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SUMMARY 

Many lending institutions, specifically furniture retailers, do not use 

scientific methods for determining their risk of payment defaults on loans to 

customers. The methods they do use can result in two problematic situations: 

they may not charge a high enough rate on a risky loan which results in 

unexpected losses; and they may charge too high a rate and lose business 

because of competition with lower rates. 

In this thesis a simple model was developed for selecting the break-even 

interest rate to charge on risky furniture loans such that the expected present 

worth is zero, averaged over the population of borrowers. This model is a 

regression model based on loan parameters (contract length, markup, salvage 

value, face interest rate, and the lender's minimal attractive rate of return 

(MARR), but not individual borrowers' creditworthiness). In order to form such a 

model, data was necessary for the present worths of loans at various levels of 

the parameters in the model. This data would simply be in the form of a 

collection of payment histories on different loans with various parameters. Since 

data does not exist in the literature in this form, a detailed probabilistic model 

was first developed based on data from the mortgage-lending industry. Using 

this model, payment histories of furniture contracts were then simulated. 
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The final model recommended to a furniture credit manager is of the form: 

f= .0149 - (0.000388 x length) + (0.0385 x MARR x length) 

where f is the monthly nominal interest rate the credit manager should charge 

based on a given monthly nominal MARR and contract length. This equation on 

the average should result in a present worth of zero. 

The adjusted coefficient of multiple determination for this regression was 

94.6% and the p-value for the F-test for a regression relationship was 0.00000. 

It was concluded that this regression model extracted the data very well from the 

collection of payment histories which were simulated. A furniture credit manager 

can use this simple formula if he assumes that his borrowers behave as those in 

the mortgage industry. If the credit manager does not want to make this 

assumption, but would prefer to formulate his own simple model, he should 

follow the data collection process outlined in Chapter 3 and also follow the same 

steps in finding the above equation. 
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CHAPTER I 

INTRODUCTION 

Credit managers face the difficult task of determining the expected profit 

from consumer loans. This is particularly formidable because there is not as 

much information available about loan applicants as there is about other 

investment decisions such as bonds or the stock market [Chmura 95]. How then 

is a credit manager to determine if a loan at a specified interest rate is profitable 

or whether the interest rate should be raised to increase profitability and 

compensate for risk, or decreased to increase competitiveness? 

Many lending institutions, specifically furniture retailers, do not use 

scientific methods for determining their risk of payment defaults on loans to 

customers. Techniques that exist for accounting for or compensating for risk 

vary in their scope from subjective increases in the lending rate to formulas 

involving various compensating factors which tell the lender the interest rate to 

charge. Many of these techniques will be cited in chapter II. None, however, 

seem to involve calculating a rate based directly on the risk of default. The non- 

scientific methods used by lenders to account for risk can result in two 

problematic situations: lenders may not charge a high enough rate on a risky 



loan which results in unexpected losses; and lenders may charge too high a rate 

and lose business because of competition with lower rates. 

Depending on the characteristics of the loan and of the contract, different 

probabilities of default occur at different times of the loan. For example, people 

are more likely to default on the first few payments of a contract than on those 

payments halfway through the contract. When calculating an expected present 

worth of a contract to determine its profitability at a specified interest rate, these 

probabilities of default should be taken into consideration. In addition to different 

probabilities of default, there are other factors which can influence the 

profitability of the contract. These factors include the following: 1) customers 

may not make their payments on time; 2) depending on the type of furniture sold 

to the customer and the wear and tear on it when a default occurs, there may be 

a cash flow from the sale of the repossessed furniture; and 3) there are costs 

associated with defaulted payments such as legal fees, administrative fees for 

sending late notices, and repossession fees such as appraisals of the furniture. 

It would be beneficial for a furniture credit manager to have a simple 

model that could determine a contract's profitability, or perhaps a model that 

could calculate an interest rate that would allow him to break even. This break- 

even interest rate would be the interest rate such that the expected present 

worth for a loan with risk would be zero when computed at the enterprise's 

minimal attractive rate of return (MARR). This would be the lowest rate the credit 

manager could charge on a loan and still expect the contract to be profitable. 



Knowing this interest rate can help a lender become more competitive in the 

lending industry. 

In this thesis, a simple model will be developed for selecting the break- 

even interest rate for a risky furniture loan. This simple model will be a 

regression model based on several parameters. In order to form such a model, 

data is necessary to determine the present worths of loans at various levels of 

the parameters in the model. Ideally, this data would simply be a collection of 

payment histories on different loans with various parameters. As will be shown 

in chapter II, the only data that exists in the literature relating to payment 

histories is for the mortgage-lending industry. Thus, prior to developing the 

simple model that selects the break-even interest rate, a detailed probabilistic 

model will first be developed that simulates the payment histories of furniture 

contracts and then calculates the present worths of these contracts. The 

detailed probabilistic model will account for the different probabilities of default, 

the fees associated with defaulted contracts, any late payments, and for cash 

flows from repossessed furniture. 

Raising or lowering interest rates based on the circumstances of the 

contract is called loan pricing. The loan pricing techniques used today may or 

may not include an analysis of risk, as will be shown in chapter II. In chapter II 

the current methods will be explored in the lending industry used to account for 

risk. The literature review will include lending in all areas, since there is little 

literature specifically on retail furniture credit management. In the third chapter a 



detailed probabilistic model will be formulated that will simulate payment histories 

for numerous furniture contracts and will then calculate the present worths of the 

contracts. In chapter IV the design of the experiment will be discussed and 

several thousand different contracts will be simulated using the detailed model 

with various levels of its parameters. With the present worths that result from the 

simulations and their associated parameter values, a simple regression model 

will be developed that selects the interest rate to charge on a contract where the 

expected present worth is zero. Finally, in chapter V conclusions will be drawn 

from the simple model, appropriate recommendations made, and then ideas 

provided in this area for future work. Specifically, issues will be addressed 

concerning the two models developed, the detailed probabilistic model and the 

simple regression model. Recommendations will be made surrounding this 

research to improve the usefulness and accuracy of the simple model. Finally, 

future work will be recommended that can be accomplished in retail furniture 

loan pricing. 



CHAPTER II 

Literature Review 

2.0 Overview 

It is first necessary to study the previous work that has been done on risk 

in lending. Many studies have been done in developing different methods of 

accounting for risk; some methods are quite simple in their application while 

others are very complicated. The search began in the furniture industry and then 

was broadened to all lending industries. As expected, the banking industry's 

methods were much more sophisticated than those of other lending industries. 

In fact, very little evidence was found that industries other than banking use any 

methods at all. This is not to say that all banks use sophisticated methods, for 

most banks do not use scientific methods. 

The first section of the chapter discusses the importance of accounting for 

risk in the lending industry and the importance of pricing techniques as a method 

for accounting for risk. The second section of the chapter discusses the various 

methods used for estimating risk: subjective evaluations of the borrower, the use 

of scoring models to categorize the borrower, and the determination of 

probabilities of default. In the third section, the applications of the management 

of risk to setting interest rates will be shown. Specifically, this section will 



address the different pricing techniques used in the lending industry. Finally, in 

the fourth section of the chapter some applications of risk analysis to capital 

budgeting will be discussed. 

2.1 The Need for Pricing Techniques 

All who are in the lending industry know that they must have some way of 

accounting for risk. The profitability or survival of any lending business may 

depend on it. Several comments by leading managers and researchers in the 

lending industry pertain to this need for pricing techniques. John Haley, the vice 

president of Chase Manhattan Bank, stated that the ability of banks to generate 

needed capital depends on the successful achievement of pricing objectives 

[Haley 75]. He was referring to the possibility of banks going bankrupt if they did 

not develop sound pricing techniques. Haley further added that pricing may 

provide the key to future growth by improving on rates of return on assets. 

Timothy Finn and Joseph Frederick concluded from their research that superior 

lending means knowing good loans from bad loans, and that if a bank is to do 

one thing well, risk assessment should be it [Finn 92]. 

One would surmise that if so much could be lost on loans that default, 

then lenders would develop some formal way of coping with risk. What was 

found was quite to the contrary. In a survey conducted by U.S. Banker's 

Magazine in 1992, more than half of the respondents said that they did not use 

any credit decision products at all [Anonymous, 92]. Jon Kozlowski wrote that 



most lending institutions employ less than scientific methods for pricing loans. 

Instead, lending rates are usually a function of the competitive environment 

[Kozlowski 96]. Lending rates that are set too low and are based on the 

competition can surely lead to disaster if a certain percentage of the loans 

default. Christine Chmura found proof of the lack of use of risk analysis 

techniques in pricing loans. She found that banks have been criticized for pricing 

loans to their best customers too high and loans to their riskiest customers too 

low [Chmura 95]. She described a survey that revealed that the pricing of loans 

is not consistent with the nature of the risk. 

Further evidence of the lack of sophisticated pricing mechanisms can be 

found in the following research: Simon Hally concluded that nobody has figured 

out how to provide micro-credit cost-effectively in this country [Hally 96]. Micro- 

credit here refers to unsecured loans to very small businesses operated by 

people of limited means who are unable to qualify for loans from traditional 

institutions. Richard Johnson confirmed that further research is needed in the 

methodology for identifying risk premiums for credit managers [Johnson 90]. He 

stated that accounting for risk in pricing is not well-defined in the literature or in 

practice at many lending institutions. Finally, a senior vice-president at 

Wachovia Bank, Keith Lawder, insisted that lenders have historically done a 

"terrible" job in pricing loans [Goodwin 93]. 

Scott Aguais explained that as analytical techniques undergo rapid 

change relative to risk, the technology gap between where banks are now and 



where they need to be is widening [Aguais 95]. He also noted that successful 

risk management requires accurate, flexible, consistent, and time synchronized 

information with a facility for collecting and storing significant quantities of 

historical data. Obviously, this can bring on significant costs for lending 

institutions, and this may explain why many do not partake in such analysis. 

Perhaps another reason for the lack of scientific methods in pricing is T. 

Pentikainen's finding that "rate-makers" are not always aware of the services of 

math and statistics [Pentikainen 88]. 

2.2 Managing the Credit Risk 

Because of the potential losses that could result from lending to people 

who may default, one might think that it would be in the best interest of the 

lender to shy away from these situations. Of course, this idea is incorrect if the 

risk is managed correctly. This section will discuss methods currently used to 

account for risk: subjective evaluations and scoring models. It will also discuss 

some of the more current literature on managing risk with stochastic modeling. 

2.2.1  Subjective Evaluations 

The simplest analysis of the risk of a contract is a subjective evaluation of 

the borrower's financial situation. The subjective evaluation involves determining 

specific characteristics of the borrower and then placing the borrower into a 

category that represents a specific pricing range for the interest rate to be 

charged. There may also be a category in which the lender should not lend at 
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all. Surprisingly, a survey called the 1993 Survey of Credit Risk Management 

Practices revealed that 72% of those lenders surveyed graded the risk of the 

borrower by judgment, only 2% by mathematical scoring, 25% by a combination 

of the two, and 1% by other means [Statistical Snapshot 94]. This survey shows 

that lenders still primarily use subjective means in determining the risk involved 

with loans. A reason for this may be the high cost of developing models to 

predict profitability. Walter Alexander noted that in order for a model to be truly 

predictive, it must be tailored to the specific requirements of the lending 

institution. This can lead to model-development costs of up to $100,000. This 

agrees with those findings of Aguais mentioned earlier [Alexander 89]. 

