
DRAFT SF 298
1. Report Date (dd-mm-yy)
April 1995

2. Report Type 3. Dates covered (from... to)

4. Title & subtitle
Cleanroom Pamphlet

5a. Contract or Grant #

5b. Program Element #

6. Author(s) 5c. Project #

5d. Task #

5e. Work Unit #

7. Performing Organization Name & Address 8. Performing Organization Report #

9. Sponsoring/Monitoring Agency Name & Address
Software Technology Support Center
OO-ALC/TISE
7278 4th Street
Hill AFB, UT 84056-5205

10. Monitor Acronym

11. Monitor Report #

12. Distribution/Availability Statement
Distribution Statement A: Approved for public release, distribution is unlimited.

13. Supplementary Notes

14. Abstract

19970516 148 KHC QUAUET IEFSF3C2ED >

15. Subject Terms

Security Classification of

16. Report
Unclass

17. Abstract
Unclass

18. This Page
Unclass

19. Limitation
of Abstract

20. # of
Pages

21. Responsible Person
(Name and Telephone #)

Randy Wright
(801)777-9732

STSC

Cleanroom Pamphlet

April 1995

19970516 148

CLEANROOM PAMPHLET

"Software products with reliable operating characteristics have been notoriously difficult
to develop. The Cleanroom method introduces sound software engineering into the development
cycle and provides the quality control that's essential for product success." *

This pamphlet is part of the ongoing effort by the Software Technology Support Center
(STSC) in assisting Air Force organizations to identify, evaluate and adopt technologies that will
improve: (1) the quality of their products, (2) their efficiency in producing those products, and (3)
their ability to accurately predict the cost and schedule of their delivery. The publication of this
pamphlet makes no implications that the STSC is endorsing the Cleanroom process over any
other technology. The STSC just feels that this is a technology that is worth looking into as a
method for improving software quality, and possibly increasing productivity. The Cleanroom
process may be a viable method for some organizations and may not work for others. Cleanroom,
just like any other technology, is something that needs to be evaluated by the individual
organizations.

The STSC's Software Quality Engineering (SQE) Team is responsible for providing
products and services pertaining to software quality. Members of the SQE Team are: Bryce
Ragland, Johnnie Henderson (LORAL), and Mark Dawood (SAIC).

The following items are included in the Cleanroom Pamphlet:

"Cleanroom Software Engineering: Management Overview", Richard C. Linger
"Adopting Cleanroom software engineering with a phased approach", P. A. Hausier,
R. C. Linger, C. J. Trammell, IBM Systems Journal vol. 33, no. 1,1994
"Cleanroom Process Model", Richard C. Linger, IEEE Software, March 1994
"Experience Using Cleanroom Software Engineering in the US Army", S. Wayne
Sherer, Paul G. Arnold, Ara Kouchakdjian, Proceeding from STC'94 (updated)
"Why Isn't Cleanroom the Universal Software Development Methodology?", Johnnie
Henderson
Bibliography of Cleanroom Articles/Books
Listing of Organizations that assist with Cleanroom Adoption

1 Michael Dyer, The Cleanroom Approach to Quality Software Development, John Wiley & Sons, Inc. New York,
1994 (Back Cover)

Cleanroom Software Engineering:
Management Overview

Richard C. Linger
Software Engineering Institute

Cleanroom Software Engineering:
Management Overview

Richard C. Linger

Developing Software Under Statistical Quality Control

Cleanroom software engineering is a theory-based, team-oriented process for on-schedule
development and certification of ultra-high-reliability software systems with improved productivity
under statistical quality control [2,3]. The Cleanroom name is borrowed from hardware
Cleanrooms, with their emphasis on prevention of errors through engineering discipline, rather than
error removal. Cleanroom combines rigorous methods of software specification, design,
correctness verification, and statistical quality certification in a new life cycle model based on
incremental development.

You can use the Cleanroom process and supporting technologies to develop software systems that
approach zero defects and have scientifically certified reliability for operational field use.

In contrast to traditional development approaches, in the Cleanroom process you embed software
development and testing within a formal statistical quality control process. In such a process,
software engineering is required to create software that approaches zero defects and can enter
system testing directly [1]. Then statistical usage-based testing is used to provide statistical
inferences about the reliability of the software. This systematic process of assessing and controlling
software quality during development permits you to certify product reliability at delivery, based on
a complete public record of the testing and all engineering change activity required to deliver
acceptable software.

The significance of a process under statistical quality control is well illustrated by modern
manufacturing techniques where the sampling of output is directly fed back into the process to
control quality. Once the discipline of statistical quality control is in place, management has
objective visibility into the software development process and can control process changes to
control product quality.

Key ingredients of the Cleanroom process are a new development life cycle and independent
quality assessment through statistical testing. You begin the development life cycle with a
specification that not only defines functional requirements, but also identifies statistical usage of the
software and a nested sequence of user-function subsets that can be released and tested as

1

increments which accumulate into the final system. Rigorous software engineering methods
provide design and correctness verification techniques to create provably correct software.
Correctness verification by software engineering teams has proven to be a powerful and effective
process for approaching zero defects prior to any execution of the software.

You place software under engineering change control from first execution on, and all execution is
controlled by an independent certification team that uses statistical testing methods to evaluate
software quality. Traditional structural or coverage tests, no matter how carefully selected or how
comprehensive their test plans, provide only elaborate anecdotes of quality, with no basis for
scientific statistical extrapolation to operational environments. However, statistical testing in a
quality control process results in objective quality certification of software at acceptance.

Cleanroom Results

The Cleanroom process has been developed, reduced to practice, and demonstrated in development
of a variety of software systems in a various languages and environments. Published results of
projects totaling over a million lines of code carried out by IBM, STARS, NASA, and other
organizations [1,2] have shown substantial improvements over traditional results, as the following
examples illustrate:

Quality. Improvements of 10-20X and more over baseline performance have been achieved.
Some Cleanroom-developed systems have experienced no errors whatsoever in field use. For
example, IBM developed an embedded, real-time, bus architecture, multiple-processor device
controller product that experienced no errors in two years use at over 300 customer locations.

Productivity. Gains of 1.5-5X over baseline performance have been reported. For example, an
Ericsson Telecom project to develop a 374 KLOC operating system reported gains of 1.7X in
development productivity, 1.6X in testing productivity, and an IBM project to develop a network
management and outage avoidance product reported 2X improvement in development productivity.

Life cycle costs. Dramatic reductions have been achieved due to sharp decreases in error correction
and maintenance costs over the life of a product. For example, IBM developed a COBOL
structuring product that experienced just seven minor errors in the first three years of field use, all
simple fixes, and required a small fraction of the maintenance budget associated with products of
similar complexity.

Return on investment. Experience shows that Cleanroom adoption costs can be recovered on the
first project. For example, an 11 to 1 ROI was reported by the Picatinny Arsenal STARS
Cleanroom project, with the investment covering all Cleanroom training and consultation costs.

You can experience other benefits of the Cleanroom process that are more difficult to quantify, but
are real nonetheless. For example, Cleanroom statistical testing provides you with scientific
measures of product quality for the first time, permitting objective decision-making on whether and
when to stop testing and release products. It also provides scientific projections of quality in field
use, the only known method for doing this. In addition, substantial increases in the job satisfaction
of Cleanroom teams have been reported [8].

You can apply the Cleanroom process to development of new systems and maintenance, evolution,
and re-engineering of existing systems. It is language, environment, and subject-matter
independent, and can be used to develop and evolve a variety of systems, including real-time,
embedded, host, distributed, workstation, client-server, and microcode systems. Cleanroom is
compatible with prototyping and promotes reuse through precise definition of component
functional semantics and certification of component reliability.

Cleanroom is compatible with and supports performance at SEI Capability Maturity Model levels 2
through 5 [7]. Organizations at CMM level 1 may wish to achieve level 2 before embarking on
Cleanroom operations.

Cleanroom Technologies

The Cleanroom process incorporates technologies for management, development, and testing, as
follows:

Incremental Development. Cleanroom management is based on incremental development and
certification of a pipeline of user-function increments that accumulate into the final product.
System integration is top-down and continual, with system functionality growing through addition
of successive increments. Incremental development enables early and continual assessment of
product quality and user feedback, and facilitates improvements as development progresses. The
incremental approach permits controlled, stepwise integration of components, avoiding the risky,
last-minute integration often experienced in traditional development.

Rigorous Specification and Design. The development team produces software approaching zero
defects through use of a rigorous stepwise refinement and verification process for specification and
design using object-based Box Structure technology [6]. Box Structures permit precise definition
of required user function and system object architecture, and scale up to maintain intellectual
control in large system development. A key concept in Box Structures is referential transparency,
whereby the subspecifications for successive object refinements are developed, connected and
verified in a coherent structure prior to their independent elaboration. In Cleanroom, correctness is
built in, not tested in.

Correctness Verification. All Cleanroom-developed software is subject to rigorous correctness
verification by the development team prior to release to the certification test team. A practical and
powerful process, verification permits development teams to completely verify the correctness of
software with respect to specifications. A Correctness Theorem defines conditions to be met for
achieving zero-defect software [4]. These conditions are verified in mental/verbal proofs of
correctness in development team reviews. Even though programs of any size contain a virtually
infinite number of paths, the theorem reduces verification to a finite number of checks and ensures
that all software logic is completely verified in all possible circumstances of use. The verification
step is extremely powerful in eliminating defects, and is a major factor in the dramatic quality
improvements experienced by Cleanroom teams.

Statistical Quality Certification. The objective of the certification test team is to provide
scientific certification of software reliability, not to test quality in, an impossible task. Following
correctness verification, software increments are placed under engineering change control and
undergo first execution. Statistical usage testing is carried out to produce scientifically valid
measures of software quality and reliability [5]. The statistical usage approach tests software the
way users intend to use it. Test cases are generated based on usage probability distributions that
model anticipated software use in all possible circumstances, including unusual and stress
situations. Usage distributions can be defined in Markov models that permit substantial
management analysis and simulation of test operations, as well as automatic test case generation
[9]. Objective statistical measures of software reliability, such as Mean Time To Failure (MTTF),
are computed based on test results for informed management decision-making. Because statistical
usage testing is biased toward detection of more serious, high-frequency errors first, it is more
effective at improving software reliability in less time than traditional testing techniques.

Cleanroom Application

You can apply Cleanroom practices in the following environments:

New Systems. You can use the Cleanroom process to provide a coherent management and
technical framework for on-schedule development under intellectual control. Incremental
development provides for early quality assessment and user feedback on system function, and
avoids the risk associated with late component integration in waterfall-based developments.

Existing Systems. You can develop modifications and extensions to existing systems using
Cleanroom technology. In addition, problem-prone modules in existing systems can be re-
engineered to Cleanroom quality through use of design abstraction and correctness verification
techniques.

Cleanroom Acquisition. You can integrate the Cleanroom process into acquisition practices in
terms of required project processes and deliverables. For example, an incremental development

process can be required, with incremental deliverables associated with rigorous software
specification, design, correctness verification, and statistical reliability certification. Required
software MTTF and other statistical measures can be specified as prerequisites for software
acceptance at delivery.

Phased Introduction of Cleanroom

You can introduce the Cleanroom process into an organization in a staged manner. A successful
strategy has been to start with pilot projects and teams for Cleanroom development. Success with
these projects provides incentives for widespread adoption. As use of the Cleanroom process
grows, experienced members of early teams can become leaders of new teams.

Within a project, a phased introduction of Cleanroom process and technology elements is possible
[1]. As experience accumulates, you can adopt successive elements of Cleanroom in a staged
implementation.

References

1. Hausier, P. A., R. C. Linger, and C. T. Trammell, "Adopting Cleanroom Software
Engineering with a Phased Approach," IBM Systems Journal March, 1994.

2. Linger, R. C, "Cleanroom Software Engineering for Zero-Defect Software," Proceedings of
15th International Conference on Software Engineering, IEEE Computer Society Press, Los
Alamitos, CA, 1993.

3. Linger, R. C, "Cleanroom Process Model," IEEE Software, IEEE Computer Society Press,
Los Alamitos, CA, Vol. 11, No. 2, March, 1994.

4. Linger, R. C, and H. D. Mills, and B. I. Witt, Structured Programming: Theory and
Practice, Addison-Wesley, Reading, MA, 1979.

5. Mills, H. D., "Certifying the Correctness of Software," Proceedings of 25th Hawaii
International Conference on System Sciences, IEEE Computer Society Press, January, 1992,
pp. 373-381.

6. Mills, H. D., R. C. Linger, and A. R. Hevner, Principles of Information Systems Analysis
and Design, Academic Press, New York, 1986.

7. Paulk, M. C, et al., Capability Maturity Model for Software, Version 1.1 (CMU/SEI-93-
TR-25 ADA263432). Pittsburgh, PA, Software Engineering Institute, Carnegie Mellon
University, 1993.

8. Sherer, S. W., P. G. Arnold, and A. Kouchakdjian, "Experience Using Cleanroom Software
Engineering in the US Army," Proceedings of Second Annual European Industrial
Symposium on Cleanroom Software Engineering, Q-Labs AB, IDEON Research Park, S-
223 70 Lund, Sweden.

9. Whittaker, J. A. and M. G. Thomason, "A Markov Chain Model for Statistical Software
Testing," IEEE Transactions on Software Engineering, IEEE Computer society Press, Los
Alamitos, CA, Vol. 20, No. 4, October, 1994.

Reprinted From:

Systems Journal
Vol.33, No. 1, 1994

Adopting Cleanroom
software engineering
with a phased approach

by P. A. Hausier
R. C. Linger
C. J. Trammell

© Copyright 1994 by International Business Machines Corporation. See individual articles for copying information. Table of Contents
page may be freely copied and distributed in any form. ISSN 18-8670. Printed in U.S.A.

Adopting Cleanroom
software engineering
with a phased approach

by P. A. Hausier
R. C. Linger
C. J. Trammell

Cleanroom software engineering is a theory-
based, team-oriented engineering process for
developing very high quality software under
statistical quality control. The Cleanroom process
combines formal methods of object-based box
structure specification and design, function-
theoretic correctness verification, and statistical
usage testing for reliability certification to produce
software approaching zero defects. Management of
the Cleanroom process is based on a life cycle of
development and certification of a pipeline of user-
function increments that accumulate into the final
product. Teams in IBM and other organizations
that use the process are achieving remarkable
quality results with high productivity. A phased
implementation of the Cleanroom process enables
quality and productivity improvements with an
increased control of change. An introductory
implementation involves the application of
Cleanroom principles without the full formality of
the process; full implementation involves the
comprehensive use of formal Cleanroom methods;
and advanced implementation optimizes the
process through additional formal methods, reuse^
and continual improvement. The AOEXPERT/MVS
project, the largest IBM Cleanroom effort to date,
successfully applied an introductory level of
implementation. This paper presents both the
implementation strategy and the project results.

Zero or near-zero defect software may seem
like an impossible goal. After all, the expe-

rience in the first generation of software devel-
opment has reinforced the seeming inevitability
of errors and persistence of human fallibility. To-
day, however, a new reality in software develop-
ment belies the first-generation experience.

Cleanroom software engineering teams are able
to develop software at a level of quality and re-
liability that would have seemed impossible a few
years ago, and are doing so with high productiv-
ity.

Cleanroom software engineering is a managerial
and technical process for the development of soft-
ware approaching zero defects with certified re-
liability. u The Cleanroom process spans the en-
tire software life cycle; it provides a complete
discipline within which software teams can plan,
specify, design, verify, code, test, and certify
software. The Cleanroom approach treats soft-
ware development as an engineering process
based on mathematical foundations, rather than
as a trial-and-error programming process,3"7 and
is intended to produce software with error-free
designs and failure-free executions.

In traditional, craft-based software development,
errors were accepted as inevitable, and program-
mers were encouraged to get software into testing
quickly in order to begin debugging. Programs
were subjected to unit testing and debugging by
their authors, then integrated into components,
subsystems, and systems for more debugging.

«Copyright 1994 by International Business Machines Corgo-
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (1) each reproduc-
tion is done without alteration and (2) the Journal reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to republish any .other portion of this paper must
be obtained from the Editor!

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994
HAUSLER, LINGER, AND TRAMMELL 89

Product use by customers resulted in still more
debugging to correct errors discovered in opera-
tional use. The most virulent errors were often the
result of fixes to other errors,8 and it was not
unusual for software products to reach a steady-
state error population, with new errors introduced
as fast as old ones were fixed. Today, however,
craft-based processes that depend on testing and
debugging to improve reliability are understood
to be inefficient and ineffective. Experience has
shown that craft-based processes often fail to
achieve the level of reliability essential to a society
dependent on software for the conduct of human
affairs.

In the Cleanroom process, correctness is built
into the software by development teams through
a rigorous engineering process of specification,
design, and verification. The more powerful pro-
cess of team correctness verification replaces unit
testing and debugging, and software enters sys-
tem testing directly, with no execution by devel-
opment teams. All errors are accounted for from
first execution on, with no private unit testing
necessary or permitted. Experience shows that
Cleanroom software typically enters system test-
ing approaching zero defects and occasionally no
defects are found in all testing.

Certification (test) teams are not responsible for
"testing in" quality, which is an impossible task,
but rather for certifying the quality of software
with respect to its specification. Certification is
performed by statistical usage testing that pro-
duces objective assessments of product quality.
Errors, if any, found in testing are returned to the
development team for correction. If the quality is
not acceptable, the software is removed from
testing and returned to the development team for
reverification.

The process of Cleanroom development and cer-
tification is carried out in an incremental manner.
System functionality grows with the addition of
successive code increments in a stepwise integra-
tion process. When the final increment is added,
the system is complete. Because successive in-
crements are elaborating the top-down design of
increments already in execution, interface and
design errors are rare.

This paper describes key Cleanroom technologies
and summarizes quality results achieved by
Cleanroom teams. It presents a phased approach

to Cleanroom implementation based on the soft-
ware maturity level of an organization, and sum-
marizes the results of a substantial IBM Clean-
room project (AOEXPERT/MVS*) that successfully
applied a phased approach.

Cleanroom perspectives

The Cleanroom software engineering process
evolved from concepts developed and demon-
strated over the past 15 years by Harlan Mills and
colleagues.3"5'9 Cleanroom practices such as step-
wise refinement of procedure and object hierar-
chies, team verification of correctness, and sta-
tistical usage testing, have been successfully
applied in commercial and governmental soft-
ware projects over the past decade. Such prac-
tices may not be the rule in software development
today, but their use is growing as evidence of their
value continues to accumulate. In many cases,
software organizations considering a transition to
the Cleanroom process have operational prac-
tices in place, such as incremental development,
structured programming, and team reviews, that
support Cleanroom concepts. There are only a
few key concepts that must be understood and
accepted in a transition to the Cleanroom ap-
proach. 10

Practice based on theory. To be effective, any en-
gineering discipline must be based on sound the-
oretical foundations. Cleanroom specification,
design, and correctness verification practices are
based on function theory, whereby programs are
treated as rules for mathematical functions sub-
ject to stepwise refinement and verification.4'5

Cleanroom testing and quality certification prac-
tices are based on statistical theory, whereby pro-
gram executions are treated as populations sub-
ject to usage-based, stochastic sampling in formal
statistical designs.3'6'11 These theoretical founda-
tions form the basis of a comprehensive engineer-
ing process that has been reduced to practice for
commercial software development. A growing
number of successful, real-world Cleanroom
projects have demonstrated the practicality of
these methods.

Experienced Cleanroom practitioners and educa-
tors have developed comprehensive technology
transfer programs based on readily teachable,
time-efficient approaches to such Cleanroom
technologies as correctness verification and sta-
tistical testing. New practitioners will find that

90 HÄUSLER, LINGER, AND TRAMMELL IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

processes and tools exist that make the use of
these Cleanroom methods highly practical.12

Right the first time. A primary objective of the
Cleanroom process is to prevent errors, rather than
accepting and accommodating errors through insti-
tutionalized debugging and rework. For this reason,
Cleanroom development teams do not unit test and
debug their code. Instead, they rely on rigorous
methods of specification and design combined with
team correctness verification. These Cleanroom
development practices, based on mathematical
foundations, yield quality approaching zero defects
prior to first execution by certification teams. The
purpose of testing in Cleanroom is the certification
of software quality with respect to specifications,
not the attempt to "debug in" quality.

Management understanding and acceptance of
this essential point—that quality will be achieved
by design and verification rather than by testing-
must be reflected in the development schedule.
Time spent in specification and design phases of
a Cleanroom development is greater than in tra-
ditional projects. Time spent in testing, however,
is likely to be less than traditionally required. The
manager who wanted to start coding immediately
because of the large amount of debugging ex-
pected was usually right, but would have diffi-
culty becoming part of a Cleanroom team.

Quality costs less. A principal justification for the
Cleanroom process is that built-in quality lowers
the overall cost to produce and maintain a prod-
uct. The exponential growth in the cost of error
correction in successive life-cycle phases is well
known. Errors found in operational use by cus-
tomers are typically several orders of magnitude
more costly to correct than errors found in the
specification phase.13 The Cleanroom name,
taken from the semiconductor industry where a
literal cleanroom exists to prevent introduction of
defects during hardware fabrication, is a meta-
phor that reflects this understanding of the cost-
effectiveness of error prevention. In the Clean-
room process, incremental development and
extensive team review and verification permit er-
rors to be detected as early as possible in the life
cycle. By reducing the cost of errors during de-
velopment and the incidence of failures during
operation, the overall life-cycle cost of Clean-
room software can be expected to be far lower
than industry averages. For example, the IBM
COBOL Structuring Facility product, developed

using Cleanroom techniques, has required only a
small fraction of its maintenance budget to be
consumed during years of field use.

