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SUMMARY 

The goal of this research is to establish the conditions for very large eddy 
simulations (VLES), i.e. the spontaneous generation of strong time-dependence of 
the "mean" flow characteristics and derivation of the effective equations of 
motion for accurate description of strongly nonstationary turbulent flows. The 
VLES technique is tested on cases of interest to the Air Force. 
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Renormalization Group Modeling and Turbulence Simulations 

Abstract 

We review the application of renormalization group methods to the transport modeling 

of turbulence. A variety of applications of the RNG K — £ transport model are described, 

including flows with massive separation and strong anisotropy. 

1. Introduction to RNG Methods for Turbulence 

Renormalization group (RNG) methods are a general framework for "model building" in 

which the complex dynamics of physical problems is described in terms of so-called "coarse- 

grained" equations of motion governing the large-scale, long-time behavior of the physical 

system. For example, a mole of a classical gas involves 6 x 10 interacting atoms and is 

described at a basic level in terms of a system of 3 x 6 x 10^^ Newton's equations (for each 

of the three coordinates of each atom). Coarse-graining of this system can be performed at 

several levels: First, kinetic theory for dilute systems describes the coarse-grained system 

dynamics in terms of Boltzmann's equation for the probability density function of having 

an atom with velocity v at the space-time point (x,t). Second, further coarse-graining can 

be done by seeking a set of fluid dynamical equations that describe the average behavior of 

collections of atoms on space-time sccdes large compared with a mean free path and collision 

time. The resulting Navier-Stokes equations form the basis of modern fluid dynamics. 

More generally, the RNG approach allows similar coarse-graining of physical phenomena 

a^ varied as critical phenomena, high-energy particle physics, and, especially in the context 

of fluid dynamics, turbulence, combustion, and heat transfer. The key idea is that the RNG 

method is applicable to scale invariant phenomena lacking externally imposed characteristic 

length and time scales. For turbulence, this means that the method is applicable to the 

description of the small scales (small eddies) that should be statistically independent of the 



external initial conditions and dynamical forces that create them through various kinds of 

instability phenomena. In other words, the RNG method gives a theory of the so-called Kol- 

mogorov equilibrium range of turbulence, especially comprising the so-called inertial range of 

small-scale eddies vrhose energy spectrum follows the famous Kolmogorov law E{k) oc k~^/^. 

The importance of the RNG results is, as we shall see, once the inertial range eddies can be 

accounted for in a quantitatively correct way, we may then obtain coarse-grained equations 

of motion for the other relevant variables of the turbulence, including, the mean velocity, 

rms velocities, etc. 

In his 1985 Nobel Prize lecture, Kenneth Wilson, the originator of key ideas of renor- 

malization group methods for field theory, stated 

"The renormalization group is one of the fundamental approaches to 
tackling this problem of what to do when you cannot make your grid small 
enough to use the fundamental equation. How do you increase the grid 
spacing beyond the level of a straight numerical approach, yet preserve all of 
the reliability that working from a fundamental equation can give you?" 

Indeed, turbulent flows have eddies that range in size from so-called "energy-containing 

eddies" of size L, the integral scale, down to eddies of size L/R ' , where R = v^rnsL/i/ is 

the Reynolds number. Still smzJler eddies exist, but they have exceedingly low excitation 

due to viscous dissipation. Thus, accurate solution of the three-dimensional Navier-Stokes 

equations for a turbulent flow requires storage of order 0(R ' ) and computational work 

of order 0{R ) [since turbulence also has a range of time scales of order R ' ]. If R is 

large, these computational requirements are enormous, so RNG methods can be effective in 

reducing the computational requirements. 

We use the RNG method to construct K — £ RANS (Reynolds Averaged Navier-Stokes) 

equations by developing a theory of isotropic small-scale inertial-range eddies so that they 

may be eliminated from the equations of motion, yielding equations for averaged flow quan- 

tities at the integral scale of the turbulence. In this paper, we shall describe how this is 

done in a heuristic way - further details are given in our original papers on the application 

of RNG methods to turbulence. - 

2. Summary of the RNG Method 

The basic ideas of the RNG method as developed in [1] are summarized in Figures 1-3. 

In Figure 1, we indicate the scales of effective excitation in turbulence ranging from a low 

energy-containing wavenumber fcg = 2-jr/L to the high wavenumber viscous cutoff A. The 

idea of the RNG method is to remove a narrow band of modes near A by representing these 

modes in terms of lower modes in the interval kg < k < Ae~ {£ « 1). When the narrow 

band of modes is removed, the resulting equations of motion for the remaining modes is a 



DYNAMIC RENORMALIZATION GROUP 
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Figure 1 

modified system of Navier-Stokes equations in which there is a modified (eddy) viscosity, 

modified force, and modified nonlinear coupling. Once this first narrow band of modes 

is temoved from the dynamics, the process of removal of degrees of freedom is repeated 

iteratively, so that more and more modes are removed from the dynamics. In this way, the 

RNG method gives an effective calculus for the removal of'modes from the Navier-Stokes 

equations, thereby rendering them computable at huge Reynolds numbers. 

,V#v<iv....::^.,v,,^,; In Figure 2, we illustrate further the effect of the RNG procedure as the mode removal 

process continues. The solid band represents the small length scale eddies that are already 

removed from the dynamics. Their main effect is to increase the viscosity from its molecular 

value i/jnoi to an effective eddy viscosity I'eddyj thereby decreasing the effective Reynolds 

number to R^idy ^^ Figure 3, we present a block diagram of the main steps in the RNG 

method. These steps are discussed further below. 

Here we begin with a simple dimensional analysis argument that yields the main results 

for the RNG eddy viscosity for turbulence. The idea is that the eddy viscosity in turbulence 

is scale dependent 1/(1) and that the RNG method constructs this viscosity by iterative 

removal of narrow bands of degrees of freedom. Thus, the RNG procedure develops directly 

an equation for di//dC rather than an equation for v(^) itself. In the inertial range, the 

expression for du/di can depend only on the eddy size i, ^{l) itself, and £, the rate of energy 

transfer through the inertial range to the dissipating eddies. If we note that leading-order 
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' term in field theory for dvjdt is proportional to £ and assume that this result holds to higher 

order as well, we conclude that the only dimensionally correct expression is 

■■^A .■■..'•^>ts^V'^V 

dv _ AEt^ 
(1) 

where A « 1.04 x 10""* i; a constant evaluated by the full RNG theory. Integrating this equa- 

tion over I and using the condition that u = i/^^i when i = l^, where l^ is the Kolmogorov 

dissipation scale (~ L/R*), gives 

^W = I'mol -^c*-* {i > h) (2) 

Eq. (2) gives an interpolation formula for u{l) between the molecular viscosity v^^^ valid at 

dissipation scales and the high Reynolds number limit 

u{l) 
3      \^/^ 
-A£\      £^f'       {£»£^) (3) 

obtained from Eq. (2) in the limit I > £j. 



The result (3) already shows the power of the RNG method. Indeed, if we simply apply 

(3) to the largest eddies of the turbulence, those at the integral scale L, and eliminate the 

dissipation (energy transfer) rate E in terms of the large-scale rate-of-strain VU using the 

formula 
S = i^eddylVUI^ 

we obtain 

(4) 

(5) :.,ddy = [0.094i]^|VU| 

The result (5) is remarkably close to Prandtl's classical mixing length formula for I'eddyi 

derived originally as a semi-empirical formula to fit experimental data. 

In the application of RNG methods for turbulence modeling, the local turbulent kinetic 

energy K and the local energy dissipation rate Z are used to eliminate the length scale 

L (or C) from the dynamics and the RANS equation of motion for U is supplemented by 

equations for K and €. The RNG method is used to evaluate otherwise unknown terms in 

these equations for this K — S model. 

The resulting RNG K — £ model differs from classical (or standard) K — € models in at 

least six ways: 

- At high Reynolds number, the constants in the RNG K — £ model are evaluated by the 
theory 

- New terms appear like a rate of strain term, which is important for treatment of non- 
equilibrium effects and flows in the rapid distortion limit 

- Impulse response modifications, important for non-equilibrium effects, are also taken 
into account 

- Low Reynolds number modifications are given by the RNG theory, so wall functions are 
no longer required 

- Modified boundary conditions are developed from the theory 

- Stratification and rotation (swirl) effects are accounted for by extensions of the RNG 
theory to stratified and rotating flow 

Here we give an illustration of some of these results; For example, the-eddy viscosity in 

standard K — £ models is given by [2] 

''eddy C^ c^ ^ (6) 

where Cji ~ 0.09. RNG theory gives this result by eliminating the length scale I between the 

expression (5) for the high Reynolds number turbulent viscosity and the following expression 
for the total kinetic energy in isotropic inertial range eddies at scales smaller than £: 

K = Q.llE'^l^fl^ (7) 

i^-~"J^ V>" V<K;Tii n- --yV > V-.'. JWi^ J[*-'-i .■ i tr*^ ,-V^'»4^"' ■».\;"\fr ■'Im-fr 



The resulting expression for the eddy viscosity is (6) with C^ = 0.0845, in good agreement 

with the "standard" value. However, because the RNG theory also gives the low Reynolds 

number interpolation formula (4), we obtain the more general expression 

i2 

"eddy = ''mol 1 + 
C^   K 

(8) 

which is valid across the full range of flow conditions from low to high Reynolds numbers. 

The high Reynolds number form of the RNG K — £ model is given by [2] 

f,u.v^, = -v,.A dUi     dU, 
—- H  
dx T        dx; 

§ + Uj-S§] = 1.42|i^,ddy5^ - 1-68^ -R + Va:/,ddy V5 

where the rate-of-strain term R is given by 

R = 2^'eddyS': 
dui dui 

'•^ 9xj dxj 

This term is expressed in the RNG K — S model equations as 

K . 

(10) 

(11) 

(12) 

where T] = SK/S and S = 2SijSij is the magnitude of the rate-of-strain. The RNG theory 

gives values [3], [4] of the constants Cg^ = 1.42 and C^^ = 1.68, ajid a — 1.39, in comparison 

with the "standard" values C^^ « 1.4 and C^j w 1.9, and a = 1. 

The reduced value of C^ in the RNG theory hzis the interesting consequences of de- 

creasing both the rate of production of K and the rate of dissipation of £, leading to smaller 

values of :/cddy according to (6). In regions of small TJ, the term R tends to increase u^^y 

somewhat, but it is still typically smaller than its value in the standard theory. However, in 

regions of large 77, the sign of R is changed and I'eddy ^^ decreased even more. This feature of 

the RNG equations is due to the strong anisotropy in regions of large shear and is responsible 

for some of the marked improvement of the RNG model in the treatment of massive flow 

separation and anisotropic large-scale eddies (see below). 

The RNG procedure also yields low-Reynolds-number modifications that obviate the 

need for wall-functions in low effective Reynolds number regions of the flow. These lov.-- 

Reynolds-number modifications appear typically in the form of differential relationships in 

-" ^'^^'^'tKr.':iM)Rj,if*'"ii'arii»-fi'\^i*c^:*»<^ ■T^^''.;;:^v^mir.»«MH ■''■"•'^^^^^^-** "■>*"*• ■M.J.^.<,.^B.,FJ...^^»- ^^^-W^^^.^,^.^~ 



which the modeling "constants" become functions of local effective Reynolds number. Here 

we will not discuss these features of the model. The inverse turbulent Prandtl numbers a, 

in (lO)-(ll) are obtained from the RNG scalar heat transport relation. 

S. Mathematical Theory of the RNG Method 

At a more mathematical level, the main ideas of the RNG method can be summarized 
in the following way [1]. Consider the nonlinear equation: 

^ + N{^) = uoV^<i> + f (14) 

where N{<fi) is a non-linear operator, UQ is molecular viscosity, and f is a random stirring 

force. In principle, any other linear terms can be added to this equation. For simplicity, 

let us assume that the random force f is a gaussian variable. The equation of motion is 

assumed to be defined on the domain 0 < k < AQ. It is assumed that the non-linear 

term N is large and can be chciracterized by the dimensionless coupling constant (Reynolds 

number) AQ = X{UQ,DO,AO) where DQ is the amplitude of the force correlation fimction 

(//) oc Dok~^. Using the generalized perturbation methods of quantum field theory, it is 

possible to formally eliminate the small-scale modes 4>{k) with A < k < AQ from the problem 
and derive another equation of motion defined on the interval 0 < k < A : 

^t + ^dM ''A V'<iA + /A (15) 

This new equation has the dimensionless coupling constant 

A(A) = A(;.0,-Do,Ao,-D(A),K>).A) 

where D{A), u{A) are the effective transport coefficients and induced random noises which 

account for the effects of the eliminated modes. We can always define dimensionless variables 
so that the effective coupling constant is the amplitude of the new non-linear term A^^(^). 

The new (renormalized) parameters and new non-linearities must be explicitly evaluated 

from the original dynamic equation. Our goal is to follow the dependence A(A) upon the 

variation of the cut off A . In a scale invariant range the effective coupling constant and all 

correlation functions must not depend on the molecular (bare) parameters I/Q, DQ and AQ. 

Thus, in the limit A -» 0 

A-. A(D(A,i/(A),A) (16) 

10 
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and the effective coupling constant goes to a so-called "fixed point": 

A(A) = A(A/C) (17) 

where (7 > 1 is an arbitrary number. This relation reflects the fact that, in a scale invariant 

range, A(A) —» A* = const, independent of the scale A . If A* —> 0, then the problem, 

formulated in the new variables D{A) and :/(A) is linear and exactly solvable. If A* is small, 

then perturbation expansion in powers of A* can be used to obtain explicit formulas for the 

scale-invariant field. In many cases, the fixed point value of the effective coupling constant 

A* is a function of a parameter e which is constructed from the other parameters of the 

problem. The perturbation expansion in powers of A* is then called an e-expansion. The 

renormalization group with the e-expansion is in principle, a mathematical prescription to 

derive equations of motion describing the large-scale system dynamics with the small scales 

removed. 

The RNG prescription consists of the following steps: 

1. Identify the space of relevant pcirameters {P} governing the system. In the case of ho- 

mogeneous and isotropic turbulence, {P} includes £—the dissipation rate of kinetic energy; 

i/Q—the molecular viscosity; Reynolds number; etc. This case, however, is the simplest pos- 

sible: in strongly rotating or stratified flows we have to add vorticity or swirl; buoyancy 

fluxes, etc. 

2. Eliminate a band of small scales and evaluate corrections to the flow parameters, non- 

linearities in the equations of motion, noises, etc. 

3. Iterate the scale-elimination procedure described above to find new scale depending 

parameters of the problem {P(A)} and assess their relative importance as functions of A . 

4. Derive the dimensionless coupling constants A(A) -+ A* and evaluate the solutions of the 

equations of motion in the lowest order in expansion in powers of A* or e. If this is impossible 

to do analytically, the resulting equations of motion ^shotild be solved numerically. 

When this strategy is applied to the Navier-Stokes equation we obtain a series of turbulence 

models ranging from sub-grid eddy viscosity models to the full K — £ transport model 

described in the previous section. 

4- Applications of the RNG K - £ Moid 

The RNG K — £ model with the appropriate low-Reynolds-number modifications and 

boundary conditions has now been used to successfully compute a variety of complex flows. 

Here we give several examples. 

11 



Backward-Facing Step 

In Figure 4, we plot streamlines for a 2:3 channel expansion at an inflow Reynolds number 

of 88,000. At this Reynolds number, the reattachment length is predicted to be at 7.0 step 
heights, while experiment yields 7.1 step heights. Comparison of other flow quantities with 

experiment is also quite satisfactory. An important feature of the flow, a small corner vortex, 

observed in the experiment is accurately predicted by the model. This kind of detailed 

flow feature can be quite important to the accurate prediction of heat transfer and scalar 

transport. 

Blunt Flat Plate 

In Figure 5, we plot the mean-flow streamlines obtained using the standard and RNG 

K — £ model for flow past a blunt flat plate at a Reynolds number of 21,600. The RNG 

model gives a separated eddy whose size (w 8 half-widths of the plate) agrees well with 

experiment, while the standard model gives a vanishing small separated eddy, largely due to 

the fact that the eddy viscosity is too large in the standard model. At a Reynolds number 

of 50,000, the RNG model predicts a separated eddy of roughly 9.5 half-widths, in good 
agreement with the experimental result of 9.6 half-widths. 

