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CLEANROOM PAMPHLET 

"Software products with reliable operating characteristics have been notoriously difficult 
to develop. The Cleanroom method introduces sound software engineering into the development 
cycle and provides the quality control that's essential for product success." * 

This pamphlet is part of the ongoing effort by the Software Technology Support Center 
(STSC) in assisting Air Force organizations to identify, evaluate and adopt technologies that will 
improve: (1) the quality of their products, (2) their efficiency in producing those products, and (3) 
their ability to accurately predict the cost and schedule of their delivery. The publication of this 
pamphlet makes no implications that the STSC is endorsing the Cleanroom process over any 
other technology. The STSC just feels that this is a technology that is worth looking into as a 
method for improving software quality, and possibly increasing productivity. The Cleanroom 
process may be a viable method for some organizations and may not work for others. Cleanroom, 
just like any other technology, is something that needs to be evaluated by the individual 
organizations. 

The STSC's Software Quality Engineering (SQE) Team is responsible for providing 
products and services pertaining to software quality. Members of the SQE Team are: Bryce 
Ragland, Johnnie Henderson (LORAL), and Mark Dawood (SAIC). 

The following items are included in the Cleanroom Pamphlet: 

"Cleanroom Software Engineering: Management Overview", Richard C. Linger 
"Adopting Cleanroom software engineering with a phased approach", P. A. Hausier, 
R. C. Linger, C. J. Trammell, IBM Systems Journal vol. 33, no. 1,1994 
"Cleanroom Process Model", Richard C. Linger, IEEE Software, March 1994 
"Experience Using Cleanroom Software Engineering in the US Army", S. Wayne 
Sherer, Paul G. Arnold, Ara Kouchakdjian, Proceeding from STC'94 (updated) 
"Why Isn't Cleanroom the Universal Software Development Methodology?", Johnnie 
Henderson 
Bibliography of Cleanroom Articles/Books 
Listing of Organizations that assist with Cleanroom Adoption 

1 Michael Dyer, The Cleanroom Approach to Quality Software Development, John Wiley & Sons, Inc. New York, 
1994 (Back Cover) 
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Cleanroom Software Engineering: 
Management Overview 

Richard C. Linger 

Developing Software Under Statistical Quality Control 

Cleanroom software engineering is a theory-based, team-oriented process for on-schedule 
development and certification of ultra-high-reliability software systems with improved productivity 
under statistical quality control [2,3]. The Cleanroom name is borrowed from hardware 
Cleanrooms, with their emphasis on prevention of errors through engineering discipline, rather than 
error removal. Cleanroom combines rigorous methods of software specification, design, 
correctness verification, and statistical quality certification in a new life cycle model based on 
incremental development. 

You can use the Cleanroom process and supporting technologies to develop software systems that 
approach zero defects and have scientifically certified reliability for operational field use. 

In contrast to traditional development approaches, in the Cleanroom process you embed software 
development and testing within a formal statistical quality control process. In such a process, 
software engineering is required to create software that approaches zero defects and can enter 
system testing directly [1]. Then statistical usage-based testing is used to provide statistical 
inferences about the reliability of the software. This systematic process of assessing and controlling 
software quality during development permits you to certify product reliability at delivery, based on 
a complete public record of the testing and all engineering change activity required to deliver 
acceptable software. 

The significance of a process under statistical quality control is well illustrated by modern 
manufacturing techniques where the sampling of output is directly fed back into the process to 
control quality. Once the discipline of statistical quality control is in place, management has 
objective visibility into the software development process and can control process changes to 
control product quality. 

Key ingredients of the Cleanroom process are a new development life cycle and independent 
quality assessment through statistical testing. You begin the development life cycle with a 
specification that not only defines functional requirements, but also identifies statistical usage of the 
software and a nested sequence of user-function subsets that can be released and tested as 
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increments which accumulate into the final system.    Rigorous software engineering methods 
provide design and correctness verification techniques to create provably correct software. 
Correctness verification by software engineering teams has proven to be a powerful and effective 
process for approaching zero defects prior to any execution of the software. 

You place software under engineering change control from first execution on, and all execution is 
controlled by an independent certification team that uses statistical testing methods to evaluate 
software quality. Traditional structural or coverage tests, no matter how carefully selected or how 
comprehensive their test plans, provide only elaborate anecdotes of quality, with no basis for 
scientific statistical extrapolation to operational environments. However, statistical testing in a 
quality control process results in objective quality certification of software at acceptance. 

Cleanroom Results 

The Cleanroom process has been developed, reduced to practice, and demonstrated in development 
of a variety of software systems in a various languages and environments. Published results of 
projects totaling over a million lines of code carried out by IBM, STARS, NASA, and other 
organizations [1,2] have shown substantial improvements over traditional results, as the following 
examples illustrate: 

Quality.   Improvements of 10-20X and more over baseline performance have been achieved. 
Some Cleanroom-developed systems have experienced no errors whatsoever in field use.    For 
example, IBM developed an embedded, real-time, bus architecture, multiple-processor device 
controller product that experienced no errors in two years use at over 300 customer locations. 

Productivity. Gains of 1.5-5X over baseline performance have been reported. For example, an 
Ericsson Telecom project to develop a 374 KLOC operating system reported gains of 1.7X in 
development productivity, 1.6X in testing productivity, and an IBM project to develop a network 
management and outage avoidance product reported 2X improvement in development productivity. 

Life cycle costs. Dramatic reductions have been achieved due to sharp decreases in error correction 
and maintenance costs over the life of a product.    For example, IBM developed a COBOL 
structuring product that experienced just seven minor errors in the first three years of field use, all 
simple fixes, and required a small fraction of the maintenance budget associated with products of 
similar complexity. 

Return on investment. Experience shows that Cleanroom adoption costs can be recovered on the 
first project. For example, an 11 to 1 ROI was reported by the Picatinny Arsenal STARS 
Cleanroom project, with the investment covering all Cleanroom training and consultation costs. 



You can experience other benefits of the Cleanroom process that are more difficult to quantify, but 
are real nonetheless. For example, Cleanroom statistical testing provides you with scientific 
measures of product quality for the first time, permitting objective decision-making on whether and 
when to stop testing and release products. It also provides scientific projections of quality in field 
use, the only known method for doing this. In addition, substantial increases in the job satisfaction 
of Cleanroom teams have been reported [8]. 

You can apply the Cleanroom process to development of new systems and maintenance, evolution, 
and re-engineering of existing systems. It is language, environment, and subject-matter 
independent, and can be used to develop and evolve a variety of systems, including real-time, 
embedded, host, distributed, workstation, client-server, and microcode systems. Cleanroom is 
compatible with prototyping and promotes reuse through precise definition of component 
functional semantics and certification of component reliability. 

Cleanroom is compatible with and supports performance at SEI Capability Maturity Model levels 2 
through 5 [7]. Organizations at CMM level 1 may wish to achieve level 2 before embarking on 
Cleanroom operations. 

Cleanroom Technologies 

The Cleanroom process incorporates technologies for management, development, and testing, as 
follows: 

Incremental Development. Cleanroom management is based on incremental development and 
certification of a pipeline of user-function increments that accumulate into the final product. 
System integration is top-down and continual, with system functionality growing through addition 
of successive increments. Incremental development enables early and continual assessment of 
product quality and user feedback, and facilitates improvements as development progresses. The 
incremental approach permits controlled, stepwise integration of components, avoiding the risky, 
last-minute integration often experienced in traditional development. 

Rigorous Specification and Design. The development team produces software approaching zero 
defects through use of a rigorous stepwise refinement and verification process for specification and 
design using object-based Box Structure technology [6]. Box Structures permit precise definition 
of required user function and system object architecture, and scale up to maintain intellectual 
control in large system development. A key concept in Box Structures is referential transparency, 
whereby the subspecifications for successive object refinements are developed, connected and 
verified in a coherent structure prior to their independent elaboration. In Cleanroom, correctness is 
built in, not tested in. 



Correctness Verification. All Cleanroom-developed software is subject to rigorous correctness 
verification by the development team prior to release to the certification test team. A practical and 
powerful process, verification permits development teams to completely verify the correctness of 
software with respect to specifications. A Correctness Theorem defines conditions to be met for 
achieving zero-defect software [4]. These conditions are verified in mental/verbal proofs of 
correctness in development team reviews. Even though programs of any size contain a virtually 
infinite number of paths, the theorem reduces verification to a finite number of checks and ensures 
that all software logic is completely verified in all possible circumstances of use. The verification 
step is extremely powerful in eliminating defects, and is a major factor in the dramatic quality 
improvements experienced by Cleanroom teams. 

Statistical Quality Certification. The objective of the certification test team is to provide 
scientific certification of software reliability, not to test quality in, an impossible task. Following 
correctness verification, software increments are placed under engineering change control and 
undergo first execution. Statistical usage testing is carried out to produce scientifically valid 
measures of software quality and reliability [5]. The statistical usage approach tests software the 
way users intend to use it. Test cases are generated based on usage probability distributions that 
model anticipated software use in all possible circumstances, including unusual and stress 
situations. Usage distributions can be defined in Markov models that permit substantial 
management analysis and simulation of test operations, as well as automatic test case generation 
[9]. Objective statistical measures of software reliability, such as Mean Time To Failure (MTTF), 
are computed based on test results for informed management decision-making. Because statistical 
usage testing is biased toward detection of more serious, high-frequency errors first, it is more 
effective at improving software reliability in less time than traditional testing techniques. 

Cleanroom Application 

You can apply Cleanroom practices in the following environments: 

New Systems. You can use the Cleanroom process to provide a coherent management and 
technical framework for on-schedule development under intellectual control. Incremental 
development provides for early quality assessment and user feedback on system function, and 
avoids the risk associated with late component integration in waterfall-based developments. 

Existing Systems. You can develop modifications and extensions to existing systems using 
Cleanroom technology. In addition, problem-prone modules in existing systems can be re- 
engineered to Cleanroom quality through use of design abstraction and correctness verification 
techniques. 

Cleanroom Acquisition. You can integrate the Cleanroom process into acquisition practices in 
terms of required project processes and deliverables.   For example, an incremental development 



process can be required, with incremental deliverables associated with rigorous software 
specification, design, correctness verification, and statistical reliability certification. Required 
software MTTF and other statistical measures can be specified as prerequisites for software 
acceptance at delivery. 

Phased Introduction of Cleanroom 

You can introduce the Cleanroom process into an organization in a staged manner. A successful 
strategy has been to start with pilot projects and teams for Cleanroom development. Success with 
these projects provides incentives for widespread adoption. As use of the Cleanroom process 
grows, experienced members of early teams can become leaders of new teams. 

Within a project, a phased introduction of Cleanroom process and technology elements is possible 
[1]. As experience accumulates, you can adopt successive elements of Cleanroom in a staged 
implementation. 
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Adopting Cleanroom 
software engineering 
with a phased approach 

by P. A. Hausier 
R. C. Linger 
C. J. Trammell 

Cleanroom software engineering is a theory- 
based, team-oriented engineering process for 
developing very high quality software under 
statistical quality control. The Cleanroom process 
combines formal methods of object-based box 
structure specification and design, function- 
theoretic correctness verification, and statistical 
usage testing for reliability certification to produce 
software approaching zero defects. Management of 
the Cleanroom process is based on a life cycle of 
development and certification of a pipeline of user- 
function increments that accumulate into the final 
product. Teams in IBM and other organizations 
that use the process are achieving remarkable 
quality results with high productivity. A phased 
implementation of the Cleanroom process enables 
quality and productivity improvements with an 
increased control of change. An introductory 
implementation involves the application of 
Cleanroom principles without the full formality of 
the process; full implementation involves the 
comprehensive use of formal Cleanroom methods; 
and advanced implementation optimizes the 
process through additional formal methods, reuse^ 
and continual improvement. The AOEXPERT/MVS 
project, the largest IBM Cleanroom effort to date, 
successfully applied an introductory level of 
implementation. This paper presents both the 
implementation strategy and the project results. 

Zero or near-zero defect software may seem 
like an impossible goal. After all, the expe- 

rience in the first generation of software devel- 
opment has reinforced the seeming inevitability 
of errors and persistence of human fallibility. To- 
day, however, a new reality in software develop- 
ment   belies   the   first-generation   experience. 

Cleanroom software engineering teams are able 
to develop software at a level of quality and re- 
liability that would have seemed impossible a few 
years ago, and are doing so with high productiv- 
ity. 

Cleanroom software engineering is a managerial 
and technical process for the development of soft- 
ware approaching zero defects with certified re- 
liability. u The Cleanroom process spans the en- 
tire software life cycle; it provides a complete 
discipline within which software teams can plan, 
specify, design, verify, code, test, and certify 
software. The Cleanroom approach treats soft- 
ware development as an engineering process 
based on mathematical foundations, rather than 
as a trial-and-error programming process,3"7 and 
is intended to produce software with error-free 
designs and failure-free executions. 

In traditional, craft-based software development, 
errors were accepted as inevitable, and program- 
mers were encouraged to get software into testing 
quickly in order to begin debugging. Programs 
were subjected to unit testing and debugging by 
their authors, then integrated into components, 
subsystems, and systems for more debugging. 

«Copyright 1994 by International Business Machines Corgo- 
ration. Copying in printed form for private use is permitted 
without payment of royalty provided that (1) each reproduc- 
tion is done without alteration and (2) the Journal reference 
and IBM copyright notice are included on the first page. The 
title and abstract, but no other portions, of this paper may be 
copied or distributed royalty free without further permission 
by computer-based and other information-service systems. 
Permission to republish any .other portion of this paper must 
be obtained from the Editor! 
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Product use by customers resulted in still more 
debugging to correct errors discovered in opera- 
tional use. The most virulent errors were often the 
result of fixes to other errors,8 and it was not 
unusual for software products to reach a steady- 
state error population, with new errors introduced 
as fast as old ones were fixed. Today, however, 
craft-based processes that depend on testing and 
debugging to improve reliability are understood 
to be inefficient and ineffective. Experience has 
shown that craft-based processes often fail to 
achieve the level of reliability essential to a society 
dependent on software for the conduct of human 
affairs. 

In the Cleanroom process, correctness is built 
into the software by development teams through 
a rigorous engineering process of specification, 
design, and verification. The more powerful pro- 
cess of team correctness verification replaces unit 
testing and debugging, and software enters sys- 
tem testing directly, with no execution by devel- 
opment teams. All errors are accounted for from 
first execution on, with no private unit testing 
necessary or permitted. Experience shows that 
Cleanroom software typically enters system test- 
ing approaching zero defects and occasionally no 
defects are found in all testing. 

Certification (test) teams are not responsible for 
"testing in" quality, which is an impossible task, 
but rather for certifying the quality of software 
with respect to its specification. Certification is 
performed by statistical usage testing that pro- 
duces objective assessments of product quality. 
Errors, if any, found in testing are returned to the 
development team for correction. If the quality is 
not acceptable, the software is removed from 
testing and returned to the development team for 
reverification. 

The process of Cleanroom development and cer- 
tification is carried out in an incremental manner. 
System functionality grows with the addition of 
successive code increments in a stepwise integra- 
tion process. When the final increment is added, 
the system is complete. Because successive in- 
crements are elaborating the top-down design of 
increments already in execution, interface and 
design errors are rare. 

This paper describes key Cleanroom technologies 
and summarizes quality results achieved by 
Cleanroom teams. It presents a phased approach 

to Cleanroom implementation based on the soft- 
ware maturity level of an organization, and sum- 
marizes the results of a substantial IBM Clean- 
room project (AOEXPERT/MVS*) that successfully 
applied a phased approach. 

Cleanroom perspectives 

The Cleanroom software engineering process 
evolved from concepts developed and demon- 
strated over the past 15 years by Harlan Mills and 
colleagues.3"5'9 Cleanroom practices such as step- 
wise refinement of procedure and object hierar- 
chies, team verification of correctness, and sta- 
tistical usage testing, have been successfully 
applied in commercial and governmental soft- 
ware projects over the past decade. Such prac- 
tices may not be the rule in software development 
today, but their use is growing as evidence of their 
value continues to accumulate. In many cases, 
software organizations considering a transition to 
the Cleanroom process have operational prac- 
tices in place, such as incremental development, 
structured programming, and team reviews, that 
support Cleanroom concepts. There are only a 
few key concepts that must be understood and 
accepted in a transition to the Cleanroom ap- 
proach. 10 

Practice based on theory. To be effective, any en- 
gineering discipline must be based on sound the- 
oretical foundations. Cleanroom specification, 
design, and correctness verification practices are 
based on function theory, whereby programs are 
treated as rules for mathematical functions sub- 
ject to stepwise refinement and verification.4'5 

Cleanroom testing and quality certification prac- 
tices are based on statistical theory, whereby pro- 
gram executions are treated as populations sub- 
ject to usage-based, stochastic sampling in formal 
statistical designs.3'6'11 These theoretical founda- 
tions form the basis of a comprehensive engineer- 
ing process that has been reduced to practice for 
commercial software development. A growing 
number of successful, real-world Cleanroom 
projects have demonstrated the practicality of 
these methods. 

Experienced Cleanroom practitioners and educa- 
tors have developed comprehensive technology 
transfer programs based on readily teachable, 
time-efficient approaches to such Cleanroom 
technologies as correctness verification and sta- 
tistical testing. New practitioners will find that 
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processes and tools exist that make the use of 
these Cleanroom methods highly practical.12 

Right the first time. A primary objective of the 
Cleanroom process is to prevent errors, rather than 
accepting and accommodating errors through insti- 
tutionalized debugging and rework. For this reason, 
Cleanroom development teams do not unit test and 
debug their code. Instead, they rely on rigorous 
methods of specification and design combined with 
team correctness verification. These Cleanroom 
development practices, based on mathematical 
foundations, yield quality approaching zero defects 
prior to first execution by certification teams. The 
purpose of testing in Cleanroom is the certification 
of software quality with respect to specifications, 
not the attempt to "debug in" quality. 

Management understanding and acceptance of 
this essential point—that quality will be achieved 
by design and verification rather than by testing- 
must be reflected in the development schedule. 
Time spent in specification and design phases of 
a Cleanroom development is greater than in tra- 
ditional projects. Time spent in testing, however, 
is likely to be less than traditionally required. The 
manager who wanted to start coding immediately 
because of the large amount of debugging ex- 
pected was usually right, but would have diffi- 
culty becoming part of a Cleanroom team. 

Quality costs less. A principal justification for the 
Cleanroom process is that built-in quality lowers 
the overall cost to produce and maintain a prod- 
uct. The exponential growth in the cost of error 
correction in successive life-cycle phases is well 
known. Errors found in operational use by cus- 
tomers are typically several orders of magnitude 
more costly to correct than errors found in the 
specification phase.13 The Cleanroom name, 
taken from the semiconductor industry where a 
literal cleanroom exists to prevent introduction of 
defects during hardware fabrication, is a meta- 
phor that reflects this understanding of the cost- 
effectiveness of error prevention. In the Clean- 
room process, incremental development and 
extensive team review and verification permit er- 
rors to be detected as early as possible in the life 
cycle. By reducing the cost of errors during de- 
velopment and the incidence of failures during 
operation, the overall life-cycle cost of Clean- 
room software can be expected to be far lower 
than industry averages. For example, the IBM 
COBOL Structuring Facility product, developed 

using Cleanroom techniques, has required only a 
small fraction of its maintenance budget to be 
consumed during years of field use. 