What characteristics do lenders use to categorize the borrower? In his 

book Consumers in Trouble, David Caplovitz discusses the following 

characteristics of the borrower: income, education, age, ethnic background, and 

location [Caplovitz 74]. To no one's surprise, a majority of defaulters come from 

the lower half of the income scale. Defaulters are normally young in age, usually 

less than forty, because younger families have greater consumer needs. It was 

a surprise to find that defaulters are well-educated, but it turns out that the 

young, who have a higher default rate, are better educated than the old. 

Caplovitz also explained that the primary reasons for default are loss of income, 

voluntary and involuntary over-extension, marital instability, and finally debtor 

irresponsibility. He also pointed out that the debtor is not always to blame for 

defaulted loans. Reasons for default that pertain to creditors are fraud, price 



deception, defective merchandise, false promises, and payment 

misunderstandings. 

2.2.2 Scoring Models 

Some of the first actual research done on the analysis of risk in lending 

was done by "scoring" the borrower based on different characteristics. Scoring 

refers to assigning a number to an applicant based on a risk formula which 

depends on certain characteristics of the borrower. Many studies have been 

done to determine these characteristics. Edward Altman developed one of the 

first and most popular models, the z-score, which determines the risk in lending 

to firms based on data from general accounting reports (balance sheets and 

income statements) [Laudeman, 93]. The model Altman developed was based 

on several financial ratios that show the highest correlation to a firm's financial 

failure. His model was simple to use since it relied only on a few ratios to 

measure the overall financial position of the firm. 

Jeffrey Marshall wrote about the success of another type of scoring, 

dynamic risk scoring [Marshall 92]. This method is tied to database 

management in that certain qualities of identified borrowers are maintained and 

continually updated in order to provide more accurate risk scores. Marshall 

noted that the better a bank's source of customer information, the more 

successful the bank will be. Many current software packages can provide output 

scores based on various risk profiles. Of the many scoring products that exist, 
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three of the most used are by TRW Information Systems, Trans Union, and 

Equifax, in that respective order [Anonymous, 94]. 

2.2.3 Determining the Probabilities of Default, the Expected Return, and the 

Expected Loss 

The next level of analysis of risk is estimation of the probability of default. 

Delton Chesser developed a model to predict the probability that a commercial 

loan customer will not be able to comply with a loan agreement [Chesser 1974]: 

P=1/(1+e~y) 

where P is the probability that a commercial loan customer will not be able to 

comply, and y is estimated from a regression equation involving several financial 

ratios. Lawrence, Sanchez, and Smith developed the credit risk and 

management system (CRAMS) for mortgage-lending [Lawrence 96]. This 

system was designed to estimate under different economic scenarios the 

likelihood that each individual loan will terminate in default during each year of 

the loan's life. 

Since there exist studies of default rates for corporate bonds, Chmura 

used these bond default rates to approximate commercial default rates and then 

developed this equation for expected return [Chmura 95]: 

E(fl) = [(1 - d)(i - c) + d{IRR - c)] 
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where d is the default probability, / is the interest rate, c is the cost of funds, and 

IRR is the internal rate of return in the event of default. Asarnow and Edwards 

also used bond default studies as benchmarks in assessing the likelihood of 

corporate borrowers in defaulting. Their expected loss equation for a loan was 

[Asarnow 95]: 

E(Loss) = P(Default) x Loss in the Event of Default (LIED) 

where LIED is determined by another equation representing characteristics of 

the contract in default. 

2.2.4 Determining Distributions for Probabilities of Default 

Up to recently, very little had been done in determining an actual 

probability distribution for defaults or late payments as a function of time for any 

lending institution. Gardner and Mills were among the first to collect data in this 

area. In a study of 710 loans, they found the following default rates by year 

[Gardner 89]: 
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Table 2-1  Initial Distribution Findings 

IMTTPIWIPFIP 
■IF 4 TtlsXa i a 

■*':'   '"*&:'-'-^i '■"''' ~'Wik^   "•' «••     .• :    .   -Hue*... :~s??..     • 

Age< 1 

\m KOfi 

N-l wl &J 
43 6.0 

1 < Age < 2 122 17.2 

2 < Age < 3 116 16.3 

3 < Age < 4 119 16.8 

4 < Age < 5 93 13.1 

5 < Age < 10 198 27.9 

Age > 10 19 2.7 

TOTAL 710 100.0 

As can be seen from this chart, the probability of default is highest in the first few 

years of the loan. This seems reasonable because one would think that once 

the borrower has made some payments, this behavior is predictive of making 

further payments. 

The most recent study on credit risk involving default probabilities was by 

Lawrence, Sanchez, and Smith, who developed a comprehensive model for 

managing credit risk, a follow-up to the CRAMS model mentioned earlier 

[Lawrence 1996]. They structured this model as a Markov process to predict the 

probabilities that a loan will be in various states at annual intervals. They noted 

that at any time, a loan is classified as being in one of the following financial 

states: current, delinquent 30 to 89 days, delinquent 90+ days, defaulted, and 
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paid off. They then developed transition probability curves with data from 31,961 

mortgages. These curves are shown in Figure 2-1 on the following page and 

reinforce Gardner's findings that the probability of default is greatest for a loan in 

the beginning. Note that in these curves, each plot has a y-axis range of [0,1] 

(transition probability) and an x-axis range of [0,1.2] (loan-to-value ratio). These 

curves will be addressed in more detail in chapter III. Given that a loan did 

default, Lawrence, Sanchez, and Smith then determined the magnitude of the 

loss. They modeled the percentage loss by the following linear regression 

equation: 

P = 16.67 - 2 (loan $150K to $250K) + 1.5 (loan $250K to $500K) + 

3.7 (loan over $500K) 

where P is the percentage loss on a loan and the loan-size terms are one if the 

statement is true and zero otherwise. 

2.3 Pricing Techniques 

Now that the research that has been performed in determining the risk of 

a loan has been seen, the applications of this research to pricing the loans will 

be shown. According to Chmura, there are three different pricing 
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Figure 2-1  Mortgage Default Probability Curves 
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mechanisms: risk-based pricing, portfolio theory pricing, and customer 

relationship pricing [Chmura 95]. Risk-based pricing refers to increasing or 

decreasing the interest rate based on the borrower's potential for defaulting. 

Portfolio theory pricing occurs when loans are priced relative to the risk the loan 

contributes to the lending institution's entire loan portfolio. Finally, customer 

relationship pricing occurs when the lender offers the borrower a lower than 

normal interest rate because the borrower is a good customer. As stated earlier, 

setting interest rates higher on risky loans can compensate for the higher risk; 

however, a higher interest rate also makes the lending institution less 

competitive in the lending market. First, some pricing techniques, which will be 

presented that do not specifically address risk, could be referred to as customer 

relationship pricing. Then some risk-based pricing techniques will be shown. 

2.3.1 Techniques That Do Not Account for Risk 

Numerous techniques for pricing loans exist when risk is not taken into 

consideration. Such pricing requires the bank to establish a minimum or target 

rate of return that must be earned on the loan and then compared to the 

calculated yield of the loan to see if the interest rate charged is high enough. 

One of the procedures discussed by Richard Johnson is called the total funds 

used approach [Johnson 90]. With this approach, the lender grants the 

customer credit for deposits at the bank's marginal cost of funds. Finn and 

Frederick noted that probably one of the simplest and most popular pricing 

strategies is compensable-factor pricing [Finn 92]. With this strategy borrowers 
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are rewarded with lower interest rates on loans for doing business with the bank 

in other areas. These other areas could include opening a checking account or 

keeping a minimum balance in a savings account. Similar to this pricing strategy 

is the all-in-the-rate pricing. John Haley described this strategy as giving the 

lender the option: some prefer keeping compensating balances for lower interest 

rates while others prefer paying a fee in lieu of maintaining balances [Haley 75]. 

In ROE-based pricing or cost-plus pricing, the price is established by determining 

the cost of the product, which includes a provision for loan losses, and adding on 

the required profit [Yang 91]. Gilbert Yang also mentioned in the same article 

that if the ROE-based price is lower than the market price, the bank will likely 

have an advantage over its competitors in obtaining loans [Yang 91]. 

2.3.2 Techniques That Account for Risk 

One of the most recent models found for pricing that incorporated risk was 

by Thomas Stanley, Craig Roger, and John Lajaunie. They modeled the optimal 

loan price as follows [Lajaunie 95]: 

Loan Price = CF+AC+ LOL + (RP x ARI) ± IBR- RWC 

where CF is the cost of funds, AC are the administrative costs, LOL are the 

differential charges of the length of the loan, RP reflects the bank's attitude 

toward the minimum differential in credit risk premiums necessary to compensate 

for various costs, ARI is the actuarial risk index, which is the loan default 
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potential in the particular loan category (this comes from a table in their article), 

IBR is the borrower's credit score, and RWC is a subjective score of the bank- 

customer relationship. 

Mike Casey and Ross Dickens modeled another pricing formula 

specifically for environmental risk [Casey 94]: 

R = i+ r 

r=j x d 

where R is the rate charged, / is the normal interest rate charged with no risk , r 

is the environmental risk exposure factor, j is the risk factor category (one 

through four, one being that the company has no exposure to environmental 

risk), and of is the maximum potential environmental loss as a percent of the 

loan. 

2.3.3 Pricing and Characteristics of Loans in the Furniture Industry 

Several furniture retailers were visited in order to find out how they price 

loans. One company sells all loans immediately to a local bank. Another 

company noted that the rate they and many of the competitors charge is usually 

around the maximum rate allowed by the state law in which the store is in. Most 

states have ceilings of either 18% or 21% except for Arkansas, which has ceiling 

of 10.5%. 
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A peculiar pattern of default was found in the furniture industry; the 

highest levels of default are expected during the first few payments and during 

the final payments [Koonce 96]. A reason for this according 1o Ben Koonce, a 

senior credit manager for Haverty's Furniture, is because as people incur more 

debt with time, the most recent debts take the highest priority in paying, therefore 

leaving the older loans at a higher risk of default. Another reason may be that 

people have less fear of repossession because of the minimal value their 

furniture may have. Other facts learned from Koonce pertaining to furniture 

loans were as follows: the life of a furniture loan usually ranges from zero to 36 

months, sometimes extending to 48 months, with the average being around 24 

months; loan amounts usually average about $1200; and the markup average in 

the furniture industry is around 50% [Koonce 96]. 

2.4 Capital Budgeting Utilizing Risk Analysis 

Related to accounting for risk in lending institutions is accounting for risk 

in capital budgeting. Recent surveys of capital budget techniques indicate that 

the simple and well-known procedure of adjusting the discount rate is the most 

popular method for accounting for risk [Hendricks 77]. James Hendricks noted 

that determining how much to increase the discount rate for different types of risk 

can be very difficult. He gave an alternative to using a different discount rate for 

each project using a different rate of discount for each class of investment such 
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as contractual obligation, on-going projects, new products and markets, and 

finally, research and development [Hendricks 77]. 

CD. Zinn, W.G. Lesso, and B. Motazed commented on the use of Monte 

Carlo simulation models for evaluating risk in capital investment projects [Lesso 

77]. They pointed out that an advantage of this simulation is that it provides 

management the convenience of using the probability distribution of values 

rather than single value estimates and that it also provides management with an 

estimate of the probability distribution of an investment's outcome. Young and 

Contreras showed how to calculate the expected present worth of cash flows 

where not only the amounts are uncertain but also the timing [Young 75]. 