Turnaround Duct (U-Bend) 

*In Figure 6, the mean-flow streamlines obtained using the standard and RNG model 

are presented for flow in a turnaround duct at a Reynolds number of 10^. The RNG model 

again gives a separated eddy whose size agrees well with experiment, but the standard model 

misses the flow separation completely (again due to an eddy viscosity that is too large). 

(a) streamlines with reattachment X/H = 7.0 

(b) primary eddy (c) corner eddy 

Figure 4: Streamlines for the flow over a backward facing step with expansion   ratio of 2:3 
at inlet Re = 88,000, computed using the RNG K -£   model. 
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(a) (b) 
Figure 5: Streamlines for the flow over a blunt flat plate computed using a) the standard K- £ 

model  b) the RNG K-8    model (Re = 21,600) 

(a) . (b) 

Figure 6: Streamlines for the flow in a turnaround duct computed using a) the standard K-£ 
mode! b) the RNG K-E    model (Re = 100,000) 

...aatffiSSPS 

"'^mssssm^ 

(a) (b) 

Figure 7: Streamlines  for  the flow  in a  stenosis computed using a) the standard K- £   model 
b) the RNG K -£    model (Re = 10,000) 

13 



Constricted Pipe Flow (Stenosis) 

In Figure 7, the mean-flow streamlines obtained using the standard and RNG model are 

presented for flow in a constricted pipe with Reynolds number 10^. The pipe has a diameter 

that varies by a factor 2:1. Again, the RNG model gives a separated eddy whose size agrees 

well with experiment and that is significantly larger than that predicted by the standard 

model.  Valve-Port Assembly 

In Figures 8-11, the mean-flow streamlines obtained using the standard and RNG model 

are presented for flow in a valve-port assembly studied by Gosman and Ahmed with non- 

dimensional gap widths L* = 0.20,0.25. The flow visualization is given in Figure 8, which 

shows flow separation at both gap widths in the crown region of the geometry and flow 

separation in the gap for the larger gap width. In Figure 9,we show the grid used in our 

computations which involve a 60 x 150 mesh. In Figure 10, we plot the mean streamlines 

for the standard K -S model - there is no flow separation in either the crown or the gap 

regions for both gap widths. The results plotted in Figure 11 for the RNG model show that 

there are separated eddies in both the crown and gap regions whose size agrees well with 

experiment. 

^  **' .„           «.          ».     .M     - '-S. - ^ 
 ^^^g ̂  

f^-' 
''f~~\""ZJ^- % ̂ '' 

-^^ 
F i                 1     L..J 

Figure  8 Figure' 9 
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Transitional Flow Past a Cylinder 

The RNG model can also describe time-dependent transitional flow phenomena. This 

is illustrated by the flow field results plotted in Figure 12-14 for flow past a cylinder at a 

Reynolds number of 14,500. The streamlines plotted in Figure 12 demonstrate the ability of 

the model to capture the time-dependent coherent flow structures immediately behind the 

cylinder. The instantaneous turbulence intensity distributions plotted in Figure 13 and time- 

averaged turbulence intensity plotted in Figure 14 show that the RNG model is capable of 

predicting time dependent phenomena like vortex shedding. The calculated Strouhal number. 

5 = 0.185 is to be compared with the experimental observed value S = 0.19. 

Figure 12: Streamlines in the wake of a cylinder at Re=14,500 computed using the RNG K- £   Model 
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- RNC K-< 

Figure 13: The turbulence intensity in the wake Figure 14: The average turbulence intensity in 
of a cylinder at six lime slices over the wake of the cylinder computed 
one shedding cycle. ( Re = 14,500 ) with the RNG K-£ model (Re = 14,500). 

Flow Past a Model 2D Car 

In Figure 15, we show instantaneous streamlines, pressure contours, and K contours for 

flow past a 2D model car studied by Rieger et. al. [5].: The Reynolds number of the flow is 

6.6 X 10*. These results obtained by the RNG code describe the time-dependent nature of 

the vortex shedding process to an accuracy of about 5% (including Strouhal number, drag 

and lift, and base pressure). In Figure 16, we plow the average surface pressure distribution 

in comparison with experimental results [5]. 

The ability of turbulence modeling to accurately describe separated flows is of great 

practical importance. For example, maxima of heat transfer are observed close to the reat- 

tachment points. This is important for the description of combustion-related phenomena. 
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Figure 15: Flow over the Mercedes Benz 2-D Automobile Model Computed   Using the 
RNGK-£  Model. 
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Figure 16. Average surface pressure on the 20 car [5]. The solid 
line is the results of the RNG K — £ model while the data points 
are the experimental results. 
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Large-Scale Coherence and "Anomalous Scaling" of 
High-Order Moments of Velocity Differences in 

Strong Turbulence. 

Abstract 

The Hamiltonian formulation of hydrodynamics in Clebsch vari- 
ables is used for construction of a statistical theory of turbulence. It 
is shown that the interaction of the random and large-scale coherent 
components of the Clebsch fields is responsible for generation of two 
energy spectra E{k) a fc~ J and E{k) « k~^ at scales somewhat larger 
than those corresponding to the —5/3- inertial range. This interaction 
is also responsible for the experimentally observed gaussian statistics 
of the velocity differences at large scales, and the nontrivial scaling 
behaviour of their high-order moments for inertial- range values of the 
displacement r. The "anomalous scaling exponents" are derived and 
compared with experimental data. 

1     Introduction 

A widely accepted formulation of turbulence theory deals writh a flow gov- 
erned by the Navier-Stokes equations (the density p = 1): 

dv 
^- -f V • Vv = -Vp + F + I/QAV 
ot 
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V-v = 0 

where F is a forcing function having Fourier-transform F{k) ^ 0 only in the 
interval A; < fco —* 0. This means that kinetic energy is pumped into the 
system at large scales only. At large enough Reynolds number Re the flow 
becomes turbulent and, introducing the Reynolds decomposition v = U + u, 
where U and u describe the mean and fluctuating components of the velocity 
field, respectively, the equations of motion can be formally rewritten as 

^ + U • VU + U • Vu = -VP + F + I/QAU 
at 

-^ + u • Vu + u • VU = -Vp' + foAu. 
at 

If p = P + p', these equations are equivalent to the original Navier-Stokes 
equations. The goal of the theory is to evaluate both U and u. 

Understanding the behaviour of the small-scale velocity fluctuations is one 
of the main challenges of turbulence theory. It is usually assumed that the 
statistical characteristics of the flow at small enough scales are independent 
of the large-scale dynamics. This assumption is basic for comparison of 
the theoretical predictions with experimental data. However, as seen from 
the equation for u, the small-scale velocity fluctuations interact with the 
"dressed" external field t/, responsible for turbulence production. This field 
must be taken into account when we are interested in such fine detail of 
the flow as deviations from the Kolmogorov theory observed in the high- 
order moments of the velocity differences, defined below. Moreover, at the 
not-too-smaJl scales this field can dominate the dynamics, thus considerably 
simplifying the problem. Investigation of the possible effects of the large- 
scale, long-living structures on the small-scale properties of turbulence is the 
goal of this work. 

Experimental data on the second order structure function Si{x) measured 
in various high-Reynolds number flows support the Kolmogorov prediction 

52 = (Au)2 = Cu(X) - u(X + x))   =CK'^\X\ (1.1) 
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where e is the energy flux in wave-vector space. Relation (1.1), though 
not derived from mathematically rigorous theory, is readily obtained from 
various qualitative considerations. For example, at scales much smaller than 
the energy injection scale the following exact relation holds: 

^3 = --ex 
0 

Relation (1.1) is obtained immediately if the possibility of the "anomalous 
scaling" arising from the nontrivial dimensionality of I is disregarded. 

However, dimensional arguments applied to the high-order moments of ve- 
locity differences give 5'„(x) fs i?" which contradicts the available exper- 
imental data when n is large. So far the observed scaling behaviour of 
higher-order structure functions remains something of a mystery. Numer- 
ous experiments indicate that in the available range of displacements x the 
functions Sn{x) seem to be rather well fitted by the power laws: 

5„ = (u{X) - u{X + x)\    oc i'""-^" (1.2) 

where the scaling exponents ^„ describe deviations from the Kolmogorov 
values Kji = j. Further, it was found that the larger the order n, the larger 
the deviation of (,n from the predictions of the Kolmogorov theory. 

Another unsolved problem is the shape of the probability distribution func- 
tion (PDF) of the velocity differences P(Au). It is well established that the 
single-point PDF is gaussian. In other words, 

P(A'u)ocea;pf-^^^) (1.3) 

for I >> i, where L is the integral scale of turbulence. Moreover gaussian 
statistics of velocity differences are observed for separations i/i = 0(1). 
For the scales x corresponding to the inertia! range ld« x « L, where Id 
is the dissipation scale, the experimentally observed P(Au) seems to be 
close to exponential: 

P{/Su) (x exp( - a-——j (1.4) 
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with the dimensionless coefficient a = 0(1). Relations (1.3) and (1-4) rep- 
resent the most dominant feature of the PDF of velocity differences in the 
inertia! range. 

Not less interesting is the behaviour of the fluctuations of the local value 
of the kinetic energy dissipation rate e = i^{^)^- The Kolmogorov theory 
(K41) simply neglected the €-fluctuations assuming e(a;) = const. It was 
later suggested-' that the e—fluctuations may be responsible for the exper- 
imentally observed deviations from Kolmogorov scaling. It is easy to show 
that if turbident transport coefficients obtained from the K41 phenomenol- 
ogy are used for construction of a dimensional argument, the resulting cor- 
relation function is: 

5| = (e{X) - e{X + x)\   oc x° (1.5) 

Relation (1.5), showing that the e-fluctuations are evenly distributed in 
space, has never been observed in numerical or physical experiments. In- 
stead, observations suggest 

(1.6) 

with the "intermittency exponent" fi ranging from 0.1 to ~ 1 depending on 
the experimental conditions, Reynolds numbers etc. Relation (1.6) shows 
that the dissipation rate of kinetic energy is concentrated in the localized 
areas of space having a "spotty" nature. This is often interpreted as spatial 
intermittency of strong turbulence. Theoretical understanding of this be- 
haviour is a major challenge. Accurate experimental verification of (1.6) is 
very difficult and at the present time we cannot even be sure that a scaling 
relation of the type (1.6) exists at aU, though it is clear that experimentally 
observed 52(x) decreases with x more slowly than predicted by (1.5). 

Since the dissipation rate appears in the expression for the Kolmogorov en- 
ergy spectrum, it is tempting to try to incorporate the e-fluctuations into 
Kolmogorov-like considerations and express the deviations from the K41 
scaling observed in the high-order moments of velocity differences in terms 
of the intermittency exponent /i. This has been done in various models, 
often rather loosely related to the Navier-Stokes equation of motion. How- 
ever, the gaussianity of the large-scale velocity fluctuations has not been 
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addressed by any model of intermittency known to me. It is remarkable 
that in various experimental situations, differing by geometry, production 
mecbanisms, Reynolds number etc, the observed PDF of velocity differences 
was so close to gaussian at the scales xjL w 1. In my opinion the universal- 
ity and robustness of this quantity is most surprising and very diiRcult to 
explain. In this paper I modify the Clebsch formulation of statistical theory 
of strong turbulence, developed in R,ef:( 3 ), to include the large-scale co- 
herent structures, sometimes responsible for turbulence production. It will 
be shown that the interaction between coherent and random components 
of the Clebsch fields is responsible for the observed gaussian statistics of 
the large-scale velocity differences and for the non-trivial behaviour of the 
high-order moments. The results will be compared with experimental data. 

This paper is organized in a following way. In Sections 2 and 3, closely 
following Ref.(3), the formulation of hydrodynamics in Clebsch variables is 
introduced and the Kolmogorov energy spectra corresponding to the con- 
stant fluxes of conserved quantities are derived. In Section 4 the interaction 
of the large-scale coherent and random components is introduced, and it is 
shown that the theory reduces to the many-body problem in a strong exter- 
nal field. The interaction of the velocity fluctuations with coherent struc- 
tures is responsible for two additional solutions at scales larger than those 
corresponding to the Kolmogorov range. The expressions for the probability 
distribution function of velocity differences, which is gaussian at large scales 
and close-to-exponential at smaller scales, is derived in Section 5. In Sec- 
tion 6 the derivation of the dissipation rate correlation function, developed 
in Ref.(3) is presented. The discussion of experimental data and a detailed 
comparison with the outcome of this paper are presented in the Section 7. 

2     Formulation of the Problem 

We consider a fluid flow driven at the very large scales / > i -* oo. Some- 
where at the smallest scales i —> 0 an energy sink is assumed, so that a 
statistically steady state can be achieved. The flow is described by the 
Navier-Stokes equations: 

5v 
— + V Vv = -Vp + F + i^oAv 
ot 
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V-v = 0 

subject to initial and boundary conditions. We assume that the force F(x, t) 
is an arbitrary deterministic function of position and tim.e acting at large 

scales only. In various flows F corresponds to the deterministic contribution 
to the pressure gradient. For example the flow in a pipe driven by gravity 

is equivalent to the flow driven by a constant pressure gradient. When the 
Reynolds number Re < Rcc this equation gives a laminar velocity profile 
UL(x,t). At Re > Rec the laminar velocity profile is modified due to the 
interaction with turbulent velocity fluctuations. 

It is customary to describe the dynamics of the intermediate scales by the 
Euler equation (the density p = 1): 

dv 
—+ v-Vv=-Vp (2.1) 

V-v = 0 

The Clebsch variables are defined as: 

V = AV/i 4-V(?:> (2.2) 

Using the incompressibility condition, the potential ^ can be expressed 
through A and /x: 

<^ =-V-^V • (AV/i) 

and thus: 

V = -V"^V X (VA X V^) (2.3) 

w = VA X V/i (2.4) 

The Clebsch variables are transported by the flow and the Euler equation 
can be represented as: 
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Vn=^+  y.^(M = 0;V\^^ + wV\ = O (2.5) 

It follows from equation (2.3) that the velocity field does not uniquely define 
the Clebsch field {X{x,t),fi[x,t)). In fact, a set of pairs of the Clebsch 
variables (Xi{x,t),fj,i{x,t)) can be used to express the velocity v(x,t): 

M 
v = X^AiVMi + V<^ (2.6) 

i=l 

and 

M 
Lj = Y,VXixVpLi (2.7) 

where M is the number of Clebsch pairs necessary for the complete repre- 
sentation of velocity field. 

The equations of motion for each pair (Ai,/x,), given by (2.5) with the sub- 
script i specifying the pair, can be written in a Hamiltonian form since 
A and fi are canonical variables. The Hamiltonian and the corresponding 
equations of motion are given below. The minimal number of canonical pairs 
needed to describe an arbitrary flow depends on the topology of the field v. 
It a plausible conjecture that M = 2 is sufficient to represent a wide class 
of turbulent flows. Indeed, the velocity field in a three-dimensional incom- 
pressible flow has two independent components. This field, however, cannot 
be described by one pair of Clebsch variables due to the constraint v • w = 0 
which tells us that, in fact, we have only one independent Clebsch variable. 
Introducing the second Clebsch pair we create two independent variables, 
sufficient for the description of the general velocity field with non-zero values 
of the local helicity. In this paper we will discuss only the case oi M = 1 
which corresponds to zero helicity / v • wdx = 0, following directly from 
the definition (2.4). This restricts applicability of the analysis to fiows in 
which the vortex lines do not have any knots. However, the results of this 
work may be readily generalized to the case of M = 2 corresponding to an 
arbitrary topology. 

Introducing the complex variables a(k) and a*(k) 
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;x(k) = -^ (a(k) + a*(-k)); A(k) = -^[a(k) - a*(-k)] (2.8) 

the Euler equation can be written in a Hamiltonian form: 

.da{k) _    6H 

dt 5a*{k) 

where the Hamiltonian H is: 

(2.9) 

if = - /" ri2,34 a*(ki)a*(k2)a(k3)a(k4)5(ki + kj - kg - k4)dki, dka dk^ dk^ 

(2.10) 

The interaction potential is 

^12,34 = T(kik2, k3k4) = <Pi3(f24. + <Pl4<f23 (2.11) 

where 

^{kr,k2) = ipu = ki + k2 - (ki - k2)-j^^—j^ (2.12) 

In these variables: 

^ = y '-^q.q-k^q'^q-k'^q (2-13) 

The function (p{ki,k2) is a discontinuous function at A;i = k2 since the 
diagonal elements of (p{k, k) determine an arbitrary mean velocity in the 
flow v(k = 0). So, in what follows we set {p{k,k) = 0. 

