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PREFACE

IDA prepared this paper in partial fulfillment of task order entitled "Target

Acquisition and Search Studies," for Mr. Walter Hollis, Deputy Under Secretary of the

Army [DUSA (OR)], and Mr. Raymond S. Balcerak, Program Manager, ARPA Infrared

Focal Plane Array Producibility Microelectronics Technology Office.

IDA performed this work under the auspices of Mr. Hollis' ACQSIM (Acquisition

Simulation Working Group) activity. In an earlier ACQSIM forum, Mr. David Dixon of

TRAC-WSMR (TRADOC Missile Command-White Sands Missile Range) presented an

analysis of alternative formulations of observer variability in target acquisition simulations.

That analysis demonstrated the importance of resolving these long-standing issues, and

motivated the present work.

The high quality target acquisition performance data which the Visionics Division

of NVESD obtained in their Target Acquisition Model Improvement Program (TAMIP)

Phase 1 target acquisition tests were indispensable to the completion of this study.
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EXECUTIVE SUMMARY

The Night Vision Standard Model1 defines P., as the fraction of a large sample of

observers, drawn from the standard ensemble, that will, given unlimited time, eventually

detect a given target.

Even given that this definition is understood, what is the meaning of P.? The

question has been asked frequently since the introduction of the Standard Model. At first

glance, the question seems at best irrelevant; at worst, without content. After all, given the

value of P., we can by defi'ition predict (up to statistical uncertainties) how many

observers out of a given sample will eventually succeed in a specific target acquisition task.

Nevertheless, different interpretations are possible. A seminal work2 on the subject

discussed several of them at length and proposed possible implications. Here are two of

these interpretations:

" All observers are equivalent in a statistical sense, but their responses to a given
target are stochastic. Thus, if P., is 50 percent, then any given observer has a
50-percent chance of detecting it. This is independent of that observer's
chance of detecting any other P. = 50 percent target.

" All observers are strictly ordered in target acquisition competence. There is no
stochastic element at all; the detection "probability" is really just the fraction of
the observer ensemble that is sufficiently competent to accomplish the detection
of the given target. In this case, every P. = 50 percent target is always
detected by above-average observers and never detected by below-average
ones.

It is well known that neither of these extreme interpretations is literally true. While

some observers are certainly better than others, strict adherence to hierarchical ordering is

not observed. So some sort of hybrid model seems to be called for. But to date no such

approach has been validated, nor is there even an understanding of which approach is

closer to reality.

1 Ratches et al.

2 Marta Kowalczyk and Stanley Rotnan, Extending the CNVEO Search Model to the Multitarget
Environment, Institute for Defense Analyses, IDA Paper P-2022, 1987.
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It is easy to see why this matter has remained unresolved. For a one-on-one

engagement the question of interpretation does not arise-both approaches give the same

answer. Thus, there has in the past been only theoretical interest in determining the correct

form of such a hybrid model. In fact, there has been little concern that the two most

commonly used Army combat models, CASTFOREM and JANUS, adopt opposed views.

CASTFOREM attributes the variability to the observers (observer-only draw), while the

JANUS implicitly assumes that the target acquisition process is inherently stochastic

(observer-target draw).

But, as recently demonstrated by David Dixon of TRADOC Analysis Command

(TRAC), in many-on-many engagements, correlations between different observers does

make a difference. Dixon's analysis gave new impetus to the resolution of the long

standing question of the meaning of P,.

We believe that we have taken a large step toward the resolution of this problem via

an analysis of NVESD observer test data. Our approach to the problem evolved consider-

ably over time, as we learned which ideas were supported by the data and which were not.

The final formulation of our model rests on the following assumptions:

" The probability that a given observer will detect a given target is a function of
the sum of two variables. One of these variables is determined by the partic-
ular target signature, the other by the individual observer.

" The test data which we use to determine these parameters employed a repre-
sentative sample of the standard observer ensemble.

" The estimate of the target signature variable that is computed in the wargames
is not precisely the true value, but is an estimate subject to a quantitatively
known modeling uncertainty.

The first two assumptions enable us to evaluate the relative importance of the

stochastic and the observer components of the variability. Taken together, they support an

important observation: the value of P. is the average of the joint probability function over

the observer distribution.

The third assumption points to a third source of variability in the simulation

of target acquisition-namely, a modeling uncertainty-that we need to address. We

have recently published a quantitative analysis of the uncertainty associated with model
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predictions. 3 This variability, it turns out, is at least as large as the other two. It is

therefore important to simulate its effects.

Our final result is a complete model for the observer dependence of the target

acquisition probability. All required functions and constants are provided; there are no free

parameters. The explicit code we've included is suitable for guiding the model's imple-

mentation in the wargames. The approach is similar to the one now in use. In the setup

phase of the simulation, random draws determine detection thresholds. But instead of a

single random draw, there are three independent sets of draws:

"* An observer-target draw, to account for the stochastic process;

"• An observer draw, to account for the different level of capability of the
observers; and

"* A target draw, to account for the uncertainty in the target signature compu-
tation.

The essence of our work is the assumption that the target detection probability is

determined by the sum of an observer variable and a target variable. This apparently

innocuous assumption generates most of the simplifications that render the problem

tractable. Therefore, it is this aspect of our approach that, we hope, will receive additional

scrutiny. In particular, we look forward to alternative formulations which do not invoke

this assumption.

Meanwhile, we offer our model as a practical approach that is sufficiently similar to

existing approaches that it can be implemented relatively painlessly, while being as accurate

as it is possible for such a simple model to be.

3 James D. Silk, Statistical and Modeling Uncertainties in the Thermal TAMIP Predictions, Institute for

Defense Analyses, IDA Paper P-3078, 1995.
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I. MOTIVATION

Stochastic wargames rely on randomness to rescue them from the plethora of

unknowable variables that in reality affect the outcomes of hostile engagements. The intent

is that by properly averaging over all possibilities, the most likely outcome can be deter-

mined. Unfortunately, the transition from a one-on-one model (even if it is well validated

and understood) to one that accurately predicts many-on-many interactions is ambiguous.

Consider the following rather contrived example. Suppose that a red commando

must avoid detection by both of two blue sentries to accomplish his mission. The one-on-

one probability of detecting the commando (averaged over all observers) is assumed to be

50 percent. We further assume that the sentries are identically capable, co-located, and

both fully vigilant. What is the commando's probability of success? Two methods of

computation come to mind.

The assumption that is often invoked in elementary problems of this type is that the
"and" condition-that is, the commando must evade both sentry one and sentry two-

means we must multiply probabilities. The use of this recipe is based on the implicit

assumption that the detections are statistically independent events, and are therefore

uncorrelated. That is, the commando eludes the first sentry half the time, then he eludes the

second sentry half of the remaining time, netting a 25-percent probability of success.

