REPORT DO	Form Approved OMB No. 0704-0188			
Public reporting burden for this collection of gathering and maintaining the data needed, collection of information, including suggestio Davis Highway. Suite 1204 Artington VA 22	information is estimated to average 1 hour per and completing and reviewing the collection or ns for reducing this burden to Washington H 022-4302 and to the Office of Management ar	er response, including of information. Send eadquarters Services ad Budget, Papenwork	g the time for reviewing instructions, searching existing data sound comments regarding this burden estimate or any other aspect of s, Directorate for Information Operations and Reports, 1215 Jeffe & Reducting Decider (0704.0489), Machicather Do 000-000	
1. AGENCY USE ONLY (Leave blank	2. REPORT DATE	3. REPOR	RT TYPE AND DATES COVERED	
	1996		Final Report	
4. TITLE AND SUBTITLE		l	5. FUNDING NUMBERS	
Attempt To Increase The St	F6170896W0229			
6. AUTHOR(S)				
Dr. German Skorobogatov				
7. PERFORMING ORGANIZATION N	8. PERFORMING ORGANIZATION			
St. Petersburg State Univers ul. Chebyshevskaja, dom 14 Star.Petergof	REPORT NUMBER			
St, Petersburg 198904 Russia				
9. SPONSORING/MONITORING AGE				
EOARD PSC 802 BOX 14 FPO 09499-0200	SPC 96-4038			
11. SUPPLEMENTARY NOTES		Aller		
12a. DISTRIBUTION/AVAILABILITY S	12b. DISTRIBUTION CODE			
Approved for public release;	A			
13. ABSTRACT (Maximum 200 words)				
This report results from a co gamma-ray emission from T	ntract tasking St. Petersburg State Uni e as detailed in his proposal.	versity as follows:	: The contractor will attempt to increase the stimulated	
. ,				
		•		
	IC QUANTER DETERMINE			
14. SUBJECT TERMS			15. NUMBER OF PAGES	
Physics, Lasers			7 16. PRICE CODE N/A	
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19, SECURITY (CLASSIFICATION 20. LIMITATION OF ABSTRA	
UNCLASSIFIED				
NSN 7540-01-280-5500		0101	Standard Form 298 (Rev. 2-89)	

.

`

.

1

²⁹⁸⁻¹⁰²

FINAL REPORT

G.A.Skorobogatov

Contract No. F61708-96-W0229.

THEORETICAL AND EXPERIMENTAL ACHIEVEMENTS IN THE FIELD OF INDUCED GAMMA EMISSION

G.A.Skorobogatov

Department of Chemistry, St.-Petersburg State UniversityUniversitetskii prosp., 2 • Petrodvorets, St.-Petersburg 198904, RussiaPhone (007) 812-4285571FAX (007) 812-4286939e-mail gera@analyt.chem.lgu.spb.su

Abstract

A critical analysis is presented for all published to date experimental data concerning the induced gamma-emission (*IGE*) in processes ${}^{125m^2}Te(\gamma, 2\gamma){}^{125m^1}Te$, ${}^{123m^2}Te(\gamma, 2\gamma){}^{123m^1}Te$, and ${}^{119m^2}Sn(\gamma, 2\gamma){}^{119m^1}Sn$. The co-operative model of the *IGE* phenomenon is deduced from quantum electrodynamics.

Experimental results

In 1984 we published¹ a results of experimental study regarding the *IGE* process:

$$\begin{array}{c} {}^{25m_2}Te + hv(109.3keV) \xrightarrow{78K} {}^{125m_1}Te + 2hv(109.3keV) \\ & \downarrow 1.48ns \\ {}^{125}Te + hv(35.5keV) \end{array}$$
(1)

In Ref.¹ the experimental effect is taken as:

1

$$\varepsilon = \frac{\Delta \Phi}{\Phi},$$
 (2)

where $\Delta \Phi$ is the number of gamma-quanta emitted by stimulation at the $Be^{125m^2}Te$ sample temperature $T_{exp}=78K$, and Φ is the number of gamma-quanta spontaneously emitted at sample temperature 300K. The value $\varepsilon_{exp} = 1.2\pm0.6\%$ had been obtained in Ref. U. In order to exclude the contribution in ε_{exp} from a temperature rise of sample density we had reproduced the *IGE* process (1) in Ref.². In the latter work the experimental effect is taken as:

$$\mathcal{E}_{\exp} = \frac{\Phi_{2\gamma}}{\Phi},\tag{3}$$

where Φ_{2y} is a number of coherent pairs 2hv (109.3 keV) originated in the process (1).