Substituting (2.10), (2.11), (2.12) into (2.9) the equation of motion for the 
"creation-annihilation" operators a(k) is readily derived: 

i^^ = \j T(kk2, k3k4)a*(k2)a(k3)a(k4)5(k + k2 - k3 - k^)dk2dk^dk^ 

(2.14) 
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The equation (2.14) conserves the total energy, since it is a Hamiltonian 
equation of motion. In addition, they conserve an infinite number of inte- 
grals of motion jF{X,fi)dr = const. These integrals do not have simple 
interpretation in terms of the velocity field. In the present paper we con- 
centrate only on one of the integral of motion: 

No=^ /(A2 + fi^)dx = Ia'(k)a(k)dk = const (2.15) 

The parameter N has the dimensionality of action and can be called the "hy- 
drodynamic action" or number of quasi-particles (elementary excitations) 
describing turbulent flow. The relation (2.15) has the most important im- 
pact on what foUows, so the elucidation of the physical meaning of the 
"quasi- particles" or waves and of the topological consequences of this con- 
servation law remains a very important task. Due to the negative sign of the 
flux of the number of particles, their source is expected to be at the small 
scales. 

3     Random Phase Approximation. Kinetic Equa- 
tion 

Let us single out the diagonal contributions to the equation of motion (2.14): 

5a(k) 
I ^^     -a;(k)a(k) = j T(k, ka, kg, k4)a*(k2)a(k3)a(k4)5(k + kz - kg - k4)dk2dk3dk4 

(3.1) 

where 

Lj{k) = j r(kk2, kk2)a*(k2)a(k2)dk2 (3.2) 

and the symbol ' in the integral in (3.1) means that the diagonal contri- 
butions with k = k^, k2 = ki are not included. It wiU be shown in what 
foUows that the integral 

^k) = J T{k, k2, k, fc2)n(k2)dk2 (3.3) 
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with 

n{k) =< a*(k)a(k) > (3.4) 

converges when calculated on the solutions 7i(k) of the kinetic equation 
derived below. This means that the main contribution to (3.3) comes from 
the region A; ~ A;2. In this work we are interested in statistically steady 
solutions n.(k), so uj(k) = const is time-independent. Thus, we introduce 
the mean-field approximation^: 

i^-^a(k) = S (3.5) 

where the collision integral 5(k) is defined by the right side of equation (3.1). 
In the zeroth order of the expansion in powers of the non-linear interaction 
S we have: 

a°(k,i) = a(k)e-'"(^)' (3.6) 

The bar over a'(A:)defined by (3.3) is omitted in what follows. The statistical 
ensemble can be constructed by introducing an infinite set of realizations 
differing in the values of the initial phases </'(k) in (3.6): 

a°{k,t) =1 a{k) I ei'^(k)*+'V(k) (37) 

The key element of the theory of weak turbulence, adopted in Ref.3 for 
consideration of strong turbulence is the assumption that aU phases V'(k) 
uncorrelated, i.e.: 

<a(k)> = <|a(k)|e''^(^)>=0 

< a(k)a(k') >=<| a(k) || a(k') | exp{i{^{k) + ip{k')) >= 0 

< a(k)a*(k') >=<| a(k) || a(k') | exp{i{ip{k) - v(k')) >= n{k)6{k - k') 
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All odd-order correlation functions of the fields a(k) are equal to zero in this 
random phase approximation (RPA). As was mentioned above the averaging 
is performed over the ensemble of initial phases <p{k). 

To derive equations of motion for the "occupation numbers" n,(k), let us 
multiply (3.5) and the corresponding equation for a*(k) by a*(k) and by 
a(k), respectively. Then, the equation of motion for n{k) reads: 

dn{k,t) 

dt 

where 

Im JTkk„k,k,Jkk,MkA^ +^1,-^2 - k3)dk2dk3dk4    (3.8) 

J4 = Jkk,MiH =< a*(k)a*(k2)a(k3)a(k4) > (3.9) 

Writing the equation of motion for J4 as: 

^ =< ^(a-(k)a*(k2)a(k3)a(k4)) > (3.10) 

and expressing the time-derivatives in (3.10) using (3.6) we obtain in the 
random-phase approximation in the long time limit t —y 00: 

dn{k,t)      TT 
J I Tk^Mk,   1^ J4S{k+k2-k3~ki)6{uj{k)+Cj{k2)-Ujik3)-u{k4))dk2dk3dk4 

dt 2 
(3.11) 

with: 

J4 = 713714(712 + Uk) - 7l27H:(7l3 + TL^) (3.12) 

Here 7i(ki) = nj. The 6 function in the collision integral in (3.11), describing 
energy conservation per collision, appears in the equation of motion as a 
result of iteration: 

J4 =:< a*{ki)a*(k2)a{k3)a{k/i) >       dt exp{it{Lj(ki)+uj{k2)—oj{k3)—uj(^k4))) 
Jo 
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in the limit of large time t. The kinetic equation (3.10)-(3.11) has been 
analyzed and solved by Zakharov in the context of the weak turbulence 
theory (see excellent Review [2] and references therein). It has been shown 
that if 

a;(k)aA;° (3.13) 

there exist four scaling solutions: 

n{k) = const    ;     n{k) a ——— (3-14) 
U![k) 

and 

n{k) oc k-"" (3.15) 

with 

4       , 4 - a       , ,        ^ 
xi = - + d-X2 = ~Y~-^'^ (3-16) 

The solutions (3.14) correspond to a fluid in thermodynamic equilibrium, 
while the relations (3.15), (3.16) describe a non-equilibrium flow. From the 
definition of uj(k) given by (3.3) we find readily: 

a = -x + d + 2 = -x + 5    {d = 3) (3.17) 

and the expressions for 7z(k) can be obtained in a closed form: 

n (X A;-"/^    ;     a = 2/3 (3.18) 

and 

710C A;""* ;     Q= 1 (3.19) 

It can be checked easily that the total energy can be evaluated from the 
following relation: 
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E= fu}(k)n{k)dk (3.20) 

which defines the energy spectra in terms of the Clebsch variables: 

The relations (3.18) and (3.19) generate two solutions: 

E{k) OC £2/3^-5/3 (3 21) 

and 

E^{k) OC Pk-^ (3.22) 

where P denotes the "particle" flux in the wave-number space. It has also 
been shown^ that, while the energy flux is positive, i.e., the energy is cas- 
cading from the largest to the smallest scales, the flux of particles is in the 
opposite direction: from small to large scales (inverse cascade). The impor- 
tance of this fact wiU be discussed below. Thus, as follows from (3.21) and 
(3.22), the small- and large-scale dynamics in turbulent flows are character- 
ized by two diflFerent energy spectra. This is a completely new development 
which is discovered due to our use of the Clebsch variables. It is clear 
that the energy spectra (3.21) and (3.22) can readily be obtained from di- 
mensional considerations which do not require one-loop approximation and 
kinetic equation (3.11)-(3.12). 

Strictly speaking, Clebsch variables are formally defined for the inviscid 
Euler equation. However, it has been shown'^ that using the definitions 
(2.3), (2.4), the viscous hydrodynamics can be described by the equations 
(2.5) with the source term 

where ^ = 0(A~^ —) is a complicated functional of the vorticity field u). 
If ^ can be considered as a gaussian random function, then this term rep- 
resents the small-scale source of the "quasi-particles", consistent with the 
results presented above.   In the Fourier space I^ = 0{i>k^a{k)) which can 
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be assumed small in the inertial range. This fact is important for the ap- 
plication of the Clebsch formulation of hydrodynamics for investigation of 
turbulence problem. 

Another problem with the Clebsch formulation is it's nonuniqueness: any 
velocity field v can be represented by an infinite number of different Clebsch 
fields (A,/x). At the present time we do not know how to solve this problem, 
and therefore we neglect it for the time being and hope that one day the 
way to calibrate the Clebsch representation will be found. 

4    Large-Scale Coherent State and Equations of 
Motion 

All results described in the previous Sections were derived in the RPA com- 
bined with the mean field approximation introduced in the work of Yakhot 
and Zakharov^. This theory used the unjustified assumption of the close-to- 
gaussian statistics of the Clebsch variables and led to the explanation of var- 
ious experimental observations. For example, the exponential distribution 
of the velocity differences is readily understood: The assumed PDF of the 

Clebsch field P{a;a*) Ri e"^. Since u = 0{aa*) then P{U) ^ exp{-j^). 
The actual derivation is rather difficult due to the complex form of the ma- 
trix element ^12 entering the expression of the velocity field in terms of 
Clebsch variables but the origin of the exponential distribution is clear from 
the above dimensional considerations. This theory failed to explain the ex- 
perimentally observed gaussian statistics of velocity differences at the large 
scales and the "anomalous scaling" of the high-order moments 5^. 

Let us reflect on the approximations involved in the derivation of the spectra 
in the previous Section. The close-to-gaussian probability distribution of 
the Clebsch field is, on the first glance, the crudest of all since it assumes 
weak interaction between modes a{k). StiU, this approximation qualitatively 
explained the experimentally observed close-to-exponential distibution of 
the velocity differences at the small scales. 

Random phase approximation was a key element of the theory developed in 
Ref. (3). This approximation, which disregards the possibility of generation 
of the large-scale coherent structures, can serve only as a crude model for 
the small-scale dynamics. In reality turbulence is produced as a result of 
hydrodynamic instabilities of the large-scale ordered flows (structures) char- 
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acterized by very strong phase correlation. The well known examples include 

traveling waves and streaks in wall flows, convection rolls, Karman vortex 
streets in jets and mixing layers, Taylor vortices etc. In all these cases the 

structures, though strongly interacting with the random component of the 
velocity field, preserve the phase correlation even in high Reynolds number 
flows. The organized motions, reflecting the physical mechanisms of turbu- 

lence generation, create large-scale shear acting on the small-scale compo- 
nent of velocity fluctuations. This shear is not a result of pure nonlinear 
interaction and can be considered as a "dressed" external field. The dynam- 
ical consequences of the large-scale coherent component are not taken into 
account in the theories based on the random phase approximation. 

Let ICQ denote the wave-vector or set of wave-vectors corresponding to the 
basic flow structure. Then, the random phase approximation cannot be valid 
for A: —> AIQ —> 0. To incorporate coherent structures in the theory we relax 
the random phase approximation and introduce: 

<a{k) >= E.vl(/fc)^(k-k{)) 

< a*{k) >= i:iA*{k)6{k- k'o) 

and 

< a{k)a*{k) >= ^,N^S{k - k|)) + n(k) 

where N^ =< A{kQ)A*{k'Q) > correspond to the coherent components of the 
Clebsch field while the modes a{k) with A; > /cj, describe fluctuations and 
can be considered in the random phase approximation so that < a{k) >= 0. 
This will be discussed in what follows. Although the detailed structure of 
the ordered component can be very involved and vary from flow to flow, here, 
as a first step, I consider a simplified model and investigate consequences 
of the very existence of the large scale coherent mode. Taking into account 
that 

n   1   ^ ^1      ki(k-ki) 
ip{k, ki) Si k p a k 

when k << ki, the velocity definition in terms of the Clebsch field reads: 
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v(k) « Vo + (A*(ko, k)a(-k) + A(-ko, k)a*(k)) + J ¥'q,q-kaqaq_icdk 

(4.1) 

where k^ = 0{L~^) and ko can, in principle, slowly vary in time so that 
< ko >= 0. The coherent component of the velocity field VQ, derived from 
the definition (2.13), calculated on the coherent contributions to the Clebsch 
field A{ko) is: 

Vo = Sy> .    . A(4)A*(ki) 

where the summation is carried out over the wave-vectors k^ forming the 

coherent state. The vector A(ko,k) = Si(k|) - ^^o^)A(k'o). This re- 
lation introduces some violation of both isotropy and homogeneity, always 
present at the large scales in real-life flows. This anisotropy is not essen- 
tial for the results derived below, since one can introduce an ensemble of 
the large-scale coherent structures and average the results derived for each 
realization over directions of kg (This argument is due to G.Fal'kovich). In 
many flows the large scale structure has rather com^plicated topology and the 
anisotropy introduced by it is small. To proceed further we need informa- 
tion about physical properties of the large-scale coherent structures which 
has to emerge as a result of solution of the entire dynamical""problem. Since- 
at the present time we cannot develop a comprehensive theory, approxima- 
tions based on a sensible physical picture are to be invoked. The coherent 
structures, often generated at the transition to turbulence, are long-living 
solutions of the dynamical problem and thus, it is reasonable to assume that 
they are stable or marginally stable in the limit a{k) —y 0. In other words 

^^       0 
6a{k) 

when a{k) —>• 0. This means that the linear in a{k) contributions to the 
Hamiltonian of the kind /(ikO(Vo ■ A(ko,k)a(k)) = 0 can be neglected. 
Thus, the Hamiltonian, which does not include linear in a{k) contributions 
can be written as: 

H — Ho -\- H2 + Hz + H^ 
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*^0'*^ 0'   0 

H2 = Jdk(^\ A{ko,k) |2 a{k)a*{k)+^{A\ko,k)a{k)a{-k)+{A*{ko,k)fa*{k)a*{-k)) 

H3 = J dkO ^ACko, k) • <^q,q_k(a*(g)a(g - k)a{k) + a*a*a + ....) 

The same result is derived directly from the Hamiltonian (2.10): as in the 
Bogolubov theory of weakly interacting Bose gas, the linear in a[k) contri- 
butions are absent when k^ « 1 and k = 0(1) due to the impossibility to 
satisfy momentum conservation. 

In general the large-scale field A(ko, k), which is to be obtained as a solution 
of the full dynamical problem, is a functional of a{k) and the derivation of 
A{k; a{k)) is a very difficult task. First, we consider the simpler case of low- 
Reynolds number flow, in which the coherent component of the velocity 
field does not strongly differ from the laminar velocity profile Vi{x,t). We 
can neglect the dependence of A(ko,k) on a{k) and treat the large-scale 
coherent component as an external field. 

Due to quadratic in a{k) contributions to the Hamiltonian, the equations of 
motion have linear terms: 

,da{k) J.M2   /M ,   l^/*^i.    M^2./ i-^ =1 Aiko, k) \' a{k) + -{A*{ko, k)ya*{-k)) = Ij, 

and 

-i^^ =\ A{k,, k) p a*{k) + ^A'iko, k)a{-k)) = II 

The physical meaning of I^ can be understood readily. Let us introduce the 
Reynolds decomposition of the velocity field: 
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V = U + v' 

where U and u' correspond to the mean (coherent) and fluctuating velocity 
fields respectively. This decomposition is difficult to realize in unsteady flows 
and it is used here only to illustrate the physical origin of the external field 
in the Clebsch formulation of hydrodynamics. Then, the Euler equation 
(2.1) can formally be rewritten: 

and 

where 

dV 
-^ + U • VU + Jc7 = -VP + F 
ot 

J„ + /t; = U • Vv' + v' • VU 

and p' + P = p.  It is clear that these two equations are equivalent to the 
Navier-Stokes equations at the scales I >> Ij. 

Taking into account that 

^=^(^0,^) = S.i(k|, • 4 - ^^•^°^^,^"^°^)A(kl,)A(4) = O(EijViUj) 

we come to the conclusion that the linear contribution to the equation of 
motion for a{k) comes from the large-scale shear. This result is expected, 
since it is this shear which strongly contributes to the turbulence production 
in the Navier-Stokes equations. Thus, the introduction of coherent and 
fluctuating components of the Clebsch field is equivalent to the Reynolds 
decomposition of the velocity field. It is clear from these relations that A 
can be treated as external field only if lu is small enough to introduce large 
deviations from the laminar solution UL. 
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If the amplitude of A{k) is large the interaction Hamiltonians H3 and II4 
can be taken into account perturbatively. The small coupling constant wiH 
be introduced below. Using the Bogolubov transformation-^'^ 

a{k) = uc{k) + vc*{-k) 

and 

a*{k) = u*c*{k) + v*c*{-k) 

the expression for 32 can be diagonalized: 

ir2=   f e{k)c{k)c*{k)dk 

with 

e^{k) = u~ — vv^ 

u':^{\A{ko,k)\'f 

v = A\ko,k) 

where | A \'^=\ Ai \^ + \ A2 \^ + \ A3 [^ and A^ = Al + A\ + A§. From these 
expressions we can see that for the general structure of the field A(ko,k), 
the dispersion relation e^(A;) > 0 and thus, the coherent state is linearly 
stable as was assumed when the linear contributions to the Hamiltonian 
were neglected. 

