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Temporal Logic Programming is Complete and Expressive" 

Maxianne Baudinet 
Computer Science Department 

Stanford University 

October 1988 

Abstract 

This paper addresses semantic and expressiveness is- 
sues for temporal logic programming and in partic- 
ular for the TEMPLOG language proposed by Abadi 
and Manna. Two equivalent formulations of TEM- 

PLOG's declarative semantics are given: in terms of a 
minimal Herbrand model and in terms of a least fix- 
point. By relating these semantics to TEMPLOG's op- 
erational semantics, we prove the completeness of the 
resolution proof system underlying TEMPLOG's exe- 
cution mechanism. To study TEMPLOG's expressive- 
ness, we consider its propositional version. We show 
how propositional TEMPLOG programs can be trans- 
lated into a temporal fixpoint calculus and prove that 
they can express essentially all regular properties of 
sequences. 

1    Introduction 

Temporal logic is more and more widely acknowl- 
edged as a useful formalism for program specification 
and verification. It has been used quite extensively 
for concurrent programs and digital hardware, but it 
is also applicable whenever it is necessary to specify 
or describe a sequence of states or events, such as in 

'This research was supported by the National Science Foun- 
dation under Grants DCR-84-13230, DCR-86-11272 and CCR- 
87-14170, by the Defense Advanced Research Projects Agency 
under Contract N00039-84-C-0211, and by the United States 
Air Force Office of Scientific Research under Contract AFOSR- 
87-0149. 

To appear in the Proceedings of the Sixteenth 
ACM Symposium on Principles of Programming Lan- 
guages,  Austin, Texas,  January 1989. 

robot planning or historical databases. Recently, the 
idea has emerged that one could more easily use the 
expressive power of temporal logic if it could be made 
directly executable, for instance as is done with first- 
order logic in PROLOG. This has lead to the definition 
of a number of programming languages based on tem- 
poral logic ([FKTM086], [Mos86], [AM87], [Gab87], 
[Wad88], [OW88a], [Sak]). 

The earliest of these languages, the TEMPURA lan- 
guage of [Mos84, Mos86] is based on a subset of inter- 
val temporal logic whose formulas can be interpreted 
as traditional imperative programs. In logical terms, 
executing a TEMPURA formula (program) amounts to 
building a model for that formula. The TOKIO lan- 
guage of [FKTM086] is an extension of logic program- 
ming, but resembles TEMPURA in the way it treats its 
temporal constructs. The other temporal program- 
ming languages ([Aba87], [AM87], [Gab86, Gab87], 
[Wad85, Wad88], [OW88a], [Sak]) are based on the 
logic programming paradigm and view an execution 
of a program as a refutation proof. 

For this last class of languages, important semanti- 
cal questions are left unanswered. First among these 
is the relation between the operational and the log- 
ical semantics of the languages. Indeed, in classi- 
cal logic programming, the operational and the logi- 
cal semantics coincide because of the completeness of 
SLD-resolution ([Hil74], [Cla79], [AvE82]). Unfortu- 
nately, first-order temporal logic is inherently incom- 
plete ([Aba87]). So, one could very well expect that 
the operational and the logical semantics of temporal 
programming languages do not and even cannot coin- 
cide. Another unanswered question is the expressive- 
ness of these languages. Classical Horn-clause logic 
programming, though in some respects weaker than 
first-order logic, is able to express predicates that are 
not first-order, e.g., the transitive closure of a relation 
([CH85]). Similar issues appear in temporal logic pro- 
gramming languages. For instance, what temporal 
properties are they actually capable of expressing? 



Can they go beyond the expressiveness of temporal 
logic? 

In this paper, we examine these questions for the 
TEMPLOG language of [AM87]. We capture both the 
declarative and the operational semantics of this lan- 
guage and prove that they coincide, hence proving 
that the fragment of temporal logic defined by TEM- 
PLOG admits a complete proof system. Then, turn- 
ing to the expressiveness issue, we relate the proposi- 
tional version of TEMPLOG with the temporal fixpoint 
calculus /iTL of [Var88]. We show that TEMPLOG cor- 
responds to a fragment of pTL and we characterize 
its expressiveness in terms of finite automata. 

TEMPLOG extends classical Horn logic program- 
ming to allow specific use of the temporal operators 
O (next), O (always), and O (eventually). Programs 
are sets of temporal clauses, and computations are 
proofs by refutation. The proof method used is a res- 
olution method for temporal logic to which we refer as 
TSLD-resolution. We study the declarative (logical) 
semantics of TEMPLOG and define it both in model- 
theoretic terms and in fixpoint terms. For this, we de- 
fine the notions of temporal Herbrand interpretation 
and of temporally ground formulas. We prove that 
the declarative semantics of a program is character- 
ized by the minimal Herbrand model of the program. 
We then show how to associate with a TEMPLOG pro- 
gram a mapping whose least fixpoint coincides with 
the minimal Herbrand model of the program. This 
provides a fixpoint characterization of the declarative 
semantics. Next, we examine the TSLD-resolution 
method that is the basis of the operational semantics 
of TEMPLOG. We establish a correspondence between 
membership in the fixpoint of the mapping associated 
with programs and existence of a temporally ground 
resolution proof, thereby obtaining a type of ground- 
completeness theorem. From this result, we establish 
the completeness of TSLD-resolution using a tempo- 
ral lifting lemma. Our proof techniques extend those 
that have been used for giving semantics to classi- 
cal logic programming ([vEK76], [Cla79], [AvE82], 
[Llo84], [Apt87]). 

The fixpoint semantics provides the necessary tool 
for studying the expressiveness of the language. To 
focus on the temporal expressiveness of the language, 
we study its expressiveness in the propositional case. 
Using our least fixpoint semantics it is quite easy to 
show that the expressiveness of TEMPLOG queries cor- 
responds to a fragment of /iTL allowing only least 
fixpoints applied to positive formulas. We further 
characterize the expressiveness of TEMPLOG and show 
that it essentially corresponds to the finite-word regu- 
lar languages (more precisely to the w-languages that 
are obtained by extending finite-word regular lan- 

guages), TEMPLOG can thus express some proper- 
ties that are not expressible in pure temporal logic as 
this last language cannot express all regular behaviors 
([W0I83])1. On the other hand, there are formulas of 
temporal logic that are not expressible in TEMPLOG 
since expressing all of temporal logic in fiTL can re- 
quire using greastest fixpoints or the alternation of a 
greatest and a least fixpoint ([Par81]). In conclusion, 
if one is only interested in queries that can be can be 
checked on a finite prefix of the temporal sequence, as 
most likely would be the case for historical databases, 
the temporal expressiveness of TEMPLOG is perfectly 
adequate. 

2    The Temporal Language 

The TEMPLOG language of [AM87] is based on a 
clausal subset of first-order temporal logic with time 
considered discrete, linear and extending infinitely in 
the future but not in the past. First-order tempo- 
ral logic extends the first-order predicate calculus by 
allowing the application of temporal operators to for- 
mulas. The operators of interest here are O (next), 
Ü (always) and O (eventually). Constant and func- 
tion symbols are assumed to have a time-independent 
interpretation; they are said to be rigid. Predicate 
symbols can have an interpretation that varies with 
time, in which case they are said to be flexible. In 
fact, we assume that all the predicate symbols are 
flexible. (We discuss this assumption below.) 