19970618 027

Finally, in Ref.³ we had reproduced the *IGE* process (1) using both techniques (2) and (3). for ε_{exp} . The resulting experimental data are presented in Table 1.

Taken together References 1-3/ demonstrate with confidence a reality of the *IGE* process (1). Nevertheless, by the early 1990s there was some uncertainty as to the mechanism of the *IGE* process. Hence, we undertook the experimental study regarding the *IGE* process³:

$${}^{123m_2}Te + h\nu(88.46keV) \longrightarrow {}^{10K} Te + 2h\nu(88.46keV) \qquad (4) \downarrow 0.19ns {}^{123}Te + h\nu(159.0keV)$$

The obtained value of ε_{exp} for process (4) together with data for reaction (1) had demonstrated³⁻⁵ that realized *IGE* process is a collective polynuclear superradiance rather than stimulated emission of Mössbauer radiation. The corresponding theoretical equation for the effect value can be written as³⁻⁵:

$$\varepsilon_{theor} = \frac{2\pi N_x f_m \beta \tau_{down}}{3\mu^3 (1+\alpha)(\tau_{up} + \tau_{down})},$$
⁽⁵⁾

where N_x is a number of inversion, f_m is the Mössbauer factor, β is a branching factor, μ is the linear losses coefficient, α is an intermal conversion factor, τ_{up} is the upper level life time, and τ_{down} is the lower level life time. Eqn. (5) holds⁵ only when the lattice temperature (T_{exp}) is decreased to the value T_A wherein a de Broglie thermal wavelength for nucleus *X exceeds the gamma-quantum wavelength (Λ):

$$T_{\rm exp} \leq T_{\Lambda} = \frac{\left(\hbar / \Lambda\right)^2}{2km_x}.$$
 (6)

Here \hbar is the Planck constant, k is the Boltzmann constant, and m_x is a mass for the **X* nucleus. The relationship $N_x = [*X]$ was true in conditions of our experiments ¹⁻⁵. One should recognize from the data of Table 1 that Eqn. (5) of co-operative model describes within the error limits all the experimental results obtained in Ref.¹⁻⁵.

In Table 1 we present also the results of experimental study of the process (4) in ref.⁶ and process

$${}^{119m_2}Sn + hv(65.66keV) \xrightarrow{15-78K} {}^{119m_1}Sn + 2hv(65.66keV) \xrightarrow{1}{}^{17.75ns} {}^{119}Sn + hv(23.87keV)$$

$$(7)$$

in Refs.^{6,7}.

2 -

<u>Table 1.</u> Comparison of theoretically calculated by formula (5) and experimentally measured ratio $\varepsilon = \Delta \Phi_{\gamma} \Phi_{\gamma}$, where $\Delta \Phi_{\gamma}$ is the number of gamma-quanta emitted by stimulation at matrix temperature T_{exp} , and Φ_{γ} is the number gamma-quanta emitted spontaneously at matrix temperature 300K.

nuclide (*X)	^{125m2} Te		^{123m2} Te		^{119m2} Sn	
polycrystal	BeTe		Mg₃TeO ₆	Mg ₃ TeO ₆ + MgO	SnO	SnO ₂
<i>Τ</i> _Λ / <i>K</i>	10		6.6	6.6	3.6	3.6
Debye temperature / K	390		350	375	154	160
$[*X] / 10^{18}$ atoms·cm ⁻³	12±5	4.9±1.5	34±7	1.0±0.2	5±1	9±3
T _{exp} / K	78	10	10	78	15	78
Mössbauer factor $f_{\rm m} \left(T_{\rm exp} \right)$	0.10±0.02	0.108	0.18±0.01	0.13	0.0214	0.01
μ_0^{-1} / cm	0.2062	0.2062	0.1639	0.33	0.0293	0.032
$(4\pi/3)[*X]\mu_0^{-3}/10^{16}$ atoms	44±18	18±6	63±13	16±5	0.053±0.011	0.12
$\frac{10^{20} f_m \tau_d}{2(1+\alpha_{up})(\tau_{up}+\tau_d)}$	4.03	4.35	0.148	0.103	0.0126	0.0059
ε _{theor} / %	1.8±0.7	0.8±0.3	0.09±0.02	0.02±0.01	7.8·10 ⁻⁶	7·10 ⁻⁶
ε _{exp} / %	1.2±0.6	0.35±0.15	0.05±0.03	0.30±0.06	≤0.0012	0.02± ±0.01
reference for ε_{exp}	Skor, Dz', 1984	Skor, Dz ³ , 1995	Skor, Dz ³ , 1995	Bond. Dz ⁶ . 1996	<i>ITEPh</i> ⁷ , 1989	Bond, Dz ⁶ 1996

