
Bounding the Cost of Learned Rules:
A Transformational Approach

Jihie Kim

USC/Information Sciences Institute

December 1996
ISI/RR-96-452

J AppioTM to: puDÜc r*i«oM| I

{UnC QUALITY INSPECTED Ä

U§(] INFORMATION SCIENCES INSTITUTE
UNIVERSITY School of Engineering 14676 Admiralty Way, Suite 1001

OF SOUTHERN Marina del Rev, California 90292-660* nwx?.?1U1
CALIFORNIA

19970619 016

REPORT DOCUMENTATION PAGE FORMAPPROVED
OMB NO. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching exiting data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimated or any
other aspect of this collection of information, including suggestings for reducing this burden to Washington Headquarters Services, Directorate for Information Operations
and Reports, 1215 Jefferson Davis highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of management and Budget, Paperwork Reduction Project (0704-0188),
Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

December 1996
3. REPORT TYPE AND DATES COVERED

Research Report
4. TITLE AND SUBTITLE

Bounding the Cost of Learned Rules: A Transformational Approach

6. AUTHOR(S)

Jihie Kim

5. FUNDING NUMBERS

ARPA/NRL/Michigan Univ.:
N00014-92-K-2015

ARPA/NRAD:
N66001-95-C-6013

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

USC INFORMATION SCIENCES INSTITUTE
4676 ADMIRALTY WAY
MARINA DEL REY, CA 90292-6695

8. PERFORMING ORGANIZATON
REPORT NUMBER

ISI/RR-96-452

9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

ARPA
3701 N. Fairfax Dr.
Arlington, VA 22203

University of Michigan
Ann Arbor, MI 48109

Naval Research Lab
4555 Overlook Ave., SW
Wash., D.C. 20375

NRaD
53560 Hull St.

San Diego, CA 92152

11. SUPPLEMENTARY NOTES

12A. DISTRIBUTION/AVAILABILITY STATEMENT

UNCLASSIFIED/UNLIMnED

12B. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Efficiency is a major concern for all problem solving systems.One way of achieving efficiency is the application of learning techniques to speed up problem solving. However, many
speed-up learning systems suffer from the utility problem: the cost of using the learned knowledge often overwhelms its benefit, so that the problem solving time after learning is greater
than the problem solving time before learning. Assuring that learned knowledge will in fact speed up system performance has been a focus of research in explanation-based learning
(EBL).

One way of finding a solution which can guarantee the cost boundedness is to analyze all the sources of cost increase in the learning process and then eliminate these sources. This the-
sis demonstrates how the cost increase of a learned rule in an EBL system can be analyzed by characterizing the learning process as a sequence of transformations. The learning pro-
cess is decomposed into a sequence of transformations that go from a problem solving episode, through a sequence of intermediate problem solving/rule hybrids, to a learned rule.

Such an analysis has been performed on Soar (a problem solving system with a variant of EBL). By decomposing the learning process into a sequence of transformations, and analyzing
these transformations, the causes which can make the output rule expensive have been identified. This analysis has also pointed the way toward a set of modifications of the transforma-
tional sequence that could potentially eliminate these causes.

These modifications have been applied to Soar, and the original sequence of transformations has been converted into a new sequence of transformations. The experimental results, at
least for the domains investigated, indicate that the time after learning is consistently less than the time before learning with the new learning algorithm.

14. SUBJECT TERMS

chunking, explanation-based learning, speed-up learning, Soar, transformation,
utility problem

15. NUMBER OF PAGES

174

16. PRICE CODE

17. SECURITY CLASSIFICTION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OFABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UNLIMITED

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

GENERAL INSTRUCTIONS FOR COMPLETING SF 298
The Report Documentation Page (RDP) is used in announcing and cataloging reoprts. It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in each block of the form follow. It is important to stay within the lines to meet
optical scanning requirements.

Block 1. Agency Use Only (Leave blank).

Block 2. Report Date. Full publication date
including day, month,a nd year, if available (e.g. 1
jan 88). Must cite at least the year.

Block 3. Type of Report and Dates Covered.
State whether report is interim, final, etc. If
applicable, enter inclusive report dates (e.g. 10
Jun 87 - 30 Jun 88).

Block 4. Title and Subtitle. A title is taken from
the part of the report that provides the most
meaningful and complete information. When a
report is prepared in more than one volume,
repeat the primary title, add volume number, and
include subtitle for the specific volume. On
classified documents enter the title classification
in parentheses.

Block 5. Funding Numbers. To include contract
and grant numbers; may include program

element numbers(s), project number(s), task
number(s), and work unit number(s). Use the
following labels:

C - Contract
G - Grant
PE - Program

Element

PR - Project
TA -Task
WU -WorkUnit

Accession No.

Block 6. Author(s). Name(s) of person(s)
responsible for writing the report, performing
the research, or credited with the content of the
report. If editor or compiler, this should follow
the name(s).

Block 7. Performing Organization Name(s) and
Address(es). Self-explanatory.

Block 8. Performing Organization Report
Number. Enter the unique alphanumeric report
number(s) assigned by the organization
performing the repor.

Block 9. Sponsoring/Monitoring Agency Names(s)
and Address(es). Self-explanatory

Block 10. Sponsoring/Monitoring Agency
Report Number. (If known)

Block 11. Supplementary Notes. Enter
information not included elsewhere such as:
Prepared in cooperation with...; Trans, of...; To be
published in... When a report is revised, include
a statement whether the new report supersedes
or supplements the older report.

Block 12a. Distribution/Availability Statement.
Denotes public availability or limitations. Cite any
availability to the public. Enter additional
limitations or special markings in all capitals (e.g.
NOFORN, REL, ITAR).

DOD

DOE
NASA
NTIS

- See DoDD 5230.24, "Distribution
Statements on Technical
Documents."

- See authorities.
- See Handbook NHB 2200.2.
- Leave blank.

Block 12b. Distribution Code.

DOD
DOE

NASA
NTIS

- Leave blank.
- Enter DOE distribution categories

from the Standard Distribution for
Unclassified Scientific and Technical
Reports.

- Leave blank.
- Leave blank.

Block 13. Abstract. Include a brief (Maximum
200 words) factual summary of the most
significant information contained in the report.

Block 14. Subject Terms. Keywords or phrases
identifying major subjects in the report.

Block 15. Number of Pages. Enter the total
number of pages.

Block 16. Price Code. Enter appropriate price
code (NTIS only).

Blocks 17.-19. Security Classifications. Self-
explanatory. Enter U.S. Security Classification in
accordance with U.S. Security Regulations (i.e.,
UNCLASSIFIED). If form contins classified
information, stamp classification on the top and
bottom of the page.

Block 20. Limitation of Abstract. This block must
be completed to assign a limitation to the
abstract. Enter either UL (unlimited) or SAR (same
as report). An entry in this block is necessary if
the abstract is to be limited. If blank, the abstract
is assumed to be unlimited.

Standard Form 298 Back (Rev. 2-89)

Dedication

To My Family

Acknowledgements

First of all, I wish to express ray deepest gratitude to my advisor, Paul Rosenbloom, for

his guidance and support. Throughout ray Ph.D. program, he shaped my development

as a researcher and provided me with the freedom and support on my research and

the dissertation. I am grateful to Craig Knoblock and Stephen Read, my dissertation

committee, and also grateful to Shankar Rajamoney and Ken Goldberg, my guidance

committee, for many helpful comments and suggestions.

I would like to thank the members of the ISI Soar group, including Richard Angros,

Johnny Chen, Bonghan Cho, Jon Gratch, Randy Hill, Lewis Johnson, Gal Kaminka,

Soowon Lee, Ben Smith, and Milind Tambe for interesting discussion and helpful input

on this research. Especially, I owe a great debt to Jon who provided me with wise answers

whenever I had dubious questions. He is not only a good helper, but also a terrific friend.

Milind also gave me detailed comments to fill the holes in my presentation.

I would like to thank John Laird, Jill Lehman, Bob Doorenbos, and Scott Huffman,

members of the Soar group for their comments and encouragement. Also, I wish to thank

Tom Mitchell, Haym Hirsh, Steve Minton, and Ray Mooney for their technical comments
and advice on my work.

I found my experience in the ISI robot project extremely valuable and I am grateful to

Wei-Min Shen, Jafar Adibi, Behnam Salemi, Sheila Tejada for such opportunity. I wish to

thank my friends at ISI and USC, including Hans Chalupsky, Yolanda Gil, Kevin Knight,

Ping Luo, Eric Melz, Jose-Luis Ambite-Molina, and Lorna Zorman for their assistance,

support, and for making the time at ISI enjoyable. I also would like thank Velda Thomas

for her help in editing this thesis.

I would like to thank Suk I. Yoo, my advisor at the Seoul National University, for

inspiring me to step into artificial intelligence, and providing me with constant encourage-
ment.

I am grateful to my family. My parents, parents-in-law, brother, sister, and sisters-

in-law provided their constant love, encouragement, and support. Especially my parents

for their love and support in every endeavor that I have ever taken upon myself, and

for encouraging me to pursue my studies. Last, but by no means least, I thank my

husband, Dongho, who provided love and encouragement throughout Without his patient

understanding and support, I could not have pulled through the difficult times. Having

him there to share my successes made them more meaningful. I thank him, most of all,
for making it all matter.

This research was supported under subcontract to the University of Southern Califor-

nia Information Sciences Institute from the University of Michigan, as part of contract

N00014-92-K-2015 from the Advanced Systems Technology Office (ASTO) of the Ad-

vanced Research Projects Agency (ARPA) and the Naval Research Laboratory (NRL);

and under contract N66001-95-C-6013 from the Advanced Systems Technology Office

(ASTO) of the Advanced Research Projects Agency (ARPA) and the Naval Command
and Ocean Surveillance Center, RDT&E division (NRaD).

Contents

Dedication ii

Acknowledgements iii

List Of Figures viii

Abstract xi

1 Introduction 1
1.1 The Goal of the Thesis 2
1.2 An Example of the Transformational Analysis 5
1.3 Overview of the Approach 9
1.4 Contributions 11
1.5 Organization of the Thesis 12

2 Core Idea of Transformational Analysis 14
2.1 EBL as a Sequence of Transformations . .--- 14

2.1.1 An overview of EBL 14
2.1.2 Transformational analysis of EBL 19

2.2 Chunking as a Sequence of Transformations 20
2.2.1 An overview of Chunking 21
2.2.2 Rete match algorithm 24
2.2.3 Mapping chunking into a sequence of executable structures 26

3 Transformational Analysis of Chunking 28
3.1 Mapping Intermediate Products to Pseudo-chunks 28
3.2 Interpreting the Domain Theory 31
3.3 Filtering Out Unnecessary Rule Firings (=$> PS-chunk) 36
3.4 Removing Search Control (=*> E-chunk) 37
3.5 Variablize (=^I-chunk) 40
3.6 Eliminating Intermediate Rule Firings (=*► U-chunk) 40
3.7 Linearizing (=$► Chunk) 47
3.8 Summary 52

Transformational Mapping of EBL onto Soar 54
4.1 Filtering Out Unnecessary Rule Firings (=$■ PS-chunk) 55
4.2 Removing Search Control (=£• E-chunk) 60
4.3 Regressing (=^R-chunk) 60
4.4 Eliminating Intermediate Rule Firings (=4> RU-chunk) 61
4.5 Linearizing (=£> EBL rule) 63
4.6 Summary 63

Modifying the Transformations 66
5.1 Domain Theory => PS-chunk 68
5.2 PS-chunk => E'-chunk 70

5.2.1 Computing the search control 72
5.2.2 Decisions based on lack of knowledge 79
5.2.3 An example E'-chunk 85

5.3 E'-chunk =» I'-chunk 88
5.4 I'-chunk^U'-chunk 90

5.4.1 Removing intermediate preferences and WMEs 91
5.4.2 A general unified decision structure 97
5.4.3 Applying token compression 100
5.4.4 Computing exposed variables 103
5.4.5 Optimizing the nonlinear structure 106
5.4.6 An example U'-chunk 108

5.5 Summary of Modified Chunking 113
5.6 Modifying Soar/EBL 113

Experimental Results 116
6.1 Match Cost of Different Learning Algorithms 116
6.2 Problem Solving Time with the Modified Learning Algorithms 121
6.3 Effects of Different Task Representations . . 126
6.4 Summary and Discussion 128

The effect of the New Learning Algorithms 130
7.1 Cost of Chunking 130
7.2 Cost of Soar/EBL . . . 131
7.3 Cost of Performing the New Chunking Algorithm 133

7.3.1 Cost of Domain Theory^PS'-chunk 133
7.3.2 CostofPS'-chunk=4>E'-chunk 134
7.3.3 CostofE'-chunk=>I'-chunk 134
7.3.4 CostofI'-chunk=4>U'-chunk 135
7.3.5 Total overhead of the new chunking 137

7.4 Cost of Performing the New EBL Algorithm 137
7.5 Summary of the Overhead Analyses 139
7.6 Effects on Larger Scale Tasks 139

8 Related Work 142
8.1 Solving the Utility Problem 142

8.1.1 Speed-up learning vs. inductive learning 144
8.1.2 EBL vs. speed-up learning using inductive techniques 144
8.1.3 Search-control learning vs. macro-operator learning 145
8.1.4 Expensive-chunk problem vs. average-growth effect 145
8.1.5 Non-discriminatory learning vs. discriminatory learning 146
8.1.6 Providing a bound vs. reducing the cost 147
8.1.7 Relative solution vs. absolute solution 149

8.2 Other Transformational Analyses of Learning 150

9 Conclusion 152
9.1 Summary 152
9.2 Future Work 155

List Of Figures

1.1 A sequence of decisions affected by search-control rules. > ■ -. ..,......, 6
1.2 Grid task 7
1.3 The difference between the search during problem solving and the search .

during the match of the learned rule 8
1.4 Searches that would be performed by including search control in learning. 9

2.1 EBL specification (adapted from [45]) 14
2.2 EBL input for learning the cup concept (adapted from [45]) 15
2.3 An explanation for the cup domain 16
2.4 An explanation structure for the cup domain 17
2.5 The regressed structure for the cup domain 18
2.6 Learned rule 18
2.7 Mapping the sequence of non-executable structures into a sequence of

executable structures (pseudo-chunks) 20
2.8 Problem solving in Soar. 22
2.9 An example of the backtrace 23
2.10 The sequence of transformations of chunking 24
2.11 Rete network of a rule 25
2.12 Mapping the sequence of non-executable structures into a sequence of

executable pseudo-chunks 27

3.1 A sequence of transformations from the domain theory to a chunk. 29
3.2 A simplified Grid task 32
3.3 Problem solving episode excluding unnecessary rule firings 33
3.4 Tokens created during the problem solving 35
3.5 A trace of a PS-chunk. A PS-chunk is created by eliminating unnecessary

rule firing and encapsulating the problem solving activity into a unit. ... 37
3.6 A trace of an E-chunk. An E-chunk is created by eliminating search

control in a PS-chunk 38
3.7 Tokens created while matching (interpreting) E-chunk 39
3.8 A trace of an I-chunk. An I-chunk is created by constraining variables (by

instantiations) in an E-chunk 41
3.9 A trace of a U-chunk. A U-chunk is created by eliminating intermediate

rule firings in an I-chunk 42

3.10 An example nonlinear Rete network 44
3.11 Tokens created while matching U-chunk 45
3.12 The whole structure of the U-chunk 46
3.13 Number of tokens can increase in a U-chunk 46
3.14 Chunk: results from linearizing the U-chunk 48
3.15 Loss of independence by linearization.. . 49
3.16 Loss of sharing by linearization 51
3.17 The match cost of an optimally ordered chunk 52

4.1 Cup domain in Soar. , 56
4.2 The transformational sequences underlying chunking^and Suar/EBL: .r. .57"
4.3 Problem solving episode excluding unnecessary rule firings. This structure

embodies a PS-chunk in both chunking and Soar/EBL. 58
4.4 Creation of a dummy rule to interpret the architectural activities.......... 59
4.5 (a) R-chunk: created by applying regression to the explanation structure

(E-chunk); (b) I-chunk: created by applying the variablization to the rule
traces. The structure of the R-chunk remains the same as in the E-chunk
for this example 62

4.6 RU-chunk and U-chunk: created by eliminating intermediate rule firings
in the R-chunk and I-chunk, respectively. 64

4.7 EBL-rule and chunk: results from linearizing the RU-chunk and U-chunk,
respectively. 64

5.1 Outline of solutions (from the identified sources of cost increase) 67
5.2 An example trace-graph 69
5.3 Extending the backtrace (explanation) to capture the search control 71
5.4 Preference semantics in Soar (adapted from [34]) 72
5.5 The decision procedure (adapted from [34]) 73
5.6 The filter semantics (adapted from [34]) 74
5.7 An example of decision 75
5.8 Preference collection algorithm 77
5.9 The Grid task 80
5.10 Problem solving in the Grid task 81
5.11 Eliminating indifferent preferences and their opaque decisions 83
5.12 Match search with/without random semantics 84
5.13 An extension to the simplified Grid task 86
5.14 Problem solving episode 87
5.15 Tokens created for the excessive search control 87
5.16 The trace of the E'-chunk 88
5.17 The interpretation of the I'-chunk that is built while learning a rule from the

Grid task. An I'-chunk is created by constraining variables in an E'-chunk. 89
5.18 An example decision in a problem solving episode 91
5.19 Interpretation of the rules and the decision in I'-chunk 92

5.20 Interpreting the unified decision in the U'-chunk 93
5.21 The details of the decision in the I-chunk match 94
5.22 A cheaper search for the unified decision 95
5.23 The controlled-nonlinear-Rete network built for the unified decision. ... 96
5.24 The same controlled-nonlinear-Rete showing the sharing 97
5.25 The general structure of a unified decision 98
5.26 The structure of the example unified decision 99
5.27 Building a U'-chunk without token compression 101
5.28 Building a U'-chunk with token compression 102
5.29 Token compression with multiple actions. 104
5.30 The hierarchical condition structure of the I'-chunk 105
5.31 The algorithm for computing the exposed variables given a variable. ... 105
5.32 Duplicate conditions can be ignored 107
5.33 A case where optimization is not applied in the current implementation. . 108
5.34 An interpretation of the U'-chunk that is built while learning a rule from

the Grid task. A U'-chunk is created by unifying an I'-chunk 109
5.35 The hierarchical condition structure of the U'-chunk HO
5.36 The U'-chunk conditions without the shared sub-parts 112
5.37 Modifying Soar/EBL to a new sequence of transformations 114

6.1 A tight grid H8
6.2 Results from a grid task 118
6.3 The cost (number of tokens) of various (pseudo-)chunks in chunking. ... 119
6.4 The cost (number of tokens) for various (pseudo-)chunks in Soar/EBL. . . 120
6.5 Average CPU time for Grid tasks 121
6.6 Number of tokens of a learned rule in a Grid task . 122
6.7 Queen task 124
6.8 Average CPU time for Queen tasks 124
6.9 Magic Square task 125
6.10 Average CPU time for the Magic Square task 126
6.11 Summary of the results 127
6.12 Results from different representations of a Grid task 128
6.13 Options can increase at performance time 129

7.1 The reordering algorithm in Soar. 132

8.1 Related issues in solving the utility problem 143

Chapter 1

Introduction

Problem solving is an activity of an agent (or a set of agents) to achieve its (their) goals.

Given a goal and a problem formulation, which consists of specifications of actions and

states to be considered, a problem solver's task is to find a sequence of actions that

gets an agent (or a set of agents) to a goal state from the current state. (The process

of finding a sequence of actions is also called search in general.) For example, solving
a scheduling problem for a production line, or controlling tactical aircraft in distributed

battlefield simulations to accomplish a mission, or simply playing an eight-puzzle game

are all problem solving activities. (From now on, I will refer to the problem solving

activity as the problem solving for brevity.)
Efficiency is a major concern for all problem solving systems. Depending on the tasks

to be performed, the problem solver (the agent) has to achieve a certain level of efficiency.

For example, building a chess playing agent that can challenge the world chess champion

requires a way of computing effective moves in a reasonable response time. One way of

achieving such efficiency is the application of learning techniques to speed up problem

solving. For example, after solving a complex problem, the system can remember how it

solved the problem, and generalize the experience to solve related problems more easily.

However, Minton [41] has identified that the overhead of using learned knowledge often

overwhelms its benefit The problem solving time with the learned knowledge can become

greater than the problem solving time without it, because the match cost of the learned

knowledge against the current state is greater than the savings by the learned knowledge.

This phenomenon is called the utility problem, and it has turned out to be pervasive in

many learning systems that are intended to speed up problem solving.

One way of understanding how learned knowledge can slow down problem solving is

to analyze how the learning system can produce expensive knowledge. By investigating

the underlying learning algorithm and analyzing which sub-parts contribute to producing

expensive-to-use knowledge, we can find the sources of expensiveness in the learning

process. When the learning algorithm can be characterized as a sequence of steps, such as

a sequence of transformations from the problem solving episode to the learned knowledge,

this analysis can be performed by examining each step carefully. In this case, each

transformation changes one intermediate product (or problem solving episode for the

first transformation) into another (or learned knowledge for the last transformation). By

computing and comparing the cost of the intermediate products, the changes in cost as

a result of a transformation can be measured and isolated. Whenever a transformation

increases the cost, that step can be considered as a source of expensiveness. The key

element required for the analysis is a tool for computing the cost of the intermediate

products.

In addition to identifying which transformations lead to cost increases, and how they

lead to such increases, the analysis may also point the way toward modifications of the

transformational sequence that could potentially eliminate these cost increases. Once these

modifications are identified, they should be carefully performed, so that the interactions

across the modified subprocesses do not create another source of expensiveness. After the

modifications eliminate the sources (without introducing extra sources of expensiveness),

we can guarantee that the learning system will not slow down the problem solver.

This dissertation demonstrates such an analysis in the context of Soar (a problem

solving system with a variant of explanation-based learning). The learning process is

characterized as a sequence of transformations where the cost of intermediate products

can be measured. By analyzing cost changes through the transformations, the causes

which can make the output rule expensive are identified. Based on the causes and the

proposed modifications, a new learning algorithm is developed.

1.1 The Goal of the Thesis

This section describes related issues and specifies the goal of the thesis. The details of the

related work are given in Chapter 8.

Many speed-up learning systems acquire new knowledge in the form of search-control

rules. (Other types of knowledge will be discussed in Chapter 8.) Search-control rules

guide problem solving by indicating which paths are more promising than others, or which

paths lead to failures. This guidance prunes the search branches and can reduce problem

solving time. The utility problem for these systems is mainly concerned with the cost of

using the learned rules. The research on this problem has raised two key issues. The first

issue is the expensive-rule problem [61], in which individual learned rules are so expensive

to match that the system suffers a slow down from learning [41,61,12,59,60]. The second

issue is the average-growth effect [9], where the interactions across the rules slow down

the system, even if none of the rules individually are all that expensive. Recent work on

the average growth effect has developed a set of optimizations of the match algorithm to

reduce slowdown due to learning a large number of rules [9]. Although the optimizations

cannot completely eliminate potential causes of slowdown, the work has shown that in

some tasks, it is possible to learn over one million rules while still allowing their efficient

use. Our research focuses on the expensive-chunk problem. The solutions to both issues,

expensive-chunk problem and the average-growth effect, eventually must be combined,

but that is a topic for future work.

There are various approaches for speed-up learning, including those using inductive

techniques [22, 33, 55, 18]. Our work focuses on EBL, the most widely used speed-up

technique [41,7, 14, 27, 23], rather than on these techniques. Once we solve the utility

problem in EBL, the results may help guide similar analyses of other speed-up learning

techniques.
One class of approaches to the expensive-rule problem is discriminatory learning

[41, 19, 16, 39]. After evaluating the utility of learned knowledge, the system keeps

only the useful ones by comparing the cost of using the new knowledge and its benefit.

However, the utility evaluation of the candidate rules may become a factor of the utility

problem if it requires extensive computations [17]. Also, the system may waste a lot of

energy in learning and evaluating the knowledge when a large part of the learned rules

turns out to be useless. If most of the learned rules are useful in the future (though not

necessarily now), throwing away them loses the full benefit of the learned knowledge.

This research excludes this class of approaches, and is aimed at learning cheap rules in the

beginning.

One way of solving the expensive-rule problem is to ensure that the cost of using the

learned rule is bounded by the cost of problem solving without the learned rule. A learned

rule is called "expensive" when its match cost is greater than the cost of the problem

solving from which it is learned. An optimization which can reduce the match cost of

a learned rule does not necessarily solve the expensive-rule problem unless it guarantees

such boundedness. For example, Prieditis et al. [50,41,59,58,12] have investigated how

to produce cheaper rules. (The details of these approaches are described in Chapter 8.)

However, none of these approaches can guarantee that the cost of using the learned rules

will always be bounded by the cost of the problem solving episode from which they are

learned. Thus the goal of solving the expensive-rule problem is split from simply reducing

the match cost of the learned rules. However, with this definition of expensiveness, if the

original problem solving has required exponential search, then the run time after learning

could be exponential, though still not worse than the run time before learning. Thus the

goal of removing expensive rules has been split again from the goal of guaranteeing a

bound on the match. A solution that achieves the former goal but not the latter one is

called a relative solution. An absolute solution is defined as one that provides a guaranteed

bound on the match of the learned rules regardless of the original problem-solving cost.

The relative solution, however, is still important to be examined. While getting a bound

on match, the absolute solutions [61,65] which have been investigated so far, have several

drawbacks. Not only do they reduce the expressibility of the system, but they also reduce

the generality of the rules. They sometimes require a large number of rules for the same

knowledge which can be expressed by a single rule [61]. This research focuses on the

relative solution.

The goal of this research is to provide a relative solution without restricting the

expressiveness of the learned knowledge. In other words, we want to make sure that

the cost of using learned rules is no more than the cost of problem solving. This will

make the cost of using the learned rules always be bounded by the cost of the problem

solving episode from which they are learned. One way of providing such boundedness

is to: (I) find the complete set of sources that can make learned rules expensive, and

then (2) modify the learning process to avoid these sources. To find the set of sources

of expensiveness, this research introduces a novel way of analyzing the learning process

called the transformational analysis. The essence of the approach is to decompose the

learning process into a sequence of transformations in which the cost of intermediate

products can be computed and compared. The EBL algorithm that goes from a problem

solving episode to a learned rule can be decomposed into a sequence of transformations

that change one intermediate problem solving/rule hybrid (called a pseudo-chunk) into

another. {Chunk here means any learned rule. This is a generalization of the term used

in the Soar [35, 54] system.) For example, filtering out unnecessary rules which did not

participate in the problem solving can be the first transformation in the learning process.

As the sequence progresses, the pseudo-chunks become more like rules and less like the

problem solving. (This is an approximate description of the transformational analysis.

The details describing this process will be provided in Chapter 2.)

The key difference between the transformational analysis and the standard analysis

of EBL is that the cost of intermediate products can be computed in the transformational

analysis. In the standard analysis, learning is a process consisting of a sequence of

sub-processes which create non-executable intermediate products. Here, the intermediate

products (pseudo-chunks) are executable in that they can be matched and fired (given

an appropriate interpreter) and thus independently create the same effect as the problem

solving episode. By computing and comparing the match cost of each pseudo-chunk, the

cost changes throughout the learning process can be measured and isolated within the

steps in which the transformations occur. Once the sources of extra cost are found, by

avoiding those sources, the cost of the learned rule can be bounded by the cost of the

problem solving.

The following section provides an example of transformational analysis. It analyzes

one transformation in the EBL algorithm, and shows how we can find a source of expen-

siveness through the analysis, and how a solution can be provided to avoid the source.

1.2 An Example of the Transformational Analysis

As described above, a problem can be solved by finding a sequence of operators (a path)

leading to the goal state from the initial state. When the problem solver employs search-

control rules, rules that determine which operators are selected for which states, the actual

path depends on these rules. Figure 1.1 shows an abstract view of a sequence of operator

applications. The gray arrows denote the search-control rules which affect each decision.

When a new rule is acquired from a trace of the problem solving, the control rules are

often removed in the learning process. That is, the instantiations of the search-control rules

o^ OP^ OP J °P^ OP r| OP ^
select f apply"I select/ apply

o / o /
O / o /

/

Figure 1.1: A sequence of decisions affected by search-control rules.

are not included in the explanation. For instance, PRODIGY/EBL [41] and Soar [37,54]

— two problem solvers that learn search-control rules by a variant of EBL — ignore a

large part of the existing search-control rules in learning, in order to increase the generality

of the learned rules.1 (The details of how this transformation increases the generality are

in Chapter 3.) The most critical consequence of this transformation (removal of search

control) is that the learned rule (and the pseudo-chunks created between the transformation

and the learned rule) are not constrained by the path actually taken in the problem space.

Thus, they can perform an exponential amount of search even when the original search

was highly directed (by the control rules).

Consider an example from the Grid task — a task known to suffer from the expensive-

rule problem [61] — as shown in Figure 1.2. Each problem in the Grid task is to find a

path between two points in a two dimensional grid. The given problem is to go from point

F to point P, a path of length four. In Figure 1.2-(a), each connection between two points

is represented by a tuple that contains three items: object identifier, attribute (A indicates

attribute name), and value. For example, the connection between point F and point J is

represented by the tuple (F Anext J). Figure 1.2-(b) shows a rule that proposes a candidate

operator. The symbols enclosed in angle brackets are variables. The rule operator-goto

says that if the location of the current state is point <locl> and <locl> is connected

to another point <loc2>, then a new operator can be proposed which moves the current

location from <locl> to <loc2>. Because F is connected to four adjacent points, four

operators can be suggested by the rule. With suitable control knowledge, the system can

solve the problem of finding a path from point F to point P — for example, F, G, H, L, and

1 In Prodigy, selection and rejection rules are included in the explanation, but preference rules are not [43].
Likewise, Soar currently also includes require and prohibit preferences, but not desirability preferences. The
details of the preference semantics are explained in Chapter 5.

M N 0 P

I J K L

E F G H

A B C D

(F Anext B)
(F Anext E)
(F Anext J)
(FAnextG)
(G Anext F)

(sp operator-goto
(goal <g> Aproblem-space <p>

Astate <s>)
(<p> Aname grid-path) •
(<s>Aat<locl>)
(<locl> Anext <loc2>)

—>
(<o> Aname goto-loc

Afrom <locl> Ato <loc2>)
(<g> Aoperator <o>))

(a) Connections among the points (b) Operator proposal nüe

Figure 1.2: Grid task.

P — in time that is linear in the length of the path. However, the rule learned from this

search may be so general that, when it matches, it searches over all paths of length four

instead of just a single path.

Figure 1.3 shows the relationship between the search upon which the learning is based

and the search performed, during the match, by the rule learned from this search. The rule

in Figure 1.3 says that if you are at location <U> and want to get to location <15>, and

there is an operator that takes you from <U > to <12>, and there is a connected path from

<12> to <15> (via two intermediate points, <13> and <14>), then the operator is the best

choice. This rule is quite general, as it can solve any problem that has a solution of length

four and find all such paths, which is a key difference from original problem solving with

search control. This generality, however, is only obtained at an enormous cost. That is,

the cost is exponential in the length of the path (as shown as a set of arrows in the figure).

Although, using this learned rule, the system can solve the same problem within a single

rule firing instead of requiring multiple rule-firing cycles, the run time may become longer

because of this exponential match search.

The above analysis of a transformation (removal of search-control knowledge) reveals

one important source of cost increase in the learning: removal of search-control can

increase the cost One way of avoiding this problem is to incorporate the search-control

M N 0 I'

I J K L

U

A B C D

Learning

(<state>*at<Il>)
(<desired>Aat<15>)
(<op>Aat<ll>Ato<I2>)
(<t2>An«xt<13>)
(<13>Anext<M>)
(<M> "next <15>)

(<g> *operator <o> >))

BEFORE
(Problem Space Search)

AFTER
(Match Search)

Figure 1.3: The difference between the search during problem solving and the search
during the match of the learned rule.

instead of removing it. By incorporating the traces of control rules utilizedin the problem-

space search, the match process for learned rules (and the pseudo-chunks created between

the transformation and the learned rules) becomes focused on just the path that was actually

followed (as shown in Figure 1.4), thus ensuring that the match search for the learned rule

is bounded in complexity by the problem-space search from which it was learned. The

rule in Figure 1.4 is what would be learned by this solution. This rule corresponds to

the rule in Figure 1.3. The additional conditions in the rule, though they look unusual,

reflect the aspects of the problem tested by the search control that was part of the problem

solving. These conditions constrain the search in the match to the search in the problem

solving. (The details of how to match these conditions will be given in Chapter 5.) This

can specialize the learned rule, but in return it enables the rule's cost to remain bounded

by the cost of the original problem solving.

This change (from removal of search control to incorporation of search control) may

require modifications of the subsequent transformations. To be able to maintain the search

control in the transformations, without introducing another source of cost increase, the

subsequent transformations should be properly adjusted. It turned out that the above

modification of the transformation requires significant changes of the subsequent transfor-

mations. The details will be discussed in Chapter 5.

M N O p1 a

I J K L' ,,

E F ß H

A B c D

Learnin V

BEFORE
(Problem Space Search)

(<r> apriority 4 "at <11> to <E>)
(<u> priority 3) (<d> »priority 1)
(<s> «at <11>) (<dl> «at <I8>)
(<I2> "right <a> «next <13>

*ätwn <M> «next <J4>
*«p<15>*next<15>)

(<I3> *up <I6> «next <I6>
*down <I7> "next <T7>)

(<16> *up <18> «next <18>)
->
(<g> «operator <r> >))

N 2

AFTER
(Match Search)

Figure 1.4: Searches that would be performed by including search control in learning.

1.3 Overview of the Approach

To reveal all sources of additional cost, a complete analysis of the whole sequence of

transformations is required, as was done for one transformation above. We have performed

such a transformational analysis of learning in Soar. The sequence of transformations in

the learning process has been mapped into a sequence of transformations where the cost

of intermediate products can be measured. By analyzing these transformations, two

additional sources that can make the output chunk expensive have been identified. First,

losing the efficiencies (such as sharing) stemming from the graph structure of the problem

solving can increase the cost [30]. During problem solving, the rules that fire tend

to form a directed acyclic graph structure in which the early rules provide information

upon which the firing of later rules depends. This graph structure is called the problem-

solving structure. The problem-solving structure is reflected in EBL most obviously in the

structure of the explanation (and the more general explanation structure). However, if this

graph structure is then flattened into a linear sequence of conditions (via a transformation)

for use in matching the rule that is learned — as must be done in creating Ops-like rules

or Prolog clauses — the efficiencies stemming from the graph structure are lost, and the

cost after the transformation can be greater than the cost before it If instead, the learning

mechanism is made sensitive to such efficiencies—i.e., by reflecting the graph structure in

the match of the learned rule — this source of expensiveness can be avoided. This requires

modifications of the match algorithm to be able to support graph structured instantiations,

and adjustments of the subsequent transformations (should they exist).

The other source of expensiveness is in disrupting the optimizations (such as the re-

moval of duplicates) based on equivalent information. Forexample, in Ops-like languages,

working memory is a set, and does not allow duplicate elements. Whenever rule firings

create duplicates, they are merged into one element When multiple rule firings create the

same working memory elements, only one of them is saved in the working memory and

used in the future matches. If this optimization is ignored in learning new rules (as is the

case in most EBL systems), time after learning can be greater than time before learning

because of the extra match effort for the duplicate elements. This problem can be solved

by introducing an equivalent optimization function in the learned rules. (The details are

described in Chapter '5.) Also, the subsequent transformations should be modified as in

the above cases.

The proposed solutions for each identified source of cost increase should be combined

to produce a unified solution. However, unifying each proposed solution for each identified

source of cost increase is not simply pipelining the set of solutions. For example, the

solution for the first problem (incorporating search control) introduces additional rules

in the explanation structure, and the solution for the second problem (introducing graph

structure in the learned rule based on the explanation structure structure) should efficiently

capture this additional part. That is, the system should develop a way of embodying the

search-control knowledge in the graph structure.