A formula of temporal logic is interpreted over a 
structure that we call a temporal interpretation. A 
temporal interpretation I = (£>, S, a, J) consists of 
a domain D, a sequence of states (time instants) 
E = «To, <Ti, a-2,.. ■ that is isomorphic to u, an assign- 
ment a to variables, and an interpretation J. Since 
the constant and function symbols are rigid, the in- 
terpretation J assigns them a global meaning over 
the domain D, as in classical logic. But to predi- 
cate symbols, which are flexible, the interpretation 
assigns a relation over D for every state <r,- in the 
sequence S. If i is a natural number, I^ is the tem- 
poral interpretation obtained from I by taking the 
initial state to be <r,- and the sequence of states to be 
o~i,o~i+i,o-i+2, — Given a language, that is, a collec- 
tion of variables and of constant, function, and predi- 
cate symbols, the meaning of the terms and formulas 
of the language with respect to a temporal interpre- 
tation I = (D,£, a, J) is given by a function Tj that 
provides the meaning of the terms, and the satisfac- 

1 Temporal logic is known to have the expressiveness of star- 
free a>-regular behaviors ([Tho8l]) whereas the temporal fix- 
point calculus corresponds to ai-regular behaviors ([BB86]). 



tion relation |=i for the formulas. They are defined 
inductively in the usual way. The function 7j uses 
the assignment a to interpret the free variables and 
the interpretation J to interpret the constant and the 
function symbols. The most interesting cases of the 
definition of the satisfaction relation }=j are given 
below. Let p be an £ary predicate symbol and let 
ti,.. .,tt be terms. 

\=xP{h U) 
\=xOF 

\=xOF 

iff Jlp][*o](Tx[h]t...,Tx[*A) 
iff J=I(x) F 
iff for every i in u: |=j(i) F 
iff for some i in w: t=j(o F 

The notions of model, satisfiability, validity and logi- 
cal consequence (denoted Fi |= F2) are defined in the 
usual way. Informally, we will say that F holds at 
time i when |=x(o F. 

The TEMPLOG language is the subset of first-order 
temporal logic with the following syntax. Let A de- 
note an atom and N denote a next-aiom, that is, an 
atom preceded by a finite number of O's. 

Body:    B ::= e \ A \ Bi,B2 \ OB \ OB 
where e denotes the empty body 

Initial clause:     IC  : := N <- B  \ QN*-B 
Permanent clause:    PC ::= 0(JV *- B) 
Program clause:    C ::= IC \ PC 
Goal clause:     G '.'.- *—B 

Throughout this paper, we use the symbol A to de- 
note an atom, N for a next-atom, B for a body 
(empty or not), C for a clause, P for a program, and 
G for a goal clause. If F is a formula, we use the ab- 
breviation O* F to denote the formula consisting of 
F preceded by i occurrences of O. 

The free variables in program and goal clauses are 
implicitly universally quantified. A TEMPLOG pro- 
gram consists of a set of program clauses, that is, 
a conjunction of program clauses. In a clause, the 
consequent of the implication is called the head (the 
antecedent is the body). In a body, the comma stands 
for the conjunction operator (we use "," and "A" in- 
terchangeably in the semantic development). A pro- 
gram clause that has an empty body is a fact. An 
empty body corresponds to "true". A goal clause can 
be seen as an initial clause with an empty head, the 
empty head corresponding to "false". Hence, a goal 
of the form *— B with free variables Xi,..., Xn cor- 
responds to the formula (VXi) • • • (VXn)->5, that is, 
->(3Xi)---(3Xn)B (we use "♦- B" and «-.j?" inter- 
changeably in the semantic development). 

Example 2.1 The following simple program P de- 
fines a predicate p such that p(X) is true at time z 
for X = s2i(a). (We use capital letters for variables, 

and (strings of) lower-case letters for constant, func- 
tion and predicate symbols.) 

p(a)<- 
D(Op(s(s(X)))^p(X))  ■ 

Proof Method 

Given aTEMPLOG program and a goal, a computation 
consists in trying to derive a contradiction using tem- 
poral resolution rules. When a refutation is obtained, 
it is usually for a certain instantiation of the variables 
in the goal, called an answer substitution. We assume 
some familiarity with the notions of substitution and 
unification (e.g. [Rob65], [LMM88], [MW89]). If 9 
and <j> are substitutions, we denote their composition 
by 9 o <j>, and we write 9 y <j> to mean that 9 is more 
general than <j>, that is, there is a substitution A such 
that 9o\ = 4>. 

We refer to the refutation procedure underlying 
TEMPLOG as TSLD-resolution (for Temporal iinear 
resolution for Definite clauses2 with a Selection func- 
tion) by analogy with the SLD-resolution procedure 
for classical logic programming ([AvE82]). Every step 
of a TSLD-derivation consists in resolving a candidate 
next-atom from the current goal with the head of a 
program clause, to produce a new goal. Before defin- 
ing the notion of candidate next-atom precisely, we 
have to make a comment about the bodies of clauses. 
Syntactically distinct bodies may in fact be logically 
equivalent. So we assume that we are always deal- 
ing with the canonical form of the body, a body (or 
a goal) being in canonical form if its occurrences of 
O are pushed all the way inwards and if its next- 
atoms are in the scope of the least possible number 
of O's. Each body has a unique equivalent canon- 
ical form (up to commutativity and associativity of 
the conjunction). A next-atom in a goal is said to 
be candidate if it is in the scope of at most one O 
in the canonical form of the goal. There is at least 
one candidate next-atom in any nonempty goal. At 
every step of a derivation using the TSLD-resolution 
method, the selection function or computation rule 
selects from the current goal the candidate next-atom 
to be resolved in the next resolution step. This next- 
atom is referred to as the selected next-atom. The 
resolution rules used in TSLD-derivations are given 
in Table 1. For each rule, the selected candidate next- 
atom is O' A, and 9 is the most-general unifier (mgu) 
of A and A'. The resolvent is also referred to as the 
derived goal. 

Let P be a program, G a goal, and R a computation 
rule.  A TSLD-derivation for P U {G} via rule R is 

2 A definite clause is a Horn clause with a nonempty head. 



Cond. Goal Clause Resolvent (Derived Goal) 
1 *-BuOlA,B2 O* A' «- B' <-(BltB',B3)e 
2 i > j +-B1,0'A,B2 a O1 A1 <- B' ^{BuB\B2)e 

3 i > j ^BltO'A,B2 U{Q> A' «- B') ^(BuO->B',B2)e 
4 j>i +-BuO(B2>O

tA,B3),B4 O' A1 «- S' <-(B1,0>-B2,B',0>-B3,B4)8 
5 j > i *-BuO(B2,O

xA,B3),B4 D O3 A' *- B' «- (Bu B', 0(0- B2, cy-fla), S4)0 

6 i > j +-BuO{B2,0>A, B3),B4 ao3 A' +- B' *-(Bl,B',0(B2,B3),B4)6 
7 j > i ^BltO(B2,0'A,B3),B4 D(0' A' «- B') - (fllf 0(0*-J?2, 5', cy-Bs), S4)0 