-3-

Co-operative effects in stimulated emission

1

If we use a long-lived isomer both as storage and lasing level, the stimulated emission cross section is very small because of the very weak coupling between the gamma-radiation and the nuclei. Nevertheless, if the nuclei are imbedded in a lattice, co-operative effects in the stimulated emission could enhance the amplification and thus the gain substantially.

Consider an incoming gamma-radiation with a resonant (or near-resonant) frequency. That radiation interacts with all the nuclei in the ensemble and can stimulate those nuclei which are in the excited state to emit a photon. The probability for such a process can be written as⁸:

$$P_{stim.em.}(\hat{k}\sigma,t) = \left| \left\langle n_{\hat{k}\sigma} + 1, \Psi_F(\vec{r}_1, \vec{r}_2, \dots, \vec{r}_n, \vec{r}) \right| \vec{J}(\vec{r}) \cdot \vec{A}_{\hat{k}\sigma}(\vec{r}, t) \left| n_{\hat{k}\sigma}, \Psi_I(\vec{r}_1, \vec{r}_2, \dots, \vec{r}_n, \vec{r}) \right\rangle \right|^2, \quad (2-1)$$

where $\vec{A}_{\hat{k}\sigma}(\vec{r},t)$ is the field at point \vec{r} associated to the stimulating radiation with momentum \hat{k} and helicity σ . For an incoming plane wave the vector potential is?:

$$\vec{A}_{\hat{k}\sigma}(\vec{r},t) = \vec{A} *_{\hat{k}\sigma} e^{-i(\vec{k}\vec{r}-\omega t)} + \vec{A}_{\hat{k}\sigma} e^{i(\vec{k}\vec{r}-\omega t)}, \qquad (2-2)$$

in which $\vec{A} *_{\hat{k}\sigma}$ and $\vec{A}_{\hat{k}\sigma}$ are respectively related to the photon creation operator $a^+_{\hat{k}\sigma}$ and the destruction operator $a_{\hat{k}\sigma}$. Since we consider only stimulated emission we can write:

$$\vec{A}_{\hat{k}\sigma}(\vec{r},t) = a^+{}_{\hat{k}\sigma}\widetilde{A}_{\hat{k}\sigma}(\vec{r},t)$$
(2-3)

The total nuclear current operator $\vec{J}(\vec{r})$ can be written as a sum of currents $\vec{j}_i(\vec{r})$ each belonging to one single nucleus. The position vector \vec{r} can for each nucleus be written as a function of the position of the nuclear mass center \vec{r}_{l} and a charge distribution vector $\vec{\rho}_i$. Then:

$$\vec{J}(\vec{r}) = \sum_{l} \vec{j}_{l}(\vec{r}) = \sum_{l} \vec{j}_{l}(\vec{r}_{l} + \vec{\rho}_{l}).$$
(2-4)

functions The the initial final single wave of and state products of nucleus wave are functions:

$$\Psi_{I}(\vec{r}_{1},\vec{r}_{2},...,\vec{r}_{n},\vec{r}) = \prod_{l} \int_{|\Delta\vec{r}_{l}|} \varphi_{l}(\vec{r}_{l} + \vec{\xi} + \vec{\rho}_{l})f(\vec{\xi})d\vec{\xi} =$$

$$= \int_{|\Delta\vec{r}|} \prod_{l} \varphi_{l}(\vec{r}_{l} + \vec{\xi} + \vec{\rho}_{l})f(\vec{\xi})d\vec{\xi},$$

$$\Psi_{F}(\vec{r}_{1},\vec{r}_{2},...,\vec{r}_{n},\vec{r}) = \int_{|\Delta\vec{r}|} \prod_{j} \Phi_{j}(\vec{r}_{j} + \vec{\xi} + \vec{\rho}_{j})f(\vec{\xi})d\vec{\xi}.$$
(2-5)
(2-6)

Here the $f(\vec{\xi})$ function presents a Heisenberg uncertainty for the spatial coordinate \vec{r} .