Overall, the dual process of first finding the sources of cost increase through a transfor-

mational analysis, and then modifying the learning process based on the analysis, is called

the transformational approach. This research investigates the transformational approach

in the context of Soar. Soar is an architecture that combines general problem solving

abilities with a learning mechanism called chunking [36], Chunking is a variant of EBL

[53], and also suffers from the expensive-rule problem [61]. The transformational analysis

is presented in terms of chunking in Soar. Also, to be able to more easily generalize the

resulting analysis to other EBL systems, we have implemented a general EBL algorithm

in Soar (called Soar/EBL) [31] and analyzed its performance. The mapping between the

two sequences of transformations has revealed that Soar/EBL yields the same sources of

expensiveness as chunking.

Although the transformational approach is presented in terms of learning in Soar,

the above dual process can be applied to any learning algorithm (including other EBL

implementations) whenever it can be characterized as a sequence of transformations.

10

Also, we conjecture that the transformational analysis can be used as a tool for detecting

changes in correctness as well as changes in cost. By employing a tool for computing the

level of correctness before and after the transformations, the changes in correctness as a

result of a transformation can be measured and isolated.

1.4 Contributions

The primary contributions of this thesis include the following:

1. Performing a transformational analysis of learning process: A novel way of an-

alyzing learning processes is presented. The learning process is decomposed into

a set of transformations where the cost of intermediate products can be computed.

The analysis of each step (in terms of cost change through the transformation) is

used as a tool for pointing out where extra cost is being added. Once the set of

sources are found, the learning process can be modified to avoid the sources. This

transformational analysis is also important for understanding other characteristics of

the learning system, including the correctness changes through the learning process.

2. Finding sources of expensiveness: Through the transformational analysis, we

have found three sources of expensiveness: (1) removing search-control knowl-

edge through learning, (2) losing efficiencies (such as sharing) stemming from the

problem-solving structures, and (3) disrupting the optimizations (such as removal

of duplicates) based on equivalent information.

3. Identifying solutions to sources of expensivenss: Solutions are presented for each

source of expensiveness.

(a) Removing search control =» incorporate search control in learning. By incor-

porating search control in the explanation structure, the match process for the

learned rule can focus on the path that was actually followed.

(b) Losing efficiencies stemming from the problem-solving structures => keep the

problem-solving structure. By keeping the graph structure employed in the

problem solving, the efficiencies can be reinstated.

11

(c) Disrupting the optimizations based on equivalent knowledge =>- preprocess

knowledge before it is used. By preprocessing the knowledge either by group-

ing the equivalent knowledge or by selecting one of them as a representative,

an equivalent optimization can be achieved.

4. Finding a unified solution to the set of sources: The proposed solutions are combined

to produce a unified solution. This requires an efficient synthesis of the solutions,

so that one does not hinder another. This unified solution guarantees that it avoids

the sources of expensiveness each solution is trying ta avoid.

5. Developing extensions to the match algorithm: To interpret the intermediate prod-

ucts and evaluate the costs of the products, extensions to the match algorithm are

required. Also, the unified solution demands significant change of the match algo-

rithm. These different sets of extensions have been implemented.

6. Evaluating the unified solution via experimental results: The unified solution has

been implemented, and the results from the new learning system show that the cost

of using the learned rule is bounded by the cost of the problem solving.

7. Mapping EBL onto Soar: The transformational analysis performed for chunking has

been mapped onto the sequence of transformations for EBL. The mapping contrasts

the differences in cost and correctness between the two learning systems.

1.5 Organization of the Thesis

The body of this thesis consists of eight chapters. Chapter 2 describes the core idea of

the transformational approach. It characterizes the standard EBL algorithm as a sequence

of transformations as described above. The chunking algorithm is also characterized as

a sequence of transformations in the same way. Chapter 3 presents a transformational

analysis performed on chunking in Soar. Each transformation is examined in detail, and

the cost changes through the transformations are analyzed. The key result of these analyses

is the identification of new sources of expensiveness and presentation of solutions for each

source. Chapter 4 maps the analysis performed for chunking to Soar/EBL. The analysis

demonstrates that EBL, as implemented for Soar, yields the same sources of expensiveness

and overgenerality as does chunking. Chapter 5 presents a unified solution based on the set

12

of individual solutions. The details of each solution are described, and the modifications

required to combine all solutions are presented. Chapter 6 presents detailed results from

the implementation of the unified solution discussed in Chapter 5. Chapter 7 and Chapter

8 discuss related work and the conclusion, respectively.

13

Chapter 2

Core Idea of Transformational Analysis

This chapter describes how the EBL utility problem can be investigated via a transforma-

tional analysis of the learning system. First, the standard description of EBL as a sequence

of transformations is reviewed. Then the intermediate products (and the input and the out-

put) of the sequence are mapped into executable structures (called the pseudo-chunks) so

that the cost of intermediate products can be measured and compared. Finally, we charac-

terize chunking as a sequence of transformations, with their intermediate pseudo-chunks,

in the same way.

2.1 EBL as a Sequence of Transformations

2.1.1 An overview of EBL

Given:

(1) Goal concept: A definition of the concept to be learned.
(2) Training example : A specific example of the goal concept.
(3) Domain theory: A set of rules and facts to be used for proving that the

training example is an instance of the goal concept.
(4) Operationality criterion : A specification of how the concept should be

expressed.

Determine:
A generalization of the training example that is a sufficient concept description
for the goal concept and that satisfies the operationality criterion.

Figure 2.1: EBL specification (adapted from [45]).

14

(1) Goal Concept: (<x> Aisa cup)

(2) Training Example (WMEs):
Wl: (Ol Ahas-part Cl) W6: (B1 Ais flat)
W2: (Cl Aisa concavity) W7: (01 Ais light)
W3: (Cl Ais upward-pointing) W8: (01 Ahas-part HI)
W4: (Ol Ahas-part B1) W9: (HI Aisa handle)
W5: (Bl Aisabottom) W10: (Bl Aowner Bill)

(3) Domain Theory (rules):
Rl) R2) R3) R4)
(<x> Ahas-part <y>) (<x> Ahas-part <y>) (<x> Ais light) (<x> Ais open-vessel)
(<y> Aisa concavity) (<y> Aisa bottom) (<x> Ahas-part <y>) (<x> Ais stable)
(<y> Ais upward-pointing) (<y>Aisflat) (<y> Aisa handle) (<x> Ais liftable)
_> -> _> „>

(<x> Ais open-vessel) (<x> Ais stable) (<x> Ais liftable) (<x> Aisa cup)

(4) Operationality Criterion:
Concept definition must be expressed in terms of structural features
used in describing examples (e.g., light, handle, flat, etc.).

Figure 2.2: EBL input for learning the cup concept (adapted from [45]).

Explanation-based learning (EBL) is a learning paradigm for acquiring a concept from

the combination of a single example and underlying domain knowledge. Figure 2.1 shows

the input and the output of EBL as specified in [45]. Given the four informational compo-

nents (the goal concept, the training example, the domain theory, and the operationality

criterion), EBL produces a rule which describes a sufficient condition for the goal concept.

An example EBL input is shown in Figure 2.2. The example is an adaptation to the Soar

syntax of the cup domain, a typical illustrative EBL task, described in [45]. EBL has

to learn a structural definition of a cup. There are four rules representing the domain

theory and ten working memory elements (or WMEs) representing the training example.

The operationality criterion specifies that the concept should be expressed in terms of the

features used in the example.

Given the input, the system constructs an explanation (also called a. proof tree) of how

the training example is an instance of the goal concept. The explanation built from the

cup domain is shown in Figure 2.3. This structure shows how the object Ol is an instance

of the cup class. Each circle with its attached lines represents an instantiation of a rule

in the domain theory. The lines attached to the left-hand side of a circle represent the

instantiation of the conditions, and the right-hand side arrows represent the instantiations

of the actions. A white square represents a fact in the domain theory. A gray square linked

15

W14

rule firing

Created WMEs during proof:
Wll: (01 Ais open-vessel)
W12: (01 Ais stable)
W13: (01 Ais liftable)
W14:(01Aisacup)

Figure 2.3: An explanation for the cup domain.

to the right side of a rule instantiation is a fact (WME) produced by firing the rule. The

rightmost square is an instantiation of the goal concept. The leftmost squares represent

the part of the training example which participated in the explanation. In the example,

among the given WMEs, Wl,... ,W9 participate in the explanation, and W10 is excluded

from it

An explanation structure is built from an explanation by replacing the rule instantia-

tions with the rules. The variable names are replaced with unique names so that there are

no common variables across the rules. An explanation structure built from the explanation

in Figure 2.3 is shown in Figure 2.4. The instantiation of Rl is replaced by a copy of

Rl (Rl'), which is the same as Rl except for the variable names. Its variable names are

unique compared to the variable names of the other rules. Other rule instantiations are

also replaced by rules in the same fashion.

Given the explanation structure, a variable unification process (called regression) is

applied to iL For example, the regression algorithm in EGGS builds a substitution list

based on action and condition pairs which are juxtaposed in the explanation structure

[46]. In Figure 2.4, the action of Rl' is unified with the first condition of R4', and this

unification creates a substitution in which the variable <x2> is replaced by the variable

<x4>. After collecting a set of variable substitutions through the unifications, EBL

16

*

•

Rl')
(<xl> Ahas-part <yl>)
(<yl> Aisa concavity)
(<yl> Ais upward-pointing)
-->
(<xl> Ais open-vessel)

R3')
(<x3> Ais light)
(<x3> 'Hias-part <y3>)
(<y3> Aisa handle)
->
(<x3> Ais liftable)

R2')
(<x2> Ahas-part <y2>)
(<y2> Aisa bottom)
(<y2> Ais flat)
->
(<x2> Ais stable)

R4'),
(<x4> Ais open-vessel)
(<x4> Ais stable)
(<x4> Ais liftable)
->
(<x4> Aisa cup)

J~£&f*X~$$»- : A copy of a rule

Figure 2.4: An explanation structure for the cup domain.

applies the collected substitutions to the variables in the explanation structure, and this

process creates a regressed structure as shown in Figure 2.5.

After the regression, a new definition, i.e., a sufficient condition for the goal concept, is

generated from the leaves of the regressed structure. The new rule is shown in Figure 2.6.

Given the definition of the operationality criterion in Figure 2.2 — the concept should

be expressed in terms of the structural features used in describing examples — the new

definition complies with the operationality criterion.

When EBL is employed in a problem solving system (such as Soar), the rule traces in

a problem solving episode can provide the explanation of why an example is an instance

of a goal concept. By following the above algorithm, a new rule can be generated by

EBL and be added to the domain theory of the system. Given a similar problem, firing the

learned rule can produce the same effect as the rules in the original domain theory.

Note that the goal concept in the above example is a task concept (a cup concept).

When the goal concept is a meta control decision (i.e., success, failure, or preferences

among multiple operators), EBL creates a search-control rule which describes a sufficient

condition for the particular control decision. For example, Soar and PRODIGY employ a

17

»

R1-)
(<x4> Ahas-part <yl>)
(<yl> Aisa concavity)
(<yl> 'Ms upward-pointing)
—>
(<x4> ^s open-vessel)

R3")
(<x4> Ais light)
(<x4> Ahas-part <y3>)
(<y3> Aisa handle)
~>
(<x4> Ais liftable)

R2")
(<x4> Ahas-part <y2>)
(<y2> Aisa bottom)
(<y2> Ais flat)
->
(<x4> Ais stable)

R4")
(<x4> Ais open-vessel)
(<x4> Ais stable)
(<x4> Ais liftable)

(<x4> Aisa cup)

Figure 2.5: The regressed structure for the cup domain.

Newly-leamed-rule)
(<x4> Ahas-part <yl>)
(<yl> Aisa concativity)
(<yl> Ais upward-pointing)
(<x4> Ahas-part <y2>)
(<y2> Aisa bottom)
(<y2> 'Hs flat)
(<x4> Ais light)
(<x4> Ahas-part <y3>)
(<y3> Aisa handle)
->
(<x4> Aisa cup)

Figure 2.6: Learned rule.

18

variety of goal concepts, so that they can explain why the choices made during the problem

solving episode were appropriate, or were not appropriate. The new search-control rule

can prune the search branches in future problem solving activities.

2.1.2 Transformational analysis of EBL

The above specification describes EBL as a sequence of transformations, where the input

is the problem solving episode and the output is the chunk (the learned rule), as shown

in Figure 2.7-(a). Each transformation produces a nonexecutable intermediate structure

(e.g., explanation, or explanation structure) which is given to the next transformation. In

this sequence, it is difficult to compare the costs of the intermediate products, and also

difficult to analyze the effect of each transformation.

One way of analyzing the cost changes through the transformations is to map the non-

executable intermediate structures into executable ones (pseudo-chunks) by providing

appropriate interpreters. As shown in Figure 2.7, the original sequence of intermediate

structures in EBL can be mapped into a new sequence of pseudo-chunks with their

interpreters. In this new sequence, each pseudo-chunk can be matched and fired by an

interpreter, and can produce the same result as the original problem solving episode.

For instance, a problem solving episode can be mapped into a domain theory where its

interpreter is the rule matcher and the rule firer. By computing the total cost of firing

multiple rules in the domain theory, given the initial facts, we can compute the cost of

the problem solving. Also, the learned rule can be simply mapped into the same learned

rule with the rule matcher as its interpreter. By computing the match cost of the learned

rule, we can compute the cost of interpreting the learned rule. Once we compute the cost

of firing each pseudo-chunk (i.e., cost of interpreting the pseudo-chunk), we can analyze

the cost changes through the transformations. The key factor here is that each pseudo-

chunk should have the same effective measure of cost, so that the costs of firing different

pseudo-chunks are comparable.

Although this new sequence is different from the standard sequence of transformations

of EBL, both sequences are consistent in that each transformation in one sequence has

a corresponding transformation in the other. For example, filtering out unnecessary rule

firings in the problem solving episode is the first transformation, and it also transforms the

domain theory into the next pseudo-chunk in which unnecessary rules are discarded.

19

Problem Solving Given Rules;
(DomainTheory]

Proof (Explanation)
Map

Rule matcher +
Rule firer

Pseudo-chunk-1 lnterpreter-1

WWVWVWHVWVWWW1WK

Explanation Structure Pseudo-chunk-2
lnterpreter-2

Regressed Structure

Learned Rule

r
Pseudo-chunk-3

lnterpreter-3
i»_ r

Learned Rule
Rule matcher

i_

(a)EBL (b) Sequence of Interpretable Structures

Figure 2.7: Mapping the sequence of non-executable structures into a sequence of exe-
cutable structures (pseudo-chunks).

Whenever there are multiple rule firings in a pseudo-chunk, the cost of interpreting

(matching) the pseudo-chunk is the total cost of matching and firing all the participating

rules. For example, as described above, the cost of interpreting the domain theory is the

total cost of matching and firing rules in the problem solving. Actually, the cost of firing a

rule is the cost of executing actions and creating new WMEs based on the action execution.

However, we will not explicitly focus on this cost for two reasons. First, the key bottleneck

in rule firing is traditionally the match phase. Second, these action executions (except for

the action that created an instance of the goal concept) and the WME creations drop out

during learning, and do not affect the cost of the chunk; so this aspect is already guaranteed

to be bounded.

2.2 Chunking as a Sequence of Transformations

Chunking is a variant of EBL, and it also can be characterized as a sequence of pseudo-

chunks given appropriate interpreters (as described above for EBL), and cost changes from

each transformation can be analyzed.

The cost of firing a rule is computed by the match cost of the rule; thus the cost

significantly depends on the match algorithm employed in the problem solving system.

20

As illustrated in [11], the match algorithms employed in speed-up learning can greatly

affect the utility of the learned knowledge. For example, good matchers Can help avoid a

part of the utility problem, and bad matchers can significantly contribute to the problem.

Therefore, it is important to understand the underlying match algorithm for the utility

analysis. Soar employs Rete [15] as its match algorithm. Rete is one of the most efficient

rule-match algorithms presently known.

The two subsections below review chunking and the Rete algorithm. The last subsec-

tion maps chunking into a sequence of pseudo-chunks, based on the first two subsections.

2.2.1 An overview of Chunking

In Soar, productions comprise the domain theory for EBL. Each production consists of a

set of conditions and a set of actions. Conditions test working memory for the presence

or absence of patterns of tuples, where each tuple consists of an object identifier, an

attribute, and a value. Actions create preferences (stored in the preference memory), each

of which specifies the relative or absolute worth of a value for an attribute of a given object.

Productions in Soar propose changes to working memory through these preferences, and

do not actually make the changes themselves. Changes to working memory are made

based on a synthesis of the preferences (by a fixed decision procedure). The cycle of

production firing, creation of preferences, and creation of working memory elements

(WMEs) underlie the problem solving [34].x Figure 2.8-(a) shows the problem solving

cycle. A problem solving episode is a sequence of rule firings and WME creations, as

shown in Figure 2.8-(b). This problem solving episode provides an input to the learning

system.

When a unique decision cannot be made because of either incomplete or inconsistent

preferences, the system reaches an impasse. It creates a subgoal to deal with the impasse.

In the subgoal created for the impasse, Soar tries to resolve the impasse. Whenever a

supergoal WME (called a result) is created in the subgoal, a new chunk is created. The

result corresponds to an instantiated goal concept in EBL. The chunk summarizes the rule

firings in the problem solving that produced the result in the subgoal.

'in fact, preferences not concerning the values of operators or states are processed as soon as they are
created. Operators and states are decided only when there is no more rule firings in the system.

21

Production
memory
(Rules)

Working
memory
(WMEs)

Match

(Rule ^\
Firing J

Preferences

(Decision ^
(WMEcreaBony

WMEs

(a) Problem solving

(b) Problem solving episode

Figure 2.8: Problem solving in Soar.

To create chunks, Soar maintains instantiated traces of the rules which have fired in

the subgoal. The operationality criterion in chunking is that the conditions in the chunk

should be generated from the supergoal objects. By extracting the part of the trace which

participated in the result creation, the system collects the supergoal (operational) elements

connected to the result. This process is called backtracing, and the instantiated trace is

called a backtrace; it corresponds to the proof tree (or explanation) in EBL. An example

of rule traces is shown schematically in Figure 2.9. The two striped vertical bars mark

the beginning and the ending of the subgoal. The WMEs to the left of the first bar exist

in the supergoal (prior to the creation of the subgoal). The WMEs between the two bars

are internal to the subgoal. The WME to the right of the second bar is the result of the

subgoal. Tl, T2, T3, T4, and T5 are traces of the rule firings. For example, Tl records a

rule firing which examined WMEs A and B, and generated a preference suggesting WME

L. In the example, T2, T3, T4, and T5 have participated in the result creation.

Instead of employing all of the rule traces which participated in the result creation,

chunking only extracts traces from task-definition rules (rules that directly propose values

of WMEs). Search-control rules, as distinguished from task-definition rules, suggest the

relative worth of the proposed values. The search-control rules are missing in chunking

22

Supergoal

WMEs
Subgoal process

D
: role trace (instantiation)

:WME

Figure 2.9: An example of the backtrace.

(and other EBL systems [43]) based on the assumption that they only affect the efficiency,

not the correctness of learned rules. This omission is intended to increase the generality

of the learned rules — reducing the number of conditions by leaving out search-control

rules means less restriction on the test of the applicability of the rules, and thus implies

increased generality. In the given example, chunking's backtrace includes T2, T4, and T5,

but excludes T3 (firing of a search-control rule).

The resulting supergoal elements are variablized. The variablization step in chunking

is different from the regression process in EBL in that it is performed by examining

the backtrace (explanation) rather than unifying condition-action pairs in the explanation

structure. All constants are left alone; they are never replaced by variables. All object

identifiers in the instantiations are replaced by variables; and in particular, all occurrences

of the same identifiers are replaced by the same variable. The variablized supergoal

elements are reordered by a heuristic algorithm, and become the conditions of the chunk.

23

Problem Solving

I Filtei
1 parti

Filter out traces which don't
cipate in the result creation

Rule traces participated
In the result creation

Remove search control

Figure 2.10: The sequence of transformations of chunking.

The action of the chunk is the variablization of the result. This sequence of transformations

of chunking is shown in Figure 2.10.

2.2.2 Rete match algorithm

In Soar, when a new rule is created, the conditions of the rule are compiled into a data

flow network called a Rete network. The Rete algorithm's efficiency stems primarily

from two key optimizations: sharing and state saving. Sharing of common conditions

in a production, or across a set of productions, reduces the number of tests performed

during match. State saving preserves the previous (partial) matches for use in the future.

Figure 2.11 illustrates a Rete network for a rule. Rete requires a total ordering on the

conditions of a rule for it to be compiled, so the rule's conditions are first ordered. For

example, the conditions in Figure 2.11 are ordered (Cl, C2, C3). Soar employs a heuristic

ordering algorithm to improve the match performance.

The network has two parts, the alpha part and the beta part. The alpha part performs

constant tests on WMEs, such as tests for at and yes. The outputs of these tests are

stored in alpha memories. Each alpha memory contains the set of WMEs that pass all

of the constant tests of a condition (or more than one, if it is shared). The beta part of

the network contains join nodes and beta memories. There also are negative nodes, into

24

Rete network for one production with condition:
Cl: (<state> Aat <locl>)
C2: (<locl> Anext <loc2>)
C3 : (<loc2> Agoal-point yes)

when Working Memory contains
Wl:(SlAatLl)
W2:(LlAnextL2)
W3: (LI Anext L3)
W4: (L2 Agoal-point yes)
W5:(L2AnextL3)
W6: (L4 Agoal-point yes)

WMEs

constant tests

alpha memory

join on <locl>

bete memory (w l, W2) (W l ,W3)

W4.W6

(goal-point, yes)

join on <loc2>

complete match f(Wl,W2,W4)

Figure 2.11: Rete network of a rule.

25

which negated conditions are compiled. A negative node passes a partial instantiation when

there are no consistent WMEs. Join nodes perform consistency tests on variables shared

between conditions, such as <locl>, which is shared between Cl and C2. Beta memories

store partial instantiations of productions, that is, instantiations of initial subsequences of

conditions. The partial instantiations are called tokens.

We use the number of tokens as an analytic tool for measuring the cost. Counting

tokens yields a measure that is independent of machines, optimizations, and implemen-

tation details. Also, it has been considered as standard practice in the match-algorithm

community that time per token is approximately constant [63, 61, 62, 10, l].2 So, as a

comparative measure of match cost, we will use the number of tokens, in addition to time.

2.2.3 Mapping chunking into a sequence of executable structures

In the sequence of transformations of chunking (Figure 2.10), each intermediate product

is non-executable. We can map those non-executable structures into executable structures

given appropriate interpreters, as discussed in subsection 2.1.2. Figure 2.12-(b) shows the

new sequence of transformations. As the sequence progresses the pseudo-chunks become

more like chunks and less like the problem solving. The next chapter illustrates the

sequence of transformations and its pseudo-chunks in detail. Also, cost changes through

the transformations are analyzed based on the new sequence.

2 Whenever an overhead (inefficiency) in token processing is found, more efficient algorithms have been
developed to eliminate the overhead. For example, a linear list representation of tokens (sequence of WMEs)
has been changed to a faster hash table. Also, Rete/UL has introduced elimination of unnecessary processing
in the join nodes which maintains constant time per token for learning a large number of rules [9]. The
match algorithm employed for this research is a state-of-the-art Rete algorithm without the optimization of
Rete/UL. However, the analysis of the number of tokens is still useful when not many rules are learned. Also,
we conjecture that the results can be applicable for learning large number of rules if the system employs
Rete/UL.

26

Problem Solving

Filter out traces which don't
i participate in the result creation

jRule traces participated
iiilrtithe^resült creation*:

Remove search control

(a) Chunking

Rule iiven Hules .Rete (Rule matcher)
(Domain Theory^ Rule firer

+ Decision procedure

Pseudo-chunk-'
"C

lnterpreter-1

Pseudo-chunk-2
lnterpreter-2

Pseudo-chunk-3
lnterpreter-3

Chunk
Rete (Rule matcher)

(b) Sequence of Interpretable Structures

Figure 2.12: Mapping the sequence of non-executable structures into a sequence of
executable pseudo-chunks.

27

Chapter 3

Transformational Analysis of Chunking

The chunking process can be characterized as a sequence of transformations, and each

intermediate product can be mapped into an executable structure (pseudo-chunk) by pro-

viding an appropriate interpreter, as described in Chapter 2. This chapter discusses each

transformation, and examines the pseudo-chunks, including their effects on cost, with an

example. The interpreters provided for pseudo-chunks in the analysis have the same ef-

fective measure of cost—number of tokens; the cost of each pseudo-chunk is determined

by counting the number of tokens generated during the match to produce the result. By

analyzing how the transformations alter the cost, the sources of added expensiveness are

revealed.

3.1 Mapping Intermediate Products to Pseudo-chunks

Figure 3.1 shows the mapped sequence of pseudo-chunks from the domain theory to

a chunk. This sequence corresponds to the sequence shown in Figure 2.12-(b). Each

transformation is the same as the transformations of the chunking process, except for the

last step. The last step, building a rule, is divided into two steps in the figure, to examine

the match algorithm's restriction on building a new chunk. (Details are given later.)

The pseudo-chunks are generated by mapping the original intermediate products into

executable structures by providing an appropriate interpreter. Each pseudo-chunk can be

interpreted (by its interpreter) and can produce the same result as the problem solving,

given the same initial WMEs. The sequence on the right schematically shows the structural

changes through the transformations. This section provides an abstract description of each

transformation. (Details will be given in the sections following, along with an example.)

28

Given rules (domain theory) Rule matcher +
Rule firer +
Decision procedure

Structural Changes

Filter out rule urines which don't
participate in result creation

rule

Problem-SpMng Chunk
(PS-chunk)

~E
lnterpreter-1

Remove search-control

result

Explanation-based Chunk *
 (E-chunk)

T
lnterpreter-2

Variablize

lnterpreter-3 fl-chunk)
i

r Eliminate intermediate rule firings

Unified Chunk
(U-chunk) lnterpreter-4

i

'
Linearize

Chunk
Rule matcher

1

D—O

Figure 3.1: A sequence of transformations from the domain theory to a chunk.

The first node in the sequence is the domain theory. The interpreters for the domain
theory are the rule matcher, the rule firer, and the decision procedure. The interpretation

generates a sequence of rule firings and new WMEs, given the initial WMEs, and produces

a problem solving episode.

The first transformation is to eliminate the rule firings that do not participate in the

result creation from the problem solving episode. The resulting structure can be mapped

to a pseudo-chunk, called a PS-chunk (Problem-Solving chunk). Given its interpreter, it

reproduces the problem solving episode, excluding unnecessary rule firings.

The second transformation removes search-control traces in the rule traces. Chunking

employs only traces from task-definition rules, and omits those from search-control rules,

as explained in Section 2.2. After the search-control traces are excluded from the problem

solving episode, an E-chunk (Explanation-based chunk) is formed from the structure by

providing an appropriate interpreter.

29

The third step is applying the variablization process. The variablization step in

chunking is performed by examining the backtrace (explanation), as explained in Sec-

tion 2.2. The pseudo-chunk generated from the variablized structure is called the I-chunk

(instantiation-based chunk).

The fourth step is unifying the substructures into a unit. The separate rules in the I-

chunk have to be unified into a single structure to produce one rule. This unified structure

is called a U-chunk (unified chunk).

Finally, the fifth step is to create a new chunk based on the U-chunk. Because the rule

compiler (Rete network) requires a linear ordering of the conditions, the graph structure in

the U-chunk — which reflects the structure of the rule firings during the problem solving

— is linearized into a total ordering, and then conditions are reordered via a heuristic

algorithm to improve the match performance.

As noted earlier, the building of a new chunk from the I-chunk is divided into two

steps, though the the sequence shown in Figure 2.10 does not distinguish this division.

The intermediate step is added to analyze the effect of the rule matcher's restriction on

the rule form. Soar's rule matcher, i.e., Rete, assumes a total ordering of the conditions,

and the graph structure of an I-chunk is forced to be totally ordered. The intermediate

structure (U-chunk) is a unified structure (one rule) that is independent of this restriction.

It maintains the graph structure of the I-chunk. By dividing the step of building a new

chunk into two sub-steps, we can separate the cost change by unifying (creating one rule

from the I-chunk) and the cost change by modifying the rule form to be compiled into

Rete.

The following sections describe each pseudo-chunk and its interpreter in detail. These

discussions are presented in the context of a simplified Grid task. Figure 3.2 shows a

part of the Grid task; that of evaluating if point C is reachable from point A. There are

thirty WMEs which record the connections among points and the cars (such as VI and

V2) available to reach the points. In the example, a symbol starting with an upper-case

letter is an identifier, and a symbol starting with a lower-case letter is a constant In this

simplified task, the full connections among the points are given only in part. Also, there is

only one car available to reach each point. There are four rules to begin within this task.

For brevity, rules and WMEs describing Soar's architectural activities are not shown. The

details of these activities are given in Chapter 4.

30

Rule Rl creates a candidate operator whenever there is an adjacent point to the current

point The plus sign (+) in the action indicates that an acceptable preference is created

for the operator, and it becomes one of the candidate operators. Thus, Rl is one of the

task-definition rules that directly propose candidates. Rule R2 can create best preferences,

which guide the problem solver to pick the operators that go in the right direction. The

greater-than sign (>) in the action represents that the operator is the best option among

the candidates. Rule R3 applies the selected operator to the state, and changes the

current location to the new location indicated by the operator. Finally, rule R4 detects the

achievement of the goal by checking if the current location is the same as the given goal

point.
According to the EBL specification, the given rules form the domain theory and the

given WMEs form a training example. Also, the goal concept is success (i.e., the goal

point is reachable from the the current position).

3.2 Interpreting the Domain Theory

A problem solving episode, i.e., the input to chunking, can be mapped to the domain

theory by providing interpreters. The domain theory is interpreted by the rule matcher,

the rule firer, and the decision procedure. The interpretation generates a sequence of rule

firings and new WMEs, given the initial WMEs, and produces a problem solving episode.

Figure 3.3 shows the sequence of rule firings and WME creations in the problem solving

episode. The initial sequence of rule firings of Rl (operator proposal), R2 (search control),

and R3 (operator application) is marked as (1) in the figure. The rule firings move the

current position from A to B. Also, the subsequent rule firings of Rl, R2, and R3 (marked

as (2)) moves the current position to C. Finally, R4 detects the achievement of the goal. In

the figure, a trivial WME creation is the creation of just one candidate and the creation of

a WME from the candidate, as opposed to the WME creations based on other preferences

as well as the proposed candidates.
In the graphical representation of the problem solving episode (in Figure 3.3), each

circle represents a rule trace, given the WMEs linked to the left of the circle. For example,

the leftmost circle in the figure shows that Rl has been fired twice and has created two

preferences (PI and P2). The two preferences propose candidate operators that go to B

and to D, respectively. The firings of task-definition rules (rules that directly propose

31

G H I

D E F

1 ** '*"l
A1 f B d

Wl:(AAnextB)
W2: (A Anext D)
W3:(AArightB)
W4:(BAnextA)
W5:(BAnextC)
W6:(BAnextE)
W7:(BArightC)

W8:(CAnextF)
W9:(CAnextB)

W10:(DAnextA)
Wll:(DAnextE)
W12:(DAncxtG)

W27:(GlAstateS)
W28:(SAatA)
W29: (Gl Agoal-pointGP)
W30:(GPAatC)

(a) Given WMEs

W13:
W14:
W15:
W16:
W17:
WI8:
W19:
W20:
W21
W22:
W23:
W24:

W25:
W26:

(E Anext B)
(EAnextF)
(EAnextH)
(E Ancxt D)
(G Anext D)
(GAnextH)
(BArcachable-byVl)
(DAreachablc-byVl)
(A Areachable-by V2)
(CAreachable-byV2)
(EAreachable-byV2)
(GAreachable-byV2)

(VI Anamecar)
(V2 Aname car)

(Rl
(goal <g> ^tate <s>)
(<s> Aat <locl>)
(<locl> Anext <loc2>)
(<loc2> Areachable-by <vehicle>)
(<vehicle> Aname <n>)
—>
(<g> operator <loc2> +))

(R2
(goal <g> ^tate <s>)
(<s> Aat <loc3>)
(<loc3> Aright <loc4>)
(<g> Aoperator <loc4> +)
—>
(<g> Aoperator <loc4> >))

(R3
(goal <g> ^tate <s>)
(<g> operator <loc5>)

(<s> ^t <loc5>)

(R4
(goal <g> ^tate <s>)
(<g> Agoal-point <gp>)
(<gp>Aat<loc6>)
(<s> Aat <loc6>)
—>
(<s> Asuccess <loc6>))

; (operator proposal rule)
; if the location of the current state is
; <locl>, and <locl> is adjacent to <loc2>,
; and <loc2> is reachable by some vehicle
; whose name is <n>, then
; create a candidate operator to go to <loc2>

; (search-control rule)
; if the current location is <loc3>,
; and <loc4> is on the right, and
; there is a candidate operator to go to
; <loc4>, then try the operator first than others

; (operator application)
; the selected operator goes to <loc5> then
; change the current location to <loc5>

; (detection of success)
; if the current location is <loc6> and
; it is the goal point, then the task is accomplished

(b) Given rules

Figure 3.2: A simplified Grid task.

32

G H I

D E F

A B C

W7._-~~••

"7®-^" : Trace of a task-definition rule

^> D-^- : Decision

~K.F$-»** : Trace of a search-control rule

(1) (2)

rule
firing

(R1.R2)

WME I
creation

rule
firing
(R3)

rule
firing

(R1.R2)

WMF rule I I rule I
creation Mn3 * «"'"9 * creation (R3)* (R4)

* : trivial WME creation

Preferences and WMEs created during problem solving

PI: (Gl operatorB+) W31: (Gl "operator B) P4: (Gl AoperatorC+)
P2:(G1 "operator D+)
P3:(G1 "operator B>)

W32: (S "at B) P5:(G1 AoperatorE+)
P6: (Gl "operator A+)
P7:(G1 "operator C>)

W33:(G1 "operator C)
W34:(S"atC)
W35: (S "success Q

Figure 3.3: Problem solving episode excluding unnecessary rule firings.

33

values of WME) are represented as solid circles, while gray circles indicate search-control

rule firings. Each capital letter D represents a synthesis of the preferences by the decision

procedure. A connection from one rule to another rule through a decision D, means that

preferences created by the former rule are synthesized by a decision to create a WME, and

the created WME is matched to a condition of the latter rule. For example, preferences

PI, P2, and P3 participate in a decision which creates W31, and W31 is matched to a

condition of R3. The trivial decision steps are not shown in the figure for brevity. Also,

the acceptable preferences that aren't for the operators are not explicitly,represented..

Actual interpretation of the domain theory (or problem solving) normally includes other

rule firings which are not linked to the result creation; however, these are not shown here.

The details of the match process are shown in Figure 3.4. The matches between the

WMEs and the rules are based on the Rete algorithm explained in subsection 2.2.2. A

number in front of a rule condition denotes the number of tokens (partial instantiations)

generated at that condition in the problem solving episode (as shown in Figure 3.3). The

tokens are generated by testing the consistency (joining) between the instantiations of the

previous conditions and the WMEs matching the current condition (i.e., WMEs in the

condition's alpha memory). For example, Rl fires twice in step (1) as follows. The first

condition (goal <g> Astate <s>) is instantiated by W27; that is, (W27) is the token of the

first condition. Given the token of the first condition, and the instantiations of the second

condition (W28 and W30), the consistency test across the two conditions creates one token:

(W27.W28). Also, given the token from the first two conditions and the instantiations

of the third condition, the consistency test across the first two conditions and the third

condition creates two new tokens: (W27,W28,W1) and (W27,W28,W2). Each of them

is consistent with one of the instantiations of the fourth condition, and Rete creates two

more tokens: (W27,W28,W1,W20) and (W27,W28,W2,W22). Finally, two tokens are

created for the last condition: (W27/W28,W1,W20,W25) and (W27,W28,W2,W22,W25).

The Rete algorithm creates two instantiations of Rl based on these tokens, and each

instantiation creates a new candidate operator by executing the action. The total number

of tokens created for these rule firings is 8.