Young's geometric risk model provides a direct interest-rate adjustment 

for a simple kind of risk. This simple risk is represented by the probability q that 

no further payments will be made and is the same each period. Independent of 

loan length, size, or any other factors, if /is the desired interest rate before risk, 

then the corresponding rate that should be charged to compensate exactly for 

geometric risk at the rate q is /in the following equation [Young 93]: 

\-q 
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Chapter III 

Model Building 

3.0 Overview 

As shown in chapter II, there have been many studies on scoring 

borrowers, both consumer and corporate, and on determining corporate default 

probabilities.   Very few studies, however, exists in the area of consumer default 

rates. Because of the lack of data for lending in the furniture industry, a 

probabilistic model was developed to describe the defaults of payments on loans 

to furniture retailers. As noted in the introduction, this model will be based on 

data from the mortgage industry and will result in a simulated collection of 

payment histories. This probabilistic model will be a stand-in for the data that is 

not available. 

In the second section of this chapter a proof will be presented for the 

existence of a face interest rate /that makes a loan profitable at an interest rate 

of /'. In the final section, a much simpler model, the geometric risk model, will be 

discussed but not investigated. This model could be used to predict the 

expected present worth of a series of loan repayments if the risk of default were 

constant with time [Young, 93]. 
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3.1  Development of the Detailed Model of a Lending Contract 

In developing the following representation of payment schedules, the only 

lending data available was used. This data was in the form of the mortgage- 

lending curves developed by Gardner, Lawrence, Sanchez, and Smith and was 

shown in Figure 2-1. It was initially assumed then that furniture and mortgage 

borrowers behave the same with respect to the loan-to-value (LV) ratio, the x- 

axis on all of the curves, which will be described in the next section. As in the 

mortgage-lending industry, in the furniture industry there are different states that 

the borrower's repayment behavior can occupy throughout the course of the 

loan. The detailed model developed here will be a Markov process and will 

employ state definitions similar to those of Lawrence, Sanchez, and Smith: 

1. Current (with an outstanding balance and payments on schedule). 

2. Delinquent 30 to 89 days (with an outstanding balance and payments 

overdue by 30 to 89 days). 

3. Delinquent 90+ days (with an outstanding balance and payments overdue by 

90 days or more). 

4. Defaulted (with partial or complete charge-off incurred). 

5. Paid off (with outstanding balance paid off at maturity or earlier). 

These state definitions have the disadvantage that the times of transitions from 

one state to another do not exactly determine the timings or numbers of 

payments, so that a state trajectory for a customer does not unambiguously 

determine the present worth of the payments. However, the available data is in 
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this form, and, as will be seen, the ambiguities do not have a great effect on 

expected present worth. 

As shown in Figure 3-1, a borrower starts off as seen below in the current 

state and can move to any one of the three states where the loan remains 

current, becomes late, or is paid in full. From the delinquent 30 to 89 days state 

and from the 90+ days state, the loan can move to any one of the five states. 

From the 90+ days state, the loan can return to the 30-89 days state if the 

borrower pays enough to become less behind, but not enough to become current 

or paid off. 

current 

current 

30-89 

paid off 

*   current 

30-89 

90+ 

paid off 

default 

Figure 3-1 Stochastic Process Diagram 

Once a loan has reached the paid-in-full or the default state, it never leaves 

these absorbing states. 
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Because of Koonce's comment mentioned in chapter II about higher 

probabilities of default at the beginning of and at the end of the life of the loan, a 

typical payment schedule was categorized into three groups: 1) the first fourth of 

the total number of months; 2) the next half of the total number of months; and 3) 

the final fourth of the total number of months. The intent was to assign for each 

of the three groups the same Markov process, i.e., with the same states, but 

with different probabilities. In effect then, three different probability matrices 

would represent the probability of transitioning to a new state for each of the 

payments. 

In the transition probability curves shown in Figure 2-1, the probability of 

default is on the y-axis and a loan-to-value (LV) ratio is on the x-axis. As 

mentioned earlier, each plot has a y-axis range of [0,1] (transition probability) 

and an x-axis range of [0,1.2] (loan-to-value ratio). The numerator of this LV 

ratio is the remaining balance on the principal of the loan. The value amount in 

the denominator is the market value of the collateral; in the study in Figure 2-1 it 

is for homes. As time progresses on mortgage loans, the loan amount 

decreases and the value of the home usually increases. As a result, this LV ratio 

decreases as time progresses. This means that for any individual curve, time 

varies as one proceeds from right to left. Thus the probabilities of default are a 

function of time. As an example, the probability of default coming from the 

delinquent 90+ days state is highest when the LV ratio is highest, or the loan is at 
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its newest stage. This coincides with the findings of Gardner and Mills as noted 

in Table 1 [Gardner 89]. 

The transition probabilities from Figure 2-1 will be used in this study, but 

first the loan-to-value ratios for a particular furniture loan must be found. These 

ratios do not decrease with time as fast for furniture contracts as for mortgage 

contracts. Unlike property value, which usually appreciates in value with time, 

furniture value depreciates with time. So the rate at which the LV ratio 

decreases will depend on how fast the furniture depreciates, or how well the 

customer takes care of the furniture. 

In order to determine the probabilities of moving from one state to the next 

for this study, the LV ratio points on the x-axis had to be found and then used to 

find the corresponding y-axis probabilities from the curves. To find these LV 

ratios, the loan balances and values for every month of the contract were found. 

The LV ratio for each month was then found by dividing the loan balance by the 

value for the particular month: 

balance, 
LVt = 

value, 

where t is the month of the contract. In order to determine the LV ratio for each 

month, it was assumed that typical furniture loans are around $1200 and 24 

months. With an average markup in the furniture industry of around 50%, the 
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actual value of the furniture at the time of the purchase would then only be $800. 

It was also assumed that furniture with an actual value of $800 would depreciate 

to $400, or 50% after 24 months. Of course depreciation rates vary for different 

pieces of furniture and depend on how much it is used, and depending on how 

well the owner takes care of it. This furniture then may depreciate from $800 to 

anywhere between $800 and zero. Assuming a geometric decline, a FORTRAN 

program was written to calculate the value of the furniture at every payment 

period or at every month. The program is shown in Appendix A and the 

depreciation schedule for this contract is shown in Figure 3-2 on the following 

page. The FORTRAN program utilizes the following equation for depreciation: 

depreciation rate = 

i 
( U(t\\i 

\b(0) 

where b{0) is the value of the furniture at time zero and b(\) is the value of the 

furniture at time t. This depreciation schedule falls under the "value" column. 

These numbers are the denominators for the LV ratios for each respective 

month. Note that in order for the furniture to depreciate from $800 to $400 over 

24 months, the rate of depreciation would be 2.85% per month. 
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The depreciation rate per month is 2.8468058846394D-02 

The following represents the amortization and depreciation schedules for a 24 
month $1200.00 loan at an interest rate of 0.18. 

The markup is 0.50 %. 
The salvage value is 0.50 %. 

Note that at time t, f-1 payments have occurred. 

loan balance 
at time t value at time t loan/value at time t 

t= 1 1200.0000000000 777.22555292288 1.5439533549652 

t= 2 1158.0910776366 755.09945014535 1.5336934458284 

t= 3 1115.5535214377 733.60323456374 1.5206496766623 

t= 4 1072.3779018959 712.71897451227 1.5046293704047 

t= 5 1028.5546480609 692.42924880491 1.4854292331471 

t= 6 984.07404541841 672.71713220297 1.4628348206264 

t= 7 938.92623373628 653.56618129644 1.4366199791332 

t= 8 893.10120487891 634.96042078728 1.4065462596418 

t= 9 846.58880058869 616.88433016318 1.3723623039100 

t= 10 799.37871023411 599.32283075067 1.3338032012444 

t= 11 751.46046852421 582.26127313687 1.2905898145617 

t= 12 702.82345318866 565.68542494924 1.2424280743166 

t= 13 653.45688262308 549.58145898324 1.1890082388005 

t= 14 603.34981349902 533.93594166801 1.1300041192473 

t= 15 552.49113833809 518.73582186040 1.0650722681087 

t= 16 500.86958304975 503.96841995795 0.99385112879006 

t= 17 448.47370443209 489.62141732186 0.91596014505484 

t= 18 395.29188763516 475.68284600109 0.83099882822820 

t= 19 341.31234358627 462.14107874891 0.73854578024153 

t= 20 286.52310637666 448.98481932375 0.63815767047138 

t= 21 230.91203060890 436.20309306610 0.52936816423240 

t= 22 174.46678870462 423.78523774372 0.41168680068589 

t= 23 117.17486817178 411.72089465740 0.28459781782337 

t= 24 59.023568830946 400.00000000000 0.14755892207737 

Figure 3-2 Depreciation Schedule 
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To determine the numerator of the LV ratios for every month or the 

balance remaining on the loan prior to the payment, a standard amortization 

formula was used [Young 93]: 

Bn=A(1-ßN-n)/i 

where Bn is the balance remaining after the nth payment, A is the monthly 

payment, / is the interest rate, N is the number of months the contract is for, and 

ß equals 1/(1 +/). It was assumed that the borrower repays in a series of equal 

monthly payments. The monthly payment A follows from the standard formula 

[Young 93]. 

A = P- 

i-i ' 
l + i. 

where A is the monthly payment, P is the amount the loan and equals $1200, /is 

the monthly interest rate, and n is the number of payments and equals 24. A 

nominal interest rate of 18% was used which was found to be typical for retail 

furniture loans in most states. The corresponding monthly interest rate is / = 

0.18/12 = 0.015 or 1.5% [Young 93]. The monthly payment came out to be A = 

$59.91. The FORTRAN program shown in Appendix A also calculated the 
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balance at every time period through the life of the loan. The amount shown in 

the "balance" column is the balance owed before that month's payment. 

Given the furniture values and the principal remaining on the loan for 

every month of the contract, the LV ratio for every month was determined. 

Once again, the program in Appendix A calculated these LV ratios for every 

month and is shown in the final column of Figure 3-2. Given these values, the 

curves in Figure 2-1 were used to develop the three probability matrices. The 

averages were taken of the LV ratios for the first six months, the next 12 months, 

and then the final six months. The average ratios for the first six months barely 

exceeded 1.2, which is the upper limit on the x-axis for the curves in Figure 2-1. 

Thus an LV ratio of 1.2 was used for the first six months. For the middle twelve 

months, the average was 1.18, and for the last six months the average LV ratio 

was 0.4583. Using these numbers, the three probability matrices were 

determined and are shown below. 

1st 6 months Middle 12 months Last 6 months 

12   3   4    5 12   3    4    5 12   3   4    5 

1 .75  .04   0     0    .21 1 " .72   .04   0     0     .23 " 1 .67  .03   0     0    .30 

2 .32  .16  .24  .20  .08 2 .35   .18  .21   .17   .09 2 .45  .22  .05  .03  .25 

3 0     0    .02  .98   0 3 .005   0    .02  .97  .005 3 .18  .05  .15  .44 .18 

4 0     0     0     10 4 0      0     0     10 4 0     0     0     10 

5 0     0     0     0     1 5 0      0     0     0      1 5 0     0     0     0     1 

Figure 3-3 Stochastic Process Matrices 
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These transition probabilities are for a 24 month contract, an interest rate of 

18%, a markup on the furniture of 50%, and assuming the salvage value of the 

furniture at the time of default is 50% of the initial value. Note that all of these 

parameters will vary in the experimental design in chapter IV. Probability 

matrices were similarly developed for each of the simulations with different 

parameters. 