In a general case of high Reynolds number flow A(ko,k) = A(ko,k,a(k)) 
and the equations of motion, derived above, are incorrect. Following the 
theory of superfluidity, let us use the particle conservation law (2.15) and 
express A{k)^ in terms of the external parameters of the problem and fluc- 
tuation ci{k\. 

i:ijA{ki)A{ki) = No- I a{k)a{k)d'^k 
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where No = const, independent of a{k). Due to the complexity of the matrix 
elements (fk^k' we cannot exactly express the Hamiltonian H in terms of 
No and a{k). However, the particle conservation relation can be used to 
estimate various contributions. The dangers of this approach are clear but 
at the present time this is all we can do. Thus, 

H2 ~  fdk(Na{k)a*{k)+^{A\ko,k)a{k)a{-k)+{A'{ko,k)Ya{k)a*{-k)) 

where 

N = 0{klNo) 

The corresponding 0((^)^) correction to S4 is small in the limit ko —> 0. 
Using the same estimate we can express the operators A{k) in Ho in terms 
of No and A{k). The resulting Haimltonian has constant 0{koNo) term 
and the a(A;)-dependent contributions which simply modify all factors in 
ff2- The magnitudes of these factors can be important for the results of this 
work since, in principle, they can modify the frequency shift we are trying 
to calculate. 

In the theory of weakly interacting Bose gas the condensate is considered 
at A:o = 0 and the corresponding operators are taken as c-numbers, so that 
A = A* = -^/N. In this case the frequency shift is equal to zero. This gives 
rise to phonons, characterized by linear in wave number energy spectrum 
u)(^k) oc A;. In the theory of turbulence the coherent state cannot occupy 
A;o = 0 since the finite shear is necessary for the turbulence production. 
Thus, some violation of translational invariance is always expected at the 
large scales. 

As was shown above, the particle conservation law gives some information 
about the product A{k)A*{k). In order to say anything about A^ we have 
to solve the corresponding dynamic equations describing the large-scale co- 
herent component of the Clebsch field. At the present time we cannot do it. 
However, it is reasonable to assume that: 

N'jL\A\ko,k)\'' 

Based on the particle conservation law, we estimate: 
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e^{k) « N^- I A\kQ,k,a{k)) \^= Oik^N^) > 0 

If the large-scale flow is produced by the non-linear interactions without the 
large-scale symmetry breaking external field, then it is possible that e(A;) — 0 
and the results of this work should be modified. 

In what follows we take the frequency shift Cl = e{k) ss k^No and, to avoid 
introduction of a new notation, set a{k) = c{k). This approximation totally 
neglects the geometric structure of the coherent state and the fact that it 
depends not only on the wave-vectors kg but also on the angles between 
vectors k and kg. So, in what.follows the dispersion relation e{k) is taken 
into account in an average way, which is sufficient for the qualitative theory 
of "weakly interacting Clebsch gas" developed in this paper. 

Since the fluctuations from the coherent state < a{k) >=< a*{k) >= 0 the 
Fourier component of velocity < v{k) >= 0 for k large enough. Thus, I 
assume that the field a{k) is isotropic and homogeneous. This assumption 
should come out as a result of a dynamical theory showing that anisotropic 
perturbations of the coherent state decay while the isotropic ones survive. 
This can be done easily considering linear stability of a basic flow of a 
given structure in Clebsch variables. However, in fuUy developed turbu- 
lence, the coherent and random components strongly interact: the large- 
scale turbulence- producing eddies are influenced by the small- scale veloc- 
ity fluctuations and the resulting "turbulent profiles" arise from the com-~ 
plicated interactions. So, in this work I wiU not consider the nature of the 
coherent state and simply postulate its existence. As will be clear from 
what follows some of the consequences of the interaction between organized 
and random motions are of a general nature independent of the detailed 
structure of large-scale eddies. 

The mean field equations of motion for the Clebsch variables are derived 
from the approximate Hamiltonian introduced above: 

i^^ - {u;{k) + 2Nokl)a{k) = S (4.2) 

The 0{aa) terms on the right-side of the equation of motion coming from 
H3, violating particle conservation, are neglected in (4.2). However, they 
are very important since it is only due to these terms the constant nonlinear 
frequency shift in (4.2) cannot be removed by the trivial transformation 
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b{k) = a(it)e-'^°'=o' 

Let us show that in the kinetic equation approximation, considered in this 
work, the O(aa)-contributions are negligibly small due to the absence of the 
resonant interaction on the dispersion relations u;[k)+const. Indeed, repeat- 
ing the derivation of the kinetic equation we find an additional contribution 
to (3.8) of the type: 

dn{k,t) 
dt = Im j Tk,k,k,JkMkA^ - k4 - k3)dk3dk4 (4.3) 

with 

JkMM = h = 0{< a*{k)a{kz)a{ki) >) 

Using the results of the previous Section we derive after the iteration: 

J3 cc      dt exp{it[u}{k2 + kji) — cv^k^) — u[ki) — 2Nokl)) 
Jo 

which disappears in the limit f —> 00 due to the absence of the resonances. 
It can be shown^ that elimination of the nonresonant terms can be done 
rigorously by introduction of the new operators a{k) = ~a{k) + s where 
the linear shift 5 is chosen in such a way that the third-order contribution 
disappears from the resulting equation for a(A:). In the case considered in 
this work this leads to a simple multiplication of the matrix element (2.11) 
by a constant factor which does not modify the scaling relations derived in 
this paper. 

Thus, the kinetic equation corresponding to (4.2) is exactly the same as 
one derived in the previous section since the constant non-linear frequency 
shift disappears from the conservation laws. Solutions (3.18) and (3.19) stay 
intact but in addition to the energy spectra (3.21) and (3.22) we also have: 

E3{k) DC A;-s (4.4) 

and 
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E^{k) a k-^ (4.5) 

corresponding to energy and particle conservation laws respectively. The 
origin of these spectra is clear: in general E{k) w Fin{k)/r{k) where F 

is the corresponding flux and r is the characteristic time-scale. Due to 
the interaction with the "external field", we now have an additional wave- 
number-independent time r — const, leading to the energy spectra (4.4) 
and (4.5). We wUl see below that the 7/3-spectrum is indeed observed in 
shear flows at scales larger than those corresponding to the 5/3- Kolmogorov 
range. Since the limit A; ^ 0 is dominated by the —7/3- spectrum the second 
E{k) ^ fc~^-spectrum will not be considered in what follows. If fi = Nokg 

is not small, then the expansion parameter of the theory 77 = ^^^ —y 0 
when k —y 0 since the dispersion relations corresponding to both spectra 
E3 and E4 are uj{k) a A;" with a > 0. In this case the solutions E3 and 
E4 are asymptotically exact. Let us estimate 77 for some well-known cases 
of turbulent flows. The mean dissipation rate e Ri u^^,/L where Urma is 
the root-mean square velocity of turbulent fluctuations and L is the integral 
scale. The characteristic frequency of the coherent structure is simply given 
by the large-scale shear fi « 5 ~ U/L where U is the characteristic velocity 
of coherent motion. Using these estimates we obtain 77 ^ Urms/U. In wall 
flows 77 ^ 10~^ — 10~^ in a typical laboratory situations and, according to 
the data 77 ^ 0 when the Reynolds number Re —^ 00. The same estimate 
is applied to other wall flows and wakes behind bluff bodies. In Bernard' 
convection 77 si Ra~Ti in the experimentally covered range of variation of 
the Rayleigh number 10^ < Ra < 10'^'*. In this flow U is the mean velocity 
of the coherent vortex ("wind") observed in high Ra flows. According to 
theoretical arguments in this case too, 77 -^ 0 when Ra —> 00. Existence of 
small parameter in this formulation of the theory of turbulence means that 
the fields a{k) and a*(k) are close to gaussian when k -^ ko —^ 0- However, in 
jets the parameter 77 ~ 10~^ and does not seem to decrease with increase of 
the Reynolds number. The experimentally observed close-to-gaussian large 
scale statistics of velocity field in these kind of flows should be related to 
numerical smaUness of 77 and, unlike the wall flows, the extent of the range 
where the gaussian statistics is observed should not grow with Reynolds 

number. 

The expansion parameter 77(A;) = 0(1) when A; -> 00.  Still, this parameter 
wiU be considered small in what follows.   This restricts the results of this 
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paper to not-too-large wave- numbers.  The limits of validity of the theory- 
will be discussed below. 

5    Probability Distribution of the Velocity Differ- 
ences 

Let us consider the probability density of the velocity difference 

U{X,x) = u{X + i) - u{X) = ko^/No ha{k) + a*(A;))(e''=^ - l)dk 

^ jip{k^,k2)a'{k{)a{k2){e<'''-^^> - l)(ikidk2 (5.1) 

where we have omitted the subscript x denoting the x-components of the 
velocity and wavevectors. It is well known that the odd moments f^^+i 
are not equal to zero and that the PDF P{U) ^ P{ — U). However, this 
asymmetry is not very strong and it is absent when x denotes displacement 
in the direction perpendicular to the i-axis. In this work we shall discuss 
the behaviour of e^wen moments only, leaving investigation of the odd-order 
moments to future pubhcations. It is clear from the above definitions that 

with 

2 
'^R = j "plukA^^X^m^ - 2 cos ({k^ - k2)x] j dkidkz = 0{xl)=P 

(5.2) 

and . 

U^ = 4Nokl I n{k)[coskx - l)dk = 0(xt) = 7(^)t. (5.3) 

2 
The proportionality coefficients /? and 7 are given by ^ « es  and 7 ss 
Nok^ei.  It wiU become clear below that in many cases Nok^ ^ S, where 
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S is the shear due to the coherent state which dominates the large-scale 
dynamics. The probability distribution function P{U) is defined as 

P(C/)a  f sfu-u(x) + u{x + r)\dx 

or, using the integral representation of the 6- function 

P{U) a  r da   e'°^ / e-'^^^^^^-^^dx. 
J—oo J 

Introducing the ensemble of fluctuating Clebsch fields and assuming that 
the space and ensemble averaging procedures are equivalent leads to 

/oo 

da e^°^ <  e-'«^(°.^) > . (5.4) 
-oo 

Our goal is to evaluate 

Assuming further that the statistics of the Clebsch fields a{k) and a*{k) 
are near-gaussian for k > ko, we can analyze the expression for I with 
U{x) defined by (5.1). In principle the result of gaussian averaging can 
be formally expressed in terms of the corresponding determinants. The 
resulting formulae are very involved and it is difficult to extract any useful 
information from them. Here I will expand I in powers of iaU{x) and 
evaluate the outcome of gaussian averaging. First of aU it is clear that if the 
quadratic contribution to (5.1) is small, the gaussian averaging can be done 
exactly with the result 

/ = exp{-a^U^/2) 

which after substitution into (5.4) yields the experimentally observed gaus- 
sian distribution function 

P{U) oc exp{-U^/8U^) 
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for large values of the displacement xjL -^ 1. 

Now let us set for the time being NQ = Q and try to evaluate /. Due to 

the complicated functional shape of the matrix elements (^3(^:1,^2), this is a 
rather difficult task. Expanding the exponent in I and examining the series 

in powers of a we find that the second order term is equal to 

1 
I, = ---a'Ul 

The fourth order contribution is 

-^--.4 

where 6ND4 denotes six off-diagonal contributions to I of the kind 

All others are obtained from this one by permutation of the subscripts. It 
can be shown easily that the 271"^ order term in the expansion has the form: 

_(-!)",„        2n(2n-l)    3„ 2n(2n - 1) 

where B2n-2 a.nd G2n-2 denote the number of the corresponding contribu- 
tions to l2n-2- Neglecting the off-diagonal contributions we can sum up the 
remaining series with the result 

If aU terms in the expansion are assumed to be equal, then we have the 
same result with the coefficient 3/2 replacing 1/2 in the above relation. 
Substituting the expression for / into (5.4) and evaluating a simple integral 
yields the exponential probability distribution function 
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This relation resembles the experimentally observed P{U) for small separa- 
tions x/L « 1. The exact evaluation of the function J is a difficult problem 
because the number of contributions to /„ involving various combinations of 
wavevectors grows very rapidly with n. This indicates the possibility to eval- 
uate /„ for n >> 1 using statistical methods of diagram calculations. Here 
I assume that when n is large the contribution of the oif-diagonal terms is 
small due to the cancellations stemming from proliferation oicos((ki — kj)x). 
So, I select an infinite subset of contributions to I with the correct asymp- 
totic properties: 

„2[7= (5-5) 
1 H ^ 

The relation for P{U) reads 

F(U) = /_■ 
i„2rr2 

dae-^-^ 
-i:a^U, 

1+^ 

It follows from the above considerations that this expression should be used 
only for the calculation of the high-order moments of velocity differences 
i/^" with n >> 1. Substituting (5.5) into the expression for P{U) gives: 
J P(U)dU = 1. Evaluation of the moments of velocity diiferences 

TP^= f°° pmu^'^du r P{U)U^''c 
J—oo 

using (5.4) and (5.5) is done readily. The result for the normalized moments 
Rn is: 

R^^ = {2n-l)n~ (5.6) 
•^ n 

where 

46 



/„ 
°° -it 

dt e-\{xlLY + jrT (5.7) 
0 t/O 

The parameter Co = ^ and P„ = {P^T- In the limit x/L > 1 and if the 
constant Co is large, this expression gives Rn ~ (2n - 1)!! corresponding to 
the close-to-gaussian statistics of the velocity differences. When x/L « 1, 

R2n = (271 — l)!!n! indicating strong deviations of P{U) from gaussian. In 

wall flows, j ^ S and /3 « l/2c5 is where the shear S ^ U/L and e si u^/i 
with U and u denoting the mean and rms fluctuating velocities, respectively. 

Not too far from the wall region of a boundary layer flow, U ~ (10 — 20)it 
and Co ~ 10 - 20. Some of the normalized moments R2n, given by (5.6) 
and (5.7) are plotted on Fig.l ( Co = 20). The most striking feature of 
the plots is that the transition between these two asymptotic values of Rn 
is very slow, covering almost two decades of the displacement x variation. 
Moreover, the transitional region can be accurately represented by the power 
law Rn ~ 2"^" with the "scaling exponents" ^n. This poser law is compared 
with the experimental data in the Table where the experimentally observed^ 
values of the "exponents" ^n are presented. Relations (5.6) and(5.7) show 
that intermittency is the consequence of interaction of coherent and random 
components of the Clesch field. With decrease of the length-scale, the role 
of this interaction diminishes and PDF undergoes transition from gaussian 
to close-to-exponential. At the very small scales x/L -^ 0, the normalized 
moments Rn{x) —> const ^ (2n—l)!!n!. However, this limit might be beyond 
experimental reach since proximity to the dissipation range, not considered 
in this work, can strongly influence the smcdl-scale behaviour of the moments 
Rn- It follows from (5.7) that even in the same flow the measured deviations 
from the KoLmogorov scaling can vary from point to point depending on the 
ratio 5/e» if the displacement is measured in the units of the integral scale 
X = x/L. 

The results of this work can be explained in a very simple way. Let us 
consider, for example, the familiar case of a shear flow. At the large scales 
the dynamics are dominated by the shear S and the co-spectrum of the 
anisotropic state k^Vi{k)vj{k) — e'ik^n{k)Q where the characteristic fre- 
quency is f2 = 5. With the expression for n{k) derived in this work, the 

7/3-energy spectrum is readily obtained in the interval ko < k < S^e 2. 
The anisotropy- generated 7/3-scaling of the co-spectrum does not enter the 
expression for the energy spectrum. However, it does not disappear from the 
expressions for the high-order moments leading to the non-trivial behaviour 
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of R2n{x)- I believe that this mechanism is quite general and the long-living 
anisotropic large-scale fluctuations can produce similar effects in statisti- 
cally isotropic flows. Indeed, if the large-scale shear has complex topology, 

the arguments leading to the -7/3 co-spectrum Ei2{k) « A;~3 do not work 
since the problem loses strong anisotropy which is the essential part of the 
derivation. In addition, the introduction of the large-scale super-ensemble, 

discussed in Section 4, makes the results of this work applicable to the sta- 
tistically isotropic flows which are slightly anisotropic in each realization. 
This physical assumptions are reflected in the scalar expression for the con- 
densate contribution to the dispersion relation in the equation of motion 
(4.2). 

