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Chapter 1 

Introduction 

Problem solving is an activity of an agent (or a set of agents) to achieve its (their) goals. 

Given a goal and a problem formulation, which consists of specifications of actions and 

states to be considered, a problem solver's task is to find a sequence of actions that 

gets an agent (or a set of agents) to a goal state from the current state. (The process 

of finding a sequence of actions is also called search in general.) For example, solving 
a scheduling problem for a production line, or controlling tactical aircraft in distributed 

battlefield simulations to accomplish a mission, or simply playing an eight-puzzle game 

are all problem solving activities. (From now on, I will refer to the problem solving 

activity as the problem solving for brevity.) 
Efficiency is a major concern for all problem solving systems. Depending on the tasks 

to be performed, the problem solver (the agent) has to achieve a certain level of efficiency. 

For example, building a chess playing agent that can challenge the world chess champion 

requires a way of computing effective moves in a reasonable response time. One way of 

achieving such efficiency is the application of learning techniques to speed up problem 

solving. For example, after solving a complex problem, the system can remember how it 

solved the problem, and generalize the experience to solve related problems more easily. 

However, Minton [41] has identified that the overhead of using learned knowledge often 

overwhelms its benefit The problem solving time with the learned knowledge can become 

greater than the problem solving time without it, because the match cost of the learned 

knowledge against the current state is greater than the savings by the learned knowledge. 

This phenomenon is called the utility problem, and it has turned out to be pervasive in 

many learning systems that are intended to speed up problem solving. 



One way of understanding how learned knowledge can slow down problem solving is 

to analyze how the learning system can produce expensive knowledge. By investigating 

the underlying learning algorithm and analyzing which sub-parts contribute to producing 

expensive-to-use knowledge, we can find the sources of expensiveness in the learning 

process. When the learning algorithm can be characterized as a sequence of steps, such as 

a sequence of transformations from the problem solving episode to the learned knowledge, 

this analysis can be performed by examining each step carefully. In this case, each 

transformation changes one intermediate product (or problem solving episode for the 

first transformation) into another (or learned knowledge for the last transformation). By 

computing and comparing the cost of the intermediate products, the changes in cost as 

a result of a transformation can be measured and isolated. Whenever a transformation 

increases the cost, that step can be considered as a source of expensiveness. The key 

element required for the analysis is a tool for computing the cost of the intermediate 

products. 

In addition to identifying which transformations lead to cost increases, and how they 

lead to such increases, the analysis may also point the way toward modifications of the 

transformational sequence that could potentially eliminate these cost increases. Once these 

modifications are identified, they should be carefully performed, so that the interactions 

across the modified subprocesses do not create another source of expensiveness. After the 

modifications eliminate the sources (without introducing extra sources of expensiveness), 

we can guarantee that the learning system will not slow down the problem solver. 

This dissertation demonstrates such an analysis in the context of Soar (a problem 

solving system with a variant of explanation-based learning). The learning process is 

characterized as a sequence of transformations where the cost of intermediate products 

can be measured. By analyzing cost changes through the transformations, the causes 

which can make the output rule expensive are identified. Based on the causes and the 

proposed modifications, a new learning algorithm is developed. 

1.1    The Goal of the Thesis 

This section describes related issues and specifies the goal of the thesis. The details of the 

related work are given in Chapter 8. 



Many speed-up learning systems acquire new knowledge in the form of search-control 

rules. (Other types of knowledge will be discussed in Chapter 8.) Search-control rules 

guide problem solving by indicating which paths are more promising than others, or which 

paths lead to failures. This guidance prunes the search branches and can reduce problem 

solving time. The utility problem for these systems is mainly concerned with the cost of 

using the learned rules. The research on this problem has raised two key issues. The first 

issue is the expensive-rule problem [61], in which individual learned rules are so expensive 

to match that the system suffers a slow down from learning [41,61,12,59,60]. The second 

issue is the average-growth effect [9], where the interactions across the rules slow down 

the system, even if none of the rules individually are all that expensive. Recent work on 

the average growth effect has developed a set of optimizations of the match algorithm to 

reduce slowdown due to learning a large number of rules [9]. Although the optimizations 

cannot completely eliminate potential causes of slowdown, the work has shown that in 

some tasks, it is possible to learn over one million rules while still allowing their efficient 

use. Our research focuses on the expensive-chunk problem. The solutions to both issues, 

expensive-chunk problem and the average-growth effect, eventually must be combined, 

but that is a topic for future work. 

There are various approaches for speed-up learning, including those using inductive 

techniques [22, 33, 55, 18]. Our work focuses on EBL, the most widely used speed-up 

technique [41,7, 14, 27, 23], rather than on these techniques. Once we solve the utility 

problem in EBL, the results may help guide similar analyses of other speed-up learning 

techniques. 
One class of approaches to the expensive-rule problem is discriminatory learning 

[41, 19, 16, 39]. After evaluating the utility of learned knowledge, the system keeps 

only the useful ones by comparing the cost of using the new knowledge and its benefit. 

However, the utility evaluation of the candidate rules may become a factor of the utility 

problem if it requires extensive computations [17]. Also, the system may waste a lot of 

energy in learning and evaluating the knowledge when a large part of the learned rules 

turns out to be useless. If most of the learned rules are useful in the future (though not 

necessarily now), throwing away them loses the full benefit of the learned knowledge. 

This research excludes this class of approaches, and is aimed at learning cheap rules in the 

beginning. 



One way of solving the expensive-rule problem is to ensure that the cost of using the 

learned rule is bounded by the cost of problem solving without the learned rule. A learned 

rule is called "expensive" when its match cost is greater than the cost of the problem 

solving from which it is learned. An optimization which can reduce the match cost of 

a learned rule does not necessarily solve the expensive-rule problem unless it guarantees 

such boundedness. For example, Prieditis et al. [50,41,59,58,12] have investigated how 

to produce cheaper rules. (The details of these approaches are described in Chapter 8.) 

However, none of these approaches can guarantee that the cost of using the learned rules 

will always be bounded by the cost of the problem solving episode from which they are 

learned. Thus the goal of solving the expensive-rule problem is split from simply reducing 

the match cost of the learned rules. However, with this definition of expensiveness, if the 

original problem solving has required exponential search, then the run time after learning 

could be exponential, though still not worse than the run time before learning. Thus the 

goal of removing expensive rules has been split again from the goal of guaranteeing a 

bound on the match. A solution that achieves the former goal but not the latter one is 

called a relative solution. An absolute solution is defined as one that provides a guaranteed 

bound on the match of the learned rules regardless of the original problem-solving cost. 

The relative solution, however, is still important to be examined. While getting a bound 

on match, the absolute solutions [61,65] which have been investigated so far, have several 

drawbacks. Not only do they reduce the expressibility of the system, but they also reduce 

the generality of the rules. They sometimes require a large number of rules for the same 

knowledge which can be expressed by a single rule [61]. This research focuses on the 

relative solution. 

The goal of this research is to provide a relative solution without restricting the 

expressiveness of the learned knowledge. In other words, we want to make sure that 

the cost of using learned rules is no more than the cost of problem solving. This will 

make the cost of using the learned rules always be bounded by the cost of the problem 

solving episode from which they are learned. One way of providing such boundedness 

is to: (I) find the complete set of sources that can make learned rules expensive, and 

then (2) modify the learning process to avoid these sources. To find the set of sources 

of expensiveness, this research introduces a novel way of analyzing the learning process 

called the transformational analysis. The essence of the approach is to decompose the 

learning process into a sequence of transformations in which the cost of intermediate 



products can be computed and compared. The EBL algorithm that goes from a problem 

solving episode to a learned rule can be decomposed into a sequence of transformations 

that change one intermediate problem solving/rule hybrid (called a pseudo-chunk) into 

another. {Chunk here means any learned rule. This is a generalization of the term used 

in the Soar [35, 54] system.) For example, filtering out unnecessary rules which did not 

participate in the problem solving can be the first transformation in the learning process. 

As the sequence progresses, the pseudo-chunks become more like rules and less like the 

problem solving. (This is an approximate description of the transformational analysis. 

The details describing this process will be provided in Chapter 2.) 

The key difference between the transformational analysis and the standard analysis 

of EBL is that the cost of intermediate products can be computed in the transformational 

analysis. In the standard analysis, learning is a process consisting of a sequence of 

sub-processes which create non-executable intermediate products. Here, the intermediate 

products (pseudo-chunks) are executable in that they can be matched and fired (given 

an appropriate interpreter) and thus independently create the same effect as the problem 

solving episode. By computing and comparing the match cost of each pseudo-chunk, the 

cost changes throughout the learning process can be measured and isolated within the 

steps in which the transformations occur. Once the sources of extra cost are found, by 

avoiding those sources, the cost of the learned rule can be bounded by the cost of the 

problem solving. 

The following section provides an example of transformational analysis. It analyzes 

one transformation in the EBL algorithm, and shows how we can find a source of expen- 

siveness through the analysis, and how a solution can be provided to avoid the source. 

1.2   An Example of the Transformational Analysis 

As described above, a problem can be solved by finding a sequence of operators (a path) 

leading to the goal state from the initial state. When the problem solver employs search- 

control rules, rules that determine which operators are selected for which states, the actual 

path depends on these rules. Figure 1.1 shows an abstract view of a sequence of operator 

applications. The gray arrows denote the search-control rules which affect each decision. 

When a new rule is acquired from a trace of the problem solving, the control rules are 

often removed in the learning process. That is, the instantiations of the search-control rules 
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Figure 1.1: A sequence of decisions affected by search-control rules. 

are not included in the explanation. For instance, PRODIGY/EBL [41] and Soar [37,54] 

— two problem solvers that learn search-control rules by a variant of EBL — ignore a 

large part of the existing search-control rules in learning, in order to increase the generality 

of the learned rules.1 (The details of how this transformation increases the generality are 

in Chapter 3.) The most critical consequence of this transformation (removal of search 

control) is that the learned rule (and the pseudo-chunks created between the transformation 

and the learned rule) are not constrained by the path actually taken in the problem space. 

Thus, they can perform an exponential amount of search even when the original search 

was highly directed (by the control rules). 

Consider an example from the Grid task — a task known to suffer from the expensive- 

rule problem [61] — as shown in Figure 1.2. Each problem in the Grid task is to find a 

path between two points in a two dimensional grid. The given problem is to go from point 

F to point P, a path of length four. In Figure 1.2-(a), each connection between two points 

is represented by a tuple that contains three items: object identifier, attribute (A indicates 

attribute name), and value. For example, the connection between point F and point J is 

represented by the tuple (F Anext J). Figure 1.2-(b) shows a rule that proposes a candidate 

operator. The symbols enclosed in angle brackets are variables. The rule operator-goto 

says that if the location of the current state is point <locl> and <locl> is connected 

to another point <loc2>, then a new operator can be proposed which moves the current 

location from <locl> to <loc2>. Because F is connected to four adjacent points, four 

operators can be suggested by the rule. With suitable control knowledge, the system can 

solve the problem of finding a path from point F to point P — for example, F, G, H, L, and 

1 In Prodigy, selection and rejection rules are included in the explanation, but preference rules are not [43]. 
Likewise, Soar currently also includes require and prohibit preferences, but not desirability preferences. The 
details of the preference semantics are explained in Chapter 5. 
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Figure 1.2: Grid task. 

P — in time that is linear in the length of the path. However, the rule learned from this 

search may be so general that, when it matches, it searches over all paths of length four 

instead of just a single path. 

Figure 1.3 shows the relationship between the search upon which the learning is based 

and the search performed, during the match, by the rule learned from this search. The rule 

in Figure 1.3 says that if you are at location <U> and want to get to location <15>, and 

there is an operator that takes you from <U > to <12>, and there is a connected path from 

<12> to <15> (via two intermediate points, <13> and <14>), then the operator is the best 

choice. This rule is quite general, as it can solve any problem that has a solution of length 

four and find all such paths, which is a key difference from original problem solving with 

search control. This generality, however, is only obtained at an enormous cost. That is, 

the cost is exponential in the length of the path (as shown as a set of arrows in the figure). 

Although, using this learned rule, the system can solve the same problem within a single 

rule firing instead of requiring multiple rule-firing cycles, the run time may become longer 

because of this exponential match search. 

The above analysis of a transformation (removal of search-control knowledge) reveals 

one important source of cost increase in the learning: removal of search-control can 

increase the cost One way of avoiding this problem is to incorporate the search-control 
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Figure 1.3: The difference between the search during problem solving and the search 
during the match of the learned rule. 

instead of removing it. By incorporating the traces of control rules utilizedin the problem- 

space search, the match process for learned rules (and the pseudo-chunks created between 

the transformation and the learned rules) becomes focused on just the path that was actually 

followed (as shown in Figure 1.4), thus ensuring that the match search for the learned rule 

is bounded in complexity by the problem-space search from which it was learned. The 

rule in Figure 1.4 is what would be learned by this solution. This rule corresponds to 

the rule in Figure 1.3. The additional conditions in the rule, though they look unusual, 

reflect the aspects of the problem tested by the search control that was part of the problem 

solving. These conditions constrain the search in the match to the search in the problem 

solving. (The details of how to match these conditions will be given in Chapter 5.) This 

can specialize the learned rule, but in return it enables the rule's cost to remain bounded 

by the cost of the original problem solving. 

This change (from removal of search control to incorporation of search control) may 

require modifications of the subsequent transformations. To be able to maintain the search 

control in the transformations, without introducing another source of cost increase, the 

subsequent transformations should be properly adjusted. It turned out that the above 

modification of the transformation requires significant changes of the subsequent transfor- 

mations. The details will be discussed in Chapter 5. 
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Figure 1.4: Searches that would be performed by including search control in learning. 

1.3    Overview of the Approach 

To reveal all sources of additional cost, a complete analysis of the whole sequence of 

transformations is required, as was done for one transformation above. We have performed 

such a transformational analysis of learning in Soar. The sequence of transformations in 

the learning process has been mapped into a sequence of transformations where the cost 

of intermediate products can be measured. By analyzing these transformations, two 

additional sources that can make the output chunk expensive have been identified. First, 

losing the efficiencies (such as sharing) stemming from the graph structure of the problem 

solving can increase the cost [30]. During problem solving, the rules that fire tend 

to form a directed acyclic graph structure in which the early rules provide information 

upon which the firing of later rules depends. This graph structure is called the problem- 

solving structure. The problem-solving structure is reflected in EBL most obviously in the 

structure of the explanation (and the more general explanation structure). However, if this 

graph structure is then flattened into a linear sequence of conditions (via a transformation) 

for use in matching the rule that is learned — as must be done in creating Ops-like rules 

or Prolog clauses — the efficiencies stemming from the graph structure are lost, and the 

cost after the transformation can be greater than the cost before it If instead, the learning 

mechanism is made sensitive to such efficiencies—i.e., by reflecting the graph structure in 

the match of the learned rule — this source of expensiveness can be avoided. This requires 

modifications of the match algorithm to be able to support graph structured instantiations, 

and adjustments of the subsequent transformations (should they exist). 



The other source of expensiveness is in disrupting the optimizations (such as the re- 

moval of duplicates) based on equivalent information. Forexample, in Ops-like languages, 

working memory is a set, and does not allow duplicate elements. Whenever rule firings 

create duplicates, they are merged into one element When multiple rule firings create the 

same working memory elements, only one of them is saved in the working memory and 

used in the future matches. If this optimization is ignored in learning new rules (as is the 

case in most EBL systems), time after learning can be greater than time before learning 

because of the extra match effort for the duplicate elements. This problem can be solved 

by introducing an equivalent optimization function in the learned rules. (The details are 

described in Chapter '5.) Also, the subsequent transformations should be modified as in 

the above cases. 

The proposed solutions for each identified source of cost increase should be combined 

to produce a unified solution. However, unifying each proposed solution for each identified 

source of cost increase is not simply pipelining the set of solutions. For example, the 

solution for the first problem (incorporating search control) introduces additional rules 

in the explanation structure, and the solution for the second problem (introducing graph 

structure in the learned rule based on the explanation structure structure) should efficiently 

capture this additional part. That is, the system should develop a way of embodying the 

search-control knowledge in the graph structure. 

Overall, the dual process of first finding the sources of cost increase through a transfor- 

mational analysis, and then modifying the learning process based on the analysis, is called 

the transformational approach. This research investigates the transformational approach 

in the context of Soar. Soar is an architecture that combines general problem solving 

abilities with a learning mechanism called chunking [36], Chunking is a variant of EBL 

[53], and also suffers from the expensive-rule problem [61]. The transformational analysis 

is presented in terms of chunking in Soar. Also, to be able to more easily generalize the 

resulting analysis to other EBL systems, we have implemented a general EBL algorithm 

in Soar (called Soar/EBL) [31] and analyzed its performance. The mapping between the 

two sequences of transformations has revealed that Soar/EBL yields the same sources of 

expensiveness as chunking. 

Although the transformational approach is presented in terms of learning in Soar, 

the above dual process can be applied to any learning algorithm (including other EBL 

implementations) whenever it can be characterized as a sequence of transformations. 
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Also, we conjecture that the transformational analysis can be used as a tool for detecting 

changes in correctness as well as changes in cost. By employing a tool for computing the 

level of correctness before and after the transformations, the changes in correctness as a 

result of a transformation can be measured and isolated. 

1.4    Contributions 

The primary contributions of this thesis include the following: 

1. Performing a transformational analysis of learning process: A novel way of an- 

alyzing learning processes is presented. The learning process is decomposed into 

a set of transformations where the cost of intermediate products can be computed. 

The analysis of each step (in terms of cost change through the transformation) is 

used as a tool for pointing out where extra cost is being added. Once the set of 

sources are found, the learning process can be modified to avoid the sources. This 

transformational analysis is also important for understanding other characteristics of 

the learning system, including the correctness changes through the learning process. 

2. Finding sources of expensiveness: Through the transformational analysis, we 

have found three sources of expensiveness: (1) removing search-control knowl- 

edge through learning, (2) losing efficiencies (such as sharing) stemming from the 

problem-solving structures, and (3) disrupting the optimizations (such as removal 

of duplicates) based on equivalent information. 

3. Identifying solutions to sources of expensivenss: Solutions are presented for each 

source of expensiveness. 

(a) Removing search control =» incorporate search control in learning. By incor- 

porating search control in the explanation structure, the match process for the 

learned rule can focus on the path that was actually followed. 

(b) Losing efficiencies stemming from the problem-solving structures => keep the 

problem-solving structure. By keeping the graph structure employed in the 

problem solving, the efficiencies can be reinstated. 
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(c) Disrupting the optimizations based on equivalent knowledge =>- preprocess 

knowledge before it is used. By preprocessing the knowledge either by group- 

ing the equivalent knowledge or by selecting one of them as a representative, 

an equivalent optimization can be achieved. 

4. Finding a unified solution to the set of sources: The proposed solutions are combined 

to produce a unified solution. This requires an efficient synthesis of the solutions, 

so that one does not hinder another. This unified solution guarantees that it avoids 

the sources of expensiveness each solution is trying ta avoid. 

5. Developing extensions to the match algorithm: To interpret the intermediate prod- 

ucts and evaluate the costs of the products, extensions to the match algorithm are 

required. Also, the unified solution demands significant change of the match algo- 

rithm. These different sets of extensions have been implemented. 

6. Evaluating the unified solution via experimental results: The unified solution has 

been implemented, and the results from the new learning system show that the cost 

of using the learned rule is bounded by the cost of the problem solving. 

7. Mapping EBL onto Soar: The transformational analysis performed for chunking has 

been mapped onto the sequence of transformations for EBL. The mapping contrasts 

the differences in cost and correctness between the two learning systems. 

1.5    Organization of the Thesis 

The body of this thesis consists of eight chapters. Chapter 2 describes the core idea of 

the transformational approach. It characterizes the standard EBL algorithm as a sequence 

of transformations as described above. The chunking algorithm is also characterized as 

a sequence of transformations in the same way. Chapter 3 presents a transformational 

analysis performed on chunking in Soar. Each transformation is examined in detail, and 

the cost changes through the transformations are analyzed. The key result of these analyses 

is the identification of new sources of expensiveness and presentation of solutions for each 

source. Chapter 4 maps the analysis performed for chunking to Soar/EBL. The analysis 

demonstrates that EBL, as implemented for Soar, yields the same sources of expensiveness 

and overgenerality as does chunking. Chapter 5 presents a unified solution based on the set 

12 



of individual solutions. The details of each solution are described, and the modifications 

required to combine all solutions are presented. Chapter 6 presents detailed results from 

the implementation of the unified solution discussed in Chapter 5. Chapter 7 and Chapter 

8 discuss related work and the conclusion, respectively. 
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Chapter 2 

Core Idea of Transformational Analysis 

This chapter describes how the EBL utility problem can be investigated via a transforma- 

tional analysis of the learning system. First, the standard description of EBL as a sequence 

of transformations is reviewed. Then the intermediate products (and the input and the out- 

put) of the sequence are mapped into executable structures (called the pseudo-chunks) so 

that the cost of intermediate products can be measured and compared. Finally, we charac- 

terize chunking as a sequence of transformations, with their intermediate pseudo-chunks, 

in the same way. 

2.1    EBL as a Sequence of Transformations 

2.1.1    An overview of EBL 

Given: 

(1) Goal concept: A definition of the concept to be learned. 
(2) Training example : A specific example of the goal concept. 
(3) Domain theory: A set of rules and facts to be used for proving that the 

training example is an instance of the goal concept. 
(4) Operationality criterion : A specification of how the concept should be 

expressed. 

Determine: 
A generalization of the training example that is a sufficient concept description 
for the goal concept and that satisfies the operationality criterion. 

Figure 2.1: EBL specification (adapted from [45]). 
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(1) Goal Concept: (<x> Aisa cup) 

(2) Training Example (WMEs): 
Wl: (Ol Ahas-part Cl) W6: (B1 Ais flat) 
W2: (Cl Aisa concavity) W7: (01 Ais light) 
W3: (Cl Ais upward-pointing) W8: (01 Ahas-part HI) 
W4: (Ol Ahas-part B1) W9: (HI Aisa handle) 
W5: (Bl Aisabottom) W10: (Bl Aowner Bill) 

(3) Domain Theory (rules): 
Rl) R2) R3) R4) 
(<x> Ahas-part <y>) (<x> Ahas-part <y>) (<x> Ais light) (<x> Ais open-vessel) 
(<y> Aisa concavity) (<y> Aisa bottom) (<x> Ahas-part <y>) (<x> Ais stable) 
(<y> Ais upward-pointing) (<y>Aisflat) (<y> Aisa handle) (<x> Ais liftable) 
_> -> _> „> 

(<x> Ais open-vessel) (<x> Ais stable)        (<x> Ais liftable)       (<x> Aisa cup) 

(4) Operationality Criterion: 
Concept definition must be expressed in terms of structural features 
used in describing examples (e.g., light, handle, flat, etc.). 

Figure 2.2: EBL input for learning the cup concept (adapted from [45]). 

Explanation-based learning (EBL) is a learning paradigm for acquiring a concept from 

the combination of a single example and underlying domain knowledge. Figure 2.1 shows 

the input and the output of EBL as specified in [45]. Given the four informational compo- 

nents (the goal concept, the training example, the domain theory, and the operationality 

criterion), EBL produces a rule which describes a sufficient condition for the goal concept. 

An example EBL input is shown in Figure 2.2. The example is an adaptation to the Soar 

syntax of the cup domain, a typical illustrative EBL task, described in [45]. EBL has 

to learn a structural definition of a cup. There are four rules representing the domain 

theory and ten working memory elements (or WMEs) representing the training example. 

The operationality criterion specifies that the concept should be expressed in terms of the 

features used in the example. 

Given the input, the system constructs an explanation (also called a. proof tree) of how 

the training example is an instance of the goal concept. The explanation built from the 

cup domain is shown in Figure 2.3. This structure shows how the object Ol is an instance 

of the cup class. Each circle with its attached lines represents an instantiation of a rule 

in the domain theory. The lines attached to the left-hand side of a circle represent the 

instantiation of the conditions, and the right-hand side arrows represent the instantiations 

of the actions. A white square represents a fact in the domain theory. A gray square linked 
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W14 

rule firing 

Created WMEs during proof: 
Wll: (01 Ais open-vessel) 
W12: (01 Ais stable) 
W13: (01 Ais liftable) 
W14:(01Aisacup) 

Figure 2.3: An explanation for the cup domain. 

to the right side of a rule instantiation is a fact (WME) produced by firing the rule. The 

rightmost square is an instantiation of the goal concept. The leftmost squares represent 

the part of the training example which participated in the explanation. In the example, 

among the given WMEs, Wl,... ,W9 participate in the explanation, and W10 is excluded 

from it 

An explanation structure is built from an explanation by replacing the rule instantia- 

tions with the rules. The variable names are replaced with unique names so that there are 

no common variables across the rules. An explanation structure built from the explanation 

in Figure 2.3 is shown in Figure 2.4. The instantiation of Rl is replaced by a copy of 

Rl (Rl'), which is the same as Rl except for the variable names. Its variable names are 

unique compared to the variable names of the other rules. Other rule instantiations are 

also replaced by rules in the same fashion. 

Given the explanation structure, a variable unification process (called regression) is 

applied to iL For example, the regression algorithm in EGGS builds a substitution list 

based on action and condition pairs which are juxtaposed in the explanation structure 

[46]. In Figure 2.4, the action of Rl' is unified with the first condition of R4', and this 

unification creates a substitution in which the variable <x2> is replaced by the variable 

<x4>.   After collecting a set of variable substitutions through the unifications, EBL 
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Rl') 
(<xl> Ahas-part <yl>) 
(<yl> Aisa concavity) 
(<yl> Ais upward-pointing) 
--> 
(<xl> Ais open-vessel) 

R3') 
(<x3> Ais light) 
(<x3> 'Hias-part <y3>) 
(<y3> Aisa handle) 
-> 
(<x3> Ais liftable) 

R2') 
(<x2> Ahas-part <y2>) 
(<y2> Aisa bottom) 
(<y2> Ais flat) 
-> 
(<x2> Ais stable) 

R4'), 
(<x4> Ais open-vessel) 
(<x4> Ais stable) 
(<x4> Ais liftable) 
-> 
(<x4> Aisa cup) 

J~£&f*X~$$»- : A copy of a rule 

Figure 2.4: An explanation structure for the cup domain. 

applies the collected substitutions to the variables in the explanation structure, and this 

process creates a regressed structure as shown in Figure 2.5. 

After the regression, a new definition, i.e., a sufficient condition for the goal concept, is 

generated from the leaves of the regressed structure. The new rule is shown in Figure 2.6. 

Given the definition of the operationality criterion in Figure 2.2 — the concept should 

be expressed in terms of the structural features used in describing examples — the new 

definition complies with the operationality criterion. 

When EBL is employed in a problem solving system (such as Soar), the rule traces in 

a problem solving episode can provide the explanation of why an example is an instance 

of a goal concept. By following the above algorithm, a new rule can be generated by 

EBL and be added to the domain theory of the system. Given a similar problem, firing the 

learned rule can produce the same effect as the rules in the original domain theory. 

Note that the goal concept in the above example is a task concept (a cup concept). 

When the goal concept is a meta control decision (i.e., success, failure, or preferences 

among multiple operators), EBL creates a search-control rule which describes a sufficient 

condition for the particular control decision. For example, Soar and PRODIGY employ a 
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R1-) 
(<x4> Ahas-part <yl>) 
(<yl> Aisa concavity) 
(<yl> 'Ms upward-pointing) 
—> 
(<x4> ^s open-vessel) 

R3") 
(<x4> Ais light) 
(<x4> Ahas-part <y3>) 
(<y3> Aisa handle) 
~> 
(<x4> Ais liftable) 

R2") 
(<x4> Ahas-part <y2>) 
(<y2> Aisa bottom) 
(<y2> Ais flat) 
-> 
(<x4> Ais stable) 

R4") 
(<x4> Ais open-vessel) 
(<x4> Ais stable) 
(<x4> Ais liftable) 

(<x4> Aisa cup) 

# 

Figure 2.5: The regressed structure for the cup domain. 

Newly-leamed-rule) 
(<x4> Ahas-part <yl>) 
(<yl> Aisa concativity) 
(<yl> Ais upward-pointing) 
(<x4> Ahas-part <y2>) 
(<y2> Aisa bottom) 
(<y2> 'Hs flat) 
(<x4> Ais light) 
(<x4> Ahas-part <y3>) 
(<y3> Aisa handle) 
-> 
(<x4> Aisa cup) 

Figure 2.6: Learned rule. 
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variety of goal concepts, so that they can explain why the choices made during the problem 

solving episode were appropriate, or were not appropriate. The new search-control rule 

can prune the search branches in future problem solving activities. 

2.1.2   Transformational analysis of EBL 

The above specification describes EBL as a sequence of transformations, where the input 

is the problem solving episode and the output is the chunk (the learned rule), as shown 

in Figure 2.7-(a). Each transformation produces a nonexecutable intermediate structure 

(e.g., explanation, or explanation structure) which is given to the next transformation. In 

this sequence, it is difficult to compare the costs of the intermediate products, and also 

difficult to analyze the effect of each transformation. 

One way of analyzing the cost changes through the transformations is to map the non- 

executable intermediate structures into executable ones (pseudo-chunks) by providing 

appropriate interpreters. As shown in Figure 2.7, the original sequence of intermediate 

structures in EBL can be mapped into a new sequence of pseudo-chunks with their 

interpreters. In this new sequence, each pseudo-chunk can be matched and fired by an 

interpreter, and can produce the same result as the original problem solving episode. 

For instance, a problem solving episode can be mapped into a domain theory where its 

interpreter is the rule matcher and the rule firer. By computing the total cost of firing 

multiple rules in the domain theory, given the initial facts, we can compute the cost of 

the problem solving. Also, the learned rule can be simply mapped into the same learned 

rule with the rule matcher as its interpreter. By computing the match cost of the learned 

rule, we can compute the cost of interpreting the learned rule. Once we compute the cost 

of firing each pseudo-chunk (i.e., cost of interpreting the pseudo-chunk), we can analyze 

the cost changes through the transformations. The key factor here is that each pseudo- 

chunk should have the same effective measure of cost, so that the costs of firing different 

pseudo-chunks are comparable. 

Although this new sequence is different from the standard sequence of transformations 

of EBL, both sequences are consistent in that each transformation in one sequence has 

a corresponding transformation in the other. For example, filtering out unnecessary rule 

firings in the problem solving episode is the first transformation, and it also transforms the 

domain theory into the next pseudo-chunk in which unnecessary rules are discarded. 
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(a)EBL (b) Sequence of Interpretable Structures 

Figure 2.7: Mapping the sequence of non-executable structures into a sequence of exe- 
cutable structures (pseudo-chunks). 

Whenever there are multiple rule firings in a pseudo-chunk, the cost of interpreting 

(matching) the pseudo-chunk is the total cost of matching and firing all the participating 

rules. For example, as described above, the cost of interpreting the domain theory is the 

total cost of matching and firing rules in the problem solving. Actually, the cost of firing a 

rule is the cost of executing actions and creating new WMEs based on the action execution. 

However, we will not explicitly focus on this cost for two reasons. First, the key bottleneck 

in rule firing is traditionally the match phase. Second, these action executions (except for 

the action that created an instance of the goal concept) and the WME creations drop out 

during learning, and do not affect the cost of the chunk; so this aspect is already guaranteed 

to be bounded. 

2.2    Chunking as a Sequence of Transformations 

Chunking is a variant of EBL, and it also can be characterized as a sequence of pseudo- 

chunks given appropriate interpreters (as described above for EBL), and cost changes from 

each transformation can be analyzed. 

The cost of firing a rule is computed by the match cost of the rule; thus the cost 

significantly depends on the match algorithm employed in the problem solving system. 
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As illustrated in [11], the match algorithms employed in speed-up learning can greatly 

affect the utility of the learned knowledge. For example, good matchers Can help avoid a 

part of the utility problem, and bad matchers can significantly contribute to the problem. 

Therefore, it is important to understand the underlying match algorithm for the utility 

analysis. Soar employs Rete [15] as its match algorithm. Rete is one of the most efficient 

rule-match algorithms presently known. 

The two subsections below review chunking and the Rete algorithm. The last subsec- 

tion maps chunking into a sequence of pseudo-chunks, based on the first two subsections. 

2.2.1    An overview of Chunking 

In Soar, productions comprise the domain theory for EBL. Each production consists of a 

set of conditions and a set of actions. Conditions test working memory for the presence 

or absence of patterns of tuples, where each tuple consists of an object identifier, an 

attribute, and a value. Actions create preferences (stored in the preference memory), each 

of which specifies the relative or absolute worth of a value for an attribute of a given object. 

Productions in Soar propose changes to working memory through these preferences, and 

do not actually make the changes themselves. Changes to working memory are made 

based on a synthesis of the preferences (by a fixed decision procedure). The cycle of 

production firing, creation of preferences, and creation of working memory elements 

(WMEs) underlie the problem solving [34].x Figure 2.8-(a) shows the problem solving 

cycle. A problem solving episode is a sequence of rule firings and WME creations, as 

shown in Figure 2.8-(b). This problem solving episode provides an input to the learning 

system. 

When a unique decision cannot be made because of either incomplete or inconsistent 

preferences, the system reaches an impasse. It creates a subgoal to deal with the impasse. 

In the subgoal created for the impasse, Soar tries to resolve the impasse. Whenever a 

supergoal WME (called a result) is created in the subgoal, a new chunk is created. The 

result corresponds to an instantiated goal concept in EBL. The chunk summarizes the rule 

firings in the problem solving that produced the result in the subgoal. 

