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Numerical Simulation of BGK-Biimett Equations 

ABSTRACT 
Recently^ it has been shown using Boltzmann's H-Theorem that the conventional Burnett 

equations violate the second law of thermodynamics, and hence must not be employed for fluid 

dynamic simulations. To overcome this difficulty, a new set of equations, designated the BGK- 

Bumett equations was derived recently by the authors. A second-order distribution function was 

derived by employing the Chapman-Enskog expansion on the BGK-Boltzmann equation. 

Moments of the BGK-Boltzmann equation with the collision mvariant vector using the second- 

order distribution function yield the BGK-Bumett equations. It has been shown by the authors^ 

that the BGK-Bumett equations are stable to small wavelength disturbances and that they yield 

results consistent with the second law of thermodynamics. In order to prove that these equations 

are indeed entropy consistent, it is shown that the second-order distribution function does not 

violate Boltzmann's H-Theorem. This new set of equations must be used for computing 

hypersonic flows at moderate Knudscn numbers. The BGK-Bumett equations are employed to 

compute the hypersonic shock structure. The results of the computations show that under certain 

flow conditions, the conventional Bumett equations violate the second law of thermodynamics 

while the BGK-Bumett equations provide entropy consistent results. 
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INTRODUCTION 
In one of the earliest attempts to solve the Burnett equations, Fiscko and Chapman^ solved the 

hypersonic shock structure problem by relaxing an initial solution to steady state. They obtained 

solutions for a variety of Mach numbers and concluded that the Burnett equations do indeed 

describe the normal shock structure better than the Navier-Stokes equations at high Mach 

numbers. The equations were however unstable when the grids were made progressively finer. In 

a subsequent attempt, Zhong* showed that the equations could be stabUized by adding a few ad 

hoc super-Burnett terms (linear third order terms, in order to maintain second order accuracy) to 

the stress and heat transfer terms in the Burnett equations. This set of equations was termed the 

"Augmented Burnett" equations. The Augmented Burnett equations did not present any stability 

problems when they were used to compute the flow parameters in the hypersonic shock structure 

and hypersonic blunt body problems. However attempts at computing the flowfields for blunt 

body wakes and flat plate boundary layers even with the Augmented Burnett equations have not 

been entirely successful. It has been conjectured by Chapman et. al''^ that this instability may be 

due to the fact that the Burnett equations violate the second law of thermodynamics at higher 

Knudsen numbers. 

The main objectives of the present work are: 

a) To formulate a methodology for deriving and integrating a new set of entropy 

consistent Burnett equations (designated as BGK-Bumett) that can be extended to higher 

d'miensions. 

b) To check if the constitutive relations for the BGK-Bumett stress and heat transfer terms 

correctly model the flow properties at high Knudsen numbers. 
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c)       To computationally check if the BGK-Bumett equations are stable to small wavelength 

distuibances. 

The second-order distribution function is derived by representing the collision integral in the 

Bhatnagar-Gross-Krook (BGK) form and considering the first three terms in the Chapman- 

Enskog expansion. The BGK form of the collision integral assumes that the collision processes 

are predominantly binary in nature. In deriving the second order distribution function, an as yet 

unanswered question is the approximation for the material derivatives that appear in the second 

order terms. In a recent attempt*, the first and second order distribution functions were obtained 

iteratively by perturbation analysis of the 1-D BGK-Boltzmann equation. In this analysis the Euler 

equations were used to approximate the material derivatives in the first order distribution 

function. Moments of the BGK-Boltzmann equation with the collision invariant vector and the 

first order distribution fimction yield the Navier-Stokes equations. In order to keep in step with 

the iterative process the Navier-Stokes equations were used to approximate the material 

derivatives in the second order terms. The BGK-Bumett equations are obtained by taking 

moments of the BGK-Boltzmann equation with the collision invariant vector and the second-order 

distribution function. This set of equations contains all the stress and heat transfer terms reported 

by Fiscko and Chapman' and has additional terms which are similar to the Super-Burnett terms. 

In order to prove analytically that these equations are indeed entropy consistent it has been shown 

that the second-order distribution function does not violate the H-theorem. Since the definition of 

the Maxwellian and the higher-order distribution functions used in deriving the BGK-Bumett 
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equations takes into account the internal energy of the molecules and farther does not assume the 

molecules to be monoatomic, a modified H-fanction has been formulated to prove the H-theorem. 

In order to ensure that the entropy gradient remains positive throughout the flow field, a set of 

boundary conditions has been derived using the Gibbs entropy equation. It has been shown that a 

positive entropy production can be ensured by setting the heat transfer terms to zero at stations 

far upstream and far downstream of the shock. 

1-D BGK-BOLTZMANN EQUATION 

The 1-D Boltzmann equation can be written as follows, using the BGK approximation for the 

collision integral J(f;f)- 

|,v| = J(f,f) = v(f(°)-f) — 0) 

In the above equation, f denotes the distribution function, v denotes the molecular velocity, J(f,f) 

denotes the collision integral, and v denotes the collision fi-equency. In this representation the 

non-linear collision btegral is approximated by a single relaxation time model. This approximation 

assumes that any non-equilibrium distribution function will settle down to the equilibrium 

distribution exponentially. 

ZEROTH-ORDER (MAXWELLIAN) DISTRIBUTION FUNCTION 
For the special case of collision equilibrium, the distribution function takes the form shown in eq. 

(2). It can been shown that this is both a necessary and sufficient condition for collision 

equilibrium. 
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:   . 

[-p(v-u)^-;J (2) 

Df  denotes the number of translational degrees of freedom, u denotes the fluid velocity and 

R = -L-  I denotes the internal energy that accounts for the energy contribution due to all the 
^    2RT' 

non-translational degrees of freedom and IQ denotes the average internal energy, and is given by 

the expression 

(2 4-Df)-YDfp (3) 

''-       2(y-l)      ^^ 

HIGHER-ORDER DISTRIBUTION FUNCTIONS 
The various higher-order distribution functions are obtained by representing them as a Chapman- 

Enskog asymptotic series expansion. 

f = f(O)+^(0+^2f(2)+ ..+^°fW+  (4) 

where, ^ = | — J   denotes the Knudsen number. The first two terms of the Chapman-Enskog 

expansion give rise to the first-order distribution fiinction f = f^ ^ +^f^ S and the first three 

terms of the Chapman-Enskog expansion give rise to the second-order distribution function, 

f = f (0) ^ ^f (1) + ^2 j-(2) jjj pj.jgj. jQ obtain exact analytical expressions for the first and second- 

order distribution functions the BGK-Boltzmann equation is non-dimensionalized by defining the 

following non-dimensional variables 
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(5) 

where, L denotes the characteristic length, Cnns denotes the root mean square molecular velocity 

and Xoo denotes the free stream mean free path. On substituting the non-dimensional variables, eq. 

