

d{xn,x*) < T—max(d(xo,xi),d(x1,x2))i 

(d) for all x0, i/o € X, the sequences 

xn = A(xn-\,yn-i), r ... 

yn = A(y*-iixn-i) 

converges to x* and 

( d(xn,x*)\      ( l-oi     -a2    |      |  01   o2  \    j  d(x0,a:i)   j 

\ d{yn,x*) J ~ y   -a2     1 -«i j      \ a2   ax J    ^ <%o,2/i) / 

Proof. (a)+(b). The operator 

X -* A',    a;H-A(s,i) 

is an a-contraction. 

(c). Let x0,xux2 € X be three elements of A". From (i) we have that 

d(A(x0ixi), A{xi,Xi)) < a\d{xQ,xi) + a2d{xi,x2). 

The proof follows from a theorem by Presic (see [19]). 

(d) We consider on X x X the generalized metric 

.. w        ..       ( d(xuyi) 
p{(xuX2),(yi,y2)) := 

y d{x2,y2) J 

We consider the following operator 

B:XxX^XxX,    B{xl,x2) = (A(xux2),A(x2,x1)). 

We remark that 

B:{XxX,p)-t{XxX,p) 

is a generalized contraction. The proof of (d) follows from the theorem of Perov (see [23], or [24], 

or [26]). 
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Theorem 3.2 (Fiber contraction theorem (Hirsch-Pugh ([12]))). Let (X, d) be a metric space, 

{Y,p) a complete metric space, and A : X X Y -» X x Y. We suppose that: 

(i) AeC(XxY,XxY); 

(ii)A(x,y) = {B(x),C(x,y)); 

(Hi) B is a Picard operator; 

(iv) there exists A g]0,1[ such that 

p(C{x,y),C(x,z))< Xp(y,z), 

for all x £ X and y,z eY. 

In these conditions the operator A is a Picard operator. 

More general, we have: 

Theorem 3.3 (Fiber Picard operators theorem). Let (X,d) be a metric space, (Y,p) a 

complete metric space and A: XxY-+XxY. We suppose that: 

(i) AeC{XxY,XxY); 

(ii)A(x,y) = (B(x),C(x,y)); 

(Hi) B is a weakly Picard operator; 

(iv) there exists A e]0,1[ such that: 

p{C(x,y),C(x,z))<Xp{y,z) 

for all x 6 X and y,z g Y. 

In   these   conditions   the   operator   A   is   a   weakly   Picard   operator.   Moreover,    if 

C"(B°°(x),-)(</) -* y*(x), then A»(z,y) -»• (J3~(z);if (a)). 

Proof. Let x £ X and y 6 Y. We prove that An(x, y) -> (B°°[x),y*(x)) e FA. Let 

xi := B{x) f xn+1 := Bn{x) 

Vi--=C{x,y)      '""'     I i/„+1:=C(JB»(x),ifc,) 

We remark that if we start with (x, z), then 

J xn+1:=Bn{x) 
\zn+1:=C(Bn(x),zn) 

It is clear that 

KiAn{x,y) = xn,    n2A
n{x,y) = yn. 
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and 

We have 

p(*2A
n(x,y),y'(x)) < p(^An(x,y),n2A

n(x}y"(z)) + pfaAn(x,y*{x)),y*{x)) < 

<\np{y,y*(x)) + p{K2An(x,y*{x)),y*(x)). 

But 

<rn:=p{C(Bn(x),y*(x)),y*{x))^U   as   »4oo, 

p(M"(*,lf (*)).?*(*))< 

<p{*2An{x,y'(x%C{B»{x),y*{x))) + p{C{Bn{x),y*{x))<...< 

n n-k n 

<EAn_,'ff«- = E *""*'*+. E A"~'^ 
i=0 »=0 i=n-fc+l 

A* 1 < maxcr; + max{cr,| t>n-fc + l}->0 
- 1 - A «ew        1 - A 

as fc and n - A; + 1 -> oo. 

The proof is complete. 

The above consideration give rise to the following 

Open problem 3.1. Let (X,d) and (V,p) be two metric spaces. Let A : X x Y -» X X 7 

be such that A(z,y) = (B(x),C(x,y)). 

Are the following statements theorems?: 

Conjecture 1. IfB is a Picard operator and C(x, •) is a Picard operator for all x € X, then 

A is a Picard operator. 

Conjecture 2. // B is a weakly Picard operator and C(x, ■) is a Picard operator for all 

x€X, then A is a weakly Picard operator. 

Conjecture 3. IfB is a weakly Picard operator and C(x, •) is a weakly Picard operator, for 

allx &X, then A is a weakly Picard operator. 
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4    AN INTEGRAL EQUATION FROM STATISTICAL 

MECHANICS 

We begin the application» of the abstract result*, giv«n iti the liret part of this paper, with 

tlit1 following integral equation 

x(t)-l + \] *(«)*(«-«)«<*.    '«=[0.1], U) 

where A (E /?. 

Thin equation is a simplified model of curtain equations arising iu Statistical Mechanic* (see 

Wwtheiiii [.'15], Pimbley [18] and Kamalho ['->)]). 

The main known roöult for the equation (1) i» Hie following 

Theorem 4.1 (Pimbley [18]; sec also Uanialho [21]). Equation (I) has two nul solution 

:r+(-; A) and *~(-,A) for 0 < A < 5 and no real solution for X > \. As funr.lion of t these 

solutions «re positive, monoton decreasing, und at least twiit diffmntinblv; as functions of the. 

real parameter A Ihe.y arc. continuous uniformly over 0 < t < 1. As A   > 0, A > 0, s.+{t\ A) - > 1. 

The. second solution z"(t; A) joins x+(J;A) at A = \. If for any real solution *(-; A) of equation 

(1) wc set 

/(*):= [ x(s,X)ds, 
Jo 

then I(x) satisfies ike equation 

A/'-'(x) - •ll{x) I 2 = 0. 

Let X := {x € C([0,1] x [0, A0])| a; > 1 and /0
l *(.*; A)rf.v < M, A e [0, A,,]}. 

We have 

Theorem 4.2. There exist AQ unrf A/ such that: 

(a) the equation (t) has tn A' « vmque solution x' 

*»+i(f;A)™i 1 A| Tn{s,\)xn{s-t\\)dS, 

Xrj G A, n € N, converges uniformly to i*(f; A); 

(c) Hie. sequence 

*n+i(<; A) :- 1 + A /   a',,_i(«; A)*u(s    t; A)</«, 
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XQ, T.i € -V, n e N, couvfrge.x uniformly to x"(r; A),- 

(dj the sequences 

xn+i(t;A) := 1 + A / i„(*,A)j/n(s- t;A)rf.f, 

;/»+i(f;A):-- ' + A/" y„(«,A)*„(.i-r;A)(/«, 

conw»yes uniformly to x'[x; A); 

W^.c1([ö,i]x[ü,l[). 
Proof. Consider the Danach »pace C'([ü, 1] x [0, An]), of continuous functions on [0,1] x [0, Aj 

with the Chebyshev's norm, \\4 := max{|*(f, A)| | ( 6 [U, l], A € [0, A0]}. Then X C C'([0, i] x 

[0,AU]) is a complete metric space. Let 

/l: A x X -* C([0,1] x [0, Au]) 

be defined by 

A{x,y)(t]\)=l + \Jt
iT(s)y{*-l)ds 

(2) 

We remark l.baL 

(1) A{X x A') c A'; 

(2) l|/l{*i,tfi) - -4(*J> w)|| < AAf(||*i - **|| + ||vi - j2||), for all s,,^,yi,»2 e A'. 

Now, hum the Theorem 3.1, we have (a)+(b)+(r.)+(d). 

(c). We have that 

»•(«; A) = 1 + A J x'(s; A)x"(* - /; A)rf#. 

First, we prove that ^ f. <V([0,1] x [0, A0J). 

Let V:=C(|0,l)x[U,Ao]. 

B : X -+ X,    ö(*)(<> A) := I 4- A /" x(*; A)z(s -t; A)<fe, 

C7 : X x Y -> y,    C(*. y)(t; A) := -*x(t\ A)x(0; A) - A J X{H; X)y(s - f; A}<fe 

and 

ir we consider on V a Bieleck'i norm then we are in the condition of the Theorem .1.2. From 

this theorem we have that.' for all x0 £ X, yu t Y the sequences 

rl 
*n+1(t,A):«=l I xf xn{.o;X)r.n{e-l,X)ds, 
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If we -\ nsidcr on '/ a Bielecki norm then we are in the condition of the Theorem 3.2. From 

this theor'T! we have that: for all xo £ X, y0 € Y the sequences 

xn+i (£, A) := 1 + A /   xn(s; X)xn(s - t, X)ds, 

yn+i (t, A) := -Xxn (t; A)a;n(0; A) - A /   xn(s; \)yn{s - t; X)ds 

converge uniformly. Moreover (zn)neN converges uniformly to the x* € X, the unique solution 

Sx0   ft,„„ ..   _ Sx„ in X of the equation (1). Let y* := lim yn. We remark that if we take T/O = ^gf-, then yn 
7l~*00 at > 

for all n G Ar, These imply that y* = ^. 

For to prove that there exists ff and ff € C f [0,1] x [O, §[) we take 

C{x,y)(t,X):=      x{s;X)x(s-t;X)ds+ 

+ 1   x(s-t;X)y(s;X)ds+ I  x(s,X)y(s-t;X)ds. 

The proof is complete. 

Remark 4.1. A similar results can be given for the following equation 

x(t) = g(t) + A I  K(t, s)x{s)x{t - s)ds. (3) 

Remark 4.2. For other considerations on the equations (1) and (3) see: [18], [21] and [22]. 

Remark 4.3. For other applications of Theorem 3.2 see [12] and [32]. 

5    CHANDRASEKHAR'S EQUATION 

In what follows we consider the following equation 

x{t) = g(t) + Xx(t) f K(t, s)x{s)ds,    t € [0,1], (1) 
Jo 

where g G C'([0,1], [mg, Mg]), mg > 0, K G C([0,1] x [0,1]), [0, Mk]), A € [0, A0]. This equation 

generalizes the Chandrasekhar's equation 

x(t) = 1 + Xx{t) /   —-x{s)ds,    x 6 [0,1], (2) 
JO   v ~v " 

which is a mathematical model of certain phenomena in the transfer of radiation between stellar 

atmospheres (see [6], [7], [8], [1], [13], [15], [22],...). 
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There exist some abstract models for the equation (2). For instance, R.W. Legget studied, 

in [14], the following abstract equation 

x = x0 + xKx (3) 

where K is a compact operator on a Banach algebra X, and XQ € X. Other abstract model for 

(2) is the following quadratic equation 

x = x0 + A(x,x) (4) 

where X is a Banach space, A : X X X -+ X is a bounded biliniar operator and io € X (see [2], 

[20]). 

For the equation (1) we have 

Theorem 5.1. There exists X0 and r > 0 such that: 

(a) the equation (1) has in C([0,1], [mg, Mg + r]), a unique solution x", for all A £ [0, A0]; 

(b) for all so € C([0,1], [mg, Mg + r]), the sequence 

xn+i(t'-.x)~9{t) + ^xn[t;^) /  K(t,s)xn(s;X)ds, 
Jo 

converges uniformly to x*(t; X), t € [0,1], A € [0, Ao]; 

(c) for all Xo, xt € C([0,1], [mg, Mg + r]), the sequence 

xn+i (t; A) := g(t) + Xxn^ (i; A) /  K(t, s)xn(s; X)ds, 
Jo 

converges uniformly to x*(t; A), t € [0,1], A € [0, Ao]; 

(d) for all x0, y0 S C([0,1]), [mg, Mg + r]), the sequences 

xn+1(i;A):-g(t) + Azn(i;A) /  K(t,s)yn{s;X)ds, 
Jo 

!M-i(t;A):=ffW + Ayn(*;A) /  K(t,s)xn{s;X)ds, 
Jo 

converge uniformly to x*(t] A), t 6 [0,1], A 6 [0, Ao]; 

fe;a;'€C1([01l]x[0,AQ]. 

Proof. Consider the Banach space C([0,1] X [0, Ao]) of continuous functions on [0,1] x [0, Ao], 

with the Chebyshev's norm. Then 

X := C([0,1] x [0, Ao], [mg, Mg\) C C([0,1] x [0, A0]) 
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is a complete metric space. 

Let 

A:XxX->C([0,l]x[0,*d), 

A{x, y){t, A) := g(t) + Xx{t; X) [ K{t, s)y{s; X)ds 
Jo 

We have 

ms < A{x,y)(t; X)<Mg + X(Mg + r)2Mh 

and 

\\A(xhyi) - A(x2,y2)\\ < X(Mg + r)Mk(\\Xl - z3|| + ||yi - W||). 

If we take Ao and r > 0 such that 

X0{Mg + r)2Mk<r (5) 

and 

2X0{Mg + r)Mk<l (6) 

then A(X X X) C X and A satisfies the conditions of the Theorem 3.1. 

Thus we have (a)+(b)+(c)+(d). 

(e) It is clear that fjf € C([0,1] X [0, A0]). Let us prove that |f 6 C([0,1] X [0, A0]. 

Let 

y:=C([0,l]x[0,Ao], 

B-.X-+X,    B(x)(t; A) := g(t) + Xx{t, A) / K{t,s)x(s;X)ds, 
Jo 

C:XxY^Y,    C(x, y)(t, A) := x{t; A) / K{t, s)x{s; X)ds+ 
Jo 

+Xy{t;X) f K(t,s)x{s;X)ds+Xx(t;X) [ K{t;s)y(s;X)ds, 
Jo Jo 

and 

A:XxY-+XxY,    A=(B,C). 

From (3) and (4) we have that C(x; ■), x e X, are uniform contractions. Now we are in the 

conditions of the Theorem 3.2. From this theorem we have that, for all z0, j/o £ Y, the sequences 

xn+i(t\X):-ir1A
n[x0,y0), 
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y„+i(*;A) — ■K1A
n{x0,y0) 

converges uniformly. Moreover, xn 4 x*, the unique solution in X of (1). Let y* = lim yn. If 
n-+oo 

we take y0 = $$■, then we have that t/n = ^, for all n£N. These imply that y* = ff. 

The proof is complete. 

6    OTHER INTEGRAL EQUATIONS FROM APPLIED 

MATHEMATICS 

There are many other integral equations, from Applied Mathematics which can be studied 

by the similar way as the above equations. In what follow we mention some of them: 

6.1. The equation 

x(0 =9(t) + Az(i) f K(t, s)x(s)ds 

is a mathematical model in the theorie of radiativ transfer, neutron transport and in the kinetic 

theory of gases (see [7] and [3]). 

6.2. The equation (see [34], [33]) 

*[t) = g(t) + f K(t,8)f(a,x(s))d8,    t€D, 

where 

/(*,«) =X]a,-(t)«"'',    teD, u>0. 
i=0 

6.3. The following delay integral equation 

XW=/     f{s,x{s))ds,    teR, 
Jt-T 

is a mathematical model for epidemics and population growth (see the paper by E. Kirr and 

Radu Precup in this Proceedings). 

6.4. In the study of the spread of a disease which does not induce permanent immunity, the 

following equation arises 

x{t) = 

t > a (see [9], [10], [16]). 

g(t) + I p{s)x{s)ds    h(t) + f q(s)x{s)d. 
Ja J  L Ja 
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Equations in Banach Spaces 
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Abstract 

Let X be a Banach space, D a nonvoid subset of X and M : D -+ X 

an operator. 
We consider the equation 

(M)        x = Mx 

If the properties of the operator M are not enough to ensure the 
existence of at least one solution for (M), we intend to approximate 
M with some suitable operator M for which the equation 

(Mn)        x - Mnx 

could be solved easier ant to use convergence techniques in order to 

prove the existence of solutions for (M). 

1   Approximable operators 

Let X be a Banach space, D nonvoid subset of X and M : D -* X an 

operator. We note by / the identity map on X. 

*l]University of Craiova, Dept. of Mathematics 
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Let (Xn) and (Yn) be two families of subsets of X (not necessarily closed); 
on between D; 

D„M(V)n. 

one denotes by Dn the intersection between D and X and supposes that 

1.1    Definition 

The operator M is considered to be approximable on D for the pair (Xn, Yn) 
with the operators Mn : Dn —» Yn if and only if the approximation equation 
is valid, i.e. 

(1.1) lim sup ||Mnx - Mx\\ = 0. 

The definition 1.1 is easily satisfied in the most usual case of 

Mn:=M\Dn, 

where Xn is an abiirary subspace of X and 

Yn = span M (Dn). 

A clasical case is the one of Xn replaced with X for each n ,D and 
M : D —> X being a bounded subset of X and respectively a compact 
operator. Now, the existence of some satisfying (1.1) compact operator Mn 

on D to the space Yn is asured; supplementary, 

dimYn < oo, 

for each n. 

2    An existence principle 

The aim of this section is to present a simple existence principle regarding 
the solutions of the equation 

(M) x = Mx 

based on the fact that the approximation equation 

(Mn) x = Mnx 

has some solutions, too. 
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2=1    Proposition 

// the supposition that 

(i)        M satisfies (1.1); 

(ii)        U (I - M) is closed; 

(iii)        the equation (Mn) has some solution for each n, 

is made then the equation (M) admits at least one solution, 
Proof, 

Let's consider 

i2-1) a* = Mnxn , xn e Dn C D , (V) n. 

From (1.1) it follows that 

So, 

which implies 

xn - Mxn = Mnxn - Mxn 
n-^S> 0. 

(J-M)Og^Q, 

0eft(J-M). 

Due to the assumption (ii), the conclusion is evident. 

2.2   Remark 

For a closed bounded subset D of X and a demicompact continuous operator 
M, (ii) is accomplished; supplementary, each sequence (xn) provided by (2.1) 
contains a subsequence which converges to a solution of the equation (M), 
In particular, this always happens for a compact operator M. 
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2.3   Remark 
One conclusion of the foregoing proof is that the relation (1.1) could be 
replaced with a less restrictive but even harder to controk one, which is 

to 2) Hm sup \\Mnx - Mx\\ - 0. 

where 

(2.3) §n--FEX{Mn>£ln}. 

3   Main result 
We start by enumerating the hypothesis we are going to use . So, 

c Q is a bounded subset of X\ 

» M : H -*• -X" is an operator; 

«, Xn is a closed subspace of X; 

• Mn : Ö» C Xn -+ Xn is a compact operator, 

for each n. 

Next, we denote by 3A the boundary of ün on X„; the closure operator 
on Xn is the same as the one on X , but 

(! ) dnSln C #0» 

where d signifies the boundary on X. 

We also consider that 

$ := FIX {M , H}, $n ~ FIX {Mn , fin} , 

for each positive integer n; 

A:={n|0e(/-Mn)9„n„}; 

B:~{n\n$A, degiS(I-Mn , ft„ , 0) ^0} , 

where 6egLS is the Leray-Schauder topological degree. 
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3.1    Proposition 

As a supplement to our previous hypothesis, let's suppose that 

(i) M is approximable on Q for the pair (Xn Yn) with the 

operators Mn\ 

(ii) n \(I - M) H] is closed; 

(iii) one of the sets A and B is infinite. 

Then, 

(3.1) $ ^ 0- 

m 
Proof. 

It's sufficient to show that 

(3.2) $n^0 

for an infinity of positive integers n. 

If A is infinite then the relation 

Xn - MnXn, Xn e dn£ln C dün C Ü 

remains valid for an infinity of n . Using (1.1) for Dn = dnCln and the 

proposition 2.1.,the conclusion follows instantly. 

If B is infinite then 

degLS{I-Mn, fin ,0)^0 

also for an infinity of n, providing all these positive integers for 
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4   Construction 

We'll indicate from now on some posibility to construct approximation oper- 
ators Mn. Assuming that there is a countable family of projectors 

n„:*-+*,n€N*, 

with the property of 

(4.1) lim Enx = x , x € X , 

it follows that for some o > 0 we have 

(4-2) ||IIn|| < a , n € N*. 

Let's denote by Xn the range of X under Xl«. For a nonvoid subset ti of 
X, we consider 

nn.-ftnxft 

and suppose that Qn is nonvoid for each positive integer n. 

If 

(4.3) M:Vi^X 

is a given operator and we consider 

(4.4) Mn := JU4x, 

then from this arrangement, 

(4-5) lim Mnx~Mx,N)x€ft 

If M has some supplementary properties then the convergence (4.5) is 
uniform one on Q as, for example, in the next 
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4.1    Proposition 

If M ;Q C X —> X is compact then 

(4.6) *Hä,suP II M»x -Mx\\= 0. 

Proof. 
If it weren't for (4.6) there would be an infinity of xn in ti with 

(4.7) ||Mnx-Ma;||>£o>0 

or 
||(/-nn)Ma:n|j >£0- 

Due to the compactness of Mtin , (Mxn) contains a convergent subse- 
quence with limit point x . 

But 

||(/ - nn) Mxn\\ < ||(7 - Iln) (Mxn - a?)||+||(7 - Iln)x\\ < (1 + a) • 

-\\Mxn-x\\+\\{I-Un)x\\, 

allowing us to conclude the existence of a going to 0 subsequence of 
{{I-TQMxn), 

a clear contradiction of (4.7). 

4.2    Proposition 

Supposing that 

(i) M:ticX^Xisa compact operator; 

(ii) fin is an opened subset of; 

(iii) one of the sets A and B is inifinite, 
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the equation (M) has some solution in Q. 
m 

-The simple fact of ün being an opened subset of Xn does not pro- 
vide the necessity for fi to be opened in X. Then the classical degree 
deg^s (/ - M , fi , 0), if for each x in dQ. Mx is different from x, has no 
meaning. 

Nevertheless, the converse is true. That is if tt is opened in X, tt„ is an 
opened subset of Xn. The compactness of M also implies the compactness of 
Mn : n -» X and of Mn : ün -* Xn. 

If 

(4.8) x ^ Mx , x € dtt, 

then according to (4.6) it follows that 

(4.9) x £ Mnx , x E dÜ, 

for each n greater than some %, providing the existence of the degree 

(4.10) degLS{I~Mn,Q,0),n>no. 

The assumption (4.8) enable us to state this well known relation 

(4.11) \\x-Mx\\>c>0,xedn, 

which, after a classical argumentation, ensure that 

(412) Äde§Ls(/-Mn , fl , 0) = degiS(/-M , ß , 0). 

From the reduction property of the topological degree, it follows that 

(4.13) degLS (I - Mn , n , 0) = degLS (/ - M„ , O» , 0). 

The right member of the preceeding relation is often easier to determine. 

5    Examples 

In here we'll outline two examples of constructing the projector IIn. 
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5.1    Example 

For X « L : Rn - Rn | xcontmuous, (3) Jm^ (i) < 00} , with the norm 

\\x\\ := sup \\x (t)||Rn , nn can be defined'as 
tea 

(n„x)(f) = 
'  s(t) ,te[-n,n] 

x(n) ,t>n 
h x(~n) ,t<-n 

for each x . 

Of course, IIn : X -» X is a continuous projector which satisfies (4.1). 

5.2   Example 
Let's consider X = {2 : Rn -* f1 | xamimww, x {t + w) = x (t) , (V) t G R} 
with the norm \\x\\ := sup ||z («)||P • For every member x of X we denote by 

(xn{t)) , with xn: R-> R , n > 1 , the sequence x(t) , t € R. It's not at all 
difficult to see that ^ 

1 

converges absolutely and uniformly on [0,w] and so on R,too. The projector 

nn : X -* X is introduced by 

{Unx){t)-{x1{t),...,xn{t)X-)- 

Then X„ is exactly the space 

<™ = {x:R-*Rn\xcontinuous, x(t + w) = x(t) , (V) teR}. 

6   Discussions 
We'll study the second example in order to show what are the real advantages 
of this theory. 
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6.1    Hypothesis 

For a? > 0 :.B arbitrary positive number and I1 let's consider 

pn(x):=J^\xi\,xell 

»>n 

We reralnd that 

G ([Q,a/] , I1) '.— <x : [0,0/] -*• I1 J xcontinuousl. 

The continuity of some x ; [0, LO] -*■ I1 implies the uniform convergence 
of E N 00 i sllowiiig us to define the norm \\x\\ :— sup \\x (t)^ ; in which n^1 tetM 
case, G ([Q,'JJ] , I1) becomes a Banach space. We also remind that a subset 
A of C ([0, u/] , I1) is relatively compact if and only if 

a) 3(r>0}V(zeA)=*(||x||<r); 

b) V{e>Q)V {n>n0)V (x € A) *=> {pn(x{t)) <e); 

c) V (e > 0) 3 (S > 0) V (Ma € [0,w] , |ti - fe{ < «) 

V(*€>l):^(||x(t1)--x(t8)|||1<«). 
Let X be a special subspace of C ([0,u>] , ll), i.e. 

X={xeC([Q,u>] ,1*)] X(0)=X(UJ)}. 

Which is, of course, a one to one range of the space of the continuous 

w -periodical maps on R to I1. In C ([0, w] , J1) we define the projector U» 

as 

and we also consider the spaces 

Cn~TlnC([0,u] ,Rn), 

Xn := UnX. 

We are asking ourselves if the differential equation 
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(6.1) a/ = /(t,x), 

where / : [0,u>] x I1 -> J1 is a continuous function with a property 

of periodicity. 
f{t+u,x)=f{t,x)1 

has or has not some solution in X (the periodical generalized solutions of 

(6.1)). 

The problem itself is but the construction of a suitable operator T and 
the view of all the periodical solutions of (6.1) as solutions of 

(6.1') x = Tx. 

The advanced theory of the topological degree studies such matters in 

either X or C([0,w] , I1). 
In fact, we are looking for compact operators T for which V(T) would 

be precisely the closure of an opened bounded set. 
The set 

n={xeC({Q,uj} , J1) | a: (*):=(*<(*)) , \xi{t)\<Ci}, 

where c := (c;) £ I1, 

is not opened; nevertheless, its intersection with Cn or Xn is an opened set 

under the topology induced by the entire space. 

Let's consider, on C([0,u;] , I1), the operator T : 

t 

{Tx){t) = x{oj) + Jf{s,x{s))ds. 

It's obvious the all the solutions of (6.1') are also solutions for (6.1) and 
conversely. For 

T -=11 T J-n •      J--lni 
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and if, for example, / := (/j) satisfies a bounding condition as 

where (a») € /1,then one can easily show that 

lim sup ||Tnx - Tx\\ = 0. 
n-»co    ±- " " 

Because of the mission condition of being opened, Q doesn't allow a clas- 
sical definition for the topological degree of the operator T on it; however, 
if 

x f Tnx , x 6 dn (fi D C ([0, w] , Z1)) , (V) n > 1 

we can define 
degM(/-rn>ßnC([0Jü;] , Rn) ,0) 

In this particular case dn is the boundary operator on n„C ([0,u] , I1). 

If the result is not 0, the equation (6.1) has some periodical solution. 

We can also apply directly the topological degree theory on X; the ad- 
vantage is that the space Xn is endowed whith an S1—action , i.e. a con- 
tinuous mapping 

SJxXn^>Xn        [T,X)\—y.r*x 

compatible with the group law (+): 

Ti * (r2 *x) = (n + r2) * x. 

for all Ti £ S1 ,xeXn, which is indeed a continuous representation of S1 

into the group of isometries of Xn, defined by 

(r*z)(t) :=x(*+r). 

In fact, in the precise situation of an autonomous equation 

(6-2) * (0=0 (*(*)) 
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we can build an operator such as the solutions of (6.1') are exactly the 

periodical solutions of (6.2) . We define on X the projector P as 

1     w 

Px:=-- [x{t)dt. 

Now, (6.2) becomes 

(6.3) x = Mx, 

where 
Mx:=Px + [P + K-{I-P)]Gx, 

{Kv) {t)~fv{s)ds-^-J\jv (s) da \ dt, 

(Gx)(t):=g(x(t)). 

Then, let's have 

If we admit that 
Gnx = x, (V) x e dnnn, 

where 
Gn:=nnG, 

it's posible to define the degree 

dn := degLS (I - Gn , 0,n , 0). 

It one supposes that 

(6.4) \9i {x)\ < ai \Xi\ ,g{x) = {gi (x)), (oi) e l\ 

then 
lim sup \\Mnx -Mx\\= 0, 
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where 

Mn := n„M. 

It's easy to notice that tin is invariant and Mn is equivariant under 
S1-action, so 

degI5 (/ - Mn , Ün , 0) = (-l)n ■ degB {g |R» , fin , 0), 

degB being the Brouwer topological degree (see [2] for details). Finally, for 

degB{g\Rn ,nn,0)^0,n>l 

the equation (6.2) has some solution in X. Using various kinds of continua- 
tion theorems one can easily compose existence theorems for (6.1). 

■ 
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Weak solutions for the nonlinear one dimensional 
wave equation in adiabatic case. 

S. Biräuas, §t. Balint, A.M. Balint 
West University of Timisoara 

Bd. V. Pärvan, Nr. 4,1900 Timi§oara, Romania 

This paper presents a shock-capturing method using Greenberg's 
results     [2].     We     consider    the     nonlinear     wave     equation 
d1 y    d      d% 
—Y~—(p{—))   and   a  related   infinite   system   of differential 
dt      dx     SYL 

equations ; we find some solutions for this system and construct weak 
solutions for the nonlinear wave equation. 
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Weak Solutions and Hydrodynamical Shock Generation by Non 
Linear Oscillations in the case of One Dimensional Non Linear 

Wave Equation 

V. Iordan, §t Balint, A.M. Balint 
West University of Timisoara 

Bd. V. Parvan No. 4,1900 Timisoara, Romania 

Abstract 
In this paper we generalize the Greenberg's results by [7]. We obtain a weak 
approximation of the solutions of the nonlinear wave equation, in order to give 
a numerical treatment of hydrodynamical shock problems. A weak 
approximation of the solutions of the nonlinear wave equation has been 
obtained using the nonstationary solutions of the infinite system of ordinary 
differential equations [9,10,11]. Moreover, we determinate the lines of shock 

x = 1, in the case a > X + max{v0 • 1}. 
a - X + v0 ■ I N 

1. Introduction 

The differential equations of hydrodynamics are a not too complicated 
type as long as the motion is continuous and isentropic. It is known, that 
almost all hydrodynamical setups cause a development of discontinuities, so- 
called shocks. These shocks almost never remain "straight" and as soon as they 
are "curved" or intersect each other, isentropy ceases. 

J. von Neumann studied [1] the problem of hydrodynamical shocks and 
he considered the infinite system of differential equation 

x, =v,,      ^:v1=a(N(x2-x1))-a(2Nx1) (1.1) 

xk=vk,      — vk=a(N(xlc+1-xk))-a(N(xk-xk.,)),    k = 2,3... (1.2) 

in order to give a weak approximation of the solutions of the nonlinear wave 
equation: 

?4- 2*-= 0 (1.3) 
dt2 Sx 

The infinite system (1.1), (1.2) were obtained by difference method. 
J.M. Greenberg in the papers [5], [6], [7], [8] considered the system (1.1), 
(1.2), in the context of shocks generation for a discrete system of particles 
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which are in interaction and for the similar problems for the system of particles 
which shocks like the billiard balls. 
In the discrete shocks generation problem we seek a solution to the infinite 
system of differential equations (1.1), (1.2). In this system xk(t) and vk(t) 
represent the position respective the velocity of the particle k of mass 1/N, 
where N is a positive integer. The function a(N(X](+i-Xk)) represent the force 
acting between the particles k, k+1 which are supposed so that at the initial 
moment t0 = 0 the space between particles is 1/N. 
In the paper [11] we constructed nonstationary solutions of the infinite system 
(1.1), (1.2) for make a weak approximation of the solutions of the nonlinear 
wave equation (1.3). 
In our construction we used the periodic solutions of a system of two nonlinear 
ordinary differential equations of first order presented in [9]. In our papers [9], 
[10], [11] we supposed that the function a satisfies the conditions: 
a) a:(0,+oo)-> (-oo,0]  is of class C1; 
b) there exist A, e(0,l) such that a(£)<0 for £e(0, X), 

a(£)=0 for £> X and lim a(^) = -oo; 

c) a is strictly increasing on (0, A,); 

d) the potential energy U(^) = |a(s)ds satisfies the condition limU(£) = +oo. 
X 

Let be (^(t),v(t)) the solution of the system: 

4 = v,     ^ = -<j(2N$) + o(2N(ß-$)) (1.4) 

(N>0   integer,   ß>0  real)   which   satisfies  the   initial   conditions   ^(0)=^0) 

£<,e((U/2N) and v(0) = 0. 
Let be T>0 the period of the solution (£(t), v(t)) and tj>0, v0>0 defined by: 
t1=inf{t 11>0, £(t)=?c/2N}, v0=v(t). 
In paper [11] we showed that a solution of the infinite system (1.1), (1.2) is the 
family of function (xk(t),vk(t)), k=l,2,... defined for t>0 by the formulas: 
x1(t) = ^(t),v1(t)=v(t) (1.5) 
and fork = 2,3,.. 

X_      f(k-l)T 
2N+V°l     2     ' M;    "°*  ,   for0<t<^-^-t,     (1.6) 

xk(t) = (k-l).ß + — + v0(^-^-t,j-v0t       f_^_(kzl)T_i] 

vk(t) = -v0 

and 
(k-l)T 

xk(t) = (k-l)ß + 5|t 

vk(t) = v(t- 
,   fort>^-^-t,        (1.7) 

(k-iyfj 2 
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and satisfies the following initial conditions: 

x,(0) = i;0^0,—J,   v,(0) = 0 

xk(0) = (k-l)ß + ^ + v0p^l-tl vk(0) = -vo,    k = 2,3,... 
(1.8) 

This solution is characterized by translates of a single periodic function. 
Moreover, we are able to evaluate the continuum limit of this solution; in 
particular, we obtain the limit motion X"(x,t)as the pointwise limit of the 

individual trajectories xk(t) as N tends to infinity along with x=k/N fixed. 

2.Weak solutions and faydrodynamical shocks study 

For each integer N, we introduce the functions: 

XK(x,t) = 

2Nx,(t)x, 

and fork -1,2,... 

xk(t);-N(xk+1(t)-xk(t))!x- 

0<x<- 
2N 

2k-1 
2N ) 

\       2k-1 2ii + 1 

yN(x,t) = -|p(x,t) = x?(x,t): 

2N 

0<x<- 

2N 

2N 
2Nx,(t), 

and for k = 1,2,... 

2k-l 2k + l 
N(xk+1(t)-xk(t)),   -^rr-<x<- 

vN(x,t) = -^-(x,t) = xf(x,t) = 

2N 

2Nv,(t)x, 0<x< 

and fork = 1,2,... 

vk(t) + N(vk+1(t)-vk(t))[x 

2k-1 

2N 

2N 

2k-1 

2N 
<x< 

2N 
2k+ 1 

2N 
and 

aN(x,t) = a(yN(x,t)) = 

a(2Nx,(t)), 

and fork = 1,2,... 

a(N(xk+!(t)-xk(t))), 

°*X*W 

2k-1 
<x< 

2k+ 1 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

2N 2N 
The numbers xk(t) and vk(t) are the particles trajectories and velocities defined 
in (1.5)-(1.7). 
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Remark: We first observe that %^ and %" are weak solutions of 

rA« is_ = o,    forx>0, t>0 
dt      dx 

that means 

J[x?(x,tJ)-x"(M,)]dx= }[Xr(b,t)-Xr(a,t)]dt , (2 5) 
a l, 

for all 0<a<b and 0<ti<t2. 

From (2.2) we have: 
b 

J[x"(x,t2)-x"(x,t1)] = (^-a)N(xktl(t2)-xk(tJ)-(^-a)N(xk+1(t))-xk(tI)) + 
a 

1 

+ ^N[xM(t2)-xktl(t2) + xk+3(tJ)-xk.2(t2)+...+x1I1(t2)-xB.I(t2)-xk+2(tI) + ;•;,,{£,)- 
N 

■xk+3(t1) + xktj(t,)-...-xin(t1) + x..l(tI)] + lb-——jN(xm+,(t2)-xro(t2)) 
2m-1 

2N 
2m-1 2k+ 1 

2N -|b--^r1jN(xra+I(t1)-xm(t1)) = l^^-alN[xktl(t1)-xk(t,)-xk+1(t,) + xk(t2)] + 
2N 

+ xkt,(t1)-xktl(t2) + xffi(t2)-xm(t1) + (b 
2m-1 

2N NK+1(t2)-xm(t2)-xmtI(tI) + xra(t1)] 

and from (2.3) we have: 

fixf (b, t) - Xr (a. t)]dt = J[v. (t) + N(vm+1 (t) - vm (t))(b - 
2m-1 

2N 
-vk(t)-N(vk+1(t)-vk(t))- 

2k-l 
2N 

dt = xm(t2)-xni(t,) + N(xm+1(t2)-xm(t2))(b-^i]-M(xmtl(tI)-xni(t1))- 

b-^|^)-xk(t2) + xk(t1)-N(xk+1(t2)-xk(t2)).[a-^]+N(xktl(t1)-xk(t1))- 

a—=-l=xm(t2)-xm(t,) + N(b~^=- [xm+,(t2)-xm(t2)-xm+1(t,) + xm(t1)] + 2N 2N 

+N[-^~-aj[xktl(t2)-xk+1(tl)-xk(t2) + xk(t1)]-N~[xk+,(t2)-xk+1(t1)-xk(t,) + xk(t,)]- 

2m-l 
-xk(t2) + xk(t]) = xm(t2)-xnl(t,) + N^b--^-J[xmtl(t2)-xm(t2)-xnt,(t,) + xm(t1)] + 

+Nr^-a K+,(t2)-xk+1(t,)-xk(t2) + xk(t,)] V 2N 

[t follows from here that %* and %™ satisfy the relation (2.5). 
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Now we show that ^N converges pointwise to function %°, for N tends to 
infinity. 

Theorem I. The sequence %N(x,t) defined for N>0 by the formula (2.1) 
converges pointwise to the function: 

X"(x,t)H 

ax - v0t, 

a + X,(v0) 

« _ ^a-A.,(v0) 
0< t< x 

2v0 

a-^Vo) • 
•x,     t>—  X 

2v„ 

for N->oo (2.6) 

Proof: We will consider the next three situations determined by the solutions 
Xk(t) of the infinite system (1.1), (1.2): 

(k-l)T 
a)0<t<^-^-t, 

kT 
b)t>y-t, 

c)te 
(k-l)T        kT 
^r--U,— -t, 

a) For 0 < t < -—— -1,   we have : J 2 ' 

Xk+,(t)-Xk(t) = kß + — + V0[y-t,J-V()t-(k-l)ß- — -V0 
(k-l)T 

t,l + 

+v0t = ß + v0- 

and: 

x
N(xJt) = (k-l)ß + ^ + v0[ (k-l)T     "I Jn       TV      2k-1 

= (k-l)ß + ^ + v0^^-v0tI-v0t + N(ß + v0|jx-N[ß + v0|).^l 

= ^-v0t + N(ß + vo|)x-l(ß + v0l)-v0t, 

kT 
b) For t > 1, we have: ' 2       ' 

Xk+1(t)-Xk(t) = kß + ^t-y]-(k-l)ß-4[t-^y^|=2 

(see [11]). 
Therefore we deduce: 

ß-^t- 
(k-l)T 
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x
N(x,t) = (k-l)ß + ^[t-^y^l+2N ß-s t 

(k-l)T 
x_^_i) = (k_l)ß + 

2N   ' 

2N 
^t_(^)+2Nßx_2N,(t-^)x-2Nß.^l + 2N,(t- ^  2k-] 

= ßN|2x-|]+2(k-Nx)^t-^y)T 

c) For t £ (k-1)   t  kT_t 
2        " 2      ' 

the Solutions are: 

xk(t) = (k-l)ß + $(t-£y£j     and 

X       f kT Xk+1(t) = kß + — + V0[y-t,J-Vflt 

In this way we obtain: 

x"(x>t) = (k-l)ß + 5ft-^^l+N 
'     X       (VT   A       .   J    (k-l)T 2k-l 

2N 

= ß(Nx-l)+vof(Nx-^)+v0(-NX t?izl]4*ll_Nx§1-*zMl + 

X_ 
2 2N 

From a), b), c) we obtain: 

XN(*,t) = 

(k-l)T 
forO<t<     .   ■ -t, A_Vot+N[p+Vol]x_i[ß+Vol)_Voti, 

(       r\       ( XT     2k-i)       kTf       2k-f|   (2k+ 1       W    (k-l)T^ 
ß(Nx--J + v,{-Nx + —J + voy[Nx——J + [—- NxJ^t-y-j, 

ßN^x - £) + 2(k - Nx)^(t - ^)T 

-    (k-l)T 
for      2     - -t, <t< 

kT 
2 " "t, 

kT 
for tä —- 

2 -t, 

The period is: 
dp 2(     X)    2T    2 f     X 

J-a(s)d: 

(see [9]). 

We remark that v0-I is bounded, indeed: 

where 1=   J 
dp 

2N50 J-o(s)dS 
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Vo-I = 

K i. 

J"-a(ii)du-  J- 
dp 

™5o 2N^„ J- 
-£V-a(2NS0)(X-2N50)-2MV(a.-2N50) = 

(s)ds 

= 2M(X -2N^0)7-o(2N|0) ,because 

^ =     J- a(u)du <     J- a(2N^0)du = V^a(2N^0)(X-2N^0)        and 

V dp V    dp 
J  p> J VKP) 

J-a(s)ds 

2N?0 

X 

A/h(2N40) + h'(2N^Xp-2N^0) + h"(2N^)-(p-2N^)2/2! 

dp 
-£M- I dp 

VP-2N^0   V-^(2N^0)-cr'(2N^0)• (p-2N^0)/2 J Vp~^2N£~ 

<MV^-2N^0 . 

Let be a > X + max{v0 • 1}   , choosing ß = ——-—, we have: 

2 ~N 
ß + v0 — = — ->0 for N -» co . 

On the other hand we have -^- = -— - ——— which implies: 
2      2v0       2v0 

(k-l)T       __k  cc + v0I-A,   J_ a + v0I-X, 
2      -t,-     • 

kT 
— t, and — — t, = — 

N        2v0 N        2v0 ' 2      '     N 

f T        ^ a     v0I - A. 
,2v0

+   2v0  , 
■t, 

Consequently for N-»oo along with x=k/N fixed we obtain lim xN (x,t) = x"(x,t), 

where 

X"(x,0 = ^ 
a + Mvo) 

, forO<t<- L1-ezx 
2v0 

a-X,(v0) , for t > —— x,       , where ~kx(v0) = X - v0I 

Theorem 2. The derivatives  xf = -A— and x* = -^— converge weakly to the 
dt 9x 

functions %" and x^ defined in: 
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xr(x.o= 
-v0, 0<t<      / oJ: 

2v0 

0     ,   t> 'V °  X 
•2v„ 

(2.7) 

and 

x:(x,t) = 

, 0<t< 
2v„ •• ' 

 t ä ———— x 
2vn 

(2.8) 

Proof: We prove that xf (x, t) -»xr (x> *) for N ~> °°- 

Forte^^I-t,], wehave xf(x)t) = -v0+N(v0-v0)(x-^1 

kT (     2k-1^ 
and for t>y-t„ xf(M) = vk(t) + N(vk+1(t)-vk(t))[x--—J. We observe that 

forl<j<kandt>kT/2-th 

vj+1(t) = v[t-^j, vj(t) = v[t-^^jandv(t) = -v[t-|j    (from    [10])    and 

therefore: 

Consequently, xf (x,t) = vk(t)+N(-vk(t) - vk(t))[x - ^ij = (2k - 2Nx)vk(t). 

For N->oo, we have x*(x,t)^ 0. In this way we obtain x!" -» %" for N-xo 
and these prove that formula (2.7) is true. 
Than, we prove that lim x* (x, t) = x" (x, t). 

To observe immediately that for t 0,^-t, 

X?(x,t) = N(xw(t)-xk(t)) = N 

+ v0t] = N[ß + v0|]=N^ = a 

On the other hand, t>kT/2-tj, we have: 

kT kß + ^ + vol—-t,j-v„t-(k-l)ß 
2N 

(k-l)T 
-t,  + 
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X^(x,t) = N(xk„(t)-xk(t)) = N kMt_f)_(k^-^fci>T 

= N 

= Nß: 

,     kT} kT   T 

"♦«L'-TM'-TT 
a + ^-v0I _a + X,(v0) 

= N 
,     kT)     (     kT 

2 2 
These prove that the relation (2.8) is satisfied. 

From relation (2.5) we deduce that  x? m& llWQ wea^ solutions of 

SY°°     SY" 
-^- = -^- ; because 
.St      Sx 

.N "\ 

lim f ^-(x,t2)--^(x,t1) dx = lim |p^(b,t)-^-(a,t) N-« Jl St       2      St v    "J       N— U Sx v    ;    Sx V    , 
dt 

and consequently: 

If'- 2)-%M,) 
St 

dx = 'If- Sx 
dt. 

Moreover, they satisfy the Rankine-Hugoniot relation: 

^j(xl -xO+te-*;)-» across the shock wave x = ^^t. 
2v„ 

Theorem 3. The sequence aN(x,t) defined by N>0 by the formula (2.4) has a 
weak limit. 

Proof: Equations (1.6), (1.7) and the relation (2.4) imply that G
N

=0 in 

x > —. °   , t + — and this guarantees that they converge pointwise to a™=0 in 
a-A,,(v0)    N 

x> 
2vn 

a-X,(v0) 
t. In the region 0 < x < 

2vn 

a~Mvo)     N 
t + — we know that a(^(v0))< 

Y <0 independently of N. Because xk(t) and vk(t) satisfy the infinite system 
(1.1), (1.2) and using (2.3) and (2.4) we have (for all 0<a<b and (Kti<t2): 
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}(xr(*.t,)-xr(*.t^ 

+—(vm-2(t2) + vm_1(t2)) +  ^b     2N J 2 ^ 2N 

1                                      1 ,      f  ^                   va(t,) + xf(t,) fb_2Ezl -xKti(t,) + vkt2(t,))-...-—(vm_2(t,) + vm,(t,)) |b     2N 
2 

and 

W(b.t))-o(xü(b,t)))it = jHN(Xra+1(t)-xm+1(t)))-cr(N(xktt(t)-xk(t)))]dt = 

= f[<<N(xBtl(t)-x„1(t)))-0(N(xB(t)-xB.1(t))) + «<N(xB(t)-xB.1I(t)))- 

ti 

<2 

+...^N(xkt2(t)-xk+1(t)))-^^ 
'i 

= -[vk+,(t2)-vktl(t1) + vk+2(t2)-vk+1(t2)+...+vm(t2)-vm(t1)] 

From these relations, we obtain: 
b 

|(xr(x,t2)-xr^t,))dx-j(oN(bJt2)-cTN(bJt,))dt 
xr(a,t2)-xr(a,t,) + v^(t2)-vl:,1(t1) 

2 

2N 

-^V"(t')+^Vjt2) <6M- 
N 

where M is independent of N (because vk(t) = v(t-kT/2)is continue and 

periodic, so it is bounded). 

If we now let t, =^^.b and t, .^^l-a  and exploit the limit 
2v„ 

relations: 
b 

lim 
N->CO 

-^i(v0) 
>\ 

2v0        J 
dx = -(b-a)v0, 

a 
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lim        cr''(b,t)dt = 0 

we find that (2.9) implies that for all 0<a<b 

°->-i(vo), 

lim      I a*1 (a. t)dt = -(b - a)v0. 
g->-i(vo) 

2vo     "' 

The last relation guarantees that oN converge weakly to the constant function 
2v 

o   =■ 
a-A.:(v0) 

inO<x< 
2v„t 

a-X,(v0) 

The above construction also implies that the pair 

v"(x,t) = 

and 

aw(x5t) = 

-v0    ,0<t<— x 
2vo 

0       ,t> i^-^x 
2v„ 

2v„ 
a-X,(v0) 

,0<x<     _     °;t 
2v„ 

0 x> 
2vn 

a-X,(v0) 

(2.10) 

(2.11) 

is a weak solution of 

St       Sx 
0        in x>0 and t>0 and satisfies the Rankine-Hugoniot equation 

— (v:-v;) + (cr!-G:) = 0   across the shock wave x = -—— 
(a-X,,(v0)) a-A.,(v0) 

It results that the continuum limit of solution (1.5) - (1.7) with the initial 
conditions (1.8) can be evaluate and the limit motion is the pointwise limit of 
the individual trajectories xk(t) for N->oo along with x=k/N fixed. 
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The heat and mass transport by convection and 
diffusion during quartz crystal growth by 

hydrothermal system 

§t. Balint, A.M. Balint, D. Bältean, A. Neculae 
Univ. of the West Timi§oara, 

Blv. V. Pärvan no.4, 1900 Timi§oara, Romania 

Abstract 

In this paper we give a short description of the physical model of the quartz crystal 
growth by the hydrothermal system. This is followed by a presentation of the mathe- 
matical model of the system, including equations governing the process. Because this 
model don't describe the solute (quartz) field, we continue by a solute field analysis 
proposal. In order to make this analysis, we make two kind of hypothesis concerning 
the neighbourhood of the growth mterfa.ee, which is a thin region, but not a mathe- 
matical surface. The first hypothesis is that in this region there is already a "periodic" 
structure formed by microcells, like in crystal and the dispersion mechanism of the 
solute is due also to convection of solute by the microscopic velocity field in these mi- 
crocells. The second hypothesis is that this region is like a bed of randomly distributed 
spheres and the dispersion mechanism of solute is due also to convection of the solute 
by the random velocity field generated at the microscale by the randomly distributed 
inclusions. In both situations we obtain a new effective convective-diffusive equation 
for this region. For realize this we used the method of homogenization, that is a mul- 
tiple scale analysis in terms of a small ratio e between the characteristic micro and 
macroscales. 

1    The physical model of the quartz crystal growth by 
hydrothermal system 

The schematic of the system is presented in fig. 1. 
The system consists of two isothermal zones separated by a gradient region. 

Typical values of temperatures for isothermal zones are: Th ~ 400°C, Tc « 350°C 

In the gradient region the temperature decreases linearely. 

The top of the autoclave is assumed to be adiabatic. 

The solvent is water and the autoclave is filled 80 - 85%. 
In steady state the pressure in the autoclave is p w 1500 • 105iV/m2 and in this way the 
solubility condition of the polycrystalline quartz in water is assured.   The gravitational 
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Figure 1: Schematic of crystal growth by hydrothermal system 

acceleration is considered orthogonal to the growth direction (to the autoclave generator). 
The solution contains 2-5% of quartz and its (p,T) diagrame is similar to the pure water 
(p.T) diagrame which shows that in the above conditions only the liquid phase exists in the 
autoclave. 
It is assumed that in the hot zone there is sufficiently poly crystalline quartz and the ratio 
between its surfaces and the seeds surfaces is sufficiently large for assuring the saturation 
value of the average concentration of the solute in the hot zone and cold zone. 
The quartz is transported by convection and diffusion from the hot zone into the cold zone, 
where the solution becomes oversaturated and the quartz crystallizes on the surfaces of the 
seeds. 

2 Mathematical model for quartz crystal growth by 
hydrothermal system. Equations governing the pro- 
cess. 

The equations used for describing mass and heat transport in quartz crystal growth by 
the above presented hydrothermal system are the following: 

du p 
+ (üV)ü = -Vp + V2«--^0e 
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the non-dimensional transient momentum equations in the solution 

(2) dA + üve = Wd 
at Pr 

the non-dimensional energy equation in the solution 

(3) V« = 0 

the non-dimensional mass continuity equation in the solution 

The list of symbols used in these equations: 
u - non-dimensional velocity vector (= vrjv) 

v - velocity vector 
r - radius of the autoclave 
R - position vector 
j - non-dimensional space variable 
v - kinematic viscosity 
/ - non-dimensional time (= ri'/r2) 
T - time 

p - non-dimensional pressure (= pr2/(pi/2)) 
p - pressure 
p - density of the solution 
Ra - Rayleigh number (= gß{Th - Tc)r

3/va) 
g - gravitational acceleration 
ß - thermal expansion coefficient 
Th - hot temperature 
Tc - cold zone temperature 
Q - thermal diffusivity 
Pr - Prandtl number (= vja) 
0 - non-dimensional temperature (= (T - Tc)/(Th - Tc)) 
e, - unit vector parallel to gravitational acceleration 

Solutions of equations 1 to 3 requires simultaneous calculations of the velocity field ü and 
the temperature field $ in the solution. 

For the steady state we can use the following methodology: 
The value of the temperature 6 on the walls of the autoclave will be used like boundary 
condition for finding the stationary solution ö'1' of the non-dimensional energy equation 2 
in which at this step we neglect w. 
Whith the above obtained temperature distribution in the solution #M we find a stationary 
solution v^ of the equation 1,3 coresponding to the boundary condition vS^\s = 0. 
Using the velocity field w'1' we find a stationary solution 8^ of equation 2 coresponding to 
the same boundary condition like 6^\ With 6^ we find a stationary solution u(2^ of the 
equation 1,3 coresponding to the boundary conditions w'2'|g = 0. With ü'2' we find <K3' and 
with #'3' we find ü'3'. We stop this iterative process when w'1', #'*' satisfies with sufficient 
accuracy equations 1,2 and 3. 
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Note that we solve the energy equation in the region A defined by the inner walls of the 
autoclave, the transient momentum equation and the mass continuity equation in the region 
A-S where S is the region ocuppied by the seeds and d is the boundary of A-S. 
The transport equation can be solved using Nekton solver. This solver is based on a spectral 
element technique which decomposes the flow domain in standard finit element fashion and 
expands the primitive variables using high-order Chebyshev polynomials. The convective 
and buoyancy terms are treated explicitly using a third-order Adams-Bashforth method and 
the diffusive terms are treated implicitly with a second order Crank-Nicolson scheme. 

Solute field analysis in this model is not considered. This requires dynamic description 
of the growth process from the initial to final stage, including dynamic description of the 
quartz concentration. 

3    A first step for the quartz field analysis proposal. 

An analysis of the solute field in the context of quartz crystal growth by hydrothermal 
system is justified by the fact that the unequal repartitioning of the quartz influences the 
quality of the quartz crystal. The convection, the value of the diffusivity influence the 
repartitioning of the quartz. The unavoidable temperature gradients generate buoyancy 
driving forces (convection) which result is only nearly complet mixing [1], 

A way to obtain uniform repartitioning could be to compute the evolution in time of the 
quartz concentration for given thermal conditions and to find from here how they influence 
the quality of the quartz crystal and in what way these conditions must be modified (gen- 
erating control functions) in order to have the desired uniform distribution of the quartz at 
least in the neighbourhood of the crystallization surfaces. In this way we hope to assure the 
quality of the grown quartz crystal. This method requires dynamic description of the growth 
process from initial to final stages, inclusively dynamic description of the quartz concentra- 
tion and solubilization. In order to make such a description in a first stage we complete the 
system of equations 1-3 with the convective-diffusive equation of the quartz concentration: 

(4) ^ + v.Vc = D(V2c+^T) 

where c is the quartz concentration, v is the velocity field given by eq.l, D is the diffusion 
coefficient of dopant, k?D is the thermodifFusion coefficient, T is the temperature given by 
eq.2. The constant kj is called the thermodifFusion ratio and we can neglect it for small 
concentrations (see [2]). 
At this stage we ignore the dynamic of the solubilization assuming that the average of 
the concentration in the hot zone respectively in the cold zone is equal to the saturation 
concentration coresponding to the hot respectively cold temperature. 
The equation 4 describes with accuracy the evolution of the quartz concentration in the hot 
zone and in the cold zone, far from the crystallization surfaces. In the cold zone close to 
the crystallization surface this equation must be improved because the growth surface is not 
a mathematical surface. The growth surface is in fact a thin region which has one of the 
following characteristics: 
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1. There is already a "periodic" structure, formed by microcells, like in crystal and the 
dispersion mecanism of the quartz is due also to convection of quartz by the microscopic 

velocity field in these microcells. 
2. This region is like a bed of randomly distributed fixed "spheres" and the dispersion 

mecanism of quartz is due also to convection of the quartz by the random velocity field 
generated at the microscale by the randomly distributed inclusions. 

In both situations we must establish a new effective convective-diffusive equation for this 

region. 
In order to deduce the new macroscopic convective-diffusive equation in the neighbour- 

hood of the growth interface we use the method of homogenization, that is a multiple-scale 
perturbative analysis in terms of the small ratio e between the characteristic micro and macro 
length scales. The method was first proposed in 1978 by Bensoussan, Lions and Papanicolau 

in [3]. Later it was extended in a series of books and articles ([4-12]). 
In this method the dependent variables of the problem is assumed to be expressible as 

a regular expansion in terms of a small parameter e equal to the ratio of the microscale to 
macroscale characteristic lengths. Finally the macroscopic equation, which is satisfied by 
the leading-order term of that expansion, is expected to arise naturally from the ensuring 

regular perturbation analysis. 

4 The macroscopic (effective) convective-diffusive e- 
quation of quartz when we moddeling the thin re- 
gion in the neighbourhood of the growth interface 
by a spatial periodical structure. 

For small concentrations, the microscopic convective-diffusive equation of the quartz is 

d. c 
(5) — + «Vc = £>Vc 

with the boundary condition 

(6) nVc = 0   on   duj 

Here v = v(y) is the fluid velocity in a cell Ü and is taken periodic in y, D is the diffusion 
coefficient, w denotes the "solid" part in the cell Q, du> denotes the boundary of the solid 
part and n indicates a unit vector normal to du), fi — fi — u>. 

We consider the two length scales 1 and L corresponding to the cell size (i.e. the period of 
the structure) and the size of the region in question, respectively. Assume that £ = l/L « 1. 
Now we introduce the following hierarchy of time scales 

/ I2 L I? 
(7) T1=-,     r, = -,     T3=-,     r4=- 

where V0 is the characteristic value of the velocity field. 
There are two related non-dimensional numbers which appear here - the local and global 
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Peclet numbers: 

r2      IVQ T4      LV0      1 
(8) Pei = _ = _. ,,, = _ = _ = -Pel 

representing the ratio between convection and diffusion locally and globally, respectively. 
We assume that convection and diffusion balance each other at the microscale, that means 

Pa = 0(1). In this case, Peg - 0{e~i), what means that convection dominates diffusion at 

the macroscale. 
We note by R the macroscopic position vector, with \R\ = 0(L).   Scaling the space 

variables according to 
R 

L 

we introduce the corresponding microscopic variables 

(9) 

R     x 
(10) y=j = -£ 

Now we introduce the following three time scales: 

T T     m       T 
(11) i = -,    Tx = -   T2 = - 
V      ' T2 T3 T4 

Assume that the effective concentration c depends on e, x,y,t,Tu T2 and can be expanded 

as follows: „ 

(12) c(t-,x,y,i,r1,r2) = ^£ncn(ä,y,<,r11T2) 
n=0 

The dependence on y will be assumed periodic and we assume that /fl» cndy = 0, for 

n=l,2,... 
For the time derivatives formulas 11 give: 

d      D / d      n    _, d,   _2 5 

and for the space derivatives formulas 9 and 10 give: 

(14) VH = \ (v, + ivf),   VJ, = 1 (vj + |v,vs + iv») 

Substituing 12 in 5, using 13, 14 and collecting equal powers of e on gets: 

f AffCo-«Vsco-^ = 0 
(15) I for   0(e~2) 

[ nVyCo = 0   on   dui 

Asd - «VsCl - 
9-§f = üVfCö - 2VäVsco + Pe,§a 

(16) { for  0{e-x) 
nVyC-i + nVfCo = 0    on    dio 
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(IT: 
Xjci - üV9c2 - *a = üViCl - 2VäVsc, +Pe,$-- V|c0 + §% 

nVyCi + nVjCi =0    on    du; 
/or    0(1) 

where we have put 

(18) 

A function c0 = c0(x,Ti,T2) satisfies 15. For such a solution of 15 equation 16 becomes 

ü = Pe'v0 

(19) ASd - tiVfCl - ^ = üVsCo + Pe,^ 
hVyC\ + hV±Co = 0   on   <9w 

dTi 

D       9C° - T7 

ÖT~ = ~    U > 

The solvability condition for 19 gives 

(20) 

where we have put 

(2D <*>=^üm 

For the equation 19 we look for a solution of the form 

(22) Cl(x,y,t,TuT2) = xiH^M^T^Jt) 

Substitutioning 22 in 19 we find: 

§* + («Vs)x - AgX =<«>-« 

("Vs)x = -n 
(23) 

The problem 23 has an unique stationary solution \ = x(v) which is periodic and satisfies 
< * >~ W\ /fi' X(y)dy = °- We consider this function x = x(l/) and ci = X'VsCo. 
Substituting in 17 we find 

(24) 
Ayc2 - üVyC2 - ff = öVä(xVäco) - 2V,V^(xV£Co) + Pefä - AsCo + f£ 

nVsC2 = —nVjCj 

The solvability condition of the equation 24 gives 

3       3 

(25) 

or 

(26) 

dc, 

^=§ £ (5,;" PI I*M*+PI X % * - PI 1niX A 

7- < X" > +2 < Vx > -jTyj /   n\da 
I" I Jaw 

d'cp 

dxidxj 

dT2 
VäVsco 
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Substituting c0 = CO(X,TL,T2) in 13 and using 20, 26 we find that c0 satisfies the equation 

(27) 
dco 

97" 
< v > VßCa - D I- < xu > +2 < Vx > in'IL n\da VfiV^Co 

This is the macroscopic convective-diffusive equation of the quartz in the neighbourhood of 

the crystallization front. 
The quantity defined by 

(28) D" = D I- < xu > +2 < Vx > W\ nxclv 

is the diffusivity tensor of the quartz in this region. 
The expresion of the effective diffusivity tensor for periodic porous media was subject of 

several papers, see for example [10],[12]. 
For the case of spatially periodic porous media a formula was first obtained by Brenner 

in [13]. Brenner considers that only the symmetric part of D* enters in the macroscopic 

equation 27. 
order to find the symmetric part we consider Dij from 25 

(29) Dij = D |fi 
f      ,_,  2   r dXi._    i   /•      , 1 

I Ja' I" I Jn' "VJ \u I hu J 

and using Gauss formula we find 

(30) Da = D ^-wiL^^mL^. 
The symmetric part Dij is given by 

(31) Dij = D *-mL*->+«-<»+mL{&%)*] 
The dispersion tensor given by 30 depends on the flow in the cell fi. To calculate the dis- 
persion tensor on must solve the fi cell problem defined by 23. This linear fi cell problem 
defined by 23 can, in principle, be solved numerically for x for any fi cell geometry and 

velocity field v in the fi cell. 
A choice for the velocity field v in the cell fi is the velocity field v generated by the macro- 
scopic convective velocity field. That is the Brikmann velocity field given by the equation 

(32) 
Vu^O 

where a denotes the permeability of the thin region which in the dilute limite equals to the 
ratio between the fluid velocity and the force per unit volume exerted on the fluid by the 
solid u\ fi is the dynamic viscosity; F = -GnuaV; a is the radius of the solid part and V is 
the average of the convective velocity field in the cold zone. 
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Another choice of the velocity field v in the cell f! can be the slow flow past a sphere given 
by the equation 

Vp - jN2v = 0 
^ >  Vv = 0 

For an axisymmetric flow, using appropriate spherical polar coordinates (x - rsin8cos<p, 
y = rsin6$in,tp,z = rcosö) we have in the plane ip = TT/2: 

(34) v = (vT(r,e)Mr,8),Q) 

We may automaticaly satisfy the condition Vü = 0 by introducing Stokes stream function 
4>{r,0) such that 

_     1    84 _      1    ty 

In these conditions we have: 

(36) 4>= 1-\V\(2r2 + --3ar\sin29 

where |V| is the average of the velocity field in the lower cell (V = \V\ez). 