'in fact, preferences not concerning the values of operators or states are processed as soon as they are 
created. Operators and states are decided only when there is no more rule firings in the system. 
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(a) Problem solving 

(b) Problem solving episode 

Figure 2.8: Problem solving in Soar. 

To create chunks, Soar maintains instantiated traces of the rules which have fired in 

the subgoal. The operationality criterion in chunking is that the conditions in the chunk 

should be generated from the supergoal objects. By extracting the part of the trace which 

participated in the result creation, the system collects the supergoal (operational) elements 

connected to the result. This process is called backtracing, and the instantiated trace is 

called a backtrace; it corresponds to the proof tree (or explanation) in EBL. An example 

of rule traces is shown schematically in Figure 2.9. The two striped vertical bars mark 

the beginning and the ending of the subgoal. The WMEs to the left of the first bar exist 

in the supergoal (prior to the creation of the subgoal). The WMEs between the two bars 

are internal to the subgoal. The WME to the right of the second bar is the result of the 

subgoal. Tl, T2, T3, T4, and T5 are traces of the rule firings. For example, Tl records a 

rule firing which examined WMEs A and B, and generated a preference suggesting WME 

L. In the example, T2, T3, T4, and T5 have participated in the result creation. 

Instead of employing all of the rule traces which participated in the result creation, 

chunking only extracts traces from task-definition rules (rules that directly propose values 

of WMEs). Search-control rules, as distinguished from task-definition rules, suggest the 

relative worth of the proposed values. The search-control rules are missing in chunking 
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Supergoal 

WMEs 
Subgoal process 

D 
: role trace (instantiation) 

:WME 

Figure 2.9: An example of the backtrace. 

(and other EBL systems [43]) based on the assumption that they only affect the efficiency, 

not the correctness of learned rules. This omission is intended to increase the generality 

of the learned rules — reducing the number of conditions by leaving out search-control 

rules means less restriction on the test of the applicability of the rules, and thus implies 

increased generality. In the given example, chunking's backtrace includes T2, T4, and T5, 

but excludes T3 (firing of a search-control rule). 

The resulting supergoal elements are variablized. The variablization step in chunking 

is different from the regression process in EBL in that it is performed by examining 

the backtrace (explanation) rather than unifying condition-action pairs in the explanation 

structure. All constants are left alone; they are never replaced by variables. All object 

identifiers in the instantiations are replaced by variables; and in particular, all occurrences 

of the same identifiers are replaced by the same variable. The variablized supergoal 

elements are reordered by a heuristic algorithm, and become the conditions of the chunk. 
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Problem Solving 

I   Filtei 
1  parti 

Filter out traces which don't 
cipate in the result creation 

Rule traces participated 
In the result creation 

Remove search control 

Figure 2.10: The sequence of transformations of chunking. 

The action of the chunk is the variablization of the result. This sequence of transformations 

of chunking is shown in Figure 2.10. 

2.2.2    Rete match algorithm 

In Soar, when a new rule is created, the conditions of the rule are compiled into a data 

flow network called a Rete network. The Rete algorithm's efficiency stems primarily 

from two key optimizations: sharing and state saving. Sharing of common conditions 

in a production, or across a set of productions, reduces the number of tests performed 

during match. State saving preserves the previous (partial) matches for use in the future. 

Figure 2.11 illustrates a Rete network for a rule. Rete requires a total ordering on the 

conditions of a rule for it to be compiled, so the rule's conditions are first ordered. For 

example, the conditions in Figure 2.11 are ordered (Cl, C2, C3). Soar employs a heuristic 

ordering algorithm to improve the match performance. 

The network has two parts, the alpha part and the beta part. The alpha part performs 

constant tests on WMEs, such as tests for at and yes. The outputs of these tests are 

stored in alpha memories. Each alpha memory contains the set of WMEs that pass all 

of the constant tests of a condition (or more than one, if it is shared). The beta part of 

the network contains join nodes and beta memories. There also are negative nodes, into 
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Rete network for one production with condition: 
Cl: (<state> Aat <locl>) 
C2: (<locl> Anext <loc2>) 
C3 : (<loc2> Agoal-point yes) 

when Working Memory contains 
Wl:(SlAatLl) 
W2:(LlAnextL2) 
W3: (LI Anext L3) 
W4: (L2 Agoal-point yes) 
W5:(L2AnextL3) 
W6: (L4 Agoal-point yes) 

WMEs 

constant tests 

alpha memory 

join on <locl> 

bete memory   (w l, W2) (W l ,W3) 

W4.W6 

(goal-point, yes) 

join on <loc2> 

complete match f(Wl,W2,W4) 

Figure 2.11: Rete network of a rule. 
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which negated conditions are compiled. A negative node passes a partial instantiation when 

there are no consistent WMEs. Join nodes perform consistency tests on variables shared 

between conditions, such as <locl>, which is shared between Cl and C2. Beta memories 

store partial instantiations of productions, that is, instantiations of initial subsequences of 

conditions. The partial instantiations are called tokens. 

We use the number of tokens as an analytic tool for measuring the cost. Counting 

tokens yields a measure that is independent of machines, optimizations, and implemen- 

tation details. Also, it has been considered as standard practice in the match-algorithm 

community that time per token is approximately constant [63, 61, 62, 10, l].2 So, as a 

comparative measure of match cost, we will use the number of tokens, in addition to time. 

2.2.3   Mapping chunking into a sequence of executable structures 

In the sequence of transformations of chunking (Figure 2.10), each intermediate product 

is non-executable. We can map those non-executable structures into executable structures 

given appropriate interpreters, as discussed in subsection 2.1.2. Figure 2.12-(b) shows the 

new sequence of transformations. As the sequence progresses the pseudo-chunks become 

more like chunks and less like the problem solving. The next chapter illustrates the 

sequence of transformations and its pseudo-chunks in detail. Also, cost changes through 

the transformations are analyzed based on the new sequence. 

2 Whenever an overhead (inefficiency) in token processing is found, more efficient algorithms have been 
developed to eliminate the overhead. For example, a linear list representation of tokens (sequence of WMEs) 
has been changed to a faster hash table. Also, Rete/UL has introduced elimination of unnecessary processing 
in the join nodes which maintains constant time per token for learning a large number of rules [9]. The 
match algorithm employed for this research is a state-of-the-art Rete algorithm without the optimization of 
Rete/UL. However, the analysis of the number of tokens is still useful when not many rules are learned. Also, 
we conjecture that the results can be applicable for learning large number of rules if the system employs 
Rete/UL. 

26 



Problem Solving 

Filter out traces which don't 
i participate in the result creation 

jRule traces participated 
iiilrtithe^resült creation*: 

Remove search control 

(a) Chunking 

Rule iiven Hules  .Rete (Rule matcher) 
(Domain Theory^ Rule firer 

+ Decision procedure 

Pseudo-chunk-' 
"C 

lnterpreter-1 

Pseudo-chunk-2 
lnterpreter-2 

Pseudo-chunk-3 
lnterpreter-3 

Chunk 
Rete (Rule matcher) 

(b) Sequence of Interpretable Structures 

Figure 2.12:   Mapping the sequence of non-executable structures into a sequence of 
executable pseudo-chunks. 
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Chapter 3 

Transformational Analysis of Chunking 

The chunking process can be characterized as a sequence of transformations, and each 

intermediate product can be mapped into an executable structure (pseudo-chunk) by pro- 

viding an appropriate interpreter, as described in Chapter 2. This chapter discusses each 

transformation, and examines the pseudo-chunks, including their effects on cost, with an 

example. The interpreters provided for pseudo-chunks in the analysis have the same ef- 

fective measure of cost—number of tokens; the cost of each pseudo-chunk is determined 

by counting the number of tokens generated during the match to produce the result. By 

analyzing how the transformations alter the cost, the sources of added expensiveness are 

revealed. 

3.1    Mapping Intermediate Products to Pseudo-chunks 

Figure 3.1 shows the mapped sequence of pseudo-chunks from the domain theory to 

a chunk. This sequence corresponds to the sequence shown in Figure 2.12-(b). Each 

transformation is the same as the transformations of the chunking process, except for the 

last step. The last step, building a rule, is divided into two steps in the figure, to examine 

the match algorithm's restriction on building a new chunk. (Details are given later.) 

The pseudo-chunks are generated by mapping the original intermediate products into 

executable structures by providing an appropriate interpreter. Each pseudo-chunk can be 

interpreted (by its interpreter) and can produce the same result as the problem solving, 

given the same initial WMEs. The sequence on the right schematically shows the structural 

changes through the transformations. This section provides an abstract description of each 

transformation. (Details will be given in the sections following, along with an example.) 
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Given rules (domain theory) Rule matcher + 
Rule firer + 
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' 
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Chunk 
Rule matcher 

1 

D—O 

Figure 3.1: A sequence of transformations from the domain theory to a chunk. 

The first node in the sequence is the domain theory. The interpreters for the domain 
theory are the rule matcher, the rule firer, and the decision procedure. The interpretation 

generates a sequence of rule firings and new WMEs, given the initial WMEs, and produces 

a problem solving episode. 

The first transformation is to eliminate the rule firings that do not participate in the 

result creation from the problem solving episode. The resulting structure can be mapped 

to a pseudo-chunk, called a PS-chunk (Problem-Solving chunk). Given its interpreter, it 

reproduces the problem solving episode, excluding unnecessary rule firings. 

The second transformation removes search-control traces in the rule traces. Chunking 

employs only traces from task-definition rules, and omits those from search-control rules, 

as explained in Section 2.2. After the search-control traces are excluded from the problem 

solving episode, an E-chunk (Explanation-based chunk) is formed from the structure by 

providing an appropriate interpreter. 
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The third step is applying the variablization process. The variablization step in 

chunking is performed by examining the backtrace (explanation), as explained in Sec- 

tion 2.2. The pseudo-chunk generated from the variablized structure is called the I-chunk 

(instantiation-based chunk). 

The fourth step is unifying the substructures into a unit. The separate rules in the I- 

chunk have to be unified into a single structure to produce one rule. This unified structure 

is called a U-chunk (unified chunk). 

Finally, the fifth step is to create a new chunk based on the U-chunk. Because the rule 

compiler (Rete network) requires a linear ordering of the conditions, the graph structure in 

the U-chunk — which reflects the structure of the rule firings during the problem solving 

— is linearized into a total ordering, and then conditions are reordered via a heuristic 

algorithm to improve the match performance. 

As noted earlier, the building of a new chunk from the I-chunk is divided into two 

steps, though the the sequence shown in Figure 2.10 does not distinguish this division. 

The intermediate step is added to analyze the effect of the rule matcher's restriction on 

the rule form. Soar's rule matcher, i.e., Rete, assumes a total ordering of the conditions, 

and the graph structure of an I-chunk is forced to be totally ordered. The intermediate 

structure (U-chunk) is a unified structure (one rule) that is independent of this restriction. 

It maintains the graph structure of the I-chunk. By dividing the step of building a new 

chunk into two sub-steps, we can separate the cost change by unifying (creating one rule 

from the I-chunk) and the cost change by modifying the rule form to be compiled into 

Rete. 

The following sections describe each pseudo-chunk and its interpreter in detail. These 

discussions are presented in the context of a simplified Grid task. Figure 3.2 shows a 

part of the Grid task; that of evaluating if point C is reachable from point A. There are 

thirty WMEs which record the connections among points and the cars (such as VI and 

V2) available to reach the points. In the example, a symbol starting with an upper-case 

letter is an identifier, and a symbol starting with a lower-case letter is a constant In this 

simplified task, the full connections among the points are given only in part. Also, there is 

only one car available to reach each point. There are four rules to begin within this task. 

For brevity, rules and WMEs describing Soar's architectural activities are not shown. The 

details of these activities are given in Chapter 4. 
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Rule Rl creates a candidate operator whenever there is an adjacent point to the current 

point The plus sign (+) in the action indicates that an acceptable preference is created 

for the operator, and it becomes one of the candidate operators. Thus, Rl is one of the 

task-definition rules that directly propose candidates. Rule R2 can create best preferences, 

which guide the problem solver to pick the operators that go in the right direction. The 

greater-than sign (>) in the action represents that the operator is the best option among 

the candidates. Rule R3 applies the selected operator to the state, and changes the 

current location to the new location indicated by the operator. Finally, rule R4 detects the 

achievement of the goal by checking if the current location is the same as the given goal 

point. 
According to the EBL specification, the given rules form the domain theory and the 

given WMEs form a training example. Also, the goal concept is success (i.e., the goal 

point is reachable from the the current position). 

3.2    Interpreting the Domain Theory 

A problem solving episode, i.e., the input to chunking, can be mapped to the domain 

theory by providing interpreters. The domain theory is interpreted by the rule matcher, 

the rule firer, and the decision procedure. The interpretation generates a sequence of rule 

firings and new WMEs, given the initial WMEs, and produces a problem solving episode. 

Figure 3.3 shows the sequence of rule firings and WME creations in the problem solving 

episode. The initial sequence of rule firings of Rl (operator proposal), R2 (search control), 

and R3 (operator application) is marked as (1) in the figure. The rule firings move the 

current position from A to B. Also, the subsequent rule firings of Rl, R2, and R3 (marked 

as (2)) moves the current position to C. Finally, R4 detects the achievement of the goal. In 

the figure, a trivial WME creation is the creation of just one candidate and the creation of 

a WME from the candidate, as opposed to the WME creations based on other preferences 

as well as the proposed candidates. 
In the graphical representation of the problem solving episode (in Figure 3.3), each 

circle represents a rule trace, given the WMEs linked to the left of the circle. For example, 

the leftmost circle in the figure shows that Rl has been fired twice and has created two 

preferences (PI and P2). The two preferences propose candidate operators that go to B 

and to D, respectively.  The firings of task-definition rules (rules that directly propose 
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W27:(GlAstateS) 
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(a) Given WMEs 

W13: 
W14: 
W15: 
W16: 
W17: 
WI8: 
W19: 
W20: 
W21 
W22: 
W23: 
W24: 

W25: 
W26: 

(E Anext B) 
(EAnextF) 
(EAnextH) 
(E Ancxt D) 
(G Anext D) 
(GAnextH) 
(BArcachable-byVl) 
(DAreachablc-byVl) 
(A Areachable-by V2) 
(CAreachable-byV2) 
(EAreachable-byV2) 
(GAreachable-byV2) 

(VI Anamecar) 
(V2 Aname car) 

(Rl 
(goal <g> ^tate <s>) 
(<s> Aat <locl>) 
(<locl> Anext <loc2>) 
(<loc2> Areachable-by <vehicle>) 
(<vehicle> Aname <n>) 
—> 
(<g> operator <loc2> +)) 

(R2 
(goal <g> ^tate <s>) 
(<s> Aat <loc3>) 
(<loc3> Aright <loc4>) 
(<g> Aoperator <loc4> +) 
—> 
(<g> Aoperator <loc4> >)) 

(R3 
(goal <g> ^tate <s>) 
(<g> operator <loc5>) 

(<s> ^t <loc5>) 

(R4 
(goal <g> ^tate <s>) 
(<g> Agoal-point <gp>) 
(<gp>Aat<loc6>) 
(<s> Aat <loc6>) 
—> 
(<s> Asuccess <loc6>)) 

; (operator proposal rule) 
; if the location of the current state is 
; <locl>, and <locl> is adjacent to <loc2>, 
; and <loc2> is reachable by some vehicle 
; whose name is <n>, then 
; create a candidate operator to go to <loc2> 

; (search-control rule) 
; if the current location is <loc3>, 
; and <loc4> is on the right, and 
; there is a candidate operator to go to 
; <loc4>, then try the operator first than others 

; (operator application) 
; the selected operator goes to <loc5> then 
; change the current location to <loc5> 

; (detection of success) 
; if the current location is <loc6> and 
; it is the goal point, then the task is accomplished 

(b) Given rules 

Figure 3.2: A simplified Grid task. 
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Figure 3.3: Problem solving episode excluding unnecessary rule firings. 
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values of WME) are represented as solid circles, while gray circles indicate search-control 

rule firings. Each capital letter D represents a synthesis of the preferences by the decision 

procedure. A connection from one rule to another rule through a decision D, means that 

preferences created by the former rule are synthesized by a decision to create a WME, and 

the created WME is matched to a condition of the latter rule. For example, preferences 

PI, P2, and P3 participate in a decision which creates W31, and W31 is matched to a 

condition of R3. The trivial decision steps are not shown in the figure for brevity. Also, 

the acceptable preferences that aren't for the operators are not explicitly,represented.. 

Actual interpretation of the domain theory (or problem solving) normally includes other 

rule firings which are not linked to the result creation; however, these are not shown here. 

The details of the match process are shown in Figure 3.4. The matches between the 

WMEs and the rules are based on the Rete algorithm explained in subsection 2.2.2. A 

number in front of a rule condition denotes the number of tokens (partial instantiations) 

generated at that condition in the problem solving episode (as shown in Figure 3.3). The 

tokens are generated by testing the consistency (joining) between the instantiations of the 

previous conditions and the WMEs matching the current condition (i.e., WMEs in the 

condition's alpha memory). For example, Rl fires twice in step (1) as follows. The first 

condition (goal <g> Astate <s>) is instantiated by W27; that is, (W27) is the token of the 

first condition. Given the token of the first condition, and the instantiations of the second 

condition (W28 and W30), the consistency test across the two conditions creates one token: 

(W27.W28). Also, given the token from the first two conditions and the instantiations 

of the third condition, the consistency test across the first two conditions and the third 

condition creates two new tokens: (W27,W28,W1) and (W27,W28,W2). Each of them 

is consistent with one of the instantiations of the fourth condition, and Rete creates two 

more tokens: (W27,W28,W1,W20) and (W27,W28,W2,W22). Finally, two tokens are 

created for the last condition: (W27/W28,W1,W20,W25) and (W27,W28,W2,W22,W25). 

The Rete algorithm creates two instantiations of Rl based on these tokens, and each 

instantiation creates a new candidate operator by executing the action. The total number 

of tokens created for these rule firings is 8. 

A capital letter S in front of a rule condition indicates sharing of match effort with other 

rules which have the same patterns of conditions. For example, the instantiations from the 

first two conditions of rule Rl and the first two conditions of R2 are shared because they 

have the same patterns of variables tests and constant tests. A part of Rete's efficiency 
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Step(1)  

(Rl 
1 (goal <g> ''state <s>) 
l(<s>Aat<locl>) 
2 (<locl> ^ext <loc2>) 
2 (<loc2> Areachable-by <vehicle>) 
2 (<vehicle> "name <n>) 
-> 
2 (<g> operator <loc2> CAND)) 

(R2 
S (goal <g> "state <s>) 
S (<s> Aat <loc3>) 
1 (<doc3> Aright <loc4>) 
1 (<g> operator <loc4> CAND) 
—> 
1 (<g> operator ■doc4> BEST)) 

Decision process 

(R3 
S (goal <g> Astate <s>) 
1 (<g> Aoperator<loc5>) 
—> 
1 (<s> *at <doc5>)) 

(W27) 
(W27.W28) 
(W27.W28.W1) (W27.W28.W2) 
(W27.W28.W1.W19) (W27.W28.W2.W20) 
(W27.W28.W1.W19,W25)(W27,W28,W2,W20.W25) 

=> create PI, P2 

(W27) 
(W27.W28) 
(W27.W28.W3) 
(W27.W28..W3.P1) 

=> create P3 

PI .P2.P3 => create W31 

(W27) 
(W27.W31) 

=> create W32 

Step (2)  

(Rl 
S (goal <g> ^state <s>) 
1 (<s>Aat<locl>) 
3 (<locl> Anext <doc2>) 
3 (<doc2> Areachable-by <vehicle>) 
3 (<vehicle> Aname <n>) 
—> 
3 (<g> operator <doc2> CAND)) 

(R2 
S (goal <g> ''state <s>) 
S (<s> Aat <loc3>) 
1 (<doc3> Aright <loc4>) 
1 (<g> Aoperator <loc4> CAND) 
—> 
1 (<g> Aoperator<loc4> BEST)) 

Decision process 

(R3 
S (goal <g> Astate <s>) 
1 (<g> "operator <Ioc5>) 
—> 
1 (<s> "at <loc5>)) 

(R4 
S (goal <g> Astate <s>) 
1 (<%> "goal-point <gp>) 
1 (<gp> Aat <loc6>) 
1 (<s> "at <loc6>) 
-> 
1 (<s> Success <loc6>)) 

(W27) 
(W27.W32) 
(W27.W32.W4) (W27.W32.WS) (W27.W32.W6) 
(W27.W32.W4.W21) (W27.W32.W5.W22) (W27.W32.W6.W23) 
(W27.W32.W4.W21 .W26) (W27.W32.W5.W22.W26) 
(W27.W31 .W6.W23.W26) 

=> create P4, P5.P6 

(W27) 
(W27.W32) 
(W27.W32.W7) 
(W27.W32..W7.P4) 

=> create P7 

P4.P5.P6.P7 ==> create W33 

(W27) 
(W27.W33) 

=> create W34 

(W27) 
(W27.W29) 
(W27.W29.W30) 
(W27.W29.W30.W33) 

==> create W35 

Figure 3.4: Tokens created during the problem solving. 
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stems from this type of sharing of the tokens. (The other source of efficiency is the state 

saving as explained in subsection 2.2.2.) The total cost of the problem solving episode 

can be computed by summing the number of tokens from the rule firings (irrelevant firings 

as well as relevant firings), and it is 27 in this case. 

3.3    Filtering Out Unnecessary Rule Firings (=^ PS-chunk) 

As a first step toward producing a chunk, unnecessary rule firings that did not participate 

in the result creation can be filtered out from the problem solving episode. For the 

given example, this transformation eliminates all other rule firings, if there were any, 

beyond those shown in Figure 3.5. The resulting structure can be mapped to a PS-chunk 

by providing an interpreter for it. The interpretation of the resulting PS-chunk looks 

similar to the original problem solving episode, aside from the missing unnecessary parts. 

However, its processing differs significantly from the initial problem solving episode in 

that there are no global memories, such as preference memory and working memory, as 

well as global buses among the rule firings and WME creations. The interpreter only 

provides local communications among the rules firings and WME creations based on the 

problem solving episode. For example, a WME creation (decision) is connected to a rule 

match only when the original problem solving has a decision where a WME is created 

by the decision and the created WME is matched to the conditions of the rule. The cycle 

of rule firings and WME creations in the problem solving episode is linearized into an 

enclosed sequence of rule firings and WME creations. 

In order to build a PS-chunk, for each instance of a rule firing, a copy of the original 

rule is created. For example, for the first firing of the rule Rl, a copy Rl-1 is employed. 

The rules in the PS-chunk are closed off from intermediate WMEs generated outside of 

this structure. For example, the link between R3-1 and Rl-2 through W32 means that no 

other WMEs except for those created by R3-1 are matched to the condition of Rl-2. Also, 

the WMEs created from R3-1 are not exposed to the matches of other rules. The only parts 

of a PS-chunk that are exposed to the full set of WMEs, are the conditions matched to 

the given initial WMEs in the problem solving episode, and the result creation. However, 

the interpretation of the PS-chunk does not differ in how it uses such optimizations as 

sharing and state saving. For example, the tokens from the first two conditions of R2-1 

are still shared with the tokens from the first two conditions of Rl-1. The key difference 

36 



W35 

Figure 3.5: A trace of a PS-chunk. A PS-chunk is created by eliminating unnecessary rule 
firing and encapsulating the problem solving activity into a unit. 

between a PS-chunk and a normal chunk is that matching a PS-chunk requires replaying 

(part of) a problem solving episode (by rule firings and intermediate WME creations), 

while matching a normal chunk requires just one rule match. Either can create the result 

in a similar circumstance. We implemented such an interpreter for PS-chunks. 

The cost (number of tokens) of a PS-chunk is bounded by the cost of problem solving. 

If there were unnecessary rule firings in the problem solving, as is usually the case, the 

cost of a PS-chunk would be strictly less than the cost of the problem solving. Otherwise, 

the cost would be the same as that of the problem solving. In the given example, there are 

no unnecessary rule firings, and the cost remains unchanged. 

3.4   Removing Search Control (=> E-chunk) 

Figure 3.5 contains all the rule firings involved in the result creation. However, chunking 

employs only traces from task-definition rules. The search-control rules are missing in 

chunking to increase the generality of the learned rules (as explained in Section 2.2). 

Figure 3.6 shows the E-chunk created from the PS-chunk. The copies of the search- 

control rule R2 (R2-1 and R2-2) and the nodes representing the decisions are gone, and 

only the copies of the task-definition rules are maintained in the structure. That is, 

acceptable preferences are turned directly into WMEs. While interpreting the E-chunk, 

all candidates proposed by Rl-1' and Rl-2' become WMEs without being filtered by the 
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W29 

W30 

W4.W5.W6, 
W10.W11.W12 

W21.W22.W23' 
W24 

R4-1' 

W35 

WMEs created while matching E-chunk 
W31:(G1 operator B) W33:(G1 «operatorQ W34:(SAatQ     W35: (S «success Q 
W36:(G1 «operator D) W38:(G1 «operator E) W41:(SAatE) 
W32:(S*atB) W39:(G1 «operator A) W42:(S«atA) 
W37:(S«atD) W40:(G1 «operator G) W43:(S«atG) 

Figure 3.6: A trace of an E-chunk. An E-chunk is created by eliminating search control 
in a PS-chunk. 

search control. This structure can be mapped onto the normal backtrace in chunking (proof 

tree or explanation in EBL). An E-chunk is identical to an EBL explanation structure. The 

interpreter for the E-chunk is similar to the interpreter for the PS-chunk except that the 

former does not have to perform decisions. 

The consequence of eliminating search control is that the interpretation of the E-chunk 

is not constrained by the path actually taken in the problem space, though it will still at 

least generate the right answer. The interpretation can perform an exponential amount 

of search even when the original problem-space search is highly directed (by the control 

rules), as described in Chapter 1. In the above example, without constraining the operator 

to the best candidate — which goes to the right — the number of tokens in the match of 

rule Rl-2 increases from 10 to 20, as shown in Figure 3.7. Overall, the total number of 

tokens increases from 27 to 37. 

One promising way of avoiding this problem, is to incorporate search control in 

chunking (or just not to drop it) [29]. By incorporating search control in the explanation 

structure, the match process for the learned rule can focus on the path that was actually 

followed. The preservation of the search control requires modifications of the subsequent 

transformations. The details of how to design and implement these modifications are 

explained in Chapter 5. 
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(1)  

(Ri-r 
1 (goal <g> "state <s>) 
1 (<s> "at <locl>) 
2 (<Iocl> Anext <Ioc2>) 
2 (<loc2> Areachable-by <vehicle>) 
2 (<vehicle> Aname <n>) 
-> 
2 (<g> Aoperator <Ioc2>)) 

(R3-1' 
S (goal <g> "state <s>) 
2 (<g> "operator <Ioc5>) 
-> 
2 (<s> Aat <loc5> )) 

(2)  

(Rl-2' 
5 (goal <g> "state <s>) 
2(<s>*at<Iocl>) 
6 (<Iocl> "next <loc2>) 

6 (<3oc2> "reachable-by <vehicle>) 

6 (<vehicle> "name <n>) 
-> 
4 (<g> "operator <loc2>)) 

(R3-2' 
5 (goal <g> "state <s>) 
4 (<g> "operator <loc5>) 
-> 
4 (<s> "at <loc5>)) 

(R4-1' 
5 (goal <g> "state <s>) 
1 (<g> "goal-point <gp>) 
1 (<gp> "at <loc6>) 
1 (<s> "at <loc6>) 
—> 
I (<s> "success <loc6>)) 

(W27) 
(W27.W28) 
(W27.W28.W1) (W27.W28.W2) 
(W27.W28.W1.W19) (W27.W28.W1.W20) 
(W27.W28.W1,W19.W25)(W27.W28.W1.W20.W25) 

=> create W31.W36 

(W27) 
(W27.W31) (W27.W36) 

==. create W32.W37 

(W27) 
(W27.W32) (W27.W37) 
(W27.W32.W4) (W27.W32.W5) (W27.W32.W6) 
(W27.W37.W10) (W27.W37.W11) (W27.W37.W12) 
(W27.W32.W4.W21) (W27.W32.W5.W22) (W27.W32.W6.W23) 
(W27.W37.W10.W21) (W27.W37.W11.W23) (W27.W37.W12,W24) 
(W27.W32.W4.W21.W26) (W27.W32.W5.W22.W26) (W27.W32.W6.W23.W26) 
(W27.W37.W10.W21.W26) (W27.W37.W11.W23.W26) (W27.W37.W12.W24.W26) 
==> create W33.W38.W39.W40 

(W27) 
(W27.W33) (W27.W38) (W27.W39) (W27.W40) 

==> create W34.W41.W42.W43 

(W27) 
(W27.W29) 
(W27.W29.W30) 
(W27.W29.W30.W34) 

==> create W35 

Figure 3.7: Tokens created while matching (interpreting) E-chunk. 
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3.5 Variablize (=>I-chunk) 

The variablization step in chunking is performed by examining the backtrace (explanation) 

that is equivalent to the E-chunk trace. All constants are left alone; they are never replaced 

by variables. All object identifiers in the instantiations are replaced by variables; in 

particular, all occurrences of the same identifiers are replaced by the same variable. Since 

E-chunks consist of rules rather than instantiations, we can model chunking's variablization 

step as the strengthening of constraints on the match, rather than as the weakening of them. 

If a variable is instantiated as a constant, it is replaced by that constant. If a variable is 

instantiated by an identifier, it remains as a variable, but may possibly undergo a name 

change. Particularly, all variables instantiated by the same identifier are replaced by the 

same variable. For example, the variables in Figure 3.6 are constrained, as shown in 

Figure 3.8. The interpreter for the I-chunk is the same as the interpreter for the E-chunk. 

With the exception of the differences in the variable names, the structures of the I-chunk 

and the E-chunk are the same. 

This transformation can overspecialize learned rules when distinct variables in the 

original rules accidentally happen to match the same identifier. For example, although 

variable <nl> in Rl-1' and variable <n2> in Rl-2' (Figure 3.6) are instantiated by the 

same constant car and changed to the same constant, they can correctly be generalized as 

different variables (Figure 3.8). However, from the perspective of cost, this transformation 

does not increase the number of tokens. The number of tokens generated should remain 

the same, or be reduced by the introduced constraints. In the given example, the cost 

remains the same. 

3.6 Eliminating Intermediate Rule Firings (=^ U-chunk) 

This step unifies the separate rules in the variablized structure (I-chunk) into a single 

rule. Figure 3.9 shows the result of unifying the example I-chunk into the corresponding 

U-chunk. Although Rl-1"', R3-1'", Rl-2"', R3-2"', and R4-1"' still have their own 

identifiable conditions in the U-chunk, there are now no intermediate rule firings. The 

boundaries between the rules are eliminated by removing the intermediate processes of 

WME creation. In lieu of these processes, the instantiations generated by matching the 

earlier rules in the firing sequence (i.e., the tokens produced by their final conditions) are 
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R4-1" 

-W35 

W26 
W4.W5.W6, 
W10.W11.W12 

-W34.W41, 
i-2"     W42.W43 

R1-2" 
W21.W22.W23T ^■jTir--  

W24           ^^-^ "  
i^gs/    V»~W33,W38. 
 h-S         W39.W40 

w27 ~f^zZ^Z   ra-1" 
W25v \                     "     ~~~?0_, 

W28 M^i;1        s*^ 
;$X.  >*-W31.W36 

W1.W2 'V*-' 

»-W32.W37 

W19.W20 

(Rl-1" 
1 (goal <g> Astate <s>) 
1 (<s> "at <locl>) 
2 (<locl> Anext <loc2>) 
2 (<Ioc2> "reachable-by <vl>) 
2(<vl> "namecar) 
-> 
2 (<g> operator <loc2>)) 

(Rl-2" 
5 (goal <g> Astate <s>) 
2 (<s> 'at <Ioc2>) 
6 (<loc2> Anext <loc3>) 
6 (<loc3> "reachable-by <v2>) 
6 (<v2> Aname car) 
—> 
4 (<g> 'operator <loc3>)) 

(R3-1" 
S (goal <g> ''state <s>) 
2 (<g> operator <loc2>) 

(R3-2" 
S (goal <g> "state <s>) 
4 (<g> "operator <loc3>) 

2 (<s> Aat <loc2> )) 4 (<s> Aat <Ioc3>)) 

(R4-1" 
S (goal <g> Astate <s>) 
1 (<g> Agoal-point <gp>) 
1 (<gp> Aat <loc3>) 
1 (<s> "at <Ioc3>) 

1 (<s> Asuccess <Ioc3>)) 

Figure 3.8: A trace of an I-chunk. An I-chunk is created by constraining variables (by 
instantiations) in an E-chunk. 
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W4.W5.W6 
W10.W11.W1 

W21.W23.W19. 
W24 

(Rl-1'" 
1 (goal <g> Astate <s>) 
1 (<s> Aat <locl>) 
2 («docl> Anext <loc2>) 
2 (<loc2> Areachable-by <vl>) 
2(<vl> Anamecar) 

(R3-1'" 
S (goal <g> Astate <s>) 
2 (Rl-1) 

(Rl-2'" 
5 (goal <g> Astate <s>) 
2(R3-1'") 
6 (<loc2> Anext <loc3>) 
6 (<loc3> Areachable-by <v2>) 
6 (<v2> Aname car) 

(R3-2'" 
5 (goal <g> Astate <s>) 
6 (Rl-2'") 

(R4-1'" 
S (goal <g> Astate <s>) 
1 (<g> Agoal-point <gp>) 
1 (<gp> Aat <loc3>) 
1 (R3-2'") 
-> 
1 (<s> Asuccess <loc3>)) 

Figure 3.9: A trace of a U-chunk. A U-chunk is created by eliminating intermediate rule 
firings in an I-chunk. 

passed directly to the match of the later rules. In effect, this step replaces the intermediate 

WMEs with the instantiations that created the WMEs. For example, one of R3-l""s 

conditions receives the instantiations of Rl-1"' directly as intermediate tokens, rather than 

receiving WMEs created from the instantiations. Thus, Rl-1'", R3-1'", Rl-2'", R3-2'", 

and R4-1"' are no longer (separate) rules. Here, they are called the subrules. A condition 

which matched intermediate WMEs created by a rule in the I-chunk, is replaced by a 

nonlinear condition testing the subrule that is built for the rule. (What makes a condition 

nonlinear is explained in the next paragraph.) When a subrule is tested multiple times by 

multiple nonlinear conditions, they share the same tokens created for the subrule. 