8 i > j -51,0(52,0'i,B3),B4 n(cy A' 4- 5') «-(Bi.OfBa.O-'S'.jBs),^)* 

Table 1: TSLD-Resolution Rules for TEMPLOG (0 = m^w(.4, A')) 

characterized by a sequence of goals Go,Gi, ... where 
Go = G; a sequence of candidate next-atoms No, 
Ni, ... selected by R from Go, G\, ..., respectively; 
a sequence of program clauses C\, C2, ■■■ where each 
d has been renamed so that none of the variables ap- 
pearing in it also appears in G,_i or in C\,..., G,_i; 
and a sequence of substitutions 01( 62, ..., such that 
G,-+i is the goal obtained by applying one of the 
TSLD-resolution rules to C,+i and Gj with selected 
next-atom Ni and mgu 0i+1. A TSLD-refutation for 
P U {G} via R is a finite TSLD-derivation whose last 
goal is empty. (We assume implicitly that the initial 
goal G is nonempty.) The R-computed answer substi- 
tution associated with an n-step refutation of PU{G} 
via R is the substitution obtained by restricting the 
composition (#i o • ■ • o 0n) to the variables of G. An 
answer substitution 6 for Pö{G} is said to be correct 
if P (= (V*)50. The (nonempty) goal G is said to be 
n-refutable (n > 1) if there is a TSLD-refutation of 
P U {G} of length less than n via each computation 
rule; it is refutable if it is n-refutable for some n. No- 
tice that a goal is refutable not simply if it has one 
TSLD-refutation, but if it has a TSLD-refutation via 
every computation rule, which is stronger. 

Remark: We have augmented the original defini- 
tion of TEMPLOG given in [AM87] to allow function 
symbols in terms. Also, we have assumed that all 
the predicate symbols are flexible, unlike in [AM87] 
where both rigid and flexible predicate symbols are 
allowed. However, our assumption is not restrictive 
as the time-independence of a (^-ary) predicate p can 
easily and efficiently be expressed in TEMPLOG with 
the clause Dp(Xi,... ,Xt) «- Op(Xlt.. .,Xt). The 
proof method underlying the execution of programs 
was given in [AM87] for a fixed computation rule that 
consists in always selecting the leftmost candidate 
next-atom as in PROLOG ([CM84]).  Here, we study 

the semantics of TEMPLOG for an arbitrary computa- 
tion rule. 

3    Declarative    Semantics    for 
TEMPLOG 

A TEMPLOG program is a set of statements in tem- 
poral logic. Given such a program, a computation 
consists in trying to derive information that follows 
from the program. So the declarative meaning of a 
logic program is characterized by the set of bodies 
that are logical consequences of the program, that is, 
the set of bodies that are true in every model of the 
program. In a first stage, we give a characterization 
of this denotation of programs in terms of minimal 
Herbrand model. For this, we introduce the notion 
of temporal Herbrand model and prove that if a pro- 
gram has a temporal model then it has a temporal 
Herbrand model. Then we show that the class of tem- 
poral Herbrand models of a program is closed under 
intersection. Combining these results, we prove that 
the minimal Herbrand model, that is, the intersection 
of the temporal Herbrand models of a program, sat- 
isfies exactly the bodies that are logical consequences 
of the program, and hence provides a characterization 
of the denotation of a program. In a second stage, we 
show how to associate with a TEMPLOG program P a 
function Tp on the domain of the temporal Herbrand 
interpretations for P. Intuitively, this mapping cor- 
responds to one step of ground inference from P. We 
prove that this mapping is continuous and that its 
least fixpoint is exactly the minimal Herbrand model 
of the program, thereby providing a fixpoint char- 
acterization of the declarative meaning of TEMPLOG 
programs. 



3.1    Model-Theoretic Semantics 

Let L be a language characterized by its collection 
of variables and of constant, function and predicate 
symbols. The Herbrand universe UL of L is the set of 
variable-free (that is, ground) terms constructed from 
the constant and the function symbols in L. This no- 
tion coincides with the notion of Herbrand universe 
in classical logic, which is quite natural since the con- 
stant and function symbols are rigid. The temporal 
Herbrand base BL of £ is the set of ground next-atoms 
constructed from the predicate symbols of L and the 
ground terms of the Herbrand universe UL • A tem- 
poral Herbrand interpretation for a language L is a 
temporal interpretation with the Herbrand universe 
UL as domain mapping the ground terms to "them- 
selves" in UL- A temporal Herbrand interpretation 
for (the closed formulas of) a language L coincides 
with a subset of the temporal Herbrand base BL ■ it 
is the set of ground next-atoms that are true under 
the interpretation (at the initial time). So a ground 
next-atom N is satisfied by a temporal Herbrand in- 
terpretation I, denoted \=i N, iff N £ I. Notice that 
one could equivalently consider the Herbrand base BL 

to be, as in classical logic, the set of ground atoms 
of L. Then, a temporal Herbrand interpretation I 
could be defined as an w-sequence of subsets of BL , 
or equivalently, a function I : w —► 1Bh that asso- 
ciates with every natural number i the set of ground 
atoms that are true at time i. 

The satisfaction relation for ground TEMPLOG 
clauses has a simple reformulation when one intro- 
duces the notions of temporally ground formula and 
of temporally ground instance. A formula is said to 
be temporally ground (TG) if O is the only tem- 
poral operator that appears in it. So atoms and 
next-atoms as well as program clauses of the form 
O' A <— O'1 Ai,..., 0,m Am, and goal clauses of the 
form «— Ou A\,..., 0'm Am are temporally ground3. 
A temporally ground instance (TGI) of a body B is 
a temporally ground body obtained from B by re- 
placing every occurrence of O by a finite number of 
O's. Similarly, a temporally ground instance (TGI) 
of a program clause C is obtained from C by replac- 
ing each occurrence of O and each occurrence of O 
by a finite number of O's. Using the definition of the 
satisfaction relation, one can prove the following. 

Proposition 3.1 Let X be a temporal interpretation 
of a program or goal clause C (a body B, resp.). Then 
X satisfies C (B, resp.) if and only ifX satisfies every 
TGI ofC (some TGI ofB, resp.) 

3Beware of the difference between ground and temporally 
ground: ground means variable-free whereas temporally ground 
means O-free and O-free. 

PROOF: The proof is straightforward, once one has 
noticed that f=x<o F if and only if (=z O* F. ■ 
Intuitively, the property holds because the temporal 
operators other than O are of D-force in clauses and 
of O-force in bodies. 

A clause is said to be strictly ground (SG) if it is 
both ground (variable-free) and temporally ground 
(D-free and O-free). A strictly ground instance (SGI) 
of a clause is an instance of the clause that is both 
ground and temporally ground. It follows from 
Proposition 3.1 that a temporal Herbrand interpre- 
tation for a program P satisfies P if and only if it 
satisfies every strictly ground instance of every clause 
in P. 

Proposition 3.2 Let S be a set O/TEMPLOG clauses. 
If S has a temporal model, then S has a temporal 
Herbrand model. 

PROOF: Let L be the language of the clauses in S, 
and let I be a temporal model of S. We associate 
with X the temporal Herbrand interpretation 

I={N€BL:\=xN). 

Using Proposition 3.1, one can show that I is a model 
of 5.1 

Property 3.3 (Model Intersection) Let P be a 
TEMPLOG program.   The intersection of a collection 
of temporal Herbrand models of P is a temporal Her- 
brand model of P. 

