
NAVAL POSTGRADUATE SCHOOL 
Monterey, California 

DISSERTATION 

SIMULATION OF THE DYNAMIC BEHAVIOR 
OF EXPLOSION GAS BUBBLES IN A 

COMPRESSIBLE FLUID MEDIUM 

by 

James E. Chisum 

December, 1996 

Thesis Advisor: Young S. Shin 

Approved for public release; distribution is unlimited. 

19970623 065 p&teQStv l-?s^»D4. 



REPORT DOCUMENTATION PAGE Foim Approved OMB No. 0704-0188 

Public reporting burden for Ulis collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data 
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other 
aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and 
Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) 

Washington DC 20503.         

1.     AGENCY USE ONLY (Leave blank) 2.      REPORT DATE 
December 1996 

3.     REPORT TYPE AND DATES COVERED 
Doctoral Dissertation       

TITLE AND SUBTITLE SIMULATION OF THE DYNAMIC BEHAVIOR 
OF EXPLOSION GAS BUBBLES IN A COMPRESSIBLE FLUID 
MEDIUM  

6.    AUTHOR(S) Chisum, James E. 

7.     PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Naval Postgraduate School 
Monterey CA 93943-5000  

9.     SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

FUNDING NUMBERS 

PERFORMING 
ORGANIZATION 
REPORT NUMBER 

10.   SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

11 

12b. DISTRIBUTION CODE 

SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the 
official policy or position of the Department of Defense or the U.S. Government. 

12a. DISTRIBUnON/AVAILABILITY STATEMENT 
Approved for public release; distribution is unlimited.  

13.   ABSTRACT (maximum 200 words) 
Data from one-dimensional (spherically symmetric) analyses was used to examine the effects of 

compressibility and gas energy on the dynamic behavior of an explosion gas bubble, by comparing the 
bubble's behavior with experimental results and with analytical results which neglect these factors. 
Results from two-dimensional (axially symmetric) analyses were used to investigate the behavior of a 
deep explosion gas bubble in the vicinity of plane rigid or constant pressure boundaries. Previous 
analytical research into explosion gas bubbles near such boundaries has primarily led to results of a 
qualitative nature, owing to a complete breakdown of the assumptions made in the analysis at the 
critical juncture. In the present investigation, it was found possible to characterize the effect of the 
boundary surface on both the change in the first oscillation period of the bubble and its location at the 
end of the first oscillation cycle. For a broad range of bubble - boundary standoff distances, these semi- 
empirical characterizations have a functional form particularly suitable for extension of the quantitative 
results of this investigation to other explosive charge types, weights, and depths, as has been done for 

the Willis formula for the free-field oscillation period of explosion gas bubbles. 

14.   SUBJECT TERMS Underwater Explosions, Bubbles, Eulerian Analysis, Dynamic 

Behavior. 

17.   SECURITY CLASSIFICA- 
TION OF REPORT 
Unclassified     

18.   SECURITY CLASSIFI- 
CATION OF THIS PAGE 
Unclassified 

19.   SECURITY CLASSIFICA- 
TION OF ABSTRACT 
Unclassified         

15. NUMBER OF 
PAGES 96 

16.   PRICE CODE 

20.   LIMITATION OF 
ABSTRACT 
UL 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. 239-18 298-102 





Approved for public release; distribution is unlimited 

SIMULATION OF THE DYNAMIC BEHAVIOR OF EXPLOSION 
GAS BUBBLES IN A COMPRESSIBLE FLUID MEDIUM 

James E. Chisum 
Lieutenant Commander, United States Navy 
B.S., Southern Oregon State College, 1982   - 

M.S., Naval Postgraduate School, 1992 
Mech. Eng., Naval Postgraduate School, 1992 

Submitted in partial fulfillment 
of the requirements for the degree of 

DOCTOR OF PHILOSOPHY IN MECHANICAL ENGINEERING 

from the 

NAVAL POSTGRADUATE SCHOOL 
Dececember 1996 

Author: 

Approved by: 

oJJh&nu. 

Young S. Sfim' 
Professor of Mechanical Engineering 
Dissertation Supervisor 

Anthony^Iealey /] ^oung^V. Kwon 
Professor, of^echanicj^dEngineering        Assoc. Professor of Mechanical Engineering 

Clyfte Scandrett 
Assoc. Professor of Mathematics 

Approved by: 

Approved by: 

Steven R. Baker      ' 
ssoc. Professor of Physics 

Wnti. 
Terry R. M^elfey, Chair, Departmenj 

'/0HM 'jAA 

chanical Engineering 

Maurice D. Weir, Associate Provost for Instruction 

in 



IV 



ABSTRACT 

Data from one-dimensional (spherically symmetric) analyses was used to 

examine the effects of compressibility and gas energy on the dynamic behavior of an 

explosion gas bubble, by comparing the bubble's behavior with experimental results 

and with analytical results which neglect these factors. Results from two-dimensional 

(axially symmetric) analyses were used to investigate the behavior of a deep 

explosion gas bubble in the vicinity of plane rigid or constant pressure boundaries. 

Previous analytical research into explosion gas bubbles near such boundaries has 

primarily led to results of a qualitative nature, owing to a complete breakdown of the 

assumptions made in the analysis at the critical juncture. In the present investigation, 

it was found possible to characterize the effect of the boundary surface on both the 

change in the first oscillation period of the bubble and its location at the end of the 

first oscillation cycle. For a broad range of bubble - boundary standoff distances, 

these semi-empirical characterizations have a functional form particularly suitable for 

extension of the quantitative results of this investigation to other explosive charge 

types, weights, and depths, as has been done for the Willis formula for the free-field 

oscillation period of explosion gas bubbles. 
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I. INTRODUCTION 

The survivability of naval ships and submarines is of supreme importance to those who 

design, build and sail them. Underwater explosions, created by the detonation of mines or 

torpedoes near naval vessels, clearly represent a significant threat to that survivability. The 

capacity of such weapons to cause major damage to naval vessels has been recognized since 

the beginning of the age of modern naval warfare, and has been the subject of extensive 

investigation since the earliest years of the Second World War. 

One result of the allied experience during the Second World War was the realization 

that the pressure wave resulting from the pulsation (oscillation) of the bubble of gases 

produced by the detonation of an explosive material underwater can be as important as the 

primary shock wave in causing damage to a naval vessel. As Hicks (1970a) has noted, this 

bubble pulsation is the primary cause of the observed "whipping" of ships, and often has a 

period near that of the hull girder's fundamental flexural vibration mode. 

This will, in the worst case, break the back of the ship. Even in less severe situations, 

the oscillation of the ship's hull may be significantly increased by the timing of the arrival of 

the secondary pressure pulse radiated when the bubble collapses to its first minimum volume. 

This can cause appreciable damage to sensitive internal equipment. Furthermore, the 

increased use of commercial off-the-shelf (COTS) equipment within modern ships, while 

fiscally necessary and undoubtedly beneficial in the long run, may increase the damage 

potential of explosion gas bubble oscillations. 

Fundamental analysis shows that low frequency vibration input can significantly 



increase the resulting response in certain underdamped system configurations. Equipment not 

designed to withstand the increased response could easily suffer damage that, depending upon 

ship design, reduces the war fighting capability of the ship. In an age of over-the-horizon 

saturation targeting, such a calamity may be as bad as breaking the back of the ship. 

A significant investment of manpower and time has been expended in analyzing the 

phenomena associated with the pulsation of explosion gas bubbles, both during and since the 

Second World War. However, these studies have, for the most part, relied upon many 

simplifying assumptions. The validity of some of these assumptions were known beforehand 

to be very inaccurate during certain phases of an explosion gas bubble's motion. In fact, some 

of these assumptions are least accurate during the times when key explosion gas bubble 

phenomena are occurring. Predictions of explosion gas bubble behavior from these studies 

are therefore more likely to be qualitatively correct than quantitatively accurate. This is an 

important consideration because ship design decisions are based, in part, upon these 

predictions. 

The next section describes some of the important phenomena associated with 

underwater explosion gas bubbles. Following this is a synopsis of the more significant 

research that has been previously conducted into underwater explosion gas bubbles. The third 

and final section of this introductory chapter discusses the objectives of this present research 

effort, and presents an overview of the remaining chapters. 

A.       BUBBLE PHENOMENA 

Consider a spherical explosive charge located underwater at a considerable distance 

from any boundary surface. When this charge is detonated, the explosive material is very 



rapidly converted into high pressure gaseous reaction products, and a high pressure shock 

wave is transmitted to and propagated through the surrounding fluid. About 50% of the 

initial chemical energy of the explosive is transmitted to the fluid in this initial shock wave 

(Snay, 1957). 

Because this shock wave propagates radially outward, the amplitude of the shock 

wave decreases with increasing distance from the center of the charge. The fluid behind the 

shock wave front attains a large outward radial velocity. This causes the pressure at some 

distance behind the shock wave front to drop below the hydrostatic pressure of the fluid 

ahead of this wave front. 

The pressure in the gas bubble is significantly reduced after emission of the primary 

shock wave, but is still significantly higher than the hydrostatic pressure in the surrounding 

fluid. This, in conjunction with the radial outflow of fluid from the vicinity of the bubble, 

causes the bubble to expand rapidly. This expansion continues for a relatively long time, the 

pressure in the bubble decreasing as the bubble volume increases. The pressure in the gas 

bubble eventually falls below hydrostatic pressure, but the expansion persists because of the 

inertia of the outward flowing fluid (Cole, 1948, p. 8). 

Eventually, the fluid immediately surrounding the bubble comes to rest. This, together 

with the very low pressure in the bubble at this time, causes the bubble to begin contracting. 

The fluid in the immediate vicinity of the bubble begins flowing inward, accelerating the 

contraction of the bubble. As the volume of the bubble decreases, its internal pressure 

increases. The pressure within the gas bubble eventually becomes significantly higher than 

the hydrostatic pressure of the surrounding fluid, and the contraction of the bubble is reversed 



abruptly. The inertia of the surrounding fluid together with the compressibility of the bubble 

gases and the surrounding fluid "thus provide the necessary conditions for an oscillating 

system, and the bubble does in fact undergo repeated cycles of expansion and contraction" 

(Cole, 1948, p. 8). 