But the independence hypothesis may not be valid in fact. It is surely true that

observers generally agree on the subjective evaluation of "easy" and "hard" targets.
Indeed, it is possible to argue (in the absence of data to the contrary) that equally capable

observers are always perfectly correlated in their responses. After all, the two sentries in
our example receive identical stimuli; if the sentries are deterministic in their behavior, then

perfect correlation of their responses is the logical conclusion. In this case, our commando

succeeds 50 percent of the time, because if he eludes the first sentry then he is certain to

elude the second.

(A third alternative, namely that the sentries are perfectly anticorrelated, is possible

in principle. In this case, the commando never succeeds because if he gets by one, the

other always detects him. It is inconceivable, however, that this is a property of real

human sentries who receive identical stimuli.)
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The two assumptions, uncorrelated observers and perfectly correlated observers,

represent the extreme cases of a range of plausible models of human target acquisition that

are partly deterministic and partly stochastic. It is interesting that the two most important

Army force-on-force battlefield simulations, CASTFOREM and JANUS, use a different

extreme case. In CASTFOREM, all of the variability is assumed to be due to variations

among the observers, who are modeled as obeying a strict hierarchy; in JANUS, all

observers are statistically equivalent, but independent. It is well known that neither is

precisely correct, but up to now no method has been put forth for determining whether one

is more correct than the other.

It might be hoped that the foregoing observations merely constitute a technical

nuance that has no practical import. Recently, though, D. Dixon of TRAC/WSMR

(TRADOC Analysis Command-White Sands Missile Range) clearly demonstrated that

these two different assumptions can make a vast difference in the outcome of a simulated

engagement. His examination of idealized forced march scenarios illustrated that the

uncorrelated model (the so-called observer-target draw, which is used in JANUS)

generates a kind of "stochastic fire control" relative to the perfectly correlated simulation

(that is, a simulation using an observer-only draw, such as CASTFOREM). Thus, in the

former case, one side would be completely attritted; in the latter, the fronts would march

through each other.

As part of our Target Acquisition Model Improvement Program (TAMIP) and

Acquisition Simulation Working Group (ACQSIM) activities, we have undertaken to

resolve this issue. In Chapter II we examine the test data somewhat qualitatively to get an

understanding of the nature of the correlations therein. In Chapter III we propose a model

which incorporates an observer variable. Chapter IV presents the results of the data

analysis. We pursue two versions of the analysis; the simpler approach is shown to give a

preferable description of the data. Finally, in Chapter V we explicitly define a working

algorithm for implementing a simulation of the proposed model.
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II. OBSERVER TEST DATA

The data set we use herein is from the NVESD Phase lal and IbI tests. 4 We have

analyzed results from 17 observers on 313 targets in the former test, and 22 observers on

275 targets in the latter. For the sake of the discussions of this chapter only, we will

examine a representative subset of the data comprising 8 observers and 10 targets from the

lal test.

For our purposes, the data consists of a matrix of zeros and ones. Each column of

the matrix corresponds to a particular human observer who participated in the test as a

subject. Each row corresponds to a particular target in one of a set of images that were

presented to the subjects. The matrix entry in cell i,j is one if target i was detected by

observerj, and zero otherwise. (The detection criterion used is 100 percent confidence that

the object is a military target, with no requirement for any higher level of discrimination.)

The matrix corresponding to our subset is:

Matrix A

1 1 1 0 0 0 0 0
1 0 1 1 1 0 1 0
1 1 1 0 0 0 0 0
1 1 1 0 1 0 1 1
1 1 1 0 0 0 0 0
1 1 1 1 0 1 0 0
0 0 0 1 1 0 1 0
1 1 0 0 0 1 0 0
1 1 1 0 1 1 1 1
1 1 1 1 0 1 0 0

If we average all the entries in the first column, we get an estimate of the probability

that Observer #1 can detect a target from this set (90 percent). Similarly, averaging over

the first row gives an estimate of the probability of detection of Target #1 (37.5 percent). It

is hard to see any correlation in the above matrix. But if we reorder the rows and columns

by descending total number of detections, we get Matrix B:

4 Barbara L. O'Kane, Clarence P. Walters, and John D'Agostino, "Report on Experiments in Support of

Thermal TAMIP," NVESD, Fort Belvoir, VA, 1993.
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Matrix B

1 I 1 0 1 1 1 1
1 1 1 0 1 0 1 1
1 1 1 1 0 1 0 0
1 1 1 1 0 1 0 0
1 0 1 1 1 0 1 0
1 1 0 0 0 1 0 0
1 1 1 0 0 0 0 0
1 1 1 0 0 0 0 0
1 1 1 0 0 0 0 0
0 0 0 1 1 0 1 0

This matrix looks as if it has some correlation among observers, but it is hard to

quantify the degree of correlation. The correlation is obviously not perfect. If it were, then

ordering the rows and columns would have eliminated all of the islands of zeros in ones,

and vice-versa, as in the following fictitious data:

Matrix C

I 1 1 1 1 1 1 1
1 1 1 1 1 1 1 0
1 1 1 1 1 1 0 0
1 1 1 1 1 1 0 0
1 1 1 1 0 0 0 0

1 1 0 0 0 0 0
1 1 0 0 0 0 0
1 1 0 0 0 0 0

1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0

For perfect correlation, as in Matrix C, all of the following statements hold:

"* It is possible to separate all the zeros from all the ones by drawing an
ascending staircase through the data.

"* If observer A is a better observer than B, then A can detect all the targets that B
can, plus some others.

"* Equivalently, if target X is easier than target Y, then X can be detected by all
the observers that can detect Y, plus some others.

One can verify by inspection that these statements hold for the artificial data in Matrix C,

but not for the real data in Matrix B.

Whichever phrasing one prefers, it is clear that the actual data does not conform to

the perfectly correlated hypothesis. We now propose a means of quantitatively describing

the intermediate case.
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III. MODEL DEFINITION

A. CONCEPTUAL DESCRIPTION

The Thermal TAMIP target detection model predicts target detectability as a function

of a composite statistic ("line pairs on target") that is computed from target properties. We

refer to this and other models that do not explicitly include observer variables as target-only

models. The model is stochastic in the sense that it provides outputs which are

probabilities, and these probabilities are appreciably different from zero or one in a finite

range of the target statistic. The actual relation between the PD and the target statistic will

be discussed later. For now, we simply characterize the function as in Figure 111-1: PD
has a value of 0 for small values of the target statistic, 1 for large values, and an

intermediate "stochastic" region in between, where it takes on values significantly different

from 0 or 1.

0--
Figure I11-1. Probability as a Function of a Target Statistic

in a Target-Only Model

In the foregoing discussions, we have observed that there are two possible sources
for this stochastic element. One source is the variability between human observers. Since

individual observer properties are not specified, the output must refer to an average over a

standard (but unspecified) observer ensemble. The other source is the target acquisition

process itself. As we have seen, it seems to have some inherent element of randomness.