A capital letter S in front of a rule condition indicates sharing of match effort with other

rules which have the same patterns of conditions. For example, the instantiations from the

first two conditions of rule Rl and the first two conditions of R2 are shared because they

have the same patterns of variables tests and constant tests. A part of Rete's efficiency

34

Step(1)

(Rl
1 (goal <g> ''state <s>)
l(<s>Aat<locl>)
2 (<locl> ^ext <loc2>)
2 (<loc2> Areachable-by <vehicle>)
2 (<vehicle> "name <n>)
->
2 (<g> operator <loc2> CAND))

(R2
S (goal <g> "state <s>)
S (<s> Aat <loc3>)
1 (<doc3> Aright <loc4>)
1 (<g> operator <loc4> CAND)
—>
1 (<g> operator ■doc4> BEST))

Decision process

(R3
S (goal <g> Astate <s>)
1 (<g> Aoperator<loc5>)
—>
1 (<s> *at <doc5>))

(W27)
(W27.W28)
(W27.W28.W1) (W27.W28.W2)
(W27.W28.W1.W19) (W27.W28.W2.W20)
(W27.W28.W1.W19,W25)(W27,W28,W2,W20.W25)

=> create PI, P2

(W27)
(W27.W28)
(W27.W28.W3)
(W27.W28..W3.P1)

=> create P3

PI .P2.P3 => create W31

(W27)
(W27.W31)

=> create W32

Step (2)

(Rl
S (goal <g> ^state <s>)
1 (<s>Aat<locl>)
3 (<locl> Anext <doc2>)
3 (<doc2> Areachable-by <vehicle>)
3 (<vehicle> Aname <n>)
—>
3 (<g> operator <doc2> CAND))

(R2
S (goal <g> ''state <s>)
S (<s> Aat <loc3>)
1 (<doc3> Aright <loc4>)
1 (<g> Aoperator <loc4> CAND)
—>
1 (<g> Aoperator<loc4> BEST))

Decision process

(R3
S (goal <g> Astate <s>)
1 (<g> "operator <Ioc5>)
—>
1 (<s> "at <loc5>))

(R4
S (goal <g> Astate <s>)
1 (<%> "goal-point <gp>)
1 (<gp> Aat <loc6>)
1 (<s> "at <loc6>)
->
1 (<s> Success <loc6>))

(W27)
(W27.W32)
(W27.W32.W4) (W27.W32.WS) (W27.W32.W6)
(W27.W32.W4.W21) (W27.W32.W5.W22) (W27.W32.W6.W23)
(W27.W32.W4.W21 .W26) (W27.W32.W5.W22.W26)
(W27.W31 .W6.W23.W26)

=> create P4, P5.P6

(W27)
(W27.W32)
(W27.W32.W7)
(W27.W32..W7.P4)

=> create P7

P4.P5.P6.P7 ==> create W33

(W27)
(W27.W33)

=> create W34

(W27)
(W27.W29)
(W27.W29.W30)
(W27.W29.W30.W33)

==> create W35

Figure 3.4: Tokens created during the problem solving.

35

stems from this type of sharing of the tokens. (The other source of efficiency is the state

saving as explained in subsection 2.2.2.) The total cost of the problem solving episode

can be computed by summing the number of tokens from the rule firings (irrelevant firings

as well as relevant firings), and it is 27 in this case.

3.3 Filtering Out Unnecessary Rule Firings (=^ PS-chunk)

As a first step toward producing a chunk, unnecessary rule firings that did not participate

in the result creation can be filtered out from the problem solving episode. For the

given example, this transformation eliminates all other rule firings, if there were any,

beyond those shown in Figure 3.5. The resulting structure can be mapped to a PS-chunk

by providing an interpreter for it. The interpretation of the resulting PS-chunk looks

similar to the original problem solving episode, aside from the missing unnecessary parts.

However, its processing differs significantly from the initial problem solving episode in

that there are no global memories, such as preference memory and working memory, as

well as global buses among the rule firings and WME creations. The interpreter only

provides local communications among the rules firings and WME creations based on the

problem solving episode. For example, a WME creation (decision) is connected to a rule

match only when the original problem solving has a decision where a WME is created

by the decision and the created WME is matched to the conditions of the rule. The cycle

of rule firings and WME creations in the problem solving episode is linearized into an

enclosed sequence of rule firings and WME creations.

In order to build a PS-chunk, for each instance of a rule firing, a copy of the original

rule is created. For example, for the first firing of the rule Rl, a copy Rl-1 is employed.

The rules in the PS-chunk are closed off from intermediate WMEs generated outside of

this structure. For example, the link between R3-1 and Rl-2 through W32 means that no

other WMEs except for those created by R3-1 are matched to the condition of Rl-2. Also,

the WMEs created from R3-1 are not exposed to the matches of other rules. The only parts

of a PS-chunk that are exposed to the full set of WMEs, are the conditions matched to

the given initial WMEs in the problem solving episode, and the result creation. However,

the interpretation of the PS-chunk does not differ in how it uses such optimizations as

sharing and state saving. For example, the tokens from the first two conditions of R2-1

are still shared with the tokens from the first two conditions of Rl-1. The key difference

36

W35

Figure 3.5: A trace of a PS-chunk. A PS-chunk is created by eliminating unnecessary rule
firing and encapsulating the problem solving activity into a unit.

between a PS-chunk and a normal chunk is that matching a PS-chunk requires replaying

(part of) a problem solving episode (by rule firings and intermediate WME creations),

while matching a normal chunk requires just one rule match. Either can create the result

in a similar circumstance. We implemented such an interpreter for PS-chunks.

The cost (number of tokens) of a PS-chunk is bounded by the cost of problem solving.

If there were unnecessary rule firings in the problem solving, as is usually the case, the

cost of a PS-chunk would be strictly less than the cost of the problem solving. Otherwise,

the cost would be the same as that of the problem solving. In the given example, there are

no unnecessary rule firings, and the cost remains unchanged.

3.4 Removing Search Control (=> E-chunk)

Figure 3.5 contains all the rule firings involved in the result creation. However, chunking

employs only traces from task-definition rules. The search-control rules are missing in

chunking to increase the generality of the learned rules (as explained in Section 2.2).

Figure 3.6 shows the E-chunk created from the PS-chunk. The copies of the search-

control rule R2 (R2-1 and R2-2) and the nodes representing the decisions are gone, and

only the copies of the task-definition rules are maintained in the structure. That is,

acceptable preferences are turned directly into WMEs. While interpreting the E-chunk,

all candidates proposed by Rl-1' and Rl-2' become WMEs without being filtered by the

37

W29

W30

W4.W5.W6,
W10.W11.W12

W21.W22.W23'
W24

R4-1'

W35

WMEs created while matching E-chunk
W31:(G1 operator B) W33:(G1 «operatorQ W34:(SAatQ W35: (S «success Q
W36:(G1 «operator D) W38:(G1 «operator E) W41:(SAatE)
W32:(S*atB) W39:(G1 «operator A) W42:(S«atA)
W37:(S«atD) W40:(G1 «operator G) W43:(S«atG)

Figure 3.6: A trace of an E-chunk. An E-chunk is created by eliminating search control
in a PS-chunk.

search control. This structure can be mapped onto the normal backtrace in chunking (proof

tree or explanation in EBL). An E-chunk is identical to an EBL explanation structure. The

interpreter for the E-chunk is similar to the interpreter for the PS-chunk except that the

former does not have to perform decisions.

The consequence of eliminating search control is that the interpretation of the E-chunk

is not constrained by the path actually taken in the problem space, though it will still at

least generate the right answer. The interpretation can perform an exponential amount

of search even when the original problem-space search is highly directed (by the control

rules), as described in Chapter 1. In the above example, without constraining the operator

to the best candidate — which goes to the right — the number of tokens in the match of

rule Rl-2 increases from 10 to 20, as shown in Figure 3.7. Overall, the total number of

tokens increases from 27 to 37.

One promising way of avoiding this problem, is to incorporate search control in

chunking (or just not to drop it) [29]. By incorporating search control in the explanation

structure, the match process for the learned rule can focus on the path that was actually

followed. The preservation of the search control requires modifications of the subsequent

transformations. The details of how to design and implement these modifications are

explained in Chapter 5.

38

(1)

(Ri-r
1 (goal <g> "state <s>)
1 (<s> "at <locl>)
2 (<Iocl> Anext <Ioc2>)
2 (<loc2> Areachable-by <vehicle>)
2 (<vehicle> Aname <n>)
->
2 (<g> Aoperator <Ioc2>))

(R3-1'
S (goal <g> "state <s>)
2 (<g> "operator <Ioc5>)
->
2 (<s> Aat <loc5>))

(2)

(Rl-2'
5 (goal <g> "state <s>)
2(<s>*at<Iocl>)
6 (<Iocl> "next <loc2>)

6 (<3oc2> "reachable-by <vehicle>)

6 (<vehicle> "name <n>)
->
4 (<g> "operator <loc2>))

(R3-2'
5 (goal <g> "state <s>)
4 (<g> "operator <loc5>)
->
4 (<s> "at <loc5>))

(R4-1'
5 (goal <g> "state <s>)
1 (<g> "goal-point <gp>)
1 (<gp> "at <loc6>)
1 (<s> "at <loc6>)
—>
I (<s> "success <loc6>))

(W27)
(W27.W28)
(W27.W28.W1) (W27.W28.W2)
(W27.W28.W1.W19) (W27.W28.W1.W20)
(W27.W28.W1,W19.W25)(W27.W28.W1.W20.W25)

=> create W31.W36

(W27)
(W27.W31) (W27.W36)

==. create W32.W37

(W27)
(W27.W32) (W27.W37)
(W27.W32.W4) (W27.W32.W5) (W27.W32.W6)
(W27.W37.W10) (W27.W37.W11) (W27.W37.W12)
(W27.W32.W4.W21) (W27.W32.W5.W22) (W27.W32.W6.W23)
(W27.W37.W10.W21) (W27.W37.W11.W23) (W27.W37.W12,W24)
(W27.W32.W4.W21.W26) (W27.W32.W5.W22.W26) (W27.W32.W6.W23.W26)
(W27.W37.W10.W21.W26) (W27.W37.W11.W23.W26) (W27.W37.W12.W24.W26)
==> create W33.W38.W39.W40

(W27)
(W27.W33) (W27.W38) (W27.W39) (W27.W40)

==> create W34.W41.W42.W43

(W27)
(W27.W29)
(W27.W29.W30)
(W27.W29.W30.W34)

==> create W35

Figure 3.7: Tokens created while matching (interpreting) E-chunk.

39

3.5 Variablize (=>I-chunk)

The variablization step in chunking is performed by examining the backtrace (explanation)

that is equivalent to the E-chunk trace. All constants are left alone; they are never replaced

by variables. All object identifiers in the instantiations are replaced by variables; in

particular, all occurrences of the same identifiers are replaced by the same variable. Since

E-chunks consist of rules rather than instantiations, we can model chunking's variablization

step as the strengthening of constraints on the match, rather than as the weakening of them.

If a variable is instantiated as a constant, it is replaced by that constant. If a variable is

instantiated by an identifier, it remains as a variable, but may possibly undergo a name

change. Particularly, all variables instantiated by the same identifier are replaced by the

same variable. For example, the variables in Figure 3.6 are constrained, as shown in

Figure 3.8. The interpreter for the I-chunk is the same as the interpreter for the E-chunk.

With the exception of the differences in the variable names, the structures of the I-chunk

and the E-chunk are the same.

This transformation can overspecialize learned rules when distinct variables in the

original rules accidentally happen to match the same identifier. For example, although

variable <nl> in Rl-1' and variable <n2> in Rl-2' (Figure 3.6) are instantiated by the

same constant car and changed to the same constant, they can correctly be generalized as

different variables (Figure 3.8). However, from the perspective of cost, this transformation

does not increase the number of tokens. The number of tokens generated should remain

the same, or be reduced by the introduced constraints. In the given example, the cost

remains the same.

3.6 Eliminating Intermediate Rule Firings (=^ U-chunk)

This step unifies the separate rules in the variablized structure (I-chunk) into a single

rule. Figure 3.9 shows the result of unifying the example I-chunk into the corresponding

U-chunk. Although Rl-1"', R3-1'", Rl-2"', R3-2"', and R4-1"' still have their own

identifiable conditions in the U-chunk, there are now no intermediate rule firings. The

boundaries between the rules are eliminated by removing the intermediate processes of

WME creation. In lieu of these processes, the instantiations generated by matching the

earlier rules in the firing sequence (i.e., the tokens produced by their final conditions) are

40

R4-1"

-W35

W26
W4.W5.W6,
W10.W11.W12

-W34.W41,
i-2" W42.W43

R1-2"
W21.W22.W23T ^■jTir--

W24 ^^-^ "
i^gs/ V»~W33,W38.
 h-S W39.W40

w27 ~f^zZ^Z ra-1"
W25v \ " ~~~?0_,

W28 M^i;1 s*^
;$X. >*-W31.W36

W1.W2 'V*-'

»-W32.W37

W19.W20

(Rl-1"
1 (goal <g> Astate <s>)
1 (<s> "at <locl>)
2 (<locl> Anext <loc2>)
2 (<Ioc2> "reachable-by <vl>)
2(<vl> "namecar)
->
2 (<g> operator <loc2>))

(Rl-2"
5 (goal <g> Astate <s>)
2 (<s> 'at <Ioc2>)
6 (<loc2> Anext <loc3>)
6 (<loc3> "reachable-by <v2>)
6 (<v2> Aname car)
—>
4 (<g> 'operator <loc3>))

(R3-1"
S (goal <g> ''state <s>)
2 (<g> operator <loc2>)

(R3-2"
S (goal <g> "state <s>)
4 (<g> "operator <loc3>)

2 (<s> Aat <loc2>)) 4 (<s> Aat <Ioc3>))

(R4-1"
S (goal <g> Astate <s>)
1 (<g> Agoal-point <gp>)
1 (<gp> Aat <loc3>)
1 (<s> "at <Ioc3>)

1 (<s> Asuccess <Ioc3>))

Figure 3.8: A trace of an I-chunk. An I-chunk is created by constraining variables (by
instantiations) in an E-chunk.

41

W4.W5.W6
W10.W11.W1

W21.W23.W19.
W24

(Rl-1'"
1 (goal <g> Astate <s>)
1 (<s> Aat <locl>)
2 («docl> Anext <loc2>)
2 (<loc2> Areachable-by <vl>)
2(<vl> Anamecar)

(R3-1'"
S (goal <g> Astate <s>)
2 (Rl-1)

(Rl-2'"
5 (goal <g> Astate <s>)
2(R3-1'")
6 (<loc2> Anext <loc3>)
6 (<loc3> Areachable-by <v2>)
6 (<v2> Aname car)

(R3-2'"
5 (goal <g> Astate <s>)
6 (Rl-2'")

(R4-1'"
S (goal <g> Astate <s>)
1 (<g> Agoal-point <gp>)
1 (<gp> Aat <loc3>)
1 (R3-2'")
->
1 (<s> Asuccess <loc3>))

Figure 3.9: A trace of a U-chunk. A U-chunk is created by eliminating intermediate rule
firings in an I-chunk.

passed directly to the match of the later rules. In effect, this step replaces the intermediate

WMEs with the instantiations that created the WMEs. For example, one of R3-l""s

conditions receives the instantiations of Rl-1"' directly as intermediate tokens, rather than

receiving WMEs created from the instantiations. Thus, Rl-1'", R3-1'", Rl-2'", R3-2'",

and R4-1"' are no longer (separate) rules. Here, they are called the subrules. A condition

which matched intermediate WMEs created by a rule in the I-chunk, is replaced by a

nonlinear condition testing the subrule that is built for the rule. (What makes a condition

nonlinear is explained in the next paragraph.) When a subrule is tested multiple times by

multiple nonlinear conditions, they share the same tokens created for the subrule.

To be able to properly interpret this structure (to measure the cost change through the

transformation), an extension is required to the match algorithm. The traditional form of

Rete algorithm, as shown in Figure 2.11, requires a linear match network, in the sense

that a total ordering must be imposed on the conditions to be matched; such as Cl, then

42

C2, and then C3. In (linear) Rete, each join node checks the consistency of a token

(a partial instantiation) and a WME, with each token itself being a sequence of WMEs,

each of which matches one condition. Since the intermediate WMEs are replaced with

instantiations, whenever the current condition receives instantiations instead of WMEs,

testing the consistency (by njoin node) between the tokens of previous conditions and

the current (nonlinear) condition should join two tokens, instead of joining a token and

a WME. That is, U-chunks require the ability to perform nonlinear matches, in which

conditions are matched hierarchically via join nodes that compare pairs of tokens, rather

than just a single token and a WME. They also require the ability to create hierarchically

structured tokens (when pairs of incoming tokens are consistent); that is, a token must

now be a sequence of WMEs or tokens (instantiations of a subrule). An extension of

Rete, called nonlinear Rete [56, 38] has been implemented to interpret this intermediate

structure.
An example nonlinear Rete network is given in Figure 3.10. In standard Rete, each

right-hand memory is an alpha memory. In nonlinear Rete, the right-hand memory is

sometimes a beta memory rather than an alpha memory. For example, the starred right-

hand memory is a beta memory containing the instantiations of the subrule R-S1. In R-S2,

joining between the first condition and the second condition is performed by comparing

two tokens instead of a token and a WME. The two optimizations of Rete, sharing and

state saving, are still preserved. For example, two subrules can be shared, as long as they

have the same pattern of variables and constants. Also, the state saving keeps the previous

(partial) matches for use in the future.

Figure 3.11 shows the details of how tokens are created while matching (interpreting)

the U-chunk. Instantiations of subrule Rl-1"' are provided as the instantiations of the

second condition of R3-l"'. The consistency checking between the instantiations of the

first condition and WMEs created by firing Rl-1"' is replaced by a consistency checking

between the instantiations of the first condition and the set of instantiations of Rl-1'". This

consistency check is based on the common variables between the first condition and the

subrule Rl-1"'. In this case, there are two common variables, <g> and <s>, and the join

node checks the equality of the instantiations of these variables. Also, the instantiations

of R3-1"' are provided as the instantiations of the second condition of Rl-2'" in the same

way. This process continues until R4-1'" is instantiated.

43

(R-Sl
1 (goal <g> 'state <s>)
l(<s>Aat<Iocl>)
2 (<locl> "next <Ioc2>)

(R-S2
S(goal<g>*state<s>)
2 (<g> 'operator <Ioc2>)

(goal <g> 'state <s>)
(<s> 'at <locl>)
(<locl> 'next <loc2>)

(W26)
(W26.W27)
(W26.W27.W1) (W25.W26.W2)

(W26)
(W26. (W26.W27.W1)) (W26,(W26,W27.W1))

WMEs

alpha memory W25

constant tests Q(goal,state) O (at) TJ (next)

W26 | |W1.W18 1

(W25.W26.W1)
(W25.W26.W2)

join on <locl>
*
beta memory

\s
v' join on <g> and <s>
y

(W25,(W25.W26,W1))
(W25.(W25. W26.W2))

Figure 3.10: An example nonlinear Rete network.

44

(Rl-1'"
1 (goal <g> Astate <s>)
1 (<s> ^ <docl>)
2 (<locl> Anext <doc2>)
2 (<loc2> Areachable-by <vl>)
2 («vl> Anamc car)

(W27)
(W27.W28)
(W27.W28.W1) (W27.W28.W2)
(W27.W28.W1.W19) (W27.W28.W2.W20)
(W27.W28.W1.W19.W25)(W27.W28,W2",W2ff,W25)

(R3-1"
S (goal <g> Astatc <s>)
2 (Rl-1'")

(W27)
(W27, (W27.W87.W1.W19.W25)) (W27.(W27.W28.W2.W20,W25))

(Rl-2'"
5 (goal <g> Astate <s>)

2(R3-1'")

6 (<loc2> Anext <loc3>)

6 (<loc2> Arcachable-by <vl>)

6 (<vl> Aname car)

(W27)
(W27, (W27. (W27.W28.W1.W19.W25)))

(W27, (W27, (W27.W28.W2.W20.W25)))
(W27, (W27. (W27,W28,W1,W19,W25)), W4)

(W27, (W27. (W27,W28,W1,W19,W25)). W5)
(W27. (W27. (W27.W28.W1.W19.W25)), W6)
(W27. (W27, (W27.W28.W2.W20.W25)), W10)
(W27, (W27, (W27.W28.W2.W20.W25)). W11)
(W27. (W27. (W27.W28.W2.W20.W25)), W12)

(W27. (W27, (W27.W28,W1,W19,W25)). W4.W21)
(W27. (W27, (W27.W28.W1.W19.W25)). W5.W22)
(W27. (W27, (W27.W28.W1.W19.W25)), W6.W23)
(W27. (W27, (W27,W28,W2,W20,W25)). W10.W21)
(W27. (W27. (W27.W28.W2.W20.W25)). W11.W23)
(W27, (W27. (W27.W28.W2.W20.W25)), W12.W24)

(W27. (W27. (W27,W28,W1,W19,W25)). W4.W21.W26)
(W27. (W27. (W27.W28.W1.W19.W25)). W5.W22.W26)
(W27. (W27. (W27.W28.W1.W19.W25)). W6.W23.W26)
(W27. (W27. (W27.W28.W2.W20.W25)). W10.W21.W26)
(W27. (W27. (W27.W28.W2.W20.W25)). W11.W23.W26)
(W27, (W27. (W27.W28.W2.W20.W25)). W12.W24.W26)

(R3-2'"
5 (goal <g> Astate <s>)
6 (Rl-2'")

(W27)
(W27,(W27, (W27. (W27,W28,W1,W19,W25)), W4.W21.W26))

(W27.(W27, (W27. (W27.W28.W1.W19.W25)), W5.W22.W26))
(W27,(W27, (W27. (W27.W28.W1.W19.W25)). W6.W23.W26))
(W27,(W27, (W27. (W27.W28.W2.W20.W25)) .W10.W21.W26))
(W27,(W27, (W27. (W27.W28.W2.W20.W25)), W11.W23.W26))
(W27.(W27, (W27. (W27.W28.W2.W20.W25)) , W12.W24.W26))

(R4-1"'
S (goal <g> Astate <s>)
1 (<g> Agoal-point <gp>)
1 (<gp>Aat<loc3>)
1 (R3-2'")

(W27)
(W27.W29)
(W27.W29.W30)
(W27.W29.W30,

(W27, (W27. (W27. (W27.W28.W1 ,W19),W25), W5, W22.W26)))

Figure 3.11: Tokens created while matching U-chunk.

45

(R4-1'"
(goal <g> Astate <s>)
(<g> Agoal-point <gp>)
(<gp> Aat <loc3>)
(<s> Aat <loc3>)

(goal <g> "state <s>)
(<g> operator <doc3>)

(goal <g> "state <s>)
(<s> Aat <loc2>)

(goal <g> Astate <s>)
(<g> operator <loc2>)

(goal <g> ^tate <s>)
(<s> ^ <locl>)
(<locl> Anext <loc2>)
(<loc2> Areachable-by car)

(<loc 1> Anext <loc3>)
(<loc2> Areachable-by car)

->
(<s> Asuccess <Ioc3>))

Figure 3.12: The whole structure of the U-chunk.

Rule WMEs Rule WMEs

(<al>Axl <a2>)
«a> Ax <b» (1 Ax 3) (1 Ax 4) {<a2> Ax2 ^^
(Ay<c>) (3Ay5)(4Ay5)
-> 1

3<>4
5

(<a3> Ax3 <a4>)

(<a> Az <c>)
(<an> Axn <an+l>)
—>
(<al> Ay<an+1>)

(a) An example case of increased tokens (b) A potential worst case for U-match

Figure 3.13: Number of tokens can increase in a U-chunk.

R4-1"' in Figure 3.12 shows the whole structure of the U-chunk. The level of indenta-

tions shows the level in the problem-solving structure. For example, the deepest indented

conditions represent Rl-1'" which appeared first (leftmost) in Figure 3.9.

Cost problems are introduced in this transformation because the number of instantia-

tions of a rule can be greater than the number of WMEs created from those instantiations.

For example, given the rule and WMEs in Figure 3.13-(a), two instantiations — (1 Ax 3)

(3 Ay 5) and (1 Ax 4) (4 Ay 5) — are created. Because these two instantiations generate

the same bindings for variables <a> and <c>, only one tuple (WME) is generated in the

problem solving. Working memory is a set in Soar (and other Ops-like languages), and

does not include duplicate elements. Thus, the number of tokens is increased after the

WMEs are replaced by the instantiations.

46

Our grid task also suffers from this problem. In the I-chunk, the six instantiations of

Rl-2" create four WMEs since there are only four points that can be reached by moving

two steps from A. The four WMEs are then matched to the second condition of R3-2".

However, in the U-chunk, the six instantiations are directly used, and create two more

tokens. This increases the total number of tokens from 37 to 39. A worst case can

arise when the working memory is structured as in Figure 3.13-(b). While the number of

instantiations is exponential in the number of conditions, the number of WMEs is only

one.

Our proposed solution to this problem is to preprocess instantiations before they are

used so that the number of tokens passed from a substructure of a U-chunk is no greater

than the number of WMEs passed in the corresponding I-chunk. This could potentially be

done either by grouping instantiations that generate the same WME or by selecting one of

them as a representative. The details of this solution and the impact of this modification

to the subsequent transformations are given in Chapter 5.

3.7 Linearizing (=> Chunk)

As described in subsection 2.2.2, after a chunk is created, the operational conditions are

compiled into a Rete network for future matches of the learned rule. In the process, the

hierarchy in the U-chunk (which reflects the structure of the rule firings during problem

solving) is linearized into a total ordering. Conditions are then reordered via a heuristic

algorithm to improve the match performance. For example, the nonlinear structure in

Figure 3.9 can be linearized to the structure in Figure 3.14.

The critical consequence of this step (linearization and condition ordering) is that

the match structure of the learned rule is no longer constrained by the problem-solving

structure. That is, how instantiations of different conditions are combined, can be differ-

ent from how they were combined during the problem solving. This structural change

introduces three different sources of expensiveness. The first source arises directly from

the linearization of the graph structure. By combining sub-graphs (of the subrules) to-

gether, some of the previously independent conditions become joined with other parts of

the structure before they finish their sub-hierarchy match. Figure 3.15 shows an exam-

ple. Figure 3.15-(b) shows the rule firing structure during the problem solving, given

the WMEs and rules in Figure 3.15-(a). The structures of the linearized rules are shown

47

W35

(Chunk
1 (goal <g> Astate <s>)
1 (<s>Aat<Iocl>)
2 (<Jocl> Aneiit <loc2>)
6 (<Joc2> Anext <loc3>)
6 (<loc2> ^eachable-by <vl>)
6 (<vl> Aname car)
6 (<loc3> Areachable-by <v2>)
6 (<v2> Aname car)
6 (<g> Agoal-point <gp>)
1 (<gp> "at <loc3>)
—>
(<s> ^success <loc3>))

Figure 3.14: Chunk: results from linearizing the U-chunk.

explicitly in Figure 3.15-(d). The number in front of each node indicates the number

of tokens at that condition. The total number of tokens in the match for the rule is the

sum of these numbers (43 in this case). The U-chunk created from the problem solving

episode is shown in Figure 3.15-(c). In the problem-solving episode and the U-chunk,

the conditions in a subrule (e.g., the conditions in RA1) are matched independently from

the other parts of the structure (e.g., the conditions of RA2) before its created WMEs

are joined with the WMEs created by RA2. By combining these sub-graphs together —

through linearization — some of these previously independent conditions are joined with

other parts of the structure before they finish their sub-graph match. In Figure 3.15-(d), it

is no longer possible to maintain independence between the conditions of RA1 and RA2.

For example, in the first case, tokens for the conditions from RA2 — (<a> Az <d>) and

(<d> Au <e>) — are dependent on tokens for the conditions of RA1.

This loss of independence can increase the number of tokens. For the three orderings

shown in Figure 3.15-(c), the number of tokens for the linearized structures are 50,48, and

64, which are all greater than 43. No matter what condition ordering is used, the number

of tokens still increases, given the WMEs in Figure 3.15-(a).

48

(al Ax bl) (al Ax b2) (al Ax b3) (al Ax b4) (al Ax b5)
(bl Ay cl) (b2 *y c2) (b3 Ay c3) (b4 ^ c4) (b5 Ay c5) (b6 Ay c6)
(al Azdl)(al Azd2) (al Azd3) (al Azd4)
(dl Au el) (d2 Au e2) (d3 Au e3) (d4 Au e4) (d5 Au e5)

RA1)
(<a> Ax)
(Ay <c>)
->
(<a> Ak <c>)

RA2)
(<a>Az<d>)
(<d> Au <e>)
—>
(<a> Al <e>)

RA3)
(<a> Ak <c>)
(<a>Al<e>)
~>
(<a> Ais success)

(a) Working memory elements and rules

:rule

D : WMEs created

(<a> Ax)
5 V Ay <o)

RA1 5

Az<d>)
(<d> Au <e>)

(<a> Ax)
5\(Ay <o)

/(<a> Az <d>)
RAI'g^ 4\ (<d>Au<e>)

Ht Mt Mfr 4K MC)•*■

(43)
(b) Problem solving episode

(43)
(c) U-chunk

(<a> Ax) (<a> Az <d>) (<a> Az <d>)
5\(Ay <c>) 4\(<d> Au <e>) 'K (<a> Ax)

(<a> Az <d>) Y(<a> Ax) \/(Ay <c>)
«d> Au <e>) 4\ /(Ay <c2)0\ /(<d> AU <e>) .. .

(d) Possible linearized structures of (c)

Figure 3.15: Loss of independence by linearization.

49

The second source of cost increase is loss of sharing. As long as Rete cannot capture

the sharing from the nonlinear structure, the number of tokens can increase. Figure 3.16

shows an example. Given the rules in Figure 3.16-(a), the problem solving shares the

instantiations of RBI for both conditions C2 and C4 of rule RB2. That is, they match

the WMEs created from the instantiations of RBI. (The total number of tokens is 15 in

the problem solving.) Although the instantiations are shared, C2 and C4 are matched by

different WMEs because <bl> and <b2> cannot be bound to the same value (given the

initial set of WMEs in Figure 3A6-(a)X_Thus^ two instantiations of RBI participate in_

the backtrace (explanation); one of them creates the WME matched by C2, and the other

creates the WME matched by C4. Figure 3.16-(c) shows the I-chunk generated from the

backtrace. RBI is separated into RB1-1' and RB1-2', by replacing the two instantiations

with two rules. Although they are separated, the two subrules have the same network

structure and the same pattern of consistency tests across the conditions, and they can be

compiled into the same structure. The total cost remains as 15. The U-chunk created from

the I-chunk is shown in Figure 3.16-(d). Instantiations of RB1-1" and RB1-2" can still be

shared in nonlinear Rete as subrules with the same patterns are shared in the network. The

total cost of the U-chunk is also 15. The chunk (with an optimal ordering) generated from

the U-chunk is shown in Figure 3.16-(d). Linearization loses the structural information,

so the sharing of sub-parts becomes impossible. The total number of tokens is increased

from 15 to 19.

The third source of cost increase comes from non-optimal ordering of the conditions.

The computational complexity of finding an optimal ordering for a set of conditions is

a factor of the factorial in the number of conditions (considering all possible orderings),

so Rete employs a heuristic ordering algorithm. Because the heuristic condition-ordering

algorithm cannot guarantee optimal orderings, whenever this algorithm creates a non-

optimal ordering, additional cost may be incurred. For example, our Grid task can create

the non-optimally-ordered chunk shown in Figure 3.14. The cost is increased from 39 to

41 with this chunk. However, with an optimal ordering, as shown in Figure 3.17, the cost

can be reduced to 11.

Our proposed solution to this set of problems is to eliminate the linearization step.

By keeping the graph structure — that is, by replacing chunks with U-chunks — all three

causes of cost increase can be avoided. The key condition that this requires is an efficient

generalization of Rete for nonlinear match, as shown in Figure 3.10.

50

•
(DAkA)
(AAxl)(AAx2)
(AAyl)(AAy2)
(AAzl)(AAz2)
(AAwl)(AAw2)
(1 Al 1) (3 Al 1) (5 Al 1)
(2A12)(4A12)(6A12)

RBI)
(<a> Ax)
(<a> Ay)
(<a> Az)
(<a> Aw)
—>
(<a> At)

RB2)
(<d> Aw <a>)
(<a> At <bl>)
(<bl>All)
(<a>At<b2>)
(<b2>A12)
->
action

(a) Working memory elements and Rules

(<a> Ax)
(<a> Ay)

(<a> Az)
(<a> Aw)

f2 RB1

(<bl> Al 1)

(<b2> Al 2)

(<a> Ax <bl>)
(<a>Ay<bl>)

(<a> Ax <b2>)
[<a> Ay <b2>)

(<a> Az <b2>)
(<a> Aw <b2>)

(b) Problem solving episode
D
(c) I-chunk

(<a>Ax<bl>)
(<a>Ay<bl>)

(<a> Ax <b2>)
(<a> Ay <b2>)

(<a> Az <b2>)
(<a> Aw <b2>)

<b2> Al 2)

(d) U-chunk

1 (<d> Ak <a>)
2(<a>Ax<bl>)
2(<a> Ay<bl>)
2(<a>Az<bl>)
2(<a>Aw<bl>)
1 (<bl> Al 1)
2 (<a> Ax <b2>)
2 (<a> Ay <b2>)
2 (<a> Az <b2>)
2 (<a> Aw <b2>)
1 (<b2> Al 2)

(e) Linearized conditions

Figure 3.16: Loss of sharing by linearization.

51

(Chunk
1 (goal <g> Astate <s>)
1 (<g> Agoal-point <gp>)
1 (<gp> Aat <loc3>)
l(<s>Aat<locl>)
2 (<Iocl> ^ext <loc2>)
1 (<doc2> ^ext <Ioc3>)
1 (<loc2> 'Veachable-by <vl>)
1 (<vl> Anamc car)
I (<loc3> Areachable-by <v2>)
1 (<v2> Aname car)
—>
(<s> Asuccess <Ioc3>))

Figure 3.17: The match cost of an optimally ordered chunk.

3.8 Summary

The above sections have described an analysis of the chunking process as a sequence of

transformations in which each intermediate product is mapped into a pseudo-chunk by

providing an appropriate interpreter. By computing and comparing the cost of the pseudo-

chunks, we have identified a set of sources that can make the output chunk expensive.

In addition to identifying which transformations lead to cost increases, and how they

lead to such increases, the analysis has also pointed the way toward modifications of the

transformational sequence that could potentially eliminate these cost increases. The set of

sources and the proposed modifications are :

1. Removing search control =4* incorporate search control in chunking. By incorpo-

rating search control in the explanation structure, the match process for the learned

rule can focus on the path that was actually followed.

2. Disrupting the optimizations based on equivalent knowledge => preprocess knowl-

edge before it is used. By preprocessing the tokens, the number of tokens passed

from a substructure of a U-chunk can be no greater than the number of WMEs

passed in the corresponding I-chunk. This could potentially be done either be

grouping instantiations that generate the same WME or by selecting one of them as

a representative. These optimizations are called token compression.

3. Linearizing (Losing efficiencies stemming from problem-solving structures) => keep

the problem-solving structure. By keeping the problem-solving structure — that

52

is, by replacing chunks with U-chunks — all three causes of cost increase can be

avoided.

To be able to more easily generalize the above analysis to other EBL systems, the

next chapter performs a transformational analysis of an EBL implementation in Soar

(Soar/EBL).

•

53

Chapter 4

Transformational Mapping of EBL onto Soar

In past work, chunking in Soar has been analyzed as a variant of EBL. The four components

(the goal concept, the training example, the domain theory, and the operationality criterion)

and sub-processes of EBL have been mapped to the components of Soar and to the sub-

processes of chunking, respectively [53]. Also, the cost and the generality of the learned

rules have been compared [67]. We extend this earlier work by first implementing EBL

within Soar (Version 6) — to yield Soar/EBL — and then analyzing this implementation

as a sequence of transformations from a problem solving episode to a learned rule. Each

intermediate product (and the input and the output) can be mapped into a pseudo-chunk,

which can be evaluated with respect to its cost, and thus directly compared in terms of

cost against both the original problem solving and the ultimate EBL-rule. The results of

this analysis are compared with the transformational analysis of chunking presented in

Chapter 3.