Figure 1-1 illustrates the bubble radius vs. time behavior typically observed in an 

underwater explosion. Note that the maximum radius of the bubble decreases during 

subsequent expansions. This is due, at least in part, to the emission of secondary pressure 

pulses when the bubble radius is near its minimum values. About 66% of the energy 

remaining in the gas bubble after emission of the primary shock wave is lost during the first 

expansion-contraction cycle (Cole, 1948, p. 283). Successive bubble pulses are thus weaker, 

and generally only the first pulse is of practical significance (Cole, 1948, p. 10). 

Figure 1-2 shows a typical pressure vs. time curve at fixed distance from an 

underwater explosion. Although the peak pressure in the secondary pressure pulse is much 

less than the peak shock wave pressure, the duration of this pulse is greater. The impulses 

due to the primary shock wave and the first of the bubble pulses are typically comparable 

(Cole, 1948, p. 364). 

Additional phenomena are observed when an explosion occurs near a boundary 

surface, such as the surface or bottom of the ocean or a nearby structure. When an explosion 

occurs near a relatively rigid boundary such as the hull of a naval vessel or a hard ocean 

bottom, the explosion gas bubble migrates toward the boundary during its contraction. The 

opposite effect is seen when an explosion occurs near a free surface (Snay, 1957). The shape 

of migrating gas bubbles has also been seen to be non-spherical, as illustrated in Figure 1-3. 



Figure 1-1. Typical Bubble Radius vs. Time Curve [From Swift and Decius (1950)] 



CO w 

PRESSURE 

co- 
rn o 

en 
OS o 
—\ 
CD 
CD 

t-n 
i-J 
O 
B 

«*-«° 
CD   o 
Co   O 

p*g 
5 P 

H 

H3 
o 
P 
►1 

OR 
CD 

B» 
CD 

§ 
ST* CD 
CD 
<rt- 

cr 
o" 
3 

ro 

m 

Figure 1-2.     Typical Pressure Profile Produced From an Underwater Explosion [From 
Cole (1948)] 



Figure 1-3.     Typical Shape for a Migrating Underwater Explosion Gas Bubble [From 
Cole (1948)] 



Since the secondary pressure pulse is emitted when a bubble is near its minimum 

volume, the migration of a bubble determines where this bubble pulse is emitted from. For 

an explosion occurring near a naval ship, the migration of the bubble can cause the bubble 

pulse to occur much closer to the hull, potentially increasing the damage caused to the ship 

(Hicks, 1970b). 

The presence of boundary surfaces also affects the period of the oscillation of the 

bubble. A rigid boundary causes the period of oscillation of the bubble to increase, and a free 

surface causes it to decrease (Herring, 1950). Thus, if an explosion occurs near the hull of 

a ship, the presence of the ship itself can cause the time interval between arrival of the primary 

shock wave and secondary pressure pulse to become either closer to or further from the 

fundamental period of the hull girder, significantly affecting the amount of whipping 

undergone by the ship. 

B.        PREVIOUS RESEARCH INTO EXPLOSION GAS BUBBLES 

Perhaps the earliest contribution related directly to an appreciation and understanding 

of bubbles was made by Reynolds (1894), who noted the formation of vapor cavitation 

bubbles in water flowing through a constricted pipe. The first analysis of the dynamic 

behavior of bubbles was made by Rayleigh (1917), who used conservation of momentum to 

derive an equation for the collapse of a spherical void. 

Lamb (1923) studied the expansion phase of a gas bubble, and derived an expression 

relating the maximum radius of a bubble to the depth and total energy, neglecting fluid 

compressibility. Ramsauer (1923) conducted small scale experiments with guncotton which 

showed reasonably good agreement with Lamb's predicted relationship between maximum 

8 



bubble radius and depth. The work of Lamb is the basis for the standard semi-empirical 

scaling formula for the maximum radius of an explosion gas bubble when buoyancy can be 

neglected and no boundary surfaces are near the charge. This situation is referred to as the 

"free-field" case. This scaling formula defines a relationship between the maximum radius of 

the bubble, the charge weight, and the charge depth. It is termed "semi-empirical" because 

it depends upon a proportionality constant which varies between different types of explosives, 

and must be determined through experimentation. 

Willis (1941) was the first to succeed in integrating the energy equation for the 

noncompressive radial motion of free-field explosion gas bubbles, and thereby derive an 

expression for the period of the first oscillation cycle of the bubble. His work is the basis for 

the standard semi-empirical formula for the free-field first bubble oscillation period of an 

explosion gas bubble. This formula defines a scaling relationship for different charge weights 

and depths, and depends upon an experimentally determined proportionality constant. Willis 

also conducted experiments to confirm the predicted relationship between charge size, depth, 

and bubble period, and found good agreement. This result has since been confirmed by other 

researchers, particularly as to the functional dependency of the first bubble period on the 

charge depth (Cole, 1948, pp. 280-281). 

Herring (1941, 1950) made a number of important contributions to the current 

understanding of explosion gas bubble phenomena. He predicted, based upon an approximate 

theoretical development, that one of the effects of fluid compressibility would be to make the 

bubble radius versus time curve for a free-field bubble asymmetrical, with the contraction 

being slower the expansion. He conducted an analysis indicating that the radiation of energy, 



if fluid compressibility was allowed for, would be negligible when the bubble is large, but that 

an appreciable radiation of energy could take place at the first bubble minimum. 

Herring's most important contribution was the advancement of an approximate theory 

to account for the effect of simple rigid boundaries or free surfaces (constant pressure 

boundaries) on explosion gas bubbles during the first oscillation cycle. In this theory, the 

effects of the boundary surface are treated as small perturbations of the motion of the gas 

bubble in the absence of the boundary. The boundary is assumed to be remote enough so that 

the standoff distance to the boundary is large compared to the maximum radius of the bubble, 

which is assumed to remain nearly spherical. This theory is thus only potentially valid when 

the boundary surface is fairly remote from the gas bubble. Furthermore, the theory neglects 

fluid compressibility entirely. 

One of the effects of fluid compressibility is a finite wave speed in the fluid; in an 

incompressible fluid, the wave velocity is infinite. Thus in a compressible fluid there is a finite 

distance beyond which the presence of a boundary cannot affect an explosion gas bubble 

during the first oscillation cycle, because even the primary shock wave resulting from 

detonation of the charge will not have reached the boundary by the end of the first cycle. The 

theory developed by Herring to account for simple boundary surfaces therefore cannot be 

correct at large standoff distances, as it assumes an incompressible fluid. 

Although Herring's theory for predicting the effect of these simple types of boundary 

surfaces is still in use, e.g. in the computer code MS WHIP (Hicks, 1971) (which is still being 

used by the United States Navy to predict the response of naval vessels to underwater 

explosion gas bubbles), the above discussion begs an answer to the question of when it is 

10 



valid. It was never intended to be accurate at small standoff distances, and because it neglects 

fluid compressibility, it is not valid at large standoff distances. 

Another important contribution to the current understanding of explosion gas bubble 

phenomena was made by Taylor (1943), who derived an expression for the vertical migration 

of a spherically symmetric bubble due to gravity (buoyancy) in the absence of nearby 

boundary surfaces, neglecting fluid compressibility. In addition to neglecting fluid 

compressibility, Taylor's theory is based upon the assumption that artificial forces, which do 

no work, act to keep the gas bubble spherical. Actual experimental results typically show 

significant bubble shape departure from spherical, as illustrated in Figure 1-3. In the present 

application of Taylor's theory for the effects of buoyancy on explosion gas bubbles, use is also 

made of Herring's theory for the effect of the free surface (if a free surface is not nearby, the 

bubble is generally deep enough so that buoyancy is not significant). 

It is perhaps then not surprising that predictions of explosion gas bubble behavior from 

the combined Herring-Taylor theory do not agree very well with experimental results. For 

example, an experimental measurement by Bryant (1950) near a free surface showed a peak 

bubble migration velocity of 180 ft/s (55 m/s), as compared to a calculated value of 890 ft/s 

(271 m/s). 

Numerous researchers have conducted underwater explosion experiments. Notable 

among these is Swift and Decius (1950), who conducted a series of experiments to determine 

relatively accurate values for the proportionality constants in the semi-empirical formulas for 

the free-field maximum bubble radius and first bubble period, for various types of explosives. 

Chertock (1952) developed an approximate method to calculate the bubble pulse 

11 



induced whipping response of naval ships and submarines, for explosions occurring very 

remote from the hull. Hicks (1970a, 1970b, 1971) determined that Chertock's methodology 

might be applied at smaller standoff distances with simple modifications, and then further 

modified this procedure to account for bubble migration, using the Herring-Taylor theory. 

In an attempt to account for the known problems with this theory, his procedure introduces 

an artificially large drag coefficient, the value of which he has chosen based upon very limited 

experimental data. This is justified as being "the best [solution] available until fresh 

experimental results (particularly for the near field) or a more rational theory become 

available" (Hicks, 1970b). The computer code developed by Hicks, MSWHIP, thus far 

appears to generally give reasonably accurate results for distant charges; the validity of its 

predictions at short and intermediate standoff distances is still largely unknown. 

Some recent efforts have examined methods to study underwater explosion gas bubble 

phenomena under laboratory conditions. Schmidt et. al (1987) have studied the problem of 

conducting very small scale explosive testing (charge weights of about 0.2 g) while 

maintaining complete similarity, by using a centrifuge to obtain gravitational accelerations of 

up to 500 times the standard terrestrial gravitational acceleration. Chahine et. al. (1995) have 

developed a procedure for generating plasma bubbles using a very high energy spark and 

scaling these plasma bubbles to represent explosion gas bubbles. 

As can be seen from the brief summary of previous work given above, much of the 

current understanding and theoretical development regarding underwater explosions was a 

result of allied research efforts during the Second World War. Many of the more important 

papers from this era can be found in the three volume work Underwater Explosion Research: 

12 



A Compendium of British and American Reports (Office of Naval Research, 1950).   A 

comprehensive summary of the research from this period is provided by Cole (1948). 