Cleanroom project schedules have equaled or im-
proved upon traditional development sched-
ules.14"16 In fact, productivity improvements of
factors ranging from one and one-half to five over

A primary objective
of the Cleanroom process

is to prevent errors.

traditional practices have been observed.15"18 Ex-
perienced Cleanroom teams become remarkably
efficient at writing clear specifications, simplify-
ing and restricting designs to easily verifiable pat-
terns, and performing correctness verification.
Cleanroom is not a more time-consuming devel-
opment process, but it does place greater empha-
sis on design and verification to avoid waste of
resources in debugging and rework.

Cleanroom quality results

As summarized in Table 1, first-time Cleanroom
teams in IBM and other industrial and governmen-
tal organizations have reported data on close to a
million lines of Cleanroom-developed software.
The code exhibits a weighted average of 2.3 er-
rors per thousand lines of code (errors/KLOC) in
testing.2,15"19 This error rate represents all errors
found in all testing, measured from first-ever ex-
ecution through test completion. That is, it is a
measure of residual errors remaining following
correctness verification by development teams,
who do not execute the software. The projects
represent a variety of environments, including
batch, distributed, cooperative, and real-time
systems and system parts, and a variety of lan-
guages, including microcode, C, C+ + , JOVIAL,
FORTRAN, and PL/I.

Traditionally developed software does not un-
dergo correctness verification, but rather enters
unit testing and debugging directly, followed by
more debugging in function and system testing

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994
HÄUSLER, LINGER, AND TRAMMELL 91

Table 1 Cleanroom project results

Year Project Quality and Productivity

1987 IBM Flight Control:
Helicopter Avionics System Component
33 KLOC (JOVIAL)

• Certification testing failure rate: 2.3 errors/KLOC
• Error-fix reduced 5X
• Completed ahead of schedule

1988 IBM Cobol Structuring Facility: Product for
automatically restructuring COBOL programs
85 KLOC (PL/I)

• IBM's first Cleanroom product
• Certification testing failure rate: 3.4 errors/KLOC
• Productivity 740 LOC/PM, 5X improvement
• 7 errors in first 3 years of use; all simple fixes

1989 NASA Satellite Control Project 1
40 KLOC (FORTRAN)

• Certification testing failure rate: 4.5 errors/KLOC
• 50% improvement in quality
• Productivity 780 LOC/PM
• 80% improvement in productivity

1990 Martin Marietta:
Automated documentation system
1.8 KLOC (FOXBASE)

• First compilation: no errors found
• Certification testing failure rate: 0.0 errors/KLOC

(no errors found)

1991 IBM System Software
First increment 0.6 KLOC (C)

• First compilation: no errors found
• Certification testing failure rate: 0.0 errors/KLOC

(no errors found)

1991 IBM AOEXPERT/MVS™ Product
107 KLOC (mixed languages)

• Testing failure rate: 2.6 errors/KLOC
• Productivity 486 LOC/PM
• No operational errors from Beta test sites

1991 IBM Language Product
First increment 21.9 KLOC (PL/X)

• Testing failure rate: 2.1 errors/KLOC

1991 IBM Image Product Component
3.5 KLOC (C)

• First compilation: 5 syntax errors
• Certification testing failure rate: 0.9 errors/KLOC

1992 IBM Printer Application
First increment 6.7 KLOC (C)

• Certification testing failure rate: 5.1 errors/KLOC

1992 IBM Knowledge Based System Application
17.8 KLOC (TIRS™)

• Testing failure rate: 3.5 errors/KLOC

1992 NASA Satellite Control Projects 2 and 3
170 KLOC (FORTRAN)

• Testing failure rate: 4.2 errors/KLOC

1993 University of Tennessee: Cleanroom tool
20 KLOC (C)

• Certification testing failure rate: 6.1 errors/KLOC

1993 IBM 3490E Tape Drive
86 KLOC (C)

• Certification testing failure rate: 1.2 errors/KLOC

1993 IBM Database Transaction Processor
First increment 21.5 KLOC (JOVIAL)

• Testing failure rate: 2.4 errors/KLOC
• No design errors, all simple fixes

1993 IBM LAN Software
First increment 4.8 KLOC (C)

• Testing failure rate: 0.8 errors/KLOC

1993 IBM Workstation Application Component
3.0 KLOC (JOVIAL)

• Testing failure rate: 4.1 errors/KLOC

1993 Ericsson Telecom AB Switching Computer OS32
Operating System
350 KLOC (PLEX, C)

• Testing failure rate: 1 error/KLOC
• 70% improvement in development productivity
• 100% improvement in testing productivity

NOTE: All testing failure rates are measured from first-ever KEY: KLOC = thousand lines of code
execution. PM = person month

X = (mathematical) times

92 HÄUSLER, LINGER, AND TRAMMELL IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

following. Measured from first execution, tradi-
tional software typically exhibits 25 to 35 or more
errors per thousand lines of code.20 First-time
Cleanroom development teams can produce soft-
ware with quality levels at test entry at least an
order of magnitude better than traditionally de-
veloped software. The following summaries of
three selected projects from Table 1 illustrate the
results achieved.

IBM COBOL Structuring Facility. The COBOL
Structuring Facility, which consisted of 85 KLOC
of PL/I code, was the first Cleanroom product in
IBM. It employs proprietary, graph-theoretic al-
gorithms to automatically transform unstructured
COBOL programs into a functionally equivalent,
structured form for improved maintainability. Re-
lentless design simplification in the Cleanroom
process often results in systems that are small for
their functionality. For example, the Cleanroom-
developed prototype of the COBOL Structuring
Facility, independently estimated at 100 KLOC,
was developed using just 20 KLOC.

Comparable to a COBOL compiler in complexity,
the product experienced 3.4 errors/KLOC in all
statistical testing, measured from the first execu-
tion. Six months of intensive beta testing at a ma-
jor aerospace corporation resulted in no func-
tional equivalence errors ever found.21 Just seven
minor errors were reported in the first three years
of field use, requiring only a small fraction of the
maintenance budget associated with traditionally
developed products of similar size and complex-
ity. The product was developed and certified by
a team averaging six members, with productivity
five times the IBM averages.16

IBM 3490E tape drive. The 3490E tape drive is a
real-time, embedded software system developed
by a five-person team in three increments of C
design with a code total of 86 KLOC. It provides
high-performance tape cartridge support through
a multiple processor bus architecture that pro-
cesses multiple real-time input and output data
streams. The product experienced 1.2 errors/
KLOC in all statistical testing. To meet an urgent
business need, the third increment was shipped
straight from development to the hardware and
software integration team with no testing what-
soever. Customer evaluation testing with live
data by the integration team resulted in no errors
being found.

In a comparison experiment, the project team
subjected a selected module to both unit testing
and correctness verification. Development of ex-
ecution scaffolding, definition and execution of
test cases, and checking of results required one-
and one-half person-weeks of effort and resulted
in the detection of seven errors. Correctness ver-
ification of the same program by the development
team required one and one-half hours, and re-
sulted in the detection of the same seven errors,
plus three additional errors.1

Ericsson OS32 operating system. Ellemtel Tele-
communications Systems Laboratories is com-
pleting a 350 KLOC operating system for a new
family of switching computers for Ericsson Tele-
com AB. The code is written in PLEX and C. The
73-person, 33-month Cleanroom project experi-
enced productivity improvements of 70 percent
and 100 percent in development and testing, re-
spectively, and the product averaged under one
error/KLOC in all testing. Project management re-
ported that an average of less than one person-
hour was required to detect an error in team re-
views, compared to an average of 17.5 person-
hours to detect an error in testing. The project
allocated two days per week to prepare and con-
duct team reviews. The product team was hon-
ored by Ericsson as the single project that had
contributed the most to the company in 1993.18

Cleanroom technologies

In the Cleanroom process, the objective of the
development team is to deliver software to the
test team that approaches zero defects; the ob-
jective of the test team is to scientifically certify
the quality of software, not to attempt to "test in"
quality. These objectives are achieved through
management and technical practices based on the
technologies of incremental development, box
structure specification and design, correctness
verification, and statistical quality certification.

Incremental development. Management planning
and control in Cleanroom is based on develop-
ment and certification of ^pipeline of increments
that represent operational user function, accumu-
late top-down into the final product, and execute
in the system environment.22 Following specifi-
cation of required external system behavior, an
incremental development plan is created to define
schedules, resources, and functional content of a
series of code increments to be developed and

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994
HÄUSLER, LINGER, AND TRAMMELL 93

certified. The initial increment contains stubs
(small placeholder programs) that stand in for
later increments and permit early execution of the
code. The ultimate functionality of the code that
will replace the stubs is fully defined in subspeci-

When the final increment
is integrated, the

system is complete.

fications for team verification of each increment
prior to testing. As incremental development
progresses, stubs are replaced by corresponding
code increments, possibly containing stubs of
their own, in a stepwise system integration pro-
cess. When the final increment is integrated, the
system is complete and no stubs remain.

As each increment is integrated, the evolving sys-
tem of increments undergoes a new step in sta-
tistical usage testing for quality certification. Sta-
tistical measures of quality provide feedback for
reinforcement or improvement of the develop-
ment process as necessary. Early increments can
serve as system prototypes, providing an oppor-
tunity to elicit feedback from customers to vali-
date requirements and functionality. As inevita-
ble changes occur, incremental development
provides a framework for revising schedules, re-
sources, and function, and permits changes to be
incorporated in a systematic manner.

Box structure specification and design. Box struc-
tures provide a stepwise refinement and verifica-
tion process based on black box, state box, and
clear box forms for defining system behavior and
deriving and connecting objects comprising a sys-
tem architecture.5,23 Boxes are object-based, and
the box structure process provides a systematic
means for developing object-based systems.24

Specifically, the black box form is a specification
of required behavior of a system or system part in
all circumstances of use, defined in terms of stim-
uli, responses, and transition rules that map stim-
ulus histories to responses. The state box form is
refined from and verified against the black box,
and defines encapsulated state data required to

satisfy black box behavior. The clear box form is
refined from and verified against the state box,
and defines procedural design of services on state
data to satisfy black box behavior, often intro-
ducing new black boxes at the next level of re-
finement. New black boxes (specifications) are
similarly refined into state boxes (state designs)
and clear boxes (procedure designs), continuing
in this manner until no new black boxes are re-
quired. Specification and design steps are inter-
leaved in a seamless, integrated hierarchy afford-
ing complete verifiability and traceability.

Box structures isolate and separate the creative
definition of behavior, data, and procedures at
each level of refinement. They incorporate the
essential property of referential transparency,
such that the information content of an abstrac-
tion, for example, a black box, is sufficient to
define and verify its refinement into state and
clear box forms without reference to other spec-
ification parts. Referential transparency is crucial
to maintaining intellectual control in complex sys-
tem developments. Box-structured systems are
developed as usage hierarchies of boxes, where
each box provides services on encapsulated state
data, and where its services may be used and re-
used in many places in the hierarchy as required.
Box-structured systems are developed according
to the following principles:25 (1) all data to be de-
fined and retained in a design are encapsulated in
boxes, (2) all processing is defined by sequential
and concurrent use of boxes, and (3) each use of
a box occupies a distinct place in the usage hier-
archy of the system. Clear boxes play an impor-
tant role in the hierarchy by defining and control-
ling the correct operation of box services at the
next level of refinement.

Correctness verification. As noted, in the Clean-
room process, verification of program correct-
ness in team reviews replaces private unit testing
and debugging by individuals. Debugging is an
inefficient and error-prone process that under-
mines the mental discipline and concentration
that can achieve zero defects. The intellectual
control of software development afforded by
team verification is a strong incentive for the pro-
hibition against unit testing. "No unit testing"
does not, however, mean "no use of the ma-
chine." It is essential to use the machine for ex-
perimentation, to evaluate algorithms, to bench-
mark performance, and to understand and
document the semantics of interfacing software.

94 HÄUSLER, LINGER, AND TRAMMELL IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

These exploratory activities are entirely consis-
tent with the Cleanroom objective of software
that is correct by design.

Elimination of unit testing motivates tremendous
determination in developers to ensure that the
code they deliver for independent testing is error-
free on first execution. But there is a deeper rea-
son to adopt correctness verification—it is more
efficient and effective than unit testing. Programs
of any size can contain an essentially infinite num-
ber of possible execution paths and states, but
only a minute fraction of those can be exercised
in unit testing. Correctness verification, however,
reduces the verification of programs to a finite and
complete process.

In more detail, all clear box programs are
composed of nested and sequenced control
structures, such as sequence, IF-THEN-ELSE,
WHILE-DO, and their variants. Each such control
structure is a rule for a mathematical function,9

that is, a mapping from a domain or initial state to
a range or final state. The function mapping car-
ried out by each control structure can be docu-
mented in the design as an intended function. For
correctness, each control structure must imple-
ment the precise mapping defined by its intended
function. The Correctness Theorem4 shows that
verification of sequence, IF-THEN-ELSE, and
WHILE-DO structures requires checking exactly
one, two, and three correctness conditions, re-
spectively. While programs can exhibit an essen-
tially infinite number of execution paths and
states, they are composed of a finite number of
control structures, and their verification can be
carried out in a finite number of steps by checking
each correctness condition in team reviews. Fur-
thermore, verification is complete, that is, it deals
with all possible program behavior at each level of
refinement. The verification process defined by
the Correctness Theorem accounts for all possi-
ble mappings from the domain to the range of
each control structure, not just a handful of map-
pings exercised by particular unit tests. For these
reasons, verification far surpasses unit testing in
effectiveness.

Statistical quality certification. In the Cleanroom
process, statistical usage testing for certification
replaces coverage testing for debugging. Testing
is carried out by the certification team based on
anticipated usage by customers. Usage probabil-
ity distributions are developed to define system

inputs for all aspects of usage, including nominal
scenarios as well as error and stress situations.
The distributions can be organized into probabi-

Debugging is an
inefficient and

error-prone process.

listic state transition matrices or formal gram-
mars. Test cases are generated based on random
sampling of usage distributions. The correct out-
put for each test input is specified with reference
to an oracle, that is, an independent authority on
correctness, typically the software specification.
System reliability is predicted based on analysis
of test results by a formal reliability model, and
the development process for each increment is
evaluated based on the extent to which the reli-
ability results attained objectives. In effect, sta-
tistical usage testing is based on a formal statis-
tical design, from which statistical inferences
of software quality and reliability can be de-
rived. 3-11-26

Coverage testing can provide no more than an-
ecdotal evidence of reliability. Thus, if many er-
rors are found, does that that mean that the code
is of poor quality and many errors remain, or that
most of the errors have been discovered? Con-
versely, if few errors are found, does that mean
that the code is of good quality, or that the testing
process is ineffective? Statistical testing provides
scientifically valid measures of reliability, such as
mean-time-to-failure (MTTF), as a basis for objec-
tive management decision-making regarding soft-
ware and development process quality.

Empirical studies have demonstrated enormous
variation in the failure rates of errors in opera-
tional use.8 Correcting high-failure-rate errors
has a substantial effect on MTTF, while correcting
low-failure-rate errors hardly influences MTTF at
all. Because usage-based testing exercises soft-
ware the way users intend to use it, high-fre-
quency, virulent'errors tend to be found early in
testing. For this reason, statistical usage testing is

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994
HÄUSLER, LINGER, AND TRAMMELL 95

more effective at improving software reliability
than is coverage testing. Statistical testing also
provides new management flexibility to certify
software quality for varying conditions of use and
stress, by developing special usage probability
distributions for such situations. For example,
the reliability of infrequently used functions with
severe consequences of failure can be indepen-
dently measured and certified.

Adopting the Cleanroom process

Rigorous and complete Cleanroom implementa-
tion permits development of very high quality
software with scientific certification of reliability.
However, substantial gains in quality and pro-
ductivity have also occurred in partial Cleanroom
implementations.15,18 Evidence suggests that a
phased approach to implementation can produce
concrete benefits and afford increased manage-
ment control. The phased approach, combined
with initial Cleanroom use on selected demon-
stration projects, provides a systematic manage-
ment process for reducing risk in technology
transfer. Three implementation phases can be de-
fined and sequenced in a systematic technology
transfer process. The idea is to first introduce fun-
damental Cleanroom principles and several key
technologies in an introductory implementation.
As team experience and confidence grows, in-
creased precision and rigor can be achieved in a
full implementation of Cleanroom technology. Fi-
nally, an advanced implementation can be intro-
duced to optimize the Cleanroom process. Of
course, a particular Cleanroom implementation
can combine elements from various phases as
necessary and appropriate for the project envi-
ronment.

Introductory implementation. Key aspects of an in-
troductory implementation are summarized in the
first row of Table 2. The fundamental idea is to shift
from craft-based to engineering-based processes.
The development objective shifts from defect cor-
rection in unit testing to defect prevention in spec-
ification, design, and verification. As experience
grows, developers learn they can write software
that is right the first time, and a psychological
change occurs, from expecting errors to expecting
correctness. At the same time, the testing objective
shifts from debugging in coverage testing to reli-
ability certification in usage testing. Because Clean-
room code is of high quality at first execution,
testers learn that little debugging is required, and

they can concentrate on evaluating quality. A man-
agement opportunity exists to leverage these tech-
nology shifts to develop systems on schedule with
substantial improvement in quality and reduction in
life-cycle costs.

All development and testing is accomplished by
small teams. Team operations provide opportu-
nities for cross-training and a ready forum for dis-
cussion, review, and improvement. All work
products undergo a team-based peer review to
ensure the highest level of quality. The size and
number of teams varies according to resource
availability, skill levels, and project size and com-
plexity. Teams are organized during project plan-
ning and their membership should remain stable
throughout development. Cooperative team be-
havior that leverages individual expertise is a key
factor in successful Cleanroom operations.

In any Cleanroom implementation, zero-defect
software is an explicit design goal, and measured
performance at a target level is an explicit reli-
ability goal. The Cleanroom practices necessary
to achieve these objectives require substantial
management commitment. Because compro-
mises in process inevitably lead to compromises
in quality, it is crucial for managers to understand
Cleanroom fundamentals—the philosophy, pro-
cess, and milestones— and demonstrate unequiv-
ocal support. Management commitment is essen-
tial to successful introduction of the Cleanroom
process.

A key aspect of customer interaction is to shift
from a technology-driven to a customer-driven
approach, whereby system functional and usage
requirements are subject to extensive analysis
and review with customers to clearly understand
their needs. Maintaining customer involvement in
specification and certification helps avoid devel-
oping a system that approaches zero defects but
provides the wrong functionality for the user.

Unlike the traditional life cycle of sequential
phases, the Cleanroom life cycle is based on in-
cremental development. In an introductory im-
plementation, a project is scheduled and managed
as a pipeline of increments for development and
testing. Functional content and sequencing of in-
crements is typically based on a natural subdivi-
sion of system functions and their expected us-
age. Successive increments should implement
user function, execute in the system environ-

96 HÄUSLER, LINGER, AND TRAMMELL IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

ment, and accumulate top down into the final
product. This incremental strategy supports test-
ing throughout development rather than at com-
pletion. It also integrates system increments in

Management commitment is
essential to successful

introduction.

multiple steps across the life cycle, to avoid risks
of single-step integration of all system compo-
nents late in a project when little time or re-
sources remain to deal with unforeseen problems.

In an introductory implementation, a black box
specification is written that precisely defines re-
quired system functionality in terms of inputs,
outputs, and behavior in all possible circum-
stances of use, including correct and incorrect
use. The specification focuses on required system
behavior from the user's viewpoint and does not
describe implementation details. At this level,
specifications are generally expressed in an outer
syntax of specification structures, such as tabular
formats or variants of Box Description Language
(BDL),5 and an inner syntax of natural language.
Cleanroom specifications are important working
documents that drive design and certification ac-
tivities, and they must be kept current for effec-
tive team operations. Definition of system user's
guides is initiated in parallel with specifications,
for elaboration and refinement throughout the de-
velopment.

In the design process of an introductory imple-
mentation, state and clear box concepts are im-
plemented using sound software engineering
practices, including stepwise refinement, struc-
tured programming, modular design, information
hiding, and data abstraction. Successive incre-
ments are specified and designed top-down
through stepwise refinement, with frequent team
review and discussion of design strategies.8 Step-
wise refinement requires substantial look-ahead
and analysis, as successive design versions are
developed and revised. In this process, a relent-

less team drive for design simplification can result
in substantial reductions in the size and complex-
ity of systems, for more efficient correctness ver-
ification and subsequent maintenance.

Design with intended functions is a fundamental
practice at the introductory level. High-level in-
tended functions originate in system specifica-
tions, and are refined into control structures and
new intended functions. Expressed primarily in
natural language, intended functions are recorded
as comments attached to key control structures in
designs. Intended functions precisely define re-
quired behavior of their control structure refine-
ments. Behavior is defined in functional, non-
procedural descriptions of the derivation of
output data from input data. Intended function
refinements are expressed in a restricted set of
single-entry, single-exit control structures with
no side effects, such as sequence, IF-THEN-ELSE,
WHILE-DO, and their variants. Each control struc-
ture may contain additional intended functions
for further refinement. This stepwise specifica-
tion and design process continues until no further
intended functions remain to be elaborated. In-
tended functions provide a precise road map for
designers in refining design structures, and are
essential to team verification reviews.