(1) takes the following fi)rm: 

5^^^1=<f(0)-f] (6) 

THE FIRST-ORDER DISTRIBUTION FUNCTION 

Substituting the first two terms of the Chapman-Enskog expansion, f = f^ ^ +^f^ ^ in the BGK- 

Boltzmann equation and equating like powers of the Knudsen number yields: 

fO)=-_L |(.(o))..|(,(o))] (7) 

On expressing f ^'^ = f (°){I)(^) and substituting in eq. (7) the following expression is obtained. In 

this expression the 1-D Euler equations have been used to express the time derivatives in terms of 

the spatial derivatives. 

(8) ^(0_I.AW(I,c)f-fAW(l.c) 
^v       "■    ' 5x    ^v 

au 
ax 

where, 

AW(I,C): 

A(')(I.C) = 

5c    4IC(Y-1)    _3 

2p      (3-Y) 
-c 

pe.(3-,).evfa.,ip(-o^ 
(3-Y) 

(9) 

(10) 
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and c denotes the peculiar or thermal velocity, c=v-u. The first-order distribution function satisfies 

the property (T,f> = (Y,f(°)). Hence ^^,^fW^ = 0. 

SECOND-ORDER DISTRIBUTION FUNCTION 
The second-order distribution function is obtained by considering the first three terms in the 

asymptotic Chapman-Enskog expansion for the distribution function. Substituting the expression 

for the second order distribution function in the non-dimensional 1-D BGK-Boltzmann equation 

and equating like powers of ^ yields: 

d_ 

at 
(r(.)).,|(fO))..^« (11) 

From the above equation the following equation for f ^ ■' is obtained (2) 

f(2) = _ 
<^v> 

(12) 

Since the field vector Q is the same, for the Euler , Navier-Stokes and BGK-Bumett equations, 

moments of the distribution function with the collision invariant vector ^ must be the same for 

any distribution function. Hence, the second-order distribution function must satisfy the property 

(^, f) = hy, f^^'Y This condition translates to the following equation: 

vF.^^fW} = /vF.-i[|(f(«)<I>0))+v|(f(°)cI>«) 1 = 0 (13) 

An expression for the second-order distribution function satisfyng the above equation is given by: 

f = f («) + ^f (O)CDO) - if-^ff («)CD(01+ALf (o)„(i)1 + Afcf {o)d«l (14) 
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where, 

aa)=-i.A«(T,c)f-±A(^)(T,c)| 
^v 

■S\l,c) = 

dK    ^v 

iic+®2.Tc+e3c- 
p    p 

(15) 

(16) 

A(^)(T.C) = [P04C2+951+96] (17) 

In the above expressions I = — and c denotes the pecuUar or thermal velocity, c = v-u. The 

coefficients 0i, i = 1,2....6 are funrtions of the specific heat ratio y . The exact expressions for 

these coefficients are given in the appendix. 

THE BGK-BURNETT EQUATIONS 
The various fluid dynamics equations are obtained by taking moments of the BGK-Boltzmann 

equation with the collision invariant vector 

iT 

4' = 1, V, 

r     2^ 

V       2^ 

(18) 

The moment of   f   is defined as(4'.f)= f J^f dv dl. On taking moments of the BGK- 

Boltzmann equation, the following generic equation is obtained. 

at 
(4.,f) + A(^,vf) = (T.v(f(°)-f)) = 0 (19) 
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On substituting the zeroth, first and second-order distribution fiinctions the Euler, Navier-Stokes 

and BGK-Bumett equations are obtained respectively. 

d_ 
at 

00  00 

.0-00 

fTdvdl 
Sx 

00 00 

O-oo 

vfPdvdl 

00  00 

= v[ fWf°-f)dvdI = 0 (20) 

0 -00 

Moments of the BGK-Boltzmann equation with "¥ using the second-order distribution function 

yield the BGK-Bumett Equations. 

The 1-D BGK-Bumett equations are represented in conservation law form as: 

-SLjf. + + = 0 
dt      ax       5x        OX 

The elements of the field and flux vectors are: 

(22) 

Q = 

p" pu 0 0 

pu .G' = p + pu^ ,G^ = ^x and G® = -tf 
pe pu + pue -ux^S^q^^-Sj _-UT? + q^J 

(23) 

The Navier-Stokes and BGK-Bumett stress and heat transfer terms are given by the following 

expression."; 

N_S    4    au       ,   N_s      , 5T 

r? = 

Vax^ 

p vax/ 

a^ul 
vfttV 

,aW±fa^y ^^-\a(')Tf^"' 
KdK^J 

.aC«)(|)- 

(24) 

(25) 
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nB-lL 

+ • 
PP 

+b' 

3 

-<'"'?^[f) 

(26) 

The coefficients a^^^ - a<'°^ and b^" - b"°> in the expressions for the BGK-Bumett stress and heat 

transfer terms are functions of 'y ' and are given in the appendix. The BGK-Bumett stress and 

heat transfer terms have two sets of terms of orders n^ and [i^. The former results when the 

Euler equations are used to express the material derivatives in terms of the spatial derivatives and 

the latter is obtained when the Navier-Stokes equations are used to express the material 

derivatives in terms of the spatial derivatives. When only terms of order \i are considered it is 

observed that the derivatives in the expressions for the stress and heat transfer terms are identical 

to the derivatives reported by Fiscko and Chapman'. The coefficients of these derivatives are, 

however, very different to those in Ref 3. Table 1. shows the comparison between the BGK- 

Bumett coefficients and the coefficients of the Burnett equations in Ref 3. When terms up to the 

order ^x'' are considered it is observed that there are many non-linear terms (products of 

derivatives) in addition to linear third-order derivatives. These derivatives are similar to the super- 

Burnett derivatives in Ref 3. Table 2. and Table. 3. show the comparisons between the 

coefficients of the BGK-Bumett derivatives and the coefficients of the augmented Burnett terms 

evaluated by Zhong . 
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LINEARIZED STABILITY ANALYSIS 
It has been shown by Bobylev' that the conventional Burnett equations are not stable to smaU 

wavelength disturbances. Hence the conventional Burnett equations tend to blow up when the 

mesh sizes are made progressively finer. In order to investigate the stabiUty aspects of the BGK- 

Bumett equations a model problem is considered which studies the response of a uniform gas to a 

1-D periodic perturbation wave. The initial density, temperature and velocity of the undisturbed 

gas at time t = 0 are po, TQ, and UQ = 0 respectively. At t = 0 the gas is perturbed such that: 

P = Po 

T = Tr 

icDX^ 

1 + Cie^ 

1 + C2e^ 

J 

(27) 

(28) 

U = VRTC 

(       m\\ 

3 C,e^ 

V 

(29) 

/ 

Since the perturbations arc assumed to be small the magnitudes of the coefficients in the 

expressions (27>(29) are required to satisfy the inequality [Ckl «1, (k = 1,2,3). 