5 The effective convective-diffusive equation of the 
quartz in the case when we modelling the thin re- 
gion in the neighbourhood of the growth interface 
by a fixed bed of randomly distributed spheres. 

We started again from the convective-diffusive equation for small concentrations 

(37) ~ + vVc = DV2c 
OT 

In this equation c is the concentration of quartz, r is the time, v is the random incompress- 
ible velocity field generated at the microscale by the randomly-distributed spheres which is 
statistically homogenous and infinitely extended, D is the diffusion coefficient. 

Following R. Mauri's considerations from [12] for a fixed bed of randomly distributed 
spheres we consider the two length scales 1 and L, indicating a typical correlation length of 
the random velocity field v generated at the microscale by the randomly-distributed spheres 
and a characteristic linear dimension of the macroscale (size of the bed). We assume that 
e = l/L << 1 and we introduce the time scales 

I P L L2 

38 Ti = —,    r2 = -,    r3 = —,    r4 = — 
V0 D V0 D 
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where Vo is the characteristic value of the velocity field. 
We consider the local and global Peclet numbers: 

T2      IV0       n T4      LV0      1_ 
(39) P«~i'T>    Pt> = ^-D=lP« 

and assume that convection and diffusion balance each other at the microscale, that means 
Pei = 0(1). In this case, Peg = 0(e~l), what means that convection dominates diffusion at 
the macroscale. 

We note by R the macroscopic position vector and we scale the space variables according 
to 

R 
(40) x = - 

The corresponding microscopic variables y are given by 

R~ x 
(41) y = 1 = - 

Introducing the following three time scales: 

(42) * = -,    T1 = -   T2 = - v r2 r3 r4 

we assume that the effective concentration c depends on e, x, y, t, Ti, T2 and can be expanded 
as follows: 

CO 

(43) c(e, x,y,t, Th T2) = £ encjx, y, t, Tu T2) 
n=0 

We note that the stationary random velocity field v depends only on y; each term c„ in the 
expansion 43 is locally ergodic (expressible as a product of an ergodic y dependent function 
by an x,Ti,T2 dependent part); the ensemble average of c„ denoted by < cn > satisfies 

(44) < cn >= cSn0 

and each cn is locally random. 
For the time derivatives we have: 

8      D ( d       „    _! d        _2 d 

and for the space derivatives: 

(46) V« = i(vf + Jvs),    Vl = ^(vl + -VsVs + ^ 

Considering it defined by 

(47) Ü = Pe,y 
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substituting 43 in 37, using 45, 46 and collecting equal powers of e on gets: 

(48) Asco - üVsc0 - ~ = 0   for   0(e~2). 

-£■ = öVäc0 - 2V8V,co + Pei^- (49) Asc,-tiVsCl--^ = iiVäcb-2V8V,co + Pe,^   /or    Off1) 

(50)    As02-«Vsc2-^ = üVec1-2VsVffCl.+ Pei^--VlCb + ^ /«• 0(1) 

A function Co = co(s, 7i, 'A) satisfies 48. For such a function 49 becomes 

(51) ASC! - wVjjC! - -^7 = «ViCo + Pei^r 

Now we impose that equation 51 is solvable; that means that ensemble averages of its left 
hand side and right hand side are identically equal to each other. Using that cx is locally 
random we find: 

(52) Pei^ = -<«>Vico 

where < ü > is the ensemble average of ü and is the effective quartz velocity. 
If we look for solution of equation 49 of the form 

(53) c,(x,y,tJuT2) = x(y,t)V*co(3,Ti,T3) 

we find 
dy 

(54) — + (üVy)x - A5x =< ü > -Ü 

Condition 44 for n=l implies that x satisfies also 

(55) < x >= 0 

If we consider \ satisfing 54, 55 and cx = x^xCo equation 50 becomes 

(56) A,c2 - «Vsc2 - ^ = fiVe(xV*cb) - 2VSVS(XV*Cö) + Pe^ - AäCö + ^ 

We apply the solvability condition to this equation and considering that c2 is locally random 
we obtain 

dco _ V^ V^ (a       ^ ^   , o , d*i ^ \    d2°° i«) £ = £ ?(«.-<** >«<£>) 
=1 i=1  x dy{    J dxidxj 

(58) |^ = [/ - < X« > +2 < Vx >] VsViCo 

Substituting c0 in the equation 45 we find 

(59) —■+ <v> V/iCo = D[l-< xü >+2< Vx >] VRVRC0 
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This is the macroscopic convective-diffusive equation of the quartz in the neighbourhood of 
the crystallization front if we assume that this is a fixed bed of randomly distributed spheres. 
The quantity defined by 

(60) JD* = D[/-<X«>+2<VX>] 

is the diffusivity tensor in this region. 
The symmetric part of this tensor is 

(61) Da = D ^-^(<^, + xJ«.»+(<|| + |f>) 

The dispersion tensor depends on the flow. To calculate it on must solve the problem 
54,55. This linear problem can, in principle, be solved. In the papers [12],[14] this linear 
problem is solved for a Brikmann velocity field given by the equations 

( Vp + *ü - //V2i) = FS(r) + 0(4) 
(62) 

[ Vv = 0 

where a denotes the permeability of the bed which, in the dilute limit, equals to the ratio 
between the fluid velocity and the force per unit volume exercited on the fluid by the bed 
particles; F = -fafiaV; a is the radius of the solid part and V is the average of the convective 
velocity field in the neighbourhood of the crystallization front. 

6    A conclusion 

A solution Co of the effective convective-diffusive equation depends on the initial value, on 
the boundary condition and, via the velocity field v, on the thermal conditions (Th,Tc). 
Changing the thermal conditions at a moment TX we will have other solution c0 for which 
Co is an initial value and for which the boundary conditions are given by the values of c0 on 
the boundary. In this way, changing the thermal conditions we hope to realize the uniform 
concentration distribution. 
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lem is studied. The aim of this paper is to minimize the total pressure of the fluid, 

the control being the permeability coefficient of the dam. The first order necessary 

conditions of optimality are derived for a family of regular control problems. A finite 

element approximation of the optimality system is introduced and the convergence of 

the proposed algorithms is studied. Some numerical results are discussed, for the case 

of the non-homogeneous rectangular dam. 
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A theoretical and numerical approach of a control problem 

1.     Introduction 

The flow of an incompressible fluid through a .non-homogeneous dam with general 

geometry was studied, for instance, in: Alt (1979), Alt (1980), Friedman and Huang 

(1985), Stavre and Vernescu (1985), Stavre and Vernescu (1989). In Alt (1979), 

Friedman and Huang (1985), Stavre and Vernescu (1985) this free boundary problem 
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was studird f'om a theoretical point of view, while in Alt (1980), Stavre and Vernescu 

(1989) numerical methods were used for solving it. 

We introduce and study an optimal control model associated with this free bound- 

ary problem. We want to minimize the "total pressure" of the fluid in the dam, given 

by the functional: '   -• 

(1-1) J(k)= [ p(ziy)dxdy, 

where the control k is the permeability coefficient of the dam, D C K.2 is the cross- 

section of the darn and p, the pressure of the fluid. The purpose of the paper is to 

obtain the optimality system (the necessary conditions of optimality) and to approxi- 

mate it in order to compute an optimal control k*, characterized as a minimum point 

for the functional J, defined by (1.1). 

Other optimal control models associated with the homogeneous dam problem 

were studied in Barbu (1984), Friedman and Yaniro (1985), Friedman, Huang and 

Yong (1987). In Friedman and Yaniro (1985), Friedman, Huang and Yong (1987) the 

control variable is the rate allowed to withdraw water from the bottom of the dam 

and in Barbu (1984) the control is the highest level of the fluid in the reservoirs. 

The plan of the paper is as follows. In Section 2 we define the distributed control 

problem and we prove an existence result. The necessary conditions of optimality are 

deduced in the next section, by approximating the control problem by a family of 

control problems which are regular. Section 4 deals with the finite element approx- 

imation of the optimality system associated with the family of regularized control 

problems; the convergence of the proposed algorithms is also discussed. In the last 

section, some numerical results are presented, for the case of a non-homogeneous, 

rectangular dam. 
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2.      The control problem 

First we describe the mathematical formulation of the physical problem, introduced in 

Brezis, Kinderlehrer and Stampacchia (1978), Carrillo-Menendez and Chipot (1982) 

for the homogeneous dam and in Stavre and Vernescu (1985) for the non-homogeneous 

case. 

The cross-section of the dam is denoted by D, where D C E2 is open, bounded, 

connected, with the boundary 3D, which is locally a Lipschitz graph. The boundary 

is formed by three disjoint parts: Si-the impervious part, S2-the part in contact 

with the air and 53 = S3i] U 53,2-the part in contact with the reservoirs (53,i, S3,2 

being the connected components of S3). 

We denote by hi the level of the fluid in the reservoir with bottom S3,;, i = 1,2 

and we define / : S2 U S3 i-> R, 

(0 on S2, 

hi -y on S3,i       i= 1,2. 

The variational formulation of the physical problem is (see Stavre and Vernescu 

(1985)): 

Find pk € HX(D), pk > Oa.e. in D, pk = fonS2U S3, 
(vp)k {    r du 

/ Jfc(Vp* • Vtp + H{j>k)-£-)dxdy < 0 V^ € H\D), <p = 0onS3, <p > 0onS2 . JD oy 

where k is the permeability coefficient of the dam, pk the corresponding pressure of 

the fluid and H, the Heaviside function.  It is obvious that the pressure of the fluid 

in the dam depends on the function k. 

We suppose that A: is a control variable belonging to the following bounded, closed, 

convex set: 

(2.2).  K = {v e H\D)/\\v\\HHD) <r,a<v Kßa.e.inD, -£- >0a.e.inD}, 

where a, 8, r are positive constants, with r large enough. 
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(2.4) 

Since {VP)k has not, in general, a unique solution pk (see Stavre and Vernescu 

(1985)), the correspondence k M- pk is multi-valued. 

We define: 

(2.3) Pk = {p/p solution of (VP)k), 

and we introduce the following problem: 

Find{km,p*) e K xPf, 

/ p'dxdy < I pdxdy V(A:,p) G K x Pk. 
\ JD JD 

It is known from Stavre and Vernescu (1985) (Theorem 4.2) that there exists a 

unique solution pk of (VP)k so that the boundary of each connected component of 

{pk > 0} is in contact with at least a reservoir (£3—connected solution). Hence, the 

correspondence k (->• pk is uni-valued. 

Lemma 2.1 Let ko be an element of K and let pk0, pk0 be the S3— connected sohition 

of(VP)k0 and another solution of(VP)k0, respectively.  Then: 

(2.5) / pkodxdy < f pkodxdy. 
JD JD 

Proof. There exists at least a connected set C\ C {pko > 0} so that 8C\ f) S3 = 0. We 

denote by C the union of all the connected components of {pko > 0} with the above 

property and we define: 

M * = {*      inD~C' 
'    I 0 in C. 

It can be proved, as in Stavre and Vernescu (1985) (Theorem 3.7), that p£0 
is a 

solution for (VP)k0. Moreover, from (2.6) it follows that p*ko is 53-connected; hence 

P*ko = Pko- Since, from (2.6) we get pko < pko in C, the assertion of the lemma is 

obtained. 

We introduce another minimum problem: 

Find k' 6 K, 
(2-7) 

/ pk-dxdy < / pkdxdy, Vke K, 
\ JD JD 

and we prove, by using Lemma 2.1, the following: 
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Proposition 2.2 (2.4) has a solution iff (2.7) has a solution. 

Proof. Let (fc*,p*) be a solution of (2.4). Hence: 

/ p*dxdy < / pk'dxdy. 
JD JD 

By using Lemma 2.1, it follows p" = pk. and, from (2.4) for p = pk, k € K, we obtain: 

/ pk'dxdy < / pkdxdy Vfc € K. 
JD JD 

Conversely, if k* is a solution of (2.7), we define p* = pk- € Pk' and, by using 

again Lemma 2.1, the proof is achieved. 

We shall study in the sequel the problem (2.7). 

We define the functional J : K *-¥ K+, 

(2.8) J{k) = / pkdxdy. 

(2.7) can be written as the following control problem: 

f Find k* € K, 
(CP) 

[ J{k') = min{J(k) j k e K}. 

The last result of this section is an existence theorem. 

Theorem 2.3 (CP) has at least a solution. 

Proof. Let {fc„}„eiv C K be a minimizing sequence. Since K is bounded in ^(D), 

closed and convex, it follows that kn, -> A:0 weakly in HX(D) when i 4 oo and 

h e K. 

Taking into account that {H(pknt)}seN is bounded in L°°(D) and, from (VP)fc„„, 

{Pk„,}s€N is bounded in H*(D), we get, by passing to the limit on a subsequence in 

(VP)kns:    . 

(2.9) [ ko(Vpo ■ V<p+H-£)dxdy < 0 Vy> e ^(D), y = OonS3, v > 0onS2, 
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where p0 is the weak limit in H\D) of a subsequence of {pkn,},eti and H is the weak 

star limit in L°°(D) of a subsequence of {H(pkns)}s€K. With the same technique as 

in Stavre and Vernescu (1985), we get H = H{p0) and, hence, p0 verifies (VP)ko. 

Moreover, / p0dxdy = min{J(k)/k 6 K). This equality and Lemma 2.1 imply 

Po — Pko an<i therefore, the theorem has been proved. 

For simplicity we shall assume in the sequel that D has a geometry which ensures 

the uniqueness of the solution of {VP)k, Vk £ K (for instance, Si given by y = 0, x € 

(0,a)). We shall denote the unique solution of {V P)k by pk. 

In the next section, (CP) will be approximated by a family of regularized prob- 

lems, for which we shall deduce the necessary conditions of optimality. 

3.      The optimality system 

We introduce in the sequel the following family of regularized control problems: 

(CP) (for£>°' find*« G A'' 
[ Js(k'c) = min{J€(k) /ke K}, 

where Jc{k) = / pe
kdxdy, p\ being a solution of: 

,i,m« J   Pl € Fl(i?)' Pl = fonS2 U S3' 
\VF>k \       f dw 

1  JD HVpi ■ V<p + Ht{pl)-^-)dxdy = 0 V^ = 0 on S2 U S3, 

x+* 
with He(x) = 2, x+ =max(x,0). 

Before studying the family of control problems (CP)„ we remark that {VP)% is 

of the same type as (VP€) considered in Stavre and Vernescu (1985), but with a 

more regular function He. We shall use the regularity of Hc in the next section, for 

obtaining the convergence of a sequence of solutions of the discrete optimality system 

to a solution of the optimality system, associated with {CP)E. 

The proof of the next theorem is similar to those of Theorems 3.1, 3.2 from Stavre 

and Vernescu (1985), therefore we shall omit it. 
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Theorem 3.1 For any s > 0, k € K, there exists a unique solution p\ of (VP)\ with 

the properties: p% e C(D\J S2 U S3), P'k > 0 in D. 

The sense of the approximation of {VP)k by the family (VP)k: e > 0 is given by: 

Theorem 3.2 Letp\ and pk be the unique solution of(VP)% and(VP)k, respectively. 

Then p% —> pk weakly in H1(D), when e —> 0. 

Proof. By choosing in (VP)% ip = p\ - v, v £ H^(D), v - f on S2 U S3 and by taking 

into account the properties of k and Hc, we obtain the boundedness in Hl{D) of the 

sequence {p%}e>a- Moreover, {H^(p%)}£>o is bounded in L°°(D). Hence, we obtain, on 

a subsequence: p% -> p weakly in Hl(D), Hc{p%) -> H weakly star in £TO(.D), when 

e -» 0. Moreover, p = f on S2 U S3, p > 0 a.e. in Z), 0 < H < 1 a.e. in D. 

By applying the Stokes formula for <p G #J(.D), 93 = 0 on S3, ip > 0 on S2 it 

follows, as in Stavre and Vernescu (1985): 

(3.1)/ k(Vpl ■ V<p + Ht(pl)^)dxdy < 0 Vy> 6 ^(i?), V = 0onS3, <p >0o7iS2. 
JD ay 

By passing to the limit, on a subsequence, in (3.1), we get: 

(3.2) J k{Vp-V<p + H^)dxdy < 0 VV € H\D), <p = 0onS3, <f > 0onS2. 

If we choose <p € 2?(-D) in (3.2) we obtain: 

(3.3) div(kVp) + -7r{kH) = 0 in V'{D) 
oy 

and, since fcZ? € L°°(D), by using elliptic regularity (see Gilbarg and Trudinger 

(1977)), we deduce that p € C(D U S2 U S3). 

In order to conclude that H = H(p), we have to prove: 

(i) H = 1 a.e.  in {p > 0}, 

(ii) H = 0 a.e.  in D - {p > 0}, 

(in) mes(D D <9{p > 0}) = 0. 
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We begin with the proof of the assertion (i). We have: 

(3.4) /       Hdxdy =liminf /        He{p
s

k)dxdy. v     '                              J{P>O} «-°   J{P>O} 

Let 6 be a fixed positive number. It can be easily proved that: 

(3.5) /       HApV)dxdy> f dxdy-"*,   , / dxdy. V      ;        J{P>Q}      
Vk'               J{p>S}n{p'k>S)                62 + e2J{P>S}n{p'k>S} 

By passing to the inferior limit with e -4 0 in (3.5) and combining this with (3.4), 

we get: 

(3.6) /       Hdxdy > f       dxdy\/8>0. v J{P>O} J{p>sy 

By passing to the limit in (3.6) with 6 -> 0 and by taking into account that H < 1 

a.e. in D, we obtain the assertion (i). 

For obtaining (ii) and (iii) we need only (3.2) and (i); hence, the proof of (ii) and 

(iii) is that of Lemma 3.1 of Stavre and Vernescu (1989). 

Since H — H(p), it follows from (3.2) that p is the unique solution of (VP)k- We 

remark that the uniqueness of the solution of (VP)k gives the uniqueness of the weak 

limit point in HX{D) of the sequence {p%}e>a, which completes the proof. 

Theorem 3.3 For any e > 0, (CP)S has at least a solution. 

Proof. Let {&n}n€N C K be a minimizing sequence for Jt. It follows that on a 

subsequence, denoted also by kc
n, we have: fc* —> k* weakly in i71(£>), k^ —> k* 

weakly star in L°°(D), k^ -> k* a.e. in D, when n —)■ oo and k* £ K. Moreover, 

lim JAUL) = min{JJk)/k G A'}. 
n—+oo 

By taking in (VP)kc <f = p%t — v, with v = f on 52 U 53 and by using the 

properties of kc
n and Hs we obtain, on a subsequence: pk, —>• p£ weakly in Hl(D) 

and He(pk.) —> He{p
£) strongly in L2(D), when n —> oo. By passing to the limit in 

(VP)%, on a subsequence, when n —*■ oo it follows that pe satisfies (VP)k. and hence, 

p' = pk.. This yields: 

min{Je(k) / k 6 K} = lim   /  p\^dxdy—  \  p\.dxdy — Jc(k*). 
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We establish next the relation between the regularized minimum problems (CP)C, 

e > 0 and the initial control problem. 

Theorem 3.4 For any e > 0, let k* 6 K be a minimum point of J£. Then, any weak 

limit point in Hl(D), k*, of {k*}t>0 is a solution for (CP). Moreover: 

(3.7) limJ.ffc!) = min{J(k)/ke A}. 

Proof. From the definition (2.2) and {k*}t>0 C A it follows that there exists at least 

an element k* € A such that, we have, on a subsequence: k* -» k* weakly in Hl{D), 

k* _+ jt* weakly star in L°°{D), k* -> k* a.e. in D, when e -» 0. 

From (VP)%. we obtain, as before, the boundedness in HX{D) of {pJt.}e>o- 

Moreover {//e(p^.)}r>o is bounded in L°°(D). We can now extract subsequences 

such that p|. ->• p weakly in #J(.D), He{fk.) -> 5 weakly star in L°°(D), when 

e -+ 0, with p = / on S2 U 53, p > 0 in £>, 0 < H < 1 a.e. in D. 

For any ^ € ^(D), <p - 0 on S3, ^ > 0 on S2 we obtain from (VP)*., as in 

Theorem 3.2: 

(3.8) jD A;(VpJ. • Vv? + HMt)^)dxdy < 0. 

By passing to the limit in (3.8), on a subsequence, with e —> 0, we get: 

(3.9) / k\Vp-Vy + H-^-)dxdy < 0 Vp € #'(£), ¥> = OonSs, y> > 0onS2. 

We conclude, with the same proof as in Theorem 3.2, that H = H(p) and, hence, 

p = pk,, the unique solution of (VP)k*- 

On the other hand we have J£(fc*) < Je(k) VA: € A', Ve > 0, i.e.: 

(3.10) / pl.dxdy < 7 p\dxdy VJfc G A, Ve > 0. 

Taking e —J- 0 in (3.10) and using Theorem 3.2 and the weak convergence in ^(D) 

of {pjfc.}oo 1° Pk* we obtain J(A:*) < J(k) Vft 6 A; hence, the first assertion of the 

theorem holds. 
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For proving (3.7), we first remark that the boundedness of {p£.}£>o in H1(D) 

implies the boundedness of {<h(k*)}e>o in R. 

If we suppose, by contradiction, that there exists two subsequences such that 

Js,(Ks) ~* h, when s —» oo and Jiq(k* ) —> l2, when q —> oo, with /x ^ /2 we obtain, 

as before, that, on a subsequence, we have: k*s -^ ki, p€
k\ -> p^weakly in H1(D), 

when s —► oo and A"*  -f &2> p£9.   —>■ pk2 weakly in Hl(D), when 9 -> 00. 

From (3.10), for e — es, k = k2 we get, as s -»• 00 /x < l2 and, for e = eq. k — kx 

we get, as q —> 00 ^ > /2; hence, a contradiction with Zj ^ l2. 

Thus, (3.7) holds. 

In the sequel, we shall derive the necessary conditions of optimality associated 

with (CP)S. 

We first establish the following: 

Lemma 3.5 For any k, k0 € K, e > 0, we have: 

(3.11) J't(ko) ■ {k - k0) =  I q'dxdy, 
JD 

where qe £ Hl(D) is the unique weak solution of the problem: 

dzv(k0Vq') +-?-(k0H's(p'Jq') 

= div((k0 - k)Vp%0) + |-((fc0 - k)He{pla)) in D, 
(3.12) 

qe = 0 on S2 U S3, 

where ft = (nx,ny) is the outward unit normal to dD. 

Proof. We begin by proving that the solution of (3.12) is unique. Let us suppose that 

there exists two solutions of (3.12), q{, q\ and let us define Q£ = q\-q\. Q* G H\D) 

satisfies the following variational problem: 

(3 13)4   ^ k0{VQ£ ' V9 + H'*{fi°)Q'jj)dxdy = ° V^ € ffl(Z>). <P = 0onS3O S3, 

Qs = 0 on S2 U S3. 
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If QE ^ 0 in D, we can suppose that mes{{Qe > 0}) > 0. 

For 6 > 0 given, we take <p = W in (3.13) and we obtain: 

||/n(l + (y   ~   '   )\\Hi{D) < c, the constant being independent of S. When <5 tends to 

0 we obtain Q* < 0 a.e. in D. It follows that Qe = 0 in D and, hence, ?; = ^ in £>. 

Let i e (0,1). We denote (p£0+((;t_fco) - PlJA by 9f; hence, 

Uko + tjk-kon-Uko) = lim /• 

We prove next that {$}fe(o,i) is bounded in Hy{D). 

By computing (yP)^<*-*°> " {VP)l° for y> = tf, we get: 

(3.i4) iknuHD) ^ ciiknU2(o)+c2' 

the constants cx, c2 being independent of t. 

If {^f }fe(0li) is bounded in L2(D), we obtain, from (3.14), the boundedness of the 

sequence in ^(D). 

Let us suppose that {gt
£}te(o,i) is unbounded in L2(D). For a subsequence, denoted 

again by {qc
t}te{o,i) we have j™ll9*IU2(i>) = °°- 

We define Q\ = r—~ . It is obvious that ||Q?||L2(D) = 1 and, from (3.14), 
WtUHD) 

that {Qf}te(o,i) is bounded in Hl(D). Thus we can extract a subsequence such that 

Q\ -> Qc weakly in Hl(D), when t -» 0. 

Moreover, ||Qc||i,2(D) = 1- 

By considering the problem satisfied by Qf and by passing to the limit with 

t -j. 0, we obtain that Qc is the solution of (3.13), i.e. Qe = 0 in D, which contradicts 

\\Qe\\LHD) = I- 

The sequence {^jte^.i) being bounded in ^(D), it follows that it has at least a 

weak limit point in Hl(D), <f, which is the solution of (3.12). 

From the uniqueness of the solution of (3.12), we obtain that the weak limit point 

of {qt}te(o.i) is unique, which completes the proof. 
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The main result of this section, the necessary conditions of optimality associated 

with (CP)e, is ^. consequence of the above lemma. 

Theorem 3.6 For any e > 0 let k* be a solution of (CP)C. Then, there exists the 

unique elements p|., Q\. € Hl(D), which satisfy the optimality system: 

div{k:Vfk.) + ^(KHM;)) = 0 in D, 

p%. - f on S2U S3, 

(OS) 

dpc
k. 

Ki-*-*- + He(Pk;)ny) = ° on SU 

div(k;VQU) - k;H'M.)-%£ = linD, 
dy 

Ql: = 0 on S2 U 53, 

  — U on b\, 

JD(Vpl. • VQl. + H6(pi>c)^ff-)(k - K)dxdy > 0 Vfc e K. 

Proof. It is obvious that (OS)/ has a unique solution, pc
k., since it represents (VP)£

k*. 

The uniqueness of the solution Q\* of (OS)// is given by the general results of 

Chicco (1970). 

We denote by q*' the function given by Lemma 3.5, corresponding to k0 = k*. It 

is obvious that: 

(3.15) / q*'dxdy > 0. 
JD 

By taking (p = q*' in the variational formulation of (OS)//, ip = Qk. in the 

variational formulation of (3.12) for ko — k* and by using (3.15), we obtain (OS)///, 

which completes the proof. 

The next section deals with the finite element approximation of (OS). 

4.      The approximation of the control system 

Let {%}h>o be a regular family of triangulations of D and let Kh xVhxHh be an 

internal approximation of K x V x H (see Glowinski, Lions and Tremolieres (1981)), 
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where: 
f V = {veHHD)/v = fonS2US3}, 

(4-1) { 
[ H = {veH\D)/v = 0onS2US3}. 

We consider the discrete optimality system: 

(K,Pl,Q'h)eKhxVhxHh, 

I K{Vp'h ■ V^ + HE(p*h)^)dxdy = 0 V<ph £ Hh, 

/ k*h(VQ*h ■ Viph + H[{pl)-^vh)dxdy = - f <phdxdy V<fh € Hh, 
JD oy JD 

jD(Vp*h ■ WQl + He(p'h)^)(h ~ K)dxdy > 0 Wh e Kh. 

(4.2) 

(4.2) approximates the optimality system (OS) in the sense given by the next 

theorem: 

Theorem 4-1 There exists a subsequence {(^.PL'^D^eN such that: k*hm -» k* 

weakly in H\D), k*hm -> k*s weakly star in L°°(L>), k'hm -»• K **■ *'« #» PL "► P* 

siron^/?/ in Hl{D), Q*hm -> Q* strongly in Hl{D), when m -> 00 and {k*,p*,Q*) is 

solution for (OS). 

Proof. The assertions of the theorem concerning {k*hm}m£N are a consequence of the 

fact that {fcjJ}A>o C Kh C K. 

For y»Am = p'hm - vhm, with {vhm}m€n C Vhm a strongly convergent sequence in 

H*{D), (4.2)2 gives the boundedness in Hl(D) of {pftm}meN and, hence, the existence 

of a weak limit point in H\D), denoted p*. We can now pass to the limit, on a 

subsequence, in (4.2)2 and we obtain that p* satisfies (OS)/; therefore p* = p\.. From 

the uniqueness of the solution of (OS)/ we deduce that {p*hm}m& has a unique limit 

point. We also obtain from (OS)/ : 

(4.3) jD*;(VpJ. • V^„ + Hc(p\.)d-^)dxdy = 0 V^ G #*. 

By computing (4.2)2-(4.3) for h = hm, with yhm = p£m - vhm, {vhm}m^K C 
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VA„, vhm -> u strongly in HX{D) when m -y oo, we get: 

jD Km |V(PL - rf.)|2efcdy = - JD kty(pL - Pi;)" Vrf.<f*dy 

(4.4) "^ 3 JD 

- JD KiMplJ ~ He{?k.))±L{P'hm - vhm)dxdy. 

By using the properties of {*£m}m€N, {pIm}mSN, {%m}meN and of the function 

H, it follows that for m —> oo the right member vanishes. Hence (4.4) gives p*h —>• p\, 

strongly in ^(D), when m —>• oo. 

We prove next that {Qftm}m6N is bounded in ^(D). If {<3£m}meN is bounded 

in L2(D), we obtain, from (4.2)3, with tpkm = Qlm, the boundedness of {Qlm}mevt 

in H1(D). If {<5Jm}meN is not bounded in L2{D), we can extract a subsequence, 

denoted also by {Qlm}mSN with HQftJIz,^) ->■ oo when m -^ oo. We define i?m = 
n* 

n^.   i'r • It is obvious that iJ-RmH^m) = 1 and {Rm}m&i is bounded in fPfD). 
\\QhJ\^(D) 

Multiplying (4.2)3 for h = hm with „  we obtain: 
II<5LIU2P) 

/„ *L(^A» • V^ + H'MJ^^Jdxdy = 
(4.5) 1 /■ % 

""ÜTFI  L<Phmdxdy Vy?Am G #fcm. 

For passing to the limit in (4.5), we use the properties: the embedding ^(D) C 

LP{D) V 1 < p < oo is compact, A£m ->■ fc* a.e. in D, yhm ->■ v? strongly in H^{D), on 

a subsequence Rm -^ R weakly in tf^D) and H'c(p*hm) ->■ i/^) strongly in L4(£>). 

The last assertion is a consequence of the regularity of the function Hc. Passing to 

the limit with m -» oo in (4.5), we get: 

(4.6) JD fce*(VÄ ■ V^ + H'M)™v)dxdy = 0. 

Combining (4.6) with R = 0 on S2 U 53, we obtain Ä = 0 in D i.e. a contra- 

diction with pjjL2(D) = 1. Hence {QlJmeN is bounded in H\D), which ensures 

the existence of a weak limit point in ^(D), Q*. Passing to the limit, as in (4.5), 
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on a subsequence, in (4.2)3 for h = hm we obtain that Q* is the unique solution of 

(OS);/, i.e. Q* = Q*k.. From the uniqueness of the solution of (OS)// we obtain that 

{Qhm}meN has a unique weak limit point. With a similar technique as in the first 

part of the proof, we obtain Q*hm -*■ Qt strongly in H^D). Finally, by passing to the 

limit in (4.2) for h = hm it follows that (K,p*,Q*) satisfies (OS), which completes 

the proof. 

In order to solve (4.2), we propose the following algorithm: for kho € Kh given, for 

any m € N* and for a suitable choice of a positive number pm, we define {k*hm+1, p*hm, Q*hn 

S Kh x VH x Hh as a solution of the following problem: 

' JD *L(VpL • V^ + He(plm)^)dxdy = o vy>fc e ffft, 

I kUVQim ■ V^ + H'Mm)^VH)dxdy = -J fKdxdy V<^ € Hh, 
(4.7){  ^ Am

d2/ ^ 
PKh{Km - Pm || r      ,,m )    */  IIAm||i2(D) 7^ 0, 

Khm+1 —  \ 
{   k*hm if  ||/km||i»(D)  = 0, 

dO* 
where fhm = VpJm • VQ*hm + ff.töJ-g* and PKh is the projection map of the 

internal approximation of L2{D) on Kh. The projection map can be defined since K 

is a closed, convex subset of L2(D). 

Proposition 4-2 There exists sequences {pm}m£N, with pm -> 0 when n -> oo sucft 

tfia* {(^m^Ptm» <?Am)}m€N, de/ined 6t/ (4.7),is convergent to a solution of (4-2)x- (4-2)3. 

Proof. From (4.7)3 and from the properties of the projection map it follows: 

PL+l -KmWviD) < Pm VmeN. 

We can find sequences {/0m}ro6N, />m ->• 0 when n -4- oo such that the above inequality 

lead us to the fact that {^m}meN is a Cauchy sequence in L2(D), hence strongly 

convergent to an element k*h G L2(D). It can be proved as in Theorem 4.1 that 

Ptm -» Vh Qlm ->• <3h strongly in ^(Z?) when m ->■ oo, with (fcJ,p;,Qj) satisfying 

(4.2)!-(4.2)3. 
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It is obvious that the interest is to obtain a sequence {^m}meN which approximate 

a discrete optimal control k*h. The difficulty of the numerical computations will be to 

c. :hoose, for any m G N*, pm > 0 such that the above assertion on {k*im}m€K hold and 

MPKh(Km - Pm,.f
flT )) < UKJ,   *L ~ PmT~T— € K. 

\\jhm\\L,2(D) \\}hm\\I?(D) 

We finish this section with the remark that the nonlinear problem (4.7)! was solved 

in Stavre and Vernescu (1989) for a less regular He. 

5.      Numerical results 

Our numerical tests have been performed for D = (0,<z) x (0, Ai). We are interested 

in comparing the results for different values of kh0 G Kh and for different grids of 

the domain D. Let {Th}h>o be a regular family of triangulations of D such that 

D - [j T, the finite elements T being triangles, as in Fig. 1. Let Eh be the set of 

mesh points in D. Vh, Hh and Kh of Section 4 are given by: 

Vh = {vh € C°(D)/vh{m) = f(m) Vn< G Eh n (52 U S3), vA/T € A VT € TA}, 

#fc = {ufc G C°(5) / ufc(n,-) = 0 Wm ezhn (S2 U S3), VHIT € PJ VT € rA}, 

if/, = K n {«fc e C°{D) I vhlT G P1 VT G T*}. 

The aim of the first experiment is to compare the minimum values of the functional 

J£, the expressions of the pressure and the expressions of the permeability coefficient 

for different values of kh0. The data common to all runs in the first experiment are: 

a = 4, hY = 5, h2 = 1.5, a = 1, ß = 50, r = 100, e == 0.1, for a mesh size 

h - Ax = Ay = 0.25. The following expressions of kh0 have been considered: 

M^»)=< Al
2 **>(*, ?)H 

""       <7</G[^U], 

4, *7»e[o,^), 

%-y + i),   i/ye^Ä!], 

,3,     ,     I2'       7*G[O,-), 

2(z-- + l), «/*€[-, a], 
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In each case, the computed values of the functional J£ decrease from one iteration 

to another. The CPU time for one iteration was 75 seconds and satisfactory con- 

vergence was obtained after 10-15 iterations. In all these cases', we obtained almost 

the same nodal values for the pressure; the minimum values of J£ are contained in 

the interval [14.76; 14.82]. The expressions of the" computed permeability coefficient 

which gives the minimum of J£, kmn, were different for different km but the ratio 

fcfc   AL * = !> -A was almost ttie same> We Sive below tlie nodal values of ^™ 
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corresponding r,o kl0. 

2.24 2.64 3 13 3.43 3.63 3.78 3.89 3.97 4.03 4.07 4.09 4.08 4.06 3.99 3.82 3.48 3.28 

2.55 2.92 3.24 3.48 3.66 3.80 3.90 3.98 4.03 4.07 4.10 4.10 4.09 4.05 3.95 3.79 3.54 

2.88 3.09 3.33 3.52 3.68 3.80 3.90 3.98 4.03 4.07 4.10 4.10 4.09 4.05 3.96 3.85 3.73 

3.08 3.23 3.40 3.56 3.70 3.81 3.90 3.98 4.03 4.07 4.10 4.10 4.09 4.05 3.98 3.86 3.89 

3.22 3.33 3.47 3.60 3.72 3.82 3.90 3.98 4.03 4.07 4.10 4.10 4.09 4.05 3.99 3.97 4.03 

3.32 3.41 3.53 3.64 3.74 3.83 3.90 3.98 4.03 4.07 4.10 4.10 4.09 4.05 4.04 4.08 4.17 

3.40 3.47 3.57 3.67 3.76 3.84 3.90 3.99 4.03 4.07 4.10 4.10 4.09 4.06 4.09 4,17 4.26 

3.46 3.52 3.61 3.70 3.78 3.85 3.91 3.99 4.04 4.08 4.11 4.11 4.09 4.09 4.09 4.17 4.26 

3.50 3.55 3.64 3.72 3.80 3.86 3.92 3.99 4.04 4.08 4.11  4.11  4.09 4.09 4.09 4.17 4.26 

3.52 3.57 3.67 3.75 3.82 3.87 3.92 4.00 4.05 4.08 4.11 4.11  4.10 4.09 4.09 4.18 4.26 

3.53 3.59 3.69 3.77 3.84 3.91  3.92 4.00 4.05 4.08 4.11  4.11  4.10 4.09 4.09 4.18 4.26 

4.54 4.61 4.72 4.79 4.85 4.89 4.92 4.95 4.97 4.99 5.00 5.02 5.03 5.03 5.03 5.02 5.01 

5.58 5.66 5.75 5.81 5.S6 5.90 5.92 5.95 5.97 5.98 6.00 6.01 6.02 6.02 6.02 6.01 5.01 

6.64 6.71 6.78 6.83 6.87 6.91 6.93 6.95 6.97 6.98 6.99 7.00 7.01 7.01 7.01 7.02 7.03 

7.70 7.76 7.82 7.86 7.89 7.92 7.94 7.96 7.97 7.98 7.99 8.00 8.00 8.01 8.03 8.03 8.06 

8.76 8.81 8.85 8.88 8.91 8.93 8.95 8.96 8.97 8.98 8.98 8.98 8.98 8.99 9.02 9.05 9.07 

9.82 9.86 9.89 9.91 9.92 9.94 9.96 9.97 9.98 9.99 9.98 9.98 9.98 10.0010.0310.0610.07 

10.8710.9010.9210.9310.9410.9510.9710.9911.0011.0011.0011.0011.0011.0111.0311.0511.06 

11.9311.9511.9411.9411.9511.9611.9812.0112.0312.0412.0512.0512.0512.0412.0312.04 12.03 

12.9812.9912.9812.9712.9612.9612.9612.9612.9612.9612.9712.9813.0013.0213.0413.0313.02 

14.0514.1414.2514.3514.4414.5114.5814,6214.6414.6214.5414.4314.2914.1614.0714.0214.00 

As it can be seen, the differences between kkmitl and kh0 are greater near S3. There 

exists a good reason for this: the. pressure of the fluid, which must be minimized, has 

the greatest values near the boundary in contact with the reservoirs. 

The purpose of the second experiment is to compare the minimum values of J£ 

for two different grids. We took: a = 1.5, h = 2.5, h2 = 1.2, a = 1, ß = 50, r = 

100, e = 0.1 and kM = k2
h(l. The two different values of the mesh size h were 0.25 and 
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0.1. In the first case the minimum of Js was 2.21554 and in the second one, 2.22281. 

For all the examples, the stopping test was: 

\hm+i(ni) - hm{ni)\ < 0.01 Vn; e Eh- 
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THE EXACT SOLUTION IN THE CASE OF CERTAIN 

NON-LINEAR CAUCHY PROBLEM 

By Vaaile Marines 

"Politehnica" University Timisoara 
Bd.Hihai Viteazul Nr.l 

Abstract 

The aim of this paper is to give a constructive existence frame for the 
analitic solutions by means of the linear equivalence method (LEM) for polynomial 
operators. Local representations of the solution are obtained by using Laplace 
transformation in combination with the matrix calculus. We obtain exactly 
solution in the form of series. The examples are given. 

1. INTRODUCTION 

The main idea of many of the papers dealing with nonlinear systems was to 

make an approach with linear cases. This was chiefly done by considering linear 

approximating operators, and therefore is the most part of cases only "small" 

nonlinearities could be controlled; convenient generalization could not be found. 

But common linearizations are in fact approximations that cut off the influence 

of the non-linear terms and thus do not provide exact informations on the 

behaviour of the solution. From the numerical point of view, collocation [2], 

shooting [1] and finite element method were used to get numerical approximations 

of the solution. 

The problem of the differential polynomial operators appears in many 

concrete models of mathematical physics, elasticity and plasticity, mechanics of 

fluids etc. The large extension of polynomials models for various phenomena 

resulted in their study as a separate class of operators. A theoretic frame for 

polynomial operators was firstly set up in [3], the obtained results aiming 

especially generalization of Weierstrass's theorem and existence of solutions for 

abstract second degree polynomial equations. 
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In this peper it is given a constructive method for the analytic solutions 

of the certain polynomial problem, based on a linearization napping, introduced 

and studied in [4, 5, 6]. It is proved that every polynomial differential system 

is equivalent to a linear system. The linear operator proposed here is not an 

approximation; it fully replaces the polynomial system. Is established a one-to- 

one correspondence between the solutions of initial polynomial problems and its 

linear equivalent system. • 

2. THE LINEAR EQUIVALENCE METHOD 

The LEM was initially introduced for first order polynomial differential 

system [4], but is was extended without difficulties to canonic first order non- 

linear differential systems with right side analytic with respect to the unknown 

functions [6]. 

Let us consider the system 

y* =■ P{x,y)       x€[a,b]cW (!) 

for y = (y-OO)i1 6 (^(ta.b]))1, where P(x,y) = <Pj(x, /)),' are given by 

pjix.y) - £ a*r* (2) 

In the relation (2), p= 6 H are fixed, •» are n-dinensional multiindices, 

a„= constants. a0 = a.,„ „ „v = 0. Let us introduce also the initial conditions 

y(*e) -y*.      x0e [a,b] O) 

Let be the exponential mapping: 

which, formally introduced in (1), leads to a linear P.D.E. of first order with 

respect to x: 

dV  _ ,  _ „/„ n\ \ ,, ■ ft (5) 

where 

4£ - ( *,P{x,D)  ) v= 0 
OX 

AM 

(*,P(X,D)   ) = V ZjP^X.D) 
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Pj(x,D) representing the corresponding to P{x,y) differential polynomial: 

Conditions (3) give 

v(x0,#) = e<-r"*> (7) 

The linear PDE (5) was called the linear equivalent of the polynomial 
system (1) 

Proposition 1 [6]. The Mapping v<x,X), given by (4), establishes a one-to- 

one correspondence between the solutions of the initial polynomial problems (1), 

(3) and the analytic with respect to % solutions of its linear equivalent (5) 
under conditions (7). 

More precisely, any solution of (1), (3) is such that, the corresponding 

v(x,Z) satisfies the linear problem (5), (7) and conversely, any analytic with 

respect to % solution of (5), (7) is of the exponential form (4), with y solution 

of the polynomial initial problem (1), (3). 

To use this proposition, let us expand v(x,Z) with respect to % under the 
form 

vU'*} " £ V^-fr ; Y*(x) "x '    xela.b] ,   YeN°   (8) IfjiO      T" 

Introducing it in (5), gives the associated linear equivalent systen of 

ordinary differential equations: 

dv        " 
-3? = EYjjjC a**!«--, ; T - <Yi,Ya, ...yj....ia) (9) 

where 

•i~  <8*>i<*« (10) 

Sj being the Kronecker symbol. 

The conditions (7) give 

Vxo> "&> .      |Y| eN* (U) 
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v_U) = Y,Vy(x - x0)' 
So 

Then, the equations (9) become: 

>1   K|5>y <i    ' 
i e N 

(12) 

(13) 

Proposition 2. The linear explicit algorithm (13) with conditions 

v£ - 1 ; vi -  0 ; V° - yl ;    i €  N* ; 0 - (0,0, . . ,0)   (14) 

is convergent for 

|x-x0l< /„4,^l^r);   P = max {p.,},-   c * maxia^, lsjsn, MiPjb 
(p+l)cO' 

(15) 

Proof: For the first iteration we obtain: 

IWI' 

In general case, for the OF* iteration we obtain 

1^ 1TI(IYI+P) (ITI*2P) ... (hrl+(m-i)p) (c0)»|,j| 
ml 

These results were used in (12) and therefore: 

|vT (x> | J£ v*\x-xM*£  iTl <lTl+P) • • •l\y\+{ia-:L)P\cQ\x-x0\)*\yl\ * 
(So I jmo ml 

s E(<ITI*J»)=<?I*-*OI)-L>-„I,''I 
«BO 

For |y| = 1 and x defined in (15), algorithm (13) is convergent. 

Remark. For |yj =1 in [6] it is shown that algorithm (13) is convergent 

to the solution y of the problem (1), (3): 
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y[x)  = Tv^x-xJ1 = v U) 
So (16) 

where 

T - *j   1?   lYl - i 

The solution y given by (16) is consistent. 

3» THE SOLUTION OF THE SYSTEM (9) 

The system (9) is linear and therefore using the Laplace transfers«: 

$£vT(x) ; = vT(s) = fvv(x)e" 
Kdx (17) 

we can write the syste» (9) in the form: 

n 

5s! h»Rpi 
(18) 

With the notations: 

v, - {vy!Thi ;   r - {p^ ;   y^ - wWmii   T0 - {rJi€H,       (19) 

the equations (18) can be write: 

where we notice that 

AV» r„ 

A - 

^u   AJJ  A^ , . . A}f 0 0 

0     Aia  Ag, . . . AjP Aa>p+i 0 

0       0         A,,... ■*3,.P*1 0 

               **.k 4k,****- • • 

              ... .     .     . ... >   ... 
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and the cells A-- are perfectly determined by the coefficients a. . The matrix A 

is row-and column-finite and it has a (p+1) - cellular diagonal structure and may 

be easily generated, its form allowing the calculus by blockpartitioning (p = 

= max {Pj}) but the system (20) is infinite. 

We introduce the matrix 

BU Bt»     Bl» • • ■ *!,* 

o   a„ B23 ... a,,* 

o    Q   a„ ... a,,k 

(22) 

such that BA = diag (Ej, Kj, ..., Et,...) where E; = 6;
k) - the unit «if 

-1+i) order. The equation (20) becomes: 

V- BY„ 

r.rix of (n- 

(23) 

and the cells B-L can be determined by recurrence: 

*-i 

*u = *£l   Buk - -yC*iA*J4ä.    2£ksp 

3X.p*tc ~ ~\Y, B\,tc*^**t,p*k]^V*k,p*ki 

(24) 

kzl 

Taking into account (16), in relation (23) is important only the first row: 

*(») -gau(»)r- (25) 

Using the inverse Laplace transform: 

T^s)  - v1{x) (26) 

from the relation (25), we can determine the solution 

y[x)  - yrlvA8)   ,      |Y| - 1 (27) 

4.   EXAMPLES 
a) Consider the initial problem for the equation 
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yll  + yy>2  + y3 = 0 

y(0)- o, y(o)= 1 
(28) 

An exact solution of this problem is y(x) = sin x. Let us obtain 

approximations by linearization. The linear system corresponding to (28) is 

The aatrix A is: 

0  A,3 A,B  0  .. 

0    0   i» a,, .. 

Where the cells A. are given by 

Ki-\.xi-\* 

8    1-2J      0         0         0. 
0        8     2-2j     0         0 
0        0         8     3-2J      0 
0        0          0s      4-2j   . 

.. 0 0 

. . 0 0 

. . 0 0 

. .     0       0 

0        0         0         0         0. 
0        0          0          0          0. 

. .     8     -1 

. .       0         S 

(29) 

(30) 

of{2j)x{2j) order 

*2t -1.2j*l" 

0       0 0       0 0 0 
10 10 0 0 
0       2 0       2 0 0 
0       0 3       0 3 0 

0       0       0       0       0       0     . ..   2J-1 

of {2j) x (2j + 2)  order 

0 0 
0 0 
0 0 
0 0 
0 0 

0    2j-l 0 

The first row Bj j:.j of the natrix B given by (22) is: 

Bu " Ki ;   Bi,»j-i m A«-SA«-J,M-A-I,«-I 

and the column matrices V and Y. are: 
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The solution V*(s) given by (25) can be write by truncations: 

For different values of n, we obtain: 

Table 1 

■ y(x) 

2 
x    TT    To* 

3 

3!     5!     40        480 

4 
x3 + x»    x7_   13     9 

31     5!     7!     1080 

5 
x3 + x

5_X' + x
9
+7- 

3!     5!     71     91     2160 

In this case p= 3, c= 1, Q= 3 therefore x < 1/9. From the above 

approximation it follows that if m increases, the coefficients of the 

approximation polynomial tends to the coefficients of Taylor's development of the 

exact solution and the m- approximation is better than the corresponding 

development up to n. 

b) Consider a straight bar of length L, reported to a left hand frame of 

reference Oxy. Assuming the Bernoulli-Euler hypothesis of plane sections, the 

axis y = y(x) of the bar must verify the Bernoulli-Euler equation [7]: 
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r» = fx^ry- (31) 

where M is bending moment and El the rigidity of bar (M,E,I - constants). 

Equation (31) must be completed with boundary conditions, whose nature depends 

of the nature of the physical problem. For instance, the cantilever bar requires 

Cauchy conditions: 

7(0) = 0 , y'iO)  = 0 . (32) 

In order to make easier the application of the results in previous section, 

we shall firstly consider the transformation 

W = fL + y» ; u  = y' (33) 

By thus, the Bernoulli Euler equation (31), becomes 

w '" l| = ^ ' (* " -§r) '•  r= <*'">    <34> 
Let us take x e [0, L]. Conditions (30) become 

w(0) = 1 j  u(0> = 0 (35) 

dx 

The linear equivalence mapping will depend on two real parameters z. and 

zv  say 

v(x,zirz2) - e i»*X,U (36) 

The linear system corresponding to (34) is 

^V   m  KiVi*l.i*l   + ^3,J-l) 

The matrix A becomes: 

Ail *IJ  0  0 
0   *33  *33   0 

0  0  *,, i,, 

with 
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*i-i,ai-i 

8        0 
0      s 
0        0 of (21) x (2i)  order 

0     l-2i      0         0         0. 
-1       0      2-2i      0         0 
0-2        2      3-2i      0 
0        0-30      4-2i   . 

.      0        0       0       0 
0         0        0        0 
0        0       0       0 
0        0       0       0 

0         0          0          0          0. 
0        0          0          0          0. 

.      0-100 

.   1-21     0        0        0 

•*8i-I.*i+l   =  k 

of (21) x (21+2)  order 

Unlike example a),  \\^\ - i^'haSi»  but  in the solution 

a 
Vi(B)   = gBi,«-ir0,w-i 

we consider the second row and, for different values of a we obtain: 

Table 2 

■ y'(x) y(x) 

2 kx kx2 

2 

4 
J«+<*f

3 kx2 + k
3x* 

2          8 

6 

2          8 
kx3 + k

3x*+ 3iSj£( 
2           8        40 

8 
kx* {k%P + l(kx)*+-^(kxr kx3 + ic

3Jf* +   3 ^5^6 +    5    i1xB 
2          8        40              112 
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For  a  steel  bar:   E  =   21000   [kN/cm2],   H =  40   [kN/cm],   I   =   1/2   [cm']   we 

obtain k = 3,809510"3  [1/cm].  Fron the relation  (31) we define 

c =   max I y" - k sjx + y° 
xelo.i} 

such that result the following values for e  (L = 100 [cm]): 

Table 3 

■ e 

2 8,57  -  10"' 

4 1,62  •  10"' 

6 2,82  - 10"5 

e 3,89  -  10"6 

5.   CONCLUSIONS 

The exposed method has many advantages, especially for the constructive 

existence of solutions for polynomial differential operators and offers a general 

tool that might to used for any physical phenomenon. Local representations of the 

solution are obtained by using a natrix that depends only on the operator and not 

on the initial conditions. 
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ON THE MINIMALLY SUPPORTED FREQUENCY WAVELETS 

AN» SCALING FUNCTIONS 

P.GÄVRUTÄ 

Department of Mathematics, "Politehnica" University, 

Piafa Horafiu No.l, 1900 - Timi§oara, Romania 

Abstract We give a new characterization of minimally supported 
frequency wavelets (unimodular wavelets). 

We present also an elementary proof for the characterization of the 
scaling function of a multiresolution analysis and as an application we give 
an extension of a result of D. - X. Zhou concerning the Lemarie - Meyer 
scaling function. 

A wavelet for L2(R) is a function \\> e L2(R) so that 

{W.iJjAez is an orthonormal basis for L2(R), where 

Vj.k(x) = 2)/2u»(2Jx-k), xe R; j,k e Z. 

They are useful in many areas of mathematics, image and signal 

processing, turbulence, optics,physics, medicine. See for example the books 

[3], [4], [5], [10], [15]. 

If y is an wavelet for L2(R), then u/ is an admissible function; more 

exactly we have the foolowing result. 

PROPOSITION 1. If w is a wavelet for L2(R), then 

o    w 

P.Lemarie proves in [12] this result using the Poisson formula. 

The orthonormality of the system {vuj,k},.kez in L2(R) can be 

characterized in the following way. 

LEMMA 1. Let be uy e L2(R). Then {u/..k},,kez is an orthonormal system 

in L2(R) if and only if 

V »H2J(ra + 2k7i))<i;(a> + 2k7i)=Sj)0 0) 
keZ 
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for a.e. to e [-71,71], j ä 0. 

For a proof see [8] or [2]. (y denotes the Fourier transform of v|/). 

The wavelets in L2(R) can   be characterized also. 

THEOREM I. Let be vy e L2(R) with ||u/j|2 = 1. Then u/ is a wavelet for 

L2(R) if and only if 

V!4,(2Jcof=l, (2) 
jeZ 

for a.e. ©el; 

]T»H2Jtö)H/(2J(tt) + 2k7t))=0, (3) 
j=o 

for a.e. <o e R, k e N odd. 

See [7], [8], [9]. 

In particular, if u/ e L2(R) is aunimodular function, that is 

|y(co)j=l       for to e supp \y, 

we have the following result. 

THEOREM II. Let 4/ be a unimodular funtion in L2(R). Then »4» is a 

wavelet for L2(R) if and only if the following hold: 

£|u>(«> + 2tot)!2 = l a.e. toe[-11,11]; (4) 
keZ 

V|ü>(2
J

Cö)!
2
 = 1 a.e. coeR; (5) 

kez 

See [8], [6]. 

We can to prove the following theorem. 

THEOREM III. Let u/ be a unimodular function in L2(R) so that ||u/|b = 

1. Then y is a wavelet for L2(R) if and only if the following hold: 

£Mw + 2k7t)|2= Vi^icf a.e. cosR; (6) 
keZ jeZ 

Proof.   We denote 

%(<») =   Zi^(C0 + 2k7l^ 
keZ 

and 
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keZ 

If {cn}nez is the sequence of Fourier coefficients for ^i, we have 

2TI 
J    ' 2« 2,1 _„ 2* 0 '    - o 

From (6) it follows 

«P, (co - JI) = Tj (2« - 2n) = Y, (2co) = ¥, (co) 

■mo da) 

hence 

c^d + e^ji-J^^e-^dco. 

It follows 

7T 23T 
1  % 1 * 1 • 

«2m = -f *lW*™*» = - K(2ö>)e-i2mffld<ö = i- f¥,Me'^dco 

hence c2m = cm, meZ. From this relation it follows 

Vm    C" for s e N 

If m * 0 we have 

„       f oo   ,ifm>0 
hml m = \ , 

s-»o) I—oo   ,n m<u 

Then, from Riemann - Lebesque Lemma it follows 

lim c„.   =0, 
s->« 2*m 

m * 0 

hence c» = 0? m* 0. It follows 

«F1(o,) = c0 = — f    V|y(co + 2loif dco = ~ fl^cofdto^l 
27toVkez ->       2*-« 

by Plancherel formula. 

Multiresolution analysis provides a natural framework for the 

construction of wavelets. See [3], [4], [5], [10], [15]. 

A multiresolution analysis for L2(R) consists of a sequence {Vj}jaz of 

closed subspaces of L2(R) such that 
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V, c Vj+! for all j e Z; (7) 

feVjO f(2J-) e VJ+, for all j e Z; (8) 

nvJ = {°}; (9) 

Uvj=L2»);. (io) 
jez 

there exists cp e V0 so that {q>(--k)}i;ez is an orthonormal basis for V0.      (11) 

The function  cp is  called a  scaling function  for  the  multiresolution 

analysis {Vj>jeZ. 

Recentely, E.Hernandez,  X.Wang and G.Weiss [9] give the following 

characterization of a scaling function. 

THEOREM  IV.     A function cp e  L2(R)   is  a scaling function  of an 

multiresolution analysis of L2(R) if and only if 

£|cp(o> + 2kn)|2 = l for a.e. w e [-*,»]; (12) 
keZ 

Km |cp(2"-'co)|= 1      for a.e. co e R (13) 
j-»« 

cft2co) = m0(co)<p(co)a.e. on R, (14) 

for some In - periodic function mo. 

The function m0 is called the low-pass filter associated with cp. 

The key in their proof is the following result. 

PROPOSITION  2.  We  suppose  that   (7),   (8)   and  (11)  holds.   Then 

(10)o(13). 

It is well-known that the function defined by 

H»(2<») = e"1<B v(2co)m0(co+3i) <p( co), (15) 

a.e. co e R, where v is 27t-periodic, measurable function such that 

|v(co)j=l       for a.e. co e [-n,n], 

is a wavelet for L2(R). We say that vp is associated with a multiresolution 

analysis. 

It   is   possible   to   construct   a   wavelet   ip   for   L2(R)   which   is   not 

associated with a multiresolution analysis. See [5]. 
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G.Gripenberg [7] gives a characterization of the wavelets associated 

with a multiresolution analysis. 

THEOREM V. A wavelet y e L2(R) is associated with an 

multiresolution analysis if and only if 

Dv(co) = 1   for a.e. <o e [-Jt,7i] (16) 

where 

V«):=III<K2j(«> + 2kn))|2. (17) 
j=lkeZ 

Using an ideea of P.Auscher [1], E.Hernandez, X.Wang and G.Weiss [9] 

give another proof, for this theorem. The key of their proof is the following 

proposition. 

PROPOSITION 3.   Let be u/ e L2(R) a wavelet. Denote 

4,j(co) = {H>(2j(co + 2k7t));   keZ} a.e. to s [-Jt,Jt], 

j   ä  1   and  Fv(co)  the  closed  subspace  of 12(Z)  generated by  the   system 

{^(co); j^l}.Then 

dimF^(co) = Dv(co). 

In the following we give more simple and elementary proofs for the 

Propositions 1,2, ' . 

Moreover, as an application of Theorem IV, we give a more simple 

proof (in a more general form) of a result of D.-X.Zhou concerning the 

Lemarie-Meyer scaling function. 

We use the following lemma. 

LEMMA 2 Let be q> e L2(R) so that the system {<p-k)hez is an 

orthonormal basis for the closed subspace V0 of L2(R) and we denote 

Vj = {f(2M|fe Vo},       j e Z. 