The last intellectual pass through a design occurs
in team-based correctness verification, another
fundamental practice in an introductory imple-
mentation. At the design level, verification re-
views prove correctness of program control
structures, unlike traditional code inspections
that trace program flow paths to look for errors.
The verification process is based on reading and
abstracting the functionality of control structures
in designs and comparing the abstractions with
specified intended functions to assess correct-
ness. Team members read, discuss, evaluate, and
indicate agreement (or not) that designs are cor-
rect with respect to their intended behavior. If
changes are required, the team must review and
verify the modifications before the designs can be
considered finished. Verification reviews provide
team members with deep understandings of de-
signs and their correctness arguments. Reviews
are conducted with the understanding that the en-
tire team is responsible for correctness. Ultimate
successes are team successes, and failures are
team failures. All specifications and designs are
subject to team review, without exception. Fol-

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994
HÄUSLER, LINGER, AND TRAMMELL 97

Table 2 A phased implementation for Cleanroom practice

Cleanroom
.Practice

Implementation

Management
and

Team Operations

Customer
Interaction

Incremental
Development

System
Specification

Introductory
Implementation

• Document an introductory
Cleanroom process.

• Shift from craft-based to
engineering-based processes.

• Shift from defect correction
in unit testing to defect
prevention in specification,
design, and verification.

• Shift from debugging in
coverage testing to quality
certification in usage testing.

• Shift from individual to small
team operations with team
review of all work products.

• Establish Geanroom projects
and provide commitment,
education, and recognition
to teams.

• Develop to schedule with
substantial quality
improvement and life cycle
cost reduction.

• Shift from technology-
driven to customer-
driven development

• Analyze and clarify
functional requirements
with customers to
develop functional
specifications.

• Analyze and clarify
usage requirements with
customers to develop
usage specifications.

• Review and validate
functional and usage
specifications with
customers.

»Revise functional and
usage specifications as
necessary for changing
requirements.

• Shift from a
sequential
(waterfall) to an
incremental process.

• Define increments
that implement user
function, execute in
the system
environment, and
accumulate top down
into the final product.

• Define and evolve an
incremental
development plan for
schedules, resources,
and increment content

• Carry out scheduled
incremental
development and
testing with stepwise
integration of
increments.

• Shift from informal,
throwaway specifica-
tions to precise,
working specifications
kept current through
the project life cycle.

• Define specifications
of system boundaries,
interfaces, and required
external behavior in all
possible circumstances
of use, including correct
and incorrect use.

• Express specifications
in systematic forms
such as tables that
define required behavior
in natural language.

■ Develop and evolve
system user's guides in
parallel with
specifications.

Full
Implementation

• Document a full Cleanroom
process.

• Increase development rigor
with box structure
specification, design, and
correctness verification.

• Increase testing rigor
with scientific measures of
reliability.

• Establish larger Cleanroom
projects as teams of small
teams with experienced
leaders from previous
projects.

■ Develop to schedule with
substantial quality and
productivity improvement
and life cycle cost reduction.

• Educate customers in
Cleanroom to increase
value, cooperation,
and responsiveness to
customer needs.

• Review black box
functional specifications
with customers to
support increased rigor
in specification.

• Review usage
specifications with
customers to support
increased rigor in
statistical usage testing.

• Provide customers
with prototypes
and accumulating
increments for
evaluation and feedback.

■ Define increments to
incorporate early
availability of
important functions
for customer feedback
and use.

■ Rapidly revise
incremental plans for
new requirements
and actual team
performance, and
respond to schedule
and budget changes.

■ Develop prototypes
as necessary to
validate customer
requirements
and operating
environment
characteristics.
Define black box
specifications in
systematic structures
such as transition
tables expressed in
conditional rules
and precise
natural language.

Advanced
Implementation

• Document an advanced
Cleanroom process.

• Establish a Cleanroom
Center of Competency to
monitor Cleanroom
technology and train and
consult with teams.

1 Establish Cleanroom projects
across the organization led
by experienced Cleanroom
practitioners.
Develop to schedule with
substantial quality and
productivity improvements
and life cycle cost reduction,
even in emergency and
adverse circumstances.

• Assist customers in
leveraging the quality
ofCleanroom-
developed software for
competitive advantage.

• Contract with customer
for reliability warranties
based on certification
with agreed usage
distributions and
reliability models.

• Establish cooperative
processes with
customers for recording
operational system
usage to calibrate and
improve reliability
certification.

• Incorporate
comprehensive
reuse analysis and
reliability planning
in incremental
development plans.

• Plan increment
content to manage
project risk by early
development of
interface
dependencies, critical
functions, and
performance-sensitive
processes.

> Incorporate advances
in formal specification
methods into local
practices.

1 Develop guidelines for
specification formats
and conventions based
on team experience.

1 Apply mathematical
techniques in black
box specifications
to define complex
behavior with precision.
Express black box
specifications where
appropriate with
specification functions
and abstract models.
Develop a specification
review protocol for
team reviews based
on team experience.

98 HÄUSLER, LINGER, AND TRAMMELL IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

System Design
and

Implementation

• Shift from programming by
aggregation of statements to
design by stepwise refinement
of specifications.

• Refine specifications into
structured, modular designs
using good software engineering
practices with substantial look
ahead and analysis.

• Express designs in control
structures and case-structured
intended functions expressed in
natural language.

• Conduct frequent team
development reviews to
communicate, simplify, and
improve evolving designs.

• Conduct execution experiments
to document the system
environment and semantics of
interfacing software.

Correctness
Verification

• Refine black boxes
(specifications) into state boxes
(data designs) and state boxes
into clear boxes (procedure
designs) and new black boxes.

• Define state boxes in data
designs and systematic structures
such as transition tables
expressed in conditional rules
and precise natural language.

• Define clear boxes in control
structures and intended functions
expressed in conditional rules
and precise natural language.

• Encapsulate system data in
boxes and define processing
by use of box services.

• Identify opportunities for reuse
of system components.

Shift from unit testing by
individuals to correctness
verification by teams.
Shift from path tracing in
code inspections to
functional analysis in
verification reviews.
Conduct demonstration
verification reviews to set
expectations and train
teams.

' Verify all control
structures in team reviews
by reading, function
abstraction, and
comparison to intended
functions.

> Verify all design changes
in team reviews and
deliver verified
increments to testing for
first execution.

Statistical Testing
and

Reliability Certification

• Shift from coverage testing
to usage testing.

• Define high-level usage
distributions in systematic
structures such as hierarchical
decision trees.

• Develop/acquire test cases
from a user perspective
based on system specifications
and usage distributions.

• Evaluate quality of each
increment through analysis
of measures such as failure
rates and severity levels.
Return low-quality increments
to development for additional
design and reverification.

Process
Improvement

Incorporate advances in formal
design methods into local
practices.

■ Use box structures to document
the precise semantics of
interfacing software.

■ Develop guidelines for design
formats and conventions based
on team experience.

• Apply mathematical techniques
in state and clear box designs to
define complex behavior with
precision.

■ Develop a design review
protocol for team development
reviews based on team
experience.

• Establish libraries of reusable,
certified designs.

• Improve introductory
practices through
increased precision and
formality in verification
reviews.

• Improve verification by
introducing mental proofs
of correctness based on
box structure theory and
Correctness Theorem
correctness conditions.

• Document and reuse
proof arguments for
recurring design patterns.

• Simplify and standardize
designs where possible to
reduce proof reasoning.

• Incorporate advances in
formal verification
methods into local
practices.

• Use trace tables as
necessary to support
mental proofs of
correctness.

• Document written proofs
of correctness as required
for critical system
functions.

• Develop verification
protocols and extended
proof rules for
application-, language-,
and environment-specific
semantics.

> Establish reliability targets
and conduct statistical
usage testing for reliability
certification.

• Define usage probability
distributions for all
circumstances of use in
formal grammers or state
transition matrices.

• Define alternative
distributions for special
environments and critical
and unusual usage.

• Use automated generators
to create test cases randomized
against usage probability
distributions.

• Use reliability models to
produce statistical
reliability measures based
on analysis of test results.

• Shift from informal review
of lessons learned to a
systematic, documented
improvement process.

• Measure team productivity,
quality, and cost,
and analyze for process
improvements.

• Document improvements
to the introductory
implementation based on
lessons learned from each
increment.

• Improve or sustain the
development process based
on quality results of
increment testing.

• Assess customer satisfaction
with Cleanroom-developed
systems for process
improvements.

• incorporate advances in
scientific software certification
methods into local practices.

• Apply experience of
prior Cleanroom projects
and customers in setting
reliability targets.

• Employ usage analysis to
validate functional
specifications and plan
increment content.

• Use automated tools to
generate self-checking test
cases.

• Collect customer usage
data to track conformance of
usage distributions to actual
field use.
Apply and evaluate multiple
reliability models for best
prediction of system
reliability' in the development
environment.

Document improvements to
the full implementation
based on team decisions in
process reviews after each
increment.
Use baseline measurements
from introductory projects
to set quality and
productivity objectives.
Improve or sustain the
development process based
on reliability measurements
of each increment.

• Conduct causal analysis of
failures found in testing and
use to identify process areas
for improvement.

• Conduct surveys of customer
satisfaction with Cleanroom-
developed systems for
process improvement.

Use the full rigor of statistical
process control to analyze
team performance.
Compare team performance
with locally-defined process
control standards for
performance.

- Use error classification
schemes to improve specific
Cleanroom practices in
specification, design,
verification, and testing.

IBM SYSTEMS JOURNAL, VOL 33. NO 1, 1994
HÄUSLER, LINGER, AND TRAMMELL 99

lowing verification, increments are delivered to
the test team for first execution.

In an introductory implementation, usage testing
based on external system behavior replaces cover-
age testing based on design internals. Usage infor-
mation is collected by analyzing functional specifi-
cations and surveying prospective users (where
users may be people or other programs). Based on
this information, a high-level usage profile is devel-
oped, including nominal scenarios of use, as well as
error and stress situations. A usage profile can be
recorded in systematic structures such as hierar-
chical decision trees that embody possible usage
patterns in compact form. Next, test scenarios are
defined based on the usage profile. The idea is that
the test cases represent realistic scenarios of user
interaction, including both correct and incorrect us-
age. For example, if particular system functions are
used frequently in particular patterns with occa-
sional user mistakes, this usage should be reflected
in the test suite. At this stage, the usage profile may
not be extremely precise or detailed, but it does
contain sufficient information for the test team to
generate realistic test cases.

The effectiveness of the development process is
measured by system performance in testing with
respect to predetermined quality standards, such
as failure rates and severity levels. (More precise
statistical measures, such as MTTF and improve-
ment ratio, are introduced in the full implemen-
tation.) If test results show that the development
process is not meeting quality objectives, testing
ceases and the code is removed from the machine
for redevelopment and reverification by the de-
velopment team.

Process improvement is a fundamental activity in
an introductory implementation. The idea is to
shift from informal discussions of lessons learned
to a systematic, documented improvement pro-
cess. Baseline measurements of fundamental
project characteristics, such as quality, produc-
tivity, and cost, provide a basis for assessing pro-
gress and making improvements. The quality re-
sults of usage testing can guide changes to the
development process. In addition, customer sat-
isfaction with Cleanroom-developed systems can
highlight process areas requiring improvements.

Full implementation. Introductory Cleanroom im-
plementation establishes a framework for matur-
ing the process to a full implementation. As sum-

marized in the second row of Table 2, full
implementation adds rigor to practices estab-
lished in the introductory phase through formal
methods of box structure specification and de-
sign, correctness verification, statistical testing,
and reliability certification. For a Cleanroom pro-
ject of substantial size and complexity, a team-
of-teams approach can be applied, whereby the
hierarchical structure of the system under devel-
opment forms the basis for organizing, partition-
ing, and allocating work among a corresponding
hierarchy of small teams.

An opportunity exists for more extensive cus-
tomer interaction in a full Cleanroom implemen-
tation. Customers can be provided with education
on Cleanroom practices to improve the effective-
ness of functional and usage specification analysis
and review. In addition, prototypes and accumu-
lating increments can be provided to customers
for evaluation and feedback.

Managers and team leaders can leverage Clean-
room experience into additional flexibility in in-
cremental development to accommodate chang-
ing requirements, and shortfalls and windfalls in
team performance within remaining schedule and
budget. Increment planning can emphasize early
development of useful system functionality for
customer feedback and operational use.

In specification and design, prototyping and ex-
perimentation are encouraged to clarify and val-
idate requirements, and to understand and doc-
ument semantics of interfacing software. The
formal syntax and semantics of box structures are
used for black, state, and clear box refinements.
Black boxes and state boxes are recorded in an
outer syntax of formal structures, such as tran-
sition tables, with inner syntax expressed in pre-
cise conditional rules, often given as conditional
concurrent assignments combined with precise
natural language. In clear box design, intended
functions are recorded at every level of refine-
ment, expressed in conditional concurrent assign-
ments and precise natural language.

A box-structured system is specified and de-
signed as a hierarchy of boxes, such that appro-
priate system data are encapsulated in boxes, pro-
cessing is defined by using box services, and
every use of a box service occupies a distinct
place in the hierarchy. Box structures promote
early identification of common services, that is,

100 HÄUSLER, LINGER, AND TRAMMELL IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

reusable objects, that can simplify development
and improve productivity. Duplication of effort is
avoided when team members have an early
awareness of opportunities for use and reuse of
common services. Rigorous team verification re-
views are conducted for all program structures,
using mental proofs of correctness based on box
structure theory and the correctness conditions of
the Correctness Theorem.

Statistical testing involves a more complete and
experimentally valid approach than in an intro-
ductory implementation. Reliability objectives
are established and extensive analysis of antici-
pated system usage is carried out. Comprehen-
sive specifications of the population of possible
system inputs are defined in usage probability dis-
tributions recorded in formal grammars or state
transition matrices. Automated tools are used to
randomly generate test cases from the distribu-
tions, and the correct output for each test input is
defined based on the system specification. For
example, the IBM Cleanroom Certification Assis-
tant (CCA)27 automates elements of the statistical
testing process based on a formal grammar model
for usage probability distributions. It contains a
Statistical Testcase Generation Facility for com-
piling distributions (expressed in a Usage Distri-
bution Language) and creating randomized test
cases. Reliability models are employed to mea-
sure system reliability based on test results, and
the development process for each increment is
evaluated based on the extent to which reliability
results meet objectives. The CCA provides an au-
tomated reliability model, the Cleanroom Certi-
fication Model, that analyzes test results to com-
pute MTTF, improvement ratio, and other sta-
tistical measures. Alternative distributions are
often employed to certify the reliability of special
aspects of system behavior, for example, infre-
quently used functions that exhibit high conse-
quences of failure.

Process improvement is established through re-
views, following completion of each increment,
to incorporate -team recommendations into the
documented Cleanroom process. Causal analysis
of failures and comprehensive customer surveys
can provide additional insight into process areas
requiring improvement.

Advanced implementation. Key elements of an ad-
vanced implementation are summarized in the
third row of Table 2. At this level of experience,

the Cleanroom process is optimized for the local
environment and continually improved through
advances in the software engineering technology.
A Cleanroom center of competency can be es-
tablished, staffed by expert practitioners to mon-
itor advances in Cleanroom technology and pro-
vide training and consultation to project teams.
The Cleanroom process can be scaled up to ever
larger projects and applied across an organiza-
tion. An opportunity exists to achieve Cleanroom
quality, productivity, and cost improvements
even in emergency and adverse system develop-
ments.

Product warranties may be possible in customer
contracts, based on certification with usage dis-
tributions and reliability models agreed to by both
parties. In the future, a capability for developing
software with warranted reliability could become
a major differentiating characteristic of software
development organizations. Customers can ben-
efit by capturing actual usage from specially in-
strumented versions of Cleanroom-developed
systems, to permit test teams to improve the ac-
curacy of usage distributions employed in certi-
fication.

Incremental development can be used to manage
project risk through early development of key in-
terfaces with pre-existing software, important
user functions, and performance-sensitive com-
ponents. Increments can also be defined to isolate
and reduce dependence on areas of incomplete or
volatile requirements, and to focus on early ini-
tiation of complex, long-lead-time components.
Advanced incremental development also in-
cludes systematic reuse and reliability planning,28

facilitated by such tools as the Cleanroom Reli-
ability Manager.29 In this approach, libraries of
reusable components are searched for functions
identified in specification and top-level design. If
the reliability of candidate components is not
known, statistically valid experiments are con-
ducted to estimate reliability. If reliability of a
candidate component has previously been certi-
fied, the usage profile used in that certification is
compared with the new usage profile to determine
if the previous certification is valid for the new
use. Once reliability estimates exist for new and
reused components, an estimate of total system
reliability is generated through calculations based
on top-level transition probabilities between sub-
systems. The results of this analysis are used to
set reliability requirements for components, eval-

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994
HÄUSLER, LINGER, AND TRAMMELL 101

uate the viability of component reuse, and factor
reliability risks into increment planning.

An advanced use of box structure specification in-
volves formal mathematical and computer science
models appropriate to the application. Formal black
box and state box outer syntax used in full Clean-
room implementation is combined with formal in-
ner syntax expressed as propositional logic, pred-
icate calculus, algebraic function composition, BNF
(Backus Naur form) grammars, or other formal no-
tation that affords a clear and concise representa-
tion of function. Clear box designs are expressed in
design languages for which target language code
generators exist, or in restricted subsets of imple-
mentation languages, thereby eliminating opportu-
nities for new errors in translation.

In verification reviews, trace tables are employed
where appropriate for analysis of correctness,
and written proofs are recorded for critical func-
tions, particularly in life-, mission-, and enter-
prise-critical systems. Application-, language-,
and environment-specific proof rules and stan-
dards provide a more complete framework for
team verification. Locally-defined standards have
been shown to be more effective than generic
standards in producing consistent practitioner
judgment about software quality.30 In an ad-
vanced implementation, the documented process
includes environment-specific protocols for spec-
ification, design, and verification based on team
experience.

In an advanced approach to statistical testing,
Markov- or grammar-based automated tools can
be used to improve efficiency and effectiveness.
For example, the IBM Cleanroom Certification
Assistant permits generation of any required
number of unique, self-checking test cases. In ad-
dition, the rich body of theory, analytical results,
and computational algorithms associated with
Markov processes have important applications in
software development.31 Both formal grammar
and Markov usage models can reveal errors, in-
consistencies, ambiguities, and data dependen-
cies in specifications early in development, and
serve as test case generators for statistical testing.
Initial versions of systems can be instrumented to
record their own usage on command, as a base-
line for analysis and calibration of usage distri-
butions in certification of subsequent system ver-
sions. '•■

An advanced implementation can benefit from a
locally-validated reliability model for software
certification. Just as locally-validated standards
enable more consistent practitioner judgment
about software quality, a locally-validated reli-
ability model will enable more accurate predic-
tion of operational reliability from testing results.

In an advanced implementation, the full rigor of
statistical process control can be applied to pro-
cess improvement. Team accomplishments can
be compared to locally-defined process control
standards for performance. Errors can be cate-
gorized according to an error classification
scheme to target specific Cleanroom practices for
improvement.

Choosing an implementation approach

Cleanroom software engineering represents a
shift from a paradigm of traditional, craft-based
practices to rigorous, engineering-based prac-
tices, specifically as follow.

From:

Individual operations
Waterfall development
Informal specification
Informal design
Defect correction
Individual unit testing
Path-based inspection
Coverage testing

Indeterminate reliability

To:

Team operations
Incremental development
Black box specification
Box structure refinement
Defect prevention
Team correctness verification
Function-based verification
Statistical usage testing
Certified reliability

A phased approach to Cleanroom implementation
enables an organization to build confidence and
capability through gradual introduction of new
practices with corresponding growth in process
control. If organizational support and capability
is sufficient for full implementation, the highest
software quality and reliability afforded by Clean-
room practices can be achieved. Otherwise, a
phased implementation is recommended. In gen-
eral, a software organization that employs infor-
mal methods of specification and design, relies on
coverage testing and defect correction to achieve
quality, and has little experience with team-based
operations, can gain the most benefit through an
introductory implementation. This first phase in-
troduces a comprehensive set of practices span-
ning project management, development, and test-
ing, but without the full formality of Cleanroom
technology. Once an organization successfully

102 HÄUSLER, LINGER, AND TRAMMELL IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

completes a project using the introductory prac-
tices, it has prepared itself for a full implementa-
tion. Likewise, maturation from full to advanced
implementation can occur when the practices of
the second stage have been successfully demon-
strated.

Note that very few teams in reality will implement
the precise set of practices defined within each
implementation. Each team embodies unique
skills, processes, and experiences that must be
assessed when choosing an appropriate imple-
mentation. It is often the case that a team can best
utilize practices from more than one implemen-
tation level. For example, a team using an intro-
ductory implementation may have had prior
experience with inspections and code reviews.
Consequently, it may shift to a full or advanced
implementation of the system design and verifi-
cation practices. Perhaps another mature Clean-
room team, using primarily advanced practices,
will find the rigor of the second phase of system
specification to be sufficient.