Cleanroom project schedules have equaled or im- 
proved upon traditional development sched- 
ules.14"16 In fact, productivity improvements of 
factors ranging from one and one-half to five over 

A primary objective 
of the Cleanroom process 

is to prevent errors. 

traditional practices have been observed.15"18 Ex- 
perienced Cleanroom teams become remarkably 
efficient at writing clear specifications, simplify- 
ing and restricting designs to easily verifiable pat- 
terns, and performing correctness verification. 
Cleanroom is not a more time-consuming devel- 
opment process, but it does place greater empha- 
sis on design and verification to avoid waste of 
resources in debugging and rework. 

Cleanroom quality results 

As summarized in Table 1, first-time Cleanroom 
teams in IBM and other industrial and governmen- 
tal organizations have reported data on close to a 
million lines of Cleanroom-developed software. 
The code exhibits a weighted average of 2.3 er- 
rors per thousand lines of code (errors/KLOC) in 
testing.2,15"19 This error rate represents all errors 
found in all testing, measured from first-ever ex- 
ecution through test completion. That is, it is a 
measure of residual errors remaining following 
correctness verification by development teams, 
who do not execute the software. The projects 
represent a variety of environments, including 
batch, distributed, cooperative, and real-time 
systems and system parts, and a variety of lan- 
guages, including microcode, C, C+ + , JOVIAL, 
FORTRAN, and PL/I. 

Traditionally developed software does not un- 
dergo correctness verification, but rather enters 
unit testing and debugging directly, followed by 
more debugging in function and system testing 
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Table 1   Cleanroom project results 

Year Project Quality and Productivity 

1987 IBM Flight Control: 
Helicopter Avionics System Component 
33 KLOC (JOVIAL) 

• Certification testing failure rate: 2.3 errors/KLOC 
• Error-fix reduced 5X 
• Completed ahead of schedule 

1988 IBM Cobol Structuring Facility: Product for 
automatically restructuring COBOL programs 
85 KLOC (PL/I) 

• IBM's first Cleanroom product 
• Certification testing failure rate: 3.4 errors/KLOC 
• Productivity 740 LOC/PM, 5X improvement 
• 7 errors in first 3 years of use; all simple fixes 

1989 NASA Satellite Control Project 1 
40 KLOC (FORTRAN) 

• Certification testing failure rate: 4.5 errors/KLOC 
• 50% improvement in quality 
• Productivity 780 LOC/PM 
• 80% improvement in productivity 

1990 Martin Marietta: 
Automated documentation system 
1.8 KLOC (FOXBASE) 

• First compilation: no errors found 
• Certification testing failure rate: 0.0 errors/KLOC 

(no errors found) 

1991 IBM System Software 
First increment 0.6 KLOC (C) 

• First compilation: no errors found 
• Certification testing failure rate: 0.0 errors/KLOC 

(no errors found) 

1991 IBM AOEXPERT/MVS™ Product 
107 KLOC (mixed languages) 

• Testing failure rate: 2.6 errors/KLOC 
• Productivity 486 LOC/PM 
• No operational errors from Beta test sites 

1991 IBM Language Product 
First increment 21.9 KLOC (PL/X) 

• Testing failure rate: 2.1 errors/KLOC 

1991 IBM Image Product Component 
3.5 KLOC (C) 

• First compilation: 5 syntax errors 
• Certification testing failure rate: 0.9 errors/KLOC 

1992 IBM Printer Application 
First increment 6.7 KLOC (C) 

• Certification testing failure rate: 5.1 errors/KLOC 

1992 IBM Knowledge Based System Application 
17.8 KLOC (TIRS™) 

• Testing failure rate: 3.5 errors/KLOC 

1992 NASA Satellite Control Projects 2 and 3 
170 KLOC (FORTRAN) 

• Testing failure rate: 4.2 errors/KLOC 

1993 University of Tennessee: Cleanroom tool 
20 KLOC (C) 

• Certification testing failure rate: 6.1 errors/KLOC 

1993 IBM 3490E Tape Drive 
86 KLOC (C) 

• Certification testing failure rate: 1.2 errors/KLOC 

1993 IBM Database Transaction Processor 
First increment 21.5 KLOC (JOVIAL) 

• Testing failure rate: 2.4 errors/KLOC 
• No design errors, all simple fixes 

1993 IBM LAN Software 
First increment 4.8 KLOC (C) 

• Testing failure rate: 0.8 errors/KLOC 

1993 IBM Workstation Application Component 
3.0 KLOC (JOVIAL) 

• Testing failure rate: 4.1 errors/KLOC 

1993 Ericsson Telecom AB Switching Computer OS32 
Operating System 
350 KLOC (PLEX, C) 

• Testing failure rate: 1 error/KLOC 
• 70% improvement in development productivity 
• 100% improvement in testing productivity 

NOTE: All testing failure rates are measured from first-ever              KEY:   KLOC = thousand lines of code 
execution.                                                                                                    PM      = person month 

X        = (mathematical) times 
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following. Measured from first execution, tradi- 
tional software typically exhibits 25 to 35 or more 
errors per thousand lines of code.20 First-time 
Cleanroom development teams can produce soft- 
ware with quality levels at test entry at least an 
order of magnitude better than traditionally de- 
veloped software. The following summaries of 
three selected projects from Table 1 illustrate the 
results achieved. 

IBM COBOL Structuring Facility. The COBOL 
Structuring Facility, which consisted of 85 KLOC 
of PL/I code, was the first Cleanroom product in 
IBM. It employs proprietary, graph-theoretic al- 
gorithms to automatically transform unstructured 
COBOL programs into a functionally equivalent, 
structured form for improved maintainability. Re- 
lentless design simplification in the Cleanroom 
process often results in systems that are small for 
their functionality. For example, the Cleanroom- 
developed prototype of the COBOL Structuring 
Facility, independently estimated at 100 KLOC, 
was developed using just 20 KLOC. 

Comparable to a COBOL compiler in complexity, 
the product experienced 3.4 errors/KLOC in all 
statistical testing, measured from the first execu- 
tion. Six months of intensive beta testing at a ma- 
jor aerospace corporation resulted in no func- 
tional equivalence errors ever found.21 Just seven 
minor errors were reported in the first three years 
of field use, requiring only a small fraction of the 
maintenance budget associated with traditionally 
developed products of similar size and complex- 
ity. The product was developed and certified by 
a team averaging six members, with productivity 
five times the IBM averages.16 

IBM 3490E tape drive. The 3490E tape drive is a 
real-time, embedded software system developed 
by a five-person team in three increments of C 
design with a code total of 86 KLOC. It provides 
high-performance tape cartridge support through 
a multiple processor bus architecture that pro- 
cesses multiple real-time input and output data 
streams. The product experienced 1.2 errors/ 
KLOC in all statistical testing. To meet an urgent 
business need, the third increment was shipped 
straight from development to the hardware and 
software integration team with no testing what- 
soever. Customer evaluation testing with live 
data by the integration team resulted in no errors 
being found. 

In a comparison experiment, the project team 
subjected a selected module to both unit testing 
and correctness verification. Development of ex- 
ecution scaffolding, definition and execution of 
test cases, and checking of results required one- 
and one-half person-weeks of effort and resulted 
in the detection of seven errors. Correctness ver- 
ification of the same program by the development 
team required one and one-half hours, and re- 
sulted in the detection of the same seven errors, 
plus three additional errors.1 

Ericsson OS32 operating system. Ellemtel Tele- 
communications Systems Laboratories is com- 
pleting a 350 KLOC operating system for a new 
family of switching computers for Ericsson Tele- 
com AB. The code is written in PLEX and C. The 
73-person, 33-month Cleanroom project experi- 
enced productivity improvements of 70 percent 
and 100 percent in development and testing, re- 
spectively, and the product averaged under one 
error/KLOC in all testing. Project management re- 
ported that an average of less than one person- 
hour was required to detect an error in team re- 
views, compared to an average of 17.5 person- 
hours to detect an error in testing. The project 
allocated two days per week to prepare and con- 
duct team reviews. The product team was hon- 
ored by Ericsson as the single project that had 
contributed the most to the company in 1993.18 

Cleanroom technologies 

In the Cleanroom process, the objective of the 
development team is to deliver software to the 
test team that approaches zero defects; the ob- 
jective of the test team is to scientifically certify 
the quality of software, not to attempt to "test in" 
quality. These objectives are achieved through 
management and technical practices based on the 
technologies of incremental development, box 
structure specification and design, correctness 
verification, and statistical quality certification. 

Incremental development. Management planning 
and control in Cleanroom is based on develop- 
ment and certification of ^pipeline of increments 
that represent operational user function, accumu- 
late top-down into the final product, and execute 
in the system environment.22 Following specifi- 
cation of required external system behavior, an 
incremental development plan is created to define 
schedules, resources, and functional content of a 
series of code increments to be developed and 
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certified. The initial increment contains stubs 
(small placeholder programs) that stand in for 
later increments and permit early execution of the 
code. The ultimate functionality of the code that 
will replace the stubs is fully defined in subspeci- 

When the final increment 
is integrated, the 

system is complete. 

fications for team verification of each increment 
prior to testing. As incremental development 
progresses, stubs are replaced by corresponding 
code increments, possibly containing stubs of 
their own, in a stepwise system integration pro- 
cess. When the final increment is integrated, the 
system is complete and no stubs remain. 

As each increment is integrated, the evolving sys- 
tem of increments undergoes a new step in sta- 
tistical usage testing for quality certification. Sta- 
tistical measures of quality provide feedback for 
reinforcement or improvement of the develop- 
ment process as necessary. Early increments can 
serve as system prototypes, providing an oppor- 
tunity to elicit feedback from customers to vali- 
date requirements and functionality. As inevita- 
ble changes occur, incremental development 
provides a framework for revising schedules, re- 
sources, and function, and permits changes to be 
incorporated in a systematic manner. 

Box structure specification and design. Box struc- 
tures provide a stepwise refinement and verifica- 
tion process based on black box, state box, and 
clear box forms for defining system behavior and 
deriving and connecting objects comprising a sys- 
tem architecture.5,23 Boxes are object-based, and 
the box structure process provides a systematic 
means for developing object-based systems.24 

Specifically, the black box form is a specification 
of required behavior of a system or system part in 
all circumstances of use, defined in terms of stim- 
uli, responses, and transition rules that map stim- 
ulus histories to responses. The state box form is 
refined from and verified against the black box, 
and defines encapsulated state data required to 

satisfy black box behavior. The clear box form is 
refined from and verified against the state box, 
and defines procedural design of services on state 
data to satisfy black box behavior, often intro- 
ducing new black boxes at the next level of re- 
finement. New black boxes (specifications) are 
similarly refined into state boxes (state designs) 
and clear boxes (procedure designs), continuing 
in this manner until no new black boxes are re- 
quired. Specification and design steps are inter- 
leaved in a seamless, integrated hierarchy afford- 
ing complete verifiability and traceability. 

Box structures isolate and separate the creative 
definition of behavior, data, and procedures at 
each level of refinement. They incorporate the 
essential property of referential transparency, 
such that the information content of an abstrac- 
tion, for example, a black box, is sufficient to 
define and verify its refinement into state and 
clear box forms without reference to other spec- 
ification parts. Referential transparency is crucial 
to maintaining intellectual control in complex sys- 
tem developments. Box-structured systems are 
developed as usage hierarchies of boxes, where 
each box provides services on encapsulated state 
data, and where its services may be used and re- 
used in many places in the hierarchy as required. 
Box-structured systems are developed according 
to the following principles:25 (1) all data to be de- 
fined and retained in a design are encapsulated in 
boxes, (2) all processing is defined by sequential 
and concurrent use of boxes, and (3) each use of 
a box occupies a distinct place in the usage hier- 
archy of the system. Clear boxes play an impor- 
tant role in the hierarchy by defining and control- 
ling the correct operation of box services at the 
next level of refinement. 

Correctness verification. As noted, in the Clean- 
room process, verification of program correct- 
ness in team reviews replaces private unit testing 
and debugging by individuals. Debugging is an 
inefficient and error-prone process that under- 
mines the mental discipline and concentration 
that can achieve zero defects. The intellectual 
control of software development afforded by 
team verification is a strong incentive for the pro- 
hibition against unit testing. "No unit testing" 
does not, however, mean "no use of the ma- 
chine." It is essential to use the machine for ex- 
perimentation, to evaluate algorithms, to bench- 
mark performance, and to understand and 
document the semantics of interfacing software. 
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These exploratory activities are entirely consis- 
tent with the Cleanroom objective of software 
that is correct by design. 

Elimination of unit testing motivates tremendous 
determination in developers to ensure that the 
code they deliver for independent testing is error- 
free on first execution. But there is a deeper rea- 
son to adopt correctness verification—it is more 
efficient and effective than unit testing. Programs 
of any size can contain an essentially infinite num- 
ber of possible execution paths and states, but 
only a minute fraction of those can be exercised 
in unit testing. Correctness verification, however, 
reduces the verification of programs to a finite and 
complete process. 

In  more  detail,   all  clear  box  programs   are 
composed   of  nested   and  sequenced   control 
structures,   such   as  sequence,   IF-THEN-ELSE, 
WHILE-DO, and their variants. Each such control 
structure is a rule for a mathematical function,9 

that is, a mapping from a domain or initial state to 
a range or final state. The function mapping car- 
ried out by each control structure can be docu- 
mented in the design as an intended function. For 
correctness, each control structure must imple- 
ment the precise mapping defined by its intended 
function. The Correctness Theorem4 shows that 
verification   of   sequence,   IF-THEN-ELSE,   and 
WHILE-DO structures requires checking exactly 
one, two, and three correctness conditions, re- 
spectively. While programs can exhibit an essen- 
tially infinite number of execution paths and 
states, they are composed of a finite number of 
control structures, and their verification can be 
carried out in a finite number of steps by checking 
each correctness condition in team reviews. Fur- 
thermore, verification is complete, that is, it deals 
with all possible program behavior at each level of 
refinement. The verification process defined by 
the Correctness Theorem accounts for all possi- 
ble mappings from the domain to the range of 
each control structure, not just a handful of map- 
pings exercised by particular unit tests. For these 
reasons, verification far surpasses unit testing in 
effectiveness. 

Statistical quality certification. In the Cleanroom 
process, statistical usage testing for certification 
replaces coverage testing for debugging. Testing 
is carried out by the certification team based on 
anticipated usage by customers. Usage probabil- 
ity distributions are developed to define system 

inputs for all aspects of usage, including nominal 
scenarios as well as error and stress situations. 
The distributions can be organized into probabi- 

Debugging is an 
inefficient and 

error-prone process. 

listic state transition matrices or formal gram- 
mars. Test cases are generated based on random 
sampling of usage distributions. The correct out- 
put for each test input is specified with reference 
to an oracle, that is, an independent authority on 
correctness, typically the software specification. 
System reliability is predicted based on analysis 
of test results by a formal reliability model, and 
the development process for each increment is 
evaluated based on the extent to which the reli- 
ability results attained objectives. In effect, sta- 
tistical usage testing is based on a formal statis- 
tical design, from which statistical inferences 
of software quality and reliability can be de- 
rived. 3-11-26 

Coverage testing can provide no more than an- 
ecdotal evidence of reliability. Thus, if many er- 
rors are found, does that that mean that the code 
is of poor quality and many errors remain, or that 
most of the errors have been discovered? Con- 
versely, if few errors are found, does that mean 
that the code is of good quality, or that the testing 
process is ineffective? Statistical testing provides 
scientifically valid measures of reliability, such as 
mean-time-to-failure (MTTF), as a basis for objec- 
tive management decision-making regarding soft- 
ware and development process quality. 

Empirical studies have demonstrated enormous 
variation in the failure rates of errors in opera- 
tional use.8 Correcting high-failure-rate errors 
has a substantial effect on MTTF, while correcting 
low-failure-rate errors hardly influences MTTF at 
all. Because usage-based testing exercises soft- 
ware the way users intend to use it, high-fre- 
quency, virulent'errors tend to be found early in 
testing. For this reason, statistical usage testing is 
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more effective at improving software reliability 
than is coverage testing. Statistical testing also 
provides new management flexibility to certify 
software quality for varying conditions of use and 
stress, by developing special usage probability 
distributions for such situations. For example, 
the reliability of infrequently used functions with 
severe consequences of failure can be indepen- 
dently measured and certified. 

Adopting the Cleanroom process 

Rigorous and complete Cleanroom implementa- 
tion permits development of very high quality 
software with scientific certification of reliability. 
However, substantial gains in quality and pro- 
ductivity have also occurred in partial Cleanroom 
implementations.15,18 Evidence suggests that a 
phased approach to implementation can produce 
concrete benefits and afford increased manage- 
ment control. The phased approach, combined 
with initial Cleanroom use on selected demon- 
stration projects, provides a systematic manage- 
ment process for reducing risk in technology 
transfer. Three implementation phases can be de- 
fined and sequenced in a systematic technology 
transfer process. The idea is to first introduce fun- 
damental Cleanroom principles and several key 
technologies in an introductory implementation. 
As team experience and confidence grows, in- 
creased precision and rigor can be achieved in a 
full implementation of Cleanroom technology. Fi- 
nally, an advanced implementation can be intro- 
duced to optimize the Cleanroom process. Of 
course, a particular Cleanroom implementation 
can combine elements from various phases as 
necessary and appropriate for the project envi- 
ronment. 

Introductory implementation. Key aspects of an in- 
troductory implementation are summarized in the 
first row of Table 2. The fundamental idea is to shift 
from craft-based to engineering-based processes. 
The development objective shifts from defect cor- 
rection in unit testing to defect prevention in spec- 
ification, design, and verification. As experience 
grows, developers learn they can write software 
that is right the first time, and a psychological 
change occurs, from expecting errors to expecting 
correctness. At the same time, the testing objective 
shifts from debugging in coverage testing to reli- 
ability certification in usage testing. Because Clean- 
room code is of high quality at first execution, 
testers learn that little debugging is required, and 

they can concentrate on evaluating quality. A man- 
agement opportunity exists to leverage these tech- 
nology shifts to develop systems on schedule with 
substantial improvement in quality and reduction in 
life-cycle costs. 

All development and testing is accomplished by 
small teams. Team operations provide opportu- 
nities for cross-training and a ready forum for dis- 
cussion, review, and improvement. All work 
products undergo a team-based peer review to 
ensure the highest level of quality. The size and 
number of teams varies according to resource 
availability, skill levels, and project size and com- 
plexity. Teams are organized during project plan- 
ning and their membership should remain stable 
throughout development. Cooperative team be- 
havior that leverages individual expertise is a key 
factor in successful Cleanroom operations. 

In any Cleanroom implementation, zero-defect 
software is an explicit design goal, and measured 
performance at a target level is an explicit reli- 
ability goal. The Cleanroom practices necessary 
to achieve these objectives require substantial 
management commitment. Because compro- 
mises in process inevitably lead to compromises 
in quality, it is crucial for managers to understand 
Cleanroom fundamentals—the philosophy, pro- 
cess, and milestones— and demonstrate unequiv- 
ocal support. Management commitment is essen- 
tial to successful introduction of the Cleanroom 
process. 

A key aspect of customer interaction is to shift 
from a technology-driven to a customer-driven 
approach, whereby system functional and usage 
requirements are subject to extensive analysis 
and review with customers to clearly understand 
their needs. Maintaining customer involvement in 
specification and certification helps avoid devel- 
oping a system that approaches zero defects but 
provides the wrong functionality for the user. 