We denote also by Pj the orthogonal projection of L2(R) on Vj. If f 6 

L2(R) is so that f is bounded and the support of f is in [-R,R] for R > 0, then 

for j e Z, j2?log2— we have 
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1 
llPjfll2^ j!fM2l&2~Mz*ö. (18) 

Proof.  We have as in [9] 

kez 4«   kez 

1    ,-,. ('--j/2^rAX,«rt-j,^/,J2"jk<Bj„(2 

4TT' 
2lj2-j/2f(co)<p(2-j(o)eirJk<Ddo^ 
keZR 

The support of function to -> f(co)cp(2 jco) is in [-TC2\ Ji2j] for j äiog2 
R 

An application of Parseval formula on [-nl\ 7c2j] gives (18). 

PROOF OF PROPOSITION 1.   If v is a wavelet for L2(R), we have 

for fe L2(R) so that f is bounded and the support of f is in [-TC, TE] 

llfllh  II <f>^j,kl2^Z^- J|f(co)!2[^(2-J03)i2dco. 
j.keZ 

We take f so that 

f(«) = 

It follows 

J=U        -co 

Vto 2 
0   if cog[7c/2^] 

it ;=n„ Ü> 271 .    „   i CO 271 *!        <D j=0rt 

2 
j=0 n 

2J+1 

PROOF OF PROPOSITION 2.  If (10) holds, then 

-»llfll2 HPjfl!2- 0-*00) 

for every fe L2(R). For f with f = %[_„,„] it follows by (18) 

1   * 
lim— f|4<2-Jo))|2dro=l 

J -71 

and since the sequence {|cp(2~Jm)l}j>i is nondecreasing ([9]) it follows (13). 
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If (13) holds, from Lebesque Theorem we have by (18) 

l|Pjf|l2-TP^->^J|f(<a),2d0>i!||f|1' 

for all f e L2(R) with f bounded and the support of f compact. Since these 

functions are dense in L2(R) we have (10). - 

In [17], D.-X.Zhou give an example to show that the center of a skew- 

symmetric scaling function q> e L2(R) may not be in 111. His proof used a 

result of R.Q.Jia and C.A.Micchelli [11]. 

In the following we give an extension of Zhou's result as an application 

of Theorem IV. 

THEOREM VI.  Let be 0 < s < */3 ande q> e L2(R) such that 

cp is continuous and even: (19) 

supp <pc [-K-
E

> 
7t+El (20) 

(p(co)=l,      to e [-n+s, n-s]; (21) 

|4>(oo)|2 + |9(2w-co)|2=l, co e [*-s, jt+s]. (22) 

Let be a gR  and <pa:=cp(«-a).  Then <p, is  a scaling function for  a 

multiresolution analysis. 

Proof.  We take 

m0<«)= eia<D £e27tkai&2to+4kji) (23) 
keZ 

and prove that 

*<«) = «"o(f)*(f) (24) 
or equivalent 

<Kco)=m0(|)e-ia?4(f) (25) 

We have two cases 

a) co g supp <p. If <p(w/2) = 0 , then (25) holds. 
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If cp (to/2) # 0 it follows -7i - E < co/2 <, 7t + s, hence co + 4TI ä 27t-2s 

and co-47i ^ -27! + 2s and from the condition 0 < s < TC/3 it follows »+4jt£7t+s 

and    co - 47t < -jc -s , hence 

<p(co+4k7t)=0 for k * 0. 

It follows 

«n0(f) = •'"*») = «■ 

b) co e supp q>. It follows -« -s £ co £ a + s    and from condition 0<s £ it/3 

it follows -7t + E < co/2 s it - E hence tp(co/2) = 1. On the other hand, from 

co 

(23) it follows m0l—J = e   2cftcü). Hence, (25) holds. 

The conclusion it follows from Theorem IV. 

REMARK. We can prove a converse of the above result: 

Let be 0 < s,   s° < n and cp e L2(R) so that 

cp is continuous and even (26) 

supp <p = [-Jt -s',  7t + s'] (27) 

cp(to) = 1, co e [-7t +£,  7i - E] (28) 

|tp(co)| < 1,  co *    [-K +E,   71 - s]. (29) 

If cp is  a scaling  function  with  a continuous  how-pass  filter,  then 

s<=sÄ7t/3 and the relation (22) holds. 

For other properties of Lemariö-Meyer wavelets see [16], [18]. 

DISCUSSION.   1.Proposition 1 can be also proved using the relation (5). See 

[12] or the recentely book 

[HW] E.Hernändez, G.Weiss, A.First Course on Wavelets, CRC Press, 1996 

2. We can prove the Theorem III without to use the Riemann-Lebesque 

lemma. Indeed, from 

cn = (l + ei")^}V,((ö)e-ia-d(B, 
o 

it follows that cn = 0 for all n e 2Z + 1. If m is even and m * 0, we can write 

m = 2pn with p e N and n e 2Z + 1. It follows 
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Cm = Cn2p=Cn = 0 

since n is odd. 

3. The formula (18) was obtained, but using the Poisson formula in 

W.R.Madych, Some Elementary Properties of Multiresolution Analyses of 

L2(Rß), in Wavelets - A Tutorial in Theory and Applications (C.K.Chui, 

ed.), Academic Press, 1992, 259-294 

id, with essentially the same argument as in our paper, in [HWJ. Also the 

proof of Proposition 2 is essentially the same argument given in [HW] (pages 
382 and 384). 

Our results were independentely obtained in the preprint 

P.Gävrufä, On a characterization of the scaling functions and some classes 

of wavelets, SLOHA, Univ. of Timi?oara, No.5/1996, 

an 

ACKNOWLEDGEMENTS. I am pleased to express my gratitude to Professor 

E.Hernändez for his comments on this paper. 

- 351 



REFERENCES 

1. Auscher, P., Solution of two problems on wavelets, Journal of Geometric 

Analysis, vol.5, No.2, 1995 

-> A Bonami F.Soria, G.Weiss, Band-limited wavelets, in Fourier Analyse 

and Partial Differential Equation. (Ed.J.Garcia-Cuerva, E.Hernandez, 

F.Soria, J.L.Torrea), CRC Press, Boca Raton-London-Tokyo, 1995 (21- 

56) 
3. C.K.Chui, An Introduction to Wavelets, Academic Press, New York, 1992 

4   A Cohen   Ondelettes et traitement numerique du signal, Massen, 1992 

5. I.Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Conference 

Series in Applied Mathematics 61, SIAM, 1992 

6. X.Fang,    X.Wang,    Construction    of   Minimally-Supported-Frequencie« 

Wavelets, preprint 
7. G.Gripenberg, A neces.ary and sufficient condition for the existence of a 

father wavelet, Studia Math, 114(1995), no.3, pp.207-226 

8. Y-H. Ha, H.Kang, J-Lee, J.Seo, Unimodular wavelets for L2 and the Hardy 

space H2, Michigan Math.L, 41, 1994, pp.345-361 

9    E Hernandez,   X.Wang,   G.Weiss,  Characterization   of Wavelets,  Scaling 

Functions   and   Wavelets   Associated   with   Multiresolution   Analysis, 

Preprint 
10.  G.  Kaiser,  A.Friendly  Guide  to Wavelets,  Birkhauser; Boston, Basel, 

Berlin, 1994 
11    RQ    Jia and  C.A.  Micchelli,  Using  the  refinement  equation  for  the 

construction of pre-wavelets. II. Power of two, in Curves and Surfaces 

(P.J.Laurent, A.Le Mehaute, and L.L.Schumaker, Eds.) Academ.c Press, 

1991, pp.209-246 
12. P.G.Lemarie, Sur l'existence des analyses multi-resolutions en theorie 

des   ondelettes,   Revista   Matemätica   Iberoamericana,vol.8,No.3,1992, 

pp.457-474 
13. P.G.   Lemma,   Y.Meyer,   Ondelettes   et   Basis   Hilbertiennes,   Revista 

Matemätica Iberoamericana, 2(1986), pp. 1-18 

- 352 - 



14. S.Mallat, Multiresolution approximations and wavelet orthononnal bases 

for L2(R), Trans Amer. Math.Soc, 315, 1989, pp.69-87 

15. Y.Meyer, Ondelettes et Operateurs. I. Ondelettes; Herman, Paris, 1990 

16. A.I.Zayed and G. G.Walter, Characterization of Analytic Functions in 

Terms of Their Wavelet Coefficients, J. of Complex Variable: Theory 

and Applications, to appear 

17. D.-X. Zhou, Construction of Real-Valued Wavelets by Symmetry, Journal 

of Approximation Theory, 1995, pp. 323-331 

18. G.G.Walter, Translation and Dilation Invariance in Orthogonal Wavelets, 

Appl. Comp.Hannonic Analysis, 1 (1994), pp.344-349 

353 - 



SOME COMPLEXITY ISSUES CONCERNING A 
SPECIFIC NONLINEAR DYNAMIC SYSTEM 

Ligia-Loretta Cristea, Nicolae Szirbik, §tefan Holban 
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Romania 

Abstract 

We study the numerical methods to compute the parameters for a specific N- 
dimensional nonlinear dynamic system in order to have a desired behavior. 
Desired behavior can be stated as a sequence of stable fixpoints. More 
complicated asymptotic behaviors include limit cycles and even chaos. Chaotic 
phenomena can occur during the gradient descent computation in both cases, 
continuous or discrete. This has a simple explanation, the gradient descent 
heuristic can be reduced to an asymptotic behavior of a new system described by 
equations of the same type as the basic system. This system is N2 - dimensional 
and is far more complex and chaotic than the studied one. Some proposed 
methods to avoid this will be presented. 

1. Introduction 

There are a lot of engineering applications which need a "black-box" capable of receiving a 
time dependent function, say I(t), or a set of functions, defining a vector function I(t) with 
dimension n, and transforming this function into another time dependent vector function O(t), 
with dimension m. The most obvious application is the system controller, which in the most 
cases have a mathematically deductible formal structure, by identification and modelling of 
the controlled system. 

But in many cases, the system is too complicate or uncertain to have an appropriate model, 
or the application is defined by experimentally obtained data, so is impossible to build a 
formal system which describes the "black-box" in terms of a well determined transfer 
function. In this cases, it is possible to use an adaptive system, which has a specific but 
general, all-purpose form. Why specific? The system has a very strict formal description, and 
the behavior of such systems has been studied since 1987 [Crutchfield & McNamara 87], 
[Pineda 88], [Renals & Rowher 90]. Why general? Because the same form can be used in 
various applications, ranging from signal processing to control and robotics. The difference 
between two systems of this kind, applied to different problems is laying in the value of the 
parameters (name them weights). In order to implement an application using this type of 
adaptive system, we must have measured needed behaviors, that is, a set of pairs of samples 
for the functions (I(t), O(t)). This is experimental data, and the functions are delivered as 
number time series, with a constant or a variable sample rate. We will name this set of pairs, 
the prescribed base B. 

To adjust the weights through a numerical method based on gradient descent we have to 
tackle with the great complexity of this kind of computation. The algorithms are not yet 
studied enough from this point of view, because obtaining a "desired behavior" is a vague 
goal and has yet to be formally described. There are some papers which consider that these 
algorithms are NPH and intractable in their implementation, especially for large-scale 
problems [Homik 91J, [Jordan 89]. Analytically, is simple to prove that the complexity is 
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around O(N'), where N is an average between the number of equations used, the length of 
the series describing B, the number of pairs (1,0) which are describing the desired behavior. 

However, the main critical issue in computing the weights is "bifurcation" of the system's 
dynamics. In general, asymptotic behavior of a nonlinear dynamical system changes 
qualitatively at certain points in its parameter space [Guckenheimer & Holmes 83], [Wiggins 
90]. For example, a stable fixed point can change into an unstable fixed point or even 
disappear with a continuous change of the system parameters. This problem is worsening the 
computation complexity, because the gradient descent must be restarted from scratch. 

The model of these dynamic systems has been widely used by the community of 
connectionism. It describes a connectionist architecture named "fully recurrent network". It 
is noteworthy that the same behaviors can be obtained using more simplified architectures 
which permit weight adjustment through gradient-descent methods of complexity 0(n3) or 
even 0(2n+ir). Sometimes, simpler "feedforward network" architectures can be used, these 
yield a computational burden of 0{n2). As a conclusion, we say that there is no reason to use 
the recurrent architecture when a simple architecture suffices; but on the other hand, there are 
a lot of methods to improve the performance of the 0(n5) algorithm, and a lot of artifices to 
avoid chaotic behavior [Pearlmutter 95]. 

The paper is structured in the following way: section 2 presents the formal description of the 
studied system, section 3 presents two ways of implementation of the system on a digital 
computer, pro's and con's, and a simple example based explanation for the chaotic behavior, 
section 4 deals with the pseudo-continuous system weight adjustment process; section 5 
introduces three enhancements of the system which had been studied by us; section 6 
concludes about the feasibility of this type of system in practical, real-life applications. Also, 
the complete deduction of the used methods are presented in appendices A and B. 

2. The system formal description 

Consider a dynamic system, governed by a set of coupled first order differential equations, 
coupled by a matrix of parameters w^ or weights (i=l,n; j=u+n). 

dy\{ t]   = -yd (t) +g(hs (t) +x± (t) ) (i=l,u ;   u=N) (D 
at 

where g(x) is a nonlinear function with saturation (e.g. the sigmoid) and: 

u*n 

n 
xi^t^=Y,WikIk('t^ (i = l,u) (3) 

Jc-1 

This weights are subject to application dependent adaptation, and their values are the only 
adjustable entities in such a system. The form of the system will remain unchanged in all 
possible applications. This kind of system is also known as "the fully recurrent continuous 
connectionist network" [Werbos 88]. From a computational point of view, the system is an 
analog computer, which has as inputs the Ij(t) functions (j=l,m), and as outputs we can select 
a small number of the states y^t) i=l,m. 
The state space of the system has the dimension u (name-it U c R"), but we are using only 
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a small subspace with dimension m (name itMc Rm). The output of the system can be a 
trajectory in the subspace M, which is a projection of a trajectory in the space U, and this u- 
dimensional trajectory represents the overall behavior of the system. The dimensions u-m (the 
rest which are not directly used as outputs) are used as a "time-memories" through then- 
attached weights in the subsequent equations (m+l,..,u). Setting randomly the weights in the 
matrix W, he will have a difference between the output Yp(t) and the desired output O (t): 

Jp(t)   = Op(t)   - YpU) (P=1,P) (4) 

The vector function Jp(t) can be expressed as a function of w,j, and a gradient-descent method 
to minimize Jp(t) in an interval [to,tf] can be applied, in order to adjust the weights, to obtain 
the desired behavior of our system. 

3. Implementing the system on a digital computer 

It is possible to use a discrete variant of the above presented system, because the "original" 
model is implementable only on analog computers. There are such computers, but they are 
extremely application dependent, and though accuracy and speed of such architectures are 
excellent, the applications reported in papers [Doya & Yoshizawa 89], [Pearlmutter 89], 
[Williams & Zipser 90] reason that its mean a large cost. Using an all-purpose, reconfigurable 
digital architecture is far more inexpensive. However some problems appear in the digital 
case. The functioning of the system can be based on two paradigms: 

I. - The speed of the "internal" computation is the same with the speed of the sampling rate 
associated with the time number series Ip[t] and Op[t] defining the driving function L(t) and 
the desired output Op(t) (p = 1,P). P is the number of pairs which in the set B = {(Ip[t], 
Op[t]}. the prescribed base.ln this case, the system will be a pure discrete system, described 
by the equations: 

u+n n 

y±ltl = sr( J2 ^•y?[t-i]+£ w.„-x,[t])        (j=i,u) (5) 

The demonstration of w,; update formula via gradient-descent is given in appendix A 
[Williams & Zipser 89]. It is simple to demonstrate that the complexity of computation of the 
weight adjustment is 0(n4P) [Pearlmutter 89]. But the performance of such a system is 
extremely poor, due to the discretisation of the initial system (1). 

II. - The second paradigm is to use a pseudo-continuous system, where the "internal" speed 
is much higher. That is fairly possible because the speed of recent digital processors is in the 
range of 20-30 Mflops (millions_of_floating_point_operations/ second); also, signal processor 
usage is highly recommended [Haykin 94]. It is noteworthy that the speeds of modifications 
of the input I(t) and the output O(t) are "slow" compared with the internal speed. 

When a continuous time system is simulated on a digital computer, it is usually converted into 
a set of simple first order equations, which is formally identical to the discrete time system, 
but in this case, the speed of yt] (i.e. the sampling rate) is far more lower than the difference 
between moments t and t+I (the "time step") in the equations describing the discrete system 
expressed by (5). 

There are some advantages running the discrete time system as a simulation of a continuous 
time system. First, more sophisticated and faster simulation techniques than simple first order 
equations can be used. Second, even if simple first order equations are used, the size of the 
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time step can be varied to suit changing circumstances; for instance if the system is being 
used for a signal processing application and afterwards faster sensors and computers becomes 
available, the size of the time step can be decreased without re-computing the coupling 
parameters from W [Lepedes & Färber 87]. Third advantage is somewhat more subtle. Even 
for tasks which themselves have no temporal content, such as constraint satisfaction, the best 
way for such a system to perform the required computation is for each output to represent 
nearly the some thing at nearby points in time. Using continuous time equations makes this 
the default behavior; in the absence of other forces, units will tend to retain their state through 
time. In contrast, in purely discrete time systems, there is no a-priori reason for the one 
equation's state at one point in time to have any special relationship to its state at the next 
point in time [Jordan 86]. 

Basically, from any point y from R", if the driving functions I(t)'s are considered constant, 
the system will evolve to a stable state, in a so-called fixed point (a process named 
"relaxation", [Pineda 88]). These points can be computed. If the output desired functions O(t) 
are crossing these points, the trajectory in the state space will be formed by small relaxation 
trajectories from one fixed point to another. The problem is that we cannot know in advance 
the final form of the system, given by its computed weights through gradient descent. But it 
is desirable to have the output trajectories crossing the adjacent regions with the fixed points 
(the basins of attraction). This zones of Ru are named "working regions". Sometimes, crossing 
from one working region to another, a bifurcation can appear. In order to illustrate this, we 
consider a very trivial example of a bifurcation of such a system to see what kind of problems 
can arise [Doya 93]. Suppose a system consisting of a single equation, a single input "b" and 
single output "x". The used function for g(x) is the sigmoid (a continuous squashing function): 

dx(t)   _ 
dt 

-x(t) + 1 + g-twJrU)   * b) (6) 

'1 u2 
Figure 1: The bifurcation diagram 

The output of this "system" converges to a fixed point solution that satisfies: 
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:  (7) 

Figure 1 shows the change of the fixed points with the change of b (w=5 - set initially). The 
solid and dashed curves represent the stable and unstable fixed points respectively. Suppose 
the desired output is constant and it is Xj=0.6 and the input is initially set as b=0.0. At first, 
the output trajectory converges to the upper branch of the stable fixed point and then b is 
decreasing. When b becomes smaller than a certain value b, the stable fixed point on the 
upper branch vanishes and the state jumps to another stable point in the lower branch. This 
case is the one-dimensional situation of "saddle-node" bifurcation. If b is increasing, when 
it will reach b2, another saddle point bifurcation occurs. In large scale systems, Hopf 
bifurcations and homoclinic bifurcations can appear [Wiggins 90]. Using the pseudo- 
continuous implementation, all these problems remain. Even in the purely discrete case, using 
a small number of samples for I(t)'s and 0(t)'s (t=l,stop, see appendix A), bifurcations 
inducing chaotic behavior can appear. 

4. Adjusting the weights to obtain the desired behavior 

For each pair in B, all weights must be updated once. This is a step or "epoch" for the 
coupling parameters' adaptive computation. It is hard to estimate the number of steps which 
are needed to approximate the current behavior as close as possible to the desired behavior. 
But experiments done to implement various applications, give for the needed step number a 
range between 1.000 and 100,000 [Rowher 90], [Szirbik 95]. 

You can see in appendix B the deduction of the formula adjusting the weights in the 
continuous variant [Pineda 88]. For one pair (I.O) the adjustment of one particular weight is 
given by (b-13) and subsequently: 

Aw„ = T)-jg1(uD •*;•£ Jk-(L-*)kl-dt (8) 

where x, with infinitum superscript means a fixed point. The complexity of computation 
applying this formula, working numerically on a digital computer, is 0(PN5), which is with 
one degree higher as the discrete case (P is the total number of pairs - if the number is low 
here und in a discrete case, the number is big, the complexities are in the same range - and 
this is a normal case, in the discrete variant more pairs are needed than in the continuous case 
[Szirbik 95]). What makes the things worse is that the computing process, viewed as a 
relaxation in the weight space, as presented by (b-18) can have bifurcations. Experimentally, 
this is the case, because the weight space is quadratic with respect to the initial state space 
(N2), and the phenomena occurring here is far more complex. Chaotic behavior is more often 
encountered in the weight adjustment phase than in the functioning phase. That is extremely 
dangerous because after 90% of the overall computation time (for example), all the current 
results can be severely damaged, because the weight matrix, which is a moving point in the 
weight space, jumps from the current position somewhere very distant from the points which 
are giving approximate desired behaviors. Thus, all the computation effort made is lost, and 
the adjustment process must be restarted from another point in the weight space (randomly 
set). 

An immediate method to avoid these undesired phenomena is to trace down the last part of 
the weight trajectory and turn back when the discontinuity (jump) appear, starting from a 

- 358 - 



previous position with a new value for r\ (the gradient descent step size) - usually a lower 
value [Tsung & al 90]. 

5. System enhancement 

We studied methods to improve the performance of the weight computing not starting from 
the intrinsic of the computing process, but from the structure of the system. The former 
methods have been studied intensely and presented in papers (an excellent review can be 
found in [Pearlmutter 95]). The latter involves hybridizations of the system, that is, 
modifications of its form. Three methods have been experimented: 

i. - linear equations along the non-linear ones. 
ii. - discrete equations along the pseudo-continuous ones. 
iii.        - desired behavior complementary adjustment. 

Method i. In many cases, the mapping between the input and the output is linear. It is wasting 
of computine power to express these dependencies through weights attached to nonlinear 
equations. We have seen that the inclusion in the system (or even replacement) of a number 
of "hidden" equations which are purely linear, enhances dramatically the weights computation 
process. First, the computational complexity is more simple for these weights (equation (8) 
is reduced to a simple sum), but the number of epochs needed to obtain the desired behavior 
is decreasing only 10-15% with respect with the fully nonlinear system. This enhancement 
is application dependent, but all applications have some degree of linear mapping. 

Method ii. Sometimes the temporal link between input and output is not very strong. We 
included in the system discrete equations (or replaced continuous equations) updating the 
weiahts using (a-22). The number of epochs is increasing in this case with 5-10%, but 
sometimes in"very favorable cases, when the temporal link is not present at all, the number 
of epochs is decreasing with 10-20%. More important is that we reduced computational 
complexity for these weights from 0(N5) to 0(N4). Methods i and ii have to be studied in 
depth, because we believe that is a relation between the form of the trajectories from the 
prescribed base B and the percent of hybrid equation used. We used a very crude and rigid 
25% linear-continuous. 25% discrete-nonlinear, and 50% nonlinear continuous equation 
percentaee. Also, the order of updating the weights is important, because we used different 
strategies, and it appears that in the firs case the linear weights are to be updated, afterwards 
the discrete ones, and only in the last the nonlinear continuous. 

Method iii. After each epoch, the fixpoints of the current system can be computed. The 
weight computing process tries to put the fixpoints in the most appropriate places, to have the 
desired trajectories crossing them. But this is not always possible, and "overshooting" effects 
can be detected in the last"phase of the process. This creates premises for chaotic behavior 
of the system, and yields an increase in the number of epochs (after "overshoot" the system 
is to be "fixed" again). We have modified the trajectories in the prescribed base B, allowing 
only small changes, but in order to place the trajectories as near as possible (without altering 
the prescribed base with more than 0.5-1%) with the current fixpoints. The method saved 50- 
X()% of the needed number of epochs. It is a way to help gradient descent to find its minima, 
not by moving in the weight space, but by modifying the landscape of the J function, to 
"move" the minima near the current point. The fixpoint computation at every epoch is 
computationally expensive, but is useful to invoke this method only in the last part of the 
computing process, and seldom, for example, once at every ten epochs. It is very hard to 
study analytically whay these effects appears in the computation process, due to the system 
modifications and hybrdidizations. At last, it is noteworthy to say that in the functional phase 
of the system, the linear and discrete "processing units" are more faster. 
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6. ConchHons 

This kind of system can be used in many engineering applications, but the main problem is 
the dimensionality of inputs, outputs, internal state space, the number of pairs P, and the 
sampling rate of the number time series describing I(t) and O(t). Results of computation time 
for these systems are presented in [Szirbik 95]. The maximum number of equations are in the 
range of 700-800, the inputs and outputs are 30-40 dimensional; P=40-50, and the sampling 
rate varies from 25 to 60. Of course, the form of I(t) and O(t) is crucial. But for ordinary 
applications, the above numbers are feasible on today's computers. 

Applying the hybridization methods to our system, using linear mapping between input and 
output, using simpler discrete equations for trajectories with slow dynamic the performance 
of learning was reduced not in terms of "epochs" but in terms of complexity. The number of 
epochs was reduced using an on-line "working region" detector. We want to emphasize that 
this research is only at its start and on-going, and this paper is not yet presenting certain and 
verified results. These are only observations along the weights computation process, and of 
course, in order to have scientifically proven results, to eliminate false or non-characteristic 
results, more tests have to be done in the near future. As a far target, it win be important to 
find the theoretical backgrounds for the presented effects. 
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Appendix A (the deduction of the gradient descent method for the discrete 
variant) 

The discrete system is expressed by the equations: 

(i=l,W) (a_1) V1(t)   =fir(Ai(t))   = fij^Wij- Zj (t-1) 

The driving function of the input is expressed as x 

( -lifj=0 
i  xj{t)  if j=l, 
[^.„(c)  if j=n+l,L 

[        -lifj=0 

The used output: 

o1(t)   = v±{t) (i=l,m) (a-3; 

Name h the internal input of one unit: 
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(a-4) 

The difference between the desired output defined as time number series d*(t) is a function 
ES(W), (s is the index for a single pair (Xs(t), Ds(t)): 

stop   m 

E*W   =|EE[4'(t)   -o/(t>]2 <s=l,P) (a-5) 

The weights are updated like: '•   - 

The gradient component for Wy is: 

a** _ I'ä'A aw/it)'- o/(tna 

3v
ij        2 t=I *=I aw-jy 

except this particular wij7 all the rest of the weights are considered constants: 

, scoi SCOP    B 30 » ( t) 

and obtain: 
siSP A    =        So/ (t) 

■-EEWÖ-S7 »--1      1—i W"H 

*iJ 

(i=l,tf;j=l,L) 

5 is the difference between the desired output and the obtained one at moment t: 

6£ =  [d/(t)   -o/(t)] (ie=l,jn) 

And the derivative will be: 

Now. deducing this partial derivative means: 

g(x) must be differentiable (if it is the sigmoid g'=g(l-g)): 

<* g-(hJ!(t) )£-;£-(*„• z?{t-D)   = 
1=0   awlj 

usine the Kronecker delta function: 

(a-6) 

(a7] 

(a8) 

(a-9) 

(a-10) 

(a-11) 

=  (a-12) 

(al3) 
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g-(hk?(t)) 
*ij awij 1=0 

3z/(t-1) 

(al4) 

yields: 

= Sr>(h/(t) *fr */ + E "J 
3z/(fc-l) 

1=0 UM,ij 

(a-15) 

The .sum is split as: 

*        3z/(t-l)       "        3x/(t-l) * 3z/(fc-l)    ,     ,,. 
E »*    ^..     = E"«—ST7- + X. ""    a»,..     <a 16) 

ij I=n+1 1=0 Swi] 1=0 

using a new index p: 

£             3z/(t-l)        "             do; (t-1)         *               avjf(t-l)   (a 
L w*(P*n> ä^  = -^ "^«P«' dwZ— +   ^ Wjc(p*n) äT— 17 
p=l vwi3 P=l u,viJ P-m+1 « \ 

to separate between used outputs and the rest of the outputs 

7pS(t) 

considerins the moment t-1: 

|opS(t) i£p=l,m 
Vps(t) ifp=m+l,N 

(a-18) 

dyP
s(t-i) 

E Wk(p*n)        QZ— 
p-l owij 

(a-19) 

is simple to see that the term: 

r/«(t) 
By'it) 

dw. 
(P=1,W) (a-20) 

13 

is recurrent: 

r/«(t) = g-(hk
s(t) Kt- zf (t-l)  * £ wk{p,n)- r^(t-l) 

p-i 

So, the final formula for adjustment is: 

stop   m 

t=i k=i 
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Appendix B (the deduction of the gradient descent method for the continuous 
variant) 

For a single pair of desired functions, the error can be expressed as: 

* i-1 
(b-1) 

where the difference J is a time dependent function: 

J±{t)   =  [Ot (t) - xt U) ] (i=l,N)    (b-2) 

Note that the system state variables are x(t). A small step in the weight space: 

' dt 
dE (x,s=l,N) <b-3) 

which can be expressed as (we obtain somewhat similar to (a-9)): 

-    dwzs 
w dt 

computing the fixpoints: 

1 d 
2 dw. E^ = EJi 

o T a*Z 
J=i    *dwr* 

(r,s=l,N) (b-4) 

x" = SI^YJ v±j' X7+Ii) (i=l.iO 
3-1 

these xk with the infinite superscript are fixpoints of the free evolving system: 

dw< dxZ HS^^ElS^--»^ 3x" 

Note (u is similar with h from the discrete variant): 

(b-5) 

(i=l,JW       (b_6> 

u" = E wzj~ X3+Iz        (r=l,Ä) 
i-i 

And, using again the Kronecker delta function: 

„4  _ /l     if   i=j 
Ku ~ \0     if   i *J 

(b-7! 

(b-8J 

we fix the indices i and j for this derivative, and the rest of the weights are held constant: 

dw. '13   _   vA .  w-L (b-9) 

rewrite b-6 as: 

3-1 "wrs [ J-l awrs) 
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taking all derivatives to the left side: 

£[!&-srr(U;> ■*„]$- = *&*,<«;> ■*;    (i-i.»  (b-9-ii} 

note with: 

£« = Kt ~ 3i ("") ^ij 

and express (b-6) as a matriceal formula: 

ÖW,. 
= Xir- fir;(u")'Jf» 

(b-9-iii) 

(b-10) 

Multiply by the inverse matrix L"1: 

-J^  =   (i-*)-xfr-flr;(u;)'x; (b-11) 

and again, turning to individual equations form: 

and finally, the adjustment formula: 

■ dt 

N 

I g- (uD • x;- £ Jk- (IT1) kI U, s-1. Jf) 

In order to compute the adjustments in the analog computer style, we note: 

y" = gi (u") • Y, Jk   iZ'^xr 

(b-12) 

(b-13) 

(b-14) 

which is: 

" dt 
y~- x" (r,s=l,W) (b-15) 

This are equations describing a new dynamic system, NxN dimensional. 

5>« 
r-1 ST ( "r > 

jk        (k=l,N) (b-16) 

Rewrite (b-14) using the expression of L: 

and this linear system has solutions fixpoints of the dynamic system: 
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-§£ = -yk + 9i(uk)vb»r*yT + Jk 
<*«!,*> <b-181 

This dynamic system describes the behavior of the weight adjustment computation, as a 
relaxation dissipative process. 
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INFLUENTA ROTATIILOR ELICOPTERULUI 
IN TANGAJ §I RULIU ASUPRA DISTRIBUTIEI 

VITEZEIINDUSE PE ROTOR 

■Cpt. cdor. ing. VLÄSCEANU NICULAE* 
Cpt. cdor. ing. SAITOC MARIAN** 

Cänd miscarea elicopterului este curbilinie, apar pe palä noi forfe de inertie care 
influenteazä atät miscarea sa de bätaie, cät si distribujia vitezei induse pe suprafaja discului rotor. 

Fie un rotor principal aflat la punct fix (^ = 0) avänd o miscare de rotate in tangaj cu 

viteza unghiularä q > 0. Consideränd conceptul de arie efectivä (B = 1) si viteza de ruliu p = 0, 
incidenta efectivä a unui element de palä va fi: 

ae = 0 + «)) = 8 + -(^-a1x-sinvjy +b x-cosv|/ + q- x-cosy) (1) 

si cum la punct fix a{ = -8q I y L, b --q, incidenta elementului de palä devine: 

„    X    8ö   . 
ae =0 + — sin\)y (2) 

undeq = q/(J?n>, yL = acpR4//Q si x = r/R. 

Deci incidentele la \\i = 0 si v|/ = n, cSnd X = constant, nu se modificä, adicä variatia vitezei 
Un datoratä miscärii de bätaie corespunzätoare tangajului q este riülä. La orice alt azimut incidenfa 
devine variabiiä prin termenul -Sq I y • sin v|/, variable ce are ca efect implicit o variafie a vitezei 

induse. 

Pentru cazul general al zborului curbiliniu al elicopterului (p = 0 $i q = 0) se presupune cä 
viteza indusä, datoratä rotafiilor p $i q, are forma: 

v = v0'+ v'j-x-sin\)/ + v7 -A-COSV|;, (3) 

unde am considerat v > 0 clacä este orientatü spre in Jos. 
Introducem nolatiile:,' 

Py=T = c-\F«i\ 
i v9° ,      , (4) 

0 
cp\ 
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unde C este un factor de multiplicare, iar F     $i  F    sunt fortele Coriolis datorate rotatiilor in 

tangaj, respectiv In ruliu: 

Fcq -  I 2qQrsinv|y -dm = -2S' -q-Q-siny 

mP 

F   -  |2pQrCOSt|/ -dm - -2SQ  p-Q-COSv|/ 
(5) 

Presupunänd cä viteza indusä suplimencarä este funcfie liniarä de r, din teorema impulsului 
aplicatä fluxului prin rotor, determinäm factorul de multiplicare C= 3/2, astfei incät: 

3b -S 0 
py -1       ,   9 

-p-nR2-R2-C- 

D 
3b'50 

2F r 

iar distributia de viteze induse'va fi: 

vi= v + p ■ v • x sin y + px • v • A cos v, 

in care v. este viteza indusä medie determinatä prin teoria idealä: 

(6) 

vo      „ /,2 .   .2 ^X2 + p.2 
•(*n). 

(7) 

(8) 

Dacä notäm X. =' v. / (i?0), atunci componenta normalä a vitezei efective pe elemental de 

palä devine: 

Un =X-R-C1- py -XQ ■ r -flsinv - px -X   -r Qcosy -r— - 

-H-R-Q-ß-COSv)/ + q-rCOSv)/-p-rsin\|/ = U'n + AUn . 
(9) 

Tractiunea rotorului principal, in acest caz, devine: 

2TI BR 
T = ^l  Hp4w?+Ut-U-n+Ut.AUn)dr.dy, 

0   0 

unde: 

U( • AU„ =~Py -X0(r2Q2sinv(/ + RrQ2 ^sin2 v|/j- 

-px-XQ (r2Q2 cos v|/ + R • r • Q2 • |i sin \\i cos \|/j. 

Aportul'acestei distributii suplimentare a vitezei induse in crearea tractiunii este: 

(10) 

(11) 

AC, B i (12) 
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Luänd In considerare legea de variatie a viiezei induse v determinatä de langajul q si ruliul p 
al elicopterului: 

''  y = vQ[l + py . xsmy + px -XCOSV);), (13) 

se vor modifica atät coeficienjii miscärii de bätai-s, cat si coeficientul momentului rezistent la 
arbore. Astfei, vom avea o variatie a momentului tractiunii fajä de articulalia orizontalä: 

BR 

AM, :-pac- JU, T-MJnr-dr = 

0 

■-pac(RQ)2 -R1 'ß
3 

(14) 

B* 

ceea ce implicä o modificare a coeficienfilor mi$cärü de bätaie: 

ao=YL .X + JBV + ^)-^ 
+
 ^O)-73 j J0n' 

2pA + >]    B4-p-f --q + B*.Py.X0 

ß- + -j.r 
2 4ß24r 

- Bua. 
K   -     3 ° 

Bz+-p/ 
-t   .     2 

,4   ^ B".q-—p-B4.px.\ 
 yL 

(15) 

B^^I S) 
Cu   ajutorul   rela(iilor   (6)   putem   determina   expresiile'' pentru   \   - pv  si X   ■ p , 

o    ■*       o    y 
presupunänd X-..<< |i, (p.>0,15): 

\>'p* 

3b-S, 0 
X    2K-P-R4   \i 

X     D   -    3b'50      9 
° Py".2«.p.^.:n 

(16) 

relatfi din care observäm cä, cu cät viteza de Tnaintare pe traiectoria curbilinie este mai micä, (ji mai 
mic), cu atat este mai mare influenta celor doua rotafü asupra distributiei vitezei induse pe suprafata 
discului rotor. 
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BäTAIA LIBERä A PALEI 

IN ZBORUL CURBILINIU AL ELICOPTERULUI 

Cpt. cdor. ing. VLÄSCEANU NICULAE* 
Cpl. cdor. ing. POPESCU VIRGH .** 
Cpt. ing. SIMOTA DORIN** 

Coeficientü primei armonici din dezvoltarea in Serie Fourier a unghiului de :- -;,; e 

ß = a.-a cos\|/-b..sini|/, (1) 

se determinä din conditia de echilibru a momentelor fortelor care acfioneazä asupra ::alei, fa$ de 
articulafia orizontalä. Dacä aQ reprezintä unghiul de conicitate al rotorului, a  z'. ^ reprezintä 

unghiurile de Tnclinare longiludinalä (pozitiv spre spate, v|/ = 0) respectiv lateralä (pozitiv spre 

dreapta, v|/ = TC / 2) a axei conului descris de pale fa|ä de axa de comandä (axa de bätaie purä). 

Deplasärile in bätaie ale palei, corespunzätoare armonicilor superioare, sunt de acelasi ordin 
de märime cu cele determinate de deformatiile aeroelastice. Steward W. a demonstrat [1] cä 
amplificarea unei armonici superioare reprezintä circa (5...10)% d;n amplirj.linea armonicii 

precedente. 
Consideräm cazul zborului curbiliniu cu Tnaintare, cu viteza v constants, elicopterului 

iinprimändu-i-se o rotatie in tangaj q si o rotatie Tn ruliu p. 
Conditia de echilibru a momentelor forlelor care acjioneazä asupra palei Tn acest caz 

conduce la ecuafia diferentialä a miscärii de bätaie: 

Tn care: 

—~ + ß = =- f r • dt - lq Sin \|/ - lp COS y ., 

0 0 

dx (3) 

este momentul fortelor de tractiune de pe pala aflaiä la azimutul v|/. 
Prin urmare, unghiul de bälaie ß pentru pala aflatä la azimutul \\i irebuie sä satisfacä ecuatfa 

diferentialä (2), ecuatie Tn care membrul drept constituie momentul excitator, funcjie de variabila 
independents - azimut. 
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Fig. 1 Rotorul in zboru! 
curbiliniu 

Fig. 2 Echilibrul momentelor 
de palä 

In expresia (3) a momentului MT s-au folosit relafiile vitezei §i incidenfei efective pentru 

un element de palä: 

.  (4) 
U. 

a„=e+^- = e + ^ 

iar notatiile adimensionale \ $i T), pentru cazul considerat, devin: 

(£ = x + p. sin v|/ 

■>     *   dß - - hi = /.- — • — -n-ß COS \\i + q ■ x ■ COS y|/ - p ■ X ■ Sin i|/ 
i il   dt 

(5) 

CäutSnd o so)u|ie de forma (1) in ecuafia diferentialä (2), otyinem expresüle coeficienfilor 
miscärii de bätaie: 

3     4V ; 

g-s o   ^ 

16 
v°2 n —-p-n = a' -Aa, 0     ""0 

x + ie   p + ---q 
al - 2^ i    2 1    2   -

ai-Aal 
1--Ji* 1--^ 

2 2 

1       3     1 + V 1 + V                   ' 
2 2 

(6) 

expresii in care am evidentiat efectul de intärziere produs de fortele Coriolis care apar in cazul 
rotatiilor elicopterului din zborul curbiliniu, in langaj cu viteza ünghiularä q $i in ruliu cu viteza 
unghiularä p. 
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Dacä rotörului i se indue rotafii in tangaj q $i/sau In ruliu p, atunci axa conului descris de 
pale va urmäri in rotafie axa rotörului, care este solidarä cu elicopterul, dar va fi permanent in urmä 
cu un anumit unghi. In relatiile (6) sunt evidentfate atät aceste unghiuri de intärziere (Aa, - 

longitudinal, Ab - transversal), cäl si unghiul de reducere a conicitäfii (Aa ). 

Expresiile otyinute pentru coeficientii miseärii de bätaie confirmä presupunerea cä noua 
miscare provocatä de p si q se stabilizeazä relativ repede. Sub influenta acestor rotatii, conul palelor 
se roteste impreunä cu arborele, avänd ineünarea longitudinalä mai micä cu Aa , iar cea lateralä 

mai micä cu Ab . Astfei, planul&cestei noi Tnclinäri este deplasat in fazä in raport cu planul de 

rotatie cu A\|/, unde: '   -• 
Ab 

tgAv=—L- -.   ■    (7) 
Aal 

De notat cä aceste unghiuri de intärziere transforrriäte in timpi de intärziere: 

Aa 

V 
1 ■'. 

Ab 
1 . Aa 

Pl 
l. Aa, 

pl 
(8) 

reprezintä intärzieri temporale ale rotörului, cu valori obi$nuite de cäteva sutimi de seeundä, 
rezultänd deci cä rotorul elicopterului räspunde promt la comenzi, este manevrabil. 

Fig. 3 Influenta rotatiilorin ruliu si in tangaj 
asupra coeficientilor miseärii de bätaie 

Acum sä consideräm cazul zborului la punet fix, elicopterul avänd o miscare de tangaj cu 
viteza unghiularä q variabilä in timp, caz in care ecuajia diferentialä a miseärii de bätaie devine: 

<*2ß     U   <*ß     o -^ q COS vy - 2q sin \\i + — cos vi/, 
8 dy 

(9) 
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a cärei solufie de forma (1) confine coeficienfi variabili, func{ie de timp/azimut: 

ß = a0(\|/)-a1(y)-cc)Si|7-b1(v|/)-sinv|/. (10) 

Cazul variajiei azimutale sinusoidaie a vitezei unghiulare de tangaj, caz important in analiza 
stabilitätii palei $i a rotorului, a fost analizat de Sissing si Zbrozek [1]. Consideränd aceastä'variafie 
de forma: \ 

q = q0-sin(vv)/) (llV 

ft 
in ecuatiile (9) $i (10), identificänd coeficientii lui sin y §i lui COS v|/, se obtine: 

da. 
-a,+2—J--^ 

db     dAb 

„    J       d\i      8    dx\i     d\\i 
= -2qn-sin(v\|/) *o 

d~a-     y db 
+ 2—f- —^b, +2—L = q.-vCOS(v\j/) 

(12) 

Sissing a demonstrat cä oscilafiile planului conului in raport cu planul de rotate nu coincid 
in fazä cu oscilaiiile in tangaj ale arborelui rotorului. Raportul k dintre frecven{a tangajului si 
IVecvenia de rotate a arburelui rotor, in miscarea perturbatä lipicä de bälaie, este inferior valorii de 
0,1. 

Pornind de la"aceastä constalare, Zbrozek a demonstrat cä expresiile coeficienfllor a (vy) §i 

b(\|/) pot fi aduse la formele: '■' 

'l6* 

b{M- 

\iu 
_    24   dq 

-<J + — -r y     dy 

dq_ 
dy (13) 

Pentru variafia tangajului de forma (11), lermenii doi din expresiile pentru a  si b  sunt 

foarte mici. Astfel, Tntr-o miscare de bätaie perturbatä de un tangaj neuniform, coeficienfii a si b 

sunt proportionali cu q = ql£l, iar rotorul se comportä ca si cänd mijcarea perturbatä ar fi 
slationarä. Astfel, se justificä tratarea cvasistafionarä a mi§cärii perturbate, ca o suscesiune de 
regimuri stationäre, fapt ce simplifies considerabil analiza stabilitätii si manevrabilitätii 
elicopterului. 
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THE GENERAL PROPERTIES OF THE CONICAL MOTIONS 

Richard Selescu* 
National Institute for Aerospace Research "Elie Carafoli" 

77538, Bucharest, 6, Romania 

Abstract - This wort: is a presentation of the results obtained following some research performed in the first half year of 1994, having as object the study 

of the general properties specific to the eonical fluid motions. These properties derive ft™ the general properties of a certain flow, taking into account the 

definition of the conical flow. The cognition of these properties is useful not only for studying the proper conical flows, but also for solving the various 

problems advanced and treated in the framework of the conical motions theory, using the small disturbances approximate method Wo mention that all the 

properties deduced in this work are not based on approximate assumptions, being valid with accuracy on the whole domain of the conical flows, both 
rotational and irrotational. '      '' 

INTRODUCTION 

The first chapter of the work is destined to define the conical motions and their classification from the 
viewpoint of the rotationality. 

The second chapter is effectively dealing with the determination of the general properties of the above flows 
and with the study of these properties. For their deduction, it was started from the general equations established in the 
compressible fluid mechanics for a certain flow: the motion, energy, continuity and flow rate equations. Although we 
have also used the physical equation, we have considered unnecessary to mention it, since it did not constitute the 
object of some special mathematical transformations. 

All the above equations have been written in the spherical coordinates system, having in view the advantage 
shown by this system if it is placed with the origin in the vertex of the conical flow. We mention that all the 
cinematics and dynamics of the tackled conical flows was treated by using the methods and notations adopted in the 
classical mechanics for the study of the material point motion (in this case, a very little fluid particle), therefore using 
the time as an independent variable. 

Considering that the motion is steady, the trajectories of these fluid particles coincide with the flow 
streamlines. 

This treating mode allows making evident some general properties specific to the conical flows, properties 
whose existence would have been more difficult to notice using the traditional methods of the fluid mechanics. We 
also mention, that in numerous situations are obtained some differential equations with partial derivatives, which can 
be sometimes reduced to ordinary differential equations, some of these being able to admit prime integrals. As a rule, 
as it was expected, the respective relations (deduced by artificial consideration of the time as an independent variable) 
do not contain any more the time variable, this being possible to be easily eliminated. 

We shall introduce the following classical notations: 
t - time 
R, 6, a - spherical coordinates of a certain mobile point in the conical flowfield, in the reference system with 

the axes origin placed in the flow vertex 
R, 0, iä, R,0,<i - first and respectively second order derivatives versus time of the adopted coordinates 

VR = R - radial velocity (along the radius vector) 

Ve = R0 - normal velocity (to the radius vector; is contained in the meridian plane) 
V,,, = R sine <a - circumferential velocity (normal to the meridian plane) 

aR=R-R92-Rsin6<B2- radial acceleration 

ae = R6+2R0-Rsin6cos8e>3 - normal acceleration 

a„ = R sin9 u> + 2 sinö R ai + 2 R cos6 9 G> - circumferential acceleration 
p - static pressure 
p - gas density 
y - adiabatic exponent (the ratio of gas specific heats, that isobar to that iscchor, y = Cp/Cv ) 

K. - isentropic constant ( K = p/pT) 

a - local speed of sound ( a2 = dp/dp = yKp'    ) 

W - maximum speed of sound (corresponding to the vacuum expansion) 
 * - potential of respective conical flow (<D = R VR = Rli ), (if existent) 

*> Senior Scientist, Department of Aerodynamics 
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1. CONICAL MOTIONS 

We understand by conical motion (flow) the fluid motion (flow) in which the density, pressure, temperature, 
velocity, acceleration etc, so nearly all the physical quantities, are constant on a vector radius started from the origin of 
axes of a fixed reference system, origin which is placed in a particular point of the flow, called vertex, or focus. In the 
case of the vectorial quantities, like velocity and acceleration, but not the position vector, we understand the 
conservation of modulus, direction and sense of the respective vector along of such a radius vector. 

There are some exceptions from this definition, like the radius vector length at the considered point and the 
second and superior order derivatives versus time of this length, as well as the derivatives versus time of the angular 
coordinates that define the position of the radius vector which is passing through the considered point (sometimes 
improper called angular velocities and accelerations). 

We shall insist on the last aspect of the above definition. It is necessary that all the radius vectors on which 
takes place this invariance of the flow parameters to be concurrent in the same point (the conical flow vertex, or 
focus). Otherwise, even if the above invariance takes place along some straight lines, but which are not all concurrent 
in the same point, then that flow is not conical. 

The conical flows represent an important motion class, especially supersonic. From the viewpoint of the 
motion rotationality. these flows are divided in two big categories: irrotational flows (isentropic in the whole 
considered fluid mass, to these belonging the one- and the two-dimensional flows, both plane and axisymmetric, as 
well as some particular three-dimensional flows, designated in [1] as helicoidal, or axisantisymmetric flows) and 
rotational flows (nonisentropic in the whole considered fluid mass, or isentropic along the stream- or vortexlines only, 
but having different values of the isentropic constant on the different stream- or vortexlines, to these belonging nearly 
all the three-dimensional conical flows). 

2.THE GENERAL PROPERTIES SPECIFIC TO THE CONICAL FLOWS 
2.1. THE FIRST EQUATION OF MOTION 

From the motion equation for a certain three-dimensional flow written on radial direction, taking into 
consideration the conical flow definition, it results succesively the following relations: 

...,,.,       1 dp    „ (1) 
aR=R-Re--Rsin-Gto- = —-r" = 0   ; R pSR 

or 

R—- = 0   ;   or 
dt* 

-   d^R 
Rx—T 

dt2 = R 
d2R 

dt2 
m 

(in a conical flow the acceleration is normal to the radius vector). 
In the case of the plane conical flows, the equation ( 1) may be written successively in the forms 

R-Ra2=0   ; Li = l   , (2) 
dm     dco 

or, in the initially adopted coordinates 
dhiRdln[V^ = 1   ^ (2>) 

do>      dco 
since in the case of these flows, we have in the equation ( 1 ) 

6 = -   ;   =>sin9 = l   and   6 = — = 0   . 
2 dt 

In the case of the axisymmetric flows, the fluid particle trajectory (the streamline) being contained in a 
meridian plane (the phenomenon being independent of»), we have in the equation (1) 

-     d(D    n CD = <o0 = const.   ;   =>a> = — = 0   , 
dt 

in both cases resulting thus successively the same form of the first equation of motion 
dlnRdln|R|_i (3) 

dp     dp 
where ß represents the respective angular coordinate ( ß = <B - for the plane flows, or ß = 6 - for those axisymmetric), 
or 

dlnRdln|VR| _ (4) 

dß      dß 

therefore 
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dlnR dlnR dlnR dln|R| 
arctan = arccot-   , (4') 

dp dp       2 dp dp 

(the curves InRand MR are symmetrically inclined against the first axes bisectrix, for any value of to , or of 9 ). 

<J> = RVB =RR 

In this last case (0 = n / 2 , or a> > 

dRdR-) 

dßdßj 
We logarithmise 

lnR|VR| = lnR + In|VR| = ln|<D|    ; 

we derive with respect to ß and obtain 

t»0 ), the velocity is derived from the potential 

dlnR    dln|VR| dln[<I>| 

dp dß (5) 

If is known, or is given the conical flow potential 1>(ß) , then the classical system compound of the equations 

(4 ) and (5) admits the solution: 

dlnR _ dln^/H     \{dlnjjij 
dß dß dß 

dln|V»l_«H»i/R|  l^M 
dß dß       i      dß 

(6) 

differential equations which can be easily integrated with respect to the variable ß, being thus determined the quantities 

InR and ln|VR|; if we note 

dln^H 
dß 

= coshw 
dp 

1 = sinhw with   w = u + iv 

(where w is a complex variable whose imaginary part coefficient, v, may have only two values: 0 and ir, so that ch w 
becomes a real quantity, ± ch u , with the modulus |ch w| > 1 ), we find another form of solution 

dlnR_ 

dß 

dlnKl 
dß 

£lnj*[ 

dp 

ln- 

ln^- 
VK0 

:fe 
»p    arccosh 

e 

dp'dß R = Roe' £■ 

dp dß ;  vR = vR) 

dp 

* dp 

(7) 

where both VR and VR0 have the same sign, the limits of the above integrals being respectively 

ß0 - the initial value of the angular coordinate (<o or 8 ); 

ß  - the current value of the angular coordinate, for which we must calculate the quantities R and VR 

From the condition of existence for the roots in the solution (6) we have for ß > ß0 : 

j<t>| a <t>0 e
2^-^'   with 

and for ß < ß0 ■' 

|*|s*oe2(p-   ' 

d|«| 
2 2|<D|   ,   or   \<t>\<<b0£-2^ß'}   with   4^<-2|0|   , (8) 

with 
dß      '  ' 

or   |o|>ct>0e' ■2(P-P.) 

dß 

dt 
with   —ä—!• ^ -2[<t>! 

dß '   ' 
(9) 

(where <I>0 = R0VR0 > 0 ), relations which establish the existence domains for the potential C>(ß) (monotonic function 

of ß ) to obtain isentropic two-dimensional (plane and axisymmetric) conical flows, from the mathematical viewpoint 

only. It may be noticed that for both ß > ß0 and ß < ß0 , isentropic two-dimensional conical flows can not exist in the 
domains comprised between the two above exponential curves and respectively, between their symmetric ones with 

respect to both ß - and <J> - axis. In the ( p , <J>) plane, any curve which is representing a variation of the two- 

dimensional conical flow potential <J) with the current ß angle, along a certain streamline (i.e. for a given pair of the 

values ß0 and <t>0 ) must pass through the point ( p0 , <t>0 ), or through its symmetric one with respect to the ß - axis. 

This curve must also to be contained into the existence domain for <J> determined by the relations ( 8 ) and ( 9 ) and 

must satisfy the slope conditions given by these relations. 
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.<% 

A 

-0>„e-2(ß-ßo) 

,2(P-PO) 

^o = R0 vR0 > o 

K////I- existence domain |<D | > <t> 0 c 2 (p ' "•) 

Y/////X- existence domain |<t> | < <t> „ e 2 (p ß•> 

kN\\N0\S- existence domain |<t> | < <t> 0 e-
2'p"p«' 

[\>^V^^1- existence domain        |d> | > O0 c ~J <p - " ° > 
| |- non-existence domain 

with   ^hr-> 2  |<D| 

w ith 

dß 

dJo| 
dß 

£-2    O 

physically incompatible solutions (ß > ßL) 

Fig. 1. The existence domains for the potential O(ß) 
of the two-dimensional ( plane or axisymmetric ) conical flow 
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The minimum possible value of the lower limit of the integrals which appear in the relations ( 7 ) is ß0 - 0 , 

while the maximum possible value of the upper limit of these integrals, ßL , is given by the boundary condition 

h_p = i^ (10) 

JPo VR0 

It can be noticed that in all the cases the unknown quantity pL appears in both members of the equation (10), 

namely in the upper limit of the integral and in expressoin of VRL . 
Therefore we can write another condition for the existence domains of the potential O(ß) to obtain isentropic 

two-dimensional ( plane and axisvmmetric) conical flows 
ßSßL   , 

set this time from the physical viewpoint only (the compatibility of the solutions R and VR - see the Figure 1). 
The plane potential conical flows belong to a particular case of the class of helicoidal or axisant.s>™metnc 

conical flows, namely to that in which the streamlines are some conical helices, contained in the conical sheet of 

equation 
6 = e0 = const.,   ;   with   80 e[0,it]   , 

therefore for which we have 

sin9=sin90 = k   ;   with   ke[0,l]   ;   =>6 = —= 0   , 

resulting for the product of derivatives in the equation (3 ) the value k  . 
The solution of the new system thus obtained is somewhat more general than the preceding one, in the roots 

of the relations (6 ) instead of 1 appearing now the term k* . ... 
Analysing the equation (1) we remark that this last solution is also valid for a sub-class of three-dimensional 

potential conical flows, having the variables 6 and <o bound by the differential equation 

sinO^UWk7^   ,   or   d»=Wk^l-£-   , 
de sine 

with the solution 

a =<o0±-\/k2-llnlan-,   with   |k|>l, 

which represents two families ( + and - ) of hclicoid surfaces in which are comprised the flow streamlines, therefore 

another helicoidal flow. 
The existence domains for ß > ß0 , similar to ( 8 ), of the potential <D(ß) for these two last flow sub-classes is 

adequately modified, becoming .  . 

M^e«'   with   M>2k|o|   ,   or   H^«JI(HJ   with   ^^M   . 

where 0 < k < 1 and respectively |k| > 1 . . 
In the most general possible case are obtained helicoidal conical flows if we have in the equation ( 1 ) 

f(e), or e = r,(<ö)=g(<») , (D 

where by f * we have noted the inverse function off. . 
The solution ( 6 ) remains valid, with the remark that instead of 1 is appearmg now in the roots the square of 

a function h(ß) 2 . 
h(e)=l + sin2e[f'(e)f   or   h(M) = sm-e + [g'(m)] =sin2g(a))+[g'(a)f   , 

the existence domains for ß > ß0 , similar to (8), for the potential 4>(ß) having now the form 

MW^ «* f^(m . or w^Am with &*-2*m ■ 
in which, as till now, ß = 0      or       ß = <u . 

The potential expression is 
<D = RR = RVR. 
In the case of the plane and axisymmetric conical flow, we obtain ^ 
C>.=^ = R'R + RR-=i(R2

+RR) = }(H2
+R2P2)=^2

+^) = f(v^Vp
2) = ^-. 

It results 
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dh^ = ^_=RV^^___V^__\^ + A;^_ vR     Vp 

dß        O      Vp  RVR~VRV„~   VRVp   ~\£"+V 

The significance of the logarithmic derivatives is : 
dlnR     VR      dln|VRJ     V„ 

-w=i" wi'inwhich Vp=Va> or Vp=v 
Let return to the first equation of motion introducing the notation 

<p: = 92+sin28co2 (11) 

the respective equation, written initially in the form (1), becomes 
R-Rcp2=0, • (12) 

where 9 is defined by the following differential relation , 

d<p = ,/de2 + sin29 dco2 = sin9 J( —— j +da2 =sineJ[ dlntan-j +dco2 

the general property (4) becoming thus valid for any three-dimensional conical flow (both potential and rotational), 
instead of the variable ß appearing now the new variable cp. 

2.2. THE OTHER TWO EQUATIONS OF MOTION 

Let consider the system formed by the other two motion equations for a certain three-dimensional flow, written 
on the normal and respectively on the circumferential directions 

ae=Re + 2Re-RsinecosecD2 = 5L; a  = Rsin9<» + 2sin9Rm+2Rcos99cü =-- ^— 
p Rse P Rsineeco 

Multiplying by R 0 and respectively by R sinO <D (both * 0), the two equations may be also written in the form 

R2Öü+2RRG2-R2sin0cos09ffl2 = ---^9;     R2sin296£+2Rsin2eRä2 + 2R2sin9cose9ö2 = --^-6. 
P So p gco 

By adding the equations of the last system, it results 

R2(öe' + sin20äffl+sin8cose9<i2) + 2RR(e2+sin2erä2) = -i-f-^6+-3B.ffll 
p\cß      da    ) 

Taking into account the conical flow definition 
5p_ 

= 0. 
3R 

it results 

spri ̂ Sp . dp 
—Ö + (A = p ae da dt 
The resulting motion equation may be still written 

lR2l(e2
+sin20(Ä2)+^l(92

+sin2e<i2) = -i*. 
2     dt' '    dt v '     pdt 
Using the notation ( 11 ), introduced at the end of the preceding subchapter, the two motion equations are 

reduced in the case of a three-dimensional conical flow to the equation 

2   dt        dt p 
or in the compact form 

R2cjxp + 2RRcj>2+- = 0. (13) 
P 

Then the system of the three motion equations may be reduced to an equivalent one (of only two equations) 

l<p2=0   ;  R2(p9 + 2RR<p2+£ 
P 

where, according to the notation ( U ), we have 

R-R<p2=0   ;  R2(p9 + 2RR<j>2+-E- = 0   , ( 14} 
P 

ive 

v2   IRXVP 
<p2=e2

+sin2eä2=-l(R292
+R2sin29ö2) = -L(v2

+V2) = ^- = J^ 
R '     R2V "'    R2 R4 

and therefore 
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p-, ; r      R x V      V , , - , 

R2        R 

where V„ is the velocity component normal to the radius vector 

It is interesting to signal out that in the case of a plane or an axisymmetric two-dimensional conical flow, the 

system (14) has absolutely the same form, in which we have (j> = ß and respectively 9 = ß , with ß = a> , or respectively 

ß = 9, the quantity p being replaceable by the expression yKpT"'p , obtained from the physical equation, written for 

an isentropic transformation ( p = KpT j. 