These discussions are presented in the context of the cup domain [45] — a typical

illustrative EBL task. The cup domain representation, shown in Figure 4.1-(a), is an

extension of the domain rules shown in Section 2.1. Some conditions in the rules given

here test results from Soar's architectural activities. In Soar, some problem solving

activities do not involve rule firings. For example, the architectural activities — including

the acts of signaling that an impasse has occurred and creating a subgoal — are performed

by the architecture itself, not by firings of the rules. These activities can create architectural

WMEs, such as Wl (supergoal-subgoal relationship) and W2 (the impasse type). These

architectural WMEs are tested by the rules. Thus, the actual domain theory is close to the

rules shown in Figure 4.1. The transformational analysis of chunking in Chapter 3 has

concentrated on the transformations of the rule firings and the decisions, and excluded this

54

architecture related aspect. This chapter examines the transformations of the architectural
activities through the learning process, as well as the transformations of the rule firings
and decisions, and analyzes how they affect the output rule.

In the domain theory (Figure 4.1-(a)), Rl can create a new problem space named

"cup" and a new state, given the lack of information in the supergoal situation about which

object is a cup. In R2, R3, and R4, the training example is accessed through the attribute

super-state, which links the cup problem-space state and the supergoal state. The training

example (i.e., the supergoal situation) is illustrated in Figure 4.1-(b), as theWMEs-that.
existed before the subgoal process.

Figure 4.2-(a) shows the two sequences of transformations that represent chunking and

Soar/EBL. The chunking part is the same as the transformations introduced (in Figure 3.1)

in Chapter 3. Each intermediate product is mapped into a pseudo-chunk in chunking and

Soar/EBL. By comparing the two sequences, we can clarify the relationship between the

two systems. Also, by analyzing how the transformations alter cost and generality, a set

of sources of added expensiveness and changes in generality can be contrasted.

The following sections analyze the transformations underlying Soar/EBL, along with

their resulting pseudo-chunks and their effects on cost and generality. This analysis is

then compared with the results from the corresponding transformations and intermediate

results in chunking. Examples are taken from the cup domain (Figure 4.1).

4.1 Filtering Out Unnecessary Rule Firings (=>PS-chunk)

As in chunking, a problem solving episode can be mapped to the domain theory by

providing its interpreters (the rule matcher, the rule firer, and the decision procedure).

The interpretation generates a problem solving episode. It corresponds to the EBL step

of "using the domain theory to prove that the training example is an instance of the goal
concept".

The first transformation applies to this episode, and filters out any rule firings which

did not participate in creating the result. The resulting pseudo-chunk is the same as the

PS-chunk described in Chapter 3. In the cup example, this transformation eliminates all

other rule firings, if there were any, beyond those shown in Figure 4.3. The interpreter

linearizes the cycles of the rule firings and decisions in the problem solving into an

enclosed sequence of rule firings and decisions. Its implementation incorporates the same

55

(Rl
(goal <g> Aimpasse no-change)
(<g> Asuper-goal <sg>)
(<sg> Astate <ss>)
->
(<g> Aproblem-space <p> +)
(<g> Astate <s> +)
(<p> Aname cup +)
(<s> ^uper-state <ss> +))

(R4
(goal <g> Aproblem-space <p>)
(<p> Aname cup)
(<g> Astate <s>)
(<s> ^uper-state <ss>)
(<ss> object <o>)
(<ss> Apart-rel <pr>)
(<pr> Apart-of <o>)
(<q)r> Apart <conc>)
(<conc> Aisa concavity)
(<conc> Ais upward-pointing)
-->
(<s> ^pen- vessel <o> +))

(R2
(goal <g> Aproblem-space <p>)
(<p> ^ame cup)
(<g> ^tate <s>)
(<s> Asuper-state <ss>)
(<ss> object <o>)
(<ss> Apart-rel <pr>)
(<pr> Apart-of <o>)
(<o> ^s light)
(<pr> Apart <lid>)
(<hd> Aisa handle)
->
(<s> Aliftable <o> +))

(R5
(goal <g> Aproblem-space <p>)
(<g> 'super-goal <sg>)
(<p> Aname cup)
(<g> Astate <s>)
(<s> ^pen-vessel <o>)
(<s> Aliftable <o>)
(<s> Stable <o>)
->
(<o> Aisa cup +))

(R3
(goal <g> Aproblem-space <p>)
(<p> Aname cup)
(<g> Astate <s>)
(<s> Asuper-state <ss>)
(<ss> object <o>)
(<ss> Apart-rel <pr>)
(<pr>Apart-of<o>)
(<pr> Apart <bt>)
(<ot> Aisa bottom)
(<bt> Ais flat)
~>
"(<s> Astable <o> +))

(a) Domain theory

Wl:(G2Asuper-goalGl)
W2: (G2 Aimpasse no-change)
W3:(GlAstateSl)
W4: (SI object 01)
W5 : (SI Aown-reI Relation-1)
W6: (SI Apart-rel Relation -2)
W7: (01 Ais light)
W8 : (Relation-1 ^wner Edgar)
W9 : (Relation-1 ^wned 01)
W10:(Relation-2 Apart-of 01)
Wll:(Relation-2 Apart Concavity-1)
W12:(Relation-2 Apart Handle-1)
W13:(Relation-2 Apart Rat-bottom-1)
W14:(Handle-l Aisa handle)
W15:(Flat-bottom-l Aisa bottom)
W16:(Flat-bottom-l Ais flat)
W17:(Concavity-l Aisa concavity)
W18:(Concavity-l Ais upward-pointing)

(b) Training Example (Given WMEs before subgoal processing)

Figure 4.1: Cup domain in Soar.

56

I EBL
Domain Theory j Rule matcher +

Rule firer +
Decision procedure

.. Filter out nile firings which don't
If participate in result creation (Overgeneralize*)

Chunking

Variablize _—*~

l-chünk lnterpreter-3

= Eliminate intermediate rul<

U-chunk lnterpreter-4

= Linearize*

. . Chunk

'-^ 1

Rule matcher

Eliminate intermediate rule firings*

* : cost increase

Figure 4.2: The transformational sequences underlying chunking and Soar/EBL.

optimizations that are used in the original problem solving; for example, the tokens from

the first four conditions of R3 and R4 are still shared with the tokens from the first four

conditions of R2 in the match network for the PS-chunk.
The architectural activities are represented as gray circles with lines attached to them.

Because these activities are not represented as rule traces in Soar, they can leave holes

in the backtrace. Also, non-operational negated conditions test the absence of objects

in the subgoal, and this test has no trace to the supergoal elements. So, Soar implicitly

provides two architectural axioms that model these activities, much as in [41]. First, if

a WME is obviously based on a supergoal object, a dummy instantiation that links them

is created and added to the backtrace. Second, if it is intractable to compute the linkage

to supergoal objects, the backtrace simply ignores the WME — just as if it had been

created by a rule with no conditions. For example, to operationalize the non-operational

negated conditions, we have to analyze why there is no WME matching the conditions,

and this requires exhaustive examination of all the rules in the system to find out which

rules might have created WMEs that can be matched to the negated conditions. Because

of this intractability, non-operational negated conditions are ignored in learning. This

may yield overgeneralization, but in return, it helps maintain tractability. The use of these

57

Super-goal
WMEs

Subgoal process (problem solving)

W7.W11.W14 t
nur ■

W4.W6.W10j
DDr '

wiiwiSjWiöj
DÜD-J

W13.W17.W18 t
DÜO-*

W26 (result)

WMEs created during problem solving:
W19:(G2 AproMem-spacePa)
W20:(G2*stateS2)
W21:(P2Anamecup)
W22:(S2 Superstate SI)
W23:(01 *is liftable)
W24:(01 *is stable)
W25:(01 "is open-vessel)
W26:(01Aisacup)

D :WME

-^Oi. : Rule trace

—r\s£ : Architectural activity

Figure 4.3: Problem solving episode excluding unnecessary rule firings. This structure
embodies a PS-chunk in both chunking and Soar/EBL.

58

Given:
Wl: (G2 Asuper-goaI Gl); G2 is a subgoal of Gl
W2: (G2 Aimpasse no-change); G2 is created because of a no-change impasse

Create a dummy rule:
(dummy
<gl>; test the goal
->

(<g2> object <gl>); <g2> is a subgoal of <gl>
(<g2> impasse no-change); create a no-change impasse

Figure 4.4: Creation of a dummy rule to interpret the architectural activities.

architectural axioms is driven by the nature of Soar's architectural activities and intractable

negated conditions, and is independent of whether learning occurs via chunking or EBL.

Thus, Soar/EBL and chunking share this source of overgenerality.

For the architectural activities of the PS-chunk shown in Figure 4.3, the second axiom

(ignoring the WMEs) is applied. To interpret these activities as a part of the PS-chunk

match, a dummy rule is introduced.1 Figure 4.4 shows the dummy rule, which can

produce the same WMEs as those created by the architectural activities in the problem

solving episode. The dummy rule tests only a supergoal, and creates two new WMEs. This

dummy rule introduces the same source of overgenerality to the learned rule as Soar does.

The creation of Wl and W2 in the problem solving episode is based on the architectural

detection of certain conditions — a no-change impasse. The impasse arose because there

was not enough information to make any progress in the supergoal. Here, we produce the

same effect without detecting such conditions.

The overgenerality caused by using the architectural axioms can also lead to cost

changes. For example, the above dummy rule can be matched to any goal, as well as the

goal that detected the impasse. Thus, the match cost can increase to match other goals,

depending on the number of goals in the system. This aspect should be combined with the

analysis of non-architectural activities, but it is left as a future work.

Except for the changes caused by the architectural activities, there is no other source of

cost increase. Because PS-chunks are created by filtering out unnecessary rules in problem

solving, and their implementation preserves the match optimizations, the transformation

itself does not increase the cost. If there were unnecessary rule firings in the problem

'This dummy rule is only in the analysis, not in the implementation.

59

solving (as is usually the case), the transformation decreases the cost. Otherwise, the cost

is identical modulo overgenerality.

4.2 Removing Search Control (=)> E-chunk)

This step removes search control (if there is any) from a PS-chunk. PS-chunks incorporate

all rules which are linked to the result creation. That is, they include both task-definition

rules and search-control rules. However, in archetypical EBL systems,-implemented for

Prolog-like languages, the problem solving does not employ search-control rules. Even in

Prodigy/EBL, where the problem solving involves search control, the explanation ignores

some of its search-control rules [43]. When a problem solving episode includes search-

control rule firings, but the EBL system ignores them in the learning process, the cost of

the learned rule can increase as explained in Chapter 1 and Section 3.1. The learned rule

(and the pseudo-chunks created between the transformation and the learned rule) are not

constrained by the search control, and can therefore perform an exhaustive search, even

when the original search was highly directed.

Given that the PS-chunk is shared by both systems and both are transformed in the

same way, the resulting pseudo-chunk is the same as the E-chunk. Because no search

control is used in the simple cup domain, the structure of the E-chunk is the same as the

PS-chunk shown in Figure 4.3. However, if the problem solving employs search-control

rules, as shown in Section 3.4, this step can increase the cost. The E-chunk acts as an EBL

explanation structure.

4.3 Regressing (=^R-chunk)

The next step in EBL is regression. Replacing the variable names with unique names

(building the explanation structure) and then unifying each connection between an action

and a condition, can create a generalized explanation from the explanation. We build the

explanation structure by examining the E-chunk trace that is equivalent to the explanation,

and applying the regression process of [46] to the explanation structure.

Soar/EBL needs to introduce some additional constraints on variable names in order

to produce legal Soar rules. For example, since one goal cannot have more than a single

60

supergoal, allowing multiple variable names for the supergoal leads to superfluous — i.e.,

unusable — generality, while also possibly leading to legality problems. The R-chunk

(regressed chunk) resulting from the combination of regression along with these additional

variable constraints is shown in Figure 4.5-(a). In this example, the structure remains the

same as in the E-chunk.
As shown by the divergence in Figure 4.2, chunking performs a different transforma-

tion. The variablization step in chunking is performed by examining the backtrace (ex-

planation) instead of the explanation structure, as described in Section 3.3. For example,

the variables in the E-chunk can be constrained to the I-chunk as shown in Figure 4.5-(b).

One advantage of this form of instantiation-based constraining over regression (in Soar),

is that it naturally introduces the required architectural constraints. For example, the value
field of the second condition of Rl and the second condition of R5 are bound to the same
identifier Gl, and are replaced by the same variable. As long as the instantiations reflect

the architectural constraints, the I-chunk automatically preserves them.

However, an I-chunk can be overspecialized, as explained in Chapter 3. For example,

although variable <pr> in R2 and variable <pr> in R3 (Figure 4.1) are instantiated by the

same identifier Relation-2, and changed to the same variable <p2>, they can be correctly

generalized as different variables, as in Figure 4.5-(a). Regression also maintains relational

tests among the variables bound to the constant, where chunking explicitly replaces them

by constants.
The interpreter for the R-chunk is the same as the interpreter for the E-chunk. Except

for the differences in the variable names, the structures of the R-chunk and the E-chunk

are identical. With respect to the cost, regression does not increase the number of tokens.

The number of tokens should remain the same, or be reduced by the extra constraints.

4.4 Eliminating Intermediate Rule Firings (=$■ RU-chunk)

This step unifies the separate rules of the R-chunk into a single rule, called a RU-chunk

(regressed-and-unified chunk), as chunking unifies an I-chunk into a U-chunk. Figure 4.6

shows the result of unifying the R-chunk in Figure 4.5-(a) into the corresponding RU-

chunk. Intermediate WMEs are replaced with the instantiations which created the WMEs.

Although Rl-2, R2-2,..., R5-2 still have their own identifiable conditions in the RU-

chunk, there are now no intermediate rule firings. For example, one of R5's conditions

61

(Rl-1
(goal <gl> Aimpasse no-change)
(<gl> Asuper-goal <g2>)
(<g2> Astate <s2>)
->
0^1> problem-space <pl> +)
(<gl> ^tate <sl> +)
(<p 1> Aname cup +)
(<sl> ^uper-state <s2> +)

(R2-1
(goal <gl> Aproblem-space <pl>)
(<pl>Anamecup)
(<gl>Astate<sl>)
(<s 1 > ^uper-state <s2>)
(<s2> object <o 1>)
(<s2> Apart-rel <p6>)
(<pd> Apart-of)
(Ais light)
(<p6>Apart<hl>)
(<hl>Aisa handle)
->
(<sl>Aliftable+))

(R3-1
(goal <gl> Aproblem-space <pl>)
(<pl>Anamecup)
(<gl>Astate<sl>)
(<sl> Asuper-state <s2>)
(<s2> object)
(<s2> Apart-rel <p8>)
(<p8> Apart-of)
(<p8> Apart <bl>)
(<bl> Aisa bottom)
(<bl> Ais flat)
->
(<sl> Astable +)

(R4-1
(goal <g 1> Aproblem-space <p 1>)
(<pl> Anamecup)
(<gl>Astate<sl>)
(<sl> Asuper-state <s2>)
(<s2> Aobject)
(<s2> Apart-rel <p4>)
(<p4> Apart-of <o 1 >)
(<p4>Apart<cl>)
(<cl> Aisa concavity)
(<cl> Ais upward-pointing)
->
(<sl> Aopen-vessel +)

(R5-1
(goal <g 1 > Aproblem-space <p 1 >)
(<gl> Asuper-goal <g2>)
(<pl>Anamecup)
(<gl>Astate<sl>)
(<sl> Aopen-vessel)
(<sl>Aliftable)
(<Bl>Astable)
->
(Aisacup+)

(a) Rules in R-chunk

(Ri-r
(goal <g3> Aimpasse no-change)
(<g3> ^uper-goal <g4>)
(goal <g4> Astate <s2>)
->
(<g3> Aproblem-space <pl> +)
(<g3> Astate <sl> +)
(<pl> Aname cup +)
(<sl> ^uper-state <s2> +))

(R4-1'
(goal <g3> Aproblem-space <pl>)
(<pl> Aname cup)
(<g3>Astate<sl>)
(<sl> Asuper-state <s2>)
(<s2> object)
(<s2> Apart-rel <p2>)
(<p2> Apart-of <o 1 >)
(<p2>Apart<cl>)
(<cl> Aisa concavity)
(<cl> Aupward-pointing true)
->
(<sl> ^pen-vessel +))

(R2-1'
(goal <g3> Aproblem-space <pl>)
(<pl> Anamecup)
(<g3>Astate<sl>)
(<sl> Asuper-state <s2>)
(<s2> object)
(<s2> Apart-rel <p2>)
(<p2> Apart-of <o 1 >)
(Ais light)
(<p2> Apart <hl>)
(<hl> Aisa handle)
->
(<sl>Aliftable+))

(R5-1'
(goal <g3> Aproblem-space <pl>)
(<g3> Asuper-goal <g4>)
(<pl> Anamecup)
(<g3>Astate<sl>)
(<sl> ^pen-vessel)
(<sl>Aliftable)
(<sl>Astable)
->
(Aisacup+))

(b) Rules in I-chunk

(R3-1'
(goal <g3> Aproblem-space <p 1>)
(<pl> Anamecup)
(<g3>Astate<sl>)
(<sl> Asuper-state <s2>)
(<s2> object)
(<s2> Apart-rel <p2>)
(<p2> Apart-of)
(<p2> Apart <fl>)
(<f 1> Aisa bottom)
(<f 1> Ais flat)
->
(<sl> Astable +))

Figure 4.5: (a) R-chunk: created by applying regression to the explanation structure (E-
chunk); (b) I-chunk: created by applying the variablization to the rule traces. The structure
of the R-chunk remains the same as in the E-chunk for this example.

62

receives the instantiations of R2 directly, as intermediate tokens, rather than receiving

WMEs created from the instantiations. Thus, Rl-2, R2-2 R5-2 are no longer (separate)

rules. To interpret (match) RU-chunks, the nonlinear Rete introduced in Chapter 3 can be

used. The RU-chunk corresponds to a U-chunk.
Cost problems may be introduced in the transformation (as in chunking), because the

number of instantiations of a rule can be greater than the number of WMEs created from

those instantiations, as explained in [32]. For example, if object 01 has one more handle

represented by two more WMEs; (Relation-1 ApartHandle-2) and (Handle-2 Aisa handle),

two instantiations of R2-1 (in Figure 4.5-(a))^re created instead of ^one. Because these

two instantiations generate the same bindings for variables <sl> and , only one

tuple (WME) is generated in the problem solving. In this case, the number of tokens is

increased after the WMEs are replaced with the instantiations.

4.5 Linearizing (=$► EBL rule)

A RU-chunk can be linearized to become an EBL-chunk. The hierarchical structure of

RU-chunks is flattened into a single layer, and the conditions are totally ordered. For
example, the hierarchical structure in Figure 4.6 can be flattened into the structure in

Figure 4.7. The U-chunk is also flattened to yield a chunk. After flattening, Soar/EBL

and chunking use a heuristic condition-ordering algorithm to further optimize the resulting

match. This linearization can increase the cost as explained in Chapter 3.

4.6 Summary

We have performed a transformational analysis of Soar/EBL. Each step has then been

mapped to a corresponding transformation in chunking, and pseudo-chunks in the two

systems have been compared in terms of cost and generality. These analyses and com-

parisons reveal that: (1) the main source of overgeneral learning in Soar stems from the

need to use approximate architectural axioms, and is common to EBL and chunking; (2)

the main source of overspecial learning in Soar stems from the single transformation that

differs between them (chunking does instantiation-based constraining while EBL does re-

gression); (3) chunking automatically incorporates some of Soar's architectural constraints

63

(Rl-2 (R2-2
(dummy) (Rl-2)
(dummy) (Rl-2)
(<g2> "state <s2>) (Rl-2)

(Rl-2)
(<s2> "object)

(R3-2
(Rl-2)
(Rl-2)
(Rl-2)
(Rl-2)
(<s2> ''object)

(<s2> "part-rel <p6>) (<s2> "part-rel <p8>)
(<p6> "part-of) (<p8> "part-of)
("is light)
(<p6>"part<hl>)
(<nl> "isa handle)

(<p8>*part<bl>)
(<bl> "isa bottom)
(<bl>Aisflat)

(a)RU-chunk

(R4-2 (R5-2
(Rl-2) (Rl-2)
(Rl-2) (dummy)
(Rl-2) (Rl-2)
(Rl-2) (Rl-2)
(<s2> "object) (R2-2)
(<s2> "part-rel <p4>) (R3-2)
(<p4> "part-of) (R4-2)
(<p4> "part <cl>)
(<cl> "isa concativity)
(<cl> "is upward-pointing)

(Rl-2' (R2-2'
(dummy) (Rl-2')
(dummy) (Rl-2')
(<g4> "state <s2>) (Rl-2')

(Rl-2')
(<s2> "object)

(R4-2'
(Rl-2')
(Rl-2')
(Rl-2')
(Rl-2')
(<s2> "object)

(R3-2'
(Rl-2')
(Rl-2')
(Rl-2')
(Rl-2')

^ ^ (<s2> "object)
(«2>>art-reT<p2^) (<s2> "part-rel<P2>) (<s2> "part-rel <p2>)
(<p2>^>art-of<ol» (<p2>"part-of<ol» (<P2> "part-of)
(flight) (<p2>"part<fl>) (<p2><Vrt<cl»
(<p2>"part<hl>) (<fl> "isa bottom) '"'-"•" —^
(<hl> "isa handle) (<n>*isfiat)

(b) U-chunk

(R5-2'
(Rl-2')
(dummy)
(Rl-2')
(Rl-2')
(R2-2')
(R3-2')
(R4-2')

(<cl> "isa concavity)
(<cl> "is upward-pointing)

or
W4.W6.WI0»

W12.WI5.W1

ODD?
WI3,W17,W1^

DflCj

W26 (result)

Figure 4.6: RU-chunk and U-chunk: created by eliminating intermediate rule firings in
the R-chunk and I-chunk, respectively.

(rule EBL-rule
(goal <s2> "state <s6>)
(<s6> "object)
(<s6> "part-rel <p8>)
(<p8> "part-of)
(is light)
(<p8>"part<hl>)
(<hl> "isa handle)
(<s6> "part-rel <p6>)
(<p6> "part-of)
(<j>6>*part<bl>)
(«3>1> "isa bottom)
(<bl> "is flat)
(<s6> "part-rel <p4>)
(<p4> "part-of)
(<p4>"part<cl>)
(<cl> "isa concavity)
(<cl> "is upward-pointing)
—>
("isacup)

(rule chunk
(goal <g4> "state <s2>)
(<s2> "object)
(<s2> "part-rel <p2>)
(<p2> "part-of)
(is light)
(<p2> "part <hl>)
(<lil> "isa handle)
(<p2> "part <f 1>)
(<fl> "isa bottom)
(<fl>"isflat)
(<p2> "part <cl>)
(<cl> "isa concativity)
(<cl> "is upward-pointing)
->
(*isacup)

W26 (result)

Figure 4.7: EBL-rule and chunk: results from linearizing the RU-chunk and U-chunk,
respectively.

64

that must be added explicitly with EBL; (4) the primary sources of expensiveness in Soar's

learned rules arise in three transformations that are common between chunking and EBL,

and thus might have common solutions; and (5) the architectural axioms introduced to

maintain tractability can cause cost change as well as overgenerality. Result (2) shows

that EBL and chunking are not all that different. Result (4) goes beyond this to show that

the strategies being developed to ensure that chunks are no more costly to use than was

the problem solving from which they were learned, should also allow a similarly "safe"

EBL mechanism to also be developed.
The following chapter describes the details of such strategies, which.prevent each

identified source of expensiveness (except for the cost changes by the architectural axioms),

and presents a unified solution combining those strategies.

65

Chapter 5

Modifying the Transformations

In Chapter 3, the chunking process has been analyzed as a sequence of transformations,

and intermediate products have been mapped into pseudo-chunks by providing appropriate

interpreters. By evaluating the costs of the pseudo-chunks, three sources of expensiveness

have been identified, and modifications that can potentially eliminate the sources have

been proposed. As described in Chapter 4, a similar analysis has also been done for

Soar/EBL; it has identified that chunking and Soar/EBL share the same set of sources and

their solutions.

The proposed solutions convert the original sequence of transformations into a new

sequence of transformations. In the new sequence, new transformations are added, and

some of the original transformations are removed or modified. These alterations, however,

should not violate the following key requirement: the. cost after each transformation should

be bounded by the cost before the transformation.

Figure 5.1 outlines the modifications of chunking, which keep this requirement.

Chunking's original sequence of transformations, shown on the left side, is altered into

a new sequence of transformations shown on the right. First, the transformation from a

PS-chunk to an E-chunk is altered, since we now want to incorporate the search control in

learning. One way of incorporating the search control is to simply ignore the transforma-

tion completely, and to keep all the search-control rules participating in the PS-chunk. By

performing no action, instead of removing search-control rules, the cost will not increase

(i.e., the cost will be bounded). However, including all of the control rules would produce

excessive conditions, and sometimes make the learned rules overspecific. (Details will be

provided in Section 5.2.) If the set of search-control rules overdetermine the choice, the

excessive part can be pruned from the PS-chunk to make the created rule simpler. Thus, our

66

Domain Theory

Filter out rule firings which don't
\' participate in result creation

PS-chunk

— Remove search-control*

E-chunk

Constrain variables by instantiation

l-chunk

"=? Eliminate intermediate rule firings*

U-chunk

~ Linearize*

Chunk

Domain Theory

Filter out rule firings which don't
participate in result creation

PS-chunk

I Remove redundant search-control

E'-chunk

I Constrain variables
with search control

l'-chunk

I Eliminate intermediate rule firings
and introduce token compression

U'-chunk

Figure 5.1: Outline of solutions (from the identified sources of cost increase).

new learning system introduces a new transformation that goes from a PS-chunk to a new

pseudo-chunk that is called the E-chunk (Extended E-chunk). An E'-chunk is generated

by removing the excessive search-control rules instead of removing all the search-control

rules in a PS-chunk. The interpreter for an E'-chunk includes the decision procedure, as

well as the rule matcher and the rule firer.
The next step is constraining variables in an E'-chunk by examining the instantiations,

as done for E-chunk to produce an I-chunk in the original transformation. The resulting

pseudo-chunk is called an l'-chunk. An l'-chunk is different from an I-chunk in that it

has additional structures originating from the search-control rules in the E'-chunk. The

match process (interpretation) of an l'-chunk consists of multiple rule matches, firings,

and decisions as in the case of E'-chunk.
A U-chunk is generated from an l'-chunk by unifying the separate rules and decisions

into a single structure. The match process of a U'-chunk is a single rule match instead of

multiple rule matches, firings, and decisions. In the original transformation, to convert

intermediate rule matches and firings into a single rule match, an extension of Rete

(nonlinear Rete) is introduced. Because a U'-chunk has to unify decisions as well as rule

67

matches and firings, an extension of the nonlinear Rete that can interpret the decisions

is required. Also, token compression should be integrated into the interpretation. The

U'-chunk is the final product in the new sequence of transformations.

This chapter discusses the above sequence of transformation in detail, including how

the transformations provide relative boundedness. The first transformation from the

domain theory to a PS-chunk is the same as in the original transformation. We explain

how the transformation is safe (except for the changes caused by the architectural activities)

in terms of the number of tokens. We then discuss; the transformation from a PS-chunk to

an E'-chunk; the transformation from an E'-chunk to an r%chunk; and the transformation

from an I'-chunk to a U'-chunk, respectively. Finally, we describe similar alterations

applied to Soar/EBL.

5.1 Domain Theory => PS-chunk

Before we prove that this transformation is safe, we define tools for comparing the rela-

tionships among pseudo-chunks. (In the proof, we address rule firings and decisions only,

and exclude the changes caused by the architectural axioms.)

Definition 1 (trace-graph) Given the initial WMEs (the WMEs given in the original prob-

lem solving), the trace-graph of a pseudo-chunk is a graph that represents the sequence

of rule firings and decisions, along with how intermediate products are created and used

in the sequence.

In the trace-graph, each instance of a rule firing is connected to the WMEs matched to

the rule conditions and the preferences produced by the rule firings. Also, each decision

is connected to the input preferences and the output WMEs. The trace-graph shows the

details of the rule matches, including how intermediate products are created and used to

yield instantiations, depending on the match algorithm. In the case of Rete, the trace-graph

shows its sharing and state saving.

Example: Figure 3.3 in Chapter 3 is an abstract view of the trace-graph of a domain

theory, given the initial WMEs shown in Figure 3.2. Although the structure shows the

connections among the rules and the decisions with their preferences and the WMEs, the

tokens and the Rete optimizations are not shown explicitly for brevity. Figure 5.2 shows

68

W1.W2 \ ^ --^_ /S3l_-J>3 —T—Qty-*- P1« P2

W19.W20-
W25 ^_^R^_^P1 /P2-

^O— =' : Rule trace

• : intermediate tokens produced by the match algorithm

Figure 5.2: An example trace-graph.

a part of the trace-graph of the domain theory. It shows the first three rule firings. In

the figure, each black bullet represents the tokens created for a condition, by joining the

prior tokens and the WMEs matching that condition. In addition to the connections shown

in Figure 3.3, it also shows how tokens are used in the match, including the sharing of

tokens across the rules. For example, in the trace-graph, the tokens created for the first

two conditions in Rl are shared with the tokens for the first two conditions of R2. Given

a pseudo-chunk and the initial WMEs, the trace-graph of the pseudo-chunk displays the

how intermediate products are created and processed in its interpretation.

Definition 2 (trace-subset) Given the initial WMEs, a pseudo-chunk A is a trace-subset

of a pseudo-chunk B, ifA's trace-graph is isomorphic to a subgraph ofB's trace-graph.

Definition 3 (WME-subset). Given the initial WMEs, a pseudo-chunk A is WME-subset

of a pseudo-chunk B, if A is a trace-subset ofB, and for each rule condition C in A and

its mapped rule condition C in B, the set of WMEs matching C is a subset of the WMEs

matching C.

Theorem 1 Given the initial WMEs, if a pseudo-chunk A is a WME-subset of a pseudo-

chunk B, the number of tokens produced while interpreting A is less than or equal to the

number of tokens produced by B. That is, the number of tokens in A's trace-graph is less

than or equal to that in B 's trace-graph.

proof. Because A is a trace-subset of B, each rule R in A can be mapped into a unique

rule R' in B. (Two different rules in A cannot be mapped into the same rule in B.) Also,

69

because each condition in R matches to a subset of the WMEs matching the condition in R'

(WME-subset), there will be fewer (or the same) partial instantiations (tokens) produced

while matching R than the tokens produced for R'. Thus, the total number of tokens in A's

trace-graph is bounded by the total number of tokens in B's trace-graph.

Theorem 2 The number of tokens produced while interpreting a PS-chunk is bounded by

the number of tokens produced by the problem solving episode from which the PS-chunk

is created.

proof. Because the PS-chunk is produced by eliminating the rule firings and the

decisions not connected to the result creation, the problem solving episode employs either

more rules and decisions than the PS-chunk's trace-graph (when there is at least one

excessive rule firing), or the same rules and decisions (when there is no excessive rule

firing). Thus, the PS-chunk is a trace-subset of the domain theory. Also, in the PS-chunk

interpretation, only the WMEs created by the connected decision are matched by the rule

condition, while in the problem solving episode, all WMEs are matched to all conditions.

Thus, the PS-chunk is a WME-subset of the domain theory. By theorem 1, the number

of tokens produced by the PS-chunk match is bounded by that in the problem solving

episode.

5.2 PS-chunk =» E'-chunk

This transformation eliminates excessive search-control rules in a PS-chunk, but incorpo-

rates (maintains) the necessary search-control rules to constrain the search in the match.

The resulting E'-chunk is an extension of an E-chunk. Such an example is shown in

Figure 5.3. The additional structure, colored gray, will be transformed into new con-

ditions of the learned rule. The additional conditions can constrain the match process

(match search), much as the search control does in the problem solving, and can therefore

make the learned rule (and the pseudo-chunks created between this transformation and the

learned rule) cheap to match.

The following subsection presents a new algorithm that determines relevant search

control in decisions and removes the excessive search control. We first describe the details

70

(a) Matching and firing of an E-chunk

o»«"1®*4!

^o- : Trace of a task-definition rule

 S^^r^:Äf" : Trace of a search-control nile

£> : Decision

8>"»8»>Q

£J«wp£-

(b) Matching and firing of an E'-chunk (Extended E-chunk)

Figure 5.3: Extending the backtrace (explanation) to capture the search control.

71

Category Preferences Description

feasibility Acceptable(+)

Reject(-)

desirability Best(>)

Better(>),
Worse(<)

Worst(<)

Indifferent(=)

necessity Prohibit(-)

Require(!)

exclusivity Parallel(&)

The value is a candidate for selection.

The value is not a candidate for selection.

The value is good enough to select without further
consideration.

Partial ordering between the candidate values.

The value should be selected only if there are no
alternatives.
If the preference is binary (indifferent to another
specific value), it means that it does not matter which
one of the two is selected. If it is unary, the value is
considered to be indifferent to all other values with a
unary indifferent preference.

The value cannot be selected if the goal is to be
achieved.

The value must be selected if the goal is to be
achieved.

A binary parallel preference states that both values
can be selected if they are not dominated by
other preferences. A unary preference states that a
value can be selected together with any value that
also has a unary parallel preference.

Figure 5.4: Preference semantics in Soar (adapted from [34]).

of the search control semantics in Soar, then the algorithm that is built based on the

semantics is presented.

5.2.1 Computing the search control

In Soar, search control is represented as preferences. Rules in Soar propose changes to

working memory through preferences, each of which specifies the relative or absolute

worth of a value for an attribute of a given object (as described in Section 2.2). Given a

set of preferences, the decision procedure determines new WMEs based on the preference

semantics. Figure 5.4 briefly describes the semantics of the major preferences.

Figure 5.5 displays the decision procedure graphically. Starting from the top, pref-

erences are processed by nine filters. Each filter reduces the number of candidates (i.e.,

competing values) by analyzing the named preferences. Descriptions of the filters are

given in Figure 5.6. Figure 5.7 provides an example. Here, there are three acceptable

72

(All Preferences j

f RequireFIlter J

C AcceptableFilter j

C ProhibitFilter ^

f RejectFilter J

f BetterWorseFilter j

C BestFilter J

C WorstFilter J

f IndifferentFilter j

r ParallelFilter J

Figure 5.5: The decision procedure (adapted from [34]).

73

RequireFilter (!) This filter checks for required candidates and impasses.
• If there is exactly one require preference and there is no prohibit preference for the

value, then its value is the winner.
• Otherwise - If there is more than one required candidate or there exists a required value

that is also prohibited, recognize an impasse and exit.

AcceptableFilter (+) This filter removes the candidates that are not acceptable.
• If there are no acceptable preferences, then exit.

ProhibitFilter (~) This filter removes the candidates that have prohibit preferences.

RejectFilter (-) This filter removes the candidates that have reject preferences.

BetterWorseFHter (>, <) This filter checks for better/worse conflict, or filters out candi-
dates based on better/worse preferences.
• If there are better/worse conflicts, declare an impasse and exit
• Otherwise - It filters out the candidates that are worse than another value.

BestFilter (>) This filter removes any candidates that do not have a best preference, if
there is at least one best

WorstFHter (<) This filter removes any candidates that have a worst preference. If all the
current candidates have worst preferences, the entire set is passed onto the next filter.

IndifferentFilter (=)
• If the candidates are all mutually indifferent, return one of the indifferent candidates.
• Otherwise - If there are non-mutually indifferent candidates for the context (goal, prob-

lem-space, state, or operator) attributes, an impasse is recognized and exit
• Otherwise - The candidates are passed to the Parallel filter.

ParallelFilter (&)
• If all of the candidates are mutually parallel, return all of them.
• Otherwise - generate an impasse and exit.

Figure 5.6: The filter semantics (adapted from [34]).

74

green >

(Ol Acolor red +)
(01 Acolorblue+)
(01 Acolor green +)
(Ol Acolor red > blue)
(01 Acolor green >)

(a) Given preferences

red > blue

(b) Relationship among the candidates

Figure 5.7: An example of decision.

preferences for alternative values (red, blue.and green) for the same object 01 and attribute
Acolor. Red is better than blue, and green is best. In Figure 5.7-(b), each arrow shows

relative strength between the two candidates. The arrowhead points to the winner and the

tail points to the loser, which is determined by the preference placed beside the arrow. With

these preferences, the decision procedure filters out the value blue, by BetterWorseFilter,

and then the value red by BestFilter. Finally, green becomes the winner (i.e., the decided

value), and WME (01 Acolor green) is added to the working memory.