According to this theory, anomalous scaling is not necessary to explain the 
experimental data and the measured "scaling exponents" are the artifacts 
of signal processing. I illustrate how deceiving the data can be with the 
following consideration: The moments of the velocity differences grow by 
factor Rs n\ when x/L decreases by two orders of magnitude. Using a familiar 
extrapolation, the "exponents" ^„ are found from the trivial relation 100^" = 
n\, so that 

U = ^lognl (5.8) 

This formula is compared with the experimental data in the Table. 

6     Spectra of the Dissipation Rate Fluctuations 

Planning to compare the results with experimental data in the next Section, 
here I reproduce the evaluation of the dissipation rate structure functions 51 
defined by the relation (1.4) published in Ref.(3). To begin the discussion, 
let us first recall the derivation of the Kolmogorov result 51 ~ k~^. The 
dissipation fluctuation spectrum is: 

^.(,).4..-|M|l (e.) 

Substituting the relation 
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/•CO 

e{k) = 2u /     qi{k - q)iVj{q)vj{k - q)d^q (6.2) 
Jo 

into (6.1) we obtain: 

/•oo 

E'ik) ^ u'k^ /    {q,{k - q),fU{q)U{k - q)d\ (6.3) 
JO 

where U{k) = ■^^-   It is easy to see that the integral converges in both 

limits, yielding E^{k) w fcs, which is grossly incorrect. The mistake can be 
traced to the assumption of gaussian statistics of the velocity field involved 
in the derivation of this relation. However, this assumption is plausible in 
the renormalization group sense, i.e., the deviations from gaussian statistics 
can be treated as small, provided the effective (renormaJized) transport co- 
efficients are used in the evaluation of the corresponding flow features. This 
statement is rather clear since in the inertia! range of fuUy developed turbu- 
lent flow the characteristic time-scale of the velocity fluctuations at the scale 
/ ~ ^ is dominated by the non-linear interactions and can be represented 
using an effective (turbulent) viscosity i/fc. The e-spectrum is given by: 

E^{k) ^ vj,{k)k' /    {q,{k - q),fU{q)U{k - q)d\ (6.4) 
Jo 

1 
with UK ~ £3/c~3 in accord with the Kolmogorov theory. The integral (6.4) 
converges and (6.4) and (6.1) give the dissipation fluctuation spectrum in 
Kolmogorov turbulence: 

E^Kik) ^ e^k-^ (6.5) 

Using the same procedure we can calculate E^{k) corresponding to the k~^- 
spectrum. The only fundamental difference between this case and the one 
considered above is that the integral (6.3) calculated for the A;~^-spectrum 
is ultra-violet divergent and, thus, is equal to a constant which strongly 
depends on the value of kd. Then, it is easy to find the dissipation rate 
spectrum in the gaussian random field: E^ ^ k"^. In a turbulent flow dom- 
inated by a fc~^-spectrum, a different procedure should be used. It follows 
from the relation (3.19) and the energy spectrum (4.1) that the effective 
viscosity Vn in this case is: 
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i^4k) ^ {eu)n-' (6.6) 

and we derive readily: 

E^^{k) « k' (6.7) 

In the general case of high Reynolds number statistically stationary tur- 
bulence the largest fraction of energy is contained in the |-Kolmogorov 
range dominating the large-scale velocity fluctuations. Indeed, in this case 
§^ ~ I^fe ~* °° '^^^^ tbs Reynolds number Re = ^rmsL _^ ^^ rpj^^ g^i^_ 
scripts n and K hereafter denote parameters of the flow corresponding to the 
k~^ and Kolmogorov spectra, respectively. It is easy to see that |^ = 0(1) 
and thus, the energy dissipation is more or less equally distributed between 
two spectra. To estimate the e-correlation function let us assume that the 
total dissipation rate e = CK + ^n- This assumption is plausible within the 
framework of our weakly non-Unear theory. Then we have: 

ELtai = E^K + E^^ + Ej,^ (6.8) 

where in the three-dimensional case: 

r°° 1 
Ej^^ = k^i^K{kWik)        {q,{k-q),fUKik)Un{k)d^q^k-> (6.9j 

Statistical independence of the velocity fields described by the two spectra 
was assumed in the derivation of this relation. Thus, the Kolmogorov scaling 
(1.4) is "contaminated" by contributions coming from the second solution 
of the kinetic equation. This is a manifestation of small-scale intermit- 
tency. The predicted spectrum of the dissipation rate fluctuations consists 
of three ranges, characterized by the A;~^-spectrum at the largest scales and 
A;°-spectrum in the vicinity of the dissipation cut-off. The intermediate k~i- 
range might be too narrow to be found in the available experimental data. 
It should be mentioned that the simple linear superposition of the dissipa- 
tion rates corresponding to different spectral ranges introduced above is an 
approximation which can be rather crude. In a non-linear system a weighted 
superposition can modify the relative importance of different spectral con- 
tributions to the total dissipation fluctuation spectrum. 
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7    Discussion of the Experimental Data 

According to the theory presented in this work the large-scale coherent state, 
contributing to turbulence production in some flows, is responsible for the 
observed close-to-gaussian probability distribution of velocity diiferences at 
large scales and the non-trivial behaviour of high-order moments 5^. To 
begin to test the main predictions of the theory we have to look for the energy 

7 
spectrum E{k) a A;"? at scales somewhat larger than those corresponding 
to the 5/3-inertial range spectrum. Experimental investigation of the large- 
scale dynamics is not a simple task. In a typical experiment the signal 
is acquired as a time sequence v{x,t) at a given point x. The correlation 
functions are measured in the frequency domain: 

where the integration domain is limited by the box-size 0{kQ^) and U is 
the mean velocity. The function F{k,u)) % k'^F^^) where the scaling ex- 
ponents a; and z differ from flow to flow (the dynamic exponent z = 2/3 for 
Kolmogorov turbulence). The space correlation function is given by 

F{k) =  r F{k,w)duj 
J — oo 

with the integration domain limited only by the data acquisition time which 
often can be made as long as desired. It clear from these two expressions 
that when a; >> 0{koU) and the integrals converge, the expressions for 
F{uj) and F{k) are simply related since uj ^ k. This is called the Taylor 
hypothesis which is very often used for interpretation of the data. However, 
this hypothesis fails at the large scales where u < k^U since in this case w 
disappears from the problem giving F{u!) = const, observed in all experi- 
ments in the frequency domain. A few experiments conducted in both space 
and time domains revealed substantial differences in the large-scale behavior 
of the correlation functions. 

The energy spectra, measured in the large NASA Ames wind tunnel^ are 
presented on Fig.(2). We can see a decade of Kolmogorov 5/3-energy spec- 
trum in some interval of scales. However, the co-spectra, presented on 
Fig.(3) show a decade of the 7/3-spectrum at the larger scales, in accord 
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with prediction in this work. As was mentioned above, the appearance of 

this spectrum in a shear flow is not surprising due to the an additional 
scale-independent time-const ant. In another experiment^ the second-order 

moment S2{x), measured in physical space using a particle-tracking tech- 

nique, was best fitted by the 2/3-power law at the small scales and by 4/3- 
exponent at the large values of the separation x. The results are shown on 

Fig.4. We can see that when fitted by the Kolmogorov relation 52 = 0(a;») 
the experimental and fitting curves barely touched each other. However, 
the data were well represented by the dependence 52 = ax'^ + bx^, ex- 
actly as predicted in this paper. Even more striking conformation of the 
predictions derived in this work can be found in the sate-of -the-art (864^ 
resolved Fourier modes) direct numerical simulations of the Taylor-Green 
vortex conducted by M.Brachet^. The calculated energy spectrum is pre- 
sented on Fig.5. We can see that the large-scale part of E{k) is dominated 
by the 7/3-scaling regime while the 5/3-Kolmogorov spectrum can be found 
at the larger values of wave numbers. 

In the Navier-Stokes equations different components of the velocity field are 
coupled via non-linear interaction. It is a small miracle that the third-order 
structure function of the i-component of velocity field can be expressed 
in terms of the i-components only. This miracle is unlikely to happen in 
the high-order correlation functions which means that the 5n's with large 
n are composed of contributions obeying different scaling laws. Examples 
of the experimentally observed^"'^^ compensated high-order moments are_ 
presented on Fig.(6). From comparison of the graphs of Fig.1 and Fig.6 we 
conclude that the high-order moments, derived in this paper, though not 
obeying any real scaling laws, exhibit much more of a "scaling range" than 
the experimentally observed ones. 

To conclude the comparison of the predictions of the theory with experi- 
mental data, the measured correlation function^^'-''' of the dissipation rate 
are shown on Fig.7. The predicted range 51 ~ k° in the vicinity of the 
dissipation scale is clearly seen. 

8     Conclusions 

The large-scale processes in all real-life turbulent flows are dominated by 
powerful, weU-organized, long-living coherent structures. These structures 
participate in turbulence production and influence both global and small- 
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scale features of the flow. It is always assumed in developing the theory 

of turbulence that in the so-called inertial range the large-scale processes 
and those happening in the viscosity-dominated dissipation range can be 
safely neglected. The role of the large-scale coherent state in the statistical 
properties of velocity fluctuations has been analyzed in this work and it 
has been shown that, indeed, the influence of the coherent state diminishes 
with decrease of the length-scale. However, the transition is very slow and 
experimentally observed behaviour of the high-order structure functions can 
be mistakenly perceived as obeying non-trivial scaling laws. 

The theory presented here is based on the assumption that even at the 
relatively high Reynolds numbers the coherent state in the external-field- 
driven flow reflects properties of this field. In principle, it is plausible to 
assume that the instability of the laminar velocity profile leads to a mean 
field having nothing in common with the laminar state of the flow due to 
the strong non-linear interaction between coherent and fluctuating compo- 
nents. In this case the details of the external field are forgotten even in 
moderate Reynolds number situations. In my opinion, in the real life flows 
this is not the case. The coherent structures, emerging at the transition 
to turbulence when Re ^ Rcc, persist even when Re > Rcc- This fact is 
readily understood: If the effect of the small-scale velocity fluctuations on 
the large-scale flow features can be described in terms of an eddy viscos- 
ity, then it is possible to show that the relevant effective Reynolds number 
Re = "^"" = 0(1) ^ Rcc- Thus, the large-scale flow is always transi-_ 

tional and is strongly influenced by the driving mechanism. This fact can 
be easily verified for the wall-shear flows, convection, jets and mixing layers 

by simply using the data on the turbulent intensities {ums) in the defini- 

tion of the turbulent viscosity Vgff = ^^.  In aU these cases the effective 

Reynolds number is close to critical and that is why the large-scale flow 
features resemble organized structures characteristic of transitional flows. 
Experimental manifestation of this fact can also be found in the data on the 
energy spectra as function of dimensionless frequency /. For example, in 
the wake behind the cylinder the spectrum E{f) has a very sharp maximum 
at / w 0.2 independent on the Reynolds number in a very wide range of 
Re variation. Similar feature can be found in Benard convection where the 
characteristic velocity of the large-scale coherent vortex (wind) scale with 

the Rayleigh number a,s U ~ Ra^ which corresponds to the simple relation 
U oc ^/gL where g is the gravitational acceleration driving the flow. As we 
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see, the external field g plays a very important part even at large Ra. These 
facts, in my opinion, support the main assumption that the coherent state 
can be treated as an external field. 

According to the theory developed here, the existence of the large-scale 
coherent state explains the experimentally observed gaussian statistics of the 
velocity fluctuations. This fact has important implications for the problem 
of turbulence modelling. Indeed, the gaussian field cannot participate in the 
energy transfer from large to small-scale fluctuations. This means that only 
the fluctuations v{k) with k > (^)2 >> ko can give substantial contribution 
to the effective transport coefficient. The same estimate holds for the rate 
of diminishing of the large-scale generated anisotropy with decrease of the 
wave number. The anisotropy of the velocity fluctuations makes the energy 
transfer from large to small scales more difficult, which is another reason for 
the relatively weak contribution of the large scale velocity fluctuations to the 
effective transport. Thus, there exist some scale separation, characterized 
by the small parameter Urms/U ■€. 1 justifying the concept of turbulent 
viscosity which is so successful in the modelling of the large-scale features 
of turbulent flows. 

The main unsolved problem with the Clebsch formulation of statistical hy- 
drodynamics is non-uniqueness: it foUows from (2.4) that any transforma- 
tion A —»• /(A,/i), n —> <?!>(A,/i) with 

d\ dfj, 

does not change the velocity field. The parameter 

N' = j{f + cf>^)d\ ^ No 

This is a problem since A''o is an important parameter of the theory de- 
termining the constant frequency shift fi. At the present time we do not 
have a rigorous way to gauge the Clebsch field and determine A^o- However, 
the only large-scale physically relevant frequency Q, = Nok^ ^ S which can 
serve as an estimate for No since ko = 0(1). Thus, the large-scale dynamics 
are strongly influenced by the interactions of the fluctuating and coherent 
components of the Clebsch field. 

It is possible that this is only a part of the picture. The viscosity-dominated 
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small-scale dynamics can produce another mechanism of deviation from Kol- 
mogorov scaling. The physical reasons for this can be illustrated by the 
definition of the high-order moments of velocity differences: 

in the limit when all Xi -y Xj and 2 < i < 2n. We can see that S2n 
are mixed quantities, involving not only inertial range separation x but also 
dissipation range displacements Xi-Xj —y 0. Thus, S2n are not pure inertial 
range properties of the flow and corrections to the Kolmogorov scaling are 
expected. K this is so, then we can predict a cross-over from the large-scale 
"scaling", dominated by the coherent structures, to another one reflecting 
intermittency of fully developed turbulence due to the viscous contribution 
to the equations of motion. 

figure legends 

Fig.l. a. Typical form of the normalized moment R2n{x) plotted for n = 3. 
b. Compensated moments x^"^"R2n{x)/{2n - 1)!!. The values of ^2n for 
n=2,3,4,and 5 are given in the Table. 

Fig.2 Energy spectra in the boundary layer of the wind tunnel. NASA Ames 
experiment Ref.(6). a. v?\ b. u^; c. w"^. Rx = 1400. 

Fig.3 Co-spectra Ei2{h) measured at two difl'erent locations {Rx - 1450; 600; 1000; 500) 
in the boundary layer for two values of free-stream velocity.  Ref.(6).  The 
data are presented in dimensionless coordinates. 
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Fig.4 Second-order structure function S2{x) Ref.(8) measured in the labo- 
ratory boundary layer, a.Fitted by the Kolmogorov scaling; b. The same 
data fitted hy S2 = ax^ + bx^; 

Fig.5. The energy spectrum E{k) from direct numerical simulations of the 
Taylor-Green vortex by M.Brachet'^. 

Fig.6. The experimentally measured compensated moments of velocity dif- 
ferences, a. Ref.9 (jets: R^ = 500; 800); b.Ref.lO (wind tunnel); c. Ref.ll 
(boundary layer) 

Fig.7. Second-order moment of the dissipation range differences 51. a. 
Ref.l2 (atmospheric boundary layer); b. Ref.13 (laboratory boundary layer) 
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Exponents   f 2n 

-^ Expenmenf^ Present       Extrapnfatinn 
-4 0.14 t 0.038 0.13 Q.15 

0.34 Z 0.042 0.33 039 
8 0.60 t 0.037 0.70 0.69 

10 0.97 ^ 0.037 1.10 1.04 
12 1.15  :i 0.-13   , - . 1.4? 
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Spectra of Fluctuations of Velocity, Kinetic Energy 

and Dissipation Rate in Strong Turbulence 

Abstract. Following the ideas of operator product expansion, the velocity v, kinetic 

energy K = \v'^ and dissipation rate e = i^o{f^f are treated as independent dynamical 

variables, each obeying its own equation of niotion. The following relations Au{AKy oc r; 

An(Ae)2 oc r° and (Au)^ ^ rAeAK are derived. If velocity scales as (Au),^, oc r5-\ 

then simple power counting gives: {AK\^, oc r^-? and (Ae)^^, oc l/^{Av\rns oc A'i. 