2.3. THE ENERGY EQUATION 

The energy equation for a certain three-dimensional flow (indifferently of rotationality) is written in the form 

-(R2
+R2e2

+R2sin2eä2)+—= —   . 
2X '   y-1     2 
In the case of a conical flow, taking into account the first equation of motion (1), equation that we multiply 

by R (* 0). we have 
RR-R2e2-R2sin20(ä2=0   , 

whence results the expression 

R262+R2sin2etD2=RR   , 
which replacing in the energy equation, we obtain 

I(R3+RR)+^L=Wi, 

or also 
ld(RR)   _J XV*_ 

2    dt       7-1 ~  2 
Introducing for the local speed of sound the notation 

where Rp has the significance of radius of the sphere of disturbance propagation, we obtain 

,d2(R2) I^+_Lf« = wl = l4(w2r+2At+B), 
4    dt2       y-ll, dt )      2     4dt2V 

where A and B are some constants. 
We are introducing now the notation 

F = I^!(wV+2At + B-R:!); 

it results 

d: 

dt2    (, dt j 
or, using the notations 

..    d2F dR. 
F = ^f   and R =—-£-, 

dt2 p     dt 
we have the form 

F-Rp=0, 
and, after a series of transformations, the energy equation can be expressed in the case of a certain conical flow in the 
form 

dF dlnl^Li 
(16) 

dR„  dRp 

where 
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F = ^ = LZi.2(wn + A-RR) = I^(w2t+A-RVR), 
dt       4       v '       2   ^ ' 

therefore 
dF              dlnlFJ    n                         dF dtnlFJ 

arctan + arctan—LJ. = —   ;   or   arctan = arccot——   ; (16) 
dR„ dRn      2 dR„ dRD 

(the curves F and lriJFJ are symmetrically inclined against the first axes bisectrix for any value of Rp). 

Replacing the expressions of F and F, the relation (16) may be written in the form 

T-1   d  (w2t2+2At+B-R2)—ln|w2t+A-RVRl = l. 
4   dR/ dRp 

In the case of the plane and axisymmetric flows, the Velocity admitting a potential <&, it will be replaced the 

product RVR under the logarithm sign with this potential. 
Returning to the system ( 14 ) , it is shown that this system admits a prime integral, indifferently of the 

rotationality (nonisentropicity) of the considered conical flow. 
We shall write the second equation of the system in the form 

(R
2

<P<P + RR<jr)+RRtj>2 + - = 0, 
P 

or 

-—(R
2

«>
2
)+RR<J>

2
+£=O. 

2 dt v        ' p 
It results from the first equation of the system ( 14 ) 
.,    R 

expression which we shall introduce in the preceding equation, thus obtaining 

i-^-(RV) + RR+P=0.or        !!(Ry + R*)4 = o. 
2dtv       ' p 2dtv p 

Since we are situated on a stream- or on a vortexline. even in the case in which the general flow is rotational 
(and therefore nonhomenlropic, as that downstream of a curved or a conical nonaxisymmetric shock wave), the 
physical equation specific to the iscntropic transformation remains valid on each flow stream- or vortexline 
(downstream of the respective shock wave), that is 

p = Kp', 
where K (the isentropic constant) differs from a streamline (vortexline) to another; in this case we may write 

.    dp dp     2-     v T-i- p = -t-^ = flp=yKpT  p, 
dp dt 

where a is the local speed of sound: it results 

IA(R
2
+RV-)+VKP-P=O,   or      I1(R

2
+RV)+-^1(P-)=O, 

which admits the prime integral (the energy equation) 

1(R
2
+RV)+^- = H=^, (l7) 

2 y-1 2 

or using the relation ( 12 ) 

1(V|+V2)+-^ = H = - 
2l  R        '   y-1 2 

where the constants H (the total or stagnation enthalpy) and respectively W (the maximum speed of gas) do not differ 
with the stream- (vortex-)line, these two constants being invariants for the whole flow, e.g. in the conical flow behind 
an attached non-axisymmetric conical shock wave, like that produced by a non-axisymmetric (say elliptic) cone 
without angle of incidence, or by a circular cone at angle of incidence.. 

We signal out that in the case of an axisymmetric conical flow, the equation ( 17 ) has absolutely the same 

form, in which instead of cp appears 9 . The essential difference is that the quantity K, which occurs in the left side of 
the equation, is now constant in the whole fluid mass, e.g. the conical flow downstream of the attached conical shock 
wave produced by a circular cone without angle of incidence (homentropic flow). 
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2.4. THE CONTINUITY EQUATION 

We shall start from the continuity equation for a certain three-dimensional steady motion, written in the 
spherical coordinates 

i   a(pR2VR)        i     g(pv9sine)|      1     3(pVj_0 

R2       5R RsinO        39 RsinO     da 
equation which we shall multiply by R ( * 0 ) and in which we shall replace the velocity components on the system 
axes, obtaining 

i a(pR2R) [   l 
R      5R sin6 

d(pRsinee)    5(pRsin9ra) 

ae da 

Taking into account the fact that we are studying a cortical flow and that R, G and co are independent 
variables, we have 

Sp_3R_ 5R    SR    a(sin9) g(sin6) _ d(sin9) _ d(sin9) dt _ 1 d(sin9) 

eR~eR~° '   de~da>~   a©   ~    M ■     se        de        dt   de   e   dt 
Grouping conveniently the terms and dividing by pR( * 0 ), we obtain finally the following general form of 

the continuity equation, specific to the conical flows 

p   „ R    (sine)    56    da    „ , ,a\ 

p      R     sin9     59    da 

where 
/ .•   \    d(sine) - 
(sin6) = — - = cos9 9. 

dt 
In the following, we shall try to express in other form the two partial derivatives in equation ( 18 ). Thus we 

have 
•■    d9     30 •    59 •    58 .        . .   t     ..    da    da ■    da ■    da . 
e=_ = _R+_e +—a and respectively   eo = — = —-R+—9+—ca , 

dt     5R       59      öco dt     6R       59      da 
whence it results 

39 _ 9     30 R    cGö 3oi> _rö    da R    5ffl 9 
SO    0    3K0    %6 da     eö     ÖR CD    da ä 
Taking into consideration the fact that we have a conical flow, there arc the relations 

8y      3(R9) 3VB     5(Rsin9m) 
—E. = _—'. = o   and respectively —— = = 0. 
5R        5R 5R 5R 
Developing, we obtain 

59 .        • 3(sine)    _  .  .dd>    „ 
e + R-—= 0   and respectively   sin9a + Rtt>— + RsinG— = 0, 

5R 5R SR 

or since 9 and R are independent variables, we have ——— = 0 ,and the last relation becomes 
' 3R 

•    „ 5© (D+R = 0. 
5R 

Then, in the case of a certain conical flow, we have 
58 _    9 Sto _   (Ö 

6R ~    R   '    5R       R 

Replacing in the expressions of the partial derivatives — and —-, we shall obtain 
59       dm 

39    9    9 R    59cö_R    Ö_5^<» dä__ä_   i» R    aä 6 ■_ R    m     fti 9 
i'e   18    cto 9 ~R    9    3a> 9 ' da    a    R <o    59 © ' R   <»     59© 

For example, in the case of the two-dimensional axisymmetric conical flow, we have 9*0 and a = 0 , 

resulting thus 
59 R    9 . ' .   .     Sei 
— = —H —;   and respectively   — = 0   , 
59    R    9 da 

being obtained for the equation ( 18 ) the following simple form 

(sine)    Ö 
sinG     9' 
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The equation ( 18 ) is valid for any conical flow, indifferently if this is or is not potential, representing the 
new general form of the continuity equation of these flows. 

In the case of the homentropic certain (nonconical) flow, the velocity V admits (is derived from) a potential 
<I>; the cancellation of the velocity rotational curl is expressed in the spherical coordinates under the symbolic form 

üR       Rüg       Rsinöüa, 

a      a a 
rotV = VxV = -    ' = 0, 

R"sin8 5R        36 Sto 
RVe       RsinOV.. 

from which are resulting the irrotalionality relations 
a(RV6) = avR   .  a(Rsineve) = avR a(Rsin9vJ_avR 

SR 59     ' OR 8a SO  .. a» 
From the first two conditions it results 

V0+R^>=^    ;    sin0Va+RsinÄÄ   , 
J  . 3R      39 * BR      8e> 

and since in the case of a conical flow we have 

ave.. ay.   0 
SR      3R 

it results 

Ve = —5-   and respectively   V„ = —   . 
59 sin9 do> 

Using the adopted notations, we obtain two relations which allow us to express the derivatives 6 and co for 
the potential conical flows in the form 

a     1 3R        A   A       . t                  1      SR 8= and adequately   e> = z . 
R a© Rsin2eao) 

In some particular cases, the equation ( 18 ), written for potential flow, are admitting prime integrals (the 
flow rate equation), the constants Q which appear in these integrals being kept along the streamlines or on the 
stream- (field-) surfaces. 

It results that, in the case of these usual potential conical flows, the equation ( 18 ) is transformed from an 
equation with partial derivatives to an ordinary differential equation, whose prime integral (the flow rate equation) 
may be written in the general form 

pR"sinn-2ßß = C„   ; (19) 

(with ß = 9 , or ß = a . as in the case of the first equation of motion), where the exponent n has the following values 
n = 1 - for the one-dimensional (parallel and uniform) flows ; 
n = 2 - for the plane two-dimensional flows ; 
n = 3 - for the axisymmetric two-dimensional flows, 

the flow rate equation having respectively the forms 

„ = ,   ;   ß = e   ;   p-H. = pJ^ = pv = C1=^   ; 
sinS       sin9 A 

n = 2   ;   ß=a>    ;   pR2cö = pR V„ = Cj = —   ; (20) 

n = 3   ;   ß = 9   ;   pR3sin99 = pR2sin9 Ve =C3 =—   . 
n 

It can be noted that in the equation ( 19 ) corresponding to n = 3 , the quantity % R2 sinO represents just the 

side area of the current circular cone of vertex half angle 9 ; in the expressions of the constants C0 intervene the 
following quantities 

m - the mass flow rate ; 
A - the area of the section normal to the flow velocity; 
/ - the width (depth) of this section. 
An other case of prime integrability of the equation ( 18) is given by the three-dimensional conical flows 

having the variables 9 and co bound by certain differential relation (the so called helicoidal or axisantisymmetric flows 
-see [1] and also the subchapter 2.1). 
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DETERMINING THE LIQUID (WATER) DEPTH 

FOR SATISFYING THE GAS - HYDRODYNAMIC ANALOGY 

Richard Selescu * 
National Institute for Aerospace Research "Elie Carafoli", INCAS 

77538 , Bucharest, 6, Romania 

Abstract The liquid (water) depth necessary for satisfying the gas • hydrodynamic analogy, from the viewpoint of the 
disturbance propagation velocity, is deduced in this work, considering the real physical phenomenon, which consists in the 
superposition of the gravity waves with the capillary ones. Both the direct problem (having as unknown quantity the liquid 
depth and as parameter the ratio between this depth and the wave wavelength) and the inverse problem (in which the roles of 
the unknown quantity and respectively that of the parameter are inverted) are solved Some possible applications of the 
analogy to the hydrodynamics of the supercritical plane two-dimensional flows in liquids of limited depth are presented. 

1. INTRODUCTION 

As it is well-known from the waves theory, the expression of the velocity c of surface waves 

propagation in a liquid is given by the relation (see [1], [5], [6]) 

2    X2    co2    (gX   2TOI
N

1    ,23th 
c  = — = —=  — +  tanh    , 

x2     k2    \.2n    pXJ X 

obtained by considering a simple solution in the form 

f(z,t) = Acos(kz-öt) = Acosk(z-ct) = A[cosk(x-ct)coshky-isink(x-ct)sinhky]   , 

(which admits v|/= 0 for the ground level y = 0, that is on the real axis) for the differential equation with 

partial derivatives due to U.Cisotti, which may be written in the compact symbolic form below: 

^-'fs^M-fr-Ml-o ■ 
by replacing in this equation the above given simple solution and by cancelling its imaginary part, thus 

resulting the condition 

-u)2coshkh + kgsinhkh + sinhkh=0   . 
P 

The following quantities are intervening here: 

z = x + iy - the complex variable in the vertical plane of the motion; t - the time 
f(z,t) = (p(x,y,t) + i \)/(x,y,t) - the complex potential of the plane morion (real on the real axis 

y = 0 of the z - plane) 

A - the wave amplitude 

X - the wave wavelength; x - the period of motion 

k = — - the wave number; <a = the cyclic (angular) frequency 
X x 

g - the acceleration of gravity 

o - the surface tension (the capillary constant) of the liquid 

p - the density of the liquid 
 h - the depth of the liquid.   
*' Senior Scientist, Department of Aerodynamics 
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It can be noticed that the above expression of the velocity of surface waves represents the sum 
(superposition) of two contributions, namely: the first term of the sum is due to the gravity wave, while the 
second term is due to the capillary wave. 

We mention that, till now it was considered that, due to the great value of the wavelength X , the 
second term (the capillary wave effect) may be neglected with respect to the first one (the gravity wave 
effect). 

In this work, that reproduces the chapter 3 of [2] , we propose to consider the real physical 
phenomenon, i.e. that consisting in the superposition of the two above mentioned effects. 

2. SOLVING THE DIRECT PROBLEM 

We shall deduce the depth h of the incident (undisturbed) liquid flow, needed for satisfying the gas 
- hydrodynamic analogy (existent between, the plane two-dimensional supersonic flow of a fictitious 
monoatomic perfect gas and the quasi-two-dimensional supercritical flow in the thin layer at the free 
surface of a little depth liquid), from the viewpoint of the disturbance propagation velocity. 

With the view to doing this, we shall introduce the notation 
27th    M, X = T-=kh   . 

by the use of which, the initial relation becomes 

7Vx)anhx ' 
We shall impose n:.v the condition of equality between the c-:act exprc-'ci of the prupngrKT". 

velocity of the mixed WE-3, given by ih;:; relation, and the appr~ virtue expreß kv. of the prop-gaaon 
velocity of the gravity wave in a little depth liquid, (which is used ra df fining th° liquid flow Fronde 
number, the last one being the analogous quantity with the gas flow Mach number) 

c5=gh   , 
for having satisfied the gas - hydrodynamic analogy, since the expression of the propagation velocity of the 
disturbance (the speed of sound) in gases, and in the case of the fictitious monoatomic gas, is given by the 
relation 

a >=r*T=2-T 

(with N = 2) - the adiabatic exponent of the fictitious monoatomic gas 

V- 
where we have 

N + 2 

N - the number of the degrees of freedom for the respective gas molecules( N = 2 translations 
only). It is the case of the molecules of a gas closed in a container having one of its three dimensions 
negligible, so that these molecules are moving practically in a plane. In order to estimate the magnitude of 
the extremely little distance (gap) needed between the two parallel plane walls of the container, we give in 
the Table no.l , reproduced from [3], the diameters d of molecules of some monoatomic gases, expressed 
in angstroms (1Ä = lO^cm ). These diameters have been computed from the results of measurements of 
the respective gases viscosity. 

Table no. 1 

R - the universal constant of the perfect gases 
p. - the mole (the molecular weight) of the respective monoatomic perfect gas 
T - the absolute static temperature of the fictitious gas with y = 2 , this temperature representing the 

analogous physical quantity with the little depth h of the considered liquid (water). 
It results the following algebraic equation / 
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(f Xjtanhx = gh   , 

or 

*, G 
—X = ghcothx   , 

X ph 
or more 1      ° -+-—TX = cothx   , 

X    Pgh 
with the unknown quantity h , where x is a positive,real non-dimensional parameter, proportional to the 
ratio h/X. 

It results successively 
if l' 

Pgh2 = H cothx - 

and 

h2- 
a X c 1 

Pg cothx- 
1 " 

1 
Pgl 

X 

'    1 

k. tanhx -r 
It must be noticed the fact that the framed formula allows the determining tho depth h of the 

incident (undisturbed) liquid (water) layer necessary for gas - hydrodynamic quantitative analogy (without 
neglecting the capillary wave contribution in the expression of the propagation velocity c , h this formula 
appearing both a and p ). This formula also shows us that, for any value of the ratio h/X. , there is a 
corresponding value h (not always, but usually little) for which the disturbance propagation velocity c has 

the critical value, c = ^/gh . 

One can also notice that in the case when x tends to zero ( h«k ), therefore the case of the large 
wavelength waves (practically infinite), the quantity h2 necessary for satisfying the gas-hydrodynamic 

analogy tends to the value — (which is the absolute minimum value of h  , that is on its whole existence 
PS 

domain), since, by expanding the function coth x in a power series around the origin, therefore inside the 

IM h     0 convergence interval |x| < t, i. e. — < — I, we have 

„       1    X    X3    2X
5      X7 

COUIY =— + + -+.. A    X    3    45    945    4725 
_ y\£_£2k?k-i _  +Y     2t -«-' 

(2k)! K        x   t, (2k)! 
while the difference from the denominator of h2 becomes 

cothy- —= — 1-—+ ——- +.. A   x     31,     15    315    1575 

■» 02lR 
-Y      2k v2k-' 
"£(2k)!  X 

wherefrom results the value of the product in this denominator 

1 u ' ' - cothx-- =- 
XV %J    3 

X     2x4     x 
1- — + ———H 

15    315    1575 ' S (2k)! X 

1 
which, for x tending to 0 , tends to the value - . In all these three expressions we have denoted by the 

symbol B2t the Bernoulli numbers. 

Therefore, we shall have the following conditions for the depth of the incident supercritical liquid 
flow and for the critical velocity in the case of the infinite wavelength waves ( X -> co ) 

and respectively , = -Jgh« 
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which, for water at a temperature of about 20°C , lead to the values 
h„=4.715mm   and   c„ = 0.215m/s   . 
But, as it is well-known, both the surface tension a , and the density p of the liquids, and 

particularly of water, vary with the environmental temperature t, following some physical laws. In the first 
three columns of the Table no.2 we have reproduced from [4] the values of the coefficient a of the surface 
tension of water with respect to the dry air and those of the water density p , for some common values of 
the environmental temperature t, inside the interval contained between 0 and 34°C. 

In the last three columns of this table, we have written down the calculated values of the ratio — , 
P8 

expressed in mm2 , those of the depth hB necessary- for satisfying the gas - hydrodynamic analogy, 

expressed in mm and calculated by applying the previously established framed formula, as well as those of 

the critical velocity of surface wave propagation, c„ = -y/gh^ , expressed in m/s , therefore for the case of 

infinite wavelength waves. For the acceleration g of gravity, we have considered the value 9.80665 m/s2 

= 9.80665 N/kg , corresponding to a 45 degrees latitude. 
Table no.2 

t(°C) a (dyn/cm) p (g/cm3) 
—-lO'fmm2) 
Pg               ; 

h„ (mm) c„ (m/s) 

0 75.49 0.99987 7.6988 4.806 0.2171 
5 74.75 0.99999 7.6225 4.782 0.21655 

10 74.01 0.99973 7.5490 4.759 0.2160 
12 73.70 0.99952 7.5189 4.749 0.2158 
14 73.41 0.99927 7.4912 4.741 0.2156 
15 73.26 0.99913 7.4769 4.736 0.2155 
16 73.11 0.998970 7.4628 4.732 0.2154 
18 72.82 0.998623 7.4358 4.723 0.2152 
20 72.53 0.998232 7.4091 4.715 0.2150 
21 72.37 0.998021 7.3943 4.710 0.2149 
22 72.22 0.997799 7.3806 4.706 0.2148 
23 72.08 0.997567 7.3680 4.702 0.2147 
24 71.93 0.99732 7.3545 4.697 0.2146 
25 71.78 0.99707 7.3410 4.693 0.2145 
26 71.63 0.99681 7.3276 4.689 0.2144 
28 71.33 0.99626 7.3009 4.680 0.2142 
30 71.03 0.99567 7.2745 4.672 0.2140 
32 70.74 0.99505 7.2494 4.663 0.21385 
34 70.44 0.99440 7.2233 4.655 0.2137 

One can notice that the variation with the temperature of the depth h„ of the water incident 

supercritical flow, necessary for satisfying the gas - hydrodynamic analogy, is negligible (between 4.806 
mm and 4.655 mm , therefore of only 3.24 % ), while the corresponding one of the critical velocity c„ of 
surface wave propagation is totally insignificant (between 0.2171 m/s and 0.2137 m/s , therefore of only 
1.61 %). 

In the case % = n (the upper limit of the convergence interval for the series expansion of the 
h*    1 

function coth x ), therefore — = — , we immediately obtain the following formula: 
X*    2 

h*2 = - 
coth 7t - 7CCOth7t-l pg 

° * 4.583376—* 1.527792 hi 
Pg 
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wherefrom it results 

h»=  ,      " —g2.140882.1—g 1.236039h„   ;   >* = 2h** 4.281764.— «2.472078h 
Vrccothit-l \ pg y pg ™ \ pg 

and correspondingly, the value of the critical velocity of surface wave propagation 

:7g^*«V1-236039Sh»allll773Vg'^=lnl773c«   • 

3. SOLVING THE INVERSE PROBLEM 

Of course, one may also set the inverse problem, this consisting in calculating the value of the ratio 
X previously defined, for a given value h of the liquid •■depth of an incident supercritical flow. 

In this case the roles of the unknown quantity and respectively that of the independent non- 
dimensional positive parameter are inverted, the algebraic equation with the unknown h becoming a 
transcendental equation with the unknown % . 

This equation may be solved approximately by appreciating as satisfactory (from the viewpoint of 
the accuracy in the calculus of the solutions % ) the expansion in a power series of the function coth % and 
the keeping of only first five terms of this expansion, thus being obtained a bicubic algebraic equation 

o   = 1   X2 , 2%4     X6 

pgh2    3   45   945   4725   ' 
which, by effecting the substitution 

X2 = Y>0 
is transformed in the following cubic algebraic equation, with the unknown quantity Y 

_Y^__2Y^   Y___l_     a 

4725    945    45   3   pgh2 ~      ' 
or more, using the notation h„, (previously introduced and framed) 

(    h2~) 
Y3-10Y2+105Y-1575 1-rf =°   > 

V    h ; 
solvable by applying the Cardan's formulas, keeping only the positive solution of this approximate 
equation. One may notice that in the case h = h„ , it is obtained the trivial solution Y = 0, and respectively 
X = 0 , previously mentioned (the case X -> «J ). This means that our approximate equation accurately 
satisfies for % = 0 the same boundary condition as the original transcendental one. 

In the case when the values of the non-dimensional positive unknown quantity % are expected to be 

(very) close to the value ft , this meaning — (very) close to — , it is recommended to expand the function 
X x    " 2 

coth x in a power series around the point x = t (the upper limit of the previous convergence interval), 
therefore in a Taylor series, and to keep a number of only four terms 

i ~jt r (\      ~\ 
cothx = cothft- . ,,    l-cothft-(x-ft)- --coth25i|x_ft) 

sinh TIL vJ ' 

- = —icothjc 
pgh2    x I s^2 ft 

obtaining thus the following quartic algebraic equation 

l-cothft-(x-ft)-[j-coth27tjx-ft)2J--j 

which may be solved by applying the Hudde's formulas, keeping only the positive solution of the above 
approximate equation. We can easily see that for the value x = ft , the above equation satisfies the same 
boundary condition as the original transcendental one: 

o        if    .       f 
- = — cothft-- 

pgh*2    Jtv 

where by h*, as previously, we have denoted the liquid depth in the case — = —. 
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4. SOME POSSIBLE APPLICATIONS 

All the results obtained in the Chapters 2 and 3 of this work have a special significance, the gas - 
hydrodynamic analogy being applied in the experimental aero - gasdynamics of the plane two-dimensional 
supersonic flows. Their applications consist in the qualitative determining (visualization) of the shock 
waves and expansion fans pattern, as well as the determining of the characteristic physical quantities of the 
jumps performed through normal or oblique shock waves, corresponding to that of the respective 
hydraulic jumps obtained in the analogue plane quasi-two-dimensional supercritical liquid flows of little 
depth. The experiment must be achieved in a horizontal channel with a free surface, using in the upstream 
a sluice-type nozzle, which produces a test section flow with a very smooth surface and also permits to 
adjust the water height upstream the sluice gate, this adjustment is needed to give the possibility of 
varying the velocity of the incident supercritical liquid flow in the channel, and therefore the Froude 
number F, of this undisturbed flow, always keeping the same depth h„ at the upstream end of the channel 
(downstream the sluice gate), and therefore the same critical velocity c„ of the incident flow. 

In order to avoid the horizontal flow non-uniformity due to the boundary layer which appears and 
develops itself on the floor and the side walls of the channel, it is suggested for this floor the use of a 
moving belt, having in its cross section the profile of the letter C and the same sense of displacement as the 
liquid flow. The linear velocity of this belt must equalize the free surface potential velocity of the 
undisturbed supercritical liquid flow (of magnitude V«, = F^c^, ) in the channel, having the little depth h„ , 
so that the vertical gradient of the horizontal flow velocity would be as small as possible. 

5.   COMPARISON WITH OTHER RESULTS 

Some authors ( [5], [6] ) have tried to solve the direct problem by using an experimental way. 
Thus, A.H.Shapiro concludes that "the analogy method is reliable only with water depths of the order of 
0.25 inch" ( = 6.35 mm ). His "experiments show that with this depth the measured Froude number is 
consistent with the Froude number obtained by other methods, but with larger depths the wave angles give 
incorrect results". Citing a paper by Th. von Kärmän, the author asserts that "for this height the capillary 
waves behave most nearly like gravity waves; second, depths of a foot or more may be used (requiring 
proportionately larger channels and models), with the aim of making the gravity waves so large that 
capillary effects are secondary". A.O.Ditman & coll. "recommend to use a depth of undisturbed liquid layer 
h = 6 mm ; for this depth the velocity c practically does not depend on X and is given by c2 = gh". In the 
opinion of the author of this work, both values are overrated, they ignoring the floor boundary layer 
thickness, their experiments being performed without any kind of moving belt in order to avoid this layer. 
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Flow of a Ferromagnetic Fluid in an axial 

magnetic field 
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Abstract 

We investigate theoretically the flow of a magnetic fluid in a horizontal 

circular pipe in the presence of a longitudinal magnetic field using the equations 

of quasi-steady ferrohydrodynamics derived by Neuringer and Rosensweig. The 

solution is compared with the results presented by S.Kamiyama. 

1. Introduction 

Ferromagnetic fluids are a suspension of many particles of a solid 

ferromagnetic material (diameter » 10 nm and number density « 1023 

particles/m3) coated with a molecular layer of a dispersant and suspended in a 

liquid carrier. 

Pipe flow problems of magnetic fluids in an applied magnetic field are 

important as the basic studies of hydrodynamics of magnetic fluid and as the 
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problems related closely to the development of applied devices such as new 

energy conversion system. 

2. Theoretical analysis 

When the magnetic fluid is placed in a field H, the particle is acted upon 

by the torque u 0 (m x HJ which causes a magnetic moment m in the direction of 

magnetic field H. 

If we assume that the magnetization M of the magnetic fluid is collinear 

with the magnetic field H the system of equations for magnetic fluids establisched 

by Rosensweig [1] is : 

• the continuity equation 

V-u = 0 (1) 

• the equation of motion 

D5 
p = -VP + TIV

2
ü + U0(M-V)H 

Iff V ' Dt 
(2) 

• the Maxwell equation 

VxH=0   V-B = 0 (3) 

First we consider the steady laminar pipe flow in an axial magnetic field 

Hz(z) as shown in Fig. 1 

Fig. 1. Cylindrical coordinate system. 
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The basic equations (1) - (3) are applied to this problem. 

With the continuity equation (1), the equation of motion (2) reduces to: 

dp       1 d (  dO        A,   dHz 

Let us introduce the following dimensionless quantities: 

l   =—,  z  =—, u2 =—, h  -— , p   =         (5) 
r0 

z0 u0 M0max ^0 

Here ro is pipe radius, uo is mean flow velocity and Mo is the equilibrium 

magnetization expressed by the Langevin function L: 

M0 = NmL{^) (6) 

where L(§) = cth£ - fc"1, % = u0mH/kT 

Then, equation (4) is expressed as 

dp*     »o\M      H     M.^l = J_.d 
m

0maxrlmaxJY1z £' V j   * umax      max       z   j   * *   j   * dz      TIU0 dz      r   dr 

Applying the boundary condition of u* = 0 at r* = 1 to equation (7) we 

obtain the solution as 

k, 
K=-4(r'2-l) (8) 

where 

k = fr_M!Mo_HmaxM;^ (9) dz       r|u0 dz 

Applying the continuity equation, the velocity profile is represented by 

< = 2(l-r*2) (10) 

If we give up at the dimensionless quantities, we have the solution as 

(11) uz(r) = 2u0 1- — 

where the mean flow velocity is 

u0mz     , , 
Uo= fi—^rS (12) 

8TI 

The same problem was presented by Kamiyama [2], [3]. On these papers 

the description of motion of a magnetic fluid is made with basic equations 

proposed by Shliomis. 
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Tli^t is, equation of motion which have an additional rotational friction 

term 

equation oi internal angular momentum: 

DS 

= -Vp -t- rt V2Ü + |I0(M ■ V)H + — V x (S - Ki) (13) 

^=(i0(filxH)-- (S-m) + yV2S (14) 

and the following equation for dM/dt 

i>M=2(sxM)-J-fsi-M0H] (15) 
Dt      IV '    TBI °Hj 

where 

S - internal angular momentum 

n - local angular velocity of fluid 

I - sum of moment of inertia of particles per unit volume 

T s - relaxation time of particle rotation due to frictional resistance of fluid 

T. B - Brownian time of rotational diffusion 

1 

The solution have the same form (11), but the mean flow velocity is 

--       »,%      " <16> 

This solution show that the viscosity increases according to Kamiyama [4], 

with 

Ari = — cpTi0  (17) 
2     '°l + Ah*L* V 

4 
where     (p = — rca3N     is     the     volumetric     concentration     of     particles     and 

"■ = f-lOTs'rB"ma.\Momax/I- 

This rotational viscosity (17) have the order of T]0 (the viscosity of the 

carrier liquid). The difference between TJ and At| for a few sets of magnetic fluids 

according to Vekas [5] is of order two. 

The solution (11), (12) is an exact solution of this problem which is very 

important from the mathematical point of view. 

On the other hand, when we resolve the system of equation (13) * (15) a 

few approximations is must be done. 

- 392 -r 



3. Conclusions 

If we put AT| as a correction to r\, from the beginning in equation of motion 

(2), we will obtain (11), (16) as an exact solution for the first set of equations. This 

step can be a good simplification for problems with not so simple geometry. 
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MATHEMATICAL PECULIARITIES IN MODEL ISSUES 
OF AGGREGATION PROCESS OF TRIVALENT 

IMPURITIES IN CUBIC SYMMETRY MONOCRYSTALS 
NaCl-TYPE 

by 
Gheorghe Dorm Stoicescu 

Faculty of Science, Lucian Blaga University of Sibiu 

In the ionic crystals doped with aliovalent impurities are induced 
vacancies in order to compensate the electric charges. These vacancies place 
themselves in the nearest neighbourhood of the first sphere of coordination 
(positions nn) or in the second sphere of coordination (nnn -next nearest 
neighbour). In this way dipols impurity vacancy (I-V) are formed, with 
electric moment different from zero. In determined conditions of temperature 
the dipols diffuse in the crystal and agglomerate to form dipolar complexes of 
variable proportions. 

The agglomeration of dipols io acoompamatod by tho modification of 
the optic, electric, and mechanical properties of the material The dipols' 
diffusion in the crystal is produced through the jump of vacancies, which 
change their place either with the own atoms of the basic net or the impurity 
atoms. The more the dipols agglomerate, the more the dielectric absorbtion 
decreases, because in an electric field the isolated dipols absorbate energy in 
the process of reorientation jumping, while in the case of coupled dipols the 
reorientation jumps are more difficult, They suffer some supplementary 
reciprocal interactions, which are proportional with the complexes extenrion, 
to whom they belong. 

The theoretical description of the experimental observations made in 
the case of doping with bivalent impurities (structures of type I-V) is 
excellent realised by the model proposed byStasiw and Teltow [1]. 
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In the case of doping with trivalent impurities (structures I-2V), the 
presence of two charge compensatory vacancies in the neibourhood makes 
the mentioned model becomes inoperant. 

In our studies only the vacances placed in the nn positions were 
considered. In this approximation are formed four distinct structures, called 

a,p\y,S in the order of decreasing energy of coulombian interaction. 

According to the Boltzmann distribution of vacancies on structures it 
can be noticed that only three structures present significant populations. The 
share of the a structure is, compared with the y one, of an 10"* order at the 
300 K temperature. 

To determinate the expresion of polarisation, in both constant field and 
in variable field, it has been considered as follows: 

• all the vacancies induced are coupled with the impurity ions; 

- the 1-2V structures are isolated; 

- the transition probabilities between the different kinds of structures 
(without field) depends only on the structure; 

- there ore considered only the transitions produced by the jump of only 
nne vacancy and. fiirthermnre.. only nn a Hi«t»nr/». of a\/7 (a k rtir 
semiconstant of the christaline network); 

- a vacancy changes place with the impurity ion through several jumps 
and this leads to structures in which the vacancy places itself in a nnn 
position (a jump on a distance superior to aY2) and therefore they are 
omitted; 

- the jumps of one vacancy are realised with a transition frequency vy 
(between the /and the j structures). In the case of the jumps only on the 
distance a\15 only the transitions v„, vßr, vrß, v^ and v*, remain different 
from zero; 

- the jump frequencies can be described like the processes of thermic 
activationby relations of Arrhenius; 

- because the quotient wgA»ß depends only on the interaction Ei and Kjt 

it will result that: 
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Ay^, ^p[(e;-£j)/l<Tj 

- in the presence of the external field, the dipol's energy depends both on the 
structure and on the configuration inside the structure: 

r lf'c) — -+ 

- the presence of the external field determines an asymmetrisation of the 
potential barrier, 

- it is considered the weak field approximation, so the transition probability 
between the U type in the ii structure and the t% type of the i2 strructure is 
influenced in the following way: 

This permits that the variation ecuations of the populations in the 
presence of the field can be obtained from those written in the absence of the 
field, by introducing the modification; 

With all these considerations there have been obtained ecuations of 
variation of the populations for the different structures and active types, in 
the presence Of Itic field Fiuin these ccuationc there has bp»»n afterwards 
deduced tho fi.«ctiono sum  <j and difference D for the populations on the 
same structure 
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In the weak fields approximation the presence of the perturbator 
parameter x=qaE/kt »I permits the development of the solutions in a 
series of powers of x and t. Therefore in the liniar approximation in x the 
differences are proportions with the external field E. 

This is a very important conclusion for the case of variable fields. 

By using these considerations thre have been written the temporal 
evolution ecuations, and it has been noticed that the populations Npu, N&.,, 
Nm ,Nr+ , Ns * - (the notation also indicates the orientation of the dipolar 
momentum in the field) do not variate and remain to their equilibrium 
values. 

From the fact that the projection for the dipolar electric moment is zero 
in the types ß00, ß+ -, y+ -,öoo, ö+.. it results that the polarisation can be 
(^scribed by the relation: 

where the D Junctions represent the difference in the populations for the 
studied structures. 

The solving for the evolution ecuations for the differences of 
populations results in two different solutions: 

Wt * 
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which indicates the presence of two modes of relaxation in the considered 
model. Therefore the time evolution for the D, differences can be described 
through relations of the following type; 

TKO nniaWcatinn in rnnstant field can be obtained as an expresion of 
the kind: 

where ^are expresions which contain exclusive the transition probabilities 

between the active structures. 

In the case of variable fields, by using th analiticity of the solutions as 
functions of the field and time it can be obtained the variation in weaktield 
and slowly variable, as well as the complete dependence of to and the 
relaxation times: 

?m- il A-i£ \-ii c-Ä- - 

-  AU t±h i j-z 

cj    M+wV      A+bftl 
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rr 
where & represent factors which are dependent exclusively on the 
frequencies of jump. 

Brun and Dansas [2] treated the same problem, but they considered in 
the beginning the equilibrium status in constant field and followed (studied) 
the relaxation produced by the elimination of the field. In this way there has 
been avoided the hypotheses regarding the modification of the probabilities 
induced by the modification of the field. By considering also the stuctures 
formed with the vacancies placed in win positions they have obtained an 
equation system whose dimensions made impossible the deduction of the 
population implicated in the different relaxation modes. 

By working in the other alternative ( using the equilibrium status in the 
absence of the field and following the evolution of the system, if the field is 
introduced) it can be obtained the result wich is in accordance with those 
obtained by Brun and Dansas, which can constitute a verification of the 
hereby proposed model. 

But in adition it is directly exploited the extension of the deduced 
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UNIFORM ROTATIONS OF A 
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Abstract 

We are cc ncem-sci by the uniform rotation-, o; «, rig".i body oi a 
liquid filled spacecraft with a fixed point when the spacecraft is com- 
pletely or partially filled with an incompressible, , inviscid or viscous 
fluid. 

0. Introduction 

The problem of the rotation of a liquid filled spacecraft is a classical prob- 
lem . This problem was subject of theoretical and experimental investigations 
begining with the end of XlXth century . The investigations were stimulated 
by the developement of the spatial industry . Important contributions are in 
the papers of: Greenhill, Hough, Poincare, Cetaev, Moiseyev, Rumiantsev, 
Sobolev, Greenspan , etc. The most of this studies concern the problem of 
the stability of an assumed possible uniform rotation . 

The purpose of this paper is to find the uniform rotations of a rigid body 
or a liquid-filled spacecraft with a fixed point in a constant force field . We 
consider the cases when the spacecraft is completely or partially filled with 
an incompressible, inviscid or viscous fluid. 
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I. Uniform rotations of a rigid body about a fixed point in a 
constant force field 

1.0 Introduction 

Let O be the fixed point , / the body force per unit mass , / the inertia 
tensor of the rigid body with respect to 0 , D the rigid body domain, G the 
mass center of the the rigid body and M the mass of the rigid body. 

We introduce two coordinate systems, the first 71(0, e*t,e^, o>,) in which 
we have : 

(/.l) <*        f 

11/11     ' 
and the body-coordinate system 7l'(0, e[', eV, e3'). 

We also denote zo the angular velocity. 

Definition A motion is called a uniform rotation if 

(1.2) 57 = w0 

w0 constant in 7c and xSo ^ 0. 

Remark 1.1 If we have a uniform rotation then there is a body-fixed 
coordinate system 7Z"(0,e['\ ej", c^") with 

(/.3) e3 

I. 1 Uniform rotations 

The equation of rotation of the rigid body is 

Then for uniform rotations we have : 

(/.5) t5o x Ita0 = MOGo x / 
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0 ... e 

with Go position of the mass center for uniform rotations. 

Let us denote XIQ,X2G,X3G the components of OGQ in %" and 6)676 
the components of e3 in 71". 

Remark 1.2 The components of WQ in 71" are 0,0, C70. 

The projections of the relation (7.5) on the axis of 71" are: 

-/23^2o = Mf(x2G^3 - *3G6) 

(7.6) 7i3G72o = M/(x3G6 - xlG&) 

0 = XIG& - ^2G6 

with7 = £-i=I7^®4 
Let us denote (ip,ip,6) the Euler's angles of ft" with respect to 71. We 

obtain: 
£1 = sinOsirvp 

(7.7) £2 = $in0cos(p 

f3 = cos6 
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For a uniform rotation , if we use the kinematic Euiei's formula , we 
obtain 

(7.8) ¥>(t) = w0t + tp0 

with <£>o as a constant. 
Using the Euler's angles we obtain for the uniform rotations the following: 

(/\9) Ii3&2o = Mf(x3asin6sin(xziot + y0) - xJGcosO)) 

0 = sinO(xiGCOs(-cc0t + <fo) — X2Gsin(xv0t + y>0)) 

Theorem 1.1 If we have a uniform rotation with XBQ as the angular 
velocity and 0 ^G then WQ || /. 

Proof 1 

If XIG -fi 0 or XIG 7^ 0 then the relation (/.9)3 implies: 

(/.10) sinO(t) = OVt 

then 

(/.ll) 0(0 €{0,»} 

If aric = x2G = 0 we obtain: 

(/.12) x3G ^ 0 

antl 

/•  uj- 

(/.13) ,-.  °   = sinO{t)cos{ta0t + yj0) 

- 403 - 



r 2 

(/.M) -,'j   °   = sinO(t)sin(w0t + <^0) 
Mjx3G 

and 

(7.15), 5*n2fl(0 

hence 0 is a constant and by the formula (I.\4)(Iuihi, M, .f,.?.-^ &o are 
constants) we obtain sinO(t) = 0 and: 

0€{O,7r} 

Proof 2 If we have X\G ^ 0 then : 

(/.IT) &-S2& 

(M8) fe = ^_l£^L 

but 

(/.19) ^i +^2+^3 = 1 

then 

(/20)     *;0+f+4,g _ gj^£6 + '■>'■.-f^ = o 
K      J *\G MfxlG M2f2x\G 

f i is a continuous function which satisfies (1.20) for all t, then d is a constant 
in 71", hence e^ is constant in TV' 

We also have: 

(7.22) ("if ^" = ^° X c* 
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hence 

(7.23) ^o I! / 

The same argument is also possible (or the case x2G ^ 0 

If we have X\G - *IG - 0 then: 

.       hz™ o 

(7.25) it 
lvzn\ 
Mfx3G 

The above proof is based on the formulas (7.19), (7.21) and (7.22). 

Theorem 1.2 It is possible a uniform rotation about an axis parallel to 
/which contains 0 if and only ifthe point G is on the axis which is parallel 

to /and contains the point A {OA = ~§pU)- 

Proof 
We have : 

(7.26) 6 = 6 = - 0 and £3 = 1 

The relation (7.6) becomes: 

(7.27) lie : 
7i3E7 0 

MS 

X2G- 
ly^ 0 

The result is an immediate consequence. 
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Theorem 1.3 If 0 - G it is possible a uniform rotation with w0 as the 
angular velocity if and only if to0 is a main direction for /. 

Proof 

In this case the equation for the uniform rotation is: 

(/■28) w0 xlw0 = 6 

II. Uniform rotations of a completely liquid-filled spacecraft 
about a fixed point in a constant force field 

Let us consider a rigid spacecraft and an incompressible fluid . 
We consider firstly the model of inviscid fluid and secondly the model of 

viscous fluid. 

We denote 0 the fixed point , / the body force per unit mass , / the 
inertia tensor of the spacecraft with respect to 0 , T the fluid domain , p the 
fluid density, G the mass center of the total system , M the mass of the total 
system , A'0 the angular momentum of the total system with respect to point 
0 , M0 the moment of the forces with respect to point 0 , v the absolute 
velocity of the fluid , n the outer normal direction of the surface dr. 

We note ft(0,ei,ejt,e3) the space-fixed coordinate system with : 

(II A) e3=   * 
11/11 

, 71/(0, eJ/,eV,eV) a spacecraft-fixed coordinate system and ro the angular 
velocity. 

A motion is called a uniform rotation if: 

(''•'2) <3 ---- rö*0  constant 

and 

(//-3) u = w0xO> inr 

- 406 - 



Remarkll.l If we have a uniform 
body motion. 

ILL Uniform rotations 

rotation then the system has a rigid 

The equations of the problem for a inviscid fluid are: 

dK0 
{IIA) dt 

= Mo 

(U*) 
du 1 ->    ,   - . 

dt        p 

(//6) divv = 0 in T 

UI.7) vn - (w x OP)n on dr 

and for a viscous fluid we have : 

dKo 
(II.8) dl 

= Mo 

(JJ.9) 
dv        1 -    ,     A -> .  / • _ —yp +uAv+f mr 
dt        p 

- 407 



{11-10) divv = Q inr 

(7/-H) ?=(5x0>) ondr 

with f the kinematic viscosity. • 

Remark II. 2 We have: 

(^•U) A/o - A/OG' x / 

Remark II.3 For a uniform rotation we have: 

(^•14) K0 = (I+J)w 

(11-15) J£ =    A/>0> X (üJXÖP)dT 

The uniform rotations for a inviscid fluid or a viscous fluid are defined 
by: 

(//-16) tsa x (/ + J)4, = jl/OGo x / 

and 

(77.17) xS0 x (ü70 x OP) = —vp + f inr 
P 

Remark II.4 We have: 

(//.IS) tu0 x (ro„ x 0>) = --v(c?o * 0>)'2 

("-19) / = v(/ö>) 
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then for a uniform rotation we have the equation: 

w„ x (/ + J)xS0 = MOG x / 

and the fluid pressure is: 

(//.20) p = £(w0 x OP)* + p/0> + Po *'" ^ 

with PQ a constant. Using the theorems of the first chapter we have immedi- 
ately: 

Theorem II. 1 If we have a uniform rotation with x30 as the angular 
velocity and O ^ G then w0 || /. 

Theorem II.2 An uniform rotation about an axis parallel to f which 
contains 0 is possible if and only if the point G is on the axis which is 
parallel to / and contains the point A (OA = —^k{I + •/)/)• 

Theorem II.3 If 0 = G an uniform rotationis possible if and only if x30 

is a main direction for (/ + •/)• 

Remark II.5 For a uniform rotation we denote H"(0, e", e'^ e'^) the body 
fixed coordinate system with: 

(J/.21) e1;' -- 

We have: 

(11.22) (^)R» = e3 x t£?o 

The projections on the axis of %" are: 

6 = ^06 

(//.23) 6 = -O7o£i 

6 = 0 
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then we have the constants Ai,^,^, A],^ so: 

£i(i) = Aicoszo0t + A2sinwot 

(2.24) &(*) = A3cos&<it + Aisinw0t 

m=As 
Wc note Xy,Z2,X3 the components of a. fluid particle in TZ". We o!>tain: 

(11.25) 

p= -—- (Xi+l2)+/,/(^lCT5rooH^25mn70f).ti+/)/(/43C05C7o<+i44SmCToO:r2+/'/>l5T3+pJ 
It 

therefore: 
If 0 7^ Go (i.e.roo || /) the fluid pressure is constant. 
If 0 = G ,the fluid pressure is time variant. 

HI. Uniform rotation of a partially filled spacecraft about a fixed 
point in a constant force field 

We use here the notation of the previous chapter and introduce: (dr)w 
the fluid boundary on cavity wall; (dr)p the free surface and 

(/J7.1) F(P,t) = 0 

as the equation of the free surface. 

ULI Uniform rotations 
The equations of the problem for an inviscid fluid are: 

dK, 0 (//«) -jf=* 

(III A) di = ~^p + f mr 

(111 A) divv = Q inr 
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(///.5) 
—* 

vn = (07 x OP)n on (dr) w 

(7/7.6) p = Po on (dr)jr 

(IIL7) vn + —^— = (C7 x C/P)n on (<9T)F 
llv^ll 

Remark ULI F is defined in the body-fixed coordinate system. 
For a viscous fluid we have: 

(J//.8) 
dKp 
dt = Mo 

(7/7.9) 
dv        I -       — _ 
— = —VP + / + "Aü inr 
at        p 

(7/7.10) divu = 0 in r 

(///.ll) u = (t5 x OP) on (drV 
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(///.12) Tn = ~p0n on {dr)F 

(III.U) vn + —J— = (w x 0~P)n on (dr)F 

llv^ll 
with T = — pi + p(S/v + (V^)') ^h M the coefficient of viscosity. 

Definition A motion is called an uniform rotation if: 

(///.14) da = tSo constant 

and 

(7//.15) v = c?0 x OP in T 

RemarkIII.2 If we have a uniform rotation then the system has a rigid 
body motion.In this case we have <\/v + (sjvf = 0. The uniform rotations 
for a inviscid fluid or a viscous fluid are: 

{111.16) tu0 x (/ + J)röo = MOGo x / 

and 

(7//.17) WQ x (W0 x OP) = —VP + / in r 

(ULIS) p = po on (BT)F 

dF 
(111.19) -^ = 0 on (dr)F 

:••■ Remark III.3 For a uniform rotation we have the fluid pressure: 

(11.20) p = |(wo x 0"Pf + pfOP + pi in T 

then the equations are (JJ7.16),(///.18), (///.19) and (///.20). 
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Theorem ULI If we have a uniform rotation with xB0 as its angular 

velocity then w01| /. 

Proof On the free surface we have: 

2 
pQ-^-(xl+xl)+pf{AiCoswot+A2sinwot)xi-\-pf{A3cosw0t+A4sinwQt)x2+ 

(7/7.21) +pfA5x3 + p"Q 

we obtain: 

F{t,xhx2,x3) = ^{x\W2)+pf{AiCosrzQt+A2sinvQt)x)L+pf{AzcosvQt+ 

(7/7.22) +A4sinwQt)x2 + pfA5x2 + p*Q - Po 

and 
(777.23) 

—{t,xhx2,xz) = -pftxoiA^ + A&Jsinwot + pfMAiXi+A^)005^ 

Actually we have on free surface: 

AiXi + A3I2 = 0 

A2Xy + AAx2 = 0 

This relation implies: 

(777.25) Ax = A2 = Az = A, = 0 

If we connect it with the relation (77.24) we reach to: 

(777.26) 6=6 = 0 
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Theorem III.2 An uniform rotation about an axis parallel to / which 
contains 0 is possible if and only if the point G is on the axis which is parallel 
to / and contains the point A (OA = —jfy{I + «/)/). 

If we have a uniform rotation then the equation of the free surface is: 

{II 1.21) F(t,xhx2,x3) = Ar* + xl)+pfx3 + pl 

Proof Using the theorem 1.2 wc obtain the necessary conditions for a 
uniform rotation. 

If the condition are fullfilled then the relation (111.16) is fullfilled. The 
relation (7//.20) and (///.18) imply (111.28) and in this case (111.19) is 
fullfilled. 
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ON NUMERICAL MODELLING OF WALL BOUNDARY 
CONDITIONS IN SOLVING WIND TUNNEL WALL 

INTERFACE PROBLEM 

BOSKO RASUO 

UNIVERSITY OF BELGRADE 

It is well known that even the best wind tunnels do not provide the 
flow over a model that would exactly simulate the free air stream 
condition i.e. to be the same as the flow in free air. Hence, the problem of 
wind tunnel wall interference accompanies experimental and theoretical 
investigations when designing a wind tunnel as well as during its 
operation. 
An survey physical and mathematical properties of various types of wind 
tunnel walls is given in this paper. The paper discusses some newer 
developments, but concentrates mainly on the specification of wall 
boundary conditions that are of importance for the calculation of wall 
interference. 
In this paper a single expression approximately representing the 
boundary conditions of solid, porous and slotted walls and an open jet 
have been developed. Also, discussed are wall boundary conditions 
experimentally determined by measuring static pressure distribution at 
the vicinity of work section walls. 
Linearized compressible-flow analysis is applied to the study of wind 
tunnel wall interference for subsonic and transonic flow in two- 
dimensional test section having closed or ventilated (slotted or porous) 
walls. 
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APPLICATION OF CENTRAL LIMIT THEOREMS TO MACROTRANSPORT 
PROCESSES 

BY C. TIMOFTE 

Department ot Mathematics , Faculty uf Physics, University of Bucharest, 
Bucharest-Magmek, Romania 

Abstract. Using a central limit theorem we shall describe a large class of material and non-material dispersive 
phenomena occuring in macrohomogeneous systems. More precisely, we focus on the diffusions X, generated by an 

operator L = 1/2 £ ay(x)0s/8i,-0ij + E £Mi(x)Ö/&r,- having periodic coefficients. A central limit theorem asserts 

that A
_1

/
2
(XA, - XUobt), i > 0, converges in distribution to a Brownian motion as A -too. HereJ> is the mean of 

b(x) = (ii(x),..., bk(x)). This article analyzes the functional dependence of the dispersion matrix D of this limiting 
Brownian motion on the velocity parameter U0 and the period_"a". We shall give precise analytical conditions on the 
geometry of t; 's which determine the asymptotic behavior of Di} 's as functions of a (70.The results are shown to apply- 
both for material and non-material dispersion phenomena. Dispersion coefficients are computed in several examples 
which provide closed-form solutions of Djj and exhibit their expected growth as functions of a U0. 

l.Introduction. Based upon a rigorous, physicomathematical description of microtransport processes occuring 
m heterogeneous systems, macrotransport processes describe a large clas3 of material and non-material dispersive 
phenomena occuring in macrohomogeneous systems. 

Applications of macrotransport theory are presently recognized in numerous fields of scientific and engineering 
research. In the last years, the application of microcontinuum theory to increasingly complex macrocontinuum 
systems has underlined the need for a wider theoretical context than previously provided by classical microtrasport 
theory. 

Various methods have been developed for obtaining the macroscale behavior and properties of some heterogeneous 
complex systems. These include the method of moments, the homogenization method, the statistical and volume- 
averaging methods and the probabilistic methods based on central limit theorems ((1), [2], [4], [6]). 

We shall present now a probabilistic method based on a central limit theorem for Markov processes ([2],[9]). 
More precisely, we focus on the diffusions X( generated by a differential operator: 

^sE^Wg^+E^Mx)^ (l.i) 

whose coefficients satisfy the following assumptions : 
(1) The matrix ((a,j(x))) is symmetric and positive definite. 
(2) The functions oi;(x) and t,(x) are real valued and periodic, i.e. ai;-(x + v) = afj(x), 6,(x + v) - 6,(x) 
for any x and any vector v with integer coordinates. 
(3) The functions oi;(x) have bounded second order derivatives and 6;(x) have continuous first order derivatives. 
(4) f/0 is a real parameter. 
Let (fi, A, P* ) be a probability space on which are defined : 
(i) - a random vector X0 with values in R* and distribution *'. 
(ii) a standard k-dimensional Brownian motion B(<) = (Bi(t),..... Bk(i)) which is independent of X0 . 
Let {X(t),t > 0) be the solution (continuous and nonanticipative ) of Ito's stochastic integral equation : 

i i 

X, = X0 + ju0b(X(s))ds+ I c(X(s))dB(s) (1.2) 

o o 

where <r(x) is the positive square root of ((a,j(x))). 
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The periodicity of the coefficients allows us to work on the state space T* = [0,1}' with the process 
X(() = X(i)(mod 1) having a transition probability density function p'((;x,y) and an invariant probability density. 
ir(x)on [0,1)* such that : 

/ 
p(*;x,y)7r(x)rfx = ir(y)      a.e. on [0, l)1 (1.3) 

|0,1)* 

Let us consider the real Hubert space Z!([0,1)*, n) with the inner product : 

</,?)= / /(y)j(y)»(y)rfy (i-*) 

10,1)» -.    ... 

and let {Tt,t > 0} be the strongly continuous semigroup of contractions on tln3 space, defined by : 

(7i/)(x) =  j P(<;x,y)/(y)dy , for x 6 [0, l)fc (1.6) 

A central limit theorem asserts ([2]) that under the assumptions (l)-(4), no matte: what the init:?! distribution T
7 

is, the stochastic process: 

{Z^r^fXx.-AC/oib)   ,   <>0} (1.6) 

converges weakly, as X -> oo, to a Brownian motion with zero drift and dispersion matrix D = ((Dy)) given by : 

Dij = -l/0
! ((-,-, S;> - Ul (bj, 9i) + «y+ 

+ 
(0,1)' 

/ v° {«GOE ^(My))+»(y)E £(*<(*)*(*))}dy (1.7) 

vhere : 
*i = (M    ,       !<»'<* (1-8) 

läö = (ay,l)    ,       1 <«,/<* (1.9) 

In (1.7) </; is the unique solution in V^ f\ l1 of the equation : 

Agi = bi-'bi (1.10) 

and A is the infinitesimal generator of the strongly continuous semigroup {Tt,t> 0} on the domain V^. 
In the particular case when divb(x) = 0 and the diffusion matrix is a = al, with a a strictly positive constant and 

I the it x k identity matrix, the dispersion coefficients are given by : 

~Bij = -VZ(bilgj)-VZ(bj,9i) + a (1.11) 

If, apart from the velocity parameter I/o, we shall introduce a spatial scale parameter a, we shall be especially 
interested in the functional dependence of the asymptotic dispersion coefficients Dy on these two parameters. 

As we shall see in §2, By depends only on the product aUo, the result being in accordance with all the experimental 
studies that have been done. _ 

We shall give precise analytical conditions on the geometry of 6; 's which determine the asymptotic behavior of Dy's 
for large aUo- 

The results are shown to apply both for material and non-material macrotransport processes. 
The objective in §3 is to show how central limit theorems such as described above can be used successfully in the 

study of solute macrodispersion in periodic media. Specific examples are given to illustrate the computation of the 
macrodispersion coefficients By as function of aUo- 

The last section deals with the application of central limit theorems to thermal dispersion problems in periodic 
media. 
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The possibility of generalizing the macrotransport theory to such non-material processes has been demonstrated 
by introducing the notion of a generic conserved tracer entity, termed a "thermion" in the case of internal energy 
transport([4],[9j). 

By explicitly acknowledging the fktitional or real existence of such a generic conserved tracer entity, we are able 
to extend the traditional methods underlying material macrotransport processes and, thereby, we get, by analogy, a 
macrotransport paradigm for thermal transport phenomena. _ 

Dispersion coefficients are computed in two examples. The first one provides a closed-form solution of Dy .while in 
the second example the dispersion coefficients Dy are shown to exhibit their expected growth as functions of aU0- 

2. The functional dependence of the asymptotic dispersion coefficients on the velocity and spatial 
scale parameters. The dependence of the asymptotic dispersion coefficients Dy on the velocity and scale parameters ' 
Uo and o has been studied experimentally in laboratory colamns and in many field situations for various models of 
heterogeneous porous media. 

In 1989, R.N. Bhattacharya, V.K. Gupta and H.F. Walker ([3]) show that for the case of solute dispersion in periodic 
porous media, the macroscale dispersion matrix E depends only on the product aUo- An extension to a more general 
class of diffusion processes is given in ([9]). _    _ 

Let the large scale dispersion matrix D be denoted by D = D(a, Uo) to indicate its dependence on the spatial 
scale and velocity parameters. It is proved in ([9]) that if a central limit theorem holds for the solution X(t) of Itö's 
stochastic equation : 

f dX(t) = Vob (X(i)/a) dt + <r (X(<)/o) dB(t) (2.1) 

'  \x(0) = X„ (2-2) 

then D depends on a and Uo only through their product aUo- 
In particular : 

D(a,[/0) = D([/o,«) = D(al/o,l) (2-3) 

This interchangeability of velocity and spatial scale parameters in the large-scale dispersion matrix enables us to 
consider that the spatial scale parameter a is held fixed at o = 1, while the velocity parameter Uo is allowed to vary. 

A more precisely analysis of the functional dependence of Dy on these two parameters can be done in the special 
case when ay's are constants and t.-'s are continuously differentiable periodic functions satisfying the condition : 

divb = 0 (2-4) 

Taking the period of 6; to be one in each coordinate, we can work on the state space T = [0,1)' with the invariant 
distribution ir(x) = 1. 

Let V denote the following operator : 

Hi>*fe (2-5) 

In this case, the macrodispersion coefficients are given by : 

Dij=aij-Uijgi(x)(b1(x)-lj)dx-U0
2jgi(x){bi(x)-bi)dx (2.6) 

T T 

We shall work with the following spaces of complex-valued functions on T ([3]): 

H° = J/i / / |/.(x) |2 dx < co, fh{x)dx = D 

and h satisfies periodic boundary conditions- > 

(2.7) 
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and : 

Wo) = vl j|| (0-74II? +£ Y^m\ (219) 

Such expressions are given in ([3]) for the special case of solute dispersion in periodic porous media and in ([9]) for 
a more genera! class of diffusions generated by a differential operator of the form (1.1), whose coefficients satisfy the 
conditions : 

(1) Oij are constants and the matrix ((ay)) is symmetric and positive definite. 
(2) 6; are continuously differentiable periodic functions satisfying the condition divb = 0. 
It is obvious that Eij(U0) = 0{V$) if < (P_1/i)jv. (P~7i)jv >i/ 0 and £,,({/(,) = o(l/0

2) otherwise. 
We also note that N is just the null space of b • V in H1. 
Proposition 2.1. If /,- 6 H1 f|N, then either /; = 0, in wjiich case Eij(U0) = 0 for each j, or Eii(U0) - 0(U$). 
Proof. Since /( e H1 f) N, it follows that : 

(/i,p"7i), = -//<W,*t (2-2°) 
T 

If /,- = O.obviously £,;(C/o) = 0, for each ;. 
If U f O.then (V-lfi)n 10 and finally, £(,(£/„) = 0(t/„J). 
The converse proposition is also true. 

As an operator on H1 , b • V has the range H in H°: 

K - {/ G H0// = b • VA, for some ft € H1} (2.21) 

Theorem 2.2. If/f € ft, then : 

lim «,((/„) =11 *i 111 (222) 
i/o-*oo 

where fcj is the unique element of H1 flN1 such that /( = b • V/ij. 
Also, fot i ^ j : 

J £tJ(i7o) = 0(Uo)aVo(hi,V-lfi)l (2.23) 

\ Eji(Uo) = 0((/„)~-f7o(T»-7i.*<), (224) 

for large Uo- 
In particular, if the inner products in (2.23) and (2.24) are zero, then Eij(Uo) and Eji(Uo) are o(U0). 
Proof.Since fr 6 7J, it follows that: 

A. = f>A (2.25) 

00 

Vifi = Hhi = 1£i\n-nn9n (2.26) 

and : 

Then: 

For j £ i, we get : 

lim EH(V0) =  lim VI £ i*iM = £ | 7!« |2=ll h ||? (2.27) 

CO     'Tf   \ /? °° 

Wo) = % £ 7^;":Jn = 0(%) =f % X>„?,B = Uo (huV-ifj)l (2.28) 
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Wo) = VI III (P-V4 II? + £ J1^} (2-19) 

Such expressions are given in ([3]) for the special case of solute dispersion in periodic porous media and in ([9]) for 
a more general class of diffusions generated by a differential operator of the form (1.1), whose coefficients satisfy the 
conditions : 

(1) a,j are constants and the matrix ((oy)) is symmetric and positive definite. 
(2) hi are continuously diffeientiable periodic functions satisfying the condition divb = 0. 
It is obvious that £j/(f/0) = O(f/0

2) if < (V~l
U)N,(V~l

!J)N >I# 0 and £,j((/0) = o(l/0
2) otherwise. 