The final aspect of this model to be discussed is the calculation of the 

present worth of a series of hoped-for cash flows. Given the probabilities, it is 

easy to run simulations of thousands of contracts in order to simulate their 

payment histories. Throughout the simulation of each individual contract, the 

present worth is maintained as a running total right up to the end of the 

simulation. The reason for this is as follows: if you run a simulation of a contract 

and find that it defaulted on the 10th payment and you did not continuously 

update the present worth after every payment, you would not know if the first 

nine occurred on time, or if one or more payments were late. Therefore, after 

every transition to the same or different state in the Markov process, the present 

worth must be calculated. It will be assume that all payments are received at 30 

day increments. The cumulative present worth will be added in the fashion 

described in Table 3-1. 

The formula column of this table represents that which is added to the 

cumulative present worth for a specific contract as this contract progresses 
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through the simulation,   t represents the month the contract is currently in 

during the simulation and 0 = 1/(1+/), /being the monthly discount rate at the 

minimum attractive rate of return (MARR). For example, if the contract remains 

Table 3-1  Present Worth Formulas 

Leaving State ^ityiL^-'.^-ifci 
A^\.\.                 ■ '-Mil'-•:>*'•,              •$*:§ 

1 1 + (59.91)0* 
2 + 0 
3 zero probability 
4 zero probability 
5 + balance(month) 0* 

2 1 '+2(59.91)0* (if 30 days late) 
1 + 3(59.91)0* (if 60 days late) 

2 + 0 (if 30 days late) 
2 + (59.91)0* (if 60 days late) 

3 + 0 
4 + (X- 400) jS* (if recoverable) 
4 - 200ßx (if not recoverable) 
5 + balance(month) ß{ 

3 1 +(time in state 3 + 3)*(59.91)0t 

2 + (time in state 3 + 1 or 2) x 
(59.91)0* 

3 + 0 
4 + (X-400) ß^liTrecoverable) 
4 - 2000* (if not recoverable) 

5 + balance(month) 0* 
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in state 1, the current state, the payment calculated earlier of $59.91 will be 

discounted by the number of months t, which is the month the payment is made 

in and added to the cumulative present worth for that contract. If the borrower 

goes from being current to being delinquent, state 2, nothing is added to the 

cumulative present worth for that contract because no money is received. Note 

that there is a zero probability of moving from state 1 to states 3 or 4 because 

the contract must first become 30 days late, state 2. The final possibility of 

moving from state 1 is to state 5 where the balance of the loan is paid off and 

then discounted to the present. 

If a contract moves from state 2 to state 1, two payments may be made if 

the contract was 30 days late, or three payments may be made if the contract 

was 60 days late; a contract is only in state 2 if it is 30-89 days late. The 

number of payments made to catch up, either two or three, are then discounted 

and added to the cumulative present worth for that contract. A similar scenario 

occurs when the contract remains in state 2.   If the contract moves to state 3, no 

payment is received.   If the contract moves from state 2 to state 4, i.e. it 

becomes defaulted, the furniture may or may not be recoverable. If it is 

recoverable, then the depreciated value of the furniture, X, is received minus 

legal and repossession fees of $400 and then is discounted. The repossessed 

furniture was assumed to be worth the amount of the depreciated value at the 

time of the default; a 50% chance of recovering the furniture was also assumed. 

Of course depending on how well the borrower takes care of the furniture, the 
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furniture may be worth more or less. If the furniture is not recoverable, then 

$200 was spent on the attempt at recovery and then this fee is discounted. The 

$200 and $400 are estimates [Koonce 96]. 

For contracts moving from state 3 to state 1, the number of payments 

discounted will be the number of months in state 3 plus three more payments 

that will make the contract current. If the contract moves from state 3 to state 2, 

the number of payments discounted will be the number of months in state 3 plus 

one or two payments. The reason for this is because a contract in state 2 can be 

either one or two payments late. A 50/50 chance was assumed in the simulation 

of being one payment late. A final assumption made during the simulation was 

that when a contract remained in state 3, no payment was made. In other words, 

it is not possible to go from 180 days late to 150 days late; once a contract is in 

state 3, it either becomes more late or it is paid enough so that it moves to state 

2. Finally, states 4 and 5 are absorbing states and so are not depicted in the 

'leaving state' column. After these simulation runs, the average present worth of 

the contracts was calculated. 

The FORTRAN program which simulated the contracts and implemented 

the present worth calculations in Table 2 is shown in Appendix B. This program 

utilized a random number generator developed by Marse and Roberts and 

modified by Law and Kelton [Law, 91]. Law and Kelton tested this generator with 

much success and noted that the period is 231 - 1 [Law, 91]. The maximum 
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possible numbers that the program in Appendix B could use is 116,640,000, well 

below the period of the generator. 

After performing some initial simulation runs with the probability matrices 

shown in Figure 3-3, the results were checked to see if they made sense in the 

furniture industry. Koonce pointed out that only 2-3% of loans are paid off early 

compared to the near 50% in the results which used the mortgage industry data 

[Koonce, 97]. The reason the mortgage industry data had such a high number of 

paid off early contracts is probably because with home mortgages, many of the 

loans are either refinanced or the homes are sold. Both of these factors may 

have counted in the data of Lawrence, Sanchez, and Smith as being paid off 

early. Obviously, this does not happen in the furniture industry. 

Koonce also noted that there is a 3-5% chance of default on any given 

loan [Koonce 97]. Once again, the results of the initial simulation runs produced 

too many defaulted loans which meant that the probability of default is much 

higher in the mortgage industry than in the furniture industry. A final point 

learned from Koonce was that once a payment is late, there is around a 50/50 

chance of that payment becoming current depending on how late the payment is 

[Koonce 97]. This means that if a contract is in states 2 or 3, there is a 50% 

chance of the contract becoming current during the next month or moving to 

state 1. Of course, the later a payment is, the lower the chance of the contract 

becoming current. This 50% probability is a lot higher than the probabilities of 

moving from states 2 or 3 to state 1 in the mortgage data as shown in Figure 3-3. 
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With these facts a new set of probability matrices was formulated that 

more accurately depicts the furniture industry loans. These matrices, which still 

use many of the basic assumptions and probabilities of those in Figure 3-3, are 

shown in the figure below. The primary changes are that there is a much lower 

chance of paying off the loan i.e., moving from any of the first three states to 

state 5, and a much higher probability of becoming current once late. 

1st 6 months Middle 12 months Last 6 months 

1      2     3 4 5 12    3     4    5 12    3    4     5 

1 .979 .0195   0 0 .0015 1 .981  .018   0      0     .001 1 .979 .0195   0      0     .0015 

2 .715    .10    .10 .084 .001 2 .726   .10   .09 .083 .001 2 .715    .10    .10 .084   .001 

3 .32     .20    .30 .18 0 3 .35    .19   .29   .17     0 3 .32     .20    .30   .18      0 

4 0       0      0 1 0 4 0       0      0      10 4 0        0       0      10 

5 0       0      0 0 1 5 0       0      0      0       1 5 0        0       0      0        1 

Figure 3-4 Revised Stochastic Process Matrices 

Initial simulation runs with this data produced much more realistic results for the 

furniture industry. Thus the stochastic processes described in Figure 3-4 will be 

the best estimation of how loans are repaid in the furniture industry. There is no 

claim, of course, that this model is accurate for furniture loans. However, after 

having been calibrated to yield the appropriate default rates, early paid-off rates, 

and late-to-current rates, it does provide the basis for generating simulated 

payment histories that appear reasonable in furniture lending. 
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If one was able to collect data on the repayment of loans in the furniture 

industry, it should be collected in the following manner. For each loan a record 

should be kept on the timing of each payment. This record would intrinsically 

include: if and when payments were late; if and when these late payments 

became current; and if the contract defaulted, the timing of the default. Using 

this record, the present worths of each of the contracts can be calculated at a 

desired MARR, markup, salvage value, length, and at a particular interest rate 

charged. Note that all of the parameters pertain to the lender and the contract, 

none to the borrower. All characteristics of the borrower that might have an 

impact on the probability matrices have been excluded in this analysis because 

of the lack of data pertaining to these characteristics. 

As will be explained in the design of the experiment in the next chapter, 

the five parameters mentioned in the preceding paragraph can be varied in order 

to formulate an accurate model for selecting the interest rate to charge where the 

present worth is zero. Because the variation of these parameters is discussed in 

chapter IV, it will suffice to say here that a lender could collect data on perhaps 

100 loans to provide a sufficient database to form a good model. 

Referring to David Caplovitz's findings discussed in Chapter II, there are 

five characteristics of a borrower that can predict the likelihood of default: 

income, education, age, ethnic background, and location [Caplovitz 74]. Even 

better data for this research would be if one could keep records on the contracts 

with the five varying parameters as discussed in the preceding paragraph, and 
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then also maintain for each of those borrowers the values of Caplovitz's five 

characteristics. In order that the data might cover the full range of possibilities of 

Caplovitz's traits, data would have to be kept on several hundred loans. These 

traits could become potential predictor variables to be added to the model if they 

were found to be significant. 

3.2 Proof of the Existence of a Face Interest Rate f to Make a Loan Profitable 

at an Interest Rate of / 

The following theorem will now be proven. 

Theorem: If the probability of every payment is positive, then a face interest rate 

f exists such that the loan is profitable at an interest rate of /. 

Proof: 

Definitions: 

- the MARR for a non-risky investment is represented by /and ß equals 

1/(1+/). 

- standard loan is a series of cash flows {A0, A?,..., An} where A0< 0 and 

At =A>0, ~\<t<n, where A is the hoped for repayment amount. 

- /is the substitute interest rate or the interest rate on the loan for a risky 

investment. Then the payment A required is 
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A = \Mf 
f    1    Y 

vi + /y 

Now the expected present worth of the loan at a monthly nominal MARR of /, 

where K, is the probability that the repayment of amount A due at time f will be 

paid at time t, otherwise never, is given by the following equation: 

E(P)=-\Ao\ +A{niß + 7t2ß 2 +...+7tnß
n) 

If E(P) > 0, this implies: 

A>- 
\Ao\ 

7r^ + n2p
2+...+Kjn 

Since all probabilities are greater than zero, the denominator of the above 

equation is also greater than zero, which implies that A is greater than some 

constant C where 

C = 
\Ao\ 

7Cj + K2P
2+...+7tJ" 

This in turn implies that given \Ao\ and n, LIM Af_^ oo —\ "' = \A»\f = °o 

1- 
f   1   A 
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Therefore, since A can be made arbitrarily large by setting /sufficiently large, 

E(P) can be made positive. The loan can be made profitable by setting /high 

enough. 

End of Proof. 

In Section 3.1, the goal was to determine the expected present worth of a 

series of hoped-for cash flows using the detailed model which was developed. 

This was done by performing many simulation runs using the probability matrices 

shown in Figure 3-4, then finding the average of these present worths. The next 

step is to calculate the new face interest rate f that will give a present worth of 

zero for these contracts involving risk. 