In the Kolmogorov turbulence (7 = 4) the intermittency exponent /i = ^-l = l/3 and 

(Ae)2 = 0{Re*). The scaling relation for the e-fluctuations is a consequence of cancellation 

of ultra-violet divergences in the equation of motion for the dissipation rate. 
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The Kolmogorov relation for the third order structure function in decaying homogeneous 

and isotropic turbulence^, derived directly from the Navier-Stokes equations, reads: 

    4 dSo 
S3 = (u{X + r) - u{X)y  = -6u{x)u{x)u{x + r) = --er + 61/0-^ (1) 

where u{X) is the x-component of the velocity field v,r is the displacement in the z-direction 

and e = i^oif^Y = 0{l). The correlation function 52 = {u{X) —u(X + r)y. The mean 

dissipation rate e in the Kolmogorov derivation is defined as -^ = —2e. In a statistically 

steady flow driven by the force f, ^ = 0 = -2e + 2f • v and, in general, the Kolmogorov 

relation (1) must be modified. The Navier-Stokes equations driven by a force f are: 

dvi dvi dp        d^Vi 

dt dxj        ox,        dx^ 

with V - V = 0. It follows from this equation^ that 

53 = -^er + 4 r y'^^^dy + 6u^ (3) 
5 r^ Jo or 

where A/ = f(X + r) — f{X). It is clear that if the energy source acts at the largest scales 

only, so that the Fourier transform f{k) = 0 ioi k > ko -^ 0, then the relations (3) and (1) are 

identical for small enough values of the displacement r. Applying dimensional considerations 

to the expression (1) or (3) leads to the Kolmogorov law: (Au)T.m5 = 0(e'rs). This relation 

defines the dimensionality of the velocity operator: the root-mean square velocity v^ averaged 

over a ball of a radius r scales as Vr cc r^. It is convenient to introduce the effective viscosity 

u{r) defined from the equation for the velocity field v*^, averaged over small-scale (Z < r) 

fluctuations: v"^ • Vv"^ « i/(r)V^v'^. Power counting gives: u{r) » eSrS in accord with 

Kolmogorov theory. The effective viscosity ^{r) takes into account the effects of the velocity 

fluctuations at scales I < r. Dimensional considerations, applied to relation (3) are a very 

crude approximation. In general, if {Au)rTns oc r?~\ then u{r) oc r s, where the exponent 7 is 

to be determined from the theory. The Kolmogorov spectrum, approximately supported by 

experimental data, corresponds to 7 = 4. So, in what follows this value of parameter 7 will 

be used for evaluation of the exponents following the general relations derived below.  The 
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relation (1) or (3) gives an important constraint on the structure of turbulence theory. Fourier 

transform of S3{k) oc 6'{k) = 0 for the wave-mumber k in the inertial range. This means 

that the largest scales in the flow play the most important part in dynamics of turbulence. 

To make this point even stronger, let us consider a flow driven by a white-in-time random 

force having non-zero Fourier component f(k) at k = ko. In this case the relation (3) gives 

4e     d^ sinqr 

evaluated a,t q = kg. Here e =< f • v >. This exact relation tells us that the integral scale kg 

cannot disappear from the problem as a result of Gahleo-like transformations. The effects 

of the large scale dynamics on the scaHng properties of both kinetic energy and dissipation 

rate will be investigated below. 

It is also interesting to investigate the properties of fluctuations of the local values of 

kinetic energy K = 1/2 vf(x) and dissipation rate e = ^^oi^Y- Power counting based on 

u = 0(r = ) gives for the dimensionality of kinetic energy and dissipation rate: K^ = 0{r^) 

and e^ = 0{r~3) corresponding to the spectra EK{k) cc k~i and E^ ex k^. These relations 

strongly contradict all available experimental data. In this work, following the ideas of 

operator product expansion, we consider v, K and e as independent dynamical variables 

and derive scaling properties of fluctuations of kinetic energy (K) and dissipation rate (e). 

The equation of motion for kinetic energy is: 

dK        dK dv^p        d^K 

This is essentially an equation for a passive scalar (K) with various sources added to the 

right side. Repeating the procedure for the isotropic and homogenious flow, described in 

Ref. (2) and Monin and Yaglom'^, gives: 

Au{AKy = AU{X)K(X)K{X^T) ^ -^NKT + FK 

where FK = 0(A^AKr) and NK = ^o(|g)^+ 4e(x)/r(x) = 0(1). The O(AuApAK) terms, 

coming from pressure contributions to (4), are small in the inertial range limit r —>■ 0. It will 
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be shown below that FK = 0{Ti) is also small in the inertial range when displacement r is 

small enough. This leads to the root-mean-square of kinetic energy fluctuations: 

and EK OC A;3~^ ^ k~^ for 7 = 4. Again, application of the dimensional reasoning leading 

to this result is extremely dangerous. Here it is used only to illustrate how the arguments 

based on the weak coupling, when applied to relevant equations of motion, can lead to 

the non-trivial scaling.   The correlation of kinetic energy fluctuatuins can be also derived 

from the following considerations: the Fourier transform of (Aif)^ involves the integral 

/ < K{qi)K{q2)K{qz)K{k — qi — q2 — 93) >• K the main contribution to this integral comes 

from the largest scales, then it is easy to show that 

.2   TX-Nl^u.   ^Ji.r^i^. 

It is interesting that these two expressions for the kinetic energy correlation functions coinside 

only when 7 = 4. In what follows we set e = K-^.. = L = 0(1). 

The spectrum of the dissipation rate fluctuations has to be calculated from the following 

equation of motion: 

-J + ^;,V,e = F,-f  z/.V.V.e (5) 
dt 

where 

P« Ti 

F, = 2u,{V^v,)(Vjfi)- 2u,{Vp,){VjVi){ViVi) 

- 2ul{VjViv,Y - 2u^{V,v^){V,V,p) (6) 

This equation leads readity to: 

A-u(Ae)2 = 4ti(a;)e(x)e(x + r) ^ N^r + (f)^ (7) 
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where N, = F,{x)e{x) = 0(1) and <f)^ = 0(AF,Aer). It will be shown below that A^e ~ 4?^ 

where i/(L) « e»L». Thus, all contributions to N^ are 0(1) which justifies the estimate 

Nc = 0{Re°). Our goal is to evaluate ^^ which can be written as: 

<f>, = T j dk[l - e'^'-)i^,(k)e(-k) (8) 

Thus, the problem is reduced to calculation of; 

Y = F.(k)e(-k) = -I/O / d\daq,{q + ^),t;„(q, Q.)v^{\i + q, a; + n)F,(k) (9) 

The procedure leading to calculation of Y in the one-loop approximation was developed 

in Refs. ( 4 ). The main steps are: First we average the expression F^ over the small-scale 

velocity fluctuations ■u(k) with wave numbers A < k < AQ ^ kj. It is assumed that k << A. 

The main result of this averaging is in "dressing" the bare viscosity: everywhere we have 

to substitute Z/Q by the renormahzed value 2/(A) ^ e>A~^. Thus, the small- scale averaging 

procedure leads to the expressions ( 6 )-( 9 ) but with v< instead of v and i/(A) instead of 

^'o. Using this result and the fact that the Reynolds number based on u{A) and u< is 0(1) 

when A is in the inertial range, we derive an estimate: 

y = e<F,(k)> (10) 

This is clear since the largest contribution to the integral 

ly = u{A) j d\daq^{q + A:),z;<(q, n)^<(k + q,a;-^ Q) 

taken over the interval 0 < 9 < A comes from the interval k « q ^ A. In this approximation 

in the long-time limit a; ^^ 0 

ly ^ iy{A) J dqq^E{q) ^1= 0(1) 

which is independent of A. Correction to (10), coming from the fluctuating contribution to 

£ = e + 6£, will be discussed below. The details of evaluation of < ^^(k) > are given in Ref. 

( 4).   It has been shown that all contributions to < F, >, defined by (6), are ultra-violet 
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divergent, i.e. the integrals depend on the u.v. cut-ofF kj. However, an accurate evaluation 

of the integrals revealed that all divergent terms in (6) cancel in the one-loop approximation 

and the resulting expression is independent of the ultra-violet cut-off. It is easy to see from 

(6) that in the zeroth order the u.v. divergent corrections to Pe and T2 in (6) cancel each 

other, reflecting the fact that the mean rates of production and destruction of e are equal 

in statistically steady state^. It has also been shown"* that the divergent terms in P^, Ti, T2 

and the pressure contributions to (6), appearing in the first order of the iteration procedure 

sum up to zero. The first nonvanishing correction to 

T, ^ v'{K)jq\k - cO\<{q)v<{k - q)d'qdn, 

appears in the second order of the iteration procedure, which uses the Navier-Stokes equa- 

tions symbolically written as: 

y< ^fG+ ]-P{k)G j v<{q)v<{k - q)dq 

This correction is equal to: 

F.(k) ^ u'{A) J q\k-qyP(q)P{{k - q_))Giq)G{k-q)v<{Q)v<{q-Q)v<{p)v<(k-c-p)dqdpdQ 

(11) 

where P(k) = 0(k), k = (k.uj) and G{k,Lj) = (-zw + :/(A)P)-^ Relation (11) represents 

the operator F^ in terms of v<. To evaluate expressions (9), (10) and (8) we have to calculate 

Fe- The estimate can be derived readily: iterating (11) using zero-order solution: 

Vi(k, u)vj{k',u') oc ek-^GG'8{k + k')8{uj + J) 

gives: 

F.iU, = ^ (12) 

where 
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K{k) ~ \ ((/ d^da,v^{ci, n,)t;f (k - q, a; - %)Y^ 

Substituting (10),(12) into (8) gives for A ■^ r~'^ and w —> 0: 

Au(Ae)2 = 4u(x)e(x)e(x + r) ^ --A^,r + <^, « r    ^    . f "^^ = 0(eV,^,r°)        (13) 

It is interesting that the scaHng of the right side of (13) is independent of the value of 

7- This result can be obtained from (11) on the basis of dimensional considerations: the 

one-loop iteration introduces a factor e = 0(1) and J C^dD, gives i^'^(A) in the denominator. 

The remaining 0{v^) contributions give AK in relation (13)- Thus, it follows from (7 ) and 

(13 ) that: 

(Ae)2 DC l/{Au),^, ct r'-? = r"^ ^ r'' (14) 

This expression defines the so-called intermittency exponents /i. The corresponding spec- 

trum E^ is: E^{k) oc k'~^ oz k~'^. For the mean value of the dissipation rate fluctuations we 

have: (Ae)^ oc /cj oc Re* 

The approach, developed in this work can be used for derivation of the scaling propeties 

of various composite operators. For example, the energy equation (4) leads to: 

— Au{AKy -f -NK « -AeAK (15) 
or 3 

This relation was obtained above taking into account that in the case of the large-scale 

white-in-time random force < fiViK{x + r) >= eK(x + r) and neglecting the pressure con- 

tributions. The left side of (15) is 0{-§;{V^{Auy + (Au)^)) -|- JNK, where V^ = 0((el)t) = 

0(1). Using (1) we come to the conclusion that if the r-independent contributions to the 

left side of (15), corresponding to the constant in the wave-number space flux of K, cancel 

each other, the remaining terms give: 

d 
AeAK ^ -(A^.)^ ex {-f (16; 

or L 
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with (3 = 2/3 if the Kolmogorov prediction for the fifth-order structure fuction is used. The 

corresponding co-specrum Ee,K oc k~'i.   Using (16) we can show that the contribution to 

(13), coming from the e-fluctuations, neglected in (10), which is 0{T^^^~- « rs) is small 

when r —> 0. The relation (16) was verified in numerical experiments on the random force- 

driven three-dimensional turbulence in Ref. 5. The theoretical understanding of (16) was 

developed jointly with the authors of ref. 5. 

All operators v, K and e, considered in this work are goverened by the equations of 

motion which do not change under Galileo transformations and K' = K + \U^ ^-v -l]. It is 

clear that the scaling of {AK'Y with r is the same as that of (AXy ^ r?. Indeed, we can 

write: (AK'y = (AKy + ^(/^{Auf oc r^. The Kolmogorov relation following directly fron 

the equation for K': 

Au'iAK'Y = -^NK'T + FK' 

where u' = u + U. Since Au' = Au we have: (AK'Y oc r= oc {AKy. As was shown 

above, the scaling exponent of the right side of relation (13) is invariant under Galileo 

transformation. However, the proportionaHty coefficient is transformed as a' == a + 0{U^). 

i.e., strictly speaking, the relation (13) violate Galileo invariance. This can be an artifact of 

the low-order diagrammatic approximation used in the derivation of (13) which, in principle, 

can yield incorrect scaling exponents. So, it is gratifying to know that in the calculation 

presented here, this is not the case. 

Let us explore the possibility that GaHleo invariance is broken by powerfull large-scale 

structures, always present in real-life turbulent flows. It is known from experimental data 

that the large scale velocity field is described by close-to-gaussian statistics. To illustrate 

the physical meaning of the results derived in this work let us write the energy equation: 

dK        dK     ,BK 

where the forcing, pressure and viscous terms are omitted for simplicity. The large-scale 

gaussian velocity field V is assumed constant in each reaHzation. The non-linear contribution 

to (17) can be treated perturbatively. It is easy to see that in the zeroth order: 
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K{k, t) =. K{k, 0) - /' e{k, T)e'^-^"c?T 
Jo 

Multiplying this equation by e(—A;, 0) and averaging independently over the gaussian field V 

and the small-scale e-fluctuations we obtain in the long-time limit f —> oo: 

€{-k,{))K{k,Q) ^ j'e{k,r)e{-k,0)exp{--V^k^r^)dr 

This integtal is evaluated easily when kVr^, —+ co: 

Setting r = (kVrm,)~^ = 0 in the second equality in (18) means that the dynamics of 

the dissipation rate is characterized by the longer time-scale or in the other words e, though 

advected by the large scales is dominated by the local interactions. This statement will be 

justified below. Thus, the scaling exponent fi of the dissipation rate fluctuations correlation 

function is given by -// = /3-1, where the exponent (3 is defined by relation (16). This result 

holds if the neglected non-linear contribution to the energy equation can be represented in 

theeddy-viscosity approximation i/(A;,i)A;^/!:(A;,i), provided A;V;„, >> u{k,t)P. An attempt 

to explain experimentally observed large-scale gaussian statistics of the velocity fluctuations 

as a result of the symmetry breaking by the large-scale coherent structures, was made in 

Ref. 6. 

The relation (18) can be directly obtained from the so called K — e model, wich is 

extremely successfuU in describing large-scale properties of complex turbulent flows. In this 

model the effective viscosity u ^ ^^^J where the operators < K >^s= if< and < e >„ = 

e< with symbol <>,, denoting small scale averaging^. The model, which is the result of 

cancellation of the ultra-violet divergences^, is: 

dK        dK 

-5 + ,,V.e.-C.^ (20) 
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where, to simplify notation, we set K = K^, e^ = e and neglected the diffusion terms in 

both equations, The constant factor C2 ^ 1.7 (see Ref.4). These equations give readily 

—AuAKAe ^ (Ae)^ (21) 

leading to the relation (18), provided the left side of (21) is dominated by the large- scale 

advection with velocity Frm5- The relation (21) is based on the assumption that (e<)2 ^a {Kef 

if e< stands for the dissipation rate field averaged over the scales I < r. It is important to 

notice the difference between (13 ) and ( 21 ). The expression (13), written in terms of 

Fourier transforms, involves the dissipation rate spectrum E^ oc k~^ and, as a consequence 

the integral is infra-red convergent, i.e. the resulting expression does not involve both infra- 

red and ultra-violet cut- offs. In this case {Au)^^, oc r^ is to be used for estimation of the 

dissipation rate scaling. On the other hand, the relation (21) involves the co-spectrum E, K 

contributing to the strong infra-red divergence of the corresponding integral, which leads to 

the choice {Au)^rr^, ~ Km^ = 0(1), yielding the same result for the dissipation rate spectrum. 

It is interesting that the relation (21) is invariant under random Galileo transformation. 

The main result of this work is the derivation of the experimentally observable correlation 

functions: 

Au{AKy ^ NKT (22) 

—AuAeAK « (Ae)^ (23) 

Au(Ae)2 ^ eV_,r° (24) 

{Auf = vAeAK (25) 

r(Ae)2 = V^^.AeAK (26) 

Smce the effective Reynolds number in the inertial range is 0(1) these relations lead ap- 

proximately to: {AK\^, oc r= and (Ae),-^, oc {Au)r^, a r"?. One interesting consequence 

of relation (13) was noticed by M.Nelkin: if the Kolmogorov hypothesis 

e{x)e{x + r) ^ el ^ ^-L 
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where e^ is the value of the dissipation rate e averaged over the sphere of radius r surrounding 

the point x, is correct, then (Au)^ oc r^. Simple power counting, involved in derivation of 

these scaling relations, implies weak coupling and thus is a very dangerous procedure. The 

derived numerical values of the exponents, corresponding to the mean field theory, are not 

to be taken too seriosly despite their close agreement with experimental data. 