We also note that N is just the null space of b • V in H1. 
Proposition 2.1. If /; € H1 f|N, then either /f = 0, in wjiich case E;J({/O) = 0 for each j, or Ea(Uo) = 0(U$). 
Proof. Since ft € H1 f)N, it follows that: 

(fuV-'ti^-jm^x (2.20) 
T 

If /; = 0,obviously Eij(Uo) = 0, for each j. 
If U ± 0,then (P-Vi)w # 0 and finally- E«lVo) = 0(U%). 
The converse proposition is also true. 

As an operator on H1 , b • V has the range U in H°: 

ft = {/ e H0// = b • VA, for some h 6 H1} (2.21) 

Theorem 2.2. If /j e ft, then : 

lim  fti(tf.HIMI? <2'22) 

where ht is the unique element of H1 flN1 such that f\ - b • Vft;. 
Also, for i£ j : 

Eij(U0) = 0(V0)~Uo(hilV-1fj)1 (2.23) 

EjiiUt) = O(U0) ~ -UB (V-'fj, />,), (2.24) 

for large I/o- 
In particular, if the inner products in (2.23) and (2.24) are lero, then £,j(C/o) and Ejt(Uo) are o((/0). 
Proof.Since /( 6 R, it follows that : 

fcj = f>»*» (2-25) 
n=l 

oo 

p-7i = /"»i=X!iA""«»*» (226) 

and : 

Then : 

For j £ i, we get : 

M ft(Do) = Ä DJ £ klgl = J] | 7i„ I-,! A,1|? (2.27) 
[To—oo tfo-«>       ~  1 + ^j^ö 

w») =u" £ i?!SfJ"=0(cfo) s c/° £* J>"= üo M'Wi (2-28) 
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and: 

fy(fo) = -Vo £ T^ff^ = 0(y») * -% f>n7,-„ = -Po (P"7i, *<>, (2.29; 

for large U0 ([9]). 
These results are extensions of those given in ([3]) for the case of solute dispersion in periodic media. 
A more precisely analysis of the asymptotic behavior of the dispersion coefficients Di;- as functions of al/o can b< 

done if we make more restrictive assumptions about b ([3],[9]). 

3. Asymptotics of solute dispersion in periodic media Let us consider a non-reactive dilute solute injecte' 
into a porous medium saturated with a viscous incompressible fluid under laminar flow conditions. 

Assume that the evolution of the solute concentration C(l,x) is governed by the following parabolic differentia 
equation : 

«    A„    d2C     A„, ix\6C 

subject to some initial condition: 

C(0,x) = C0(x) (3.2) 

In (3.1), ((Dfj)) is a positive definite symmetric matrix, Uo and a are strictly positive parameters and i>; are 
continuously differentiable periodic functions satisfying the condition div b = 0. 

As we said before, we can take the period of t,- to be one in each coordinate. So, the scale parameter o is held fixed 
at a = 1, while the velocity parameter Uo is allowed to vary. 

Analyzing the asymptotic behavior of C(t, x) for large t is equivalent to analyzing the asymptotic behavior of the 
Markov process X(t) defined by the associate Itö's stochastic equation, for large t. 

So, using a central limit theorem we get another partial differential equation with constant coefficients which governs 
the solute concentration for large t. This equation is called (Ae Fickian approximation or the macrolransport equation 
and can be expressed as : 

•j=i      ' i=i 

Here, U = (7ob is the large-scale velocity and Dy are the large-scale dispersion coefficients, given by the above 
central limit theorem in terms of the coefficients Dy and.(/o&i (see eq. (2.6)). 

A similar result can be done in the case when the coefficients Dy are periodic functions satisfying the assumptions 
(l)-(4) . In this case, the macrodispersion coefficients Dy are given by (1.7). 

We can also include in this analysis the case when we have an external force contribution F by introducing the 
effective velocity : 

Ü = U + M-P (3.4) 

The hydrodynamic mobility dyadic M is given by the Nernst-Einstein-Planck relation : 

with kß the Boltzmann constant and To the absolute temperature. 
More, the external force F is assumed to be chosen such that to assure the spatial periodicity of U ([9]). 
As a concrete example, let us consider the case of the pure molecular diffusion of a non-reactive solute in a spatially 

periodic porous medium. 
We shall take the molecular diffusivity dyadic D to be isotropic, D = D(z)l, with D(z) an integrable nonnegativt 

definite function which is periodic with the period lt. 
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Using the formulas given by the previous macrotranspott paradigm we get 

l, 

o 

I, 
033 = 

J D(U) 

:0,    foranyi^j,   t.j = l,3 

(3.6) 

(3.7) 

(3.8) 

As a second example, we shall consider the problem of the dispersion of a spherical particle of radius o, settling 
under the influence of gravity in an unbounded fluid, the latter undergoing a spatially periodic circulatory convective 
motion. 

In the absence of the particle, the undisturbed incompressible spatially periodic fluid velocity vector field u(r) 
satisfy the condition : 

/ 
u(r)dr = 0 (3.9) 

over the volume T0 of a periodicity unit cell, r being the local position vector of a point within this cell relative to its 
centroid. 

More, u is supposed to satisfy the quasistatic Stokes equation. 

We shall take the molecular diffusivity dyadic of the form D = 01, with D = -—. 

For the low-Reynolds number flow, the instantaneous sedimentation velocity U(r) of the sphere whose center is 
instantaneously situated at the position r may be determined via Faxen's law as: 

with: 

and : 

U = UM + -  
oir/ia 

F = (pP-p/)Vg 

the net gravitational force on the sphere of density pf and volume V = 4ira3/3, in a fluid of density pj. 
It can be proved that U is periodic and satisfy the conditions : 

(v-u = o 

- /u(r)dr 
TaJ 

F 

(tupa 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

where Tu is the volume of the unit cell. 
Using the general theory previously given, we get : 

6jr;ia 
(3.15) 

So, the sphere will, on average, sediment through the fluid at a settling velocity appropriate to a quiescent fluid, 
despite the presence of a local convection and a molecular diffusion. Thus, circulatory vortices in a macroscopically 
quiescent fluid cannot influence the mean settling velocity of the sphere. 
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For low Peclet numbers, using again a central limit theorem and an expansion in Bloch functions, we get ([9]) : 

1     A UnU„ 2 -1+_L_ y ^£ + O(D-3) (3.16) 

where the symbol £ indicates the sum over all the integer vectors n ± 0. 
The vectors Kn are given by : 

K„ = (riiS! + n2s2 + n383)r0
_1 (3-17) 

with «j   (;' = 1,2,3) the reciprocal lattice vectors defined such that: 

In (3.16) Un are the Bloch coefficients of the spatially periodic velocity field U„, determined from the known function 

LI» via the quadrature : 

U„ = - /UM(r)exp(2*iKn ■ r)dr (3-19) 
TO J 

TO 

To the order indicated, this agrees with the result obtained in ([5]) using the method of moments. 

4. Thermal dispersion in periodic media. We shall extend now the macrotransport theory based on a central 
limit theorem to internal energy transport processes. . 

The possibility of such a generalization to non-material processes rests upon the analogous nature or the microscale 
phenomenological description underlying their transport. . 

It proves useful to contemplate the concept of a "tracer" for all forms of continuous transport, material or otherwise 
and, thereby, to establish a Lagrangian view both for material and non-material processes. 

The viability of pursuing such a novel Lagrangian perspective in thermal dispersion problems has been demonstrated 
by introducing the notion of a generic conseved tracer entity, termed a "thermion" in the case of internal energy 

11 ByPe°xpl'ritly acknowledging the existence of such a tracer, we are able to extend the previous results to internal 
energy transport processes and to establish a macrotransport paradigm for thermal transport phenomena. 

In this case, the microtransport equation governing the evolution of the temperature T(:,x) may by represented 

as: 

*f+v.,.. («, 
with: 

3 = pcpVT-KT-VT (4-2) 

subject to appropriate initial and boundary conditions. 
Introducing the Green's function p(t;x,y) by which the actual temperature field may be obtained: 

T(t,x) = y(pcp)(y)p(«;y,x)T(0,y)rfy (4-3) 

T 

and considering the associate Itö's stochastic differential equation, we see that pcpp may be interpreted as the condi- 
tional probability density of the thermal tracer. 

This connection between the temperature T and the probability density pcpp allows us to use the previous central 
limit theorem to get the desired Fickian approximation of the equation (4.1), the macrotransport coefficients pcp, U 
and K? being expressed in terms of appropriate quadratures of the microscale data ([9]). 

As a first particular example, we shall consider the problem of pure conduction in a layered medium (I9j). 
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The medium is assumed to possess thermophysica! properties which vary only in the z direction, i.e.: 

f P = />(*) 

cP=cp{z) 

KT = KT(z)I 

(4.4) 

(4.5) 

(4.6) 

and the phenomenological coefficients p, cp and KT are supposed to be integrable nonnegative definite periodic 
functions, having the period I,, 

KT 
With a = —,tfie evolution of the temperature T(t,x) will be governed by the following equation: 

?L-    (¥lA.¥li.d2l\       1  d,<TdT 

dt     a\dz* + dy* + dz*) + pcp  dz  dz (4.7) 

subject to the initial condition T(0, x) = To(x). 
Using the general formulas given by the above central limit theorem we are led to the following expressions for the 

effective volumetric specific heat pcj; and the effective thermal diffusivity dyadic a: 

Wr = J- I K")^(u)du (4.8) 

and: 

«11 = «22 : 

f p(v)Cp(u)du   o 
o 

/ /t'r(u)du 

»33 = 

fp(u)Cp{v)iu   /j^jjjrf« 

, Ofjj- = 0, for any : f j,    i, j = 1,3 

(4.9) 

(4.10) 

(4.11) 

As a second example we shall consider the problem of internal energy dispersion in a two-dimensional periodic 
porous medium saturated with an incompressible viscous fluid having the velocity field U(x) = fJob(x) given by([9]): 

Mz.y) = 2 - cos(2;r(sin(2jrz) - y)) 

Mz,S/) = 27rcos(2;n)-6i(z,y) 

(4.12) 

(4.13) 

We assume that the spatial scale parameter a is held fixed at o = 1 and the phenomenological coefficients p, cp and 
KT are strictly_positive constants. 

Obviously, &i = 2 and 62 = 0. 
For this example, closed-form solutions of the macrotransport coefficients 5jJ cannot be obtained. 

^ However, the analytical theory developed in §2 shows that, as U„ — 00 ,än = a + O(C/0
2),ö22 = a + 0(\) and 

"12 = «21 = o(Uo) 
This example reflects the influence of the geometry of the flow curves on the asymptotic behavior of the macro- 

transport coefficients. 
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ABSTRACT 

Using the expressions for the works of external and internal forces and after the 
integration over the cross section six equilibrium equations and a seventh one relating 
the constrained torsion are derived for a thin walled beam with an arbitrary cross 
section taking into account the general sectorial coordinate's. After the introduction of 
virtual displacements, the expressions for longitudinal displacements and 
corresponding strains are obtained. The attempt is made to investigate the influence of 
the second, order terms and the dependence of these effects on the shape of the cross 
secton. The obtained relations are applied to the cross section looking like a modified 
turbine blade section and it is shown that it is not recomended to neglect the influence 
of the secondary effects. Additional terms if taken into account have nonnegligible 
effects on the level of stress components especially in some particular cases of cross 
sectional shapes like those considered in the chosen example. 

1. INTRODUCTION 

Classical approach [1] to the theory of thin walled open section beams is extended 
in [2] by including the secondary sectorial coordinates. That procedure is still linear 
and it is extended in [3] to the second order theory for a thin-walled member with an 
open cross section having an arbitrary polygonal middle line. The similar approach is 
applied in [4] to the cross section with an arbitrary curvilinear middle line and with 
linearly varying thickness. 

Here the attempt is made to investigate the influence of the second order terms 
and the dependence of these effects on the shape of the cross secton with more complex 
variation of the thickness. 

2. BASIC ASSUMPTIONS 

According to the classical linear theory of thin-walled open section beams [1] 
normal stresses in cross sections are constant across the wall thickness and are 
proportional to the sectorial coordinate. More complex stress distribution [2] is 
obtained if the secondary sectorial coordinate is introduced assuming its linear 
distribution across the wall thickness. 

Initial assumptions of the theory of thin walled beams are supposed to be valid: 
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{1} Cross sections do not change their shapes, or in another way, their projections to 
their initial planes behave like rigid plates. {2} Shear in the middle surface can be 
neglected. {3} Elements initially orthogonal to the middle surface stay orthogonal and 
straight during the deformation of the middle surface. 

3.  DISPLACEMENTS AND DEFORMATIONS 

3.1 Displacements during the deformation 

If i| (index i = 1, 2, 3) are unit vectors of two centroidal principal axes of the 
cross section and of the longitudinal axis of the beam respectively, X| are material 
coordinates of an arbitrary point which is not in the middle surface, u* is the 
displacement vector, than position vectors r*, before the deformation, and R*, after the 
deformation, are defined by 

r* = Xj*   .   i,, (index i = 1,2,3) (3.1) 
R * = r * + u* (3.2) 

If 5 ip (> = 1» 2) are displacement components of an arbitrary pole P in directions 
of the axes xs (i = 1, 2) in the plane of the cross section, tpp is the rotation of the cross 
section around the pole P, and taP" is the generalized sectorial coordinate [2], the 
position of the same arbitrary point after the deformation (3.2) can be written as 

R* = (x,*+u,*)i„ (3.3) 
u,* = 5ip-/ + (xJ*-xip)<pp,    (i = 1, 2; j =/= i). (3.4) 
U3* = - §ipXi"-q>p   Op* + Wo,        w0 = w0(x3). (3.5) 

3.2. Virtual displacements and deformations 

When virtual displacements 

ü" =   ü ,"    i, (3.6) 

are aplied to the points of the deformed beam the quantity R* (3.3) becomes 

R* = (x ,* + u ,* +   Ü ,*) i „ (3.7) 
u, * = §lP-/ + (xj*-xJP)<pr. (3.8) 

Shear e^ in the middle surface and E^J in the longitudinal plane orthogonal to the 
middle surface introduced into the assumption {2} give 

e.3 = R„   R,3 =   u,„ (x, + UI),J +  üi,3 (x, + uO» = 0 (3.9) 

or, if developed, 

- U3>« (1 + USA) = «PP' [Xi X2>, - X2 Xj,. + XZP XlÄ - Xip X2>1 + Ui X2>. + + X, U2>, + Ui U2>, + 
*2P Ui,. - U2 X,,, - X2 U,,, + U2 UM - Xip U2 J + <pp [x2p,, Xj.3 + X2P>, Ulj3 + X2P,3 Xlf. + X2P,3 
Hi* -   *1P,. X2pj - X,p,, U2>3 - x1PrJ x2>s - x,p^ u2,,] +     4IP' (*1 + «0» +    §2P' (*z + u2)„, 

(3.10) 

and into the assumption {3} 

£„ =   R„*  R.3* =    Z,„*(x, *+ u,*)* +   ü„3*(x,*+ ui*),. = 0 (3.11) 
or 
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- U3,.* (1 + 113,3*) = <PP' [*1* X2>.* - X2* X,,.* + X2P X,,.* - X,P X2,„* + Ul* x2,.* + X,* 
U2,.* + Ul* U2,«* + X2P Ul,.* - U2* X,,c* - X2* Ul,,* U2* Ui,,* - Xip U2,.*] + <pp [X2p,e XlJ* + 
X2p,„ Uj^*+ X2P^ Xi,..*+ X2P^ Ui,«* -     Xip,. X2-3*- XiP,e U2>3*- XiPi3 X2,.*- X,PT3 U2,«*] +       £ip' 

(xi*+ u,*)„ + £«.' (x2*+ u2*),.. (3.12) 

(...)' = d/dx3; (...) , i = a I d x, ; (i = 1, 2, 3) ; (...),. = 3/3e; (...), ,=3/3s 

4. EQUILIBRIUM CONDITIONS 

If A is the cross sectional area, cr3i (i ="1, 2; 3) stress components in the cross 
section, and p load acting over the middle surface, virtual work W of external forces 
and U of internal forces for the given virtual displacements u* are 

W = JA (CT3.3   ü* + cr3   ü<,)_dA + J,   p   ü ds (4.1) 
U  = - JA (CT33   e33* + CT.3   Sv»") dA. (4.2) 

After the introduction of real and virtual displacements and deformations into 
W + U = 0 (43) 

an equation of the following form will be obtained 

H, w 0 + H2 E, p + H3   Ti P + H4 q> p + H5 £ P'+ H6 r\ P + H7 q> P' = 0 (4.4) 

The functions Hi (i = 1, 2, .... 7) defined by long expressions after some neglections 
become 

Hi = JA {CT33' - [CT31 §IP' + CT23 SIP' - (CT31 x2 - x2P) - cr23 (x j - x1P)) tpp']} dA + J. p 3 ds, 
(4.5) 

H2 = JA {CT31' - {CT23 <PP - (5P' - <PP' (X2* - x2P)) CT33]} dA + J. pt ds, (4.6)) 
H3 = JA {CT23 - [cr3i q>p - (£2p + <PP' (*I " Xtp)) <*»]'} dA + J, pj ds, (4.7) 
H4 = JA {CT*3 (XI - xlP) - CT31 (x2 - x2P) + KIP <*23 - ?2P cr3i - CT33 (£IP* (X2 - x2P) - 
- ^2P'(X! - X,p)) + q>p' CT33 (C*i - x,p)2 +  (x2 - x2P)2)]'}dA + J, [p2 (x, - X,P) - 
- Pi (x2 - x2p) + SIP P2 - ?IPPI- <PP (Pi (xi - xjp) + (x2 - x2p))]ds, (4.8) 
H5 = JA {CT33' xl* - CT3, - cpp[CT33' (x2* - x2P) - CT^I + CF33' (SIP + x2P q>p) + 
+ g x,*} dA + J. P3 [xl - <pp (X2 - x2p) + ^ip] ds, (4.9) 
H« = JA {CT33' x2* - CT23 + q>p (CT33' Xi* - CT31) + CT33' (S2P - x,p <pP) + g' x2*}dA + 
+ S. P3 [x2 + q>p (x2 + <pp (x, - XIP) + ^jp] ds, (4.10) 
H7 = JA {CT33 «op* - CT3, (x2* - x2P) - CT23 (Xi - x1P) + 2 civ» <pi>' e + 
+ SIP (CT33' x2* - cr23) - §2p (CT33' x,* - CT31) - cr33' (£iP x2P - £»> x1P) + g' eoP* } dA + 

+ J» P3 [ö>P + SIP (x2 - x2P) - £ar (xi - x1P)] ds, (4.11) 

with g = CT31 KIP'- epp (x2* - x2P)] + a23 [?2P'+ q>p'(xi - XJP)]. (4.12) 

From (4.4) and (4.5) - (4.11) the following equations are obtained: 

F3' - (Fi SIP' + F2 S*p' + M3 <pP')' + p3 = 0, (4.13) 
F,' + [F3 (SIP' + x2P <pP') - M2 (pP' - F2 cpP]' + p, = 0, (4.14) 
F2' + [ F3 (?2p' - X,P <pp') + M, q)p' + F, <pp'J' + p2 =0, (4.15) 
Ms' + [ F2 SiP - F, §JP - SIP'( M2 - F3 x2P) + S2P'(M, - F3 x1P) + cpP'(F3 iP

2 + 
+ 2 Mi pi + 2 M2 ß2 + B ßa>)]' + m3 + p2 SIP - pi §2P - <pP m3 = 0, (4.16) 
Mi' - Fi + m, - <pP (M2' - F2 + m2) + (F3' + p3) (SIP - x2P <pP) + D, = 0, (4.17) 
Mi' - F2 + m2 + <pp (Mi' - F, + m,) + (F3' + p3) (S^ - x1P <pP) + D2 = 0, (4.18) 
B' - Mm + ba> + SIP (M2' - F2 + m2) - SJP (Mi' - Fi + mi) - 
- (F3' + p3 ) (SIP x2P - SIP x1P) + D3 = 0, (4.19) 
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Fi (i = 1, 2, 3) are two transversal and one axial force, Mi (i = 1, 2, 3) two bending 
and one torsional moment, B the bimoment, mi (i = 1, 2, 3) distributed bending and 
torsional moments around the axes x,, Mco warping moment, m„ distributed warping 
moment, expressions Ds, ip

2 -2   ßi and ßea are defined by 

D, = JAg'x,dA, 0-1.2); D3 = JA g' <a p* dA, 

Pi = (JA X,*(X, *2 + X2 ** ) dA) /2 J2 - x1P< 

ß2 - JA X2   ( 
xi 

ßco = JA <O p * ( Xi 

*2 + x2 "2 ) dA) / 2 J, - x1P 
! + x2*

2)dA)/2J,-x2P, 
x * 2 + x2 *2 ) dA) / J to , J » = JA ö> p*2 dA. 

(4.20) 

(4.21) 

Ji are principal moments of inertia and Jm sectorial moment of inertia [2] for the 
secondary coordinates X| *2 (i = 1, 2) and CD P*. 

Six differential equations (4.13) - (4.18) are equilibrium conditions and the 
seventh one (4.19) is the particular equation for the constrained torsion of the 
thinwalled"beam. 

Linearizing some expressions, neglecting the influence of bending and warping 
shear stresses on the deformation, using relations [1], [2}, [6] between Mi (i = 1, 2), 
B, §ip (i = 1, 2), q>p' and tpP", and taking the shear center for the pole P the equations 
(4.13) - (4.19) reduce to 

m3 = J, [P2 (xi - x1P) - pi (x2 - x2P)] ds; 
n»3 = J. IP» (*I - XIP) " Pi («2 - XJP)] ds; m B = J.pj a p ds (4.25) 

and are differential equations of the linearized second order theory for the considered 
thin walled beam. 

S. NUMERICAL EXAMPLE 

The above mentioned and derived expressions are applied to the thin walled beam 
with a cross section based on the shape of a turbine blade [6] section (Fig.l). 

Fig.l Fig.2 
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The section (Fig.2) considered in the numerical example has a curvilinear middle 
line and variable thickness which is supposed to be defined by 

t (s) = t (cp ) = t0 {1 - ( 1 - t,/ t0 ) [1 - (1 - <p / ot) " ]} (5.1) 

Geometrical caracteristics area A, torsional constant I, and sectorial moment of 
inertia J ^ defined by appropriate expressions [1], [6] are for the considered cross 
section from Fig.2 

A = J,t(cp)Rdcp = 2Rato[(l -(1 - t, / t0) n/{n + 1)] , 

I,= (l/3)J,,t3(tp)Rdcp, 
I, / [(2 / 3) R a to 3 ] = 1 - 3 n (1 - t, / t0) /(n + 1) + 

+ 6 n 2 (1 - U I to) 2 /(n + 1) ( 2 n + 1 ) - 
- 6 n 3 (1 - t2 / to) 3 / (n + 1) ( 2 n + 1 ) (3 n + 1) , 

J„/(Rst„/12) =   SCtt/to)«3 +3(1-^/^)10 + 
+ 2 (e / R) (t, / to) [12 - (t, / t0) 

2(t0 / R) 2 J (ot cos oc - sin a) - 
- 6 (e / R) ( 1 - t, / to) [ 4 - (t, / to) 2 (to / R)2 ] ( 2 I3 -L> e/R ) + 
+ 6 (e / R) (t, / to) ( 1 - t, / t0) 2 (t o / R ) 2 ( 2 I7 - Is e / R) + 
+ 2(e/R)   (l-t,/t0)3 (t„/R)2 (218-Ise/R), 
where 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

o     R -+3 (1 - <p / oc) n cp 2 dtp = 2 (R ot) " +3 / (n + 1) ( n + 2) ( n + 3) , Io=JoR~ 
Is = ioaO- - <p / a) " <p sin <p d<p , 
Is = Jo" (1 - «p / oc) 2° sin2 <p d<p , 
l7 = Jo™(l- <p/oc)2n <p sin cp dcp 

l4 = Jo' 
I« = Jo' 
l8=J0' 

(1 - tp / ot) ■ sin2 cp dtp , 
(1 - cp / a) 3" sin2 tp dtp , 
(1 - tp / ot) 3" cp sin tp dtp .    (5.6) 

All calculations are done for R = 300 mm, t0 = 26 mm and ot = 30 °, beam length 
L = 900 mm. One end of the beam is supposed to be clamped and external torsional 
moment equal to one is applied to the other free end of the beam. 

Normal stresses caused by bimoment and shear stresses caused by torsion are 
calculated according to the appropriate formulae [1], [2], [6]. After that the equivalent 
stresses are calculated according to the Tresca criterion. 

The distributions of maximal values along the beam are shown in Fig.3 for normal 
stresses, in Fig.4 for shear stresses and for equivalent stresses in Fig.5. 

/  L    0 

Fig. 3 

/«- 
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*/<- 

Fig. 5 

6. CONCLUSION 

As it can be seen frm the shown diag'rams it may be concluded that it is not 
recomendable to neglect the influence of the secondary effects for the considered 
sections because the nonnegligible differences in the stresses exist especially in the 

vicinity of the clamped ends. 
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Abstract 

This paper gives the results of the numerical simulation of the isothermal con- 

vection due to a rotating magnetic field in a cylindrical Ga,-me!t volume. The 

governing equations to be solved are the Navier-Stokes equations coupled with the 

potential equation of the MHD2-approximation. In order to valid the numerical 

method, the Lorenz force distribution was analytically computed and later on com- 

pared with the numerical results. The temperature and velocity distribution are 

also presented. 

1    Introduction 

It is well known that the external magnetic fields are used in several industrial 

aplications such as the continuous casting of the steel and aluminium and growth 

of single semiconductor crystals, where a contactless control is needed in order to 

damp melt flow fluctuations. The effect of rotating magnetic fields on the melt flow 

of electrically conducting materials was studied in many papers ([l]-[5]). Some of 

them considered the flow in an infinitely long liquid cylinder ([1],[2]) and the others 
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([3]-[5]) considered the flow in a cylinder of finite length. All of this papers are 

dealing with a 2D-axisymetric modcll. In this paper we present the results of the 

3D-numerical simulation of the melt convection due to a rotating magnetic field 

in a cylindrical volume, the comparison between numerical calculations of Lorenz 

force and the exact solution in the case with no flow and the dis- i,- =ion of our 

results consequences for real processes. 

2    Model description 

2.1    Governing equation 

The governing partial differential equations (in cartezian coordinates) can be writ- 

ten: 

Conservation of mass: 

Conservation of momentum: 

|w + A(w„i + r,),_& + s- (2) 

Conservation of temperature: 

|m + A(wr_rr|) = .,T (3) 

In the above equation p is density, u,- i-th Cartesian component of velocity, p pres- 

sure, r> the diffusion coefficient for temperature, «r source term for temperature 

T, su source term for velocity, and r^- stress tensor 

For a Newtonian fluid with dynamic viscosity fx, the stress tensor is defined: 

,dui     du;. ,... 
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2.2 Source Terms for Momentum Equation 

If we take in account the gravitational effect with the Boussinesq approximation, 

source term for velocity will be: 

4 »= p(Trej)<fß(T - T„j) (5) 

where Trej is the reference temperature, g1 i-th component of gravitational force, 

ß thermal expansion coefficient. 

When the flow is induced by a magnetic field we have to include the Lorentz 

force as source term in Navier-Stokes equations: 

si = 0x8)i (6) 

where B is the intensity of magnetic field and j current density. 

The current density j is determinated by j = a{E + ux B) {a is electrical 

conductivity). The electric field E is described by the introduction of a scalar 

potential $ (see [5]) and an additional term dtA: 

*=-V*-^ (7) 

A is the vector potential and B = V x A. The condition Vj = 0 yields the 

governing equation for scalar potential $. At the boundary jii — 0. 

2.3 Rotating magnetic field 

For a cylindrical cavity of radius R, the rotating magnetic field applied externally 

to the melt can be described by: 

-* B R 
B = [—— (xsinwi - ycosiot); — (icosuf + t/sin wi);0] (8) 

The vector potential can be easy obtained: 
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D 

Ä = [0; 0; -^((^'2 - y2) cosu« + 2xysin ut)] (9) 

where Z?o >s the magnetic field amplitude, u> its frequency and (;i:,y,z) are the 

cartezian coordinates. While B is rotating with frequency u the quantities E, j, <J> 

will rotate with the same frequency. Consequently, the Lorentz force consists of a 

mean time-independent part and an oscillating part. So, the fluid flow has also a 

mean part and an oscillating one. In present work we assume that due to its high 

inertia the fluid is unable to follow this oscillating force component, therefore, our 

numerical analysis is limited to the time-independent mean force. 

The follow integration: 

<FL>=(—)-1f~jxBdl (10) 
LJ JO 

leads the mean Lorentz force components. 

If we do not take in account fluid flow (Ü = 0),.the equation for scalar potential 

can be easy solved analytically for a finite cylinder of radius R. In this case, the 

analytical solution for Lorentz force is : 

Fix- = Fv sin ip;    Fiy = Fv cos tp;    Fu = 0 (11) 

where 

Fv = crB'oru) 
1 ,£_ a _V .7(2, An%) j(3, A„) 
/ R>      2 ^ (jap, A„) - J(l, AU)J(3, An))AB 

(cosM.^J + d-chfc^-^MM 

r — (x2 + y2)2 ;     J are the Bessel functions 

and An are solutions of the equation 

2^f)_J(3,a;) = 0 x 
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2.4    Numerical discretization method 

The present simulations were clone with a three-dimensional, block structure fi- 

nite volume code. The discretization procedure of the finite volume method is 

well known from its application to fluid flows [6]. In our ca.se. the method was 

extended for modelling the scalar potential equation. The computational domain, 

e.q. a cylindrical cavity, is subdivided in 5 blocks. We use a three-dimensional, 

structured, non-orthogonal grid. Total number of control volumes is 45 000. 

We have chosen a typical Rayleigh-Benard configuration as test ca.se. Our 

geometry is acilynder with high h — \nn and diameter d = 4cm. At the boundary 

is imposed a linear temperature profile with Tu = 10°O and T,i = 30°C'(see Fig.l). 

Simulations were clone for a galium melt. 

Figure 1: The geometry of test case is shown 
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3    Results and discussions 

3.1    Numerical calculations and analytical solutions 

In order to valid our numerical method we have clone the numerical calculation of 

Lorentz force without taken into account the fluid flow (it = 0). The analytical 

solution was found using eq. 11. A comparison of numerical and analytical solution 

of azimuthal Lorenz force is given in Fig. 2 and 3. Fig. 2 show the azimuthal Lorenz 

force along z-axis and fig. 3 along radius. It can be pointed up that the numerical 

and analytical calculation are in a good agreement. 

Figure 2: Comparison of analytical and numerical values of the azimuthal Lorenz force 

along z-axis a 

0.0000   HDP ox 

Figure 3: Comparison of analytical and numerical values of the azimuthal Lorenz force 

along radius 
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3.2    Influence of rotating magnetic field on the flow 

This paragrapli is devotee! to tlie results of the numerical investigation of the 

rotating magnetic field on the melt flow. The results given below are done for the 

laminar time-independent state of the flow. The velocity held in the case with 

no magnetic field is shown in fig. .4. There, are two section in the cylinder: one 

horizontal and one vertical. It can be observed from the horizontal section that 

the flow is a three-dimensional one. Due to the gravitation, the main motion can 

be found in the vertical section. The maximum of velocity is l.Gan/a. 

When a rotating magnetic field with amplitude 3.:j7rt7' is present, the flow 

configuration is completely different (see fig. 5). The main motion is now in the 

horizontal section and the maximum of velocity is 3.2cm/*. The secondary motion 

along z-axis is one order of.magnitude smaller than the azimuthal rotation. Flow 

configuration is now an axisymmetric one. 

(b) 

Figure 4: Velocity profile in a (a) horizontal and (b) vertical section with no magneti 

field (B0 = OmT) 

Fig.6 show the temperature distribution along centerline of cylinder with and 

without magnetic, field. It can be observed that in the presence of a rotating 

magnetic field the temperature gradient along centerline is almost constant. 
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Figure 5: Velocity profile in a (a) horizontal and (b) vertical section with magnetic field 

(ß0 = 3.3mT) 

The temperature isotherms in a vertical section are nearly Hat in the presence 

of a rotating magnetic, field (see fig. 7). 

w 
Figure 6: Isotherms in a vertical section: a. B - OTTIT; b. B - 3.3mT 

Figure 7: Temperature along z-axis in the middle of the fluid 
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4    Conclusions 

A 3D Fi;vfe Volume method was implemented to .study the influence of rotating 

magnetic fields on the fluid flow and its accuracy was tested by comparison with 

analytical solutions. A typical Rayleigh-Benard flow configuration was studied in 

the presence of a rotating magnetic field. An important conclusions is appropriate 

here, namely: a small magnetic field can have a great effect on the flow configura- 

tion. We conclude that the rotating magnetic fields can easy control the melt flow 

fluctuations. 
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Abstract 

For a system describing the bioconvective flows, the existence of statis- 
tical solutions is proved. Such solutions were introduced by Foia§ for 
the Navier -Stokes system. 

1    Introduction 

Statistical solutions for the initial boundary value problem for the Navier- 
Stokes system have been introduced by C.Foias. [1]. In some functional frame 
the problem had the following form 

u' + Au + B(u,u) = f,    u(0) = uo, (1.1) 

with A linear operator and B bilinear map. In this paper a system describing 
bioconvective flows considered by Kan-On et al. [3] is treated. This problem 
can be written in the abstract form 

u+Au + B(u, u) + Biu + B2u = /,    u(0) = «o, (1.2) 

where A,Bi,Bt are linear operator and B bilinear map. Here A, B are differ- 
ents from A,B in (1.1) but they have similar properties. These together with 
some properties of the perturbations Bi and Bi permit us to define statistical 
solutions for (1.2) and to prove there existence. 

The paper is oganized as follows. In section 2 the system in [3] is written 
in the form (1.2). Statistical solutions for (1.2) are defined in Section 3 and 
their existence is proved in Section 4. 
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2    The system 

Let ft be a bounded domain in E3 with boundary du € C2. Bioconvective 
flows in ft are described by the following system, (cf. Kan-On et al. [3]): 

^-i/A« + (u,V)u + V9 = -AmX + /   in   flx(0,oo),     (2.3) 

divu = 0   in   ftx(0,oo), (2.4) 

^-ÖAm + (t*,Vm) + ^ = 0,    in   ftx(0,oo), (2.5) 
dt 0x3 

where u = (ui,u2,w3) : ft x (0,oo) -+ iR3 denotes the velocity, m : ft x 
(0,00) -> iR the concentration of microorganisms (more accurate m(x, t) is the 
concentration in {x1,x2lx3) G ft at time i > 0) and g : ft x (0,oo) -> iR the 
pressure of the culture fluid; i>, 0, K, U are positive real parameters; \ = (0,0,1) 
and / is the external force. To this system we add the initial and the boundary 

conditions 

u(a;,0) = uo(i),    m(M) = m0(x),    x 6 ft, (2.6) 

u{x,t) = 0,    if   xedti   and   t > 0, (2.7) 

^_^„3(x)m = 0,    if   xedft   and    <>0, (2.8) 
on 

where n = (n!,n2,n3) is the external normal to du. 
Under suitable assumptions for U and 0 in [3] is proved that the steady 

problem for (2.3)-(2.8), i.e. 

/ 
m dx = a, (2-9) 

(2.12) 

n 
-vAu + {u,V)u + Vq = -kmx + f,    in    ft, (2.10) 

divw = 0,    in ft, (2.11) 

-9Am + (u, V)m + U-^- = 0,    in   ft, v ox3 

u = 0,    on   aft, (2-13) 

8^-Un3m = 0,    on    oft, (2.14) 
an 

has a solution (ua,ma,pa),a > 0. For the initial boundary value problem 
(2.3)-(2.8) consider solutions of the form u = v + u01, m = fi + ma. Then it 
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yields the following system for v and p,: 

dv 
-^-uAv + (ua, V)v + (v, V)ua + (v, V)v + V(q - pa) = 

-kfiX,    in    ftx(0,T),        , (2.15) 
diw = 0,    in   ftx(0,T),       '" (2.16) 

%-0^ + (u\ V)/i + (t;, V)mQ + („, V)// + t/j^ = 0, 

inftx(0,T), (2.17) 
v = 0,    on   dftx(0,T), (2.18) 
„du 
0~-Un:^^O,    on   dftx(0,T), (2.19) 

v(ar,0) = a(a:),    p(x,0) = 6(x),    iGfi. (2.20) 

This problem can be written as an abstract initial value problem 

u' + Au + B(u,u) + B,u + B2u = f,    u(0) = u0, (2.21) 

in some Hubert space. 
Consider the Hilbert spaces L2(ft) := (I2(ft))3, JE1 (ft) := (if1 (ft))3 where 

Z2(ft) and if1 (ft) are the usual Sobolev spaces, and define 

V:={ue (V(üf) i divu = 0},    Xa := V1^, F, = V^W, 

XM := {/i 6 X2(ft) \ f fidx = 0}, V, := tf^ft) n A',    # := XCT © X„. 

The scalar product in if is denoted by (•, ■), i.e. 

(u,v) = V] / w,-(x)u,-(a:)<fa;,    u,v e H, 
1^1J* 

and the corresponding norm by | ■ | . For u = (ui,u2,«3,«4) 6 # denote 
u, = (ui,u2,t/3) G AV 

In Ü consider the linear operator A0 with domain 

£>(A0) = {u = («i. u2, «3, u4)\uaev,u4e c2(ü) n x, e-£± - Un3u4 = o}, 

and defined by 
AQu = (—z/Awff, — #Au4). 
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This operator possesses a Friedrichs extension A, which is selfadjoint and has 
a compact inverse A~l. Then A% exists, for s 6 [0,oo), and is a closed linear 
operator with domain Ha. With the scalar product (u,v)a := (A%u,A*v), H" 
is a Hilbert space; the corresponding norm is denoted by | • \a. For s < 0, Hs is 
the dual of H~s. Remark that A is a sura^ ~ Aa © Aß, where A„ is the Stokes 
operator and Aß is the Laplace operator on the space of functions satisfaying 

Ä - [/n3jU = 0, on dÜ. 
On 

Let 6 be the trilinear form 

b(u,v,w) = J2Y1 f ui{x)^-(x)wj(x)dx. (2.22) 

Consider the operators B : H1 x Hl x H1 -+H~\ 51? 52 : H1 -+ tf"1 defined 

by 
(JB(u,u),tu) = fe(u,u,u?),   u,v,weHl, (2.23) 

(Biu,u) = 6(ua,u,t/),   u,v6H\ (2.24) 

(52«, ü) = ((«a, V)«a, tv ) + ((«„ V)ma, u4)+ (2.25) 

k(u4X,V<r)-U(u4,-Z—),     U,V e H   , 

(recall that («a,mQ) is a steady solution of (2.3)-(2.5) hence more accurate 
notation for b(ua,u, v) is 6( (ti°,m°),u, v)). In [2] have been proved that B is 
continuous, 

{B(u,v),v) = 0,    u,v£H\ (2.26) 

and has continuous extensions B : H x H1 —» if-2, B : H xff-t l/- . 
Also B\,Bi are continuous, admit continuous extensions B\,B<i : i? —» #" 

and 
(5lU,tz) = 0. (2.27) 

With these notations the problem (2.3)-(2.8) is of the form (2.21). 
A function u € L'2(0,T;Hl) n L°°(0,T;5), is called weak or turbu- 

lent solution of (2.21), for u0 € H and / e L^O.Tjff"1) if for all w € 
C1([0,T];/f) (^^([Ojr];^;1), with compact support in [0,T) it satisfies 

- [T(u(t),v'(t))dt+  I  {{u{t),v[t))dt +  I  (B(u(t),u(t))Mt))dt + 
Jo Jo Jo 
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/ {BlU(tlv{t))dt+ I   (B2u{t),v{t))dt (2.28) 
Jo Jo 

= («o,»(0))+ / (f(t),v(t))dt. 
Jo 

Under suitable assumptions for (ua,ma), the existence of such a solution is 

proved in [3]. 

3    The Definition of statistical solutions 

Consider the the class T of all real functions $ : [0, T\ x H1 -► JR with the 
following properties (cf. [1]): 

i) $ is Frechet differentiable with continuous differential from [0,T] x 
H1 into £{R x Hl;R) and |$t(*,«)| < ci +c2|u|, for some positive constants 
c-[,c2 wich are independent of t and u. 

ii) For t E [0,T], $(i, •) is differentiable in the following sense: there exists 

$„(*, u) € tf1 such that 

Al*(*.« + «) - *(*,«) - (u, *«(*, «))| -* 0, as v -► 0 in tf1. 
|v| 

iii) $„(•, •): [0,T] x H1 -> H1 is continuous and || $„(-, •) || is bounded on 

[0,T]xH\ 

Definition 3.1. Let n be a positive Borel measure on the Hubert space H. 

Assume that 
p(H) = l   and  / \u\2dp < oo. (3.29) 

JH 

A family {fc}te[o,T] °f "Positive Borel measures on H is called statistical so- 
lution for (2.15) with the initial data (i if the following conditions are satisfied: 

sup{ / |u|2^(u),   t e [0,T]} < oo, (3-30) 
JH 

/    / || « ||2 d{it{u)dt < oo, (3.31) 
JO   JH 

- f[[ $t(t,u)dnt(u)]dt+ I {/[((«,*»(*,«))) + 
Jo   JH JO    JH 

{B{Uiu) + Biu + B2u,$u{t,u))\dnt{u)}dt= (3.32) 

/ $(0, u)dfi{u) + f [f (/(*), $«(*,") Wt{u)}dt, for any $ € T. 

H 
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4    Existence of statistical Solutions 

The proof of the existence of statistical solutions for (2.15) is similar to the 
proof given by C. Foia§ in [1], p.254-272, for the Navier-Stokes system. For 
this reason we present here only a sketch of the proof. 

Theorem 4.1. Let a be a positive constant such that la > 1- |j B2 \\, so 
there C = 2(1- || B2 || -£) > 0. Then for any initial data p there exists a 
statistical solution \nt}te[o,T\ of (2.15) which satifies the inequality of energy 

jf VKMVM«) + cj [j v\\u\2) II n\\2dfiT(u)]dT < (4.33) 

< / <p(\u\2W(u) +a A / v'(lu|2)l/(OI-i^rW]^, 
JE Jo   JH 

for any ip e CJ((0, oo)), tp > 0 and 0 < <p'(x) <cp<oo, xe (0, oo). 

Proof. The operator A is selfadjoint and has a compact inverse so there 
exists an orthonormal system {wk}kelf* C H such that 

Awk = Xkwk, 

and 
0 < Ai < A2 < ■ • • < An < > oo. 

Let Pn be the projection associeted to Sp{wi, • ■ ■, wn}. For UQ € H and / € 
L2(0, T; H~l) we consider the initial boundary problem 

u'n + APnun + PnB(un, un) + PnBlUn + PnB2un = Pnf,     (4.34) 

«„(0) = i>0. (4.35) 

From (4.34), (2.26) and (2.27) it follows 

\jt\
uM2 + IMOf + (B2un(t),un(t)) = (/(*),«„(*))■ (4.36) 

Fora>l/[2(l-||£2||)],wehave 

(B2un(tUn(t)) + (f(t)Mt)) < \\m IMOII2 + ?l/(*)l-i + ^IMOII2, 
l la 
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so from (4.36) we deduce 

|M0l2 + c|M0ll2<«l/(0la-i- (4-37) 

Integration of (4.37) from 0 to t yields    '   "' 

\un(t)\* + C f \\un(r)\\2dr < \u0\2 + a f W^dr. (4.38) 
Jo Jo 

The problem (4.34)-(4.35) has a unique local solution un on some interval 
[0, hn] which due to (4.38) has a maximal solution on [0,T]. Define S^(t) by 
un(t) = SW(t)u0n and the map (t,u0) -» SM{t)u0 is continuous on [0,T] x 
PnH. 

For n e N*, t > 0, consider the Borel measures /i(n) and p\n) denned by 

^(u) = fi(P-l^nPnH)) 

H<jn\u,) = »(S;1(t)(unPnH)) 

where w is a Borel set from H. 
Let Ca,a > 0, be the space of all real continuous functionals $(•) on H 

such that 
||$(.)||c   =sup—^r-<oo. 
"   U" "     ueül + \u\a 

By Ci7iwe denote the space of all $(.) : Hl -> 2R such that 

Remark that for any $ G C2, 

/ $(w)^in) = / *(S<n>(t)P„u)d/i(tx). (4.39) 

H H 

Then from (4.38)-(4.39) follows 

T 

/ |u|2^|n) + C j[J \\u\\2dii\n)]dt < J \u\2dfi(u) + d = c2, 
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where the constants ci,c2. are independent of t G [0,T] and n G JV*. From 
this follows that the family {/4"} \t e[0,T]}, n 6 W*, has the properties 

sup ||   /(l + |W|2)rf/i(n'(w)||Loo(0:r)<cx), (4.40) 
n J 

H 

sup || J(\\u\\2)d^(u) ||y(0iT)< oo, (4.41) 

/ ($(u)d^^(u) is measurable , (4.42) 
H 

for any $ : H —* JR. non-negative and weakly continuous. Lemma 1 in [1], 
p.246, implies the existence of the functionals F^ continuous on L2('J, T: Ci,i), 
with continuous restriction to L2(Q,T;C1A) D I^TjCa) in the I^O,r;C2)- 
topology and such that 

F^n)(f) = /[ / *(*, u)dihiu)]dt, (4.4c 

0    H 

forany$€l2(0,r;Cu)nZ;1(0.r;Ca). 
By applying Lemmas 3 and 4 in [1], p.254-265, we obtain in L1(0,!T;C2) 

a cluster point F of the sequence {F^ | n G W*} and there exists a family 
{/"<}o<t<oo of (Borel) measures on H such that 

r 
F{<f>) = j[jm,u)d^t{u))dt. (4.44) 

o   # 

The family {/xt}o<f<oo is a statistical solution. 
It remains to prove that {fit}o<t<co satisfies the inequality of energy. For 

this, let ip G Cx( (0, oo)),9? > 0 and 0 < (p'(x) < cp < co,x G (0,co). From 
(4.34) follows 

™v(M«)l3) + v'(M0l2)[|l«n(*)lla + 

(ßa«n(f ),«„(<))] = ip'{\un(t)\2){f{t),un{t)), 

hence for alH G [0, T) we have 

( 

\ j V{\u?)dtf\u) + J Jv'(H2){\\ « ||2 +(B2u,u)}d^(u)dr =     (4.45) 
# o   if 
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l-j\p(\u\2)dp^(u) + J j\p'(\u\2)(f(r),u)dp^(u)dr, 
H OH 

Let p 6 Ll{<d,T),p > 0. Multiplication of (4.45) by p(t) and integration 
over [0, T] yields 

T T        T 

\j jP(tM\u\2)d^\u)dt + I J(jp(t)dt)v'(\u\2)[\\ u f + 
Off 0   H    T 

T 

(B2u,u)]dtf\u)dT = \ j j' p{tM\u\2)d^\u)dt- 

0   H 

T T 

J j{j p{i)dt V (M2)(/(r), u)d^\u)di 

1 1 I 

j j p{t)v{\u\2)dpt\u)dt + CJ j(Jp(t)dt)v'(\u\2) !| u ||2 dfr\u)di 

0    H     r 

In the same manner as for (4.38) we obtain 

T T        T 

~ "   , .' \ )dr< 

ok o H   T 

T T T 

jjp(t)9(\u\2)dp(n\u)dt + aJj(Jp(t)dtW\u\2)^^ 
OH 0    H     r 

hence, because || Pku \\2<\\ u \\2 for any A; G JV*, 

T T T 

lr< 
r \   /        / i    \i     i/ii       •*       u i   'i      \    / 

OH 0   H     T 

j J p{t)ip{\u\2W?\u)dt + CJJ(J P(t)dt MM2)  || PkU |!2 dpM(U)d7 

(4.46) 
T T T 

J j p(t)<p(\u\2)d,^(u)dt+«//(/ />(*)* mnnmtA'^H^dr, 
OH 0   H    T 

Since || Pku ||2G C(2) in (4.46) we can make n —> oo, so 

r       T 

OH 0    H     T 
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j j p{t)y{\u\2)d,it(u)dt + C j J(J p{t)dt)ip\\u\2)\\Pku\\2 dp,.{u)d, 



T T 

j J p{t)f{\u\2)dn{u)dt + aj J(j p(t)dt )<p'( |U|2)|/(r)| ^M^r, 

Off 0   H    T 

From this follows the inequality of energy (4.33). 
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Abstract 

The aim of this paper is to study the problem of the trans- 
port of a passive solute in a porous medium by convection 
and dispersion. It is assumed that the media is a periodic 
system of cells, consisting of a solid part and a fluid part.The 
fluid is assumed to be incompressible and the flow can be de- 
scribed by Darcy's law. The effective equations are obtained 
using the homogenization method. 

1    Introduction 

The problem of a solute transport in a porous medium by convection and 
dispersion was studied in many papers [l],[2],[3].In general, it is not possible 
to solve the full microscopic equations, so we would like to evaluate the ef- 
fective (macroscopic) values of the dispersion coefficients and the convective 
velocity. Here the discussion was restricted to a strictly periodic structure 
applying the homogenization technique, that is a multiple scale perturbative 
analysis in terms of a small parameter e. The homogenization method can be 
summarized as a three stage "recipe". In the first stage, each physical quan- 
tity is assumed to be representable by a function which depend separately on 
the macroscopic variable x and the microscopic one y = 7 such that the de- 
pendence on y is periodic. The non-dimensional equations are obtained and 
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the second section deals with that. In the second stage, all quantities, as well 
as their space derivates, are expanded as regular perturbations of the small 
parameter e. In the next section we perform two homogenization methods, 
the first one with a single time scale and the second one with two timescales. 
In our work, space and time are spanned through the macroscopic lenghtscale 
and macroscopic timescales of convection and diffusion. An effective equa- 
tion is obtained in the hypothesis that convection and diffusion are locally 
balanced. Under the assumption that the convection characteristic time is of 
order 0(e~2) we prove that the first method is simpler than the second one 
and we also find that the 0(1) term from the expansion of the concentration 
does not depend on the macroscopic diffusion characteristic time. 

2    Formulation of the problem 

Let us consider a spatially periodic porous material and two lenghtscales / 
and L corresponding to the cell size and the size of the medium, respectively. 
The period will be a parallelepiped cell homothetic with the small ratio e = 
l/L « 1 of the region, denoted by Y, in which the fluid domain YF and the 
solid one Ys have a smooth boundary T. The configuration of the medium 
is such that the CYF parts are connected and the solid parts are fixed. 

The fluid is considered to be viscous and incompressible. The fluid ve- 
locity verify the Stokes equations and the non-slip condition on the solid 
boundary. 

0 = -VP + n&V    in the fluid (1) 

V.V = 0    in the fluid 
—♦ 

V = 0    on the solid boundaries 
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Here P = P(x, y) is the pressure in the fluid and fi the viscosity coefficient. 
The convective-diffusive equation for the solute concentration C(x,y,£) 

is: nr 
~ + V.(VC) = DACmYF (4) 
ot 

where D is the diffusion coefficient. 
The initial condition: 

C(x,y,0) = /(x) (5) 

where / is a smooth function with a compact support in Ü (the domain 
occupied by the medium), and the boundary condition: 

nVC = 0 on the solid boundaries (6) 

where n indicates a unit vector normal to the surface. 
We want to perform an asymptotic analysis to pass from a microscopic 

description to the effective macroscopic equation. 
To analyse this problem the following timescales are defined in [1]: 

TC = //VO,    rd = /2/I>,    rc = L/Vo,   rD=:L2/D (7) 

where Vo is the characteristic value of the velociy field. With those timescales 
one can define two related non-dimensional numbers (the local and global 
Peclet numbers): 

ft,«2-£,   Pet=2    « (8) 
Tc D TC U 

representing the ratio between convection and diffusion locally and globally. 
In the following it will be analysed the case when diffusion and convection 

are balanced locally, i.e. Pe=0(l) and PeL=0(£) 

3    The method of homogenization 

3.1    Homogenization with one timescale 

In this homogenization procedure time and space variables are scaled accord- 

ing to: 
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,     x       ,     y     x 
x =T,    y =7 = 7 L     I 

The gradient becomes: 

-_  t_ 

TC 

V = }(VX.+ -Vy) 
L £ 

We have: 

C = C(e,xW,i),    V=V(e,x',y'1i),   / = /(x',y') 

The non-dimensional convection-diffusion equation will be: 

Pe^ + Pe-£(VX, + -Vy,)C = e(Vx- + -VyfC 
at VQ e s 

Defining u = Pe ^ the adimensionalized velocity, (12) becomes: 

Pe^ + u( Vx, + I Vy,)C = e(Vx, + -Vy02C 
at e £ 

In the following we will drop the ' for simplicity. 
Expand: 

C  =   C<0) + eCW + £2C<2> +... 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

We remind that the terms from the asymptotic expansion of the fluid velocity 
u are obtained by a homogenization method applied to the problem (l)-(3) 
and it was studied in [4],[5]. So, u° =    V° with: 

9- = JH* 
dxi 

(15) 

and v' the unique solution, in the weak sense, of the local problem: 

' Vy.v
{ = 0   in YF 

<   Q = -Vyq
i + ßAyv

i + ei   inYF 

. vl = 0   on T 
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v* and q' being Y periodic, where £ is the unit vector in the direction of j/,- 

axis. 
The Darcy's law, obtained by averaging (15) is: 

< V° >= -KVXP
0 (16) 

where < g >- 177 / gdy is the cell aveYage of function g and IUj =< v\ >. 
inYF 

K = (Kij) is a tensor which depends only on the viscosity coefficient and the 

geometry of the period Y. 
Following the homogenization technique we substitute the expansion (14) 

in the governing equation (13) and the boundary condition (6). We collect 

the equal powers of e. At the leading order 0(e_1) we obtain: 

( 

uoVyC(°) - AyCW = 0    in YF 

nVvC(°> = 0    on T 
(17) 

(17) has a trivial solution C(0) = C{0){x,t). This solution is unique. To prove 
it we multiply the equation (17)i with a solution C(0) and integrate on YF: 

j u0VyC<°W°Vy = / AyC^C^dy (18) 
YF re- 

calculating the left side of the previous equality we obtain by using the 

Gauss's theorem: 

/ u°V, C<°>CW<fo = - / u°VyCl°W0)dy 

YF y> 

Thus, 

jn°VyC^C^dy = Q 
YF 

Calculating the right side of (18) we have: 

JAyC^C^dy = -j[VvC^\7dy 
YF YF 

Thus, 
J[VyCM]2dy = 0 

YF 
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and cosr^quently 
VyC

(0> = 0 

which T'eans that C^ is constant in y. 
At the next order 0(1) of equation (13) we have: 

(19) 

Peäfl + u0V,C<°> + u0VyeW + u1 VyC(°) = 
^2VxVyCW + AyCM    \nYF (20) 

nVrC<o> + nVyCW = 0    on T 

and using (19) the problem becomes: 

f u» V.CW - A/7<» = -Pefif» - „«> V,C<°>    in YF 

1 nV,CW =-nVxCW    on T <21> 

First-of a«!, we note that the solutions of (21) are defined up to an additive 
constant function with respect to y and the right side of equation (21)i must 
verify a compatibility condition. To obtain the compatibilty condition we 
integrate on Yp'■ 

/(u°V,CW - A„C<1 >)rfj, = / f-Pe^l - U°VXCW) dy      (22) 

Using the V periodicity of all functions and the boundary condition (21)x we 
obtain by computing the left side of (22): 

/(u°VfCW - L,C®)dy = JnVxC^ds = (jnds) VxC<°»x = 0 

Thus, 
dC{0)     1 

-Ptir=;<u'>v-Cl" <23) 
where n = ^ is the porosity of the medium. 

-- The condition (23) is also a necessary and sufficient condition for the 
existence and uniqueness of the solution for (21). To prove this we will give 
the equivalent variational formulation of this problem and apply the Lax- 
Milgram lema. 
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Let us introduce the space of Y periodic functions: 

Vy = {w £ Hl(Yp),w is Fperiodic and   / wdy = 0} (24) 
YF 

which is a Hubert space with the scalat product of Hl(Yr). We multiply the 
equation (21 )j. by a test function w € Vy and integrate on Yf. Taking into 
account the Y periodicity of the functions, the properties Vy.u° = 0, u° = 0 
on T and the condition (23) we obtain: 

J u°VvCMwdy-J AyC
{1)wdy = jl<u°> VjC^wdy-j u°V,C<°Wy 

YF YF YF YF 

j Vyw(VyC{1)-»°C[1))dy = -JnVxC^wds+J Q < u° > -u°) V.C<°Wy 

The variationa). formulation is: 

f Find CM € V, such that: 

/ Vyw(VyCW - u°CM)dy = -/nVrC<°Ws+ 
YF r 
+ / (i < u° > -u°)VxC®wdy   Ww € V, 

YF 

(25) 

To prove the existence and uniqueness of the solution for the problem (25) 
we will apply the Lax-Milgram lemma. We define the following functionals: 

a: V, x Vu -+ R (26) 

a(v, w) = / VyvVywdy - j vu°Vywdy 
YF YF 

and 
l:V,-+R   (L€V;') (27) 

< L,w >= -JnVtC®wds + j (i < u° > -u°) V,C<°Wy 
YF 
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and we must verify that a is a bounded bilinear and coercive functional and 
L is a bounded linear functional on Vy. By Schwarz's inequality we have the 
following estimations: 

\a{v,w)\   <   / |Vsü||V,«;|rfy - / \vu°Vyw\dy < 
Y Yr 

<    \\V4L'iY,)\\VM\v(YP) * |f«||t«(l»llVu,llia(l»llu0|l(i4(i»)s 

Using the immersion Sobolev's inequality: 

||u°||(tf(y»)» ^ Ml^OW)3 

and the fact that u° is the unique solution (belonging to (ff^V»)3), obtained 
after resolving the problem (l)-(3) using the homogenization method, we 
obtain that it exists a constant Bi > 0 such that: 

\a(v, w)\ < Bi\\v\\Hi{YF)\\w\\Hi(Yp) (28) 

Hence a is bounded. The bilinearity is obvious. For the coercivity we will 
use the Poincare's inequality: 

J v2dy < B2 J \Vyv\2dy 
YF YF 

for all v € H1
{YF) and B2 a positive number. Thus, 

Mtf'OW = HI* PM + W^hHYp) < (B2 + IJIIVWHPPM       (29) 

If we compute a(w, w) we obtain: 

a(w,w) = J(S7ywfdy - j{u°Vyw)wdy = J \Vvw\Hy (30) 
YF YF YF 

We used the fact that: 

/"(u0Vyw)tody = - J(u°Vyw)vdy 

so 
f(u°S7yio)wdy = 0 

YF 
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Using the inequality (29) and the expression for a from (30) we obtain the 
coercivity: 

a(w, w) = ||VU||P(KF) > 
1 

B2+1MHI™ 
The linearity of L is trivial. For the boundedness, using the Schwarz's in- 
equality we have the following estimations: 

< L,w > |   = ace» < dxi    - / riiwds + / (i<u?> -u?) wdy 

< (Iv^n^drH^llv^lk^) + &£ (|v>li«?Ii2(v»)1/2 

iALHYF)\W\LHYF)\\A\(L*{YF)f) 

For a C^ such that |VXC^|2 remain bounded it exists a constant K > 0 
such that: 

\<L,W>\<K\\W\\HHYF) = K\\W\\V!I 

The hypothesis of Lax-Milgram lemma are satisfied so the problem (25) has 
a unique solution. 