Our approach is to construct a model that nominally incorporates the observer
variable. We use the term "nominally" because we do not seek to describe how it might be

evaluated for a specific observer (e.g., a function of eyesight, experience, etc.). That is,
we do not pretend to know how to compute the model inputs a priori. Instead, we simply
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use our construct to evaluate correlations between observers by taking an a posteriori

approach: given the results of a test, what are the most likely values of the model inputs?

What can be deduced from these values about the correlation between observers?

We assume that the proficiency of the subjects in a target acquisition task is

uniquely determined by a single variable s. Similarly, we assume the detectability of the

targets under a particular set of observational conditions is uniquely determined by the

variable t. Then, a model estimate of the probability that a given target will be detected by a

given observer must be some function, call it 7, of s and t. We assume that this functional

relationship takes a certain specific but very plausible form, but for now, we discuss it in

the same general terms that we used for PD above.

We note that an elementary requirement for any such model is that we must by

definition retrieve the target-only model when we average over the standard observer

ensemble. In particular, this means that we shall need to find an explicit relationship

between our target variable t and the target signature variable that appears in the Thermal

TAMIP model.

To achieve these ends, we consider three models: the deterministic, the stochastic,

and the hybrid. In the figures associated with each of these models, Figure III-1 is

reproduced, to emphasize the requirement that we connect back to the "target-only" model

that predicts performance.

1. Deterministic Limit

The first case that we consider is illustrated in Figure 111-2. The two independent

variables, s and t, are the vertical and horizontal axes, respectively. The shaded rectangle

represents the ensemble of targets and observers that populate a hypothetical test. The

probability function, H, is defined on the plane. This dependent variable's axis is

perpendicular to the page. The diagonal line divides the plane into two regions: to the

upper right, where targets are easy and observers are good, 7= 1; to the lower left, H7= 0.

We call this version of the model "deterministic" because there is no region of the
(s, t) plane where 7 is different from 0 or 1. That is, for a given observer and a given

target there is no random element. In this case the seemingly stochastic region of the

"target-only" model arises entirely from the variation in the observer ensemble.
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Figure 111-2. Deterministic Model

2. Stochastic Limit

Figure 111-3 depicts a different extreme. In this case all of the observers are

essentially equivalent. This is depicted in the vanishing width of the shaded rectangle. On

the other hand, the probability function 17 now has an intermediate region-between the

diagonal lines-where it takes on values significantly different from 0 or 1. All of the

stochastic behavior of PD is now attributed to the inherent randomness of the detection

process itself. We therefore call this the stochastic limit.
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Figure 111-3. Stochastic Model

3. The Intermediate Case

We have already observed that neither of these cases is correct. The deterministic

version dictates a strict ordering of observer responses; we saw in Chapter II that this

ordering is violated. The stochastic version is also wrong, since we know that there are
significant variations within the observer population. Therefore, a hybrid of these alterna-

tives is required.

Figure 111-4 represents this hybrid model. As with the deterministic model there is
variation within the observer ensemble. And there is a stochastic region for Has well. The

stochastic region of PD reflects contributions from both effects. It is important to observe

that the fixed width of the stochastic region of PD places a constraint on the widths of the
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observer ensemble distribution and the stochastic region of 7, since these two functions

must convolve to form PD.

0 I I

s

• 1-n=1

? Observer

stochastic•Sregion

hard Treseasy

Figure 111-4. Hybrid Model

B. FORMAL DEVELOPMENT OF THE MODEL

All of the conceptual ideas that we need have been discussed above. We now write

the formulas explicitly so that we can pursue the data analysis required to validate the model

and elucidate the model's implementation.

The form of the function that relates the target statistic to the probability of detection

in the Thermal TAMIP Model is a logistic transform:

PD (x) = L(b x)
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where

b=3, x=ln -I, and L(u)-
(M50 1+ exp(-u)

so
M 3

PD M30 + M3

Although the shape of this curve closely resembles the older version of the target transform
probability function (TTPF), it has been chosen because it is better behaved analytically. 5

For the sake of consistency, we take our function N to be a logistic function of the sum of

the independent variables:

H7(s, t) = 7(s + t) = L(s + t)

In the data analysis that follows we shall derive values of s and t which optimize the fit to

the field test data. First, let us consider the observer variable s.

It is not our intention to attempt to predict observer performance based upon a priori
data such as eyesight, training, experience, etc. How, then, is the variable s useful? The
variable s is a vehicle to connect to the standard observer ensemble. That is, there must

exist-and we must specify!-some cumulative distribution function WI such that W(s)
gives the fractile rating of the observer who is characterized by s. In short, the expression

above for H-is of little use until we specify W-. Fortunately, in the design of the observer
tests which were used for the development and validation of the Thermal TAMIP Model,
great care was taken to use a representative sample of observer subjects. Therefore, we get

the necessary information almost for free.

To get the functional form of WF we need to explicitly carry out the averaging over

the observers. Let us define the function O(t) as the formal average of 7 over the standard

observer ensemble. (This new function is essentially PD, but we have not yet connected t

and x so we give it a unique name for now.) This average is simply a convolution integral
of the observer-target function over the observer distribution:

0(t) f VI(s) H7(s + t)ds

where Vis the derivative of IF'.

5 In particular, its inverse can be written explicitly. It also has the useful property that it is related to its

derivative by the formula L' = L(1 - L).
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Let 0(t) = L(a t). 6 Again, this is consistent with the Thermal TAMIP definition.

Then the functional form of Vis determined by our choice of the logistic function for (P and

H. Appendix A gives the method of derivation and illustrative computations. Remarkably

enough, the result can be written in closed form:

= 1 sin 7ra
2ira cos 7ra + coshs

W(s) -I +- tan- tan tanh-
2 7ra 2 2)

Note that W, like L, is easily inverted. Thus, once we have determined a, we can

readily construct a composite function that connects the observer fractile rank (R), the

ensemble averaged target detectability (PD), and the observer specific detectability (P):

P =I7(YJ_-1 (R), •-l(pD)).

We now return to the target variable. To finally implement the model into the

wargames, we need to make the connection to the "target-only" model (in our case, the

Thermal TAMIP Model) by establishing the relationship between t and x. It seems reason-

able at first to identify 0 with PD and use the definitions above to establish the linear

relationship between t and x. This yields

b
t=-x

a

but there is a subtlety that we must address before we close out this discussion. A problem

arises because the value of x computed in the Thermal TAMIP Model is actually an estimate

of the true value of the target statistic-call it x' We have shown elsewhere7 that the data

support the assumption that x is an unbiased estimate of x such that x = x' + 11, where 77 is

a Gaussian random variable with zero mean and 0.36 standard deviation. See Figure 111-5

for an illustration and further details. If this "ideal" value could be determined, the "exact"
/

detection probability would be PD = L(b'x') with bV = 4.5. Since t is a similarly "ideal"

quantity that has been determined by inference rather than constructively, for the purposes

of wargaming it is more appropriate to use

6 Since H depends only on the sum of s and t, the zero of t was not fixed. By omitting a constant offset

term in this equation, we are removing this ambiguity and constraining t = 0 for 50-percent targets.
Equivalently, the 50th-percentile observer has s = 0.