Unlike the traditional life cycle of sequential 
phases, the Cleanroom life cycle is based on in- 
cremental development. In an introductory im- 
plementation, a project is scheduled and managed 
as a pipeline of increments for development and 
testing. Functional content and sequencing of in- 
crements is typically based on a natural subdivi- 
sion of system functions and their expected us- 
age. Successive increments should implement 
user function, execute in the system environ- 
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ment, and accumulate top down into the final 
product. This incremental strategy supports test- 
ing throughout development rather than at com- 
pletion. It also integrates system increments in 

Management commitment is 
essential to successful 

introduction. 

multiple steps across the life cycle, to avoid risks 
of single-step integration of all system compo- 
nents late in a project when little time or re- 
sources remain to deal with unforeseen problems. 

In an introductory implementation, a black box 
specification is written that precisely defines re- 
quired system functionality in terms of inputs, 
outputs, and behavior in all possible circum- 
stances of use, including correct and incorrect 
use. The specification focuses on required system 
behavior from the user's viewpoint and does not 
describe implementation details. At this level, 
specifications are generally expressed in an outer 
syntax of specification structures, such as tabular 
formats or variants of Box Description Language 
(BDL),5 and an inner syntax of natural language. 
Cleanroom specifications are important working 
documents that drive design and certification ac- 
tivities, and they must be kept current for effec- 
tive team operations. Definition of system user's 
guides is initiated in parallel with specifications, 
for elaboration and refinement throughout the de- 
velopment. 

In the design process of an introductory imple- 
mentation, state and clear box concepts are im- 
plemented using sound software engineering 
practices, including stepwise refinement, struc- 
tured programming, modular design, information 
hiding, and data abstraction. Successive incre- 
ments are specified and designed top-down 
through stepwise refinement, with frequent team 
review and discussion of design strategies.8 Step- 
wise refinement requires substantial look-ahead 
and analysis, as successive design versions are 
developed and revised. In this process, a relent- 

less team drive for design simplification can result 
in substantial reductions in the size and complex- 
ity of systems, for more efficient correctness ver- 
ification and subsequent maintenance. 

Design with intended functions is a fundamental 
practice at the introductory level. High-level in- 
tended functions originate in system specifica- 
tions, and are refined into control structures and 
new intended functions. Expressed primarily in 
natural language, intended functions are recorded 
as comments attached to key control structures in 
designs. Intended functions precisely define re- 
quired behavior of their control structure refine- 
ments. Behavior is defined in functional, non- 
procedural descriptions of the derivation of 
output data from input data. Intended function 
refinements are expressed in a restricted set of 
single-entry, single-exit control structures with 
no side effects, such as sequence, IF-THEN-ELSE, 
WHILE-DO, and their variants. Each control struc- 
ture may contain additional intended functions 
for further refinement. This stepwise specifica- 
tion and design process continues until no further 
intended functions remain to be elaborated. In- 
tended functions provide a precise road map for 
designers in refining design structures, and are 
essential to team verification reviews. 

The last intellectual pass through a design occurs 
in team-based correctness verification, another 
fundamental practice in an introductory imple- 
mentation. At the design level, verification re- 
views prove correctness of program control 
structures, unlike traditional code inspections 
that trace program flow paths to look for errors. 
The verification process is based on reading and 
abstracting the functionality of control structures 
in designs and comparing the abstractions with 
specified intended functions to assess correct- 
ness. Team members read, discuss, evaluate, and 
indicate agreement (or not) that designs are cor- 
rect with respect to their intended behavior. If 
changes are required, the team must review and 
verify the modifications before the designs can be 
considered finished. Verification reviews provide 
team members with deep understandings of de- 
signs and their correctness arguments. Reviews 
are conducted with the understanding that the en- 
tire team is responsible for correctness. Ultimate 
successes are team successes, and failures are 
team failures. All specifications and designs are 
subject to team review, without exception. Fol- 
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Table 2  A phased implementation for Cleanroom practice 

Cleanroom 
.Practice 

Implementation 

Management 
and 

Team Operations 

Customer 
Interaction 

Incremental 
Development 

System 
Specification 

Introductory 
Implementation 

• Document an introductory 
Cleanroom process. 

• Shift from craft-based to 
engineering-based processes. 

• Shift from defect correction 
in unit testing to defect 
prevention in specification, 
design, and verification. 

• Shift from debugging in 
coverage testing to quality 
certification in usage testing. 

• Shift from individual to small 
team operations with team 
review of all work products. 

• Establish Geanroom projects 
and provide commitment, 
education, and recognition 
to teams. 

• Develop to schedule with 
substantial quality 
improvement and life cycle 
cost reduction. 

• Shift from technology- 
driven to customer- 
driven development 

• Analyze and clarify 
functional requirements 
with customers to 
develop functional 
specifications. 

• Analyze and clarify 
usage requirements with 
customers to develop 
usage specifications. 

• Review and validate 
functional and usage 
specifications with 
customers. 

»Revise functional and 
usage specifications as 
necessary for changing 
requirements. 

• Shift from a 
sequential 
(waterfall) to an 
incremental process. 

• Define increments 
that implement user 
function, execute in 
the system 
environment, and 
accumulate top down 
into the final product. 

• Define and evolve an 
incremental 
development plan for 
schedules, resources, 
and increment content 

• Carry out scheduled 
incremental 
development and 
testing with stepwise 
integration of 
increments. 

• Shift from informal, 
throwaway specifica- 
tions to precise, 
working specifications 
kept current through 
the project life cycle. 

• Define specifications 
of system boundaries, 
interfaces, and required 
external behavior in all 
possible circumstances 
of use, including correct 
and incorrect use. 

• Express specifications 
in systematic forms 
such as tables that 
define required behavior 
in natural language. 

■ Develop and evolve 
system user's guides in 
parallel with 
specifications. 

Full 
Implementation 

• Document a full Cleanroom 
process. 

• Increase development rigor 
with box structure 
specification, design, and 
correctness verification. 

• Increase testing rigor 
with scientific measures of 
reliability. 

• Establish larger Cleanroom 
projects as teams of small 
teams with experienced 
leaders from previous 
projects. 

■ Develop to schedule with 
substantial quality and 
productivity improvement 
and life cycle cost reduction. 

• Educate customers in 
Cleanroom to increase 
value, cooperation, 
and responsiveness to 
customer needs. 

• Review black box 
functional specifications 
with customers to 
support increased rigor 
in specification. 

• Review usage 
specifications with 
customers to support 
increased rigor in 
statistical usage testing. 

• Provide customers 
with prototypes 
and accumulating 
increments for 
evaluation and feedback. 

■ Define increments to 
incorporate early 
availability of 
important functions 
for customer feedback 
and use. 

■ Rapidly revise 
incremental plans for 
new requirements 
and actual team 
performance, and 
respond to schedule 
and budget changes. 

■ Develop prototypes 
as necessary to 
validate customer 
requirements 
and operating 
environment 
characteristics. 
Define black box 
specifications in 
systematic structures 
such as transition 
tables expressed in 
conditional rules 
and precise 
natural language. 

Advanced 
Implementation 

• Document an advanced 
Cleanroom process. 

• Establish a Cleanroom 
Center of Competency to 
monitor Cleanroom 
technology and train and 
consult with teams. 

1 Establish Cleanroom projects 
across the organization led 
by experienced Cleanroom 
practitioners. 
Develop to schedule with 
substantial quality and 
productivity improvements 
and life cycle cost reduction, 
even in emergency and 
adverse circumstances. 

• Assist customers in 
leveraging the quality 
ofCleanroom- 
developed software for 
competitive advantage. 

• Contract with customer 
for reliability warranties 
based on certification 
with agreed usage 
distributions and 
reliability models. 

• Establish cooperative 
processes with 
customers for recording 
operational system 
usage to calibrate and 
improve reliability 
certification. 

• Incorporate 
comprehensive 
reuse analysis and 
reliability planning 
in incremental 
development plans. 

• Plan increment 
content to manage 
project risk by early 
development of 
interface 
dependencies, critical 
functions, and 
performance-sensitive 
processes. 

> Incorporate advances 
in formal specification 
methods into local 
practices. 

1 Develop guidelines for 
specification formats 
and conventions based 
on team experience. 

1 Apply mathematical 
techniques in black 
box specifications 
to define complex 
behavior with precision. 
Express black box 
specifications where 
appropriate with 
specification functions 
and abstract models. 
Develop a specification 
review protocol for 
team reviews based 
on team experience. 
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System Design 
and 

Implementation 

• Shift from programming by 
aggregation of statements to 
design by stepwise refinement 
of specifications. 

• Refine specifications into 
structured, modular designs 
using good software engineering 
practices with substantial look 
ahead and analysis. 

• Express designs in control 
structures and case-structured 
intended functions expressed in 
natural language. 

• Conduct frequent team 
development reviews to 
communicate, simplify, and 
improve evolving designs. 

• Conduct execution experiments 
to document the system 
environment and semantics of 
interfacing software. 

Correctness 
Verification 

• Refine black boxes 
(specifications) into state boxes 
(data designs) and state boxes 
into clear boxes (procedure 
designs) and new black boxes. 

• Define state boxes in data 
designs and systematic structures 
such as transition tables 
expressed in conditional rules 
and precise natural language. 

• Define clear boxes in control 
structures and intended functions 
expressed in conditional rules 
and precise natural language. 

• Encapsulate system data in 
boxes and define processing 
by use of box services. 

• Identify opportunities for reuse 
of system components. 

Shift from unit testing by 
individuals to correctness 
verification by teams. 
Shift from path tracing in 
code inspections to 
functional analysis in 
verification reviews. 
Conduct demonstration 
verification reviews to set 
expectations and train 
teams. 

' Verify all control 
structures in team reviews 
by reading, function 
abstraction, and 
comparison to intended 
functions. 

> Verify all design changes 
in team reviews and 
deliver verified 
increments to testing for 
first execution. 

Statistical Testing 
and 

Reliability Certification 

• Shift from coverage testing 
to usage testing. 

• Define high-level usage 
distributions in systematic 
structures such as hierarchical 
decision trees. 

• Develop/acquire test cases 
from a user perspective 
based on system specifications 
and usage distributions. 

• Evaluate quality of each 
increment through analysis 
of measures such as failure 
rates and severity levels. 
Return low-quality increments 
to development for additional 
design and reverification. 

Process 
Improvement 

Incorporate advances in formal 
design methods into local 
practices. 

■ Use box structures to document 
the precise semantics of 
interfacing software. 

■ Develop guidelines for design 
formats and conventions based 
on team experience. 

• Apply mathematical techniques 
in state and clear box designs to 
define complex behavior with 
precision. 

■ Develop a design review 
protocol for team development 
reviews based on team 
experience. 

• Establish libraries of reusable, 
certified designs. 

• Improve introductory 
practices through 
increased precision and 
formality in verification 
reviews. 

• Improve verification by 
introducing mental proofs 
of correctness based on 
box structure theory and 
Correctness Theorem 
correctness conditions. 

• Document and reuse 
proof arguments for 
recurring design patterns. 

• Simplify and standardize 
designs where possible to 
reduce proof reasoning. 

• Incorporate advances in 
formal verification 
methods into local 
practices. 

• Use trace tables as 
necessary to support 
mental proofs of 
correctness. 

• Document written proofs 
of correctness as required 
for critical system 
functions. 

• Develop verification 
protocols and extended 
proof rules for 
application-, language-, 
and environment-specific 
semantics. 

> Establish reliability targets 
and conduct statistical 
usage testing for reliability 
certification. 

• Define usage probability 
distributions for all 
circumstances of use in 
formal grammers or state 
transition matrices. 

• Define alternative 
distributions for special 
environments and critical 
and unusual usage. 

• Use automated generators 
to create test cases randomized 
against usage probability 
distributions. 

• Use reliability models to 
produce statistical 
reliability measures based 
on analysis of test results. 

• Shift from informal review 
of lessons learned to a 
systematic, documented 
improvement process. 

• Measure team productivity, 
quality, and cost, 
and analyze for process 
improvements. 

• Document improvements 
to the introductory 
implementation based on 
lessons learned from each 
increment. 

• Improve or sustain the 
development process based 
on quality results of 
increment testing. 

• Assess customer satisfaction 
with Cleanroom-developed 
systems for process 
improvements. 

• incorporate advances in 
scientific software certification 
methods into local practices. 

• Apply experience of 
prior Cleanroom projects 
and customers in setting 
reliability targets. 

• Employ usage analysis to 
validate functional 
specifications and plan 
increment content. 

• Use automated tools to 
generate self-checking test 
cases. 

• Collect customer usage 
data to track conformance of 
usage distributions to actual 
field use. 
Apply and evaluate multiple 
reliability models for best 
prediction of system 
reliability' in the development 
environment. 

Document improvements to 
the full implementation 
based on team decisions in 
process reviews after each 
increment. 
Use baseline measurements 
from introductory projects 
to set quality and 
productivity objectives. 
Improve or sustain the 
development process based 
on reliability measurements 
of each increment. 

• Conduct causal analysis of 
failures found in testing and 
use to identify process areas 
for improvement. 

• Conduct surveys of customer 
satisfaction with Cleanroom- 
developed systems for 
process improvement. 

Use the full rigor of statistical 
process control to analyze 
team performance. 
Compare team performance 
with locally-defined process 
control standards for 
performance. 

- Use error classification 
schemes to improve specific 
Cleanroom practices in 
specification, design, 
verification, and testing. 
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lowing verification, increments are delivered to 
the test team for first execution. 

In an introductory implementation, usage testing 
based on external system behavior replaces cover- 
age testing based on design internals. Usage infor- 
mation is collected by analyzing functional specifi- 
cations and surveying prospective users (where 
users may be people or other programs). Based on 
this information, a high-level usage profile is devel- 
oped, including nominal scenarios of use, as well as 
error and stress situations. A usage profile can be 
recorded in systematic structures such as hierar- 
chical decision trees that embody possible usage 
patterns in compact form. Next, test scenarios are 
defined based on the usage profile. The idea is that 
the test cases represent realistic scenarios of user 
interaction, including both correct and incorrect us- 
age. For example, if particular system functions are 
used frequently in particular patterns with occa- 
sional user mistakes, this usage should be reflected 
in the test suite. At this stage, the usage profile may 
not be extremely precise or detailed, but it does 
contain sufficient information for the test team to 
generate realistic test cases. 

The effectiveness of the development process is 
measured by system performance in testing with 
respect to predetermined quality standards, such 
as failure rates and severity levels. (More precise 
statistical measures, such as MTTF and improve- 
ment ratio, are introduced in the full implemen- 
tation.) If test results show that the development 
process is not meeting quality objectives, testing 
ceases and the code is removed from the machine 
for redevelopment and reverification by the de- 
velopment team. 

Process improvement is a fundamental activity in 
an introductory implementation. The idea is to 
shift from informal discussions of lessons learned 
to a systematic, documented improvement pro- 
cess. Baseline measurements of fundamental 
project characteristics, such as quality, produc- 
tivity, and cost, provide a basis for assessing pro- 
gress and making improvements. The quality re- 
sults of usage testing can guide changes to the 
development process. In addition, customer sat- 
isfaction with Cleanroom-developed systems can 
highlight process areas requiring improvements. 

Full implementation. Introductory Cleanroom im- 
plementation establishes a framework for matur- 
ing the process to a full implementation. As sum- 

marized in the second row of Table 2, full 
implementation adds rigor to practices estab- 
lished in the introductory phase through formal 
methods of box structure specification and de- 
sign, correctness verification, statistical testing, 
and reliability certification. For a Cleanroom pro- 
ject of substantial size and complexity, a team- 
of-teams approach can be applied, whereby the 
hierarchical structure of the system under devel- 
opment forms the basis for organizing, partition- 
ing, and allocating work among a corresponding 
hierarchy of small teams. 

An opportunity exists for more extensive cus- 
tomer interaction in a full Cleanroom implemen- 
tation. Customers can be provided with education 
on Cleanroom practices to improve the effective- 
ness of functional and usage specification analysis 
and review. In addition, prototypes and accumu- 
lating increments can be provided to customers 
for evaluation and feedback. 

Managers and team leaders can leverage Clean- 
room experience into additional flexibility in in- 
cremental development to accommodate chang- 
ing requirements, and shortfalls and windfalls in 
team performance within remaining schedule and 
budget. Increment planning can emphasize early 
development of useful system functionality for 
customer feedback and operational use. 

In specification and design, prototyping and ex- 
perimentation are encouraged to clarify and val- 
idate requirements, and to understand and doc- 
ument semantics of interfacing software. The 
formal syntax and semantics of box structures are 
used for black, state, and clear box refinements. 
Black boxes and state boxes are recorded in an 
outer syntax of formal structures, such as tran- 
sition tables, with inner syntax expressed in pre- 
cise conditional rules, often given as conditional 
concurrent assignments combined with precise 
natural language. In clear box design, intended 
functions are recorded at every level of refine- 
ment, expressed in conditional concurrent assign- 
ments and precise natural language. 

A box-structured system is specified and de- 
signed as a hierarchy of boxes, such that appro- 
priate system data are encapsulated in boxes, pro- 
cessing is defined by using box services, and 
every use of a box service occupies a distinct 
place in the hierarchy. Box structures promote 
early identification of common services, that is, 
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reusable objects, that can simplify development 
and improve productivity. Duplication of effort is 
avoided when team members have an early 
awareness of opportunities for use and reuse of 
common services. Rigorous team verification re- 
views are conducted for all program structures, 
using mental proofs of correctness based on box 
structure theory and the correctness conditions of 
the Correctness Theorem. 

Statistical testing involves a more complete and 
experimentally valid approach than in an intro- 
ductory implementation. Reliability objectives 
are established and extensive analysis of antici- 
pated system usage is carried out. Comprehen- 
sive specifications of the population of possible 
system inputs are defined in usage probability dis- 
tributions recorded in formal grammars or state 
transition matrices. Automated tools are used to 
randomly generate test cases from the distribu- 
tions, and the correct output for each test input is 
defined based on the system specification. For 
example, the IBM Cleanroom Certification Assis- 
tant (CCA)27 automates elements of the statistical 
testing process based on a formal grammar model 
for usage probability distributions. It contains a 
Statistical Testcase Generation Facility for com- 
piling distributions (expressed in a Usage Distri- 
bution Language) and creating randomized test 
cases. Reliability models are employed to mea- 
sure system reliability based on test results, and 
the development process for each increment is 
evaluated based on the extent to which reliability 
results meet objectives. The CCA provides an au- 
tomated reliability model, the Cleanroom Certi- 
fication Model, that analyzes test results to com- 
pute MTTF, improvement ratio, and other sta- 
tistical measures. Alternative distributions are 
often employed to certify the reliability of special 
aspects of system behavior, for example, infre- 
quently used functions that exhibit high conse- 
quences of failure. 

Process improvement is established through re- 
views, following completion of each increment, 
to incorporate -team recommendations into the 
documented Cleanroom process. Causal analysis 
of failures and comprehensive customer surveys 
can provide additional insight into process areas 
requiring improvement. 

Advanced implementation. Key elements of an ad- 
vanced implementation are summarized in the 
third row of Table 2. At this level of experience, 

the Cleanroom process is optimized for the local 
environment and continually improved through 
advances in the software engineering technology. 
A Cleanroom center of competency can be es- 
tablished, staffed by expert practitioners to mon- 
itor advances in Cleanroom technology and pro- 
vide training and consultation to project teams. 
The Cleanroom process can be scaled up to ever 
larger projects and applied across an organiza- 
tion. An opportunity exists to achieve Cleanroom 
quality, productivity, and cost improvements 
even in emergency and adverse system develop- 
ments. 

Product warranties may be possible in customer 
contracts, based on certification with usage dis- 
tributions and reliability models agreed to by both 
parties. In the future, a capability for developing 
software with warranted reliability could become 
a major differentiating characteristic of software 
development organizations. Customers can ben- 
efit by capturing actual usage from specially in- 
strumented versions of Cleanroom-developed 
systems, to permit test teams to improve the ac- 
curacy of usage distributions employed in certi- 
fication. 