Based on the above semantics, an algorithm has been developed to compute and collect

the search-control rules at each decision point. These search-control rules would expand
the explanation structure, as explained above. On first thought, it appears that the decision

procedure itself might be enough to compute the search control. It might have simply

collected the preferences touched during the decision. However, including all of the

control rules in the explanation would produce excessive conditions, and sometimes make

the learned rules overly specific. For example, in Figure 5.7, although all five preferences

have contributed to the decision, two preferences, (01 Acolor green +) and (01 Acolor

green >) are enough to make the same decision given the same situation. This means that

they are enough to constrain the search in the match, and make the learned rule cheap.

On the other hand, if all five preferences are included in the explanation, the learned

rule would be less applicable than the rule derived from the explanation with the two

preferences. Therefore, if the set of preferences overdetermines the choice, the redundant

preferences (and their rule traces) can be pruned from the explanation to make the created

rule as general as possible.

75

We have developed and implemented an algorithm, called the preference collection

algorithm, to determine the relevant search control (set of preferences). The purpose

of the algorithm, shown in Figure 5.8, is to find the set of relevant preferences which

capture the full decision context. The algorithm makes use of the properties of each

preference's semantics and the decision procedure. The input of the algorithm is the

decided value (winner) as well as the preferences. Thus, the algorithm takes advantage

of the fact that it already knows the winner. This allows it to skip some computations

performed in the decision procedure. For instance, the algorithm does not have to consider

the possibilities of another candidate being a winner. Also, because the purpose of the

algorithm is different from the decision procedure and it has one more input (the winner),

the algorithm examines the preferences in a different order than the decision procedure.

Given the winner, the algorithm scans through the preferences in the order that yields a

set of relevant preferences, where the size of the set is as small as possible (though not

guaranteed to be smallest, as will be explained later). That is, it determines if a single

preference can make the same decision, and if not, it then determines if two preferences

can make the same decision, and so on. The set of preferences computed by the algorithm

is called the AFFECTED-PREFS in the algorithm. Because the current explanation in

Soar already includes require, prohibit, and the winner-proposed acceptable preferences,

we add only extra preferences to AFFECTED_PREFS.

First, the algorithm determines if a single preference is able to yield the same decision

as occurs with all given preferences. Because a require or sole acceptable preference

might have decided the value without considering other preferences, they are checked in

the beginning. If they fail, the algorithm examines if there are two preferences — a best

preference for the winner and the winner-proposed acceptable preference. If there are,

these two preferences are enough to decide the value. In this case, only the best preference

is saved in AFFECTED_PREF because the winner-proposed acceptable preference is

already counted in the explanation. If it also fails (i.e., there is no best preference for the

winner), the algorithm examines other preferences one by one to exclude the remaining

candidates. The algorithm first examines prohibit preferences, and excludes the prohibited

candidates. Because prohibit preferences are already included in the explanation in Soar,

these preferences are not added to AFFECTED_PREF. The algorithm then examines reject

and worst preferences, if each preference can exclude one of the remaining candidates.

If, while processing the worst preferences, it is found that the winner is one of the worst

76

Given the decided WME (id Aattr V), AFFECTED_PREFS is constructed. (Current explanation
aleady includes require, prohibit, and winner-proposed acceptable preferences.)

AFFECTED_PREFS = NIL
if require-preference set is not empty exit /* require */
if there is only one acceptable preference (id Aattr V+) exit /* sole candidate */
if there is only one best preference (id Aattr V >) /* one best and one acceptable */

insert it in AFFECTED_PREFS and exit

for all (W Aattr V,-+)& (v; o V) insert v,-in CANDIDATES
for all (id Aattr v,- ~) remove v,- from CANDIDATES /* prohibit */

For all vi in CANDIDATES /* rejects */
if there is (id Aattr v,- -)

insert it in AFFECTED_PREFS
remove v,from CANDIDATES

if CANDIDATES is empty exit

TCAND = CANDIDATES /* TCAND will be used for better and worse processing */
if there is not (id Aattr V <) /* worsts; if the winner is one of the worsts,

we ignore the worst preferences*/
for all vi in CANDIDATES

if there is (id Aattr v,- <)
insert it in AFFECTED_PREFS
remove v,- from CANDIDATES

if CANDIDATES is empty exit

For all v,- in CANDIDATES /* better and worse */
if there is (id Aattr v,- < V) or (id Aattr V > v,) /* if worse than the winner, only one

preference is required to filter the loser */
insert one of them in AFFECTED_PREFS
remove vi from CANDIDATES

/* requires another preference; worse than another acceptable value */
else if there exist a Vy such that Vy is in TCAND and ((id Aattr v,- < Vy) or (id Aattr vy > v-))

insert one of the preference and (id Aattr vy- +) in AFFECTED_PREFS
remove v; from CANDIDATES
remove vy from TCAND
for all vk in CANDIDATES /* remove covered elements */

if there is (id Aattr vk < Vy) or (id Aattr Vy > vk)
insert one of them in AFFECTED_PREFS
remove vk from CANDIDATES

For all vi in CANDIDATES /* unary indifferent */
if there is (id Aattr v, =), insert it in AFFECTED_PREFS

Figure 5.8: Preference collection algorithm.

77

candidates, the algorithm will ignore the worst preferences. Because the winner itself is

one of the worsts, the worst preferences cannot filter any non- winners. This case can occur

when other preceding preferences (e.g., reject preferences, better preferences, or worse

preferences) were enough to decide the winner in the original decision (see Figure 5.6).

Better and worse preferences are examined last because when they are used, there

sometimes needs to be two preferences to exclude one candidate. If, while examining

better and worse preferences, a candidate is not directly worse than the decided value, the

system searches for another {acceptable) value that is better than the candidate. According

to the decision filters, presented in Figure 5.6, a value is not selected if it is worse than

another acceptable candidate that has not been rejected or prohibited. Thus, we employ a

temporary set called TCAND that stores the non-rejected and non-prohibited candidates.

If a candidate is worse than a member of TCAND, the system requires two preferences to

remove the candidate — one acceptable and one better or worse. In this case, minimizing

the number of affected preferences requires finding a minimum set of acceptable values,

such that all the remaining candidates are worse than at least one of the (acceptable) values.

However, finding a minimum set of acceptable preferences that is enough to cover all the

remaining candidates is reducible to the set-covering problem — a known NP-complete

problem. Each acceptable preference represents the set of candidates worse than the

acceptable candidate, and the problem is to find a minimum set of acceptable preferences

(a subset of the candidates) that is enough to cover all the remaining candidates. Our

algorithm uses a simple backtrack-free heuristic to reduce the complexity to polynomial.

Given a candidate, if the candidate is covered by an acceptable'preference, the algorithm

removes all the other remaining candidates covered by the acceptable preference. (The

picked acceptable preference is not necessarily the best each time.) This process continues

until there is no remaining candidate that is not the winner.

The computational complexity of the preference collection algorithm depends on the

better/worse candidates processing because it requires the largest number of comparisons

among the candidates to find one of the coverings of the remaining candidates. For each

remaining candidate u(-, once it has found an element Vj, in TCAND, that is better than u,-,

for each other remaining candidate, Vk, the algorithm examines better/worse preference in

order to check whether VJ is also better than u*. The number of better/worse preferences

for N candidates is maximum Nx (N— 1), because for each pair of candidates, maximum

two preferences — one better and the other worse — can exist. Thus, the total complexity

78

is 0(N4), when N is the number of candidates. If the system preprocess the better/worse

preferences or employs additional indices, so that for each pair of candidates at most one

preference (either a better or a worse) remains, then the total cost becomes 0(N3).

Given the preference set in Figure 5.7 and the decided value green by the decision

procedure, the algorithm in Figure 5.8 finishes the process by the fourth line marked

as 'one best and one acceptable', and returns the preference {(01 Acolor green >)}

as AFFECTED_PREFS. Because the winner-proposed acceptable preference (01 A color

green +) is already included in the explanation by the current chunking process, the actual

set of affected preferences consists of the two preferences: (01 A color green >) and (01

* color green+).
Since the algorithm employs a backtrack-free heuristic to reduce the computational

complexity, it may produce a non-minimal set of preferences in some cases. The non-

minimal set of preferences, however, is still more effective than the full set of preferences,

as long as it is a subset of the other. By having fewer constraints, the learned rule is more

applicable than the rule derived from the full set.

5.2.2 Decisions based on lack of knowledge

One problem with incorporating search control is that it does not specify what to do when

decisions in a search are based on lack of knowledge. In such circumstances, the learning

process has no explanation for why a choice was made, and therefore can acquire rules that

are just as expensive as those learned by the unaltered learning mechanism. This problem

is called the opaque-decision problem. In Soar, a real lack of knowledge, as reflected in

an insufficient set of preferences about a decision, leads to an impasse rather than to a

decision. Thus, it might seem that Soar would not suffer from this problem. However, it

does have a construct — an indifferent preference — that allows the explicit statement of

indifference among a set of choices. The decision procedure is then free to select randomly

among the indifferent choices. The resulting choice (i.e., opaque decision) is thus made

in such a way that no explanation of the selection among the indifferent alternatives is

possible.
Consider the example from the Grid task again — the problem is to go from point F

to point P, a path of length four (Figure 5.9-(a)). Because point F is adjacent to four other

points, four operators are suggested, one for each direction, by the rule operator-goto

79

M N 0 P

I J K L

E F G H

A B C D

(FAnextB)
(FAnextE)
(FAncxtJ)
(FAnextG)
(GAnextF)

(sp operator-goto
(goal <g> AprobIem-space <p>

''State <s>)
(<p> Aname grid-path)
(<s>Aat<Iocl>)
(<locl> Anext <loc2>)

—>
(<o> Aname goto-loc

Afrom <Iocl> Ato <Ioc2>)
(<g> operator <o>))

(a) (b)

Figure 5.9: The Grid task.

(Figure 5.9-(b)). If the knowledge required to choose among them is not directly available

in productions (as in the case of this task), an impasse occurs on operator selection. In

the subgoal created for this impasse, Soar employs the selection problem space, which

contains evaluation operators that can be applied to the competing task operators. These

evaluations, once generated, are turned into preferences that allow selection of the task

operators. However, the system may lack knowledge about which one to evaluate first,

and might thereby create another impasse. To avoid such impasses, Soar's background

knowledge creates indifferent preferences for the evaluation operators. This allows it

make an opaque decision (pick one randomly), and begin to make progress. Figure 5.10

shows this search process, which continues until the point P is reached.

If, as is often the case, the information about how to evaluate an operator is not

directly available, an evaluation subgoal (to implement the evaluation operator) is created.

The task in this third-level subgoal is to determine the utility of the operator. Here,

the system performs a lookahead search trying to apply the selected task operator in the

original problem space. If the resulting state can be evaluated, then the subgoal terminates;

otherwise the process continues, recurring on the question of what task operator to apply

to this new state.

In this overall lookahead search, indifferent preferences indirectly determine which

path the system moves down, by directly determining which of the operators are evaluated

80

Evaluat« (Op1)

Grid PS

Selection PS

Grid PS (lookahead)

Evaluate (Op2)
Selection PS

Figure 5.10: Problem solving in the Grid task.

81

at each point. However, the rules learned from this search cannot gather an explanation

from the random semantics (indifferent preferences) as to why one path was taken rather

than another. This leads to an exponential match of rules which are learned from this

process. We saw an example of this in the introduction.

There are (at least) two possible ways of solving this problem. The first one is

to disallow the use of indifferent preferences. Instead of selecting randomly among

alternatives, an explicit default ordering is given to the alternatives. If there are any

apparent reasons why one alternative should be selected ahead of another, they can be

incorporated into this ordering. Where there are no such reasons, arbitrary ordering can

be imposed. For the Grid task, an ordering of the operators can be assigned, according

to the direction of movement. For example, an ordering of first right, then up, then left,

and finally down, can be provided by the rules shown in Figure 5.11-(a). It is important to

note that this ordering is just used in place of the indifferent preferences on the evaluate

operators in the selection space. Thus, it determines the order in which the operators are

evaluated, but does not dictate an ordering on the task operators. This latter ordering is

still to be learned, as a new set of control rules, from the lookahead search.

Because the orderings are generated explicitly by the rules that distinguish among the

alternatives, they leave behind a trace that can be used in explaining why one alternative

is picked over the others. A key point is that it does not explain why it should be selected

first, only why it actually was; so, it is descriptive rather than normative. For example,

Figure 5.1 l-(b) shows the match search of the learned rule in the grid task. The additional

constraint introduced by the conditions marking the directions and their priorities may not

capture a suitable level of generality to support transfer to related situations; however, it

will at least be sufficient to distinguish the one selected alternative from the others during

the match, and thus be able to make the resulting learned rules (and the pseudo-chunks

created between this step and the learned rule) cheap.

The second way of dealing with opaqueness caused by the randomness is to reflect

this random semantics in learning and matching. In the problem solving episode, if the

system has made an opaque decision, the corresponding part (conditions) of the rule that is

learned from the search, can be provided with random semantics. Every time a condition

is matched against a WME, although the condition is general enough to match any value,

only one of the values is selected randomly, instead of all of them. For example, consider

the learned rule from the Grid-task problem solving as shown in Figure 5.10, and the

82

(rule priority-right
(goal <g> problem-space <p2>

"eval-operator <el>)
(<p2> Aname selection)
(<el> "object)
(Aname goto-loc)

«from <docl> "to <loc2>)
(<locl> Aright <Joc2>)
—>
(<el> Apriority 1))

(rule priority-down
(goal <g> problem-space <p2>

"eval-operator <el>)
(<p2> Aname selection)
(<el> "^object)
(Aname goto-loc)

•from <Iocl> "to <]oc2>)
(<docl> Adown <Ioc2>)
->
(<el> Apriority 4))

(rule priority-up
.. (goal <^>.AprohlemTspace<p2>

"Aeval-operator<el>)
(<p2> Aname selection)
(<el> Aobject)
(Aname goto-loc)

''from <locl> "to <Ioc2>)
(<locl> Aup <loc2>)
->
(<el> Apriority 2))

(rule priority-left
. (goal <g> "problem-space <p2>

^eval-operator <el>)
(<p2> Aname selection)
(<el> Aobject)
("name goto-loc)

"from <locl> "to <loc2>)
(<locl>"lett<Ioc2>)
~>
(<el> priority 3))

(rule eval-preference
(goal <g> "problem-space <p2>

"eval-operator <el> <e2>)
(<p2> Aname selection)
(<el> Apriorit <pl>)
(<e2> "priority <p2> { xpl>})
->
(<g> Aeva!-operator <el> > <e2>)

(a) Providing a default ordering among the evaluation operators

C
(<r> "priority 4 Aat <11> Ato <12>)
(<u> "priority 3) (<d> "priority 1)
(<s> Aat <U>) (<dl> Aat<18>)
(<12> "right <13> ''next <13>

"down >d4> Anext <14>
"up <d5> "next <d5>)

(<13> "up <16> "next <16>
"down <17> Anext <37>)

(<16> "up <18> Anext <18>)
->
(<g> "operator <t> >))

I
I

(b) Learned rule and its match search

Figure 5.11: Eliminating indifferent preferences and their opaque decisions.

83

(<state>Aat<ll>)
(<desired> Aat <15>)
(<op> ^t <ll> ^o <12>)
(<d2>Niext<13>)
(<13> ^next <14>)

(<g> operator <o> >))

(a) Learned rule

t** t-

(b) Match seaih wilh normal match (c) Match search with random semantics

Figure 5.12: Match search with/without random semantics.

learned rule as shown in Figure 5.12-(a). When the system matches the conditions which

are built from the the opaque decisions in the problem solving, instead of matching the

conditions with all WMEs, only one of them is picked randomly. For example, the match

search for the rule in Figure 5.12-(a) can be changed from Figure 5.12-(b) to Figure 5.12-

(c). The reflection of an opaque decision in the match leads to a single-path match. If,

in fact, the indifferent preference meant that the system really didn't care which of the

paths was taken, then any random selection made by the matcher should be as good as any

other. If, however, the indifferent preference actually signified a lack of knowledge about

the correct path, and that not all paths actually lead to success, then the match will follow

one path randomly, and thus will succeed only stochastically. If, in the Grid task example,

the system picks one of the wrong paths, the search would not reach the desired point

Our implementation supports both ways of solving the problem. The first option needs

only an explicit evaluation order among the alternatives, and does not demand any modifi-

cation of the basic architecture of Soar, except for eliminating indifferent preferences. The

second option requires a significant alteration in the match of the learned rule. The random

semantics are applied to the match of the learned rule, and the current match algorithm

(Rete) is extended to support the semantics. This extension is also combined with other

84

extensions of the match algorithm, which are required for implementing other proposed

modifications (e.g., introducing the problem-solving structure in the match). Details of

such extensions, and how to combine them will be discussed in Section 5.4.

5.2.3 An example E'-chunk

The simplified Grid task described in Chapter 3 has no excessive search-control rule

firings. If the Grid task is extended, by giving one more rule, R5, and a WME, W51,

as shown in Figure 5.13, the problem solving episode from the new task will produce

excessive search-control rule firing. The problem solving episode is shown in Figure 5.14.

For the second decision in Figure 5.14, the preference (Gl Aoperator A -) is excessive

and can be excluded from the explanation. The excessive part is marked as thick lines

in the figure. The preference collection algorithm, shown in Figure 5.8, filters the reject

preference from the set of preferences participating in the decision. Figure 5.15 shows the

extra match effort performed by the excessive part. The total cost of the problem solving

episode is 29 in the new task.

The interpretation of the E'-chunk, generated from the PS-chunk, is shown in Fig-

ure 5.16. The cost of the E'-chunk is 27, which is less than the cost of the PS-chunk. In

general, when the search control computing algorithm filters any preferences, the E'-chunk

will have fewer search-control rules than the PS-chunk, and produce fewer tokens in the

match. Otherwise, the number remains the same.

Theorem 3 The number of tokens produced while interpreting an E'-chunk is bounded by

the number of tokens for the PS-chunk from which it is created.

proof The set of the rules in the E'-chunk is either a subset of the rules in the PS-

chunk (when there is at least one search-control rule) or equivalent to it (when there is

no search-control rule), because of the pruned search control (trace-subset). Since the

transformation only eliminates excessive search control, each decision in the E'-chunk

is constrained as in the PS-chunk. Thus, each decision produces the equivalent set of

WMEs that are produced by the corresponding decision in the PS-chunk. This means that

each condition in the E'-chunk is matched by the same set of WMEs as the corresponding

condition in the PS-chunk (WME-subset). By theorem 1, the number of tokens produced

by the E'-chunk match is bounded by that in the PS-chunk match.

85

G H I

D E F

i I ^ "" **|
A1 t B C*i

9

W1:(A
W2:(A
W3:(A
W4:(B
W5:(B
W6:(B
W7:(B
W8:(C
W9: (C

Anext B)
Anext D)
VightB)
Anext A)
AnextC)
Anext E)
'Yight C)
Anext F)
Anext-B)-

W10:(DAnextA)
Wll:(DAnextE)
W12:(DAnextG)

W27:(GlAstateS)
W28: (S Aat A)
W29:(GlAgoal-pointGP)
W30:(GPAatC)

(a) Given WMEs

W13:(EAnextB)
W14:(EAnextF)
W15:(EAnextH)
W16:(EAnextD)
W17:(GAnextD)
W18:(GAnextH)
W19: (B Areachable-by Cl)
W20: (D 'Veachable-by VI)
W21: (A 'Veachable-by V2)
W22: (C Areachable-by V2)
W23: (E Areachable-by V2)
W24: (G 'Veachable-by V2)
W25:(VlAnamecar)
W26:(V2Anamecar)

W51:(BAleftA)

(Rl
(goal <g> Astate <s>)
(<s>Aat<locl>)
(<locl> Anext <loc2>)
(<loc2> Veachable-by <vehicle>)
(<vehicle> Aname <n>)
->
(<g> operator <loc2> +))

(R3
(goal <g> Astate <s>)
(<g> operator <loc5>)

(<s> Aat <loc5>)

(R5
(goal <g> Astate <s>)
(<s> Aat <loc3>)
(<Ioc3> Alcft <Ioc7>)
(<g> Aopcrator <loc7> +)
->
(<g> Aoperator <loc7> -))

(R2
(goal <g> Astate <s>)
(<s> Aat <loc3>)
(<loc3> Aright <loc4>)
(<g> Aoperator <loc4> +)
—>
(<g> Aoperator <loc4> >))

(R4
(goal <g> ^tate <s>)
(<g> Agoal-point <gp>)
(<gp> Aat <loc6>)
(<s> Aat <loc6>)
->
(<s> Success <loc6>))

; (search-control rule)
; if the current location is <loc3>,
; and <loc4> is on the left, and
; there is a candidate operator to goto
; <loc4>, then reject the operator

(b) Given rules

Figure 5.13: An extension to the simplified Grid task.

86

W29
W30
W26

W4.W5.W6
W21.W22.W23

W3-^

W3S

Preferences and WMEs created during problem solving

PI: (Gl operator B+)
P2:(G1 AoperatorD+)
P3:(G1 «operator B>)

W31:(GIAoperatorB)
W32: (S «at B)

P4:(G1 «operator C+)
P5:(G1 «operator E+)
P6: (G1 «operator A +)
P7:(G1 «operator C>)
P8:(G1 «operator A-)

W33:(G1 «operator C)
W34:(S«atQ
W35: (S «success Q

Figure 5.14: Problem solving episode.

(R5
S (goal <g> «state <s>)
S (<s> «at <loc3>)
1 (<loc3> «left <loc7>)
1 (<g> «operator <loc7> CAND)
->
1 (<g> «operator <loc7> BEST))

(W27)
(W27.W32)
(W27.W32.W51)
(W27.W32..W51.P6)

==> create P7

P4.P5.P6.P7.P8 => create W33 Decision process

Figure 5.15: Tokens created for the excessive search control.

87

W35

Figure 5.16: The trace of the E'-chunk.

Remember that the original transformation (removal of search control) from the PS-

chunk to the E-chunk has increased the cost. The cost increase is avoided now by

employing the altered transformation.

The addition of search control, rather than the removal of it, may specialize the learned

rules (and the pseudo-chunks created between this transformation and the learned rules),

but in return, it enables the rule's cost to remain bounded by the cost of the original

problem solving.

5.3 E'-chunk =>• I'-chunk

This step performs the variablization step in chunking by examining the rule traces in the

E-chunk trace, as described in Section 3.3. This transformation can overspecialize the

learned rule (and the pseudo-chunks created by the subsequent transformations) as in the

original chunking's variablization process. For the Grid task example, the new I'-chunk

built from the E'-chunk is shown in Figure 5.17. Variable <nl> in Rl-1' and variable

<n2> in Rl-2' are overspecialized to the constant car as in the original transformation.

Although the characteristics of the transformation are similar to those of the original

transformation, the resulting I'-chunk is different from the I-chunk in that the copies of

the search-control rules and the subsequent decisions are kept in the structure. The total

cost in the number of tokens is 27; the cost is the same as the match cost of the E'-chunk.

In general, the number of tokens generated should be either unchanged, or reduced by the

introduced constraints.

88

•

W35

(Rl-1"
1 (goal <g> "state <s>)
1 (<s> Aat <locl>)
2 (<Iocl> "next <loc2>)
2 (<loc2> Areachable-by <vl>)
2 (<vl> Aname car)
->
2 (<g> operator <Ioc2>))

(R2-1"
S (goal <g> "state <s>)
S (<s> Aat <locl>)
1 (<Iocl> Aright <loc2>)
1 (<g> Agoto-eval-operator <loc2> +)
->
1 (<g> operator <loc2> >))

(R3-1"
S (goal <g> Astate <s>)
1 (<g> operator <loc2>)
->
1 (<s> Aat <loc2>))

(Rl-2"
S (goal <g> ^ate <s>)
1 (<s> Aat <loc2>)
3 (<loc2> Anext <loc3>)
3 (<loc3> Areachable-by <v2>)
3 (<v2> Aname car)
->
3 (<g> Aoperator<loc3>))

(R2-2"
S (goal <g> Astatc <s>)
S (<s> Aat <loc2>)
1 (<loc2> Aright<loc3>)
1 (<g> "operator <loc3> +)
->
1 (<g> "operator <loc3> >))

(R3-2"
S (goal <g> Astate <s>)
1 (<g> "operator <loc3>)
~>
1 (<s> Aat <loc3>))

(R4-1"
S (goal <g> ^tate <s>)
1 (<g> "goal-point <gp>)
1 (<gp> "at <loc3>)
1 (<s> Aat <loc3>)
~>
1 (<s> "success <loc3>))

Figure 5.17: The interpretation of the I'-chunk that is built while learning a rule from the
Grid task. An I'-chunk is created by constraining variables in an E'-chunk.

89

Theorem 4 The number of tokens produced while interpreting an I'-chunk is bounded by

the number of tokens of the E-chunk from which it is created.

proof. The I'-chunk has the same set of rules as the E'-chunk because the rules remain

the same (trace-subset). The changes made by the transformation either make different

variables the same or constrain the variables as constants. Because of these changes,

a rule condition in the I'-chunk matches either fewer WMEs than the WMEs matching

the corresponding condition in the E'-chunk (WME-subset), or the same WMEs (WME-

subset). By theorem 1, the number of tokens produced by the I'-chunk match is bounded

by that in the E'-chunk match.

5.4 I'-chunk => U'-chunk

This transformation has to perform two sub-transformations: (1) unifying the separate

rules and decisions into one structure, and (2) applying token compression. These two

sub-transformations should be applied together, because performing (1) without (2) can

increase the cost, and (2) is not meaningful without (1). Token compression is needed

only when intermediate WMEs are replaced by tokens, which is performed by (1).

The first sub-transformation removes intermediate preferences along with the subse-

quent intermediate WMEs, and produces a single rule structure. In order to properly

interpret this structure as a rule, an extension of the Rete algorithm is required. Nonlinear

Rete, introduced to interpret U-chunk in Section 3.4, is not sufficient. Not only does the

match algorithm have to interpret the hierarchical rule firing structure, but it also has to

incorporate decision semantics. Token compression needs to be introduced as well, to

prevent any increase in the number of tokens caused by unifying. This section introduces

the extensions to nonlinear Rete that support decision semantics and token compression.

First, we describe the new operations added to nonlinear Rete, so that decisions can

be interpreted, and then we discuss the incorporation of token compression in extended

nonlinear Rete.

•

90

W1:(G1 AeventEl)
W2:(G1 AeventE2)
W3:(GlAeventE3)
W4:(G1 AeventE4)
W5:(GlAeventE5)
W6: (Gl Anew-event El)
W7: (Gl Anew-eventE2)
W8: (Gl Anew-eventE3)
W9: (Gl Anew-eventE4)
W10: (E2 Ahas bad-result)
Wll:(E3Ahas bad-result)
W12: (E4 Ahas bad-result)

(rule-acceptable
(<g> Anew-event <o>)
->
(<g> operator <o> +))

(rule-reject
(<g> ^event <o>)
(<o> Ahas bad-result)
->
(<g> operator <o> -))

(a) WMEs and search-control rules

Instantiations of rule-acceptable:
acc-1: {(Gl Anew-eventEl)}
acc-2: {(Gl Anew-eventE2)j
acc-3: {(Gl Anew-eventE3)}
acc-4: {(Gl Anew-eventE4)}

Instantiations of rule-reject:
rej-1: {(Gl ^vent E2) (E2 Ahas bad-result)}
rej-2: {(Gl AeventE3) (E3 Ahas bad-result)}
rej-3: {(Gl Aevent E4) (E4 Ahas bad-result)}

«> PA1: (Gl operator El +)
-> PA2: (Gl operator E3 +)
-> PA3: (Gl operator E4 +)
~> PA4: (Gl operator E2 +)

-> PR 1: (Gl operator E2 -)
-> PR2: (Gl operator E3 -)
-> PR3: (G1 Aoperator E4 -)

(b) Instantiations and preferences created by the instantiations

(Gl operator El)

(c) Decision procedure produces a winner

Figure 5.18: An example decision in a problem solving episode.

5.4.1 Removing intermediate preferences and WMEs

Removing intermediate preferences means that the instantiations of the rules that created

the preferences are directly used in the decisions (instead of creating the preferences

and processing them in the decisions). This requires a new decision algorithm that

embodies decision semantics to process instantiations instead of preferences. Removing

intermediate WMEs also means that the decision algorithm does not create WMEs. The

set of instantiations that participated in the decision is directly used for further matches.

Figure 5.18 shows such a decision. Given the WMEs and the rules in Figure 5.18-(a),

seven preferences are created for the same id (Gl) and attribute (operator), as shown in

Figure 5.18-(b). These preferences are processed by the decision procedure, as explained

in Section 5.2. A WME is created as a result, as shown in Figure 5.18-(c). After the

91

RA1,RA2,RA3,RA4

W6,W7,W8,W9 (~^\ *► PA1,PA2,PA3,PA4

-(Gl operator El) !■-
RRI,RR2,RR3

W2.W3.W4, f\ ^ PR1.PR2.PR3
wio.wii.wi2 v_y

D: decision procedure call

(RA1 (RA2 (RA3 (RA4
(<g> Anew-event<el>) (<g> Anew-event <e2>) (<g> Anew-event <e3>) (<g> Anew-event <e4>)
-> --> -> ->
(<g> operator <el > +)) (<g> operator <e2> +)) (<g> operator <e3> +)) (<g> operator <e4> +))

(RR1 (RR2 (RR3
(<g> ^vent <e2>) (<g> Aevent <e3>) (<g> Aevent <e4>)
(<e2> Ahas bad-result) (<e3> Ahas bad-result) (<e4> Ahas bad-result)
-> -> ->
(<g> operator <e2> -)) (<g> Aoperator <e3> -)) (<g> operator <e4> -))

Figure 5.19: Interpretation of the rules and the decision in I'-chunk.

first three transformations (Domain Theory =*>■ PS-chunk, PS-chunk =^ E'-chunk, and

E'-chunk =$* I'-chunk), the rule firings and the decisions in the problem solving episode

are transformed into the rule firings and the decision shown in Figure 5.19. As explained

in Section 3.3, in order to build a PS-chunk (and its subsequent E'-chunk and I'-chunk),

a copy of a rule is created for each rule firing, as if the explanation structure in EBL is

built by creating a separate rule copy for each instantiation. For example, four copies of

rule-acceptable — RA1, RA2, RA3, and RA4 — are created for the four instantiations of

the rule. In their interpretation, RA1,..., RA4 share one rule structure because they have

the same input and output, and the same pattern of constant and variable tests. (They share

one node in the figure.) In the rule level they are separate, but in the Rete level (in the

compiled structure) they share one network. The letter D represents a procedure call of the

same decision procedure employed in the problem solving. The decision in the I'-chunk

. is identical to the original decision, except that the WMEs created by the decision in the

I'-chunk are matched only by the rules that are connected in the structure, as opposed to

being matched to any conditions in the production system.

Figure 5.20-(a) shows the corresponding subrules and the decision in the U'-chunk.

The intermediate preferences and WMEs are removed, and instantiations are directly

processed by the decision. Subrules RA1',..., RA4' are formed from RA1,..., RA4, and

92

RAt',RA2\RA3',RA4'
W6,W7,W8,W9 (Y—___^ ace-1 ,acc-2,acc-3,acc-4

RR1',RR2',RR3' UD *"

W2.W3.W4, _ fy reH,rej-2.rej-3
W10.W11.W12 K J

UD: unified decision for RA1' ,RA2' ,RA3' ,RA4',RR 1' XR2' .RR3',

(RA1' (RA2' (RA3' (RA4'
(<g>Anew-event<el>) (<g> Anew-event <e2>) (<g> Anew-event <e3>) (<g> Anew-event <e4>)

(RR1' (RR2' (RR3'
(<g>Aevent<e2>) (<g> ^vent <e3>) <<g> 'Went <e4>) -
(<e2> Ahas bad-result) (<e3> Ahas bad-result) (<e4> Ahas bad-result)

(a) Interpretation of the subrules and the unified decision in the U'-chunk

Input
Instantiations of RA1'—RA4' and RA1' —RA4'
(acc-1 — acc-4, rej-1—rej-3)

Output:
Instantiations of RA1'

(b) Input and output of the unified decision

Figure 5.20: Interpreting the unified decision in the U'-chunk.

can also share the same structure in their interpretation, since they have the same patterns

of tests.

Since the decision in the U'-chunk is different from the normal decision procedure, in

that it has to process instantiations instead of preferences, the decision is represented as UD

(Unified Decision) instead of D to distinguish the difference. Unified decisions also differ

from the normal decisions, in that they cannot be performed by calling a general decision

procedure. As each rule has patterns in its conditions and actions, each unified decision

has patterns for its input and output. These input and output patterns are determined by

the subrules which participate in the decision. For example, as shown in Figure 5.20-(b),

the given unified decision will process the instantiations of the subrule RA1',..., RA4',

and RR',..., RR3', and decide the instantiation that created the winner. That is, it has

to decide which instantiation is consistent with RA1' (the subrule that is created from the

winner-proposed instantiation — acc-1), as explained later.

Figure 5.21 shows the details of the decision performed in the I'-chunk match. The

decision procedure filters the candidates one by one, based on the rejected values, by

93

PA1
PA2

^^ 'PA3
__^^-^PA4 Decision

rocedure
-(Gl ^operator El)-

PA1,PA2,PA3,PA3 ==> Candidates: El, E2, E3, E4
PR1 => Candidates: El, E3, E4
PR2 => Candidates: El, E4
PR3 => Candidates : El
=> El is the winner

PA1: (Gl Aoperator El +)
PA2: (Gl Aoperator E3 +)
PA3:(G1A T" -x

PA4:(G1'
PR1:(G1'
PR2: (Gl'
PR3: (Gl'

. Aoperator E4 +)
1 Aoperator E2 +)
1 operator E2 -)
I Aoperator E3 -)
1 AoperatprE4-)

Figure 5.21: The details of the decision in the I-chunk match.

marking the rejected values among the candidate values. The total cost is linear in the

number of candidates. The unified decision formed from the decision should provide

similar semantics to determine the winner (or the winner-proposed instantiation).

In Figure 5.22, a search that can be performed by the unified decision is shown.

In this search, one reject-preference-created instantiation (we call it as rej-instantiation

for brevity) is picked for each re/ecf-preference created subrule (called the rej-subrule).

Moreover, whenever an instantiation is picked for a rej-subrule, the system decides its

consistent acceptable-preference-created instantiation (called the acc-instantiation)} This

is similar to the process in the decision in the I'-chunk, which filters the candidates that are

rejected and find the winner. That is, the pick one process in the unified decision filters

the three acc-instantiations that are consistent with the rej-instantiations, and finds the

instantiation of RA1'. The complexity of this search is linear in the number of candidates.

This process is more speciali2ed than the original decision procedure, because its algorithm

depends on the patterns of tests in the subrules, and the number of subrules in the decision.

However, this guarantees the correctness and the linear time boundedness, given a similar

situation. No matter which rej-instantiation is picked each time, the acc-instantiations that

are consistent with the rej-instantiations will be filtered, and the system will always be left

with the non-rejected candidate, and can make the correct decision.

'An acceptable-preference created subrules (called an acc-subrule) is consistent with a rej-subrule,
when their corresponding rules in the I'-chunk have proposed and rejected the same candidate. Also, an
acc-instantiation is consistent with a rej-instantiation, when they are instantiations of two consistent subrules.

94

(RRl'=rej-l, t pick one among the rejects (rej-1 — rej-3)
RA2'=acc-2) and filter the consistent a-mstantiation

(RR2'=rej-2, '' pick one among the rejects which are different from rej-1,
RA3 '=acc-3) and filter me consistent a-instantiation

(RR2'=rej-3, ' r pick one among the rejects which are different from rej-1 and rej-2,
RA3 '=acc-4) and filter the consistent a-instanttation

(RAl^acc-1)1'

Figure 5.22: A cheaper search for the unified decision.