3.3 Geometric Risk Model 

A much simpler model than the stochastic process just developed for 

finding the expected present worth of a series of hoped-for cash flows is the 

geometric risk model [Young, 93]. Being a one-parameter model, the geometric 

risk model is not rich enough to provide a basis for the loan pricing model 

described in the preceding sections. However, it is of theoretical interest 

because it provides an average default rate over the life of the loan. This default 

rate is an integral of the time-varying default rates in the sense that a constant 

default rate q expresses the varying default rates independently of interest rates. 

The geometric risk model contains a single parameter, q, which is the 

equivalent constant conditional probability of default for each period in the life of 
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the loan. Let p = 1 - q, where p is the conditional probability that default does 

not occur. When a payment occurs, q is the conditional probability that no 

further payment will occur. Consider the following series of hoped-for cash flows 

{A{. t= 0,...,h], where there is a risk q at each time period that no further 

payments will occur: 

pA2 O Here q is constant. As mentioned 

V earlier, this is not the case in reality, as default 

pAi        Q ► probabilities will vary with time. 

A, a 
w 

Figure 3-5 Geometric Risk Model 

The credit manager considers that the payment A0 is certain to occur (this is the 

negative cash flow; in the furniture-credit context it represents the delivery of 

furniture to the customer, less the down payment, if any), but that the payment at 

time t = 1 has a probability p of occurring so the expected value of this cash flow 

is pAi. The conditional probability of the payment at t = 2 occurring, given that 

the payment at f = 1 did occur, is p2. The expected payment at time t is pfA and 

the expected present worth of a set of hoped-for payments under geometric risk 

is 
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E(F)=  2  PtAtß* 
r=0 

where n is the number of payments and ß = , /is the interest rate charged, 
1 + / 

and A is the constant monthly payment [Young, 93]. Now if a loan L was found, 

justified by the {A}, {p), and {ß) such that 

L = E(P)= 2 ptAtß pmp 
r=0 

a substitute interest rate /could then be found so that 

1=1 t=\ 

where a = . This then becomes a rate of return calculation in solving for f. 
1 + / 

It will now be shown that any expected present worth of a series of hoped- 

for cash flows using a model of the probabilities of receiving future cash flows 

can be found using the simple geometric risk model. Once the face interest rate 

/has been determined, the geometric risk parameter gcan be calculated. 

41 



implies that a' = pß' for all t. This in turn implies that pt = pl and a' = p'ß'. 

a                                          11 
Finally, p = — , where p = 1- q, a = , and ß = —:. Knowing f, which was 

just determined, and /, the monthly nominal MARR, q can be solved for: 

1    1 + / 4 = 1-- 
1 + / 

Recall that an expected present worth of zero implies that 

\Ao\ =Afaß+P2ß2 +...+Pnj3n) 

This now equals A(P/A,f,n), where as shown above, pß = a = -—-. 

A calculation has now been shown that will determine a single value of q 

that represents the 75 different probabilities shown in Figure 3-4. Given a model 

that can predict q and also given a MARR, a lender can easily determine a face 

interest rate to charge that will result in an expected present worth of zero by 
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using q = 1—— and solving for f. This rate would represent the floor on how 

low of a rate the lender can charge and still be profitable. 

The three quantities /', /, and q are related by the formula: 

1+/ =(1 +/)(1 -q)- 

Any two of the three quantities could represent the overall relationship of risk to 

interest rate. Since /and /represent, respectively, MARR and the interest rate 

for a loan, they are more intuitively meaningful to a furniture lender than is q. 

Therefore, qr will not be explicitly used in the loan pricing computations to follow. 
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CHAPTER IV 

Loan Pricing Model Computation 

4.0 Overview 

The goal in this chapter is to develop a simple loan pricing model from a 

desired rate of return and from a loan's repayment behavior. This repayment 

behavior will be simulated by the detailed probabilistic model described in 

chapter III. In the first section of this chapter the experimental design is 

developed. A model of interest rates to be charged will be based on the 

following parameters: MARR, length of the loan, salvage value, markup, and 

present worth. The experiment will follow the logic flow chart in Figure 4-1 on the 

following page. A Monte Carlo simulation will yield the present worths of 

numerous contracts. The loan interest rate will be then be regressed against five 

parameters: present worth, length, MARR, markup, and salvage value. Once 

this regression equation is obtained, the interest rate to charge a borrower where 

the expected present worth is zero will be found by setting the present worth in 

the regression equation equal to zero and substituting the remaining parameters 

for a given loan. 

If data was available for actual loans, the initial part of the experiment 

could be bypassed and the present worths from these contracts could 
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immediately be calculated. The final section of this chapter will evaluate and 

validate the regression model in selecting the f, the face interest rate to be 

charged. 

Detailed Probabilistic 
Model 

(optional) 

Actual Loan 
Histories 

Parameters 

(Length, MARR, Salvage Value, 
Markup, and interest rate) 

Monte Carlo Simulation 

I 
Find the Present Worths of 

Numerous Contracts 

I 
Develop a Model for Selecting the 

Interest Rate to Charge 

I 
From Model, Determine the 

Interest Rate where the PW = 0 

Figure 4-1 Logic Flow for Experiment 

4.1 Design of Experiment 

In designing this experiment, the central composite design (CCD) 

procedure was utilized. This method was used because there is not as much 

concern about the particular levels of each of the parameters of the model as 

there is about the response surface for the PWs the parameters create. The 
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CCD is a very efficient design in situations that call for a nonsequential batch 

response surface experiment [Myers 95]. For any given CCD design there are 

two parameters: a, the axial distance, and nc, the number of center runs. 

Initially, there were four different parameters in the model: the face interest rate 

charged, the length of the contract, the markup on the furniture, and finally, the 

salvage value of the furniture. nc, was chosen to be 3 and a equaled 2 from the 

equation below [Myers 95]: 

a = (2kf4 

where k equaled 4, the number of parameters in the model. In order for a 

regression model to be good over a certain region, the boundaries for each of 

the parameters have to be set. These boundaries and the area of interest are 

shown in Table 3. 
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Table 4-1 Area of Interest 

CCD -2 -1 0 1 2 

x1 (monthly 

f) 

.0125 .01375 .015 .01625 .0175 

x2 (length) 12 18 24 30 36 
x3 (sal val) .30 .40 .50 .60 .70 

x4 
(markup) 

.40 .45 .50 .55 .60 

middle of region 
of interest 

As expressed in the table above, x1 is the monthly face interest rate to be 

charged. These numbers correspond to nominal annual rates of .15, .165, .18, 

.185, and .21. The CCD design then becomes as shown in Table 4-2 on the 

following page 

4.2 Calculation of the Expected Present Worth Using the Detailed Model 

For each of the 27 points listed in Table 4-2, the FORTRAN program in 

Appendix B simulated 10,000 contracts using the probability matrices in Figure 

3-4 and calculated an average present worth. Initial analysis indicated that 

perhaps a fifth predictor variable, the MARR, should be added to the model in 

order to increase the predictability of this model. The CCD design for four 

parameters was not redone to account for the fifth parameter. Instead, the 27 

runs from Table 4-2 were executed for each of the MARRs in the area of 

interest. This area of interest varied from annual nominal rates of 12% to 21%. 

47 



Table 4-2 Central Composite Design 

X1 
Interest 

Rate 

X2 
Length of Loan 

X3 
Salvage Value 

X4 
Markup 

center pts .015 24 .5 .5 
.015 24 .5 .5 
.015 24 .5 .5 

axial pts .0125 24 .5 .5 
.0175 24 .5 .5 
.015 36 .5 .5 
.015 12 .5 .5 
.015 24 .7 .5 
.015 24 .3 .5 
.015 24 .5 .6 
.015 24 .5 .4 

factorial pts .01625 30 .6 .55 
.01375 30 .6 .55 
.01625 18 .6 .55 
.01625 30 .4 .55 
.01625 30 .6 .45 
.01375 18 .6 .55 
.01375 30 .4 .55 
.01375 30 .6 .45 
.01625 18 .4 .55 
.01625 18 .6 .45 
.01625 30 .4 .45 
.01375 18 .4 .55 
.01375 18 .6 .45 
.01375 30 .4 .45 
.01625 18 .4 .45 
.01375 18 .4 .45 

Therefore, the runs in Table 4-2 were performed at a MARR of 12%, 15%, 18%, 

and 21 %, for a total of 108 runs. A CCD for five parameters would only give 45 
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different runs. Thus, by not redoing the CCD for five parameters, there was 63 

more data points. As long as a fair amount of spread exists among the data 

points, more data points gives smaller variances of the estimated regression 

coefficients in the model. The CCD ensures this spread and thus lower 

variances should result. 

The results for the first 27 runs with a MARR of 12% are shown in Table 

4-3. The loan amount was $1200 in all cases. The annual and monthly interest 

rates are nominal. 

4.3 Determination of a Model for the Interest Rate to be Charged 

As shown in Figure 4-1, after obtaining the average present worths from 

the simulation runs, the goal was to determine a model for selecting the interest 

rate to charge, given the following five parameters: MARR, present worth, the 

length of the contract, and the salvage value and markup of the furniture. With 

this model a lender could select the best interest rate f to charge that would give 

a present worth of zero at MARR. Under normal CCD procedures, the response 

surface just created, for present worth in this experiment, would be the variable 

for which a regression equation is formed. Since the objective of this experiment 

is to find f, the regression equation is formed for f, using the present worth values 

that were just determined from the CCD. Using the Minitab statistical software 

package, the Best Subsets routine was utilized to determine the best fit model. 
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This routine explored best fits for different combinations of the five parameters 

with their higher orders and their higher order interactions. 

Table 4-3 Experimental Results 

Run Pay- annual monthly Length Sal Val Markup monthly PW 

ment f f % % MARR 

1 59.91 0.18 0.015 24 0.5 0.5 0.01 5.56 
2 59.91 0.18 0.015 24 0.5 0.5 0.01 4.02 

3 59.91 0.18 0.015 24 0.5 0.5 0.01 5.09 
4 58.18 0.15 0.0125 24 0.5 0.5 0.01 -32.89 
5 61.66 0.21 0.0175 24 0.5 0.5 0.01 40.39 
6 43.38 0.18 0.015 36 0.5 0.5 0.01 43.38 
7 110.02 0.18 0.015 12 0.5 0.5 0.01 8.8 
8 59.91 0.18 0.015 24 0.7 0.5 0.01 4.92 
9 59.91 0.18 0.015 24 0.3 0.5 0.01 1.31 
10 59.91 0.18 0.015 24 0.5 0.6 0.01 3.2 
11 59.91 0.18 0.015 24 0.5 0.4 0.01 0.95 
12 50.86 0.195 0.01625 30 0.6 0.55 0.01 23.65 
13 49.09 0.165 0.01375 30 0.6 0.55 0.01 -15.45 
14 77.43 0.195 0.01625 18 0.6 0.55 0.01 20.54 
15 50.86 0.195 0.01625 30 0.4 0.55 0.01 20.47 
16 50.86 0.195 0.01625 30 0.6 0.45 0.01 27.88 
17 75.72 0.165 0.01375 18 0.6 0.55 0.01 -9.2 
18 49.09 0.165 0.01375 30 0.4 0.55 0.01 -19.96 
19 49.09 0.165 0.01375 30 0.6 0.45 0.01 -15.09 
20 77.43 0.195 0.01625 18 0.4 0.55 0.01 17.74 
21 77.43 0.195 0.01625 18 0.6 0.45 0.01 17.61 
22 50.86 0.195 0.01625 30 0.4 0.45 0.01 26.18 
23 75.72 0.165 0.01375 18 0.4 0.55 0.01 -12.45 
24 75.72 0.165 0.01375 18 0.6 0.45 0.01 -10.1 
25 49.09 0.165 0.01375 30 0.4 0.45 0.01 -18.47 
26 77.43 0.195 0.01625 18 0.4 0.45 0.01 19.96 
27 75.72 0.165 0.01375 18 0.4 0.45 0.01 -7.08 
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The factors in deciding which model to select from the set of Best Subsets were 

the following: a high F? (adj) with as few variables as possible; a small Cp value 

that corresponds to the number of variables in the model; and finally, low 

variance inflation factors (VIF); low is considered below 10 [Neter, 96]. F? 

measures the proportionate reduction of total variation in f with the use of a 

particular set of variables [Neter 96]. F? (adj) adjusts F? by dividing each sum of 

squares by its associated degrees of freedom; adding more variables to the 

model won't necessarily then increase the F? (adj) [Neter 96]. Cp is an estimator 

of the total mean squared error [Neter 96]. The VIFs measure how much the 

variances of the estimated regression coefficients are inflated as compared to 

when the predictor variables are not linearly related. The best model came out 

to be the three variable model which included the length of the contract, the 

present worth, and an interaction term consisting of the MARR and the length. 