PROOF: Using Proposition 3.1. ■ 
Intuitively, the Model Intersection Property holds be- 
cause the temporal operators other than O are all of 
O-force in clauses. It would not hold for example if 
the language allowed the use of clauses of the form 
Op <-. Indeed, both 7t = {Op} and J2 = {03p} are 
models of this clause, but their intersection is not. 

Knowing that the intersection of the temporal Her- 
brand models of a program P is also a model for 
P, we can now establish that this smallest Herbrand 
model, denoted Mp, provides a characterization of 
the declarative semantics of P. 

Theorem 3.4 Let P be a TEMPLOG program and B 
a ground body: P \= B if and only if \=MP B. 
PROOF: [=$>] Trivial (Mp is a model of P). 
[<=] Let |=Mp B. By Prop. 3.1, there exists a TGI B* 
of B such that \=Mp B*. Let B* be Ni A ... A Nm. 
Then 

\=MP N! A ... A Nm =>{Nu...,Nm}CMP 

=> for every temporal Herbrand model M of P: 
{Nu...,Nm}CM 

=> for every temporal Herbrand model M of P: 

|=Af B* • 



It follows that for every temporal Herbrand model 
M of P there is a TGI B* of B such that \=M B*. 
By Proposition 3.1, we thus have \=M B for every 
temporal Herbrand model M of P. So Pö{~>B} has 
no temporal Herbrand model, and hence Pl){-iB} is 
unsatisfiable (Proposition 3.2). Therefore P (= B. I 

The following corollary specifies the contents of Mp 
as a subset of the Herbrand base. It is simply a re- 
striction of Theorem 3.4 to the case of bodies that are 
single ground next-atoms. 

Corollary 3.5 MP = {O* A G BL : P \= 0{A}. 

3.2    Fixpoint Semantics 

Let P be a TEMPLOG program with language L. We 
associate with P a mapping Tp that intuitively rep- 
resents one step of strictly ground inference from P 
(we will prove it in the next section). The domain of 
this mapping is the complete lattice (2

BL
 , C). Let I 

be a temporal Herbrand interpretation of P, that is, 
I G 2Bi. The mapping TP is defined by: 

TP(I) = {N G BL : N «- Nu ..., Nm is a SGI of a 
clause in P and {Ni,..., Nm} C /}. 

For example, let 0(0-' A *— B) be a ground in- 
stance of a permanent clause in P. For every k £ u, 
if there is a TGI Nx A ... A Nm of B such that 
{OkNu...,O

k Nm} C I, then 0'+k A G TP(I). No- 
tice that this definition of TP is similar to the defi- 
nition of the mapping associated with classical logic 
programs, except that in classical logic one deals with 
atoms and with ground instances of clauses where 
in temporal logic we deal with next-atoms and with 
strictly ground instances of clauses, respectively. As a 
result of this resemblance, the properties of Tp given 
below (continuity, Proposition 3.6, and Theorem 3.7) 
admit proofs that are very similar to the proofs of 
the analogous results for classical logic programming 
([vEK76], [AvE82], [Llo84], [Apt87]). The mapping 
Tp is continuous on (2

BL
,C), and so, by the fix- 

point theorem its least fixpoint lfp(Tp) is given by 
Tp t w = hb{TP\9) : i > 0} = IXQTV'W (e.g. 
[Llo84])4. The next proposition provides a criterion 
for a temporal Herbrand interpretation to be a model 
of a program P as a condition on Tp. 

Proposition 3.6 Let I be a temporal Herbrand in- 
terpretation for P. Then |=/ P iffTP(I) C I. 

PROOF: 1=/ P iff for every SGI N <- Nly...,Nm of 
every clause in P: |=/ AT +- Ni,..., Nm (Prop. 3.1), 

4 lub stands for least upper bound and gib stands for greatest 
lower bound. 

that is, N € / if {Nu ..., Nm} C 7. This condition 
is equivalent to Tp(I) C i". ■ 

Using Proposition 3.6, we can prove the correspon- 
dence between the least Herbrand model Mp and the 
least fixpoint of Tp. 

Theorem 3.7 MP = TP | w. 

PROOF: The least Herbrand model Mp is the inter- 
section of the temporal Herbrand models of P. So in 
the complete lattice (2BL

 , C): 

MP = glb{I € 2B* : (=7 P) 
= glb{I G 2BL

 : TP{I) C /} (by Prop. 3.6). 

In other words, Mp is the greatest lower bound of 
the pre-fixpoints of Tp, which is lfp(Tp) by a version 
of the fixpoint theorem (e.g. [Llo84]). And so Mp = 
Tp f u since Tp is continuous. I 

4    Soundness   and    Complete- 
ness of TSLD-resolution 

In this section, we establish the soundness and the 
completeness of the TSLD-resolution proof method 
underlying TEMPLOG's execution. The soundness 
proof is straightforward. We first establish the cor- 
rectness of each resolution rule. 

Lemma 4.1 (Soundness of the Rules) Let <— B' 
be the resolvent of the goal <— B and the TEMPLOG 
program clause C with most general unifier 6. Then 
C\=(B6^ B'). 

PROOF: The proof is carried out separately for each 
of the eight TSLD-resolution rules of Table 1. I 

Lemma 4.1 allows us to prove the following theorem 
of which soundness is an immediate corollary. 

Theorem 4.2 (Correctness of Computed An- 
swer Substitution) Let P be a TEMPLOG program 
and B a body. If P U {<- B] has a refutation with 
computed answer substitution 0, then 0 is correct, that 
is, P |= (V*)J30. 

PROOF: By induction on the length of the refutation 
of P U {<— B} and using Lemma 4.1. ■ 

Coronary 4.3 (Soundness) Let P be a TEMPLOG 
program and G a goal. If P U {G} has a TSLD- 
refutation then P U {G} is unsatisfiable. 

In classical logic, the proof of the completeness of 
resolution is based on two main lemmas: a lemma 
stating the completeness of ground resolution and a 
lifting lemma to 'lift" the ground-completeness re- 
sult to the first-order completeness result ([Rob65], 



[AvE82], [Llo84], [Apt87]). In the case of tempo- 
ral logic, our strategy is somewhat similar. We first 
establish the correspondence between membership 
in the fixpoint of the mapping Tp and temporally 
ground refutability (notion to be defined precisely 
below), thereby obtaining a completeness result for 
strictly ground formulas (Lemma 4.6). Then we in- 
troduce a temporal lifting lemma (Lemma 4.8) that 
allows us to "lift" this completeness result for both 
ground and temporally ground formulas to a com- 
pleteness result for ground formulas (Lemma 4.9). 
Finally, combining this ground-completeness lemma 
with a lifting lemma (Lemma 4.11) we obtain the 
desired completeness theorem (Theorem 4.12). It is 
via the Temporal Lifting Lemma that the notion of 
temporal groundedness plays its crucial role. The 
completeness theorem that we prove, that is, The- 
orem 4.12, is a strong form of completeness. It states 
that unsatisfiability of a program and goal implies 
not simply existence of a refutation but rather exis- 
tence of a refutation via each computation rule (that 
is, refutability). At the end of this section, we prove 
a version of the completeness theorem that takes the 
computed answer substitutions into account. 