Matching (interpreting) a unified structure (a U'-chunk) is a single rule match process,

and the above search (a sub-part of a U-chunk match) should be performed in the rule

match algorithm. This requires a significant modification in the match process. In the

nonlinear Rete, introduced in Section 3.4, the only operation between two instantiations of

subrules is join, which tests the consistency between the instantiations based on the variable

patterns of the subrules. The above task, however, requires an extra operation that can pick

one instantiation that is not the same as the instantiations of the preceding subrules. (The

structure in Rete will be shown shortly.) For example, the above decision requires picking

one instantiation among the rej-instantiations, which is different from the instantiations of

the preceding rej-subrules. We have introduced an extra not type, called a decision-sub-

node, for this purpose. A decision-sub-node picks one of the instantiations of a subrule

arbitrarily, instead of keeping all consistent instantiations. This 'pick one' operation

filters out rejected candidates one at a time, as the decision procedure filters one rejected

candidate per preference. This extension of nonlinear Rete is called controlled-nonlinear-

Rete. The search, shown in Figure 5.22, can be performed by controlled-nonlinear-Rete, as

shown in Figure 5.23. (The structure in the figure does not reflect the sharing optimization

of Rete.) Each parenthesized subrule name in the figure represents the Rete sub-network

that interprets that subrule. Each acc-subrule network is paired with its consistent rej-

subrule network via a. join node to filter the candidate (acc-instantiation) that is consistent

with the rej-instantiation. Each pair is interpreted as a subrule (called a decision-sub-

condition) in the network. The decision-sub-nodes are marked as DN. Each DN compares

95

(subrule) : Retc network interpreting the subrule

(RA2') (RR1') (RA3') (RR2') (RA3') (RR2') (RA1')

Figure 5.23: The controlled-nonlinear-Rete network built for the unified decision.

the acc-instantiations of the current decision-sub-condition with the acc-instantiations of

the preceding decision-sub-conditions. The last DN finds the instantiation of RA1'.
The actual Rete network with the sharing optimization is shown in Figure 5.24. Since

the acc-subrules have the same pattern of tests, they can share one network marked as
(acc-subrule) — the network interpreting an acc-subrule. Also, the rej-subrules share

one network marked as (rej-subrule). The decision-sub-conditions, created by pairing a

rej-subrule and an acc-subrule, can share one sub-network. This network performs the

process described above.
Since the decisions are interpreted as additional Rete nodes in the controlled nonlinear

Rete, the cost of the decision procedure (originally performed by the Soar architecture)

is converted into a sub-part of the match cost However, because each decision-sub-node

keeps at most one token, the increase in number of tokens is linear in the number of

candidates. Thus, it has the same complexity as the original decision procedure, and the

actual total cost does not increase.
Note that the trace-graph of the U'-chunk reflects the interpretation by controlled-

nonlinear-Rete, and displays the structure shown in Figure 5.24.

96

(subrulc): Rete network interpreting the subrule

(acc-subrule) (rej-subrule)

Figure 5.24: The same controlled-nonlinear-Rete showing the sharing.

5.4.2 A general unified decision structure

Figure 5.25 shows the general structure of a unified decision. Each symbol enclosed in

braces represents a search-control-created subrule, such as acc-subrule or rej-subrule. The
parts marked as DS represent the decision-sub-conditions. Each decision-sub-condition

is interpreted as a decision-sub-node in controlled-nonlinear-Rete, as described in the last

subsection. Given a set of search-control-created subrules, a list of decision-sub-conditions

are created, and are interpreted by controlled-nonlinear-Rete. For example, given the set

of subrules, RA1',..., RA4' and RR1',..., RR3', a list of decision-sub-conditions can be

created, as shown in Figure 5.26. These conditions are interpreted as the network shown

in Figure 5.24.
The general structure of a unified decision follows the decision procedure semantics,

and is consistent with the sequence of filters shown in Figure 5.5. If there is a require

preference or only one acceptable preference in a decision, only one subrule is created

for the unified decision, and this trivial decision can be treated as a simple subrule,

without an decision-sub-condition. The tokens of other preference-created subrules are

processed similarly, as in the earlier example (in the previous subsection), except for the

tokens of the fcetf-preference-created subrules. A best preference, if it has participated in

filtering candidates in the original decision procedure (and picked up by the preference

collection algorithm shown in Figure 5.8), should be consistent with the winner. Thus,

97

DS{
{acceptable-preference-created-subrule-p-l}
{prohibit-preference-created-subrule-1}

•

DS{ *
{acceptable-preference-created-subrule-p-n}

. {prohibit-preference-created-subrule-n}

DS{
{acceptable-preference-created-subrule-r-1}

j {reject-preference-created-subrule-1}
•

DS{ *
{acceptable-preference-created-subrule-r-n}

j {reject-preference-created-subrule-n}

DS{
{acceptabIe-preference-created-subrule-b-1-1}
{acceptable-preference-created-subrule-w-1-2}
(better-or-worse-preference-created-subrule-1}

•

DS{
{acceptable-preference-created-subnile-b-n-l}
{acceptabIe-preference-created-subrule-w-n-2}
{better-or-wors&-preference-created-subrule-n}

DS{
{acceptable-preference-created-subrule-w-1}

. {worst-preference-created-subrule-1}

DS{ •
{acceptable-preference-created-subru le-w-n}

. {worst-preference-created-subrule-n}

DS{
{acceptable-preference-created-subrule-i-1}

. {indifferent-preference-created-subrule-1}
•

DS{ •
{acceptable-preference-created-subrule-i-n}

. {indifferent-preference-created-subrule-n}

DS{
{acceptable-preference-created-subrule-i-l}

. {parallel-preference-created-submle-l}

DS{ •
{acceptable-preference-created-subrule-pl-n}

. {parallel-preference-created-subrule-n}
DS{

{acceptable-preference-created-subrule-b} 0R DS{accePtable-preference-created-subrule}
{best-preference-created-subrule}

Figure 5.25: The general structure of a unified decision.

98

DS{
{(<g> Anew-event <e2>)}

{(<g> Aevent<e2>)
(<e2> Ahas bad-result)}

DS{
{(<g> Anew-event <e2>)}

{(<g> ^vent <e2>)
(<e2> Ahas bad-result)}

DS{
{(<g> Anew-event <e2>)} -

{(<g> Aevent <e2>)
(<e2> Ahas bad-result)}

{(<g> Anew-event <el>)}

Figure 5.26: The structure of the example unified decision.

the bfttt-preference-created subrule is paired with the winner-created subrule, as shown at

the bottom of the list of subrules. For better or worse preference created subrules, two

acc-subrules (one for the better and the other for the worse) are put together, since the two

candidates need to be compared as in the original decision procedure.

The overall interpretation of the general structure is as follows. First, any prohibit-

created or re/ecf-created subrule pick one instantiation. Next, for each picked instantiation,

the consistent acc-instantiation is compared with the already filtered acc-instantiations, to

make sure that it is not already filtered by other subrules. Then betterAvorse-created

subrules filter the candidates. In the original decision procedure, better/worse preferences

compare the candidates that are not already filtered by reject or prohibit preferences. Since

the structure keeps the two acc-subrules that are consistent with the two candidates for

each betterAvorse-created subrule, by comparing the acc-instantiations (consistent with

the picked betterAvorse-created instantiation) with already prohibited or rejected acc-

instantiations, the same result can be acquired. It then filters out the worst instantiations.

If there is not a fotf-preference-created subrule, the acc-instantiation which is not con-

sistent with the already filtered acc-instantiations becomes the winner. Otherwise, the

acc-instantiation which is consistent with the instantiation of the best-preference created

subrule (and different from the filtered acc-instantiations) becomes the winner.

99

Note that the random semantics of the indifferent preferences (opaque decision) dis-

cussed in subsection 4.1.2 can be easily captured in this framework. Each indifferent-

preference-created subrule, except for the one consistent with the winner, can be paired

with the consistent acc-subrule to create a decision-sub-condition. Each decision-sub-

condition is interpreted by a decision-sub-node, and the decision-sub-nodes will pick

one of the candidates (acc-instantiations) for it. The candidate that is not picked by

these nodes becomes the winner. For example, if there were four options in the original

problem solving, the unified decision will distribute the ihree options into one of the

three indifferent-prefer&nce-crealed subrules, and the candidate, which happened to not be

picked by them, becomes the winner.

5.4.3 Applying token compression

Without token compression, all the instantiations of the sub-rules are directly transferred

to the connected rules in the U'-chunk match. Figure 5.27 shows an example. Given the

rules and WMEs in Figure 5.27-(a), matching rule Rule-next creates four instantiations:

II, ..., 14, as shown in Figure 5.27-(b). Because all of these instantiations have the

same values for the variables in the action (<state> and <point3>) in the I'-chunk, only

one WME (Wl) is created from them in the I'-chunk match. The new WME Wl is

matched to the first condition of Rule-connected'. Figure 5.27-(c) shows a part of the U'-

chunk match built without token compression. Because the four instantiations are directly

passed to Rule-connected", the match cost can increase. At least for the first condition of

Rule-connected", the number of tokens increases from 1 to A,

To avoid the above increase in the number of tokens, token compression merges the

equivalent tokens into one token. Because the variables in the action determine the unique

WMEs created by the action execution, one way of implementing token compression is

to explicitly represent only the values of the variables in the action. We call the variables

in the action exposed variables. Thus, the exposed variables for the action of Rule-next

are <state> and <point3>. (The algorithm that computes the exposed variables is given

later.) Given these exposed variables, as shown in Figure 5.28-(a), the four instantiations

are merged into one tuple (State P4), and this tuple is used instead of the four instantiations

in the U'-chunk match. Because the tuple represents any of the four instantiations, it is not

removed until all of the four instantiations are removed. Figure 5.28-(b) shows a part of

100

p<ü><ü (Statel Aat Pl)
(Pl^extPlXPl^extPS)
(P2 ^ext P4) (P3 Anext P4)
(P4 ^lext P5) (P4 Anext P6)

(Rule-connected
(<state> Aconnected-to-2 <point3>)

~>

(Rule-next
(<state> Aat <pointl>)
(<pointl> Anext <point2>)
(<point2> Anext <point3>)
(<point3> Anext <point4>)
->
(<state> Aconnected-to-2 <point3>))

(a) Given WMEs and rules

Instantiations of Rule-next:
II: (State Aat PI) (PI Anext P2) (P2 Anext P4) (P7 Anext P5)
12: (State Aat PI) (PI Anext P2) (P2 Anext P4) (P4 Anext P6)
13: (State Aat PI) (PI 'toext P3) (P3 Anext P4) (P4 Anext P5)
14: (State Aat PI) (PI Anext P3) (P3 Anext P4) (P4 Anext P6)

Newly created WMEs
Wl: (State Aconnected-to-2 P4)

(b) I'-chunk match

11,12,13,14

(c) U'-chunk match without token compression

Figure 5.27: Building a U'-chunk without token compression.

101

(<state> Aat <pointl>)
(<pointl> Anext <point2>) K- C1(<sta{e> A^^^.^ ^^a^
(<point2> Anext <point3>) r '
(<point3> Anext <point4t>)

TC (based on <state> <point3>): II, 12,13,14 are all equivalent
=> create (State P4) - (11,12,13,14)

(a) U'-chunk match with token compression

(Rule-connected"
Rule-next" (<statexpoint3>)

(<state> Aat <pointl>)
(<pointl> Anext <point2>)
(<point2> Anext <point3>)
(<point3> Anext <point4>)

}

(b) U'-chunk with token compression

Figure 5.28: Building a U'-chunk with token compression.

U'-chunk created from the I'-chunk. The U'-chunk is one rule created by unifying the two

rules, Rule-connected' and Rule-next'. The name of the subrule in the U'-chunk is Rule-

connected", and its first condition is a nonlinear condition that tests subrule Rule-next".

The exposed variables of the nonlinear condition are in bold-face.

Unifying rules replaces intermediate WMEs with instantiations that created the WMEs,

and the application of token compression to the unified structure replaces the instantiations

with the tuples of the exposed variables' values. The tuple is different from a WME, in that

its creation and deletion are performed within one rule (U'-chunk) match in controlled-

nonlinear-Rete, instead of multiple rule matches and decisions. In general, because the

number of the tuples is always bounded by the number of WMEs and the tuples provide

the same information about the bindings of the exposed variables as the WMEs, a cost

increase (increase in the number of tokens) by unifying can be avoided, though a constant

overhead is added. That is, the total number of tokens is bounded by the number of tokens

in the I'-chunk match, instead of increasing. The proof will be given in subsection 5.4.5.

When one rule has multiple actions, the exposed variables for the different actions can

be different. For example, given the new rules in Figure 5.29-(a), the firing of the rule

Rule-next-2 creates WMEs based on the two actions, and the new WMEs are matched

102

to the two conditions of the rule Rule-connected-2, as shown in Figure 5.29-(b). In the

I'-chunk match, the four instantiations of Rule-next-2' create one WME (Wl) by executing

the first action, and Wl is matched to Rule-connected-2"s first condition. Also, the four

instantiations create two WMEs (W2 and W3) by executing the second action, and they

are matched to the second condition of Rule-connected-2'.

Figure 5.29-(c) describes the token compression process for these rules. Based on

the exposed variables of the two actions, two different sets of tuples are created. For

the first action, the exposed-variables-are.-<&tate>and_<point3>.Por.these variables,

all of the instantiations are equivalent and only one tuple is created as the token, and it

matches to the first condition of Rule-connected-2", as marked as TCI in Figure 5.29-(c).

For the second action, the exposed variables are <state> and <point4>. For these two

variables, two tokens are created and matched to Rule-connected-2"'s second condition.

Figure 5.29-(d) shows the U'-chunk created from the I'-chunk. It has the same subrule

(Rule-connected-2") for the first two (nonlinear) conditions. The second condition is

marked SHARED in the figure. Although they share one subrule, they are different in

the use of their instantiations. Depending on the exposed variables, different tokens are

created as the instantiations of the subrule. The next subsection describe the algorithm

that computes exposed variables.

5.4.4 Computing exposed variables

For token compression, the system computes exposed variables for each variable in

the actions. If a given variable is in the LHS, we simply use the variable. Figure 5.30

shows a part of an I'-chunk. In the figure, each arrow that links an action to a condition

represents that the WME created by the action is matched by the condition. In the case of

Rule-1, the exposed variable for the action are simply <p3> and <s>.

If a variable is new, in that it is not in the LHS, the execution of the action creates

a new object In Soar, for instance, non-operational (non-supergoal) objects, such as

new operators in a subgoal, can be created in the subgoal and tested while problem

solving. All non-operational variables in Figure 5.30 are marked in bold-face. Because

only the operational variables are directly accessible, to compute the exposed variables

for a non-operational variable, the system has to find the set of operational variables that

uniquely determine the variable. For example, in Rule-2, the non-operational variable

103

(Rule-ncxt-2
(<state> Aat <pointl>)
(<pointI> Anext <point2>}
(<point2> "next <point3>)
(<point3> Anext <point4>)
->
(<state> Aconnected-to-2 <point3>))
(<state> Aconnected-to-3 <point4>))

(Rule-connected-2
(<state> Aconnected-to-2 <point3>)
(<state> Aconnected-to-3 <point4>)
—>

(a) New mles

Newly created WMEs
Wl: (State Aconnected-to-2 P4)
W2: (State Aconnected-to-3 P5)
W3: (State Aconnected-to-3 P6)

Wl,
W2.W3

(b) I'-chunk match

TCI

TC2

(<state> ^t <pointl>)
(<pointl> Anext <point2>)
(<point2> Anext <point3>)
(<point3> Anext >q>oint4>)

TCI

(<state> ^onnected-to^ <point3>)

(<state> Aconnected-to-3 <point4>) (<state> Aat <pointl>)
(<pointl> Anext <point2>)
(<point2> Anext <point3>)
(<point3> Anext <point4>)
TCI (based on <state> <point3>): II, 12,13,14 are all equivalent

-> create (State P4)

TC2 (based on <state> <point4>) : II and D ate equivalent, 12 and 14 are equivalent
-> create (State P5) (State P6)

(c) U'-chunk match with token compression

(Rule-connected-2''
Rule-next-2" (<state> <point3>)

{
(<xtatO ^t <pointl>)
(<pointl> Anext <point2>)
(<point2> Anext <point3>)
(<point3> Anext <point4>)

SHARED Rule-next-2" (<state> <point4>)

(d) U'-chunk with token compression

Figure 5.29: Token compression with multiple actions.

104

I <sg> is determined by <g> |
(Rule-1 m
(<s>«at<pl>) (RuIe-2
(<pl> «next <p2>) (<S> Asuperg°»l <sg>)
(<p2> «next <p3>) (<8> *<**« <s>)
-> ~>

(<s>«conn<p3>)) (<sg> «state <ss>))

|"<ss> is determined by <g> and <s>\

(Rule-3
(<g> «supergoal <sgr>y
(<g> «state <s>)
(<sg> «state <SS>

V<s> «conn <p3>)
—>

(<ss> «conn <p3>))

Figure 5.30: The hierarchical condition structure of the I'-chunk.

compute_exposed_variabIes (var) {
if var is a member of the aleady marked non-operational variables,

return the exposed variables for var;
/* The computation requires 0(total number of non-operational variables) time */

elseif var is a member of the variables in the conditions,
return the var
I* The computation requires 0(number of variables in LHS) time */

else /* var is a new non-operational variable*!
add var into the list of non-operational variables
return the operational variables that determines all the variables in the conditions
/* The computation requires 0((number of variables in LHS) X (total

number of non-operational variables)) time */
}

Figure 5.31: The algorithm for computing the exposed variables given a variable.

<ss> is determined by <g> and <s>, because different combinations of the values of

these variables in the LHS create different values for <ss>, and <sg> is determined by

<g> (as given in the box above Rule-2). For each non-operational variable, the current

implementation maintains a set of operational variables that uniquely determine the values

of the variable. The boxes in the figure represent this information. Whenever the variable

is tested or used elsewhere, the set of variables is used instead. For example, the exposed
variables for <ss> in the Rule-3 action are also <g> and <s>.

Figure 5.31 shows the algorithm that computes the exposed variables for a variable,

as explained above. The algorithm is executed by a higher level procedure that visits the

rules in such an order that for a given non-operational object, the rules that creates the non-

operational object are visited earlier than the rules that test the objects in their conditions.

105

In the algorithm, the system first checks if the given variable is one of the variables that

are already known as non-operational. When the variable is one of the non-operational

variables, the system returns the set of operational variables pointed by the non-operational

variable. Second, if the variable is in the LHS, the algorithm simply returns the variable.

Finally, if the variable is a new non-operational variable, add the variable into the list

of non-operational variables, and find the set of the operational variables that can be

used instead of the non-operational variable. To find the set of operational variables, the

system examines each variable in the conditions. While examining each variable in the

conditions, the variable is checked whether it is non-operational. If the variable is one of

the non-operational variables, the system add the pointed the operational variables into

the result. Otherwise, the variable itself is added to the result.

5.4.5 Optimizing the nonlinear structure

Whenever conditions of a nonlinear structure are built, a set of optimizations can be applied

before they are compiled into Rete. These optimizations reduce redundant computations

without damaging the correctness or increasing the cost. First, a simple condition (a

condition that is not a nonlinear condition) is ignored when it is tested already. That is, if

a simple condition is the same as one of the previous conditions (i.e., conditions between

the current condition and the root), or it is contained in one of the previous nonlinear

conditions, or it is contained in one of the nonlinear conditions in one of the previous

nonlinear conditions,..., then it is ignored. For example, in Figure 5.32-(a), the simple

condition (<pl> Aconnected-to <p2>) can be dropped in both cases without reducing

the correctness. 2

A nonlinear condition can be ignored when it is tested earlier by one of the previous

conditions, or all of its sub-conditions are tested earlier by the previous conditions. For

example, in Figure 5.32-(b), the nonlinear condition marked shared 1 means that a copy of

subrule 1 is tested, and it can be ignored without increasing the cost. Also, in Figure 5.32-

(c), the nonlinear condition testing subrule 2 can be ignored because all of its conditions

2In the figure, each subrule is tagged with a positive integer. For example, the subrule in Figure 5.32-(a)
is tagged with 1. This tagging is used just for the convenience of displaying U'-chunks. By tagging the
subrules by the numbers (or some names), whenever a subrule is tested multiple times as multiple nonlinear
conditions in a U'-chunk, we can refer to them as the number.

106

1{

(<pl> Aconnected-to <p2>)

*

(<pl> ^connected-to <p2>)

}

(<s> Acurrent-position <pl>)
(<pl> Aconnected-to <p2>)

(<pl> ^connected-to <p2>)

(a) Duplicate simple conditions

1{
1{

(<s> Acurrent-position <pl>)
(<pl> Aconnected-to <p2>)

}
(<p2> Aconnected-to <p3>)

shared 1

(b) Duplicate nonlinear condition

(<s> Current-position <pl>)
(<pl> Connected-to <p2>)

}
(<p2> Connected-to <p3>)

2{
(<s> Acurrent-position <pl>)
(<pl> Aconnected-to <p2>)
(<p2> Aconnected-to <p3>)

}

(c) All sub-conditions of the subrule 2
are aleady tested

Figure 5.32: Duplicate conditions can be ignored.

are tested already. These duplicate conditions reflect the redundant tests in the original

problem solving.

There are more ways of simplifying rule conditions, which are not implemented yet

For example, in Figure 5.33-(a), although all of its sub-conditions are already tested, non-

linear condition testing subrule 1 is not ignored, because the sub-conditions are not tested

by its previous conditions. (There is no previous condition for the nonlinear condition.)

Also, the nonlinear condition testing subrule 2 also cannot be ignored, because not all of

its sub-conditions are already tested. However, the conditions can be simplified, as shown

in Figure 5.33-(b), without increasing cost or reducing correctness. The simplification

from (a) to (b), in Figure 5.33, requires modification (destruction) of the hierarchical

structure of the rule conditions. The current simplification algorithm does not allow such

modifications of the hierarchical structure of the conditions; it is left as a future work.

107

(goal <g5> Aoperator <o4>)
(<o4> Atype evaluation)
(<o4> Adesired-position <dl>)
2 ' (goal <g5> Aoperator <o4>)

* t (<o4> Atype evaluation)
goal <g4> -operator <o4» ^ed-position <dl»

«o4>Atype evaluation) «dl>
Aat<13»

(<o4> desired-position <dl>)
}

(<dl>Aat<13>)
}

(a) (b)

Figure 5.33: A case where optimization is not applied in the current implementation.

5.4.6 An example U'-chunk

The new U'-chunk built from the I'-chunk in Figure 5.17 is shown in Figure 5.34. The

copies of the search-control rules and the subsequent decisions are kept in the structure.

The total cost in the number of tokens remains unchanged, instead of increasing.

R4-1"' in Figure 5.35 shows the hierarchical condition structure of the U'-chunk. There

are two unified decisions, and each of them has one decision-sub-condition representing

a fc&yf-preference-created subrule and its consistent acc-subrule. This structure introduces

the constraints required to avoid the sources of cost increase, and makes the cost of the

learned rule bounded. In general, the number of tokens generated should be the same, or

be reduced by applying the above set of optimizations.

Definition 4 (unified-graph) The unified-graph of a trace-graph is formed by(l) replacing

each preference creation from a rule and its use in the connected decision, as a line from

the rule to the decision, and (2) replacing each WME creation from a decision and its

match in the subsequent rule, by a line from the decision to the rule.

Definition 5 (unified-trace-subset) Given the initial WMEs, a U'-chunk A is a unified-

trace-subset of a pseudo-chunk B ifA's trace-graph is isomorphic to a subgraph of the

unified-graph ofB's trace-graph.

Definition 6 (tuple-subset) Given the initial WMEs, a V-chunk A is tuple-subset of a

pseudo-chunk B if A is a unified-trace-subset ofB, and for each rule condition C in A and

108

W35

(Rl-1'"
1 (goal <g> Astate <s>)
1 (<s> ^ <locl>)
2 (<locl> Anext <loc2>)
2 (<loc2> Arcachable-by <vl>)
2 (<vl> Aname car)

(R2-1'"
S (goal <g> Astate <s>)
S (<s> Aat <locl>)
1 (<locl> Aright <loc2>)
1 (Rl-1"')

(UD1
2 (Rl-1'")
1 (R2-1'")

(R3-1"'
S (goal <g> ^tate <s>)
1(UD1)

(Rl-2'"
S (goal <g> Astate <s>)
1(R3-1'")
3 (<loc2> Anext <loc3>)
3 (<loc3> Areachable-by <v2>)
3 (<v2> Aname car)

(R2-2'"
S (goal <g> Astate <s>)
S(R3-f")
1 (<loc2> Aright <loc3>)
1 (Rl-2'")

(UD2
2 (Rl-2'")
1 (R2-2'")

(R3-2'"
S (goal <g> Astate <s>)
1(UD2)

(R4-1'"
S (goal <g> Astate <s>)
1 (<g> Agoal-point <gp>)
1 (<gp> Aat <loc3>)
1 (R3-2'")
->
1 (<s> Asuccess <loc3>))

Figure 5.34: An interpretation of the U'-chunk that is built while learning a rule from the
Grid task. A U'-chunk is created by unifying an I'-chunk.

109

(R4-1'"
S (goal <g> -»state <s>) DS#: decision-sub-condition
(<g> -»goal-point <gp>) UD#: decision condition
(<gp> -»at <loc3>)
R3-2'"(

S (goal <g> -»state <s>)

UD2{
DS1(

Rl-2'"(
S (goal <g> -»state <s>)
R3-l'"{

S (goal <g> -»state <s>)
UD1{

DS1(
Rl-1'"{

(goal <g> *state <s>)
(<s>-»at<locl>)
(<locl> -»next <loc2>)
(<loc2> -»reachable-by <vl>)
(<vl> Aname car)

)
R2-l*"{

S (goal <g> -»state <s>)
S (<s> -»at <locl>)
(<locl> ^ight <loc2>)

. Shared Rl-1'"

)
)
(<Ioc2> -»next <loc3>)
(<loc3> Reachable-by <v2>)
(<v2> -»name car)

)
R2-2'"(

)

->
(<s> Asuccess <loc3>))

S (goal <g> -»state <s>)
Shared R3-1'"
(<loc2> -»right <loc3>)
Shared R2-1-

Figure 5.35: The hierarchical condition structure of the U'-chunk.

110

its corresponding condition C in B, each WME (or tuple, when C is a nonlinear condition)

T matching C can be mapped to a unique WME W matching C in that T and W contain

equivalent information about the variable bindings.

Theorem 5 Given the initial WMEs, if a IP -chunk A is a tuple-subset of pseudo-chunk B,

the number of tokens produced while interpreting pseudo-chunk A is less than or equal to

the number of tokens produced by pseudo-chunk B. That is, the number of tokens in A's

trace-graph is less than or equal to that in B's trace-graph.

proof. Because A is a unified-trace-subset of B, each subrule R in A can be mapped to

a unique rule, R' in B. For each condition C in R, since each tuple (or WME) matching the

condition can be mapped to a unique WME matching the corresponding condition C in R'

(tuple-subset), there will be fewer partial instantiations (tokens) produced while matching

R than the tokens produced for R'. Thus, the total number of tokens in A's trace-graph is

bounded by the total number of tokens in B's trace-graph.

Theorem 6 Given the initial WMEs, the number of tokens produced while interpreting a

U -chunk is bounded by the. number of tokens of the V-chunk from which it is created.

proof Each subrule in the U'-chunk is created from a unique rule in the I'-chunk.

Also, the optimization introduced in subsection 5.4.4 may eliminate some of the subrules,

to remove duplicate tests. Thus, the U'-chunk is a unified-trace-subset of the I'-chunk.

Since the decision network filters the candidates (as the original decision filters the losers)

to produce only the tokens that correspond to the winners, and token compression picks

one representative for each set of duplicate instantiations, the U'-chunk is a tuple-subset

of the I'-chunk. By theorem 5, the number of tokens produced by the U'-chunk match is

bounded by that in the I'-chunk match.

One negative effect of using graph-structured rules is diminished rule readability. The

graph structure is rather complex, even with the use of indentation to identify the level

of hierarchy. Although not displaying the shared part simplifies the structure a little

(Figure 5.36), it is still difficult to understand the structure.

Ill

(R4-1'"
(<g> 'goal-point <gp>)
(<gp>Aat<loc3>)
R3-2'"{

UD2{
DS1{

Rl-2'"{

R3-l'"(
UD1{

DS1(
Rl-1"'(

)

(goaI^>*state<x>)
(<s> "at <docl>)
(<locl> "next <loc2>)
(<loc2> "reachable-by <vl>)
(<vl> "name car)

)
R2-l'"(

(<locl> »right <loc2>)

}
(<loc2> "next <loc3>)
(<loc3> "reachable-by <v2>)
(<v2> "name car)

}
R2-2'"{

(<loc2> "right <loc3>)

)
J

)

(<s> "success <Ioc3>))

Figure 5.36: The U'-chunk conditions without the shared sub-parts.

112

5.5 Summary of Modified Chunking

We have described an application of the proposed modifications to the current chunking

process. To incorporate the search control, the new learning algorithm computes the

set of preferences that affected the decision. This computation is not essential because

we can simply use the set of preferences that participated in the decision. However,

it filters excessive search control, and helps produce more general rules. Incorporating

search control and keeping the nonlinear structure have required significant modifications

to the match algorithm. Not only must the match algorithm be extended to compile the

directed-acyclic graph structure, but special decision-sub-nodes for the search-control-

created subrules have also been introduced to produce the same control effect without

adding exponential overhead. For token compression, different forms of tokens that

maintain tuples of the exposed variables' values, instead of tuples of other tokens, are

introduced.
Overall, the new learning system requires an implementation of an interpreter for

search-control incorporated, token compressing, nonlinear rules.

5.6 Modifying Soar/EBL

Because the primary sources of expensiveness in Soar's learned rules arise in three trans-

formations that are common between chunking and Soar/EBL, the above modifications

can also be applied to Soar/EBL. As shown in Figure 5.37, the current sequence of

transformations, shown on the left side (original Soar/EBL), has been changed into a

new sequence of transformations, shown on the right (new Soar/EBL), by applying the

techniques developed for chunking.
The new Soar/EBL shares the same E'-chunk with the modified chunking. To incor-

porate the search control, the new learning algorithm computes the set of preferences that

affected the decision. The next transformation regresses an E'-chunk into a R'-chunk.

An R'-chunk differs from an R-chunk in that it has additional structures originating from

the search-control rules in the E'-chunk. By needing to regress over search control (or

decisions), the transformation itself may require extra time, as will be described in Chapter

7. However, the match cost for the R'-chunk does not increase. Finally, an RU'-chunk

113

Domain Theory

Filter out rule firings which don't
i r participate in result creation

PS-chunk

~ Remove search-control*

E-chunk

Regress

R-chunk

— Eliminate intermediate rule firings*

RU-chunk

tr Linearize*

EBL rule

Domain Theory

Filter out rule firings which don't
! r participate in result creation

PS-chunk

1 Remove redundant search-control

E'-chunk

T Regress

R"-chunk

I Eliminate intermediate rule firings
and introduce token compression

RU'-chunk

Figure 5.37: Modifying Soar/EBL to a new sequence of transformations.

is generated from an R'-chunk, by unifying the separate rules and decisions into a single

structure. The token compression optimization is integrated into the last transformation.

The boundedness of the two transformations (E'-chunk =$■ R'-chunk and R'-chunk =^

RU'-chunk) can be proven in the same way as in chunking.

Theorem 7 The number of tokens produced while interpreting an R'-chunk is bounded by

the number of tokens of the E-chunk from which it is created.

proof. The R'-chunk has the same set of rules as the E'-chunk because the rules remain

the same (trace-subset). The changes made by the transformation either make different

variables the same, or constrain the variables as constants. Because of these changes,

a rule condition in the R'-chunk matches the same or a subset of WMEs, matching the

corresponding condition in the E'-chunk (WME-subset). By theorem 1, the number of

tokens produced by the R'-chunk match is bounded by that in the E'-chunk match.

Theorem 8 Given the initial WMEs, the number of tokens produced while interpreting a

RU1-chunk is bounded by the number of tokens of the R'-chunk from which it is created.

114

proof. Each subrule in the RU'-chunk is created from a unique rule in the R'-chunk.

Also, the optimization introduced in subsection 5.4.4 possibly eliminates some of the
subrules to remove duplicate tests. Thus, the RU'-chunk is a unified-trace-subset of

the R'-chunk. Since the decision network filters the candidates (as the original decision

filters the losers) to produce only the tokens that correspond to the winners, and token

compression picks one representative for each set of duplicate instantiations, the RU'-

chunk is a tuple-subset of the R'-chunk. By theorem 5, the number of tokens produced by

the RU'-chunk match is bounded by thatinthe R'-chunk match.

115

Chapter 6

Experimental Results

The purpose of this chapter is to (1) examine if the patterns of cost increase, due to

chunking and Soar/EBL, match the earlier analyses presented in Chapter 3 and Chapter 4;

and (2) evaluate the modified learning systems that are implemented based on the design

details described in Chapter 5.
The first section compares the results from original chunking and Soar/EBL, and the

results from different combination of modifications. The domain theory, intermediate

pseudo-chunks, and the learned rule are compared in terms of the number of tokens

produced during the match. The results from various learning algorithms, as produced by

different combinations of the modifications, are compared and analyzed for both chunking
and Soar/EBL. In order to interpret and compare intermediate pseudo-chunks and the

chunks produced by the different sequences of transformations, we have implemented

various extensions of the Rete algorithm, including nonlinear Rete, controlled nonlinear

Rete, and controlled nonlinear Rete with token compression. The second section examines

the actual problem solving time with the modified chunking and the modified Soar/EBL.

The third section discusses the effect of different task representations on the cost of the

learned rules. Finally, the last section summarizes the results. The results shown here are

all from Soar6 (version 6.0.4), a C-based release of Soar [34] on a Sun SPARCstation-20

with processor 61.

6.1 Match Cost of Different Learning Algorithms

In order to confirm the analyses provided in Chapter 3 and Chapter 4 with experimental

results, we have implemented a set of learning algorithms that correspond to the set of

116

initial subsequences of the overall transformation sequence; that is, each learning algorithm

starts with the domain theory and generates a distinct type of (pseudo-)chunk. We have

also implemented the necessary extensions to the Rete algorithm, which allow all of the

types of pseudo-chunks to match and fire. For example, to match a PS-chunk, we have

developed a way of closing off internal rule conditions in the PS-chunk from the WMEs

generated outside of the PS-chunk. No other WMEs, except for those created by the

linked actions, are matched to the conditions of the rules. Also, U-chunks and RU-chunks

require the ability to perform a nonlinear match. At each stage, from the domain theory to

chunks (or EBL rules), match cost is evaluated by counting the number of tokens required

during the match to generate the result and time.

The resulting experimental system has been applied to a variant of the Grid-task; to

magnify the effect of each transformation, the task assumes tight connections among the

points in a 4x4 grid, as shown in Figure 6.1. The task searches for a path of length four.

The results from the task are shown in figure 6.2. The patterns of cost increase match

the expectations generated from the earlier analyses of chunking and Soar/EBL, in that

a transformation led to increased cost on this task, if and only if it was identified by the

analyses as a cost increasing transformation. In both systems, the three transformations—

removing search control, unifying, and linearizing — increase the cost Given the same

initial WMEs as in the original problem solving, the numbers of tokens in both systems are

the same for all pseudo-chunk pairs. However, Soar/EBL creates a more general rule, as

shown in Figure 6.2-(b), because of the one difference between the two transformational

sequences. The extra constraint introduced by the variablization step makes the chunk

less applicable than the EBL rule. (It will be only applicable when <13> and <12>

are reachable by the same transportation.) However, it is cheaper to match in different

situations. For example, when there is different transportation to reach <13> and <12>,

as well as the same transportation, the chunk is cheaper to match than the EBL rule.

To examine how the patterns of cost increase change by applying the proposed modi-

fications (either a subset of them or the full set), similar experimental systems are built for

different learning algorithms that implement a subset (or the full set) of the modifications.

Figure 6.3 shows the match costs of the pseudo-chunks created via different versions of

chunking. At each stage from the domain theory to chunks (or pseudo-chunks), the match

cost is evaluated by counting the number of tokens required during the match to gener-

ate the result. The first column (marked chunking) shows the results from the original

117

Figure 6.1: A tight grid.