To be able to properly interpret this structure (to measure the cost change through the 

transformation), an extension is required to the match algorithm. The traditional form of 

Rete algorithm, as shown in Figure 2.11, requires a linear match network, in the sense 

that a total ordering must be imposed on the conditions to be matched; such as Cl, then 
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C2, and then C3. In (linear) Rete, each join node checks the consistency of a token 

(a partial instantiation) and a WME, with each token itself being a sequence of WMEs, 

each of which matches one condition. Since the intermediate WMEs are replaced with 

instantiations, whenever the current condition receives instantiations instead of WMEs, 

testing the consistency (by njoin node) between the tokens of previous conditions and 

the current (nonlinear) condition should join two tokens, instead of joining a token and 

a WME. That is, U-chunks require the ability to perform nonlinear matches, in which 

conditions are matched hierarchically via join nodes that compare pairs of tokens, rather 

than just a single token and a WME. They also require the ability to create hierarchically 

structured tokens (when pairs of incoming tokens are consistent); that is, a token must 

now be a sequence of WMEs or tokens (instantiations of a subrule). An extension of 

Rete, called nonlinear Rete [56, 38] has been implemented to interpret this intermediate 

structure. 
An example nonlinear Rete network is given in Figure 3.10. In standard Rete, each 

right-hand memory is an alpha memory. In nonlinear Rete, the right-hand memory is 

sometimes a beta memory rather than an alpha memory. For example, the starred right- 

hand memory is a beta memory containing the instantiations of the subrule R-S1. In R-S2, 

joining between the first condition and the second condition is performed by comparing 

two tokens instead of a token and a WME. The two optimizations of Rete, sharing and 

state saving, are still preserved. For example, two subrules can be shared, as long as they 

have the same pattern of variables and constants. Also, the state saving keeps the previous 

(partial) matches for use in the future. 

Figure 3.11 shows the details of how tokens are created while matching (interpreting) 

the U-chunk. Instantiations of subrule Rl-1"' are provided as the instantiations of the 

second condition of R3-l"'. The consistency checking between the instantiations of the 

first condition and WMEs created by firing Rl-1"' is replaced by a consistency checking 

between the instantiations of the first condition and the set of instantiations of Rl-1'". This 

consistency check is based on the common variables between the first condition and the 

subrule Rl-1"'. In this case, there are two common variables, <g> and <s>, and the join 

node checks the equality of the instantiations of these variables. Also, the instantiations 

of R3-1"' are provided as the instantiations of the second condition of Rl-2'" in the same 

way. This process continues until R4-1'" is instantiated. 
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(R-Sl 
1 (goal <g> 'state <s>) 
l(<s>Aat<Iocl>) 
2 (<locl> "next <Ioc2>) 

(R-S2 
S(goal<g>*state<s>) 
2 (<g> 'operator <Ioc2>) 

(goal <g> 'state <s>) 
(<s> 'at <locl>) 
(<locl> 'next <loc2>) 

(W26) 
(W26.W27) 
(W26.W27.W1) (W25.W26.W2) 

(W26) 
(W26. (W26.W27.W1)) (W26,(W26,W27.W1)) 

WMEs 

alpha memory   W25 

constant tests Q(goal,state) O (at) TJ (next) 

W26 | |W1. ....W18 1 

(W25.W26.W1) 
(W25.W26.W2) 

join on <locl> 
* 
beta memory 

\s 
v' join on <g> and <s> 
y 

(W25,(W25.W26,W1)) 
(W25.(W25. W26.W2)) 

Figure 3.10: An example nonlinear Rete network. 
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(Rl-1'" 
1 (goal <g> Astate <s>) 
1 (<s> ^ <docl>) 
2 (<locl> Anext <doc2>) 
2 (<loc2> Areachable-by <vl>) 
2 («vl> Anamc car) 

(W27) 
(W27.W28) 
(W27.W28.W1) (W27.W28.W2) 
(W27.W28.W1.W19) (W27.W28.W2.W20) 
(W27.W28.W1.W19.W25)(W27.W28,W2",W2ff,W25) 

(R3-1" 
S (goal <g> Astatc <s>) 
2 (Rl-1'") 

(W27) 
(W27, (W27.W87.W1.W19.W25)) (W27.(W27.W28.W2.W20,W25)) 

(Rl-2'" 
5 (goal <g> Astate <s>) 

2(R3-1'") 

6 (<loc2> Anext <loc3>) 

6 (<loc2> Arcachable-by <vl>) 

6 (<vl> Aname car) 

(W27) 
(W27, (W27. (W27.W28.W1.W19.W25))) 

(W27, (W27, (W27.W28.W2.W20.W25))) 
(W27, (W27. (W27,W28,W1,W19,W25)), W4) 

(W27, (W27. (W27,W28,W1,W19,W25)). W5) 
(W27. (W27. (W27.W28.W1.W19.W25)), W6) 
(W27. (W27, (W27.W28.W2.W20.W25)), W10) 
(W27, (W27, (W27.W28.W2.W20.W25)). W11) 
(W27. (W27. (W27.W28.W2.W20.W25)), W12) 

(W27. (W27, (W27.W28,W1,W19,W25)). W4.W21) 
(W27. (W27, (W27.W28.W1.W19.W25)). W5.W22) 
(W27. (W27, (W27.W28.W1.W19.W25)), W6.W23) 
(W27. (W27, (W27,W28,W2,W20,W25)). W10.W21) 
(W27. (W27. (W27.W28.W2.W20.W25)). W11.W23) 
(W27, (W27. (W27.W28.W2.W20.W25)), W12.W24) 

(W27. (W27. (W27,W28,W1,W19,W25)). W4.W21.W26) 
(W27. (W27. (W27.W28.W1.W19.W25)). W5.W22.W26) 
(W27. (W27. (W27.W28.W1.W19.W25)). W6.W23.W26) 
(W27. (W27. (W27.W28.W2.W20.W25)). W10.W21.W26) 
(W27. (W27. (W27.W28.W2.W20.W25)). W11.W23.W26) 
(W27, (W27. (W27.W28.W2.W20.W25)). W12.W24.W26) 

(R3-2'" 
5 (goal <g> Astate <s>) 
6 (Rl-2'") 

(W27) 
(W27,(W27, (W27. (W27,W28,W1,W19,W25)), W4.W21.W26)) 

(W27.(W27, (W27. (W27.W28.W1.W19.W25)), W5.W22.W26)) 
(W27,(W27, (W27. (W27.W28.W1.W19.W25)). W6.W23.W26)) 
(W27,(W27, (W27. (W27.W28.W2.W20.W25)) .W10.W21.W26)) 
(W27,(W27, (W27. (W27.W28.W2.W20.W25)), W11.W23.W26)) 
(W27.(W27, (W27. (W27.W28.W2.W20.W25)) , W12.W24.W26)) 

(R4-1"' 
S (goal <g> Astate <s>) 
1 (<g> Agoal-point <gp>) 
1 (<gp>Aat<loc3>) 
1 (R3-2'") 

(W27) 
(W27.W29) 
(W27.W29.W30) 
(W27.W29.W30, 

(W27, (W27. (W27. (W27.W28.W1 ,W19),W25), W5, W22.W26))) 

Figure 3.11: Tokens created while matching U-chunk. 
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(R4-1'" 
(goal <g> Astate <s>) 
(<g> Agoal-point <gp>) 
(<gp> Aat <loc3>) 
(<s> Aat <loc3>) 

(goal <g> "state <s>) 
(<g> operator <doc3>) 

(goal <g> "state <s>) 
(<s> Aat <loc2>) 

(goal <g> Astate <s>) 
(<g> operator <loc2>) 

(goal <g> ^tate <s>) 
(<s> ^ <locl>) 
(<locl> Anext <loc2>) 
(<loc2> Areachable-by car) 

(<loc 1> Anext <loc3>) 
(<loc2> Areachable-by car) 

-> 
(<s> Asuccess <Ioc3>)) 

Figure 3.12: The whole structure of the U-chunk. 

Rule WMEs Rule WMEs 

(<al>Axl <a2>) 
«a> Ax <b» (1 Ax 3) (1 Ax 4) {<a2> Ax2 ^^ 
(<b>Ay<c>) (3Ay5)(4Ay5) 
-> 1 

3<>4 
5 

(<a3> Ax3 <a4>) 

(<a> Az <c>) 
(<an> Axn <an+l>) 
—> 
(<al> Ay<an+1>) 

(a) An example case of increased tokens (b) A potential worst case for U-match 

Figure 3.13: Number of tokens can increase in a U-chunk. 

R4-1"' in Figure 3.12 shows the whole structure of the U-chunk. The level of indenta- 

tions shows the level in the problem-solving structure. For example, the deepest indented 

conditions represent Rl-1'" which appeared first (leftmost) in Figure 3.9. 

Cost problems are introduced in this transformation because the number of instantia- 

tions of a rule can be greater than the number of WMEs created from those instantiations. 

For example, given the rule and WMEs in Figure 3.13-(a), two instantiations — (1 Ax 3) 

(3 Ay 5) and (1 Ax 4) (4 Ay 5) — are created. Because these two instantiations generate 

the same bindings for variables <a> and <c>, only one tuple (WME) is generated in the 

problem solving. Working memory is a set in Soar (and other Ops-like languages), and 

does not include duplicate elements. Thus, the number of tokens is increased after the 

WMEs are replaced by the instantiations. 
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Our grid task also suffers from this problem. In the I-chunk, the six instantiations of 

Rl-2" create four WMEs since there are only four points that can be reached by moving 

two steps from A. The four WMEs are then matched to the second condition of R3-2". 

However, in the U-chunk, the six instantiations are directly used, and create two more 

tokens. This increases the total number of tokens from 37 to 39. A worst case can 

arise when the working memory is structured as in Figure 3.13-(b). While the number of 

instantiations is exponential in the number of conditions, the number of WMEs is only 

one. .. .. 

Our proposed solution to this problem is to preprocess instantiations before they are 

used so that the number of tokens passed from a substructure of a U-chunk is no greater 

than the number of WMEs passed in the corresponding I-chunk. This could potentially be 

done either by grouping instantiations that generate the same WME or by selecting one of 

them as a representative. The details of this solution and the impact of this modification 

to the subsequent transformations are given in Chapter 5. 

3.7    Linearizing (=> Chunk) 

As described in subsection 2.2.2, after a chunk is created, the operational conditions are 

compiled into a Rete network for future matches of the learned rule. In the process, the 

hierarchy in the U-chunk (which reflects the structure of the rule firings during problem 

solving) is linearized into a total ordering. Conditions are then reordered via a heuristic 

algorithm to improve the match performance. For example, the nonlinear structure in 

Figure 3.9 can be linearized to the structure in Figure 3.14. 

The critical consequence of this step (linearization and condition ordering) is that 

the match structure of the learned rule is no longer constrained by the problem-solving 

structure. That is, how instantiations of different conditions are combined, can be differ- 

ent from how they were combined during the problem solving. This structural change 

introduces three different sources of expensiveness. The first source arises directly from 

the linearization of the graph structure. By combining sub-graphs (of the subrules) to- 

gether, some of the previously independent conditions become joined with other parts of 

the structure before they finish their sub-hierarchy match. Figure 3.15 shows an exam- 

ple. Figure 3.15-(b) shows the rule firing structure during the problem solving, given 

the WMEs and rules in Figure 3.15-(a). The structures of the linearized rules are shown 

47 



W35 

(Chunk 
1 (goal <g> Astate <s>) 
1 (<s>Aat<Iocl>) 
2 (<Jocl> Aneiit <loc2>) 
6 (<Joc2> Anext <loc3>) 
6 (<loc2> ^eachable-by <vl>) 
6 (<vl> Aname car) 
6 (<loc3> Areachable-by <v2>) 
6 (<v2> Aname car) 
6 (<g> Agoal-point <gp>) 
1 (<gp> "at <loc3>) 
—> 
(<s> ^success <loc3>)) 

Figure 3.14: Chunk: results from linearizing the U-chunk. 

explicitly in Figure 3.15-(d). The number in front of each node indicates the number 

of tokens at that condition. The total number of tokens in the match for the rule is the 

sum of these numbers (43 in this case). The U-chunk created from the problem solving 

episode is shown in Figure 3.15-(c). In the problem-solving episode and the U-chunk, 

the conditions in a subrule (e.g., the conditions in RA1) are matched independently from 

the other parts of the structure (e.g., the conditions of RA2) before its created WMEs 

are joined with the WMEs created by RA2. By combining these sub-graphs together — 

through linearization — some of these previously independent conditions are joined with 

other parts of the structure before they finish their sub-graph match. In Figure 3.15-(d), it 

is no longer possible to maintain independence between the conditions of RA1 and RA2. 

For example, in the first case, tokens for the conditions from RA2 — (<a> Az <d>) and 

(<d> Au <e>) — are dependent on tokens for the conditions of RA1. 

This loss of independence can increase the number of tokens. For the three orderings 

shown in Figure 3.15-(c), the number of tokens for the linearized structures are 50,48, and 

64, which are all greater than 43. No matter what condition ordering is used, the number 

of tokens still increases, given the WMEs in Figure 3.15-(a). 
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(al Ax bl) (al Ax b2) (al Ax b3) (al Ax b4) (al Ax b5) 
(bl Ay cl) (b2 *y c2) (b3 Ay c3) (b4 ^ c4) (b5 Ay c5) (b6 Ay c6) 
(al Azdl)(al Azd2) (al Azd3) (al Azd4) 
(dl Au el) (d2 Au e2) (d3 Au e3) (d4 Au e4) (d5 Au e5) 

RA1) 
(<a> Ax <b>) 
(<b> Ay <c>) 
-> 
(<a> Ak <c>) 

RA2) 
(<a>Az<d>) 
(<d> Au <e>) 
—> 
(<a> Al <e>) 

RA3) 
(<a> Ak <c>) 
(<a>Al<e>) 
~> 
(<a> Ais success) 

(a) Working memory elements and rules 

:rule 

D : WMEs created 

(<a> Ax <b>) 
5 V<b> Ay <o) 

RA1 5 

Az<d>) 
(<d> Au <e>) 

(<a> Ax <b>) 
5\(<b> Ay <o) 

/(<a> Az <d>) 
RAI'g^       4\ (<d>Au<e>) 

Ht Mt Mfr 4K MC )•*■ 

(43) 
(b) Problem solving episode 

(43) 
(c) U-chunk 

(<a> Ax <b>) (<a> Az <d>) (<a> Az <d>) 
5\(<b> Ay <c>) 4\(<d> Au <e>)       'K (<a> Ax <b>) 

(<a> Az <d>) Y(<a> Ax <b>)      \/(<b> Ay <c>) 
«d> Au <e>) 4\    /(<b> Ay <c2)0\    /(<d> AU <e>) .. . 

(d) Possible linearized structures of (c) 

Figure 3.15: Loss of independence by linearization. 
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The second source of cost increase is loss of sharing. As long as Rete cannot capture 

the sharing from the nonlinear structure, the number of tokens can increase. Figure 3.16 

shows an example. Given the rules in Figure 3.16-(a), the problem solving shares the 

instantiations of RBI for both conditions C2 and C4 of rule RB2. That is, they match 

the WMEs created from the instantiations of RBI. (The total number of tokens is 15 in 

the problem solving.) Although the instantiations are shared, C2 and C4 are matched by 

different WMEs because <bl> and <b2> cannot be bound to the same value (given the 

initial set of WMEs in Figure 3A6-(a)X_Thus^ two instantiations of RBI participate in_ 

the backtrace (explanation); one of them creates the WME matched by C2, and the other 

creates the WME matched by C4. Figure 3.16-(c) shows the I-chunk generated from the 

backtrace. RBI is separated into RB1-1' and RB1-2', by replacing the two instantiations 

with two rules. Although they are separated, the two subrules have the same network 

structure and the same pattern of consistency tests across the conditions, and they can be 

compiled into the same structure. The total cost remains as 15. The U-chunk created from 

the I-chunk is shown in Figure 3.16-(d). Instantiations of RB1-1" and RB1-2" can still be 

shared in nonlinear Rete as subrules with the same patterns are shared in the network. The 

total cost of the U-chunk is also 15. The chunk (with an optimal ordering) generated from 

the U-chunk is shown in Figure 3.16-(d). Linearization loses the structural information, 

so the sharing of sub-parts becomes impossible. The total number of tokens is increased 

from 15 to 19. 

The third source of cost increase comes from non-optimal ordering of the conditions. 

The computational complexity of finding an optimal ordering for a set of conditions is 

a factor of the factorial in the number of conditions (considering all possible orderings), 

so Rete employs a heuristic ordering algorithm. Because the heuristic condition-ordering 

algorithm cannot guarantee optimal orderings, whenever this algorithm creates a non- 

optimal ordering, additional cost may be incurred. For example, our Grid task can create 

the non-optimally-ordered chunk shown in Figure 3.14. The cost is increased from 39 to 

41 with this chunk. However, with an optimal ordering, as shown in Figure 3.17, the cost 

can be reduced to 11. 

Our proposed solution to this set of problems is to eliminate the linearization step. 

By keeping the graph structure — that is, by replacing chunks with U-chunks — all three 

causes of cost increase can be avoided. The key condition that this requires is an efficient 

generalization of Rete for nonlinear match, as shown in Figure 3.10. 

50 



• 
(DAkA) 
(AAxl)(AAx2) 
(AAyl)(AAy2) 
(AAzl)(AAz2) 
(AAwl)(AAw2) 
(1 Al 1) (3 Al 1) (5 Al 1) 
(2A12)(4A12)(6A12) 

RBI) 
(<a> Ax <b>) 
(<a> Ay <b>) 
(<a> Az <b>) 
(<a> Aw <b>) 
—> 
(<a> At <b>) 

RB2) 
(<d> Aw <a>) 
(<a> At <bl>) 
(<bl>All) 
(<a>At<b2>) 
(<b2>A12) 
-> 
action 

(a) Working memory elements and Rules 

(<a> Ax <b>) 
(<a> Ay <b>) 

(<a> Az <b>) 
(<a> Aw <b>) 

f2 RB1 

(<bl> Al 1) 

(<b2> Al 2) 

(<a> Ax <bl>) 
(<a>Ay<bl>) 

(<a> Ax <b2>) 
[<a> Ay <b2>) 

(<a> Az <b2>) 
(<a> Aw <b2>) 

(b) Problem solving episode 
D 
(c) I-chunk 

(<a>Ax<bl>) 
(<a>Ay<bl>) 

(<a> Ax <b2>) 
(<a> Ay <b2>) 

(<a> Az <b2>) 
(<a> Aw <b2>) 

<b2> Al 2) 

(d) U-chunk 

1 (<d> Ak <a>) 
2(<a>Ax<bl>) 
2(<a> Ay<bl>) 
2(<a>Az<bl>) 
2(<a>Aw<bl>) 
1 (<bl> Al 1) 
2 (<a> Ax <b2>) 
2 (<a> Ay <b2>) 
2 (<a> Az <b2>) 
2 (<a> Aw <b2>) 
1 (<b2> Al 2) 

(e) Linearized conditions 

Figure 3.16: Loss of sharing by linearization. 
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(Chunk 
1 (goal <g> Astate <s>) 
1 (<g> Agoal-point <gp>) 
1 (<gp> Aat <loc3>) 
l(<s>Aat<locl>) 
2 (<Iocl> ^ext <loc2>) 
1 (<doc2> ^ext <Ioc3>) 
1 (<loc2> 'Veachable-by <vl>) 
1 (<vl> Anamc car) 
I (<loc3> Areachable-by <v2>) 
1 (<v2> Aname car) 
—> 
(<s> Asuccess <Ioc3>)) 

Figure 3.17: The match cost of an optimally ordered chunk. 

3.8   Summary 

The above sections have described an analysis of the chunking process as a sequence of 

transformations in which each intermediate product is mapped into a pseudo-chunk by 

providing an appropriate interpreter. By computing and comparing the cost of the pseudo- 

chunks, we have identified a set of sources that can make the output chunk expensive. 

In addition to identifying which transformations lead to cost increases, and how they 

lead to such increases, the analysis has also pointed the way toward modifications of the 

transformational sequence that could potentially eliminate these cost increases. The set of 

sources and the proposed modifications are : 

1. Removing search control =4* incorporate search control in chunking. By incorpo- 

rating search control in the explanation structure, the match process for the learned 

rule can focus on the path that was actually followed. 

2. Disrupting the optimizations based on equivalent knowledge => preprocess knowl- 

edge before it is used. By preprocessing the tokens, the number of tokens passed 

from a substructure of a U-chunk can be no greater than the number of WMEs 

passed in the corresponding I-chunk. This could potentially be done either be 

grouping instantiations that generate the same WME or by selecting one of them as 

a representative. These optimizations are called token compression. 

3. Linearizing (Losing efficiencies stemming from problem-solving structures) => keep 

the problem-solving structure. By keeping the problem-solving structure — that 
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is, by replacing chunks with U-chunks — all three causes of cost increase can be 

avoided. 

To be able to more easily generalize the above analysis to other EBL systems, the 

next chapter performs a transformational analysis of an EBL implementation in Soar 

(Soar/EBL). 

• 
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Chapter 4 

Transformational Mapping of EBL onto Soar 

In past work, chunking in Soar has been analyzed as a variant of EBL. The four components 

(the goal concept, the training example, the domain theory, and the operationality criterion) 

and sub-processes of EBL have been mapped to the components of Soar and to the sub- 

processes of chunking, respectively [53]. Also, the cost and the generality of the learned 

rules have been compared [67]. We extend this earlier work by first implementing EBL 

within Soar (Version 6) — to yield Soar/EBL — and then analyzing this implementation 

as a sequence of transformations from a problem solving episode to a learned rule. Each 

intermediate product (and the input and the output) can be mapped into a pseudo-chunk, 

which can be evaluated with respect to its cost, and thus directly compared in terms of 

cost against both the original problem solving and the ultimate EBL-rule. The results of 

this analysis are compared with the transformational analysis of chunking presented in 

Chapter 3. 

These discussions are presented in the context of the cup domain [45] — a typical 

illustrative EBL task. The cup domain representation, shown in Figure 4.1-(a), is an 

extension of the domain rules shown in Section 2.1. Some conditions in the rules given 

here test results from Soar's architectural activities. In Soar, some problem solving 

activities do not involve rule firings. For example, the architectural activities — including 

the acts of signaling that an impasse has occurred and creating a subgoal — are performed 

by the architecture itself, not by firings of the rules. These activities can create architectural 

WMEs, such as Wl (supergoal-subgoal relationship) and W2 (the impasse type). These 

architectural WMEs are tested by the rules. Thus, the actual domain theory is close to the 

rules shown in Figure 4.1. The transformational analysis of chunking in Chapter 3 has 

concentrated on the transformations of the rule firings and the decisions, and excluded this 
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architecture related aspect. This chapter examines the transformations of the architectural 
activities through the learning process, as well as the transformations of the rule firings 
and decisions, and analyzes how they affect the output rule. 

In the domain theory (Figure 4.1-(a)), Rl can create a new problem space named 

"cup" and a new state, given the lack of information in the supergoal situation about which 

object is a cup. In R2, R3, and R4, the training example is accessed through the attribute 

super-state, which links the cup problem-space state and the supergoal state. The training 

example (i.e., the supergoal situation) is illustrated in Figure 4.1-(b), as theWMEs-that. 
existed before the subgoal process. 

Figure 4.2-(a) shows the two sequences of transformations that represent chunking and 

Soar/EBL. The chunking part is the same as the transformations introduced (in Figure 3.1) 

in Chapter 3. Each intermediate product is mapped into a pseudo-chunk in chunking and 

Soar/EBL. By comparing the two sequences, we can clarify the relationship between the 

two systems. Also, by analyzing how the transformations alter cost and generality, a set 

of sources of added expensiveness and changes in generality can be contrasted. 

The following sections analyze the transformations underlying Soar/EBL, along with 

their resulting pseudo-chunks and their effects on cost and generality. This analysis is 

then compared with the results from the corresponding transformations and intermediate 

results in chunking. Examples are taken from the cup domain (Figure 4.1). 

4.1    Filtering Out Unnecessary Rule Firings (=>PS-chunk) 

As in chunking, a problem solving episode can be mapped to the domain theory by 

providing its interpreters (the rule matcher, the rule firer, and the decision procedure). 

The interpretation generates a problem solving episode. It corresponds to the EBL step 

of "using the domain theory to prove that the training example is an instance of the goal 
concept". 

The first transformation applies to this episode, and filters out any rule firings which 

did not participate in creating the result. The resulting pseudo-chunk is the same as the 

PS-chunk described in Chapter 3. In the cup example, this transformation eliminates all 

other rule firings, if there were any, beyond those shown in Figure 4.3. The interpreter 

linearizes the cycles of the rule firings and decisions in the problem solving into an 

enclosed sequence of rule firings and decisions. Its implementation incorporates the same 
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(Rl 
(goal <g> Aimpasse no-change) 
(<g> Asuper-goal <sg>) 
(<sg> Astate <ss>) 
-> 
(<g> Aproblem-space <p> +) 
(<g> Astate <s> +) 
(<p> Aname cup +) 
(<s> ^uper-state <ss> +)) 

(R4 
(goal <g> Aproblem-space <p>) 
(<p> Aname cup) 
(<g> Astate <s>) 
(<s> ^uper-state <ss>) 
(<ss> object <o>) 
(<ss> Apart-rel <pr>) 
(<pr> Apart-of <o>) 
(<q)r> Apart <conc>) 
(<conc> Aisa concavity) 
(<conc> Ais upward-pointing) 
--> 
(<s> ^pen- vessel <o> +)) 

(R2 
(goal <g> Aproblem-space <p>) 
(<p> ^ame cup) 
(<g> ^tate <s>) 
(<s> Asuper-state <ss>) 
(<ss> object <o>) 
(<ss> Apart-rel <pr>) 
(<pr> Apart-of <o>) 
(<o> ^s light) 
(<pr> Apart <lid>) 
(<hd> Aisa handle) 
-> 
(<s> Aliftable <o> +)) 

(R5 
(goal <g> Aproblem-space <p>) 
(<g> 'super-goal <sg>) 
(<p> Aname cup) 
(<g> Astate <s>) 
(<s> ^pen-vessel <o>) 
(<s> Aliftable <o>) 
(<s> Stable <o>) 
-> 
(<o> Aisa cup +)) 

(R3 
(goal <g> Aproblem-space <p>) 
(<p> Aname cup) 
(<g> Astate <s>) 
(<s> Asuper-state <ss>) 
(<ss> object <o>) 
(<ss> Apart-rel <pr>) 
(<pr>Apart-of<o>) 
(<pr> Apart <bt>) 
(<ot> Aisa bottom) 
(<bt> Ais flat) 
~> 
"(<s> Astable <o> +)) 

(a) Domain theory 

Wl:(G2Asuper-goalGl) 
W2: (G2 Aimpasse no-change) 
W3:(GlAstateSl) 
W4: (SI object 01) 
W5 : (SI Aown-reI Relation-1) 
W6: (SI Apart-rel Relation -2) 
W7: (01 Ais light) 
W8 : (Relation-1 ^wner Edgar) 
W9 : (Relation-1 ^wned 01) 
W10:(Relation-2 Apart-of 01) 
Wll:(Relation-2 Apart Concavity-1) 
W12:(Relation-2 Apart Handle-1) 
W13:(Relation-2 Apart Rat-bottom-1) 
W14:(Handle-l Aisa handle) 
W15:(Flat-bottom-l Aisa bottom) 
W16:(Flat-bottom-l Ais flat) 
W17:(Concavity-l Aisa concavity) 
W18:(Concavity-l Ais upward-pointing) 

(b) Training Example (Given WMEs before subgoal processing) 

Figure 4.1: Cup domain in Soar. 

56 



I EBL 
Domain Theory j Rule matcher + 

Rule firer + 
Decision procedure 

..   Filter out nile firings which don't 
If   participate in result creation   (Overgeneralize*) 

Chunking 

Variablize _—*~ 

l-chünk lnterpreter-3 

= Eliminate intermediate rul< 

U-chunk lnterpreter-4 

= Linearize* 

. .     Chunk 

'-^ 1  

Rule matcher 

Eliminate intermediate rule firings* 

* : cost increase 

Figure 4.2: The transformational sequences underlying chunking and Soar/EBL. 

optimizations that are used in the original problem solving; for example, the tokens from 

the first four conditions of R3 and R4 are still shared with the tokens from the first four 

conditions of R2 in the match network for the PS-chunk. 
The architectural activities are represented as gray circles with lines attached to them. 

Because these activities are not represented as rule traces in Soar, they can leave holes 

in the backtrace. Also, non-operational negated conditions test the absence of objects 

in the subgoal, and this test has no trace to the supergoal elements. So, Soar implicitly 

provides two architectural axioms that model these activities, much as in [41]. First, if 

a WME is obviously based on a supergoal object, a dummy instantiation that links them 

is created and added to the backtrace. Second, if it is intractable to compute the linkage 

to supergoal objects, the backtrace simply ignores the WME — just as if it had been 

created by a rule with no conditions. For example, to operationalize the non-operational 

negated conditions, we have to analyze why there is no WME matching the conditions, 

and this requires exhaustive examination of all the rules in the system to find out which 

rules might have created WMEs that can be matched to the negated conditions. Because 

of this intractability, non-operational negated conditions are ignored in learning. This 

may yield overgeneralization, but in return, it helps maintain tractability. The use of these 
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Super-goal 
WMEs 

Subgoal process (problem solving) 

W7.W11.W14 t 
nur ■ 

W4.W6.W10j 
DDr ' 

wiiwiSjWiöj 
DÜD-J 

W13.W17.W18 t 
DÜO-* 

W26 (result) 

WMEs created during problem solving: 
W19:(G2 AproMem-spacePa) 
W20:(G2*stateS2) 
W21:(P2Anamecup) 
W22:(S2 Superstate SI) 
W23:(01 *is liftable) 
W24:(01 *is stable) 
W25:(01 "is open-vessel) 
W26:(01Aisacup) 

D :WME 

-^Oi.     : Rule trace 

—r\s£    : Architectural activity 

Figure 4.3: Problem solving episode excluding unnecessary rule firings. This structure 
embodies a PS-chunk in both chunking and Soar/EBL. 
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Given: 
Wl: (G2 Asuper-goaI Gl); G2 is a subgoal of Gl 
W2: (G2 Aimpasse no-change); G2 is created because of a no-change impasse 

Create a dummy rule: 
(dummy 
<gl>; test the goal 
-> 

(<g2> object <gl>); <g2> is a subgoal of <gl> 
(<g2> impasse no-change); create a no-change impasse 

Figure 4.4: Creation of a dummy rule to interpret the architectural activities. 

architectural axioms is driven by the nature of Soar's architectural activities and intractable 

negated conditions, and is independent of whether learning occurs via chunking or EBL. 

Thus, Soar/EBL and chunking share this source of overgenerality. 

For the architectural activities of the PS-chunk shown in Figure 4.3, the second axiom 

(ignoring the WMEs) is applied. To interpret these activities as a part of the PS-chunk 

match, a dummy rule is introduced.1 Figure 4.4 shows the dummy rule, which can 

produce the same WMEs as those created by the architectural activities in the problem 

solving episode. The dummy rule tests only a supergoal, and creates two new WMEs. This 

dummy rule introduces the same source of overgenerality to the learned rule as Soar does. 

The creation of Wl and W2 in the problem solving episode is based on the architectural 

detection of certain conditions — a no-change impasse. The impasse arose because there 

was not enough information to make any progress in the supergoal. Here, we produce the 

same effect without detecting such conditions. 

The overgenerality caused by using the architectural axioms can also lead to cost 

changes. For example, the above dummy rule can be matched to any goal, as well as the 

goal that detected the impasse. Thus, the match cost can increase to match other goals, 

depending on the number of goals in the system. This aspect should be combined with the 

analysis of non-architectural activities, but it is left as a future work. 

Except for the changes caused by the architectural activities, there is no other source of 

cost increase. Because PS-chunks are created by filtering out unnecessary rules in problem 

solving, and their implementation preserves the match optimizations, the transformation 

itself does not increase the cost. If there were unnecessary rule firings in the problem 

'This dummy rule is only in the analysis, not in the implementation. 
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solving (as is usually the case), the transformation decreases the cost. Otherwise, the cost 

is identical modulo overgenerality. 

4.2 Removing Search Control (=)> E-chunk) 

This step removes search control (if there is any) from a PS-chunk. PS-chunks incorporate 

all rules which are linked to the result creation. That is, they include both task-definition 

rules and search-control rules. However, in archetypical EBL systems,-implemented for 

Prolog-like languages, the problem solving does not employ search-control rules. Even in 

Prodigy/EBL, where the problem solving involves search control, the explanation ignores 

some of its search-control rules [43]. When a problem solving episode includes search- 

control rule firings, but the EBL system ignores them in the learning process, the cost of 

the learned rule can increase as explained in Chapter 1 and Section 3.1. The learned rule 

(and the pseudo-chunks created between the transformation and the learned rule) are not 

constrained by the search control, and can therefore perform an exhaustive search, even 

when the original search was highly directed. 