The characteristic length LQ =—^5^= = 0.783>.. where X denotes the mean fi-ee path. The 
PoV^To 

non-dimensional circular fi-equency m = ^_ ^^ = 4.92-= 4.92Kn. Introducing the perturbed 

(Ko) 
quantities in the continuity, momentum and energy equations and simplifying yields: 
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5V   ^, SW"   ..   d^Y 
 + Mi——+ M2—7- 
dv     ^ ax'     ^ ax'2 

+ M3 r- + M4 
d^v 

5x i3 ax ,4 
= 0 (30) 

V'=-^ Ml = 

0      1      0" 

1        0        1 ,M2 = 

0   (Y-I)   0 

0          0 

3-Y)    0 ,M3 = 

0         I Pr. 

0 0              0 

0            
R R 

0 .b(2)(Y-l)      0 

Ml = 

0      0 
(9) 

0    '^^ 
R 

0 

0 

0      0 
b(^)(Y-l) 

RPr 

The  non-dimensional  initial  conditions  for eq.   (30)  can be  denoted  in  vector  form  as 

V'li^o = Ve''^"', where x' = —. Let us assume the solution of the above equation to be of the 

form 

(31). 

where  t'= -^. The complex variable <}) = a + iP. a denotes the attenuation coefficient and P 

denotes the dispersion coefficient. For stability a < 0 as L decreases or in other words the flow 

must attenuate as the Knudsen number increases. Substituting eq. (31) in eq. (30) and simplifying 

yields eq. (32) when Euler equations are used to express the material derivatives. 

f(DI + icoMi - (D 2M2 - io ^M3]Voe'°"'"e'^* = 0 (32) 

For a non-trivial solution the following condition must be satisfied 

2 3 d + icoMi - CO M2 - ICO M3 = 0 (33) 
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When the Navier-Stokes equations are used to express the material derivatives in terms of the 

spatial derivatives the following equation is obtained: 

f (DI + icoMi - 0) ^M2 - io ^M3 + © '^M4]Voe'°"''e'^' = 0 (34) 

For non-trivial solutions the following condition must be satisfied: 

<I)I + i{oMi-(D^M2-ico^M3+(D*M4 =0 (35) 

The trajectory of the roots of the characteristic equations (33) and (35) is plotted on the complex 

plane on which the real axis denotes the attenuation coefiBcient and the imaginary axis denotes the 

dispersion coeflScient. For stability it is required that the roots lie to the left of the imaginary axis 

as the Knudsen number increases. Fig(s) 1-4 show the trajectory of the roots of the characteristic 

equation as the Knudsen number increases. From the plots it is observed that unconditional 

stability is guaranteed only when the Navier-Stokes equations are used to express the material 

derivatives in terms of the spatial derivatives. It must be noted, however, that the Unear stability 

analysis does not consider the many non-linear terms - powers and products of derivatives - that 

are present in the BGK-Bumett stress and heat transfer terms. Hence, this analysis, is at best only 

a necessary condition for the stability of these equations. A more rigorous proof of the stability of 

these equations involves verifying the Boltzmann's H-Theorem. 

BOLTZMANN'S H-THEOREM 
The BGK-Bumett equations must satisfy the second-law of thermodynamics. There, however, is 

no acceptable definition of entropy for a gas in a state of non-equilibrium. Physical intuition tells 

us that an isolated system will evolve fi^om an arbitrary initial state to a state of equilibrium. 
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Boltzmann's H theorem formalizes this notion, and also makes explicit the manner in which this 

evolution proceeds. A spatiaUy homogenous gas is defined as one in which the density does not 

vary with position. Boltzmann's H theorem states that for a spatially homogenous gas the 

inequality, —(H)^0, must be satisfied when the gas approaches equiUbrium. The quantity H 
9t 

00 

which is shown to be the kinetic theory equivalent of entropy^ is defined asH=Jflnfdv.In 
-00 

arriving at this definition of the H-fiinction Boltzmann made the following assumptions: 

a) The molecules comprising the gas do not have any internal energy. Hence the H 

fiinction was defined only over the range of molecular velocities. 

b) The gas was assumed to be monoatomic. 

Since our definition of the Maxwellian and the first and second order distribution fimctions takes 

into account the energy contribution due to the various non-translational degrees of fi-eedom and 

fijrther does not assume the gas to be monoatomic, the definition of H must be modified to 

account for these differences. The modified definition of the H fiinction can be shown to reduce to 

the classical (Boltzmann) definition of H for the specific case of a monoatomic gas. 

MODIFIED H-FUNCTION 
The change in entropy in classical thermodynamics is given by the following expression: 

^^      ^^    ^    Ti pi 

' It must be noted that entropy according to classical thermodynamics is defmed only for equilibrium systems. The 
quantity 'H', however, is defined even for non-equilibrium systems. 

14 RBK-RKA 



Numerical Simulation of BGK-Bumett Equations 
Sv?;- 

where the subscripts '1' and '2' denote thermodynamic variables at equilibrium stations far 

upstream and far downstream respectively. The absolute entropy is given by the following 

expression up to an additive constant. 

s=CvlnT-Rlnp + R^ (3'7) 

The above expression can be cast in the form 

s=-R 
Inp       ^ 

(y - 1) 
(38) 

where B =    We now need to devise a method to arrive at the above expression from the 
2RT' 

Maxwellian distribution function which is also the equilibrium distribution function. The 1-D 

Maxwellian distribution function is given by the expression 

-f-p(v-uy 

(3 - y) 
where the average internal energy In = -^, -r ■ Equation (40) can be rewntten as: 

4P(y - 1) 

lnf^°^ = lnF = lnp + —ln34 In- 
2 

(3-Y) 

4(y-l) 

+ (2Pu)v 

Pu^ 

r 2^ v 

V2y 

(39) 

(41) 

On rearranging the terms in eq. (41) 

In f(0)_2pi(£zM = 
(3-Y) 

Inp + llnp + ln- \ <r-i)l 
[(3-y)>/rj 

.-Pu^ 

-2P I       2.; H^ .pu)v 

(42) 
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Equation (42) is indeed a linear combination^ of the collision invariants. Hence, 

0 —00 

af(«)    af(°)l 
(43) 

+ v 
dt dn j 

dvdl = 0 

The above equation can be recast in the following form by making use of the identity 

af^o)     d'A 
+ v- 

di dx 
)= 0. 