Number of tokens

Chunking Soar/EBL

Problem Solving 52 52

PS-chunk 42 42

E-chunk 108 108

R-chunk (I-chunk) 108 108

RU-chunk(l'-chunk) 198 198

EBL rule (chunk) 215 215

(a) The costs of the pseudo-chunks

(chunk
(goal <g4> Adesired <dl>)
(<di>*at<H>)
(<g4> Operator <ql> +)
(<ql>*to<I3>)
(<13> Ato <12>)
(<12>Ato<ll>)
(<13> Areachable-by <tl>)
(<12> Areachable-by <tl>)
—>
(<g4> operator <q 1> >))

(EBL rule
(goal <g4> desired <dl>)
(«cd^Aat-dte)
(<g4> 'operator <o2> +)
(<o2> 'to <13>)
(<13> Ato <12>)
(<12>Ato<ll>)
(<13> Areachable-by <t2>)
(<I2> Areachable-by <tl>)
—>
(<g4> operator <o2> >))

(b) Rules produced by chunking and Soar/EBL

Figure 6.2: Results from a grid task.

118

SC: incorporate search control
NL: keep the problem solving structure
TC: apply token compression

| Number ot tokens

Grid Task 1
1 chunking +SC +NL +SC+NL +NL+TC +SC+NL

+TC

Domain Theory 152 52 52 52 52 52

PS-chunk 142 42 42 42 42 42

E-chunk(E'-chunk) j 108 42 108 42 108 42

l-chunk (l'-chunk) j 108 42 108 42 108 42

U-chunk (U'-chunk) 1198 83 198 83 102 44

chunk 1215 72

44 = 42 + 7-8 + 3
7: match cost for decision network
8: additional sharing by dropping architectural local conditions
3: extra match cost of overgeneral rules by dropping architectural local conditions

Figure 6.3: The cost (number of tokens) of various (pseudo-)chunks in chunking.

chunking process. Here, we contrast these results with the ones from other learning algo-

rithms that apply either a subset or the full set of the three optimizations (incorporating

search control, keeping the problem-solving structure, and applying token compression)

described in Chapter 5. The table shows the results from all feasible combinations of the

optimizations. Because token compression is only applicable to nonlinear rules, some

of the combinations are unacceptable. For example, token compression alone cannot be

implemented.
The second and the third columns show the results from applying one optimization

alone: incorporating search control or keeping problem-solving structure. The fourth and

fifth columns show the results from applying two modifications: incorporating search

control and keeping problem-solving structure, or keeping problem-solving structure and

applying token compression. The last column shows the results from the complete com-

bination of the three modifications. Except for the complete combination, other combina-

tions of modifications did not achieve cost boundedness; that is, the number of tokens that

are produced while matching the final product is greater than the the number of tokens

produced by the problem solving episode.
The increase in the match cost—from 42 to 44—from the l'-chunk to the U'-chunk (in

the last column) arises from two sources: (1) converting the decision process into match

effort, and (2) ignoring intractable activities in Soar. Since the decisions are interpreted as

additional Rete nodes in the controlled nonlinear Rete, the cost of the decision procedure

119

SC: incorporate search control
NÜ keep the problem solving structure
TC: apply token compression

Grid Task

Number of tokens

Soar/EBL +SC +NL +SC+NL +NL+TC +SC+NL
+TC

Domain Theory 52 52 52 52 52 52

PS-chunk 42 42 42 42 42 42

E-chunk(E'-chunk) 108 42 108 42 108 42

R-chunk (R'-chunk) 108 42 108 42 108 42

RU-chunk (RU'-chunk) 198 83 198 83 128 52

EBLrute 215 72

55=42 + 8-1+6
8: match cost for decision network
6: extra match cost of overgeneral rules by dropping architectural local conditions
1: ignored condition by dropping architectural local conditions

Figure 6.4: The cost (number of tokens) for various (pseudo-)chunks in Soar/EBL.

(originally performed by the Soar architecture) is converted into a sub-part of the match

cost (7 tokens in this case). As explained in Section 5.4, because the increase in the

number of tokens has the same complexity as the original decision procedure, the actual

total cost does not increase.

The second cause of the cost increase originates from ignoring intractable activities in

the problem solving. For example, some of the architectural activities and non-operational

negated conditions are ignored in learning. Although this yields an overgenerality of the

learned rule, the learning systems do not capture the activities because of their intractability,

as described in Section 4.1. In this example, the cost actually decreases from these activities

(—8 + 3 = —5). Ignoring the architectural part increases the sharing of the conditions in

this case, and the cost decreases instead of increasing.

Figure 6.4 shows the match costs of the pseudo-chunks created in different versions

of Soar/EBL. The results are from the same Grid task employed for the results shown

in Figure 6.3. As in the chunking case, except for the complete combination, the other

combinations of modifications could not achieve cost boundedness. They show a similar

pattern; the number of tokens that are produced while matching the final product is greater

than the the number of tokens produced by the problem solving episode. The increase in

the number of tokens from the I'-chunk to the U'-chunk arises from the same sources as

in chunking.

120

Grid task (6)
CPU Time (sec)

Learn off Original Modified (+SC+NL+TC)

EBL 1.87 15.06 0.84

chunking 1.96 0.76

(a) Results from Grid tasks of path length six

Grid task (7)
CPU Tune (sec)

Learn off Original Modified (+SC+NL+TC)

EBL 2.71 220.34 1.09

chunking 24.61 1.16

(b) Results from Grid tasks of path length seven

Figure 6.5: Average CPU time for Grid tasks.

6.2 Problem Solving Time with the Modified Learning

Algorithms

The previous subsection showed results from a single Grid task, applying different com-

binations of optimizations to chunking and Soar/EBL. In the results, only the complete

combination could provide the boundedness. To examine the actual problem solving time

with the complete combination, this subsection provides the average problem solving cost

(in CPU time) from a set of Grid tasks, instead of one task. The results are from the full

set of modifications of both chunking and Soar/EBL.

For experimental efficiency, the results presented assume a 10 x 10 bounded (but nor-
mal) grid. The Grid tasks are searches for paths of length six and paths of length seven.

We compared the CPU times from five different versions: without learning, with the rules

learned by original Soar/EBL, with the rules learned by original chunking, with the rules

learned by modified Soar/EBL, and with the rules learned by the modified chunking. Fig-

ure 6.5-(a) shows the average CPU time per problem (in seconds), for a sequence of seven

different problems in the Grid task of path length six. Also, Figure 6.5-(b) shows the the

average CPU time per problem (in seconds), for a sequence of eight different problems

in the Grid task of path length seven. In the path six tasks, the average CPU time from

Soar/EBL (15.06) is more than seven times greater than the average CPU time of the sys-

tem without learning (1.87). In the path seven tasks, the time with Soar/EBL (220.34) is

almost eighty times greater than the time without learning (2.71). In the path six tasks, the

121

[1] (goal <g2> Aproblem-space <p9>)
[1] (<p9> Aname path)
[4](<g2>Aoperator<xl>+)
[4] (<xl> Aname goto-loc)
[4](<g2>Astate<sl7>)
[4](<sl7>Aat<ll>)
[4](<xl>Aat<ll>)
[4] (<xl> «to <12>)
[16] (<12> Aconn { o <12> <13>))
[64] (>d3> «conn { o <13> <15> })
[255] (<15> Aconn {-o <15> <16> })
[1011] (<16> Aconn { o <16> <17> })
[3989] (<17> Aconn { o <17> <14> })
[3989] (<g2> Mesircd <dl>)
[225] (<dl> Aat <34>)
[225] (<sl7> Alast-loc <vl>)

{{{{14] (goal <g2> Aoperator <o7> +)}
{[4] (goal <g2> «operator <o7> +)
[4] (<o7> Aname goto-loc)
[4] (<g2> Aproblem-space <p22>)
[4] (<p22> Aname path)
[4](<o7>Aat<ll>)
[4] (<^2> Astate <sl8>)
[4](<sl8>Aat<ll>)
[4] (<s 18> Alast-loc <12>) -
[l](<o7>Ato<12>)}
[4] (goal <g2> Aoperator <o6> +))}}
[3](<o6>Aat<13>)
[3] (<13> Adown <14>) [1] (<o6> «to <14>) :
{[4] (goal <g2> Aoperator <x3> +)}
[3](<x3>Aat<15>)
[3] (<15> Aright <16>) [1] (<x3> Ato <16>)}}
{ { [4] (goal <g2> Aoperator <o9> +) }
[3] (<o9> «at <17>)
[3] (<17> Aup <18>) [1] (<o9> Ato <18>))}}
[1] (goal <g2> Aoperator <x3> +)
[1] (goal <g2> Adesired <dl>)
{{{{ [1] (goal <g2> Aproblem-space <p22>)
[1] (goal <g2> Astate <sl8>)
[l](<x3>Aat<19>)
[l](<sl8>Aat<19>)
[1] (<sl8> Alast-loc <vl>)
[l](<x3>Ato<110>)}
[1] (<110> Aconn { o <110> <19> })}}
{ [4](<310>Aconn{o<110><lll>})}}}
{[l](-dl0> Adown <111>)}
j[4] (<110> Aconn { o <110> <112> })}
{[1](<110> Arfght <112>)}}}
{ [4] (<110> Aconn { o <10> <113> })
[l](<ilO>Aup<113>) [1]}}
{{{ [1] (<112> Aconn { o<112><110> }) }
[4] (<112> Aconn { o <112> <14>})
[l](«dl2> Adown ^14>)
[4] (<112> Aconn { o <112> <315> })
[1](<312> Arfght <115>)
[4] (<112> Aponn { o <112> <116> })
[l](<112>Aup<116>) }} [l](<dl>Aat<117>)
{{[4] (<115> Aconn {o<115><117> })}}}}

(a)EBLmle (b) Modi fiedEBL rule

Figure 6.6: Number of tokens of a learned rule in a Grid task.

122

average CPU time from chunking (1.96) is slightly greater than the time without learning

(1.87). In the path seven tasks, the time from chunking (24.61) is more than nine times

greater than the time without learning. Chunking and Soar/EBL slow down the problem

solving in both cases. (They are expensive-chunk tasks.) Also, the slowdown factors

for EBL and chunking in the path seven tasks (81.31 and 9.08) are greater than those in

the path six tasks (8.05 and 1.05). However, the time from modified EBL and modified

chunking is always less than the time before learning. In the modified learning systems,

the time is about half of that without learning. Note that because chunking introduces

extra constraints in the rule conditions, it produces less general, but cheaper rules than

EBL in some cases.
To examine how match works differently for the rules from the original EBL and those

from the modified EBL, we have compared the number of tokens created for two learned

rules, one from original EBL and the other from the modified EBL. Figure 6.6 shows the

number of tokens at each condition for the match of a learned rule in a Grid task. In the

EBL-rule case (Figure 6.6-(a)), there are huge combinations, with a maximum number

of 3989 tokens, between the conditions. In the modified-EBL-rule case, as shown in

Figure 6.6-(b), the number does not grow to more than 4. In Figure 6.6-(b), braces mark

the beginning and ending of subrules in the controlled nonlinear match. This hierarchical

structure reflects the problem-solving structure. Shared subrules are not shown in the

figure for brevity. The shared conditions across the different sub-parts reflect the multiple

usage of those conditions in the original problem solving. This multiple usage keeps the

cost bounded, by constraining the sub-parts as they were in the problem solving. Although

the rule conditions built by the modified Soar/EBL look rather complex and are difficult

to read, they introduce the constraints required to avoid the sources of cost increase and

make the cost of the learned rule cheap.
In addition to the Grid task, we applied the system to the 2-Queen, 3-Queen and 4-

Queen tasks, which are also known as expensive-chunk tasks. The 2-Queen task places

two queens in a three by three grid, without being attacked by each other, as shown in

Figure 6.7-(a). The 3-Queen task and 4-Queen task place three and four queens in a four

by four grid, as shown in Figure 6.7-(b). The 3-Queen task places only three queens on the

grid, and the 4-Queen task places all four queens. Figure 6.8 shows the average CPU time

for solving the three tasks. In the 2-Queen task, the times from original EBL and chunking

(0.22 and 0.24) are almost the same as the time without learning (0.23). However, the

123

Ql

Q2

(a) 2-Queen task

Ql

Q2

Q3

Q4

(b) 3-Queen task and 4-Queen task

Figure 6.7: Queen task.

2-Queen task
CPU Time (sec)

Leam off Original Modified (+SC+NL+TC)

EBL 0.23 0.22 0.08

chunking 0.24 0.09

3-Queen task
CPU Time (sec)

Learn off Original Modified (+SC+NL+TC)

EBL 0.71 9.02 0.16

chunking 10.54 0.15

4-Queen task
CPU Time (sec)

Leam off Original Modified (+SC+NL+TC)

EBL 1.00 ** 0.28

chunking ** 0.25

Figure 6.8: Average CPU time for Queen tasks.

124

8 3 4

1 5 9

6 7 2

(sp operator-place-tile
(goal <g> Aproblem-space <p>

Astate <s>)
(<p> Aname magic)
(<s> Asquare <sq>)
(<sq> Anumber 0 Aname <sq-name>)
->
(<o> Aname place-tile

Square-name <sq-name>)
(<g> operator <o>))

(a) 0>)

Figure6.9: Magic Square task. :.::. :.: :.i..:

times from the modified EBL and chunking (0.08 and 0.09) are less than half of the time

without learning.

In the 3-Queen task, the times from EBL and chunking (9.02 and 10.54) are more

than ten times greater than the time without learning (0.71). As in the Grid task cases,

the slowdown factor increases as the size of the task increases. The modified learning

algorithms provide boundedness as in the above tasks. The problem solving with modified

EBL and chunking produces the same results more than four times faster than the problem

solving without learning.

In the 4-Queen task, the system could not even finish learning with both original EBL

and chunking. The number of tokens for the learned rule became over eight million and the

system could not allocate enough memory. Still, the CPU times from modified EBL and

chunking are bounded by the time without learning. The time without learning is greater

than the time from modified EBL and chunking by factors of 3.57 and 4, respectively.

We also applied the system to the Magic Square task[61], another known expensive-

chunk task. This task involves placing tiles 1 through 9 in empty squares of 3 x3 grid one

at a time. If the sum of horizontal, vertical, and diagonal lines are different with the current

tile placement, the task fails. Otherwise, the process can continue placing tiles until it fills

all nine squares. The results show the same pattern as the results from the Queen tasks.

With original EBL and chunking, the system could not finish learning. However, the CPU

times with modified EBL and chunking (3.47 and 1.86) are bounded by the time without

learning (6.91). The time without learning is greater than the time with modified EBL and

chunking by factors of 1.99 and 3.72, respectively.

The bar charts shown in Figure 6.11 summarize the results from the above tasks.

125

Magic Square task
CPU Tune (sec)

Learn off Original Modified (+SC+NL+TC

EBL 6.91 ** 3.47

chunking ** 1.86

Figure 6.10: Average CPU time for the Magic Square task.

6.3 Effects of Different Task Representations

When a task is given, there is usually more than one way to represent it. This section

examines the effect of different representations on the cost of learned rules. Figure 6.12-

(a) shows the costs of the learned rules (the final products), from one of the length six

Grid tasks. The results are produced from a Grid task, in which the evaluation order is

based on better preferences among the directions (right > left > up > down). We can

represent the same task in a different way. For example, we can evaluate the operator to

go to the right first by employing a best preference (right > others). Its results are shown

inFigure6.12-(b).

In the two tables, the first column shows the cost of problem solving without learning.

In both chunking and EBL, the cost without learning is the same. The second column shows

the cost of the learned rules in standard Soar/EBL and chunking. The third and fourth

columns show the costs of the learned rules with only one modification: incorporating

search control, or keeping problem-solving structure. The fifth and sixth columns show

the results from applying two modifications: incorporating search control and keeping

problem-solving structure, or keeping problem-solving structure and token compression.

The last column shows the results from the complete combination.

In Figure 6.12-(a), for both original EBL and chunking, the cost of matching the

learned rules is expensive without the modifications. (The given task is one of the

expensive-chunk tasks.) Keeping the problem-solving structure alone, or applying token

compression to the nonlinear structure without search control, produces very expensive

rules, and the system cannot finish the task (because of memory exhaustion). With the

complete combination (last column), the time after learning (1.15 and 1.12) is less than the

time before learning (2.00). In this case, incorporating search control, with or without the

problem-solving structure, produces cheaper rules than the original chunking or Soar/EBL.

126

Average
CPU

time (sec)

15.0-

Average
CPU

time (sec)

0.3-

0.2-

0.1-

Average
CPU

time (sec)

1.!-

l.(-

0.!-

Average
CPU 220.

time (sec)

24.

Grid Task (length 6)

2-Queen Task

Average
CPU

time (sec)

10.0

11
3-Queen Task

Average
CPU

time (sec)

8.(

6.(-

4.(

2X

I
i

I

: without learning

:EBL

: chunking

: Modified EBL

: Modified chunking

h
4-Queen Task Magic Square Task

Figure 6.11: Summary of the results.

127

CPU Time
(sec) Leam off Original +SC +NL +SC+NL +NL+TC

+SC+NL
+TC

EBL 2.00 23.31 1.96 ** 1.46 ** 1.15

chunking 2.89 0.44 ** 0.88 ** 1.12

(a) Results from a length six Grid task

CPU Time
(sec)

Leam off Original +SC +NL +SC+NL +NL+TC
+SC+NL

+TC

EBL 0.98 0.26 ** 3.25 0.30 2.55 0.29

chunking 0.25 45.70 2.01 0.31 1.86 0.28

(b) Results from a different representation of the Grid task

Figure 6.12: Results from different representations of a Grid task.

The most efficient rules are produced by incorporating search control alone in chunking;
the cost is 0.44 second.

With the different representation, the results show a different pattern (Figure 6.12-(b));

chunking with search control does not produce the best result In fact, it creates expensive

rules; the cost is 45.70 second in this case, while the cost without learning is only 0.98
second. Also, note that the original chunking and Soar/EBL provide better results in

this case (0.26 and 0.25) than the learning systems with the complete combination (0.29

and 0.28). Although the complete combinations could not give the best results, they still

provide boundedness. The U'-chunk (and the RU'-chunk) solves the same problem three

times faster than the original problem solving.

6.4 Summary and Discussion

The above results have demonstrated that the modifications of the learning algorithm based

on the implementation details discussed in Chapter 5 actually bound the cost after learning

to the cost before learning (except for cost introduced by overgeneralization), at least

for the domains investigated. The original learning algorithms and the algorithms that

implement a subset of the three modifications can produce better results than the complete

combination in some cases. In other cases, however, the same algorithms can produce

expensive rules. The complete combination, though it does not produce the best results in
all cases, consistently provides boundedness.

128

,01
J02

^03

^X.04 V>*04

Learning Time Performance Time

Figure 6.13: Options can increase at performance time.

One positive side-effect of incorporating search control is that it removes one possible

source of overgeneralization in Soar. Although search control is not supposed to affect

the correctness of results generated in problem spaces, it sometimes does. In situations

in which results are returned from a problem space before the goal test (i.e., the test of

whether the desired goal is achieved) succeeds, or where the goal test is itself overgeneral,

the search control may affect the correctness of the result. Under such circumstances, not

including this search control in learning can yield overgeneral learned rules. By including

the search control in the explanation of the result, the modified chunking and modified

Soar/EBL remove this source of overgenerality.

There is an issue that arises because of the option taken to interpret the decision proce-

dure in the U'-chunk. It only occurs when there are more options available at performance

time than at learning time. In particular, if the conditions learned to discriminate among

the options available at learning time are not sufficient to discriminate among these new

options, an additional match search may be introduced. For example, when there were

a fixed number of operators during learning, such as the operators moving toward the

four directions in the Grid task, the learned rules may not be suitable for problems that

have more operators available, as shown in Figure 6.13. This is related to the masking

effect [64], where learned knowledge masks original-problem solving knowledge; thus the

system can produce low quality solutions. This did not occur in the previous experiments,

but it could happen in other domains.

This problem can be fixed by employing additional constraints in the decision network.

Whenever the number of winners is not equal to one, either by failing to find a winner or by

having more than one winner, the decision network can stop further matches, considering

the decision as failed.

129

Chapter 7

The effect of the New Learning Algorithms

The set of modifications of chunking and Soar/EBL introduces different computational

complexities into the learning algorithms. For example, in order to incorporate the

search-control trace in learning, the system has to perform extra computations for the

additional conditions introduced by search-control rules. Other modifications by the

subsequent transformations combined with this modification may also require different

computational complexities. This chapter examines the overheads in the new sequence

of transformations. First we describe the costs of original chunking and Soar/EBL, and

then the costs of the modified learning algorithms are compared with them. Finally, we

examine the effect of the modified learning systems on larger scale tasks, based on the

cost analyses.

7.1 Cost of Chunking

As explained in subsection 2.2.1, chunking consists of four steps: (1) filtering out traces

that do not participate in result creation, (2) removing search control and building a

backtrace, (3) variablizing, and (4) unifying the structure and creating a new rule.

The first and the second step are performed by the backtracing process; while it filters

the unnecessary rule firings, it also removes the search control by only examining the

task-definition traces (traces of the task-definition rules). Because the backtracing process

examines all the task-definition traces linked to the result until it reaches the supergoal

(operational) elements, its complexity depends on the number of instantiated conditions

of all the task-definition traces linked to the result. Thus, the cost of the first two steps is

130

0(C), where C is the total number of instantiated conditions in the task-definition traces

that are linked to the result.

The third step variablizes the identifiers by examining each item in the instantiated

conditions. Its complexity depends on the total number of items in the instantiated

conditions, including duplicate instances of them. In Soar, the items in an instantiated

condition are id, attribute, and value; so, the number of items in an instantiated conditions

is constant. Thus, the complexity of this step is 0(C).

The last step builds a new rule based on the variablized conditions. In the process

of building rule conditions, the set of operational conditions — conditions created from

the supergoal elements — are reordered by a heuristic algorithm to improve the match

performance. The reordering algorithm (adapted from [8] and Soar version 6.0.4) is shown

in Figure 7.1. The algorithm uses a backtrack-free heuristic to reduce the complexity. It

examines the set of conditions one at a time, and tries to pick cheapest condition in terms

of the estimated match cost of having the condition be the next condition. The complexity

of the algorithm is 0(o3), where o is the number of operational conditions. (There are

three nested loops in case there is a tie for minimum cost.)

Based on the cost of each step, the total complexity of chunking is 0(C + C + o3) =

0(C + o3).

7.2 CostofSoar/EBL

Soar/EBL is similar to chunking except for the way of determining the variable names in

the learned rule. As described in Chapter 4, Soar/EBL performs the following steps: (1)

filtering out traces that do not participate in the result creation, (2) removing search control

and building the explanation, (3) constructing the explanation structure, (4) regressing,

and (5) creating a new rule. (1) and (2) are the same as in chunking. Also, (5) corresponds

to the last step in chunking.

The explanation structure is built by replacing the instantiations with the rules. The

variable names are replaced with unique names so that there are no common variables

across the rules. To make the variable names unique, the system examines all the variable

instances in the LHS (condition part) of all the participating rules, and it requires O(total

number of variable instances in the LHS of all participating rules). Because the number of

variable instances in a condition is approximately constant in Soar, and the total number

131

reorder (conditions) {
bound_vars «= root variables

/* "root variables" are the variables used for the id field of conditions
that start with "goal" or "impasse". Usually, this is just the variable "<g>" */

REPEAT until there are no more remaining conditions:

eligible_conds <= remaining conditions whose id field is in bound_yars
for each c in eligible_conds, find_cost(c, bound_vars)
if one has the minimum cost, output that condition
else there's a tie for minimum cost, so do a one-step lookahead:

for each tied minimal-cost condition tiedjr.
temp_bound_vars <= bound_vars plus any variables used in tiedjc
temp_eligibles <= remaining conditions (except lied_c) whose id field

is in temp_bound_vars
for each temp_c in tempjeligibles, find_cost (femp_c, temp_bounded_vars)
find the minimum of these cost(temp_cYs

output the condition tiedjc whose minimum cost(temp_c) is smallest
(if there's still a tie, just pick the first one)

add the variables in the picked condition into the bound_vars
}
find_cost(c, bound_vars) I* an estimate of the match cost of having c be the next condition */

/* look at the id, attribute, value fields of c and check which ones have either constants
or variables in boundjvars *l {

If id field is unbound, return 10000
If attr field is unbound but value field is bound, return 8
If value field is unbound but attr field is bound, return 8
If all three fields are bound, return 1.

}

Figure 7.1: The reordering algorithm in Soar.

132

of conditions in the explanation structure is equal to the total number of instantiated
conditions in the backtrace, the complexity of building the explanation structure is O(C).

The current implementation of EBL regression builds a substitution list based on action

and condition pairs that collide in the explanation structure, and applies the substitutions in

the substitution list to the variables. The number of collisions (of actions and conditions)

depends on the number of decisions in the problem solving. For each decision, the system

adds new pairs (based on id, attribute, and value fields of the action and the condition)

after making sure that these pairs are not already in the substitution list. The complexity of

this computation is 0((number of decisions) x (length of the substitution list)). Because

the length of the substitution list is 0(total number of variables), and 0(total number of

variables) < 0(C), the cost of building the substitution list is O(CxD), where D is the

total number of decisions.

Finally, the algorithm unifies the variables by applying the substitution list, which

requires 0((total number of variable instances) x (length of the substitution list)). Thus,

the complexity of applying the substitution list is 0(C2). Based on the cost of each step,

the total complexity of Soar/EBL is 0(C + C + CxD + C2 + o3) = 0(C2 + CxD + o3).

If we use different representations for substitutions, such as a hash table or extra

pointers, the cost can be reduced. Building the substitutions can be 0(D) instead of

O(CxD) because checking if a,pair is not already in the substitutions takes a constant

time. Also, the complexity of applying the substitutions can be reduced to O(C). In this

case, the total cost becomes 0(C + D + o3).

7.3 Cost of Performing the New Chunking Algorithm

7.3.1 Cost of Domain Theory=>PS'-chunk

As in chunking (or Soar/EBL), elimination of unnecessary rule firings can be performed

by following the rule traces linked to the result Because the set of traces in new chunking

includes search-control traces as well as task-definition traces, the cost of following the

traces is O(S), where S is the total number of instantiated conditions in all the traces

(including search-control traces) that are linked to the result.

133

7.3.2 Cost of PS'-chunk^E'-chunk

As described in Section 5.2, this transformation computes a set of relevant preferences

capturing the full decision context (instead of the full set of participating preferences) for

each decision. The preference collection algorithm has been presented in Figure 5.8. The

computational complexity of the algorithm is 0((number of candidates in a decision)4)

per decision. Thus, the total complexity is 0(D xc4), where c is the maximum number

of candidates in a decision. As described in Section 5.2, if the system preprocesses bet-

ter/worse preferences or employs additional indices, the cost can be reduced to 0(Dxc3).

Based on this computation, the system builds a data structure, called a Decision for each

decision. A Decision keeps the set of participating preferences for its decision. Also, these

Decisions are connected by a linked list called the Decision Jist. Each Decision in the

Decision list is represented as a letter D in Figure 5.16. These Decisions are transformed

by the subsequent transformations (as the rules in pseudo-chunks are transformed), and

used in building decision conditions as shown in Figure 5.25.

7.3.3 Cost of E'-chunk^I'-chunk

This step performs the variablization (constraining variables by instantiation) for the

rule conditions in an E'-chunk. Because an E'-chunk maintains search-control rules as

well as task-definition rules, the system requires extra computation for processing the

conditions in the search-control rules, while the transformation from an E-chunk to an

I-chunk variablizes only the conditions of the task-definition rules. The total complexity

of this transformation is 0(total number of variable instances in the rule conditions in

the E'-chunk). Because the number of variables in a simple condition (a condition that is

not a nonlinear condition) is approximately constant, the complexity is 0(total number

of simple conditions in the E'-chunk). (From now on in this chapter, a condition means a

simple condition.) Because the total number of conditions in an E'-chunk is bounded by

the total number of instantiated conditions in the explanation, the cost of the variablization
is O(S).

134

7.3.4 Cost of I'-chunk^U'-chunk

As described in Section 5.4, this transformation unifies separate rules and decisions into

one structure, and applies token compression.
The exposed variable computing algorithm for token compression is presented in

Section 5.4, and the algorithm is shown in Figure 5.30. In the algorithm, the. system

first checks if the given variable is one of the variables that are already known as non-

operational. To check if the variable is a member in the list, the algorithm examines items

in the list one by one. Thus, the complexity of this check is 0(number of non-operational

variables). Second, if the variable is in the LHS, the algorithm simply returns the variable.

The computation of verifying whether or not the variable is in the LHS requires 0(total

number of variable instances in LHS) times for each variable in the action. Finally, if the

variable is a new non-operational variable, add the variable into the list of non-operational

variables, and find the set of the operational variables that can be used instead of the non-

operational variable. To find the set of operational variables, the system examines each

variable in the conditions. While examining each variable in the conditions, the variable

is checked if it is non-operational, by scanning the non-operational variable list The

complexity of the computation is 0((total number of variable instances in the conditions)

x (total number of non-operational variables)).

The overall complexity of computing the exposed variables for both operational and

non-operational variables in the actions is 0((total number of variable instances in actions)

x (total number of non-operational variables) x (maximum number of variable instances

in the LHS of a rule)).

By employing different data structures and spending more memory space, the complex-

ity can be reduced. If the system uses a hash table or extra pointers for the non-operational

variables, the complexity of checking if a variable is non-operational is 0(1). Also, when

the variable is a new non-operational variable, finding the set of operational variables that

can be used instead of the non-operational variable takes just 0(total number of variable

instances in the conditions). Thus, the total cost of computing the exposed variables

is 0((total number of variable instances in actions) x (maximum number of variable

instances in the LHS of a rule)).
0(total number of variable instances in action) < 0(total number of variable instances

in all conditions). Also, 0(total number of variable instances in all conditions) = 0(total

135

number of conditions in all participating rules) < 0(total number of instantiated conditions

in the traces). Thus, 0(total number of variables in the action) < O(S). In the same

way, 0(total number of non-operational variables) < O(S), and 0(maximum number of

variables in the LHS of a rule) < O(S). Thus, the complexity of the algorithm is at most

0(S3). With different data structures, as described above, the cost can be 0(S2).

To build U'-chunk conditions based on the graph structure of the problem solving,

the system traverses the rule firing structure. Each operational condition becomes a new

condition, and each non-operational condition becomes a new nonlinear condition after the

system traverses its subrule. Thus, the complexity of building new rule conditions depends

on the total number of conditions of all the rules (search-control rules and task-definition

rules) participated in the I'-chunk.

While building conditions, each Decision becomes a decision condition. The current

implementation organizes the subrules that participated in the decision into the structure

shown in Figure 5.25, in order to build a decision condition. In the structure, each non-

acceptable preference is paired with the acceptable preference which has the same value

field with the preference. The preferences in a Decision are grouped by their preference

types, so that there is a linked list for each preference type. To find the consistent acceptable

preference given a non-acceptable preference, the system examines each item in the linked

list of acceptable preferences, and it requires 0(number of candidates) times. Because

each non-acceptable preference (computed by the preference collection algorithm) can

filter at least one candidates the number of non-acceptable preferences in a Decision is

bounded by the number of candidates. Thus, the cost of building a decision condition is

0(c2) time where c is the maximum number of candidates in a decision. If the system

maintains pointers from each preference to the acceptable preference that has the same

value field, the complexity becomes just constant. Thus, the cost can be 0(c).

Application of the optimization described in subsection 5.4.4 requires more computa-

tion. For each newly built nonlinear condition, the system checks whether all of its condi-

tions is already tested by earlier conditions. This requires the complexity of 0((number of

conditions in a nonlinear condition) x (number of conditions already tested)) for building

each nonlinear condition. Therefore, the complexity of the optimization is 0((total num-

ber of nonlinear conditions) x (maximum number of conditions in a nonlinear condition)

x (total number of conditions)). O(total number of nonlinear conditions) < 0(total

number of conditions) and 0(maximum number of conditions in a nonlinear condition) <

136

0(total number of conditions). Thus, the complexity of the optimization is 0(S3). If the

system employs a hash table to check if a condition are already tested, its complexity can

be 0((number of conditions in a nonlinear condition) x (maximum number of conditions

in a nonlinear condition)), and it is 0(S2).
The total overhead of this transformation is 0(S3 + Dxc2 + S3) = 0(S3 + Dxc2).

With a different data structure, as described above, it can be 0(S2 + D xc).

7.3.5 Total overhead of the new chunking

The total overhead of the new learning algorithm is 0(Dxc4 + S + S3 + Dxc2). Because

the second term is bounded by the third term, and the fourth term is bounded by the first

term, the total overhead is 0(Dxc4 + S3). If the system preprocesses preferences and

employs additional data structures, it will consume more memory space, but in return the

total overhead reduces to 0(Dxc3 + S2).

7.4 Cost of Performing the New EBL Algorithm

The computational complexity of the transformations in the modified EBL is similar to that

of the modified chunking, except for the regression transformation (E'-chumWR'-chunk).

As in Soar/EBL, the transformation consists of three steps: (1) making the variable names

unique across the rules, (2) building substitutions based on action and condition pairs that

collide in the explanation structure, and (3) applying the substitutions to the variables.

First, to make the variable names unique across the rules, the current implementation

examines all the variable instances in the LHS of the rules, and it requires 0(total number

of variable instances in the LHS of the rules) times. Because the total number of variable

instances in the LHS of the rules in an E'-chunk is bounded by the number of instantiated

conditions in the backtrace, the complexity is O(S).

As in Soar/EBL, the substitution list is built based on action and condition pairs that

collide in the explanation structure. The number of collisions (of actions and conditions)

depends on the number of decisions (either trivial or non-trivial). For each trivial decision,

we can just add new pairs (based on id, attribute, and value fields of the action and the

condition) after making sure that these pairs are not already in the substitution list. The

137

complexity of this computation is 0((number of trivial decisions) x (length of the

substitution list)).

In non-trivial decision cases, non-winners (filtered candidates) cannot be unified with

the connected condition, because they have different values. To unify the variables in the

search-control rules (as well as those in the task-definition rules), the system adds more

pairs to the substitution list For each filtered candidate, the system finds the rule action

that proposed the candidate (by an acceptable preference), and also the action that filtered

the candidate by creating a preference against it. Then, the system adds new pairs based on

the id, attribute, and value fields of both the acceptafe/e-preference-created action and the

preference-created action. That is, for each non-acceptable preference, the system finds

the acceptable preference that proposed the same candidate. (Each preference maintains a

pointer to the action that created the preference.) This requires 0((number of candidates)2

x (length of substitution list)) time for each decision in the current implementation. Thus,

computing the substitution list needs 0(Dxc2x (length of the substitution list)) time.

Because the length of the substitution list is 0(total number of variables), and O(total

number of variables) = 0(total number of conditions), the complexity is 0(D x S xc2).

Finally, the algorithm applies the substitutions in the substitution list to the variables,

which requires 0((total number of variables) x (length of the substitution list)) time.

Thus the complexity of applying the substitutions is 0(S2). Based on the cost of each

sub-step, The total complexity of the regression is 0(S + SxDxc2 +S2) = 0(SxDxc2

+S2).

If the system employs additional data structures (additional pointers or a hash table)

for substitutions, checking if a pair is not already in the substitutions needs only a constant

time. Also, if the system maintains extra pointers from each preference to the acceptable

preference that has the same value field, finding the rule action that proposed the candidate

needs a constant time. Thus, the complexity of the regression reduces to 0(S + Dxc

+S)= 0(S + Dxc).

Based on the cost of each transformation in the new chunking algorithm in the above

section, if we add the cost of the other transformations, the total overhead of the new EBL

algorithm is 0(Dxc4 + S3 + S xDxc2). With different data structures, it can be 0(Dxc3

+ S2).

138

Grid Task

Original
New

New + Hash tables

total cost
Chunking

Q(C + oJ)
0(Dxc« + SJ)
Q(DxcJ + S'T

Soar/EBL

Q(C? + CxD + oJ)
Q(Dxc4 + SJ + SxDxc*)

Q(DxcJ + S-Q

Table 7.1: Total overhead of different learning algorithms.

7.5 Summary of the Overhead Analyses

Table 7.1 summarizes the costs of the different learning: algorithms. The two new

learning algorithms (new chunking and new Soar/EBL) require more time than the original

algorithms to process search control (0(Dxc4)) and to unify conditions (0(S3)). If the

system employs additional data structures, such as hash tables or extra pointers, it will

consume more memory space, but in return, the cost can be reduced by an order of

magnitude (from S3 to S2, and from c4 to c3).