In order to solve the problem (21) we search a solution of the following 
form: 

c(1) = x(y)v*c(0W) + c W) (3i) 
with x(y) the solution of the following cell problem: 

' (u° V, )X - AyX = i < u° > -u°    in YF 

(n Vy)x = -n    on T 
X   Y periodic 

(32) 

If X is a solution of the cell problem than C^ defined by (31) will be a 
solution of (21). The solution of the problem (32) is determined only within 
an arbitrary additive constant vector. In consequence, we may assume the 
normalization condition: 

< X >= 0 (33) 

At the order 0(e) we have: 

f u°VyC<2> - AyCW = -Pe^ - u°VxCW - u1 VXC<°> 
-u'V.CW + &XCM + 2VIVVC<1>    in YF 

nV„C(2) = -nVtCW    on T 

r1- 
(34) 
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The necessary and sufficient condition for the existence and unicity of the 
solution of problem (34) will be: 

f(u°VyCW-&yCW)dy  =   /(-Pe2fi-u°VrCW-u1VrCW 

-   ulVxCW + AxCW + 2VxVyCW)dy 

which becomes: 

Pe < ^ >= Ay|^- < u1 > V,C*°>- < u° > V.C1 

at oxiOXj 
(35) 

where 

D^nS^-j^dy-^Ju^dy-^-Jn^ds _2_ 

W YF 'YF 

If we compute ^^ up to 0(e) we will obtain: 

0 < C > _ V0d < c > = V0 (d < c'°) >     d<Cx>" 
dt     ~ L     dt     ~ L {      dt dt     t 

Using (35) and (23) in the above equality we obtain: 

d<C>      1 _      n        e   _ d2<C> 
dt nPe nPe   3  dx{dxj 

(36) 

where the variable x is in fact the non-dimensional variable x'. If we come 
back to the dimensional variables we obtain the macroscopic convection- 
diffusion equation in dimensional form: 

82<C> d<C> 
l—oT- + <v>vx<c>=D*r diidxj 

(37) 

where D^ = DDij.  The symmetric part of D£ can be expressed in the 
following form: 

/)£   =   §(Dff+ />,■••) «0 ^■+A/(fe+fe)*- 

2JFf / ("?Xj + "jX»^y - 2J7I /faXj + niXi)^ 
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Multiplying the equation for \j by Xi and integrating on YF we obtain: 

/ u°VyXjXidy ~ J kyXiXidy = j l- < u) > Xidy - j u)xidy       (38) 
YF YF YF YF 

Using the Y periodicity and the boundary conditions, (38) becomes: 

J uQ
jXidy = -j u°VyXiXjdy - j njXids - J VyXjVyXidy 

YF YF r YF 

which, introduced in the expression of Z)£, gives: 

Dii = D 

If we define: 

YF yF 

Bj = -yj-Xj 

than D\j can be expressed: 

ÄJ = D < VB&Bj > 

with Bi the solution of the following cell problem: 

' Ayß1--u
0V,ß,- = J<ti?>     inyF 

<  nVy5, = 0    onT 
B   aperiodic 

(39) 

(40) 

(41) 

Because < X >= 0 we will have < B >= - < y > and so, the problem for 
B will be: „ 

f AtfB-(u0Vv)B = i<u°>     inyF 

(nV„)B = 0    onT m 

<B>=-<y> v   ' 
, B Tperiodic 
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3.2    Homogenization with double timescale 
In this section we will obtain the macroscopic convection-diffusion equation 
following the idea of Auriault, Mei and Chin [3]. Namelly, we will make the 
same study as in section 3.1, but using two timescales : 

1! _ — _ t—,       i2 = — = t— (43) 

considered as independent. We obtain the following boundary value problem: 

(44) (4 + ^A) C + \<V* + \Vy)C = (V, + \VyfC    in YF 
n(Vx + iVy)C = 0    on T 

After expanding u and C with (14) and equating the coefficients of like 
powers of e we have the boundary value problems: 

/ n°\/yC^ - A„C«» = 0    in YF 

nV> = 0    onT ^ y 

-2 at the order 0(e), 

u°VyCW - &yCW = -Pegi - u°VsC<°> - u1VvC^+ 
2VIVJ,C(°>    in YF 

l (46) 
nVyCM = -nVxCW    on T 

at 0(e~l) and at 0(1): 

f u0VyC(2> - AyCW = _^> _ Pe^iL - U
0V«CW - ulVxC^- 

-n1VxC^-u2VyC^ + AxC^ + 2VxVyC^    myF (47) 
nVyC<2> = -nVrCW    on T 

The problem for C^ is the same that in the above section, hence its solution 
wmbec<°) = cw(x)r1,r2). 
Using the fact that C(0) does not depend on y, the problem (46) becomes: 

{ u°VyCW-AyCM = -Ped-§g--u<>VxCW    \nYF m) 

nV„C<l> = -nV^0)    onT (   ' 
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The solvability condition for (48) will be: 

-Pe^ = -<u°>VIC<°) (49) 

We look for solution of problem (48) of the form: 

CM = X(y) VIC(°)(x, 7\, T2) + ^(x, Tu T2) (50) 

where the vector function x(y) is the unique solution of the problem (32), 
satisfying the normalization condition < x >- 0. 

We study now the problem at the next order 0(1), which now has the 
following formulation : 

f u°VyC<2> - AyCW = _<gL - Pe^i - u°VtC« - u'V^W- 
-u1VIC(1) + Arc'(°' + 2VxVyC(1)    inrF        (51) 

nVyC<2'=-nVrCW    on T 

The solvability condition for the equations (51) will be: 

/(u°VvC« - AyCU)dy = j (-^ - Pe^ - n°VxC^-  (52) 
Y, YF \ 2 1 

-u^.C«01 - u^CW + AXC® + 2VIVyC<1>) dy 

If we compute the left hand side we find: 

We have used the Y periodicity, the boundary condition u = 0 on V, the 
incompressibility of fluid flow, the condition (51)2 and the fact that /iufs — 0. 

r 
The right hand side becomes: 

/ 
YF 

'_2gL pe^ - u°VxC^ - ulVxC^ - u> VlC« + A,C<°> + 2VIVVC<1> 
oT2 Oli .    

dy = 

= -^^-^C-[/^)^-,„<u»>V,C,- 
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-\Y\<ul>V.. 

Thus, (52) becomes: 

8CW     „ d2C® 

y  Oyi    J dxidxj 

dC1 

dT2 

Di^~ <ul > v^(0)- < u° >v^ - n?ew; w 
d<C>    d< CW >    d < C(I) >     D 

dt     ~      dt      +£      dt      ~ I? 
ln dC®      dC®      n dC1 

at the order 0(1). Using (49) and (53) we get: 

d<C>     D 
dt 

D 
d2C<°> 

L2 [ '3dxidxj 
- < u1 > V.CW- < u° > VXC! - - < u° > VscH 

But 

- < u° > V, < C>= n-[< u° > VxC^+t < u1 > V.C(0>+5 < u° > 7,CM 
e e 

at the order 0(1). Hence: 

8<C>      D 
dt I? 

d2C<°>      1 
ö«;/WJ7" " T- < u > V* < C > oxiC/Xj     ne 

The efFective equation in dimensional form will be: 

,£<£>+<?>V.<C >«*£<£> (54) dt ,J    ÖXj&Cj 

that is the same effective equation obtained by homogenization with a single 
timescale. 

We notice that we have computed n$^. Up t0 0(e) in the following way: 
in the first case 

d<C>   =- Vp (d < C<°> >      a<C*> 
■   at ■      z, \    dt    +£   dt 

D /_ a < c<°) >    _ a < c1 > 
= Z? Pe—3T-+£Pe-äT- 

(55) 
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with 

^g^ = - < u° > V,C<0> 

4^-(<ul>V,C<°>+<u°>VxC<) (56) 

while in the second method 

8<C>     D 

dt      L2 

with 

i_ a<c(°J> 'a<cw>   nd<cl>i 
fe-öfT + -dfT- + ?e'^f7"-\     (57) 

Pe^l> = _ < uo > VrC(o) 

^ + Pea^ = Ai|g_ (58) 
-(< u1 > VXC™+ < u° > VxC1) 

The conclusion is that, under the assumption that the characteristic ve- 
locity Vo =0(e2)(Vo being the norm of V0 given by Darcy's law) which means 
that the macroscopic characteristic time Tc —-0(e~2), there is no need to use 
the time scale T2 =0(e3) in the homogenization method in order to obtain 
the macroscopic convection-diffusion equation. 

As it can be seen from (56) and (58) we can conclude that C^ does 
not depend on T-i, which is the time scale through the macroscopic diffusion 
characteristic time TD =0(e~3). We also observe that if at the microscopic 
level the convection and diffusion are balanced, at the macroscopic level the 
convection will domine the diffusion. 
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COMPUTER ANALYSIS AND SIMULATION OF TRANSIENT STATE AND 
PRESSURE RECOVERING IN FAST CYCLIC HYDRAULIC ACTUATORS 

J.M. Jankovic 
Aerospace Department Faculty of Mechanical Engineering, University of Belgrade, F.R. Yugoslavia 

ABSTRACT 

In the paper is presented computer analysis of fast 
cyclic hydraulic servo-actuator transient state 
between its engage and full pressure recovering. In 
different mathematical forms hydraulic actuator 
dynamic model is assumed without any geometrical 
and physical discontinuities and ambiguity of initial 
pressure conditions. Fast cyclic hydraulic actuator 
can be assumed with two serial connected 
compressible fluid flows controlled by supply and 
return variable fluid flow restrictors enclosed in 
control servo-valve and separated by actuator piston, 
expressed by equivalent mass, viscous damping and 
arbitrary external force. Presented mathematical 
model includes transient state of fast cyclic hydraulic 
actuator, which can be described and determined by 
ambiguity of the initial pressure conditions in actuator 
chambers as result of the final state of its previous 
operations and existing fluid leakage which can 
produce arbitrary value of initial pressure. Initial 
condition of pressure is primarily caused by external 
force, which is arbitrary value during actuator 
operations. Relatively small pressure surge in the 
moment of change direction of piston motion as 
result of geometric and flow asymmetry of actuator 
and its control servo -valve is included in the model 
also. 

INTRODUCTION 

Hydraulic actuator is usually assumed with 
compressible fluid flow including the effects of its 
viscosity. Fluid compressibility is assumed as quasi- 
static change of its density depending of static 
pressure. Each of the mentioned effects produces 
local pressure drop and surge and corresponding 
actuator operational time delay, which is the limiting 
factor of its cyclic velocity. Dominant influence on 
actuators time delay (less than 3% of unit step 
discrete control piston stroke time) is caused by fluid 
volumetric compressibility. 

In the paper following problems are treated: 

-pressure discontinue changes in reverse of piston 
motion direction; 
-nonlinear    effects    of    actuator    behavior   and 
linearisation of its dynamic model. 

EFFECTS OF SYSTEM DISCONTINUITIES 

Any direction change of actuator motion produces 
pressure discontinuity in its source and return 
pipelines. This is caused by inversion of fluid flow 
which produce connection change between supply 
pipeline and actuator chambers. In the moment of 
fluid flow direction change each of actuator chambers 
inter-change connections with system pump and 
return pipeline and produce corresponding discrete 
change of pressure in actuator chambers. Possible 
pressure drop or surge is also caused by geometric 
asymmetry of servo valve. These effects are 
explained on the following figures. 

On figure 1 is shown actuator motion asymmetry 
between direct and reverse modes. This asymmetry 
is result of pressure distribution along supply and 
return streamlines, shown on diagrams a) and c) on 
figure 3. Diagram a) corresponds to direct mode of 
actuator function represented by symmetrical 
pressure drops at supply and return branches of its 
servo-valve. The third step of pressure drop 
corresponds to the applied external force. On 
diagram c) is shown pressure distribution for reverse 
actuator mode. Main difference between these 
modes is in opposite directions of external force 
related to the streamline of fluid flow. For reverse 
mode external force support system pump as 
additional serial connected system source. This fact 
appears on figure 1 as different curve gradient for 
direct and reverse modes. However, absolute value 
of gradient is greater for reverse mode. More data 
about gradient value will be shown corresponding to 
the figure 6. 

On figure 2 is presented actuator output on servo- 
valve control input assumed as transient step unit 
function. This approximation is very close to the real 
situation for digitally controlled actuators. 
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On diagrams b) and d) of figure 3 are shown, 
respectively, equivalent pressure drops for direct and 
reverse actuator modes corresponding to the 
conventional mathematical modeling of hydraulic 
actuator with total pressure drop on servo-valve by 
neglecting effects at its supply and return parts as 
two separated fluid flows. This usual approximation 
cannot be accepted if system model includes effects 
of hydraulic pressure drop and surge caused by fluid 
compressibility. 

revenibile-positivs 
made 

Fig.1 
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p.   Jjrl<{   j j 

',   I 

02        C.3        3 4 0 5 U« 0.?        0.9 3.8 

Fig. 2 

Sur     Ste     Sir 
») 

Sur    Skc     Sir    S 
c) 

Fig.3 

CONVENTIONAL SYSTEM MODELING 

Real state is described by pressure drop at supply 
and    return    parts    of    control    servovalve    and 

corresponding 
external force: 

pressure    difference    caused    by 

Pa-Pr A 
[sgn(Fxr) 

(1) 

(2) 

Where are: ps supply static pressure, pa static 
pressure in active chamber, pr static pressure in 
return chamber of actuator cylinder, p0 static 
pressure of return pipeline, F external force, x, control 
of hydraulic relay and Ak equivalent area of the 
actuator piston. Function sgn denotes both directions 
of external load action, represented as direct and 
reverse modes of actuator function. Equations (1) 
and (2) defines basic formulation of system dynamic 
model. Closed formulation of mentioned pressure 
drops cannot be determined without additional 
approximations. If we assume that fluid flow through 
servo-valve is a turbulent, approximate expressions 
of corresponding equivalent pressure differences in 
accordance to the figures b) and d) are defined for 
incompressible fluid flow by following relations: 

Qs = Qo = ±4 x„ = ±t?$xJ-(p. - P'J 

Q. = 00 = ±Akxk = M%xl-(Pr - Po) 

(3) 

where are: Qs supply fluid flow, Q0 return fluid flow, 
xK position of actuator piston, p fluid density, n flow 
coefficient of actuator input and output relay and br 

equivalent wide of relay. Equivalent pressure values 
for direct and reverse modes are defined in the form: 

Pr=PF+Ps 

SEPARATE FLOW MODELING 

Previous relations (1) and (2) can be expanded for 
approximately symmetric supply and return flow 
characteristics of servo-valve in the following form 
(with assumed value of p0=0) for direct and reverse 
modes: 

1 ,        F« Pa=ps-Ap = -(ps±—; 

pr=pg+Ap = -(ps + —) 
(4) 
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Corollary of expressions (4) is that nominal system 
pressure for zero external load is defined as 

Ps+Po (5) 

It means that hydraulic system pressure for zero load 
must be equal to the psr. In the cases of continuous 
actuator function previous relation holds. In addition, 
this expression are satisfied for all regimes in which 
effects of pressure surge can be neglected. In 
opposite cases, presented mathematical system 
formulation does not hold. Then subjected 
mathematical model is not compatible. 
Corresponding to the relations (4) pressure drop can 
be determined in the form: 

pressure exists till the moment of pressure upgrading 
to its nominal system value. In that moment 
boundary conditions changes to the determined inlet 
pressure (equal maximal nominal value) and caused 
value of fluid flow (second part of flow cross the 
relive valve), which corresponds to the strong system 
pump. 

If reducing valve is built in hydraulic system at 
actuator supply branch mentioned effects decreases. 
Out in initial moment of actuator engage they cannot 
vanish completely. It means that each pump can't be 
strong one for the whole possible regimes, spatially 
at its initial moment. 

BOUNDARY CONDITIONS 

0, = q,=4 x„ = i/b;x\-(Ps -Po- PF) 

Q. =q, =-Axk =-M'b;x,j-(P.-Po +PF) 
\2 

(6) 

where pF represent pressure drop caused by external 
load: 

pF = ±- (7) 

Finally, static pressure in supply and return branches 
of actuator streamline can be expressed in expanded 
form: 

(8) 

Corresponding actuator block diagrams for the cases 
of weak and strong system pump are presented on 
following figure 4. 

PB=j[Ps+Po+^s9nx, 

Pr=^\Ps + Po-lTs9nXr 

Relations (8) are similar to the relations (4). In 
previous discussion hydraulic system pump is 
assumed as strong one. It means that the system 
pump is able to takes up system supply pressure to 
the maximal nominal value. This assumption is valid 
except for existence of system model 
incompatibilities. This problem can be solved by 
assuming system pump as a weak one at the initial 
moment of actuator engage. It follows that any 
regime of small external load must be assumed as of 
weak pump. This statement arise from the fact that 
static pressure in hydraulic system at any moment of 
its function is caused by external load and pressure 
loses. As consequence of previous statements, 
corresponding boundary conditions at actuator 
pipeline inlet must be determined at initial moment as 
maximal pump flow. Caused value of system static 

actuator 
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±L 
nput 
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valve 
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3ZZE 
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~d       IF 

Q, 
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Fig.4 

For geometric and flow symmetry of control servo- 
valve previous relations can be expressed in the form 

\** = n*KxA—(PP™*-P) 
(9) 

\xk = it-b-.x^—(ppmax+p) 

or in expanded form: 

\2 F 
Ak xk =■- fi'bfxj- (ppmax - — sgn xr) (10) 

where index s denotes parameters of symmetric 
servo-valve. Relation (10) is final mathematical 
model form of control servo-valve pressure drop for 
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the case of actuator symmetry. This formulation is 
well known. It must be noted that ppmax is correct 
term only for strong system pump. For the cases of 
weak pump ppmax becomes equal ps, with 
corresponding changes of boundary conditions 
formulation, which gives following system model: 

Q„ 

Q„ 

\Xk 

sbX 
F 

-(Ppmv-ir S9nXr) 

(11) 

\ 

ACTUATOR MODELING WITH ASSUMED 
QUASI-STATIC FLUID COMPRESSIBILITY 

Pressure drop in hydraulic systems can be caused 
by small external load or local increasing of fluid flow 
to be greater than maximal possible pump source 
flow. To prevent this it is suggested to separate 
corresponding branch of actuator supply by 
corresponding reducing valve. In these cases 
possible pressure surge are not of high influence and 
is determined by equivalent actuator stiffness 
together with potential external load. Pressure 
increases proportionally with piston displacement 
corresponding to its velocity. This pressure 
increasing is too slower than for the cases of 
pressure surge caused by fluid compressibility. 

If actuator is assumed with quasistatic compressible 
fluid flow, system model can be presented for 
symmetric supply and return branch of fluid flow in 
the following form: 

Vb'xl-(ps-pj = 

= Ak xk±ßAk(Hdie + xJ pa+ c(pa - pr) 

(12) 

piston and F applied external force (including inertia 
forces) to the actuator piston. Both signs in equation: 
corresponds to the direct and reverse modes o 
actuator function. 

Mb'xJ~-(Pr-Pc) = 

= A, x.+ ß^HJ-xj pe+c(pB -pr) 

F=\(P.-Pr) 

where are: u flow coefficient, b' equivalent geometric 
wide, xr position of control valve throttle, ps supply 
pressure of hydraulic system pump, pa static 
pressure in supply chamber of actuator cylinder, pf 

static pressure in return chamber of actuator 
cylinder, p0 static pressure in return pipeline, Ak area 
of actuator piston, ß coefficient of fluid 
compressibility, c coefficient of fluid leakage, Hdl 

piston stroke, G coefficient of parasite volume of 
connected pipeline to actuator cylinder, xk position of 

Fig.5 

r-U.V 

Fig.7 

«■-0.7 

 —""*- 

Fig.8 

On figure 5 are presented simulation of actuator 
piston relative stroke and static pressure ratio in 
supply and return actuator chambers for usual 
mathematical form of actuator dynamic model. Initial 
pressure ratio values (equal 0.5) can exists in ideal 
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model only. In real cases, Initial values of relative 
pressure in actuator chambers is the result of 
actuator history and fluid leakage, which produces 
it's ambiguity. Extreme case corresponds to the zero 
and unit values of initial pressure ratio. 
Corresponding simulation of supply and return 
pressure ratio are presented on figures 7 and 8. 

All of the exposed diagrams are related to 
nondimensional ratio system coordinates, where are: 
xki piston position, xpa static pressure in actuator 
supply chamber, xpr static pressure in actuator return 
chamber, xr control servovalve throttle position, <p 
ratio of power reserve corresponding to applied 
external load. Presented system model enables its 
compatibility corresponding to the various initial 
conditions. On figure 5 are shown system simulation 
for incompressible fluid flow and corresponding 
model noncompatibility of initial conditions. Possible 
pressure difference between supply and return 
actuator chambers which is not compensated by 
external force produces piston "shock" motion, which 
can not be described by incompressible flow system 
modeling. Pressure difference can be caused by 
various effects which produces fast changes of fluid 
static pressure. Actuator locked position for longer 
time period is the reason for described effects also. 
Pressure drop or surge caused by fluid 
compressibility and initial condition discontinuity as 
result of closed control servo-valve throttle position 
are shown on the diagrams on figures 7 and 8. 
Piston position difference in relation with its 
incompressible model motion is defined on figure 6. 
Initial piston acceleration produces in practice piston 
shock motion, expressed in the later as increasing 
static error of its position (less than 1% for usual 
types of fluids). Mentioned effects are of high interest 
for digitally driven actuators. Supply and return 
pressure surge is presented on figure 7. Supply and 
return pressure drop are presented on figure 8. 
Because presented system model does not include 
previously explained real wave effects it is important 
to establish model in which corresponding effects are 
compatibly involved [3]. 
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CONCLUSION 

In difference with the facts presented in the paper [3], 
shown mathematical model of hydraulic actuator 
behavior is based on classical concept including 
quasistatic fluid compressibility, but involving the real 
actuator structure asymmetry and corresponding 
pressure and flow discontinuities as result of real 
actuator geometry. By neglecting these effects, it is 
possible to obtain the well known usual form of 
hydraulic actuator dynamic model. 
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Numerical Simulation of Euler Flows with Mach Effect 

0. MANOLE  and  D. PANTAZOPOL 

National Institute for Aerospace Research, Bd Pacii 220, 77538 Bucharest, Romania 

The paper presents an application of an unsteady Euier solver to simulate complex 
supersonic flow in which Mach effect is produced. The computational domain is 
discretized using an unstructured triangle based grid. The numerical method used to 
solve the Euler equation is a finite volume method based on the Steger-Warming flux 
splitting technique. Two geometries are investigated: channel with solid walls and a 
channel having a new modified boundary condition prescribed over a portion of the 
inferior wall. The numerical computed flow fields agree well with the experimental 
Schilleren photos. It is shown that the second geometry allows a simple modification of 
the flow configuration and can serve as a design tool for practical purposes. 

Introduction 

Supersonic flows in which Mach effect is 
produced have received greater attention in the last 
years. This interest is due to the research efforts 
made for obtaining a stable combustion in supersonic 
flows with imnimum losses. A first step in this 
direction is to obtain a flexible method to simulate 
this type of flows. 

Under certain flow conditions, the 
reflection of a shock wave at a wall leads to the 
situation sketched in Fig.l. A supersonic, M>1, flow 
in a channel forms an irregular reflection, called 
Mach effect, if the pressure ratio pi/p2 satisfies a 
certain correlation with the inflow Mach number. In 
Fig. 1 OP is the incident oblique shock wave 
corresponding to M and 9, OR is the reflected shock 
wave, OS is a shock wave which is very close to the 
normal at the wall from 0 and OV is a vortex sheet 
which evolves from point 0. 

The flow around point 0 is highly complex 
but can be computed in a direct manner if at least an 
Euler (inviscid and nonconductive) flow it is 
assumed. From a practical point of view, one 
important parameter, which is a result of the 
computation, is the ratio h/H of the length of the 
almost normal shock wave OS to the width of the 
channel. 

The correlation between the pressure ratio 
and the inflow Mach number, for stable flow 
configurations around point 0, can be determined 
using the generalised Hugoniot-Rankine relations for 
stationary flows. More difficult it is to take into 
account the global continuity condition which has an 
essential influence on the stability of the complete 
configuration from Fig. 1. 

The paper presents the results obtained using 
two geometries: (1) channel with solid walls, Fig.2 
having a shape similar to that shown in Fig. 1 and (2) 
channel with straight walk, with a new modified 
boundary condition imposed over a portion BC, see 
Fig.3, of the inferior wall. 

The second configuration was conceived to 
allow a simple and direct modification of the flow 
configuration and can serve as a first step in the 
inverse design of the channels designated to produce 
stable flow configurations with Mach effect. 

Fig. 1. Mach reflection - sketch 
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Physical Model 

V '■. vii■•■?;der the tvvo dimensional plane flow 
of a rsonvi:.' sis and nonconductive fluid through a 
channel having ä" vhzpe siiown in Fig.2 or Fig.3 

The flow is governed by the Euler equations 

di     ox    8y 

i/ = {p,p«,pv,pe*J 

/ = \pu,pu2 +p,puv,pHu} 

g-={pv,p«v,pv^+p,p//v| 

(1) 

and the state equation 

pH = pe" + p - 

üt 
Fig,2. Geometry of the solid wall channel 

Rg.3. Geometry of the modified channel 

where p-density, u,v -velocity components, pe" - 

total   energy,    p -pressure,    y ~cp/ cv -specific 

heats ratio, c = *Jyp / p -the local speed of sound, 

H -total enthalpy. 
In (l)...(5)the amounts are considered to be 

nondimensional being scaled with the following 
reference   scales:    l0    -length,    T0 temperature, 

v0 - ^2yRT0 / (y + /) -velocity,       p0 -pressure, 

p0= p0/Vg -density,      tB=-l0/ v0-time.     In 
nondimensional terms the gas constant is 

1 + 1 R=- 
2y 

(6) 

and the Mach number has the same value as in the 
case of dimensional quantities. 

The boundary conditions which are specific 
to the above problem are: (a) the inflow is 
supersonic so all the flow parameters are imposed; 
(b) the outflow parameters are extrapolated from the 
nearest interior cells; (c) at the solid wall the normal 
velocity component is set to zero; (d) on the BC 

1-1 
p + p- 

(2) 

(3) 

(4) 

(5) 

segment, Fig. 3, the value of the static pressure in 
the steady solution is imposed using a new modified 
-boundary condition: 

du. dp 

on on 
(7) 

which relates the normal components of the 
gradients of pressure and normal velocity 
component. 

Numerical Method 

The system of equations (1)...(5) is 
numerically integrated using an upwind scheme 
based on the Steger-Warming flux decomposition. 
The computational domain is discretized using an 
unstructured triangle based grid Fig.4. 

The numerical flux decomposition is [2] 
F = F++F~ (8) 

F± 

2y 

a 

au + 

av + 

u2 +v2 

- + CU, iK-K) +c 
y-i 

(<>) 

where "k1 =un,X2 = un +c,X3 = un -c are the 
eigenvalues of the jacobian of the normal flux 
F = nJ+nyg and 

a = 2(y - l)X) + X,* + \*4      (10) 

X*=j(*±|X|) 
n = nj + w / -the versor normal to BC. 

(11) 
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Fig 4. Notations used in the definition of the 
numerical scheme 

The numerical scheme is raised to the 
second order of accuracy using the MUSCL 
extrapolate» in the fern presented va PI- "^e 

unknown values on the two sides of BC are 
computed using the relations (12) where s^ are the 
flux limiters. An weighted interpolation based on the 
area of the surrounding cells was used to compute 
the nodal values of the flow parameters. The 
parameter k in (12) controls the upwind character of 
the extrapolation/interpolation method. In the 
numerical computations the value k=l/3, which 
ensures second order of accuracy for the one 
dimensional case, was used. 

U-=£/a+^-[(7-fc)A;+(7 + fe)A;] 

K=u.-uA    K=u>-v. 
A'b=Ub-Ua      A

+
b=UD-Ub 

(A;J+(A;,)-\E 

e = JO'6 -const 
(12) 

The time integration method used was the 
modified Euler method [3] having second order of 
accuracy: 

u: 5/ 
K-~ZF\un)^B 2V„ a (BC) 

U:=U:-^J:F'(U-/!)A,B 
*a \BC) 

(13) 

Because the numerical scheme is explicit the 
time integration step is limited by a Courant- 
Friedrichs-Levi condition considered in the form 

bt = a- 

J(V777+A/F7P)J 
(14) 

max 

where a is a subunitary parameter due to the 
approximate character of the criterion (14) and h is 
-a characteristic dimension of the mesh. 

Autoadaptive mesh 

In order to reduce the truncation error and 
to obtain sharp discontinuities we used an adaptive 
mesh algorithm based on the method presented in 
[4]. Due to the presence of the vortex sheet OV 
(Fig. 1) across which Mach number distribution in 
the computed solution has a gradient with the order 
of magnitude equal to that occurring across a shock 
wave, the adaptation parameter (<t>-notation) used in 
the numerical computation was the variation of the 
Mach number over each finite volume of the mesh. 

Fig.5. Internal mesh compatibility 

The adaptive mesh algorithm uses the 
following strategy: (1) a cell is divided into four 
"children" if <p > tp 0; the divided cell is marked 
"inactive" and kept in background for a later use; 
(2) when interface nodes appear in the mesh the 
neighbouring cell is divided in two as shown in 
Fig.5; (3) if § < fa for an "inactive" cell and all its 
"children" cells satisfy the same criterion, the cell is 
recovered and its "children" cells are removed from 
the mesh. Here 4>o and <|>i are constants with values 
computed through a simple statistical analysis of the 
distribution of ib over the mesh. 
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Computational Case H h 11 12 13 14 M 

EFM 1 0.60 0.1635 0.30 0.5031 0.5031 0.50 1.80 

EFM 5 0.65 0.1635 0.30 0.5031 0.5031 0.50 2.6015 

Mach number values 
n ■n 3903 a :D 8600 B :i 3296 B :l 7993 
+ ■n 4843 B :0 9539 □ :1 4235 a :l 8932 
o ■n 5782 m :1 0478 E :1 5175 H :l 9871 
X ■n 6721 □ :1 1418 n :1 6114 □ :2 D810 
m :o 7660 + :1 2357 SB :1 7053 a :2 1750 

Fig.6 

: 1.0597 
:1.1794 
11.2990 
:1.4186 
:1.5382 

Mach number values 
1.6579 B I2.2560 

B  :1.7775 B :2.3756 
■  11.8971 E  :2.4953 
□  :2.0167 a :2.6149 
+   :2.1364 B  :2.7345 

2.8541 
2.9738 
3.0934 
3.2130 
3.3326 

Fig.7 

Fig.8. Izomach lines for M=2.1, H=0.5 
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Fig.9. Izomach lines for M=2.2, H=0.5 

Fig. 10. Izomach lines for M=2.2, H=0.55 

A2: 
H=0.5 
Ll=0.3 
L2=0.5 
L3=0.8 

o. 6333 B l 2475 
o 6948 D l 3089 
o 7562 D l 3703 
o 8176 a l 4317 
o 8790 a l 4931 
n 9404 B l .5345 
l 0018 □ i 6160 
l 0632 D l .6774 
l 1246 ID l .7388 
X .1861 a l . 8002 

P.extema  _o Q 

P. curcut 

Fig.ll. Channel with modified boundary condition 
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Results and discussion 

For the configuration shown in Fig.2 
(channel with solid walls) several tests were 
performed. The values of the parameters are 
presented in Tab. 1. 

For a fixed geometry, the irregular 
reflection is obtained in a certain Mach number 
range. The inferior limit corresponds to thf 
propagation of a normal shock towards the inflow, 
Fig.6. Downstream this normal shock the flow is 
subsonic and the convergent portion of the channel 
is set out. The superior limit corresponds to a 
regular reflection as shown in Fig.7 for inflow Mach 
number M=2.6015. 

For an inflow M=2.1 and M=2.2 with 
H=0.5 the results presented in Fig. 8,9 show a good 
agreement with the Schlieren photos presented in 
[6]. 

The Mach tail has a greater length when 
Mach number decreases. From Fig. 10 for 
Minfi0w=2.2 and H=0.55 it results a small decrease of 
the Mach tail which is due to a greater reserve given 
the situation of setting out the supersonic flow. 

In order to obtain the longest Mach tail, the 
reflected shock wave OR (Fig.l) must intersect the 
inferior wall in the vicinity of the minimum section. 
This situation is very close to the inferior limit for a 
stable Mach effect and is difficult to be obtained for 
a channel having solid walls. 

Using the modified boundary condition the 
flow configuration can be easily changed. The 
results presented in Fig. 11 correspond to the 
geometry described in Fig.3. There is a streamline 
which is equivalent in its first portion with a solid 
wall and can be used to design the wall for a given 
Mach number value and nearly greatest value of the 
corresponding Mach tail length. 

Conclusions 

The article presents a method to solve the 
unsteady bidimensional Euler equations. 

A home made code based on the presented 
method was used to study the conditions under 
which Mach effect is produced. 

Two geometries are presented in the paper: 
the solid wall channel which leads to difficulties in 
varying the parameters and a channel with a new 
modified boundary condition prescribed over a 
portion of the inferior wall. The flow parameter 
can be modified in a easier way using the second 
configuration. Also it can be used for design 
purposes. 

Future work should consider the modelling 
of combustion phenomena associated with the 
presented type of flow. 
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Lattice, gas arid Lattice Boltzmann cellular automata techniques have been proved tobe ex- 
tremely -useful tools for investigating fluid dynamics pwblems. Their -parallel nature, the easy 
handling of irregular geometries and the possibility to incorporate the physics at a micro- 
scopic level, are major advantages of these techniques, when compared with other classical 
numerical methods for simulating complex fluid flow. After a brief outline of lattice Boltz- 
mann techniques, tiie paper deals with their application to the following problems : (i) viscous 
flow between parallel plates; (ii) behavior of a liquid - vapor system placed in a tank subjected 
to terrestrial or space conditions, when the tank walls are wetted or not by the fluid; (in) 
spinodal decomposition; (iv) structure formation and sound propagation in magnetic fluids. 

General description of Lattice Boltzmann models. Since Frisch, Hasslacher and 
Pomeau have shown that particles moving on a hexagonal lattice with very simple collision 
rules in its nodes lead to the Navier Stokes equation at the macroscopic level [1], the use 
of lattice gas models [2, 3], a special class of cellular automata, has received considerable 
interest. In order to reduce the statistical noise which was inherent to these particle models. 
Lattice Boltzmann models which use distribution functions moving on a lattice [4] were 
subsequently developed as a mesoscopic approach to the same fluid dynamics problems. 

The modeling of the isothermal hydrodynamics of a two phase system was achieved in [5, 6] 
on a hexagonal lattice with unit vectors e* = {cos[27r(i - l.)/6] , sin[27r(i - l)/6]}. The 
particle distribution functions /,(f,i) evolve iu accordance to the discretized Boltzmann 

equation 

f1{x + ei,t + 1) - fi{S,t) = n,-(f ,t) = -i [fi(vccx,t) - ft"(-x,t)} (1) 

where the collision term Qi{2,t) was linearized introducing the equilibrium distribution 
functions f-q, i = 0,1,.- -6, as well as the relaxation time T. In the frame of this model, 
the local fluid density is defined as n(£,t)  = Ei £(*.'). while the local fluid velocity is 
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(2) 

The equilibrium distribution functions /,• = fffrt) were expanded as power series in the 
local velocity u ~ u(x, t) : 

ft"   =   A + flefaii,, + Cu2 + Duau0eiae.i0 + Faeta + Gnfieinelß +■■■ 

faq   =   A0 + CQu
2 (i=l,...,6   ;    a = 1,2) 

and the appropriate coefficients 

A0 = 7i - 2(p0 - /cnV2n) £ = n/3 C0 = -n 

A = (po - KnV2n)/3 C = -n/6 D = 2n/3 

f« =0 (3) 

'»=3^fe; -l%j        C"=2T&^- 
were determined using local conservation of mass and momentum, as well as Galilean in- 
variance and isotropy of pressure tensor : 

D r     ,      dn   dn 
dxa dxß V*' 

where 
SV K 

p = n — -*=Po- «nvSi - -| Vn|2 (5) 

Here 

* = *(*) = / {^|Vn(f)|2 + ^(n(f))} rff (6) 

is the free energy functional [7], the constant K defines the strength of the surface tension 
and p0 = nf(n) - i/;(n) is the state equation of the fluid. 

In order to have a Van der Waals fluid, the bulk free energy density ^ has the form 

d = nTln(-^—)-an2 

U-n6/' (7) 

where T is the system temperature. Current simulations were done with a = 0, b = 0 
(when the ideal gas equation was recovered) as well as with a = 9/49, b = 2/21 (giving 
the critical temperature value Tc = 0.571). 

When introducing a chemical potential p(x) in each lattice node x, thermodynamic forces 
are defined as gradients of this potential [5]. These forces are introduced in accordance with 
the general momentum equation 

Ercq Oil 
Ji eia = nua - TTi— (g) 

and therefore the coefficient Fa in the expansion (3) becomes 
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When the potential p{x) vanishes overall the lattice domain except the boundaries, it pro- 
vides the possibility to incorporate wetting phenomena near the domain walls,, as first sug- 
gested in [5j. 
The expression (9) may be extended in order to include also the action of an external force- 
field Ta{x) acting on each node £ of the lattice : 

'•~T{£+*4 (10) 

In particular, the external force field Ta{x) may be of gravitational origin 

Ta{x) = n(x)g (11) 

where g = const is the gravitational acceleration. 

Viscous flow between parallel plates. The suitability of the Lattice Boltzmann model 
to reproduce physical aspects in fluid dynamics problems was tested in the case of Poisseuille 
and Couette flows [8], In the first case, parabolic velocity profiles between the two plates 
were always recovered after a certain number of automaton steps. These profiles were 
depending on the value of the relaxation time r introduced into the linearized Boltzmann 
equation (1). The differences between the values of the kinematic fluid viscosity v found 
after fitting these parabolic profiles and the analytical expression [9] 

„ = ^1 (12) 

was found to be less than one percent [8]. 
Suppose now that the fluid and the two parallel plates are initially at rest state. After the 
lower plate is suddenly brought to the steady velocity U in its own plane, while the upper 
one is still maintained at rest, the governing differential equation is 

^L = V^L (13) 
dt dtf K   ' 

with the boundary and initial conditions 

n(Q,t) = U,    u(H,t)=Q       fort>0 (14) 

u(l/,0) = 0       forQ<y<H (15) 

The velocity distribution is given by [10] 

The simulation was done on a lattice with 101 x 100 nodes, where the real distance between 
plates was H = 101 y/Z/2 - \/3/4 [8]. The time evolution of the velocity profile is presented 
in figure 1, at t = 300, 1200, 4800 and 10000, the kinematic viscosity being v = 0.125. 
An excellent agreement is observed between the numerical and analytical results.   The 
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Figure 1: Developront of velocity profile between pastil«! plates in rck1 -:\ 
Lattice Bolt-zmaan results; solid libcs - ^tjalvtical sch-ic Hi',]. 

.»p.ofior: Cdots 

linear velocity profile corresponding to the steady Couette flow with no pressure gradient is 
naturally obtained for t —> oo. 

Equilibrium configuration of a two - phase fluid in a tank. The equilibrium con- 
figuration of a fluid contained in a tank subjected to constant gravitational acceleration is 
a major problem in space technology. Specific criteria [11] allow the determination of the 
position of a free gaß - liquid interface in the absence of gravitation, when the tank geometry 
is well defined. Here we deal with the equilibrium configuration of a two - phase Van der 
Waals fluid placed in a 2 - dimensional rectangular container subjected to terrestrial (g ^ 0) 
or space conditions (.9 ~ 0). Simulations were generally done on a 128 x 128 lattice at 
T - .565. Because of the scaling factor -\/3/2 on the vertical axis in the triangular lattice 
[3, 8], the real domain had always a rectangular form. All simulations were done starting 
from the same initial configuration, which had two subdomains of different mean densities, 
with 1% random fluctuations. The two possibilities, when the fluid may or may not wet the 
tank walls were also considered. For this purpose, the chemical potential fi(x) had always 
a null value in the inner lattice nodes, but this value was negative at the boundary nodes 
when the walls were wetted by the fluid, and positive in the contrary case [5, 12]. 

Wetting case. Figure 2 shows the initial state (a) and the final state (fc) reached after 
20,000 automaton steps, when the gravitational accceleration had the value g = 50 and 
the tank walls were wetted by the fluid. Because of the gravitational acceleration oriented 
downwards, the liquid phase (of greater density) always remains at the bottom of the vessel, 
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Figure, 2: Initial (a) and equilibrium states at g = 50 (b) and g 
fluid, obtained at T = .565, a = 0.01, /x = -0.1 (wetting case). 

0 (c) of the two - phase 

Figure 3: Initial (a) and equilibrium states at g = 50 (6) and # = 0 (c) of the two 
fluid, obtained at T = .565, « = 0.01, ^ = 0.5 (non-wetting case). 

phase 

even a thin film becomes attached to the tank walls. In the absence of gravity, the liquid 
phase remains all around the walls, while the gas phase is situated at the center of the tank, 
having a very slow evolution towards a rather circular shape, as shown in figure 2c, which 
was obtained after 60,000 automaton steps [12]. 

Non - wetting case. Figure 3 is similar to figure 2, except the fact that the walls are no more 
wetted by the fluid. One can see that the curvature of the gas - fluid interface is opposite 
compared to the wetting case. In the absence of gravity (figure 3c), the liquid phase achieves 
again a circular shape in order to reduce the iuterfacial energy, as in the weting case. 

Spinodal decomposition. Phase separation into the coexisting liquid and vapor phases 
occurs after a sudden quench of the homogeneous fluid into the two-phase coexistence region. 
In order to get detailed information about the kinetics of spatial structures arising during 
the spinodal decomposition, the lattice system was first initialized with a mean density p 
and 1% random fluctuations of the local density p[x) were allowed around tH mean value. 
Most simulations were done on lattices with 1024 x 1024 nodes using periodic boundary 
conditions, different values of the relaxation time T and a constant value K — 0.01 of the 
surface tension constant, which ensures the width of the interface region between homoge- 

481 



a :    t = 100 6 :   < = 150 

e :    t = 1000 / :    * = 21000 
7igure 4: Time evolution of the local density across a 256 x 256 lattice after the quench at 

t = 0 (p = 3.0, K - 0.01, T = 0.60). 
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500 1000 
automaton steps, t 

1500 

neous phases to be approxiiuatively 10 lattice units. After each initialisation, the system 
was released to evolve during 500 preliminary automaton steps at the initial temperature 
Ti„ = -580 above the critical one, then the temperature was suddenly changed to the final 
value Tjin = .550. Starting from this moment [t = 0), the system WHS allowed to evolve to 
its equilibrium state, as seen, e.g., in figure 4, while the patterns were characterized through 
the values of three morphological measures following a procedure described below. 

In a d-dimensional space, morphological measures [13,14,15] are generally defined as func- 
tionals on homogeneous domains, i.e. on subsets A £ TZd, having three fundamental proper- 

ties: .additivity, motion invariauce and conti- 
nuity. Any morphological measure is a linear 
combination of the d +1 Minkowski functionals 
W„(J4). In d = 2, these Minkowski functionals 
are related to familiar measures: covered area 
F, boundary length U and Euler characteristic 
(connectivity) x- 

In order to compute the values of the Minkowski 
functionals at a given time during the spin- 
odal decomposition process, a threshold value 
Ptk = 3.5 is introduced and the gray value at 
each pixel is set to either white or black depend- 
ing on whether the original local density value 
p(x) is larger or lower than pa, respectively. 
The first obvious quantity is the relative white 
area, F := Np,k/N, i-e- the number NPll> of the 
pixels in the original image having the corre- 
sponding gray level p(x) greater than pt^ nor- 
malized by the total number N of pixels. The 
second morphological quantity is U := B/N 
defined as the ratio between the total length 
B of the boundary lines separating black and 
white regions, normalized by the total number 
of pixels. To determine B one has to count the 
numbers of pairs of neighbored black and white 
pixels. The third quantity of interest, the Euler 
characteristics \ = A"" — Nb, defined by the dif- 
ference of the number of connected components, 
is not normalized by the total number of pixels 
in order to keep integer numbers. This quan- 
tity describes the connectivity of the domains 
in the lattice and, e.g., it equals —1 when one 
has a black drop in a large white lattice and +1 
vice versa. Despite its global meaning, the Eu- 
ler characteristics may be calculated in a local 
way [14, 16]. 

1500 

500 1000 
automaton steps, t 

1500 

Figure Time   evolution   of  the 
Minkowski functionals. 
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In figure 5 we show the typical time dependence of the morphological measures F{t), U(t) 
and x(t) obtained for an off-symmetric quench (p = 3.0), where the fluid phase is the 
minority phase, using several values of the relaxation time T. One can clearly distinguish 
two different time regimes: the early stage of spinodal decomposition kinetics and the late 
state of domain growth. At early times, the growth of density fluctuations leads to the 
build up of interfaces between homogeneous domains of the two coexisting phases, as seen 
in figures 4 a - c. This process is accompanied by an increase of the white area F belonging 
to the liquid phase, as well as of the boundary length U of the interface. Also the Euler 
characteristic increases, because many disconnected components of the minority phase an«;. 
In contrast to this early stage, the late stage domain'growth (which corresponds to figures 4 
d - f) is characterized by a decrease of the quantities U and %. This is a direct consequence 
of the increase of the characteristic length scale L. The area of the liquid phase remains quite 
constant and approaches the final value F(t -> oo) -» {p-pgas) j'{(.mnuid~P'<,«») which is given 
by the level rule of the coexistence region. Because of phase demixuig, the boundary length 

U and the Euler characteristic approach their final minimum values U(t -> oc) -4 8y^ 

and x{t -+ oo) -* 1, which correspond to a single liquid drop of area F, immersed into the 

vapor phase. 

Since the measures WV{A) are homogenous functions of order d- v [13, 15], the following 
scaling behavior of the Minkowski functionals may be assumed 

F~l    ,    U ~ I"1    ,    X~£"2 (17) 

where L is the characteristic domain size. There are other possibilities to define characteristic 
length scale's of spatial patterns, which are based on the calculation of the first zero or 
the first moment of the radial distribution function. These definitions, although widely 
used by many authors, are recognized to be computationally expensive and cannot account 
themselves for the morphology of the rich variety of geometrical shapes of domains, as 
Minkowski functionals can do. Moreover, the definition (17) of the characteristic length L 
allows a faster computation algorithm, because it does not involve Fourier transformations, 

but only pixel counting. 

In figure 6 we show the functions U~l{t) and x~U2(t)> i-e-> the timR evolution of the char- 
acteristic length L{t), in accordance to the relation (17). We observe the scaling behavior 
L(t) ~ ta with three different scaling exponents a being established for various hydro- 
dynamic regimes: a = 2/3 for low viscosities (r = 0.54, kinetic regime), a = 1/2 for 
intermediate values (T = 0.6), and a = 1/3 for high viscosities (T = 1.5). 

Magnetic fluids, also known as ferrofluids, are ultrastable colloidal suspensions of subdo- 
main ferro - or ferrimagnetic particles - e.g., magnetite {Fe^04) - dispersed in various carrier 
liquids [17]. Many experimental results confirmed that colloidal particles in magnetic fluids 
coagulate and form chain clusters as a result of their mutual interactions, this process being 
enhanced in the presence of a magnetic field. The chain formation process, together with 
the reorientation of individual particles in the presence of a magnetic field, are responsible 
for the anisotropy of the physical properties of these materials. 

Following the general approach in [18], the lattice Boltzmann equation was considered for 
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1000 

100  1000 10000 100000 

t 

Figure 6: 
Time evolution of the bound- 
ary length Wi/U(t) (dashed line) 
and the connectivity w^lx^Y1'1 

(thick solid linn). The coefficients 
w, are chosen to separate the data 
and the dotted lines show the 
scaling behavior L(t) ~ f* with 
exponents a = 2/3 (T = 0.53, 
7i>i = 1, w-i = 400), a = 1/2 
(T = 0.60, wx = 0.5, w2 = 
1000), a = 2/3 (T = 1.50, IüJ = 
0.5, w2 = 80). 

a fluid system with S + 1 components moving on the hexagonal lattice [20]: 

<(£ + ea,t + l) - <(f,t) = -- [<(x,t) - n°f{x,t)] (18) 

where <7 = 0,1,..., 5 = 6, a = 0,1,..., b = 6, <(£, t) is the single particle distribution 
function for the a-th component having the velocity e.a and T is the mean collision time. 
Particles with a = Oare "carrier liquid" particles, while "colloidal particles" with 1 < a < S. 
carry a magnetic moment m" = e„. The mean fluid density p and the concentration of the 
colloidal particles are 

s i        s 
,5 =<p(£, *)> = <£>"(£,*)>,        4>= - <Ea°(?'f)> 

s 

IT=l 

(19) 

where na(S,t)   =  ELO <(*>*) and < ••• > is the average on the whole lattice.   The 
probability of finding a colloidal particle with the magnetic moment m" is 

r/u T) =      expiiMtA'-S/kuT) 
(        '      E:ZUM^ni"-H/kBT) 

(2o; 

where [iQ is the vacuum permittivity, H is the magnetic field vector, kB is the Boltzmani 
constant and T is the temperature. We always started our computer runs by assuming that 
particles are initially quasi-homogeneously distributed over a 128 x 128 lattice with a smal 
(1%) random perturbation and the fluid is at rest. Consequently, at t = 0 we had 

(x) = P{x)cf>r(H,T):    l<a<S,       n\x) = p{x) - £ n»(f) (21 

<(f) = izi^V(£),     1 < a < b,        <(f) = flfen'fö,    0 < <r < S (22; 
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where 0 < d0 < 1 is a constant [18, 19]; our computer runs were made with d0 = 0.5. 

The colloidal particles in magnetic fluids interact themselves via dipole-dipole interactions. 
Only nearest-neighbours interactions are taken into account and so, the interaction potential 
energy is [20]: 

W{x,t) 

*J(T(T/1 — 

S ^ h 

o-=0 ff=0a=l 

1 
•m" - 

3(w'T-ea)(m
g-ea) 

c2 

(23) 

(24) 

where c = 1 is the lattice constant and, for convenience, rn° = 0. 

The interaction process is achieved during the collision phase in the LB automaton. Conse- 
quently, the rate of net momentum change induced at each site is also a simple generalisation 
of an expression in [18, 19]: 

1 
-I« r fä»(*.*) - Kd&i)] = -n°(Z,t)Y,YäG„-aan

B{x + en,t)ea 
5=1 a=1 

(25) 

The new values rPnai,{x,t) of the local velocities, established after the interaction determine 
the local equilibrium distribution functions nj>e»(x, t) [19] in the lattice Boltzmann equation 
(18). The continuity equation, as well as the momentum equation are obtained from the 
Boltzmann equation (18) after a series expansion [20]. 

Phase transitions. Fignre 7 shows the two - dimensional distribution of the x component of 
the local magnetisation Mx(x, t) = Ef=i(m<%n<r(:r, t) after 5000 time steps when the mag- 

netic field is oriented in the x (horizontal) direction (h = 
IM>H/kBT = 0.8, 4> =_0.2, p = 0.5).The white points 
have Mx(x,t)_> 1.01 • Mx(t), while the black ones have 
Mx(x,i) < Mx(t), where Mx(t) = const, is the mean 
value on the whole lattice. The phase separation, i.e., 
the onset of thread-like clusters orientated along the field 
direction, is evident. The typical field parameter (h) 
dependence of the mean magnetisation ~Mx(t), as well as 
of the mean magnetisations in each phase, M^'sh(t) and 

Figure 7: Cluster formation. Ml°m{JL), is reproduced in Figure 8. 

Sound propagation.   Let p', if be a weak perturbation of the equilibrium solution peq = 
p,    if = 0 of the LB automaton. The sound propagation equation is: 

dtp' - (4)2VV + 
(6r - 1), :$(vV) = wjrrdjßfat/p) - 2(0 + 2) 

^(3.v)E/T(^)a, + <?da{(tdßit)Y,mMa*u 
",<* op- 

where {c\f is the squared sound velocity in the first order approximation 

(4)2-T,(l~d0)+p^2 

D 
be? 

D 
36c1 

D{D + 2) Efaf(™° ■ m" 

(26) 

(27) 
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Figure 8: Field de- 
pendence of the 
mean (•), high (O) 
and low (G) mag- 
netisation values af- 
ter * = 5000 time 
steps. 

Figure 9: Time evo- 
lution of t.he small 
amplitude density 
perturbation p'{G,t) 
during t = 5000 
steps (p — 0.5, ip = 
0.20, h = 0.8) when 
the magnetic field is 
oriented along the x 
and y axes. 

5000 

Equation (26) reduces to the usual damped sound equation when cj> = 0, i.e., no colloidal 

particles are present. 
In order to take advantage of the periodic boundaries in the LB automaton, we considered 
the problem of standing waves in the x direction, and therefore, the lattice was initialized 
at t - 0 with a cosine perturbation having a small amplitude (p0 = 0.1 • p). The general 
behaviour of the space and time dependence of t.he perturbation (after a mediation in the 
y direction) was found to be close to p'{x,t) = > exp(-(rf) cos(fcx) cos(wft) where k = 
27r/I. L = 128 is the wavenumber. Figure 9 shows the time evolution of the perturbation 
at x = 0 during t - 5000 steps for p = 0.5, cj> - 0.20 and h = 0.8, when the field direction 
was oriented along the x and y axes, respectively. From this figure, as well as from the 
computed Fourier spectrums, one can see that the sound velocity is greater when the field is 
oriented along the x direction. The field attenuation coefficient a was found to be dependent 
not only on the field parameter h, but also on the angle 6 between the x axis and the field 
direction [20]. 

Conclusions. Lattice Boltzrnann methods have several important advantages over other 
classical numerical methods for fiuid flow problems (finite difference, schemes, finite element 
methods, etc.). First, there is no need to solve algebraic equations systems since the distribu- 
tion functions characterizig the particle system at the mesoscopic level evolve in accordance 
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with local fVHomatori rules. These automaton updating rules are very simple and may be 
fully paiatleL ed. Physical interactions at the particle level e.g., hiterpaxtiele interactions, 
external forces or the presence of boundaries may be also introduced. Wetting phenom- 
ena und UiTestrial or space conditions are also well described using this model, whose 
advantage a the consideration of the microscopic level fluid physics (collisions and long 
range interaclious between particles) instead of the macroscopic level (continuous media) 
approach. 
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Some remarks on the Witten laplacian 

by- 
Mircea Puta and Florian Cre^ 

Abstract 

We study some geometrical properties of the Witten laplacian and point out some 
of its applications in geometric quantization. 

1    Preliminaries 
Let M be a smooth n-dimensional Riemannian manifold, orientable, without boundary 
and V(M) the space of smooth (= C°°) exterior p-forms on M with compact support. 

For each a, ß € VP(M) we define their inner product {a,ß) by 

(a,ß) = JaA*ß, (1.1) 
M 

where * is the Hodge star operator. Then V(M) is a pre-Hilbert space and we denote 
by L2VP(M) its completion. 

DEFINITION 1.1 ([2])Let/e C°°(Af,R) be an C°°-smoothfunction on M and t £ R 
a real number. Then we define the differential operators d{, 6J and W,j respectively 

by: 

(i) d{ : ae VV{M) h-» d{a = (e",J'deft)(a) £ Wn{M) 

(ii) 6{ : a e V(M) ^ S{a = (eftSe-}t)(a) € VP~\M) 

(iii)   W^j : a € V{M) ~ W<*](a) = d{S{a + S{d{a € V{M). 

The second order differential operator W,j is usually called p-Witten laplacian or Wit- 
ten laplacian on p-forms. In all that follows we shall suppose that / is fixed and we 
shall write dt, <5,, w\p] instead of d{, 6{ and W^j respectively. 

THEOREM 1.1 ([2]) For each p € N, 0 < p < n we have: 
(i)    dt o W[T) = wlp) o d, 
(ii)   6, o W\p) = Wlp) o 6t 

Cm) <$i is the adjoint of dt with respect to the inner product (1.1). 
(iv)    iy,(p) is the elliptic, self-adjoint and positive definite operator. 
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2     Hodge theory for the Witten laplacian 
Let us suppose now that M is also a compact manifold. 

DEFINITION 2.1 A differential form a g L2VT(M) will be called a Witten har- 
monique form if 

W[p\a) = 0. 

We shall denote by HP(M) the space of Witten harmonique p-forms on M.  Then 
as a cosequance of the Theorem 1.1 (iv) we have immediately: 

THEOREM 2.1 ([2]) For each p g N, 0 < p < ra we have: 
(i)    L2V(M) = ker(W(

(p)) 0 range^5), 
(ii)    HP{M)CW{M), 
(Hi)    HP(M,dt) ~ Wt{M) ~ ft>(M) ~ H"(M,d). 

Now, using the above result we can prove: 

THEOREM 2.2 For each p g N, 0 < p < n, the equation: 

WIP)(V)=* (2-1) 

has always solution if and only if A is orthogonal to HP(M) with respect to the inner 
product (1.1). 

PROOF If 77 is a solution of the equation (2.1) and 7 g KP(M), then we have succes- 
sively: 

(A, 7) = (W,W(i?),7) - O/.W^fr)) = 0 

and so A is orthogonal to fiF(M). 
Conversely, let us suppose that A is orthogonal to 7ip(M).   By means of Theorem 

1.1 (i) we have 
\ = dta + 6tß + f 

with 
W?\-y) = 0. 

On the other hand, 

0   =    (7,A) = (7lrf,a) + (7,*,/?) + (7,7) 

=    («,7,a) + («*i7.0) + (7,7) 

=    (7,7) 

and then 7 = 0. It follows that 
A = d,a + S,ß. 

We shall put now 

n = p + v 

and try to solve the equations 
W\*\v) = d,a 

-490 - 



q.e.d. 

and 
.     W? \u) = Stß. 

Using again Theorem 1.1 (i) we have: 

a = d,a1+Stß1+'yl 

d,a — d,5tßi 

ßl = dta2 4-<5„32+'72 

dtStßi = (dt6t + 6tdt)(dtai) = Wf\dta2). 

It follows that: 
Wt   (M) - dta,    with fi — d,a2. 

v can be obtained in a similar manner. 

COROLLARY 2.1 The equations 

and 

have always solutions. 

Using now the induction over m we can prove also 

THEOREM 2.3 The equation 

wwra = A .   ■ 

has solution if and only if A is orthogonal to 7f,(M) with respect to the inner product 
(1.1). 

3    Continuity properties 

Let X\p\t,g) be the first nonzero eigenvalue of the Witten laplacian on p-forms and M 
the space of Riemannian metrics on M endowed with the C°°-Whitney topology. Then 
we can define a map 

AW :JEMH \<*\g) = \f\t,g) g (0, oo) (3.1) 

and we can establish the following continuity result: 

THEOREM 3.1 For each p 6 N, 0 < p < n, the map \[p) depends continuously on g 
in M. 

PROOF The proof will be obtained in three steps. 
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Step I    The adjoint of d, + 6, is d, + St. Indeed, we can write successively: 

({d, + 6t)a,ß) = {dta,ß) + {Sta,ß) 

= (a,6tß)+{a,dtß) 

=   (a,(dt + St)ß). 

Step 2   (dt + 6ty(a) = WJp\a), for eaxh a 6 V(M). Indeed, 

(dt + 6t)
2(a)    =   dfa + ^Q + ^^a + if^Q) 

=    (d,<$,a + Stdta) 

=   W(
(p)(a)- 

Step 5   Let 

A(i) =        mf ||a112 

Then the equation: 
Wlp){a) = A(1)Q 

has always a nonzero solution a. Since \\dta + 5ta\\\ \\a\\2 depend continuously on g in 
M and the infimum depends also continuously on a, we obtain the desired result. 

q.e.d. 

4    Witten laplacian and geometric quatization 
Let (Q,g) be a geodesially complete Riemannian manifold, M = T'Q its cotangent 
bundle, 7 the vertical polarization on M and w = dö its canonical symplectic structure. 

Let h be the generator of geodesies on M, i.e. 

h^-g^ViVj- 

Then the classical quantum operator which is canonically associated to h is given by 

(».-£(*-f), 
where A is the Laplace operator and 

R = gijR,j 

is the scalar curvature on M, [3, p. 179). 
Let / be an C^-function on M and i a real number such that the following relation 

h°ldS: n 3(3, » M, fi       n 

i, j = 1 >J = 1 ■•■>-' 
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where , 
, _ j   ?'    if    i = l,...,n 

1 ~ \ p<   if   i = n + l,...,2n 

and a'' [resp. a'*] is the interior [resp. exterior] multiplication, [1]. 
Using now the local expression of the Witten laplacian on functions we have: 

THEOREM 4.1 Under the restriction (4.1) the following equality holds: 

Let us finish with the observation that it is an open and very tempting problem 
to decide if there exist other concrete situations where the quantum operator given by 
geometric quantization can be regarded as a Witten laplacian. 

References 
[1] E. COMBET, Les inegalites des Morse d'apres E. Witten, Publ. Dept. Math. Lyon I, 

Seminaire de Geometrie, 1983-1984. 

[2] E. WITTEN, Supersymmetry and Morse theory, J. Diff. Geometry, 17 (1982), 661- 

691. 

[3] N. WOODHOUSE, Geometric quantization, Clarendon Press - Oxford (1980). 

West University of Timi§oara Seminarul de 
Geometrie-Topologie B-dul V. Pärvan 4 
1900 Timisjoara, Romania 

Universitatea de §tiin^e Agricole §i Medicinä 
Veterinarä a Banatului din Timi§oara, Cate- 
dra de Matematicä, Calea Aradului 119, 
1900 Timisoara, Romania 

493 - 



SAMPLING EXPANSIONS FOR A CLASS OF BAND-PASS SIGNALS 

Aldo De Sabata 

"Politehnica" University of Timi§oara 

Dept. of Telecommunications 

Bd. V. Pärvan nr. 2, 1900 Timisoara, Romania 

Abstract .. 

In this paper a sampling scheme for a class of complex valued, finite energy, 

multiband signals is presented, based on the Papoulis sampling procedure. An example 

of "bunch sampling" which leads to a closed form expansion is derived. The sampling 

densities are kept to a minimum in the Shannon-Landau sense, and the expansions are 

stable in the Cheung-Marks sense. 

1. Sampling Procedure 
Let I be a closed interval on the (angular) frequency axis, of length 1, and let K 

be a finite set of positive integers. The class of signals we will consider, denoted Bs, 

consists of complex-valued, finite energy signals, whose spectrums are concentrated on: 

Ä«U(MÜ). (1) 
keK 

An example is shown in fig. 1, for H-50/2; -3fi/2], and K={1,2,4,5}. 