The well-known Software Engineering Institute
Capability Maturity Model provides a useful as-
sessment technique to help define the best
Cleanroom approach.32'33 In general, higher as-
sessment levels indicate that an organization can
successfully adopt a more complete Cleanroom
implementation. Organizations assessed at levels
1 and 2 will likely benefit from an introductory
implementation, at levels 2 and 3, a full imple-
mentation, and at levels 4 and 5, an advanced
implementation.

Phased implementation on the
AOEXPERT/MVS project

AOEXPERT/MVS is the largest completed Clean-
room project in IBM, both in terms of lines of code
and project staffing. The project adopted an in-
troductory implementation of the Cleanroom pro-
cess for development, and realized a defect rate
of 2.6 errors/KLOC, measured from the first exe-
cution of the code. This represents all errors ever
found in testing and installation at three field test
sites. Development productivity averaged 486
lines of code per person-month, including all de-
velopment labor expended in specification, de-
sign, and testing. In short, the AOEXPERT/MVS
team produced a complex systems software prod-
uct with an extraordinarily low error rate, while
maintaining high productivity. The following

summary of the project is elaborated in Reference
15.

The AOEXPERT/MVS product. AOEXPERT/MVS is
a decision-support facility that uses artificial

Few teams will implement
the precise set of

practices defined within
each implementation.

intelligence (AI) for predicting and preventing com-
plex operating problems in an MVS environment.
Primarily a host-based product, it runs in a
NetView* environment on MVS with interfaces to
several other IBM program products. A workstation
component running under Operating System/2*
(OS/2*) in the Personal System/2* (PS/2*) environ-
ment provides the user interface for the definition
and management of the business policies for system
operation to be applied by AOEXPERT/MVS to avoid
and correct system problems.

The complex development environment required
expertise in MVS and its subsystems, expert sys-
tems technology, real-time tasking, message
passing, and windows-based programming for the
workstation component. The product was imple-
mented using PL/I, TIRS* (an Al shell), PL/X (an
internal IBM system language), assembler, JCL,
and REXX for host software, and C and Presen-
tation Manager* for workstation software. The
environment was further complicated by two ma-
jor dependencies on IBM system management
products that were developed by other IBM lab-
oratories.

The project began in July 1989, with the first eigh-
teen months spent in the requirements phase. De-
velopment team staffing took place during this ini-
tial stage. Four departments were ultimately
established: one for requirements, two for devel-
opment, and one for testing. Various support orga-
nizations provided market development, quality
assurance, information development, usability
analysis, and business and legal services.

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994
HÄUSLER, LINGER, AND TRAMMELL 103

Table 3 The AOEXPERT/MVS Implementation of the
Cleanroom process

Cleanroom Practice Introductory Full Advanced

Team operations X
Customer interaction X
Incremental development X
System specification X
System design X
Correctness verification X
Statistical usage testing X
Reliability certification X
Process improvement X

The project team was newly formed, with mem-
bers ranging from programmer retrainees to sen-
ior programmers with 25 years of development
experience. The project team averaged 50 people
throughout development. Experience in the prod-
uct domain was mixed, with considerable expe-
rience in application development and Al, but
very little in MVS and system programming. As it
turned out, Al skills were utilized about 10 percent
of the time during development, while MVS and
system programming skills were needed 90 per-
cent of the time.

This was the first Cleanroom development experi-
ence for all participants, with the exception of one
development manager and two developers. Conse-
quently, extensive education and training were re-
quired to implement Cleanroom practices. The
overall project schedule had been established in late
1989, prior to the decision to use the Cleanroom
process. Given the schedule and mix of skills and
experience levels, the Cleanroom process was first
met with healthy skepticism. The team had to grap-
ple with three important factors at once: a new
team, little experience in the subject domain, and
the new Cleanroom development process.

Defining an introductory implementation. The deci-
sion to use the Cleanroom process was made in the
second quarter of 1990, a year after the project
started and six months prior to the beginning of
development. Due to the aggressive project sched-
ule, the large size of the organization, the lack of
prior Cleanroom experience, and the limited
amount of training time available, the management
and technical team decided on a phased implemen-
tation of the Cleanroom approach. As summarized
in Table 3, the team defined an introductory ap-
proach that included team-based operations, exter-

nal specification of behavior using intended func-
tions, design expressed in a Process Design
Language (PDL) with automatic target translation
(for PL/l), and staged delivery of each increment to
independent testers for first execution. In addition
to the introductory practices, two full practices
were used: incremental development and team-
based correctness verification of every line of code.
While it was agreed that statistical testing would be
very effective, the test team did not believe it could
learn and apply the methodology in time for the first
increment. The greatest concern was the late start
on denning a usage probability distribution, a task
normally initiated as soon as the functional speci-
fication is available. The test team initially followed
the spirit if not the form of usage testing, with a
testing approach based on expected customer us-
age. Later, statistical usage testing was employed
for a significant subset of the product, the worksta-
tion component, which accounted for approxi-
mately 40 percent of total product code.

Getting started. Cleanroom education was pro-
vided to the entire project, with mandatory man-
agement participation. To further define the use
of Cleanroom process in the project environment,
a process working group was formed to document
the AOEXPERT/MVS Cleanroom development pro-
cess, to establish and maintain project proce-
dures, standards, and conventions, to establish
and maintain a measurement and improvement
subprocess, and to provide a formal mechanism
to resolve process issues and make improvements.
Each major project functional area, including ar-
chitecture, host development, workstation devel-
opment, test, configuration management, and qual-
ity assurance, was represented on the process
working group. The group documented a compre-
hensive set of procedures and standards for an in-
tegrated, Cleanroom-based software development
process. This document and its subsequent use by
the team was critical in achieving acceptance and
ownership of the process by the team. Changes to
the process required approval by the process work-
ing group and management. During the develop-
ment of AOEXPERT/MVS, a number of useful process
revisions resulted from suggestions by team mem-
bers in periodic meetings held to improve the de-
velopment process.

Applying the introductory implementation. The
decision to use the Cleanroom process was made
rather late in the project after the product func-

104 HÄUSLER, LINGER, AND TRAMMELL IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

tional specification (PFS) document was almost
completed. The PFS is required for IBM program
product development, but it is not an adequate
replacement for a Cleanroom specification, as it
contains only a subset of the information re-
quired. The AOEXPERT/MVS team decided to com-
plete the PFS, and then produce a more formal
black box, incremental specification. The formal
specification used precise English descriptions in
conjunction with intended functions to specify
the external behavior of the increments.

Following specification, project technical leaders
created an incremental development plan that de-
fined the functional content, development sched-
ule, and resource requirements for three software
increments. Although the project completion date
had been established earlier, substantial flexibil-
ity remained for scheduling increment develop-
ment and testing within the overall schedule of 12
months. Historical productivity and defect rates
from comparable traditionally-developed applica-
tions were reviewed and the schedules were ad-
justed based on historical Cleanroom data, personal
experience, and confidence. The first increment
was planned to contain the least function of the
three, in order to quickly familiarize the project
team with the new Cleanroom process and devel-
opment environment. Development of the first in-
crement required two and one-half months, with the
second and third increments requiring three and
one-half months each.

Eight principal functional components were de-
fined for AOEXPERT/MVS and organized into func-
tional content comprising the three increments.
Each component was assigned to a team com-
posed of from one to five developers, with each
team augmented by an architect and a tester.
Team membership remained stable throughout
development of all three increments, helping to
ensure continuity and growth of expertise and ca-
pability. A functional management approach was
adopted because each team consisted of people
from different departments. Since each team had
a designated team leader, management ownership
was assigned based on the team leader. Thus, a
manager was responsible for all teams led by
members of the manager's department. This pro-
cess worked well, but required daily communi-
cation between managers, usually in the form of
morning status meetings where schedules, plans,
resources, and performance were addressed.

Following increment planning, development began
for the first increment. It immediately became ob-
vious that the developers lacked a good understand-
ing of the entry criteria for team correctness veri-
fication reviews. Most understood how to perform
verification, but underestimated the level of rigor
and precision required in the design material. For
example, intended functions documented in many
of the early first increment designs precisely spec-
ified intended behavior for normal or steady-state
operation, but failed to specify intended behavior
for error conditions, exception processing, and un-
expected input. As a result, the designs could not be
verified for correctness.

To address this problem, project management de-
cided that a demonstration verification review of
an actual first increment design should be held as
early as possible. A senior-level programmer was
asked to prepare a design for the review. When
the design was ready, his five-member team con-
ducted a formal correctness verification review,
with the remainder of the AOEXPERT/MVS organi-
zation, numbering about 45 people, in attendance
as observers. Everyone in attendance had a copy
of the material and followed along with the review
team. The review lasted about three hours, with
the design failing to pass the verification process.
This outcome proved to be an invaluable teaching
tool for the project team. Most were surprised
that the design did not pass, and even more sur-
prised at the number of changes required to make
it verifiable. The demonstration clearly showed
the team what was actually expected in a Clean-
room review, and definitely saved a substantial
amount of time and frustration in the remainder of
the project. Since the first increment was rela-
tively small and straightforward, the team was
able to learn how to correctly apply the Clean-
room approach and still make the first delivery
date.

Cleanroom facilitators. The AOEXPERT/MVS proj-
ect benefited from people with prior Cleanroom
experience, who played dual roles as team mem-
bers and Cleanroom methodology consultants.
These people served as teachers and advisors,
providing guidance on how to write verifiable de^
signs and conduct effective verification reviews.
Equally important was the encouragement they
gave and confidence they instilled in their peers
through their example and coaching. During the
first increment of development, one of these ex-

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994
HÄUSLER, LINGER, AND TRAMMELL "IQ5

Table 4 AOEXPERT/MVS error rates measured from
first execution

AOEXPERT/MVS
Project

Industry
Expectation

AOEXPERT/MVS
Project Results

Incre- KLOC Errors Projected Actual Errors/
ment at 30/ Errors Software KLOC

KLOC Errors

2
3

Subtotal

System
testing

Total

16
50
41

480
1500
1230

107 3210

107 3210

64
200
164

428

107

535

43 2.7
41 0.8
97 2.4

181

93

274

1.7

0.9

2.6

Where

• Projected errors included increment testing projected
at 4 errors/KLOC, and system testing at 1 error/KLOC

• Actual software errors were measured from the first
execution

• System testing included system, performance, and
field testing

perts was present at every verification review to
ensure the methodology was followed, especially
with respect to application of the correctness ver-
ification conditions. During development of the
second and third increments, other team mem-
bers, now with experience in the Cleanroom pro-
cess, joined with the original experts to form a
core group of five to six facilitators who served a
key role in acceptance, application, and improve-
ment of the Cleanroom process.

Team verification reviews. The Cleanroom cor-
rectness verification process was closely fol-
lowed. A check was made prior to every review
to ensure that the entry criteria were satisfied,
and a disciplined process of correctness condition
verification for every control structure was fol-
lowed during the review process. A moderator
was assigned, usually one of the Cleanroom fa-
cilitators, to ensure that the reviews were con-
ducted properly, and that all issues were recorded
and all changes rev'erified. The author of the de-
sign under verification typically led the team
through the review. Also present were a key re-
viewer, usually the,component team leader who
had a broad understanding of the component
function, and other reviewers,- typically members

of other teams whose components interfaced with
the designs under review. Review materials were
required to be distributed to all reviewers at least
48 hours prior to the review, and all reviewers
were expected to have read the materials before
attending the review.

Quality results. The AOEXPERT/MVS testing pro-
cess was composed of two phases, increment
testing and system testing. (In a full implementa-
tion of the Cleanroom process, all testing would
be regarded as system testing.) After examining
data from prior Cleanroom projects, the test team
estimated expected defect rates in testing and
customer use of the product. Four errors/KLOC
were estimated for increment testing, an addi-
tional 1 error/KLOC for system testing, and an ad-
ditional 0.5 error/KLOC for customer use after the
product was shipped. These estimates were sig-
nificantly lower than those customarily found for
comparable products, but the team believed that
such aggressive goals should be set, even for a
first-time Cleanroom effort.

Table 4 summarizes error rates for the three prod-
uct increments, measured from the first execution
of the code. For comparison, projected errors
are shown based on an average industrial rate of
30 errors/KLOC20 for traditional development
projects measured from the first execution of the
code, with a total of 3210 errors expected at this
rate. The test team estimate of 5 errors/KLOC (4 in
increment testing plus 1 in system testing) totaled
to 535 errors expected.

The AOEXPERT/MVS team produced the complex
systems software product with only 274 errors
found in all testing. This error rate of 2.6
errors/KLOC was over an order of magnitude bet-
ter than the industry average of 30 errors/KLOC,
and nearly halved the projected Cleanroom rate
of 5 errors/KLOC. A number of system compo-
nents completed testing with no errors found. For
example, five of the eight components in the first
16 KLOC increment proved to be error-free in all
testing. In addition, no operational errors what-

- soever were found following product installation
at three customer test sites, and no post-ship cus-
tomer errors have been reported to date.

Productivity results. Productivity estimates for
AOEXPERT/MVS were based on rates for compa-
rable, traditionally-developed products, modified
by expected gains from the Cleanroom process

106 HÄUSLER, LINGER, AND TRAMMELL IBM SYSTEMS JOURNAL; VOL 33, NO 1, 1994

and the belief that productivity would improve
with each successive increment. Productivity
was estimated at 300 lines of code per person-
month (LOC/PM) for the first increment, 350 for the
second increment, and 400 for the third incre-
ment. Table 5 shows actual productivity rates
achieved, based on total lines of code divided by
the person-months accumulated for formal spec-
ification through testing of the final increment.
The person-months include development staff
only. The project achieved very competitive pro-
ductivity rates, exceeding the projected rates by
36 percent overall. This substantial improvement
in productivity was a significant factor in enabling
the project to meet its schedule. The original code
size estimate was 72 KLOC, but the actual code
size was significantly larger (107 KLOC) due pri-
marily to unexpected growth in the workstation
software (from 10 to 42 KLOC). The growth re-
sulted from the lack of familiarity with OS/2 Pre-
sentation Manager and unanticipated require-
ments. Thus, while actual productivity was a 36
percent improvement over the projected rate, ac-
tual code size was 49 percent larger than planned.
The increased productivity enabled the team to
stay on schedule during the development.

Observations. From the beginning of the project
through delivery and testing of the first incre-
ment, many developers and testers were some-
what skeptical about the Cleanroom approach.
The real turnaround in acceptance occurred after
the first increment was delivered and tested and
so few errors were found. In fact, several testers
were upset and worried when they failed to find
any errors; ironically, so were the developers.
But this soon changed for everyone—defects
quickly became the exception, not the rule, and a
"right the first time" psychology took hold.

The challenges facing a new team in an unfamiliar
environment were great, and schedules and re-
sources were extremely tight. Nevertheless, a
new methodology was introduced, taught, and
implemented with substantial success. The pri-
mary success factors in this implementation of
Cleanroom process were the use of an introduc-
tory implementation, early and ongoing manage-
ment commitment, incremental development of
system function, demonstration reviews for team
education, team-based peer review of all work
products, full application of correctness verifica-
tion, adherence to defect prevention practices, and
the use of Cleanroom consultants and facilitators.

Table 5 AOEXPERT/MVS productivity rates

Incre- KLOC Projected Actual % Actual
merit Productivity Productivity Exceeds

LOC/PM LOC/PM Projected

1
2
3

Average

16
50
41

300
350
400

358

400
500
513

486

+33
+43
+28

+36

Where the actual productivity was the LOC/PM
measured from formal specification through testing

The AOEXPERT/MVS experience is representative
of the new level of quality that is possible in soft-
ware development today. Cleanroom is a practi-
cal and proven alternative to the high cost and
poor quality frequently seen in traditional devel-
opment processes. As evidence of its effective-
ness continues to accumulate, the Cleanroom
process will be increasingly adopted by organi-
zations seeking competitive business advantage.

Acknowledgments

The growing worldwide community of Cleanroom
practitioners and researchers, as well as Clean-
room-developed software owners and users, owes
an enormous debt of gratitude to Harlan Mills, a
retired IBM Fellow, for his groundbreaking devel-
opment of theoretical foundations for the Clean-
room process. Mills's insight that programs are
rules for mathematical functions became the foun-
dation for a disciplined engineering process of pro-
gram development that replaced a sea of ad hoc
methods. His insight that program reliability can be
scientifically certified in formal statistical designs
brought the power of statistical quality control to
software engineering and management.

Those of us who worked with Mills during the
formative years of the Cleanroom process were
indeed fortunate to have shared in the exciting
intellectual climate he created, and to have con-
tributed to the development of the Cleanroom
process.

Acknowledgment is also due to members of the
Cleanroom teams whose accomplishments are re-
ported in this paper. These practitioners are set-
ting whole new standards of professional excel-
lence and achievement in software engineering.

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994
HÄUSLER, LINGER, AND TRAMMELL 107

The authors would like to thank Mark Pleszkoch
of the IBM Cleanroom Software Technology Cen-
ter for his suggestions.

Trademark or registered trademark of International Business
Machines Corporation.

Cited references

1. H. D. Mills, M. Dyer, and R. C. Linger, "Cleanroom
Software Engineering," IEEE Software 4, No. 5, 19-24
(September 1987).

2. R. C. Linger, "Cleanroom Software Engineering for Ze-
ro-Defect Software," Proceedings of 15th International
Conference on Software Engineering, IEEE Computer
Society Press, Los Alamitos, CA (1993), pp. 2-13.

3. P. A. Curritt, M. Dyer, and H. D. Mills. "Certifying the
Reliability of Software," IEEE Transactions on Software
Engineering SE-12, No. 1, 3-11 (January 1986).

4. R. C. Linger, H. D. Mills, and B. J. Witt, "Structured
Programming: Theory and Practice," Addison-Wesley
Publishing Co., Reading, MA (1979).

5. H. D. Mills, R. C. Linger, and A. R. Hevner, "Principles
of Information Systems Analysis and Design," Academic
Press, Inc., New York (1986).

6. H. D. Mills, "Certifying the Correctness of Software,"
Proceedings of 25th Hawaii International Conference on
System Sciences, IEEE Computer Society Press, Los
Alamitos, CA (January 1992), pp. 373-381.

7. M. D. Deck and P. A. Hausier, "Cleanroom Software En-
gineering: Theory and Practice," Proceedings of Software
Engineering and Knowledge Engineering: Second Interna-
tional Conference, Skokie, IL, June 21-23, 1990. Knowl-
edge Systems Institute, 3420 Main St., Skokie, IL 60076.

8. E. N. Adams, "Optimizing Preventive Service of Soft-
ware Products," IBM Journal of Research and Develop-
ment 28, No. 1, 2-14 (1984).

9. H. D. Mills, "Mathematical Foundations for Structured
Programming," Software Productivity, Little, Brown and
Company, Boston, MA (1983), pp. 115-178.

10. P. A. Hausier, "Software Quality Through IBM's Clean-
room Software Engineering," Creativity! (ASD-WMA
Edition), IBM, Austin, TX, March 1991.

11. H. D. Mills and J. H. Poore, "Bringing Software Under
Statistical Quality Control," Quality Progress (November
1988), pp. 52-56.

12. R. C. Linger and R. A. Spangler, "The IBM Cleanroom
Software Engineering Technology Transfer Program,"
Proceedings of SEI Software Engineering Education
Conference, C. Sledge, Editor, Springer-Verlag, Inc.,
New York (1992).

13. B. W. Boehm, Software Engineering Economics, Pren-
tice-Hall, Inc., Englewood Cliffs, NJ (1981).

14. S. E. Green, A. Kouchakdjian, and V. R. Basili, "Eval-
uation of the Cleanroom Methodology in the Software
Engineering Laboratory, "Proceedings of Fourteenth An-
nual Software Engineering Workshop, NASA, Goddard
Space Flight Center, Greenbelt, MD 20771 (November
1989), pp. 1-22.

15. P. A. Hausier, "A Recent Cleanroom Success Story: The
Redwing Project," Proceedings of Seventeenth Annual
Software Engineering Workshop, NASA, Goddard Space
Flight Center, Greenbelt, MD 20771 (December 1992), pp.
256-285. <

16. R. C. Linger and H. D. Mills, "A Case Study in Clean-
room Software Engineering: The IBM COBOL Struc-
turing Facility," Proceedings of 12th Annual Interna-
tional Computer Software and Applications Conference
(COMPSAC '88), IEEE Computer Society Press, Los
Alamitos, CA (1988), pp. 10-17.

17. S. E. Green and R. Pajersky, "Cleanroom Process
Evolution in the SEL," Proceedings of 16th Annual Soft-
ware Engineering Workshop, NASA, Goddard Space
Flight Center, Greenbelt, MD 20771 (December 1991),
pp. 47-63.

18. L-G. Tann, "OS32 and Cleanroom," Proceedings of 1st
Annual European Industrial Symposium on Cleanroom
Software Engineering (Copenhagen, Denmark), Q-Labs
AB, IDEON Research Park, S-223 70 Lund, Sweden
(1993), Section 5, pp. 1-40.

19. C. J. Trammell, L. H. Binder, and C. E. Snyder, "The
Automated Production Control Documentation System:
A Case Study in Cleanroom Software Engineering,"
ACM Transactions on Software Engineering and Meth-
odology 1, No. 1, 81-84 (January 1992).