To conclude: Derivation of the non-trivial spectrum of the dissipation rate fluctuations 

directly from the Navier-Stokes equations based on a finite order of the renormalized pertur- 

bation expansion seems to be impossible.  However, even one-loop approximation, applied 

to the high-order equation of motion for the local values of the dissipation rate, gives a-—" 

strong intermittency with exponent /z = 1/3 in good agreement with exp?ferimental data   '^■ 

This result is a direct consequence of exact cancellation of the ultra-violet divergences in 

the e-equation, discovered in Ref.    (4 ) in the context of derivation of the i^ - e model 

for the description of the large-scale features of turbulent flows.   One consequence of the 

anomalous scahng of K and e may play an important part in developement of turbulence 

theory: the only dimensionless coupHng constant, based on the Kolmogorov scaling, is local 

Reynolds number Re = ^^  ^  (J^)'  = ^^^^^   ^^^ non-trivial scaling, derived in this 

work, leads to appearence of new dimensionless parameters Refc ~ %4 ^ i?e°(-)~=  -^ 0 

and Re^ = ^^ -> 0 in the infra-red limit r -^ oo. The role of these small parameters in the 

high-order contributions to the renormalized perturbation expansion is under investigation. 

The expression (14) leads to the the relation between the shape of the energy spectrum 

in turbulent flows and the small-scale intermittency exponent /i. Let E{h) oc A;^"^, so that: 

"^rm, oc rs" . This relation tells us that 7 = 3 is a crossover value of parameter 7: the small 

scale intermittency exist for 7 > 3 and the intermittency exponent ii=i -\ reaches value 

/i = 1/3 on the Kolmogorov spectrum (7 = 4).  It is interesting that at 7 > 3, the kinetic 

energy of the flow is dominated by the large-scale dynamics, while when 7 < 3 the main 

contribution to turbulent energy comes from small scales. This result stresses the dominant 

role of the large-scale dynamics in the intermittency of the dissipation rate fluctuations. 

It clear that the dissipation rate e is a strongly fluctuating operator.  Then, the natural 

question to ask is: How can the Kolmogorov law be even approximately correct? A possible 
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answer can be found in the fact that e = P = ^ where P is the mean rate of the energy 

injection which is equal to the mean energy flux in the wave-number space. The operator P 

describes the large-scale property of the system which fluctuates much less than the small- 

scale dominated dissipation rate e. It can be seen from the derivation of relation (3) that 

it is the energy flux and not the dissipation rate that enters the relation for the third-order 

structure function. This may by the reason why the Kolmogorov law can be correct despite 

very strong fluctuations of the dissipation rate. 

The method presented in this work can be directly applied to the equation for a passive 

scalar T, advected by turbulent velocity field. In this case cancellation of u.v.  divergences 

in^H^Iar dissipation rate equation should lead to the following correlation functions: 

Au{^KrY = 0{r) and Au{^NrY = 0{r^) where Kr = T^ and Nr = (VT)^ The power 

counting gives then AKr oc A and ANr <x r-\. These relations are invariant under GaHleo 

transformations.   It is interesting that the reported experimentally observed intermittency 

exponent for the fluctuations of the scalar dissipation rate is ^.^ - 0.35 which is extremely 

close to the prediction of this work: /.^ ^ 1/3, provided the velocity field is characterized by 

the Kolmogorov spectrum. 

Most stimulating discussions with V.Borue, M.Nelkin, R.H.Kraichnan, A.Polyakov, U. 

Frisch, M.Vergassola, S.Orszag, K.R.Sreenivasan, E.Jackson, L.Smith and I.Starosel'skii'are 

gratefully aknowledged. ' 
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Kolmogorov turbulence in a 

random-force-driven Burgers equation: 

anomalous scaling and probability density 

functions 

Abstract 

High-resolution numerical experiments, described in this work, show that velocity 

fluctuations governed by the one-dimensional Burgers equation driven by a white-in- 

time random noise with the spectrum \f{k)\   (x k ^ exhibit a biscaling behavior: All 

moments of velocity differences 5„<3(r) = \u{x + T) — u{x)\'^ = iAzip a r^^^, while 

Sn>3{T) oc r^" with ^n ~ 1 for real n > 0 (Chekhlov and Yakhot,-Phys. Rev. EL51, 

R2739, 1995). The probability density function, v>'hich is dominated by coherent shocks 

in the interval Au < 0, is 'P{Au,r) a (Au)""'' with q ^ 4. A phenomenological theory 

describing the experimental findings is presented. 
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Our recent study [1] of the one-dimensional Burgers equation 

du        du      ^       d^u 
+ "^ = / + ^^ (1) dt       d 

driven by a white-in-time random force defined by the correlation function 

f{k, t)f{k\ t') oc D{k) 5{k + k') 5{t - t') (2) 

with D{k) = eok~'^ and CQ = (9(1) was motivated by an interest in dynamical processes 

which involve an interplay between chaotic and coherent phenomena. It has been shown 

that the velocity field u{x,t) consists of random-in-time and random-in-space fluctuations 

superimposed on the relatively strong and long-living shocks. Numerical simulations yielded 

the energy spectrum E{k) oc \u{k)f oc k^"" with x = 5/3±0.02, characteristic of Kolmogorov 

turbulence [2] and the Eulerian correlation function C{k,oj) = \u{k,uj)f oc k'"^/^^{cv/k'') 

with the dynamic exponent z = 2/3. This result shows that in this system the kinematic 

transport of the small-scale velocity fluctuations by the large-scale structures is very weak. 

Investigation of the velocity structure functions S„(r) = [u{x + r) - it(a:)]" = (Ati)" with 

integer n revealed strong deviations from the Kolmogorov picture of turbulence: all moments 

Sn>3{r) (X r^" with (^ ^ I, characteristic of strong shocks. Thus, the system governed 

'^y (1) ~ (2) shows both "normal" (Kolmogorov) and anomalous scalings with the latter 

dominated by the coherent structures (shocks). In this work we are interested in the details 

of the probabiHty density functions (PDF's) characterizing the fluctuations generated by 

(1) - (2) and in the role the structures play in the determination of the PDF's shape. 

The PDF 'P{Au,r) is defined such that T{X,r)dX is the probabiHty of finding a velocity 

difference Au = u{x + r)-u{x) within the interval (X, X + dX) for infinitesimally small dX. 

A spectral code with 12288 Fourier modes was used in the numerical experiment. Equation 

(1) with a hyperviscous.(instead of viscous) dissipation term was solved. The details of the 

numerical procedure are reported in [1]. 

The most prominent feature of Burgers equation is a tendency to create shocks and, 

consequently, to increase the negative velocity differences Au < 0 and to decrease the positive 

ones Au > 0 [3]. Thus, strong asymmetry of the curve 'P(Ati,r) is expected. The two- 

point PDF V{Au,r) was measured for a set of separations r covering a variety of scales in 
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the system in the following way. The range of variation of the velocity difference, —5 < 

Au/urms < 5, was divided into 10"* bins. The data were collected during a time longer than 

10 largest eddy turnover times (corresponding to 0(10'') time-steps) and were distributed 

among the appropriate bins to generate a histogram. Fig. 1 presents V{Au^ r) for the inertial 

range separations r/dx = 200, 250, 300, 350, 400, where dx — L/12288 is the mesh size and 

1/ = 27r is the system size. It follows from (1) — (2) that: (Au)^ a eorlog rkd and that is 

why this PDF has a shifted maximum, approximately at (^ = [Au)lR}/'^ ^ 0.5. Here the 

function R{r) defined as R{r) = J[f{x + y) — f{x)] dy, was also directly measured. It is 

fully force-dependent and in a system with viscosity it may be analytically calculated for the 

inertial-range values of separation r, giving R{r) a (Au)^ (x Cor log(r k^), where k^ —> -f-oo 

is a dissipative cutoff wavenumber. Technically speaking, the system considered in this work 

does not have a real "inertial range" since the mean dissipation rate e = 0{€o log(L k^)) 

depends on the ultra-violet cut-off k^. This dependence, however, is weak and in what 

follows we take kd = O((eo/i/^)^/^). 

The tail of the PDF V{Au,r) for Au < 0 is shown on Fig. 2 for various magnitudes of 

the displacement r in the universal range. One may observe from this figure that the PDF 

for Au < 0 may be well approximated as: 

P(Au,r) DC (Au)-^ ' ~    ' (3) 

with q ^ 4. We have also found that V{Au,r) for Au > 0 is well fitted by the exponential: 

P(Au,r)oce-"^, (4) 

with the constant a to be determined from the theory. The dynamic argument leading to (3) 

will be presented below. The results shown on Figs. 1, 2 are highly nontrivial because the 

observed algebraic decay of the PDF V{Au, r) as A'u/(Au)rms —>■ —oo leads to the divergence 

of the moments Sn{r) for n > 3 for the inviscid case. However, as we also observed, the 

single point PDF P(u) is a very rapidly decreasing function which is close to the Gaussian 

and that is why the occurrence of shocks with an amplitude Au > UQ ^ {e L log[L kd)Y^^ is 

highly improbable and one can expect the PDF 'P{Au,r) to decrease sharply for Art < —UQ. 

This is sufficient for the existence of all moments Sn{r).   A full analytical theory leading 
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to an expression for V(Au,r), which unifies both asymptotics (3) and (4) will be published 

elsewhere [4]. 

To develop a phenomenological theory we assume that the flow can be represented as a 

superposition of coherent and random components. The coherent contribution is visualized 

as a "gas of shocks" and a single structure (shock) can be approximated by the exact tanh- 

solution of the unforced problem [3]. In particular, let us assume that solution for the normal 

(not the hyper-) viscosity case has the form 

N 

u{x, t) = - ^ Ui tanh 
1=0 

{x - a,)U, 
+ <l>i^,t). ' (5) 

2iy 

The first contribution to the right side of (5) describes the slowly varying coherent "gas.of 

shocks", whereas the second represents the effects unaccounted for by the first term. Here 

ai and Ui denote the coordinates of the centers of the shocks and the shock amplitudes 

respectively.   The physical picture behind this representation is the following:   the forcing 

produces the low energy excitations which coagulate into ever stronger well separated shocks 

due to the non-linear interactions. It will be clear below that the detailed shape of the shock 

assumed in (5) is unimportant.  The most essential feature of the tanh-solution (5) is that 

the shock width k ^ i^/U,, which means that the stronger the shock, the more narrow it is. 

Statistics of the dissipation rate fluctuations were investigated-in detail in Ref. 1. It has- 

been shown that the energy dissipation takes place mainly (^ 99%) inside the well separated 

strong shocks. Thus, it follows from (5) that the dissipation rate in interval of length r is 

£r = -.   /     dx J2 Ari/ 7x=o       . . , 

N TT2 TJ2 Uf U. 
(6) ij^Q cosh    Yi cosh    Yj' 

where we denote Yi = {x - a,-) Uil{2v). The principle contribution to the sum comes from 

the strong and narrow shocks, and, therefore, we can neglect the nondiagonal terms with 

z ^ j. Taking the integral for inertial-range values of r we have 

"  Uf      T 
er  DC 

1=0 
E^^- '(7) 

1 

On the other hand, it can be directly shown from (1) - (2) that 

e.=.6o/n   —-   . (8) 
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Introducing the PDF V(U,r) to find a shock with amplitude U in the interval of the length 

r we obtain from the last two relations 

J^°U'V{U,r)dUo:eorln(^^y (9) 

from which we readily estabhsh the form of V{U,T) 

nU,r),x'-^. (10) 

Since V{U,r) = V{U)r/L, the relation (10) establishes the shape of PDF V{U) oc tf-^ to. 

find a shock of the amplitude U. Note that r/L is the probabihty to find a shock center 

within the interval of the length r which is in turn placed in the larger interval of the length L. 

The low integration limit U ^ u/L, corresponds to the amplitude of the "weakest structure", 

contributing to e^. Formula (10) is a consequence of relations (7) and (8), and is valid in the 

logarithmic case when the forcing function is defined by (2). It is only in this case that we 

can establish the form of the PDF. 

Thus, according to the data presented in Fig. 1 and the theoretical considerations devel- 

oped above, the PDF of velocity diff'erences can be represented as: 

V{Au,r) = aR-'^F{^) (11) 

in the interval 0(-l) < x = Au/R^^^ < oo, where function R{r) is defined above, a is a 

numerical constant and F{x) is a scaling function (see, [5]) which is assumed to go rapidly 

to zero when |x| is large. In the interval x < -1, and \Au\ < 0{Uo), where the PDF is 

dominated by the well-separated shocks, we have: 

where 6 is a constant. When Au < -Uo, the PDF is a rapidly decreasing function of Au/Uo- 

The moments of velocity difference are evaluated readily with the result: 

5„(r) = [{AuT V{Au,r)dAu = b^reo ^°""'     (^°^)^" + B^eo R)K 
■' n — 3 

(13) 

where the ampHtudes 5„ depend on the shape of the scaling function F{x). The constants 

in oc (-1)" for integer n and for the noninteger values of n the structure functions S^ = lAuh 
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so that relation (13) should include the absolute value of the first term in the right side. It 

follows from (11) - (13) that all moments 5'„(r) with n > 3 are completely determined by 

the upper cut-off in (13) 

Jjri-3 

Sn{r)<xeor-^~, (14) 
71/        0 

which is in excellent quantitative agreement with [1], whereas for 0 < n < 3: 

5„(r)oc(eoi?)^ (15) 

as in the Kolmogorov theory of turbulence [2]. Thus, the anomalous scaling of the velocity 

structure functions Sn{r) appears only for n > 3. It should be stressed that, in accord with 

(13), in the logarithmic case considered in this work the contribution from the shocks to the 

moments 5„<3 is smaller than the one from the scaling component of the PDF only by factor 

l/log(r kd) which makes the experimental investigation of the details of the crossover very 

difficult. 

The prediction (13) has been tested in [1]. It has been shown that S2n{r) oc r^^" with ^2n ~ 

0.91 for n > 2, indicating that these correlation functions are dominated by coherent shocks. 

The results of the measurements of the structure functions Sn{r) with n = 1/3, 2/3,..., 6/3, 

presented on Fig. 3, are in good agreement wnth the scaling law (15). The general structure 

of the moments of velocity differences given by expression (13) - (15) is similar to the outcome 

of the recent theories of the random- force- driven Burgers equation by Polyakov [4] (Id) 

and Bouchaud [5] (d -^ oo) cases. The Polyakov theory confirmed our qualitative argument 

leading to the algebraic decrease of the PDF in the interval Au < 0. 