Given that the PS-chunk is shared by both systems and both are transformed in the 

same way, the resulting pseudo-chunk is the same as the E-chunk. Because no search 

control is used in the simple cup domain, the structure of the E-chunk is the same as the 

PS-chunk shown in Figure 4.3. However, if the problem solving employs search-control 

rules, as shown in Section 3.4, this step can increase the cost. The E-chunk acts as an EBL 

explanation structure. 

4.3 Regressing (=^R-chunk) 

The next step in EBL is regression. Replacing the variable names with unique names 

(building the explanation structure) and then unifying each connection between an action 

and a condition, can create a generalized explanation from the explanation. We build the 

explanation structure by examining the E-chunk trace that is equivalent to the explanation, 

and applying the regression process of [46] to the explanation structure. 

Soar/EBL needs to introduce some additional constraints on variable names in order 

to produce legal Soar rules. For example, since one goal cannot have more than a single 
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supergoal, allowing multiple variable names for the supergoal leads to superfluous — i.e., 

unusable — generality, while also possibly leading to legality problems. The R-chunk 

(regressed chunk) resulting from the combination of regression along with these additional 

variable constraints is shown in Figure 4.5-(a). In this example, the structure remains the 

same as in the E-chunk. 
As shown by the divergence in Figure 4.2, chunking performs a different transforma- 

tion. The variablization step in chunking is performed by examining the backtrace (ex- 

planation) instead of the explanation structure, as described in Section 3.3. For example, 

the variables in the E-chunk can be constrained to the I-chunk as shown in Figure 4.5-(b). 

One advantage of this form of instantiation-based constraining over regression (in Soar), 

is that it naturally introduces the required architectural constraints. For example, the value 
field of the second condition of Rl and the second condition of R5 are bound to the same 
identifier Gl, and are replaced by the same variable. As long as the instantiations reflect 

the architectural constraints, the I-chunk automatically preserves them. 

However, an I-chunk can be overspecialized, as explained in Chapter 3. For example, 

although variable <pr> in R2 and variable <pr> in R3 (Figure 4.1) are instantiated by the 

same identifier Relation-2, and changed to the same variable <p2>, they can be correctly 

generalized as different variables, as in Figure 4.5-(a). Regression also maintains relational 

tests among the variables bound to the constant, where chunking explicitly replaces them 

by constants. 
The interpreter for the R-chunk is the same as the interpreter for the E-chunk. Except 

for the differences in the variable names, the structures of the R-chunk and the E-chunk 

are identical. With respect to the cost, regression does not increase the number of tokens. 

The number of tokens should remain the same, or be reduced by the extra constraints. 

4.4    Eliminating Intermediate Rule Firings (=$■ RU-chunk) 

This step unifies the separate rules of the R-chunk into a single rule, called a RU-chunk 

(regressed-and-unified chunk), as chunking unifies an I-chunk into a U-chunk. Figure 4.6 

shows the result of unifying the R-chunk in Figure 4.5-(a) into the corresponding RU- 

chunk. Intermediate WMEs are replaced with the instantiations which created the WMEs. 

Although Rl-2, R2-2,..., R5-2 still have their own identifiable conditions in the RU- 

chunk, there are now no intermediate rule firings. For example, one of R5's conditions 
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(Rl-1 
(goal <gl> Aimpasse no-change) 
(<gl> Asuper-goal <g2>) 
(<g2> Astate <s2>) 
-> 
0^1> problem-space <pl> +) 
(<gl> ^tate <sl> +) 
(<p 1> Aname cup +) 
(<sl> ^uper-state <s2> +) 

(R2-1 
(goal <gl> Aproblem-space <pl>) 
(<pl>Anamecup) 
(<gl>Astate<sl>) 
(<s 1 > ^uper-state <s2>) 
(<s2> object <o 1>) 
(<s2> Apart-rel <p6>) 
(<pd> Apart-of <ol>) 
(<ol> Ais light) 
(<p6>Apart<hl>) 
(<hl>Aisa handle) 
-> 
(<sl>Aliftable<ol>+)) 

(R3-1 
(goal <gl> Aproblem-space <pl>) 
(<pl>Anamecup) 
(<gl>Astate<sl>) 
(<sl> Asuper-state <s2>) 
(<s2> object <ol>) 
(<s2> Apart-rel <p8>) 
(<p8> Apart-of <ol>) 
(<p8> Apart <bl>) 
(<bl> Aisa bottom) 
(<bl> Ais flat) 
-> 
(<sl> Astable <ol> +) 

(R4-1 
(goal <g 1> Aproblem-space <p 1>) 
(<pl> Anamecup) 
(<gl>Astate<sl>) 
(<sl> Asuper-state <s2>) 
(<s2> Aobject <ol>) 
(<s2> Apart-rel <p4>) 
(<p4> Apart-of <o 1 >) 
(<p4>Apart<cl>) 
(<cl> Aisa concavity) 
(<cl> Ais upward-pointing) 
-> 
(<sl> Aopen-vessel <ol> +) 

(R5-1 
(goal <g 1 > Aproblem-space <p 1 >) 
(<gl> Asuper-goal <g2>) 
(<pl>Anamecup) 
(<gl>Astate<sl>) 
(<sl> Aopen-vessel <ol>) 
(<sl>Aliftable<ol>) 
(<Bl>Astable<ol>) 
-> 
(<ol>Aisacup+) 

(a) Rules in R-chunk 

(Ri-r 
(goal <g3> Aimpasse no-change) 
(<g3> ^uper-goal <g4>) 
(goal <g4> Astate <s2>) 
-> 
(<g3> Aproblem-space <pl> +) 
(<g3> Astate <sl> +) 
(<pl> Aname cup +) 
(<sl> ^uper-state <s2> +)) 

(R4-1' 
(goal <g3> Aproblem-space <pl>) 
(<pl> Aname cup) 
(<g3>Astate<sl>) 
(<sl> Asuper-state <s2>) 
(<s2> object <ol>) 
(<s2> Apart-rel <p2>) 
(<p2> Apart-of <o 1 >) 
(<p2>Apart<cl>) 
(<cl> Aisa concavity) 
(<cl> Aupward-pointing true) 
-> 
(<sl> ^pen-vessel <ol> +)) 

(R2-1' 
(goal <g3> Aproblem-space <pl>) 
(<pl> Anamecup) 
(<g3>Astate<sl>) 
(<sl> Asuper-state <s2>) 
(<s2> object <ol>) 
(<s2> Apart-rel <p2>) 
(<p2> Apart-of <o 1 >) 
(<ol>Ais light) 
(<p2> Apart <hl>) 
(<hl> Aisa handle) 
-> 
(<sl>Aliftable<ol>+)) 

(R5-1' 
(goal <g3> Aproblem-space <pl>) 
(<g3> Asuper-goal <g4>) 
(<pl> Anamecup) 
(<g3>Astate<sl>) 
(<sl> ^pen-vessel <ol>) 
(<sl>Aliftable<ol>) 
(<sl>Astable<ol>) 
-> 
(<ol>Aisacup+)) 

(b) Rules in I-chunk 

(R3-1' 
(goal <g3> Aproblem-space <p 1>) 
(<pl> Anamecup) 
(<g3>Astate<sl>) 
(<sl> Asuper-state <s2>) 
(<s2> object <ol>) 
(<s2> Apart-rel <p2>) 
(<p2> Apart-of <ol>) 
(<p2> Apart <fl>) 
(<f 1> Aisa bottom) 
(<f 1> Ais flat) 
-> 
(<sl> Astable <ol> +)) 

Figure 4.5: (a) R-chunk: created by applying regression to the explanation structure (E- 
chunk); (b) I-chunk: created by applying the variablization to the rule traces. The structure 
of the R-chunk remains the same as in the E-chunk for this example. 
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receives the instantiations of R2 directly, as intermediate tokens, rather than receiving 

WMEs created from the instantiations. Thus, Rl-2, R2-2 R5-2 are no longer (separate) 

rules. To interpret (match) RU-chunks, the nonlinear Rete introduced in Chapter 3 can be 

used. The RU-chunk corresponds to a U-chunk. 
Cost problems may be introduced in the transformation (as in chunking), because the 

number of instantiations of a rule can be greater than the number of WMEs created from 

those instantiations, as explained in [32]. For example, if object 01 has one more handle 

represented by two more WMEs; (Relation-1 ApartHandle-2) and (Handle-2 Aisa handle), 

two instantiations of R2-1 (in Figure 4.5-(a))^re created instead of ^one. Because these 

two instantiations generate the same bindings for variables <sl> and <ol>, only one 

tuple (WME) is generated in the problem solving. In this case, the number of tokens is 

increased after the WMEs are replaced with the instantiations. 

4.5    Linearizing (=$► EBL rule) 

A RU-chunk can be linearized to become an EBL-chunk. The hierarchical structure of 

RU-chunks is flattened into a single layer, and the conditions are totally ordered. For 
example, the hierarchical structure in Figure 4.6 can be flattened into the structure in 

Figure 4.7. The U-chunk is also flattened to yield a chunk. After flattening, Soar/EBL 

and chunking use a heuristic condition-ordering algorithm to further optimize the resulting 

match. This linearization can increase the cost as explained in Chapter 3. 

4.6   Summary 

We have performed a transformational analysis of Soar/EBL. Each step has then been 

mapped to a corresponding transformation in chunking, and pseudo-chunks in the two 

systems have been compared in terms of cost and generality. These analyses and com- 

parisons reveal that: (1) the main source of overgeneral learning in Soar stems from the 

need to use approximate architectural axioms, and is common to EBL and chunking; (2) 

the main source of overspecial learning in Soar stems from the single transformation that 

differs between them (chunking does instantiation-based constraining while EBL does re- 

gression); (3) chunking automatically incorporates some of Soar's architectural constraints 
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(Rl-2 (R2-2 
(dummy) (Rl-2) 
(dummy) (Rl-2) 
(<g2> "state <s2>) (Rl-2) 

(Rl-2) 
(<s2> "object <ol>) 

(R3-2 
(Rl-2) 
(Rl-2) 
(Rl-2) 
(Rl-2) 
(<s2> ''object <ol>) 

(<s2> "part-rel <p6>) (<s2> "part-rel <p8>) 
(<p6> "part-of <ol>) (<p8> "part-of <ol>) 
(<ol> "is light) 
(<p6>"part<hl>) 
(<nl> "isa handle) 

(<p8>*part<bl>) 
(<bl> "isa bottom) 
(<bl>Aisflat) 

(a)RU-chunk 

(R4-2 (R5-2 
(Rl-2) (Rl-2) 
(Rl-2) (dummy) 
(Rl-2) (Rl-2) 
(Rl-2) (Rl-2) 
(<s2> "object <ol>) (R2-2) 
(<s2> "part-rel <p4>)      (R3-2) 
(<p4> "part-of <ol>)       (R4-2) 
(<p4> "part <cl>) 
(<cl> "isa concativity) 
(<cl> "is upward-pointing) 

(Rl-2' (R2-2' 
(dummy) (Rl-2') 
(dummy) (Rl-2') 
(<g4> "state <s2>) (Rl-2') 

(Rl-2') 
(<s2> "object <ol>) 

(R4-2' 
(Rl-2') 
(Rl-2') 
(Rl-2') 
(Rl-2') 
(<s2> "object <ol>) 

(R3-2' 
(Rl-2') 
(Rl-2') 
(Rl-2') 
(Rl-2') 

^       ^ (<s2> "object <ol>) 
(«2>>art-reT<p2^) (<s2> "part-rel<P2>) (<s2> "part-rel <p2>) 
(<p2>^>art-of<ol» (<p2>"part-of<ol» (<P2> "part-of <ol>) 
(<ol> flight) (<p2>"part<fl>)       (<p2><Vrt<cl» 
(<p2>"part<hl>)      (<fl> "isa bottom)      '"'-"•" —^ 
(<hl> "isa handle)      (<n>*isfiat) 

(b) U-chunk 

(R5-2' 
(Rl-2') 
(dummy) 
(Rl-2') 
(Rl-2') 
(R2-2') 
(R3-2') 
(R4-2') 

(<cl> "isa concavity) 
(<cl> "is upward-pointing) 

or 
W4.W6.WI0» 

W12.WI5.W1 

ODD? 
WI3,W17,W1^ 

DflCj 

W26 (result) 

Figure 4.6: RU-chunk and U-chunk: created by eliminating intermediate rule firings in 
the R-chunk and I-chunk, respectively. 

(rule EBL-rule 
(goal <s2> "state <s6>) 
(<s6> "object <ol>) 
(<s6> "part-rel <p8>) 
(<p8> "part-of <ol>) 
(<ol> is light) 
(<p8>"part<hl>) 
(<hl> "isa handle) 
(<s6> "part-rel <p6>) 
(<p6> "part-of <ol>) 
(<j>6>*part<bl>) 
(«3>1> "isa bottom) 
(<bl> "is flat) 
(<s6> "part-rel <p4>) 
(<p4> "part-of <ol>) 
(<p4>"part<cl>) 
(<cl> "isa concavity) 
(<cl> "is upward-pointing) 
—> 
(<ol>"isacup) 

(rule chunk 
(goal <g4> "state <s2>) 
(<s2> "object <ol>) 
(<s2> "part-rel <p2>) 
(<p2> "part-of <ol>) 
(<ol> is light) 
(<p2> "part <hl>) 
(<lil> "isa handle) 
(<p2> "part <f 1>) 
(<fl> "isa bottom) 
(<fl>"isflat) 
(<p2> "part <cl>) 
(<cl> "isa concativity) 
(<cl> "is upward-pointing) 
-> 
(<ol>*isacup) 

W26 (result) 

Figure 4.7: EBL-rule and chunk: results from linearizing the RU-chunk and U-chunk, 
respectively. 
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that must be added explicitly with EBL; (4) the primary sources of expensiveness in Soar's 

learned rules arise in three transformations that are common between chunking and EBL, 

and thus might have common solutions; and (5) the architectural axioms introduced to 

maintain tractability can cause cost change as well as overgenerality. Result (2) shows 

that EBL and chunking are not all that different. Result (4) goes beyond this to show that 

the strategies being developed to ensure that chunks are no more costly to use than was 

the problem solving from which they were learned, should also allow a similarly "safe" 

EBL mechanism to also be developed. 
The following chapter describes the details of such strategies, which.prevent each 

identified source of expensiveness (except for the cost changes by the architectural axioms), 

and presents a unified solution combining those strategies. 
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Chapter 5 

Modifying the Transformations 

In Chapter 3, the chunking process has been analyzed as a sequence of transformations, 

and intermediate products have been mapped into pseudo-chunks by providing appropriate 

interpreters. By evaluating the costs of the pseudo-chunks, three sources of expensiveness 

have been identified, and modifications that can potentially eliminate the sources have 

been proposed. As described in Chapter 4, a similar analysis has also been done for 

Soar/EBL; it has identified that chunking and Soar/EBL share the same set of sources and 

their solutions. 

The proposed solutions convert the original sequence of transformations into a new 

sequence of transformations. In the new sequence, new transformations are added, and 

some of the original transformations are removed or modified. These alterations, however, 

should not violate the following key requirement: the. cost after each transformation should 

be bounded by the cost before the transformation. 

Figure 5.1 outlines the modifications of chunking, which keep this requirement. 

Chunking's original sequence of transformations, shown on the left side, is altered into 

a new sequence of transformations shown on the right. First, the transformation from a 

PS-chunk to an E-chunk is altered, since we now want to incorporate the search control in 

learning. One way of incorporating the search control is to simply ignore the transforma- 

tion completely, and to keep all the search-control rules participating in the PS-chunk. By 

performing no action, instead of removing search-control rules, the cost will not increase 

(i.e., the cost will be bounded). However, including all of the control rules would produce 

excessive conditions, and sometimes make the learned rules overspecific. (Details will be 

provided in Section 5.2.) If the set of search-control rules overdetermine the choice, the 

excessive part can be pruned from the PS-chunk to make the created rule simpler. Thus, our 
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Domain Theory 

Filter out rule firings which don't 
\' participate in result creation 

PS-chunk 

— Remove search-control* 

E-chunk 

Constrain variables by instantiation 

l-chunk 

"=? Eliminate intermediate rule firings* 

U-chunk 

~ Linearize* 

Chunk 

Domain Theory 

Filter out rule firings which don't 
participate in result creation 

PS-chunk 

I Remove redundant search-control 

E'-chunk 

I Constrain variables 
with search control 

l'-chunk 

I Eliminate intermediate rule firings 
and introduce token compression 

U'-chunk 

Figure 5.1: Outline of solutions (from the identified sources of cost increase). 

new learning system introduces a new transformation that goes from a PS-chunk to a new 

pseudo-chunk that is called the E-chunk (Extended E-chunk). An E'-chunk is generated 

by removing the excessive search-control rules instead of removing all the search-control 

rules in a PS-chunk. The interpreter for an E'-chunk includes the decision procedure, as 

well as the rule matcher and the rule firer. 
The next step is constraining variables in an E'-chunk by examining the instantiations, 

as done for E-chunk to produce an I-chunk in the original transformation. The resulting 

pseudo-chunk is called an l'-chunk. An l'-chunk is different from an I-chunk in that it 

has additional structures originating from the search-control rules in the E'-chunk. The 

match process (interpretation) of an l'-chunk consists of multiple rule matches, firings, 

and decisions as in the case of E'-chunk. 
A U-chunk is generated from an l'-chunk by unifying the separate rules and decisions 

into a single structure. The match process of a U'-chunk is a single rule match instead of 

multiple rule matches, firings, and decisions. In the original transformation, to convert 

intermediate rule matches and firings into a single rule match, an extension of Rete 

(nonlinear Rete) is introduced. Because a U'-chunk has to unify decisions as well as rule 
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matches and firings, an extension of the nonlinear Rete that can interpret the decisions 

is required. Also, token compression should be integrated into the interpretation. The 

U'-chunk is the final product in the new sequence of transformations. 

This chapter discusses the above sequence of transformation in detail, including how 

the transformations provide relative boundedness. The first transformation from the 

domain theory to a PS-chunk is the same as in the original transformation. We explain 

how the transformation is safe (except for the changes caused by the architectural activities) 

in terms of the number of tokens. We then discuss; the transformation from a PS-chunk to 

an E'-chunk; the transformation from an E'-chunk to an r%chunk; and the transformation 

from an I'-chunk to a U'-chunk, respectively. Finally, we describe similar alterations 

applied to Soar/EBL. 

5.1    Domain Theory => PS-chunk 

Before we prove that this transformation is safe, we define tools for comparing the rela- 

tionships among pseudo-chunks. (In the proof, we address rule firings and decisions only, 

and exclude the changes caused by the architectural axioms.) 

Definition 1 (trace-graph) Given the initial WMEs (the WMEs given in the original prob- 

lem solving), the trace-graph of a pseudo-chunk is a graph that represents the sequence 

of rule firings and decisions, along with how intermediate products are created and used 

in the sequence. 

In the trace-graph, each instance of a rule firing is connected to the WMEs matched to 

the rule conditions and the preferences produced by the rule firings. Also, each decision 

is connected to the input preferences and the output WMEs. The trace-graph shows the 

details of the rule matches, including how intermediate products are created and used to 

yield instantiations, depending on the match algorithm. In the case of Rete, the trace-graph 

shows its sharing and state saving. 

Example: Figure 3.3 in Chapter 3 is an abstract view of the trace-graph of a domain 

theory, given the initial WMEs shown in Figure 3.2. Although the structure shows the 

connections among the rules and the decisions with their preferences and the WMEs, the 

tokens and the Rete optimizations are not shown explicitly for brevity. Figure 5.2 shows 
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W1.W2 \ ^ --^_   /S3l_-J>3 —T—Qty-*- P1« P2 

W19.W20- 
W25 ^_^R^_^P1 /P2- 

^O— =' : Rule trace 

•  : intermediate tokens produced by the match algorithm 

Figure 5.2: An example trace-graph. 

a part of the trace-graph of the domain theory. It shows the first three rule firings. In 

the figure, each black bullet represents the tokens created for a condition, by joining the 

prior tokens and the WMEs matching that condition. In addition to the connections shown 

in Figure 3.3, it also shows how tokens are used in the match, including the sharing of 

tokens across the rules. For example, in the trace-graph, the tokens created for the first 

two conditions in Rl are shared with the tokens for the first two conditions of R2. Given 

a pseudo-chunk and the initial WMEs, the trace-graph of the pseudo-chunk displays the 

how intermediate products are created and processed in its interpretation. 

Definition 2 (trace-subset) Given the initial WMEs, a pseudo-chunk A is a trace-subset 

of a pseudo-chunk B, ifA's trace-graph is isomorphic to a subgraph ofB's trace-graph. 

Definition 3 (WME-subset). Given the initial WMEs, a pseudo-chunk A is WME-subset 

of a pseudo-chunk B, if A is a trace-subset ofB, and for each rule condition C in A and 

its mapped rule condition C in B, the set of WMEs matching C is a subset of the WMEs 

matching C. 

Theorem 1 Given the initial WMEs, if a pseudo-chunk A is a WME-subset of a pseudo- 

chunk B, the number of tokens produced while interpreting A is less than or equal to the 

number of tokens produced by B. That is, the number of tokens in A's trace-graph is less 

than or equal to that in B 's trace-graph. 

proof. Because A is a trace-subset of B, each rule R in A can be mapped into a unique 

rule R' in B. (Two different rules in A cannot be mapped into the same rule in B.) Also, 

69 



because each condition in R matches to a subset of the WMEs matching the condition in R' 

(WME-subset), there will be fewer (or the same) partial instantiations (tokens) produced 

while matching R than the tokens produced for R'. Thus, the total number of tokens in A's 

trace-graph is bounded by the total number of tokens in B's trace-graph. 

Theorem 2 The number of tokens produced while interpreting a PS-chunk is bounded by 

the number of tokens produced by the problem solving episode from which the PS-chunk 

is created. 

proof. Because the PS-chunk is produced by eliminating the rule firings and the 

decisions not connected to the result creation, the problem solving episode employs either 

more rules and decisions than the PS-chunk's trace-graph (when there is at least one 

excessive rule firing), or the same rules and decisions (when there is no excessive rule 

firing). Thus, the PS-chunk is a trace-subset of the domain theory. Also, in the PS-chunk 

interpretation, only the WMEs created by the connected decision are matched by the rule 

condition, while in the problem solving episode, all WMEs are matched to all conditions. 

Thus, the PS-chunk is a WME-subset of the domain theory. By theorem 1, the number 

of tokens produced by the PS-chunk match is bounded by that in the problem solving 

episode. 

5.2   PS-chunk =» E'-chunk 

This transformation eliminates excessive search-control rules in a PS-chunk, but incorpo- 

rates (maintains) the necessary search-control rules to constrain the search in the match. 

The resulting E'-chunk is an extension of an E-chunk. Such an example is shown in 

Figure 5.3. The additional structure, colored gray, will be transformed into new con- 

ditions of the learned rule. The additional conditions can constrain the match process 

(match search), much as the search control does in the problem solving, and can therefore 

make the learned rule (and the pseudo-chunks created between this transformation and the 

learned rule) cheap to match. 

The following subsection presents a new algorithm that determines relevant search 

control in decisions and removes the excessive search control. We first describe the details 
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(a) Matching and firing of an E-chunk 

o»«"1®*4! 

^o- : Trace of a task-definition rule 

 S^^r^:Äf"    : Trace of a search-control nile 

£>     : Decision 

8>"»8»>Q 

£J«wp£- 

(b) Matching and firing of an E'-chunk (Extended E-chunk) 

Figure 5.3: Extending the backtrace (explanation) to capture the search control. 
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Category        Preferences Description 

feasibility      Acceptable(+) 

Reject(-) 

desirability    Best(>) 

Better(>), 
Worse(<) 

Worst(<) 

Indifferent(=) 

necessity       Prohibit(-) 

Require(!) 

exclusivity     Parallel(&) 

The value is a candidate for selection. 

The value is not a candidate for selection. 

The value is good enough to select without further 
consideration. 

Partial ordering between the candidate values. 

The value should be selected only if there are no 
alternatives. 
If the preference is binary (indifferent to another 
specific value), it means that it does not matter which 
one of the two is selected. If it is unary, the value is 
considered to be indifferent to all other values with a 
unary indifferent preference. 

The value cannot be selected if the goal is to be 
achieved. 

The value must be selected if the goal is to be 
achieved. 

A binary parallel preference states that both values 
can be selected if they are not dominated by 
other preferences. A unary preference states that a 
value can be selected together with any value that 
also has a unary parallel preference. 

Figure 5.4: Preference semantics in Soar (adapted from [34]). 

of the search control semantics in Soar, then the algorithm that is built based on the 

semantics is presented. 

5.2.1    Computing the search control 

In Soar, search control is represented as preferences. Rules in Soar propose changes to 

working memory through preferences, each of which specifies the relative or absolute 

worth of a value for an attribute of a given object (as described in Section 2.2). Given a 

set of preferences, the decision procedure determines new WMEs based on the preference 

semantics. Figure 5.4 briefly describes the semantics of the major preferences. 

Figure 5.5 displays the decision procedure graphically. Starting from the top, pref- 

erences are processed by nine filters. Each filter reduces the number of candidates (i.e., 

competing values) by analyzing the named preferences. Descriptions of the filters are 

given in Figure 5.6. Figure 5.7 provides an example. Here, there are three acceptable 
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( All Preferences j 

f RequireFIlter J 

C AcceptableFilter j 

C ProhibitFilter ^ 

f RejectFilter J 

f BetterWorseFilter j 

C BestFilter J 

C WorstFilter J 

f IndifferentFilter j 

r   ParallelFilter   J 

Figure 5.5: The decision procedure (adapted from [34]). 
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RequireFilter (!) This filter checks for required candidates and impasses. 
• If there is exactly one require preference and there is no prohibit preference for the 

value, then its value is the winner. 
• Otherwise - If there is more than one required candidate or there exists a required value 

that is also prohibited, recognize an impasse and exit. 

AcceptableFilter (+) This filter removes the candidates that are not acceptable. 
• If there are no acceptable preferences, then exit. 

ProhibitFilter (~) This filter removes the candidates that have prohibit preferences. 

RejectFilter (-) This filter removes the candidates that have reject preferences. 

BetterWorseFHter (>, <) This filter checks for better/worse conflict, or filters out candi- 
dates based on better/worse preferences. 
• If there are better/worse conflicts, declare an impasse and exit 
• Otherwise - It filters out the candidates that are worse than another value. 

BestFilter (>) This filter removes any candidates that do not have a best preference, if 
there is at least one best 

WorstFHter (<) This filter removes any candidates that have a worst preference. If all the 
current candidates have worst preferences, the entire set is passed onto the next filter. 

IndifferentFilter (=) 
• If the candidates are all mutually indifferent, return one of the indifferent candidates. 
• Otherwise - If there are non-mutually indifferent candidates for the context (goal, prob- 

lem-space, state, or operator) attributes, an impasse is recognized and exit 
• Otherwise - The candidates are passed to the Parallel filter. 

ParallelFilter (&) 
• If all of the candidates are mutually parallel, return all of them. 
• Otherwise - generate an impasse and exit. 

Figure 5.6: The filter semantics (adapted from [34]). 
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green > 

(Ol Acolor red +) 
(01 Acolorblue+) 
(01 Acolor green +) 
(Ol Acolor red > blue) 
(01 Acolor green >) 

(a) Given preferences 

red > blue 

(b) Relationship among the candidates 

Figure 5.7: An example of decision. 

preferences for alternative values (red, blue.and green) for the same object 01 and attribute 
Acolor. Red is better than blue, and green is best. In Figure 5.7-(b), each arrow shows 

relative strength between the two candidates. The arrowhead points to the winner and the 

tail points to the loser, which is determined by the preference placed beside the arrow. With 

these preferences, the decision procedure filters out the value blue, by BetterWorseFilter, 

and then the value red by BestFilter. Finally, green becomes the winner (i.e., the decided 

value), and WME (01 Acolor green) is added to the working memory. 

Based on the above semantics, an algorithm has been developed to compute and collect 

the search-control rules at each decision point. These search-control rules would expand 
the explanation structure, as explained above. On first thought, it appears that the decision 

procedure itself might be enough to compute the search control. It might have simply 

collected the preferences touched during the decision. However, including all of the 

control rules in the explanation would produce excessive conditions, and sometimes make 

the learned rules overly specific. For example, in Figure 5.7, although all five preferences 

have contributed to the decision, two preferences, (01 Acolor green +) and (01 Acolor 

green >) are enough to make the same decision given the same situation. This means that 

they are enough to constrain the search in the match, and make the learned rule cheap. 

On the other hand, if all five preferences are included in the explanation, the learned 

rule would be less applicable than the rule derived from the explanation with the two 

preferences. Therefore, if the set of preferences overdetermines the choice, the redundant 

preferences (and their rule traces) can be pruned from the explanation to make the created 

rule as general as possible. 

75 



We have developed and implemented an algorithm, called the preference collection 

algorithm, to determine the relevant search control (set of preferences). The purpose 

of the algorithm, shown in Figure 5.8, is to find the set of relevant preferences which 

capture the full decision context. The algorithm makes use of the properties of each 

preference's semantics and the decision procedure. The input of the algorithm is the 

decided value (winner) as well as the preferences. Thus, the algorithm takes advantage 

of the fact that it already knows the winner. This allows it to skip some computations 

performed in the decision procedure. For instance, the algorithm does not have to consider 

the possibilities of another candidate being a winner. Also, because the purpose of the 

algorithm is different from the decision procedure and it has one more input (the winner), 

the algorithm examines the preferences in a different order than the decision procedure. 

Given the winner, the algorithm scans through the preferences in the order that yields a 

set of relevant preferences, where the size of the set is as small as possible (though not 

guaranteed to be smallest, as will be explained later). That is, it determines if a single 

preference can make the same decision, and if not, it then determines if two preferences 

can make the same decision, and so on. The set of preferences computed by the algorithm 

is called the AFFECTED-PREFS in the algorithm. Because the current explanation in 

Soar already includes require, prohibit, and the winner-proposed acceptable preferences, 

we add only extra preferences to AFFECTED_PREFS. 

First, the algorithm determines if a single preference is able to yield the same decision 

as occurs with all given preferences. Because a require or sole acceptable preference 

might have decided the value without considering other preferences, they are checked in 

the beginning. If they fail, the algorithm examines if there are two preferences — a best 

preference for the winner and the winner-proposed acceptable preference. If there are, 

these two preferences are enough to decide the value. In this case, only the best preference 

is saved in AFFECTED_PREF because the winner-proposed acceptable preference is 

already counted in the explanation. If it also fails (i.e., there is no best preference for the 

winner), the algorithm examines other preferences one by one to exclude the remaining 

candidates. The algorithm first examines prohibit preferences, and excludes the prohibited 

candidates. Because prohibit preferences are already included in the explanation in Soar, 

these preferences are not added to AFFECTED_PREF. The algorithm then examines reject 

and worst preferences, if each preference can exclude one of the remaining candidates. 

If, while processing the worst preferences, it is found that the winner is one of the worst 
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Given the decided WME (id Aattr V), AFFECTED_PREFS is constructed. (Current explanation 
aleady includes require, prohibit, and winner-proposed acceptable preferences.) 

AFFECTED_PREFS = NIL 
if require-preference set is not empty exit /* require */ 
if there is only one acceptable preference (id Aattr V+) exit /* sole candidate */ 
if there is only one best preference (id Aattr V >) /* one best and one acceptable */ 

insert it in AFFECTED_PREFS and exit 

for all (W Aattr V,-+)& (v; o V) insert v,-in CANDIDATES 
for all (id Aattr v,- ~) remove v,- from CANDIDATES /* prohibit */ 

For all vi in CANDIDATES /* rejects */ 
if there is (id Aattr v,- -) 

insert it in AFFECTED_PREFS 
remove v,from CANDIDATES 

if CANDIDATES is empty exit 

TCAND = CANDIDATES /* TCAND will be used for better and worse processing */ 
if there is not (id Aattr V <) /* worsts; if the winner is one of the worsts, 

we ignore the worst preferences*/ 
for all vi in CANDIDATES 

if there is (id Aattr v,- <) 
insert it in AFFECTED_PREFS 
remove v,- from CANDIDATES 

if CANDIDATES is empty exit 

For all v,- in CANDIDATES /* better and worse */ 
if there is (id Aattr v,- < V) or (id Aattr V > v,) /* if worse than the winner, only one 

preference is required to filter the loser */ 
insert one of them in AFFECTED_PREFS 
remove vi from CANDIDATES 

/* requires another preference; worse than another acceptable value */ 
else if there exist a Vy such that Vy is in TCAND and ((id Aattr v,- < Vy ) or (id Aattr vy > v-)) 

insert one of the preference and (id Aattr vy- +) in AFFECTED_PREFS 
remove v; from CANDIDATES 
remove vy from TCAND 
for all vk in CANDIDATES /* remove covered elements */ 

if there is (id Aattr vk < Vy) or (id Aattr Vy > vk) 
insert one of them in AFFECTED_PREFS 
remove vk from CANDIDATES 

For all vi in CANDIDATES /* unary indifferent */ 
if there is (id Aattr v, =), insert it in AFFECTED_PREFS 

Figure 5.8: Preference collection algorithm. 
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candidates, the algorithm will ignore the worst preferences. Because the winner itself is 

one of the worsts, the worst preferences cannot filter any non- winners. This case can occur 

when other preceding preferences (e.g., reject preferences, better preferences, or worse 

preferences) were enough to decide the winner in the original decision (see Figure 5.6). 