7 See note 3.
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Figure 111-5. Illustration of the Thermal TAMIP Fit to the NVESD Phase 1 Test
Data. The shallow curve, labeled "opt," is the b = 3 fit, which is the result

of minimizing the vertical errors. The curve labeled "med" is steeper,
corresponding to b' = 4.5, and results from minimizing the

horizontal errors. The other dashed curves illustrate
the 80-percent confidence interval about "med."

C. COMMENTS ON THE DISTRIBUTION FUNCTIONS

It was necessary to be specific about the forms of the cumulative probability

distribution functions (PDF's) that are derived above, since our objective is to implement a

calculable model. [These PDF's are W, 0,- and 17 and their associated differential

probability distribution functions (pdf's) Vp, 0, and ;r.] But in retrospect we suspect that all

"reasonable" pdf's (i.e., bump in the middle, symmetric, roughly exponential tails) do

about equally well. Our choices are a matter of taste and historical context rather than the

result of an optimization analysis.

Similarly, the assertion that the target-only model is the average over the observer

ensemble is almost without content. This is self-evident; there is nothing new here.
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The important element of the model-the one that has predictive power and that we

seek to test-is the conjecture that the observer-target model reduces to a function of a

single variable, namely the sum of the observer and target statistics. This has an immediate

and specific consequence: taking the derivative of the defining relationship above gives the

relation among the pdf's:

=(t) f V(s) 7r(s + t) ds

It is now a simple matter to show that the model demands a constraint on the widths:
2 2 2

-1 -t = obs + aobsotgt

where a181 = ý(AO2), etc. Note that the definition of P sets the scale of s and t; this fixes

aob,.tgt at 1.814.

The data analysis will determine a value of t for each target and a value of s for each

observer. Thus, the above constraint on the widths can be tested: the standard deviation of

the observers' s values can be evaluated directly, yielding cobs. The value of a (which is

the slope of the plot of t against the logodds of PD) can be computed in a straightforward

manner. Note that l1a measures ag, relative to cobs.tgt. The value of 1/a will be unity in

the stochastic limit and approach zero in the deterministic limit.
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IV. DATA ANALYSIS

The objectives of the data analysis are:

"* To determine model fits to the data and to show that the most general fitting
procedure is extremely well approximated by a far simpler procedure;

"* To show the consistency of the model across different observing conditions;

"* To calibrate the model by evaluating the population statistics; and

"* To validate the model by testing the constraint demonstrated at the end of the
preceding chapter on the widths of the pdf's.

To meet these objectives we use the NVESD Phase 1 data set. For the purposes of

this work, the NVESD Phase 1 observer tests each consisted of a set of observers

attempting to detect a set of targets. Each observer was shown identical renderings of the
same set of targets (but in different orders). We let the index i label the M targets, and j

label the N observers. Then the results of the test are described by a rectangular matrix of
M rows by N columns, called P. The elements of P are all zeros and ones (for misses and

detects); a given element Pij indicates the result of thejth subject's attempt to detect the ith

target. We write /1j = H(sjti) to denote that the matrix of model predictions for detection
probabilities (on the left-hand side) can be computed from the model function if we know

the N + M values of s and t.

A. FITTING PROCEDURES AND RESULTS

For a given set of values for s and t, we can quantitatively compare the predictions

to the data via the log-likelihood ratio:

LLR(s,t) = {Pi,j ln(i,j) + (1- Pi,j)ln(1 -Ii,j)}

i,j

The best fit of the model to the data will correspond to the set of sj and ti for which this

expression is maximized. 8

8 Harry F. Martz and Ray A. Walker, Bayesian Reliability Analysis, John Wiley & Sons, 1982.
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We shall consider two approaches to this maximization procedure. First, we allow

all of the sj and ti values to be independent and unconstrained. This means that for the

NVESD Phase lb data there are 275 + 22 = 297 free parameters. Second, we take a

computationally less challenging approach by constraining the possible values of sj and ti in
the manner described below. These constraints reduce the number of free parameters to

two. This second approach is somewhat more instructive and yields greater insight into the
model. Comparing the results of the two fitting procedures, it turns out that the simpler
method costs almost nothing in terms of the quality of the fit. We believe that this approach

to the data analysis will facilitate widespread confirmation of our results and will make the
model easily supportable and applicable to different ensembles of observers.

1. Unconstrained Fit

The implementation of the first approach is straightforward in principle, but rather

daunting in practice due to the high dimensionality. The usual method of choice

(MathcadTM for the Macintosh) was not practical at all. A means of searching on the sj and

ti so as to maximize the LLR was developed (using MatlabTM on a Sparc 10) and is given in
Appendix B. The complete set was partitioned into four roughly equal pieces. Each of
these pieces corresponds to a homogeneous clutter background, designated numerically

from 1 to 4. Background 1 was the least challenging, 3 the most, with 2 and 4 the
intermediate cases. We have broken the data out in this way in order to stress the model: it

is conceivable that the best observers in one kind of clutter will not be the best in another,
whereas the model would have the ranking of observers be independent, (except for

statistical variations) of the nature of the target acquisition task.

We have noted that His left unchanged if an arbitrary constant is added to all the ss
and subtracted from all the ts. In the previous chapter we formally removed this ambiguity

by insisting that the mean of s be zero. As a practical matter, it is easier to fix one observer
to have s = 0 and leave the rest free; then implement the constraint after the fact.

2. Constrained Fit

Our second approach takes as its starting point the inverse of the equation that
defines the logistic transform:

s+t= ln•H
1-H
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where the function on the right is called the logodds of H. In attempting to estimate the

values of s and t that fit a given data matrix P, we might insert P on the right-hand side for

H/and average over targets to get the values of s and over observers to get the values of t.

The problem with this approach is that the matrix P consists entirely of Os and is, so the

logodds is undefined. Suppose instead that we effectively replace "the average of logodds"

by the "logodds of the average." To do so, we employ the so-called uninformed estimate

of the probabilities to preclude probability estimates that are zero or one. That is, we define

1 + Pi'j; i I"" +q Pi,j

Si = M+I=i1{

With each of these probabilities we associate a logodds:

Oj = In ; ri =lnT
1- Sj 1 -T/

It is tempting to interpret these as and 'z as estimates of the ss and ts, which are the

quantities that we seek. But this cannot be strictly correct, since these new quantities are

strongly biased. That is, all of the observer odds could be driven to any arbitrarily large (or

small) value by the inclusion of a suitable proportion of extremely easy (or difficult)

targets.9 By hypothesis, our ss (ts) are intrinsic properties of observers (targets) and

should not be affected by the composition of a particular test.