In order to derive a sampling expansion for such a signal we will use the 

multichannel sampling scheme (MSS) approach introduced by Papoulis [4]. Note that the 

Shannon-Landau sampling density of a signal from the class we deal with is 2n/NQ, 

where: 

N=card(K). (2) 

According to the MSS the signal x(t) is, on one hand, input to a single filter with 

frequency response H(co), and, on the other hand, it is the input of N filters with 

frequency responses Hk(co), k=0..(N-l) (fig. 2). The single filter output y(t) will be 

expressed in terms of the sampled outputs of the other filters yk(nT), taken at a rate 

T=27i/n, and some functions to be obtained: 
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N-l 

*=0   n 
?(*)=£ E^W-^- (3) 

We shall denote, as usual, by X(<D), Y<<») and Yk(co) the Fourier transforms of x(t), y(t) 

and yk{t) respectively. 
The derivation of (3) includes some standard steps. First we have: 

Let ^(ffl.t) be some fi-periodic functions in © such that, for every t: 

AM 

The existence of <&, is ensured under a certain independence condition on Hk to be 

derived now. (5) can be written as a system: 

*_1 an 
H(^kCl)e^tkay,=Y:H^kQ)^A    we/. W 

i=0 

If the determinant of this system of equations is non-zero a. e. on I, then the ^©,t) are 
uniquely determined on I and, implicitly, on the whole frequency axis through ft- 

periodicity. The condition: 

A{<o)=det||aJ=det||/f/((o+*;Q)||^0,    keK,  MUM,  we/ (7) 

is known as "the independence condition" on Hk {4]. 

Now, <E>j(co,t) can be developed in a Fourier series for every t: 

W<*frY,bt>n&i**0,a' (8) 

Let: 

7=2* (9) 
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The substitution of (8) and (5) into (4) yields: 

y®=±(X{w)£H/iu)£b(Me»>T= (10) 
l* s       M> « 

i=0   n ** s ;==0   „ 

Now we will prove that: 

b(.nfcbßj-nT). (11) 

The substitution of t with t-mT in (5) yields, by tacking into account (8): 

JV-J 

I'd   n 

which implies: 

AM 

As both fee solution of (6) and the expansions of <3>j are unique, there results: 

For n=0 we obtain (11) with n replaced by m. We will summarize this procedure in the 
following: 

Proposition. For every signal from Bs the equation (3) holds in connection with 
the systems in fig. 2 if the frequency responses Hk satisfy the independence condition 
(7). The functions fj are the continuous components (zero frequency terms) of the 
developments in Fourier series of the Q-periodic functions defined on I in (6). 

Note that until now the MSS has been applied to signals whose spectrum support 
has been an interval, which is not the case here. 
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2. Example 

As an example we will derive a sampling expansion for a signal with the spectrum 

as in fig. 1. We will put N=4, and we will take all the systems in fig. 2 a? purs delays: 

ff(w)=^ot,  H^)=^\    /=0..3. 02) 

We need the following simple algebraic identity: 

A(a,b,c,d)= 

1 1 1 1 

a b c d 

ö3 b* c3 d3 

a* £4 c4 d* 

■■ Viiafocjtyiab+ac+ad+bc+bd+cd) (13) 

where V4(a,b,c,d) is the fourth order Vandermonde determinant. 

Direct application of the MSS and of (13) lead, after some algebraic manipulations 

to: 

/o(0= 
sin[|it-x +vj\  stol-|(r-t +x1)]sml-|(j-t +x2)}Mj(t~x +t j)] 
 x : 

—(t-x+xj        sin[—(tj-t^stal-j (T2-T^]sin[-~(T3-Tc)] 

COS[—(t~X -Tj+^+Tjl +COSf_—(t-X +X j -X2+X^ +COS[—(t~X + Tj +T,-tj) 

COS[y(T0+ti-T2-T3]+COS[—(to-Tj+^-Tj+COSl—(TO-XJ-T^+TJ 

(14) 

fj, f2, and f3 can be obtained from (14) through the circular shift of the set {0,1,2,3}. 
These functions are to be substituted into (3) in order to obtain the samplmg expansion 

of x(t-x) at the Shannon-Landau density. The delays must be chosen such that the 
independence condition (7) be observed, but this is not very restrictive. Note that the 

sampling expansion is in a closed form. 

3. Stability considerations 

The Cheung-Marks stability of the considered sampling scheme deals with 
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perturbed values of the samples Vj(nT), which is a more realistic case. If instead of 

yj(nT) one disposes of the values yi(nT)+Xn, where ^ are uncorrelated random variables 

with zero mean and the same variance o, the sampling expansion is said to be stable if 

the reconstructed signal tends to y(t) as a-»0. In the sequel we consider x=0. In this 

context the sampling scheme can be viewed as in fig. 3 [1], [2]. The pre- and post-filters, 

not necessarily realizable, are related in the frequency domain through [1], [2]: 

iMiKgi^ (15) 

where I is the N'th order identity matrix, the matrix ||au|| is defined in {7), and: 

lM=l|GM(t)^Q)li,  qeK,m=Q.M-L (16) 

In order to apply the theory from the above cited literature we must view Bs as 

a subclass of the class of finite energy signals defined on the smallest interval which 

contain S. Then, if the Hj are bounded, square-integrable functions, it is known that the 

sampling scheme is stable if and only if the G] are square integrable on I. Furthermore, 

a sufficient condition for stability is that the determinant A(co) must be bounded away 

from zero on I: 

1A(«)|>6>0,  we/. <17) 

In the given example we have: 

A(co)=n I^V%|£ /*«>0 
>i;0 M;0 

if the independence condition is met for every coel, 

Conclusions 
We have shown in this paper that the Papoulis sampling scheme is more flexible 

than presented until now, in the sense that it can be applied to signals whose spectrums 

contain gaps. The bands in the spectrum can be closer together than allowed by other 

sampling techniques [3]. As an example, we have presented a stable "bunch sampling" 

of a signal, which seems to be new. The sampling scheme we have presented in the 1-D 
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case can be extended to higher dimensions, provided that the spectrum of the signal 

results from integer translations of a connected set in which a Fourier series is defined, 

such as a hypercube. 
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Fig. 1. Example for the Fourier spectrum. 
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Fig. 2. The multi-channel sampling scheme. 
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Fig. 3. The sampling scheme in the context of pre- and post-filters. 
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Abstract 

We investigate numerically the dynamics of a reversible laser flow 
simulating a Poincare map associated to the vector field defining the 
system, Using shooting method we locate some symmetric periodic or- 
bits of the chosen Poincare map, and their type. A cascade of creation- 
annihilation of periodic orbits is put into evidence, and bifurcation of 
a 1:3 resonant elliptic fixed point. 

Introduction 

The growing interest for laser systems led to the investigation of some 
models for such systems. According to the relation among the three 
damping rates for polarization, population inversion and field ampli- 
tude the lasers can be classified into three classes, called class A, B, 
respectively C. 

A class-5 laser system is modelled [Politi, 1986] by a three dimen- 
sional reversible nonlinear dynamical system. In cylindrical coordi- 
nates an approximation of this class laser with injected signal is given 
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by: 

r = zr + A cos 9 

9 = -1- (A/r)sm9 

z = D-*-r2-i 

where r is the field amplitude, z the population inversion, 9 the field 
phase, D the pump parameter and A the amplitude of the external 
signal. 

The Poincare map associated with a transversal section to the 
above vector field is the first known example of nonarea-preserving 
reversible diffeomorphism exhibiting both conservative and dissipative 
behaviour, and symmetry breaking bifurcation (Rimmer bifurcation) 
[Post,1990] of a fixed point. 

We introduced a slight modification of the third component of 
the vector field describing the dynamics of the class-i? laser, namely 
a third parameter of control of the amplitude of z, a > 0, so that 
z — D — ar2. This modification generated a wealth of intricate and 
unknown behaviours, as far as we know, in a reversible system. 

Numerical simulations of a Poincare map associated to the mod- 
ified system suggested the theoretical approach of the dynamics of 
reversible diffeomorphisms of an open annulus (a,oo,) x S1, a > 0, 
that are perturbations of an integrable one, whose closed orbits have 
rotation numbers decreasing from oo to 0 as the radius of invariant 
circles increases from 0 to oo [Petri§or, 1997]. 

Because the main feature of the systems to be investigated next is 
the reversibility, recall some results concerning this class of dynamical 
systems. 

Let R be an involution (reversor) of R", that is a C1 diffeomorphis- 
m satisfying RoR = id. A complete CJ-vector field V : D C R" -> Rn 

is called Ä-reversible vector field if 

dRoV = -VoR, (1) 

Denoting by $4 the flow of the vector field V condition (1) implies: 

£$« = *_«£,   V<€R (2) 

This means that along with x(t) = 3vco, Rx(—t) = R$_tx0 is also 
a solution of the system defined by the vector field V.    The orbit 
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$tx0 of the point x0 € R" is called symmetric with respect to R if 
§tx0 = R $_tx0. Taking t = 0 we get E x0 = x0, i-e- a symmetric orbit 
is the orbit of a point in the set Fix(Ä). If the orbit of x0 e Fix(Ä) is 
periodic then it reintersects Fix(R). Such an orbit is called symmetric 

cycle. -•.   ... 
Let R be a fixed C°° involution of the smooth manifold M2n, with 

dim(Fix(Ä)) = n. A C\r > 1 diffeomorphism / of M is called 
E-reversible diffeomorphism if I = / o R is also an involution. So 
f = IoR,&ndf-l=RofoR. _k 

The conjugation of / to /-1 by R ensures that fk = R o / o Ä, 
Vfc G Z, that is /* is also an E-reversible diffeomorphism. It is clear 
that the diffeomorphisms Ij = fj o Ä are also involutions for every 
j € Z. Denote by T,- = Fix(Jy). T;- is called the jth symmetry sub- 
manifold of /. To is the fixed point set for Ä, while Tx for /. It is 
known [Devaney, 1976] that a point x G Tj n T^ is a periodic point 
of the Ä-reversible diffeomorphism /, whose period divide \j - k\. 
Conversely, if x G T,- is a periodic point for /, then there is a k € Z 
such that xeTk. Hence some periodic points lie on a symmetry sub- 
manifold. Such periodic points are called symmetric periodic points. 
But obviously the diffeomorphism can also have asymmetric periodic 
points. For more information on discrete reversible dynamical systems 

see [Roberts, 1992]. 
A large interest there is in the study of persistence/breaking up of 

invariant circles (so called KAM circles) of a reversible diffeomorphism 
of the plane, cylinder or annulus that is a perturbation of an integrable 
system, whose integrals are circles. The reversible KAM theory is 
presented in [Sevryuk, 1986]. 

The persistence of KAM curves has an important implication for 
the stability of dynamics of the system. These invariant curves are 
boundaries for strips on the phase space. The orbit of a point in such 
a strip has a confined dynamics and therefore cannot wander arbitrarly 
far in the phase space. The breakup of the KAM curves corresponds 
to the loss of stability and confinement. 
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Arie H sis of the model 

In ca~i.<. 'an coordinates the vector field describing the dynamics of 
our sysrem is: 

V(x, y, z) = (xz + y + A, yz- x, D - a(x2 + y2)). 

It is noneonservative because div(F) = 2z. It is reversible with respect 
to the involution R : R3 —>■ R3, R(x, y, z) ~ (-ar, y, -z), having fixed 
point set Fix(Ä) = {(x,y,z) tR3js = 0,^ = 0}. 

2 D 

For A   > — the vector field has two assymetric equilibrium points, 

one stable and another unstable. 

We are interested in the case A2 < —. For fixed D, and a (D = 4/3 
a 

a choice made in [Politi, 1986] according to realistic conditions, and 
a = 4/9) we study the bifurcation of periodic points and Kolmogorov 

[D 
tori as A increases from zero to \l —. 

V a. 
Subjecting the unperturbed system (A = 0) given in cylindrical 

coordinates to the transformation (r, 8, z) —s- (s = In r, 6, z) it becomes: 

$ = z 

6 = -1 (3) 

z = D- ae2s 

It is clear that the system (3) may be embedded in a Hamiltonian 
system with two degrees of freedom, generated by the Hamilton func- 
tion E'(u, s,9,r) 

= — - Ds+ -aels + u, i.e. 

.      OH 
s = —— = z 

Oz 

du 

z: = -^ = D-ae2< 
OS 
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The phase space is foliated by the two-dimensional surfaces 

u = C 
z2 1 
 Ds + -ae2s = K 
2 Z 2 

These submanifolds are compact surfaces and by the theory of 
integrable Hamiltonian systems they are diffeomorphically tori. 

In original cylindrical coordinates the tori in R   are: 

2 2 

Tk :     — + a— - D In r = K. 
2 2 

They are symmetric under the reflection in the plane z = 0. Their 
intersection to the plane z = 0 is defined by the set of intersections of 

the parabolas q = — r2 — K to the logarithmic graph q = D In r. 

The two graphs have tangential contact for K0 = — ( 1 — In — ) 
2   V aj 

at r = \  —, and two points of intersection (rm,qm), (rM,qM)-> rm < 
y a 

< rM, for K > KQ. Therefore the phase space of the unperturbed 
a 

system is foliated by the tori 

a?-^ + ^-Dln(x* + y*) = K,     K > K0 

surrounding the symmetric cycle T : x2 + y2 = D/a, 2 = 0. 
Obviously, after the change of coordinates defined by s = In (a;2 + 

y2) the motion of these tori is no longer conservative, because the 
flow of the vector field in cartesian coordinates does not preserve the 
volumes (divV ^0). 

Hence the unperturbed system in cartesian coordinates is derived 
by a non-symplectic change of coordinates from an integrable Hamil- 
tonian system. Excepting the points of the circle x2 + y2 — D/a the 
plane z = 0 is transversal to the unperturbed vector field. Denote 
S = {(x,y, z) | z = 0, x2 + y2 > D/a} and define the Poincare map 
P : E —>• E, P(M0) - $((Wo)M0, where $4 is the flow of the vec- 
tor field, and t(M0) is the first time of the reintersection of the orbit 
of M0 to E. Obviously P is an integrable reversible diffeomorphism. 
The reversor is the reflection denoted also Ä, R(x,y) — ( — x,y).  Its 
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invariant curves are the circles 7P : z = 0, x2 + y2 = p, p > D/a, 
i.e. the circles z — 0, r = rM of intersection of invariant tori of the 
vector field V to E. As /? —»■ D/a the rotation numbers of the orbits 
of points on the circles 7p tend to oo, while for p —> oo, the rotation 
numbers tend to 0. If one denotes by UJX,U2 the frequencies of motion 
on a torus in the direction of parallels, respectively in the direction 
of meridians, then the frequencies on the symmetric cycle are (^,0), 
that explains the above limits for rotation numbers. 

Our chosen Poincare map P in conjugated to another one P : E —* 

E, where E = l(x,y,z)\z=0, 0 < x2 + y2 < — >, and the conjuga- 

tion is the semi-Poincare map TT : S —> S, i.e. 7r(M0) is the first 
reintersection of the orbit of M0 to the plane z = 0, or more precisely 
to E. 

For the perturbed system choose the transversal section in the 
same way, namely the surface at which the orbits attain (in cylindrical 
coordinates) their extremal amplitudes rmax and rmin, i.e. r = 0. 

Thus the surface of section is 

E = {(r,6,z)\zr+ AcosO = 0} = {(x,y,z)\z= ~x3+   2j ■ 

Consider the Poincare map 

P:E-> E 

that associates to a point M0 € E the point $t(M0) G E, where t > 0 
is the smallest such that $(M0 is a point of maximum for r along the 
orbit of M0. 

In numerical simulations in order to plot the points of E at which 
r is max we retain the point of intersection to E when orbit crosses E 
from the region E+ to the region E_, where 

{(*.v»*)l*<-^njr^}- 
As in the unperturbed case the intersection of a trajectory of the vector 
field from E_ to E+ generates a point of the orbit under a conjugated 
to P, Poincare map. 

Observe that the fixed point set of the reversor of the vector field 
V minus the origin lies on the surface E. Hence the Poincare map is 
a reversible diffeomorphism with respect to the involution R : E —> 
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E, R(x,y,z) — (—x,y,—z). Obviously Pis not area-preserving and as 
a consequence, the second involution / = PoR^ in the decomposition 
of P is not area-preserving. 

Numerical results ' 
We simulated the Poincare map for different values of A € [0.0.26], 
and D, a fixed at the values 4/3, respectively 4/9. We started with 
a very small perturbation, A = 10-3. The corresponding mapping 
P has three fixed points: a pair of Birkhoff fixed points, one elliptic 
and another saddle, and a third elliptic point above the saddle one on 
the symmetry line T0. This fact reveals that the symmetry line I\ = 
Fix(J) intersects T0 at three distinct points. The stable and unstable 
manifolds associated to the saddle point define two homoclinic loops 
intersecting r0 at two points, and between them is located an elliptic 
point (Fig. 1). 

FIG. 1. Homoclinic loops to the saddle point. A = 0.001. 

Since the orbit of a fixed point has zero rotation number, and per- 
sisting KAM curves are ordered by their rotation numbers, it follows 
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that the homoclinic loops separate the phase surface into two regions, 
one in which persisting KAM circles have negative rotation numbers 
and another where the rotation numbers are positive. This implies 
opposite directions of motion on the two different kinds of persist- 
ing KAM curves. Namely, the motion of the inner invariant circles 
is anticlockwise (positive rotation numbers) as well as on the inner- 
most homoclinic loop, while on the outermost homoclinic loop and 
surrounding it persisting KAM curves the motion is clockwise. The 
third fixed point (of elliptic type) is surrounded by invariant curves 
(born at the same time with the fixed point) and the motion here is 
anticlockwise. 

The direction of motion on the invariant circles around just born 
elliptic fixed points depends on the angle of intersection of the sym- 
metry Hues r0, I\ [Petrisor, 1997]. 

In this special situation when the reversible diffeomorphism has 
a pair of Birkhoff fixed points, and a third elliptic fixed point, there 
exist two centers of rotation on the phase surface: one at the origin 
and the second is the upper elliptic fixed point (Fig. 2). 

FIG. 2. Orbits rotating around the origin, and upper elliptic point. 
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FIG. 3. Chaotic orbits at A = 0.002. 

FIG. 4. Common invariant curves;A = 0.022. 
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The elliptic fixed points correspond to two symmetric cycles of the 
reversible vector field, and KAM circles surrounding them to deformed 
invariant tori. Unlike the deformed original symmetric cycle, these two 
cycles born after the perturbation connect an elliptic point of P to the 
corresponding elliptic fixed point of the conjugated to P Poincare map, 
mentioned above. 

As A increases to 0.002 the upper elliptic point moves downwards 
on the symmetry line T0 to the saddle point, and KAM curves around 
the homoclinic loops, and the upper elliptic point breaks up giving 
rise to a chaotic layer (Fig. 3). 

As the two fixed points become closer and closer, invariant curves 
surrounding both upper and central configuration appear (Fig. 4). 

The two fixed points collide at 0.0023 when the symmetry line 
becomes tangent at a parabolic fixed point of P. By approximating I\ 
by its osculating parabola at the point of tangency to r0 it is explained 
[Petri§or, 1997] the collision and dissapearence of two symmetric fixed 
points. After the dissapearence of two symmetric fixed points chaotic 
motion persists around the remaining elliptic point (Fig. 5). 

FIG. 5. Phase portrait for A = 0.035. 

Note that the same scenario of the disappearence of the two sym- 
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metric fixed points exhibits the Politi's system too (corresponding to 

a = 1), but it was not revealed. 
Beginning with A = 0.1 a pair of three periodic orbits, one elliptic 

and another hyperbolic, is identified in the central annulus. Increasing 
more and more the parameter A no unusual behaviour for a reversible 
system is present up to A close -to .0.23. As A increases over 0.2 
the KAM curves surrounding three periodic orbits exhibit two points 
of inflection (symmetric with respect to T0). These are due to an 
inflection point on the symmetric line I\ [Petrisor, 1997]. 

Near the value A = 0.23 the surrounding KAM circles of the el- 
liptic fixed points also have two symmetric inflection points and the 
outermost ones break up and chaotic trajectories left behind interac- 
t to chaotic trajectories generated by disintegration of KAM curves 
surrounding the central annulus (Fig. 6). 

FIG. 6. Chaotic orbits surrounding both configurations; A - 0.23. 

The eluptic fixed point passes through a strong 1:3 resonance for 
A = 0.23624, that is the Hnear part of the Poincare map at this point 

has eigenvalues A1>2 = e±l"S". 
Here takes place the birth of a pair of three periodic orbits, one ot 

saddle type and another of elliptic type. 
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The three points of the saddle cycle are connected by a heteroclinic 
cycle around the persisting elliptic fixed point, and the points of the 
elliptic orbit are surrounded by a homoclinic loop to a corresponding 
saddle (Fig. 7a). Note that this conrguration is stable and common 
invariant curves surround it up to A close to 0.2375 (Fig. 7b). As 
far as we know bifurcation of an eHiptic point at 1:3 strong resonance 
for a general system gives birth to an unstable period three saddle 
[Kuznetsov, 1995], while for a reversible system Sevryuk [1986] gave 
an example of reversible diffeomorphism that also has an unstable 
elliptic fixed point after a bifurcation at a 1:3 resonance. Hence our 
system seems to be an exception. It remains as an open problem to 
derive the normal form of a reversible diffeomorphism on the annulus 
(as in [Petrisor, 1997]) around a 1:3 resonant elliptic fixed point, and 
to describe the bifurcations that can occur. 

FIG. 7. a) Heteroclinic cycle, and homoclinic loops; A = 0.2364. 
b) Invariant circles surrounding the structure a). 

Increasing the parameter A, the points of the saddle cycle get closer 
and closer to the elliptic fixed point. The homoclinic loops break up 
following an 
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FlG. 8. Unstable lower three period orbits; A = 2.43 

unidentified scenario and the period three orbits turn out unstable 
(Fig. 8). 

Y 

4 

/"" 

"\ 

\    < 4    / 

^^__ ̂ y^? 
__....■• z 

FIG. 9. Unstable orbit around lower three period elliptic orbit; A — 0.2485 
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The instability of lower three periodic orbits is more evident if one 
looks at the orbit in Fig. 9 denoted 1 in comparison to that denoted 
2. The 1-orbit runs only around two of the three points of the period 
three elliptic orbit. The point belonging to the symmetry line V0 is 
repulsive for some orbits. 

The points of each saddle type orbit generate a family of six hetero- 
clinic arcs (Fig. 10). The heteroclinic cycles of this structure, except- 
ing two, namely the cycles surrounding two of the three period lower 
elliptic points, are stable. The mentioned two heteroclinic cycles are 
unstable only from interior. 

/'/'   / \ NvN- ' e         / \   \\ 
• '          f \    l*» 
it     / l     *'* 

\     \ 
/     ■'' 

FIG. 10. The heteroclinic structure associated to the pair 
of saddle type three period orbits; A = .25. 

After crossing the value 0.25 of the parameter A, the points of the 
central elliptic three period orbit move downwards (their y coordinate 
decreases), collide to the corresponding saddle points and dissapear. 
This happens because the symmetry line Ti had an inflection point and 
its arcs on the two sides of the inflection point were strongly folded, 
having each an intersection to the symmetry line T4. As the parameter 
increases to the value 0.259 the curvature of one of the arcs decreases, 
the arc passing through a tangential contact to T4 and moving apart 
from T4. So dissapears one of the two three period orbits. At the same 
time Ti rotates around the origin and reintersects the symmetry line 
T0 giving rise to a saddle fixed point.(Fig. 12). 
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V. 

FIG. 11. Disappeareance of a three period orbit; A = .258,^4 = .2595 

y 

FlG. 12 The phase portrait after the reappearence of 
the saddle fixed point; A = 0.26. 

Conclusions. The system we have investigated exhibits a wealth 
of unknown phenomena in the dynamics of two-dimensional reversible 
discrete systems (see the survey [Roberts, 1992]). As far as we know 
there are not reported until now examples of reversible systems whose 
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periodic (fixed points) disappear, and 1:3 resonant bifurcation leaving 
behind a stable behaviour in some range of the parameter of the system 
(see [Post, 1990] for a study of bifurcation of periodic points in planar 
reversible systems). 

The main causes of this odd behaviour is rotation number de- 
creasing order of invariant circles in the unperturbed map, that it is 
preserved in the perturbed system, and the succesively foldings and 
rotation about the origin of the symmetry line I\. Similar bifurcations 
occur for values of 0.26 < A < y/D/a. 
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Ä NUMERICAL SOLUTION OF EQUATIONS DESCRIBING THE THREE 

PHOTONS INTERACTION IN NONLINEAR OPTICAL MATERIALS 

DanG.Siposean, 

Military Technical Academy, George Cosbuc Av.32-34, Bucharest, Romania 

Ion Läncrämjan 

Solid State Laser TECHNOLOGIES S.R.L., fincäni St. 10, Bucharest 77349,Romania 

An analysis of spatial and temporal modulated waves parametric amplification on the 

picosecond time scale is presented. The three photons interaction in nonlinear KDP, L1JO3, 

LiNb03 nonlinear optical crystals is analysed regarding the definition of a mathematical 

model describing parametric amplification phenomenon. 

The most important item of this mathematical model consists of the cvasi-optical equa- 

tions describing the parametric interaction of spatial and temporal modulated waves propa- 

gating along the z axis. The contribution magnitudes of the terms entering into these dif- 

ferential equations is analysed. The analysed terms are related to phenomena of impor- 

tance on picosecond and subpicosecond time scale such as: 

o   the group velocities dispersion of the waves with different frequencies propagating in 

dispersive media, 

o   the apeture effect, 

o   the transverse spatial extension of the waves - beam diffraction. 

This term contribution analysis is done in order to obtain a more accurate numerical solu- 

tion of the differential equations system describing the parametric optical amplification. 

The main purpose of this more accurate numerial solution consists of obtaining en- 

larged possibilities for the design of Optical Parametric Oscilators and related nonlinear 

optical components used for manufacturing such a system. For example: necessary nonlin- 

ear crystal length evaluation, the optimum operation wavelength and the necessary pump 

radiation intensity become possible. 
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COMPUTER SIMULATION OF PASSIVE OPTICAL Q-SWITCHES LASER 

; OPERATION THERMAL LOADING 

Ion Läncränjan, 

Solid State Laser TECHNOLOGIES S.R.L., Tincani St. 10, Bucharest 77349,Romania 

Dan G.Siposean, 

Military Technical Academy, George Cosbuc Av.32-34, Bucharest, Romania 

For an enlarged series of small volume high power solid state lasers scientific, techno- 

logical applications the passive optical Q-swkching represents a constructive solution be- 

cause of its relative low costs and ease of construction, especially in comparison with elec- 

tro-optical and acousto-optical Q-swrtching. It is attractive for designing special solid state 

laser configurations, such as those using Nd:YAG tube and slab active media geometries. 

The high power solid state laser oscillators design has an important part consisting in 

evaluation of passive Q-switches thermal loading during laser operation. 

The purpose of this work is to present a numerical analysis performed for passive opti- 

cal Q-switches designed for rod, tube and slab high power Nd:YAG laser oscillators. This 

analysis is developed specifically for use of lithram fluoride crystals with F2" color centers 

(LiF:F2' crystals) passive Q-switches. A comparison with experimental data is performed. 

This analysis is based on numerical solving the thermal conductivity equation (0- 

iemperatee) for initial conditions resembling the specific laser configuration: 

-a I 2r2 

2d-e    P)POe'w2+_^(^0 + 1^9) = o 
2   \-R C p A.2    r dr TdCow^   1-« cy? fr 

with r as a radial coordinate versus laser beam axis, Cp the LiF specific heat (Cp = 1615.3 

Jkg'K"1), p as the LiF density (p = 2640 Kgm"3), K the thermal conductivity (K = 1 lWm" 

K' ), orp the LiF:F2" parasitic absoption coefficient for the laser radiation circulating inside 

laser resonator, P0 as the axial value of laser radiation intensity, w as the waist of the laser 

beam intensity distribution, / is the LiF:F2" crystal length and R as the laser output mirror. 

- 518 - 



MODELAREA FENOMENELOR TERMICE IN ARDEREA DIFUZIVÄ A 

COMBUSTIBILILOR GAZO§I 

Ing. KARINA DUMITRU* 

Preparator Ing. AMADO §TEFAN" 

REZUMAT 

Se prezintä parti cularitäple fenomenelor de schimb de masä 

si de cäldurä in procesul de ordere difuziv. Din ecuapile de 

difuzie si ecuatia de transport de cäldurä in ipoteza unui sistem 

adiabatic si a unei earnere de ardere cilindrice se determina 

distribupa concentrapei si ecuapa suprafepzi de ardere. 

In marea majoritate a instalajülor de ardere care folosesc combustibili gazos 

este utilizatä flacära difuzivä, caracterizatä prin formarea amesteciilui gaz-aer chiar in 

spa{iul de ardere, componentele care reacjioneazä fund introduse separat. 

1. STRUCTURA FLÄCÄRI10R DIFUZIVE 

Timpul total necesar desfäsurärü procesului de ardere este formmat din doi 

termeni t. §i tr, unde primul se referä la perioada necesarä realizärii contactului fizic 

dintre carburant §i comburant, pentru aducerea sistemului la o temperaturä care sä 

permitä propagarea frontului de flacärä, iar al doilea termen reprezintä timpul necesar 

desfä§urärii reacjiei chimice. 

In cazul tläcärii difuzive se admite cä viteza de reac$ie chimicä este infinit de 

mare, ceea ce corepunde situate! cand concentrajia combustibilului sau a oxigenului 

la suprafa^a de reactie este milä. 

* UNIVERSITATEA TEHNICÄ DE CONSTRUCTII BUCURE§TI 
** ACADEM1A TEHNICÄ M1L1TARÄ 
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Cärr • -uprafata de reactie difuzeazä carburantul §i comburantul conform legit 

lui Pick, iar la suprafata dc reactie aceslca difuzeazä complet in proportie 

stoehiorn-   'ica ( a =1). 

Se c-..5i'<Kicrä o camera de ardere cilindricä de razä R prin care circulä un curent 

de aer §i un ajutaj central, de razä r ( r < R) prin care tree gaze combustibile ( Fig.l), 

in care este reprezenta! frontul fläcärii difuzive pentru coeficientul de exces de aer 

a > 1. Märimile care se referä la gazul combustibi! se noteazä cu indicele 1, oxidantul 

cu indicele 2, ir.rmärimiie initiale cu indicele 0. 

aer 

—->. -H 
---. 

xo aer —i ¥ 

Fig.l 

2. ECUATIILE DE DIFUZIE §1 ECUATIA DE TRANSPORT DE 

CÄLDURÄ 

Ecuatiile de difuzie, färä a considera efectul Soret, in coordonate cilindrice 

pentru cele douä fluide sunt: 

ax      i &-    y cy l 4 -w. 

ox 
02C2     1  d {   rX\ 
äc-      yä\-   (y 

respectiv: 

er 
u — = a 

cx 
—— + [ y | 
&\-     y cy v    dy) + *+W^ 

(1) 

(2) 

(3) 

unde C,, C, sunt concentratiile; D - coeficientul de difuzie molecularä ; W- cantitatea 

de fluid in moli care reaqioneazä in unitatea de timp (viteza de reactie chimicä); T- 

l temperatura; a- coeficientul de difuzie a temperaturii (« 
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ideale D=a); u- viteza axialä; q0- cäldura de reacjie pentru un mol de amestec 

stoechiometric din fluidele 1 §i 2; q,- fluxul de cäldura cedat de unitatea de volum in 

spatful de ardere cätre mediul exterior. 

Condijiile la limitä ale sistemului de ecuatii (1), (2), (3) sunt: 

a) la intrarea in camera de ardere ( x=0): 

0<y<r,C, = C,0,C2 = 0,T = TIO 

r<y^R,C1=0,C1=C2O,T = TM (4) 

b) la peretii camerei de ardere (y = R) : 

PC       PC 
-—L = 0,—^- = O.-Xgi-adT + c;. = -A. gradT (5) 
dy dy 

care exprimä condi^üle de izolare masicä §i condijiile de schimb de cäldura. Condijia 

schimbului de cäldura este determinatä de egalitatea dtntre suma fluxurilor de cäldura 

prin conductibilitate in stratul limitä la pereji (-Xgrad T) prin radiajia qr §i fluxul de 

cäldura transmis prin pereji cätre exterior ( -A, gradTp). In cazul izolärii adiabatice a 

sistemului, qr = 0, XpgradTp = 0, de unde rezultä condüia —- = 0 ; 

c) pe axul camerei (y = 0), din condifiile de simetrie ale sistemului 

^L = 0,^i = 0,^ = 0 (6) 
dy dy dy 

Pentru a determina cämpurile de concentrajü §i de temperaturi in flacärä se 

integreazä sistemul de cuajii (1), (2), (3) cu conditiile la limitä (4), (5), (6). 

3. IPOTEZA SISTEMULUI IZOLAT ADIABATIC 

In ipoteza men^ionatä (q, =0) cele trei ecuatii (1), (2), (3) au o formä analoagä, 

ceea ce permite eliminarea termenului neliniar (W) §i objinerea unei relajii intre 

concentratjile C,, C, . Dacä se noteazä cu <p0 cantitatea in moli de oxigen care 

reacjioneazä cu un mol de gaze combustibile, cantitatea totalä de amestec care 

reacüoneazä in unitatea de timp §i unitatea de volum va fi: 

W = H\ + W2 = W, (1 + <?,,)= W1 ^± (7) 
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Se inmuLjeste ecuatia (1) cu märimea — §i se scadc din (2) obtinändu-se o 

ecuatie din care dispare termenul vitezei de reac^ie 

n — = D 
ik 

e2C     \ c?      cC        + y  (8) 

in care variabila C=C,-C2Ap0, condijiile la limitä fiind: 

- pentru x = 0 ; 0< y < r;C = t\;r <y< R,C = —'J- 

- pentru y = 0 §i y = R ; c— = 0 (9) 
dy 

Din conservarea entalpiei totale in orice punct al spagiului fläcärii §i ecua£iile 

(1), (2), (3) se objine o relate intre concentratii §i temperaturä T de forma : 

£j- + £^ = Tf~T (10) 
C       C        T - T "•10        *-20 V        -"O 

unde Tr ,T0 reprezintä temperaturä teoreticä de ardere respectiv, temperaturä inijialä a 

gazelor care reacjioneazä (T10 = T20 = T0). 

In cazul arderii difuzive, cänd viteza de reacjie chimicä se considerä infinit de 

mare, spatiul de ardere este impärjitä de frontul de flacärä in douä zone : una Tn care 

concentrajia de combustibil este nulä ( C, = 0) §i a doua in care concentrajia de 

oxidant este nulä ( C2 = 0). La suprafa^a frontului de flacärä, de grosime nulä, se 

justificä condi^ia C, = C, = 0 . In acest caz din rela^ia (10), pentru fiecare din zone 

rezultä: 

T,-T     C,    T,-T     C, 
■'2 (11) 

cämpurile de temperaturi §i concentratii fiind asemenea. 

Ecuajia suprafejei de reacrje in flacärä difuzivä, pentru sistemul izolat 

adiabatic, se objine din ecua^ia (8) cu conditjile la limitä (9) in care se adoptä C = 0 

(C,=C2 = 0). 

In ipoteza neglijärii fluxului de masä in direcjia axei Ox in raport cu fluxul 

difuziv transversal,situate valbilä la camerele de ardere de lungime mare in raport cu 

diametrul camerei, ecuatja (8) devine : 
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de     y cy\   dy) 

Notänd £ = --—,rj = — ( R - raza camerei de ardere) ecuajia (12) ia forma 
uR2 R 

cu condijiile: 

h '    R ' 
r       ...    a 

(13) 

-<7si,r = -^. (14) 
R <p0 

, &-      ^, 17 = 0,7=1;—= 0 
«777 

4. CONCLUZII 

Din solujia ecuajiei (13) cu condijiile la limitä (14) se objine distribujia 

concentrajiei C In spa£iul camerei de ardere. 

Ecuajia suprafejei de ardere rezultä din funcjia de distribute a concentrajiei In 

care se adoptä C = 0. 

In func£ie de cantitatea de oxidant, mai mare sau mai micä decät proporjia 

stoechiometricä sunt posibile douä tipuri de flacärä pentru oxidant In exces ( a >1 ) 

frontul de flacärä se va curba spre interior, flacärä terminandu-se pe axul jetului, iar in 

cazul insuficientei de oxidant (a <1 ) suprafaja de reacjie se va deplasa spre periferie, 

märginändu-se Ia peretele exterior ( rj = 1) 
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UNELE CONSIDERATII PRIVIND MODELUL DE 
PROBABILITATE EULERIANO-LAGRANGEIANÄ 

(PEL) 

Prof.dr. ing. Sterie Stefan * 
Ing. luliu-Adrian Goleanu ** 
Dr. ing. Petre Poradici ** 

REZUMAT 

In lucrare se prezintä modelul PEL cu luarea in considerate a efectului 
arderii asupra aerodinamicii si turbulenfei. Cuplajul aerodinamicä ardere descris 
prin rateie medii de produsi §i prin masa volumicä permit elaborarea unei 
organigrame generale a modelului PEL bazat pe calculul vitezelor si al 
compozitiilor in procesul de ardere. 

Modelul PEL se bazeazä pe cuplajul unei metode euleriene pentru 
calculul vitezelor si o metodä stochasticä lagrangeianä pentru calculul 
compozitiilor. 

1. Cuplajul aerodinamicä - ardere 

Cu cat structurile turbulenfei sunt mai mari in raport cu intinderea 
frontului de flacärä laminarä, cu atät aceasta isi conservä structura, care va fi 
supusä la intindere si deformare de cätre turbulentä. Acesta este regimul de 
fläcäruie. 

Pe mäsurä ce structurile turbulenfei devin mai mici (de ordinul intinderii 
frontului de flacärä, deci Da = rt/rc<l), structura fläcärii laminare este 
afectatä, arderea devenind volumicä. 

Trebuie väzut in ce mod, acest cuplaj este luat in calcul in modelul 
PEL. 

Densitatea probabilisticä pozi|ie/compozi{ie se poate reprezenta printr-un 
ansamblu de N particule a caror evolutie satisface sistemul de ecuatii [1]: 

d^ 
dt 

Ü 
x ; iTJ [1] 

* Academia Tehnicä Militarä 
** ROMA VIA 
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unde U - spatiul vitezelor si B reprezintä vectorul ratä de variatie a 
compozitiei pentru o particulä stochasticä. 

Pentru simplificare, in cele ce urmeazä, se va renunja la exponentul 
(**) pentru cantitätile stochastice. 

Influenta aerödinamicii asupra arderii si a compozitiei se va manifesta la 
nivelul marimilor B si U, care vor fi exprimate astfel: 

0 se _descompune intr-o vitezä medie U corespunzätoare convectiei si o 
fluctuate U" corespunzätoare efectuluj structurilor turbulente de märime 
superioarä sau egalä cu märimea particulei in discutie : 

^ = U + U" [2] 
dt 

In ceea ce prive§te turbulenja, pentru a putea construi un model pentru 
acest termen este utilä relajia (3) pentru k si ecuatia (4) care da energia 
cineticä turbulentä si tensorul lui Reynolds. 

% + J-(^) = ^^f-l+Pk-ps       [3] 
dt     axaVF     ;    dxa\   ok    öxaj    rk 

unde pt este väscozitatea turbulenjei; 

unde pua" up" reprezintä tensorul lui Reynolds; k = (1/2) u'a u"a 

energia cineticä a turbulenfei. 
Pentru o particulä fluidä, 

PBa(x,t) = -^ + pC0a [5] 

in care se pot recunoaste un termen de difuzie si un termen sursä chimicä. 
Termenul amestec apare sub forma unei necunoscute §i necesitä o 

modelare. 
Sistemul de ecuatii (1) poate fi rescris in funcjie de acestea sub forma: 

dfn=rpgi)±.mii [6] 
dtW    \   U + U' 

unde D(Yj) este termenul de amestec turbulent la scarä micä. 
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2. Cuplajul ardere - aerodinamicä 

Arderea influenteazä aerodinamicä in mod esemial, prin degajarea de 
cäldurä, pe care o provoacä. Aceasta va antrena o incälzire a amestecului 
gazos si o accelerare a acestuia, urmatä de variajia densitajii sale. 

Este de asteptat ca accelerarea sä provoace o crestere a curgerii medii 
si deci sä fie o sursä de turbulen^ä. In mod contrar, incälzirea gazului duce 
ia cresterea väscozitätii laminare. La numere Reynolds mari, väscozitatea 
laminarä devine neglijabilä in raport c.u väscozitatea turbulentä astfei incät, 

efectul acesteia se poate neglija. 
La nivelul modelului PEL, efectul arderii asupra aerodinamicii si 

turbulenjei va trebui considerat prin introducerea termenilor sursä medii de 
entalpie si de produsi (daji de metoda probabilisticä) in ecuajiile euleriene ale 
metodei momentelor. Aceastä tehnicä obligä la folosirea unei descrieri 
simplificate a spatiului fazelor in partea eulerianä, ceea ce presupune o 
ecuatie de bilan{ p'entru entalpia medie si alte douä pentru cämpul produsilor 
majo'ritari (de exmplu, un produs reactiv si un produs inert). O primä schema 
de cuplaj este reprezentatä in figura 1. 

AERODINAMICÄ ARDEREA 

Metoda momentelor 

Spatiul vitezelor: p~, U k, s 

Spafiul fazelor simplificat: 

h, Y, Z 

k, e, U 

Uj" U/" 

©i , coh 

Transport de PDF 
Spajiul complet al fazelor 

Yi5 Y(   , h, h    , p, p 
©i  , (öh , coh 

I = 1 la N produsi 
m - ordinul fiecärui 

produs 

Fig. 1 Cuplaj aerodinamicä - ardere prin ratele medii de producere / 
consum produsi si de degajare de cäldurä 

Se pot efectua si alte cuplaje. Astfei este posibil ca in calculul eulerian 
sä se  introducä densitatea medie, evaluatä prin calcul  lagrangeian  (figura 2), 
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solutia   fund   utilizatä   de   Varvish   (1).   Accastä   tehnicä   permite   o   descriere 
simplificatä a spatiului fazelor in partea aerodinamicä. 

AERODINAMICA ARDEREA 

Metoda momentelor 

Spatiul vitezelor: p, Ü, k, e 

Echilibrul chimic ini- 
tial pentru fläcärile 
difuzie 

k, s, U 

I!," Uj" 

Transport de PDF 
Spatiul complet al fazelor 

Y" V    '"'      U       u"m       fr      —'  m 

i, Y;    , h, h    , p, p 

I = 1 la N produsi 
m - ordinvil fiecänr 

produs 

Fig.2 Cuplaj ae-odinarnica-ardere prin mz:,?. 

3. Procesul iterativ 

Modul cel mai simplu de abordat constä in cuplajul nestationar al 
aerodinamicii si arderii. Aceastä tehnicä predupune ca la fiecare pas de timp 
de integrare a ecuatiilor euleriene, sä se efectueze un pas de timp lagrangeian 
in spatiul fizic si in spapAil fazelor. Termenii de cuplaj "ö5; si "coh 

sunt introdusi in ecuafiile euleriene care se integreazä cu un nou pas de timp 
si asa mai departe. 

Aceastä metodä impune ca, la fiecare pas de timp, sä se lanseze noi 
pärticule in inträrile domeniului in asa fei incät sä fie suficiente la toate 
momentele si in toate punctele pentru a calcula mediile si momentele de 
ordin superior. 

Alternativa adoptatä de Gilbank [2], pentru o curgere medie stationäre, 
constä din posibilitatea de a face convergent calculul eulerian (plecänd de la 
modelul simplificat al arderii turbulente), pentru ca apoi sä se "lanseze" 
pärticule a cäror traiectorie se integreazä in spafiul fizic si in spafiul fazelor, 
pänä cänd toate vor iesi din configuratie. Termenii de cuplaj lagrangeian 
medii (degajarea de cäldurä, ratä de producere/consum de produsi) se reintorc 
in calculul eulerian, care va fi din nou fäcut convergent. Sunt necesare 4-5 
iteratii euleriene-lagrangeiene, pänä ce procesul va converge. Totodatä procesul 
fiind stationär este de asteptat ca timpul de calcul sä fie diminuat fatä de 
calculul proceselor nestationare. 
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J = M 

INTRARE 
PARTICULE 

Ax = 1/M 

W 

J=l 

PERETE 

1 =1 PERETE 
lungimea L 

IESIRE 

la.tiri.ea 1 

1 = M 

Fig.3 Configuratie bidimensionalä simplä 

Este utillä comparajia numärului de particule ce trebuie lansate prin 
aceste douä metode pentru o configuratie bidimensionalä rectangularä de 
lungime L (M ochiuri) si lätimea 1 (N ochiuri) reprezentatä in figura 3. 

Pentru simplificare, se presupune viteza constantä in tot domeniul si se 
noteazä V0. 

Fie K0 numärul de particule ce vor trece printr-un ochi (sau prezente la 
un moment dat in cazul nepermanent) pentru a putea realiza statistici precise. 

Metoda stafionarä. Este suficient ca la % sä se lanseze KQ particule in 
fiecare ochi de intrare (N K0 particule) pentru ca la sfäsitul timpnlui t=l/V0 

toate particulele sä fie iesite si prin fiecare ochi sä fi trecut KQ particule. 

Metoda nesta^ionarä. Timpul de integrare t=l/V0; la ^ se introduc NKQ 

particule; la t0 + AxA^0, aceste particule au päräsit primul ränd de ochiuri 
(L=l) si au trebuit reintroduse NK0 particule si asa mai departe. 

In total au fost introduse de n ori cäte NKQ particule cu : 

n = (l/V0)(V0/Ax) = (L/V0)(V0/L)M, deci n = M 
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Numärul de particule este : MNK0, iar raportul numärului de particule 
introduse prin cele douä metode este de ordinul lui M. 

Metoda stationarä necesitä unele comentarii. Pentru primul calcul 
eulerian nu se dispune de öö; si cö"h date de calculul lagrangeian. 

Ini^ializarea acestui prim calcul eulerian se face cu ajutorul modelelor 
simple de ardere turbulentä ca Eddy Break Up, Crammer sau Magnusen (3). 

Prin aceastä tehnicä nu pot fi structurate regimuri nestafionare, iar 
numärul cuplajelor euleriene-lagangeiene succesive necesare pentru objinerea 
convergentei va depinde de exactitatea cämpului aerodinamic initial obtinut cu 
modelul simplu. 

In cazul limitä cänd ö\ si co~h dati de modelul simplu nu diferä de ratele 
medii date de modelul PEL nu este necesar sä se introducä acestea in 
calculul eulerian. Este de ajuns o lansare de particule, iar in acest caz, 
modelul PEL permite o descriere detaliatä a spatiului compozitiilor medii. 

Toate aceste consideratii permit in final elaborarea unei organigrame 
generale a modelului PEL (figura 4). 

AERODINAMICA ARDEREA 

Metoda momentelor 

Spatiul vitezelor: p, U, k, e 

Spatiul fazelor simplificat: 

rJ       r*/      ~j 

h, Y, Z 

k, e, U 
Ui , Uj 

Calculul eulerian nr. 1 
Modelul simplu pentru 

coh , cot: Crammer, Magnusen 

Transport de PDF 
Spatiul complet al fazelor 
1. Lansare a L particule 
2. Integrare a: 

dYi 
dt = (Yi-Yi)/TYi + COi 

dt 
pentru cele L particule pänä 

la iesire; 
3. Calculul mediilor si 
momentelor de ordin 
superior. 

Fig.4 Organigrama modelului PEL 
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Totodatä, unele aspecte ale calcului cantitätilor medii, conditiile initiale 
si la limitä, trebuie precizate. 

4. Calcului mediei 

In cazul apropierii nestationare media de ansamblu a unei märimi 
termochimice oarecare din mulfimea {Yj, coj; h, ö)h} este data la un moment 
dat, in ochiul respectiv, in functie de starea particulelor prezente in acel 
moment in acel ochi : -.   .. 

^ = 1^») [7] 
Nn=i 

In metoda descrisä in paragraful anterior se rezolvä problema stajionarä in 
care cantitäfile medii nu depind de timp. In acest caz media se poate exprima 
prin media temporalä a contribufiilor particulelor care au trecut prin acel ochi 
si care sunt in acel moment acolo. » 

Media temporalä se defineste prin: 

? = 1imlj¥(t)dt [8] 
T->«c 1 0 

Scrierea sub formä discretä fine cont de faptul cä o particulä n poate 
rämäne kn pasi de timp in ochiul considerat: 

l(l¥(n'k)5t(n'k) 

vi/ _ n=lVk=l '_ rq-i 

I   I8t(n'k) 

n=lVk=l / 

In [4] , Pope aratä cä cele douä medii definite (media discretä de 
ansamblu si cea temporalä (8) si (9)) sunt medii ale lui Favre (ponderate prin 
masa volumicä), atunci cänd particulele au aceeasi masä Am. Aceasta este o 
consecinfä a faptului cä densitatea p este direct proportionalä cu numärul de 
particule din ochi. Se otyine aceastä conditie prin introducerea in inträrile 
domeniului a unui numär de particule proportional cu debitul mask. 
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IJNELE CONSIDERATIl PRIVIND MODELAREA 
DIFUZIEI MOLECULARE IN GAZE 

Prof. Uiv ing. Stefan Sterie* 
Cpt. asist. univ. ing. Calin Curea* 
Lt. col. ing. Constantin Avadanei* 

Rezumat: 
In lucrare se prezinta un program de calcul pentu determinarea 
concentratiei in difuzia moleculara unidimensionala . Rezultatele 
numerice permit analiza fenomenelor de poluare produsa in timp si 
spatiu de mijloacele de transport. 

Difuzia pure sau moleculara se caracterizeaza prin diminuarea gragientilor 
de concentratie existenti in limitele unei faze oarecare si se produce prin migrarea 
atomilor sau moleculelor in lipsa curentilor de convectie . 

Difuzia in regim stationär are loc in cazul in care intre doua puncte se 
mentine o diferenta constanta de concentratie, fenomenul fiind descris de prima 
lege a lui Fick : 

J = ^ = _D^  [kmoli/m2s] (1) 
dr dx 

unde J este fluxul de difuzie , D [m2/s] - coeficientul de difuzie , C - concentratia 

substantei care difuzeaza , —-   - gradientul de concentratie . 
dx 

Difuzia in regim nestationar se caracterizeaza prin variatia in timp a 
fluxului de difuzie si este descrisa de legea a duoa a lui Fick 

J=K=D?C (2) 
dx       dx2 

Pe baza teoriei cinetice a gazelor se deduce relatia : 

[(KH?    Tm     j    1     |     1 

PldAB
2pMA     2M DAB=- 

[m/s1] (3) 
3UJ    P,dABlV2MA       2MB 

unde DAB - coeficientul de difuzie a gazelor A si B care difuzeaza , KB este 
constanta lui Boltzmann (KB = 1,38 10"9) [J/molec*K], d^ - diametrul mediu al 

*   - Academia Tehnica Militara 
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moleculelor (CIAU = (dA + dD)/2     [m]) , MA,MB - masa moleculara [Kg/molec] , pt 
- presiunea totala [N/m2], T - temperatura [KJ . 

I. Modelarea difuziei unidimensionale 

Ecuatiei (2) i se atasaza unnatoarea problema Cauchy : 
,     ,, \c0   dacax, <x<x, 

c(xj)\ _.,=< 2 (4) 
'-°     [0     dacax <x, si x>x2 

Solutia ecuatiei (2) cu conditia (4) are forma : 

care devine 

unde 

;      2 [   [2Dy/t)       12DV7J 

este fiinctia lui Laplace (erfe) 

2. Program difuzic moleculara unidimensionala 

Se adopta x, = - x0 , x2 = - xo, D = a , t e (3600, 7200) 

^include <math.h> 
#include <stdio.h> 
#include <sys\stat.h> 
^include <string.h> 
^include <fcntl.h> 
^include <io.h> 
^include <stdlib.h> 

float 
a/*coeficient de difuzie*/, 
xO/*jumatate din latimea norului*/, 
cO/*concentratia initiala a norului*/; 

double erf(float z) { 
double f; 
if(z<l.51) 
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F(z) = ~T=fe y2dy , (7) 



f=2*(z/sqrt(M_Pl))*(l-pow(z,2)/3+pow(z,4)/10-pow(z,6)/42+pow(z,8)/(24*9)- 

pow(z,10)/(120*ll»; 
else 
f=l-(exp(-z*z)/(z*sqrt(M^PI)))*(l-l/(2*pow(z,2))+3/(4*pow(z,4))- 
15/(8*pow(z,6))+ 15*7/(16*pow(z,8))-15*7*9/(32*pow(z,10))); 

return f; 

double conc(floatx,intt){ *   - 
double f; 
f=(c0/2)*(erf( (x+x0)/(2*a*sqrt(t)) )-erf((x-x0)/(2*a*sqrt(t)))); 

return f; 

void main(){ 
int i,file,t; 
chartimp[6],cc[24],line[30],init[20]; 

float c,dist; 

clrscrO; 
printf{"a-"); 
scanf("%e",&a); 
printf("xO="); 
scanf("%e",&xO); 
printf("cO="); 
scanf("%e",&cO); 
printf("distanta-"); 
scanf("%e",&dist); 

file=creat("rez.dat",SJWRITE|S_IREAD); 
sprinrf(init,"a=%e\n",a); 
write(file,mit,strlen(init)); 
sprintf(init,"xO=%e\n" ,x0); 
write(file,init,strlen(init)); 
sprintf(init,"cO=%e\n",cO); 
write(file,init,strlen(init)); 

t=3300; 
for(i=0;i<24;i++){ 

printf("t=%d   conc=%e\n",3600+i*300,conc(dists3600+i*300)); 

t+=300; 
c=conc(dist,3600+i*300); 
itoa(t,timp,10); 
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sprintf(cc,"    %e\n",c); 
strcpy(line,timp); 
strcat(line,cc); 
write(file,line,strlen(line)):, 

vA jse(file); 
getchQ; 

3. Date numerice 

a=2.000000e-01 
xO=5.000000C-01 
c0=5.000000e+00 

Date introduse 

Timp Concentratie 
Is] [miligrame/m3 

3600 5.867995e-02 
3900 5.947733e-02 
4200 6.00022 le-02 
4500 6.031575e-02 
4800 6.046469e-02 
5100 6.048486e-02 
5400 6.040380e-02 
5700 6.024296e-02 
6000 6.00194 9e-02 
6300 5.974688e-02 
6600 5.943561e-02 
6900 5.909444e-02 
7200 5.87302 le-02 
7500 5.834827e-02 
7800 5.795356e-02 
8100 5.75491 6e-02 
8400 5.713860e-02 
8700 5.672403e-02 
9000 5.630727e-02 
9300 5.589027e-02 
9600 5.5474 14e-02 
9900 5.505994e-02 
10200 5.464851 e-02 
10500 5.42407 le-02 
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6.00E-02 

5.90E-02 - 
-' 

5 80E-02 - 

5 70E-02 - 

5 60E-02 -1 

5 50E-02 • 

5 40E-02 ■ 

5 30E-02 ■ 

5 20E-02 ■ 

5.10E-02 - 
o o o o o o o O o o o o o o o o o a © o o o o o 

CO f- « K o n 10 0) CM 
■* *■ *» u> ■o to (0 (0 10 <0 h. r* r- CO CO CO 

Variatia concentratiei in timp 
intr-un punct la distanta de 20 m de centnil 

de difuzie 

4. Concluzii 

Algoritmul, programul si datele numerice prezentate pennit studiul variatiei 
concentratiei in spatiu si timp in functie de valoarea coeficientului de ditiizie 
moleculara, concentratia initiala si latimea norului poluant. 

Fenomenul poluarii chimice are loc prin emisii de oxid de carbon si 
hidrocarburi diverse nearse. 

Caile de actiune pentru combaterea poluarii vor avea in vedere procesul de 
elaborare a combustibilului, cunoasterea si perfectionare procesului de ardere, 
perfectionarea conceptiei si tehnologiei camerelor de ardere . 
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INVARIANT! ALGEBRICIUTILIZATI IN MODELAREA 

FENOMENELOR EXPLOZIVE 

Prof.dr.ing. Stefan Slerie* 

Cpt.ing.fiz. Dan Vasiu* 

Lt.col.ing. Nicolae Marin** 

Lt.col.ing. Marian Bunea* 

REZUMAT 

Studiul fenomenelor explozive se bazeaza pe ecuatiile fundamentale ale 

mecanicii fluidelor sense sub forma adimensionala. Utilizand ipoteza miscarii 

autosimilare se introduc invarianti algebrici care permit determinarea unor relatii 

intre parametrii caracteristici fenomenuhri exploziv. 

Integralele algebrice ale unui sistem de ecuatii diferentiale ordinäre pot fi 

stabilite independent de conditiile initiale sau sau conditiile particulare pe frontiera, 

folosind analiza dimensionala pentru miscarile autosimilare. In cazul general, ordinul 

sistemului de ecuatii diferentiale ordinäre poate fi redus. 

Consideram cazul miscarii unidimensionale adiabatice si nestationare a unui gaz 

perfect cu simetrie sferica, unde atractia newtoniana este luata un considerare. In 

acest caz avem urmatorul sistem de ecuatii: 

*  Academia Tehnicä Militarä. 

** Institutul de Cercetäri si Proiectäri Electromecanice Ploie§ti. 
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dp    dpv    (v-l)pv     „ 
dt      dr r 

17 = ^ 
dv     dv    I dp   GM (1) 

—+ v— + —-^+-^- = 0 
dt      dr    p dr     r 

dS      dS 
—+ v—= 0 
dt      dr 

"   -• -13   2 
unde ov=2(v-l)u+(l/2)(v-2)(v-3), G este constanta gravitationala [G] =M   L T , M 

este masa continuta intre suprafata fixa si suprafata luata in discutie [M] = ML " iar 

S este entropia sau o functie data de entropie.Pentru cazul sferic avem v=3, la fel 

se   poate   considera   cazul   cilindric   pentru   v=2   (caz   in   care  forta   gravitationala 

deasemenea poate fi luata in considerare) si cazul undelor plane v=I cand G = 0. 

Sa consideram miscarea autosimilara definita de doua constante dimensionaie a 

si b: 

[a] = M Lk Ts 

[b] = Lm Tn 

Expresia entropiei in termenii p si p nu trbuie sa contina constante dimensionaie 

independente de a si b. Constantele multiplicative si aditive sunt nesimnificative. 

Pentru m * 0, putem pune fara a pierde generalitatea ca m = 1, n = - 8 si k = -3. 

Pentru aceasta este suficient sa luam: 
_    _ „ k(-k-3)/m.    u  _bl;m a, = a b ,   £>! = 

Este necesar sa consideram ca [a] =fl/G ] pentru k= -3 cand atractia 

newtoniana este luata in considerare. Ca urmare s=2 iar 5 va fi singurul parametru 

caracteristic. Exponentul s poate fi arbiträr pentru G = 0 .In cazul general al 

miscarilor autosimilare cand m * 0 putem scrie: 

(2) 

Substituind marimile (2) in (1) se obtine un sistem cu patru ecuatii diferentiale 

ordinäre .pentru V(X), R(X), P(X) si M(Ä).Invariantii algebrici sunt relatii analitice 

intre marimile adimensionale V, R, P, M si X. 
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1. Invariantut masei 

Din a doua expresie a sistemului (1) se obtine: 

dM v_, 
—- = ovpr 

M" -M' = ]dM = cjpr'-'dr 

unde suprafetele mobile r'(t) si r"(t) corespund cazului in care parametrul X ia valori 

constante, respectiv X' si X". 

Se va utiliza formula de derivare totala pe un volum variabil: 

d'\ 
, ]FavPrv-ldr=--JFot,prv-]dr + 

at,, at , 
Fa^pr" 

dt' 

unde   — este derivata in raport cu timpul pentru un volum mobil de integrare compus din aceleasi 
dt 

particule , iar Feste o functie arbitrara in r si t. 

Deoarece: 

rezulta 

d(M-M') 
dt 

Din legea de conservare a masei: 

5 + 5(/t + 3-v) 
(A/"-W). 

A.',X"=const. 

d(M"-M') _ 

dt 
0 

Ca urmare daca in formula generala facem F = 1 obtinem 

s+SU + 3-v) 
-{Af'-Af) = a, "if- 

Utilizand relatiile (2) si marimile 

dr' / dt = 5 (r'/t) 

dr" / dt = 8 (r'Vt) 

se obtine invariantul: 

X"k-3{[s+5{k + 3-v)]M-<yß(V-8)} = C = const. 

care este corolar cu legea de conservare a masei. 

(3) 

2. Invariantul entropiei 

In miscarea reversibila adiabatica se obtine o integrala derivata ca un corolar a 

legii de conservare a entropiei pe traiectoriile particulelor. 
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Fie * (p ,p )= f (S ) o functie data a entropiei . 

Conditia data de ultima ecuatie din sistemul (1) respectiv de conservare a 

entropiei pe traiectoriile particulelor este echivalenta cu o relatie de forma: 

O (p ,p ) = F ( M* , a, b, ai   ,a2   ,0:3  ) 

unde ai, 0:2, 0:3 sunt constante abstracte, si M* este coordonata Lagrangeiana. Se 

considera formula dimensionala pentru <I>, [ <b] =MWL^TT . 