Better and worse preferences are examined last because when they are used, there 

sometimes needs to be two preferences to exclude one candidate. If, while examining 

better and worse preferences, a candidate is not directly worse than the decided value, the 

system searches for another {acceptable) value that is better than the candidate. According 

to the decision filters, presented in Figure 5.6, a value is not selected if it is worse than 

another acceptable candidate that has not been rejected or prohibited. Thus, we employ a 

temporary set called TCAND that stores the non-rejected and non-prohibited candidates. 

If a candidate is worse than a member of TCAND, the system requires two preferences to 

remove the candidate — one acceptable and one better or worse. In this case, minimizing 

the number of affected preferences requires finding a minimum set of acceptable values, 

such that all the remaining candidates are worse than at least one of the (acceptable) values. 

However, finding a minimum set of acceptable preferences that is enough to cover all the 

remaining candidates is reducible to the set-covering problem — a known NP-complete 

problem. Each acceptable preference represents the set of candidates worse than the 

acceptable candidate, and the problem is to find a minimum set of acceptable preferences 

(a subset of the candidates) that is enough to cover all the remaining candidates. Our 

algorithm uses a simple backtrack-free heuristic to reduce the complexity to polynomial. 

Given a candidate, if the candidate is covered by an acceptable'preference, the algorithm 

removes all the other remaining candidates covered by the acceptable preference. (The 

picked acceptable preference is not necessarily the best each time.) This process continues 

until there is no remaining candidate that is not the winner. 

The computational complexity of the preference collection algorithm depends on the 

better/worse candidates processing because it requires the largest number of comparisons 

among the candidates to find one of the coverings of the remaining candidates. For each 

remaining candidate u(-, once it has found an element Vj, in TCAND, that is better than u,-, 

for each other remaining candidate, Vk, the algorithm examines better/worse preference in 

order to check whether VJ is also better than u*. The number of better/worse preferences 

for N candidates is maximum Nx (N— 1), because for each pair of candidates, maximum 

two preferences — one better and the other worse — can exist. Thus, the total complexity 
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is 0(N4), when N is the number of candidates. If the system preprocess the better/worse 

preferences or employs additional indices, so that for each pair of candidates at most one 

preference (either a better or a worse) remains, then the total cost becomes 0(N3). 

Given the preference set in Figure 5.7 and the decided value green by the decision 

procedure, the algorithm in Figure 5.8 finishes the process by the fourth line marked 

as 'one best and one acceptable', and returns the preference {(01 Acolor green >)} 

as AFFECTED_PREFS. Because the winner-proposed acceptable preference (01 A color 

green +) is already included in the explanation by the current chunking process, the actual 

set of affected preferences consists of the two preferences: (01 A color green >) and (01 

* color green+). 
Since the algorithm employs a backtrack-free heuristic to reduce the computational 

complexity, it may produce a non-minimal set of preferences in some cases. The non- 

minimal set of preferences, however, is still more effective than the full set of preferences, 

as long as it is a subset of the other. By having fewer constraints, the learned rule is more 

applicable than the rule derived from the full set. 

5.2.2   Decisions based on lack of knowledge 

One problem with incorporating search control is that it does not specify what to do when 

decisions in a search are based on lack of knowledge. In such circumstances, the learning 

process has no explanation for why a choice was made, and therefore can acquire rules that 

are just as expensive as those learned by the unaltered learning mechanism. This problem 

is called the opaque-decision problem. In Soar, a real lack of knowledge, as reflected in 

an insufficient set of preferences about a decision, leads to an impasse rather than to a 

decision. Thus, it might seem that Soar would not suffer from this problem. However, it 

does have a construct — an indifferent preference — that allows the explicit statement of 

indifference among a set of choices. The decision procedure is then free to select randomly 

among the indifferent choices. The resulting choice (i.e., opaque decision) is thus made 

in such a way that no explanation of the selection among the indifferent alternatives is 

possible. 
Consider the example from the Grid task again — the problem is to go from point F 

to point P, a path of length four (Figure 5.9-(a)). Because point F is adjacent to four other 

points, four operators are suggested, one for each direction, by the rule operator-goto 
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M N 0 P 

I J K L 

E F G H 

A B C D 

(FAnextB) 
(FAnextE) 
(FAncxtJ) 
(FAnextG) 
(GAnextF) 

(sp operator-goto 
(goal <g> AprobIem-space <p> 

''State <s>) 
(<p> Aname grid-path) 
(<s>Aat<Iocl>) 
(<locl> Anext <loc2>) 

—> 
(<o> Aname goto-loc 

Afrom <Iocl> Ato <Ioc2>) 
(<g> operator <o>)) 

(a) (b) 

Figure 5.9: The Grid task. 

(Figure 5.9-(b)). If the knowledge required to choose among them is not directly available 

in productions (as in the case of this task), an impasse occurs on operator selection. In 

the subgoal created for this impasse, Soar employs the selection problem space, which 

contains evaluation operators that can be applied to the competing task operators. These 

evaluations, once generated, are turned into preferences that allow selection of the task 

operators. However, the system may lack knowledge about which one to evaluate first, 

and might thereby create another impasse. To avoid such impasses, Soar's background 

knowledge creates indifferent preferences for the evaluation operators. This allows it 

make an opaque decision (pick one randomly), and begin to make progress. Figure 5.10 

shows this search process, which continues until the point P is reached. 

If, as is often the case, the information about how to evaluate an operator is not 

directly available, an evaluation subgoal (to implement the evaluation operator) is created. 

The task in this third-level subgoal is to determine the utility of the operator. Here, 

the system performs a lookahead search trying to apply the selected task operator in the 

original problem space. If the resulting state can be evaluated, then the subgoal terminates; 

otherwise the process continues, recurring on the question of what task operator to apply 

to this new state. 

In this overall lookahead search, indifferent preferences indirectly determine which 

path the system moves down, by directly determining which of the operators are evaluated 
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Evaluat« (Op1) 

Grid PS 

Selection PS 

Grid PS (lookahead) 

Evaluate (Op2) 
Selection PS 

Figure 5.10: Problem solving in the Grid task. 
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at each point. However, the rules learned from this search cannot gather an explanation 

from the random semantics (indifferent preferences) as to why one path was taken rather 

than another. This leads to an exponential match of rules which are learned from this 

process. We saw an example of this in the introduction. 

There are (at least) two possible ways of solving this problem. The first one is 

to disallow the use of indifferent preferences. Instead of selecting randomly among 

alternatives, an explicit default ordering is given to the alternatives. If there are any 

apparent reasons why one alternative should be selected ahead of another, they can be 

incorporated into this ordering. Where there are no such reasons, arbitrary ordering can 

be imposed. For the Grid task, an ordering of the operators can be assigned, according 

to the direction of movement. For example, an ordering of first right, then up, then left, 

and finally down, can be provided by the rules shown in Figure 5.11-(a). It is important to 

note that this ordering is just used in place of the indifferent preferences on the evaluate 

operators in the selection space. Thus, it determines the order in which the operators are 

evaluated, but does not dictate an ordering on the task operators. This latter ordering is 

still to be learned, as a new set of control rules, from the lookahead search. 

Because the orderings are generated explicitly by the rules that distinguish among the 

alternatives, they leave behind a trace that can be used in explaining why one alternative 

is picked over the others. A key point is that it does not explain why it should be selected 

first, only why it actually was; so, it is descriptive rather than normative. For example, 

Figure 5.1 l-(b) shows the match search of the learned rule in the grid task. The additional 

constraint introduced by the conditions marking the directions and their priorities may not 

capture a suitable level of generality to support transfer to related situations; however, it 

will at least be sufficient to distinguish the one selected alternative from the others during 

the match, and thus be able to make the resulting learned rules (and the pseudo-chunks 

created between this step and the learned rule) cheap. 

The second way of dealing with opaqueness caused by the randomness is to reflect 

this random semantics in learning and matching. In the problem solving episode, if the 

system has made an opaque decision, the corresponding part (conditions) of the rule that is 

learned from the search, can be provided with random semantics. Every time a condition 

is matched against a WME, although the condition is general enough to match any value, 

only one of the values is selected randomly, instead of all of them. For example, consider 

the learned rule from the Grid-task problem solving as shown in Figure 5.10, and the 
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(rule priority-right 
(goal <g> problem-space <p2> 

"eval-operator <el>) 
(<p2> Aname selection) 
(<el> "object <ol>) 
(<ol> Aname goto-loc) 

«from <docl> "to <loc2>) 
(<locl> Aright <Joc2>) 
—> 
(<el> Apriority 1)) 

(rule priority-down 
(goal <g> problem-space <p2> 

"eval-operator <el>) 
(<p2> Aname selection) 
(<el> "^object <ol>) 
(<ol> Aname goto-loc) 

•from <Iocl> "to <]oc2>) 
(<docl> Adown <Ioc2>) 
-> 
(<el> Apriority 4)) 

(rule priority-up 
.. (goal <^>.AprohlemTspace<p2> 

"Aeval-operator<el>) 
(<p2> Aname selection) 
(<el> Aobject <ol>) 
(<ol> Aname goto-loc) 

''from <locl> "to <Ioc2>) 
(<locl> Aup <loc2>) 
-> 
(<el> Apriority 2)) 

(rule priority-left 
. (goal <g> "problem-space <p2> 

^eval-operator <el>) 
(<p2> Aname selection) 
(<el> Aobject <ol>) 
(<ol> "name goto-loc) 

"from <locl> "to <loc2>) 
(<locl>"lett<Ioc2>) 
~> 
(<el> priority 3)) 

(rule eval-preference 
(goal <g> "problem-space <p2> 

"eval-operator <el> <e2>) 
(<p2> Aname selection) 
(<el> Apriorit <pl>) 
(<e2> "priority <p2> { xpl>}) 
-> 
(<g> Aeva!-operator <el> > <e2>) 

(a) Providing a default ordering among the evaluation operators 

C 
(<r> "priority 4 Aat <11> Ato <12>) 
(<u> "priority 3) (<d> "priority 1) 
(<s> Aat <U>) (<dl> Aat<18>) 
(<12> "right <13> ''next <13> 

"down >d4> Anext <14> 
"up <d5> "next <d5>) 

(<13> "up <16> "next <16> 
"down <17> Anext <37>) 

(<16> "up <18> Anext <18>) 
-> 
(<g> "operator <t> >)) 

I 
I 

(b) Learned rule and its match search 

Figure 5.11: Eliminating indifferent preferences and their opaque decisions. 
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(<state>Aat<ll>) 
(<desired> Aat <15>) 
(<op> ^t <ll> ^o <12>) 
(<d2>Niext<13>) 
(<13> ^next <14>) 

(<g> operator <o> >)) 

(a) Learned rule 

t** t- 

(b) Match seaih wilh normal match (c) Match search with random semantics 

Figure 5.12: Match search with/without random semantics. 

learned rule as shown in Figure 5.12-(a). When the system matches the conditions which 

are built from the the opaque decisions in the problem solving, instead of matching the 

conditions with all WMEs, only one of them is picked randomly. For example, the match 

search for the rule in Figure 5.12-(a) can be changed from Figure 5.12-(b) to Figure 5.12- 

(c). The reflection of an opaque decision in the match leads to a single-path match. If, 

in fact, the indifferent preference meant that the system really didn't care which of the 

paths was taken, then any random selection made by the matcher should be as good as any 

other. If, however, the indifferent preference actually signified a lack of knowledge about 

the correct path, and that not all paths actually lead to success, then the match will follow 

one path randomly, and thus will succeed only stochastically. If, in the Grid task example, 

the system picks one of the wrong paths, the search would not reach the desired point 

Our implementation supports both ways of solving the problem. The first option needs 

only an explicit evaluation order among the alternatives, and does not demand any modifi- 

cation of the basic architecture of Soar, except for eliminating indifferent preferences. The 

second option requires a significant alteration in the match of the learned rule. The random 

semantics are applied to the match of the learned rule, and the current match algorithm 

(Rete) is extended to support the semantics. This extension is also combined with other 
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extensions of the match algorithm, which are required for implementing other proposed 

modifications (e.g., introducing the problem-solving structure in the match). Details of 

such extensions, and how to combine them will be discussed in Section 5.4. 

5.2.3   An example E'-chunk 

The simplified Grid task described in Chapter 3 has no excessive search-control rule 

firings. If the Grid task is extended, by giving one more rule, R5, and a WME, W51, 

as shown in Figure 5.13, the problem solving episode from the new task will produce 

excessive search-control rule firing. The problem solving episode is shown in Figure 5.14. 

For the second decision in Figure 5.14, the preference (Gl Aoperator A -) is excessive 

and can be excluded from the explanation. The excessive part is marked as thick lines 

in the figure. The preference collection algorithm, shown in Figure 5.8, filters the reject 

preference from the set of preferences participating in the decision. Figure 5.15 shows the 

extra match effort performed by the excessive part. The total cost of the problem solving 

episode is 29 in the new task. 

The interpretation of the E'-chunk, generated from the PS-chunk, is shown in Fig- 

ure 5.16. The cost of the E'-chunk is 27, which is less than the cost of the PS-chunk. In 

general, when the search control computing algorithm filters any preferences, the E'-chunk 

will have fewer search-control rules than the PS-chunk, and produce fewer tokens in the 

match. Otherwise, the number remains the same. 

Theorem 3 The number of tokens produced while interpreting an E'-chunk is bounded by 

the number of tokens for the PS-chunk from which it is created. 

proof The set of the rules in the E'-chunk is either a subset of the rules in the PS- 

chunk (when there is at least one search-control rule) or equivalent to it (when there is 

no search-control rule), because of the pruned search control (trace-subset). Since the 

transformation only eliminates excessive search control, each decision in the E'-chunk 

is constrained as in the PS-chunk. Thus, each decision produces the equivalent set of 

WMEs that are produced by the corresponding decision in the PS-chunk. This means that 

each condition in the E'-chunk is matched by the same set of WMEs as the corresponding 

condition in the PS-chunk (WME-subset). By theorem 1, the number of tokens produced 

by the E'-chunk match is bounded by that in the PS-chunk match. 
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i I ^ "" **| 
A1 t      B C*i 

9 

W1:(A 
W2:(A 
W3:(A 
W4:(B 
W5:(B 
W6:(B 
W7:(B 
W8:(C 
W9: (C 

Anext B) 
Anext D) 
VightB) 
Anext A) 
AnextC) 
Anext E) 
'Yight C) 
Anext F) 
Anext-B)- 

W10:(DAnextA) 
Wll:(DAnextE) 
W12:(DAnextG) 

W27:(GlAstateS) 
W28: (S Aat A) 
W29:(GlAgoal-pointGP) 
W30:(GPAatC) 

(a) Given WMEs 

W13:(EAnextB) 
W14:(EAnextF) 
W15:(EAnextH) 
W16:(EAnextD) 
W17:(GAnextD) 
W18:(GAnextH) 
W19: (B Areachable-by Cl) 
W20: (D 'Veachable-by VI) 
W21: (A 'Veachable-by V2) 
W22: (C Areachable-by V2) 
W23: (E Areachable-by V2) 
W24: (G 'Veachable-by V2) 
W25:(VlAnamecar) 
W26:(V2Anamecar) 

W51:(BAleftA) 

(Rl 
(goal <g> Astate <s>) 
(<s>Aat<locl>) 
(<locl> Anext <loc2>) 
(<loc2> Veachable-by <vehicle>) 
(<vehicle> Aname <n>) 
-> 
(<g> operator <loc2> +)) 

(R3 
(goal <g> Astate <s>) 
(<g> operator <loc5>) 

(<s> Aat <loc5>) 

(R5 
(goal <g> Astate <s>) 
(<s> Aat <loc3>) 
(<Ioc3> Alcft <Ioc7>) 
(<g> Aopcrator <loc7> +) 
-> 
(<g> Aoperator <loc7> -)) 

(R2 
(goal <g> Astate <s>) 
(<s> Aat <loc3>) 
(<loc3> Aright <loc4>) 
(<g> Aoperator <loc4> +) 
—> 
(<g> Aoperator <loc4> >)) 

(R4 
(goal <g> ^tate <s>) 
(<g> Agoal-point <gp>) 
(<gp> Aat <loc6>) 
(<s> Aat <loc6>) 
-> 
(<s> Success <loc6>)) 

; (search-control rule) 
; if the current location is <loc3>, 
; and <loc4> is on the left, and 
; there is a candidate operator to goto 
; <loc4>, then reject the operator 

(b) Given rules 

Figure 5.13: An extension to the simplified Grid task. 
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W29 
W30 
W26 

W4.W5.W6 
W21.W22.W23 

W3-^ 

W3S 

Preferences and WMEs created during problem solving 

PI: (Gl operator B+) 
P2:(G1 AoperatorD+) 
P3:(G1 «operator B>) 

W31:(GIAoperatorB) 
W32: (S «at B) 

P4:(G1 «operator C+) 
P5:(G1 «operator E+) 
P6: (G1 «operator A +) 
P7:(G1 «operator C>) 
P8:(G1 «operator A-) 

W33:(G1 «operator C) 
W34:(S«atQ 
W35: (S «success Q 

Figure 5.14: Problem solving episode. 

(R5 
S (goal <g> «state <s>) 
S (<s> «at <loc3>) 
1 (<loc3> «left <loc7>) 
1 (<g> «operator <loc7> CAND) 
-> 
1 (<g> «operator <loc7> BEST)) 

(W27) 
(W27.W32) 
(W27.W32.W51) 
(W27.W32..W51.P6) 

==> create P7 

P4.P5.P6.P7.P8 => create W33 Decision process 

Figure 5.15: Tokens created for the excessive search control. 
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W35 

Figure 5.16: The trace of the E'-chunk. 

Remember that the original transformation (removal of search control) from the PS- 

chunk to the E-chunk has increased the cost. The cost increase is avoided now by 

employing the altered transformation. 

The addition of search control, rather than the removal of it, may specialize the learned 

rules (and the pseudo-chunks created between this transformation and the learned rules), 

but in return, it enables the rule's cost to remain bounded by the cost of the original 

problem solving. 

5.3    E'-chunk =>• I'-chunk 

This step performs the variablization step in chunking by examining the rule traces in the 

E-chunk trace, as described in Section 3.3. This transformation can overspecialize the 

learned rule (and the pseudo-chunks created by the subsequent transformations) as in the 

original chunking's variablization process. For the Grid task example, the new I'-chunk 

built from the E'-chunk is shown in Figure 5.17. Variable <nl> in Rl-1' and variable 

<n2> in Rl-2' are overspecialized to the constant car as in the original transformation. 

Although the characteristics of the transformation are similar to those of the original 

transformation, the resulting I'-chunk is different from the I-chunk in that the copies of 

the search-control rules and the subsequent decisions are kept in the structure. The total 

cost in the number of tokens is 27; the cost is the same as the match cost of the E'-chunk. 

In general, the number of tokens generated should be either unchanged, or reduced by the 

introduced constraints. 
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W35 

(Rl-1" 
1 (goal <g> "state <s>) 
1 (<s> Aat <locl>) 
2 (<Iocl> "next <loc2>) 
2 (<loc2> Areachable-by <vl>) 
2 (<vl> Aname car) 
-> 
2 (<g> operator <Ioc2> )) 

(R2-1" 
S (goal <g> "state <s>) 
S (<s> Aat <locl>) 
1 (<Iocl> Aright <loc2>) 
1 (<g> Agoto-eval-operator <loc2> +) 
-> 
1 (<g> operator <loc2> >)) 

(R3-1" 
S (goal <g> Astate <s>) 
1 (<g> operator <loc2>) 
-> 
1 (<s> Aat <loc2> )) 

(Rl-2" 
S (goal <g> ^ate <s>) 
1 (<s> Aat <loc2>) 
3 (<loc2> Anext <loc3>) 
3 (<loc3> Areachable-by <v2>) 
3 (<v2> Aname car) 
-> 
3 (<g> Aoperator<loc3>)) 

(R2-2" 
S (goal <g> Astatc <s>) 
S (<s> Aat <loc2>) 
1 (<loc2> Aright<loc3>) 
1 (<g> "operator <loc3> +) 
-> 
1 (<g> "operator <loc3> >)) 

(R3-2" 
S (goal <g> Astate <s>) 
1 (<g> "operator <loc3>) 
~> 
1 (<s> Aat <loc3> )) 

(R4-1" 
S (goal <g> ^tate <s>) 
1 (<g> "goal-point <gp>) 
1 (<gp> "at <loc3>) 
1 (<s> Aat <loc3>) 
~> 
1 (<s> "success <loc3>)) 

Figure 5.17: The interpretation of the I'-chunk that is built while learning a rule from the 
Grid task. An I'-chunk is created by constraining variables in an E'-chunk. 
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Theorem 4 The number of tokens produced while interpreting an I'-chunk is bounded by 

the number of tokens of the E-chunk from which it is created. 

proof. The I'-chunk has the same set of rules as the E'-chunk because the rules remain 

the same (trace-subset). The changes made by the transformation either make different 

variables the same or constrain the variables as constants. Because of these changes, 

a rule condition in the I'-chunk matches either fewer WMEs than the WMEs matching 

the corresponding condition in the E'-chunk (WME-subset), or the same WMEs (WME- 

subset). By theorem 1, the number of tokens produced by the I'-chunk match is bounded 

by that in the E'-chunk match. 

5.4    I'-chunk => U'-chunk 

This transformation has to perform two sub-transformations: (1) unifying the separate 

rules and decisions into one structure, and (2) applying token compression. These two 

sub-transformations should be applied together, because performing (1) without (2) can 

increase the cost, and (2) is not meaningful without (1). Token compression is needed 

only when intermediate WMEs are replaced by tokens, which is performed by (1). 

The first sub-transformation removes intermediate preferences along with the subse- 

quent intermediate WMEs, and produces a single rule structure. In order to properly 

interpret this structure as a rule, an extension of the Rete algorithm is required. Nonlinear 

Rete, introduced to interpret U-chunk in Section 3.4, is not sufficient. Not only does the 

match algorithm have to interpret the hierarchical rule firing structure, but it also has to 

incorporate decision semantics. Token compression needs to be introduced as well, to 

prevent any increase in the number of tokens caused by unifying. This section introduces 

the extensions to nonlinear Rete that support decision semantics and token compression. 

First, we describe the new operations added to nonlinear Rete, so that decisions can 

be interpreted, and then we discuss the incorporation of token compression in extended 

nonlinear Rete. 

• 
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W1:(G1 AeventEl) 
W2:(G1 AeventE2) 
W3:(GlAeventE3) 
W4:(G1 AeventE4) 
W5:(GlAeventE5) 
W6: (Gl Anew-event El) 
W7: (Gl Anew-eventE2) 
W8: (Gl Anew-eventE3) 
W9: (Gl Anew-eventE4) 
W10: (E2 Ahas bad-result) 
Wll:(E3Ahas bad-result) 
W12: (E4 Ahas bad-result) 

(rule-acceptable 
(<g> Anew-event <o>) 
-> 
(<g> operator <o> +)) 

(rule-reject 
(<g> ^event <o>) 
(<o> Ahas bad-result) 
-> 
(<g> operator <o> -)) 

(a) WMEs and search-control rules 

Instantiations of rule-acceptable: 
acc-1: {(Gl Anew-eventEl)} 
acc-2: {(Gl Anew-eventE2)j 
acc-3: {(Gl Anew-eventE3)} 
acc-4: {(Gl Anew-eventE4)} 

Instantiations of rule-reject: 
rej-1: {(Gl ^vent E2) (E2 Ahas bad-result)} 
rej-2: {(Gl AeventE3) (E3 Ahas bad-result)} 
rej-3: {(Gl Aevent E4) (E4 Ahas bad-result)} 

«> PA1: (Gl operator El +) 
-> PA2: (Gl operator E3 +) 
-> PA3: (Gl operator E4 +) 
~> PA4: (Gl operator E2 +) 

-> PR 1: (Gl operator E2 -) 
-> PR2: (Gl operator E3 -) 
-> PR3: (G1 Aoperator E4 -) 

(b) Instantiations and preferences created by the instantiations 

(Gl operator El) 

(c) Decision procedure produces a winner 

Figure 5.18: An example decision in a problem solving episode. 

5.4.1    Removing intermediate preferences and WMEs 

Removing intermediate preferences means that the instantiations of the rules that created 

the preferences are directly used in the decisions (instead of creating the preferences 

and processing them in the decisions). This requires a new decision algorithm that 

embodies decision semantics to process instantiations instead of preferences. Removing 

intermediate WMEs also means that the decision algorithm does not create WMEs. The 

set of instantiations that participated in the decision is directly used for further matches. 

Figure 5.18 shows such a decision. Given the WMEs and the rules in Figure 5.18-(a), 

seven preferences are created for the same id (Gl) and attribute (operator), as shown in 

Figure 5.18-(b). These preferences are processed by the decision procedure, as explained 

in Section 5.2.  A WME is created as a result, as shown in Figure 5.18-(c). After the 
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RA1,RA2,RA3,RA4 

W6,W7,W8,W9 (~^\ *►    PA1,PA2,PA3,PA4 

-(Gl operator El) !■- 
RRI,RR2,RR3 

W2.W3.W4,      f\ ^     PR1.PR2.PR3 
wio.wii.wi2 v_y 

D: decision procedure call 

(RA1 (RA2 (RA3 (RA4 
(<g> Anew-event<el>)   (<g> Anew-event <e2>) (<g> Anew-event <e3>)     (<g> Anew-event <e4>) 
-> --> -> -> 
(<g> operator <el > +)) (<g> operator <e2> +)) (<g> operator <e3> +))    (<g> operator <e4> +)) 

(RR1 (RR2 (RR3 
(<g> ^vent <e2>) (<g> Aevent <e3>) (<g> Aevent <e4>) 
(<e2> Ahas bad-result)     (<e3> Ahas bad-result)     (<e4> Ahas bad-result) 
-> -> -> 
(<g> operator <e2> -))   (<g> Aoperator <e3> -))   (<g> operator <e4> -)) 

Figure 5.19: Interpretation of the rules and the decision in I'-chunk. 

first three transformations (Domain Theory =*>■ PS-chunk, PS-chunk =^ E'-chunk, and 

E'-chunk =$* I'-chunk), the rule firings and the decisions in the problem solving episode 

are transformed into the rule firings and the decision shown in Figure 5.19. As explained 

in Section 3.3, in order to build a PS-chunk (and its subsequent E'-chunk and I'-chunk), 

a copy of a rule is created for each rule firing, as if the explanation structure in EBL is 

built by creating a separate rule copy for each instantiation. For example, four copies of 

rule-acceptable — RA1, RA2, RA3, and RA4 — are created for the four instantiations of 

the rule. In their interpretation, RA1,..., RA4 share one rule structure because they have 

the same input and output, and the same pattern of constant and variable tests. (They share 

one node in the figure.) In the rule level they are separate, but in the Rete level (in the 

compiled structure) they share one network. The letter D represents a procedure call of the 

same decision procedure employed in the problem solving. The decision in the I'-chunk 

. is identical to the original decision, except that the WMEs created by the decision in the 

I'-chunk are matched only by the rules that are connected in the structure, as opposed to 

being matched to any conditions in the production system. 

Figure 5.20-(a) shows the corresponding subrules and the decision in the U'-chunk. 

The intermediate preferences and WMEs are removed, and instantiations are directly 

processed by the decision. Subrules RA1',..., RA4' are formed from RA1,..., RA4, and 
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RAt',RA2\RA3',RA4' 
W6,W7,W8,W9 (    Y—___^ ace-1 ,acc-2,acc-3,acc-4 

RR1',RR2',RR3'  UD *" 

W2.W3.W4,    _ fy reH,rej-2.rej-3 
W10.W11.W12 K    J 

UD: unified decision for RA1' ,RA2' ,RA3' ,RA4',RR 1' XR2' .RR3', 

(RA1' (RA2' (RA3' (RA4' 
(<g>Anew-event<el>)    (<g> Anew-event <e2>)  (<g> Anew-event <e3>)     (<g> Anew-event <e4>) 

(RR1' (RR2' (RR3' 
(<g>Aevent<e2>) (<g> ^vent <e3>) <<g> 'Went <e4>)   - 
(<e2> Ahas bad-result)     (<e3> Ahas bad-result)     (<e4> Ahas bad-result) 

(a) Interpretation of the subrules and the unified decision in the U'-chunk 

Input 
Instantiations of RA1'—RA4' and RA1' —RA4' 
(acc-1 — acc-4, rej-1—rej-3) 

Output: 
Instantiations of RA1' 

(b) Input and output of the unified decision 

Figure 5.20: Interpreting the unified decision in the U'-chunk. 

can also share the same structure in their interpretation, since they have the same patterns 

of tests. 

Since the decision in the U'-chunk is different from the normal decision procedure, in 

that it has to process instantiations instead of preferences, the decision is represented as UD 

(Unified Decision) instead of D to distinguish the difference. Unified decisions also differ 

from the normal decisions, in that they cannot be performed by calling a general decision 

procedure. As each rule has patterns in its conditions and actions, each unified decision 

has patterns for its input and output. These input and output patterns are determined by 

the subrules which participate in the decision. For example, as shown in Figure 5.20-(b), 

the given unified decision will process the instantiations of the subrule RA1',..., RA4', 

and RR',..., RR3', and decide the instantiation that created the winner. That is, it has 

to decide which instantiation is consistent with RA1' (the subrule that is created from the 

winner-proposed instantiation — acc-1), as explained later. 

Figure 5.21 shows the details of the decision performed in the I'-chunk match. The 

decision procedure filters the candidates one by one, based on the rejected values, by 
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PA1 
PA2 

^^        'PA3 
__^^-^PA4 Decision 

rocedure 
-(Gl ^operator El)- 

PA1,PA2,PA3,PA3 ==> Candidates: El, E2, E3, E4 
PR1 => Candidates: El, E3, E4 
PR2 => Candidates: El, E4 
PR3 => Candidates : El 
=> El is the winner 

PA1: (Gl Aoperator El +) 
PA2: (Gl Aoperator E3 +) 
PA3:(G1A T" -x 

PA4:(G1' 
PR1:(G1' 
PR2: (Gl' 
PR3: (Gl' 

. Aoperator E4 +) 
1 Aoperator E2 +) 
1 operator E2 -) 
I Aoperator E3 -) 
1 AoperatprE4-) 

Figure 5.21: The details of the decision in the I-chunk match. 

marking the rejected values among the candidate values. The total cost is linear in the 

number of candidates. The unified decision formed from the decision should provide 

similar semantics to determine the winner (or the winner-proposed instantiation). 

In Figure 5.22, a search that can be performed by the unified decision is shown. 

In this search, one reject-preference-created instantiation (we call it as rej-instantiation 

for brevity) is picked for each re/ecf-preference created subrule (called the rej-subrule). 

Moreover, whenever an instantiation is picked for a rej-subrule, the system decides its 

consistent acceptable-preference-created instantiation (called the acc-instantiation)} This 

is similar to the process in the decision in the I'-chunk, which filters the candidates that are 

rejected and find the winner. That is, the pick one process in the unified decision filters 

the three acc-instantiations that are consistent with the rej-instantiations, and finds the 

instantiation of RA1'. The complexity of this search is linear in the number of candidates. 

This process is more speciali2ed than the original decision procedure, because its algorithm 

depends on the patterns of tests in the subrules, and the number of subrules in the decision. 

However, this guarantees the correctness and the linear time boundedness, given a similar 

situation. No matter which rej-instantiation is picked each time, the acc-instantiations that 

are consistent with the rej-instantiations will be filtered, and the system will always be left 

with the non-rejected candidate, and can make the correct decision. 

'An acceptable-preference created subrules (called an acc-subrule) is consistent with a rej-subrule, 
when their corresponding rules in the I'-chunk have proposed and rejected the same candidate. Also, an 
acc-instantiation is consistent with a rej-instantiation, when they are instantiations of two consistent subrules. 
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(RRl'=rej-l, t pick one among the rejects (rej-1 — rej-3) 
RA2'=acc-2) and filter the consistent a-mstantiation 

(RR2'=rej-2, '' pick one among the rejects which are different from rej-1, 
RA3 '=acc-3)   and filter me consistent a-instantiation 

(RR2'=rej-3, ' r pick one among the rejects which are different from rej-1 and rej-2, 
RA3 '=acc-4)   and filter the consistent a-instanttation 

(RAl^acc-1)1' 

Figure 5.22: A cheaper search for the unified decision. 