Incremental development can be used to manage 
project risk through early development of key in- 
terfaces with pre-existing software, important 
user functions, and performance-sensitive com- 
ponents. Increments can also be defined to isolate 
and reduce dependence on areas of incomplete or 
volatile requirements, and to focus on early ini- 
tiation of complex, long-lead-time components. 
Advanced incremental development also in- 
cludes systematic reuse and reliability planning,28 

facilitated by such tools as the Cleanroom Reli- 
ability Manager.29 In this approach, libraries of 
reusable components are searched for functions 
identified in specification and top-level design. If 
the reliability of candidate components is not 
known, statistically valid experiments are con- 
ducted to estimate reliability. If reliability of a 
candidate component has previously been certi- 
fied, the usage profile used in that certification is 
compared with the new usage profile to determine 
if the previous certification is valid for the new 
use. Once reliability estimates exist for new and 
reused components, an estimate of total system 
reliability is generated through calculations based 
on top-level transition probabilities between sub- 
systems. The results of this analysis are used to 
set reliability requirements for components, eval- 
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uate the viability of component reuse, and factor 
reliability risks into increment planning. 

An advanced use of box structure specification in- 
volves formal mathematical and computer science 
models appropriate to the application. Formal black 
box and state box outer syntax used in full Clean- 
room implementation is combined with formal in- 
ner syntax expressed as propositional logic, pred- 
icate calculus, algebraic function composition, BNF 
(Backus Naur form) grammars, or other formal no- 
tation that affords a clear and concise representa- 
tion of function. Clear box designs are expressed in 
design languages for which target language code 
generators exist, or in restricted subsets of imple- 
mentation languages, thereby eliminating opportu- 
nities for new errors in translation. 

In verification reviews, trace tables are employed 
where appropriate for analysis of correctness, 
and written proofs are recorded for critical func- 
tions, particularly in life-, mission-, and enter- 
prise-critical systems. Application-, language-, 
and environment-specific proof rules and stan- 
dards provide a more complete framework for 
team verification. Locally-defined standards have 
been shown to be more effective than generic 
standards in producing consistent practitioner 
judgment about software quality.30 In an ad- 
vanced implementation, the documented process 
includes environment-specific protocols for spec- 
ification, design, and verification based on team 
experience. 

In an advanced approach to statistical testing, 
Markov- or grammar-based automated tools can 
be used to improve efficiency and effectiveness. 
For example, the IBM Cleanroom Certification 
Assistant permits generation of any required 
number of unique, self-checking test cases. In ad- 
dition, the rich body of theory, analytical results, 
and computational algorithms associated with 
Markov processes have important applications in 
software development.31 Both formal grammar 
and Markov usage models can reveal errors, in- 
consistencies, ambiguities, and data dependen- 
cies in specifications early in development, and 
serve as test case generators for statistical testing. 
Initial versions of systems can be instrumented to 
record their own usage on command, as a base- 
line for analysis and calibration of usage distri- 
butions in certification of subsequent system ver- 
sions. '•■ 

An advanced implementation can benefit from a 
locally-validated reliability model for software 
certification. Just as locally-validated standards 
enable more consistent practitioner judgment 
about software quality, a locally-validated reli- 
ability model will enable more accurate predic- 
tion of operational reliability from testing results. 

In an advanced implementation, the full rigor of 
statistical process control can be applied to pro- 
cess improvement. Team accomplishments can 
be compared to locally-defined process control 
standards for performance. Errors can be cate- 
gorized according to an error classification 
scheme to target specific Cleanroom practices for 
improvement. 

Choosing an implementation approach 

Cleanroom software engineering represents a 
shift from a paradigm of traditional, craft-based 
practices to rigorous, engineering-based prac- 
tices, specifically as follow. 

From: 

Individual operations 
Waterfall development 
Informal specification 
Informal design 
Defect correction 
Individual unit testing 
Path-based inspection 
Coverage testing 

Indeterminate reliability 

To: 

Team operations 
Incremental development 
Black box specification 
Box structure refinement 
Defect prevention 
Team correctness verification 
Function-based verification 
Statistical usage testing 
Certified reliability 

A phased approach to Cleanroom implementation 
enables an organization to build confidence and 
capability through gradual introduction of new 
practices with corresponding growth in process 
control. If organizational support and capability 
is sufficient for full implementation, the highest 
software quality and reliability afforded by Clean- 
room practices can be achieved. Otherwise, a 
phased implementation is recommended. In gen- 
eral, a software organization that employs infor- 
mal methods of specification and design, relies on 
coverage testing and defect correction to achieve 
quality, and has little experience with team-based 
operations, can gain the most benefit through an 
introductory implementation. This first phase in- 
troduces a comprehensive set of practices span- 
ning project management, development, and test- 
ing, but without the full formality of Cleanroom 
technology. Once an organization successfully 
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completes a project using the introductory prac- 
tices, it has prepared itself for a full implementa- 
tion. Likewise, maturation from full to advanced 
implementation can occur when the practices of 
the second stage have been successfully demon- 
strated. 

Note that very few teams in reality will implement 
the precise set of practices defined within each 
implementation. Each team embodies unique 
skills, processes, and experiences that must be 
assessed when choosing an appropriate imple- 
mentation. It is often the case that a team can best 
utilize practices from more than one implemen- 
tation level. For example, a team using an intro- 
ductory implementation may have had prior 
experience with inspections and code reviews. 
Consequently, it may shift to a full or advanced 
implementation of the system design and verifi- 
cation practices. Perhaps another mature Clean- 
room team, using primarily advanced practices, 
will find the rigor of the second phase of system 
specification to be sufficient. 

The well-known Software Engineering Institute 
Capability Maturity Model provides a useful as- 
sessment technique to help define the best 
Cleanroom approach.32'33 In general, higher as- 
sessment levels indicate that an organization can 
successfully adopt a more complete Cleanroom 
implementation. Organizations assessed at levels 
1 and 2 will likely benefit from an introductory 
implementation, at levels 2 and 3, a full imple- 
mentation, and at levels 4 and 5, an advanced 
implementation. 

Phased implementation on the 
AOEXPERT/MVS project 

AOEXPERT/MVS is the largest completed Clean- 
room project in IBM, both in terms of lines of code 
and project staffing. The project adopted an in- 
troductory implementation of the Cleanroom pro- 
cess for development, and realized a defect rate 
of 2.6 errors/KLOC, measured from the first exe- 
cution of the code. This represents all errors ever 
found in testing and installation at three field test 
sites. Development productivity averaged 486 
lines of code per person-month, including all de- 
velopment labor expended in specification, de- 
sign, and testing. In short, the AOEXPERT/MVS 
team produced a complex systems software prod- 
uct with an extraordinarily low error rate, while 
maintaining  high  productivity.  The  following 

summary of the project is elaborated in Reference 
15. 

The AOEXPERT/MVS product. AOEXPERT/MVS is 
a  decision-support facility that uses  artificial 

Few teams will implement 
the precise set of 

practices defined within 
each implementation. 

intelligence (AI) for predicting and preventing com- 
plex operating problems in an MVS environment. 
Primarily a host-based product, it runs in a 
NetView* environment on MVS with interfaces to 
several other IBM program products. A workstation 
component running under Operating System/2* 
(OS/2*) in the Personal System/2* (PS/2*) environ- 
ment provides the user interface for the definition 
and management of the business policies for system 
operation to be applied by AOEXPERT/MVS to avoid 
and correct system problems. 

The complex development environment required 
expertise in MVS and its subsystems, expert sys- 
tems technology, real-time tasking, message 
passing, and windows-based programming for the 
workstation component. The product was imple- 
mented using PL/I, TIRS* (an Al shell), PL/X (an 
internal IBM system language), assembler, JCL, 
and REXX for host software, and C and Presen- 
tation Manager* for workstation software. The 
environment was further complicated by two ma- 
jor dependencies on IBM system management 
products that were developed by other IBM lab- 
oratories. 

The project began in July 1989, with the first eigh- 
teen months spent in the requirements phase. De- 
velopment team staffing took place during this ini- 
tial stage. Four departments were ultimately 
established: one for requirements, two for devel- 
opment, and one for testing. Various support orga- 
nizations provided market development, quality 
assurance, information development, usability 
analysis, and business and legal services. 
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Table 3 The AOEXPERT/MVS Implementation of the 
Cleanroom process 

Cleanroom Practice Introductory Full Advanced 

Team operations X 
Customer interaction X 
Incremental development X 
System specification X 
System design X 
Correctness verification X 
Statistical usage testing X 
Reliability certification X 
Process improvement X 

The project team was newly formed, with mem- 
bers ranging from programmer retrainees to sen- 
ior programmers with 25 years of development 
experience. The project team averaged 50 people 
throughout development. Experience in the prod- 
uct domain was mixed, with considerable expe- 
rience in application development and Al, but 
very little in MVS and system programming. As it 
turned out, Al skills were utilized about 10 percent 
of the time during development, while MVS and 
system programming skills were needed 90 per- 
cent of the time. 

This was the first Cleanroom development experi- 
ence for all participants, with the exception of one 
development manager and two developers. Conse- 
quently, extensive education and training were re- 
quired to implement Cleanroom practices. The 
overall project schedule had been established in late 
1989, prior to the decision to use the Cleanroom 
process. Given the schedule and mix of skills and 
experience levels, the Cleanroom process was first 
met with healthy skepticism. The team had to grap- 
ple with three important factors at once: a new 
team, little experience in the subject domain, and 
the new Cleanroom development process. 

Defining an introductory implementation. The deci- 
sion to use the Cleanroom process was made in the 
second quarter of 1990, a year after the project 
started and six months prior to the beginning of 
development. Due to the aggressive project sched- 
ule, the large size of the organization, the lack of 
prior Cleanroom experience, and the limited 
amount of training time available, the management 
and technical team decided on a phased implemen- 
tation of the Cleanroom approach. As summarized 
in Table 3, the team defined an introductory ap- 
proach that included team-based operations, exter- 

nal specification of behavior using intended func- 
tions, design expressed in a Process Design 
Language (PDL) with automatic target translation 
(for PL/l), and staged delivery of each increment to 
independent testers for first execution. In addition 
to the introductory practices, two full practices 
were used: incremental development and team- 
based correctness verification of every line of code. 
While it was agreed that statistical testing would be 
very effective, the test team did not believe it could 
learn and apply the methodology in time for the first 
increment. The greatest concern was the late start 
on denning a usage probability distribution, a task 
normally initiated as soon as the functional speci- 
fication is available. The test team initially followed 
the spirit if not the form of usage testing, with a 
testing approach based on expected customer us- 
age. Later, statistical usage testing was employed 
for a significant subset of the product, the worksta- 
tion component, which accounted for approxi- 
mately 40 percent of total product code. 

Getting started. Cleanroom education was pro- 
vided to the entire project, with mandatory man- 
agement participation. To further define the use 
of Cleanroom process in the project environment, 
a process working group was formed to document 
the AOEXPERT/MVS Cleanroom development pro- 
cess, to establish and maintain project proce- 
dures, standards, and conventions, to establish 
and maintain a measurement and improvement 
subprocess, and to provide a formal mechanism 
to resolve process issues and make improvements. 
Each major project functional area, including ar- 
chitecture, host development, workstation devel- 
opment, test, configuration management, and qual- 
ity assurance, was represented on the process 
working group. The group documented a compre- 
hensive set of procedures and standards for an in- 
tegrated, Cleanroom-based software development 
process. This document and its subsequent use by 
the team was critical in achieving acceptance and 
ownership of the process by the team. Changes to 
the process required approval by the process work- 
ing group and management. During the develop- 
ment of AOEXPERT/MVS, a number of useful process 
revisions resulted from suggestions by team mem- 
bers in periodic meetings held to improve the de- 
velopment process. 

Applying the introductory implementation. The 
decision to use the Cleanroom process was made 
rather late in the project after the product func- 
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tional specification (PFS) document was almost 
completed. The PFS is required for IBM program 
product development, but it is not an adequate 
replacement for a Cleanroom specification, as it 
contains only a subset of the information re- 
quired. The AOEXPERT/MVS team decided to com- 
plete the PFS, and then produce a more formal 
black box, incremental specification. The formal 
specification used precise English descriptions in 
conjunction with intended functions to specify 
the external behavior of the increments. 

Following specification, project technical leaders 
created an incremental development plan that de- 
fined the functional content, development sched- 
ule, and resource requirements for three software 
increments. Although the project completion date 
had been established earlier, substantial flexibil- 
ity remained for scheduling increment develop- 
ment and testing within the overall schedule of 12 
months. Historical productivity and defect rates 
from comparable traditionally-developed applica- 
tions were reviewed and the schedules were ad- 
justed based on historical Cleanroom data, personal 
experience, and confidence. The first increment 
was planned to contain the least function of the 
three, in order to quickly familiarize the project 
team with the new Cleanroom process and devel- 
opment environment. Development of the first in- 
crement required two and one-half months, with the 
second and third increments requiring three and 
one-half months each. 

Eight principal functional components were de- 
fined for AOEXPERT/MVS and organized into func- 
tional content comprising the three increments. 
Each component was assigned to a team com- 
posed of from one to five developers, with each 
team augmented by an architect and a tester. 
Team membership remained stable throughout 
development of all three increments, helping to 
ensure continuity and growth of expertise and ca- 
pability. A functional management approach was 
adopted because each team consisted of people 
from different departments. Since each team had 
a designated team leader, management ownership 
was assigned based on the team leader. Thus, a 
manager was responsible for all teams led by 
members of the manager's department. This pro- 
cess worked well, but required daily communi- 
cation between managers, usually in the form of 
morning status meetings where schedules, plans, 
resources, and performance were addressed. 

Following increment planning, development began 
for the first increment. It immediately became ob- 
vious that the developers lacked a good understand- 
ing of the entry criteria for team correctness veri- 
fication reviews. Most understood how to perform 
verification, but underestimated the level of rigor 
and precision required in the design material. For 
example, intended functions documented in many 
of the early first increment designs precisely spec- 
ified intended behavior for normal or steady-state 
operation, but failed to specify intended behavior 
for error conditions, exception processing, and un- 
expected input. As a result, the designs could not be 
verified for correctness. 

To address this problem, project management de- 
cided that a demonstration verification review of 
an actual first increment design should be held as 
early as possible. A senior-level programmer was 
asked to prepare a design for the review. When 
the design was ready, his five-member team con- 
ducted a formal correctness verification review, 
with the remainder of the AOEXPERT/MVS organi- 
zation, numbering about 45 people, in attendance 
as observers. Everyone in attendance had a copy 
of the material and followed along with the review 
team. The review lasted about three hours, with 
the design failing to pass the verification process. 
This outcome proved to be an invaluable teaching 
tool for the project team. Most were surprised 
that the design did not pass, and even more sur- 
prised at the number of changes required to make 
it verifiable. The demonstration clearly showed 
the team what was actually expected in a Clean- 
room review, and definitely saved a substantial 
amount of time and frustration in the remainder of 
the project. Since the first increment was rela- 
tively small and straightforward, the team was 
able to learn how to correctly apply the Clean- 
room approach and still make the first delivery 
date. 

Cleanroom facilitators. The AOEXPERT/MVS proj- 
ect benefited from people with prior Cleanroom 
experience, who played dual roles as team mem- 
bers and Cleanroom methodology consultants. 
These people served as teachers and advisors, 
providing guidance on how to write verifiable de^ 
signs and conduct effective verification reviews. 
Equally important was the encouragement they 
gave and confidence they instilled in their peers 
through their example and coaching. During the 
first increment of development, one of these ex- 
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Table 4   AOEXPERT/MVS error rates measured from 
first execution 

AOEXPERT/MVS 
Project 

Industry 
Expectation 

AOEXPERT/MVS 
Project Results 

Incre-      KLOC Errors Projected   Actual    Errors/ 
ment at 30/    Errors    Software   KLOC 

KLOC Errors 

2 
3 

Subtotal 

System 
testing 

Total 

16 
50 
41 

480 
1500 
1230 

107      3210 

107      3210 

64 
200 
164 

428 

107 

535 

43 2.7 
41 0.8 
97 2.4 

181 

93 

274 

1.7 

0.9 

2.6 

Where 

• Projected errors included increment testing projected 
at 4 errors/KLOC, and system testing at 1 error/KLOC 

• Actual software errors were measured from the first 
execution 

• System testing included system, performance, and 
field testing 

perts was present at every verification review to 
ensure the methodology was followed, especially 
with respect to application of the correctness ver- 
ification conditions. During development of the 
second and third increments, other team mem- 
bers, now with experience in the Cleanroom pro- 
cess, joined with the original experts to form a 
core group of five to six facilitators who served a 
key role in acceptance, application, and improve- 
ment of the Cleanroom process. 

Team verification reviews. The Cleanroom cor- 
rectness verification process was closely fol- 
lowed. A check was made prior to every review 
to ensure that the entry criteria were satisfied, 
and a disciplined process of correctness condition 
verification for every control structure was fol- 
lowed during the review process. A moderator 
was assigned, usually one of the Cleanroom fa- 
cilitators, to ensure that the reviews were con- 
ducted properly, and that all issues were recorded 
and all changes rev'erified. The author of the de- 
sign under verification typically led the team 
through the review. Also present were a key re- 
viewer, usually the,component team leader who 
had a broad understanding of the component 
function, and other reviewers,- typically members 

of other teams whose components interfaced with 
the designs under review. Review materials were 
required to be distributed to all reviewers at least 
48 hours prior to the review, and all reviewers 
were expected to have read the materials before 
attending the review. 

Quality results. The AOEXPERT/MVS testing pro- 
cess was composed of two phases, increment 
testing and system testing. (In a full implementa- 
tion of the Cleanroom process, all testing would 
be regarded as system testing.) After examining 
data from prior Cleanroom projects, the test team 
estimated expected defect rates in testing and 
customer use of the product. Four errors/KLOC 
were estimated for increment testing, an addi- 
tional 1 error/KLOC for system testing, and an ad- 
ditional 0.5 error/KLOC for customer use after the 
product was shipped. These estimates were sig- 
nificantly lower than those customarily found for 
comparable products, but the team believed that 
such aggressive goals should be set, even for a 
first-time Cleanroom effort. 

Table 4 summarizes error rates for the three prod- 
uct increments, measured from the first execution 
of the code. For comparison, projected errors 
are shown based on an average industrial rate of 
30 errors/KLOC20 for traditional development 
projects measured from the first execution of the 
code, with a total of 3210 errors expected at this 
rate. The test team estimate of 5 errors/KLOC (4 in 
increment testing plus 1 in system testing) totaled 
to 535 errors expected. 

The AOEXPERT/MVS team produced the complex 
systems software product with only 274 errors 
found in all testing. This error rate of 2.6 
errors/KLOC was over an order of magnitude bet- 
ter than the industry average of 30 errors/KLOC, 
and nearly halved the projected Cleanroom rate 
of 5 errors/KLOC. A number of system compo- 
nents completed testing with no errors found. For 
example, five of the eight components in the first 
16 KLOC increment proved to be error-free in all 
testing. In addition, no operational errors what- 

- soever were found following product installation 
at three customer test sites, and no post-ship cus- 
tomer errors have been reported to date. 