This model can be seen in the regression analysis in Figure 4-2 on the following 

page. 

Before proceeding further with the regression analysis, the normality 

assumptions of the linear model were verified using the residual model 

diagnostics program in Minitab. The data was then checked for outliers. Since 

no studentized deleted residuals exceeded the Bonferoni critical value, which for 

this experiment equaled 3.373, no /values were considered to be outliers [Neter, 

96]. Several of the X value data points were found to be outlying by looking at 

the hat matrix for the data. This was because several exceeded the rule of 
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thumb value, defined to be equal to 2(p)/n, where p is the number of parameters 

to include the intercept term in the model and n is the number of points [Neter, 

96]. To see if these outlying points were influential in the model, the DFFITS and 

Cook's Distance were calculated for each; all points barely exceeded the 

justifiable values for DFFITS and Cook's Distance and thus were assumed not to 

be influential [Neter, 96]. The three variable model was: 

f= .0149 -(0.000388 x length) + (0.00007 x PW) + (0.0385 x MARR x length) 

The regression equation is 

f = 0.0149 ■0.000387 length +0.000070 PW + 0.0384 MAR-len 

Predictor Coef               Stdev t-ratio        p VIF 
Constant 0.0148637       0.0001162 128.08    0.000 
length -0.00038730   0.00001145 -33.82     0.000 5.9 
PW 0.00006978    0.00000162 42.09     0.000 6.8 
MAR-len 0.0384051       0.0009713 39.54     0.000 14.4 

s = 0.0002776   R-sq = 94.7%     R-sq(adj) = 94.5% 

Analysis of Variance 

SOURCE DF       SS MS F P 
Regressior i     3          0.000142044 0.000047348 618.92 0.000 
Error 104      0.000007956 0.000000077 
Total 107      0.000150000 

SOURCE DF        SEQ SS 
length 1           0.000000000 
PW 1           0.000022451 
MAR-len 1           0.000119593 

Figure 4-2 Regression Analysis for the Three Variable Model 
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where again /is the monthly interest rate that should be charged for a given 

contract length, minimum monthly attractive rate of return, and present worth. 

This equation makes intuitive sense in that the higher the present worth, the 

higher / that must be charged to obtain that present worth. The interaction term 

between the MARR and length can be explained as follows. The higher the 

MARR, the higher the f needed to charge the borrower in order to obtain that 

MARR. The longer the length of the contract, the greater the chance of a default 

during the life of the contract. Thus the longer the length, the higher the / 

needed to be charged to compensate for that higher risk.   The result is the 

positive interaction term. The negative coefficient on the length term serves as a 

damper on the effect of the length in the interaction term. Notice how this 

coefficient is much smaller than the interaction term. 

In order to determine the interest rate that should be charged to break 

even with a present worth of zero, the present worth variable in the above 

equation is set to zero. Thus, the equation for selecting the interest rate / to 

charge a borrower based on a contract length and MARR is: 

/= .0149 - (0.000388 x length) + (0.0385 x MARR x length) 

4.3.1 Evaluation of the Estimation Model 

The regression analysis output from Minitab for the three variable model 

was shown above in Figure 4-2. The adjusted coefficient of multiple 
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determination, denoted by /^(adj), is very high with a value of 94.6%. This value 

would be much lower if 1,080,000 present worths were used in the model instead 

of the 108 present worths, each of which were an average for 10,000 contracts. 

The VIFs are acceptable; a value over 10 indicates that multicollinearity may 

exist for that variable [Neter, 96]. The interaction term in Figure 4-2 has a VIF of 

14.4, but since this is an interaction term, multicollinearity problems would be 

expected. Ideally, the CCD should have resulted in VIFs that were zero because 

of the orthogonality of the design. This probably did not happen because the 

design was formed to regress against PW, not /, as was done in this experiment. 

The standard deviation for this model is 0.0002776, which means that the 

monthly interest rate that was selected from a given set of parameters can be 

expected to vary by 0.02776% or annually by 0.33%. The test for whether or not 

there is a regression relation between the response variable fand the set of 

variables is the F test. For this test, the following hypothesis is tested: 

H0: j3i=j32=j33 = ...=jVi 

Hi: notalljßk(k=1,"-,p-1) equal zero 

As can be seen by the large F-statistic of 618.92 calculated in Figure 4-2 by 

Minitab, the null hypothesis will be rejected in favor of the alternate hypothesis. 

Thus there appears to be a regression relationship between this set of variables 
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and f. As noted by the p-value, this rejection would occur at the 99.999% 

confidence level. 

As shown by the regression equation, the salvage value and markup of 

the furniture are not significant in selecting f. If one wanted a model with more 

predictive power or with a higher fl^adj), he might choose the 8 variable model 

shown in Figure 4-3 on the following page. As can be seen, with the addition of 

five variables this model has an F?(ad\) of 97.1. Once again, if a lender wanted to 

determine an interest rate to charge, he would utilize the regression equation in 

Figure 4-3 substituting in all applicable values to include a present worth of zero. 

A purpose of the CCD is to keep the coefficients of quadratic terms from 

being negatively impacted by higher order terms. Since the resulting regression 

equation had no quadratic terms, a simple five factor factorial design could have 

been used instead of the CCD. This factorial design would have resulted in less 

simulation but should not have produced different results. 

4.3.2 Validation of the Estimation Model 

In order to validate this model, 10 other data points were found and 

applied to this model. The mean squared prediction error (MSPR) was 

calculated to be 7.7838E-7. This is a little greater than the mean squared error 

(MSE) for the model of 7.935E-6, showing that the predictive ability of this model 

is good and that the MSE for the selected regression model is not seriously 

biased [Neter 96]. 
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The regression equation is 

f = 0.00724 • f 0.537 MARR(mo) +0.000108 pw -0.000004 len**2 + 0.0171 MAR-len 
-0.000000 pw "2 -0.000002 pw-len - 0.00136 sal-mrk +0.000063 len-mrk 

Predictor Coef Stdev t-ratio P VIF 
Constant 0.0072385       0.0002954 24.50 0.000 
MARR(mo) 0.53684           0.03564 15.06 0.000 26.8 
pw 0.00010818    0.00000340 31.86 0.000 57.2 
len**2 -0.00000393   0.00000035 -11.15 0.000 25.2 
MAR-len 0.017073         0.001455 11.73 0.000 61.7 
pw**2 -0.00000004   0.00000001 -3.79 0.000 7.3 
pw-len -0.00000162   0.00000013 -12.93 0.000 63.8 
sal-mrk -0.0013611      0.0004047 -3.36 0.001 1.2 
len-mrk 0.00006287    0.00001831 3.43 0.001 8.4 

s = 0.0002001    R-sq = 97.4%     R-sq(adj) = 97.1% 

Analysis of Variance 

SOURCE DF SS MS F P 
Regression 8 0.000146036 0.000018255 455.96    0.000 
Error 99 0.000003964 0.000000040 
Total 107 0.000150000 

SOURCE DF SEQSS Description 
MARR(mo) 0.000000000 monthly nominal MARR 
pw 0.000083263 present worth 
len**2 0.000031532 length of contract squared 
MAR-len 0.000024380 monthly nominal MARR x length 
pw**2 0.000000003 present worth squared 
pw-len 0.000006213 present worth x length of contract 
sal-mrk 0.000000173 salvage value x markup on the furniture 
len-mrk 0.000000472  length of the contract x markup 

Figure 4-3 Regression Analysis for the Eight Variable Model 
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CHAPTER V 

Conclusions and Recommendations 

5.0 Overview 

In this final chapter conclusions will be drawn about the Markov model 

and the simple regression model developed and then recommendations will be 

made concerning issues surrounding these models. Specifically, the first section 

of this chapter addresses issues concerning the two models, the Markov model 

and the regression model, in retail furniture loan pricing. It also discusses how 

the model measures against some evaluation criteria for regression models 

currently used in the literature. The next section summarizes the author's 

recommendations surrounding this research to improve the usefulness and 

accuracy of the regression model. Finally, the last section recommends future 

work that can be accomplished in retail furniture loan pricing. 

5.1  Conclusions 

In chapter II it was showed that there are few pricing techniques that 

incorporate risk in the lending industry. The goal in this research was to provide 

a simple model for the credit manager that could calculate an interest rate that 

would allow him to break even on a given loan that possesses risk. The rate at 

which the expected present worth for a risky loan is zero at the lender's risk-free 
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MARR is the break-even interest rate; this rate is the lowest rate the credit 

manager could charge and expect a profit, or at this rate, the manager can 

expect the same profit as for a risk-free loan at MARR. 

5.1.1 Markov Model Formulation 

The Markov process discussed in this thesis was a stand-in for whatever 

stochastic model would satisfactorily represent furniture-lending risk. Any such 

stochastic model would be based on conditional probabilities and would not be 

workable as a simple model for lenders actually to use in day-to-day operations. 

This version of the model was selected because it could use the only lending 

data that was available in the literature, which was for the mortgage industry. It 

was assumed that borrowers in the furniture and mortgage industry behave 

similarly. The mortgage-lending data was disaggregated somewhat so that it 

would be more representative of furniture-lending data. The results were 

simulated payment histories or furniture loans. 

With respect to the Markov model, the following conclusions can be 

drawn. The state definitions have the disadvantage that the times of transitions 

from one state to another do not exactly determine the timings or numbers of 

payments. The states would have been able to give a better representation of a 

repayment schedule if instead of state 2 being 30-89 days late, it consisted of 

two different states, one for 30 days late and one for 60 days late. This would 

eliminate the necessity for the assumption that when a contract moved from 

states 3 to 2, there was a 50/50 chance of being one or two payments late. 
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Another improvement in the Markov model would be the following: instead 

of state 3 being 90+ days late, it would be better if there was a state for each 

additional month the payment was late over 90 days up until when the loan is 

characterized as defaulting. An example would be if a loan were characterized 

as being defaulted in its sixth month of being late, there would be six states 

instead of the one state used in the model. This would eliminate the necessity 

for another assumption: if a contract remained in state 3, no payment was made. 