Fig. 4 presents the PDF of the shock amphtudes. The problem of the shock location was 

solved in the following simple but reliable way. At each spatial point x the local gradient 

of the solution u(x) was measured. Then, if u'{x) > 0, it was assumed that this point x is 

outside of a shock, otherwise x Hes inside of a shock. Once inside a shock, one can march in x 

until the gradient becomes zero, and thus the boundaries of the shock may be located, and so 

forth. Note that the shock amplitude obtained in this way has been corrected to exclude the 

Gibbs phenomenon typical in spectral approximations of discontinuous functions. To reduce 

79 



the statistical noise in V{U) in Fig. 4, a simple smoothing procedure was applied: VlU) was 

averaged over eight surrounding points. The result presented in Fig. 4 demonstrates that 

V{U)o:U-' (16) 

is observed for all \U/UrmA > 0.5. The fact that V{Au) ^ P(t/) when Au < 0 tells us 

that in this range T{Au) is dominated by the well-separated shocks. This confirms the main 

assumption of the phenomenological theorj^ presented above. It follows from Figs. 1—4 

and relation (12) that the anomaly in the high-order moments results only from the slow 

(algebraic) decrease of the PDF in the interval Au < 0. As was pointed out above, in this 

case one expects a cut-off at some Au ~ UQ- 

We have also investigated the problem (1), (2) driven by the white-in-time random forces 

with D{k) y^ 0 only for A; < 5 and D{k) oc k~^^^ [6]. The outcome of the simulations in 

both cases revealed the algebraically decreasing V{Au,r) oc r/ |Au|' for Au/(Aii)rms <. -1, 

with the exponent q, related to the functional form of D{k). The former case of the large- 

scale driven Burgers equation was investigated in a recent paper by Bouchaud et. al. [5] 

using a replica trie in the limit of the space dimensionality d -^ oo. Although the scaling 

of the moments of velocit}' differences, obtained in Ref. 5 is the same as the one observed 

in our simulations, the shape of the PDF in the Id-case, numerically found by us, differs 

dramatically from V{Au,r) = (1 - r)6{Au - r) + prF{Au/Uo), derived in Ref. 5. Here 

F{x) is a scaling function and /5 is a number. This means that the physical mechanisms, 

responsible for the anomalous scaling in the one and multi-dimensional systems are different 

and understanding of the transition between the two behaviors is an extremely interesting 

challenge. The detailed theoretical and numerical investigations of the different cases of 

forcing functions will be published elsewhere [6]. 
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Figure 1: Normalized two-point PDF F{Au/R^^^) = R}l^'P{I\u,r) for separations r/dx = 

200, 250, 300, 350, 400 within the universal range. The collapse of various curves supports 

the choice of the scaling variable (j) = {Au)/R'^^^, where function R{r) is defined in the text. 
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Figure 2: The tail of the two-point PDF 'P{Au,r) (points) for separations r/dx = 

150,200,250,300,350,400,450 within the universal range, plotted on a logarithmic- 

logarithmic scale. The slope of the solid lines is equal to -4. The graphs for different 

values of r are arbitrarily shifted along the vertical axis for clarity. 
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Figure 3: Velocity structure functions |Ati|" for noninteger values n = 1/3,2/3,... , 6/3 (dot- 

ted curves). Slopes of the linear least square fits (solid lines) from top to bottom respectively 

are: 0.111, 0.222, 0.330, 0.433, 0.531, 0.620. 
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Figure 4: PDF of shock amplitudes, V{U) on a logarithmic-logarithmic scale (points). The 

slope of the solid line is equal to -4. 
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Kolmogorov's refined similarity hypothesis for hyperviscous 

turbulence 

Abstract 

Kolmogorov's refined similarity hypothesis (RSH) is tested in high reso- 

lution numerical simulations of forced three-dimensional homogeneous turbu- 

lence. High Reynolds numbers are achieved by using hyperviscous dissipation 

(—1)''"'"^A'' {h = 8) instead of Newtonian {h = 1) dissipation. It is found that, 

in the inertial range, RSH is reasonably well satisfied for low order moments 

with noticeable systematic corrections for higher order moments. Within the 

constraints imposed by the use of hyperviscosity our data nearly eliminate 

trivial kinematic dependencies between longitudinal velocity differences and 

the energy dissipation rate thus helping to reveal the true dynamical nature 

of the RSH. 
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One of the most interesting properties of fully developed turbulence is small scale in- 

termittency which manifests itself through the scale dependence of the probability distribu- 

tion function (PDF) V{Auj./r^^^) of longitudinal velocity differences {Au^ = {ui{x + r) — 

Ui{x))ri/r). In order to take account of this intermittent behavior, Kolmogorov [1] intro- 

duced the refined similarity hypothesis (RSH) which relates velocity differences Aur and the 

locally-averaged energy dissipation rate 

£.{x) = I F,{x - y)E{y)d'y (1) 

where S{y) is the local energy dissipation rate and Fr is a low-pass spatial filter with scale r 

and normalized, J Fr{x)(Px = 1. The RSH states that the joint one-point PDF of Au^ and 

£r has the form 

ViAu^, Er) = Pv(K = -^^s)MQ (2) 

and that, in the inertial range, the PDF 'Pv(K) is independent of scale and Reynolds number. 

RSH is the basis of nearly all existing cascade models of turbulence (see, e.g. [2]). 

Recently, RSH was independently checked experimentally by four groups [3-6] all con- 

cluding that, on the level of the first conditional moment, RSH has solid experimental 

support, i.e. the conditional average of (|V^| l^^) is relatively independent of S^. In all these 

works, a one-dimensional surrogate of real dissipation was used and local averaging of £ was 

understood as one-dimensional averages. It was suggested in [7] that at least part of observed 

correlations between Aur and £r come from the measurement procedures that emphasize 

the kinematic dependence between these two quantities. Thoroddsen [8] attempts to verify 

the RSH by eliminating kinematic dependencies by using pseudo-dissipation defined via the 

transverse velocity component. It was suggested in [8] that with this definition of the dissi- 

pation rate the validity of RSH is questionable. Existing numerical simulations [9], [10] give 

only partial support of RSH, but unfortunately employed many of the same simplifications 

to calculate £r as used in experiments (with either the one-dimensional pseudo-dissipation 

ISi/^du/dxY or anisotropic one-dimensional local-averaging being used). Recent numerical 

simulations [11] aimed to eliminate kinematic factors but give only weak support of RSH. 
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In this work, we present evidence supporting RSH at least at the level of low order 

moments that is free from the kinematic constraints discussed above. In previous works 

[12], [13], [14] we have already demonstrated that for the same numerical resolution, we can 

effectively increase the extent of the inertial range of three-dimensional turbulence by an 

order of magnitude by using alternative forms of dissipation. Some evidence was given that 

three-dimensional inertial-range dynamics is relatively independent of the form of the hyper- 

viscosity, although it may depend on the nature of the force. In this Rapid Communication, 

we address the problem of validation of RSH. 

The hyperviscosity-modified Navier-Stokes equations are: 

dtUi + u,d,u, = -5.P + (-1)'^+V;,AV + h (3) 

where the pressure p is calculated from the incompressibility condition diUi — 0. We include 

a white-in-time Gaussian force which is nonzero only at some characteristic scale kj = \ 

and a hyperviscosity dissipation (as in [12] we use h = 8). The various characteristics of 

the statistically stationary state in this case can be found in [12]. We solve (3) using a 

pseudospectral parallel code and perform two series of runs with resolutions [N = 128)^ and 

256^ for a periodic box with size X = 27r in each direction. The total averaging times are 200 

and 30 in units TQ ~ l/i'rms, respectively. The Reynolds number [12] is R\ « h^ihijhff'^■, 

where k^ is the wave-number where k^E(k) is maximum (k^ ~ 41,82 for 128^ and 256"^). 

The hyperviscous energy dissipation rate is 

£ = VhI\^'^u,l\^'^Ui (4) 

The local space-average in (1) is performed as a convolution in Fourier space by using an 

isotropic three-dimensional top-hat filter i^r(k) = 3(sin^ — ^ cos^)/^^ with ^ = r|k|/2. This 

filter exactly corresponds to the definition of local space-averaging used by Kolmogorov 

[1]. The midpoint of the velocity difference Aur coincides with the center of the spherical 

averaging cell of radius r/2. The definition of dissipation (4) and this measurement procedure 

nearly eliminate the possible kinematic dependencies discussed above.   The measurements 
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are carried out for r = Tv/kc with kc — 4,8, ...N/8 which correspond to scales inside of the 

inertial range [12]. 

In Fig. 1 we plot the joint probability distribution functions Vu{Aur/r^^^, ^l^^) (a, h) and 

PvCK-jlogio^) (c, <^) for two spatial resolutions and filter sizes: kj, = 41,82 and kc = 4,32. 

While isocontours of V-a indicate a noticeable dependence between velocity diiferences and 

the dissipation rate, isocontours of Vy show that Vr and log^o^r are nearly statistically 

independent in accordance with the RSH. To quantify this we calculate conditional moments 

of Vr conditioned on £",.. Various moments are plotted in Fig. 2 and 3 as functions of 

(logio^r — (logio^r))/o'r (o"^ is the Variance of log^o^r)- The curves for different r and kj. 

nearly collapse using the above scaling. These figures show that the conditional moments 

of Vr are only weakly dependent on log^o Sr and the RSH in the form (2) is approximately 

satisfied. The conditional mean (P^ \£r) is nearly equal to zero in contrast with the results 

of [6]. The conditional variance {V^ \£r) ~ 2.2, close to the results of [3] and [10]. The 

conditional flatness (Fig. 2(b)) and conditional sixth order moments (Fig. 2(c)) are only 

weakly dependent on log^Q^'^ and are close to Gaussian values (3 and 15, respectively) in 

agreement with [3], [6], [10]. The first and third conditional moments of |K| normalized by 

conditional variances (Fig. 3(a,b)) are spectacularly independent of log;jo ^r (partially due 

to the normalization by {V^ \£r))- The conditional skewness (Fig. 3(c)) has a substantially 

stronger dependence on log^o^r- Also in accordance with Kolmogorov's 4/5 law [3] {V^) is 

nearly equal to —4/5. 

In Fig. 4(a,b) we plot the PDFs of log^^of'^ as a function of (logjo^^ — (logio^r))/<7"r, 

superimposed for different r and Reynolds numbers. All curves nearly collapse in the core 

region with the variance a^ of InSr proportional to —/iln(r) (here pi « 0.15 is called the 

intermittency exponent). The PDFs of log^o^r are quite close to Gaussian. With our data 

set it is possible to obtain moments (£") in the range —2 < n < 4.5 and within this range 

the PDF of Sr may be considered log-normal. If the flatness and sixth moments of Au^ 

grow when r decreases the corresponding quantities for Vr grow more slowly and may even 

slightly decrease when Rx increases (see Fig.   4 (c,d)).   Note that according to RSH the 
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correlation coefficient p between |Aur| and Sl^^ should not be equal to one. Indeed from 

(2), ^ = (1 - Afl^l{B - Afl^ with A = {Sl'^y liS^J^) and B = (K') / (IK-I)'. From the 

data plotted in Fig. 3, 4, A fii 1 - o-^/g, 5 Ri 1.56 and p « 0.455"^. In accord with the RSH, 

the correlation coefficient /?' between |K-| and log^ofV is close to zero (see Fig. 4(e)). 

If the PDFs of logio^r and Vr are close to Gaussian and RSH holds, isocontours of V^ 

will have the form of circles. That is not exactly so, as may be seen from Fig. 1. Our 

data not only allows us to validate RSH on the level of lower order moments, but also 

reveals systematic corrections to RSH. Indeed according to the results plotted in Fig. 2 (c) 

{V^ \£r) oc a{l-h\n.£rlur) where a « 160 and h ^ 1/15. That leads to systematic corrections 

to (Au^) oc r^ {S^) with a ^ 2-hlcr^ and RSH is strictly speaking violated. The situation is 

even worse for higher order moments. We do not know whether these systematic corrections 

to higher order moments are universal and/or hyperviscosity independent. 

One may expect that RSH should not only be applicable to velocity differences, but to 

other inertial range quantities as well. To illustrate this idea we measure the joint probability 

distribution of subgrid-scale kinetic energy Kr and Sr. We define Kr as K.r = {uiUi)^ — 

(u,)r(ti,)r with the same local-averaging procedure as in (1) and with the same top-hat 

filter Fr. We have checked that our results are relatively independent on the form of filter. 

According to RSH we may expect that 

n}Cr,£r)=^V4^;j^)MQ (5) 

In Fig. 5(a) we plot 'P(ln/Cr,ln£^r) for k^ = 16 and fej = 41. A strong correlation 

between JC^ and Sr is observed. It turns out that the probability distribution of /Cr is also 

approximatly log-normal with a^, the variance of In/Cr, nearly equal to 5-^, the variance of 

In £r independently of k^ and kd. Therefore, if RSH in the form (5) is correct the isocontours 

of V{ln{)Cr/S^^^),ln£T) should have the form of circles. That this is indeed nearly so can be 

seen from Fig. 5(b). 

For further analysis it is convenient to introduce the variables ( = {InSr — {\n£r))/^T 

and 7] = (In/Cr - (ln/Cr))/o'r with W^ ^ ar ■ We verified that, in these variables, the joint 
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PDF of Kr and 8^. in the inertial range has the simple approximate form 

V{)Cr, ^r) OC exp + (6) 2(1 - C2)  ^  (1 - c2) 

independently of kc and kj. Here {(^) = (77^) — 1 and c = {^TJ) is the correlation coefficient. 

It is clear from (6) that ^ and 7/ — c^ or equivalently ICr/S^ and £'r are independent variables. 

The RSH in the form (5) holds provided c = 2/3; this turns out to be approximately true 

according to our data. It follows from (6) that the conditional averages {7]\() = c( and 

(^1^) — ^- Using the fact that ^ and 77 are nearly Gaussian variables and that a^ ~ 5-^ we 

obtain 

{}Cr\Sr) ex e^^^    and    {£,\)Cr) oc K:'J\ (7) 

The conditional averages (JCTI^T) and {£r\JCr) are plotted in Fig. 5c and Fig. 5d respectively. 

It may be seen that (7) is approximately satisfied independently of kc and kd (with the first 

expression in Eq. (7) that directly tests RSH valid with noticeably higher accuracy). The 

results (7) are in good agreement with recent experimental findings of Meneveau and O'Neil 

[15]. Thus, RSH for JC^ is approximately valid in the form (5); it can not be inverted in the 

sense that (£r|^r) does not scale as /C^/^. 

We also checked that RSH holds for other inertial range quantities such as locally- 

averaged strain and vorticity that are defined as {Sij)r = [{diUj + djUi)/2]r and (a;,)^ = 

eijkdj{uk)T- Here the same filtering procedure is assumed. Precisely, we verified that the 

joint PDF of £, and S^ = (5,i),(5i,-)r has the form (5): Vs{S^/£^^^)Vs{£r). The same 

decomposition is true for the joint PDF of £r and locally-averaged vorticity cj^ = [uJi)r{u>i)r'- 

^uii^ll£r^^)'Pe{Sr). As in the case of subgrid-scale kinetic energy, the RSH for large-scale 

strain and vorticity can not be inverted. 

In conclusion, we find that in the inertial range, RSH in the form (2) is reasonably well 

satisfied for low order moments of velocity differences with noticeable systematic corrections 

for higher order moments. We have also shown that RSH is as well applicable to other 

inertial range quantities such as subgrid-scale kinetic energy, locally-averaged strain and 
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vorticity. Our use of hyperviscosity and an accurate averaging procedure allows us to nearly 

eliminate kinematic dependencies between velocity differences and the dissipation rate, thus 

helping to reveal the dynamical nature of RSH. On the other hand, our results also give 

more confidence in the hypothesis that inertial-range dynamics is relatively independent of 

the form of hyperviscosity. 
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FIG. 1. Joint PDFs between (a,b) Aur/r-^/^ and ST ; (c,d) VJ. and logjo^r- Means are sub- 

tracted and variables are normalized by their variances. (a,c) A;c = 4 and resolution 128^. (b,d) 

kc = 32 and resolution 256^. The total number of points is a 10-^°. Curves show isocontours of 

logjoP in increments of 0.4. 
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FIG. 2. (a) Conditional averages of (V;^ l^^); (b) conditional flatness (1/^ \£T) I {V^ |^r>^ (c) 

conditional sixth order moments (V^^ |^r) / (YT l^r) • Curves are obtained for 128^ and 256^ reso- 

lutions with kc = 4,8,16 and kc = 4,8,16,32, respectively. All curves are superimposed with the 

dissipation rate plotted as (logjg^r — (logio ^r))/<7r (o"r i^ *^^ variance of log^o^^r)- 
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FIG. 3. (a) Conditional averages of (IKI \£T) / {V^ l^r) , (b) conditional third order moments 

(iKP \£r)/{V,^ \£rf; (c) conditional skewness (V,^ \£r) I {V^ \Srf'^. Curves are obtained for 

128^ and 256^ resolutions with k^ = 4,8,16 and kc = 4,8,16,32, respectively. AH curves are 

superimposed with the dissipation rate plotted as (logjo 5^ - (logio ^r))/o-r {cr^ is the variance of 

logio^r). 
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FIG. 4.   (a) PDFs of logio^r; ^og^o'P is plotted as a function of (logjo^r - (logio^r))/^-^. 

(b) Variance a^ of In^r as a function of filter size ln(r); the dashed line is a^ a  -0.151n(r). 

(c) Flatness of velocity differences Aur and K as a function of filter size ln(r).  (d) Sixth order 

moments {Auf)/{Au^)^ and {V^)/{V^)^ as a function of filter size ln(r). (e) Correlation coefficients 

p between \Aur\ and £T'   and p' between \Vr\ and logjo^r a-s functions of filter size ln(7-).  The 

measurements are performed for 128^ and 256^ resolutions and kc = 4,8,16 and k^ = 4,8,16,32, 

respectively. AU data are superimposed in (a). In (6 - e) stars represent data for 256^ resolution 

and circles represent data for 128^ resolution. 
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are obtained for 128^ and 256^ resolutions with kc = 4,8,16 and k^ = 4,8,16,32, respectively. All 

curves are superimposed. '^o 
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