C.       OBJECTIVES OF CURRENT RESEARCH 

The above synopsis of previous research into explosion gas bubble phenomena points 

out several areas in which the existing understanding of these phenomena is inadequate. The 

existing theoretical understanding of the dynamic behavior of explosion gas bubbles is based 

upon neglecting fluid compressibility entirely. Only limited, qualitative estimates of what the 

affects of fluid compressibility might be have been made. And in addition to neglecting fluid 

compressibility, the existing theory describing the dynamic behavior of explosion gas bubbles 

near simple rigid or constant pressure boundary surfaces does not cover the situation in which 

the bubble is fairly close to the boundary. Even for the case in which the bubble is not too 

close to the boundary surface, the dynamic behavior of the bubble predicted using the existing 

theory is known to be more qualitatively correct than quantitatively accurate. 

The research described in this study was undertaken to rectify some of these 

shortcomings in the current understanding of explosion gas bubble phenomena. It was 

believed that, by using a modern numerical analysis computer program based upon a finite 

control volume (Eulerian) method, it would be possible to quantitatively investigate explosion 

gas bubble phenomena which had heretofore been understood only qualitatively. 

The first goal of this study was to examine the feasibility of using a finite control 

volume numerical analysis technique to investigate underwater explosion phenomena, and if 

this method proved serviceable, to investigate the effects of fluid compressibility and internal 

gas energy on the dynamic behavior of explosion gas bubbles. The second objective was to 

13 



investigate the effects of plane rigid and constant pressure boundaries on important aspects 

of the dynamic behavior of explosion gas bubbles, including fluid compressibility and internal 

energy, and to quantitatively characterize these effects. 

Two specific aspects of the dynamic behavior of bubbles near boundaries were 

investigated. The first of these was the change in the period of the bubble caused by the 

boundary. The bubble period is important because the time interval between arrival of the 

primary shock wave and the first bubble pulse can be very near the fundamental bending mode 

period of a ship's hull girder. Thus, if the boundary causes this time interval to become even 

closer to this hull girder bending mode period, the resultant whipping can be increased due 

to resonance. As discussed earlier, the impulses due to the primary shock wave and the first 

bubble pulse are comparable in magnitude, while the impulses from subsequent bubble pulses 

are much smaller. The other aspect of a bubble's dynamic behavior that was investigated was 

the migration of the bubble at the end of the first expansion-contraction cycle, either towards 

or away from the boundary. Because pressures fall off with increasing distance, it is 

important to know where the bubble is located when the first bubble pulse is emitted. 

The numerical analysis approach used for this research is described in the next chapter. 

Chapter III describes the application of this analysis approach to an investigation of the affects 

of fluid compressibility and internal gas energy on a free-field explosion gas bubble, and 

compares results from this analysis approach with both experimental and analytical results. 

The effects of rigid and constant pressure boundaries on explosion gas bubbles, including fluid 

compressibility and internal gas energy, are examined in Chapter IV. Chapter V then 

summarizes the results from this study. 

14 



This dissertation illustrates the application of a finite volume based numerical analysis 

technique for investigation of underwater explosion gas bubbles. This technique was used to 

investigate the effects of fluid compressibility and internal energy on a free-field explosion gas 

bubble. This analysis procedure was also used to quantitatively characterize the effects of 

rigid and constant pressure boundaries on explosion gas bubbles, when internal energy and 

fluid compressibility are not neglected. The quantitative characterizations derived have a 

form suitable for use in scaling these results for other explosive charge types, weights, and 

depths. 
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H. NUMERICAL SOLUTION TECHNIQUE 

Because underwater explosions involve the flow of liquids and gases, and a high 

pressure shock wave, numerical analysis of underwater explosion phenomena in the region 

near the charge using standard Lagrangian based finite element programs is not practical. In 

a Lagrangian based finite element program, the elements deform in response to the pressure 

on the faces of the element. This leads to elements in the region of the shock front being 

severely deformed (crushed), and the time step size per iteration becoming very small, so that 

the solution advances very slowly in time. 

The numerical analyses described in this study were therefore conducted using an 

Eulerian based finite volume program. The computer program MSC/DYTRAN (The 

MacNeal Schwendler Corporation, 1995) was used for the numerical analyses conducted 

during this investigation. The analyses used the multi-material Eulerian processor in this 

program, which is based upon the computer program MSC/PISCES (The MacNeal 

Schwendler Corporation, 1991). This processor provides the flexibility of general 

connectivity for Eulerian finite volumes, so the finite volumes are not restricted as to shape. 

This feature is useful when a large volume of fluid must be discretized, but the area of interest 

is relatively small. Other Eulerian based programs typically require a uniform discretization, 

which, for analysis of an underwater explosion gas bubble, would require either an 

unacceptably coarse mesh or an unacceptably large number of finite volumes. This program 

also provides a constitutive equation suitable for modeling of explosive charge detonation, 

and a detonation wave front algorithm for detonating an explosive material. 
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This processor uses the control volume method to solve the basic conservation 

equations in space. The integral form of these equations, for conservation of mass, linear 

momentum, and total energy, are 

Af/7      pdV=-[[      p(i?-dS) (2-1) 
QfJ J J volume •> •> surface 

— [([      pÜdV=-ff      pÜ(Ü-dS)+[[      TdS (2-2) 
fifJJJ volume J •> surface J J surface 

1-fff       pedV=-ff       pe(a-d§)+[[      UTdS (2-3) 
Qt J J J volume •> J surface •> •> surface 

where T is the stress tensor. For the hydrodynamic material models assumed for the 

numerical analyses of this investigation, Jhas the value -p along the main diagonal, and zero 

everywhere else. Viscosity and thermal conductivity are neglected in these equations. 

These equations are solved for each finite volume. A one point approximation is used 

to solve these equations (the value at the geometric center of the control volume), in 

conjunction with interpolated velocities and pressures at the faces of the finite volumes. 

A first order "Donor-Acceptor" scheme is used for material transport. Transported 

quantities are subtracted from donor cells and added to the acceptor cells, based upon the 

donor cell values and the velocity at the common face. The face velocity for the face 

connecting finite volumes m and n is 

*face=\&m^ (2-4) 

and, during time step dt, the volume transport is 
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dV=afac;d§dt (2-5) 

The normal component of the face velocity determines which cell is a donor and which is an 

acceptor (i.e. in which direction flow occur). If, for example, cell m is the donor, the mass, 

momentum, and energy transport from element m to n is 

d(MO)= ?mgudr- 9majafac;dS)dt (2-7) 

de=PmemdV=9niemUfac;dSdt (2-8) 

The solution in time is computed with this program using an explicit central finite 

difference method. With this method, a new time step size is calculated after each forward 

time step. This new time step is calculated such that the Courant criterion for a stable 

solution, 

dt=S— (2-9) 
u+c 

is satisfied, where S is a factor of safety, L is the smallest element dimension, c is the acoustic 

wave velocity within the element, and u is the partical velocity within the element. This is 

calculated for all elements, and the smallest value obtained is used as the new time step. 

A complete time step algorithm consists of several phases. The momentum change 
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due to the impulse (from the face pressures) is calculated and used to update the velocity in 

each finite volume. Similarly, the work done by the pressure on each finite volume face is 

calculated and used to update the total energy for each finite volume. Mass, momentum and 

total energy transport across all faces are computed, and used to update these values in all 

finite volumes. The density and velocity in each finite volume are then updated (e.g. density 

equals new mass divided by fixed volume). The specific internal energy in each finite volume 

is computed based upon the new specific total energy and the new specific kinetic energy. 

And the pressure in each finite volume is updated using the new density and specific internal 

energy in the state equation. 

To define a multimaterial Eulerian model with this computer program, several inputs 

are required. In addition to defining the geometry of the mesh, constitutive equation data 

must be input for the different materials to be used. Initial conditions must be assigned to all 

of the finite volumes in the model; for a multimaterial Eulerian problem these would include 

specification of what materials are initially in what finite volumes, and what the initial density 

and specific internal energy is in the different regions within the model. Any boundary 

conditions which are not to be left as the default "no flow" boundary condition must be 

specified. And, if the problem will use an explosive material, one or more detonation points, 

detonation velocities, and detonation times must be specified. Finally, the ending time for the 

analysis must be specified, and the program must be told precisely which output quantities are 

desired at what frequency. 
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HI. BASIC EXPLOSION GAS BUBBLE BEHAVIOR 

The effect of fluid compressibility and gas internal energy on the behavior of a free- 

field explosion gas bubble is investigated in this chapter. As discussed in the introduction, the 

basic characteristics of an explosion gas bubble are a rapid expansion to a much larger volume 

than the initial volume of the charge, a prolonged interval of time in this expanded state, and 

a rapid collapse back to a small volume. This oscillation cycle then repeats, but with a 

decreasing period between collapses and a decrease in the maximum volume to which the 

bubble expands. 

In the first section in this chapter, the basic theoretical equations for the 

noncompressive motion of a free-field explosion gas bubble are developed.   The second 

section describes the details of the numerical analysis models used in this investigation. 

Results from these analyses are presented in the last section. 

A.       THEORETICAL DEVELOPMENT 

The classical expression for the motion of an explosion gas bubble in the absence of 

a nearby boundary surface neglects buoyancy resulting from pressure variation around the 

bubble and compressibility of the surrounding fluid. With these restrictions, the flow of fluid 

outside the bubble is radial, and conservation of energy gives 

M 'äN 

dt 

2 

+—/>Ä3+£(.Ä)=r (3-1) 
3 

where R is the radius of the bubble, p0 is the density in the surrounding fluid, P0 is the 
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hydrostatic pressure in the surrounding fluid, E(R) is the internal energy of the gas bubble 

when it has radius R, and Y is the total energy (a constant) (Cole, 1948, p.273). 