Productivity results. Productivity estimates for 
AOEXPERT/MVS were based on rates for compa- 
rable, traditionally-developed products, modified 
by expected gains from the Cleanroom process 
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and the belief that productivity would improve 
with each successive increment. Productivity 
was estimated at 300 lines of code per person- 
month (LOC/PM) for the first increment, 350 for the 
second increment, and 400 for the third incre- 
ment. Table 5 shows actual productivity rates 
achieved, based on total lines of code divided by 
the person-months accumulated for formal spec- 
ification through testing of the final increment. 
The person-months include development staff 
only. The project achieved very competitive pro- 
ductivity rates, exceeding the projected rates by 
36 percent overall. This substantial improvement 
in productivity was a significant factor in enabling 
the project to meet its schedule. The original code 
size estimate was 72 KLOC, but the actual code 
size was significantly larger (107 KLOC) due pri- 
marily to unexpected growth in the workstation 
software (from 10 to 42 KLOC). The growth re- 
sulted from the lack of familiarity with OS/2 Pre- 
sentation Manager and unanticipated require- 
ments. Thus, while actual productivity was a 36 
percent improvement over the projected rate, ac- 
tual code size was 49 percent larger than planned. 
The increased productivity enabled the team to 
stay on schedule during the development. 

Observations. From the beginning of the project 
through delivery and testing of the first incre- 
ment, many developers and testers were some- 
what skeptical about the Cleanroom approach. 
The real turnaround in acceptance occurred after 
the first increment was delivered and tested and 
so few errors were found. In fact, several testers 
were upset and worried when they failed to find 
any errors; ironically, so were the developers. 
But this soon changed for everyone—defects 
quickly became the exception, not the rule, and a 
"right the first time" psychology took hold. 

The challenges facing a new team in an unfamiliar 
environment were great, and schedules and re- 
sources were extremely tight. Nevertheless, a 
new methodology was introduced, taught, and 
implemented with substantial success. The pri- 
mary success factors in this implementation of 
Cleanroom process were the use of an introduc- 
tory implementation, early and ongoing manage- 
ment commitment, incremental development of 
system function, demonstration reviews for team 
education, team-based peer review of all work 
products, full application of correctness verifica- 
tion, adherence to defect prevention practices, and 
the use of Cleanroom consultants and facilitators. 

Table 5   AOEXPERT/MVS productivity rates 

Incre-     KLOC    Projected Actual       % Actual 
merit Productivity Productivity   Exceeds 

LOC/PM LOC/PM      Projected 

1 
2 
3 

Average 

16 
50 
41 

300 
350 
400 

358 

400 
500 
513 

486 

+33 
+43 
+28 

+36 

Where the actual productivity was the LOC/PM 
measured from formal specification through testing 

The AOEXPERT/MVS experience is representative 
of the new level of quality that is possible in soft- 
ware development today. Cleanroom is a practi- 
cal and proven alternative to the high cost and 
poor quality frequently seen in traditional devel- 
opment processes. As evidence of its effective- 
ness continues to accumulate, the Cleanroom 
process will be increasingly adopted by organi- 
zations seeking competitive business advantage. 
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The philosophy behind 
Cleanroom software 

engineering is to avoid 

dependence on costly 

defect-removal processes 

by writing code increments 

right the first time 

and verifying their 

correctness before testing. 

Its process model 

incorporates the statistical 

quality certification of code 

increments as they 

accumulate into a system. 

c. 
\ Cleonioom Software 

Technology Center 

CLEANROOM 
PROCESS MODEL 

Today's competitive pressures and 
society's increasing dependence on 

software have led to a new focus on devel- 
opment processes. The Cleanroom pro- 
cess, which has evolved over the last de- 
cade, has demonstrated that it can improve 
both die productivity of developers who 
use it and die qualify of the software they 
produce. 

Cleanroom Software engineering is a 
team-oriented process diat makes devel- 
opment more manageable and predictable 

This article is basal nn ;i paper that ap|>ears in Pnc. 1 Stb 
Int'l Cmf. Sojh-iin- /-i«;., Il'.l-T. OS Press, Los Alamitos, 
Calif., I'M,pp. 2-13.'nclIUiESaJhwvKditorial Board 
has selected it as the best practice paper presented at 
ICSK-15.Thc Ixiard thanks Richard A. DeMillo, ICSK- 
15 I'muTam Cocluir, for his help in arranging for its pub- 
lication in U\l:.ESujhi;nr. 

because it is done under starisric.il quality 
control. 

Cleanroom is a modem approach to 
software development. In traditional, 
craft-based development, defects are re- 
garded as inevitable and elaborate defect- 
removal techniques are a part of the devel- 
opment process. In such a process, 
software proceeds from development to 
unit testing and debugging, then to func- 
tion and system testing for more debug- 
ging. In die absence of workable alterna- 
tives, managers encourage programmers 
to get code into execution quickly, so de- 
bugging can begin.Today, developers rec- 
ognize diat defect removal is an error- 
prone, inefficient activity that consumes 
resources bener allocated to getting the 
code riulit the first rime. 

so C7.J&7.159/94/SCMOO  O 1994  IEEE 
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Cleanroom teams at IBM ami other 
organizations are achieving remarkable 
quality results in both new-system devel- 
opment and modifications and extensions 
to legacy systems. The quality of software 
produced by Cleanroom development 
teams is sufficient (often near zero defects) 
for die software to enter system testing 
directly for first-ever execution by test 
teams. 

The theoretical foundations of Clean- 
room — forma! specification and design, 
correctness verification, and statistical 
testing — have been reduced to practice 
and demonstrated in nearly a million lines 
of code. Some Cleanroom projects are 
profiled in the box on p. 56. 

QUALITY COMPARISON 

Quality comparisons between tradi- 
tional methods and the Cleanroom pro- 
cess are meaningful when measured from 
first execution. Most traditional develop- 
ment methods begin to measure errors at 
function testing (or later), omitting errors 
found in private unit testing. A traditional 
project experiencing, say, five errors per 
thousand lines of code (KLOC) in func- 
tion testing may have encountered 25 or 
more errors per KLOC when measured 
from first execution in unit testing. 

At enny to unit testing, traditional soft- 
ware typically exhibits 25 to 35 or more 
errors per KLOC.' In contrast, the 
weighted average of errors fount! in 17 
Cleanroom projects, involving nearly a 
million lines of code, is 2.3 errors per 
KLOC. This number represents all errors 
found in all testing, measured from first- 
ever execution diroueh test completion — 
it is the average number of residual errors 
present after die development team has 
performet! correctness verification. 

In addition to this remarkable differ- 
ence in die number of errors, experience 
has shown a qualitative difference in die 
complexity of errors found in Cleanroom 
versus traditional software. Errors left be- 
hind by Cleanroom correctness verifica- 
tion tend not to be complex design or in- 
terface errors, but simple mistakes easily 
fount! ant! fixed by statistical testing. 

In this article. I describe die ("lean- 

room development process, from specifi- 
cation and design through correctness 
verification and statistical usage testing for 
quality certification. 

INCREMENTAL DEVELOPMENT 

The Cleanroom process is based on 
developing and certifying a pipeline of 
software increments diat accumulate into 
the final system. The increments are de- 
veloped and certified by small, indepen- 
dent teams, widi teams of teams for large 
projects. 

System integration is continual, ami 
functionality grows with 
the addition of successive 
increments. In this ap- 
proach, the harmonious 
operation of future incre- 
ments at the next level of 
refinement is predefined 
by increments already in 
execution, thereby mini- 
mizing interface ami de- 
sign errors and helping 
developers maintain in- 
tellectual control. 

The Cleanroom de- 
velopment process is in- 
tended to be "quick and clean," not "quick 
ant! dirty." The idea is to quickly develop 
die right product widi high quality for die 
user, then go on to die next version to 
incorporate new requirements arising 
from user experience. 

In the Cleanroom process, correctness 
is built in by the development team 
through formal specification, design, and 
verification. Team correctness verification 
takes die place of unit testing and debug- 
ging, and software enters system testing 
directly, with no execution by die develop- 
ment team. All errors are accounted for 
from first execution on, with no private 
debugging permitted. 

Figure 1 illustrates the Cleanroom 
process of incremental development and 
quality certification. The Cleanroom 
team first analyzes ant! clarifies customer 
requirements, with substantial user inter- 
action and feedback. Ifrequirementsarein 
doubt, die team can develop Cleanroom 
prototypes to elicit feedback iterative!}-. 

As die figure shows, Cleanroom devel- 
opment involves two cooperating teams 
and five major activities: 

♦ Specification. Cleanroom develop- 
ment begins with specification. Together, 
die development team and die certifica- 
tion team produce two specifications: 
functional and usage. Large projects may 
have a separate specification team. 

The functional specification defines 
the required external system behavior in 
all circumstances of use; the usage specifi- 
cation defines usage scenarios and their 
probabilities for all possible svstem usage, 
bodi correct and incorrect. The func- 

tional specification is die 
basis for incremental soft- 
ware development. The 
usage specification is die 
basis for generating test 
cases for incremental sta- 
tistical testing and quality 
certification. Usagespeci- 
fications are explained in 
the section on certifica- 
tion. 

♦ Increment planning. 
On the basis of these 
sjiecifications, die devel- 
opment anil certification 

teams together define an initial plan for 
developing increments diat will accumu- 
late into the final system. For example, a j 
100 KLOC system might be develojietl in 
five increments averaging 20 KLOC each. 
The time it takes to design and verify in- 
crements varies with dieir size and com- 
plexity. Increments diat require long lead 
times may call for parallel development. 

♦ Design iimlverification. The develop- 
ment team then carries out a design and 
correctness verification cycle for each in- 
crement. The certification team proceeds 
in parallel, using die usage specification to 
generate test cases that reflect the ex- 
pected use of the accumulating incre- 
ments. 

♦ Quality certification. Periodically, the 
development team integrates a completed 
increment widi prior increments antl tie- 
livers diem to die test team for execution 
of statistical test cases. The test cases arc 
run against the accumulated increments 
and the results checked for correcuiess   ! 

CLEANROOM 
DEVELOPMENT 
IS INTENDED 
TO BE "QUICK 
AND CLEAN/7 

NOT "QUICK 
AND DIRTY." 
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Figure 1. Cleanroom process model. The stacked boxes indicate successive increments. 

against the functional specification. Inter- 
fail times, that is, die elapsed rimes be- 
tween failures, are passed to a quality-cer- 
tification model- that computes objective 
statistical measures of quality, such as 
mean time to failure. The quality-certifi- 
cation model employs a reliability growth 
estimator to derive the statistical mea- 
sures. 

Certification is done continuously, 
over the life of the project. Higher level 
increments enter the certification pipeline 
first. This means major architectural and 
design decisions are validated in execution 
before the development team elaborates 
on them. And because certification is done 
for all increments as they accumulate, 
higher level increments are subjected to 
more testing than lower level increments, 
which implement localized functions. 

♦ Feedback. Errors are returned to the 
development team for correction. If the 
quality is low, managers and team mem- 
bers initiate process improvement. As widi 
any process, a good deal of iteration and 
feedback is always present to accommo- 
date problems and solutions. 

In the next sections, I describe the 
specification, design and verification, and 
quality-certification procedures. A de- 
tailed description of increment planning 
and feedback mechanisms is outside the 
scope of this article. 

FUNCTIONAL SPECIFICATION 

The object-based technology of box 
structures has proved to be an effective 
technique for functional specification. 
Through stepwise refinement, objects are 

defined and refined as different box struc- 
tures, resulting in a usage hierarchy of ob- 
jects in which the services of an object may 
be used and reused in many places and at 
many levels. Box structures, dien, define 
required system behavior and derive and 
connect objects comprising a system ar- 
chitecture.4" 

In die past, without a rigorous specifi- 
cation technology, there was little incen- 
tive to devote much effort to die specifica- 
tion process. Specifications were 
frequently written in natural language, 
widi inevitable ambiguities and omissions, 
and often regarded as throwaway stepping 
stones to code. 

Box structures provide an economic 
incentive for precision. Initial box-struc- 
ture specifications often reveal gaps and 
misunderstandings in customer require- 
ments that would ordinarily be discovered 
later in development at high cost and risk 
to die project. 

They also address the two engineering 
problems associated widi system specifica- 
tion: defining the right function for users 
and defining the right structure for the spec- 
ification itself. Box structures address the 
first problem by precisely defining the cur- 
rent understanding of required functions at 
each stage of development, so that the func- 
tions can be reviewed and modified if neces- 
sary. The second problem is critical, espe- 
cially for large-s}-stem development. How 
can we organize the myriad details of be- 
havior and processing into coherent ab- 
stractions humans can understand? 

Box structures incorporate the crucial 
mathematical property of referential 
transparency — the information content 
of each box specification is sufficient to 
define its refinement, without depending 
on the implementation of any other box. 
This property lets us organize large-sys- 
tem specifications hierarchically, without 
sacrificing precision at high levels or detail 
at low levels. 

Box structures. Three principles govern 
the use of box structures:4 

♦ All data defined in a design is encap- 
sulated in boxes. 

♦ All processing is defined by using 
boxes sequentially or concurrendy. 

52 MARCH   1994 



♦ Each box occupies a distinct place in 
a system's usage hierarchy. 

Each box has three forms — black, 
state, and clear — which have identical 
external behavior but whose internals are 
increasingly detailed. 

Black box. An object's black box is a pre- 
cise specification of external, user-visible 
behavior in all possible circumstances of its 
use. The object may be an entire system or 
any part of a system. Its user may be a 
person or another object. 

A black box accepts a stimulus (S) from 
a user and produces a response (R). Each 
response of a black box is determined by its 
current stimulus history (SH), with a 
black-box transition function 

(S,   SH)   ->   (R) 

A given stimulus will produce different 
responses diat are based on history of use, 
not just on the current stimulus. Imagine a 
calculator with wo stimulus histories 

Clear 1  3 

and 

If the next stimulus is 6, the first history 
produces a response of 7136; the second, 
6. 

The objective of a black-box specifica- 
tion is to define the responses produced 
for ever)' possible stimulus and stimulus 
history, including erroneous and unex- 
pected stimuli. By defining behavior solely 
in terms of stimulus histories, black-box 
specifications neither depend on nor pre- 
maturely define design internals. 

Black-box specifications are often re- 
corded as tables. In each row, the stimulus 
and the condition on stimulus history are 
sufficient to define the required response. 
To record large specifications, classes of 
behavior are grouped in nested tables and 
compact specification functions are used 
to encapsulate conditions on stimulus his- 
tories.6 

State box. An object's state box is derived 
from its black box by identifying the ele- 
ments of stimulus history that must be re- 
tained as state data between transitions to 
achieve the required black-box behavior. 

The transition function of a state box is 

[set w to 
minimum of 
z and absolute 
value of x] 
DO -„ 

[set w to 
minimum of [set y to absolute 
z and absolute value of x] 
value of x] IF x < 0 
DO THEN 

y := -x 
[set y to absolute ELSE 

[set w to value of x] y := x 
minimum of END 

■ z and absolute ■ = ■ [set w to minimum = - [ 
value of x] of z and y] 

END 
[set w to minimum 
of z and y] 
IF y < z 
THEN 
w : = y 
ELSE 
w : = z 

! 

END 

Figure 2. Stepaise refinement of a clear-box design fragment that can be verified. Each 
fragment has identical functional behavior, even though the Ircel of detail increases. 

where OS and NS represent old state and 
new state. Although die external behavior 
of a state box is identical to its corres])ond- 
ing black box, die stimulus histories are 
replaced with references to an old state 
and the generation of a new state, as its 
transitions require. 

As in the traditional view of objects, 
state boxes encapsulate state data and ser- 
vices (methods) on that data. In diis view, 
stimuli and responses are inputs and out- 
puts, respectively, of specific state-box ser- 
vice invocations that operate on state data. 

Clear box. An object's clear box is derived 
from its state box by defining a procedure 
to carry out the state-box transition func- 
tion. The transition function of a clear box 

(S,   OS) (R,  NS)   by procedure 

(S,  OS) (S,   MS), 

So a clear box is simply a program that 
implements the corresponding state box. 
A clear box may invoke black boxes at the 
next level, so the refinement process is re- 
cursive, with each clear box possibly intro- 
ducing opportunities for defining new ob- 
jects or extensions to existing ones. 

Clear boxes play a crucial role in the 
usage hierarchy by ensuring the harmoni- 
ous cooperation of objects at the next level 
of refinement. Objects and their clear-box 
connections are derived from immediate i 

processing needs at each stage of refine- 
ment, not invented a priori, widi uncer- 
tain connections left to be defined later. 
The design and verification of clear-box 
procedures is the focus of die next sec- 
tion. 

Because state boxes can be verified 
with respect to their black boxes and clear 
boxes widi respect to their state boxes, box 
structures bring correctness verification to I 
object architectures. 

DESIGN AND VERIFICATION 

The procedural control strucnires of 
structured programming used in clear- 
box design — sequence, alternation (if- 
then-else), and iteration (while-do) — are 
single-entry, single-exit structures that 
cannot produce side effects in control 
flow. (Control structures for concurrent 
execution are dealt with in box structures, 
but are outside the scope of this article.) 

When it executes, a given control 
structure simply transforms data from an 
input state to an output state. This trans- 
formation, known as its pivgram function, 
corresponds to a mathematical function: It 
defines a mapping from a domain to a 
range by a particular rule. 

For integers w, x, y, and z, for example, 
die program function of die sequence, 
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Sequence 
Control Correctness 
structure: condition (for al arguments) 

[f] 
-DO 

g; Does g followed 
h by A do ft 

END 

Alternat on 
Control Correctness 
structure: condition: 

[f] 
IFp Whenever pis true 
THEN does giof, and 

g whenever pis false 
ELSE does Ado f? 

h 
END 

Iteration 
Control Correctness 
structure: condition: 

[f] k termination 
WHILEp guaranteed, ond 
DO whenever p is true 

g does o followed 
END by f do f, and 

whenever p is false 
does doing 
nothing do r ? 

abs (y) 
max(x,   z) 

END 

is, in concurrent assignment form, 
w,   ?.   := max (x,   abs(y)),   abs(y) 

For integer x > 0, die program func- 
tion of die iteration 

WHILE 
X   >   1 

DO 

:-:;■; a 

is, in English, 
sot odd x to 

Figure 3. Coirectness conditions in ques- 
tion form for verifying each type of clear- 
box control structure. 

Design refinement. In designing clear-box 
procedures, you define an intended func- 
tion, dien refine it into a control structure 
and new intended functions, as Figure 2 
illustrates. Intended functions, enclosed in 
braces, are recorded in die design and at- 
tached to their control-structure refine- 
ments. In essence, clear Ixwes arc composed 
of a finite number of control structures, each 
of which can he checked for correcmess. 

Design simplification is an important 
objective in die stepwise refinement of 
clear boxes. The goal is to generate com- 
pact, straightforward, verifiable designs. 

Program: Subproofs: 

[fl] fl   =    [DO  gl;g2; [12]   END]    ? 
DO 

gi 
g2 
[f2] f2   =    [WHILE   pi   DO    [f3]    END]    ? 

WHILE 

Pi 
DO    [f3] 

g3 
[f4] f3   =    [DO   g3; [f4] ;g8   END]    ? 
IF 
p2 

THEN [f5] f4   =    [IF   p2   THEN    [f5]    ELSE    [f6]    END]    ? 
g4 
g5 

ELSE 
g6 

[f6] 
f5   =    [DO   g4;g5   END]    ? 

gv 
END 
gs f6   =    [DO   g6;g7   END]    ? 

END 
END 

Figure 4. A clear-box procedure and its constituent subproofs. In the figure, each pi is 
a predicate, each g i is an operation, and each f i is an intended function. 

Correctness verification. To verify die cor- 
recmess of each control structure, you de- 
rive its program function — die function it 
actually computes — and compare it to its 
intended function, as recorded in die de- 
sign. A correctness theorem' defines how 
to do diis comparison in terms of lan- 
guage- and application-independent cor- 
rectness conditions, which you apply to each 
control structure. 