,.,„f(»)-2pi|^] + V 
dt dK 

11-'"^"'-P'^l 
(5-3Y)iraf(o)    d')] 

+ V  dv dl 
dt dK y 

= 0 

(44) 

On simplifying , eq. (44) can be expressed as 

ll(l-|]k''"^°'^lr?^"'-^ 
0 -00 

dvdl = 0 

The above equation can be expressed in the following compact form 

I(„(°))4(H(O))=O 
dt dx 

where the flinctionalsH'^' and Hy are defined in (47) and (48) as: 

(45) 

(46) 

H 

O-oo 

f(o),„f{o)^(£zMf(o),„p' 
2(Y-1) 

dvdl (47) 

^ It can be shown that the moments of the BGK-Boltzmann equation with any linear combination of the collision 
invariants equals zero. Hence the need to express equation (36) as a linear combination of collision invariants. 
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H(«) = = jj|f(°)lnf(°)^g^f(^)lnP 
2(y-i) 

dvdl (48) 

On evaluating the moments in eq. (47) the foUowing expression is obtained for H (0) 

H' («)=, 
(Y - 1) 

(49) 

On comparing eq(s). (49) and (38), 

ps = -RH(«) (50) 

The additive constant eo is a function of the specific heat ratio y and the gas constant R. The 

definition of the H-fiinction can be extended to any distribution fiinction. Accordingly the 

fijnctionals H and Hy are defined as shown in eq(s). (51) and (52). 

0 -00 

flnf + 4-^fl"P 
2(Y-1) 

dvdl (51) 

00   00      p 

V 

0 -00 

flnf + ^^-^flnP dvdl (52) 

00  00 

It can be seen that the expression for H reduces to the classical definition H = J J f Inf dv dl, for 
O-oo 

the specific case of a monoatomic gas G-C. Y =  )^ )• For a spatiaUy inhomogenous gas Grad* has 

shown that the following inequality must be satisfied when the gas approaches equilibrium. 

' This relation establishes a link between Boltzmann's H-Theorem and the classical thermodynamics concept of 
entropy. It must be pointed out that there is no rigorous justificaUon to extend this definition to include H-fimctions 
derived from higher-order distribution functions. 
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|(H).£(H.).0 (53) 

The above inequality will be shown to be true for the first and second-order distribution functions. 

The first and second order distribution fiinctions are given by expressions (54) and (55). 

f=f(O)+^f(O)cD(l)=f(O)(^l + ^<I,0)) (54) 

= f(«) + if^'U'^ 4- 42f(0)<D(2) = f(0)(l + ^<D(^) + ^2(1,(2)) (55) 

On expressing ln(f) as a Taylor series and considering only terms up to the second power in the 

Knudsen number the following approximations are obtained for the first and second order 

distribution functions. 

i2 

In r(o)f (u^(DW)l = lnf(°)HO«- 
^2[^(I)J 

(56) 

In .(0) (l -. ^<D(0 + ^2^(2))] ^ In f(«) + (^O(') f e<^^''>) - 
oW+^o^^) 

(57) 

The H-Balancc Equation for the Bollzmann equation is obtained by evaluating the moments in the 

following equation. 

00  00 

d_ 

dt 
(H).|(H,) = ||v(f(°)-f) 

0 -00 
(3-Y)      . 

dvdl (58) 

On substituting eq(s). (54) and (56) in the above equation and retaimng only terms up to the first 

power in ^ (Knudsen number) the right hand side (RHS) of the above equation takes the form: 
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00 00 

J I -vV(")*« 
0-00 

(3-Y)     . 
dvdl 

Numerical Simulation of BGK-Bumett Equations 

(59) 

The above integral equals zero as moments of the first-order distribution function Avith a linear 

combination* of the coUision invariants are being evaluated. Since the first-order distribution 

fiinction satisfies the property (w; ^^%^^A = 0, eq. (54) equals zero. Hence the first -order 

distribution fiinction satisfies Boltzmann's H-Theorem. On evaluating eq. (58) up to the second 

power in ^, the RHS of the equation takes the following form: 

J J U%i') 4- ^f(%(') Inf(«) - ^f(o)cl,(0 ^I^Mpi + ^2^0)^^(1) dvdl 

0 
00 00 

(60) 

JJ^'fWoWJl + lnfW-^f^pi  dvdl 
0 -00 

The second integral equals zero as the second-order distribution fiinction satisfies the moment 

property (sf; ^^f^^M = (*i'; ^^f^^^O^^'} = 0. For reasons given earlier moments of the second- 

order term with any linear combination of the collision invariants equals zero. Hence eq. (60) 

simplifies to the following : 

00   00 

-Jj5=f«')[*W] dvdl (61) 

0 -00 

,w On substituting for O"^ from eq. (8) and evaluating the moments 

* Moments of the first and second-order distribution function with any linear combination of the collision 
invariants equals zero. 
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o-oo L 

(sy^-ioy + 11 
(62) 

It must be noted that eq. (57) is always less than zero. Hence the second-order distribution 

function satisfies Boltzmann's H-Theorem. It has been proved conclusively that both the first and 

second-order distribution functions satisfy the inequality 

|(H).|(H.).0 

As a consequence the BGK-Bumett equations which are obtained fi-om the BGK-Boltzmann 

equation by using the second-order distribution function are entropy consistent! 

NUMERICAL EXPERIME^^^S 
The BGK-Bumett equations were numerically integrated using a hybrid algorithm for the 

hypersonic shock structure problem. In the hybrid algorithm the inviscid fluxes were split using 

the KWPS scheme and the viscous and BGK-Bumett fluxes were central differenced. The 

objective of this experiment was to test the computational stability of the entropy consistent 

BGK-Bumett equations by integrating them numerically on progressively finer grids. In order to 

test the stability of the algorithm, the scheme was applied initially to a coarse mesh of 101 grid 

points. The number of grid points was increased to 501. The reference parameters used for Argon 

are similar to those used by Zhong*. The results of the computations are shown in Fig(s) 5-12. 

Fig(s) 5-8 compare the entropy plots of the BGK-Bumett equations with the entropy plots of the 

Bumett equations of Fiscko and Chapman\ Fig(s) 9-12 compare the normalized temperature and 

specific entropy profiles of the BGK-Bumett and Navier-Stokes equations. 
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CONCLUSIONS 
An entropy consistent set of BGK-Bumett equations has been derived from first principles. These 

equations have been numericaUy integrated to compute the hypersonic shock structure. The 

equations are computationally stable for the range of grid points and Knudsen numbers for which 

results are presented. 

PROPOSED RESEARCH 
An attempt is being made to compare the expressions for entropy balance obtained from kinetic 

theory (Boltzmann's H-Theorem) and classical thermodynamics, and account for the differences 

between the two expressions. Since the BGK-Bumett equations in 1-D have been proven to be 

entropy consistent a similar analysis for 2-D BGK-Bumett equations will be carried out. 

Numerical solutions for hypersonic flow past blunt bodies will be computed using the 2-D BGK- 

Bumett equations. 
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Numerical Simulation of BGK-Bumett Equations 

Burnett and BGK-Bumett Coefficients 

Euler equations have been used in the BGK-Bumett equations to express the time derivatives in 
terms of the spatial derivatives. 