In this expression, the first term represents the kinetic energy of the flow in the 

surrounding fluid, and the second term is the work done against hydrostatic pressure in 

expanding the bubble to radius R. By neglecting the internal energy of the gas, which has a 

relatively small value over much of the oscillation cycle of an explosion gas bubble, the total 

energy can be expressed as 

^y^l (3-2) 

where Rmax is the maximum radius of the bubble (Cole, 1948, p.274-275). This expression 

simply reflects the fact that the gas bubble must have a maximum radius when dR/dt is zero. 

Using equation (3-2) in equation (3-1), with E(R) taken as zero, equation (3-1) can be 

separated and integrated to give 

K3p0/2/>0)
1/2/*[(Äm>)3- irVZda (3-3) 

where RQ is the initial radius of the gas bubble. By taking RQ as zero (the initial radius of the 

bubble is much smaller than the maximum radius) and transforming and integrating equation 

(3-3), Willis (1941) arrived at the result 

T=l.i3R    . wax 

(^m 

KP*J 

(3-4) 
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where T is the first oscillation period of the bubble. Substituting equation (3-2) into (3-4), 

and using the fact that the total energy 7 is proportional to the weight Wof the explosive 

charge gives 

T-K^jrrs (3-5) 
0 

where KT is a constant particular to a given type of explosive. Equation (3-2) can be re- 

arranged to give 

*mar   "A R_.„=K„  (3.6) 
p 1/3 

where KR is a constant particular to a given type of explosive. Equations (3-5) and (3-6) are 

the classical "semi-empirical" expressions for the scaling relationships for the first oscillation 

period and maximum radius of an explosion gas bubble. 

B.        NUMERICAL ANALYSIS MODELS 

Two different numerical analyses were conducted for deep explosion gas bubbles in 

the absence of a nearby boundary surface. The first analysis was designed to correspond to 

one of a series of experiments conducted by Swift and Decius (1950) at the Woods Hole 

Oceanographic Institution during and shortly after the Second World War. These researchers 

conducted a large number of experiments to determine constants for the semi-empirical 

equations (3-5) and (3-6) above for different types of explosives. The tests were conducted 

at a deep depth in deep water, to minimize the effects of buoyancy and boundary surfaces. 

The problem geometry for this analysis is shown in Figure 3-1. A very small (0.299 
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P  (atm)   =   101325 Pa 
JSZL 

178.6 m 

p =   1025 kg/m3 

g  =  9.80665 m/s2   I 

P     =  P  (atm)  + pgh 00 \ / /   . 

-o 
Charge 

(0.299  kg  TNT) 

Figure 3-1. Geometry of Problem for Free-Field Bubble Analysis 

kg TNT equivalent) charge was detonated at a depth of 178.6 m in seawater. The 0.299 kg 

TNT equivalent charge weight was calculated by Swift and Decius to account for the extra 

energy of the detonator and booster material used above the energy of the TNT in the main 

charge. This particular shot (shot G72F) was chosen from all of the shots conducted because 

the bubble oscillation period and maximum bubble radius from this experiment were closest 

to the mean values from all of the experiments. Although the experiments used cylindrical 

charges with a height to diameter ratio slightly larger than one, a spherical charge was 

modeled for this analysis. 

In this experiment the maximum radius of the bubble was much less than the depth at 

which it was located. Thus, in the numerical analysis model for this problem, gravity was 

neglected and the pressure was assumed to be uniform in all directions from the charge. With 

this assumption, the problem is spherically symmetric. The seawater surrounding the charge 
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was treated as an invicid, irrotational fluid, and heat and mass transfer were assumed to be 

negligible over the time frame of the analysis. Herring (1950) has shown that the transfer of 

heat over one bubble oscillation cycle through conduction at the surface of the bubble 

constitutes a negligible fraction of the total energy of the explosion. 

Since this problem as modeled has spherical symmetry, a one-dimensional model is 

appropriate. In order to model this one-dimensional problem with the three-dimensional 

analysis code MSC/DYTRAN, a tall, thin pyramid shaped region of fluid was used. This 

accounts for the increasing volume as one moves away from the charge. Boundary conditions 

on the sides of this fluid volume were made "no flow" conditions, as flow across the 

boundaries is precluded by the flow in adjacent fluid volumes. The analysis model used for 

this problem is shown in Figure 3-2. 

At the apex of the pyramid shaped volume, a rectangular parallelpiped was used, with 

the equivalent volume a pyramid shaped volume would have. This avoids the use of a five 

sided pyramid shaped volume at the point, which is not a standard finite element shape. 

Rectangular parallelpiped shaped finite volumes were used to model the charge, and non- 

rectangular hexahedron finite volumes were used to model the remaining volume. Because 

the primary interest in this analysis was in the bubble behavior rather than the primary shock 

wave, only three finite volumes were used to model the charge. 

In order to prevent reflection from the far end of the finite volume of fluid modeled 

from affecting the results during the duration of the analysis, a very large volume of 

surrounding fluid was modeled. A total of 999 finite volumes were used for this analysis 

model, with the radial length of individual elements increasing with increasing distance from 

25 



COMPLETE MODEL 

REGION NEAR CHARGE 

Figure 3-2. Numerical Analysis Model for 0.299 kg TNT Explosive Charge 
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the charge. 

The TNT for this problem was modeled using a JWL state equation, with state 

equation parameters taken from the Lawrence Livermore National Laboratory Explosives 

Handbook (Dobratz, 1981). With this state equation, the pressure in the "burned fraction" 

of a charge is related to the specific internal energy and density by 

p=A 
I        \ -£l /         \ 
1-i^l •  i +B 1-.23. 

R, Ro \            ! ) \            2 / 

—— exp   ^ +u>r\f>0E (3-7) 

where T|=p/po, p0 is the initial density, E is the specific internal energy (per unit mass), and A, 

B, a, Ru and R2 are constant parameters for the explosive. The "burned fraction" is just that 

portion of the explosive contained within a spherical detonation front traveling outward with 

detonation velocity d, which is another parameter characterizing the explosive. For TNT 

compressed to an initial density of p0 of 1.630 g/cm3, the JWL state equation parameters are 

(Dobratz, 1981): 

£ = 4.29xl06J/kg 
i4= 3.712x10" Pa 
5 = 3.231xl09Pa 
o = 0.30 
Äx = 4.15 
R2 = 0.95 
d= 6930 m/s 

In order to model the seawater in which this experiment was conducted, a polynomial 

state equation was used. This state equation relates the pressure in the fluid to its density p 

and specific internal energy E per unit mass by 
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p=a1\i+a2\i
2+a3n

3+(b0+blii+b2n
2)p0E (3-8) 

where 

^ (3-9) 
Po 

is the condensation and au a2, a3, b0, bu and b2 are constants for the fluid. Constant for this 

state equation for seawater, for use at condensation values \i of up to 0.8, were determined 

by fitting available Hugonoit data from the literature to this state equation form, and adjusting 

the bulk modulus and density to the accepted values for seawater.   The resultant state 

equation parameters were (Chisum and Shin, 1995) 
t 

ar = 2.306 xlO9 Pa 
a2 = 8.432 xlO9 Pa 
a3 = 8.014 xlO9 Pa 
b0 = 0.4934 
bt = 1.3937 
b2 = 0.0000 
p0=1025kg/m3 

The initial conditions given to the seawater in this problem were an initial 

condensation value of zero (initial density of 1025 kg/m3), and an initial specific internal 

energy of 3750.4 J/kg. This initial specific internal energy was determined from equation (3- 

8); it represents the specific internal energy necessary to give the seawater an initial pressure 

equal to the hydrostatic plus atmospheric pressure for this problem. It was found necessary 

to use the initial specific internal energy rather than the condensation to set the initial 

pressure, because seawater is so incompressible that there is only a minuscule density change 

at this depth, and significant round off errors would be introduced by setting the initial 
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pressure with the condensation. 

The second model geometry analyzed was similar to Figure 3-1, except that an initial 

charge depth of 1000 m and an initial TNT charge of 3.5 kg was used. This corresponds to 

an initial charge radius of 8.0 cm. The objective of this analysis was to examine the flow 

characteristics in the surrounding fluid over one oscillation of the bubble. For this reason, 

uniform element spacing in the radial direction was used. A pyramid shaped volume of fluid 

was again used. In this case, the fluid was only modeled out to a distance of 16 m, and a 

simplified "non-reflecting" boundary condition was placed on the last element. This boundary 

condition was that the flow across the face of the element at the boundary would have the 

same values as in that element. 

The radial element spacing used was 0.125 cm, and a total of 12800 finite volumes 

were used. It was not necessary to use this many elements to get a "grid independent" 

solution, but the use of a fine mesh better illustrates the characteristics of the shock wave. 

The computer program used utilizes artificial bulk viscosity to control oscillations behind 

shock waves, and this smears the shock front over a number of elements. Mass, energy, and 

momentum are still conserved, but the shock wave doesn't look as steep. Thus, using more 

elements makes the shock wave "look" more like a shock wave, since it is smeared over a 

smaller distance. 

C.        NUMERICAL ANALYSIS RESULTS 

As stated in the last section, the first of the problems analyzed corresponded to an 

experiment conducted by Swift and Decius. Figure 3-3 shows the predicted radius time 

history from this analysis, and the first maximum bubble radius and period measured from the 
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Figure 3-3. Radius Time History for 0.299 kg TNT Charge Detonated at 178.6 m 
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experiment. This plot shows excellent agreement between the analysis results and the 

experimental measurement. Also shown on this plot, for comparison purposes, is the radius 

time history curve generated from step-by-step numerical integration of equation (3-3), which 

neglects both the internal energy of the gas bubble and fluid compressibility. This curve is 

seen to agree quite well with the numerical analysis curve up until the bubble reaches 

maximum volume, but to begin diverging from there. 

It is seen in Figure 3-3 that the numerical analysis predicts the bubble radius and 

oscillation period to decrease in subsequent oscillations. This is due to the radiation of a 

bubble pulse when the bubble collapses. This effect cannot be generated without including 

fluid compressibility. 

Figure 3-4 shows the pressure, impulse, and fluid particle velocity time histories, at 

a point located two maximum bubble radii from the center of the charge. This figure 

illustrates that, although the peak pressure in the first bubble pulse is much less than the peak 

shock wave pressure, the impulse generated by the bubble pulse is still large because of its 

longer duration. 