20. M. Dyer, The Cleanroom Approach to Quality Software
Development, John Wiley & Sons, Inc., New York (1992).

21. A Success Story at Pratt and Whitney: On Track for the
Future with IBM's VS COBOL Hand COBOL Structuring
Facility, GK20-2326, IBM Corporation (1989); no longer
available though IBM branch offices.

22. R. C. Linger and A. R. Hevner, "The Incremental De-
velopment Process in Cleanroom Software Engineering,"
Proceedings of Workshop on Information Technologies
and Systems (WITS-93), A. R. Hevner, Editor, College of
Business and Management, University of Maryland, Col-
lege Park, MD (December 4-5, 1993), pp. 162-171.

23. H. D. Mills, R. C. Linger, and A. R. Hevner, "Box Struc-
tured Information Systems," IBM Systems Journal 26,
No. 4, 395^13 (1987).

24. A. R. Hevner and H. D. Mills, "Box-Structured Methods
for Systems Development with Objects," IBM Systems
Journal 32, No. 2, 232-251 (1993).

25. H. D. Mills, "Stepwise Refinement and Verification in
Box Structured Systems," IEEE Computer 21, No. 6,
23-35 (June 1988).

26. R. H. Cobb and H. D. Mills, "Engineering Software Un-
der Statistical Quality Control," IEEE Software 7, No. 6,
44-54 (November 1990).

27. R. C. Linger, "An Overview of Cleanroom Software En-
gineering," Proceedings of 1st Annual European Indus-
trial Symposium on Cleanroom Software Engineering
(Copenhagen, Denmark), Q-Labs AB, IDEON Research
Park, S-223 70 Lund, Sweden (1993), Section 7, pp. 1-19.

28. J. H. Poore, H. D. Mills, and D. Mutchler, "Planning and
Certifying Software Svstem Reliability," IEEE Software
10, No. f, 88-99 (January 1993).

29. J. H. Poore, H. D. Mills, S. L. Hopkins, and J. A. Whit-
taker, Cleanroom Reliability Manager: A Case Study Us-
ing Cleanroom with Box Structures ADL, Software En-
gineering Technology Report, IBM STARS CDRL 1940
(May 1990). STARS Asset Reuse Repository, 2611 Cran-
berry Square, Morgantown, West Virginia 26505.

30. C. J. Trammell and J. H. Poore, "A Group Process for
Defining Local Software Quality: Field Applications and
Validation Experiments," Software Practice and Expe-
rience 22, No. 8, 603-636 (August 1992).

31. J. A. Whittakerand J. H. Poore, "Markov Analysis of Soft-
ware Specifications," ACM Transactions on Software En-
gineering and Methodology 2, No. 1,93-106 (January 1993).

108 HÄUSLER, LINGER, AND TRAMMELL IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

32. M. C. Paulk, W. Curtis, M. B. Chrissis, C. V. Weber,
Capability Maturity Model for Software, Version 1.1,
CMU SEI-93-TR-24, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA 15213 (Feb-
ruary "1993). j w D

33 M. C. Paulk. C. V. Weber, S. M. Garcia, and M. B.
Chrissis. Ke\- Practices of the Capability Maturity Model,
Version l.f, CMU/SEI-93-TR-25, Software Engineering
Institute. Carnegie Mellon University, Pittsburgh, PA
15213 (February 1993).

Accepted for publication October 6, 1993.

tory, Martin Marietta Energy Systems, and Software Engi-
neering Technology, Inc. She holds a Ph.D. in psychology and
an M.S. in computer science from the University of Tennes-
see. Dr. Trammell is a member of the ACM and the IEEE.

Reprint Order No. G321-5534.

Note: At .the time of publication, Federal Systems Company,
now a unit of Loral Corporation, was an IBM-owned com-
pany. Addresses for authors may still be considered valid.

Philip A. Hausler IBM Corporation, 6710 Rockledge Drive,
Bethesda, Maryland 20S17 (electronic mail: hausler&vnet.
ibm.com). Mr. Hausier is a senior programmer manager in the
Cleanroom Software Technology Center of IBM. His depart-
ment provides education and consultation for technology
transfer of the Cleanroom process. He was a principal devel-
oper of IBM's first Cleanroom product, the COBOL Struc-
turing Facility, and has held various development and man-
agement positions in IBM. Since 1985, Mr. Hausier has served
on the facultv of the Computer Science department at the
University of Maryland, Baltimore County, teaching software
enoineerins, programming languages, and compiler theory
courses. He received a B.S., summa cum laude, in computer
science in 19S3 from the University of Maryland, Baltimore
County, and an M.S. in computer science in 1985 from the
University of Maryland. College Park. Mr. Hausier has au-
thored orcoauthored numerous refereed papers in technical
journals. He is a member of the IEEE.

Richard C. Linger IBM Corporation, 6710 Rockledge Drive,
Bethesda. Maryland 20S17 (electronic mail: lingerr(abeta
svm2.vnet.ibm.com). Mr. Linger is a member of the Senior
Technical Staff of IBM. He is the founder and manager of the
IBM Cleanroom Software Technology Center, which is char-
tered to provide Cleanroom technology transfer services to
IBM product laboratories and customers. He worked with
Harlan D. Mills in developing the Cleanroom software engi-
neering process, and managed development of the COBOL
Structuring Facility product, the first commercial Cleanroom
project in IBM. He has written or coauthored two textbooks
used in Cleanroom education and over 50 refereed papers on
the Cleanroom process, software re-engineering and reverse
engineering, and other software engineering topics. Mr. Lin-
ger is a member of the ACM and the IEEE.

Carmen J. Trammell Department of Computer Science, 107
Avres Hall, University of Tennessee, Knoxville, Tennessee
37996 (electronic mail: trammell(äcs.utk.edu). Dr. Trammell
is a research assistant professor and manager of the Software
Quality Research Laboratory in the Department of Computer
Science at the University of Tennessee. She has held software
engineering and management positions in military and com-
mercial product development at Oak Ridge National Labora-

IBM SYSTEMS JOURNAL. VOL 33. NO 1. 1994
HÄUSLER. LINGER, AND TRAMMELL 109

© 1993 IEEE. Reprinted, with permission, from Proceeding of the 15th International
Conference on Software Engineering, IEEE Los Alamitos, CA., Computer Society
Press, 1993, pp. 2-13 (Updated March 1994 IEEE Software, pp. 50-58.)

Cleanroom Process Model

Richard C. Linger
Software Engineering Institute

FEATURE

© 1993 IEEE. Reprinted, with pemiission, from Proceeding of the 15th International
Conference on Software Engineering, IEEE Los Alamitos, CA., Computer Society
Press, 1993, pp. 2-13 (Updated March 1994 IEEE Software, pp. 50-58.)

The philosophy behind
Cleanroom software

engineering is to avoid

dependence on costly

defect-removal processes

by writing code increments

right the first time

and verifying their

correctness before testing.

Its process model

incorporates the statistical

quality certification of code

increments as they

accumulate into a system.

c.
\ Cleonioom Software

Technology Center

CLEANROOM
PROCESS MODEL

Today's competitive pressures and
society's increasing dependence on

software have led to a new focus on devel-
opment processes. The Cleanroom pro-
cess, which has evolved over the last de-
cade, has demonstrated that it can improve
both die productivity of developers who
use it and die qualify of the software they
produce.

Cleanroom Software engineering is a
team-oriented process diat makes devel-
opment more manageable and predictable

This article is basal nn ;i paper that ap|>ears in Pnc. 1 Stb
Int'l Cmf. Sojh-iin- /-i«;., Il'.l-T. OS Press, Los Alamitos,
Calif., I'M,pp. 2-13.'nclIUiESaJhwvKditorial Board
has selected it as the best practice paper presented at
ICSK-15.Thc Ixiard thanks Richard A. DeMillo, ICSK-
15 I'muTam Cocluir, for his help in arranging for its pub-
lication in U\l:.ESujhi;nr.

because it is done under starisric.il quality
control.

Cleanroom is a modem approach to
software development. In traditional,
craft-based development, defects are re-
garded as inevitable and elaborate defect-
removal techniques are a part of the devel-
opment process. In such a process,
software proceeds from development to
unit testing and debugging, then to func-
tion and system testing for more debug-
ging. In die absence of workable alterna-
tives, managers encourage programmers
to get code into execution quickly, so de-
bugging can begin.Today, developers rec-
ognize diat defect removal is an error-
prone, inefficient activity that consumes
resources bener allocated to getting the
code riulit the first rime.

so C7.J&7.159/94/SCMOO O 1994 IEEE
MARCH 1994

Cleanroom teams at IBM ami other
organizations are achieving remarkable
quality results in both new-system devel-
opment and modifications and extensions
to legacy systems. The quality of software
produced by Cleanroom development
teams is sufficient (often near zero defects)
for die software to enter system testing
directly for first-ever execution by test
teams.

The theoretical foundations of Clean-
room — forma! specification and design,
correctness verification, and statistical
testing — have been reduced to practice
and demonstrated in nearly a million lines
of code. Some Cleanroom projects are
profiled in the box on p. 56.

QUALITY COMPARISON

Quality comparisons between tradi-
tional methods and the Cleanroom pro-
cess are meaningful when measured from
first execution. Most traditional develop-
ment methods begin to measure errors at
function testing (or later), omitting errors
found in private unit testing. A traditional
project experiencing, say, five errors per
thousand lines of code (KLOC) in func-
tion testing may have encountered 25 or
more errors per KLOC when measured
from first execution in unit testing.

At enny to unit testing, traditional soft-
ware typically exhibits 25 to 35 or more
errors per KLOC.' In contrast, the
weighted average of errors fount! in 17
Cleanroom projects, involving nearly a
million lines of code, is 2.3 errors per
KLOC. This number represents all errors
found in all testing, measured from first-
ever execution diroueh test completion —
it is the average number of residual errors
present after die development team has
performet! correctness verification.

In addition to this remarkable differ-
ence in die number of errors, experience
has shown a qualitative difference in die
complexity of errors found in Cleanroom
versus traditional software. Errors left be-
hind by Cleanroom correctness verifica-
tion tend not to be complex design or in-
terface errors, but simple mistakes easily
fount! ant! fixed by statistical testing.

In this article. I describe die ("lean-

room development process, from specifi-
cation and design through correctness
verification and statistical usage testing for
quality certification.

INCREMENTAL DEVELOPMENT

The Cleanroom process is based on
developing and certifying a pipeline of
software increments diat accumulate into
the final system. The increments are de-
veloped and certified by small, indepen-
dent teams, widi teams of teams for large
projects.

System integration is continual, ami
functionality grows with
the addition of successive
increments. In this ap-
proach, the harmonious
operation of future incre-
ments at the next level of
refinement is predefined
by increments already in
execution, thereby mini-
mizing interface ami de-
sign errors and helping
developers maintain in-
tellectual control.

The Cleanroom de-
velopment process is in-
tended to be "quick and clean," not "quick
ant! dirty." The idea is to quickly develop
die right product widi high quality for die
user, then go on to die next version to
incorporate new requirements arising
from user experience.

In the Cleanroom process, correctness
is built in by the development team
through formal specification, design, and
verification. Team correctness verification
takes die place of unit testing and debug-
ging, and software enters system testing
directly, with no execution by die develop-
ment team. All errors are accounted for
from first execution on, with no private
debugging permitted.

Figure 1 illustrates the Cleanroom
process of incremental development and
quality certification. The Cleanroom
team first analyzes ant! clarifies customer
requirements, with substantial user inter-
action and feedback. Ifrequirementsarein
doubt, die team can develop Cleanroom
prototypes to elicit feedback iterative!}-.

As die figure shows, Cleanroom devel-
opment involves two cooperating teams
and five major activities:

♦ Specification. Cleanroom develop-
ment begins with specification. Together,
die development team and die certifica-
tion team produce two specifications:
functional and usage. Large projects may
have a separate specification team.

The functional specification defines
the required external system behavior in
all circumstances of use; the usage specifi-
cation defines usage scenarios and their
probabilities for all possible svstem usage,
bodi correct and incorrect. The func-

tional specification is die
basis for incremental soft-
ware development. The
usage specification is die
basis for generating test
cases for incremental sta-
tistical testing and quality
certification. Usagespeci-
fications are explained in
the section on certifica-
tion.

♦ Increment planning.
On the basis of these
sjiecifications, die devel-
opment anil certification

teams together define an initial plan for
developing increments diat will accumu-
late into the final system. For example, a j
100 KLOC system might be develojietl in
five increments averaging 20 KLOC each.
The time it takes to design and verify in-
crements varies with dieir size and com-
plexity. Increments diat require long lead
times may call for parallel development.

♦ Design iimlverification. The develop-
ment team then carries out a design and
correctness verification cycle for each in-
crement. The certification team proceeds
in parallel, using die usage specification to
generate test cases that reflect the ex-
pected use of the accumulating incre-
ments.

♦ Quality certification. Periodically, the
development team integrates a completed
increment widi prior increments antl tie-
livers diem to die test team for execution
of statistical test cases. The test cases arc
run against the accumulated increments
and the results checked for correcuiess !

CLEANROOM
DEVELOPMENT
IS INTENDED
TO BE "QUICK
AND CLEAN/7

NOT "QUICK
AND DIRTY."

IEEE SOFTWARE

■..-■■■■•

Will

,•""
Specification |

Function Usage |
i

&^i&£
-.A ■ '..'-'..A ':■>.'--''' '■■' C: ..t';'.'.:'::'>!r

Figure 1. Cleanroom process model. The stacked boxes indicate successive increments.

against the functional specification. Inter-
fail times, that is, die elapsed rimes be-
tween failures, are passed to a quality-cer-
tification model- that computes objective
statistical measures of quality, such as
mean time to failure. The quality-certifi-
cation model employs a reliability growth
estimator to derive the statistical mea-
sures.

Certification is done continuously,
over the life of the project. Higher level
increments enter the certification pipeline
first. This means major architectural and
design decisions are validated in execution
before the development team elaborates
on them. And because certification is done
for all increments as they accumulate,
higher level increments are subjected to
more testing than lower level increments,
which implement localized functions.

♦ Feedback. Errors are returned to the
development team for correction. If the
quality is low, managers and team mem-
bers initiate process improvement. As widi
any process, a good deal of iteration and
feedback is always present to accommo-
date problems and solutions.

In the next sections, I describe the
specification, design and verification, and
quality-certification procedures. A de-
tailed description of increment planning
and feedback mechanisms is outside the
scope of this article.

FUNCTIONAL SPECIFICATION

The object-based technology of box
structures has proved to be an effective
technique for functional specification.
Through stepwise refinement, objects are

defined and refined as different box struc-
tures, resulting in a usage hierarchy of ob-
jects in which the services of an object may
be used and reused in many places and at
many levels. Box structures, dien, define
required system behavior and derive and
connect objects comprising a system ar-
chitecture.4"

In die past, without a rigorous specifi-
cation technology, there was little incen-
tive to devote much effort to die specifica-
tion process. Specifications were
frequently written in natural language,
widi inevitable ambiguities and omissions,
and often regarded as throwaway stepping
stones to code.

Box structures provide an economic
incentive for precision. Initial box-struc-
ture specifications often reveal gaps and
misunderstandings in customer require-
ments that would ordinarily be discovered
later in development at high cost and risk
to die project.

They also address the two engineering
problems associated widi system specifica-
tion: defining the right function for users
and defining the right structure for the spec-
ification itself. Box structures address the
first problem by precisely defining the cur-
rent understanding of required functions at
each stage of development, so that the func-
tions can be reviewed and modified if neces-
sary. The second problem is critical, espe-
cially for large-s}-stem development. How
can we organize the myriad details of be-
havior and processing into coherent ab-
stractions humans can understand?

Box structures incorporate the crucial
mathematical property of referential
transparency — the information content
of each box specification is sufficient to
define its refinement, without depending
on the implementation of any other box.
This property lets us organize large-sys-
tem specifications hierarchically, without
sacrificing precision at high levels or detail
at low levels.

Box structures. Three principles govern
the use of box structures:4

♦ All data defined in a design is encap-
sulated in boxes.

♦ All processing is defined by using
boxes sequentially or concurrendy.

52 MARCH 1994

♦ Each box occupies a distinct place in
a system's usage hierarchy.

Each box has three forms — black,
state, and clear — which have identical
external behavior but whose internals are
increasingly detailed.

Black box. An object's black box is a pre-
cise specification of external, user-visible
behavior in all possible circumstances of its
use. The object may be an entire system or
any part of a system. Its user may be a
person or another object.

A black box accepts a stimulus (S) from
a user and produces a response (R). Each
response of a black box is determined by its
current stimulus history (SH), with a
black-box transition function

(S, SH) -> (R)

A given stimulus will produce different
responses diat are based on history of use,
not just on the current stimulus. Imagine a
calculator with wo stimulus histories

Clear 1 3

and

If the next stimulus is 6, the first history
produces a response of 7136; the second,
6.

The objective of a black-box specifica-
tion is to define the responses produced
for ever)' possible stimulus and stimulus
history, including erroneous and unex-
pected stimuli. By defining behavior solely
in terms of stimulus histories, black-box
specifications neither depend on nor pre-
maturely define design internals.

Black-box specifications are often re-
corded as tables. In each row, the stimulus
and the condition on stimulus history are
sufficient to define the required response.
To record large specifications, classes of
behavior are grouped in nested tables and
compact specification functions are used
to encapsulate conditions on stimulus his-
tories.6

State box. An object's state box is derived
from its black box by identifying the ele-
ments of stimulus history that must be re-
tained as state data between transitions to
achieve the required black-box behavior.

The transition function of a state box is

[set w to
minimum of
z and absolute
value of x]
DO -„

[set w to
minimum of [set y to absolute
z and absolute value of x]
value of x] IF x < 0
DO THEN

y := -x
[set y to absolute ELSE

[set w to value of x] y := x
minimum of END

■ z and absolute ■ = ■ [set w to minimum = - [
value of x] of z and y]

END
[set w to minimum
of z and y]
IF y < z
THEN
w : = y
ELSE
w : = z

!

END

Figure 2. Stepaise refinement of a clear-box design fragment that can be verified. Each
fragment has identical functional behavior, even though the Ircel of detail increases.

where OS and NS represent old state and
new state. Although die external behavior
of a state box is identical to its corres])ond-
ing black box, die stimulus histories are
replaced with references to an old state
and the generation of a new state, as its
transitions require.

As in the traditional view of objects,
state boxes encapsulate state data and ser-
vices (methods) on that data. In diis view,
stimuli and responses are inputs and out-
puts, respectively, of specific state-box ser-
vice invocations that operate on state data.

Clear box. An object's clear box is derived
from its state box by defining a procedure
to carry out the state-box transition func-
tion. The transition function of a clear box

(S, OS) (R, NS) by procedure

(S, OS) (S, MS),

So a clear box is simply a program that
implements the corresponding state box.
A clear box may invoke black boxes at the
next level, so the refinement process is re-
cursive, with each clear box possibly intro-
ducing opportunities for defining new ob-
jects or extensions to existing ones.

Clear boxes play a crucial role in the
usage hierarchy by ensuring the harmoni-
ous cooperation of objects at the next level
of refinement. Objects and their clear-box
connections are derived from immediate i

processing needs at each stage of refine-
ment, not invented a priori, widi uncer-
tain connections left to be defined later.
The design and verification of clear-box
procedures is the focus of die next sec-
tion.

Because state boxes can be verified
with respect to their black boxes and clear
boxes widi respect to their state boxes, box
structures bring correctness verification to I
object architectures.

DESIGN AND VERIFICATION

The procedural control strucnires of
structured programming used in clear-
box design — sequence, alternation (if-
then-else), and iteration (while-do) — are
single-entry, single-exit structures that
cannot produce side effects in control
flow. (Control structures for concurrent
execution are dealt with in box structures,
but are outside the scope of this article.)

When it executes, a given control
structure simply transforms data from an
input state to an output state. This trans-
formation, known as its pivgram function,
corresponds to a mathematical function: It
defines a mapping from a domain to a
range by a particular rule.

For integers w, x, y, and z, for example,
die program function of die sequence,

IEEE SOFTWARE 53

Sequence
Control Correctness
structure: condition (for al arguments)

[f]
-DO

g; Does g followed
h by A do ft

END

Alternat on
Control Correctness
structure: condition:

[f]
IFp Whenever pis true
THEN does giof, and

g whenever pis false
ELSE does Ado f?

h
END

Iteration
Control Correctness
structure: condition:

[f] k termination
WHILEp guaranteed, ond
DO whenever p is true

g does o followed
END by f do f, and

whenever p is false
does doing
nothing do r ?

abs (y)
max(x, z)

END

is, in concurrent assignment form,
w, ?. := max (x, abs(y)), abs(y)

For integer x > 0, die program func-
tion of die iteration

WHILE
X > 1

DO

:-:;■; a

is, in English,
sot odd x to

Figure 3. Coirectness conditions in ques-
tion form for verifying each type of clear-
box control structure.

Design refinement. In designing clear-box
procedures, you define an intended func-
tion, dien refine it into a control structure
and new intended functions, as Figure 2
illustrates. Intended functions, enclosed in
braces, are recorded in die design and at-
tached to their control-structure refine-
ments. In essence, clear Ixwes arc composed
of a finite number of control structures, each
of which can he checked for correcmess.