As we consider only stimulated emission, we can restrict the initial state to all nuclei which are in the exited state. The total transition amplitude is then reduced to a sum of single nucleus matrix elements. Then, for every l in the absence of any temperature gradient in a lattice following relationship is true as result of the Heisenberg uncertainty relation:

5 -

$$|\Delta \vec{r}_l| = |\Delta \vec{r}| = \sqrt{\frac{2\pi\hbar^2}{m_X k T_{lat}}},$$
(2-7)

where \hbar is the Planck constant, k is the Boltzman constant, m_X is a mass of radiating nucleus. T_{lat} is a lattice temperature. Now instead equation (28) of Ref.⁸ we obtain following equation for total transition amplitude:

$$\boldsymbol{\mathcal{Z}}_{lol}(\hat{k}\sigma,t) = \sum_{I} \int_{|\Delta \vec{r}|} \left\langle \Phi_{I}(\vec{r}_{I} + \vec{\xi} + \vec{\rho}_{I}) \middle| \vec{j}_{I}(\vec{r}_{I} + \vec{\rho}_{I}) \vec{A}_{\hat{k}\sigma}(\vec{r}_{I} + \vec{\rho}_{I}) \middle| \varphi_{I}(\vec{r}_{I} + \vec{\xi} + \vec{\rho}_{I}) \right\rangle f(\vec{\xi}) d\vec{\xi}.$$
(2-8)

Under condition $f(\vec{\xi}) = \delta(\vec{\xi})$ our equations (2-5), (2-6), (2-8) coincides with equations (26), (27), (28) of Ref.⁸. Instead of equation (29) in Ref.⁸ the total transition amplitude becomes equal:

$$\boldsymbol{\mathcal{X}}_{tot}(\hat{k}\sigma,t) = \int_{|\Delta\vec{r}|} \sum_{l} \left\langle \Phi(\vec{\rho}+\vec{\xi}) \middle| \vec{j}(\vec{\rho}) \vec{A}_{\hat{k}\sigma}(\vec{r}_{l}+\vec{\rho},t) T(-\vec{r}_{l}) \middle| \varphi(\vec{\rho}+\vec{\xi}) \right\rangle f(\vec{\xi}) d\vec{\xi} = \sum_{l} \left\langle \Phi(\vec{\rho}) \middle| \vec{j}(\vec{\rho}) \cdot \int_{|\Delta\vec{r}|} \vec{A}_{\hat{k}\sigma}(\vec{r}+\vec{\rho},t) T(-\vec{r}_{l}-\vec{\xi}) f(\vec{\xi}) d\vec{\xi} \middle| \varphi(\vec{\rho}) \right\rangle,$$
(2-9)

where:

$$\int_{\Delta \vec{r}|} \vec{A}_{\hat{k}\sigma}(\vec{r}_l + \vec{\rho}, t) T(-\vec{r}_l - \vec{\xi}) f(\vec{\xi}) d\vec{\xi} = \vec{A}_{\hat{k}\sigma}(\rho, t) \int_{|\Delta \vec{r}|} e^{-2ik(r_l + \vec{\xi})} f(\vec{\xi}) d\vec{\xi}.$$
 (2-10)

The total transition probability for stimulated emission can thus be written as:

$$P_{stim.em.}(\hat{k}\sigma, T_{lat}, t) = |...|^2 \sum_{j,l} \int_{|\Delta \vec{r}|} e^{-2i\vec{k}(\vec{r}_l - \vec{r}_j + \vec{\xi})} f(\vec{\xi}) d\vec{\xi}, \qquad (2-11)$$

where:

$$|...|^{2} = \left| \left\langle \Phi(\vec{\rho}) \middle| \vec{J}(\vec{\rho}) \cdot \vec{A}(\vec{\rho},t) \middle| \varphi(\vec{\rho}) \right\rangle \right|^{2} = \hbar \omega_{res} A_{21} \frac{f_{m}(T_{lat})\beta\hbar\Gamma_{u\rho}\hbar\Gamma_{uo}}{4(1+\alpha) \left[(E_{21} - \hbar\omega)^{2} + \frac{1}{4}(\hbar\Gamma_{uot}) \right]} \cdot (2-12)$$