Table; 1 

Stress and Heat 

Transfer 

CoeflBcients 

Fiscko & 

Chapman (Air) 

Y = 1.4 

BGK-Bumett 

(Air) 

Y = 1.4 

Fiscko & 

Chapman 

(Argon) 

Y = 1.6666 

BGK-Bumett 

(Argon) 

Y = 1.6666 

.« 
1.749 0.96 1.749 0.446 

.<^) 
-388.024 -459.2 -281.216 -277.472 

.(') 
388.024 459.2 281.216 277.472 

.w -257.726 -5625.0 -186.784 -1216 

aW 403.522 -51660 292.448 -938.11 

.w 74.62 -5625 54.08 -1216.0 

b« 10.831 -21.633 10.831 -9.896 

b(^) -2.269 0.183 -2.269 -0.194 

b(') 
-2.06 0.533 -2.06 -0.443 
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Numerical Simulation of BGK-Burnett Equations 

Augmented Burnett and BGK-Burnett Stress Coefficients 

Navier-Stokes equations have been used to express the time derivatives in terms of the spatial 
derivatives. 

Table: 2 

Stress 
Coefficients 

Zhong (Air) 
Y = 1.4 

BGK-Burnett 
(Air) 

y = 1.4 

Zhong (Argon) 
y = 1.6666 

BGK-Burnett 
(Argon) 

Y = 16666 

aW 1.749 0.96 1.749 0.446 

aW -388.024 -459.2 -281.216 -277.472 

a(') 
388.024 459.2 281.216 277.472 

aW -257.726 -5625 -186.784 -1216 

.(') 
403.522 -5166 292.448 -938.11 

aW 74.62 -5625 54.08 -1216 

aC) 0 -459.2 0 -277.472 

.w 0 642.88 0 462.268. 

aC) 63.778 459.2 46.222 277.472 

aC") 0 0.64 0 0.888 
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Augmented Burnett and BGK-Burnett Heat Transfer Coefficients 

Navier-Stokes equations have been used to express the time derivatives in terms of the spatial 
derivatives. 

Table: 3 

Heat Transfer 
CoefiBcients 

Zheng (Air) BGK-Bumett 
(Air) 

Zhong (Ar) BGK-Bumett 
(Ar) 

bC) 10.831 -21.633 10.831 -9.896 

b« -2.269 0.183 -2.269 -0.194 

bW 
-2.06 0.533 -2.06 -0.443 

b(') 
0 4.4 0 4.666 

b(" 
0 1406 0 866.84 

b(^) 0 -1406 0 -866.84 

bO -2186 1406 -2041 866.84 

bW 0 0.7 0 0.833 

bW 0 -14 0 -1.666 

(,(>«) 0 -22500 0 -13870 

b(") -179.375 0 -130 0 
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Appendix: One 

The expressions for the coefficients in the BGK-Bumett flux vector are given below: 

^    Q_7v 9-7Y V3/ 9-7Y 9-7Y 

61 = 23 + 0)1,92=0)2-1, e3 = -(l + toi),e4 = (3-Y) + co3 

G5 = -[(y-l) + co3],e6 = [^) + 0)3 

ni = ii^].n2=mfei+e2.fe3).n3 = 
4(Y-1) 

n,= 
8(r-i) 

((6y - 3)64+(Y +3)05+2Ye6) 

The coefficients of the stress and heat transfer terms are given below: 

aW = 2(2-Y)ni. aW = -2niR. a(^) = 2niR. J^) =-4(^ + 02)R. a(^)=-4a2R 

,{^)=^[^^^n,y, a(^)=-2niR, a(«) = 2RYn,, a(^)=2fliR, J^^) = 2(Y - l)ai 
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b(^) = 804 - 403(27 -1) - 4^2 - 2^1, b^^) = 04 - 03(7 - 1), b(^) = 404 - 2ni 

bW = 2(ni + 403(7 -1)), b(5) = 4yn3R, b(^) = -4yn3R, b^^) = 4Yn3R 

b(«) = 203(7 -1), b(') = -403(7 -1). b(^°) = -647O3R 
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Abstract 

In this paper two different forms of Burnett equations are studied which have been 
designated as 'Augmented Burnett Equations' and 'BGK-Bumett Equations'. The 
augmented Burnett equations were developed by Zhong to stabilize the solution of the 
conventional Burnett equations which were derived m 1935 by Burnett from the 
Boltzmann equation using the second-order Chapman-Enskog expansion. In this 
formulation, ITie conventional Burnett equations are augmented by adding ad hoc third- 
order derivatives to stress and heat transfer terms so that the augmented equations are 
stable to small wavelength disturbances. The BGK-Bumett equations have been recently 
derived by Agarwal and Balakrishnan from the Boltzmann equation using the Bhatnagar- 
Gross-Krook (BGK) approximation for the collision integral. These equations have been 
shown to be entropy consistent and satisfy the Boltzmann H-Theorem in contrast to the 
conventional Burnett equations which violate the second law of thermodynamics. In this 
paper, both sets of Burnett equations are applied to compute a 2-D hypersonic flow over a 
circular cylinder at Knudsen numbers 0.001 to 0.1. The radius of the cylinder, which is the 
characteristic length of the body, determines the Knudsen number. The Steger-Warming 
flux-vector splitting scheme is applied to the convective inviscid flux terms. Stress and 
heat transfer terms are simply second-order central-differenced. Comparison is made 
between the augmented and BGK-Bumett equations solutions and with the Navier-Stokes 
calculations. Comparison of the solutions from the augmented Burnett equations with the 
Navier-Stokes solutions shows that the difference is significant at high Knudsen number 
(A>;=0.1). The solutions from the BGK-Bumett equations are matched well with those 
from the Navier-Stokes equations and the augmented Burnett equations at lower Knudsen 
numbers (A>F=0.001, 0.01). BGK-Bumett solutions are currently underway at higher 
Knudsen numbers. 