Design simplification is an important
objective in die stepwise refinement of
clear boxes. The goal is to generate com-
pact, straightforward, verifiable designs.

Program: Subproofs:

[fl] fl = [DO gl;g2; [12] END] ?
DO

gi
g2
[f2] f2 = [WHILE pi DO [f3] END] ?

WHILE

Pi
DO [f3]

g3
[f4] f3 = [DO g3; [f4] ;g8 END] ?
IF
p2

THEN [f5] f4 = [IF p2 THEN [f5] ELSE [f6] END] ?
g4
g5

ELSE
g6

[f6]
f5 = [DO g4;g5 END] ?

gv
END
gs f6 = [DO g6;g7 END] ?

END
END

Figure 4. A clear-box procedure and its constituent subproofs. In the figure, each pi is
a predicate, each g i is an operation, and each f i is an intended function.

Correctness verification. To verify die cor-
recmess of each control structure, you de-
rive its program function — die function it
actually computes — and compare it to its
intended function, as recorded in die de-
sign. A correctness theorem' defines how
to do diis comparison in terms of lan-
guage- and application-independent cor-
rectness conditions, which you apply to each
control structure.

Figure 3 shows die correctness condi-
tions for the sequence, alternation, and it-
eration control structures. Verifying a se-
quence involves function composition and
requires checking exactly one condition.
Verifying an alternation involves case
analysis and requires checking exactly two
conditions. Verifying an iteration involves
function composition and case analysis in
a recursive equation and requires checking
exactly three conditions.

Correcmess verification has several ad-
van rages:

♦ // reduces verification to a finite process.
As Figure 4 illustrates, the nested, se-
quenced way that control structures are
organized in a clear box naturally defines a
hierarchy that reveals die correctness con-
ditions that must be verified. An axiom of
replacement' lets us substitute intended
functions for dieir connol structure re-
finements in die hierarchy of subproofs.
For example, the subproof for the in-
tended function f 1 in Figure 4 requires
proving that die composition of opera-
tions gl and g2 with intended subfunc-
tion f 2 has the same effect on data as f 1.
Note that f 2 substitutes for all die details
of its refinement in this proof. This substi-
tution localizes die proof argument to the
control structure at hand. In fact, it lets
you cany out proofs in any order.

It is impossible to overstate the positive
effect that reducing verification to a fi-
nite process has on quality. Even though
all but the most trivial programs exhibit
an essentially infinite number of execu-
tion paths, they can be verified in a finite
number of steps. For example, the clear
box in Figure 5 has exactly 15 correct-
ness conditions that must be verified.

♦ It lets Cleanroom teams verify every
line of design and code. Teams can earn'
out the verification through group

MARCH 1994

analysis and discussion on the basisofthe
correctness theorem, and they can pro-
duce written proofs when extra confidence
in a life- or mission-critical system is re-
quired.

♦ It remits in a near-zero defect level.
During a team review, every correctness
condition of every control structure is ver-
ified in turn. Every team member must
agree that each condition is correct, so an
error is possible only if ever)' team mem-
ber incorrecdy verifies a condition. The
requirement for unanimous agreement
based on individual verifications results
in software diat has few or no defects be-
fore first execution.

♦ It sales up. Every software system, no
matter how large, has top-level, clear-box
procedures composed of sequence, alter-
nation, and iteration structures. Eich of
diese typically invokes a large subsystem
with diousands of lines of code — and each
of those subsystems has its own top-level
intended functions and procedures. So die
correctness conditions for these high-level,
control structures are verified in die same
way as are diose of low-level structures.
Verification at high levels may take, and
well be worth, more time, but it does not
take more dieory.

♦ It produces better code than unit testing.
Unit testing checks only the effects of
executing selected test paths out of many
possible padis. By basing verification
on function theory, the Cleanroom ap-
proach can verify even,' possible effect
on all data, because while a program
may have many execution paths, it has
only one function. Verification is also
more efficient than unit testing. Most
verification conditions can be checked in a
few minutes, but unit tests take substantial
time to prepare, execute, and check.

QUALITY CERTIFICATION

Statistical quality control is used when
you have too many items to test all of them
exhaustively. Instead, you statistically
sample and analyze some items to obtain a
scientific assessment of the quality of all
items. This technique is widely used in
manufacturing, in which items on a pro-
duction line are sampled, their quality is

rff Q := odd_numbers(Q) II even_numbers(Q)]
PROC Odd_Before_Even (ALT Q}

seq
1

odds
evens

queue of integer [initializes to empty]
queue of integer [initializes to empty]
integer

END

(C
odds
evens

WHILE Q <> empty
DO

= empty,
= odds Ilodd_numbers(Q),
= evens I Ieven_numbers(Q)]

x end(Q)

L

;x is odd -> odds := odds I I x
true -> evens := evens II x

I: odd(x)

end(odds) := x

end(evens) := x
END

END

[C := Q I I odds,
ceds := empty]

WHILE odds <> empty _
DO ;er.d(Q) := end(odds)]

v := end(odds)
er.d(Q) := x

seq —|
1 wdo

3

seq
1

wdo
3

[C := Q I I evens,
ever.s:= empty]
WHILE evens <> empty _
DO >nd(Q) := end (evens)

X := end(evens)
er.d(Q) := x -

END

END ocd-cefore-even

seq
1

wdo
3

Figure 5. A clear-box procedure with 15 correctness conditions to be verified. The
procedural control structures and the number of correctness conditions that must be
checked are shown in bold. Sea indicates a sequence, he indicates an alternation (if-then-

else), and wdo indicates an iteration (while-do).

measured against a presumably perfect de-
sign, the sample quality is extrapolated to
die entire production line, and flaws in
production are corrected if the quality is
too low.

In hardware products, the statistics
used to establish quality are derived from
slight variations in the products' physical
properties. But software copies are identi-
cal, bit for bit. What statistics can we sam-

ple to extrapolate quality?

Usage testing. It turns out that software
hasa statistical property of great interest to
developers and users — its execution be-
havior. How long, on average, will a soft-
ware product execute before it fails?

From this notion has evolved the pro-
cess of statistical usage testing* in which you

♦ sample the (essentially infinite) pop-

IEEE SOFTWARE
55

CLEANROOM QUALITY RESULTS
Cleanroom projects report

a testing eiror rate per thousand
lines of code, which represents
residual errors in the software
after correctness verification.
The projects briefly described
here are among 17 Cleanroom
projects, involving nearly a mil-
lion lines of code, that have re-
ported a weighted average of 23
errors per KLOCfound in all test-
ing, measured from first-ever exe-
cution of the code — a remark-
able quality achievement

♦ IBM Cobol Structuring Fa-
cility (Cobol/SF). This was
IBM's first commercial Clean-
room product, developed by a
six-person team. This 85
KLOC PL/I program automat-
ically transforms un-
structured Cobol programs
into functionally equivalent
structured form for im-
proved understandability
and maintenance. It had a
testing error rate of 3.4 er-
rors per KLOC; several
major components completed
certification with no errors
found. In months of intensive
beta testing at a major aero-
space corporation, all Cobol
programs executed identically
before and after structuring.

Productivity, including all
specification, design, verifica-
tion, certification, user publica-
tions, and management, aver-
aged 740 LOC per person-
month. So far, a small fraction
of a person-year per year
has been required for all
maintenance and customer
support. Although the prod-
uct exhibits a complexity
level on the order of a Cobol
compiler, just seven minor
errors were reported in the
first three years of field use, all
resulting in simple fixes. —R.C.
Linger and H.D. Mills, "A Case
Study in Cleanroom Software
Engineering: The IBM Cobol
Structuring Facility," Pivc. Com-
psac, IEEE CS Press, Los Al-
amitos, Calif., 1988, pp. 10-17.

♦ NASA satellite-contivl proj-
ect. The Coarse/Fine Attitude
Determination System
(CFADS) of the NASA Atti-
tude Ground Support System
(AGSS) was the first Clean-
room project carried out by the
Software Engineering Labora-
tory of the NASA Goddard
Space Flight Center. The sys-
tem, comprising 40 KLOC of
Fortran, exhibited a testing
error rate of 4.5 errors per
KLOC. Productivity was 780
LOC per person-month, an 80
percent improvement over pre-
vious SEL averages. Some 60
percent of the programs com-
piled correcdy on the first at-
tempt. —A Kouchakdjian, S.
Green, and V.R. Basili, "Evalua-
tion of the Cleanroom Method-
ology in the Software Engi-
neering Laboratory," Proc. 14th
Software Eng. Workshop^ASA
Goddard Space Flight Center,
Greenbelt,Md., 1989.

♦ Martin Marietta Auto-
mated Documentation Syste?ii.
A four-person Cleanroom
team developed die prototype
for this system, a 1,820-line re-
lational database application
written in Foxbase. It had a
testing error rate of 0.0 er-
rors per KLOC — no com-
pilation errors were found
and no failures were encoun-
tered in statistical testing
and quality certification.
The software was certified
at target levels of reliability
and confidence. Team mem-
bers attributed error-free
compilation and failure-free
testing to the rigor of the
Cleanroom method. — C.J.
Trammel], L.H. Binder, and
C.E. Snyder, "The Automated
Production Control System: A
Case Study in Cleanroom Soft-
ware Engineering," ACM
Trans. Software Eng. and Meth-
odology, Jan. 1992, pp. 81-94.

♦ IBMAOEXPEKT/MVS.
A 50-person team developed

this complex decision-support
facility that uses artificial intelli-
gence to predict and prevent
operating problems in an
MVS environment. The sys-
tem, written in PL/I, C, Rexx,
and TIRS, totaled 107
KLOC, developed in three in-
crements. It had a testing
error rate of 2.6 errors per
KLOC. Causal analysis of the
first 16-KLOC increment re-
vealed that five of its eight
components experienced no er-
rors in testing.

The project reported devel-
opment team productivity of
486 LOC per person-month.
No operational errors have
been reported to date from
beta test and early user sites. —
P.A. Hausier, "A Recent Clean-
room Success Story: The Red-
wing Project," Proc. 11th Sofi-
lemvEtig. Worksbop.NASA.
Goddard Space Flight Center,
Greenbelt,Md., 1992.

♦ NASA satellite-control pro-
jects. Tvo satellite projects, a 20-
KLOC attitude-determination
subsystem and a 150-KLOC
flight-dynamics system, were
the second and third Clean-
room projects undertaken at
NASA's Software Engineering
Laboratory. These systems had
a combined testing error rate of
4.2 errors per KLOC. — S.E.
Green and Rose Pajerski,
"Cleanroom Process Evolution
in the SEL," Proc. 16th Software
Eng. Workshop, NASA God-
dard Space Flight Center,
Greenbelt,Md.,1991.

♦ IBM 3090E tape drive. A
five-person team developed the
device-controller design and
microcode in 86 KLOC of C,
including 64 KLOC of func-
tion definitions. This em-
bedded software processes
multiple real-time I/O data
streams to support tape-
cartridge operations in a
multibus architecture. The
box-structure specification

for the chip-set semantics
revealed several hardware
errors. The project had a
testing error rate of 1.2 er-
rors per KLOC.

A-one-module experiment
compared the effectiveness of
unit testing and correctness
verification. In unit testing,
the team took 10 person-days
to develop scaffolding code,
invent and execute test cases,
and check results. They found
seven errors. Correctness veri-
fication, which required an
hour-and-a-half in a team re-
view, found the same seven er-
rors plus three more.

To meet a business need,
the third code increment went
straight from development,
with no testing whatsoever,
into customer-evaluation dem-
onstrations using live data.
There were no errors of any
land. A total of 490 statistical
tests were executed against the
final version of the system, with
no errors found.

♦ Eiicsson Telecom OS32 op-
erating system. This 70-person,
18-month project specified, de-
veloped, and certified a 350-
KLOC operating system for a
new family of switching comput-
ers. The project had a testing
error rate of 1.0 errors per
KLOC.

Productivity was reported
to have increased by 70 per-
cent for development; 100
percent for testing. The team
significantly reduced develop-
ment time, and the project
was honored by Ericsson for
its contribution to the com-
pany. — L.-G. Tann, "OS32
and Cleanroom," Proc. 1st Euro-
pean Industrial Symp. Clean-
room Software Eng., Q-labs,
Lund, Sweden, 1993.

REFERENCES
1. PA. Hausler, R.C. Linger, and CJ.

Trammell, "Adopting Cleanroom
Software Engineering with a
Phased Approach," IBM Systems J.,
Mar. 1994, to appear.

56 MARCH 1 994

ulation of all possible executions (correct
and incorrect) by users (people or other
programs) according to how frequendy
you expect the executions to happen,

♦ measure dieir quality by determin-
ing if the executions are correct,

♦ extrapolate die quality of die sample
to die population of possible executions,
and

♦ identify and correct flaws in the de-
velopment process if the quality is inade-
quate.

Statistical usage testing amounts to
testing software die way users intend to
use it. The entire focus is on external sys-
tem behavior, not die internals of design
and implementation. Cleanroom certifi-
cation teams have deep knowledge of ex-
pected usage, but require no knowledge of
design internals. Their role is not to
debug-in quality, an impossible task, but
to scientific-all)- certify software's quality
through statistical testing.

In practice, Cleanroom quality certifi-
cation proceeds in parallel with develop-
ment, in three steps.

/. Spcciß' usage-probability distributions.
Usage-probability distributions define all
possible usage patterns and scenarios, in-
cluding erroneous and unexpected usage,
together with their probabilities of occur-
rence. The)' are defined on die basis of die
functional specification and odier sources
of information, including interviews with
prospective users and die pattern of use in
prior versions.

Figure 6a shows a usage specification
for a program with four user stimuli: up-
date (U), delete (D), query (Q), and
print (P). A simplified distribution that
omits scenarios of use and other details
shows projected use probabilities of
32, 14, 46, and 8 percent, respectively.
These probabilities are mapped onto an
interval of 0 to 99, dividing it into four
partitions proportional to the probabili-
ties. Usage-probability distributions for
large-scale systems are often recorded in
formal grammars or Markov chains for
analysis and automatic processing.

In incremental development, you can
stratify a usage-probability distribution
into subsets that exercise increasing
functional content as increments are

Program stimuli Usage-probability distribution Distribution interval

U (update) 32% 0-31

D (delete) 14% 32-45

Q (query) 46% 46-91

P (print) 8% 92-99

(A)

Test number Random numbers: Test cases:

1 29 11 47 52 26 94 U U QQ U P

2 62 98 39 78 82 65 QPDQQQ

3 83 32 58 41 36 17 QDQDDU

4 36 49 96 82 20 77 DQPQÜQ

(B)

Figure 6. (A) Simplified usage probability distribution for a program with four user
stimuli and (B) a sample of associated test cases.

High-quality code /

a> \. /
a

■■ B y
,,/;.' < i

<S"^ Low-quality code •' ; ;-

.* -':"
^^^ /

* .■• »•"-» " , -t >'..«!,;' "• C . * .* • -' >

• Software fixes -• •>;--.i.*.

Figure 7. Two sample graphs. The cuivefor high-quality software sbmrs exponential
improvement, such that the MTTF quickly exceeds the total test time. The curve for
law-quality software shows little MTTFgrowth.

added, widi the full distribution in effect
once the final increment is in place. In ad-
dition, you can define alternate distribu-
tions to certify infrequently used system
functions whose failure has important
consequences, such as the code for a nu-
clear-reactor shutdown system.

2. Derive test cases that are randomly gen-
erated from usage-probability distributions.
Test cases are derived from the distribu-
tions, such that even' test represents ac-
tual use and will effectively rehearse user
experience with die product. Because
test cases are completely prescribed by
the distributions, producing them is a me-
chanical, automatable process.

Figure 6b shows test cases for the prob-
ability distribution in Figure 6a. If you as-
sume a test case contains six stimuli, then

you generate each test by obtaining six
two-digit random numbers. These num-
bers represent the partition in which the
corresponding stimuli (U, D, Q, or P) re-
sides. In this way, each test case is faidiful
to die distribution and represents a possi-
ble user execution. For testing large-scale
systems, usage grammars or A'larkov
chains can be processed to generate test
cases automatically.

3. Execute test cases, assess ?mesults, and
compute quality measures. At this point, die
development team has released verified
code to the certification team for first-ever
execution. The certification team executes
each test case and checks the results
against system specifications. The team
records execution time up to die point of
any failure in appropriate units, for exam-

J
IEEE SOFTWARE 57

pie, CPU time, wall-clock time, or num-
ber of transactions.

These inteifailt/wesrepresent the qual-
ity of the sample of possible user execu-
tions. They are passed to a quality certifi-
cation model that computes the system's
quality, including its
mean time to failure. The
quality-certification
model produces graphs
like the one in Figure 7.

Because the Clean-
room development pro-
cess rests on a formal, sta-
tistical design, these
MTTF measures provide
a scientific basis for man-
agement action, unlike die anecdotal evi-
dence from coverage testing (If few errors
are found, is that good or bad? If many
errors are found, is diat good or bad?). In
theory, there is no way to ever know that a
software system has zero defects. How-
ever, as failure-free executions accumu-
late, it becomes possible to conclude that
the software is at or near zero defects with
high probability.

Extending MTTF. But there is more to the
story of statistical usage testing. Extensive

WE BELIEVE
USE OF THE
CLEANROOM
PROCESS
WILL GROW.

analysis of errors in large-scale software
systems reveals a spread in the failure rates
of errors of some four orders of magni-
tude.9 Virulent, high-rate errors can liter-
ally occur every few hours for some users,
but low-rate errors may show up only after

accumulated decades ofuse
by many users.

High-rate errors are
responsible for nearly
two-thirds of software
failures reported, even
diough they comprise less
than diree percent of total
errors. Because statistical
usage testing amounts to
testing software die way

users will use it, high-rate errors tend to be
found first. Any errors left behind after
testing tend to be infrequendy encoun-
tered by users.

Traditional coverage testing finds er-
rors in random order. Yet finding and
fixing low-rate errors has little effect on
MTTF and user perception of quality,
while finding and fixing errors in failure-
rate order has a dramatic effect. Statisti-
cal usage testing is far more effective
than coverage testing at extending
MTTF.10

ACKNOWLEDGMENTS
I thank Kim Hathaway for her assistance in developing this article. Suggestions by Michael Deck, Philip

Hausier. I larlan Mills. Mark Pleszkoch, and Alan Spangler are appreciated. I also thank the members of the
Cleanroom teams, whose quality results are reported in this article, and who continue to achieve new levels of
quality and productivity.

REFERENCES
1. M. Dyer, The Clcamoom Approach to Sofia-are Quality, John Wiley & Sons, New York, 1992.
2. P.A. Curritt, M. Dyer, and H.D. Mills, "Certifying the Reliability of Software," IEEE Tram, on Sofia-arc

Eng.Jun. 1986, pp. 3-11.
3. H.D. Mills, R.C. Linger, and A.R. Hevner, Principles of Information Systems Analysis and Design, Academic

Press, San Diego, 1986.
4. H.D. Mills, "Stepwise Refinement and Verification in Box-Structured Svstems," Computer,June 1988, pp.

23-35.
5. A.R. Hevner and H. D. Mills, "Box Structure Methods for System Development with Objects," IBMSys-

temsj.,cio.2, 1993,pp. 232-251.
6. M.G. Pleszkoch et al., "Function-Theoretic Principles of Program Understanding," I'm: 23rd Hawaii Int'l

Conf. System Sciences, IEEE CS Press, Los Alamitos, Calif., 1990, pp. 74-81.
7. R.C. Linger, H.D. Mills, and B.I. Witt, Structured Progratummg: Theory and Practice, Addison-Weslev,

Reading, Mass., 1979.
8. J.H. Poor« and H. D. Mills, "Bringing Software L'nder Statistical Quality Control," Quality Progress, Nov.

1988, pp. 52-55.
9. E.X. Adams, "Optimizing Preventive Service of Software Products," IBMJ. Research and Dn-elopment, Jan.

1984, pp. 2-14.
10. R.H. Cobb and 1 I.D. Mills, "Engineering Software Under Statistical Quality Control," IEEE Software,

Nov. 1990, pp. 44-54.

Software that is formally engineered in
increments is well-documented and

under intellectual control throughout de-
velopment. The Cleanroom approach
provides a framework for managers to
plan (and replan) schedules, allocate re-
sources, and systematically accommodate
changes in functional content.

Experienced Cleanroom teams can
substantially reduce time to market. This
is due largely to the precision imposed on
development, which helps eliminate re-
work and dramatically reduces testing
time, compared with traditional mediods.
Furdiermore, Cleanroom teams are not
held hostage by error correction after re-
lease, so diey can initiate new develop-
ment immediately.

The cost of quality is remarkably low in
Cleanroom operations, because it mini-
mizes expensive debugging rework and
retesting.

Cleanroom technology builds on exist-
ing skills and software-engineering prac-
tices. It is readily applied to bodi new sys-
tem development and «engineering and
extending legacy systems. As die need for
higher quality and productivity in soft-
ware development increases, we believe
diat use of die Cleanroom process will
continue to grow. ♦

Richard C. Linger is a
member of die senior tech-
nical staff at IBM and the
founder and manager of die
IBM Cleanroom Software
Technolog)' Center. I lis in-
terests are software specifi-
cation, design, and correct-
ness verification; statistical
testing and reliability certifi-

cation; and the transition from craft-based to engineer-
ing-based software development

Linger received a BS in electrical engineering
from Duke University. He is a member of the 1 EKE
Computer Society and ACM.