In their experiment, Swift and Decius also measured the second period and second 

maximum radius for this shot. Their measurements indicated that the second maximum radius 

was 11.6 inches (about 29.5 cm), and that the measured time for the second bubble minimum 

was 30.85 msec. These results indicate that an additional energy loss, above that due to 

acoustic radiation, occurred in this experiment, since acoustic radiation was accounted for in 

the numerical analysis for this problem. 

One possible explanation for this in that the bubble surface was unstable near the 
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minimum volume. Hicks (1970a) has noted that photographs of non-migrating bubbles 

typically show numerous needle-like water jets protruding into the bubble surface when the 

bubble is near minimum radius, and that this "spray" of water could significantly cool the hot 

bubble gases. 

In the second free-field numerical analysis, the flow external to the bubble was 

examined. Figure 3-5 shows the bubble radius time history for this analysis, and Figure 3-6 

shows the variation of the internal energy of the bubble as a function of time. The internal 

energy is seen to rapidly decrease from its initial value as the bubble expands, and then to 

increase moderately as the bubble is compressed by the surrounding fluid. 

Figures 3-7, 3-8, and 3-9 show the pressure in the fluid at 1 msec intervals. Because 

the shock wave is radiating spherically, the peak pressure of the shock wave decreases rapidly 

with increasing distance. The pressure behind the shock front drops below hydrostatic 

pressure, and this low pressure region extends for a considerable distance from the bubble by 

5 msec, when the bubble is near maximum radius. Also, by 5 msec there is a second sharp 

drop in the pressure behind the shock wave, and after 5 msec this sharp drop extends further 

and further into the fluid. 

This is caused by the reversal of flow in a portion of the fluid. The fluid immediately 

behind the shock front is still moving outward, but the fluid near the bubble surface is moving 

inward as the bubble contracts. As time goes on, fluid further and further away from the 

bubble begins moving inward. By the time the bubble reaches minimum volume, the pressure 

near the bubble is significantly higher than even the primary shock wave. As the bubble 

reaches minimum volume and begins expanding again, a moderately low pressure but long 
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Figure 3-8. Pressure Distribution From 5 msec Through 9 msec After Detonation of a 
3.5 kg TNT Charge at a Depth of 1000 m 
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duration bubble pulse begins traveling outward away from the bubble. 

Table 3-1 compares the results between the experiment conducted by Swift and 

Decius and the current numerical analysis predictions. Extremely good agreement is seen for 

the first maximum bubble radius and period, while the second maximum bubble radius and 

period are appreciably less. The solution computed using the noncompressive theory 

neglecting the internal energy of the gas bubble was 8% lower than the actual period. Internal 

gas energy and fluid compressibility thus have an observable effect on the results. 

EXPERIMENTAL 

MEASURMENT 

NUMERICAL 

ANALYSIS 

% 

ERROR 

R(l) 39.1 cm 38.8 cm 0.8 

T(l) 17.85 msec 17.77 msec 0.4 

R(2) 29.5 cm 32.2 cm 9 

T(2) 13.00 msec 15.85 msec 22 

Table 3-1. Comparison Between Experimental and Numerical Analysis Results For First and 
Second Maximum Bubble Radius and First and Second Bubble Period. 
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IV. EXPLOSION GAS BUBBLE BEHAVIOR NEAR SIMPLE BOUNDARIES 

A.       INTRODUCTION 

While free-field explosion gas bubbles dynamic behavior has been discussed in the 

previous chapter, practical problems typically involve the interaction of these bubbles with 

boundary surfaces. As discussed in the introduction, additional phenomena are observed 

when an explosion gas bubble is generated near a boundary surface. These include a change 

in the oscillation period of the bubble, and migration of the bubble from its initial position in 

the fluid medium. 

These phenomena will affect the damage caused by whipping of the hull girder of a 

naval vessel. The time interval between arrival of the primary shock wave and the first bubble 

pulse can be very near or equal to the fundamental period of the whipping mode of vibration 

of the hull girder, significantly increasing the whipping mode response of the vessel. Since 

the bubble pulse is generated at the conclusion of the contraction phase of the bubble 

oscillation, the period of this oscillation is obviously important. The migration of the bubble 

towards or away from a boundary during this oscillation is also important, as this determines 

the origination point of the bubble pulse. This affects both the arrival time of the bubble pulse 

and its magnitude, as the magnitude decreases with increasing distance. 

Since the available analytical models are known to not give quantitatively accurate 

results for the effects of boundary surfaces on underwater explosion gas bubbles, a number 

of numerical analyses using Eulerian finite volume meshes were conducted. These included 

a free-field analysis in which no nearby boundary was present, a series of analyses in which 

41 



s 

\ 

Charge  (10.24 kg TNT) 
Free-Field Maximum Radius 

P  (atm)  =   101325 Pa 
P =   1025 kg/m3 

g  =  9.80665 m/s2    I 
h  =   1000 m 

P^ = P (atm)  + pgh 

Boundary (various standoffs shown) 

Figure 4-1. Geometry of Problem for Bubble Near Boundary Analyses 

a plane infinite rigid boundary was located at various standoff distances from the charge, and 

a series of analyses in which a plane infinite free (constant pressure) surface was located at 

various standoff distances from the charge. 

B.        NUMERICAL ANALYSIS MODELS 

The basic problem geometry for these analyses consists of a 10.24 kg cylinder of 

TNT, with a height to diameter ratio of one, located near an infinite plane boundary at a depth 

of 1000 m, as shown in Figure 4-1. Underwater explosion experiments also typically use 

cylindrical charges, for practical reasons. As in the free-field analyses described in the 

previous chapter, the choice of a deep charge depth serves to significantly reduce the period 

of oscillation of the bubble, and hence the analysis time. 

A deep charge depth also serves to simplify the analyses, as at a deep depth the 

variation in hydrostatic pressure in the surrounding fluid for a given depth change is 
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proportionately much smaller than at a shallow depth. The hydrostatic pressure in the fluid 

near a deep charge can thus be approximated as having a uniform value, the hydrostatic 

pressure at the depth of the charge, provided that the overall dimensions of the explosion gas 

bubble is much smaller than the depth of the charge. This was the assumption made for the 

analyses described in this chapter, for which the maximum bubble radius was less than 0.1% 

of the depth of the charge. 

The migration due to gravity can be separated from the migration caused by the 

presence of plane boundary surfaces, for cases in which the boundary surfaces have no 

component normal to the direction of the gravitational acceleration. Furthermore, deep 

explosion gas bubbles are known to experience little vertical migration due to gravity (Hicks, 

1970a). Thus, gravity can be neglected except for its effect on the hydrostatic pressure in the 

surrounding fluid. This permits separation of the effects of gravity from the effects of a 

boundary surface, facilitating investigation of the influence of the boundary surface on the 

dynamic behavior of the bubble. For the same purpose, Blake and Gibson (1981) have 

conducted experiments using spark generated vapor bubbles with the entire experimental 

apparatus in free fall. 

For these analyses, the cylindrical charge is assumed to have its axis normal to the 

plane boundary surfaces. With this orientation, the problems analyzed are axially symmetric, 

with the symmetry axis being the axis of the charge. To analyze these axially symmetric 

geometries using the three-dimensional code MSC/DYTRAN, wedge shaped volumes 

comprising two degrees of arc were used. 

Figure 4-2 illustrates the overall shape of the volume of fluid modeled, for the free- 
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Figure 4-2. Overall Geometry of Analysis Model for Free-Field Analysis 
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field analysis in which no boundary surface is present. The vertical line oriented in the y 

direction in this model is the axisymmetric symmetry axis of the problem. The boundary 

conditions imposed on the two semi-circular areas, lying in the planes oriented at +/-1 degree 

about the axisymmetric symmetry axis from the x-y plane, are "no-flow" (rigid wall) boundary 

conditions, as flow across these boundaries is precluded by the flow in adjacent wedge 

segments (not modeled or shown). 

As discussed in the section in the previous chapter describing free-field analysis 

results, the dynamic behavior of underwater explosion gas bubbles is influenced by the 

conditions in the surrounding fluid adjacent to and at some distance from the bubble. Thus, 

a large volume of surrounding fluid was modeled in these analyses. This acts both to 

incorporate the necessary fluid and to avoid having to specify particular boundary conditions 

at the remote boundary of the finite volume of modeled fluid. This remote boundary was 

simply made a "no-flow" (rigid wall) boundary, with the distance to the boundary being made 

so great that shock wave reflection from it could not affect the analyses during the time frame 

of the analyses. For the free-field model volume shown in Figure 4-2, this remote boundary 

is the curved area connecting the semi-circles rotated +/-1 degree about the jy-axis from the 

x-y plane. These semi-circles are located at a distance of 400 m from the detonation point; 

as discussed below, an increased element size is used far away from the center of the charge, 

so that relatively few extra elements are needed to model fluid very remote from the center 

of the charge. 

The finite volume meshes used for the analyses described in this chapter were 

developed to meet several goals. It was important that the results obtained be independent 
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of the mesh used to obtain them, i.e. that the solution was "grid independent." This goal 

could be met simply by using a large number of equal sized elements (finite volumes) for the 

analyses. However, if carried to extremes this practice is in direct conflict with other goals 

that a practical model must meet; that is, that the model must be able to run using a 

reasonable amount of computer resources (such as memory and storage space for results), 

and that the model must run to completion in a reasonable amount of time. It was also 

considered important that the results be independent of the shape of the elements used in the 

area near the charge, even if the bubble migrated during the analyses. A considerable amount 

of effort was expended in order to meet all of these goals for the analyses described in this 

chapter. 