Figure 3 shows die correctness condi- 
tions for the sequence, alternation, and it- 
eration control structures. Verifying a se- 
quence involves function composition and 
requires checking exactly one condition. 
Verifying an alternation involves case 
analysis and requires checking exactly two 
conditions. Verifying an iteration involves 
function composition and case analysis in 
a recursive equation and requires checking 
exactly three conditions. 

Correcmess verification has several ad- 
van rages: 

♦ // reduces verification to a finite process. 
As Figure 4 illustrates, the nested, se- 
quenced way that control structures are 
organized in a clear box naturally defines a 
hierarchy that reveals die correctness con- 
ditions that must be verified. An axiom of 
replacement' lets us substitute intended 
functions for dieir connol structure re- 
finements in die hierarchy of subproofs. 
For example, the subproof for the in- 
tended function f 1 in Figure 4 requires 
proving that die composition of opera- 
tions gl and g2 with intended subfunc- 
tion f 2 has the same effect on data as f 1. 
Note that f 2 substitutes for all die details 
of its refinement in this proof. This substi- 
tution localizes die proof argument to the 
control structure at hand. In fact, it lets 
you cany out proofs in any order. 

It is impossible to overstate the positive 
effect that reducing verification to a fi- 
nite process has on quality. Even though 
all but the most trivial programs exhibit 
an essentially infinite number of execu- 
tion paths, they can be verified in a finite 
number of steps. For example, the clear 
box in Figure 5 has exactly 15 correct- 
ness conditions that must be verified. 

♦ It lets Cleanroom teams verify every 
line of design and code. Teams can earn' 
out the verification  through group 
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analysis and discussion on the basisofthe 
correctness theorem, and they can pro- 
duce written proofs when extra confidence 
in a life- or mission-critical system is re- 
quired. 

♦ It remits in a near-zero defect level. 
During a team review, every correctness 
condition of every control structure is ver- 
ified in turn. Every team member must 
agree that each condition is correct, so an 
error is possible only if ever)' team mem- 
ber incorrecdy verifies a condition. The 
requirement for unanimous agreement 
based on individual verifications results 
in software diat has few or no defects be- 
fore first execution. 

♦ It sales up. Every software system, no 
matter how large, has top-level, clear-box 
procedures composed of sequence, alter- 
nation, and iteration structures. Eich of 
diese typically invokes a large subsystem 
with diousands of lines of code — and each 
of those subsystems has its own top-level 
intended functions and procedures. So die 
correctness conditions for these high-level, 
control structures are verified in die same 
way as are diose of low-level structures. 
Verification at high levels may take, and 
well be worth, more time, but it does not 
take more dieory. 

♦ It produces better code than unit testing. 
Unit testing checks only the effects of 
executing selected test paths out of many 
possible padis. By basing verification 
on function theory, the Cleanroom ap- 
proach can verify even,' possible effect 
on all data, because while a program 
may have many execution paths, it has 
only one function. Verification is also 
more efficient than unit testing. Most 
verification conditions can be checked in a 
few minutes, but unit tests take substantial 
time to prepare, execute, and check. 

QUALITY CERTIFICATION 

Statistical quality control is used when 
you have too many items to test all of them 
exhaustively. Instead, you statistically 
sample and analyze some items to obtain a 
scientific assessment of the quality of all 
items. This technique is widely used in 
manufacturing, in which items on a pro- 
duction line are sampled, their quality is 

rff Q   :=  odd_numbers(Q)    II   even_numbers(Q)    ] 
PROC  Odd_Before_Even   (ALT  Q} 

seq 
1 

odds 
evens 

queue of integer [initializes to empty] 
queue of integer [initializes to empty] 
integer 

END 

(   C 
odds 
evens 

WHILE Q <> empty 
DO 

= empty, 
= odds  Ilodd_numbers(Q), 
= evens I Ieven_numbers(Q) ] 

x end(Q) 

L 

;x is odd -> odds := odds I I x 
true    -> evens := evens II x 

I: odd(x) 

end(odds) := x 

end(evens) := x 
END 

END 

[ C   := Q I I odds, 
ceds := empty ] 

WHILE odds <> empty   _ 
DO ;er.d(Q) := end(odds)] 

v :=  end(odds) 
er.d(Q)    :=   x 

seq —| 
1 wdo 

3 

seq 
1 

wdo 
3 

[ C    := Q I I evens, 
ever.s:= empty] 
WHILE evens <> empty  _ 
DO >nd(Q) := end (evens) 

X      := end(evens) 
er.d(Q) := x        - 

END 

END ocd-cefore-even 

seq 
1 

wdo 
3 

Figure 5. A clear-box procedure with 15 correctness conditions to be verified. The 
procedural control structures and the number of correctness conditions that must be 
checked are shown in bold. Sea indicates a sequence, he indicates an alternation (if-then- 

else), and wdo indicates an iteration (while-do). 

measured against a presumably perfect de- 
sign, the sample quality is extrapolated to 
die entire production line, and flaws in 
production are corrected if the quality is 
too low. 

In hardware products, the statistics 
used to establish quality are derived from 
slight variations in the products' physical 
properties. But software copies are identi- 
cal, bit for bit. What statistics can we sam- 

ple to extrapolate quality? 

Usage testing. It turns out that software 
hasa statistical property of great interest to 
developers and users — its execution be- 
havior. How long, on average, will a soft- 
ware product execute before it fails? 

From this notion has evolved the pro- 
cess of statistical usage testing* in which you 

♦ sample the (essentially infinite) pop- 
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CLEANROOM QUALITY RESULTS 
Cleanroom projects report 

a testing eiror rate per thousand 
lines of code, which represents 
residual errors in the software 
after correctness verification. 
The projects briefly described 
here are among 17 Cleanroom 
projects, involving nearly a mil- 
lion lines of code, that have re- 
ported a weighted average of 23 
errors per KLOCfound in all test- 
ing, measured from first-ever exe- 
cution of the code — a remark- 
able quality achievement 

♦ IBM Cobol Structuring Fa- 
cility (Cobol/SF). This was 
IBM's first commercial Clean- 
room product, developed by a 
six-person team. This 85 
KLOC PL/I program automat- 
ically transforms un- 
structured Cobol programs 
into functionally equivalent 
structured form for im- 
proved understandability 
and maintenance. It had a 
testing error rate of 3.4 er- 
rors per KLOC; several 
major components completed 
certification with no errors 
found. In months of intensive 
beta testing at a major aero- 
space corporation, all Cobol 
programs executed identically 
before and after structuring. 

Productivity, including all 
specification, design, verifica- 
tion, certification, user publica- 
tions, and management, aver- 
aged 740 LOC per person- 
month. So far, a small fraction 
of a person-year per year 
has been required for all 
maintenance and customer 
support. Although the prod- 
uct exhibits a complexity 
level on the order of a Cobol 
compiler, just seven minor 
errors were reported in the 
first three years of field use, all 
resulting in simple fixes. —R.C. 
Linger and H.D. Mills, "A Case 
Study in Cleanroom Software 
Engineering: The IBM Cobol 
Structuring Facility," Pivc. Com- 
psac, IEEE CS Press, Los Al- 
amitos, Calif., 1988, pp. 10-17. 

♦ NASA satellite-contivl proj- 
ect. The Coarse/Fine Attitude 
Determination System 
(CFADS) of the NASA Atti- 
tude Ground Support System 
(AGSS) was the first Clean- 
room project carried out by the 
Software Engineering Labora- 
tory of the NASA Goddard 
Space Flight Center. The sys- 
tem, comprising 40 KLOC of 
Fortran, exhibited a testing 
error rate of 4.5 errors per 
KLOC. Productivity was 780 
LOC per person-month, an 80 
percent improvement over pre- 
vious SEL averages. Some 60 
percent of the programs com- 
piled correcdy on the first at- 
tempt. —A Kouchakdjian, S. 
Green, and V.R. Basili, "Evalua- 
tion of the Cleanroom Method- 
ology in the Software Engi- 
neering Laboratory," Proc. 14th 
Software Eng. Workshop^ASA 
Goddard Space Flight Center, 
Greenbelt,Md., 1989. 

♦ Martin Marietta Auto- 
mated Documentation Syste?ii. 
A four-person Cleanroom 
team developed die prototype 
for this system, a 1,820-line re- 
lational database application 
written in Foxbase. It had a 
testing error rate of 0.0 er- 
rors per KLOC — no com- 
pilation errors were found 
and no failures were encoun- 
tered in statistical testing 
and quality certification. 
The software was certified 
at target levels of reliability 
and confidence. Team mem- 
bers attributed error-free 
compilation and failure-free 
testing to the rigor of the 
Cleanroom method. — C.J. 
Trammel], L.H. Binder, and 
C.E. Snyder, "The Automated 
Production Control System: A 
Case Study in Cleanroom Soft- 
ware Engineering," ACM 
Trans. Software Eng. and Meth- 
odology, Jan. 1992, pp. 81-94. 

♦ IBMAOEXPEKT/MVS. 
A 50-person team developed 

this complex decision-support 
facility that uses artificial intelli- 
gence to predict and prevent 
operating problems in an 
MVS environment. The sys- 
tem, written in PL/I, C, Rexx, 
and TIRS, totaled 107 
KLOC, developed in three in- 
crements. It had a testing 
error rate of 2.6 errors per 
KLOC. Causal analysis of the 
first 16-KLOC increment re- 
vealed that five of its eight 
components experienced no er- 
rors in testing. 

The project reported devel- 
opment team productivity of 
486 LOC per person-month. 
No operational errors have 
been reported to date from 
beta test and early user sites. — 
P.A. Hausier, "A Recent Clean- 
room Success Story: The Red- 
wing Project," Proc. 11th Sofi- 
lemvEtig. Worksbop.NASA. 
Goddard Space Flight Center, 
Greenbelt,Md., 1992. 

♦ NASA satellite-control pro- 
jects. Tvo satellite projects, a 20- 
KLOC attitude-determination 
subsystem and a 150-KLOC 
flight-dynamics system, were 
the second and third Clean- 
room projects undertaken at 
NASA's Software Engineering 
Laboratory. These systems had 
a combined testing error rate of 
4.2 errors per KLOC. — S.E. 
Green and Rose Pajerski, 
"Cleanroom Process Evolution 
in the SEL," Proc. 16th Software 
Eng. Workshop, NASA God- 
dard Space Flight Center, 
Greenbelt,Md.,1991. 

♦ IBM 3090E tape drive. A 
five-person team developed the 
device-controller design and 
microcode in 86 KLOC of C, 
including 64 KLOC of func- 
tion definitions. This em- 
bedded software processes 
multiple real-time I/O data 
streams to support tape- 
cartridge operations in a 
multibus architecture. The 
box-structure specification 

for the chip-set semantics 
revealed several hardware 
errors. The project had a 
testing error rate of 1.2 er- 
rors per KLOC. 

A-one-module experiment 
compared the effectiveness of 
unit testing and correctness 
verification. In unit testing, 
the team took 10 person-days 
to develop scaffolding code, 
invent and execute test cases, 
and check results. They found 
seven errors. Correctness veri- 
fication, which required an 
hour-and-a-half in a team re- 
view, found the same seven er- 
rors plus three more. 

To meet a business need, 
the third code increment went 
straight from development, 
with no testing whatsoever, 
into customer-evaluation dem- 
onstrations using live data. 
There were no errors of any 
land. A total of 490 statistical 
tests were executed against the 
final version of the system, with 
no errors found. 

♦ Eiicsson Telecom OS32 op- 
erating system. This 70-person, 
18-month project specified, de- 
veloped, and certified a 350- 
KLOC operating system for a 
new family of switching comput- 
ers. The project had a testing 
error rate of 1.0 errors per 
KLOC. 

Productivity was reported 
to have increased by 70 per- 
cent for development; 100 
percent for testing. The team 
significantly reduced develop- 
ment time, and the project 
was honored by Ericsson for 
its contribution to the com- 
pany. — L.-G. Tann, "OS32 
and Cleanroom," Proc. 1st Euro- 
pean Industrial Symp. Clean- 
room Software Eng., Q-labs, 
Lund, Sweden, 1993. 

REFERENCES 
1. PA. Hausler, R.C. Linger, and CJ. 

Trammell, "Adopting Cleanroom 
Software Engineering with a 
Phased Approach," IBM Systems J., 
Mar. 1994, to appear. 
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ulation of all possible executions (correct 
and incorrect) by users (people or other 
programs) according to how frequendy 
you expect the executions to happen, 

♦ measure dieir quality by determin- 
ing if the executions are correct, 

♦ extrapolate die quality of die sample 
to die population of possible executions, 
and 

♦ identify and correct flaws in the de- 
velopment process if the quality is inade- 
quate. 

Statistical usage testing amounts to 
testing software die way users intend to 
use it. The entire focus is on external sys- 
tem behavior, not die internals of design 
and implementation. Cleanroom certifi- 
cation teams have deep knowledge of ex- 
pected usage, but require no knowledge of 
design internals. Their role is not to 
debug-in quality, an impossible task, but 
to scientific-all)- certify software's quality 
through statistical testing. 

In practice, Cleanroom quality certifi- 
cation proceeds in parallel with develop- 
ment, in three steps. 

/. Spcciß' usage-probability distributions. 
Usage-probability distributions define all 
possible usage patterns and scenarios, in- 
cluding erroneous and unexpected usage, 
together with their probabilities of occur- 
rence. The)' are defined on die basis of die 
functional specification and odier sources 
of information, including interviews with 
prospective users and die pattern of use in 
prior versions. 

Figure 6a shows a usage specification 
for a program with four user stimuli: up- 
date (U), delete (D), query (Q), and 
print (P). A simplified distribution that 
omits scenarios of use and other details 
shows projected use probabilities of 
32, 14, 46, and 8 percent, respectively. 
These probabilities are mapped onto an 
interval of 0 to 99, dividing it into four 
partitions proportional to the probabili- 
ties. Usage-probability distributions for 
large-scale systems are often recorded in 
formal grammars or Markov chains for 
analysis and automatic processing. 

In incremental development, you can 
stratify a usage-probability distribution 
into subsets that exercise increasing 
functional content as increments are 

Program stimuli Usage-probability distribution Distribution interval 

U (update) 32% 0-31 

D (delete) 14% 32-45 

Q (query) 46% 46-91 

P (print) 8% 92-99 

(A) 

Test number Random numbers: Test cases: 

1 29 11 47 52 26 94 U U QQ U P 

2 62 98 39 78 82 65 QPDQQQ 

3 83 32 58 41 36 17 QDQDDU 

4 36 49 96 82 20 77 DQPQÜQ 

(B) 

Figure 6. (A) Simplified usage probability distribution for a program with four user 
stimuli and (B) a sample of associated test cases. 

High-quality code            / 

a> \.           / 
a 

■■    B y 
,,/;.' < i 

<S"^               Low-quality code •'        ;   ;- 

.* -':" 
^^^                                    / 

* .■• »•"-» " , -t   >'..«!,;'        "•        C  . * .*    •        -'   > 

•    Software fixes -• •>;--.i.*. 

Figure 7. Two sample graphs. The cuivefor high-quality software sbmrs exponential 
improvement, such that the MTTF quickly exceeds the total test time. The curve for 
law-quality software shows little MTTFgrowth. 

added, widi the full distribution in effect 
once the final increment is in place. In ad- 
dition, you can define alternate distribu- 
tions to certify infrequently used system 
functions whose failure has important 
consequences, such as the code for a nu- 
clear-reactor shutdown system. 

2. Derive test cases that are randomly gen- 
erated from usage-probability distributions. 
Test cases are derived from the distribu- 
tions, such that even' test represents ac- 
tual use and will effectively rehearse user 
experience with die product. Because 
test cases are completely prescribed by 
the distributions, producing them is a me- 
chanical, automatable process. 

Figure 6b shows test cases for the prob- 
ability distribution in Figure 6a. If you as- 
sume a test case contains six stimuli, then 

you generate each test by obtaining six 
two-digit random numbers. These num- 
bers represent the partition in which the 
corresponding stimuli (U, D, Q, or P) re- 
sides. In this way, each test case is faidiful 
to die distribution and represents a possi- 
ble user execution. For testing large-scale 
systems, usage grammars or A'larkov 
chains can be processed to generate test 
cases automatically. 

3. Execute test cases, assess ?mesults, and 
compute quality measures. At this point, die 
development team has released verified 
code to the certification team for first-ever 
execution. The certification team executes 
each test case and checks the results 
against system specifications. The team 
records execution time up to die point of 
any failure in appropriate units, for exam- 
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pie, CPU time, wall-clock time, or num- 
ber of transactions. 

These inteifailt/wesrepresent the qual- 
ity of the sample of possible user execu- 
tions. They are passed to a quality certifi- 
cation model that computes the system's 
quality, including its 
mean time to failure. The 
quality-certification 
model produces graphs 
like the one in Figure 7. 

Because the Clean- 
room development pro- 
cess rests on a formal, sta- 
tistical design, these 
MTTF measures provide 
a scientific basis for man- 
agement action, unlike die anecdotal evi- 
dence from coverage testing (If few errors 
are found, is that good or bad? If many 
errors are found, is diat good or bad?). In 
theory, there is no way to ever know that a 
software system has zero defects. How- 
ever, as failure-free executions accumu- 
late, it becomes possible to conclude that 
the software is at or near zero defects with 
high probability. 

Extending MTTF. But there is more to the 
story of statistical usage testing. Extensive 

WE BELIEVE 
USE OF THE 
CLEANROOM 
PROCESS 
WILL GROW. 

analysis of errors in large-scale software 
systems reveals a spread in the failure rates 
of errors of some four orders of magni- 
tude.9 Virulent, high-rate errors can liter- 
ally occur every few hours for some users, 
but low-rate errors may show up only after 

accumulated decades ofuse 
by many users. 

High-rate errors are 
responsible for nearly 
two-thirds of software 
failures reported,    even 
diough they comprise less 
than diree percent of total 
errors. Because statistical 
usage testing amounts to 
testing software die way 

users will use it, high-rate errors tend to be 
found first. Any errors left behind after 
testing tend to be infrequendy encoun- 
tered by users. 

Traditional coverage testing finds er- 
rors in random order. Yet finding and 
fixing low-rate errors has little effect on 
MTTF and user perception of quality, 
while finding and fixing errors in failure- 
rate order has a dramatic effect. Statisti- 
cal usage testing is far more effective 
than coverage testing at extending 
MTTF.10 
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Software that is formally engineered in 
increments is well-documented and 

under intellectual control throughout de- 
velopment. The Cleanroom approach 
provides a framework for managers to 
plan (and replan) schedules, allocate re- 
sources, and systematically accommodate 
changes in functional content. 

Experienced Cleanroom teams can 
substantially reduce time to market. This 
is due largely to the precision imposed on 
development, which helps eliminate re- 
work and dramatically reduces testing 
time, compared with traditional mediods. 
Furdiermore, Cleanroom teams are not 
held hostage by error correction after re- 
lease, so diey can initiate new develop- 
ment immediately. 

The cost of quality is remarkably low in 
Cleanroom operations, because it mini- 
mizes expensive debugging rework and 
retesting. 