Address questions aliout this article to Linger at
20221 Darlington Dr., Caithersburg, AID 20879.

58 MARCH 1994

Updated from a presentation made at the
Software Technology Conference (STC), April 1994
and presented at the Second Annual European
Industrial Symposium on Cleanroom Software
Engineering, March 1995

Experience Using
CLEANROOM SOFTWARE ENGINEERING

in the US Army

S. Wayne Sherer, LCSEC Chief Scientist
Paul G. Arnold, Loral Federal Systems

Ara Kouchakdjian, Software Engineering Technology

Experience Using
CLEANROOM SOFTWARE ENGINEERING

in the US Army

S. Wayne Sherer, LCSEC Chief Scientist
Paul G. Arnold, Loral Federal Systems

Ara Kouchakdjian, Software Engineering Technology

Abstract

This paper presents the results and lessons learned from a STARS (Software Technology for Adaptable,
Reliable Systems) sponsored process technology transfer demonstration. In March of 1992, the Armament,
Munitions and Chemical Command (AMCCOM), now the Tank-automotive and Armaments Command
(TACOM), Life Cycle Software Engineering Center (LCSEC) at Picatinny Arsenal was selected to demonstrate
that Cleanroom Software Engineering (CSE) can be successfully applied in a typical DoD Software Support
Activity (SSA). Results indicate that:
• CSE practices can be successfully transferred to a typical DoD SSA,
• engineering staff productivity and product quality were increased while simultaneously increasing job

satisfaction, and
• a return on investment of at least 11:1 has been realized on the first project to which CSE techniques were

applied.

Introduction
The goal for the technology transfer effort for the LCSEC at Picatinny Arsenal was to conduct a

demonstration of CSE practices at a typical DoD SSA.

The LCSEC was selected in response to their expressed interest in improving the process by which they
maintain software in general and, specifically, in using the CSE technology. Additionally, as a typical DoD SSA,
it was deemed important to improve the processes on which the US Army spends the largest portion of their
software money; i.e., in software maintenance and re-engineering (as opposed to new software development). The
demonstration was facilitated by Loral and SET (Software Engineering Technology, Inc.).

The LCSEC at Picatinny Arsenal is a representative DoD Software Support Activity that wants to apply a
more effective approach to software support. The current state of software re-engineering at the LCSEC varies
from project to project but the majority have not achieved the desired level of productivity and quality. A major
goal of the Picatinny Arsenal LCSEC is to achieve a Software Engineering Institute Capability Maturity Model
(SEI CMM) Level 3 rating by adopting an evolutionary process improvement approach to software re-
engineering. Currently, the LCSEC is receiving support, under STARS Task IA02 from Loral and SET, in
applying the Cleanroom approach on the re-engineering of the Mortar Ballistic Computer (MBC) into the
Improved MBC (I-MBC). Initial results have been successful, the project personnel are employing the
Cleanroom engineering practices and adopting the process driven, team oriented approach.

DoD Software Support Activities (SSAs) provide important opportunities to demonstrate STARS efforts
to improve software quality and productivity. SSA activities represent a major portion of the DoD software

budget and the proportion is expected to be increased during the next decade. This will occur as the many
systems in the DoD development pipeline are turned over to SSAs for support. It is likely that, as fewer new
systems come into the inventory, DoD managers will attempt to extend the useful life of old systems through
software enhancements and re-engineering.

STARS Program
The STARS program is a DoD research and development effort funded under the Advanced Research

Projects Agency (ARPA). The main thrust of this effort is that software engineering is process driven, domain-
specific, reuse-based, and supported by an integrated software engineering environment. This concept is called
Megaprogramming and the STARS program is currently engaged in several demonstration projects of the
technologies developed earlier in the program. The Picatinny MBC effort was the first demonstration project to
use STARS concepts. Loral is one of the prime contractors for this effort and SET is a principal subcontractor for
the Loral/STARS effort.

TACOM LCSEC Overview

The LCSEC at Picatinny Arsenal provides a number of services including: software acquisition support to
program managers, computer resource life cycle management plans, pre-planning for software support, manage
contracted post deployment software support efforts, software configuration management, and design and
implement software changes. The types of battlefield automated systems supported include cannon and tank gun
systems; smart mines and munitions; ballistics computers; gunnery simulators; trainers; and nuclear, biological,
and chemical detection systems.

The desire for process driven technology was the result of a Software Process Assessment (SPA)
conducted by a team of representatives from the AMC LCSECs with coaching from the Software Engineering
Institute (SEI). Picatinny LCSEC management has developed a close relationship with the SEI because they
desired help with identifying areas to achieve the desired level of productivity and quality. Review of the SPA
findings lead LCSEC management to realize that the software engineering process was not under intellectual
control. Each new software project, whether performed by contractors or civil servants, was treated largely as
new activity that did not necessarily draw on prior experience for process improvement. The only factor that
perpetuated experience was people, be it government or contractor, who participated in the same projects time
after time. Documentation received by Picatinny, when they were given systems to maintain, was poor or not up
to date and no defined process existed for maintaining continual project control. In other words, the state-of-the-
practice consisted of traditional software engineering practices that were ad-hoc in nature, as opposed to a
disciplined, defined software engineering process. These realizations and the results from the SPA were the basis
for their move to enhance their software engineering capabilities.

Typical DoD SSA organizations have immature processes and are subject to morale problems among
software engineers due to the combination of an undefined manner of doing work, along with a lack of task-
oriented scheduling. The software engineers at the LCSEC did their work well because of individual skills, but
often seemed to be stuck in the same "groove," where the same situations, in terms of schedule, would arise year
after year. A general lack of enthusiasm pervaded initial discussions with project teams.

Despite these difficulties, however, the customers (various users within the US Army) indicate that they
are basically content with the quality of the products. Not many field reports of failures are submitted by their
customers, due to extensive, pre-release user testing. Unfortunately, evidence suggests that this may also result
from the absence of formal failure observation and reporting mechanisms, making the field quality of developed
products difficult to ascertain.

LCSEC management at Picatinny recognized the problems with their state of the practice and took the
initiative to recognize Cleanroom Software Engineering (CSE) as the mechanism with which to facilitate the
desired cultural, technical and process changes.

Cleanroom Software Engineering (CSE)

CSE was chosen as the process driven technology because it addresses the deficiencies identified during
the LCSEC Software Process Assessment (SPA). CSE's management and development team approach was
consistent with quality management philosophy, e.g. workforce empowerment, process focus, and quantitative
orientation. It provides for the transition of process technology to the project staff and integrates several proven
software engineering practices into one methodology. LCSEC management anticipated productivity gains and
morale enhancement from the introduction of the technology.

CSE consists of a body of practical and theoretically sound engineering principles applied to the activity
of software engineering. Cleanroom consists of a thorough specification phase; resulting in a six part
specification, including a precise, black box description of the software part of a system. Software development
proceeds from the black box specification via a step-wise refinement procedure using box-structured design
concepts. This process focuses on defect prevention, effectively eliminating costly error removal phases (i.e.,
debugging) and produces verifiably correct software parts. Development of software proceeds in parallel with a
usage specification of the software. This usage profile becomes the basis for a statistical test of the software,
resulting in a scientific certification of the quality of the software part of the system.

A quick high level comparison between the typical development and CSE philosophy of software
development is summarized in Table I. The typical development environment can be characterized by craft based
techniques which are highly dependent upon the skills of the individuals involved whereas CSE is an engineering
discipline with associated rigor and formality.

Table I: Comparison between Typical Development and CSE

Characteristic Typical Development CSE

Programs regarded as Lines of Instructions Correct rule for a function.

Specification focus Incomplete description of
external behavior and internal
design details.

Complete, precise description of
external behavior; design details
left for development.

Specification to code
transformation process

Informal, debugging to verify
code.

Stepwise refinement and
verification using Box
Structures.

Failures are Expected and accepted. Unacceptable.

Testing strategy Futile attempt for coverage and
litüe insight on field reliability.

Random sample based on usage
model that predicts field
reliability.

Description of Demonstration

To conduct the demonstration, both control and demonstration groups were identified. The control group
consisted of a sample set of ongoing and completed software projects at the LCSEC. These projects represent the
use of "typical" software engineering methods at the LCSEC. Enhancement projects at Picatinny typically include
the correction of observed problems, the addition of new capabilities, and in some cases, re-engineering of
software. The demonstration project was the Mortar Ballistics Computer (MBC) re-engineering effort. The
demonstration aspect of this project was the adoption of the CSE technology techniques as provided by the
participation of Loral and SET. The hypothesis to be confirmed or rejected in this demonstration was: The use of
CSE practices improves the effectiveness (quality and productivity) of the LCSEC software support mission.

In order to transfer the technology to be demonstrated, as well as the process and culture for a Cleanroom
environment, four different tools were employed:

(1) training, in a formal classroom setting which integrated lecture material and numerous hands-on
workshops (tailored for this effort),

(2) coaching, both for project planning and execution as well as a medium to promote ongoing education,

(3) process handbooks (evolved for this effort), which act as a written source of educational material and
as a reference during project execution, and

(4) an automated process support system (developed for this effort), that helps enforce process adherence
and monitors task completion, by automating non creative tasks.

Project Overview

The MBC project was a re-engineering of the current system used by the US Army to aim mortars for
combat support. The existing MBC was implemented in DTL (Display Terminal Language) and Z-80 Assembler
and is not easily upgraded for new requirements. The re-engineered system is being implemented in Ada and as a
result can be moved to new updated hardware platforms. Initial Cleanroom training was provided in November of
1992 and January of 1993, and the MBC re-engineering started in February of 1993. The first two increments of
the MBC were completed by January 1994.

In November of 1993, the LCSEC participated in a proposal to take on the responsibility for the
Improved MBC (I-MBC) system, which will replace the MBC currently in the field. The other partners in this
proposal were other organizations at Picatinny Arsenal. Picatinny had some key win themes that were achieved
through the initial STARS cooperation. They had some of the functionality of the proposed I-MBC already
developed and certified to be of high quality. They also had shown that by using Cleanroom, they could develop
software of high quality with extremely high productivity. This helped support the commitment that the Picatinny
Arsenal organization would be successful with the I-MBC project and could do so within acceptable budget limits.

Picatinny won the bid in January of 1994 and started work on the I-MBC in February 1994. The I-MBC
will replace the current M23 Mortar Ballistics Computer, and will run on a ruggedized notebook computer. In
addition, the I-MBC will add capabilities from other related systems that could not be accommodated by the M23
computer. The I-MBC work began with the development of MBC increment 3 which did not impact the I-MBC
effort because the functions performed by the MBC are a subset of those to be performed by the I-MBC. Starting
with increment 4, the LCSEC team decided that specification, development and certification for I-MBC were to
be created in an incremental manner, similar to the three MBC increments. In order to do this, some risk would
be entailed, since it was necessary to make sure the specifications for one increment did not limit options for a
future increment. For that reason, the I-MBC team focused on creating a 'system' specification, as well as
increment specifications. In this manner, risk was minimized, since increment behavior was checked to be
consistent with requirements defined in the 'system' specification.

The transfer of CSE technology was achieved through formal, classroom-style training courses and
follow-on coaching of demonstration team members. The courses involved instruction on the underlying
specification, development, and certification methods of CSE and included in-class workshops so that students
gained experience applying the technology. As often as possible, workshops were supplemented with examples
extracted from the MBC project. Training provided the introduction to and initial experience with the tools that
would help enhance individual and team performance.

Project support was given to the team members through repeated on-site coaching visits by CSE experts
from Loral and SET. This activity helped to solidify the new ideas as team members saw how the techniques
were applied to their specific problems.

The major intent of the training and coaching was to establish the human behavioral changes necessary to
develop better software. Implementing CSE is an intellectually challenging process that instills specific values
into its participants. For example, the focus on product quality, a major Cleanroom theme, instills a "get it right
the first time" attitude into the members of CSE teams. As successes were made and milestones conquered, the
CSE teams reported significant improvements in job satisfaction, team spirit, and the desire to continue quality
improvements. A significant focus of the coaching effort was to positively reinforce each project success in order
to create a stronger identity with the project.

Such behavioral changes within a project are improved by active participation from all levels of the
organizational hierarchy from contributing technical leads to engineering management. The initial plan was for
the project staffs to work closely as teams, rather than as individuals. Additionally, the intention was for the staffs
to be motivated and excited about what they were doing; that is, have a strong identity with the process and
project. Thus, coaching contained a "cheer leading" aspect, designed to create a healthy Cleanroom environment.

Reinforcement of CSE was provided through the availability of a six volume set of process manuals to
the demonstration groups. These process manuals were an integral part of the training program and were
discussed in detail, both during the formal training sessions and off-line as a part of the follow-on coaching
activities. The process manuals augment the training by providing reference information to LCSEC engineers,
using Cleanroom concepts, and serve as a reference source for resolving questions about specific issues
concerning process adherence. The process manuals are organized as follows:

Volume 1: Cleanroom Engineering Process Introduction and Overview
Volume 2: Organization and Project Formation in the Cleanroom Environment
Volume 3: Project Execution in the Cleanroom Environment
Volume 4: Specification Team Practices
Volume 5: Development Team Practices
Volume 6: Certification Team Practices

The division of the volumes represents a separation of concerns for the various project stakeholders. Each volume
defines the tasks and the control flow between the tasks necessary to conduct the specific process which is the
focus of the manual. Engineering processes are defined as formal control-flow procedures with specific
completion conditions. Collections of engineering processes also have the same level of formalized control flow
and completion conditions. Thus, each engineer, manager or other staff member has well defined roles and tasks
that exist as a part of a larger software process.

CSE is a formal process that clearly defines the tasks necessary for the engineering effort to progress, the
completion conditions for each task, and the control flow that dictates the order of work on each task. Process
management entails the use of a clearly defined process as the approach to be used to complete the particular
project. The intent with process management is to give engineers a clear and understandable road map which they
can follow and by which they may track progress towards project completion.

Awareness of software process is a key issue in successfully transferring technology to an organization
and to an organization's long term success with applying CSE. The project staffs at the Picatinny LCSEC
received an introduction to process definition and process management in the context of CSE. Coaching also
reinforced the importance of following the defined process and using the process definition, which defines the
possible project alternatives, to support the selection of correct project choices.

Baseline Metrics
The control groups represent the state-of-the-practice at the LCSEC. Baseline metrics were collected in

order to gain insight into project practices and to establish a basis of comparison to the demonstration Cleanroom
groups. The Control Group Projects consisted of software engineering efforts in Fortran, Z-80 Assembler,
Motorola 68000 Assembler and DTL (Display Terminal Language). A LOC is defined as a carriage return for
these baseline control group projects. This definition was used because of the wide difference in software
development languages contained within the control group projects. Table II presents the baseline metrics for the
control group. These metrics are presented with the caution that some data collection mechanisms are unreliable,
resulting in inaccuracies. The numbers in Table II are similar to results reported by Mosemann for other projects
within the DoD [Ada and C++: A Business Case Analysis. July 1991].

Table II: Baseline Metrics for Control Group Projects

Project / Measure . Control Group Projects

Number of Projects 5

Range of Effort - Staff Months 21-58

Total Technical Staff Months 192

Total KLOC (*) 23.14

DERIVED METRIC:

Productivity - LOC/Staff Month
121

Observations
The following observations are a compilation of experiences with the MBC and I-MBC teams. These

observations are in the context of Loral's and SET's other experiences with replacing craft-based practices with
engineering-based practices, both in the private sector and with government organizations. One must keep in
mind these observations are preliminary since the project has not been completed.

1. The assigned project teams were able to assimilate and even adapt the Cleanroom Software
Engineering practices.

A common worry among managers when hearing about Cleanroom is that it is too hard or too
mathematical for their staff. At Picatinny, engineers were able to apply and adapt the Cleanroom practices to the
needs of their project. Engineers learned, used and extended the ideas successfully for their project. The evidence
of this observation is the products they have produced.

Disciplined engineering in a team environment requires rigor, cooperation of individuals, and the
creativity to apply theory to real world problems. This creates a challenging work environment that tends to bring
out the best in both individuals and teams.

A prime example of the accomplishments of the MBC team was the tailoring of the box structures
algorithm to meet both their application environment and the target programming language, Ada. MBC team
members have made original contributions to the expression of box structure constructs in Ada, which will have
applicability across many Cleanroom projects. This has benefited both the project, in terms of constructive
methods, and the individual team members, in terms of a sense of accomplishment. Building on this
accomplishment, additional improvements for documenting the black box were later determined. The
development team felt that the initial specification approach used for the first three increments, was insufficient,
in that the information provided was incomplete and not easily readable. Through a great deal of interaction

between the specification and development teams, the specification team adopted a documentation approach that
fulfilled the development team' s requirements.

The team has enjoyed using the various Cleanroom techniques and have seen many real
accomplishments. The specification team is convinced that this is the most complete and precise specification
they have ever seen. The step-wise refinement and verification, which drives engineers to define one small step to
take at a time, take that step, and then confirm its correctness, has also been successful. The development team is
convinced that they have a great design and have minimized the amount of code they need to develop.

2. A process driven approach supports engineers in mastering a new technology.

Process driven project management is one of the two basic technologies being advanced by the STARS
program. The Picatinny project was the first project on which this key idea has been employed.

The reason process driven management seems to support technology transfer can be summarized as
follows. When doing something for the first time, one often asks, "What do I do next?" or "When will I be done?"
This indicates a lack of understanding the big picture, where engineers can clearly place their efforts in a project
context. This is not only an attribute of first time usage of techniques or a process, but also an indication that a
clearly defined process does not exist or is not effectively managed.

By placing the Cleanroom techniques within a fully defined process, LCSEC engineers knew precisely
what step they were currently on, as well as what had been completed and what remained to be done. Giving each
individual the foresight that showed where they were in the context of the entire project strengthened project
identity and boosted morale.

3. Staff morale has improved on the project teams.

Another common fear of managers when hearing about Cleanroom is that their staff members will not
like it due to the rigor of the process and the absence of "positive" feedback through executing their own code.
This has not the been the case at other places where cleanroom has been introduced, and Picatinny is no
exception. When an organization replaces craft-based practices with engineering-based practices, morale
improves. One reason seems to be that people now know what to do, when to do it, and how it should be done.
This eliminates the uncertainty and anxiety that results when one has to not only do a job but also has to determine
what to do and when. Additionally, when engineers learn to use the Cleanroom practices, they know they can do
the high quality job they have been striving to achieve. Engineers are convinced that they are producing a better
product. As a result, they are excited about it.

At the Picatinny LCSEC, all the engineers, both in informal contacts and in a questionnaire distributed to
the engineering staff, reported morale improvements. The LCSEC management has also confirmed the existence
of the improved morale and, of course, is favorably impressed.

4. Facilitation of work effort is greatly enhanced through process driven management.

Team leaders managed by process definition and task lists which allowed more visibility of project status
by management. The intent with process management is to give engineers a clear and understandable road map
which they can follow and by which they may track progress towards project completion. Awareness of software
process is a key issue in successfully transferring technology to an organization and to an organization's long term
success with applying a given process driven approach to project management.

5. The team-oriented approach of CSE saw immediate acceptance and realized both tangible and
intangible benefits.

A key ingredient of Cleanroom is that a team amplifies human performance. People took advantage of
the insight of others in order to bring about the best possible project result. Good people working together
produce better results. The simple idea that many minds are better than one makes the outlook for quality good.
However, some less tangible benefits were realized as well. The fact that the entire team is responsible for
quality, in a series of checks and reviews, puts pressure on the team and not on individuals. This pressure creates

a reliance on team activity over individual performance. Furthermore, as successes are encountered, the entire
team takes credit, not a single individual, thus, cementing the teamwork concepts. The bottom line is that
teamwork improves individual performance.

Our observation is that the I-MBC team now works within an effective team-oriented environment. We
believe that further use of Cleanroom will establish a strong team mentality that will serve to further improve the
initial good results.

6. Coaching is a key ingredient of technology transfer success.

Although the training was rigorous with a mixture of theory and workshops, students learn at different
rates. Coaching allowed Loral and SET staff to re-educate the slower-to-adopt project staff members and keep the
entire team on a common level of knowledge and expertise. Loral and SET technical presence at project inception
and during project execution helped solidify the transfer of the technology and ensured that the project got started
in the most efficient manner.

Furthermore, there was a gap between the end of training and the start of the project and some of the
education was forgotten. Coaching became the mechanism to re-educate and supplement the original training.
Further, as good ideas were conceived by some team members, it was possible to see that all members were
supplied with the new ideas.

As the project progressed, the CSE ideas needed to be adapted to the specific Picatinny environment.
Coaches were used to discuss design alternatives and to help in refining the technology to best serve the
application.

Perhaps the most unnoticed but effective use of coaching was in the positive reinforcement the CSE
coaches were able to give to the team members and the team as a whole. Coaches are recognized as experts.
When experts comment positively on original ideas by a team member, the effect can be enormous in terms of
self-esteem and sense of accomplishment and contribution. The CSE trainers tried to positively reinforce the
behavior of those making such contributions and encourage others to seek answers beyond the limits of current
knowledge. The "cheer leading" approach increased project satisfaction, which motivated greater project
performance. Based on this experience, it is now believed that coaching should be a formal part of any
technology transfer effort.