During the development of meshes for these analysis, it was eventually determined 

that a mesh consisting of three separate regions could meet these goals. From a two- 

dimensional perspective, the central region of these meshes consists of a rectangular region 

with square elements. This configuration allows elimination of element shape as a factor, 

since if this element geometry can still produce spherically shaped bubbles and the bubbles 

remain within this region during the analyses, then the shape of the element was not important 

in determining the results. The second region is a transition from this square element region 

to a spherically diverging type of region, which is necessary if the total number of elements 

is to be kept to a reasonable value. The third region is the spherically diverging type region, 

in which the dimensions of the element increase with increasing distance from the center of 

the charge, which, again, serves to limit the number of elements to a reasonable value. 

The use of this spherically diverging region is supported and suggested by the results 
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from the previous chapter, where it is seen that characteristics of the flow in the surrounding 

fluid are changing much slower in the remote fluid than in the fluid near the charge. As the 

purpose of the analyses described in this chapter is to determine the dynamic behavior of the 

bubble rather than the primary shock wave, it does no harm if the primary shock wave is 

spread over a larger region. And since a reasonable number of elements is still used in the 

circumferential direction (in the free-field model, 34 elements over 45 degrees, i.e. about 1.3 

degrees per element), this element geometry should still be valid for the analyses in which a 

boundary surface is present, and there is some circumferential change in the flow field. 

The dimensions of the rectangular (square meshed) region used was several times the 

maximum bubble radius of the charge. This was found to be necessary to eliminate mesh 

reflection affects on the bubble radius-time history for the free-field analysis. This meshing 

in sufficient to capture the important effects which occur within a short distance of the charge, 

as seen in the previous chapter. 

The mesh transition region provides a transition from the square meshed central region 

to the spherically diverging outer region, and reduces the number of elements in the 

circumferential direction per unit circumferential distance. This reduction is important in 

limiting the total number of elements needed for the analyses. Figure 4-3 shows the geometry 

of the central region and transition region for the free-field analysis model; this is just an 

expanded view of Figure 4-2, in the region in which the charge is located. 

To insure a grid independent solution, free-field analyses were conducted for which 

the square element dimensions in the central region were 2.5 cm and 3.333 cm (with slight 

differences in the gross dimensions of the central region (247.5 cm and 250 cm width)), and 
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Figure 4-3. Geometry of Analysis Model for Free-Field Analysis in Area Near Charge 
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the bubble radius versus time curves were found to lie on top of each other. It was concluded 

from these results that the 2.5 cm square dimension solution was a grid independent solution 

for the free-field case. It was then assumed that this meshing would be adequate for analyses 

involving a nearby boundary surface, since the meshing for these analyses was kept similar 

to the free-field meshing. 

Figure 4-4 shows the gross finite volume analysis mesh from a two-dimensional 

perspective, for the free-field analysis. Figure 4-5 shows the central rectangular region of this 

mesh, and the transition from this central region to the outer (spherically diverging) region. 

The total number of finite volumes (elements) used for this analysis is 47340. The central 

(square meshed) region uses 19602 elements, the transition region uses 338 elements, and the 

outer region uses the remaining 27200 elements. In this outer region, the mesh is designed 

such that the dimensions of individual elements remain nearly equal as the mesh diverges from 

the central region. 

The maximum bubble radius predicted by the free-field analysis was about 70.65 cm, 

and the first bubble period from this analysis was about 14.47 msec. These values were used 

to assist in quantification of the results for analyses which included a boundary surface. For 

analyses involving a boundary surface, lengths are given in terms of the non-dimensional 

standoff distance A* where h* is the standoff distance from the center of the charge to the 

nearest point on the boundary in units of maximum free-field gas bubble radii. Times are 

given in terms of the non-dimensional period T*, where T* is the time in units of bubble free- 

field first oscillation periods. 

The free-field axisymmetric model was used as the starting point for other analysis 
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Figure 4-4. Overall Finite Volume Analysis Mesh for Free-Field Analysis 
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Figure 4-5. Finite Volume Analysis Mesh for Free-Field Analysis in Area Near Charge 
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models involving a rigid wall boundary and a constant pressure surface. Analyses were 

conducted at standoff distances of h* ranging from 1.062 to 4.034, for both types of 

boundaries. These h* values correspond to standoff distances from the center of the charge 

to the boundary ranging from 75 cm to 285 cm, respectively. 

Table 4-1 summarizes the characteristics of the models used in these analyses. The 

total number of finite volumes (cells) used in these models ranged from 28680 (for the h* 

equal to 1.062 analyses) to 42708 (for the h* equal to 4.034 analyses). The models for these 

analyses were similar to the free-field model described above, but with additional elements 

present below what was an additional symmetry plane for the free-field model (bisecting the 

axis of the charge). 

Standoff Distance (cm) h* Number of Finite Volumes 

75.0 1.062 28680 

82.5 1.168 29181 

97.5 1.380 30183 

120.0 1.698 31686 

142.5 2.017 33189 

187.5 2.654 36195 

285.0 4.034 42708 

(Free-Field) (Infinity) 47340 

Table 4-1. Summary of Characteristics of Finite Volume Analysis Models 

Figure 4-6 shows the geometry of a typical model used in these analyses from a three- 
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Figure 4-6. Overall Model Geometry for h*=l .380 Analyses 
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dimensional perspective. This figure is for the analyses in which h* has a value of 1.380. 

Figure 4-7 shows an expanded view of the geometry of this model, near the central region. 

In these figures, the lower of the triangular shaped areas parallel to the z-x plane is the rigid 

wall or constant pressure boundary. The upper (interior) triangular shaped area bisects the 

center of the charge, and was the symmetry plane for the free-field analysis. 

The overall finite volume mesh used for the model geometry shown in Figures 4-6 and 

4-7 is shown in Figure 4-8, from a two-dimensional perspective. Figure 4-9 shows an 

expanded two-dimensional view of this model in the region near the charge. As in the free- 

field model, this model has a square meshed central region, which for this model is a 

rectangular wedge 247.5 cm wide by 345 cm high. This is bordered on two sides by a 

transition region connecting this square meshed area with the more coarsely meshed outer 

region. 

The lower boundary parallel to the z-x plane in Figures 4-6 through 4-9 is made either 

a rigid boundary or a constant pressure boundary, by imposition of boundary conditions on 

the faces of the elements which lie on this boundary. For the rigid wall analysis, the 

appropriate boundary condition is a "no-flow" condition. For the constant pressure boundary 

analysis, the pressure on the element faces which constitute this boundary is made equal to 

the initial hydrostatic pressure in the surrounding fluid, for all time. The other flow 

parameters (velocity, density, and specific internal energy) at the boundary then take on the 

values in the finite volumes in to or out of which material is flowing. This constant pressure 

boundary is only an approximation of an actual air-water interface, as it does not account for 

changes in the shape of the boundary (which is assumed to remain planar). 
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Figure 4-7. Model Geometry for h*=l .380 Analyses in Area Near Charge 
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Figure 4-8. Overall Finite Volume Analysis Mesh for h*=l .380 Analyses 
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Figure 4-9. Finite Volume Analysis Mesh for h*=1.380 Analyses in Area Near Charge 
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The finite volume models for the other analyses conducted at various other standoff 

distances are very similar to the model shown in Figures 4-6 through 4-9. These models vary 

only in the amount of fluid added between the plane bisecting the axis of the charge and the 

boundary plane. 

The 10.24 kg cylindrical TNT charge used in the simulations discussed in this chapter 

is modeled as a 20 cm high, 20 cm diameter charge with an initial density of 1.630 g/cm3. 

Properties for this charge were modeled using a JWL form state equation, with state equation 

parameters taken from the Lawrence Livermore National Laboratory Explosives Handbook 

(Dobratz, 1981). This is the same state equation described in Chapter III, and the same 

parameters given there for this state equation were used for the analyses described in this 

chapter. In Figures 4-8 and 4-9, all of the elements initially contain seawater, with the 

exception of the 32 elements initially containing the TNT charge. This charge is shown as 

shaded elements in Figure 4-10. This TNT is detonated using a spherical detonation wave 

traveling outward from the center of the charge (midway up the charge on the axisymmetric 

symmetry axis) at a constant velocity of 6930 m/s. 

The seawater in all of the remaining elements was modeled using the same polynomial 

state equation and state equation parameters described in Chapter m. Initial conditions in this 

seawater were an initial density of 1.025 g/cm3, and an initial pressure of 10.153 MPa 

(0.10153 Kbar), which is the total hydrostatic pressure (atmospheric plus seawater head). As 

discussed in Chapter III, this initial pressure was set by specifying a nonzero initial specific 

internal energy (20076 J/Kg) to avoid round off errors (even at a depth of 1000 m, there is 

only a minuscule density increase). Using a constant volume specific heat value of about 1 
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Figure 4-10. Locate of Charge in Finite Volume Analysis Mesh for h*=1.380 Analyses 
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cal/g C, this works out to a temperature change of only 7.8 C, for which the results should 

not be affected. 

Several simplifying assumptions were made in these numerical analyses. As in the 

simulation described in the last chapter, the seawater was assumed to behave as an invicid and 

irrotational fluid. Heat and mass transfer between the seawater and the explosion gas bubble 

were also assumed to be negligible over the time frame of the analyses. Herring (1950) has 

shown the peak stresses due to viscosity are negligible in comparison with hydrostatic 

pressure, even using Taylor's (1943) velocity field (which is known to significantly 

overestimate the bubble migration velocity), and that the transfer of heat over one bubble 

oscillation cycle through conduction at the surface of the bubble constitutes a negligible 

fraction of the total energy of the explosion. 

C.        SIMULATION RESULTS 

1. The Effect of Boundaries on Bubble Period in a Compressible Fluid 

As discussed in the introduction, the period of the first bubble oscillation and the 

displacement of the bubble during this time interval are important factors in determining the 

amount of damage that the bubble can cause. Figure 4-11 shows the volume equivalent 

spherical radius (the radius of a spherical bubble with the same volume) time history, for 

analyses in which a rigid and a constant pressure boundary were located at a standoff distance 

of 1.380 maximum free-field radii. The use of the volume equivalent spherical radius as the 

ordinate scale in this figure is not meant to imply that bubbles were actually spherical when 

a boundary was present. This ordinate scale is simply (3 V/4TC)
1/3

, and was chosen merely for 

convenience in comparing results from the various analyses with the free-field analysis results. 
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Figure 4-11. Bubble Radius Time History for Free-Field and h*=1.380 Analyses 
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The free-field radius-time history is also shown in this graph for comparison purposes. The 

period of the bubble is obviously influenced appreciably by the presence of the nearby 

boundary, as is the maximum volume of the bubble. Similar bubble volume equivalent radius 

time history data was generated for the analyses conducted at the other initial standoff 

distances, and used to determine the individual bubble oscillation periods. 