But this is exactly the price we expect to pay for replacing the average of a function

by the function of an average. We know that there is a relationship between the two, but

the relation depends on the underlying populations-which for targets is scenario depend-

ent, and for observers (at least for now) is not specified. As a way to undo this damage,

we presume that the ss and ts are linear transforms of the experimental logodds (i.e., the as

and s's), and that the specific relationship is dependent on the experimental composition.

To be precise, we assume that the unbiased variables can be written in terms of the biased

ones,
Sj = AI(aij -- (a)), ti = 02'ri,

with the understanding that the validity of our conjecture is to be established in the data

analysis which follows. As we noted previously, the ss and ts are only determined up to a

9 On the other hand, recall that for tests of interest to us, the observer sample is representative of the

standard ensemble. Therefore, the t values are, by hypothesis, independent of the particular test.
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relative additive constant. In the above expression we implicitly define that constant such

that our average observer will have s = 0, and 50-percent targets will have t = 0. Also note

that the parameter P12, which is determined in the fit, is exactly the value l/a, the impor-

tance of which is discussed at the end of the preceding chapter.

We have thus reduced the number of free parameters needed to fit the NVESD

Phase 1 data set from hundreds to two. As a means of fitting data, this choice is far
simpler than the more general method and is to be preferred, provided that the quality of the

fit is not much worse. As we shall see, there is almost no penalty for this simplification.

The MathcadTM script used to perform these computations is shown in Appendix C.

3. Comparison of Results

The quality of the fits is determined by the log-likelihood ratio (LLR). Table IV- 1

is a comparison of the two methods. A general rule of thumb is that an additional degree of

freedom (DF) yields significant improvement if it improves the LLR by at least one unit.

We see that in the best case, the 294 additional free parameters yields an improvement of

2.49 units. Another way to look at this is that the specification of these 294 extra

parameters has yielded an additional 2.49/ln(2) = 3.6 bits of useful information. Clearly,

the extra effort is not worth the trouble.

Table IV-1. Log-Likelihood Ratio Comparison Between
Two Model Implementations by Clutter Class

LLR

Clutter Method 1 Method 2
Class (296 DF) (2 DF) Difference

1 - 402.44 - 403.40 0.96

2 - 377.93 - 380.42 2.49

3 - 454.50 - 456.88 2.38

4 -473.97 -475.87 1.90

The comparison of the fitted s values further illustrates the near equivalence of the

two sets of results. Figure IV- 1 shows the results for Clutter Classes 2 and 3. According

to the table, these cases should show the most dissimilarity between the two methods. In

fact, there is very little difference between the two methods, with most of the differences

being associated with the outliers.
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s Values, Clutter 2 s Values, Clutter 3

LL IL

S..................................
CD CD

-5 0 5 -5 0 5
2 DF 2 DF

Figure IV-1. Equivalence of Observer Fits for
Vastly Differing Degrees of Freedom

B. MODEL CONSISTENCY

Our model assumes that the competence of observers, which is measured by the
variable s, is independent of the specific target acquisition task that is attempted. Thus, if

our model is correct, we expect that it will produce roughly the same s value for each

observer, even if we change the level of difficulty of the test.

In Figure IV-2 we compare the values of s that were determined for the four clutter
classes in the test. (For reference, the average PDs for each clutter class are given in
Table IV-2 below.) The figure shows two representative comparisons of the six possible.

It is clear that the data follow the suggested trend.

However, while we have not performed a full test of significance, we believe that

themr is sufficient departure from out prediction to indicate that out hypothesis is not
100-percent correct. This is not surprising; we fully expect that military observers are not

as one-dimensional as this model pretends. Nevertheless, the degree of correlation in the

figure is encouraging. We will show that our approximation is good enough for our
purposes, even though it does not hold precisely.
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Figure IV-2. Correlation of Observer Performance in Various Clutter Conditions

C. CALIBRATION OF MODEL STATISTICS

The important parameters that need to be documented are the widths catgt, cobs, and
aobs.tgt of the functions y, 0, and ;r. Recall that by definition we have set aobs.tgt to

1.814, so we need to determine the other two from the data.

The value of atgt is determined by the relation atgt = t2 Cobs.tgt , which holds as a

direct consequence of the two-parameter fitting methodology. The value of aobs is simply

the standard deviation of the fitted s values. This follows from our assumption that the

observers in the test constitute a representative sample of the standard ensemble.

Table IV-2 shows that there is good consistency among the standard deviations for

the four clutter classes. The global fit, to all data simultaneously, gives somewhat smaller

width values, consistent with our observation that there is slight reordering of observers as

the difficulty varies. When all levels of difficulty are folded together, the observer

ensemble looks slightly more homogeneous.

Table IV-2. Net Detection Probabilities and Standard

Deviations by Clutter Class

Clutter Class Net PD Cobs Ctgt

1 .77 1.49 ± .11 2.46 ± .13

2 .61 1.38 ± .12 2.38 ± .14

3 .35 1.37 ± .12 2.33 ± .14
4 .44 1.57 ± .11 2.56 ± .15

global fit .54 1.27 ± .05 2.32 ± .07
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D. VALIDATION OF MODEL CONSTRAINTS

The essential test of the model is the consistency between the widths of the s and t

distributions that was shown previously: G'gt = G obs + oTabs.tgt This goes to the central

assumption of the model-that target detection depends on s + t only.

Figure IV-3 shows the result of this test. The points represent the data of

Table IV-2. They are individually consistent with each other (marginally), and with the

curve that is generated by the constraining relation above. Collectively, the data points all

lie above the curve, which is probably an indication that our central assumption is violated

at some level of precision. As noted above, this should not surprise us. Rather, it is

remarkable that the model works as well as it does, given the simplicity of the assumptions.

Widths of distributions Widths of distributions

2 p a ra rn, b y clu itte r 2 .8 . .................... .... ..... ... •.... .. ... •... .....

S 2 param, all clutter
3.5 model constraint | .. .. ,...".......•, •• • •,/ ; • - 2~~~ ~ ~~~.6 ............... • .. ..........: ..............._.__,- _- ._:'..... ........ : ..> . ..."

2.6......... .63
•2 .4 ................ ........... -=• . ; ý=,. ............... !................

2.5 2.4......................4.........................

2t param.Ly A H(!2 - .- . . ......... . ............. .......... .......... . . .2 .2 ..... .... J..... . ... " I
_: ............ model constraint

1.5 2 i.... . .2
0 0.5 1 1.5 2 2.5 3 3.5 4 1 1.2 1.4 1.6 1.8 2

'7ob. Cobs

Figure IV-3. Consistency of Results for Different Clutter Conditions

and Adherence to Model Constraint

The global fit indicates that the ratio of the widths Gobs: Uobs.tgt": cGgt is close to that

of a 3:4:5 right triangle. This is the ratio we shall take as our baseline.