Matching (interpreting) a unified structure (a U'-chunk) is a single rule match process, 

and the above search (a sub-part of a U-chunk match) should be performed in the rule 

match algorithm. This requires a significant modification in the match process. In the 

nonlinear Rete, introduced in Section 3.4, the only operation between two instantiations of 

subrules is join, which tests the consistency between the instantiations based on the variable 

patterns of the subrules. The above task, however, requires an extra operation that can pick 

one instantiation that is not the same as the instantiations of the preceding subrules. (The 

structure in Rete will be shown shortly.) For example, the above decision requires picking 

one instantiation among the rej-instantiations, which is different from the instantiations of 

the preceding rej-subrules. We have introduced an extra not type, called a decision-sub- 

node, for this purpose. A decision-sub-node picks one of the instantiations of a subrule 

arbitrarily, instead of keeping all consistent instantiations. This 'pick one' operation 

filters out rejected candidates one at a time, as the decision procedure filters one rejected 

candidate per preference. This extension of nonlinear Rete is called controlled-nonlinear- 

Rete. The search, shown in Figure 5.22, can be performed by controlled-nonlinear-Rete, as 

shown in Figure 5.23. (The structure in the figure does not reflect the sharing optimization 

of Rete.) Each parenthesized subrule name in the figure represents the Rete sub-network 

that interprets that subrule. Each acc-subrule network is paired with its consistent rej- 

subrule network via a. join node to filter the candidate (acc-instantiation) that is consistent 

with the rej-instantiation. Each pair is interpreted as a subrule (called a decision-sub- 

condition) in the network. The decision-sub-nodes are marked as DN. Each DN compares 
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(subrule) : Retc network interpreting the subrule 

(RA2')  (RR1') (RA3')  (RR2') (RA3')  (RR2') (RA1') 

Figure 5.23: The controlled-nonlinear-Rete network built for the unified decision. 

the acc-instantiations of the current decision-sub-condition with the acc-instantiations of 

the preceding decision-sub-conditions. The last DN finds the instantiation of RA1'. 
The actual Rete network with the sharing optimization is shown in Figure 5.24. Since 

the acc-subrules have the same pattern of tests, they can share one network marked as 
(acc-subrule) — the network interpreting an acc-subrule. Also, the rej-subrules share 

one network marked as (rej-subrule). The decision-sub-conditions, created by pairing a 

rej-subrule and an acc-subrule, can share one sub-network. This network performs the 

process described above. 
Since the decisions are interpreted as additional Rete nodes in the controlled nonlinear 

Rete, the cost of the decision procedure (originally performed by the Soar architecture) 

is converted into a sub-part of the match cost However, because each decision-sub-node 

keeps at most one token, the increase in number of tokens is linear in the number of 

candidates. Thus, it has the same complexity as the original decision procedure, and the 

actual total cost does not increase. 
Note that the trace-graph of the U'-chunk reflects the interpretation by controlled- 

nonlinear-Rete, and displays the structure shown in Figure 5.24. 
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(subrulc): Rete network interpreting the subrule 

(acc-subrule)   (rej-subrule) 

Figure 5.24: The same controlled-nonlinear-Rete showing the sharing. 

5.4.2   A general unified decision structure 

Figure 5.25 shows the general structure of a unified decision. Each symbol enclosed in 

braces represents a search-control-created subrule, such as acc-subrule or rej-subrule. The 
parts marked as DS represent the decision-sub-conditions. Each decision-sub-condition 

is interpreted as a decision-sub-node in controlled-nonlinear-Rete, as described in the last 

subsection. Given a set of search-control-created subrules, a list of decision-sub-conditions 

are created, and are interpreted by controlled-nonlinear-Rete. For example, given the set 

of subrules, RA1',..., RA4' and RR1',..., RR3', a list of decision-sub-conditions can be 

created, as shown in Figure 5.26. These conditions are interpreted as the network shown 

in Figure 5.24. 
The general structure of a unified decision follows the decision procedure semantics, 

and is consistent with the sequence of filters shown in Figure 5.5. If there is a require 

preference or only one acceptable preference in a decision, only one subrule is created 

for the unified decision, and this trivial decision can be treated as a simple subrule, 

without an decision-sub-condition. The tokens of other preference-created subrules are 

processed similarly, as in the earlier example (in the previous subsection), except for the 

tokens of the fcetf-preference-created subrules. A best preference, if it has participated in 

filtering candidates in the original decision procedure (and picked up by the preference 

collection algorithm shown in Figure 5.8), should be consistent with the winner. Thus, 
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DS{ 
{acceptable-preference-created-subrule-p-l} 
{prohibit-preference-created-subrule-1} 

• 

DS{ * 
{acceptable-preference-created-subrule-p-n} 

.   {prohibit-preference-created-subrule-n} 

DS{ 
{acceptable-preference-created-subrule-r-1} 

j  {reject-preference-created-subrule-1} 
• 

DS{ * 
{acceptable-preference-created-subrule-r-n} 

j  {reject-preference-created-subrule-n} 

DS{ 
{acceptabIe-preference-created-subrule-b-1-1} 
{acceptable-preference-created-subrule-w-1-2} 
(better-or-worse-preference-created-subrule-1} 

• 

DS{ 
{acceptable-preference-created-subnile-b-n-l} 
{acceptabIe-preference-created-subrule-w-n-2} 
{better-or-wors&-preference-created-subrule-n} 

DS{ 
{acceptable-preference-created-subrule-w-1} 

.   {worst-preference-created-subrule-1} 

DS{ • 
{acceptable-preference-created-subru le-w-n} 

.   {worst-preference-created-subrule-n} 

DS{ 
{acceptable-preference-created-subrule-i-1} 

.   {indifferent-preference-created-subrule-1} 
• 

DS{ • 
{acceptable-preference-created-subrule-i-n} 

.   {indifferent-preference-created-subrule-n} 

DS{ 
{acceptable-preference-created-subrule-i-l} 

.   {parallel-preference-created-submle-l} 

DS{ • 
{acceptable-preference-created-subrule-pl-n} 

.   {parallel-preference-created-subrule-n} 
DS{ 

{acceptable-preference-created-subrule-b} 0R        DS{accePtable-preference-created-subrule} 
{best-preference-created-subrule} 

Figure 5.25: The general structure of a unified decision. 
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DS{ 
{(<g> Anew-event <e2>)} 

{(<g> Aevent<e2>) 
(<e2> Ahas bad-result)} 

DS{ 
{(<g> Anew-event <e2>)} 

{(<g> ^vent <e2>) 
(<e2> Ahas bad-result)} 

DS{ 
{(<g> Anew-event <e2>)}  - ........ 

{(<g> Aevent <e2>) 
(<e2> Ahas bad-result)} 

{(<g> Anew-event <el>)} 

Figure 5.26: The structure of the example unified decision. 

the bfttt-preference-created subrule is paired with the winner-created subrule, as shown at 

the bottom of the list of subrules. For better or worse preference created subrules, two 

acc-subrules (one for the better and the other for the worse) are put together, since the two 

candidates need to be compared as in the original decision procedure. 

The overall interpretation of the general structure is as follows. First, any prohibit- 

created or re/ecf-created subrule pick one instantiation. Next, for each picked instantiation, 

the consistent acc-instantiation is compared with the already filtered acc-instantiations, to 

make sure that it is not already filtered by other subrules. Then betterAvorse-created 

subrules filter the candidates. In the original decision procedure, better/worse preferences 

compare the candidates that are not already filtered by reject or prohibit preferences. Since 

the structure keeps the two acc-subrules that are consistent with the two candidates for 

each betterAvorse-created subrule, by comparing the acc-instantiations (consistent with 

the picked betterAvorse-created instantiation) with already prohibited or rejected acc- 

instantiations, the same result can be acquired. It then filters out the worst instantiations. 

If there is not a fotf-preference-created subrule, the acc-instantiation which is not con- 

sistent with the already filtered acc-instantiations becomes the winner. Otherwise, the 

acc-instantiation which is consistent with the instantiation of the best-preference created 

subrule (and different from the filtered acc-instantiations) becomes the winner. 
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Note that the random semantics of the indifferent preferences (opaque decision) dis- 

cussed in subsection 4.1.2 can be easily captured in this framework. Each indifferent- 

preference-created subrule, except for the one consistent with the winner, can be paired 

with the consistent acc-subrule to create a decision-sub-condition. Each decision-sub- 

condition is interpreted by a decision-sub-node, and the decision-sub-nodes will pick 

one of the candidates (acc-instantiations) for it. The candidate that is not picked by 

these nodes becomes the winner. For example, if there were four options in the original 

problem solving, the unified decision will distribute the ihree options into one of the 

three indifferent-prefer&nce-crealed subrules, and the candidate, which happened to not be 

picked by them, becomes the winner. 

5.4.3    Applying token compression 

Without token compression, all the instantiations of the sub-rules are directly transferred 

to the connected rules in the U'-chunk match. Figure 5.27 shows an example. Given the 

rules and WMEs in Figure 5.27-(a), matching rule Rule-next creates four instantiations: 

II, ..., 14, as shown in Figure 5.27-(b). Because all of these instantiations have the 

same values for the variables in the action (<state> and <point3>) in the I'-chunk, only 

one WME (Wl) is created from them in the I'-chunk match. The new WME Wl is 

matched to the first condition of Rule-connected'. Figure 5.27-(c) shows a part of the U'- 

chunk match built without token compression. Because the four instantiations are directly 

passed to Rule-connected", the match cost can increase. At least for the first condition of 

Rule-connected", the number of tokens increases from 1 to A, 

To avoid the above increase in the number of tokens, token compression merges the 

equivalent tokens into one token. Because the variables in the action determine the unique 

WMEs created by the action execution, one way of implementing token compression is 

to explicitly represent only the values of the variables in the action. We call the variables 

in the action exposed variables. Thus, the exposed variables for the action of Rule-next 

are <state> and <point3>. (The algorithm that computes the exposed variables is given 

later.) Given these exposed variables, as shown in Figure 5.28-(a), the four instantiations 

are merged into one tuple (State P4), and this tuple is used instead of the four instantiations 

in the U'-chunk match. Because the tuple represents any of the four instantiations, it is not 

removed until all of the four instantiations are removed. Figure 5.28-(b) shows a part of 
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p<ü><ü (Statel Aat Pl) 
(Pl^extPlXPl^extPS) 
(P2 ^ext P4) (P3 Anext P4) 
(P4 ^lext P5) (P4 Anext P6) 

(Rule-connected 
(<state> Aconnected-to-2 <point3>) 

~> 

(Rule-next 
(<state> Aat <pointl>) 
(<pointl> Anext <point2>) 
(<point2> Anext <point3>) 
(<point3> Anext <point4>) 
-> 
(<state> Aconnected-to-2 <point3>)) 

(a) Given WMEs and rules 

Instantiations of Rule-next: 
II: (State Aat PI) (PI Anext P2) (P2 Anext P4) (P7 Anext P5) 
12: (State Aat PI) (PI Anext P2) (P2 Anext P4) (P4 Anext P6) 
13: (State Aat PI) (PI 'toext P3) (P3 Anext P4) (P4 Anext P5) 
14: (State Aat PI) (PI Anext P3) (P3 Anext P4) (P4 Anext P6) 

Newly created WMEs 
Wl: (State Aconnected-to-2 P4) 

(b) I'-chunk match 

11,12,13,14 

(c) U'-chunk match without token compression 

Figure 5.27: Building a U'-chunk without token compression. 
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# 

(<state> Aat <pointl>) 
(<pointl> Anext <point2>)    K- C1(<sta{e> A^^^.^ ^^a^ 
(<point2> Anext <point3>) r ' 
(<point3> Anext <point4t>) 

TC (based on <state> <point3>): II, 12,13,14 are all equivalent 
=> create (State P4) - (11,12,13,14) 

(a) U'-chunk match with token compression 

(Rule-connected" 
Rule-next" (<statexpoint3>) 

(<state> Aat <pointl>) 
(<pointl> Anext <point2>) 
(<point2> Anext <point3>) 
(<point3> Anext <point4>) 

} 

(b) U'-chunk with token compression 

Figure 5.28: Building a U'-chunk with token compression. 

U'-chunk created from the I'-chunk. The U'-chunk is one rule created by unifying the two 

rules, Rule-connected' and Rule-next'. The name of the subrule in the U'-chunk is Rule- 

connected", and its first condition is a nonlinear condition that tests subrule Rule-next". 

The exposed variables of the nonlinear condition are in bold-face. 

Unifying rules replaces intermediate WMEs with instantiations that created the WMEs, 

and the application of token compression to the unified structure replaces the instantiations 

with the tuples of the exposed variables' values. The tuple is different from a WME, in that 

its creation and deletion are performed within one rule (U'-chunk) match in controlled- 

nonlinear-Rete, instead of multiple rule matches and decisions. In general, because the 

number of the tuples is always bounded by the number of WMEs and the tuples provide 

the same information about the bindings of the exposed variables as the WMEs, a cost 

increase (increase in the number of tokens) by unifying can be avoided, though a constant 

overhead is added. That is, the total number of tokens is bounded by the number of tokens 

in the I'-chunk match, instead of increasing. The proof will be given in subsection 5.4.5. 

When one rule has multiple actions, the exposed variables for the different actions can 

be different. For example, given the new rules in Figure 5.29-(a), the firing of the rule 

Rule-next-2 creates WMEs based on the two actions, and the new WMEs are matched 
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to the two conditions of the rule Rule-connected-2, as shown in Figure 5.29-(b). In the 

I'-chunk match, the four instantiations of Rule-next-2' create one WME (Wl) by executing 

the first action, and Wl is matched to Rule-connected-2"s first condition. Also, the four 

instantiations create two WMEs (W2 and W3) by executing the second action, and they 

are matched to the second condition of Rule-connected-2'. 

Figure 5.29-(c) describes the token compression process for these rules. Based on 

the exposed variables of the two actions, two different sets of tuples are created. For 

the first action, the exposed-variables-are.-<&tate>and_<point3>.Por.these variables, 

all of the instantiations are equivalent and only one tuple is created as the token, and it 

matches to the first condition of Rule-connected-2", as marked as TCI in Figure 5.29-(c). 

For the second action, the exposed variables are <state> and <point4>. For these two 

variables, two tokens are created and matched to Rule-connected-2"'s second condition. 

Figure 5.29-(d) shows the U'-chunk created from the I'-chunk. It has the same subrule 

(Rule-connected-2") for the first two (nonlinear) conditions. The second condition is 

marked SHARED in the figure. Although they share one subrule, they are different in 

the use of their instantiations. Depending on the exposed variables, different tokens are 

created as the instantiations of the subrule. The next subsection describe the algorithm 

that computes exposed variables. 

5.4.4    Computing exposed variables 

For token compression, the system computes exposed variables for each variable in 

the actions. If a given variable is in the LHS, we simply use the variable. Figure 5.30 

shows a part of an I'-chunk. In the figure, each arrow that links an action to a condition 

represents that the WME created by the action is matched by the condition. In the case of 

Rule-1, the exposed variable for the action are simply <p3> and <s>. 

If a variable is new, in that it is not in the LHS, the execution of the action creates 

a new object In Soar, for instance, non-operational (non-supergoal) objects, such as 

new operators in a subgoal, can be created in the subgoal and tested while problem 

solving. All non-operational variables in Figure 5.30 are marked in bold-face. Because 

only the operational variables are directly accessible, to compute the exposed variables 

for a non-operational variable, the system has to find the set of operational variables that 

uniquely determine the variable.  For example, in Rule-2, the non-operational variable 
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(Rule-ncxt-2 
(<state> Aat <pointl>) 
(<pointI> Anext <point2>} 
(<point2> "next <point3>) 
(<point3> Anext <point4>) 
-> 
(<state> Aconnected-to-2 <point3>)) 
(<state> Aconnected-to-3 <point4>)) 

(Rule-connected-2 
(<state> Aconnected-to-2 <point3>) 
(<state> Aconnected-to-3 <point4>) 
—> 

(a) New mles 

Newly created WMEs 
Wl: (State Aconnected-to-2 P4) 
W2: (State Aconnected-to-3 P5) 
W3: (State Aconnected-to-3 P6) 

Wl, 
W2.W3 

(b) I'-chunk match 

TCI 

TC2 

(<state> ^t <pointl>) 
(<pointl> Anext <point2>) 
(<point2> Anext <point3>) 
(<point3> Anext >q>oint4>) 

TCI 

(<state> ^onnected-to^ <point3>) 

(<state> Aconnected-to-3 <point4>) (<state> Aat <pointl>) 
(<pointl> Anext <point2>) 
(<point2> Anext <point3>) 
(<point3> Anext <point4>) 
TCI (based on <state> <point3>): II, 12,13,14 are all equivalent 

-> create (State P4) 

TC2 (based on <state> <point4>) : II and D ate equivalent, 12 and 14 are equivalent 
-> create (State P5) (State P6) 

(c) U'-chunk match with token compression 

(Rule-connected-2'' 
Rule-next-2" (<state> <point3>) 

{ 
(<xtatO ^t <pointl>) 
(<pointl> Anext <point2>) 
(<point2> Anext <point3>) 
(<point3> Anext <point4>) 

SHARED Rule-next-2" (<state> <point4>) 

(d) U'-chunk with token compression 

Figure 5.29: Token compression with multiple actions. 
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I <sg> is determined by <g> | 
(Rule-1 m 
(<s>«at<pl>) (RuIe-2 
(<pl> «next <p2>) (<S> Asuperg°»l <sg>) 
(<p2> «next <p3>) (<8> *<**« <s>) 
-> ~> 

(<s>«conn<p3>)) (<sg> «state <ss>)) 

|"<ss> is determined by <g> and <s>\ 

(Rule-3 
(<g> «supergoal <sgr>y 
(<g> «state <s>) 
(<sg> «state <SS> 

V<s> «conn <p3>) 
—> 

(<ss> «conn <p3>)) 

Figure 5.30: The hierarchical condition structure of the I'-chunk. 

compute_exposed_variabIes (var) { 
if var is a member of the aleady marked non-operational variables, 

return the exposed variables for var; 
/* The computation requires 0(total number of non-operational variables) time */ 

elseif var is a member of the variables in the conditions, 
return the var 
I* The computation requires 0(number of variables in LHS) time */ 

else /* var is a new non-operational variable*! 
add var into the list of non-operational variables 
return the operational variables that determines all the variables in the conditions 
/* The computation requires 0((number of variables in LHS) X (total 

number of non-operational variables)) time */ 
} 

Figure 5.31: The algorithm for computing the exposed variables given a variable. 

<ss> is determined by <g> and <s>, because different combinations of the values of 

these variables in the LHS create different values for <ss>, and <sg> is determined by 

<g> (as given in the box above Rule-2). For each non-operational variable, the current 

implementation maintains a set of operational variables that uniquely determine the values 

of the variable. The boxes in the figure represent this information. Whenever the variable 

is tested or used elsewhere, the set of variables is used instead. For example, the exposed 
variables for <ss> in the Rule-3 action are also <g> and <s>. 

Figure 5.31 shows the algorithm that computes the exposed variables for a variable, 

as explained above. The algorithm is executed by a higher level procedure that visits the 

rules in such an order that for a given non-operational object, the rules that creates the non- 

operational object are visited earlier than the rules that test the objects in their conditions. 
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In the algorithm, the system first checks if the given variable is one of the variables that 

are already known as non-operational. When the variable is one of the non-operational 

variables, the system returns the set of operational variables pointed by the non-operational 

variable. Second, if the variable is in the LHS, the algorithm simply returns the variable. 

Finally, if the variable is a new non-operational variable, add the variable into the list 

of non-operational variables, and find the set of the operational variables that can be 

used instead of the non-operational variable. To find the set of operational variables, the 

system examines each variable in the conditions. While examining each variable in the 

conditions, the variable is checked whether it is non-operational. If the variable is one of 

the non-operational variables, the system add the pointed the operational variables into 

the result. Otherwise, the variable itself is added to the result. 

5.4.5   Optimizing the nonlinear structure 

Whenever conditions of a nonlinear structure are built, a set of optimizations can be applied 

before they are compiled into Rete. These optimizations reduce redundant computations 

without damaging the correctness or increasing the cost. First, a simple condition (a 

condition that is not a nonlinear condition) is ignored when it is tested already. That is, if 

a simple condition is the same as one of the previous conditions (i.e., conditions between 

the current condition and the root), or it is contained in one of the previous nonlinear 

conditions, or it is contained in one of the nonlinear conditions in one of the previous 

nonlinear conditions,..., then it is ignored. For example, in Figure 5.32-(a), the simple 

condition (<pl> Aconnected-to <p2>) can be dropped in both cases without reducing 

the correctness. 2 

A nonlinear condition can be ignored when it is tested earlier by one of the previous 

conditions, or all of its sub-conditions are tested earlier by the previous conditions. For 

example, in Figure 5.32-(b), the nonlinear condition marked shared 1 means that a copy of 

subrule 1 is tested, and it can be ignored without increasing the cost. Also, in Figure 5.32- 

(c), the nonlinear condition testing subrule 2 can be ignored because all of its conditions 

2In the figure, each subrule is tagged with a positive integer. For example, the subrule in Figure 5.32-(a) 
is tagged with 1. This tagging is used just for the convenience of displaying U'-chunks. By tagging the 
subrules by the numbers (or some names), whenever a subrule is tested multiple times as multiple nonlinear 
conditions in a U'-chunk, we can refer to them as the number. 
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1{ 

(<pl> Aconnected-to <p2>) 

* 

(<pl> ^connected-to <p2>) 

} 

(<s> Acurrent-position <pl>) 
(<pl> Aconnected-to <p2>) 

(<pl> ^connected-to <p2>) 

(a) Duplicate simple conditions 

1{ 
1{ 

(<s> Acurrent-position <pl>) 
(<pl> Aconnected-to <p2>) 

} 
(<p2> Aconnected-to <p3>) 

shared 1 

(b) Duplicate nonlinear condition 

(<s> Current-position <pl>) 
(<pl> Connected-to <p2>) 

} 
(<p2> Connected-to <p3>) 

2{ 
(<s> Acurrent-position <pl>) 
(<pl> Aconnected-to <p2>) 
(<p2> Aconnected-to <p3>) 

} 

(c) All sub-conditions of the subrule 2 
are aleady tested 

Figure 5.32: Duplicate conditions can be ignored. 

are tested already. These duplicate conditions reflect the redundant tests in the original 

problem solving. 

There are more ways of simplifying rule conditions, which are not implemented yet 

For example, in Figure 5.33-(a), although all of its sub-conditions are already tested, non- 

linear condition testing subrule 1 is not ignored, because the sub-conditions are not tested 

by its previous conditions. (There is no previous condition for the nonlinear condition.) 

Also, the nonlinear condition testing subrule 2 also cannot be ignored, because not all of 

its sub-conditions are already tested. However, the conditions can be simplified, as shown 

in Figure 5.33-(b), without increasing cost or reducing correctness. The simplification 

from (a) to (b), in Figure 5.33, requires modification (destruction) of the hierarchical 

structure of the rule conditions. The current simplification algorithm does not allow such 

modifications of the hierarchical structure of the conditions; it is left as a future work. 

107 



(goal <g5> Aoperator <o4>) 
(<o4> Atype evaluation) 
(<o4> Adesired-position <dl>) 
2 ' (goal <g5> Aoperator <o4>) 

* t (<o4> Atype evaluation) 
goal <g4> -operator <o4» ^ed-position <dl» 

«o4>Atype evaluation) «dl>
Aat<13» 

(<o4> desired-position <dl>) 
} 

(<dl>Aat<13>) 
} 

(a) (b) 

Figure 5.33: A case where optimization is not applied in the current implementation. 

5.4.6   An example U'-chunk 

The new U'-chunk built from the I'-chunk in Figure 5.17 is shown in Figure 5.34. The 

copies of the search-control rules and the subsequent decisions are kept in the structure. 

The total cost in the number of tokens remains unchanged, instead of increasing. 

R4-1"' in Figure 5.35 shows the hierarchical condition structure of the U'-chunk. There 

are two unified decisions, and each of them has one decision-sub-condition representing 

a fc&yf-preference-created subrule and its consistent acc-subrule. This structure introduces 

the constraints required to avoid the sources of cost increase, and makes the cost of the 

learned rule bounded. In general, the number of tokens generated should be the same, or 

be reduced by applying the above set of optimizations. 

Definition 4 (unified-graph) The unified-graph of a trace-graph is formed by(l) replacing 

each preference creation from a rule and its use in the connected decision, as a line from 

the rule to the decision, and (2) replacing each WME creation from a decision and its 

match in the subsequent rule, by a line from the decision to the rule. 

Definition 5 (unified-trace-subset) Given the initial WMEs, a U'-chunk A is a unified- 

trace-subset of a pseudo-chunk B ifA's trace-graph is isomorphic to a subgraph of the 

unified-graph ofB's trace-graph. 

Definition 6 (tuple-subset) Given the initial WMEs, a V-chunk A is tuple-subset of a 

pseudo-chunk B if A is a unified-trace-subset ofB, and for each rule condition C in A and 
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W35 

(Rl-1'" 
1 (goal <g> Astate <s>) 
1 (<s> ^ <locl>) 
2 (<locl> Anext <loc2>) 
2 (<loc2> Arcachable-by <vl>) 
2 (<vl> Aname car) 

(R2-1'" 
S (goal <g> Astate <s>) 
S (<s> Aat <locl>) 
1 (<locl> Aright <loc2>) 
1 (Rl-1"') 

(UD1 
2 (Rl-1'") 
1 (R2-1'") 

(R3-1"' 
S (goal <g> ^tate <s>) 
1(UD1) 

(Rl-2'" 
S (goal <g> Astate <s>) 
1(R3-1'") 
3 (<loc2> Anext <loc3>) 
3 (<loc3> Areachable-by <v2>) 
3 (<v2> Aname car) 

(R2-2'" 
S (goal <g> Astate <s>) 
S(R3-f") 
1 (<loc2> Aright <loc3>) 
1 (Rl-2'") 

(UD2 
2 (Rl-2'") 
1 (R2-2'") 

(R3-2'" 
S (goal <g> Astate <s>) 
1(UD2) 

(R4-1'" 
S (goal <g> Astate <s>) 
1 (<g> Agoal-point <gp>) 
1 (<gp> Aat <loc3>) 
1 (R3-2'") 
-> 
1 (<s> Asuccess <loc3>)) 

Figure 5.34: An interpretation of the U'-chunk that is built while learning a rule from the 
Grid task. A U'-chunk is created by unifying an I'-chunk. 
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(R4-1'" 
S (goal <g> -»state <s>) DS#: decision-sub-condition 
(<g> -»goal-point <gp>) UD#: decision condition 
(<gp> -»at <loc3>) 
R3-2'"( 

S (goal <g> -»state <s>) 

UD2{ 
DS1( 

Rl-2'"( 
S (goal <g> -»state <s>) 
R3-l'"{ 

S (goal <g> -»state <s>) 
UD1{ 

DS1( 
Rl-1'"{ 

(goal <g> *state <s>) 
(<s>-»at<locl>) 
(<locl> -»next <loc2>) 
(<loc2> -»reachable-by <vl>) 
(<vl> Aname car) 

) 
R2-l*"{ 

S (goal <g> -»state <s>) 
S (<s> -»at <locl>) 
(<locl> ^ight <loc2>) 

. Shared Rl-1'" 

) 
) 
(<Ioc2> -»next <loc3>) 
(<loc3> Reachable-by <v2>) 
(<v2> -»name car) 

) 
R2-2'"( 

) 

-> 
(<s> Asuccess <loc3>)) 

S (goal <g> -»state <s>) 
Shared R3-1'" 
(<loc2> -»right <loc3>) 
Shared R2-1- 

Figure 5.35: The hierarchical condition structure of the U'-chunk. 
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its corresponding condition C in B, each WME (or tuple, when C is a nonlinear condition) 

T matching C can be mapped to a unique WME W matching C in that T and W contain 

equivalent information about the variable bindings. 

Theorem 5 Given the initial WMEs, if a IP -chunk A is a tuple-subset of pseudo-chunk B, 

the number of tokens produced while interpreting pseudo-chunk A is less than or equal to 

the number of tokens produced by pseudo-chunk B. That is, the number of tokens in A's 

trace-graph is less than or equal to that in B's trace-graph. 

proof. Because A is a unified-trace-subset of B, each subrule R in A can be mapped to 

a unique rule, R' in B. For each condition C in R, since each tuple (or WME) matching the 

condition can be mapped to a unique WME matching the corresponding condition C in R' 

(tuple-subset), there will be fewer partial instantiations (tokens) produced while matching 

R than the tokens produced for R'. Thus, the total number of tokens in A's trace-graph is 

bounded by the total number of tokens in B's trace-graph. 

Theorem 6 Given the initial WMEs, the number of tokens produced while interpreting a 

U -chunk is bounded by the. number of tokens of the V-chunk from which it is created. 

proof Each subrule in the U'-chunk is created from a unique rule in the I'-chunk. 

Also, the optimization introduced in subsection 5.4.4 may eliminate some of the subrules, 

to remove duplicate tests. Thus, the U'-chunk is a unified-trace-subset of the I'-chunk. 

Since the decision network filters the candidates (as the original decision filters the losers) 

to produce only the tokens that correspond to the winners, and token compression picks 

one representative for each set of duplicate instantiations, the U'-chunk is a tuple-subset 

of the I'-chunk. By theorem 5, the number of tokens produced by the U'-chunk match is 

bounded by that in the I'-chunk match. 

One negative effect of using graph-structured rules is diminished rule readability. The 

graph structure is rather complex, even with the use of indentation to identify the level 

of hierarchy. Although not displaying the shared part simplifies the structure a little 

(Figure 5.36), it is still difficult to understand the structure. 
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(R4-1'" 
(<g> 'goal-point <gp>) 
(<gp>Aat<loc3>) 
R3-2'"{ 

UD2{ 
DS1{ 

Rl-2'"{ 

R3-l'"( 
UD1{ 

DS1( 
Rl-1"'( 

) 

(goaI^>*state<x>) 
(<s> "at <docl>) 
(<locl> "next <loc2>) 
(<loc2> "reachable-by <vl>) 
(<vl> "name car) 

) 
R2-l'"( 

(<locl> »right <loc2>) 

} 
(<loc2> "next <loc3>) 
(<loc3> "reachable-by <v2>) 
(<v2> "name car) 

} 
R2-2'"{ 

(<loc2> "right <loc3>) 

) 
J 

) 

(<s> "success <Ioc3>)) 

Figure 5.36: The U'-chunk conditions without the shared sub-parts. 
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5.5 Summary of Modified Chunking 

We have described an application of the proposed modifications to the current chunking 

process. To incorporate the search control, the new learning algorithm computes the 

set of preferences that affected the decision. This computation is not essential because 

we can simply use the set of preferences that participated in the decision. However, 

it filters excessive search control, and helps produce more general rules. Incorporating 

search control and keeping the nonlinear structure have required significant modifications 

to the match algorithm. Not only must the match algorithm be extended to compile the 

directed-acyclic graph structure, but special decision-sub-nodes for the search-control- 

created subrules have also been introduced to produce the same control effect without 

adding exponential overhead. For token compression, different forms of tokens that 

maintain tuples of the exposed variables' values, instead of tuples of other tokens, are 

introduced. 
Overall, the new learning system requires an implementation of an interpreter for 

search-control incorporated, token compressing, nonlinear rules. 

5.6 Modifying Soar/EBL 

Because the primary sources of expensiveness in Soar's learned rules arise in three trans- 

formations that are common between chunking and Soar/EBL, the above modifications 

can also be applied to Soar/EBL. As shown in Figure 5.37, the current sequence of 

transformations, shown on the left side (original Soar/EBL), has been changed into a 

new sequence of transformations, shown on the right (new Soar/EBL), by applying the 

techniques developed for chunking. 
The new Soar/EBL shares the same E'-chunk with the modified chunking. To incor- 

porate the search control, the new learning algorithm computes the set of preferences that 

affected the decision. The next transformation regresses an E'-chunk into a R'-chunk. 

An R'-chunk differs from an R-chunk in that it has additional structures originating from 

the search-control rules in the E'-chunk. By needing to regress over search control (or 

decisions), the transformation itself may require extra time, as will be described in Chapter 

7. However, the match cost for the R'-chunk does not increase. Finally, an RU'-chunk 
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Domain Theory 

Filter out rule firings which don't 
i r participate in result creation 

PS-chunk 

~ Remove search-control* 

E-chunk 

Regress 

R-chunk 

— Eliminate intermediate rule firings* 

RU-chunk 

tr Linearize* 

EBL rule 

Domain Theory 

Filter out rule firings which don't 
! r participate in result creation 

PS-chunk 

1 Remove redundant search-control 

E'-chunk 

T Regress 

R"-chunk 

I Eliminate intermediate rule firings 
and introduce token compression 

RU'-chunk 

Figure 5.37: Modifying Soar/EBL to a new sequence of transformations. 

is generated from an R'-chunk, by unifying the separate rules and decisions into a single 

structure. The token compression optimization is integrated into the last transformation. 

The boundedness of the two transformations (E'-chunk =$■ R'-chunk and R'-chunk =^ 

RU'-chunk) can be proven in the same way as in chunking. 

Theorem 7 The number of tokens produced while interpreting an R'-chunk is bounded by 

the number of tokens of the E-chunk from which it is created. 

proof. The R'-chunk has the same set of rules as the E'-chunk because the rules remain 

the same (trace-subset). The changes made by the transformation either make different 

variables the same, or constrain the variables as constants. Because of these changes, 

a rule condition in the R'-chunk matches the same or a subset of WMEs, matching the 

corresponding condition in the E'-chunk (WME-subset). By theorem 1, the number of 

tokens produced by the R'-chunk match is bounded by that in the E'-chunk match. 

Theorem 8 Given the initial WMEs, the number of tokens produced while interpreting a 

RU1-chunk is bounded by the number of tokens of the R'-chunk from which it is created. 
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proof. Each subrule in the RU'-chunk is created from a unique rule in the R'-chunk. 

Also, the optimization introduced in subsection 5.4.4 possibly eliminates some of the 
subrules to remove duplicate tests. Thus, the RU'-chunk is a unified-trace-subset of 

the R'-chunk. Since the decision network filters the candidates (as the original decision 

filters the losers) to produce only the tokens that correspond to the winners, and token 

compression picks one representative for each set of duplicate instantiations, the RU'- 

chunk is a tuple-subset of the R'-chunk. By theorem 5, the number of tokens produced by 

the RU'-chunk match is bounded by thatinthe R'-chunk match. 
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Chapter 6 

Experimental Results 

The purpose of this chapter is to (1) examine if the patterns of cost increase, due to 

chunking and Soar/EBL, match the earlier analyses presented in Chapter 3 and Chapter 4; 

and (2) evaluate the modified learning systems that are implemented based on the design 

details described in Chapter 5. 
The first section compares the results from original chunking and Soar/EBL, and the 

results from different combination of modifications. The domain theory, intermediate 

pseudo-chunks, and the learned rule are compared in terms of the number of tokens 

produced during the match. The results from various learning algorithms, as produced by 

different combinations of the modifications, are compared and analyzed for both chunking 
and Soar/EBL. In order to interpret and compare intermediate pseudo-chunks and the 

chunks produced by the different sequences of transformations, we have implemented 

various extensions of the Rete algorithm, including nonlinear Rete, controlled nonlinear 

Rete, and controlled nonlinear Rete with token compression. The second section examines 

the actual problem solving time with the modified chunking and the modified Soar/EBL. 