Daca nu exista nici 0 valoare pentru % care sa satisfaca [a bix ] = [ M*], 

atunci este imposibil sa formam 0 combiriatie a celor trei parametri a, bi si M*. 

Singura valoare pentru care se obtine 0 combinatie adimensionala a celor trei 

parametrii este % =v -k -3 . 

Ca urmare rezulta urmatoarea ecuatie : 

hi-afv-3)]S 

<D (p,p) = M *m 

f 

M' M' 
/(a,,a2...) (4) 

Prin inlocuirea marimilor p, p si M* in (4) cu ajutorul formulelor 

adimensionale, se obtine o relatie finala intre V, R, P si X. Daca exista o combinatie 

abix/M*, cum s-a mentionat anterior, functia f poate sa depinda de a bi* / M*. Ca 

urmare in cazul general ecuatia entropiei nu se poate reduce la un invariant. 

Exista invarioant al entropiei daca gazul este perfect, caz in care $ = p / pv si 

a =l-y    u = 3y-l   x =- 2. 

Invariantul entropiei se obtine sub forma: 

— =[RXv(V-5)}      S*XK+I-*>       XA"     
J+ä«+3->    /(a,,«,....) (5) 

Luand in considerare invariantii rezultati din conditiile de conservare a masei si 

entropiei , ordinul sistemului de ecuatii diferentiale este redus de la patru la doi . 

3. Invariantul energiei 

Vom arata ca acest invariant exista daca o constanta cu dimensiunile MLV":T'2 

(egala cu dimensiunile energiei in cazul sferic, cu energia calculata pe unitatea de 

lungime sau suprafata in cazul cilindric respectiv plan) poate fi formata cu ajutorul 

constantelor caracteristice a si b\. 

Consideram cazul cand atractia gravitationala lipseste, iar v ia valorile 1,2 si 3. 

Energia totala intre doua suprafete mobile r'(t) si r"(t) este data de : 
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>IH pr^dr 

unde e este energia interne pe unilatea de masa . Variatia energiei particulelor 

continute intre suprafetele r" = const, si r ' = const, la un moment de timp este data 

de lucrul mecanic al fortei de presiune pe aceasta suprafata ; ca urmare : 

d~E 
dt 

= -C7v(p
,,v'V"v-1-/>Vr',-,) 

Mai mult rezulta din consideratiile adimensionale aplicate miscarilor 

autosimilare   (m * 0)   ca marimea E ale'carei dimensiuni sunt M L T este 

data de relatia : 

E = abiv--k  t5(v-l-k)"2  -s  f(X">r>al   ,o2 ..-) 

unde f ( \",V ,a\   ,a2 ....)   este o functie arbitrara . Sa consideram acum ca r' si r" 

sunt determinate de conditiile X' ,\" =const. .Atunci in cazul general : 

f = [tfv-l-*)-2-*]f 

Acum folosind formula de derivare totala pe un volum variabil si inlocuind 

functia F( r ,t ) cu v2 12 + p / ( y - 1) p (am luat e = p / ( y - 1) p) se obtine usor 

urmatoarea relatie care este valabila pentru unele miscari autosimilare 

[5+2 -8{v-\-k))f(X\X",a„ a,...) = crvU
v--* PV+(V-S —-+—, . 

2      7-1] 

Functia necunoscuta f(X' ,\" ,a\ ,a2 ..) din relatia anterioara este eliminata 

daca: s - 8 (v - 1- k ) = - 2 

In acest caz  obtinem alt invariant esential : 

X'-l-t\PV+(V-5) 

corolar cu legea de conservare a energiei. 

RV2      P 
2   +7-l 

= const (6) 

4. Concluzii 

Invariantul (3) poate fi considerat independent de ecuatiile de miscare in 

absenta atractiei gravitationale, ca expresie a lui M(X) in termenii \ , R si V in forma 

finita. 

In cazul cand se ia in considerare atractia gravitationala functia M(/.) intra in 

ecuatia diferentiala de miscare. In acest caz M(X) poate fi eliminata folosind 

invariantul (3) 
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Daca M= 0 (cand folosim M intelegem intelegem cantitatea de masa cuprinsa 

intre suprafata fixa si suprafata in considerare , iar cand folosim M (X) intelegem 

marimea adimensionala corespunzatoare lui M) sau M = const . pentru solutia ce se 

studiaza la X = 0, rezulta ca in centrul de simetrie nu exista o sursa de masa, iar din 

formula (3.3.3.) sau din derivata acestei expresii se poate obtine constanta C din 

partea dreapta a expresiei  care va fi egala cu zero in acest caz . 

Daca C = 0 variabilele M si M* difera numai printr -un factor numeric . 

Cazul V = 8 corespunde solutiei particular cu distributia de viteze v = 8 r/t 

liniara in r ; in acest caz X = const, pentru miscarea particulelor si varisbila X este de 

asemenea o coordonata lagrangeiana . 

Existenta invariantului energiei este echivalenta cu conditia ca marimea abiV"!'k 

sa aiba dimensiunile unei energii E; miscarea autosimüara poate fi deternsniata de 

constanta E si constanta bi, [ b\ ] =L T       unde exponentui 5 paote fi oarecare. 

Rezultatul nu depinde de folosirea relatiei: 

e =p/(y-l)p 

In cazul miscarii unidimensionale nestationare a undelor plane, daca cu marimiie 

caracteristice a si b se poate forma o combinatie a bx avand dimensiunea c=M L"1 T"1 

(moment pe unitatea de arie) cu x=constant, atunci se deduce si invariantul 

momentului: 

P - (V - 8 ) RV = const. (7) 
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Advection in chaotically time-dependent open flows 

ZOLTAN NEUFELD 

Department of Atomic Physics, Eötvös University, 
4-1088 Budapest, PusknLu. 5-7, Hungary 

Abstract 
The passive advection of tracer particles in open two-dimensional 

incompressible flow is considered, in case of chaotic time-dependence of the 
velocity field. 
This is realised by the chaotic motion of four ideal point vortices. The 
advection problem can be seen as a chaotic scattering process in a chaotically 
driven Hamiltonian system. 

Studying the motion of tracer ensembles, we present numerical 
evidence for the existence of a bounded chaotic set containing trajectories 
never leaving the mixing region of the flow. We investigate fractal properties 
of this set using time-delay functions telling us how the tüne spent in the 
mixing region depends on the tracer's initial conditions. 
We propose different random baker maps as simple models of the 
phenomenon. 
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The passive advection of tracer particles in two-dimensional incompress- 
ible flows is a chaotic phenomenon [1]. In such cases, the tracer dynamics 
turns out to be area preserving in the phase space which coincides with the 
plane of the flow and is thus directly observable. The advection in non- 
steady flows is described by a driven Hamiltonian dynamics. In the last 
decade, a comprehensive knowledge has accumulated in the case of strict 
time-periodicity both for flows in closed containers [2]-[6] and for open flows 
with asymptotic simplicity [7]-[15], where the velocity field in the far up and 
downstream region is uniform. A unique feature of such open flows is the 
pronounced and stable fractal feature associated with chaotic tracer dynam- 
ics [10]- [15]. This is clearly measurable in laboratory experiments [16]. The 
central object governing the tracer dynamics is a nonattracting chaotic sad- 
dle [17] containing an infinite number of periodic and nonperiodic bounded 
tracer orbits which never reach the far up or downstream region. The saddle 
has an unstable manifold which leads tracers ever approached the saddle in 
the far downstream region. Both the saddle and its unstable manifold are 
fractal objects. Since the asymptotic dynamics is simple, the tracer motion 
can be considered as a scattering process with all the characteristics of a 
periodically driven one-dimensional chaotic scattering [18]. 
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Our aim in this paper is to study how this picture changes when the 
velocity field has a chaotic time-dependence. We restrict ourselves to flows 
of asymptotic simplicity further on, which implies that the time dependence 
is relevant in a finite region of the plane only, in the so-called mixing re- 
gion. Note that this does not mean at all that the flow would be turbulent 
here. In fact, we shall consider four-vortex problems as illustrative examples. 
Nevertheless, we do hope that by understanding such cases, we come a step 
closer to the understanding of what passive transport looks like in flows ex- 
hibiting two-dimensional turbulence [19, 20] in regimes of finite extents. In 
the language of point mechanics, such tracer motions correspond to chaotic 
scattering processes generated by chaotic temporal driving. 

Studying the motion of tracer ensembles, we present numerical evidence 
for the existence of a bounded chaotic set containing trajectories never going 
out to the far up or downstream region. Although periodic orbits are atypical, 
an infinite number of bounded orbits belong to this set which seems thus to 
be a direct generalization of a chaotic saddle. Local Lyapunov exponents 
around it are found to be strictly positive. 

Tracer droplets rapidly evolve interwoven, filamental patterns which can- 
not be distinguished by naked eye from the fractal filaments of the periodic 
flows. A closer observation, however, reveals that these need not follow exact 
fractal scaling. In other words, if a local fractal dimension of such filaments 
can be defined at all, it might depend on the length scale of observation. 
The recently coined concept of indecomposable continua [14] seems to be an 
appropriate tool for describing the filamental patterns observed in chaotic 
flows. 

The equation of motion of interacting ideal point vortices in incompress- 
ible two-dimensional flows can be written in the canonical form [22] 

,-, .      dH    „ .        oH    .„„,.,. 
Tixi=T~,   riyi = -—,  i = l,2,..,N. 1 

oyi dxi 

where {x^ y;} are the coordinates of the vortex i of strength Ti and the 
Hamiltonian appears in the form 

tf(te}) = --£r*r>^> (2) 
*■ i<3 

Tij being the distance between vortices i and j. 
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1 

Our aim now, as explained above, is to investigate advection in a velocity 
field produced by point vortices moving chaotically. It can be easily shown 
that the minimal number of vortices necessary for chaotic dynamics is four 
[22, 21]. 

We are interested in advection in open flows where distant tracer parti- 
cles can come close to the point vortex system along a simple path, exhibit 
complicated motion around them, and then leave this system along a sim- 
ple trajectory again. The condition for such open flow is, that the sum of 
the vortex strengths has to be zero (£-=i T, = 0). In this case the stream- 
lines far from the vortices are straight lines along which the vortices can 
be approached. (Otherwise the streamlines far from the vortices are closed 
curves.) 

The above conditions are also satisfied by the so-called leapfrogging mo- 
tion of two identical point-vortex pairs [12]. However, due to the special 
symmetry of the initial positions (xx = x4, x2 = x3, yx = -y4, and y2 = -y3, 
i.e., vortices 1 and 2 are mirror images of vortices 3 and 4) which is preserved 
by the dynamics, the motion of the vortices is non-chaotic, but periodic. 
By considering a four-vortex system with the same set of vortex strengths 
r\ = T2 = l,r3 = T4 = -1, but without restricting the initial conditions 
to a symmetric one, we obtain a locally chaotic and asymptotically steady 
open flow. The only disadvantage is the fact that this system is unstable in 
the sense that can disintegrate into two vortex pairs moving away in differ- 
ent directions. In other words the chaotic vortex motion itself is transient. 
This has been studied in great detail as a chaotic scattering process of vortex 
pairs. The time on which the system breaks up in two pairs strongly depends, 
however, on the initial conditions. Thus one can choose appropriate initial 
conditions to make this time long enough to investigate the advection for an 
arbitrarily long time. 

One can prevent this break up by changing the vortex strengths to keep 
the vortices close to each other forever. The condition is that the system 
should not be decomposable into subsystems having the sum of the vortex 
strengths zero. The simplest case which satisfies this condition is the follow- 
ing: r\ = r2 - r3 = 1 and r4 = -3. 

We shall consider both vortex systems as illustrative examples of chaot- 
ically time-dependent open flows. Typical vortex trajectories are shown on 
figure 1. The common feature of both dynamics is that the four vortices 
move chaotically, do not depart from each other, but move together along a 
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line. (The latter is true only for a finite but long period of time in the first 
case.) Thus the motion of the vortices can be seen as a superposition of a 
straight translating motion along a line and a chaotic relative motion which 
produce a chaotic velocity field confined to a region of finite average linear 
extent, the mixing region. 

The dynamics of passively advected particles is determined by the un- 
derlying velocity field generated, in our case, by the point vortex systems 
described above, and is given by the superposition of circular velocity fields 
of single vortices. The streamfunction if) for a point vortex system can be 
written as 

#c,y,t) = -;C-lnri(t), (3) 
i   * 

where rj(i) stands for the distance of point (x,y) from vortex i. The tracer 
equations of motion can be expressed by the streamfunction iß as 

d^{x,y,t) .        dil>{x,y,t) 
dy      ' V dx      ' 

(4) 

Note the Hamiltonian character of the dynamical system (4). 
Vortex systems chosen in the preceding Section translate as a whole along 

a line with an average velocity. By introducing a co-moving reference frame, 
we can make the translation of the vortices to disappear. In this comoving 
frame the velocity field ensures that particles are advected towards the mixing 
region and than leave it by moving away on asymptotically straight lines. 
Thus, the condition for an open flow with asymptotic simplicity is fulfilled. 

Similarly to periodic open flows, the advection of passive tracers is a 
chaotic scattering process. Typical trajectories of tracer particles are shown 
in Figure 2. As usual, the time spent in the mixing region, and the chaotic 
part of the trajectory itself is sensitively dependent on the initial coordinates 
of the tracers. 

Lyapunov exponent measured along long time orbits are clearly positive. 
Measurements were carried out by starting a test-particle with an initial 
condition close to the one of the reference orbit (the initial distance is 5 = 
10~5). The test-particle departs from the reference orbit and as their distance 
becomes larger then a threshold (105) value, we shift it close to the orbit again 
to a distance 5 along the line connecting the test and reference particle. We 
represented the number of such replacements used up to time t along the 
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reference trajectory (in fact, this number is proportional to the logarithm 
of the total stretching rate) as a function of t on Figure 3. The average 
slope corresponding to the chaotic part of the plot gives an estimate of the 
Lyapunov exponent. 

We can now investigate the evolution of an ensemble of tracer particles 
simulating the evolution of a droplet of dye injected into the mixing region. 
Snapshots taken at different times (Fig. 4) show that the ensemble tends to 
produce a complicated filamental structure characteristic to chaotic mixing 
and reminiscent to the ones observed in the case of periodic open flows. The 
latter was identified as the unstable manifold of the chaotic saddle existing 
in the mixing region [10, 12]. An important difference is, however, that 
in contrast to the periodic generation of identical lobes, here the emerging 
patterns continuously change their form and size due to the chaotic motion 
of the vortices driving the flow. 

Using these tracer trajectories we can represent the time spent in the 
mixing region for each initial condition (Fig. 5). The tracers were distributed 
on a two-dimensional grid in these simulations. We are particularly interested 
in the singularities of the escape times, which means trapping for a large, 
theoretically infinite, time in the mixing region. The latter was chosen for 
numerical purposes as a box centered initially to x = y = 0 and moving with 
the average velocity of the vortex system in the x direction. The dimensions 
of this box was lx-ly-A which is large enough to fulfill the condition that 
particles leaving this box will never return to the mixing region again. 

Figure 5. shows that there are two qualitatively different sets formed by 
initial conditions leading to long escape times. One of them has a compact 
ellipsis shaped structure and is situated around the vortices. The particles 
in this set are trapped forever in these vortex cores, and their trajectories 
cannot be approached by particles coming from outside the cores. This kind 
of vortex cores are a generic feature of point vortex dynamics as it was pointed 
out in different papers [21]. The motion of the tracers is a regular motion 
around the chaotically moving vortex centers, being just a slaved chaotic 
motion with zero relative Lyapunov exponent. In conclusion, these cores are 
irrelevant for the chaotic scattering process we are interested in. 

The other set of initial conditions with large escape times, in contrary, has 
a complex filamentary structure reminiscent to the fractal stable manifolds of 
the chaotic saddles observed in the case of time-periodic flows. The motion 
of the particles in this set is chaotic and is restricted to the mixing region, in 
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the forward dynamics. We shall call it the (forward) nonescapmg foliation. 
One can also construct a similar set corresponding to the time-reversed 

tracer dynamics starting with the same set of initial conditions. This back- 
ward nonescapmg foliation will exhibit similar patterns. The intersection of 
these two foliations has the property that trajectories starting from it never 
leave the mixing region either in the forward or in the backward dynamics. 
It is thus a natural generalization of the chaotic saddle introduced in the 
periodic case, and we call it the chaotic set. The most important difference 
is that this chaotic set cannot contain periodic orbits since the driving flow 
has an inherently nonperiodic character. 

For a quantitative characterization one can measure the decay of tracer 
particles in the mixing region by starting with an ensemble of particles an 
monitoring the number N{t) of particles staying still inside after time t 
In case of periodic flows there is an exponential decay N(t) ~ exp(-/c£) 
characterized by the escape rate K. In our case the decay is found to be 
nonuniform which means that the escape rate is time dependent. This is a 
natural consequence of the fact that the advection is driven by a flow with 
chaotic time dependence. 

The variation in escape rates also implies a non-uniform scaling of the 
geometry as well. The fractal properties of the singularities of the time delay 
function were investigated by the box counting method. 

We claim that the escaping process and the tracer foliations in chaotically 
driven flows are of similar character as in open random (Hamiltonian) maps. 
This explains the fluctuations of the time decay and fractal dimensions, as 
they appear as statistical averages with 1/n type of convergence in random 

baker maps. 
A central assumption is of course the stationarity of the random process. 

Since the mixing region is finite, we can assume that such a stationary dis- 
tribution of the chaotic driving exists and sets in after a finite time. In a 
particular observation, unfortunately, we cannot be sure that the stationarity 
has already reached. If this is not the case, no well defined characteristics 
can exist, not even in the weak sense of random averages. 
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Abstract 
The temperature distribution, in. fluoride-type crystal growth, furuace have been studied 

by modelling the vertical Bridgman growth equipment. The steady-state heat transfer 
equation with boundary conditions have been solved using the finite element method. The 
influence of the thermal conductivity of the two phases on the solid-liquid interface shape have . 
been also investigated. The calculated interface shape was found in good agreement with the 
quenched interface of the BaF2 crystals. 

1. Introduction 

Over the last years a major effort has been made for studying the crystallization 
process taking into account the global thermal behaviour of the crystal growth equipments. 
Generally, a Bridgman furnace consists of a heating system and a number of screens. One 
may easily understand that control strategies for generating desired temperature distributions 
during growth are difficult to obtain. The numerical simulation of heat transfer in such a 
complex furnace may be extremely useful. 

The temperature distribution in the solid and in the melt during the growth process 
affects the crystal quality. Particularly, the solid-melt interface shape has specific interest for 
the understanding of the defects formation. The modelling of the Bridgman method has been 
the subject of several papers [1-3], but most of the analyses do not take into account the 
radiative heat transfer within the crystalline and the melt phases. 

It has been pointed out [4-11] that the role of internal radiation transfer of energy 
during crystal growth process of semitransparent materials cannot be neglected. Brandon and 
Derby [10,11] were the first to develop a model in which the internal radiative transport in 
solid phase was included rigorously. In their model the melt is assumed to be opaque and 
consequently radiation through the melt is not considered. There are semitransparent 
materials [12,13] (such as LiF, CaF2, BaF2, etc) whose optical absorption coefficient is not so 
high as to consider the molten phase opaque. 

In the present paper we "have studied the temperature distribution in me furnace and 
the crystal by modelling the vertical Bridgman growth equipment [14,16] built by the Crystal 
Research Laboratory of West University of Timisoara (CryT). We have tried to study the 
growth equipment as a system where the growth of the crystal can be simulated on the basis 
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of a reduced number 01 controllable parameters, sucti as the power input, the coolant 
temperature, the pulling rate, the geometrical size of the crystal (i.e. its length and diameter) 
and some physical properties of the material (thermal conductivity, transparency, etc.). Our 
heat transfer model takes into account both radiative and conductive heat exchange in 
furnace, crystal and melt. The interface shape dependence upon the thermal conductivity and 
transparency of the solid and molten phase were of special interest. The temperature 
distribution in the system and the interface shape has been obtained by solving the heat 
transfer equation using the FIDAP software [17] offered for use by DEM/SPCM/LPSI CEA- 
CEN Grenoble, France.The interface shape obtained by the modelling was then compared 
with the quenched interface of the BaF2 crystals. 

2. Global modelling of heat transfer 

A schematic diagram of the CryT vertical Bridgman growth system is shown in fig. 
l.a., where a graphite crucible, containing a BaF2 charge is slowly lowered through a shaped, 
cylindrical graphite-heater [14,15]. The two-dimensional section of our mathematical 
representation of this system is presented in fig. 1 .b. The ampoule is moved down the 
furnace at pulling rates small enough for a quasi- steady-state assumption for heat transfer 
through the system to be valid. The latent heat released at the solidification interface is small 
and assumed to be negligible. The crystal growth process takes place in a vacuum of 10" -10" 
4 torr. We suppose that convection in the melt.does not have a significant influence on heat 
transfer in this system. 

Our main interest was to calculate the shape of the liquid-solid interface and the 
temperature distribution within the crystal at various stages of its growth. We have also 
studied the influence of the melt and crystal thermal conductivities on the crystallization 
interface shape for opaque and fully transparent cases. 

Because the temperature distribution in crystal and melt depends strongly upon the 
boundary conditions on their outer surface, which are a priori unknown, a global calculation 
of the heat transfer throughout the whole furnace is indicated. Our numerical calculations 
employ the commercial software package FIDAP [17] which is a finite element analysis 
software which solves the equations for incompressible and compressible flow, heat and 
mass transfer. 

In order to obtain the temperature distribution we have divided the whole system in 
subdomains. Heat transfer in all the subdomains of our model is described by the steady-state 
equation: 

V(£(T,r,z)VT)+H(r,z) = 0 (1) 

where £(T,r,z) is the thermal conductivity of the considered domain and H(r,z) is the heat 
source term in the heating domain. When equation (1) describes the heat transfer in the 
heater, /t(T,r,z) is the temperature dependent thermal conductivity of the graphite. H(r,z) 
vanishes in all the subdomains, except the heater. 
The following boundary conditions are used: 
The temperature and heat flux between adjoining subdomains is continuous: 

T| = Tj (2) 
and on the boundary between the subdomains i and j: 

'i.VT)   -iV.. = -f/t.VTl   -N.. (3) 
i      >\      U       V J     Jj     ij 
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where  yv   is the unitary normal to the boundary between subdomains. 
ij 

External boundaries lose heat via convection and radiation to the ambient temperature, TÄ 

**(^VTH-(T-TOO>^T4-T1) (4) 

water-coulcd wall 

■graphite heater 

to the vacuum pump 

lowering mechanism 

0 

31 

cmltf93 

Fig.l. (a) Vertical section showing the major features of the growth system; 
(b) Two-dimensional mathematical model for the global calculation. 

where h-, is the heat transfer coefficient on the boundary /, a is the Stefan-Boltzmann 
constant. 

At the boundary where the radiative heat transfer is take into account the following 
boundary condition is used: 

'ST"! 
(5) 

/ ■H^J,-"' 
where  q j. is the radiative flux at the boundary of the i-th subdomain. 

As usual, the heat exchange relationship between the radiating boundaries is written 
as follows [18]: 
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N 
I 

7=1 

_JL_F I 
\ei      ij    zi v  J J 

^J/V^M <6> 
where s is the emissivity of the surface Ap and Ftj is a view factor which represents the 
fraction of diffuse radiant energy leaving a surface .«4, and directly falling upon a surface Ay 

The heat transfer equation (1) with the boundary conditions subjected to the 
considered subdomain has been solved using the finite element package (FIDAP). The 
computational domains are discretized with quadrilateral elements as is shown in fig. 1 .b. 

2.1. Influence of the charge position in the furnace 
on the interface shape 

In order to verify the correctness of our model we have calculated the axial 
temperature distribution along the furnace centerline and we have compared it with the 
measured temperature (see fig.2). We can observe that computed and measured values are in 
good agreement. 
In order to study the dependence of the interface shape on the charge position in the furnace 
we have solved the heat transfer equation with the boundary conditions which correspond to 
three ampoule positions in the furnace, noted as positions (-2), (0), (+2) and also shown in 
fig.3. on the right. We can observe that the interface curvature depends on the position of the 
ampoule in the furnace and on the thermal conductivity of the melt and solid. As it is known, 
when the ratio between the thermal conductivity of the melt and solid phase kL/ks < 1, the 
interface is convex towards the melt. 

Fig. 4. shows the interface shape for the transparent case for the position (-2) of the 
ampoule and for three kL/ks values. We observe that the interface curvature is approximately 
2 times smaller than that of the opaque case. 

2. 2. Interface shape dependence on the thermal conductivity 
of the opaque and transparent crystals 

One of the purposes of this paper is to study the influence of the radiative heat 
transfer in the charge (i.e. the heat transfer in transparent crystals) on the interface shape. 
We have also taken into account the effect of the different thermal conductivity values of 
the melt and the solid. There are some crystals such as YAG, sapphire, CaF2, etc. which are 
relatively transparent to the infrared spectrum at high temperature and which have the kL/ks 

ratio smaller than the unity. For BaF2 crystals a melt thermal conductivity about ten times 
smaller than that of the solid phase has been reported [13] as well as a melt absorption 
coefficient also about ten times higher than that of the crystal. Figure 5 shows the influence 
of the kL/ks ratio on the crystallization interface shape for the opaque and transparent cases 
for (-2) position. We can observe that the value of the kL /ks ratio changes the interface 
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curvature sign, from convex to concave, but in all cases the interface deflection is smaller 
for the transparent case than for the opaque case. 

ensured values 

1=306 A P = 5.1 KW 

computed values 

1300   ■ 

■100     |f mm) 

Fig.2. Computed and measured axial temperatures at the centerline of the furnace; 
the bottom is the section of the shaped graphite heater. 

z(ram) ^Ampoule 
positions 

536. 

526 

506 

-KUKS=0.1;posO 

-KL/KS=l;posO 

-KUKS=0.1;pos»2 

-KL/KS=1;pos*2 

-KLKS=0.1;pos-2 

-KUKS=1;pos-2 

-KUKS=10;pos-2 

M r(mm) 

Fig.3. Interface shape of opaque crystal and melt for various kL/ks values 
and various ampoule positions. 

All these results can be understood if we take into account the effects of the internal 
radiative transport in the crystal. For the transparent crystal the axial temperature gradient 
becomes smaller than that for the opaque case because the total heat flux is increased by the 
radiative flux and this leads to a decreased interface curvature [16]. 
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z(mra) 
580 - 

570 + 

z(tm) 

r(rm) 
0        2        4        6 8      10     12     14 r(mm) 

Fig.4. Interface shape of transparent crystal Fig.5. Interface shape for the (-2) position 
and melt for various kL/ks values for the (-2) of the ampoule for various thermal 
position of the ampoule in the furnace. conductivity values  of the opaque  and 

transparent charges 

As we will show in section 3, for BaF2 crystals, the quenched experiments confirm the 
reported kL/ks = 0.1 value (the interface is convex towards the melt) and the fact that in this 
crystal we must take into account the radiative heat transfer within the charge because the 
measured interface deflection value corresponds to the fully transparent case. 

3. Experimental results 

BaF2 crystals were grown in a shaped gTaphite heater [14,15] using the conventional 
Bridgman-Stockbarger method. The temperature distribution within the furnace is measured 
by means of a Pt-Rh-Pt thermocouple which is moved along the furnace axis. During the 
crystal growth process the temperature is also measured by placing the thermocouple within 
the lower part of the crucible. In figure 2 we show the computed (the global modeling using 
FIDAP software) and the measured axial temperature distribution along the furnace. We can 
observe a good agreement between computed and measured values and this is important in 
order to compare the computed and measured interface deflection, 5. The solidification 
interface is located at z = h(r). The interface deflection (5) has been defined as the difference 
between the axial location at the centre and at the edge of the charge, i.e. 5 = h(0) - h(R), 
where R is the crystal radius. 
The crucible is made of a spectral pure graphite with a 1.5 mm wall thickness. In order to 
verify the correctness of the computed interface deflection values (5calculated by FIDAP 
software) we have grown several BaF2 crystals. For the melt/solid interface shape 
demarcation the melt was doped with CoF2 ( 0,5 % weight). To accomplish the demarcation, 
when the grown crystal had a length of a few centimeters , the power of the furnace was 
interrupted for five minutes and then the power and the standard growth translation rate were 
restored. 
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In the fig. 6. we can see the quenched interface. We can observe that the interface is 
convex towards to the melt and this means that kL/ks< 1. as confirmed by the reported values 
[13]. The computed interface deflection value and (he measured 8 value are in good 
agreement. 

Fig.6. The melt-solid interface shape revealed by quenching experiments 
and the calculated interface for the transparent case (kL/ks<=0.l) 

8       =3 mm, 5„ ,   , .   , = 3.7 mm exp calculated 

Using the global modelling of the heat transfer we have obtained the interface 
curvature for transparent and opaque cases (see fig. 5). The concordance between the 
computed and experimental values corresponds to the fully transparent approximation rather 
than to an opaque melt and solid. The obtained results show that the mathematical model of 
the heat transfer used is correct enough to describe the heat transfer in such a crystal. 

4. Conclusions 

It is known that control strategies for generating a desired temperature distribution 
during the crystal growth process are difficult to obtain only by experimental attempts. The 
numerical simulation of the heat transfer in such a complex system may be extremely useful 
in the design of the real growth configuration. It is also important to know if the 
mathematical model of the physical phenomena is correct; this can be verified by comparing 
experimental and computed values. 

Using the FIDAP software we performed a steady state simulation of the global 
Bridgman furnace in order to obtain the temperature distribution and to compare this with 
that measured in the CryT apparatus. The influence of various kL/ks ratio values and of the 
radiative heat transfer on the interface shape have also been studied. The temperature 
distribution obtained by this simulation and that measured are in good agreement. We have 
compared the S-L calculated interface shape deflection with that obtained using the 
quenching method for the revelation of the solid-liquid interface. The good agreement 
between the calculated and experimental 8 values shows that the model is correct and can be 
used for the design of a furnace and of other aspects of the growth process which make it 
possible to obtain good optical quality crystals. 
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Abstract 

The effect of the pulling rate and of the furnace configuration on the interface 

shape and its position in semitransparent and opaque crystals grown by the vertical 

Bridgman method are studied using the finite-element analysis. 

Keywords: Crystal growth, Heat transfer modeling, Transparent materials 

1    Introduction 

Single crystals are the basic material for the production of many devices for microe- 

lectronics, optoelectronics and other industries. The original Bridgman [1] technique 

together with the wide variety of this method, is one of the most common technique 
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for single crystal growth from melt. The temperature distribution in crystal du- 

ring the growth process, which is a solidification phenomenon, has a great influence 

on the crystal quality. Particularly, the. solid-melt interface shape - the solidifica- 

tion isotherm - determines the formation of a part of the structural defects. At. the 

same time, the temperature distribution in the grown crystal influences the defect 

formation due to thermal stresses. 

The factors that affect isotherm shape are not always obvious, especially in the 

complex geometries of real growth systems. A realistic numerical simulation of the 

heat transfer phenomena in these systems can efFec.tiveUy support the developments 

for improved crystal growth processes. The modeling of Bridgman method has been 
* 

. the subject of several papers [2-4]. 

In the growth process of the optically transparent materials, at high tempera- 

tures, the energy transport via radiation within the solid and melt phases becomes 

important [5-8], but difficult to model {9-11]. 

In the present paper we have studied some particularities of the solidification pro- 

cess of the semitransparent materials by modeling a vertical Bridgman configuration 

using the finite - element method in order to solve the heat transfer equation. In 

particular, we have focused our investigation on the influence of some growth para- 

meters - such as pulling rate and furnace type - on the crystallization interface shape. 

The use of the numerical simulation for process evolution allows important decisions 

to be made for crystal growth system design. 

2 Thermal model of the crystallization pro- 

cess 

We consider the solidification of the melt in an idealised vertical Bridgman system 

[1] with a three - zone furnace [see fig.l.a]. The gradient zone, which assures the 

crystallization condition by extraction of the latent heat released at the solidification 
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Table 1. 

Characteristics of various furnance types 

Furnance h Temperature 

type. (cm) gradient G(K • cm-1) 

Tc(K) Tk(I<) Gh Gg Gc 

A 4 6 40 30 1593 1753 

B 4 6 40 30 1553 1713 

C 4 6 20 10 1593 1673 

D 2 6 40 30 1593 1673 

E 2 6 20 *40 1633 1673 

heat transfer coefficient: h = 5 • 10-4 W/cm?K. 

Table 2. 

Charge properties 

Tm = 1653 K cM = 0.88 J^r-1 A'"1 

AH = 380 Jg-1 cc = 0.88 Jö_1 K-1 

PM,c = 3.2 g cm~3 aw = 3 C7n_1 

kM°l = 0.6 Wm"1 A""1 ac = 0.3 cm-1 

krnol _ 6 Wm-iK-* n = 1.44 

Table 3. 

Crucible Characteristics 

A;a = 45Wm-1A'-1 w = 1 mm 

ca = 1.44 Jg-'K-* D = 10; 18; 40 mm 

pa = 2.1 gem.-3 L = 100 7717U 

ea = 0.81 a = f = 0.1; 0.18; 0.4 
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Table 1. 

Characteristics of various furnance types 

Furnance h Temperature 

type (cm) gradient G(K ■ CTU
-1

) 

Tc(K) Th(K) Gh Gg Cc 

A 4 6 40 30 1593 1753 

B 4 6 40 30 1553 1713 

C 4 6 20 10 1593 1673 

D 2 6 40 30 1593 1673 

E 2 6 20 40 1633 1673 

heat transfer coefficient: h = 5 - 10  4 W/cm2K 2l' 

Table 2. 

Charge properties 

Tm = 1653 K cM = 0.88 Jg-XK~'1 

AH = 380 Jg~l cc = 0.88 Jg-1 A'-1 

PM,C- 3.2 gcm~3 aM  = 3 C7JI-1 

kM°l = o.ßWm-^K-1 ac = 0.3 C77i-1 

krnol _ 6 Wm^R"1 n = 1.44 

Table 3. 

Crucible Characteristics 

ka = 45Wm-lK-1 

ca = 1.44 Jg-^K-1 

pa - 2.1 gem-3 

£„ = 0.81 

IU =   1 77ZTO 

D = 10; 18; 40 mm 

L = 100 mm 

D _ 0.1; 0.18; 0.4 
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to obtain the various growth configurations, listed in table 1 we have used a 

shaped graphite furnace [12]. The crystallization process takes place by a controlled 

solidification of the melt contained in the crucible, which is lowered through the 

furnace at a velocity v = 1 -j- 7 mm/h. Because the pull rate is small, the quasi- 

steady state assumption is justified [4] and the axial crystal growth rate (;>,,) is 

approximated to be equal to the ampoule pull rate (vp = vg = v). 

The heat transfer model takes into account both radiative and conductive heat 

exchange in furnace and charge. The influence of the ambient temperature distribu- 

tion (the furnace type), of the pulling rate and of the charge properties on the shape 

of the solid-melt interface and on the temperature distribution in semi-transparent 

and opaque crystal is studied. We take into account two particularities of the CaF-i 

crystals, namely (1) the thermal conductivity of the crystal (kc) is greater than that 

of the melt (AIM) and (2) these crystals are semi-transparent, the absorbtion coe- 

fficient of the melt (ajy) being greater than that of the crystal (ac). The optical 

absorbtion coefficient for many materials is very high and in consequence the inter- 

nal radiation within the solid and the melt phases during the crystal growth process 

can be neglected. We have also studied the behavior of these materials (denoted 

as pure opaque) in growth conditions identical with those used for semitransparent 

materials. In order to write the energy equation for heat transfer in charge we use 

the diffusion approximation [5]. In this model the medium behaves like a material 

that has a thermal conductivity dependent on temperature (for both phases), and 

we can write that: 

k = km°> + k™d = k™°< + 16n2<TT3 (1) 

where k'no! and krad are the molecular and the radiative heat conductivity, respec- 

tively, n is the refractive index, a is the Stefan-Boltzmann constant and a is the 

Rosseland mean absorbtion coefficient. In the case when the crystal and the melt 

are opaque, we have considered that k — kmoi. 
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Although this approximation i.s not so accurate (especially near the boundaries) as 

that used by Brandon and Derby [9,10] in order to account for the internal radiation 

transfer of energy during the crystal growth process, our results are in concordance 

with their conclusions and with our experimental observations on CaF2 and Hal-'2 

crystal growth and their interface shape [13-15]. 

The thermal model of crucible, charge and furnace is shown in fig.l. The cylin- 

drical coordinate system (r, z,theta) has its origin at the centre of the bottom of 

the crucible. The solidification interface is located at z = h(r). In the numerical 

simulations we made the following assumptions: (1) the system is in a pseudo-steady 

state and (2) is radially symmetric (the system properties do not depend on theta), 

(3) the natural convection in the melt is negligible, (4) the crystal is isotropic. With 

the above assumptions, the governing energy equation is: 

k 
2T1 d2T     1ÖT     <PT 

Or2      r dr      dz2 vpi«(ez ■ VT) (2) 

where t = M, C and Af, C denote the melt and crystal, k is the thermal conductivity 

defined by equation (1), p is the density, c is the specific heat, v is the pulling rate, 

e. is the unit vector of the Oz axis. The heat transfer equation was solved using the 

finite element method with the following boundary conditions: 

1. Along the ouside wall of the crucible we have: 

ka(N-VTa) = h[Ta-TA{z)] + £a<r[TZ-TÜz)]    on    IV =1,2,3,4       (3) 

where fc„ is the thermal conductivity of the ampoule, h is the heat transfer coefficient, 

ea is the emissivity, N is the outward normal vector to each boundary. The ambient 

temperature distribution of each furnace configuration is described by TA(z) and is 

specified in table 1. 

'I. The midplan (r = 0) of the rod crystal is assumed to be a plan of reflective 

symmetry in the temperature profile, so that: 
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ki—i- = o  (i = M,c)  on   r7,r 
or 

3. Along the inner wall of the crucible we have: 

A:,-^ = fc„^    (i = M,C)    on    r5,r„ (5) 

4. At the solid-melt interface (Tg) we took into account the latent heat released: 

kc(N ■ VTc) - kM(N ■ VTM) = vPAH(cz ■ N) (6) 

5. The solid-liquid interface corresponds to the melting-point isotherm, Tm: 

Tm = TM= Tc (7) 

The shape of the crystallization interface is set by the condition for the equilibrium 

temperature (7) and by the. interfacial energy balance. (6). The equations are three 

conditions on temperature at the solidification interface. Two of these are needed as 

boundary conditions for the energy balance equation (2) applied for both the melt 

and the solid phases. The third is distinquished for calculating the shape h(r). The 

thermo-physical properties of the materials used - charge and crucible - are given in 

tables 2 and 3. We do not take into account temperature or frecquency dependencies 

of optical or of thermal properties of the materials. The temperature distribution 

and shape of the crystallization interface for different growth conditions is calculated 

by finite element analysis [11]. 

3    Results and discussions 

In order to analyze the influence of the growth conditions on the crystallization 

process we have studied the interface shape, its position with respect to the gradient 

zone and the temperature gradient near the solidification isotherm, both for semi- 

transparent and opaque cases. 
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For these we have solved the energy equation (2) with the boundary conditions 

(3-7) for many furnace types (we present here the results for only five types) and for 

the pulling rate with values between 1-7 mm/h. It is known that the temperature 

distribution in the crystal during the growth process influences the crystal <|iiality. 

Particularly, the solid-liquid (S-L) interface shape is an important factor, because 

it influences the stress, incidence of poly-crystallinity and the optical quality of the 

transparent crystals. The shape of the crystallization interface, can vary from concave 

to convex, depending on its axial location within the furnace. A convex isotherm 

(towards to the solid) will often lead to the best crystallinity, but if the segregation is 

important, a flat isotherm is desirable. Besides, if the thermal conductivities of the 

melt and the crystal have unequal values and at the growth interface the latent heat 

of solidification is released, the so called "interface effect" will be important. This also 

causes a nonplanar interface shape. The variations of the temperature distribution 

(in the obtained crystal) during the solidification process can lead to the appearance 

of thermal stresses and in consequence, to the formation of the dislocations. Thus 

knowledge of the temperature distribution is important in order to obtain good 

quality crystals. In all cases,an interface as flat as possible is needed. 

The shape of the crystallization interface is characterized by its curvature. We 

define the interface deflection (S) as the difference between the axial interface location 

h(r) at the centre and at the edge of the charge, i.e: 

6 = h(0)-h(R) 

where R is the crystal radius. The interface deflection is a measure of the crystalli- 

zation interface curvature, and a positive sign of 6 means that the S-L interface is 

convex towards the melt. 

We define the aspect ratio, a, as the ratio between the crystal diameter (I) = 

2R) and the crystal lenght (L), a = D/L. This is one of the geometrical parameters 

of the study.   The solidified fraction, f, is defined as the ratio between the grown 
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crystal length (lc) at various stages of tho growth process and the final crystal length 

(L),/ = /c/£ = 0-r 1. 

3.1    The crystallization interface shape 
* 

In order to study the influence of the growth conditions - the furnace type and 

pulling rate - on the shape of the solidification interface we have solved the energy 

equation (2) with the boundary conditions corresponding to each furnace type, both 

for the semitransparent and for the opaque case. The influence of the various stages 

(characterized by the. "f factor) of the growth process on the interface shape has 

been obtained by setting various crucible positions in the selected furnace profile. 

We have started by setting the bottom of the ampoule in the gradient zone at 1 cm 

or 2 cm above the turning point (Tc); this corresponds to a certain solidified part of 

the charge, defined by a value of the solidified fraction (f). The process is assumed 

to be finished when all of the melt has been solidified. In our calculations we have 

taken five or six such crucible positions.In each case at the bottom of the crucible 

there is a certain temperature TA(Z) value determined by the furnace type. 

Influence of the pulling rate 

In figures 2 and 3 we can see the interface position and shape for two furnace 

types (A and C), for two selected pulling rate values, both for the semitransparent 

(ST) and for the opaque case (0). For the selected crucible position, the. bottom of 

the crucible is at the following ambient temperature: 1563 K for the A - type furnace 

and 1613 K for the C - type. 

If we take into account both radiative and conductive beat transfer within the 

solid and molten phase, our calculations indicate that within limits of the used pulling 

rate values, this parameter of the growth process has no remarcable influence on the 

position ( f is a measure of this parameter) or on the shape of the solid-liquid interface 

(the 8 values) (see figures 2a,2b,3a,3c). If only conduction is considered for the two 

phases (i.e. pure opaque material) the influence of the pulling rale is not 
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Fig.3. Interface shape and position for a C-type furnace at various pulling ra- 

tes for a semi-transparent crystal and melt (ST) and for the pure opaque case (0). 

The. temperature difference between the three isotherms is AT =   10A'; (a,b) for 

- 579 - 



v = 3mm//» and (c,d) for v = Imm/li, (a,c) / = 0.29 ,(b) / = 0.25, (tl) / = 0.2-1, 

o = O.IK. 

negligible. These behaviours can be observed in figs. 2c,2d,3b,3d ). In order 

to compare the solidification processes, we have taken the same crucible position in 

the selected furnace. We observe two main characteristics. For the same ampoule 

position in furnace, the solidification interface shifts upwards, toward the hot zone, 

if the material is transparent to radiation (compare figs.2a and 2c,3a and 3b). This 

behaviour of the interface position in the case of a partially transparent melt and 

solid, can be explained by the fact that the total heat flux through the medium is 

augmented by the radiative flux (by an increased, k value) and this determines a 

shift of the interface to a higher position in the crucible toward the hot zone. The 

other characteristic refers to the value of the interface deflection (5): the curvature 

of the crystallization interface for the opaque melt and opaque solid is greater than 

for the semitransparent case and depends on the pulling rate. Because the pulling 

rates employed are sufficiently small, the influence of this growth parameter on the 

interface shape is negligible for semitransparent materials, as we can see in the above 

mentioned figures. The radiative heat transfer in semitransparent crystals reduces 

the interface deflection and increases the interface location in comparison to opaque 

crystals, reducing the interface effect due to the difference in the thermal conducti- 

vities of the melt and crystal. 

In order to observe the influence of the heat transfer type on the solidification 

interface in the figure 4 we have plotted two isotherms near the S-L interface, both for 

the pure opaque (fig.4a) and semitransparent cases (fig. 4b), and for a semi transparent 

solid and opaque melt (fig.4c). We can observe that the S-L interface shifts to a higher 

position in the crucible for a semi-transparent solid (see figs. 41) and 4c), but 
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Fig.4. Influence of the heat transfer type on the S-L interface: a) heat trans- 

fer by conduction (pure opaque case), b) heat transfer by conduction and radiation 

(semi-transparent material), c) semitransparent solid and opaque melt. In all cases 

the ampoule is in the same position in furnace, the temperature of the bottom is 

1533 K, with several corresponding f values.The difference between the isotherms is 

AT = IK. a = 0.18,1) = 5mm//i,A-type furnace. 

this effect is greather if the melt is opaque (fig.4c). The temperature gradient in 

solid phase decreases progressively from the case shown in fig.4a to fig.4c, but the 

temperature gradient near the interface in the melt phase has the highest value for 

the situation depicted in fig.4c, i.e. when the melt is opaque and the solid phase is 

semitransparent. The interface deflection has the lowest value when both the melt 

and the solid are semitransparent (see fig.4b). 

As the melt and crystal become transparent, the axial heat transfer is augmented 

by radiation and this leads to a higher axial heat flux than in the pure opaque 

case and this can explain all the particularities of the solidification process of the 

semi transparent materials. 
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The influence of the furnace type 

The influence, of the furnace type - especially the temperature gradient (('/,,) in 

the gradient zone (see table 1) - on the interface shape is shown in fig.5. We can 

observe that the pulling rate. (V) does not have a considerable effect on the b value 

for semitransparent materials (fig.5a), unlike the pure opaque case or an opaque 

melt and a semitransparent solid. This last situation is specified by the letter (! (a 

combined case) in the figure. We observe that the interface curvature depends on the 

furnace type in all cases, but the 6 value is always greater for the opaque materials 

than for the transparent ones. In order to obtain a good quality crystal we have to 

choose a furnace type which determines the smallest 8 value. 

It is known that the first stage of the solidification process has an important 

influence on the crystal quality (the defect structure). Consequently, in this stage 

a low interface deflection value is needed. Fig.6 shows the influence, of the furnace- 

type on the interface shape (6 values) at the beginning of the solidification process. 

We observe that the lowest 6 value is for the A type furnace for semitransparent 

case. Although, the temperature gradient in solid phase has a lower value for the C 

furnace than for the A one, the change in the sign of the isotherm curvature (for the 

C furnace), leads to the formation of thermal stress and then to the generation of 

dislocations. We also observe that, in the opaque case, all the above mentioned pa- 

rameters have higher values than in the semitransparent material (compare fig.6.a,b 

with 6c,d). 

If we study the influence of the geometrical factor - i.e. the aspect ratio, a, - on 

the interface curvature for the various furnace types we obtain figure 7. We can see 

that the aspect ratio is an important factor that has to be taken into account in the 

choice of the furnace type. We can say that for good quality crystal it is necessary 

to maintain a certain proportion between the crystal length and diameter; for a a 

value not higher than 0.2 is recommended. 
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3.2     Interface position in the furnace 

In order to obtain a low interface deflection value (6) it is necessary to „minla.in the 

interface position in the gradient zone (see fig.l) during the solidification process. 

This means that for all "f" values the interface has to be located under the upper 

part of the gradient zone.    In figs.X we have plotted the interface position  with 

respect to the gradient zone for the five, furnace studied here for the beginning (f = 

0.2) and for the end (f = 0.7) of the solidification process. If we analyze tin- interface 

location for the mentioned furnaces, we observe that for the A and B type furnace 

the interface is maintained in the gradient zone, but *„ « SB (see figs.5). We can 

also say that for the C-type furnace the Th - temperature (see table and fig.l) is too 

low in order to compensate for the heat losses by radiation. If the material is opaque 

we see that for all "f" values the interface is located in the gradient zone (fig.Sb), 

for all furnaces, but the interface curvature (*) is higher for the opaque case than 

for the semitransparent one (see also figures 5).' As the solidification fraction value 

increases the interface shifts towards the hot zone, indicating the contribution of the 

heat transfer by radiation within the solid phase. In order to show the influence of 

the geometrical factor, a, upon the. location of the interface in the furnace, we have 

also plotted the interface position for a = 0.4 and f = 0.7. We can observe that for 

this value of the aspect ratio, the interface for semitransparent materials leaves the 

gradient zone. 

For D and E furnaces the interface is located out of the gradient zone.This means 

that such a furnace design is not recommended because it is known that in this case 

all of the isothemrs are disturbed and will lead to a high value of the thermal stresses 

in crystals. 

If we take into account all aspects of the solidification process described above 

we can say that in order to obtain good quality crystal a careful choice of the fur- 

nace type is necessery depending of the optical properties of the charge (opaque or 

semitransparent). But in all cases an aspect ratio smaller than 02 is necessary.  For 

- 585 - 



opaque crystals a C-type furnace is reasonable, but for a semitransparoiit charge an 

A-type is recommended. 
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4    Conclusions 

A numerical modeling of the heat transfer in semi-transparent and in pure opaque 

materials during the crystallization process has been developed, using a. three zone 

vertical Bridgman method. Factors affecting the solidification interface shape - such 

as furnace temperature profile, pulling rate and geometrical aspect of the charge - 

have been taken into account. We have presented results of a model that uses the 

diffusion approximation in order to take into account the internal radiative transport 

of energy both in the solid and molten phase. We have found that for semitransparent 

materials the pulling rate with values between 1-7 mm/h has no significant influence 

on the interface deflection or the interface position in the gradient zone. But the 

shape and position of the solidification interface strongly depends on the furnace 

type, aspect ratio and solidification fraction, both for opaque and semitransparent 

material. A careful furnace design has a great importance on crystal perfection. 

From our simulation several strategies arise for flattening the interface shape (smal 

8 value). First, we have to take into account the optical propertie of the charge and 

second, for a good quality crystal the aspect ratio (a) does not exceed 0.2. From 

the studied furnace types, the A-type is recommended if we can build a furnace 

with a large gradient zone length that has a high temperature gradient value (Gg). 

If we have a short gradient zone length (lg) and low temperature gradient in this 

zone, an E-type furnace can be used with a high Tc temperature value. Opaque 

materials can be successfully crystallized in a C-type furnace, with low temperature 

gradient in a large gradient zone length. These characteristics of the furnaces can 

be adjusted using appropriate heat shields and furnace design, thus obtaining the 

desired thermal field. Therefore, the application of numerical simulations to the 

crystal growth process becomes an important tool for the improvement of the crystal 

quality. 
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Fourier Approach To Numerical Laser Resonator Calculations 
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ABSTRACT: 

Paper presents a method for numerical calculation of the transverse modes of the laser resonator 
with finite rectangular strip mirrors employing Fourier analysis approach in wave optics theory^ 
Physical model and algorithm were developed. Computer program was written. Results ot 
transversal field amplitude and phase distribution for various values of Fresnel number N and various 
geometrical configurations are presented in the form of diagrams. Results are found to be in 

agreement with resonator theory. 

1. INTRODUCTION 

Laser resonator together with the gain medium determines the overall power efficiency, number 
of wavelengths that constitute and degree of spatial and temporal coherence as well as the 
geometrical properties of the beam, i.e. divergence and waist or spot size. Since these are the basic 
elements that make laser such a unique light source it follows that the design of a laser resonator is 
very important step in the design of the laser. If resonator configuration is not tractable analytically 
results are obtained by numerical methods. This paper presents a numerical method for laser 
resonator calculation employing Fourier analysis approach. 

2. PHYSICAL MODEL OF THE LASER RESONATOR 

To study resonator modes for an arbitrary 
cavity configuration one can take in account 
wave nature of the beam through Fresnel- 
Kirchhoff scalar formulation of the Huygen's 
principle [4]. This is accomplished by assuming 
that the dimensions of the resonator are large 
compared to the wavelength and the field in 
the resonator is dominantly transverse 
electromagnetic (TEM) [1]. Solution of the 
scalar equation yields resonator modes 
uniformly polarised in one direction. Thus it is 
possible to invoke first Rayleigh-Sommerfeld 
solution to the diffraction problem in the shape 
of the following scalar integral formula [2]: 

L 

Fig. 1. Diffraction geometry 

J* 
U(x2,y2) = ~ ■\\u(xi,yi)--r-dxldyl 

JA •£ r 
0) 
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2n 
where wave number k is given by k =  and the distance r by: 

A 

^L2+(xl-x2f + (yl-y2)
2 

(2). 

If the mirror separation (L) is large 
compared to mirror dimensions and the 
mirrors are lightly curved it is possible to 
introduce a further simplification. 
Namely, the two Cartesian components 
of the vector field can be treated as 
mutually uncoupled which allows for 
treating the problem in one dimension 
instead of the two dimensional integral 
equation (1). Separate scalar equation 
can be written for each component [1]. 
This eases and speeds up the 
implementation. Resonator structure is 
represented  in  Fig.   2.   Two  opposing 

Fig. 2. Resonator geometry 

mirrors are separated by distance L. Each mirror is curved with radius R at centre C. Distance r 
between points on opposing mirrors can be expressed in terms of arc co-ordinate x, radius R and 
distance L. Applying the assumption that L is large relative to other dimensions it is possible to use 
approximate expression for (2): 

rsL + gl*l     |   82*2 
2L        2/, L (3) 

where confocal parameters g are defined as: 

1     L 1      L gl = l_       g2=l_ 
Ä, R, 

(4) 

Importing (3) and (4) into (l) one gets: 

W(*I)=-TT-- j«(x2)-e 
jAL 

^•(gl*l2+g2*22 -2*1*2) 
• QX-) (5) 

The equations (5) is known as the Fresnel diffraction integral. It is to be noted that r in (1) has 
been approximated with (3) in the exponent while r in denominator has been substituted only with L, 
because r in exponent is critical for determination of the field phase. Integral is calculated along the 
mirrors, from one end (-a) to the other (a). Thus, it is possible to relate the fields on the opposing 
mirrors by an equation (5) which expresses the field at each mirror in terms of the reflected and 
diffracted field at the other. This allows for an iterative algorithm capable of solving equation (5) by 
simulating transient process inside cavity [1], Algorithm begins with an arbitrary field distribution at 
one mirror which is reflected back and forth inside cavity, a process governed by equation (5), a one 
dimensional scalar ecmation. 
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3. FORMER ANALYSYS APPROACH 

Alternatively, it is possible to rewrite (5) in the following manner [2]: 

jkL     ./%iyi2   +o 7*g2*22        Jfal*2 

u(Xl) = - e   u    -ju(x2)-e   21    .e     L   &2 (6) 

JÄL -a 

Scalar field component u(x,) can be expressed as a Fourier transform of the field u(x2) previously 

multiplied by: 

■Ag2*22 

m(x) = e   2L (7) 

This is convenient because Fourier transform is easily implemented on a computer. Field u(x,) can 
be expressed as a beam of planar waves propagating at different angles and phases with regard to 
optical axis, that is by its angular spectrum. Each constituent planar wave is represented by its spatial 

frequency [2]: 

be    2TDC /ON 

x     L      L « 

Thus, the beam inside the cavity is represented by its angular spectrum calculated across the mirror 

surface. 
Finite mirror dimensions serve as boundary conditions, since wave component propagating beyond 

mirror scope is rejected (not reflected back). This is possible because there is no inverse Fourier 
transform in the process. Frequency range is set by upper and lower frequency limit given by: 

f   =— (9a) 

fa    =~ (9fc) Ja      XL 

Thus reflection can be treated as low pass filter from the frequency domain point of view. Integral 
(6) is calculated in the Fresnel diffraction zone where a useful quantity known as the Fresnel number 

N is defined [3] by: 

N = — (10) 
XL 

Fresnel number presents number of diffraction fringes that appear across the mirror and is directly 
related to the resonator modes [1]. Namely, higher order modes are visible with higher Fresnel 
number N. That resonator geometry can be expressed by defining values for Fresnel number N, 
distance between mirrors L, wavelength \ and confocal parameter g. Half mirror width a is 
calculated from eq. (10). This is convenient since resonator structures can be grouped according to 
Fresnel number N which is the most important determinant of the system. 
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4. NUMERICAL CALCULATION 

Algorithm can be summarised by following flow chart. 

Assume arbitrary initial field 
distribution. 

Modulate the field. 
(multiply by eq. 7) 

Find Fourier transform of the 
modulated filed. 

Cut frequencies beyond the 
scope of the opposing mirror. 

Treat result as 
reflected field. 

Normalise amplitude 
and phase. 

Treat result as 
final. End. 

and direct discrete Fourier transform is used. Direct application of the 
fact that the spatial frequencies constituting the beam cover only small 
sampling frequency is given by 

Initial field distribution 
can be arbitrary, but best 
results are obtained by using 
random initial field 
distribution. Modulation of 
the field can be performed in 
place. In order to 
compensate for the absence 
of the active medium in 
model, it is necessary to 
normalize the field amplitude 
after each round trip [3] by 
setting the maximum field 
amplitude value to unity. 
Convergence of the 
algorithm is assured by 
normalisation of the field 
phase after each round trip 
[3], achieved by shifting 
entire phase over the mirror 
by an amount necessary to 
set phase at the center of the 
mirror to zero. Simulation 
ends when distributions on 
opposing mirror differ to a 
predefined amount, usually 
1%. 

Program was written to 
algorithm in programming 
language C on a personal 
computer. In order to 
increase the speed it was 
necessary to tabulate 
trigonometric functions 
needed to calculate the field 

FFT is not possible due to the 
part of the spectrum. Namely, 

/,= 
M 

01) 

where M is the number of points across half-width of the mirror. For typical values of a, L, X and 
M, f, is large compared to f,, thus eliminating possible use of direct FFT. M is dependable on the 
Fresnel number N because in order to resolve the fine field structure M should be at least several 
times Fresnel number N. 
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5. RESULTS AND DISCUSSION 

Simulation results are presented on the following six diagrams where field phase and normalised 
intensity are shown with either fixed Fresnel number N and varied confocal parameter g, or fixed 
confocal paramter g and varied Fresnel number N. 

Fig. 3. Normalised field intensity and phase as a function of position on the mirror with fixed Fresnel number 
N=1.0 and confocal parameter g taking values of: 0, 0.5,0.8,1, 1.1 and 1.2. 

Presence of the TEM« mode with Gaussian distribution for concave stable resonator (confocal 
parameter g of 0.5 and 0.8) is visible on Fig. 3 confirming the expected behaviour of the laser 
resonator for Fresnel number N=l. For higher values of g (1.1 and 1.2), indicating an unstable 
convex resonator, field distribution is determined by geometry of the structure. Change in value of 
confocal parameter g from 0 to 1.2 indicates a change from marginal stable concentric resonator 
(g=0), via plan parallel Fabry-Perot (g=1.0), towards the convex unstable types with g higher than 1. 
Phase diagrams for stable resonators in Fig. 3 stays close to 0 degrees, meaning that TEMoo mode 
couples with the structure. For g=1.0 there exists a significant phase shift at mirror edges because 
wave front of TEMoo mode with finite radius of front curvature cannot couple with infinite radius of 
curvature of marginally stable Febry-Perot resonator mirrors. 
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Fig. 4. Normalised field intensity and phase as a function of position on the mirror with fixed confocal parameter 
g=1.0 (Fabry-Perot resonator) and Fresnel number N taking values of: 0.2, 1, 2. and 4.0. 
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For fixed confocal parameter g, that is for fixed geometry of the resonator, with value of Fresnel 
number N=0.2 only one mode oscillates, TEM0o, as on Fig. 4. It is cropped, since part of the mode 
extends beyond the scope of the mirror. Increasing the N shows presence of higher order modes that 
is indicated by wiggles in intensity distribution. This can also be observed on the phase diagram since 
phase distributions for N=2 and N=4 take value of +90°, for N=2 once, for N=4 twice. Number of 
these 90° passes is related to number of changes in polarisation of the electric wave field, that is, 
higher order modes exhibit polarisation changes. 
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Fig. 5. Nonnalised field intensity and phase as a function of position on the mirror with fixed confocal parameter 
g=0.5 (confocal stable resonator) and Fresnel number N taking values of: 0.2,1, 2 and 4. 

In the case of the confocal stable resonator results for various values of Fresnel number N are 
visible on the Figure 5. For N=1.0 transverse mode TEMoo is clearly visible. Differences in phase 
diagrams for Fresnel number N up to 1.0 and higher N exists because only TEM00 couples with the 
resonator, and thus with gain medium, for N up to 1.0, not being the case for higher N where higher 
modes appear across the mirrors. It is visible that the beam exhibits two minima for N=2 and four 
minima for N=4 across the extent of the mirror, indicating the presence of higher order modes. 

It is to be noted that diagrams for higher Fresnel number are obtained by increasing the transverse 
dimension of the mirrors. Figures 3,4 and 5 are drawn with relative position x/a on the mirror, not in 
absolute values. This means that higher order modes extend further away from the resonator axes, a 
fact in agreement with resonator mode theory. All result have been obtained with M=40 points 
across half mirror width, that is each diagram is drawn with 81 point across entire mirror. 
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