The knowledge of these parameters enables us to address questions about individ-

ual observer performance. Figure IV-4, for example, shows the expected performance of

individual observers, given targets whose ensemble averaged PD is known. For example,

for a PD = 50-percent target, the 90th-percentile observer detects with 75-percent proba-

bility while the 10th-percentile observer has only a 25-percent chance.
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Figure IV-4. Performance of Individual Observers by Rank
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V. SIMULATION

The foregoing methods and results are summarized in this chapter. We do so by

putting them together in a working simulation that properly accounts for the observer varia-

bility and the inherently stochastic component of target acquisition, as well as the modeling

uncertainty. The latter is a somewhat separate issue, treated here mainly for the sake of

completeness and consistency.

We assume that the wargame contains a target-only acquisition module. By this we

mean a model like Thermal TAMIP that, for given target signature, outputs the ensemble

average probability that the target will be detected. Having validated herein that the target-

only probability is a convolution of the observer-target kernel with the observer ensemble

distribution, there are only three independent numbers that are needed for the simulation:

"* The width of the target-only probability function in units of the "observer-
target" function. This is the value 1/a. Our baseline ratio from the data
analysis is aobs: aobs.tgt: atgt = 3:4:5 , so 1/a =5/4.

"* The scale factor that connects our t variable to the Thermal TAMIP x variable.
We initially set the width of the observer-target function to 1.814, an arbitrary
choice. The relative scale is defined by the relationship at = Ex, where E is
the Thermal TAMIP exponent; we have shown10 that the scale factor has the
value E / a = 5.625.

" The standard deviation of the random variable associated with the uncertainty
in the target-only model. In the x scale, this value is 0.38.

In implementing the simulation we take the same strategy that is used in JANUS

and CASTFOREM. The random draws are done initially and are used to construct detec-

tion thresholds. Then in the course of the wargame, detection is declared (or is not) based

upon whether the model produced probability exceeds (or does not) the predetermined

threshold. The proper implementation of our modeling efforts is contingent upon correct

construction of the thresholds.

10 See note 3.
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We find that we need three independent draws:

1. An observer draw, to reflect the observer rank;

2. An observer-target draw, to represent the stochastic component of the

acquisition process; and

3. A target draw, to simulate the uncertainty in the target-only model prediction.

The distribution functions are completely determined by the three values that we have in

hand. They are all invertible in terms of elementary functions (we assume a logistic

distribution for the modeling uncertainty), so the thresholds are easily obtained. Once the

thresholds are computed, the game is played precisely as it was previously.

The Mathcad'm script that follows illustrates the simulation.
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File sim.mcd
Simulates the observer target model.

Equations with asterisks * are not used, but are for reference or clarity.

Preliminary function definitions:

nmd( m, s) := s" 4 - 2-In( rnd( I cos( nid( 2. t)) + mr Gaussian random numbers.

Iogit(x) :( 1 + exp(- x))- Logistic transform.

Iogodds( P) :=In -) Inverse of logistic transform.

We take the relative widths of the distribution functions from the data analysis of Chapter 4:

a 4 Assume baseline 20
.-.5 3:4 .5 ratio. See text. x 2.exp(xW
a Notational w L x2=xp.x) dx Width of the

r c Noneienc . ( + exp( x) )2 Logistic pdf.
S convenience. 20

By definition; this defines our scale.

0 ObsTgtC w Below we connect to the usual NVL
Model variables.

0 Obs a Tgt -ObsTgt2

Now need to relate the s, t variables to the scale of x 10

and consider uncertainties in the target-only model: M 50

Option 1: Assume modeling is precise:

E :=3 x(M) :=In(.50) o a

Option 2: Assume modeling uncertainty is as given in IDA Paper P-3078:

E' :=4.5 o x :=0.38 x'( M) := x(M) + nmd(0, a )o

The scale factor relates the two sets of variables; the defining relation is a't=E*x or =E'*x'.
We choose Option 2.

PD(M) := logit(E'-x'(M))a* scale : E':scale-a:= m a Uric : clax
a
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Define probability functions:

Inv_StochasticCDF( P) := logodds( P)

0• Unc
Inv_Unc_CDF( P) .= c -logouds( P) Will use this instead of inverse error function.

wL
"2 t an( n-trr.( P-- 0.5))]

Inv_ObserverCDF( P) ,- .anh tan( nt. r. 0.5)

test(P) :!(sin( 7c- r) ( n) Alternate form for inverse

a )tan( P- n- r) observer CDF.

Now we can look at the distribution functiors and their width parameters.

P : 0.03,0.04.. 0.97

5

Inv _SochasticCDF( P)

Inv_UncCDF( P)
............

, 0

Inv_ObservcrCDF( P)
0 ObsTgc. 1.814 test( P )

Y Tgt = 2.267

-5
" Obs 1.36 0 0.5 1

P

"a Unc 2.138

Following the current practice in CAST :OREM and JANUS, we run the simulation in two
steps. First, before the engagement begins we roll dice to determine detection thresholds.
Then we begin the game, declaring detecticns when the detection probability from the
target-only model exceeds the preset threshold.
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First do the preliminary draws. Need obs, tgt, and obsotgt draws...

n_obs =27 n_tgt :=25

iobs "0.. n-obs- 1 itgt :=0.. n-tgt-- 1

ObserverFractileiobs := nd( 1) This determined the observer's fractile rating.

TargetFractileitgt md( 1) This is the fractile rank of the target-only modeluncertainty.

Stochastic-Fractilei_obs. i-tgt :_ md( 1) And this is the inherently stochastic piece of the
target acquisition process.

Do the inverse transforms. These manipulations just extend the
rows/cols so all matrices aie the same

_ dimension:
sl_thresh := InvObserverCDF( Obser-verFractile) clitgt I= 1 s_thresh := slthresh- cl

I T
tlunc Inv_UncCDF( TargetFractile) c2i_obs 1 t-unc := c2" tlunc

stthresh InvStochasticCDF( Stochastic_Fractile)

Verify the statistics generated by the random draws. Note the sample is small...

0 Obs = 1.36 stdev( sl_thresh) = 1.351

SUnc = 2.138 stdev( tl_unc ) = 2.022

o ObsTgt = 1.814 1 stdev( st-u,,,sh ) = 1.767

ijtgt

Construct final threshold values.

t_thresh st_thresh - s_thresh - tunc

P_thresh logii( a- uthresh ) o Just a reminder.

x_thresh = -L. t thresh Transform to x-space for direct comparison to
scale Thermal TAMIP output.
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Now play the game. We simulate acquisition for all observer-target pairs:

R obs, itgt +52+ 2" (i-°obs _i-g Two lines 5 km long, 0.5 km apart.

x := Signatures otherwise identical.R

D (x> xhitsh) Compare to threshold values.