By compiling the bubble period results from the numerical analyses conducted at 

different standoff distances, the effect of the standoff distance to each type of boundary can 

be assessed. This is done in Figure 4-12, in which the non-dimensional bubble period 7* 

(where 7* is the first bubble period in units of free-field bubble periods) is plotted against the 

inverse of the non-dimensional standoff distance h*. For convenience, the results from 

analyses with rigid wall boundaries are shown on the same graph with results from analyses 

with constant pressure boundaries. The inverse standoff distance with an ordinate value of 

0.0 represents the situation in which the boundary is located at infinity (i.e. the free-field 

case). Points to the right of this represent non-dimensional inverse standoff distances to a 

rigid wall, and points to the left are non-dimensional inverse standoff distances to a constant 

pressure boundary. 

Also plotted in Figure 4-12, for comparison purposes, is the non-dimensional period 

versus the inverse of the non-dimensional standoff distance (7* vsersus (1/h*)) relationship 

predicted by an approximate analysis due to Herring (1950). In Herring's analysis, the fluid 

is assumed to be incompressible, the gas bubble is assumed to have negligible internal energy 

and remain nearly spherical, and the bubble is assumed to be fairly remote from the boundary 

(terms of order l/h*2wd higher are neglected). Herring's formula for the bubble period can 
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Figure 4-12.   Bubble Period Variation with Standoff Distance to Rigid and Constant 
Pressure Boundaries 
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be expressed as 

T*- • ,   -   av«    max' (4-1) 
Ah* 

where Rme is the average radius of the free-field bubble during the first oscillation, and Rmax 

is the maximum free-field radius. In this equation, the upper (plus) sign is for a rigid wall 

boundary, and the lower (minus) sign is for a constant pressure boundary. The Rme value is 

determined by integrating the free-field radius vs time curve over the first period, and then 

dividing by that period; here, the free-field radius vs time curve from the numerical analysis 

was used, and integrated numerically. 

It is interesting that the T* versus \lh* curve generated from the numerical analyses 

has about the same slope as that predicted by Herring's analysis, for the rigid boundary type. 

Herring's analysis neglected terms of order (1/A*2) and higher, and assumed small bubble 

shape deviations from spherical, so it is apparent that equation (4-1) could be in error for 

charges fairly near a boundary surface. Since Herring neglected compressibility of the 

surrounding fluid, and changes in the surrounding flow field caused by passage of the initial 

shock wave (which, as seen in the results in the last chapter, can extend over an appreciable 

distance from the bubble), equation (4-1) can also be shown to be in error for charges very 

remote from a boundary. In a compressible fluid, there is a finite standoff distance beyond 

which the absence or presence of a boundary can have no affect upon the first oscillation 

period of the bubble, owing to the finite wave speed in a compressible medium. Thus, in 

Figure 4-12, for a compressible fluid there must exist a finite region of abscissa values on 

either side of the 0.0 Vh* value for which T* must be equal to 1.0. This distance can be 
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estimated, assuming a constant wave speed of about 1500 m/s in seawater, as half the distance 

traveled by shock wave in 14.47 msec (the free-field bubble period), i.e. about 10.85 meters. 

This corresponds to an h* value of about 15.4 (and a \lh* value of about 0.065). 

Furthermore, if the boundary is located somewhat closer it should have still have little effect 

upon the bubble period, as most of the oscillation of the bubble will have already occurred 

before the reflection of the primary shock wave gets back to the bubble. 

Thus, although equation (4-1) is the classical correction for the effect of rigid 

boundaries and free-surfaces on the oscillation period of an explosion gas bubble, a better 

correction can be made by including fluid compressibility. One question that arises is how the 

results from this investigation this might be applied underwater explosion gas bubbles 

resulting from other charge types, weights, and depths. One solution is to use a simplified fit 

through the data points in Figure 4-12. One proposed fit is a "bilinear" one through the data 

points for either type of boundary. The term "bilinear" is meant to imply that, for either a 

rigid wall or a constant pressure boundary individually, the curve consists of two linear 

segments (one of which has zero slope). This proposed fit is shown as a solid line in Figure 

4-12, and labeled as a "Bilinear Approximation." One limitation of this fit is that its accuracy 

decreases rapidly for standoff distances of less than two maximum free-field radii, for the 

constant pressure type of boundary (i.e. for \lh* values greater than 0.5). For the rigid wall 

type of boundary, it appears to be reasonably accurate over the entire range of standoff 

distances shown in Figure 4-12. 

The advantage of this bilinear approximation lies in the relative ease with which it can 

be utilized for other charge type, weight, and depth parameters, as will be discussed shortly. 
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The functional form for this proposed period correction factor for the effect of a boundary 

surface on the first period of an explosion gas bubble is given by the expression 

r*=l±M 
1 \R-JR. 

vV, 
ave     max 

(4-2) 

where u is a unit step function (zero if its argument is negative, one if its argument is 

positive), R^ is the average free-field bubble radius over the first period, Rmax is the maximum 

free-field bubble radius, and hT* is defined by 

J_=J l_ 
hT*   h'   A0* 

where h0* is an effective maximum standoff distance (in units of maximum free-field radii) for 

which the period of the bubble starts to be effected appreciably by the presence of a boundary 

surface. In Figure 4-12, this is the point at which the slope of the bilinear approximation curve 

changes from 0.00 to 0.20. For the bilinear approximation curve shown in Figure 4-12, this 

effective maximum standoff distance is given by l/h0* = 0.27, i.e. h0* has a value of about 3.7 

maximum free-field radii. 

In order to apply Herring's correction factor, equation (4-1), it was necessary to know 

the quantity R^. This implies knowledge of the free-field radius time history curve, but since 

the shape of this curve varies little with the particular explosion parameters, the value of Rme 

will generally be close to 0.8 Rmax. To apply equation (4-2), it is necessary to know, in 

addition, the value of the parameter h0*. In general, this parameter may be a function of the 
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charge type, weight, and depth. However, it should be relatively easy to determine an 

empirical expression for this parameter for different types of explosives, since for a particular 

charge weight and depth, this parameter can be determined by a single accurate measurement 

of how much Herring's correction factor is in error for a single (well chosen) standoff 

distance. 

An example should clarify this. Suppose that an experiment were conducted using a 

particular charge type, weight, and depth, at a standoff distance of A*=2.00 from a rigid 

boundary, and Herring's correction factor was determined to predict a period increase of 

10%. The value ofRJRmax is then 0.8, from equation (4-1). If the actual period increase for 

this experiment was measured to be 4.6%, then, from equation (4-2), 1/V=0.23. Thus, from 

equation (4-3), l/h0* = 0.27. 

Again, the range of validity of equation (4-2) should be kept in mind. From Figure 

4-12, an appropriate limitation would appear to be A*>2.0 for a constant pressure boundary, 

and h*>\.0 for a rigid boundary. 

For calculation of the first bubble period at standoff distances less than two maximum 

free field bubble radii from a constant pressure boundary, a better approximation is needed. 

A "Shifted Quadratic" fit for the constant pressure boundary data shown in Figure 4-12 is 

defined by 

T'=l-u 
I       \ 

1 

y "■TCP) 

MTCP 

TCP' [Prep) 

(4-4) 

where u is a unit step function and 
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1    1    1 

ly'ir'T (4_5) 
'TCP "OCP 

This characterization depends upon two parameters. The fit shown did not require a linear 

term in the shifted non-dimensional inverse standoff distance. The values for the shifted 

quadratic fit shown in Figure 4-12 fitting the numerical analysis data were mTCP=0A and 

h'gcfO.ll. The range of validity for the fit defined by equations (4-4) and (4-5) is h*>l, i.e. 

it is valid for any standoff distance from a constant pressure boundary. The fact that the non- 

dimensional period change seems to vary linearly with the non-dimensional inverse standoff 

distance for a rigid wall boundary and as the square of the non-dimensional inverse standoff 

distance for a constant pressure boundary may well have some physical cause or explanation. 

2. The Effect of Boundaries on Bubble Migration in a Compressible Fluid 

The bubble center of mass displacement time history for the analyses in which a rigid 

boundary and a constant pressure boundary were located at an initial non-dimensional 

standoff distance of h*=1.380 is shown in Figure 4-13. This is the same case for which the 

bubble volume equivalent radius time history curves were shown in Figure 4-11. In Figure 

4-13, the displacement is taken to be positive if it is towards the boundary, and negative if it 

is away from the boundary. For the rigid wall boundary analysis, this figure shows a small 

initial migration of the bubble away from the boundary at early times (when the bubble is 

expanding). At later times (when the bubble is contracting) there is a significant migration 

towards the boundary. This migration is much larger than the initial migration away from the 

boundary, and the rate of migration increases as the bubble contracts to its minimum volume. 
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Figure 4-13. Bubble Center of Mass Displacement Time History for h*=1.380 Analyses 
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The opposite affect is seen when the boundary is a constant pressure boundary; the 

bubble initially moves towards the boundary, and later moves rapidly away from the 

boundary. The influence of fluid compressibility is also seen in Figures 4-11 and 4-13. There 

is an initial interval of time during which neither the type nor even the presence of the 

boundary affects the volume of the bubble, and it is not migrating. 

The displacement time histories, whose overall characteristic is described above, also 

show a small amplitude higher frequency component. The period of this small amplitude 

component is about twice the time interval between the start of the analyses and the time 

when the bubble begins migrating, which seems to be roughly proportional to the standoff 

distance. Hence, this higher frequency component would appear to result from the reflection 

of the primary shock wave from the boundary. 