The third section discusses the effect of different task representations on the cost of the 

learned rules. Finally, the last section summarizes the results. The results shown here are 

all from Soar6 (version 6.0.4), a C-based release of Soar [34] on a Sun SPARCstation-20 

with processor 61. 

6.1    Match Cost of Different Learning Algorithms 

In order to confirm the analyses provided in Chapter 3 and Chapter 4 with experimental 

results, we have implemented a set of learning algorithms that correspond to the set of 
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initial subsequences of the overall transformation sequence; that is, each learning algorithm 

starts with the domain theory and generates a distinct type of (pseudo-)chunk. We have 

also implemented the necessary extensions to the Rete algorithm, which allow all of the 

types of pseudo-chunks to match and fire. For example, to match a PS-chunk, we have 

developed a way of closing off internal rule conditions in the PS-chunk from the WMEs 

generated outside of the PS-chunk. No other WMEs, except for those created by the 

linked actions, are matched to the conditions of the rules. Also, U-chunks and RU-chunks 

require the ability to perform a nonlinear match. At each stage, from the domain theory to 

chunks (or EBL rules), match cost is evaluated by counting the number of tokens required 

during the match to generate the result and time. 

The resulting experimental system has been applied to a variant of the Grid-task; to 

magnify the effect of each transformation, the task assumes tight connections among the 

points in a 4x4 grid, as shown in Figure 6.1. The task searches for a path of length four. 

The results from the task are shown in figure 6.2. The patterns of cost increase match 

the expectations generated from the earlier analyses of chunking and Soar/EBL, in that 

a transformation led to increased cost on this task, if and only if it was identified by the 

analyses as a cost increasing transformation. In both systems, the three transformations— 

removing search control, unifying, and linearizing — increase the cost Given the same 

initial WMEs as in the original problem solving, the numbers of tokens in both systems are 

the same for all pseudo-chunk pairs. However, Soar/EBL creates a more general rule, as 

shown in Figure 6.2-(b), because of the one difference between the two transformational 

sequences. The extra constraint introduced by the variablization step makes the chunk 

less applicable than the EBL rule. (It will be only applicable when <13> and <12> 

are reachable by the same transportation.) However, it is cheaper to match in different 

situations. For example, when there is different transportation to reach <13> and <12>, 

as well as the same transportation, the chunk is cheaper to match than the EBL rule. 

To examine how the patterns of cost increase change by applying the proposed modi- 

fications (either a subset of them or the full set), similar experimental systems are built for 

different learning algorithms that implement a subset (or the full set) of the modifications. 

Figure 6.3 shows the match costs of the pseudo-chunks created via different versions of 

chunking. At each stage from the domain theory to chunks (or pseudo-chunks), the match 

cost is evaluated by counting the number of tokens required during the match to gener- 

ate the result. The first column (marked chunking) shows the results from the original 
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Figure 6.1: A tight grid. 

Number of tokens 

Chunking Soar/EBL 

Problem Solving 52 52 

PS-chunk 42 42 

E-chunk 108 108 

R-chunk (I-chunk) 108 108 

RU-chunk(l'-chunk) 198 198 

EBL rule (chunk) 215 215 

(a) The costs of the pseudo-chunks 

(chunk 
(goal <g4> Adesired <dl>) 
(<di>*at<H>) 
(<g4> Operator <ql> +) 
(<ql>*to<I3>) 
(<13> Ato <12>) 
(<12>Ato<ll>) 
(<13> Areachable-by <tl>) 
(<12> Areachable-by <tl>) 
—> 
(<g4> operator <q 1> >)) 

(EBL rule 
(goal <g4> desired <dl>) 
(«cd^Aat-dte) 
(<g4> 'operator <o2> +) 
(<o2> 'to <13>) 
(<13> Ato <12>) 
(<12>Ato<ll>) 
(<13> Areachable-by <t2>) 
(<I2> Areachable-by <tl>) 
—> 
(<g4> operator <o2> >)) 

(b) Rules produced by chunking and Soar/EBL 

Figure 6.2: Results from a grid task. 
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SC: incorporate search control 
NL: keep the problem solving structure 
TC: apply token compression 

|                                           Number ot tokens 

Grid Task         1 
1 chunking +SC +NL +SC+NL +NL+TC +SC+NL 

+TC 

Domain Theory         152 52 52 52 52 52 

PS-chunk                 142 42 42 42 42 42 

E-chunk(E'-chunk)   j 108 42 108 42 108 42 

l-chunk (l'-chunk)     j 108 42 108 42 108 42 

U-chunk (U'-chunk)  1198 83 198 83 102 44 

chunk                     1215 72 

44 = 42 + 7-8 + 3 
7: match cost for decision network 
8: additional sharing by dropping architectural local conditions 
3: extra match cost of overgeneral rules by dropping architectural local conditions 

Figure 6.3: The cost (number of tokens) of various (pseudo-)chunks in chunking. 

chunking process. Here, we contrast these results with the ones from other learning algo- 

rithms that apply either a subset or the full set of the three optimizations (incorporating 

search control, keeping the problem-solving structure, and applying token compression) 

described in Chapter 5. The table shows the results from all feasible combinations of the 

optimizations. Because token compression is only applicable to nonlinear rules, some 

of the combinations are unacceptable. For example, token compression alone cannot be 

implemented. 
The second and the third columns show the results from applying one optimization 

alone: incorporating search control or keeping problem-solving structure. The fourth and 

fifth columns show the results from applying two modifications: incorporating search 

control and keeping problem-solving structure, or keeping problem-solving structure and 

applying token compression. The last column shows the results from the complete com- 

bination of the three modifications. Except for the complete combination, other combina- 

tions of modifications did not achieve cost boundedness; that is, the number of tokens that 

are produced while matching the final product is greater than the the number of tokens 

produced by the problem solving episode. 
The increase in the match cost—from 42 to 44—from the l'-chunk to the U'-chunk (in 

the last column) arises from two sources: (1) converting the decision process into match 

effort, and (2) ignoring intractable activities in Soar. Since the decisions are interpreted as 

additional Rete nodes in the controlled nonlinear Rete, the cost of the decision procedure 
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SC: incorporate search control 
NÜ keep the problem solving structure 
TC: apply token compression 

Grid Task 

Number of tokens 

Soar/EBL +SC +NL +SC+NL +NL+TC +SC+NL 
+TC 

Domain Theory 52 52 52 52 52 52 

PS-chunk 42 42 42 42 42 42 

E-chunk(E'-chunk) 108 42 108 42 108 42 

R-chunk (R'-chunk) 108 42 108 42 108 42 

RU-chunk (RU'-chunk) 198 83 198 83 128 52 

EBLrute 215 72 

55=42 + 8-1+6 
8: match cost for decision network 
6: extra match cost of overgeneral rules by dropping architectural local conditions 
1: ignored condition by dropping architectural local conditions 

Figure 6.4: The cost (number of tokens) for various (pseudo-)chunks in Soar/EBL. 

(originally performed by the Soar architecture) is converted into a sub-part of the match 

cost (7 tokens in this case). As explained in Section 5.4, because the increase in the 

number of tokens has the same complexity as the original decision procedure, the actual 

total cost does not increase. 

The second cause of the cost increase originates from ignoring intractable activities in 

the problem solving. For example, some of the architectural activities and non-operational 

negated conditions are ignored in learning. Although this yields an overgenerality of the 

learned rule, the learning systems do not capture the activities because of their intractability, 

as described in Section 4.1. In this example, the cost actually decreases from these activities 

(—8 + 3 = —5). Ignoring the architectural part increases the sharing of the conditions in 

this case, and the cost decreases instead of increasing. 

Figure 6.4 shows the match costs of the pseudo-chunks created in different versions 

of Soar/EBL. The results are from the same Grid task employed for the results shown 

in Figure 6.3. As in the chunking case, except for the complete combination, the other 

combinations of modifications could not achieve cost boundedness. They show a similar 

pattern; the number of tokens that are produced while matching the final product is greater 

than the the number of tokens produced by the problem solving episode. The increase in 

the number of tokens from the I'-chunk to the U'-chunk arises from the same sources as 

in chunking. 
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Grid task (6) 
CPU Time (sec) 

Learn off Original Modified (+SC+NL+TC) 

EBL 1.87 15.06 0.84 

chunking 1.96 0.76 

(a) Results from Grid tasks of path length six 

Grid task (7) 
CPU Tune (sec) 

Learn off Original Modified (+SC+NL+TC) 

EBL 2.71 220.34 1.09 

chunking 24.61 1.16 

(b) Results from Grid tasks of path length seven 

Figure 6.5: Average CPU time for Grid tasks. 

6.2   Problem Solving Time with the Modified Learning 

Algorithms 

The previous subsection showed results from a single Grid task, applying different com- 

binations of optimizations to chunking and Soar/EBL. In the results, only the complete 

combination could provide the boundedness. To examine the actual problem solving time 

with the complete combination, this subsection provides the average problem solving cost 

(in CPU time) from a set of Grid tasks, instead of one task. The results are from the full 

set of modifications of both chunking and Soar/EBL. 

For experimental efficiency, the results presented assume a 10 x 10 bounded (but nor- 
mal) grid. The Grid tasks are searches for paths of length six and paths of length seven. 

We compared the CPU times from five different versions: without learning, with the rules 

learned by original Soar/EBL, with the rules learned by original chunking, with the rules 

learned by modified Soar/EBL, and with the rules learned by the modified chunking. Fig- 

ure 6.5-(a) shows the average CPU time per problem (in seconds), for a sequence of seven 

different problems in the Grid task of path length six. Also, Figure 6.5-(b) shows the the 

average CPU time per problem (in seconds), for a sequence of eight different problems 

in the Grid task of path length seven. In the path six tasks, the average CPU time from 

Soar/EBL (15.06) is more than seven times greater than the average CPU time of the sys- 

tem without learning (1.87). In the path seven tasks, the time with Soar/EBL (220.34) is 

almost eighty times greater than the time without learning (2.71). In the path six tasks, the 
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[   1 ] (goal <g2> Aproblem-space <p9>) 
[  1 ] (<p9> Aname path) 
[ 4](<g2>Aoperator<xl>+) 
[ 4] (<xl> Aname goto-loc) 
[  4](<g2>Astate<sl7>) 
[  4](<sl7>Aat<ll>) 
[ 4](<xl>Aat<ll>) 
[  4] (<xl> «to <12>) 
[ 16] (<12> Aconn { o <12> <13> )) 
[ 64] (>d3> «conn { o <13> <15> }) 
[ 255] (<15> Aconn {-o <15> <16> }) 
[1011] (<16> Aconn { o <16> <17> }) 
[3989] (<17> Aconn { o <17> <14> }) 
[3989] (<g2> Mesircd <dl>) 
[ 225] (<dl> Aat <34>) 
[ 225] (<sl7> Alast-loc <vl>) 

{{{{14] (goal <g2> Aoperator <o7> +)} 
{[ 4] (goal <g2> «operator <o7> +) 
[ 4] (<o7> Aname goto-loc) 
[ 4] (<g2> Aproblem-space <p22>) 
[ 4] (<p22> Aname path) 
[4](<o7>Aat<ll>) 
[ 4] (<^2> Astate <sl8>) 
[4](<sl8>Aat<ll>) 
[ 4] (<s 18> Alast-loc <12>)     - 
[l](<o7>Ato<12>)} 
[ 4] (goal <g2> Aoperator <o6> +))}} 
[3](<o6>Aat<13>) 
[ 3] (<13> Adown <14>) [ 1] (<o6> «to <14>) : 
{[ 4] (goal <g2> Aoperator <x3> +)} 
[3](<x3>Aat<15>) 
[ 3] (<15> Aright <16>) [ 1] (<x3> Ato <16>)}} 
{ { [ 4] (goal <g2> Aoperator <o9> +) } 
[ 3] (<o9> «at <17>) 
[ 3] (<17> Aup <18>) [ 1 ] (<o9> Ato <18>))}} 
[ 1 ] (goal <g2> Aoperator <x3> +) 
[ 1] (goal <g2> Adesired <dl>) 
{{{{ [ 1] (goal <g2> Aproblem-space <p22>) 
[ 1] (goal <g2> Astate <sl8>) 
[l](<x3>Aat<19>) 
[l](<sl8>Aat<19>) 
[ 1] (<sl8> Alast-loc <vl>) 
[l](<x3>Ato<110>)} 
[ 1] (<110> Aconn { o <110> <19> })}} 
{ [4](<310>Aconn{o<110><lll>})}}} 
{[l](-dl0> Adown <111>)} 
j[ 4] (<110> Aconn { o <110> <112> })} 
{[1](<110> Arfght <112>)}}} 
{ [4] (<110> Aconn { o <10> <113> }) 
[l](<ilO>Aup<113>) [1]}} 
{{{ [ 1] (<112> Aconn { o<112><110> }) } 
[ 4] (<112> Aconn { o <112> <14>}) 
[l](«dl2> Adown ^14>) 
[ 4] (<112> Aconn { o <112> <315> }) 
[1](<312> Arfght <115>) 
[ 4] (<112> Aponn { o <112> <116> }) 
[l](<112>Aup<116>) }} [l](<dl>Aat<117>) 
{{[  4] (<115> Aconn {o<115><117> })}}}} 

(a)EBLmle (b) Modi fiedEBL rule 

Figure 6.6: Number of tokens of a learned rule in a Grid task. 
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average CPU time from chunking (1.96) is slightly greater than the time without learning 

(1.87). In the path seven tasks, the time from chunking (24.61) is more than nine times 

greater than the time without learning. Chunking and Soar/EBL slow down the problem 

solving in both cases. (They are expensive-chunk tasks.) Also, the slowdown factors 

for EBL and chunking in the path seven tasks (81.31 and 9.08) are greater than those in 

the path six tasks (8.05 and 1.05). However, the time from modified EBL and modified 

chunking is always less than the time before learning. In the modified learning systems, 

the time is about half of that without learning. Note that because chunking introduces 

extra constraints in the rule conditions, it produces less general, but cheaper rules than 

EBL in some cases. 
To examine how match works differently for the rules from the original EBL and those 

from the modified EBL, we have compared the number of tokens created for two learned 

rules, one from original EBL and the other from the modified EBL. Figure 6.6 shows the 

number of tokens at each condition for the match of a learned rule in a Grid task. In the 

EBL-rule case (Figure 6.6-(a)), there are huge combinations, with a maximum number 

of 3989 tokens, between the conditions. In the modified-EBL-rule case, as shown in 

Figure 6.6-(b), the number does not grow to more than 4. In Figure 6.6-(b), braces mark 

the beginning and ending of subrules in the controlled nonlinear match. This hierarchical 

structure reflects the problem-solving structure. Shared subrules are not shown in the 

figure for brevity. The shared conditions across the different sub-parts reflect the multiple 

usage of those conditions in the original problem solving. This multiple usage keeps the 

cost bounded, by constraining the sub-parts as they were in the problem solving. Although 

the rule conditions built by the modified Soar/EBL look rather complex and are difficult 

to read, they introduce the constraints required to avoid the sources of cost increase and 

make the cost of the learned rule cheap. 
In addition to the Grid task, we applied the system to the 2-Queen, 3-Queen and 4- 

Queen tasks, which are also known as expensive-chunk tasks. The 2-Queen task places 

two queens in a three by three grid, without being attacked by each other, as shown in 

Figure 6.7-(a). The 3-Queen task and 4-Queen task place three and four queens in a four 

by four grid, as shown in Figure 6.7-(b). The 3-Queen task places only three queens on the 

grid, and the 4-Queen task places all four queens. Figure 6.8 shows the average CPU time 

for solving the three tasks. In the 2-Queen task, the times from original EBL and chunking 

(0.22 and 0.24) are almost the same as the time without learning (0.23). However, the 
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(a) 2-Queen task 
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(b) 3-Queen task and 4-Queen task 

Figure 6.7: Queen task. 

2-Queen task 
CPU Time (sec) 

Leam off Original Modified (+SC+NL+TC) 

EBL 0.23 0.22 0.08 

chunking 0.24 0.09 

3-Queen task 
CPU Time (sec) 

Learn off Original Modified (+SC+NL+TC) 

EBL 0.71 9.02 0.16 

chunking 10.54 0.15 

4-Queen task 
CPU Time (sec) 

Leam off Original Modified (+SC+NL+TC) 

EBL 1.00 ** 0.28 

chunking ** 0.25 

Figure 6.8: Average CPU time for Queen tasks. 
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8 3 4 

1 5 9 

6 7 2 

(sp operator-place-tile 
(goal <g> Aproblem-space <p> 

Astate <s>) 
(<p> Aname magic) 
(<s> Asquare <sq>) 
(<sq> Anumber 0 Aname <sq-name>) 
-> 
(<o> Aname place-tile 

Square-name <sq-name>) 
(<g> operator <o>)) 

(a) 0>) 

Figure6.9: Magic Square task. :.::. :.: :.i..: 

times from the modified EBL and chunking (0.08 and 0.09) are less than half of the time 

without learning. 

In the 3-Queen task, the times from EBL and chunking (9.02 and 10.54) are more 

than ten times greater than the time without learning (0.71). As in the Grid task cases, 

the slowdown factor increases as the size of the task increases. The modified learning 

algorithms provide boundedness as in the above tasks. The problem solving with modified 

EBL and chunking produces the same results more than four times faster than the problem 

solving without learning. 

In the 4-Queen task, the system could not even finish learning with both original EBL 

and chunking. The number of tokens for the learned rule became over eight million and the 

system could not allocate enough memory. Still, the CPU times from modified EBL and 

chunking are bounded by the time without learning. The time without learning is greater 

than the time from modified EBL and chunking by factors of 3.57 and 4, respectively. 

We also applied the system to the Magic Square task[61], another known expensive- 

chunk task. This task involves placing tiles 1 through 9 in empty squares of 3 x3 grid one 

at a time. If the sum of horizontal, vertical, and diagonal lines are different with the current 

tile placement, the task fails. Otherwise, the process can continue placing tiles until it fills 

all nine squares. The results show the same pattern as the results from the Queen tasks. 

With original EBL and chunking, the system could not finish learning. However, the CPU 

times with modified EBL and chunking (3.47 and 1.86) are bounded by the time without 

learning (6.91). The time without learning is greater than the time with modified EBL and 

chunking by factors of 1.99 and 3.72, respectively. 

The bar charts shown in Figure 6.11 summarize the results from the above tasks. 
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Magic Square task 
CPU Tune (sec) 

Learn off Original Modified (+SC+NL+TC 

EBL 6.91 ** 3.47 

chunking ** 1.86 

Figure 6.10: Average CPU time for the Magic Square task. 

6.3   Effects of Different Task Representations 

When a task is given, there is usually more than one way to represent it. This section 

examines the effect of different representations on the cost of learned rules. Figure 6.12- 

(a) shows the costs of the learned rules (the final products), from one of the length six 

Grid tasks. The results are produced from a Grid task, in which the evaluation order is 

based on better preferences among the directions (right > left > up > down). We can 

represent the same task in a different way. For example, we can evaluate the operator to 

go to the right first by employing a best preference (right > others). Its results are shown 

inFigure6.12-(b). 

In the two tables, the first column shows the cost of problem solving without learning. 

In both chunking and EBL, the cost without learning is the same. The second column shows 

the cost of the learned rules in standard Soar/EBL and chunking. The third and fourth 

columns show the costs of the learned rules with only one modification: incorporating 

search control, or keeping problem-solving structure. The fifth and sixth columns show 

the results from applying two modifications: incorporating search control and keeping 

problem-solving structure, or keeping problem-solving structure and token compression. 

The last column shows the results from the complete combination. 

In Figure 6.12-(a), for both original EBL and chunking, the cost of matching the 

learned rules is expensive without the modifications. (The given task is one of the 

expensive-chunk tasks.) Keeping the problem-solving structure alone, or applying token 

compression to the nonlinear structure without search control, produces very expensive 

rules, and the system cannot finish the task (because of memory exhaustion). With the 

complete combination (last column), the time after learning (1.15 and 1.12) is less than the 

time before learning (2.00). In this case, incorporating search control, with or without the 

problem-solving structure, produces cheaper rules than the original chunking or Soar/EBL. 
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Figure 6.11: Summary of the results. 
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CPU Time 
(sec) Leam off Original +SC +NL +SC+NL +NL+TC 

+SC+NL 
+TC 

EBL 2.00 23.31 1.96 ** 1.46 ** 1.15 

chunking 2.89 0.44 ** 0.88 ** 1.12 

(a) Results from a length six Grid task 

CPU Time 
(sec) 

Leam off Original +SC +NL +SC+NL +NL+TC 
+SC+NL 

+TC 

EBL 0.98 0.26 ** 3.25 0.30 2.55 0.29 

chunking 0.25 45.70 2.01 0.31 1.86 0.28 

(b) Results from a different representation of the Grid task 

Figure 6.12: Results from different representations of a Grid task. 

The most efficient rules are produced by incorporating search control alone in chunking; 
the cost is 0.44 second. 

With the different representation, the results show a different pattern (Figure 6.12-(b)); 

chunking with search control does not produce the best result In fact, it creates expensive 

rules; the cost is 45.70 second in this case, while the cost without learning is only 0.98 
second. Also, note that the original chunking and Soar/EBL provide better results in 

this case (0.26 and 0.25) than the learning systems with the complete combination (0.29 

and 0.28). Although the complete combinations could not give the best results, they still 

provide boundedness. The U'-chunk (and the RU'-chunk) solves the same problem three 

times faster than the original problem solving. 

6.4    Summary and Discussion 

The above results have demonstrated that the modifications of the learning algorithm based 

on the implementation details discussed in Chapter 5 actually bound the cost after learning 

to the cost before learning (except for cost introduced by overgeneralization), at least 

for the domains investigated. The original learning algorithms and the algorithms that 

implement a subset of the three modifications can produce better results than the complete 

combination in some cases. In other cases, however, the same algorithms can produce 

expensive rules. The complete combination, though it does not produce the best results in 
all cases, consistently provides boundedness. 
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Figure 6.13: Options can increase at performance time. 

One positive side-effect of incorporating search control is that it removes one possible 

source of overgeneralization in Soar. Although search control is not supposed to affect 

the correctness of results generated in problem spaces, it sometimes does. In situations 

in which results are returned from a problem space before the goal test (i.e., the test of 

whether the desired goal is achieved) succeeds, or where the goal test is itself overgeneral, 

the search control may affect the correctness of the result. Under such circumstances, not 

including this search control in learning can yield overgeneral learned rules. By including 

the search control in the explanation of the result, the modified chunking and modified 

Soar/EBL remove this source of overgenerality. 

There is an issue that arises because of the option taken to interpret the decision proce- 

dure in the U'-chunk. It only occurs when there are more options available at performance 

time than at learning time. In particular, if the conditions learned to discriminate among 

the options available at learning time are not sufficient to discriminate among these new 

options, an additional match search may be introduced. For example, when there were 

a fixed number of operators during learning, such as the operators moving toward the 

four directions in the Grid task, the learned rules may not be suitable for problems that 

have more operators available, as shown in Figure 6.13. This is related to the masking 

effect [64], where learned knowledge masks original-problem solving knowledge; thus the 

system can produce low quality solutions. This did not occur in the previous experiments, 

but it could happen in other domains. 

This problem can be fixed by employing additional constraints in the decision network. 

Whenever the number of winners is not equal to one, either by failing to find a winner or by 

having more than one winner, the decision network can stop further matches, considering 

the decision as failed. 
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Chapter 7 

The effect of the New Learning Algorithms 

The set of modifications of chunking and Soar/EBL introduces different computational 

complexities into the learning algorithms. For example, in order to incorporate the 

search-control trace in learning, the system has to perform extra computations for the 

additional conditions introduced by search-control rules. Other modifications by the 

subsequent transformations combined with this modification may also require different 

computational complexities. This chapter examines the overheads in the new sequence 

of transformations. First we describe the costs of original chunking and Soar/EBL, and 

then the costs of the modified learning algorithms are compared with them. Finally, we 

examine the effect of the modified learning systems on larger scale tasks, based on the 

cost analyses. 

7.1    Cost of Chunking 

As explained in subsection 2.2.1, chunking consists of four steps: (1) filtering out traces 

that do not participate in result creation, (2) removing search control and building a 

backtrace, (3) variablizing, and (4) unifying the structure and creating a new rule. 

The first and the second step are performed by the backtracing process; while it filters 

the unnecessary rule firings, it also removes the search control by only examining the 

task-definition traces (traces of the task-definition rules). Because the backtracing process 

examines all the task-definition traces linked to the result until it reaches the supergoal 

(operational) elements, its complexity depends on the number of instantiated conditions 

of all the task-definition traces linked to the result. Thus, the cost of the first two steps is 
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0(C), where C is the total number of instantiated conditions in the task-definition traces 

that are linked to the result. 

The third step variablizes the identifiers by examining each item in the instantiated 

conditions. Its complexity depends on the total number of items in the instantiated 

conditions, including duplicate instances of them. In Soar, the items in an instantiated 

condition are id, attribute, and value; so, the number of items in an instantiated conditions 

is constant. Thus, the complexity of this step is 0(C). 

The last step builds a new rule based on the variablized conditions. In the process 

of building rule conditions, the set of operational conditions — conditions created from 

the supergoal elements — are reordered by a heuristic algorithm to improve the match 

performance. The reordering algorithm (adapted from [8] and Soar version 6.0.4) is shown 

in Figure 7.1. The algorithm uses a backtrack-free heuristic to reduce the complexity. It 

examines the set of conditions one at a time, and tries to pick cheapest condition in terms 

of the estimated match cost of having the condition be the next condition. The complexity 

of the algorithm is 0(o3), where o is the number of operational conditions. (There are 

three nested loops in case there is a tie for minimum cost.) 

Based on the cost of each step, the total complexity of chunking is 0(C + C + o3) = 

0(C + o3). 

7.2    CostofSoar/EBL 

Soar/EBL is similar to chunking except for the way of determining the variable names in 

the learned rule. As described in Chapter 4, Soar/EBL performs the following steps: (1) 

filtering out traces that do not participate in the result creation, (2) removing search control 

and building the explanation, (3) constructing the explanation structure, (4) regressing, 

and (5) creating a new rule. (1) and (2) are the same as in chunking. Also, (5) corresponds 

to the last step in chunking. 

The explanation structure is built by replacing the instantiations with the rules. The 

variable names are replaced with unique names so that there are no common variables 

across the rules. To make the variable names unique, the system examines all the variable 

instances in the LHS (condition part) of all the participating rules, and it requires O(total 

number of variable instances in the LHS of all participating rules). Because the number of 

variable instances in a condition is approximately constant in Soar, and the total number 
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reorder (conditions) { 
bound_vars «= root variables 

/* "root variables" are the variables used for the id field of conditions 
that start with "goal" or "impasse". Usually, this is just the variable "<g>" */ 

REPEAT until there are no more remaining conditions: 

eligible_conds <= remaining conditions whose id field is in bound_yars 
for each c in eligible_conds, find_cost(c, bound_vars) 
if one has the minimum cost, output that condition 
else there's a tie for minimum cost, so do a one-step lookahead: 

for each tied minimal-cost condition tiedjr. 
temp_bound_vars <= bound_vars plus any variables used in tiedjc 
temp_eligibles <= remaining conditions (except lied_c) whose id field 

is in temp_bound_vars 
for each temp_c in tempjeligibles, find_cost (femp_c, temp_bounded_vars) 
find the minimum of these cost(temp_cYs 

output the condition tiedjc whose minimum cost(temp_c) is smallest 
(if there's still a tie, just pick the first one) 

add the variables in the picked condition into the bound_vars 
} 
find_cost(c, bound_vars) I* an estimate of the match cost of having c be the next condition */ 

/* look at the id, attribute, value fields of c and check which ones have either constants 
or variables in boundjvars *l { 

If id field is unbound, return 10000 
If attr field is unbound but value field is bound, return 8 
If value field is unbound but attr field is bound, return 8 
If all three fields are bound, return 1. 

} 

Figure 7.1: The reordering algorithm in Soar. 
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of conditions in the explanation structure is equal to the total number of instantiated 
conditions in the backtrace, the complexity of building the explanation structure is O(C). 

The current implementation of EBL regression builds a substitution list based on action 

and condition pairs that collide in the explanation structure, and applies the substitutions in 

the substitution list to the variables. The number of collisions (of actions and conditions) 

depends on the number of decisions in the problem solving. For each decision, the system 

adds new pairs (based on id, attribute, and value fields of the action and the condition) 

after making sure that these pairs are not already in the substitution list. The complexity of 

this computation is 0((number of decisions) x (length of the substitution list)). Because 

the length of the substitution list is 0(total number of variables), and 0(total number of 

variables) < 0(C), the cost of building the substitution list is O(CxD), where D is the 

total number of decisions. 

Finally, the algorithm unifies the variables by applying the substitution list, which 

requires 0((total number of variable instances) x (length of the substitution list)). Thus, 

the complexity of applying the substitution list is 0(C2). Based on the cost of each step, 

the total complexity of Soar/EBL is 0(C + C + CxD + C2 + o3) = 0(C2 + CxD + o3). 

If we use different representations for substitutions, such as a hash table or extra 

pointers, the cost can be reduced. Building the substitutions can be 0(D) instead of 

O(CxD) because checking if a,pair is not already in the substitutions takes a constant 

time. Also, the complexity of applying the substitutions can be reduced to O(C). In this 

case, the total cost becomes 0(C + D + o3). 

7.3    Cost of Performing the New Chunking Algorithm 

7.3.1    Cost of Domain Theory=>PS'-chunk 

As in chunking (or Soar/EBL), elimination of unnecessary rule firings can be performed 

by following the rule traces linked to the result Because the set of traces in new chunking 

includes search-control traces as well as task-definition traces, the cost of following the 

traces is O(S), where S is the total number of instantiated conditions in all the traces 

(including search-control traces) that are linked to the result. 
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7.3.2    Cost of PS'-chunk^E'-chunk 

As described in Section 5.2, this transformation computes a set of relevant preferences 

capturing the full decision context (instead of the full set of participating preferences) for 

each decision. The preference collection algorithm has been presented in Figure 5.8. The 

computational complexity of the algorithm is 0((number of candidates in a decision)4) 

per decision. Thus, the total complexity is 0(D xc4), where c is the maximum number 

of candidates in a decision. As described in Section 5.2, if the system preprocesses bet- 

ter/worse preferences or employs additional indices, the cost can be reduced to 0(Dxc3). 

Based on this computation, the system builds a data structure, called a Decision for each 

decision. A Decision keeps the set of participating preferences for its decision. Also, these 

Decisions are connected by a linked list called the Decision Jist. Each Decision in the 

Decision list is represented as a letter D in Figure 5.16. These Decisions are transformed 

by the subsequent transformations (as the rules in pseudo-chunks are transformed), and 

used in building decision conditions as shown in Figure 5.25. 

7.3.3    Cost of E'-chunk^I'-chunk 

This step performs the variablization (constraining variables by instantiation) for the 

rule conditions in an E'-chunk. Because an E'-chunk maintains search-control rules as 

well as task-definition rules, the system requires extra computation for processing the 

conditions in the search-control rules, while the transformation from an E-chunk to an 

I-chunk variablizes only the conditions of the task-definition rules. The total complexity 

of this transformation is 0(total number of variable instances in the rule conditions in 

the E'-chunk). Because the number of variables in a simple condition (a condition that is 

not a nonlinear condition) is approximately constant, the complexity is 0(total number 

of simple conditions in the E'-chunk). (From now on in this chapter, a condition means a 

simple condition.) Because the total number of conditions in an E'-chunk is bounded by 

the total number of instantiated conditions in the explanation, the cost of the variablization 
is O(S). 
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7.3.4    Cost of I'-chunk^U'-chunk 

As described in Section 5.4, this transformation unifies separate rules and decisions into 

one structure, and applies token compression. 
The exposed variable computing algorithm for token compression is presented in 

Section 5.4, and the algorithm is shown in Figure 5.30. In the algorithm, the. system 

first checks if the given variable is one of the variables that are already known as non- 

operational. To check if the variable is a member in the list, the algorithm examines items 

in the list one by one. Thus, the complexity of this check is 0(number of non-operational 

variables). Second, if the variable is in the LHS, the algorithm simply returns the variable. 

The computation of verifying whether or not the variable is in the LHS requires 0(total 

number of variable instances in LHS) times for each variable in the action. Finally, if the 

variable is a new non-operational variable, add the variable into the list of non-operational 

variables, and find the set of the operational variables that can be used instead of the non- 

operational variable. To find the set of operational variables, the system examines each 

variable in the conditions. While examining each variable in the conditions, the variable 

is checked if it is non-operational, by scanning the non-operational variable list The 

complexity of the computation is 0((total number of variable instances in the conditions) 

x (total number of non-operational variables)). 

The overall complexity of computing the exposed variables for both operational and 

non-operational variables in the actions is 0((total number of variable instances in actions) 

x (total number of non-operational variables) x (maximum number of variable instances 

in the LHS of a rule)). 