7.6 Effects on Larger Scale Tasks

This section examines the generality of the modified learning systems to larger scale tasks.

We examine the cases of (1) learning a large number of chunks, (2) a large number of

conditions in the rules, (3) a large number of rule firings in the problem solving, and (4) a

large number of candidates per decision.

1. Learning a large number of chunks (average-growth effect): As the number of

chunks grows, the cost of using (matching) chunks usually increases. Recent work

on this problem in linear Rete [9] has shown that the application of additional

optimization (Rete/UL) greatly reduces the average-growth effect. In some tasks, it

has been possible to learn over one million rules while still allowing their efficient

use. Because our new algorithm assumes nonlinear Rete instead of linear Rete, to

be able to generalize the results, the effect of Rete's optimizations (including state

saving, sharing, and Rete/UL) on nonlinear Rete should be examined.

Nonlinear Rete can provide the same state saving as linear Rete. It can preserve

the previous matches in alpha memories and beta memories, though the structure

of the tokens is a little different,.as described in Section 3.4. Also, nonlinear Rete

139

provides a sharing optimization, which can share nonlinear conditions as well as

linear conditions. As in the case of linear Rete, sharing is possible for the same initial

conditions among different rules. In addition to that, the same nonlinear conditions

within a rule (by being tested multiple times in the hierarchical structure), or across

. different rules can share the same nodes in the network. For example, for U'-chunk

shown in Figure 5.35, Rl-1"' and the nonlinear conditions marked as "Shared Rl-

V" use the same nodes in the nonlinear-Rete network for the match. Actually, all

the conditions marked as "S" .or "Shared".share tokens with some other conditions

of the rule. Also, when different rules have the same nonlinear conditions, they

can share the same network. Detailed computational analysis of the effect of this

sharing needs to be performed.

Rete/UL introduces the elimination of unnecessary processing in the join nodes,

which maintains constant time per token for learning a large number of rules. Al-

though the current nonlinear Rete implementation does not employ this optimization,

we expect that similar optimizations can be implemented in nonlinear Rete. The

effect of this extension also needs to be analyzed.

2. A large number of conditions in the rules: As described in the prior sections,

the overhead of the new chunking and the new Soar/EBL is 0(Dxc4 + S3) and

0(Dxc4 + S3 + S xDxc2), respectively, where S is the total number of instantiated

conditions in the explanation, D is the number of decisions, and c is the maximum

number of candidates in a decision. Because the learning time is a cubic factor of

the number of conditions, increasing the number of conditions can affect the cost of

learning time by a polynomial factor. This increase can be reduced by introducing

different data structures. Currently, variables and preferences in the decisions are

maintained as linked lists. By changing them into a hash table structure, or adding

direct pointers among the structures, the cost can be reduced to 0(Dxc3 + S2) for

both chunking and Soar/EBL by an order of magnitude.

3. A large number of rule firings in the problem solving: The complexity of the

new learning algorithm depends on the number of rule conditions, the number of

decisions that participated in the problem solving, and the number of candidates per

decision. Because the first two numbers increase as the number of rule firings grows,

a large number of rule firings can affect the learning time by a polynomial factor.

140

As mentioned above, this increase can be reduced by changing the data structure

(and spending more memory space).

4. A large number of candidates per decision: As described above, the costs of the new

chunking and the new Soar/EBL depend on the number of candidates per decision

to the power of four. As described in the second item above, the cost ofboth the

new chunking and the new Soar/EBL can be reduced to 0(Dxc3 + S2). Also, if

there are no better/worse preferences, or the learning skips the preference collection

algorithm (employing all the preferences participated in the decisions), the cost

becomes 0(Dxc2 + S2) or 0(Dxc + S2). However, in the worst case, as the

number of candidates per decision increases, the learning time can still grow fast,

by a square or a linear factor.

141

Chapter 8

Related Work

This chapter describes work related to solving the utility problem and performing the

transformational analysis. Section 7.1 examines approaches taken to solve the utility

problem. Section 7.2 describes other transformational analyses of learning. _i

8.1 Solving the Utility Problem

The goal of our research is to provide a relative solution to the utility problem without

restricting the expressiveness of the learned knowledge. In the preceding chapters, we

discussed the transformational approach, which consists of two steps : (1) finding the

complete set of sources that can make learned rules expensive, and then (2) modifying

the learning process to avoid these sources. The transformational approach can provide a

relative solution to the utility problem in that it ensures the cost of using learned rules is

bounded by the cost of problem solving. Also, it itself does not impose any restriction on

the expressiveness or completeness (finding all solutions) to achieve such boundedness.

In this section, we present alternative approaches to solve the utility problem, and discuss

how they are less suited to achieve our goal.

Figure 8.1 illustrates the structure of the following discussion. The structure sub-

divides the approaches taken to solve the utility problem, based on the types of learning

algorithms the approaches are addressing and the issues on which they are focusing. The

sequence of marked boxes emphasizes the part this research concentrates on. We address

the utility problem for learning search-control rules by EBL, and focus on achieving a

relative bound.

142

Solving Utility Problem (UP)

Solving UP in
speed-up learning

SolvingUP in
inductive learning

Solving UP in
speed-up learning using

inductive techniques
1 Solving U P in EBL

Solving UP in
search-control learning

Solving UP in
macro operator learning

^^^

Solving
expensive-rule problem

Solving
average growth effect

""\^

Non-discrminatory
learning

Discriminatory learning

Boundinc j match Reducing the cost of
learned rules

^\^

Achieving
relative bound

Achieving
absolute bound

Restructuring
learned rules

Statically analyzing
search structure

Solving expensiveness of
recursive/iterative structure

Optimizing
the match algorithm

Figure 8.1: Related issues in solving the utility problem.

143

8.1.1 Speed-up learning vs. inductive learning

Since the utility problem has been identified in speed-up learning systems, the term

"utility problem" has also come to be used for a variety of other issues and phenomena.

For example, the term has been used for the accuracy and completeness of inductive

learning systems, in which the learning is intended to achieve a better classification, but

not necessarily speed-up [24,48,25,5].
There are various inductive methods, including set-covering approaches, and splitting

approaches. Set-covering approaches, including AQ [40], construct disjunctive-normal-

form expressions from training examples. These approaches suffer from an inaccuracy

problem as the number of disjuncts increases. In order to produce more accurate (but

less complete) hypotheses, Michalski[40] applied truncation techniques. Also, splitting

approaches, including ID3 [51], recursively split the set of training data by choosing an

appropriate feature or feature value pair. ID3 suffers from an overfitting problem as the

decision tree becomes deeper. To alleviate this problem, pruning techniques have been

developed [52].
Our research focuses on the utility problem for speed-up learning. However, if the

transformational analysis technique is applicable to the inductive learning systems, it

would be interesting to study how an analysis of accuracy changes and completeness

changes through an inductive learning system; and it would also be interesting to examine

whether the analysis can be used as a tool for revealing the sources of incompleteness

and inaccuracy. The approaches taken in the earlier work have focused on either how to

simplify the hypothesis, or when to stop learning based on the performance evaluation,

instead of finding the sources of inaccuracy and incompleteness in the learning algorithm.

On the other hand, applying inductive techniques to chunking or Soar/EBL would be

useful to estimate and correct the overgenerality of the chunks, caused by architectural

activities or local negated conditions.

8.1.2 EBL vs. speed-up learning using inductive techniques

There are speed-up learning methods using inductive techniques. For example, an evalua-

tion function, as a real-valued function, can be learned to estimate how close a given state

is to the goal [22,33,55]. Also, the strength of operators, as quantities associated with the

operators, can be learned to indicate how successful the operators have been in the past

144

[18]. State evaluation functions can be used to guide the search, such as best-first search.
Also, given the strength of operators, the problem solver can choose operators in an order
of decreasing strength, or choose them probabilistically according to their strength.

Our work focuses on EBL, the most widely used speed-up technique [41,7,14,27,23],

rather than on the above techniques. Once we solve the utility problem in EBL, the results

may help guide similar analyses of other speed-up learning techniques.

8.1.3 Search-control learning vs. macroTOperator learning

EBL can be used for acquiring either search-control knowledge or macro-operators.

Search-control knowledge can be learned in the form of search-control rules, or through

other kinds of control information, including an evaluation function represented as a set of

EBL rules. A macro-operator is formed by aggregating a sequence of primitive operators

into one operator. This new operator can be used with the primitive operators, and takes

a "big step" in the problem solving.
The addition of macro-operators to the original operators increases the branching factor

of a problem solver's search, and the extra search performed by the macro-operators can

be redundant with the search performed by the original operators, as described in [42,13].

Learning search-control knowledge obviates this problem, since it learns to control the

problem solving activity instead of changing the search space by adding new operators.

However, it still suffers from the utility problem, because the cost of matching the control

knowledge can be expensive. This research investigates the utility problem for control

knowledge learning, and does not address the problem of branching factor increase or

search redundancy for macro operators.

8.1.4 Expensive-chunk problem vs. average-growth effect

Research on the utility problem in EBL has raised two key issues: (1) the cost of individual

rule (the expensive-rule problem) and (2) the cost of interactions among the rules, or the

effect of learned rules on problems other than the ones for which the rules were learned

(the average-growth effect).
Our research focuses on the expensive-rule problem. The average-growth effect is the

effect of chunks on the problems the chunks cannot solve, and it depends on the amount

145

of match effort performed for the chunks that do not fire. There are favorable properties

in Soar and Rete that protect the system from performing the unnecessary match effort.

Soar's problem solving is formulated as a hierarchy of modular problem spaces. By

testing the problem space in the beginning of the rule match, the system can save the

match effort for a chunk when it is irrelevant to the current problem. Also, even when a

chunk that does not fire addresses the same problem space as the problem to be solved,

Rete's sharing for the same test pattern across the rules can obviate redundant tests. As

shown by Doorenbos[9], the average-growth effect can be further reduced by adding more

optimizations that prevent unnecessary match effort that does not affect the results. These

optimizations and other solutions to the average-growth effect must be combined with our

solutions, but it is a topic for future work.

8.1.5 Non-discriminatory learning vs. discriminatory learning

One class of approaches to the expensive-rule problem is discriminatory learning, where

the utility of learned knowledge is evaluated and only the useful knowledge is kept.

Several systems assume a fixed distribution of problems, and select those performance-

system transformations that allow increased utility. These originate in Minton's [41]

utility evaluation, where PRODIGY/EBL measures the utility in terms of savings and

cost of a rule, and rules are deactivated if their utility is estimated as negative. Greiner

and Jurisica [19] proposed an algorithm called PALO that navigates through the space of

performance elements. PALO selects a new performance element, that is strictly better

than the current performance element until it reaches a local optimum. The utility analysis

in PALO computes expected performance based on the test cases from a fixed distribution.

This is similar to the approach taken in Composer [16], which adds a control rule to the

system only if it shows incremental utility. The utility is determined by the expected

(problem solving) cost for a sequence of problems. The information filtering model

[39] proposes a more general framework for discriminatory learning, and defines various

methods for eliminating harmful knowledge from the learning system. Discrimination

processes, called filters, may be inserted to remove such knowledge. The filters include

selective experience, selective attention, selective acquisition, selective retention, and
selective utilization.

146

These approaches are useful for filtering out low utility rules when the learning system

produces such rules. They are also beneficial for removing obsolete or harmful knowledge

in the system, if it exits. However, these discriminatory learning approaches need to

evaluate the utility of the candidate rules, and these evaluations may become a part of

the utility problem. For example, given a set of n interacting transformations, if the goal

is to find the optimal subset, one must consider all 2" subsets. Although they often use

various techniques, such as hill-climbing, based on assumptions about the problems, utility

evaluation is a complex problem itself. Also, gathering reasonable utility data is a difficult

problem, as described in [17]. Thus, these evaluation processes may change the problem

of high cost rules into the problem of high cost learning. The transformational approach is

different from the above discriminatory approaches. The objective of the transformational

approach is learning cheap rules from the beginning, instead of choosing high utility rules

during or after learning. As described in Chapter 7, the overhead of making sure the

learned rule is cheap is polynomial in three numbers — the total number of decisions

in the problem solving, the maximum number of candidates for a decision, and the total

number of instantiated conditions in the rule traces — by the maximum power of four.

The maximum power can be reduced to two or one, as explained in Chapter 7.

8.1.6 Providing a bound vs. reducing the cost

The goal of our work is to ensure that the cost of using learned rules is bounded by

the cost of problem solving without the learned rules. There has been a lot of work

on reducing the cost of learned rules, without guaranteeing such boundedness. Some

approaches have restructured the learned rules to semantically equivalent ones in order

to reduce the match cost of the rules. Partial evaluation in PROLEARN [50] simplifies

the learned rules by exploiting domain constraints. COMPRESSOR [41] in PRODIGY

simplifies rules or combines multiple rules to generate less expensive descriptions. It

employs domain knowledge, partial evaluation, reordering, and logical equivalences to

find a better structure. Although these restructuring approaches are useful for producing

cheaper rules, they are incomplete in the sense that they do not guarantee that all of the

sources of expensiveness to be extracted. Also, if the transformation process is complex,

it may suffer from the problem of high cost learning. The objective of this research is to

learn cheap enough rules so that the system does not have to restructure them afterwards.

147

Some other approaches have preserved the search structure in the learned knowledge.

In Shell and Carbonell's work [59], they employ iterative constructs in learned macro-

operators to capture the iterative paths found during the problem-space search. These

iterative macro-operators are then used in a way that guarantees that they take the same

path followed in the problem space. Shavlik [58], and Subramanian and Feldman [60]

learn recursive and iterative concepts by generalizing the explanation structure. These

approaches are close to 'incorporating search control in learning' — one of the optimiza-

tions we applied in the new chunking algorithm — in that the search paths are reflected

in the learned rules. However, these approaches do not completely solve the expensive-

rule problem, because not all expensive chunks arise from losing search structures. For

example, losing efficiencies (such as sharing) stemming from the hierarchical explanation

structure cannot be captured in these approaches. The transformational approach is more

general than these approaches because it captures the factors that determined the entire

problem-space search, rather than limited search structures; thus, it can handle all of the

causes of expensive chunks.
There is another class of approaches which statically analyze search structure or

problem space structure, and produce cheap rules even before problem solving. Taylor

and Korf [66] developed a technique to detect duplicate operator sequences from a small

breadth-first search in order to control the redundancy in problem solving. STATIC

[12] employs a depth-first search in the graph structure of goal/subgoal and operator

relationships, and extracts control rules from the non-recursive subgraphs it finds. These

approaches can provide useful information by preprocessing the search space. However,

these approaches do not utilize the dynamic aspect of problem solving, losing where to

focus in the structure, and thus have potential disadvantages with respect to EBL [49].

Although DYNAMIC [49] has provided an intermediate solution by introducing problem

distribution sensitivity into STATIC, these approaches still handle only limited structures

in problem-space search. They focus on operator/goal relationships, and do not address

other aspects of problem solving, including the optimizations employed in the problem

solving, such as sharing.

The match cost of learned rules can be reduced by employing better match algorithms.

Rete and Treat[44] are currently the best known rule match algorithms. Also, there has

been a lot of work to improve these algorithms[26, 2, 38, 21, 9, 6], which show even

more improvement in the match performance. Although they themselves cannot provide

148

a relative solution for learning, adapting these techniques to our learning system would

be useful for improving the absolute performance of the problem solving. Although our

system is already built on an optimized Rete, we can employ other optimizations whenever

they are applicable.

8.1.7 Relative solution vs. absolute solution

The transformational approach can provide a relative solution to the utility problem in

that it ensures the cost of using learned rules is bounded by the cost of problem solving.

Also, the approach does not impose any restriction on expressiveness or completeness

to achieve such boundedness. An absolute solution is defined as one that provides a

guaranteed bound on the match of the learned rules, regardless of the original problem-

solving cost. However, the absolute solutions presented so far all require either a set of

restrictions on expressiveness or impose incompleteness.

One approach that provides an absolute solution is the unique-attribute restriction

[61]. The unique-attribute restriction disallows object attributes from having more than

one value. While getting a bound on match, the unique attribute restriction has several

drawbacks. Not only does it reduce the expressibility of the system, it also reduces

the generality of the rules. It sometimes requires a large number of rules for the same

knowledge which could be expressed by a single rule [61]. In our work, the incorporation

of search control in modified chunking and Soar/EBL can also reduce the generality of

the learned rules. However, the results [29] show that the unique-attribute version learns

more specialized rules than simply incorporating search control.

There is another approach, called the instantiationless tree approach [65], that also

provides a guaranteed bound on match. The approach restricts the rule system by eliminat-

ing rule instantiations and disallowing some equality tests. By losing equality tests, it also

reduces the generality of the learned rules. We have not yet performed the comparison be-

tween the rules from our modified learning systems and the rules from the instantiationless

tree. However, we expect that instantiationless tree will generate rules that have similar

generality as those from the original chunking or Soar/EBL, but its tasks will suffer from

the restriction on the equality tests in learning new rules.

Some other approaches sacrifice completeness to provide predictability of the response

time. For example, Haley[20] sets a bound to a number of parameters in the Rete

149

algorithm, including the number of tokens, to limit the total match cost. Also, Barachini

and Verteneul[3] provide upper bounds by limiting the values of attributes to be in certain

interval. However, not only these approaches impose incompleteness, they also can

perform (bounded) exponential search.

8.2 Other Transformational Analyses of Learning

The following approaches are similar to our work in their use of a transformational analysis

to speed-up the problem solving.

Segre and Elkan [57] analyzed EBL as a structural application of three explanation-

transformation operators: specialize, generalize, and prune. Also, the work extends the

algorithm by introducing two more operators to provide higher utility rules. In their

work, the term transformation means each operation applied to the EBL explanation to

produce the learned rule. Thus, a sequence of transformations produces EBL rules from

the explanation as in our transformational analysis. Although their transformations are

used as a tool for describing EBL algorithms, as in our work, they are not used as a tool

for measuring the costs of intermediate products. Their focus is on how to combine the

transformation operators, guided by control heuristics, to produce a better EBL algorithm.

Another approach, by Bostrom [4], applies three transformation operators (definition,

unfolding, and folding) to transform the domain theory into a more efficient form. His

transformations are different from ours in that their sequence of transformations changes

the domain theory into another, using the transformation operators, instead of changing

the problem solving episode into a new rule.

Keller and Mostow's [28, 47] transformations are close in spirit to our transforma-

tions in that a sequence of transformations reformulates non-operational knowledge into

operational knowledge. However, the meaning of transformation in the transformational

analysis is different from the meaning of the term used for their work. The transforma-

tions here describe the changes to the input knowledge according to the given learning

algorithm (such as EBL). However, transformations in operationalization are guided by

some control knowledge heuristics, not directly related with any learning algorithm. The

focus of their transformations is simply performance improvement (by operationalizing

the given knowledge) rather than using the transformations as a tool for analyzing the

given learning algorithm.

150

All of the transformational analyses presented above are also different from our analysis

in that the focus of the approaches and their resulting algorithm development was on

speedup rather than on boundedness, and on STRIPS-type macro-operator learning, rather

than on search control learning.

151

Chapter 9

Conclusion

This chapter summarizes important results from the thesis, and presents issues for future

work.

9.1 Summary

Many learning systems suffer from the utility problem; time after learning is greater than

time before learning. Discovering how to assure that learned knowledge will in fact speed

up system performance has been a focus of research in explanation-based learning (EBL).

This thesis focused on ensuring that the cost of using learned rules is no more than the

cost of problem solving. In order to achieve this goal, we proposed the transformational

approach, which consists of two steps: (1) finding the complete set of sources that can

make learned rules expensive, and then (2) modifying the learning process to avoid these

sources. Also, to find the set of sources of expensiveness, this research introduced a novel

way of analyzing the learning process — the transformational analysis. The essence of

the analysis is to decompose the learning process into a sequence of transformations in

which the cost of intermediate products can be computed By computing and comparing

the match cost of each intermediate product, the cost changes through the learning were

measured and isolated within the steps where the transformations occur.

The thesis uses chunking and Soar/EBL as a vehicle for the investigation. Also, the

match algorithm employed for this research is a state-of-the-art Rete algorithm. Chunking

has been decomposed into a sequence of transformations from a problem solving episode

to the matching and firing of a chunk. The match cost of each intermediate product

(pseudo-chunk) was measured by counting the number of tokens produced in the match to

152

generate the result. By analyzing the transformations, we identified a set of sources which
can make the output chunk expensive. In addition to identifying the sources, the analysis

also pointed the way towards modifications of the transformational sequence that could

potentially eliminate the sources. The set of sources and the proposed modifications are:

1. Removing search control =» incorporate search control in learning. By "incorpo-

rating search control in the explanation structure, the match process for the learned

rule can focus on the path that was actually followed.

2. Losing efficiencies stemmingfromthe problem-solving structures =£• keep the problem-

solving structure. By keeping the graph structure employed in the problem solving,

the efficiencies can be reinstated.

3. Disrupting the optimizations based on equivalent knowledge =$■ preprocess knowl-

edge before it is used By preprocessing the knowledge either by grouping the

equivalent knowledge or by selecting one of them as a representative, an equivalent

optimization can be achieved.

To be able to more easily generalize the resulting analysis to other EBL systems, we

have implemented a general EBL algorithm in Soar (Soar/EBL) and analyzed its perfor-

mance. The Soar/EBL process that goes from a problem solving episode to a learned

rule has been decomposed into a sequence of transformations. The transformations have
been mapped to the corresponding transformations in chunking, and have been compared

in terms of cost and generality. This comparison has revealed that the primary sources

of expensiveness in Soar's learned rules arise in three transformations that are common

between chunking and Soar/EBL. This comparison also has revealed that Soar/EBL yields

the same sources of overgenerality as does chunking. The differences between Soar/EBL

and chunking has been localized within a single transformation, where chunking overspe-

cializes with respect to Soar/EBL.

The application of the proposed solutions (for both chunking and Soar/EBL) requires

significant change in the underlying Soar architecture, especially the match algorithm.

The required alterations include the following:

1. Computing the necessary search-control rules and eliminating redundant rules:

153

To be able to incorporate the search control in learning without introducing redundant

conditions, an algorithm has been developed to compute and collect the relevant

search-control rules at each decision point.

2. Developing a new match algorithm (controlled nonlinear Rete) which can interpret

search-control incorporated rules that maintain the problem-solving structures:

Because intermediate preference and WME creations should be converted into sub-

tasks of the match process, the Rete algorithm has been extended to perform such

tasks. In this extended Rete, conditions are hierarchically combined via join nodes

that compare a pair of tokens instead of a token and a WME. This requires the ability

to create hierarchically structured tokens; that is, a token must now be a sequence

of WMEs or tokens, instead of a sequence of WMEs. Also, to interpret the search

control semantics, an extra node type (decision-sub-node) has been introduced.

3. Introducing token compression in controlled nonlinear Rete:

Another new form of token has been introduced. Instead of forming the tokens

as tuples of WMEs or tokens, the extended Rete generates tuples of values of the

variables which are going to be needed later in the match process.

The above set of modifications has been applied to both chunking and Soar/EBL,

and the original sequence of transformations has been converted into a new sequence of

transformations. The experimental results for the expensive-chunk tasks imply that the

time after learning is consistently less than the time before learning with the modified

learning algorithm. The original learning, and the algorithms that implement only sub-

parts of the full modifications, sometimes produce better results than the fully modified

learning algorithm. However, the learning algorithm which gives the best results in

one problem may produce expensive rules in another, while the full modification always

provides boundedness.

In summary, the primary contributions of this thesis include: performing a transfor-

mational analysis of the EBL algorithm; identifying the sources of expensiveness; and

providing a new algorithm based on the solutions for the sources. We performed such

analysis in the context of Soar, and identified the sources of expensiveness, along with

the modifications that can eliminate the sources. Also, the alterations required in the

learning algorithm and the underlying match algorithm to support the modifications have

154

been designed and implemented. The experimental results indicate that, at least for the

domains investigated, the new learning algorithm provides relative boundedness; the run

time after learning is consistently less than the run time before learning, except for the

changes caused by the architectural axioms.

9.2 Future Work

One negative effect of using graph-structured rules is diminished rule readability. Even

with the use of indentation to identify the level of hierarchy, the sharing of sub-conditions

is still difficult to understand. One way of relieving this problem is by further simplifying

the structure of the rules. There are more ways of simplifying the graph structure than

the ones already implemented. The approaches include the modification of the nonlinear

structure into a more efficient structure, as described in Section 5.4. By implementing

those, we may improve the match performance as well as the readability of the rules in

the modified learning algorithms.

The new learning algorithms (for both chunking and Soar/EBL) need to be combined

with a solution to the average growth effect. The earlier work on the average growth effect

in chunking has shown that it is possible to learn large number of rules without hurting

overall system performance. However, because the rules created by the new learning

algorithms can be different from the rules created by chunking, the problem still needs to

be addressed in terms of the new learning algorithm.

As described in Chapter 6, the performance-time effect may be avoided by employing

additional constraints in the decision network. The additional constraints needs to be

implemented, and the analysis of the effect of unexpected alternatives during performance

time is required.

The overgenerality caused by Soar's architectural activities can lead to cost changes.

How much cost increase they can generate needs to be analyzed and it should be combined

with the analysis done for non-architectural activities.

The results presented in Chapter 6 are based on known expensive-chunk tasks. Ex-

perimental results from a wider range of tasks, both other expensive-chunks tasks and

non-expensive-chunk tasks, should be performed to generalize our solutions.

155

Reference List

[1] A. Acharya. Personal communication. 1996.

[2] A. Acharya and M. Tambe. Collection-oriented match : Scaling up the data in

production systems. Technical Report CMU-CS-92-218, Computer Science Depart-

ment, Carnegie-Mellon University, 1992.

[3] F. Barachini and G. Verteneul. The challenge of real-time process control for pro-

duction systems. In Proceedings of the Seventh National Conference on Artificial

Intelligence, pages 705-709,1988.

[4] Henrik Bostrom. Improving example-guided unfolding. In Proceedings ofECML-

93, pages 124-135,1993.

[5] B. Carlson, J. Weinberg, and D. Fisher. Search control, utility, and concept induction.

In Proceedings of the Seventh International Conference on Machine Learning, pages

85-91,1990.

[6] B. Cho. Efficient Production Match and CSP Solving. PhD thesis, University of

Southern California, 1996.

[7] R. Dechter. Enhancement schemes for constraint processing: Backjumping, learn-

ing, and cutsets decomposition. Artificial Intelligence, 41:273-312,1990.

[8] B. Doorenbos. Personal communication. 1994.

[9] B. Doorenbos. Production Matching for Large Learning Systems. PhD thesis,

Carnegie-Mellon University, 1995.

[10] B. Doorenbos. Personal communication. 1996.

156

[11] B. Doorenbos and M. M. Veloso. Knowledge organization and the utility problem.

In Proceedings of the Third International Workshop on Knowledge Compilation and

Speedup Learning, 1993.

[12] O. Etzioni. Why Prbdigy/EBL works. In Proceedings of the Eighth National Con-

ference on Artificial Intelligence, pages 916-922,1990. - _

[13] O. Etzioni. An asymptotic analysis of speedup learning. In Proceedings of the Ninth

International Workshop on Machine Learning, pages 135-142,1992.

[14] Y. E. Fattah and P. O'Rorke. Explanation-based learning for diagnosis. Machine

Learning, 13:35-70,1993.

[15] C. L. Forgy. Rete: A fast algorithm for the many pattern/many object pattern match

problem. Artificial Intelligence, 19(1): 17-37,1982.

[16] J. Gratch and G. Dejong. COMPOSER: A probabilistic solution to the utility problem

in speed-up learning. In Proceedings of the Tenth National Conference on Aritificial

Intelligence, pages 235-240, 1992.

[17] J. Gratch and G. DeJong. A statistical approach to adaptive problem solving. Artifi-

cial Intelligence, 88(1): 101-142,1996.

[18] J. J. Grefenstette. Credit assignment in rule discovery systems. Machine Learning,

3:25-45,1988.

[19] R. Greiner and I. Jurisica. A statistical approach to solving the EBL utility problem.

In Proceedings of the Tenth National Conference on Artificial Intelligence, pages

241-248,1992.

[20] P. V. Haley. Real-time for rete. In Proceedings ofROBEXs'87: The Third Annual

Workshop on Robotics and Expert Systems, 1987.

[21] E. N. Hanson and M. S. Hasan. Gator: An optimized discrimination network for

active database rule condition testing. Technical Report TR-93-036, CIS Department,

University of Florida, 1993.

157

[22] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic determina-

tion of minimum cost paths. IEEE Transactions on System Science and Cybernetics,

4:100-107,1968.

[23] R. W. Hill and W. L. Johnson. Situated plan attribution. Artificial Intelligence in

Education, 6(l):35-66,1995. - _

[24] L. B. Holder. The general utilty problem in machine learning. In Proceedings of the

Seventh International Conference on Machine Learning, pages 402-410,1990.

[25] L. B. Holder. Empirical analysis of the general utility problem in machine learning.

In Proceedings of the Ninth International Workshop on Machine Learning, pages

249-254,1992.

[26] T. Ishida. Optimizing rules in production system programs. In Proceedings of

the Seventh National Conference on Artifical Intelligence, pages 699-704. Morgan

Kaufmann, 1988.

[27] S. Katukam and S. Kambhampati. Learning explanation-based search control rules

for partial order planning. In Proceedings of the Twelfth National Conference on

Artificial Intelligence, pages 582-587, 1994.

[28] R. M. Keller. Learning by re-expressing concepts for efficient recognition. In

Proceedings of the National Conference on Artificial Intelligence, pages 182-186,

1983.

[29] J. Kim and R S. Rosenbloom. Constraining learning with search control. ^Proceed-

ings of the Tenth International Conference on Machine Learning, pages 174-181,

1993.

[30] J. Kim and P. S. Rosenbloom. Learning efficient rules by maintaining the expla-

nation structure. In Proceedings of the Thirteenth National conference on Artificial

Intelligence, pages 763-770, 1996.

[31] J. Kim and P.S. Rosenbloom. Mapping explanation-based learning onto Soar: The

sequel. Technical Report transformation analyses of learning in SOAR. ISI/RR-95-

4221, Information Sciences Institute and Computer Science Department University

of Southern California, 1995.

158

[32] J. Kim and P.S. Rosenbloom. Transformation analyses of learning in Soar. Tech-

nical Report ISI/RR-95-4221, Information Sciences Institute and Computer Science

Department University of Southern California, 1995.

[33] R. E. Korf. Real-time heuristic search. Artificial Intelligence, 42:189-211,1990.

[34] J. E. Laird, C. B. Congdon, E. Altmann, and R. Doorenbos. Soar User's Manual:

Version 6,1 edition, 1993.

[35] J. E. Laird, A. Newell, and R S. Rosenbloom. Soar: An architecture for general

intelligence. Artificial Intelligence, 33:1-64,1987.

[36] J. E. Laird, R S. Rosenbloom, and A. Newell. Chunking in Soar: The anatomy of a

general learning mechanism. Machine Learning, 1,1985.

[37] J. E. Laird, R S. Rosenbloom, and A. Newell. Overgeneralization duringTcnowledge

compilation in Soar. In Proceedings of the Workshop on Knowledge Compilation,

pages 46-57,1986.

[38] H. S. Lee and M. I. Schon Match algorithms for generalized Rete networks. Artificial

Intelligence, 54:249-274,1992.

[39] S. Markovitch and R D. Scott. Information filtering : Selection mechanism in

learning systems. Machine Learning, 10(2): 113-151,1993.

[40] R. S. Michalski. How to learn imprecise concepts: A method based on two-tiered

representation and the AQ15 program. Ill, 1986. In press.

[41] S. Minton. Quantitative results concerning the utility of explanation-based learning.

In Proceedings of the Seventh National Conference on Artificial Intelligence, pages

564-569,1988.

[42] S. Minton. Issues in the design of operator composition systems. In Proceedings of

the Eighth National Conference on Artificial Intelligence, pages 304-312,1990.

[43] S. Minton. Personal communication. 1993.

159

[44] D. P. Miranker. Treat: A better match algorithm for AI production systems. In

Proceedings of the Sixth National Conference on Artificial Intelligence, pages 42-

47, 1987.

[45] T. M. Mitchell, R. M. Keller, and S. T. Kedar-Cabelli. Explanation-based general-

ization - a unifying view. Machine Learning, l(l):47-80,1986. —

[46] R. J. Mooney and S. W. Bennett. A domain independent explanaion-based general-

ization. In Proceedings of the Fifth National Conference on Artificial Intelligence,

pages 551-555,1986.

[47] D. J. Mostow. Machine transformation of advice into a heuristic search procedure.

In J. Carbonell R. Michalski and T. Michell, editors, Machine Learning: An Artificial

Intelligence Approach. Tioga Press, Palo Alto, CA, 1983. In press.

[48] M. Pazzani and D. Kibler. The utility of knowledge in inductive learning. Machine

Learning, 9(l):57-94,1992.

[49] M. A. Perez and O. Etzioni. DYNAMIC: A new role for training examples in EBL.

In Proceedings of the Ninth International Workshop in Machine Learning, pages

367-372,1992.

[50] A. E. Prieditis and J. Mostow. PROLEARN: Towards a Prolog interpreter that

learns. In Proceedings of the Sixth National Conference on Artificial Intelligence,

pages 494-498, 1987.

[51] J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81—106,1986.

[52] J. R. Quinlan. Simplifying decision trees. International Journal of Man-Machine

Studies, 27:221-234, 1987.

[53] P. S. Rosenbloom and J. E. Laird. Mapping explanation-based generalization onto

Soar. In Proceedings of the Fifth National Conference on Artificial Intelligence,

pages 561-567, Philadelphia, 1986. AAAI.

[54] P. S. Rosenbloom, J. E. Laird, A. Newell, and R. McCarl. A preliminary analysis

of the Soar architecture as a basis for general intelligence. Artificial Intelligence,

47(l-3):289-325,1991.

160

o

[55] A. L. Samuel. Some studies in machine learning using the game of checkers. IBM

Journal, Vol. 3, No. 3, July, 1959.

[56] D. J. Scales. Efficient matching algorithms for the Soar/Ops5 production system.

Technical Report KSL-86-47, Knowledge Systems Laboratory, Department of Com-

puter Science, Stanford University, 1986.

[57] A. Segre and C. Elkan. A high-performance explanation-based learning algorithm.

Artificial Intelligence, 69:1-50,1994.

[58] Jude W. Shavlik. Aqüiring recursive and iterative concepts with explanation-based

learning. Machine Learning, 5:39-70,1990.

[59] P. Shell and J. Carbonell. Empirical and analytical performance of iterative operators.

In The 13th Annual Conference of The Cognitive Science Society, pages 898-902.

Lawrence Erlbaum Associates, 1991.

[60] D. Subramanian and R. Feldman. The utility of EBL in recursive domain theories.

In Proceedings of the Eighth National Conference on Artificial Intelligence, pages

942-949,1990.

[61] M.Tambe. Eliminating combinatorics from production match. PhD thesis, Carnegie-

Mellon University, 1991.

[62] M. Tambe. Personal communication. 1996.

[63] M. Tambe, D. Kalp, A. Gupta, C. L. Forgy, B. G. Milnes, and A. Newell. Soar/PSM-

E: Investigating match parallelism in a learning production system. In Proceedings

of the ACM/SIGPLAN Symposium on Parallel Programming: Experience with ap-

plications, languages, and systems, pages 146-160,1988.

[64] M. Tambe and P. S. Rosenbloom. On the masking effect. In Proceedings of the

Eleventh National Conference on Artificial Intelligence, pages 526-533,1993.

[65] M. Tambe and P. S. Rosenbloom. Investigating production system representations

for non-combinatorial match. Artificial Intelligence, 68(1): 155-199,1994.

161

[66] L. A. Taylor and R. E. Korf. Pruning duplicate node in depth-first search. In

Proceedings of the Eleventh National Conference on Artificial Intelligence, pages

756-761,1993.

[67] F. Zerr and J. G. Ganascia. Comparison of chunking with EBG implemented onto

Soar. Universite Paris-Sud, Orsay, France and Universite Pierre et Marie Curie,

Paris, France. October, 1989, Unpublished.

162