With this improvement in the model, it would be possible for a contract to go from 

say 5 months late to three months late by making three payments, one for the 

current month, and two payments to catch up. 

5.1.2 Regression (Simple) Model Formulation 

As shown in the previous chapter, the final model which recommended to 

a credit manager is of the form: 

f = .0149 -(0.000388 x length) + (0.0385 x MARR x length) 

where /is the monthly nominal interest rate the credit manager should charge 

based on a given monthly nominal MARR and contract length. This regression 

model extracts the data very well from the collection of simulated payment 

histories as shown by the following statistics. The adjusted coefficient of multiple 

determination, denoted by /^(adj), was very high with a value of 94.6%. 

Although a large value for /^(adj) does not necessarily imply that the fitted model 
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is useful, the fact that it is high and the MSE is extremely small implies that 

inferences using this model may indeed be useful. Additionally, the standard 

deviation for this model was 0.0002776, which means that the monthly interest 

rate that is selected from a given set of parameters can be expected to vary by 

only 0.02776% or annually by 0.33%. Finally, the results showed that the 

smallest level of significance that would lead to the rejection of the null 

hypothesis (there was no regression relation between the response variable f 

and the set of variables) was a p value of 0.000. In other words, at any level of 

significance the null hypothesis would be rejected and it would be assumed that 

the set of variables has a regression relation with f. 

The salvage value and markup of the furniture, which were originally 

thought to be significant parameters in the model, were not significant in 

selecting f. 

An obvious advantage of this regression model is that it gives a simple 

formula for computing the interest rate a lender must charge in order for the 

expected present worth to be zero. A furniture credit manager can use this 

simple formula if he assumes that his borrowers behave as those do in the 

detailed probabilistic model. If he does not want to make this assumption, but 

would prefer to formulate his own simple model, he should follow the data 

collection process outlined in chapter III and also follow the same steps in finding 

the best equation. 
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A disadvantage of this model is that loans would have to be made at 

various parameters in order to create an appropriate representative response 

surface of present worths. It could be costly to make loans having yields below 

MARR, and difficult or illegal to make loans having yields above MARR. Another 

disadvantage of this simple model is that it is based only on information about 

the contract and not on information about the borrower. Obviously, certain 

qualities of the borrower will have an impact on the borrower's probability of 

defaulting. Such qualities as those mentioned by Caplovitz in chapter II and 

many others may result in significant predictor variables. These qualities can 

lead to subjective evaluations of the borrower; several of the models discussed 

in the second chapter were based on these subjective evaluations. This model 

is then applicable to those lending scenarios where lenders are prohibited from 

making subjective evaluations and can only use information pertaining to the 

contract for their decision as to which interest rate to charge. 

Finally, since the data points used in this design were averages, this 

simple model selects the interest rate for the average borrower. If a prospective 

borrower is much different than the average borrower in that he has higher or 

lower transitional probabilities, the interest rate selected by this model may result 

in a much higher or lower present worth for the given contract. 

5.1.3 Data Available 
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The greatest deficiency of this research was the lack of data pertaining to 

default probabilities for the furniture industry. As noted in chapters II and III, the 

only data available in the entire lending industry that pertained to default 

probabilities was for home mortgages. Data should be collected in the following 

manner: for each loan a record should be kept on the timing of each payment. If 

feasible, these records should be tracked by income, education, age, ethnic 

background, and location. 

5.2 Recommendations 

In order for more accurate research to be performed on this topic, data 

must be a collection of complete payment histories. These payment histories 

would be the amounts and timings of each repayment, exactly the same data 

that the simulation generated from the Markov model. Specifically then, the 

recommendations for data collection are as follows: 1) keep repayment records 

on actual loans as described in chapter III; 2) negotiate loans with longer and 

shorter lengths than the usual 24 month loan, and higher and lower markups, 

salvage values, and face interest rates (the MARR can be artificially varied since 

it influences repayment behavior only through the face interest rates and 

markup); 3) maintain a record for each of these loans of the income, education, 

age, ethnic background, and location of the borrower; 4) formulate a regression 

model in a similar fashion as performed in this thesis and then produce a simple 

formula; and finally 5) determine face interest rates using this formula. 
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5.3 Future Work 

The first recommendation for further research on this topic is the 

appropriate data collection in the form of complete payment histories. Such data 

would assist the researcher in searching for additional predictor variables for the 

interest rate. This research began with five potential predictor variables, the 

length of the loan, the MARR, the salvage value and markup on the furniture, 

and the present worth of the contract, all characteristics of the loan and lender. 

Certainly, there are other predictors relating to the borrower, particularly those 

characteristics found by Caplovitiz. If data collection is not feasible, then 

perhaps the stochastic model developed in this thesis could be modified to 

account for these other predictor variables. 

A final recommendation for future work pertains to the simple geometric 

model discussed in chapter III. It has been shown that with this model, a one 

parameter model can give the exact expected present worth as the model 

developed with 75 parameters. Further research might find a method of 

estimating this one parameter, q, which then can be used to find the interest rate 

Ho be charged given the equation: q = 1 , where /is the MARR. While / 

and f have to do with the decision maker and his reaction to customer behavior 

respectively, q is a measure of customer behavior alone. Knowing q might have 

some utility in comparing situations for decision makers with varying /or MARR. 

The lender can easily determine what the face interest rate for any MARR being 
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considered should be so that the expected present worth will be zero. If capital 

was limited for the lender, he might choose to lend to a customer with a lower q. 

Finally, since the geometric risk model can give the exact expected 

present worth of the detailed model, the credit manager could use the geometric 

risk model in determining the expected present worths of various types of 

contracts at different face interest rates. All he would have to is to estimate the 

single parameter q, and not have to analyze the many different profitability 

factors that may be involved. 
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APPENDIX A 

DEPRECIATION FORTRAN PROGRAM 

program geometric 

* Description: The following program calculates three different variables: 
* the balance on a loan after every payment has been made; the value 
* remaining on the furniture for every month; and finally, the loan/value 
* ratio which is the quotient of these two. Double precision arithmetic 
* was used to ensure that the formulas being used were accurate. 

Variables: 

Type Name 
double precision dvalue(38) 
double precision dq 
double precision dbalance(38) 
double precision dlv(38) 
double precision dB 
double precision di 
double precision dA 
double precision dlength 
double precision dloan 
double precision dr 
double precision dsalval 
double precision d markup 

integer k 
integer t 

Description 
The depreciated furniture value 
The depreciation rate 
The balance on the loan 
Loan divided by value 
Used in PW calculation 
Face interest rate charged 
Monthly payment 
Length of the loan 
Amount of the loan 
Double precision of one 
Salvage value of the furniture 
Markup on the furniture 

! Used as a counter in a do loop 
! Used as a counter 

The following are the input parameters. 

dloan = 1200.0d0 
dmarkup = dloan/1.50d0 
dsalval = .5d0*dmarkup 
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dlength = 24.0d0 
di = .18D0 

Calculate the depreciation rate. 

dq = abs((dsalval/dmarkup)**(1.0d0/dlength)-1 .OdO) 

print*, 'The depreciation rate per month is ', dq 
print* 

Determine the value of the furniture for every month assuming an 
initial value which incorporates the markup on the furniture. 

do k = 2, months + 1 
dvalue(1) = dmarkup 
dvalue(k) = dvalue(k-l) - dq*dvalue(k-1) 

end do 

Determine the monthly payment required and then the balance on the 
loan after every payment is made. 

dB = 1.0d0/(1 .OdO +di/12.0d0) 
dA = dloan*di/12.0d0/(1 .OdO-dB**dlength) 
dr=1.0d0 
t=1 

do while (t .le. months) 
dbalance(t) = dA * (1.0dO-dB**(dlength+1.0dO - dr)) 

A /(di/12.0d0) 
dlv(t) = dbalance(t)/dvalue(t+1) 
t = t+1 
dr= 1.0d0 + dr 

end do 

print*, The following represents the amortization and' 
print*, 'depreciation schedules for a', dlength,' month loan' 
print*, 'at'.dloan,' and at an interest rate of'.di 

pr 
pr 
pr 
pr 
pr 
pr 

int* 
nt*, The markup is ', dloan/dmarkup-1 .OdO,' %.' 
nt*, The salvage value is ', dsalval/dmarkup,' %.' 
nt* 
nt*, 'Note that at time t, t-1 payments have occurred' 
nt* 
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print*,' loan' 
print*,' balance at t ','     value at t ',' 

B Ivatt' 
print* 

do 1=1, months 
print*, 't = ', I, dbalance(l), dvalue(l+1), dlv(l) 

end do 

print* 
end 
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APPENDIX B 

SIMULATION FORTRAN PROGRAM 

program thesis 

Description: This program performs a simulation for thousands 
of contracts. This simulation creates payment histories given a 
Markov model and given the following parameters for a contract: 
length, markup, salvage value, face interest rate charged, & MARR. 
The design of the experiment consists of 27 different sets of parameters 
A given run will simulate 10,000 contracts for each of the 27 sets at 
MARRs of 12%, 15%, 18%, and 21%. The program then determines 
the average present worth of these sets. 

Variables: 

Type Name 

real probl (5,5,3) 
real I 
real rv 
real rv2 
real rv3 
real epw( 10000) 
real pw 
real value(40) 
real q 
real sum 
real avgpw(27) 
real B 
real Annuity 
real balance(40) 
real cussti(27) 
real bb 
real salval(27) 

Description 

A list of the 75 stochastic probabilities 
The MARR 
A random variable 
A random variable 
A random variable 
The expected present worth of one contract 
A running total of the PW after each month 
Value of the furniture as it depreciates 
The depreciation rate 
Used to sum the PW of the 10,000 contracts 
The avg pw of the 10,000 contracts 
Equals 1/(1+MARR) 
What the borrower pays monthly 
The loan balance after a payment is made 
Face interest rate charged to the customer 
Equals 1/(1+cussti(z)) 
The salvage value assumed on the furniture 
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real recovery(3) 
real payment(3) 
real markup(27) 

integer ISTRM 
integer state 
integer matrix 
integer length (27) 
integer number of reps 
integer 0 

integer paid early 
integer defaulted 
integer time 2 
integer time 3 
integer n 
integer I 
integer month 
integer rep 
integer P 
integer s 
integer z 
integer j 
integer k 
integer m 
integer r 
integer u 
integer d 
integer dd 
integer ddd 
integer dddd 

Functions 
real RAND 

number of reps = 10000 

istrm =1 

! % of the time the furniture is recoverable 
! % moving from state 3 to state 2 
! The markup on furniture 

Used for random number generator 
The state of the Markov process 
Matrix the probability will be obtained from 
The length of the contract 
Contracts simulated for each set 
A counter in a do loop 
Number of contracts paid off early 
Number of contracts defaulted 
Amount of time spent in state 2 
Amount of time spent in state 3 
A counter in a do loop 
A counter in a do loop 
A counter in a do loop 
A counter in a do loop 
A counter in a do loop 
A counter in a do loop 
A counter in a do loop 
A counter in an implied do loop 
A counter in an implied do loop 
A counter in an implied do loop 
A counter in an implied do loop 
A counter in an implied do loop 
A counter in an implied do loop 
A counter in an implied do loop 
A counter in an implied do loop 
A counter in an implied do loop 

Generates a random number 

This is how the data was read into the program for each of the 27 sets 
of parameters. The markup is based off a $1200 loan. What is actually read 
in here for markup is what the value of the furniture is for a given % markup. 
The salvage value is the actual value of the furniture at the time of collection 
based on a given % of the value of the furniture at the time of purchase, or * 
the value read in for markup. 