The results of the engagement:

110100000 1000000000000000
11l11000001000010000000000

111110 1 000000000000000000
1111111011110010000000000

0111111011100000000000000
1 0 1 1 1 1 0 1 1 1 00000000 0 00 000

0101111011100000000000000

0010111011100000000000000

0010001011100100000000000

0110011011111110001000100

0010001011111110000000100

0000000011100000000000000
000000001110111010000 0 000

0000000011111111100000100
0000000011111111 1 01000000

00000010111 1 11 0 110 0 000 1 00

00000000011001111 1 1000000

0000000001110111101000100

0000000001100110111100 1 00

0000000001100111111101100

0000000001000010101110100

0000000000000001101111100

0000000001100010101111111

0000000000000000101100111

0000000000000000001l1001l01l

00 00000000000000 10 110 1111

0000000001000000001101111
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GLOSSARY

ACQSIM Acquisition Simulation Working Group

ARPA Advanced Research Projects Agency

DF degree of freedom

LLR log-likelihood ratio

NVESD Night Vision and Electronics Systems Directorate

pdf probability distribution function

TAMIP Target Acquisition Model Improvement Program

TRAC-WSMR TRADOC Analysis Command - White Sands Missile Range

TTPF target transfer probability function
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APPENDIX A
DERIVATION OF OBSERVER FUNCTION

The form of the probability distribution function (pdf) that describes the observer

ensemble is uniquely determined by our choice of the logistic function for the target-only
and observer-target probability functions. In this appendix we explicitly derive this form of

the observer ensemble distribution function.

We emphasize that the precise forms of the functions that we introduce are not of

fundamental importance. Since the current state of the art does not support excursions into

the tails of the probability distributions, one "S-shaped curve" is more or less as good as
another, as long as the important parameters (namely the position and width of the
transition region) are accurately represented. We have been explicit because it is necessary

to generate a concrete model which is suitable for implementation into the wargames and at

the same time is consistent with the existing suite of model results. Additional work on the

specific functional forms may lead to marginally better fits, but will likely be both

intellectually and practically unproductive.

The logistic function that defines the observer-target probability function is

axFa W(x),ax=l2(1l+ tanh 2)

and a similar definition holds for the target-only function, Fb (x). The defining relation is a

convolution integral; our problem is to find Ka~b(x) such that

Fb(x) = ._IKa,b(x - x')Fa(x')dx'

It will be convenient to use Fourier transforms, so we need to work with normed

functions. Taking the derivative yields

fb(X)= Ka,b(x-X')fa(x')dx'

where
d a 2

fa(x) dF() = 4sech2 2
A- 4 2
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and f is normed to unity.

Taking the Fourier transform and solving for the transformed kernel gives

fca~b6) = bN ()

where the hat denotes the Fourier transform, ant it can be shown that1

a(ý)=27r csch'r

a a

Then

asinh •

Kab( )= a

b sinh 4
b

and the inverse transform yields2

b sin icr

Ka'b(X) = 2ir cos 7ir + coshbx

where r = b/a.

The cumulative distribution function (cdf) can also be written in terms of elementary

functions 3:
frx1 1 ( icr bx)

Hab(X) - Kab(X')dx' + I+atan tan tanh

2 icrr k 2 2'

Note that the cdf depends only on the ratio r = b/a, as we would expect. The final result

for the observer ensemble cdf is then

Wi(s) = Hl,b(s)

whereb= 1.814

and a. is the standard deviation of the observer s values, as determined in the experimental

data analysis.

1 A. Erdelyi et al., "Tables of Integral Transforms," Volume 1, McGraw-Hill, 1954, p. 30, equation (2).
2 Ibid., equation (6).

3 I.S. Gradshteyn and I. M. Ryzhic, "Tables of Integrals, Series, and Products," Academic Press, 1965,
p. 108, equation 2.444.1.
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The following two MathcadTM scripts verify these results numerically. The file

conv.mcd explicitly carries out the convolution and compared to the expected result, then

explores the shape of the function and verifies the quadratic relation among the width

parameters. The file cdf.mcd confirms that H is indeed the cdf associated with K.
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conv.mcd

Verify that a kernel of the form K convolved with f results in a rescaling of f.
from Bateman's Tables of Integral Transforms, A. Erdelyi, page 30 equations (2) and (6).

f( a, x) :=.sech(a- X 2 Define f. Note a is inverse length scale.

sin (C.b) Define K.
K(a,b,x) := .a Must have b<a because output2 cob( b. + cos(•-b) f is wider after convolution.

a := I b :=.55 Select the scale factors.

r 20 Define the

C( y ) := K( a, b, y - x )( a, x dx convolution Check the functions:
-20 integral. 4

4

Check normalization: b

0.3

f(a,x) dx= I ffa. t 0.2-200.
ff b, t)

,0..........
K(a.b. t) 0I

f(b,x) dx I K '
-20

0
20 0 5 10

K(a,b,x) dx = I
-20

Do the computation for a set of N points.

N :=12 n :=0..N- 1 ._4 2-n

b*N Cn :=C(yn)

0.15

n 0 The result should be identical to
f(b, Yn) the scaled function.

0.05H

0
0 5 10

Yn
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Rewrite functions to parameterize by standard deviation. Check relation among widths.

Logistic PDF:

S j_2 x 2. 1( 1, x ) dx s =1.814
20

g(,x) I, x)

(S x)i:=O0.
L(a, t, x) := K I I s,: 0.

T i :=0.05- 2i

"ti += I -(Oi7)

10 10t

Yi :" x2 -L( 1,.i, x) dx

0-1i

0.1 3 1

To good accuracy, the widths 0.01 - 0
add in quadrature. Works best I- - a 0.001 -
for = input widths. I *I 10-4

i -- 50 110 -0
1.10"" I

x 0. 0.0.1.. 4.9 1.10- 0.01 01 1 10

0. 1- These two functions have
the same width.,( I . x The kernel has a sharper

0.01 r -peak and a longer tail than
S....X. the lo g istic pdf.

0.001

0
0 2 4 6

x
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Look at the variation in shape of the kernel function as the parameters are varied subject to the
constraiunt of constant width...

KW(a, b, x) :K b,

N :=5

m :=0..N--

m+O0.5 "s
bm "- T + Argument of K must be real, so there is an upper limit on b.

N a

x := 0, 0.1.. 7.9

10

KW (a,.box) 1

0.1
KW~c b0,x

(a-- I '1 -
KW (a, b2 ) 0.01

0.00 1
KW ab 3 'x

KW ab 4 )

i -io c7'
0 5 10

x
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file cdf.mcd Jim Silk
Closed form of the cumulative distribution function for the kernel that connects
scaled logistic functions.
The kernel K is defined in the file conv.mcd.
Our CDF is defined as follows:

CDF( a, b,x) J= I;. K(a, b, x') dx'a

Equivalent definitions of the kernel function: Result is from Bateman's Tables of Integral Transforms,
A. Erdelyi, Volume 2 page 30 equations (2) and (6).