By employing different data structures and spending more memory space, the complex- 

ity can be reduced. If the system uses a hash table or extra pointers for the non-operational 

variables, the complexity of checking if a variable is non-operational is 0(1). Also, when 

the variable is a new non-operational variable, finding the set of operational variables that 

can be used instead of the non-operational variable takes just 0(total number of variable 

instances in the conditions). Thus, the total cost of computing the exposed variables 

is 0((total number of variable instances in actions) x (maximum number of variable 

instances in the LHS of a rule)). 
0(total number of variable instances in action) < 0(total number of variable instances 

in all conditions). Also, 0(total number of variable instances in all conditions) = 0(total 
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number of conditions in all participating rules) < 0(total number of instantiated conditions 

in the traces). Thus, 0(total number of variables in the action) < O(S). In the same 

way, 0(total number of non-operational variables) < O(S), and 0(maximum number of 

variables in the LHS of a rule) < O(S). Thus, the complexity of the algorithm is at most 

0(S3). With different data structures, as described above, the cost can be 0(S2). 

To build U'-chunk conditions based on the graph structure of the problem solving, 

the system traverses the rule firing structure. Each operational condition becomes a new 

condition, and each non-operational condition becomes a new nonlinear condition after the 

system traverses its subrule. Thus, the complexity of building new rule conditions depends 

on the total number of conditions of all the rules (search-control rules and task-definition 

rules) participated in the I'-chunk. 

While building conditions, each Decision becomes a decision condition. The current 

implementation organizes the subrules that participated in the decision into the structure 

shown in Figure 5.25, in order to build a decision condition. In the structure, each non- 

acceptable preference is paired with the acceptable preference which has the same value 

field with the preference. The preferences in a Decision are grouped by their preference 

types, so that there is a linked list for each preference type. To find the consistent acceptable 

preference given a non-acceptable preference, the system examines each item in the linked 

list of acceptable preferences, and it requires 0(number of candidates) times. Because 

each non-acceptable preference (computed by the preference collection algorithm) can 

filter at least one candidates the number of non-acceptable preferences in a Decision is 

bounded by the number of candidates. Thus, the cost of building a decision condition is 

0(c2) time where c is the maximum number of candidates in a decision. If the system 

maintains pointers from each preference to the acceptable preference that has the same 

value field, the complexity becomes just constant. Thus, the cost can be 0(c). 

Application of the optimization described in subsection 5.4.4 requires more computa- 

tion. For each newly built nonlinear condition, the system checks whether all of its condi- 

tions is already tested by earlier conditions. This requires the complexity of 0((number of 

conditions in a nonlinear condition) x (number of conditions already tested)) for building 

each nonlinear condition. Therefore, the complexity of the optimization is 0((total num- 

ber of nonlinear conditions) x (maximum number of conditions in a nonlinear condition) 

x (total number of conditions)). O(total number of nonlinear conditions) < 0(total 

number of conditions) and 0(maximum number of conditions in a nonlinear condition) < 
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0(total number of conditions). Thus, the complexity of the optimization is 0(S3). If the 

system employs a hash table to check if a condition are already tested, its complexity can 

be 0((number of conditions in a nonlinear condition) x (maximum number of conditions 

in a nonlinear condition)), and it is 0(S2). 
The total overhead of this transformation is 0(S3 + Dxc2 + S3) = 0(S3 + Dxc2). 

With a different data structure, as described above, it can be 0(S2 + D xc). 

7.3.5   Total overhead of the new chunking   

The total overhead of the new learning algorithm is 0(Dxc4 + S + S3 + Dxc2). Because 

the second term is bounded by the third term, and the fourth term is bounded by the first 

term, the total overhead is 0(Dxc4 + S3). If the system preprocesses preferences and 

employs additional data structures, it will consume more memory space, but in return the 

total overhead reduces to 0(Dxc3 + S2). 

7.4    Cost of Performing the New EBL Algorithm 

The computational complexity of the transformations in the modified EBL is similar to that 

of the modified chunking, except for the regression transformation (E'-chumWR'-chunk). 

As in Soar/EBL, the transformation consists of three steps: (1) making the variable names 

unique across the rules, (2) building substitutions based on action and condition pairs that 

collide in the explanation structure, and (3) applying the substitutions to the variables. 

First, to make the variable names unique across the rules, the current implementation 

examines all the variable instances in the LHS of the rules, and it requires 0(total number 

of variable instances in the LHS of the rules) times. Because the total number of variable 

instances in the LHS of the rules in an E'-chunk is bounded by the number of instantiated 

conditions in the backtrace, the complexity is O(S). 

As in Soar/EBL, the substitution list is built based on action and condition pairs that 

collide in the explanation structure. The number of collisions (of actions and conditions) 

depends on the number of decisions (either trivial or non-trivial). For each trivial decision, 

we can just add new pairs (based on id, attribute, and value fields of the action and the 

condition) after making sure that these pairs are not already in the substitution list. The 
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complexity of this computation is 0((number of trivial decisions) x (length of the 

substitution list)). 

In non-trivial decision cases, non-winners (filtered candidates) cannot be unified with 

the connected condition, because they have different values. To unify the variables in the 

search-control rules (as well as those in the task-definition rules), the system adds more 

pairs to the substitution list For each filtered candidate, the system finds the rule action 

that proposed the candidate (by an acceptable preference), and also the action that filtered 

the candidate by creating a preference against it. Then, the system adds new pairs based on 

the id, attribute, and value fields of both the acceptafe/e-preference-created action and the 

preference-created action. That is, for each non-acceptable preference, the system finds 

the acceptable preference that proposed the same candidate. (Each preference maintains a 

pointer to the action that created the preference.) This requires 0((number of candidates)2 

x (length of substitution list)) time for each decision in the current implementation. Thus, 

computing the substitution list needs 0(Dxc2x (length of the substitution list)) time. 

Because the length of the substitution list is 0(total number of variables), and O(total 

number of variables) = 0(total number of conditions), the complexity is 0(D x S xc2). 

Finally, the algorithm applies the substitutions in the substitution list to the variables, 

which requires 0((total number of variables) x (length of the substitution list)) time. 

Thus the complexity of applying the substitutions is 0(S2). Based on the cost of each 

sub-step, The total complexity of the regression is 0(S + SxDxc2 +S2) = 0(SxDxc2 

+S2). 

If the system employs additional data structures (additional pointers or a hash table) 

for substitutions, checking if a pair is not already in the substitutions needs only a constant 

time. Also, if the system maintains extra pointers from each preference to the acceptable 

preference that has the same value field, finding the rule action that proposed the candidate 

needs a constant time. Thus, the complexity of the regression reduces to 0(S + Dxc 

+S)= 0(S + Dxc). 

Based on the cost of each transformation in the new chunking algorithm in the above 

section, if we add the cost of the other transformations, the total overhead of the new EBL 

algorithm is 0(Dxc4 + S3 + S xDxc2). With different data structures, it can be 0(Dxc3 

+ S2). 
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Grid Task 

Original 
New 

New + Hash tables 

total cost 
Chunking 

Q(C + oJ) 
0(Dxc« + SJ) 
Q(DxcJ + S'T 

Soar/EBL 

Q(C? + CxD + oJ) 
Q(Dxc4 + SJ + SxDxc*) 

Q(DxcJ + S-Q 

Table 7.1: Total overhead of different learning algorithms. 

7.5 Summary of the Overhead Analyses 

Table 7.1 summarizes the costs of the different learning: algorithms. The two new 

learning algorithms (new chunking and new Soar/EBL) require more time than the original 

algorithms to process search control (0(Dxc4)) and to unify conditions ( 0(S3)). If the 

system employs additional data structures, such as hash tables or extra pointers, it will 

consume more memory space, but in return, the cost can be reduced by an order of 

magnitude (from S3 to S2, and from c4 to c3). 

7.6 Effects on Larger Scale Tasks 

This section examines the generality of the modified learning systems to larger scale tasks. 

We examine the cases of (1) learning a large number of chunks, (2) a large number of 

conditions in the rules, (3) a large number of rule firings in the problem solving, and (4) a 

large number of candidates per decision. 

1. Learning a large number of chunks (average-growth effect): As the number of 

chunks grows, the cost of using (matching) chunks usually increases. Recent work 

on this problem in linear Rete [9] has shown that the application of additional 

optimization (Rete/UL) greatly reduces the average-growth effect. In some tasks, it 

has been possible to learn over one million rules while still allowing their efficient 

use. Because our new algorithm assumes nonlinear Rete instead of linear Rete, to 

be able to generalize the results, the effect of Rete's optimizations (including state 

saving, sharing, and Rete/UL) on nonlinear Rete should be examined. 

Nonlinear Rete can provide the same state saving as linear Rete. It can preserve 

the previous matches in alpha memories and beta memories, though the structure 

of the tokens is a little different,.as described in Section 3.4. Also, nonlinear Rete 
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provides a sharing optimization, which can share nonlinear conditions as well as 

linear conditions. As in the case of linear Rete, sharing is possible for the same initial 

conditions among different rules. In addition to that, the same nonlinear conditions 

within a rule (by being tested multiple times in the hierarchical structure), or across 

. different rules can share the same nodes in the network. For example, for U'-chunk 

shown in Figure 5.35, Rl-1"' and the nonlinear conditions marked as "Shared Rl- 

V" use the same nodes in the nonlinear-Rete network for the match. Actually, all 

the conditions marked as "S" .or "Shared".share tokens with some other conditions 

of the rule. Also, when different rules have the same nonlinear conditions, they 

can share the same network. Detailed computational analysis of the effect of this 

sharing needs to be performed. 

Rete/UL introduces the elimination of unnecessary processing in the join nodes, 

which maintains constant time per token for learning a large number of rules. Al- 

though the current nonlinear Rete implementation does not employ this optimization, 

we expect that similar optimizations can be implemented in nonlinear Rete. The 

effect of this extension also needs to be analyzed. 

2. A large number of conditions in the rules: As described in the prior sections, 

the overhead of the new chunking and the new Soar/EBL is 0(Dxc4 + S3) and 

0(Dxc4 + S3 + S xDxc2), respectively, where S is the total number of instantiated 

conditions in the explanation, D is the number of decisions, and c is the maximum 

number of candidates in a decision. Because the learning time is a cubic factor of 

the number of conditions, increasing the number of conditions can affect the cost of 

learning time by a polynomial factor. This increase can be reduced by introducing 

different data structures. Currently, variables and preferences in the decisions are 

maintained as linked lists. By changing them into a hash table structure, or adding 

direct pointers among the structures, the cost can be reduced to 0(Dxc3 + S2) for 

both chunking and Soar/EBL by an order of magnitude. 

3. A large number of rule firings in the problem solving: The complexity of the 

new learning algorithm depends on the number of rule conditions, the number of 

decisions that participated in the problem solving, and the number of candidates per 

decision. Because the first two numbers increase as the number of rule firings grows, 

a large number of rule firings can affect the learning time by a polynomial factor. 
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As mentioned above, this increase can be reduced by changing the data structure 

(and spending more memory space). 

4. A large number of candidates per decision: As described above, the costs of the new 

chunking and the new Soar/EBL depend on the number of candidates per decision 

to the power of four. As described in the second item above, the cost ofboth the 

new chunking and the new Soar/EBL can be reduced to 0(Dxc3 + S2). Also, if 

there are no better/worse preferences, or the learning skips the preference collection 

algorithm (employing all the preferences participated in the decisions), the cost 

becomes 0(Dxc2 + S2) or 0(Dxc + S2). However, in the worst case, as the 

number of candidates per decision increases, the learning time can still grow fast, 

by a square or a linear factor. 
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Chapter 8 

Related Work 

This chapter describes work related to solving the utility problem and performing the 

transformational analysis. Section 7.1 examines approaches taken to solve the utility 

problem. Section 7.2 describes other transformational analyses of learning.   _i 

8.1    Solving the Utility Problem 

The goal of our research is to provide a relative solution to the utility problem without 

restricting the expressiveness of the learned knowledge. In the preceding chapters, we 

discussed the transformational approach, which consists of two steps : (1) finding the 

complete set of sources that can make learned rules expensive, and then (2) modifying 

the learning process to avoid these sources. The transformational approach can provide a 

relative solution to the utility problem in that it ensures the cost of using learned rules is 

bounded by the cost of problem solving. Also, it itself does not impose any restriction on 

the expressiveness or completeness (finding all solutions) to achieve such boundedness. 

In this section, we present alternative approaches to solve the utility problem, and discuss 

how they are less suited to achieve our goal. 

Figure 8.1 illustrates the structure of the following discussion. The structure sub- 

divides the approaches taken to solve the utility problem, based on the types of learning 

algorithms the approaches are addressing and the issues on which they are focusing. The 

sequence of marked boxes emphasizes the part this research concentrates on. We address 

the utility problem for learning search-control rules by EBL, and focus on achieving a 

relative bound. 
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Solving Utility Problem (UP) 

Solving UP in 
speed-up learning 

SolvingUP in 
inductive learning 

Solving UP in 
speed-up learning using 

inductive techniques 
1   Solving U P in EBL 

Solving UP in 
search-control learning 

Solving UP in 
macro operator learning 

^^^ 

Solving 
expensive-rule problem 

Solving 
average growth effect 

""\^ 

Non-discrminatory 
learning 

Discriminatory learning 

Boundinc j match Reducing the cost of 
learned rules 

^\^ 

Achieving 
relative bound 

Achieving 
absolute bound 

Restructuring 
learned rules 

Statically analyzing 
search structure 

Solving expensiveness of 
recursive/iterative structure 

Optimizing 
the match algorithm 

Figure 8.1: Related issues in solving the utility problem. 
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8.1.1 Speed-up learning vs. inductive learning 

Since the utility problem has been identified in speed-up learning systems, the term 

"utility problem" has also come to be used for a variety of other issues and phenomena. 

For example, the term has been used for the accuracy and completeness of inductive 

learning systems, in which the learning is intended to achieve a better classification, but 

not necessarily speed-up [24,48,25,5]. 
There are various inductive methods, including set-covering approaches, and splitting 

approaches. Set-covering approaches, including AQ [40], construct disjunctive-normal- 

form expressions from training examples. These approaches suffer from an inaccuracy 

problem as the number of disjuncts increases. In order to produce more accurate (but 

less complete) hypotheses, Michalski[40] applied truncation techniques. Also, splitting 

approaches, including ID3 [51], recursively split the set of training data by choosing an 

appropriate feature or feature value pair. ID3 suffers from an overfitting problem as the 

decision tree becomes deeper. To alleviate this problem, pruning techniques have been 

developed [52]. 
Our research focuses on the utility problem for speed-up learning. However, if the 

transformational analysis technique is applicable to the inductive learning systems, it 

would be interesting to study how an analysis of accuracy changes and completeness 

changes through an inductive learning system; and it would also be interesting to examine 

whether the analysis can be used as a tool for revealing the sources of incompleteness 

and inaccuracy. The approaches taken in the earlier work have focused on either how to 

simplify the hypothesis, or when to stop learning based on the performance evaluation, 

instead of finding the sources of inaccuracy and incompleteness in the learning algorithm. 

On the other hand, applying inductive techniques to chunking or Soar/EBL would be 

useful to estimate and correct the overgenerality of the chunks, caused by architectural 

activities or local negated conditions. 

8.1.2 EBL vs. speed-up learning using inductive techniques 

There are speed-up learning methods using inductive techniques. For example, an evalua- 

tion function, as a real-valued function, can be learned to estimate how close a given state 

is to the goal [22,33,55]. Also, the strength of operators, as quantities associated with the 

operators, can be learned to indicate how successful the operators have been in the past 
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[18]. State evaluation functions can be used to guide the search, such as best-first search. 
Also, given the strength of operators, the problem solver can choose operators in an order 
of decreasing strength, or choose them probabilistically according to their strength. 

Our work focuses on EBL, the most widely used speed-up technique [41,7,14,27,23], 

rather than on the above techniques. Once we solve the utility problem in EBL, the results 

may help guide similar analyses of other speed-up learning techniques. 

8.1.3 Search-control learning vs. macroTOperator learning  

EBL can be used for acquiring either search-control knowledge or macro-operators. 

Search-control knowledge can be learned in the form of search-control rules, or through 

other kinds of control information, including an evaluation function represented as a set of 

EBL rules. A macro-operator is formed by aggregating a sequence of primitive operators 

into one operator. This new operator can be used with the primitive operators, and takes 

a "big step" in the problem solving. 
The addition of macro-operators to the original operators increases the branching factor 

of a problem solver's search, and the extra search performed by the macro-operators can 

be redundant with the search performed by the original operators, as described in [42,13]. 

Learning search-control knowledge obviates this problem, since it learns to control the 

problem solving activity instead of changing the search space by adding new operators. 

However, it still suffers from the utility problem, because the cost of matching the control 

knowledge can be expensive. This research investigates the utility problem for control 

knowledge learning, and does not address the problem of branching factor increase or 

search redundancy for macro operators. 

8.1.4 Expensive-chunk problem vs. average-growth effect 

Research on the utility problem in EBL has raised two key issues: (1) the cost of individual 

rule (the expensive-rule problem) and (2) the cost of interactions among the rules, or the 

effect of learned rules on problems other than the ones for which the rules were learned 

(the average-growth effect). 
Our research focuses on the expensive-rule problem. The average-growth effect is the 

effect of chunks on the problems the chunks cannot solve, and it depends on the amount 
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of match effort performed for the chunks that do not fire. There are favorable properties 

in Soar and Rete that protect the system from performing the unnecessary match effort. 

Soar's problem solving is formulated as a hierarchy of modular problem spaces. By 

testing the problem space in the beginning of the rule match, the system can save the 

match effort for a chunk when it is irrelevant to the current problem. Also, even when a 

chunk that does not fire addresses the same problem space as the problem to be solved, 

Rete's sharing for the same test pattern across the rules can obviate redundant tests. As 

shown by Doorenbos[9], the average-growth effect can be further reduced by adding more 

optimizations that prevent unnecessary match effort that does not affect the results. These 

optimizations and other solutions to the average-growth effect must be combined with our 

solutions, but it is a topic for future work. 

8.1.5   Non-discriminatory learning vs. discriminatory learning 

One class of approaches to the expensive-rule problem is discriminatory learning, where 

the utility of learned knowledge is evaluated and only the useful knowledge is kept. 

Several systems assume a fixed distribution of problems, and select those performance- 

system transformations that allow increased utility. These originate in Minton's [41] 

utility evaluation, where PRODIGY/EBL measures the utility in terms of savings and 

cost of a rule, and rules are deactivated if their utility is estimated as negative. Greiner 

and Jurisica [19] proposed an algorithm called PALO that navigates through the space of 

performance elements. PALO selects a new performance element, that is strictly better 

than the current performance element until it reaches a local optimum. The utility analysis 

in PALO computes expected performance based on the test cases from a fixed distribution. 

This is similar to the approach taken in Composer [16], which adds a control rule to the 

system only if it shows incremental utility. The utility is determined by the expected 

(problem solving) cost for a sequence of problems. The information filtering model 

[39] proposes a more general framework for discriminatory learning, and defines various 

methods for eliminating harmful knowledge from the learning system. Discrimination 

processes, called filters, may be inserted to remove such knowledge. The filters include 

selective experience, selective attention, selective acquisition, selective retention, and 
selective utilization. 
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These approaches are useful for filtering out low utility rules when the learning system 

produces such rules. They are also beneficial for removing obsolete or harmful knowledge 

in the system, if it exits. However, these discriminatory learning approaches need to 

evaluate the utility of the candidate rules, and these evaluations may become a part of 

the utility problem. For example, given a set of n interacting transformations, if the goal 

is to find the optimal subset, one must consider all 2" subsets. Although they often use 

various techniques, such as hill-climbing, based on assumptions about the problems, utility 

evaluation is a complex problem itself. Also, gathering reasonable utility data is a difficult 

problem, as described in [17]. Thus, these evaluation processes may change the problem 

of high cost rules into the problem of high cost learning. The transformational approach is 

different from the above discriminatory approaches. The objective of the transformational 

approach is learning cheap rules from the beginning, instead of choosing high utility rules 

during or after learning. As described in Chapter 7, the overhead of making sure the 

learned rule is cheap is polynomial in three numbers — the total number of decisions 

in the problem solving, the maximum number of candidates for a decision, and the total 

number of instantiated conditions in the rule traces — by the maximum power of four. 

The maximum power can be reduced to two or one, as explained in Chapter 7. 

8.1.6   Providing a bound vs. reducing the cost 

The goal of our work is to ensure that the cost of using learned rules is bounded by 

the cost of problem solving without the learned rules. There has been a lot of work 

on reducing the cost of learned rules, without guaranteeing such boundedness. Some 

approaches have restructured the learned rules to semantically equivalent ones in order 

to reduce the match cost of the rules. Partial evaluation in PROLEARN [50] simplifies 

the learned rules by exploiting domain constraints. COMPRESSOR [41] in PRODIGY 

simplifies rules or combines multiple rules to generate less expensive descriptions. It 

employs domain knowledge, partial evaluation, reordering, and logical equivalences to 

find a better structure. Although these restructuring approaches are useful for producing 

cheaper rules, they are incomplete in the sense that they do not guarantee that all of the 

sources of expensiveness to be extracted. Also, if the transformation process is complex, 

it may suffer from the problem of high cost learning. The objective of this research is to 

learn cheap enough rules so that the system does not have to restructure them afterwards. 
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Some other approaches have preserved the search structure in the learned knowledge. 

In Shell and Carbonell's work [59], they employ iterative constructs in learned macro- 

operators to capture the iterative paths found during the problem-space search. These 

iterative macro-operators are then used in a way that guarantees that they take the same 

path followed in the problem space. Shavlik [58], and Subramanian and Feldman [60] 

learn recursive and iterative concepts by generalizing the explanation structure. These 

approaches are close to 'incorporating search control in learning' — one of the optimiza- 

tions we applied in the new chunking algorithm — in that the search paths are reflected 

in the learned rules. However, these approaches do not completely solve the expensive- 

rule problem, because not all expensive chunks arise from losing search structures. For 

example, losing efficiencies (such as sharing) stemming from the hierarchical explanation 

structure cannot be captured in these approaches. The transformational approach is more 

general than these approaches because it captures the factors that determined the entire 

problem-space search, rather than limited search structures; thus, it can handle all of the 

causes of expensive chunks. 
There is another class of approaches which statically analyze search structure or 

problem space structure, and produce cheap rules even before problem solving. Taylor 

and Korf [66] developed a technique to detect duplicate operator sequences from a small 

breadth-first search in order to control the redundancy in problem solving. STATIC 

[12] employs a depth-first search in the graph structure of goal/subgoal and operator 

relationships, and extracts control rules from the non-recursive subgraphs it finds. These 

approaches can provide useful information by preprocessing the search space. However, 

these approaches do not utilize the dynamic aspect of problem solving, losing where to 

focus in the structure, and thus have potential disadvantages with respect to EBL [49]. 

Although DYNAMIC [49] has provided an intermediate solution by introducing problem 

distribution sensitivity into STATIC, these approaches still handle only limited structures 

in problem-space search. They focus on operator/goal relationships, and do not address 

other aspects of problem solving, including the optimizations employed in the problem 

solving, such as sharing. 

The match cost of learned rules can be reduced by employing better match algorithms. 

Rete and Treat[44] are currently the best known rule match algorithms. Also, there has 

been a lot of work to improve these algorithms[26, 2, 38, 21, 9, 6], which show even 

more improvement in the match performance. Although they themselves cannot provide 
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a relative solution for learning, adapting these techniques to our learning system would 

be useful for improving the absolute performance of the problem solving. Although our 

system is already built on an optimized Rete, we can employ other optimizations whenever 

they are applicable. 

8.1.7   Relative solution vs. absolute solution 

The transformational approach can provide a relative solution to the utility problem in 

that it ensures the cost of using learned rules is bounded by the cost of problem solving. 

Also, the approach does not impose any restriction on expressiveness or completeness 

to achieve such boundedness. An absolute solution is defined as one that provides a 

guaranteed bound on the match of the learned rules, regardless of the original problem- 

solving cost. However, the absolute solutions presented so far all require either a set of 

restrictions on expressiveness or impose incompleteness. 

One approach that provides an absolute solution is the unique-attribute restriction 

[61]. The unique-attribute restriction disallows object attributes from having more than 

one value. While getting a bound on match, the unique attribute restriction has several 

drawbacks. Not only does it reduce the expressibility of the system, it also reduces 

the generality of the rules. It sometimes requires a large number of rules for the same 

knowledge which could be expressed by a single rule [61]. In our work, the incorporation 

of search control in modified chunking and Soar/EBL can also reduce the generality of 

the learned rules. However, the results [29] show that the unique-attribute version learns 

more specialized rules than simply incorporating search control. 

There is another approach, called the instantiationless tree approach [65], that also 

provides a guaranteed bound on match. The approach restricts the rule system by eliminat- 

ing rule instantiations and disallowing some equality tests. By losing equality tests, it also 

reduces the generality of the learned rules. We have not yet performed the comparison be- 

tween the rules from our modified learning systems and the rules from the instantiationless 

tree. However, we expect that instantiationless tree will generate rules that have similar 

generality as those from the original chunking or Soar/EBL, but its tasks will suffer from 

the restriction on the equality tests in learning new rules. 

Some other approaches sacrifice completeness to provide predictability of the response 

time.   For example, Haley[20] sets a bound to a number of parameters in the Rete 
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algorithm, including the number of tokens, to limit the total match cost. Also, Barachini 

and Verteneul[3] provide upper bounds by limiting the values of attributes to be in certain 

interval. However, not only these approaches impose incompleteness, they also can 

perform (bounded) exponential search. 

8.2   Other Transformational Analyses of Learning 

The following approaches are similar to our work in their use of a transformational analysis 

to speed-up the problem solving. 

Segre and Elkan [57] analyzed EBL as a structural application of three explanation- 

transformation operators: specialize, generalize, and prune. Also, the work extends the 

algorithm by introducing two more operators to provide higher utility rules. In their 

work, the term transformation means each operation applied to the EBL explanation to 

produce the learned rule. Thus, a sequence of transformations produces EBL rules from 

the explanation as in our transformational analysis. Although their transformations are 

used as a tool for describing EBL algorithms, as in our work, they are not used as a tool 

for measuring the costs of intermediate products. Their focus is on how to combine the 

transformation operators, guided by control heuristics, to produce a better EBL algorithm. 

Another approach, by Bostrom [4], applies three transformation operators (definition, 

unfolding, and folding) to transform the domain theory into a more efficient form. His 

transformations are different from ours in that their sequence of transformations changes 

the domain theory into another, using the transformation operators, instead of changing 

the problem solving episode into a new rule. 

Keller and Mostow's [28, 47] transformations are close in spirit to our transforma- 

tions in that a sequence of transformations reformulates non-operational knowledge into 

operational knowledge. However, the meaning of transformation in the transformational 

analysis is different from the meaning of the term used for their work. The transforma- 

tions here describe the changes to the input knowledge according to the given learning 

algorithm (such as EBL). However, transformations in operationalization are guided by 

some control knowledge heuristics, not directly related with any learning algorithm. The 

focus of their transformations is simply performance improvement (by operationalizing 

the given knowledge) rather than using the transformations as a tool for analyzing the 

given learning algorithm. 
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All of the transformational analyses presented above are also different from our analysis 

in that the focus of the approaches and their resulting algorithm development was on 

speedup rather than on boundedness, and on STRIPS-type macro-operator learning, rather 

than on search control learning. 
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Chapter 9 

Conclusion 

This chapter summarizes important results from the thesis, and presents issues for future 

work. 

9.1    Summary 

Many learning systems suffer from the utility problem; time after learning is greater than 

time before learning. Discovering how to assure that learned knowledge will in fact speed 

up system performance has been a focus of research in explanation-based learning (EBL). 

This thesis focused on ensuring that the cost of using learned rules is no more than the 

cost of problem solving. In order to achieve this goal, we proposed the transformational 

approach, which consists of two steps: (1) finding the complete set of sources that can 

make learned rules expensive, and then (2) modifying the learning process to avoid these 

sources. Also, to find the set of sources of expensiveness, this research introduced a novel 

way of analyzing the learning process — the transformational analysis. The essence of 

the analysis is to decompose the learning process into a sequence of transformations in 

which the cost of intermediate products can be computed By computing and comparing 

the match cost of each intermediate product, the cost changes through the learning were 

measured and isolated within the steps where the transformations occur. 

The thesis uses chunking and Soar/EBL as a vehicle for the investigation. Also, the 

match algorithm employed for this research is a state-of-the-art Rete algorithm. Chunking 

has been decomposed into a sequence of transformations from a problem solving episode 

to the matching and firing of a chunk. The match cost of each intermediate product 

(pseudo-chunk) was measured by counting the number of tokens produced in the match to 
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generate the result. By analyzing the transformations, we identified a set of sources which 
can make the output chunk expensive. In addition to identifying the sources, the analysis 

also pointed the way towards modifications of the transformational sequence that could 

potentially eliminate the sources. The set of sources and the proposed modifications are: 

1. Removing search control =» incorporate search control in learning. By "incorpo- 

rating search control in the explanation structure, the match process for the learned 

rule can focus on the path that was actually followed. 

2. Losing efficiencies stemmingfromthe problem-solving structures =£• keep the problem- 

solving structure. By keeping the graph structure employed in the problem solving, 

the efficiencies can be reinstated. 

3. Disrupting the optimizations based on equivalent knowledge =$■ preprocess knowl- 

edge before it is used By preprocessing the knowledge either by grouping the 

equivalent knowledge or by selecting one of them as a representative, an equivalent 

optimization can be achieved. 

To be able to more easily generalize the resulting analysis to other EBL systems, we 

have implemented a general EBL algorithm in Soar (Soar/EBL) and analyzed its perfor- 

mance. The Soar/EBL process that goes from a problem solving episode to a learned 

rule has been decomposed into a sequence of transformations. The transformations have 
been mapped to the corresponding transformations in chunking, and have been compared 

in terms of cost and generality. This comparison has revealed that the primary sources 

of expensiveness in Soar's learned rules arise in three transformations that are common 

between chunking and Soar/EBL. This comparison also has revealed that Soar/EBL yields 

the same sources of overgenerality as does chunking. The differences between Soar/EBL 

and chunking has been localized within a single transformation, where chunking overspe- 

cializes with respect to Soar/EBL. 

The application of the proposed solutions (for both chunking and Soar/EBL) requires 

significant change in the underlying Soar architecture, especially the match algorithm. 

The required alterations include the following: 

1. Computing the necessary search-control rules and eliminating redundant rules: 
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To be able to incorporate the search control in learning without introducing redundant 

conditions, an algorithm has been developed to compute and collect the relevant 

search-control rules at each decision point. 

2. Developing a new match algorithm (controlled nonlinear Rete) which can interpret 

search-control incorporated rules that maintain the problem-solving structures: 

Because intermediate preference and WME creations should be converted into sub- 

tasks of the match process, the Rete algorithm has been extended to perform such 

tasks. In this extended Rete, conditions are hierarchically combined via join nodes 

that compare a pair of tokens instead of a token and a WME. This requires the ability 

to create hierarchically structured tokens; that is, a token must now be a sequence 

of WMEs or tokens, instead of a sequence of WMEs. Also, to interpret the search 

control semantics, an extra node type (decision-sub-node) has been introduced. 

3. Introducing token compression in controlled nonlinear Rete: 

Another new form of token has been introduced. Instead of forming the tokens 

as tuples of WMEs or tokens, the extended Rete generates tuples of values of the 

variables which are going to be needed later in the match process. 

The above set of modifications has been applied to both chunking and Soar/EBL, 

and the original sequence of transformations has been converted into a new sequence of 

transformations. The experimental results for the expensive-chunk tasks imply that the 

time after learning is consistently less than the time before learning with the modified 

learning algorithm. The original learning, and the algorithms that implement only sub- 

parts of the full modifications, sometimes produce better results than the fully modified 

learning algorithm. However, the learning algorithm which gives the best results in 

one problem may produce expensive rules in another, while the full modification always 

provides boundedness. 

In summary, the primary contributions of this thesis include: performing a transfor- 

mational analysis of the EBL algorithm; identifying the sources of expensiveness; and 

providing a new algorithm based on the solutions for the sources. We performed such 

analysis in the context of Soar, and identified the sources of expensiveness, along with 

the modifications that can eliminate the sources. Also, the alterations required in the 

learning algorithm and the underlying match algorithm to support the modifications have 
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been designed and implemented. The experimental results indicate that, at least for the 

domains investigated, the new learning algorithm provides relative boundedness; the run 

time after learning is consistently less than the run time before learning, except for the 

changes caused by the architectural axioms. 

9.2    Future Work 

One negative effect of using graph-structured rules is diminished rule readability. Even 

with the use of indentation to identify the level of hierarchy, the sharing of sub-conditions 

is still difficult to understand. One way of relieving this problem is by further simplifying 

the structure of the rules. There are more ways of simplifying the graph structure than 

the ones already implemented. The approaches include the modification of the nonlinear 

structure into a more efficient structure, as described in Section 5.4. By implementing 

those, we may improve the match performance as well as the readability of the rules in 

the modified learning algorithms. 

The new learning algorithms (for both chunking and Soar/EBL) need to be combined 

with a solution to the average growth effect. The earlier work on the average growth effect 

in chunking has shown that it is possible to learn large number of rules without hurting 

overall system performance. However, because the rules created by the new learning 

algorithms can be different from the rules created by chunking, the problem still needs to 

be addressed in terms of the new learning algorithm. 

As described in Chapter 6, the performance-time effect may be avoided by employing 

additional constraints in the decision network. The additional constraints needs to be 

implemented, and the analysis of the effect of unexpected alternatives during performance 

time is required. 

The overgenerality caused by Soar's architectural activities can lead to cost changes. 

How much cost increase they can generate needs to be analyzed and it should be combined 

with the analysis done for non-architectural activities. 

The results presented in Chapter 6 are based on known expensive-chunk tasks. Ex- 

perimental results from a wider range of tasks, both other expensive-chunks tasks and 

non-expensive-chunk tasks, should be performed to generalize our solutions. 
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