Subscripts 

Nomenclature 

et 
Kn 
M 
Pr 
P 
qi 
Re 
R 
T 
7; 
/ 
u, V 

total energy 
Knudsen number 
Mach number 
Prandtl number 
pressure 
heat flux 
Reynolds number 
gas constant 
temperature 
wall temperature 
time 
velocity components in x, y, z direction 

Greek symbols 

a* 3* 

5, 

K 

n 
p 

y 

coefiBcients of stress terms in Burnett equations 
coefiBcients of heat flux terms in Burnett equations 
coefiBcients of stress terms in Navier-Stokes equations 
coefiBcients of third order terms in BGK Burnett equations 
thermal conductivity 
coefiBcient of viscosity 
density 
stress tensor 
specific heat ratio 

Superscript 

(«) 

(B) 
third order terms in augmented Burnett equations 
third order terms in BGK Burnett equations 

X, y derivatives in x and y directions 
fi-ee stream quantities 



f 

1. Introduction 

In one of the first attempts to solve the Burnett equations, Fiscko and Chapman^^^ solved 
the hypersonic shock stracture problem for a variety of Mach numbers and concluded that 
the Burnett equations describe the normal shock structure better than the Navier-Stokes 
equations at high Mach numbers. However, in their numerical solution, they experienced 
stability problems on finer grids. The Imearized Burnett equations were found to be 
unstable to small wavelength disturbances. In a subsequent attempt, Zhong^^ stabilized the 
Burnett equations by adding a few linear third order terms on an ad hoc basis. This set of 
equations was termed the augmented Burnett equations. The augmented Burnett 
equations did not present stability problems when they were applied to the hypersonic 
shock structure and hypersonic blunt body problems. However the augmented Burnett 
equations were not entirely successfiJ to compute the flowfields for blunt body wakes and 
flat plate boundary layers. Comeaux et. al^^ have noted that the linear stability analysis is 
not sufiBcient to explain the instability of the Burnett equations with increasing Knudsen 
numbers because of many non-linear terms present in the Burnett equations. They have 
conjectured that this instability may be due to the fact that the Burnett equations violate 
the second law of thermodynamics at high Knudsen nimibers. 

The highly non-linear nature of the collision integral in the Boltzmann equation is 
simplified by representing the collision integral in the Bhatnagar-Gross-Krook (BGK) 
form. Balakrishnan and Agarwal^*^ have formulated a new set of entropy consistent 1-D 
Burnett equations fi^om the BGK-Boltzmann equation and using the Navier-Stokes 
equations to approximate the material derivatives in the second order terms in the 
Chapman-Enskog expansion. The material derivatives are thus expressed in terms of 
spatial derivatives using the Navier-Stokes equations. This set of BGK-Bumett equations 
contains all the stress and heat flux terms reported by Fiscko and Chapman^*^ and has 
additional terms which are similar to the super Burnett terms. Recently, Balakrishnan and 
Agarwal^'^ have extended the 1-D BGK-Bumett equations to 2-D BGK-Bumett 
equations. In this paper, the augmented Burnett equations^^ and the 2-D BGK-Bumett 
equations''^ have been used to compute and compare the shock structure and other flow 
properties for hypersonic flow over a blunt body in continuum-transition regime. 



''j:'$^lM 

2. Governing Equations 

The governing equations for 2-D compressible viscous flow in Cartesian coordinates are 

dQ   dE   OF 
8^-^^-^ = '' 

(1) 

where 

Q = 

p 

pv 

L«r (2) 

E and F are the flux vectors of the conserved variables g in the J: and y directions. 
These flux vectors can be written as 

F = F,+Fy, 
(3) 

where E, and Fj are the mviscid flux terms and Ey and Fy are the viscous flux terms given 
as follows: 

£;   = 

pw 
.2 pW+p 
puv 

(e,+p)u 

Ey = a 12 

o„i/ + a,2V + ^, 
(4) 

^/ = 

pv 
puv 
.2 pv +p 

{e,+p)v 

F.= '21 

'22 

a^jW + a^jV+^z 
(5) 

In Eqs. (4) and (5), the stress tensors and heat flux terms, cs^ and q^ are expressed as 
follows: 

(6) 



The zeroth order approximation (w=0) results in the Euler equations, 

and 
,(0) 

=   0, 

(7) 
qr  = 0. 

The first order approximation represents the Navier-Stokes equations. The stress tensors 
and the heat flux terms (/i=l) are given as. 

and (8) 

T2 ?^ = -K7: 

where ( ), = d/dx and ( \ = d/dy. The coefiBcients, 5, and 5^ are given in Table 1 for the 
augmented Burnett equations^) and the BGK-Bumett equations(^>. 

Aug. Burnett Eqns. BGK-Bumett Eqns. 
Y= 1.4 

BGK-Bumett Eqns. 
Y =1.666 

5, 1.333 1.6 1.333 

5. -0.666 -0.4 -0.666 

Table 1. The coefiBcients in the Navier-Stokes Eqns. stress tensors. 

Similarly, the second order approximation represents the Bumett equations. The 
expression for stress and heat flux terms (n=2) are, 

P 
RT RT ■HJ.^RT^ +a,/Jr^ H-a, —p„ +a,o—p^ 

-Kx„^p'+a,2-r,p,+a,3-r;+a„-^pj RI 

R 

P 

R 

P 

R-r2 ■^XS-TyPy+CL,,jT^     I 
(9) 



II 

P 
RT RT 

-HijRT^ +a,RT„ +a^—p^ +a,o—P„ 

RT R 

P 

R 

■^U^PI +°^l2—^yPy +^\i^T^ +ai4^Px p p i p 

R 

RT 

P ^ (10) 

"I2        °21 

+P.—P^+P5|7;r,+p,^p.p,+p,^p,r, 
p 7 p p 

+p7-7;p.). 
(11) 

and 

?P^   =—(y,^^,«, +Y2-77;V, +Y3«xr +Y4«^ +y5V^ 
p        T 7 

+Y6yr^v,+y,yr,i/,+y,-p,«,+y,-p,v^ 

1 1 X 
+Y,o-P,«y+Y„-P,v, )• 

9"'=—(Y,^7;v,+Yj^7;i/,+Y3V^+y,v„+y,« 
P T I 

+Y6Y^x",+Y7y7;v,+y,-p^v^+y,-p^M, 

1 1 N +Y,o-PxV,+Y„-p,w, ). 
P P 

v 

(12) 

(13) 

Both augmented Burnett and BGK-Bumett equations have same forms of the stress 
tensor and heat flux terms. However the two sets of equations have different values of the 
coefiBcients. The coefiBcients are compared in Table 2. 
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Aug. Burnett Eqns. 
Hard-Sphere gas 

BGK-Bumett Eqns. 
Y=1.4 

BGK-Bumett Eqns. 
Y =1.666 

a, 1.199 -2.24 -2.222 

a. 0.153 -0.48 -4.444 

ot. -0.600 0.56 1.111 

a^ -0.115 -1.20 -0.667 

a. 1.295 0.0 0.0 

a« -0.733 0.0 0.0   . 

ot. 0.260 -19.6 -5.833 

ex. -0.130 -5.6 0.0 

Oto -1.352 -1.6 -1.333 

a,n 0.676 0.4 0.667 

a„ 1.352 1.6 1.333 

a„ -0.898 -19.6 -5.833 

ttn 0.600 -18.0 -4.5 

a,^ -0.676 -0.4 -0.667 

a,. 0.449 -5.6 0.0 

a„ -0.300 -6.0 -0.667 

P, -0.115 -1.4 -1.667 

P^ 1.913 -1.4 -1.667 

Pi 0.390 0.0 ^CLO 

P. -2.028 -2.0 -2.0 

Pi -0.900 2.0 2.0 

P. 2.028 2.0 2.0 

PT -0.676 0.0 0.0 

Y, 10.830 -25.241 -11.101 

Y, 0.407 -0.2 -1.0 

Yi -2.269 -1.071 -1.384 

Y^ 1.209 -2.0 -2.0 

Y, -3.478 -2.8 -3.333 

Y« -0.611 -7.5 -6.5 

Y7 11.033 -11.0 -5.667 

Y, -2.060 -1.271 -1.051 

Yo 1.030 1.0 1.0 

Y,n -1.545 -3.0 -3.0 

YH -1.545 -3.0 -3.0 

Table 2. The coefficients in the Burnett and BGK-Bumett 
Eqns. stress tensor and heat flux. 