W 1z) = 1 sin( it r)
2. t. r cosh( z) + cos( t. r) sin(r)

K( a,b, x) := b.h, b.x) Kold( a, b, x) a sh(bx +
(a X)2.-n cosh( b- x )+ cos(.)

x : 0, 0.1.. 4.9

0.4

K( 1.2, .81,x)

0.2
K.old( 1.2.-.81,x) Check equivalence.

0 2 4 6
x

H (r, x) := h( r, x') dx' The integral form (definition) of the CDF.

H( r, x) .- aan( sin( :-r) This form has branch cut problems when
ntr cos( t. r) + exp( -x) the sine is negative, so use angle function.

H( r, x) :=-.angle(cos( t-r) + exp(-x),sin( tir)) Easy to check that: h( r. x) H( r, x
7tcr dx

Ir x) * r) This form is just as good;Hnew(r. x).- + -atn (tanh x -tan L
new 2 see Gradshteyn 2.444.1.

x =-3.. 3 CDF( a. b, x) H(b, b.x)

H I( .7. x Closed forms both agree with

H ne( •.7. x )0.5 _numerical integration.

H( .7. x

0
-4 -2 0 2 4

x
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APPENDIX B
MatlabTM CODE USED TO PERFORM

UNCONSTRAINED FITS

load bimat
pl=blmat (1:69, :) ;
p2=blmat(69+1:2*69, :);
p3=blmat(2*69+1:3*69, :);
p4=blmat (3*69+1 :275, :);
p=p'; %Select clutter
po=me an (p) '
pt=mean (p 1)'
[nt, no] =size (p);
lo=log((O.O0l*ones(size(po))+po) ./(1.OO2*ones(size(po))-po));

l=[lo;lt];
l=[1.925*lo-2.613* (ones (size (lo)));1.366*lt] ; %From 2-par fit
n-rep=199;
clear tmp;
clear tmpO;
tmp=l;
tmpO=tmp;
llrt=llr(l,p); %See function def. below.
for i=l:n rep;
ld=demean(tmp(:,i:i) ,no,nt); %See function def. below.
l=newton(ld,po,pt); %See function def. below.
tmp (:, i+1 :i+1) =1;
tmpO (:,i+1 :i+1) =tmp (: , ~li:i+1) -tmp (:,i :1);
llrt (i+1) =llr (1, p);
end;
sl=tmp(1:no, :) ';
tl=tmp(no+1:no+nt, :) ';
llrl=llrt';
save sl.dat si -ascii -tabs
save tl.dat ti -ascii -tabs
save llrl.dat llrl -ascii -tabs
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function lnew=newton(1,po~pt);

no=size (po, 1);
nt=size (pt, 1);
lo=1 (1 :no);
lt1 (no+1:no+nt);

q=i. /(ones (size (tmp) )+tmp);
qo=me an (q) I;
qt~=mean(q') 1;
fdi= [po-qo;pt-qt]I;
sdO=q. * (ones (size (q) ) -q);
sqo=surn(sdO) t;

sqt=sum(sdO') 1;
sdl=-fldiag(sqo) sdO';sdO diag(sqt)];
sci~sd1(2 :nt+no, 2:nt+no);
fd~=fd1 (2:nt+no);
11=1 (2:nt+no);
lnewl=l1-inv (si) *fd;
inew=[1 (1:1) ;inewl];

function ld=demean(1,no,nt);

lo=1 (1 :no);

m=mean (10);
ld=[1o-m*ones (size (10)) ;lt+m*ones (size (it))];
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New Obs • Tgt file.
Calculates two predictors from observer and target probability estimates.
Then do logistic fit to optimize the combination.

PP := READPRN( matrix) rows( PP) = 275
Nrows :=rows(PP) Ncols :=cols(PP) i :=0.. 69-- 1 j :=0.. N cols-1

Do Clutter Class #1: pi, j := PPi + 0. 69, j

N rows := rows( P) N cols := cols( P) N rows = 69 N cols = 22

i .=0.. N rows 1 j :=0..Ncot--

"N obsi :-if( Pi < 0, 0. 1) N obs0 = 22

"N tgt. :=Zif(Pi .<0,0, 1) N =69
i

" net: Z (Zif( Pi.i < 0, 01) N net= =.1*1

.N -I if( Pi.j< 0, 0, pi, j ) obs ' if( Pi,j < 0 0 Pi. j)
obsi j tg'j i

• ne NI[Z if(Pi'j< 0.0.Pi'
net N net Inet =0.769

Io( x ) := 2" aanh( limit( 2.x - 1)) logit(x) :=0.5.(tanh(0.5-x) + 1)

DATA i+j.N rs 0 i. j k := 0.. N r N cols -1

DATAi + j.N rows, :I°*(P obs) max ifDATAk 0< 0, 0, 1)

DATAi + j.N .2 :=lo(P tgti) k

DDATA csort( DATA, 0) mean I7o(P tgt)) = 1.818

k 0.. ksbar = 1.347 stdev= 2.239

idt =DTk -sbar 1.4( t.t))
'ikI DDATAk. I - mean Ibo( P obs) = 1.347

idatk. 0 ;=DDATAk, 2 stdev(lo( P obsl) = 0.772

tilk =DDATAk. 0
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ndat rows( idat) ndLat = 1.518* 103 N os:

npar :cols( idat- 1 npar = I P da

i:=O.. nda - I idat 0. 0 := I br n69

k:=O.. npw k = ufitkl

_____________at- Q2( q) :=q.(q))

L2 k xtnd( q) :q unitT

:=( QQ idatQQ)

LLRO( q) ~N obs2( P-In( q)+ (1- P)-In( 1- q))

LLR(f3) :=LLRO(Q(P3))

SD( J3) :N ob* (idatT Iclat( 03))
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SAT := LLR0( 0.0001 + .9998. P) SAT = -0.152

1 2
B0>:=13 N :=4 n :z0.. N 1.239 1.83

B<n+ 1> :=B<n> -SD(Bn> ) .- D( B<n> ) T 1.345 1.912

1.357 1.924

:=B<N+ 1> LLR( 3)=-403.4 1.357 1.924

D :=2( SAT-- LLR(13)) D = 806.496 1.357 1.924

Y2(XnD) �.-2.nFD- cnor1m(y 2 (D, ndat--npar-- 1)) = 1

y 2( D, ndat - npar- I ) = -14.892

(9-886" 10-1:3 )( 287.734 89.387\
FD(3) 1.036 SD(13) =

1089.387 74.993)

13=1.924/

I:-SD([3) z 171 (0.006 0.007)

0.007 0.021/

eigenvals( X) eigenvec( ?, k) SEk 7 Wa.d SE

Ok SL1  Waikl
11.3571 0.074 187

0.003 s= r0.94 0.342 0 146 4 24 2

0.024/ 0.342 0.94 /

sT.= (I 0\ ~T. (-=0.003 0

0o 1i ( 0 00.0241
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