The general shape of the bubble displacement curves, as seen in Figure 4-13, has been 

qualitatively explained by Cole (1948, pp. 331-332): 

In the case of a rigid surface, the presence of the boundary interferes with 
radial fluid flow of water, whether outward or inward, near a spherical surface in 
its vicinity. Initially, when the pressure in the gas is in excess of the hydrostatic 
pressure, the water on the side of the bubble surface near the wall is less readily 
displaced, and the bubble surface moves away from the wall. The effect is 
relatively small, however, because the net pressure (in excess of hydrostatic) is 
positive for a short part of the bubble period, and the bubble is small during this 
time. When the pressure falls below hydrostatic, acceleration of flow toward the 
bubble surface does not occur as readily on the side toward the wall, and the flow 
must be such as to bring the surface nearer to the wall. A considerable amount 
of momentum is imparted to a large mass of water in this way when the bubble is 
large. As the bubble contracts, the momentum acquired becomes concentrated 
in a smaller mass of water near the bubble, and the velocity of flow in this region 
increases. The bubble surface must then move toward the wall with increasing 
speed as if attracted to it. This effect is so much larger than the repulsion when 
the pressure exceeds hydrostatic that the dominant motion is an apparent 
attraction increasing the bubble velocity toward the wall as it contracts, even 
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though the momentum of the flow is decreasing in the most contracted stages. 
A free surface has the opposite effect on bubble migration, as in this case 

the water at the surface is free to move but must due so in such a way as to 
equalize the pressure with that of the atmosphere. 

Herring (1950) conducted an approximate analysis for the migration of bubbles near plane 

rigid and free surfaces, in which the method of images is employed for motion of a bubble in an 

incompressible fluid, the internal energy of the bubble is neglected, the bubble is assumed to be 

not too near the boundary surface (terms of order \lh*2 and higher are neglected) and remain 

nearly spherical, and migration of the bubble is treated as a small correction to the motion of the 

bubble. Herring's formula for the migration velocity of the center of the bubble is 

±dk_ 3r2 dr 3     f■ Li( dr 
/Mxl* (4-6) dt 4k2 dt 2h2r3J0 \dx) 

where t is the time, h is the standoff distance between the boundary and the center of the bubble, 

and r is the radius of the bubble. In this equation the plus sign is for a rigid boundary, and the 

minus sign is for a free surface. 

Together with a knowledge of the function r(t), equation (4-6) can be separated and 

integrated to give an equation for the displacement of the center of the bubble. However, results 

obtained from doing so are known to be in poor agreement with experimental results, significantly 

over predicting the migration of the bubble late in the collapse phase (Cole, 1948, p.348). This 

is when the assumptions used by Herring in his analysis are least accurate, as the migration of the 

bubble at this time is not a small perturbation of the free-field bubble motion, and the time rate 

of change of the bubble radius is over predicted if internal energy is neglected. 

Nevertheless, it is worth noting that the first term on the right hand side of equation (4-6) 
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is a periodic term which changes sign when drldt changes sign, i.e. when the bubble is at its 

maximum radius. The second term is monotonic, and builds up to a large value when the 

magnitude of drldt becomes large. This is in qualitative agreement with the behavior seen in the 

displacement versus time results for the various numerical analyses. 

As discussed earlier, the location of an explosion gas bubble at the end of its first 

oscillation is important because this is where the bubble pulse originates from. Taking a cue from 

Figure 4-12, values for the bubble displacement at the time the bubble reached minimum volume 

(which varies depending upon the boundary type and initial standoff distance) were compiled for 

the different numerical analyses, and plotted as a function of the inverse standoff distance. This 

plot is shown in Figure 4-14, in which the abscissa values represent the non-dimensional inverse 

standoff distance, with values to the right of 0.0 being for a rigid boundary and values to the left 

of this point being for a constant pressure surface, as in Figure 4-12. The total displacements at 

the time of the first minimum is plotted in units of maximum free-field radii, so that a value of 0.4, 

for example, represents a center of mass displacement of 0.4*70.65 cm from the initial center of 

the charge. 

The effect of a finite wave speed in a compressible fluid is again seen in Figure 4-14; 

remote boundaries cause little or no displacement of the bubble. This plot shows a general 

linearity for bubbles fairly near either type of boundary. The only exception is the case in which 

the bubble was initially closest to a constant pressure boundary, for which the initial migration 

towards the boundary and the increase in the bubble radius over the free-field value cause the 

bubble to actually contact the boundary when the bubble was near maximum radius. Neglecting 

this left most point in Figure 4-14, the results show that the first period displacement near either 
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Figure 4-14.   Bubble CM. Displacement at First Minimum Variation with Standoff Distance 
to Rigid and Constant Pressure Boundaries 
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type of surface can be well approximated by a bilinear curve when plotted against the inverse 

standoff distance. This curve is shown as a dashed line in Figure 4-14. The slope of the non-zero 

portion of this curve is about the same for either type of boundary, again suggesting a general 

semi-empirical formula for bubble migration near either type of boundary. 

The proposed functional form for this formula is 

A7*=« 
1 ttty 

(4"7) 

where AY* is the displacement at the first minimum in free-field radii, u is a unit step function, mY 

is the slope of the non-zero slope portion of the "bilinear approximation" curve, as shown in 

Figure 4-14, and hr* is a effective standoff distance for bubble migration, given by 

1     1     1 

^'T-~: <4-8) 

where A* is the actual standoff distance in maximum free-field bubble radii, and h} * characterizes 

a maximum effective standoff distance for which appreciable bubble migration occurs. 

For the bilinear approximation curve shown in Figure 4-14, mY and h,* have the values 

of about 0.87 and 6.2, respectively. Again, these parameters might vary with charge type, weight, 

and depth, but can be determined empirically without great difficulty. The proposed bilinear fit 

given by equations (4-7) and (4-8) appears, from Figure 4-14, to be a reasonably good 

approximation for total bubble migration at the time of the first minimum for standoff distance 

values A*>1.25 for the constant pressure type boundary, and h*>\ for the rigid wall type 

boundary. 
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3.        Bubble Shape Departure From Spherical 

While the time at which the bubble reaches its minimum volume and the displacement of 

the bubble at this time, and the effect of standoff distance on these quantities, were the primary 

items of interest in these analyses, the overall shape variation of an explosion gas bubble 

generated near a boundary surface is also of interest. In approximate analytical derivations such 

as for equation (4-1), the bubble is assumed to remain nearly spherical. It is of some interest to 

see how nearly true this assumption is, if only to form some opinion as to the validity of the 

derivation. While the analysis code used in these numerical analyses does not actually keep track 

of the location of the boundary surface between different materials within the mesh, it is possible 

to get an overall view of the shape of the bubble by examining the density of the various mesh 

volumes. 

Figure 4-15 shows the results for the analysis case in which a plane constant pressure 

boundary was initially located at a standoff distance of 1.380 maximum free-field radii from the 

center of the charge. In this figure the dark areas represent the bubble, and the times are given 

in terms of the first period of the bubble. The boundary plane is that plane below which times are 

indicated. The bubble is seen to be fairly spherical when near its maximum volume, but to have 

a pronounced "kidney shape" by time 80% of its first oscillation period has elapsed. It then 

continues deforming, eventually assuming a "spherical cap" shape by the time it reaches minimum 

volume. This figure also shows the migration of the center of mass of the bubble away from the 

boundary. 

Figure 4-16 shows the variation of the bubble shape with time when a rigid boundary was 

located at 1.380 maximum free-field radii from the center of the charge. Again, the dark area 
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represents the bubble, and the boundary plane is that plane below which times are indicated. In 

this figure, bubble shapes are only shown for the last 5% of the first oscillation period; at 95% of 

the first bubble oscillation period the bubble is still nearly spherical. By 98% of the first 

oscillation period, the bubble has become "kidney"-shaped. 

From these figures, it might be expected that derivations assuming bubble sphericity 

would be better at this standoff distance for the rigid boundary case than for the constant pressure 

boundary case. Examining the bilinear approximation in Figure 4-12, which can be thought of 

as a compressibility corrected approximation to Herring's derivation of equation (4-1), this would 

seem to be the case. 
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V. CONCLUSION 

The current understanding of the effects of fluid compressibility on the dynamic behavior 

of underwater explosion gas bubbles is very limited; the existing theories for underwater 

explosion gas bubble phenomena neglect entirely the effects of fluid compressibility. As a 

consequence, these theories fail to accurately predict important phenomena associated underwater 

explosion gas bubbles. It was for this reason that the research described in this dissertation was 

undertaken. 

In the first part of this investigation, it was shown that a finite volume based numerical 

analysis technique which incorporated fluid compressibility could accurately account for the 

behavior of an explosion gas bubble in the free-field case up until the time of the first bubble 

minimum, and it was verified that the radiation of energy in the bubble pulses does not account 

for all of the energy loss that occurs between bubble oscillation cycles. 

In the second part of this investigation, the behavior of underwater explosion gas bubbles 

near rigid and constant pressure boundary surfaces was investigated, including effects arising 

because of fluid compressibility. The failure to account for fluid compressibility in the current 

theoretical development has made predictions for bubble behavior based upon this theory more 

qualitatively correct than quantitatively accurate. It was found possible, when fluid 

compressibility is taken into account, to quantitatively describe the behavior of explosion gas 

bubbles quite close to a boundary surface. 

By conducting analyses at a number of different standoff distances from these boundaries, 

it was discovered that first bubble oscillation period and the migration of the bubble at the time 
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it reached minimum volume could be quantitatively described over all standoff distances of 

interest when fluid compressibility was taken into account. Functional relationships between 

standoff distance and the first bubble period and the net bubble migration were developed which 

have a form very suitable for semi-empirically scaling the results of this investigation to situations 

involving other charge types, weights, and depths. 

It is recommended that a series of carefully designed experiments be conducted to both 

verify the formulas developed in this investigation and to develop the neccessary empirical 

constants used in these formulas, so that the effects of boundary surfaces can be better taken into 

account in the future. These results of this investigation should form a foundation for improving 

the accuracy of calculations for the whipping response of ships and shipboard equipment due to 

detonation of nearby mines or torpedoes. 
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