Let us first introduce the notions of temporally 
ground refutation and temporally ground refutabil- 
ity. A temporally ground derivation/refutation (TG- 
derivation/refutation) for a program P and a TG-goal 
G is a TSLD-derivation/refutation for G that only 
uses TGI of the clauses in P (and hence only uses 
the first TSLD-resolution rule of Table 1). There is 
no occurrence of O in the goals of a TG-refutation 
and no occurrence of O or O in the clauses used in 
a TG-refutation. Given a program P, a temporally 
ground goal G is said to be n-TG-refutable (n > 1) 
if there is a TG-refutation for P U {G} of length less 
than n via every computation rule; G is TG-refutable 
if it is n-TG-refutable for some n > 1. As a first 
step of the completeness proof, we introduce a lifting 
lemma for TG-refutations (Lemma 4.5) that will be 
needed in the proof of the completeness theorem for 
strictly ground refutations (Lemma 4.6). This lifting 
lemma follows from the following lemma which estab- 
lishes a correspondence between TG-refutations of a 
temporally ground goal and an instance of this goal. 

Lemma 4.4 Let P be a TEMPLOG program, G a tem- 
porally ground goal, 9 a substitution, and n > 1. To 
any TG-refutation ofPö {GO} with mgu 's 9\,..., 9n, 
there corresponds a TG-refutation of P U {G} with 
mgu's B\,...,9'n such that the atom selected at any 
step of the TG-refutation ofPö{G9] is an instance 
of the atom selected at the corresponding step of the 
TG-refutation of P U {(-?} and the program clauses 
used are the same in both TG-refutations. Moreover, 

(9[ o ■ ■ • o 9'n) >:(9o91o---o9n). 

PROOF: By induction on n. The substitution 9 can be 
assumed to not affect the variables occurring in the 
program clauses without loss of generality. The key 
to this proof is the fact that if the atom A9 selected 
for the first step of the TG-refutation for P U {GO} 
unifies with the atom A' in the head of a program 
clause and 0\ = mgu(A6, A'), then A and A' also 
unify. This follows from A99x = A'9i - A'99x, which 
holds because 6 does not affect the variables in A'. 
Moreover, if $[ = mgu(A,A') then 9\ X (9o9i) (by 
definition of an mgu). In the inductive case (n > 1), 
one also has to show by a similar argument that the 
derived goal obtained after the first resolution step for 
P U {G9} is an instance of the derived goal obtained 
after the corresponding step for P\J {G}. ■ 

Lemma 4.5 (Lifting for TG-Refutability) Let P 
be a TEMPLOG program, G a temporally ground goal, 
9 a substitution, and n > 1. If G9 is n-TG-refutable, 
then G is n-TG-refutable. 

PROOF: Immediate consequence of Lemma 4.4. I 

Lemma 4.6 (Strictly   Ground   Completeness) 
Let P be a TEMPLOG program and N a ground next- 
atom. IfNeMp then Pl){<- N) is TG-refutable. 

PROOF: Let N £ MP. Since MP = TP | w (The- 
orem 3.7), there is a ib G w such that N € TP

k{$). 
One proves by induction on k that if N € Tpk(Q) then 
PU{<— N} is TG-refutable. The base case is immedi- 
ate. In the inductive step, let N G Tp(7>fc-1(0)). So 
there is a SGI (N' <— Ni,..., Nm) 9 of a clause in P 
such that N'9 = N and {Ntf,..., Nm9} C 2>*-1(0). 
By the induction hypothesis, each of P U {<— N\9}, 
..., PU{«- Nm0} is TG-refutable. Since the N{6 are 
ground, their TG-refutations are independent from 
one another, and they can be combined in any desired 
way. So P U {<- (Nu ..., Nm)9} is TG-refutable. 

The first step of a TG-refutation for P U {<- N} 
uses N' *— Ni,...,Nm. The derived goal is a goal 
of which <— (JVi,..., Nm)9 is an instance, and so, by 
Lemma 4.5, it is TG-refutable. Therefore PU{<- N} 
is TG-refutable. ■ 

The next step in the proof of the completeness 
of TSLD-resolution is the "temporal lifting" of the 
Strictly Ground Completeness Lemma (by the Tem- 
poral Lifting Lemma). We first introduce Lemma 4.7 
which establishes the correspondence between the 
steps of a TG-derivation and those of a TSLD- 
derivation. The Temporal Lifting Lemma follows im- 
mediately from Lemma 4.7. 

Lemma 4.7 Let G be a goal, and let G* be a tempo- 
rally ground instance of G.  Let N be the next-atom 



selected from G by a given computation rule, and let 
N* be the corresponding next-atom in G*. Let C be a 
program clause, and let C* be a temporally ground in- 
stance ofC. If there is a TG-resolution step between 
C* and G* with selected next-atom N* that produces 
the (temporally ground) derived goal G\, then there 
is a TSLD-resolution step between C and G with se- 
lected next-atom N that produces the derived goalGi, 
and G\ is a temporally ground instance ofGi. 

PROOF: The proof separates in cases. We have to 
consider the cases where the next-atom N* corre- 
sponds to a next-atom N that is in the scope of zero 
or one O in G. For each of these two cases, we con- 
sider the subcases where the program clause C* is 
the TGI of a clause C that is initial with or without 
□ in the head or permanent. In studying all these 
cases, we exhaust the eight TSLD-resolution rules of 
Table 1. I 

Lemma 4.8 (Temporal Lifting) Let P be a TEM- 
PLOG program and G a goal. If G has a temporally 
ground instance G* such that P U {G*} is n-TG- 
refutable for some n > 1, then PU{G] is refutable5. 

PROOF: By induction on n and using Lemma 4.7. I 

Lemma 4.9 (Ground Completeness) Let P be a 
TEMPLOG program and B a ground body. If \=MP B 
then PU{*- B} is refutable. 

PROOF: Let |=Mp B. By Prop. 3.1, there is a TGI 
NiA...ANm of B such that {Ni,..., Nm} C MP. 
For this TGI of B, we have 

{tfi,...,iVm}CMp 
=*• Vi = 1,..., m: P U {*- JV,-} is TG-refutable 

(by the Strictly Ground Completeness Lemma) 
=*■ P U {*- Nu ..., Nm} is TG-refutable 

since the Nt's are ground and their refutations are 
temporally ground. Therefore, Pl){*— B} is refutable 
(by the Temporal Lifting Lemma). ■ 

Next we introduce a lifting lemma to be used to- 
gether with the Ground Completeness Lemma in the 
proof of the Completeness Theorem. It is the analo- 
gous for TSLD-refutability of the Lifting Lemma for 
TG-refutability (Lemma 4.5). As for TG-refutability, 
we introduce a preliminary lemma from which the 
Lifting Lemma directly follows. 

Lemma 4.10 Let P be a TEMPLOG program, G a 
goal, 9 a substitution, and n > 1. To any TSLD- 
refutation of P U {Go} with mgu's 9i,...,9n, there 
corresponds a TSLD-refutation ofPll{G} with mgu's 
9[,...,9'n such that the atom selected at any step of 

5Remember that we defined refutability to mean existence 
of a refutation via every computation rule. 

the refutation ofPu{G&} is an instance of the atom 
selected at the corresponding step of the refutation of 
P U {G} and the program clauses used are the same 
in both TSLD-refutations. Moreover, (9[ o • • • o 9'n) > 
(9o9lo---o9n). 