7. Communication among teams (and between team members) is greatly enhanced through a process
driven CSE approach.

An important ingredient of any process driven activity is communication among contributing teams and
individuals. One aspect of this was that no team culture existed at the LCSEC; meaning that no real notion
existed of how teams are supposed to behave during project execution. This problem manifested itself in many
different ways. Testers often did not receive specification updates (and failed to ask for them). Also, work tended
to be duplicated by multiple personnel because the division of tasks was unclear and communication among
members occurred too seldom.

Two approaches were used to solve this problem at Picatinny. The first was to establish effective
communication among team members and the second was to establish communication among the different
departments involved in the project. The adoption of a well defined process includes a vocabulary that is of great
help to the understanding and discussion of the process. This well defined vocabulary makes communication
between team members much more effective and productive. The improved communication also started a shift in
the culture of the teams. Team members report that they readily use each other as information sources, quality
checks, etc. Team reviews are effective and informative. However, the second aspect, communication between
departments, continues to be a problem. The MBC certification team members work for a different department
than the specification and development teams. Resulting problems are that the certification team finds themselves
working from outdated specifications. Furthermore, the certification team seems to duplicate each other's work.
A future goal is to be able to duplicate the success of the specification and development teams in the certification
team, primarily by improving communications. A more concerted effort should have been made by the coaches to
minimize these communications problems.

8. Specific techniques ofCleanroom Software Engineering were easily and successfully used.

Three specific techniques were identified by project staff as being major sources of their improved
performance. These techniques are team reviews, Cleanroom specifications and box structured design, and are
described in greater detail below:

Team reviews, although slow and awkward at the start, were cited by team members as one of
the most successful aspects of CSE. Members report that "team shared responsibility" eased
misgivings about participating in such a big project. This negated "finger pointing" that existed
in previous projects and allowed even difficult personality combinations to work together. The
result was that everyone participated and worked as a team toward project success and
completion. Morale increased sharply as groups of individuals transformed into an effective
software team.

Cleanroom specification, most notably black box documentation, was cited as being
responsible for gains in productivity. Many talented engineers existed on the project and then-
productivity was significantly enhanced when working from a well defined problem statement.
The completeness of the specification was the main reason cited for the team's confidence that
they were producing a high quality product.

Box structured design is credited with focusing the code generation process and with making
team reviews more effective. The team enjoyed the orderly process of developing software. It
got them started more quickly on solving a particular problem and they were able to measure the
progress of the development activity with more precision than in the past. Since the process
relies a great deal on logical thinking as opposed to programming skill, less experienced
programmers are able to take a bigger share of the development burden. Therefore, software
engineers can make the most of their software engineering skills without having to develop in-
depth programming language expertise.

Results
The most important result noted by this effort, even in its preliminary form, is that the motivation to

continue to use Cleanroom practices at Picatinny has been established. This demonstration effort was sponsored
by STARS and the continued effort is being sponsored by the TACOM LCSEC. This result is an instance of the
STARS program fulfilling its mission by being the catalyst for introducing improvements to the software
engineering capabilities in the DoD. The decision to expand CSE usage across the entire organization, is the most
definitive conclusion of this effort.

In addition to the above mentioned conclusion, the following conclusions can be drawn based on the
current status of the MBC/I-MBC project.

1. It is possible to transfer CSE practices to project teams operating within a typical immature DoD SSA
organization.

This was shown by the fact that the MBC and I-MBC project has progressed to a point where CSE is
being successfully applied. This result shows that a specific CMM maturity rating is not necessary in order to
benefit from Cleanroom Software Engineering. The engineering staff also enjoyed using the ideas, and all were
interested in using the ideas again. Additionally, nearly all were interested in supporting and participating in the
establishment of the planned "Cleanroom Competency Center" at the Picatinny Arsenal.

2. Typical DoD SSA organizations can realize important benefits, in terms of improved process
productivity, product quality, and staff morale, from the application of CSE.

This conclusion is supported by the tripling of productivity of the MBC team. The LOC were calculated
the same way for this Ada Language based code as was done for the baseline control group projects with the
exception that blank lines of code were not counted. Table III shows the results for productivity for increments 1
through 4. Table IV shows the raw numbers that were used to calculate the productivity shown in Table III.
Future increments should show additional improvement.

Table III: Productivity Change for MBC/I-MBC

Increment
LOC per Staff

Month
Change in Productivity based
on Picatinny Baseline Metrics

1 370 3.1:1

1 + 2 519 4.3:1

1 + 2 + 3 see note see note

1+2+3+4 443 3.7: 1

Note: Staff months data lost due to accounting mistake but included in next entry

Change in Productivity = LOC per Staff Month
121 LOC Baseline Productivity

Table IV: Cumulative Raw Numbers for MBC/I-MBC

Increment
MBC

Staff Months
Coaching Staff

Months
Training Staff

Months
Lines of Code

(LOC)

1 23 3 5 8,500

1 + 2 42.5 6 5 22,063

1-3 see note

Table III

8.5 5.5 28,579

1-4 86.1 10 6 38,155

Early indications are that quality appears to have improved over previous product quality according to
Picatinny's customers. The quality of the software (See Table V) developed is very high when compared to
quality for traditional software development. Thus, the result achieved will be viewed by the team as the mark to
better on the next increment of this project. The incentive and motivation for continual improvement is firmly in
place among the team members.

Table V: Software Quality

Failure

Type

Increment Failures Description

1 2 3 4

Process 19 6 0 0 Approved improvements made to design
but not reflected in updates to the

specifications for certification.

Spelling 3 0 1 0 Misspellings on displays.

Behavior 2 3 3 6 Coding Errors, did not work as specified.

Total

24 9 4 6 Total numbers of failures

Quality 2.82 .41 .14 .16 Failures/KLOC

The MBC project has realized significant gains from the CSE ideas. Once the learning curve had been
completed, initial successes in creating the Black Box specification served to cement commitment to CSE.

The resulting conclusions from the overall evaluation are preliminary because the demonstration project
is still in its early stages. However, the original hypothesis that Cleanroom improves the effectiveness of the
software re-engineering activities at Picatinny looks very promising. Indeed, management and staff agree that
morale and motivation is extremely high, that teamwork is now the normal mode of operation, and that people are
excited about the software process being established and are motivated to produce high quality products.

A good technical road map is in place at Picatinny; the technical personnel are developing the skills that
appear to show significant gains in productivity. Even more promising is the fact that these gains were made on
the first use of CSE

3. The return on investment at Picatinny cannot be definitively calculated, but indications are that there
is a significant return on investment.

Since the project is not yet complete, a preliminary estimate of return on investment can only be based on
estimates from the information currently available. The resulting return on investment (ROI) calculations appear
below in Table VI.

Table VI: Return on Investment for MBC/I-MBC

Increment
LOC per

Staff
Month

Staff Months MBC would have
taken without CSE ROI

Base
ROI
with

Coaching

1 370
8500 LOC/121 LOC/SM = 70.3

5.9:1 8.9:1

1 + 2 519
22063 LOC/121 LOC/SM =

182.3 12.7:1 26.7:1

1-4 443

38155 LOC/121 LOC/SM =

315.3 14.3:1 36.5:1

SM = Staff Months

ROI Base = SM MBC would have taken - SM MBC took
Staff Months of Coaching Effort + Staff Months spent in Training

ROI with Coaching = SM MBC would have taken - (SM MBC took + SM of Coaching Effort)
Staff Months spent in Training

4. An Automated Process Support System (PSS), that is consistent with the process defined for the
project, facilitates technology transfer

Automating the non-creative tasks of a new technology, such as file access and simple process flow
facilitates the adoption of the new technology.

5. Based on this demonstration we now believe that a technology transfer program to support individual
projects at a typical DoD SSA organization must begin with a defined process for the project and should consist
of the following components:

(1) a technology transfer plan,
(2) formal CSE training ,
(3) the availability of qualified coaching,
(4) the availability of engineering handbooks.

The combination of technology transfer components created a series of successes at Picatinny; including
productivity gains, expected quality gains, and the increased motivation of the engineering staff.

Future Directions
The next steps for LCSEC/STARS cooperation have been defined. The impressive results to date in the

areas of productivity, quality, return on investment and moral have convinced TACOM LSCEC management to
continue the work begun under this demonstration project and to expand it further throughout the organization and
this includes the following:

Creating a Cleanroom Competency Team to build CSE and process expertise in house. This group will
be responsible for continuous review and study of the application of CSE at Picatinny.

Evolve Cleanroom Software Engineering into a complete life cycle process as far as is feasible using
standard Cleanroom techniques. Work is currently underway to perform a mapping of the evolved Cleanroom
Software Engineering process, as used at Picatinny, against SEI developed Software Process Frameworks (SPF)
for the SEI CMM Levels 2 and 3. The results of this mapping will provide Picatinny with a road map of all areas
that are either not covered or are poorly covered by the currently documented CSE process. These results will be
used to identify areas for Cleanroom process definition extensions. Areas that are not practical for Cleanroom
extension will be covered with non Cleanroom processes. The result will be a complete life cycle process
definition for Picatinny to support their move to SEI CMM level 3.

Why Isn't Cleanroom the Universal Software
Development Methodology?

Johnnie Henderson
Loral Space Information Systems

Why Isn't Cleanroom the Universal Software Development Methodology?

Johnnie Henderson, Loral Space Information Systems

Cleanroom - a methodology that promises much lower error rates, higher productivity, delivery of
software on schedule and within budget - sounds like the proverbial "silver bullet" that the industry is
looking for. "Why hasn't it caught on and spread like wildfire? There are three basic reasons: a belief
that the Cleanroom methodology is too theoretical, too mathematical and too radical for use in real
software development, it advocates no unit testing by developers but instead replaces it with
correctness verification and statistical quality control- concepts that are directly opposite of how most
software is developed today, and maturity of the software development industry. Use of Cleanroom
processes requires rigorous application of defined processes in all lifecycle phases. Since most of the
industry is still operating at the ad hoc level (as defined by the SEI CMM), the industry has not been
ready to apply those techniques.

What does the experience in using Cleanroom say about whether or not these are valid concerns?
Following is a brief discussion of those concerns:

Correctness verification is too theoretical to be usable in real software development. The
fundamental approach to verification as espoused by Cleanroom is aimed at introducing
mathematical reasoning, not mathematical notation into the verification process. The principal
motivation is to provide a rigorous methodology for software development and to provide a
firm foundation as an engineering discipline. Mathematical verification of programs is done by
using a few basic control structures and defining proofs following rules specified in a
correctness theorem The proof strategy is divided into small parts that easily accumulate into
proof for a large software system[l].

The method of human mathematical verification used in Cleanroom is called functional
verification. Functional verification is organized around correctness proofs, which are defined
for the design constructs used in a software design. Using this type of functional verification,
the verification problem changes from one with an infinite number of combinations to consider
to a finite process because the correctness theorem defines the required number of conditions
that must be verified for each design construct used. It reduces software verification to
ordinary mathematical reasoning about sets and functions[2]. The objective is to develop
designs in concert with associated correctness proofs. Designs are created with the objective of
being easy to verify. A rule of thumb followed is that when designs become difficult to verify,
they should be redone for simplicity[l,2].

The Cleanroom methodology has been used to develop a variety of types of applications, most
of the applications in software that has been sold commercially or embedded in operational
application systems[3]. Individuals involved in these development efforts were a cross section
of the software engineering population and were able to apply the Cleanroom method after a
brief but intensive training program[4].

Unit testing vs. statistical quality control. Statistical quality control is used when you have
too many items to test all of them exhaustively. Instead, you statistically sample and analyze
some items and scientifically assess the quality of all of the items through extrapolation. This
technique is widely used in manufacturing in which items in a production line are sampled, the
quality is measured, then sample quality is extrapolated to the entire production line, and flaws
are corrected if the quality is not as expected.

For software, this notion has been evolved so that you perform statistical usage testing-testing
the software the way the users intend to use it. This is accomplished by defining usage
probability distributions that identify usage patterns and scenarios with their probability of
occurrence. Tests are derived that are generated based on the usage probability distributions.
System reliability is predicted based on analysis of the test results using a formal reliability
model, such as mean-time-to-failure[4].

The underlying concern is that random, statistical-based testing will not provide sufficient
coverage to ensure a reliable product is delivered to the customer. The coverage concern stems
from a misapprehension that statistical implies haphazard, large, and costly and that critical
software requirements, which may be statistically insignificant, are overlooked or untested.
Coverage is directly related to the robustness of the usage probability distributions that control
the selection process and has not proven to be a problem in current applications of the
methods. In a study performed by Dyer on the level of requirements coverage using statistical
testing, 100 per cent of the high-level requirements were covered, 90 per cent of the
subcomponent-level requirements were covered, and approximately 80 percent of all
requirements were covered[4].

The Cleanroom method asserts that statistical usage testing is many times more efficient than
traditional coverage testing in improving the reliability of software. Statistical testing, which
tends to find errors in the same order as their seriousness (from a user's point of view), will
uncover failures several times more effectively than by randomly finding errors without regard
to their seriousness. The basis for software reliability starts with the definition of a statsitical
model, generally based on the concept that input data comes in at random times and with
random contents. With defined initial conditions, any such fixed use is distinguishable from any
other use. These uses can be assembled into a sequence of uses, and the collection identified as
a stochastic process subject to evaluation using statistical methods.

Coverage testing is anecdotal and can only provide confidence about the specific paths tested.
No assessment can be made about the paths not tested. Because usage testing exercises the
software the way the users intend to use it, high-frequency errors tend to be found early. For
this reason, statistical usage testing is more effective at improving software reliability than is
coverage testing. Coverage testing is as likely to find a rare execution failure as it is to find a
frequent one. If the goal of a testing program is to maximize the expected mean-time-to-failure,
hence the reliability of the system, a strategy that concentrates on failures that occur more
frequently is more effective than one that has an equal probability of finding high- and low-
frequency failures[5].

Human functional verification has proven to be surprisingly synergistic with statistical testing
according to Mills, Dyer, and Linger[l]. Experimental data from projects where both
Cleanroom verification and more traditional debugging techniques were used show that the
Cleanroom verified software exhibited fewer errors injected. Those errors were less severe and
required less time to fix.

Software Process Maturity Factor. Using the Cleanroom methodology requires a change in
paradigm-from viewing software development as an art or craft to viewing it as an engineering
discipline. As such, it must have a rigorous foundation. In other engineering disciplines, failures
are neither expected nor accepted as normal. Other engineering professions have minimized
error by developing a sound theoretical base on which to build design practices. Cleanroom
methods provide a theoretical foundation for a comprehensive engineering process that has
been reduced to practice for commercial software development.

Using Cleanroom methods requires commitments from management to provide training (for
both management and technical personnel) in the skills needed to implement the methodology.
It also requires discipline. Management must allow the process to unfold naturally, technical
personnel must rigorously follow the process. It may require additional tools, such as some
automated support to develop the randomly generated test suites from the usage probability
distributions.

In spite of these requirements, many have found that the return made the investments worthwhile. If
being able to develop high- quality software within budget and on schedule are a concern, the
Cleanroom methodology may be worth your taking the time to investigate. Peter Senge, in his book
The Fifth Discipline^], said that 30 years is the typical incubation period for a basic innovation, a
concept that transforms an existing industry. Maybe we are now at the stage when the Clearoom
methodology will begin to take hold and make that transformation of the software development
industry.

Johnnie Henderson
Loral Space Information Systems

Software Technology Support Center
Ogden ALC/TISE

Hill AFB, UT 84056-5205
Voice: 801-777-8057 DSN 777-8057
Fax: 801-777-8069 DSN 777-8069
Internet: hendersj@ software.hill.af.mil

About the Author

Johnnie Henderson is a consultant with Loral Space Information Systems in Houston, TX. She
was the quality coordinator for the onboard shuttle software organization and leader of the project
quality team. Her efforts as a member of the onboard shuttle software development organization
helped create the software development process that was evaluated at a CMM level 5 by a team of
NASA evaluators.

Ms. Henderson helped her team to institutionalize the oversight defect analysis process for the shuttle
flight software. This activity produced significant process improvements for the software development
process, resulting in the delivery of three software releases which have supported over fourteen shuttle
missions with zero product defects.

References

1. Mills,H. D., M. Dyer, and R.C. Linger, "Cleanroom Software Engineering," IEEE Software 4, No.
5,19-24 (September 1987).

2. Dyer, ML, and A. Kouchakdjian, "Correctness Verification: Alternative to Structural Software
Testing," Information and Software Technololgy, pp.53-59, Jan./Feb. 1990.

3. Hausier, P. A, R. C. Linger, and C. J. Trammel, "Adopting Cleanroom Software Engineering with
a Phased Approach," IBM Systems Journal Vol. 33, No.l, 1994, pp. 89-109.

4. Dyer, M., The Cleanroom Approach to Quality Software Development, John Wiley & Sons, Inc.,
New York (1992).

5. Cobb, R. C, and H. D. Mills, "Engineering Software under Statistical Quality Control," IEEE
Software, pp 44-54, November 1990.

6. Linger, R. C, "Cleanroom Process Model," IEEE Software, pp 50-58, March 1994.
7. Senge, P. M., The Fifth Discipline: The Art and Practice of the Learning Organization,

Doubleday/Currency, New York, (1990).

LIST OF CLEANROOM PUBLICATIONS

Cobb, R. H., H. D. Mills, and A. Kouchakdjian, "The Cleanroom Engineering Software
Development Process Manual," SET, 1991.

Deck, M. D., and P. A. Housler, "Cleanroom Software Engineering: Theory and Practice,"
Proceedings of the Software Engineering and Knowledge Engineering Conference, Skokie, IL,
Knowledge Systems Institute, 1990.

Dyer, Michael, The Cleanroom Approach to Quality Software Development, John Wiley & Sons,
Inc. New York, 1994.

Green, S. E., and Rose Pajerski, "Cleanroom Process Evolution in the SEL," Proceedings of 16th
Annuall Software Engineering Workshop, NASA Goddard Space Flight Center, Greenbelt, MD.
1991.

Hausier, P. A., "A Recent Cleanroom Success Story: The Redwing Project," Proceedings of 17th
Annual Software Engineering Workshop," NASA Goddard Space Flight Center, Greenbelt, MD.
1992.

Kouchakdjian, A., S. Green, and V. R. Basili, "Evaluation of the Cleanroom Methodology in the
Software Engineering Laboratory," Proceedings of 14th Annual Software Engineering
Workshop, NASA Goddard Space Flight Center, Greenbelt, MD. 1989.

Linger, R. C, and H. D. Mills, "A Case Study in Cleanroom Software Engineering: The IBM
COBOL Structuring Facility," Proceeding ofCompsac, IEEE Computer Society Press, Los
Alamitos, CA., 1988, pp. 10-17.

Mills, H. D., M. Dyer, and R. C. Linger, "Cleanroom Software Engineering," IEEE Software,
Sept. 1988.

Spangler, A., and P. A. Housler, "The Cleanroom Software Engineering Process: An Overview,"
Proceedings of the 3rd International Conference for Systems Integration," Sao Paulo, Brazil,
IEEE Computer Society Press, Aug. 1994.

Tann, L. G., "OS32 and Cleanroom," Proceedings of the 1st European Industrial Symposium on
Cleanroom Software Engineering, Q-labs, Lund, Sweden, 1993.

Trammell, C. I, L. H. Binder, and C. E. Snyder, "The Automated Production Control System: A
Case Study in Cleanroom Software Engineering," ACM Transations in Software Engineering and
Methodology, Jan. 1992, pp. 81-94.

LIST OF ORGANIZATIONS THAT PROVIDE CLEANROOM SERVICES

IBM Cleanroom Software Technology
Center (CSTC)

100 Lake Forest Blvd.
Gaithersburg, MD 20877

Assessments:

Process Documentation:

Cleanroom Training:
• Cleanroom Overview
• Cleanroom System Development:

Specification and Architecture
• Cleanroom Software Development: Design

and Verification
• Cleanroom Certification.

POC: Philip Housler
Phone: 301-803-2684
internet: housler@vnet.ibm.com

Cleanroom Project Consulting:
• Cleanroom Project Planning and Project

Management
• Cleanroom Specification Consulting
• Cleanroom Code Development and

Verification Consulting
• Software Reliability Testing Consulting

High-Ouality Geanroom Software Development

Cleanroom Reliability Testing

Software Engineering Technology, Inc.
4600 Forbes Blvd.

Lanham, MD 20706

Services

Engineering Software Solutions:

Training:

Process Engineering:

Software Certification:

Research and Development:

Phone: 301-731-6200
FAX: 301-731-6203

Products

Cleanroom Engineering Handbooks:

Cleanroom Engineering Process Assistant:

The Certification Package:
• The Certification Assistant
• The Software Certifier's Handbook
• The Software Certifier' s Training Program
• Certification Support Services

The following list was identified just prior to publication and we were not able to obtain a
summary of services. Feel free to contact these organizations/people for additional information
on Cleanroom services.

STARS Center
801 N. Randolph St.
Suite 400
Arlington, VA 22203
703-351-5300

Richard C. Linger
20221 Darlington Drive
Gaithersburg, MD 20879
301-926-4858