69 



data(length(d),d=1,27)724,24,24,24,24,36,12,24,24,24,24,30,30, 
1   18,30,30,18,30,30,18,18,30,18,18,30,18,18/ 

data(cussti(dd), dd=1,27)/.015,.015,.015, 
2.0125,.0175,.015,.015,.015,.015,.015,.015,.01625,.01375,.01625, 
3 .01625..01625,.01375..01375..01375..01625..01625..01625..01375, 
3 .01375,.01375,.01625,.01375/ 

data(salval(ddd), ddd=1,27)/400,400,400,400,400,400,400,560,240 
4,375,428.57,464.52,464.52,464.52,309.68,496.55,464.52,309.68, 
5 496.55,309.68,496.55,331.03,309.68,496.55,331.03,331.03,331.03/ 

data(markup(dddd), dddd=1,27)/800,800,800,800,800,800,800,800, 
6 800,750,857.14,774.19,774.19,774.19,774.19,827.59,774.19, 
7 774.19,827.59,774.19,827.59,827.59,774.19,827.59,827.59, 
8 827.59,827.59/ 

* These are the different rates looked at. The second of each were the only 
* rates looked at. 

data(recovery(r), r= 1,3)/1.0,-5,0.0/ 
data(payment(u), u = 1,3)/1.0,-5,0.0/ 

* The 75 different probabilities that constitute the stochastic process. 

data (((prob1(j,k,m), k=1,5), j=1,5), m=1,3)/.979,.9985,.9985, 
a. 9985,1, .715,-815,-915,-999,1,. 32,.52,.82,1,1,0,0,0,1,1,0,0, 
b 0,0,1 ,.981 ,.999,.999,.999,1 ,.726,.826,.916..999.1 ,.35,.54 
c ,.83,1,1,0,0,0,1,1,0,0,0,0,1 ,.979,.9985,.9985, 
d .9985,1 ,.715,.815,.915,.999,1 ,.32,.52,.82,1,1,0,0,0,1,1,0,0, 
e 0,0,1/ 

Runs each simulation, which consists of 10,000 contracts, 27 times, once for 
each of the set of parameters. 

do z = 1,27 

q = abs((salval(z)/markup(z))**(1.0/length(z))-1) 
print*, q 

bb = 1/(1+cussti(z)) 
annuity = (1200*cussti(z))/(1-bb**length(z)) 
print*, 'z = ',z,' the annuity is ', annuity 
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i = .12/12.0   ! Converts to a monthly rate. 
b = 1/(1+i) 

Determines the value of the furniture for each month during the contract. 

do I = 2,length(z) + 1 
value(1) = markup(z) 
value(l) = value (1-1) - q*value(l-1) 
print*, I,' the values are ', value(l) 

end do 

* Determines the balance left on the loan after each payment. 

do o = 1, length(z) 
balance(o) = Annuity*(1-bb**(length(z) +1-o))/cussti(z) 
print*, 'the balances are ',balance(o) 

end do 

p = 2   !recovery % 
do s = 2,2 !payments % 
sum = 0 
paid early = 0 
defaulted = 0 

do rep=1 .number of reps ! Simulates 10,000 contracts 
print* 
print*, 'contract', rep 
pw = 0 
time2 = 0 
time 3 = 0 
state = 1 

* The following determines which matrix to obtain the transition probabilities 
* based on the month. Note that there are three different matrices, one for the 
* first fourth of the number of months in the contract, one for the middle half 
* and one for the final fourth. 

do month = 1 ,length(z) 

if (length(z) .eq. 24) then 
if (month .le. 6) then 

matrix = 1 
else if (month .le. 18) then 
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matrix = 2 
else 

matrix = 3 
end if 

else if (length(z) .eq.18) then 
if (month.Ie.4)then 
matrix = 1 

else if (month.le.14) then 
matrix = 2 

else 
matrix = 3 

end if 

else if (length(z) .eq.12) then 
if(month.le.3) then 
matrix = 1 

else if(month.le.9) then 
matrix = 2 

else 
matrix = 3 

end if 

else if (length(z) .eq. 30) then 
if (month .le.7) then 
matrix = 1 

else if (month .le. 23) then 
matrix = 2 

else 
matrix = 3 

end if 

else if (length(z) .eq.36) then 
if (month.le.8) then 
matrix = 1 

else if (month.Ie.28) then 
matrix = 2 

else 
matrix = 3 

end if 

end if 

Generate a random number and see where the transition goes. 
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rv = rand(istrm) 
print*, 'rv for month ', month, rv 

if(rv .le. probl (state, 1,matrix)) then 

if(state .eq. 1)then 

* This was a transition from 1 to 1 

pw = annuity/(1+i)**month + pw 

else if (state .eq. 2) then 

if(time2 .eq. 1)then 

* A transition from 2 to 1 

pw = pw + 2*annuity/(1+i)**month 
else 

pw = pw + 3*annuity/(1+i)**month 
end if 

else if (state .eq. 3) then 

* A transition from 3 to 1 

pw = (time 3 + 3)*annuity/(1+i)**month 

end if 

state = 1 
time2 = 0 

print*, pw,' after arriving in 1' 
go to 20 

else if (rv .gt. probl (state, 1,matrix) .and. rv .le. 
E     probl (state,2,matrix)) then 

time 2 = time 2 + 1 
if (time 2 .gt. 2) then 

go to 50 
end if 
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if (state .eq. 1 .or. state .eq. 2) then 

* A transition from 1 to 2 

pw = pw 

else if (state .eq. 3) then 
rv2 = rand(istrm) 
print*, 'rv2 is ', rv2 
if (rv2.le. payment(s)) then 

time2 = 2 

* A transition from 3 to 2 

pw = (time3 + 1)*annuity/(1+i)**month 

else 
pw = (time 3 + 2) *annuity/(1+i)**month 
time2 = 1 

end if 

end if 
state = 2 
time 3 = 0 
print*, pw,' after arriving in 2' 
go to 20 

else if (rv .gt. prob1(state,2,matrix) .and. rv 
F      .le. probl (state, 3,matrix))then 

50 pw = pw 
time2 = 0 
state = 3 
time 3 = time 3 +1 

print*, pw,' after arriving in 3' 
go to 20 

* The following is if a contract defaults. 

else if (rv .gt. probl (state,3,matrix) .and. rv 
G      .le. probl (state,4,matrix)) then 

rv3 = rand(istrm) 
print*, 'rv3 is', rv3 
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if (rv3 .le.recovery(p))then 
pw = (value(month+1) - 400)/(1+i)**month 

else 
pw = pw - 200 * b**month 

end if 

defaulted = defaulted + 1 

state = 4 
print*, pw,' pw for this contract after arriving in 4' 
goto 10 

* The following is if the contract moves to state 5 and is paid off. 

else if (rv .gt. prob1(state,4,matrix) .and. rv 
J       .le. 1)then 

pw = balance(month)*b**month + pw 
paid early = paid early + 1 
state = 5 
print*, pw,' pw for this contract after arriving in 5' 
go to 10 

end if 
20   end do 

* This maintains an array of pw for each of the 10,000 contracts. 

10   epw(rep) = pw 
end do 

i- 

Now add up this array of pw and determine an average. 

do n = 1,number of reps 
sum = sum + epw(n) 
print*, 'pw for contract',n, epw(n) 

end do 

avg pw(z) = (sum/(n-1))-1200 
print* 
print*, 'For a recovery rate of', recovery (p), 

I ' and a payment rate of', payment(s) 

print*, 'avg pw = ', avg pw(z),' for a length of', length(z), 
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L' for an i of \cussti(z),' a salvage value of', salval(z) 
M,' and a markup of', markup(z) 
print* 

print*, 'the number of contracts that were paid early is ', 
H   paid early 
print*, 'the number that defaulted is ', defaulted 
print*, 'full term contracts ', number of reps - defaulted - 

J paid early 

end do 

print*,'   

end do 

end 

* The following is a function which generates a random number. 
* It was developed by Marse and Roberts and modified and tested 
* by Law and Kelton. Please see further comments in Chapter III. 

Real function rand(istrm) 

Integer b2e15,b2e16,hi15,hi31 ,istrm,izset,low15,lowprd, 
&        modlus,mult1 ,mult2,ovflow,zi,zrng(100) 
integer irandg,randst 

Force saving of ZRNG between calls. 

Save zmg 

* define the constants. 

data mult1,mult2/24112,26143/ 
data b2e15,b2e16,modlus/32768,65536,2147483647/ 

Set the default seeds for all 100 streams. 

DATA ZRNG/1973272912, 281629770, 
20006270,1280689831,2096730329, 

& 1933576050, 913566091, 246780520,1363774876, 604901985, 
& 1511192140,1259851944, 824064364, 150493284, 242708531, 
& 75253171,1964472944,1202299975,233217322,1911216000, 
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& 726370533, 403498145, 993232223,1103205531, 762430696, 
& 1922803170,1385516923, 76271663,413682397,726466604, 
& 336157058,1432650381,1120463904, 595778810, 877722890, 
& 1046574445, 68911991,2088367019,748545416,622401386, 
& 2122378830,640690903,1774806513,2132545692,2079249579, 
& 78130110,852776735,1187867272,1351423507,1645973084, 
& 1997049139, 922510944,2045512870, 898585771, 243649545, 
& 1004818771, 773686062, 403188473, 372279877,1901633463, 
& 498067494,2087759558, 493157915, 597104727,1530940798, 
& 1814496276,536444882,1663153658,855503735, 67784357, 
& 1432404475, 619691088, 119025595, 880802310, 176192644, 
& 1116780070,277854671,1366580350,1142483975,2026948561, 
& 1053920743, 786262391,1792203830,1494667770,1923011392, 
& 1433700034,1244184613,1147297105,539712780,1545929719, 
& 190641742,1645390429, 264907697, 620389253,1502074852, 
& 927711160, 364849192,2049576050, 638580085, 547070247/ 

Generate the next random number. 

Zi     = zmg(istrm) 
hi15   =zi/b2e16 
lowprd = (zi - hi15 * b2e16) * multl 
lowl 5 = lowprd / b2e16 
hi31   =hi15* multl +low15 
ovflow = hi31 /b2e15 
zi     = (((lowprd - low15 * b2e16) - modlus) + 

& (hi31 - ovflow * b2e15) * b2e16) + ovflow 
if (zi .It. 0) zi = zi + modlus 
hi15   =zi/b2e16 
lowprd = (zi - hi15 * b2e16) * mult2 
lowl 5 = lowprd / b2e16 
hi31   = hi15*mult2 + low15 
ovflow = hi31 /b2e15 
zi     = (((lowprd - lowl 5 * b2e16) - modlus) + 

& (hi31 - ovflow * b2e15) * b2e16) + ovflow 
if (zi .It. 0) zi = zi + modlus 
zrng(istrm) = zi 
rand   = (2 * (zi/256) + 1) /16777216.0 
return 

Set the current ZRNG for stream ISTRM to IZSET. 

Entry randst(izset,istrm) 
zmg(istrm) = izset 
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return 

Return the current zmg for stream istrm. 

entry irandg(istrm) 
irandg = zrng(istrm) 
return 

END 
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