PROOF: Similar to the proof of Lemma 4.4.1 

Lemma 4.11 (Lifting) Let P be a TEMPLOG pro- 
gram, G a goal, 9 a substitution, and n > 1. If G9 is 
n-refutable, then G is n-refutable. 

PROOF: Immediate consequence of Lemma 4.10. I 

Theorem 4.12 (Completeness) Let P be a TEM- 
PLOG program and G a goal. IfPö {G} is unsatisfi- 
able, then P U {G} is refutable, that is, P U {G} has 
a refutation via every computation rule. 

PROOF: Let G be the goal *- B such that PU{<- B} 
is unsatisfiable. For every temporal model 1 of P, we 
have ^i -<B, and in particular ^Mp ->B. So there is 
a ground instance B9 of B such that \=Mp B9, and 
by the Ground Completeness Lemma P U {<— B9] is 
refutable. Therefore P U {— B} is refutable (by the 
Lifting Lemma). ■ 

Next, we extend this result to take the computed 
answer substitutions into account. One cannot show 
that any correct answer substitution can be computed 
by a refutation. Instead, we prove Theorem 4.14 
which states that for any correct answer substitu- 
tion, one can compute via every computation rule 
an answer substitution that is more general than the 
correct answer substitution. For this, we first intro- 
duce Lemma 4.13. The proofs of Lemmas 4.13 and 
Theorem 4.14 do not use the Completeness Theorem 
which could then also be derived as a corollary to 
Theorem 4.14. 

Lemma 4.13 Let P be a TEMPLOG program and B a 
body. IfP\= (V*)£, then there is a TSLD-refutation 
of P U {«— B} via every computation rule with the 
empty substitution as computed answer substitution. 

PROOF: Let 9 be a substitution that replaces the free 
variables of B with arbitrary new constants. Then 
P (= B9 where B9 is ground. So by the Ground Com- 
pleteness Lemma, Pu{*- B9) has a TSLD-refutation 
(with empty computed answer substitution) via ev- 
ery computation rule. But the new constants can 
be textually replaced by the original variables in the 
refutations of PL) {*- B9} to produce refutations of 
PU{<— B} with the empty substitution as computed 
answer substitutions. I 

Theorem 4.14 (Computability of Correct An- 
swer Substitution) Let P be a TEMPLOG program, 
G a goal,  and 0  a correct answer substitution for 



P U {G}. For any computation rule R, there is an 
R-computed answer substitution O~R for PU{G} such 
that CR^O. 

PROOF: Let G be <— B. Since 6 is a correct answer 
substitution for P U {<- B}, we have P \= (V*)J30. 
So by Lemma 4.13, PU{<- B9] has a TSLD- 
refutation with the empty answer substitution via ev- 
ery computation rule, and the desired result follows 
by Lemma 4.10. ■ 

5    A fragment of TEMPLOG: TLI 

In this section, we examine a fragment of TEMPLOG 
that we call TLl. In TLl, the body of a clause can- 
not contain any occurrence of O and initial clauses 
cannot have O in their head. So in TLl, a body is 
a conjunction of next-atoms and a clause is either of 
the form N <- B (initial) or of the form D(JV <- B) 
(permanent). The proof method for TLl is based 
on the TSLD-resolution rules (1) and (3) of Table 1. 
There are several reasons that make TLl worth con- 
sidering. First, it is one of the smallest extensions 
of Horn logic programming with temporal operators; 
it was introduced in [AM87] as a first step towards 
temporal logic programming. As we will show in 
the next section, it has theoretically the same ex- 
pressiveness as TEMPLOG, although in practice TEM- 
PLOG computations can be considerably more effi- 
cient than their TLl counterparts. Moreover, TLl 
is one of the few subsets of TEMPLOG that is closed 
under the applicable TSLD-resolution rules; on the 
contrary, any proper subset of TEMPLOG that allows 
the use of O in the body of clauses is not closed un- 
der the TSLD-resolution rules. Finally, TLl is equiv- 
alent to the "pure" fragment of the THLP language6 

introduced by Wadge in [Wad88] and also referred 
to as CHRONOLOG in [OW88a]. However, the only 
interpretation method suggested for THLP consists 
in reducing the programs to classical Horn programs 
with explicit time parameters and interpreting them 
with classical logic programming methods. One of 
the drawbacks of this approach is that the time pa- 
rameter is treated as any other parameter by the logic 
programming interpreter. 

The declarative semantics of TLl can be given in 
model-theoretic and in fixpoint terms like that of 
TEMPLOG. One can also establish the completeness of 
the TSLD-resolution method for TLl. This develop- 
ment is omitted here as it is essentially superseded by 
the semantic development for TEMPLOG. However, it 
is interesting to note that the proofs can be com- 
pletely carried out without introducing the notion 

6THLP stands for Temporal Horn Lope Programming. 

of temporal groundedness, and completeness can be 
proved without the need for a temporal lifting lemma. 

6    TEMPLOG'S Expressiveness 

In this section, we consider exclusively the proposi- 
tional subset of TEMPLOG, that is, the subset in which 
all predicates are 0-ary. This will enable us to study 
the purely temporal aspect of TEMPLOG's expressive- 
ness. The fixpoint formulation of TEMPLOG's seman- 
tics suggests a relation to temporal fixpoint calculi 
([BB86], [Var88]). Indeed, propositional TEMPLOG 
queries can be translated into a fragment of the /xTL 
of [Var88], namely the positive fragment of /JTL that 
allows only least fixpoint operators. We give the fla- 
vor of the translation between TEMPLOG programs 
and formulas of this fragment of /iTL on an example. 

Example 6.1 The following two program clauses de- 
fine a predicate u that holds whenever p holds an even 
number of time instants later. 

D(u <— p) 

D(u *-OOu) 

Notice that u can be seen as the result of applying 
a temporal operator to p, and that this operator is 
the dual of the even operator shown in [Wol83] to 
be inexpressible in temporal logic. The least-fixpoint 
semantics of the clauses for u can be expressed by 
the /xTL formula (iX.(p V OOX). It is the least 
fixpoint (with respect to propositional variable X) of 
the disjunction of the bodies of the clauses defining u 
(in which u is replaced by the variable X). I 

This example shows that there are properties express- 
ible in TEMPLOG which are not expressible in tempo- 
ral logic. On the other hand, there are formulas of 
temporal logic that are not expressible in TEMPLOG 
since expressing all of temporal logic in /iTL can re- 
quire using greatest fixpoints or the alternation of a 
greatest and a least fixpoint ([Par81]). In terms of 
languages, /iTL has the expressive power of w-regular 
expressions whereas temporal logic has the expres- 
siveness of star-free w-regular expressions ([Tho81]). 
The expressiveness of TEMPLOG is clearly less than 
that of w-regular languages. On the other hand, it 
is incomparable to star-free w-regular languages. We 
will prove that the expressiveness of TEMPLOG is es- 
sentially that of finitely regular u-languages. An ui- 
language L is finitely regular if there is a regular lan- 
guage V such that each (infinite) word in L has a 
finite prefix in V. 