The third order approximation (w=3) represents the super Burnett equations. However, 
not all of the third order terms of the super Burnett equations are used in the augmented 
Burnett and the BGK-Bumett equations. In the augmented Burnett equations, the third 
order terms are employed ad hoc basis to obtam stable nimierical solutions while 
maintaining second order accuracy of the solutions. The third order terms in the 
augmented Burnett equations^^^ are given as. 

and 

a{f = ^RT{ a„u„ +a.„u^ +0Li,v^+a,,v^ ), 
P 

o^> =-^i?r(a,7V^ +a„v^ +a,,u^ +a„«„ ), 
P 

'-'12 '^21 

= iV^7'(PgU^ +3,«^ +P,v^ +P,v_ ), 

pp p p 

9^"^=—^(Y,2^«y+y.27'w+Yl3^Pw+T,3-Px^)• 

(14) 

(15) 

(16) 

(17) 

(18) 

The superscript '(a)' denotes augmented Burnett terms. The coefficients in stress and 
heat flux terms are given in Table 3. 

a,7 0.2222 

a„ -0.1111 

3. 0.1667 

Y„ 0.6875 

YM -0.625 

Table 3. The coefficients in the augmented Burnett Eqns. 

The BGK-Bumett equations have more additional third order terms than the 
augmented Burnett equations. These are not added on an ad hoc basis but are derived 
from the third order Chapman-Enskog expansion of the BGK-Boltzmann equation. The 
third order terms in the BGK-Bumett equations<^ are given as 



F 
+ 97PyV„ +08pv«„ +Q^y^yy ) 

y * +-^(99"x +3e,o«'v^ +8„w.vJ -e4«,uj -2Q^u,u,v 
P 

+4^(0.3«x^«+e.3",7; +e„v^r„ +e„v^r^), 
(19) 

Og^ =iV^7'(0.V +e2Vx^ +63^:0. +64«»c ) 

--^ (QlPyV^ +e5P,«xv +66p,v„ 

+e7P^u^ +egp,v^ +e4P,tt„) 

+-^(69^^ +3e,ovX +6ii^«x -04^v] -2e4V^v,i/^ 

+-^^(e,3v,7; +e,3v^7:. +e,4«x^^ +0,4«x^xx). 
(20) 

P      P 
+p,v„+e,fiP,i/^+e,p,v^) 

„3 

p 

+^R(e„uJ^ +Q„uJ^ +Q„vJ^ +Q„vJ^ ), 
(21) 

^r=i^i?(e„r„+e.,r^-e„ipx-0is-Px7;) 
/?p p p 

+ -^( 0i9"x"xx +02O«xV:c, +e6"x«,y +02lVx 
/7p 
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+ e22V^V^ +BjVyU^ +Q^UyV„ +624"^":^ 

+ Q6»yV^ +e23V,V„ +e24V,l/^ +06VxV^ ) 

-—(-px +^7; xe,3«^ +2e,,«,v^ +2e„v. 
PP   P        T 

+e„t/j+enV,'+e,3V^M 

/7pr 

1 1 

PP p p 

+—(0i9v^v +e^v^t/^ +e6v^v„ +e2,t/,v^ 

+022«x",y +e7",v„ +e23v,t/^ +e24v,v^ 

+ 06V,I/„ +ej3l/,J/^ +024",^^ +06",«» ) 

-—(-P, ^^TyX^^s +2e,,i/,v^+2e,7t/,v, 
/^p p 

y      y   y 

2   , Q    „2 +e„t/;+e„v,^+0,3v;) 

+-^|(e„7;7'„+e„r,r^). 
/7p 7 

(22) 

(23) 

The superscript '(B)' denotes third order stress and heat flux terms in the BGK-Bumett 
equations. The coeflBcients of third order terms in the BGK-Bumett equations, e/s, are 
given in Table 4. 

Y=1.4 y= 1.666 

e, 2.56 1.778 

67 1.36 1.111 

e. 0.56 -0.222 

e. -0.64 -0.889 

0, 0.96 0.444 

e« 1.6 1.333 

07 -0.4 -0.667 

e, -0.24 -0.222 

69 1.024 1.185 

e,n -0.256 -0.593 

0n 1.152 1.778 

ep 0.16 0.444 

10 
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0n 2.24 2.222 

QH -0.56 -1.111 

e,, 3.6 3.333 

e,« 0.6 0.333 

0,7 1.4 1.667 

e,K 4.9 4.167 

e,, 7.04 6.222 

070 -0.16 -1.778 

07, -1.76 -3.111 

077 4.24 4.222 

071 3.8 4.333 

0.. 3.4 3.667 

Table 4. The coeflHcients in the third order 
terms of BGK-Bumett Eqns. 

Finally, the governing equations are nondimensionalized by reference length and free 
stream variables and coordinate transformed to the computational ^-T| domain by the 
following relations 

and 
T] = rix,y). (24) 

11 



3. Numerical Method 

An explicit finite difference scheme has been employed to solve the governing 
equations. The Steger-Warming flux-vector spUtting method^*^ is appUed to the inviscid 
flux terms. The second-order central differencing scheme is appUed to the stress tensor 
and heat flux terms. In the blunt-body flowfield calculations reported in this paper, fi-ee 
stream conditions were used along the outer boundary. First-order extrapolation of the 
interior data was used to determine the flow properties along the exit boundary. Symmetry 
boundary conditions were appUed to the stagnation streamline. The first-order MaxweU- 
Smoluchowski slip boundary conditioria® were used on the wall surface boundary. The 
first-order Maxwell-Smoluchowski slip boundary conditions in Cartesian coordinates are: 

2-'dJ8u]     3 n 
a     KdyJ     4 pT 

^dr^ 
dxj; 

and 

where 

2-a 2y   / 
T =T +-zr 

dr^ 
a   Y+lPrV^yj^' 

(25) 

(26) 

/ = 2^ 
SiRT 

The subscript 's' denotes the flow variables on the solid surface of the body. The 
reflection coefficient, a, and the accommodation coefficient, a, were assumed as 1 (for 
complete accommodation) in this study. 
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4. Application to Blunt Body 

The augmented Burnett and the BGK-Bumett equations are applied to compute the 
hypersonic flow over a cylindrical leading edge with nose radii of 2m, 0.2m, and 0.02 m. 
Since the numbers of grid lines are fixed in ^ and 7 directions, the smaller cylinder has the 
finer grid system in the physical domain. The grid system in the physical domain is shown 
in Fig. 1. The flow conditions are: 

M. =10.0 

Re. = 1675 
P„ = 23881 AT/w^ 

T = 208.4 'K 
CO 

r„ = 1000.0 'K. 