Cleanroom technology builds on exist- 
ing skills and software-engineering prac- 
tices. It is readily applied to bodi new sys- 
tem development and «engineering and 
extending legacy systems. As die need for 
higher quality and productivity in soft- 
ware development increases, we believe 
diat use of die Cleanroom process will 
continue to grow. ♦ 
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Abstract 

This paper presents the results and lessons learned from a STARS (Software Technology for Adaptable, 
Reliable Systems) sponsored process technology transfer demonstration. In March of 1992, the Armament, 
Munitions and Chemical Command (AMCCOM), now the Tank-automotive and Armaments Command 
(TACOM), Life Cycle Software Engineering Center (LCSEC) at Picatinny Arsenal was selected to demonstrate 
that Cleanroom Software Engineering (CSE) can be successfully applied in a typical DoD Software Support 
Activity (SSA). Results indicate that: 
• CSE practices can be successfully transferred to a typical DoD SSA, 
• engineering staff productivity and product quality were increased while simultaneously increasing job 

satisfaction, and 
• a return on investment of at least 11:1 has been realized on the first project to which CSE techniques were 

applied. 

Introduction 
The goal for the technology transfer effort for the LCSEC at Picatinny Arsenal was to conduct a 

demonstration of CSE practices at a typical DoD SSA. 

The LCSEC was selected in response to their expressed interest in improving the process by which they 
maintain software in general and, specifically, in using the CSE technology. Additionally, as a typical DoD SSA, 
it was deemed important to improve the processes on which the US Army spends the largest portion of their 
software money; i.e., in software maintenance and re-engineering (as opposed to new software development). The 
demonstration was facilitated by Loral and SET (Software Engineering Technology, Inc.). 

The LCSEC at Picatinny Arsenal is a representative DoD Software Support Activity that wants to apply a 
more effective approach to software support. The current state of software re-engineering at the LCSEC varies 
from project to project but the majority have not achieved the desired level of productivity and quality. A major 
goal of the Picatinny Arsenal LCSEC is to achieve a Software Engineering Institute Capability Maturity Model 
(SEI CMM) Level 3 rating by adopting an evolutionary process improvement approach to software re- 
engineering. Currently, the LCSEC is receiving support, under STARS Task IA02 from Loral and SET, in 
applying the Cleanroom approach on the re-engineering of the Mortar Ballistic Computer (MBC) into the 
Improved MBC (I-MBC). Initial results have been successful, the project personnel are employing the 
Cleanroom engineering practices and adopting the process driven, team oriented approach. 

DoD Software Support Activities (SSAs) provide important opportunities to demonstrate STARS efforts 
to improve software quality and productivity.   SSA activities represent a major portion of the DoD software 



budget and the proportion is expected to be increased during the next decade. This will occur as the many 
systems in the DoD development pipeline are turned over to SSAs for support. It is likely that, as fewer new 
systems come into the inventory, DoD managers will attempt to extend the useful life of old systems through 
software enhancements and re-engineering. 

STARS Program 
The STARS program is a DoD research and development effort funded under the Advanced Research 

Projects Agency (ARPA). The main thrust of this effort is that software engineering is process driven, domain- 
specific, reuse-based, and supported by an integrated software engineering environment. This concept is called 
Megaprogramming and the STARS program is currently engaged in several demonstration projects of the 
technologies developed earlier in the program. The Picatinny MBC effort was the first demonstration project to 
use STARS concepts. Loral is one of the prime contractors for this effort and SET is a principal subcontractor for 
the Loral/STARS effort. 

TACOM LCSEC Overview 

The LCSEC at Picatinny Arsenal provides a number of services including: software acquisition support to 
program managers, computer resource life cycle management plans, pre-planning for software support, manage 
contracted post deployment software support efforts, software configuration management, and design and 
implement software changes. The types of battlefield automated systems supported include cannon and tank gun 
systems; smart mines and munitions; ballistics computers; gunnery simulators; trainers; and nuclear, biological, 
and chemical detection systems. 

The desire for process driven technology was the result of a Software Process Assessment (SPA) 
conducted by a team of representatives from the AMC LCSECs with coaching from the Software Engineering 
Institute (SEI). Picatinny LCSEC management has developed a close relationship with the SEI because they 
desired help with identifying areas to achieve the desired level of productivity and quality. Review of the SPA 
findings lead LCSEC management to realize that the software engineering process was not under intellectual 
control. Each new software project, whether performed by contractors or civil servants, was treated largely as 
new activity that did not necessarily draw on prior experience for process improvement. The only factor that 
perpetuated experience was people, be it government or contractor, who participated in the same projects time 
after time. Documentation received by Picatinny, when they were given systems to maintain, was poor or not up 
to date and no defined process existed for maintaining continual project control. In other words, the state-of-the- 
practice consisted of traditional software engineering practices that were ad-hoc in nature, as opposed to a 
disciplined, defined software engineering process. These realizations and the results from the SPA were the basis 
for their move to enhance their software engineering capabilities. 

Typical DoD SSA organizations have immature processes and are subject to morale problems among 
software engineers due to the combination of an undefined manner of doing work, along with a lack of task- 
oriented scheduling. The software engineers at the LCSEC did their work well because of individual skills, but 
often seemed to be stuck in the same "groove," where the same situations, in terms of schedule, would arise year 
after year. A general lack of enthusiasm pervaded initial discussions with project teams. 

Despite these difficulties, however, the customers (various users within the US Army) indicate that they 
are basically content with the quality of the products. Not many field reports of failures are submitted by their 
customers, due to extensive, pre-release user testing. Unfortunately, evidence suggests that this may also result 
from the absence of formal failure observation and reporting mechanisms, making the field quality of developed 
products difficult to ascertain. 



LCSEC management at Picatinny recognized the problems with their state of the practice and took the 
initiative to recognize Cleanroom Software Engineering (CSE) as the mechanism with which to facilitate the 
desired cultural, technical and process changes. 

Cleanroom Software Engineering (CSE) 

CSE was chosen as the process driven technology because it addresses the deficiencies identified during 
the LCSEC Software Process Assessment (SPA). CSE's management and development team approach was 
consistent with quality management philosophy, e.g. workforce empowerment, process focus, and quantitative 
orientation. It provides for the transition of process technology to the project staff and integrates several proven 
software engineering practices into one methodology. LCSEC management anticipated productivity gains and 
morale enhancement from the introduction of the technology. 

CSE consists of a body of practical and theoretically sound engineering principles applied to the activity 
of software engineering. Cleanroom consists of a thorough specification phase; resulting in a six part 
specification, including a precise, black box description of the software part of a system. Software development 
proceeds from the black box specification via a step-wise refinement procedure using box-structured design 
concepts. This process focuses on defect prevention, effectively eliminating costly error removal phases (i.e., 
debugging) and produces verifiably correct software parts. Development of software proceeds in parallel with a 
usage specification of the software. This usage profile becomes the basis for a statistical test of the software, 
resulting in a scientific certification of the quality of the software part of the system. 

A quick high level comparison between the typical development and CSE philosophy of software 
development is summarized in Table I. The typical development environment can be characterized by craft based 
techniques which are highly dependent upon the skills of the individuals involved whereas CSE is an engineering 
discipline with associated rigor and formality. 

Table I: Comparison between Typical Development and CSE 

Characteristic Typical Development CSE 

Programs regarded as Lines of Instructions Correct rule for a function. 

Specification focus Incomplete description of 
external behavior and internal 
design details. 

Complete, precise description of 
external behavior; design details 
left for development. 

Specification to code 
transformation process 

Informal, debugging to verify 
code. 

Stepwise refinement and 
verification using Box 
Structures. 

Failures are Expected and accepted. Unacceptable. 

Testing strategy Futile attempt for coverage and 
litüe insight on field reliability. 

Random sample based on usage 
model that predicts field 
reliability. 



Description of Demonstration 

To conduct the demonstration, both control and demonstration groups were identified. The control group 
consisted of a sample set of ongoing and completed software projects at the LCSEC. These projects represent the 
use of "typical" software engineering methods at the LCSEC. Enhancement projects at Picatinny typically include 
the correction of observed problems, the addition of new capabilities, and in some cases, re-engineering of 
software. The demonstration project was the Mortar Ballistics Computer (MBC) re-engineering effort. The 
demonstration aspect of this project was the adoption of the CSE technology techniques as provided by the 
participation of Loral and SET. The hypothesis to be confirmed or rejected in this demonstration was: The use of 
CSE practices improves the effectiveness (quality and productivity) of the LCSEC software support mission. 

In order to transfer the technology to be demonstrated, as well as the process and culture for a Cleanroom 
environment, four different tools were employed: 

(1) training, in a formal classroom setting which integrated lecture material and numerous hands-on 
workshops (tailored for this effort), 

(2) coaching, both for project planning and execution as well as a medium to promote ongoing education, 

(3) process handbooks (evolved for this effort), which act as a written source of educational material and 
as a reference during project execution, and 

(4) an automated process support system (developed for this effort), that helps enforce process adherence 
and monitors task completion, by automating non creative tasks. 

Project Overview 

The MBC project was a re-engineering of the current system used by the US Army to aim mortars for 
combat support. The existing MBC was implemented in DTL (Display Terminal Language) and Z-80 Assembler 
and is not easily upgraded for new requirements. The re-engineered system is being implemented in Ada and as a 
result can be moved to new updated hardware platforms. Initial Cleanroom training was provided in November of 
1992 and January of 1993, and the MBC re-engineering started in February of 1993. The first two increments of 
the MBC were completed by January 1994. 

In November of 1993, the LCSEC participated in a proposal to take on the responsibility for the 
Improved MBC (I-MBC) system, which will replace the MBC currently in the field. The other partners in this 
proposal were other organizations at Picatinny Arsenal. Picatinny had some key win themes that were achieved 
through the initial STARS cooperation. They had some of the functionality of the proposed I-MBC already 
developed and certified to be of high quality. They also had shown that by using Cleanroom, they could develop 
software of high quality with extremely high productivity. This helped support the commitment that the Picatinny 
Arsenal organization would be successful with the I-MBC project and could do so within acceptable budget limits. 

Picatinny won the bid in January of 1994 and started work on the I-MBC in February 1994. The I-MBC 
will replace the current M23 Mortar Ballistics Computer, and will run on a ruggedized notebook computer. In 
addition, the I-MBC will add capabilities from other related systems that could not be accommodated by the M23 
computer. The I-MBC work began with the development of MBC increment 3 which did not impact the I-MBC 
effort because the functions performed by the MBC are a subset of those to be performed by the I-MBC. Starting 
with increment 4, the LCSEC team decided that specification, development and certification for I-MBC were to 
be created in an incremental manner, similar to the three MBC increments. In order to do this, some risk would 
be entailed, since it was necessary to make sure the specifications for one increment did not limit options for a 
future increment. For that reason, the I-MBC team focused on creating a 'system' specification, as well as 
increment specifications. In this manner, risk was minimized, since increment behavior was checked to be 
consistent with requirements defined in the 'system' specification. 



The transfer of CSE technology was achieved through formal, classroom-style training courses and 
follow-on coaching of demonstration team members. The courses involved instruction on the underlying 
specification, development, and certification methods of CSE and included in-class workshops so that students 
gained experience applying the technology. As often as possible, workshops were supplemented with examples 
extracted from the MBC project. Training provided the introduction to and initial experience with the tools that 
would help enhance individual and team performance. 

Project support was given to the team members through repeated on-site coaching visits by CSE experts 
from Loral and SET. This activity helped to solidify the new ideas as team members saw how the techniques 
were applied to their specific problems. 

The major intent of the training and coaching was to establish the human behavioral changes necessary to 
develop better software. Implementing CSE is an intellectually challenging process that instills specific values 
into its participants. For example, the focus on product quality, a major Cleanroom theme, instills a "get it right 
the first time" attitude into the members of CSE teams. As successes were made and milestones conquered, the 
CSE teams reported significant improvements in job satisfaction, team spirit, and the desire to continue quality 
improvements. A significant focus of the coaching effort was to positively reinforce each project success in order 
to create a stronger identity with the project. 

Such behavioral changes within a project are improved by active participation from all levels of the 
organizational hierarchy from contributing technical leads to engineering management. The initial plan was for 
the project staffs to work closely as teams, rather than as individuals. Additionally, the intention was for the staffs 
to be motivated and excited about what they were doing; that is, have a strong identity with the process and 
project. Thus, coaching contained a "cheer leading" aspect, designed to create a healthy Cleanroom environment. 

Reinforcement of CSE was provided through the availability of a six volume set of process manuals to 
the demonstration groups. These process manuals were an integral part of the training program and were 
discussed in detail, both during the formal training sessions and off-line as a part of the follow-on coaching 
activities. The process manuals augment the training by providing reference information to LCSEC engineers, 
using Cleanroom concepts, and serve as a reference source for resolving questions about specific issues 
concerning process adherence. The process manuals are organized as follows: 

Volume 1: Cleanroom Engineering Process Introduction and Overview 
Volume 2: Organization and Project Formation in the Cleanroom Environment 
Volume 3: Project Execution in the Cleanroom Environment 
Volume 4: Specification Team Practices 
Volume 5: Development Team Practices 
Volume 6: Certification Team Practices 

The division of the volumes represents a separation of concerns for the various project stakeholders. Each volume 
defines the tasks and the control flow between the tasks necessary to conduct the specific process which is the 
focus of the manual. Engineering processes are defined as formal control-flow procedures with specific 
completion conditions. Collections of engineering processes also have the same level of formalized control flow 
and completion conditions. Thus, each engineer, manager or other staff member has well defined roles and tasks 
that exist as a part of a larger software process. 

CSE is a formal process that clearly defines the tasks necessary for the engineering effort to progress, the 
completion conditions for each task, and the control flow that dictates the order of work on each task. Process 
management entails the use of a clearly defined process as the approach to be used to complete the particular 
project. The intent with process management is to give engineers a clear and understandable road map which they 
can follow and by which they may track progress towards project completion. 

Awareness of software process is a key issue in successfully transferring technology to an organization 
and to an organization's long term success with applying CSE. The project staffs at the Picatinny LCSEC 
received an introduction to process definition and process management in the context of CSE. Coaching also 
reinforced the importance of following the defined process and using the process definition, which defines the 
possible project alternatives, to support the selection of correct project choices. 



Baseline Metrics 
The control groups represent the state-of-the-practice at the LCSEC. Baseline metrics were collected in 

order to gain insight into project practices and to establish a basis of comparison to the demonstration Cleanroom 
groups. The Control Group Projects consisted of software engineering efforts in Fortran, Z-80 Assembler, 
Motorola 68000 Assembler and DTL (Display Terminal Language). A LOC is defined as a carriage return for 
these baseline control group projects. This definition was used because of the wide difference in software 
development languages contained within the control group projects. Table II presents the baseline metrics for the 
control group. These metrics are presented with the caution that some data collection mechanisms are unreliable, 
resulting in inaccuracies. The numbers in Table II are similar to results reported by Mosemann for other projects 
within the DoD [Ada and C++: A Business Case Analysis. July 1991]. 

Table II: Baseline Metrics for Control Group Projects 

Project / Measure . Control Group Projects 

Number of Projects 5 

Range of Effort - Staff Months 21-58 

Total Technical Staff Months 192 

Total KLOC (*) 23.14 

DERIVED METRIC: 

Productivity - LOC/Staff Month 
121 

Observations 
The following observations are a compilation of experiences with the MBC and I-MBC teams. These 

observations are in the context of Loral's and SET's other experiences with replacing craft-based practices with 
engineering-based practices, both in the private sector and with government organizations. One must keep in 
mind these observations are preliminary since the project has not been completed. 

1. The assigned project teams were able to assimilate and even adapt the Cleanroom Software 
Engineering practices. 

A common worry among managers when hearing about Cleanroom is that it is too hard or too 
mathematical for their staff. At Picatinny, engineers were able to apply and adapt the Cleanroom practices to the 
needs of their project. Engineers learned, used and extended the ideas successfully for their project. The evidence 
of this observation is the products they have produced. 

Disciplined engineering in a team environment requires rigor, cooperation of individuals, and the 
creativity to apply theory to real world problems. This creates a challenging work environment that tends to bring 
out the best in both individuals and teams. 

A prime example of the accomplishments of the MBC team was the tailoring of the box structures 
algorithm to meet both their application environment and the target programming language, Ada. MBC team 
members have made original contributions to the expression of box structure constructs in Ada, which will have 
applicability across many Cleanroom projects. This has benefited both the project, in terms of constructive 
methods, and the individual team members, in terms of a sense of accomplishment. Building on this 
accomplishment, additional improvements for documenting the black box were later determined. The 
development team felt that the initial specification approach used for the first three increments, was insufficient, 
in that the information provided was incomplete and not easily readable.   Through a great deal of interaction 



between the specification and development teams, the specification team adopted a documentation approach that 
fulfilled the development team' s requirements. 

The team has enjoyed using the various Cleanroom techniques and have seen many real 
accomplishments. The specification team is convinced that this is the most complete and precise specification 
they have ever seen. The step-wise refinement and verification, which drives engineers to define one small step to 
take at a time, take that step, and then confirm its correctness, has also been successful. The development team is 
convinced that they have a great design and have minimized the amount of code they need to develop. 

2. A process driven approach supports engineers in mastering a new technology. 

Process driven project management is one of the two basic technologies being advanced by the STARS 
program. The Picatinny project was the first project on which this key idea has been employed. 

The reason process driven management seems to support technology transfer can be summarized as 
follows. When doing something for the first time, one often asks, "What do I do next?" or "When will I be done?" 
This indicates a lack of understanding the big picture, where engineers can clearly place their efforts in a project 
context. This is not only an attribute of first time usage of techniques or a process, but also an indication that a 
clearly defined process does not exist or is not effectively managed. 

By placing the Cleanroom techniques within a fully defined process, LCSEC engineers knew precisely 
what step they were currently on, as well as what had been completed and what remained to be done. Giving each 
individual the foresight that showed where they were in the context of the entire project strengthened project 
identity and boosted morale. 

3. Staff morale has improved on the project teams. 

Another common fear of managers when hearing about Cleanroom is that their staff members will not 
like it due to the rigor of the process and the absence of "positive" feedback through executing their own code. 
This has not the been the case at other places where cleanroom has been introduced, and Picatinny is no 
exception. When an organization replaces craft-based practices with engineering-based practices, morale 
improves. One reason seems to be that people now know what to do, when to do it, and how it should be done. 
This eliminates the uncertainty and anxiety that results when one has to not only do a job but also has to determine 
what to do and when. Additionally, when engineers learn to use the Cleanroom practices, they know they can do 
the high quality job they have been striving to achieve. Engineers are convinced that they are producing a better 
product. As a result, they are excited about it. 

At the Picatinny LCSEC, all the engineers, both in informal contacts and in a questionnaire distributed to 
the engineering staff, reported morale improvements. The LCSEC management has also confirmed the existence 
of the improved morale and, of course, is favorably impressed. 

4. Facilitation of work effort is greatly enhanced through process driven management. 

Team leaders managed by process definition and task lists which allowed more visibility of project status 
by management. The intent with process management is to give engineers a clear and understandable road map 
which they can follow and by which they may track progress towards project completion. Awareness of software 
process is a key issue in successfully transferring technology to an organization and to an organization's long term 
success with applying a given process driven approach to project management. 

5. The team-oriented approach of CSE saw immediate acceptance and realized both tangible and 
intangible benefits. 

A key ingredient of Cleanroom is that a team amplifies human performance. People took advantage of 
the insight of others in order to bring about the best possible project result. Good people working together 
produce better results. The simple idea that many minds are better than one makes the outlook for quality good. 
However, some less tangible benefits were realized as well. The fact that the entire team is responsible for 
quality, in a series of checks and reviews, puts pressure on the team and not on individuals. This pressure creates 



a reliance on team activity over individual performance. Furthermore, as successes are encountered, the entire 
team takes credit, not a single individual, thus, cementing the teamwork concepts. The bottom line is that 
teamwork improves individual performance. 