Let us first formally set up the framework for study- 
ing the expressiveness of TEMPLOG in terms of u- 
languages.   For propositional TEMPLOG, a temporal 



interpretation consists of a sequence of states isomor- 
phic to u together with an interpretation function 
giving, for each state, the (0-ary) predicates true in 
that state. Such an interpretation can be seen as 
an infinite word over the alphabet 2^, where V is 
the set of predicates in the language. Notice that 
there is no distinction between temporal interpreta- 
tions and temporal Herbrand interpretations in the 
propositional case. So we can characterize an inter- 
pretation by the set of next-atoms that hold in it. 
A finite prefix of an interpretation is a restriction of 
the interpretation to a prefix of u>. Any finite set of 
next-atoms is a finite prefix of an interpretation. 

To give a meaningful characterization of the ex- 
pressiveness of TEMPLOG, we consider sets P of pro- 
gram clauses that define some predicates u\,..., um 

in terms of themselves and in terms of other predi- 
cates Pi,...,pn not defined in P. To emphasize the 
fact that the predicates Pi,...,pn are not defined by 
P, we denote the program by P(pi,... ,pn). Each of 
the Ui defined by P corresponds to a temporal oper- 
ator whose arguments are Pi,... ,pn. 

Example 6.2 The following program P(p, q) defines 
a predicate u that holds exactly when pllq holds, U 
denoting the strong-uniil operator. 

p,Ou) 

The semantics of a program P(pi,... ,pn) must nat- 
urally be a function of the semantics of pi,..., pn, 
that is, of the interpretation of {pi,... ,pn}. Let us 
view P(pi,..., pn) as the top layer of a two-layer pro- 
gram whose bottom layer defines p1,..., pn. More 
precisely, a program is said to be layered if it can 
be partitioned into sets of clauses (layers) Pi,...,Pk 

such that the definition of each predicate is com- 
pletely contained within one layer and for every i 
(1 < i < k), the predicate symbols appearing in the 
body of the clauses in P{ are defined in a layer Pj 
such that 1 < j < i. Two-layer programs are suffi- 
cient for our purpose here. The fixpoint semantics of 
a layered program can be reformulated in a way that 
reflects its layering, somewhat like the iterated fix- 
point semantics of the stratified programs of classical 
logic ([Min88]). 

Proposition 6.1 Consider a two-layer TEMPLOG 

program P = Pi,P2 whose minimal Herbrand model 
is Mp. Let Mi denote the minimal Herbrand model 
of Pi. Let T2 be the mapping associated with P2 

as defined in Section 3.2, and let T2 be defined by 
mi) = IUT2(Z). Then MP = UM'M). 

PROOF: The proof is quite straightforward. It in- 
volves using the monotonicity and the continuity of 
T2 (proved in Section 3.2). I 

In our case, we consider programs P(pi,... ,pn) 
whose bottom layer is arbitrary. So we define 
the semantics of P in terms of interpretations of 
{pi, ■■■,Pn}- Let Tp be the mapping associated 
with the clauses in P as defined in Section 3.2, 
and let T'P(I) = I U TP(I). Then the semantics of 
P(pi,-- -,Pn) with respect to I, denoted Mp(I), is 

given by Mp(7) = U~o^*'(/). 
This sets up the framework for understanding how 

programs characterize sets of words. The combina- 
tion of a program P(pi,... ,p„), defining predicates 
«i, • • •, «m, and a goal <— O* ut characterizes the col- 
lection of interpretations I of {pi,... ,p„} (collection 
of words on 2^Pl'-'P»}) such that O* ut holds in the 
semantics of P considered with respect to J, that is, 
such that \=MP{i) °* «/• Notice, however, that when 
O' m holds in MP(I), there is a finite prefix I* of / 
such that O' ui holds in MP(I*). 

This last fact partially explains why the expressive- 
ness of TEMPLOG programs can be characterized in 
terms of finitely regular w-languages. To prove this 
characterization, we will show how one can build a 
finite-acceptance finite automaton on infinite words 
from a TEMPLOG program and a goal, as well as 
give the opposite construction. A finite-acceptance 
automaton accepts an infinite word iff it accepts a 
finite prefix of that word ([WVS83], [VW88]). Ex- 
cept for the fact that it is applied to prefixes of in- 
finite words, a finite acceptance automaton is iden- 
tical to a classical finite automaton. Finite accep- 
tance automata thus characterize the finitely regular 
w-languages. However, we should note that without 
further assumptions, the construction of a TEMPLOG 
program from an automaton yields a program that 
defines a superset of the set of interpretations char- 
acterized by the automaton. The needed additional 
assumptions will appear clearly once we have given 
the proofs, and we will discuss them below. 

Theorem 6.2 (From Programs to Automata) 
Let P(pi,...,pn) be a TEMPLOG program defining 
predicates ui,...,um. To this program P(pi,..., p„) 
and any goal •<— O* ut with 1 <t <m, one can asso- 
ciate a finite automaton A such that for every inter- 
pretation I of {pi,... ,p„}, A accepts a finite prefix 
of I if and only if \=Mp(l) °' «*• 

PROOF: This theorem is proved by techniques similar 
to those used in [Var88], [WVS83] and [VW88]. The 
proof will be given in the full paper. I 

Let us now consider the other direction, that is, the 
construction of a TEMPLOG program corresponding to 

10 



a finite automaton. We first give the theorem and its 
proof. Notice that in the statement of the theorem, 
every sequence accepted by the automaton produces 
a model of the program that satisfies the goal, but 
the converse does not always hold. We will see how 
the correspondence can be made exact after giving 
the proof. 

Theorem 6.3 (From Automata to Programs) 
Let A be a finite automaton. There is a TEMPLOG 
program P(pi, ■ ■ -,pn) defining a predicate v. such that 
for every interpretation I o/{pi, ...,Pn}> if A finitely 
accepts I then \=MP(I) 

U
- 

PROOF: Let A = (A,S,p,{s0},F), where A = 
{ai,...,a„} is the alphabet, S = {so,si,...,Sfc} is 
the set of states, p : S x A —► 2s is the transition 
relation, so is the initial state, and F C S is the set 
of final states. We encode the automaton's alphabet 
with predicate symbols. So to each a,- corresponds a 
predicate symbol pj (1 < j < n). We now construct a 
TEMPLOG program P(pi,... ,pn) defining a predicate 
u. The program will have to encode the transition 
relation of the automaton. For this, we introduce 
an auxiliary predicate Sj for each state s;- of the au- 
tomaton (0 < j < k). The clauses of P(pi,...,pn) 
are obtained as follows. 

• For the initial state so, we introduce in P the 
clause 

D(u <- so)- 

• For every alphabet symbol a;- € A and every 
pair of automaton states s„,Su, € S such that 
sw € p(sv,aj), we introduce in P the clause 

0(sv *-pj,Osw). 

• For every final state s„ € F, we introduce in P 
the clause 

Osv «- . 

To prove that if A accepts I then ^AJ>(/) 
u> we es- 

tablish the following intermediate result. 

Let i 6 w, j > 1, and s„ € S. IfAsv has 
an accepting run of length at most j over 
/(•'), then 0»'s„ G T^(I), where ASv is the 
automaton that is identical to A except for 
its initial state which is s„ instead of SQ. 