The coefficient of viscosity is calculated by the Sutheriand's law. 

^ = c, 
'r + Cj' (27) 

Various constants used in the calculation for air are, 

y = L4, 
Pr = 0.72, 

i? = 287.04 OT'/(SCC^-*A'), 

c, = L458 X10* kg I sec- m'K"^, 

and 
Cj= 110.4 X 

With the given flow conditions and constants, the computations were performed at 
Knudsen numbers of 0.001, 0.01, and 0.1 corresponding to the cylinder radii of 2OT, 0.2m, 
and 0.02m respectively. 

13 



5. Results and Discussion 

5.1. Case 1: (iTn = 0.1) 

The comparisons of density, velocity, and temperature changes along the stagnation 
streamline are shown in Figs. 2, 3, and 4 respectively. The results are generally consistent 
vdth those of Zhong®. The temperature curves (Fig. 4) show that the present augmented 
Burnett solution using the Steger-Warming scheme has a slightly higher maximum 
temperature than reported by Zhong^\ The Navier-Stokes solutions are also compared 
with the augmented JbSumett solutions in Figs. 2-4. Since the flow is in the continuum- 
transition regime in this case, the differences between the Navier-Stokes and the Burnett 
solutions are significant. The shock width in the augmented Burnett solution is larger and 
the shock is upstream of that in the Navier-Stokes solution. The density and temperature 
contours of the Navier-Stokes solutions and the augmented Burnett solutions using the 
present scheme are shown in Figs. 5-8. The shock structure of the present augmented 
Burnett solutions agrees well with that of Zhong^l The BGK-Bumett solutions are 
currently in progress for this case. 

5.2. Case 2: (Kn = 0.01) 

The comparisons of density, velocity, and temperature changes along the stagnation 
streamline between the Navier-Stokes, the augmented Burnett, and the BGK-Bumett 
solutions are shown in Figs. 9, 10, and 11 respectively. The resulting curves are ahnost 
coincident vwth each other. Only small differences are observed at the fi-ont of the shock. 
The velocity curve of the BGK-Bumett solution (Fig. 10) shows an unexpected high peak 
at the fi-ont of the shock. The density and temperature contours of each equation solution 
are also shown in Figs. 12-17. The shock structures are also similar to each other. 

53. Case 3: (Kn = 0.001) 

At this small Knudsen number, the solutions of the Navier-Stokes, the augmented 
Burnett, and the BGK-Bumett equations are identical. Since the flow is in the continuum 
re^e, the Navier-Stokes equations akeady describe the flow field accurately. Figs. 18, 
19, and 20 show the density, velocity and temperature changes along the stagnation 
streamline respectively. Figs. 21-26 show the density and temperature contours for the 
Navier-Stokes, the augmented Bumett, and the BGK-Bumett equations. 

14 



6. Conclusions 

The 2-D augmented Burnett equations and the BGK-Buraett equations have been 
appUed to compute the hypersonic blunt body flow (for air) at ^ = 0.1, 0.01, and 0.001. 
The expUcit finite difference scheme with Steger-Warming flux-vector spUtting has been 
employed to discretize the convective terms in the flow equations. Simple second-order 
central differencing is used to discretize the stress and heat-flux terms. The density, 
velocity, and temperature changes along the stagnation streamline were compared for each 
set of equations. At J&i = 0.1, the resulting flow properties and the shock structure are 
consistent with the results reported by Zhong^l At iow Knudsen number {Kn < 0.01), the 
Navier-Stokes solutions and the two Burnett solutions are identical. The augmented 
Burnett equations were always stable at all Knudsen numbers and all grid sizes reported m 
this paper. However, the BGK-Bumett equations have experienced some convergence 
problem on the finer grids at Krt=0.1. This issue is being investigated currently. 
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Figures 

Fig. 1. Computational mesh aromid a circular 
cylinder (50x82 grid). 
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Fig. 2. Density along stagnation streamline for 
case 1 (^=0.1). 

17 



3.000-] 

2.500- 

_2.000- 
M >^ 
G 
1^1.500- 

*■ 1.000 

500- 

r^i-:.: •• 

—I 1 1 1 1       I        I        I        r 
-0200 -.0160 -.0120 -.0080 -.OO'IO .0000 

X{m) 

Fig. 3. Velocity along stagnation streamline for 
case 1 (^:>7=0.1). 
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Fig. 4. Temperature along stagnation streamline for 
case 1 {Kn=0.l). 
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Fig. 5. Navier-Stokes density contours for case 1 
(^=0.1). 

Fig. 6. Augmented Burnett density contours for 
case 1 (Kn=0.l). 
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Fig. 7. Navier-Stokes temperature contours for 
case 1 (^=0.1). 

Fig. 8. Augmented Burnett Temperature contours 
for case 1(^/7=0.1). 
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Fig. 9. Density along stagnation streamline for 
case 2(^/7=0.01). 
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Fig. 10. Velocity along stagnation streamline for 
case 2 (^77=0.01). 
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Fig. 11. Temperature along stagnation streamline 
for case 2 (^=0.01). 

Fig. 12. Navier-Stokes density contours for case 2 
(^=0.01). 
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Fig. 13. Augmented Burnett density contours for 
case 2 (^=0.01). 

Fig. 14. BGK- Burnett density contours for case 2 
(^=0.01). 
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Fig. 15. Navier-Stokes Temperature contours for 
case 2 (^=0.01). 

Fig. 16. Augmented Burnett temperature contours 
for case 2 (Kn=O.Ol). 

24 



■<»iS^ 

Fig. 17. BGK- Burnett temperature contours for 
case2(X>7=0.01). 
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Fig. 18. Density along stagnation streamline for 
case 3 (^=0.001). 
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Fig. 19. Velocity along stagnation streamline for 
case3(A:n=0.001). 
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Fig. 20. Temperature along stagnation streamline 
forcase3(X>i=0.001). 
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Fig. 21. Navier-Stokes density contours for case 3 
(^=0.001). 

Fig. 22. Augmented BiuTiett density contours for 
case 3 (X>2=0.001). 
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Fig. 23. BGK-Bumett density contours for case 3 
(Kn=O.00l). 

Fig. 24. Navier-Stokes Temperature contours for 
case 3 (^=0.001). 
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Fig. 25. Augmented Burnett Temperature contours 
forcase3(Xh=0.001). 

Fig. 26. BGK-Bumett Temperature contours for 
case3(^n=0.001). 
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