Here β is a branching factor, α is an interval conversion factor, f_m is the Mössbauer factor, Γ_{up} is a line width of the upper level, Γ_{tot} is the total line width, A_{21} is the Einstein coefficient, $\hbar \omega_{res} = E_{21}$ is the energy of electromagnetic transition.

Under condition $|\Delta \vec{r}| \ll |\vec{k}|^{-1}$ there are both situations outlined by equations (32)-(36) of Ref. [8]. However, under opposite condition $|\Delta \vec{r}| \ge |\vec{k}|^{-1}$ we get:

$$\sum_{j,l} \int_{|\Delta \vec{r}|} e^{-2i\vec{k}(\vec{r}_{l}-\vec{r}_{j}+\vec{\xi})} f(\vec{\xi}) d\vec{\xi} = \kappa(T_{lat}) \sum_{j,l} 1 = (N')^{2} \kappa(T_{lat}),$$
(2-13)

- 6

where:

$$N = [N]l_{x}l_{y}l_{z}, \qquad (2-14)$$

$$l_j = Min(L_j, \mu_j^{-1}),$$
 (2-15)

)

$$\kappa(T_{lat}) = \begin{cases} 1, & \text{if} \quad T_{lat} \leq T_{\Lambda} \\ (T_{\Lambda} / T_{lat})^{0.5}, & \text{if} \quad T_{lat} > T_{\Lambda}, \end{cases}$$
(2-16)

$$T_{\Lambda} = \frac{(\hbar / \Lambda_{21})^2}{2km_{\chi}},$$
(2-17)

 L_j is the sample length along *j*-axis, μ_j is the absorption coefficient along *j*-axis, and Eqn. (2-17) is the same as Eqn. (6). Now one might see that equations (2-11) - (2-17) under condition $|\Delta \vec{r}| \ge |\vec{k}|^{-1}$ coincides completely with basic equation (5).

This work was supported by the <u>Grant received from US Air Force EOARD</u>, Contract No. F61708-96-W0229.

References

7-

- 1. G.A.Skorobogatov, B.E.Dzevitskii. Izvestja Acad. Sci. USSR, ser. Phys. (Russ.), 48 (1984) 1934.
- V.G.Alpatov, G.E.Bizina, A.V.Davydov, B.E.Dzevitskii, G.R.Kartashov, M.M.Korotkov, G.V.Kostina, A.A.Sadovskii, G.A.Skorobogatov. Izvestja Acad. Sci. USSR, ser. Phys. (Russ.), 50 (1986) 2013.
- 3. G.A.Skorobogatov, B.E.Dzevitskii. Lasers Physics, 5 (1995) 258.
- 4. G.A.Skorobogatov, B.E.Dzevitskii. Il Nuovo Cimento (D), 17 (1995) 609.
- 5. G.A.Skorobogatov, B.E.Dzevitskii. Hyperfine Interactions, (1996) in press.
- 6. S.I.Bondarevskii, B.E.Dzevitskii, V.V.Yerjomin. Proc. of the International Conference LASERS'96. (Dec. 2-6, 1996, Portland, USA).
- 7. V.G.Alpatov, A.A.Antipov, G.E.Bizina, S.K.Godovikov, A.V.Davydov, G.R.Kartashov, M.M.Korotkov, P.A.Polozov, B.I.Rogozev, A.A.Sadovskii, I.A.Suvorov, A.I.Cheltsov. Izvestja Acad. Sci. USSR. ser. Phys. (Russ.), 53 (1989) 2052.

8. G.Neyens, R.Coussement.Hyperfine Interactions, (1996) in press.

9. F.H.Read. In "Electromagnetic Radiation", Chichester - New York - Brisbane - Toronto: John Wiley and Sons, 1980.

lev