This lemma is proved by induction on j . The cor- 
rectness of the construction of P follows immediately 
from the lemma (take s„ to be so). I 

In the construction of a TEMPLOG program corre- 
sponding to a finite automaton, we had to encode the 

alphabet of the automaton with predicate symbols. 
One problem with the encoding we have used is that 
the predicate symbols are not mutually exclusive: the 
fact that one of them holds at a certain time does not 
prevent another one from holding at that same time. 
Let us illustrate this with an example. 

Example 6.3 Suppose that we try to encode in 
TEMPLOG the automaton with alphabet {a, b, c] that 
accepts the regular language (ab)*c. We associate 
predicate symbols p, q, and r to a, 6 and c, respec- 
tively. Then we construct the program as described 
in the proof of Theorem 6.3, and obtain the following. 

0(« <— r) 

a(u<r-p,Oq,OOu) 

Let us consider the goal *— u. The collec- 
tion of interpretations / of {p, q, r} such that 
NM/>(/) 

U
 contains not only the interpreta- 

tions   that   have   a  finite   prefix   h   of the  form 
{p,Oq,0Jp,0'q,...,0 2Jt-2, v2fc-l s2k . •},   but 
also all those that have a finite prefix containing h, 
like for example the interpretation in which p and q 
are true at every time instant and r is true at some 
time instant. If we could instead encode the alphabet 
symbols a, b, c respectively with (->p A -ig), (p A ->q), 
and (->p A q), which are mutually exclusive formulas, 
this problem would disappear. I 

Thus what is missing to obtain an exact corre- 
spondence between TEMPLOG and finitely regular u- 
languages is the possibility of allowing the predicate 
symbols pi,..., pn to occur negated in the body of the 
clauses of a program P(pi,..., p„). This is necessary 
for unambiguously representing the alphabet of an 
automaton. Notice that we do not need to allow the 
defined predicates ui,...,um to appear negated in 
P, only the bottom-layer predicates. It is straightfor- 
ward to adapt our proofs to show that, with this ex- 
tension, the correspondence between the expressive- 
ness of TEMPLOG and finitely regular w-languages is 
exact. 

One could imagine extending TEMPLOG further to 
allow full stratified negation, that is, no predicate is 
defined in terms of its own negation, but can be de- 
fined in terms of the negation of the predicates de- 
fined in a lower layer. In that case, the expressive- 
ness of the extended language would be that of the 
w-regular expressions. Indeed, such a use of negation 
would make it possible to obtain the alternation of a 
greatest and a least fixpoint sufficient to define all ir- 
regular languages. This last result is essentially only 
of theoretical interest, since the natural procedural 
semantics of stratified programs based on the TSLD- 
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resolution method would not constitute a complete 
proof system for this extended language. 

Interestingly, stratified programs were first intro- 
duced by Chandra and Harel in a paper in which they 
study the expressiveness of DATALOG queries, that is, 
queries of Horn logic programming without function 
symbols, and compare it with fixpoint logic on finite 
structures ([CH85]). In this paper, they first show 
that DATALOG queries are equivalent to a fragment of 
fixpoint logic, namely, the one in which formulas con- 
sist of a least-fixpoint operator applied to a positive 
existential formula. It was hoped that extending DAT- 

ALOG with stratified negation would extend the ex- 
pressiveness of the queries to that of the full fixpoint 
logic on finite structures. However, Kolaitis proved in 
[K0I88] that stratified programs have a strictly weaker 
expressive power than fixpoint logic on finite struc- 
tures. So the similarity does not carry over: although 
adding stratified negation to TEMPLOG yields the ex- 
pressiveness of the temporal fixpoint calculus, adding 
stratified negation to DATALOG does not yield the full 
expressiveness of fixpoint logic on finite structures. 

7    Conclusion 
Work 

and      Related 

We have developed the declarative (logical) semantics 
of TEMPLOG programs and expressed it in two equiv- 
alent ways: as a minimal temporal Herbrand model 
and as the least fixpoint of a mapping. We proved 
a correspondence between the least fixpoint seman- 
tics and the existence of refutations, hence proving 
a completeness theorem for strictly ground formulas. 
From this theorem and lifting lemmas, we established 
the completeness of TSLD-resolution. 

In classical logic, the proof of the completeness of 
resolution relies on the Herbrand's theorem, which is 
an immediate consequence of the compactness of first- 
order logic ([Rob65], [Hil74], [Lov78]). Compactness 
can be derived from the completeness of first-order 
logic ([End72], [Lov78]). First-order temporal logic is 
neither complete nor compact, so we could not rely 
a priori on such results for TEMPLOG. However, we 
were able to establish completeness for the subset of 
temporal logic that constitutes TEMPLOG. So, it is 
natural at this point to wonder whether results such 
as compactness and Herbrand's theorem also hold for 
this subset of temporal logic. To derive compactness, 
we have to begin by extending the completeness the- 
orem proved in this paper to the case of programs 
that can have infinitely many clauses. This can be 
done without difficulty. Then, compactness follows 
from such a (stronger) completeness theorem, and a 

Herbrand-like theorem can be stated. 

Related work on the semantics of programming 
in non-classical logics includes that of [OW88a] and 
[OW88b] which was developed independently. There, 
Orgun and Wadge study the declarative semantics of 
"intensional" (modal) extensions of Horn clause pro- 
grams. One such extension that they consider is the 
THLP language we discussed in the previous section. 
They give declarative semantics similar to ours, but 
as they do not consider proof systems in conjunc- 
tion with their language, they have no completeness 
results. Also, as far as temporal programming, their 
results are only given for a language equivalent to our 
TLl. In the conclusions of [OW88a] and [OW88b], it 
is mentioned that one of their results, namely the 
minimal model semantics, also holds for full TEM- 
PLOG. 

In [Far86], Farinas del Cerro defines a framework, 
called MOLOG, for programming in modal logics. This 
framework is based on resolution proof methods for 
such logics. In a recent paper ([BFH88]) Balbiani 
et al. provide declarative and operational semantics 
for one language in the MOLOG family and prove the 
equivalence of these semantics. 

Gabbay has proposed an extension of classical logic 
programming distinct from TEMPLOG ([Gab87]). His 
TEMPORAL PROLOG is based on a different subset 
of temporal logic: D can only be applied to entire 
clauses and the only operators allowed in the body 
and in the head of clauses are O and the correspond- 
ing operator for the past. A proof method is sketched 
for this language, but it is unclear how it could be 
used as the basis of an execution mechanism and of 
operational semantics for the language. The only se- 
mantics defined for this language is its logical seman- 
tics. 

For temporal languages like Moszkowski's TEM- 
PURA ([Mos86]) and TOKIO ([FKTM086]), which view 
executing a program as constructing a model for the 
program; the semantic issues are completely differ- 
ent. In fact, in the case of TEMPURA that impera- 
tively executes a temporal logic formula, the states of 
the computation are exactly the states of the model 
of the formula, and the operational semantics of a 
program corresponds to its logical semantics. TOKIO 
extends PROLOG with temporal constructs that are 
interpreted as control features. To give its formal se- 
mantics one would need to combine a semantics of 
temporal logic with a semantics of PROLOG that ex- 
plicitly represents the execution mechanism. Such a 
semantics could, for instance, be based on that of 
[JM84], [DM88] or [Bau88b]. 
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