Our observation is that the I-MBC team now works within an effective team-oriented environment. We 
believe that further use of Cleanroom will establish a strong team mentality that will serve to further improve the 
initial good results. 

6. Coaching is a key ingredient of technology transfer success. 

Although the training was rigorous with a mixture of theory and workshops, students learn at different 
rates. Coaching allowed Loral and SET staff to re-educate the slower-to-adopt project staff members and keep the 
entire team on a common level of knowledge and expertise. Loral and SET technical presence at project inception 
and during project execution helped solidify the transfer of the technology and ensured that the project got started 
in the most efficient manner. 

Furthermore, there was a gap between the end of training and the start of the project and some of the 
education was forgotten. Coaching became the mechanism to re-educate and supplement the original training. 
Further, as good ideas were conceived by some team members, it was possible to see that all members were 
supplied with the new ideas. 

As the project progressed, the CSE ideas needed to be adapted to the specific Picatinny environment. 
Coaches were used to discuss design alternatives and to help in refining the technology to best serve the 
application. 

Perhaps the most unnoticed but effective use of coaching was in the positive reinforcement the CSE 
coaches were able to give to the team members and the team as a whole. Coaches are recognized as experts. 
When experts comment positively on original ideas by a team member, the effect can be enormous in terms of 
self-esteem and sense of accomplishment and contribution. The CSE trainers tried to positively reinforce the 
behavior of those making such contributions and encourage others to seek answers beyond the limits of current 
knowledge. The "cheer leading" approach increased project satisfaction, which motivated greater project 
performance. Based on this experience, it is now believed that coaching should be a formal part of any 
technology transfer effort. 

7. Communication among teams (and between team members) is greatly enhanced through a process 
driven CSE approach. 

An important ingredient of any process driven activity is communication among contributing teams and 
individuals. One aspect of this was that no team culture existed at the LCSEC; meaning that no real notion 
existed of how teams are supposed to behave during project execution. This problem manifested itself in many 
different ways. Testers often did not receive specification updates (and failed to ask for them). Also, work tended 
to be duplicated by multiple personnel because the division of tasks was unclear and communication among 
members occurred too seldom. 

Two approaches were used to solve this problem at Picatinny. The first was to establish effective 
communication among team members and the second was to establish communication among the different 
departments involved in the project. The adoption of a well defined process includes a vocabulary that is of great 
help to the understanding and discussion of the process. This well defined vocabulary makes communication 
between team members much more effective and productive. The improved communication also started a shift in 
the culture of the teams. Team members report that they readily use each other as information sources, quality 
checks, etc. Team reviews are effective and informative. However, the second aspect, communication between 
departments, continues to be a problem. The MBC certification team members work for a different department 
than the specification and development teams. Resulting problems are that the certification team finds themselves 
working from outdated specifications. Furthermore, the certification team seems to duplicate each other's work. 
A future goal is to be able to duplicate the success of the specification and development teams in the certification 
team, primarily by improving communications. A more concerted effort should have been made by the coaches to 
minimize these communications problems. 



8. Specific techniques ofCleanroom Software Engineering were easily and successfully used. 

Three specific techniques were identified by project staff as being major sources of their improved 
performance. These techniques are team reviews, Cleanroom specifications and box structured design, and are 
described in greater detail below: 

Team reviews, although slow and awkward at the start, were cited by team members as one of 
the most successful aspects of CSE. Members report that "team shared responsibility" eased 
misgivings about participating in such a big project. This negated "finger pointing" that existed 
in previous projects and allowed even difficult personality combinations to work together. The 
result was that everyone participated and worked as a team toward project success and 
completion. Morale increased sharply as groups of individuals transformed into an effective 
software team. 

Cleanroom specification, most notably black box documentation, was cited as being 
responsible for gains in productivity. Many talented engineers existed on the project and then- 
productivity was significantly enhanced when working from a well defined problem statement. 
The completeness of the specification was the main reason cited for the team's confidence that 
they were producing a high quality product. 

Box structured design is credited with focusing the code generation process and with making 
team reviews more effective. The team enjoyed the orderly process of developing software. It 
got them started more quickly on solving a particular problem and they were able to measure the 
progress of the development activity with more precision than in the past. Since the process 
relies a great deal on logical thinking as opposed to programming skill, less experienced 
programmers are able to take a bigger share of the development burden. Therefore, software 
engineers can make the most of their software engineering skills without having to develop in- 
depth programming language expertise. 

Results 
The most important result noted by this effort, even in its preliminary form, is that the motivation to 

continue to use Cleanroom practices at Picatinny has been established. This demonstration effort was sponsored 
by STARS and the continued effort is being sponsored by the TACOM LCSEC. This result is an instance of the 
STARS program fulfilling its mission by being the catalyst for introducing improvements to the software 
engineering capabilities in the DoD. The decision to expand CSE usage across the entire organization, is the most 
definitive conclusion of this effort. 

In addition to the above mentioned conclusion, the following conclusions can be drawn based on the 
current status of the MBC/I-MBC project. 

1. It is possible to transfer CSE practices to project teams operating within a typical immature DoD SSA 
organization. 

This was shown by the fact that the MBC and I-MBC project has progressed to a point where CSE is 
being successfully applied. This result shows that a specific CMM maturity rating is not necessary in order to 
benefit from Cleanroom Software Engineering. The engineering staff also enjoyed using the ideas, and all were 
interested in using the ideas again. Additionally, nearly all were interested in supporting and participating in the 
establishment of the planned "Cleanroom Competency Center" at the Picatinny Arsenal. 

2. Typical DoD SSA organizations can realize important benefits, in terms of improved process 
productivity, product quality, and staff morale, from the application of CSE. 



This conclusion is supported by the tripling of productivity of the MBC team. The LOC were calculated 
the same way for this Ada Language based code as was done for the baseline control group projects with the 
exception that blank lines of code were not counted. Table III shows the results for productivity for increments 1 
through 4. Table IV shows the raw numbers that were used to calculate the productivity shown in Table III. 
Future increments should show additional improvement. 

Table III: Productivity Change for MBC/I-MBC 

Increment 
LOC per Staff 

Month 
Change in Productivity based 
on Picatinny Baseline Metrics 

1 370 3.1:1 

1 + 2 519 4.3:1 

1 + 2 + 3 see note see note 

1+2+3+4 443 3.7: 1 

Note: Staff months data lost due to accounting mistake but included in next entry 

Change in Productivity = LOC per Staff Month  
121 LOC Baseline Productivity 

Table IV: Cumulative Raw Numbers for MBC/I-MBC 

Increment 
MBC 

Staff Months 
Coaching Staff 

Months 
Training Staff 

Months 
Lines of Code 

(LOC) 

1 23 3 5 8,500 

1 + 2 42.5 6 5 22,063 

1-3 see note 

Table III 

8.5 5.5 28,579 

1-4 86.1 10 6 38,155 

Early indications are that quality appears to have improved over previous product quality according to 
Picatinny's customers. The quality of the software (See Table V) developed is very high when compared to 
quality for traditional software development. Thus, the result achieved will be viewed by the team as the mark to 
better on the next increment of this project. The incentive and motivation for continual improvement is firmly in 
place among the team members. 



Table V: Software Quality 

Failure 

Type 

Increment Failures Description 

1 2 3 4 

Process 19 6 0 0 Approved improvements made to design 
but not reflected in updates to the 

specifications for certification. 

Spelling 3 0 1 0 Misspellings on displays. 

Behavior 2 3 3 6 Coding Errors, did not work as specified. 

Total 

24 9 4 6 Total numbers of failures 

Quality 2.82 .41 .14 .16 Failures/KLOC 

The MBC project has realized significant gains from the CSE ideas. Once the learning curve had been 
completed, initial successes in creating the Black Box specification served to cement commitment to CSE. 

The resulting conclusions from the overall evaluation are preliminary because the demonstration project 
is still in its early stages. However, the original hypothesis that Cleanroom improves the effectiveness of the 
software re-engineering activities at Picatinny looks very promising. Indeed, management and staff agree that 
morale and motivation is extremely high, that teamwork is now the normal mode of operation, and that people are 
excited about the software process being established and are motivated to produce high quality products. 

A good technical road map is in place at Picatinny; the technical personnel are developing the skills that 
appear to show significant gains in productivity. Even more promising is the fact that these gains were made on 
the first use of CSE 

3. The return on investment at Picatinny cannot be definitively calculated, but indications are that there 
is a significant return on investment. 

Since the project is not yet complete, a preliminary estimate of return on investment can only be based on 
estimates from the information currently available. The resulting return on investment (ROI) calculations appear 
below in Table VI. 



Table VI: Return on Investment for MBC/I-MBC 

Increment 
LOC per 

Staff 
Month 

Staff Months MBC would have 
taken without CSE ROI 

Base 
ROI 
with 

Coaching 

1 370 
8500 LOC/121 LOC/SM = 70.3 

5.9:1 8.9:1 

1 + 2 519 
22063 LOC/121 LOC/SM = 

182.3 12.7:1 26.7:1 

1-4 443 

38155 LOC/121 LOC/SM = 

315.3 14.3:1 36.5:1 

SM = Staff Months 

ROI Base = SM MBC would have taken - SM MBC took 
Staff Months of Coaching Effort + Staff Months spent in Training 

ROI with Coaching = SM MBC would have taken - (SM MBC took + SM of Coaching Effort) 
Staff Months spent in Training 

4. An Automated Process Support System (PSS), that is consistent with the process defined for the 
project, facilitates technology transfer 

Automating the non-creative tasks of a new technology, such as file access and simple process flow 
facilitates the adoption of the new technology. 

5. Based on this demonstration we now believe that a technology transfer program to support individual 
projects at a typical DoD SSA organization must begin with a defined process for the project and should consist 
of the following components: 

(1) a technology transfer plan, 
(2) formal CSE training , 
(3) the availability of qualified coaching, 
(4) the availability of engineering handbooks. 

The combination of technology transfer components created a series of successes at Picatinny; including 
productivity gains, expected quality gains, and the increased motivation of the engineering staff. 

Future Directions 
The next steps for LCSEC/STARS cooperation have been defined. The impressive results to date in the 

areas of productivity, quality, return on investment and moral have convinced TACOM LSCEC management to 
continue the work begun under this demonstration project and to expand it further throughout the organization and 
this includes the following: 

Creating a Cleanroom Competency Team to build CSE and process expertise in house. This group will 
be responsible for continuous review and study of the application of CSE at Picatinny. 



Evolve Cleanroom Software Engineering into a complete life cycle process as far as is feasible using 
standard Cleanroom techniques. Work is currently underway to perform a mapping of the evolved Cleanroom 
Software Engineering process, as used at Picatinny, against SEI developed Software Process Frameworks (SPF) 
for the SEI CMM Levels 2 and 3. The results of this mapping will provide Picatinny with a road map of all areas 
that are either not covered or are poorly covered by the currently documented CSE process. These results will be 
used to identify areas for Cleanroom process definition extensions. Areas that are not practical for Cleanroom 
extension will be covered with non Cleanroom processes. The result will be a complete life cycle process 
definition for Picatinny to support their move to SEI CMM level 3. 
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Why Isn't Cleanroom the Universal Software Development Methodology? 

Johnnie Henderson, Loral Space Information Systems 

Cleanroom - a methodology that promises much lower error rates, higher productivity, delivery of 
software on schedule and within budget - sounds like the proverbial "silver bullet" that the industry is 
looking for. "Why hasn't it caught on and spread like wildfire? There are three basic reasons: a belief 
that the Cleanroom methodology is too theoretical, too mathematical and too radical for use in real 
software development, it advocates no unit testing by developers but instead replaces it with 
correctness verification and statistical quality control- concepts that are directly opposite of how most 
software is developed today, and maturity of the software development industry. Use of Cleanroom 
processes requires rigorous application of defined processes in all lifecycle phases. Since most of the 
industry is still operating at the ad hoc level (as defined by the SEI CMM), the industry has not been 
ready to apply those techniques. 

What does the experience in using Cleanroom say about whether or not these are valid concerns? 
Following is a brief discussion of those concerns: 

Correctness verification is too theoretical to be usable in real software development. The 
fundamental approach to verification as espoused by Cleanroom is aimed at introducing 
mathematical reasoning, not mathematical notation into the verification process. The principal 
motivation is to provide a rigorous methodology for software development and to provide a 
firm foundation as an engineering discipline. Mathematical verification of programs is done by 
using a few basic control structures and defining proofs following rules specified in a 
correctness theorem The proof strategy is divided into small parts that easily accumulate into 
proof for a large software system[l]. 

The method of human mathematical verification used in Cleanroom is called functional 
verification. Functional verification is organized around correctness proofs, which are defined 
for the design constructs used in a software design. Using this type of functional verification, 
the verification problem changes from one with an infinite number of combinations to consider 
to a finite process because the correctness theorem defines the required number of conditions 
that must be verified for each design construct used. It reduces software verification to 
ordinary mathematical reasoning about sets and functions[2]. The objective is to develop 
designs in concert with associated correctness proofs. Designs are created with the objective of 
being easy to verify. A rule of thumb followed is that when designs become difficult to verify, 
they should be redone for simplicity[l,2]. 

The Cleanroom methodology has been used to develop a variety of types of applications, most 
of the applications in software that has been sold commercially or embedded in operational 
application systems[3]. Individuals involved in these development efforts were a cross section 
of the software engineering population and were able to apply the Cleanroom method after a 
brief but intensive training program[4]. 



Unit testing vs. statistical quality control. Statistical quality control is used when you have 
too many items to test all of them exhaustively. Instead, you statistically sample and analyze 
some items and scientifically assess the quality of all of the items through extrapolation. This 
technique is widely used in manufacturing in which items in a production line are sampled, the 
quality is measured, then sample quality is extrapolated to the entire production line, and flaws 
are corrected if the quality is not as expected. 

For software, this notion has been evolved so that you perform statistical usage testing-testing 
the software the way the users intend to use it. This is accomplished by defining usage 
probability distributions that identify usage patterns and scenarios with their probability of 
occurrence. Tests are derived that are generated based on the usage probability distributions. 
System reliability is predicted based on analysis of the test results using a formal reliability 
model, such as mean-time-to-failure[4]. 

The underlying concern is that random, statistical-based testing will not provide sufficient 
coverage to ensure a reliable product is delivered to the customer. The coverage concern stems 
from a misapprehension that statistical implies haphazard, large, and costly and that critical 
software requirements, which may be statistically insignificant, are overlooked or untested. 
Coverage is directly related to the robustness of the usage probability distributions that control 
the selection process and has not proven to be a problem in current applications of the 
methods. In a study performed by Dyer on the level of requirements coverage using statistical 
testing, 100 per cent of the high-level requirements were covered, 90 per cent of the 
subcomponent-level requirements were covered, and approximately 80 percent of all 
requirements were covered[4]. 

The Cleanroom method asserts that statistical usage testing is many times more efficient than 
traditional coverage testing in improving the reliability of software. Statistical testing, which 
tends to find errors in the same order as their seriousness (from a user's point of view), will 
uncover failures several times more effectively than by randomly finding errors without regard 
to their seriousness. The basis for software reliability starts with the definition of a statsitical 
model, generally based on the concept that input data comes in at random times and with 
random contents. With defined initial conditions, any such fixed use is distinguishable from any 
other use. These uses can be assembled into a sequence of uses, and the collection identified as 
a stochastic process subject to evaluation using statistical methods. 

Coverage testing is anecdotal and can only provide confidence about the specific paths tested. 
No assessment can be made about the paths not tested. Because usage testing exercises the 
software the way the users intend to use it, high-frequency errors tend to be found early. For 
this reason, statistical usage testing is more effective at improving software reliability than is 
coverage testing. Coverage testing is as likely to find a rare execution failure as it is to find a 
frequent one. If the goal of a testing program is to maximize the expected mean-time-to-failure, 
hence the reliability of the system, a strategy that concentrates on failures that occur more 
frequently is more effective than one that has an equal probability of finding high- and low- 
frequency failures[5]. 



Human functional verification has proven to be surprisingly synergistic with statistical testing 
according to Mills, Dyer, and Linger[l]. Experimental data from projects where both 
Cleanroom verification and more traditional debugging techniques were used show that the 
Cleanroom verified software exhibited fewer errors injected. Those errors were less severe and 
required less time to fix. 

Software Process Maturity Factor. Using the Cleanroom methodology requires a change in 
paradigm-from viewing software development as an art or craft to viewing it as an engineering 
discipline. As such, it must have a rigorous foundation. In other engineering disciplines, failures 
are neither expected nor accepted as normal. Other engineering professions have minimized 
error by developing a sound theoretical base on which to build design practices. Cleanroom 
methods provide a theoretical foundation for a comprehensive engineering process that has 
been reduced to practice for commercial software development. 

Using Cleanroom methods requires commitments from management to provide training (for 
both management and technical personnel) in the skills needed to implement the methodology. 
It also requires discipline. Management must allow the process to unfold naturally, technical 
personnel must rigorously follow the process. It may require additional tools, such as some 
automated support to develop the randomly generated test suites from the usage probability 
distributions. 

In spite of these requirements, many have found that the return made the investments worthwhile. If 
being able to develop high- quality software within budget and on schedule are a concern, the 
Cleanroom methodology may be worth your taking the time to investigate. Peter Senge, in his book 
The Fifth Discipline^], said that 30 years is the typical incubation period for a basic innovation, a 
concept that transforms an existing industry. Maybe we are now at the stage when the Clearoom 
methodology will begin to take hold and make that transformation of the software development 
industry. 

Johnnie Henderson 
Loral Space Information Systems 

Software Technology Support Center 
Ogden ALC/TISE 

Hill AFB, UT 84056-5205 
Voice: 801-777-8057  DSN 777-8057 
Fax:     801-777-8069  DSN 777-8069 
Internet: hendersj@ software.hill.af.mil 
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LIST OF ORGANIZATIONS THAT PROVIDE CLEANROOM SERVICES 

IBM Cleanroom Software Technology 
Center (CSTC) 

100 Lake Forest Blvd. 
Gaithersburg, MD 20877 

Assessments: 

Process Documentation: 

Cleanroom Training: 
• Cleanroom Overview 
• Cleanroom System Development: 

Specification and Architecture 
• Cleanroom Software Development: Design 

and Verification 
• Cleanroom Certification. 

POC: Philip Housler 
Phone: 301-803-2684 
internet: housler@vnet.ibm.com 

Cleanroom Project Consulting: 
• Cleanroom Project Planning and Project 

Management 
• Cleanroom Specification Consulting 
• Cleanroom Code Development and 

Verification Consulting 
• Software Reliability Testing Consulting 

High-Ouality Geanroom Software Development 

Cleanroom Reliability Testing 

Software Engineering Technology, Inc. 
4600 Forbes Blvd. 

Lanham, MD 20706 

Services 

Engineering Software Solutions: 

Training: 

Process Engineering: 

Software Certification: 

Research and Development: 

Phone: 301-731-6200 
FAX:    301-731-6203 

Products 

Cleanroom Engineering Handbooks: 

Cleanroom Engineering Process Assistant: 

The Certification Package: 
• The Certification Assistant 
• The Software Certifier's Handbook 
• The Software Certifier' s Training Program 
• Certification Support Services 

The following list was identified just prior to publication and we were not able to obtain a 
summary of services. Feel free to contact these organizations/people for additional information 
on Cleanroom services. 

STARS Center 
801 N. Randolph St. 
Suite 400 
Arlington, VA 22203 
703-351-5300 

Richard C. Linger 
20221 Darlington Drive 
Gaithersburg, MD 20879 
301-926-4858 


