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Numerical Modeling of 
Micromechanical Devices 
Using the Direct Simulation 
Monte Carlo Method 
A direct simulation Monte Carlo (DSMC) investigation of flows related to microelec- 
tromechanical systems (MEMS) is detailed. This effort is intended to provide tools 
to facilitate the design and optimization of micro-devices as well as to probe the 
effects of rarefaction, especially in regimes not amenable to other means of analysis. 
The code written for this purpose employs an unstructured grid, a trajectory-tracing 
particle movement scheme, and an "infinite channel" boundary formulation. Its 
results for slip-flow and transition regime micro-channels and a micro-nozzle are 
presented to demonstrate its capabilities. 

Introduction 

Microelectromechanical systems (MEMS) are the subject of 
increasingly active research in a widening field of disciplines. 
These are very small (micron-scale) sensors and actuators man- 
ufactured with photolithographic techniques similar to those 
used for integrated circuit (IC) chips. MEMS applications range 
from consumer products (air-bag triggers, micro-miiror dis- 
plays), to industrial and medical tools (micro-valves, micro- 
motors), to instrumentation (micro pressure sensors, micro 
shear-stress sensors) (Scott, 1993). 

The small size of MEMS poses unique challenges in the 
design phase, however. While the mechanical properties of mi- 
cromachined materials are reasonably well-studied, fluid effects 
at micron scales are not. These effects, such as film damping 
of resonant structures, heat transfer in mass flow sensors, and 
unsteady pressure fields around microvalves, for example, must 
be understood if these devices are to be effectively designed 
and optimized. 

Unfortunately, Navier-Stokes-based computational fluid dy- 
namics (CFD) techniques are often inaccurate when applied to 
MEMS. This inaccuracy stems from their calculation of molecu- 
lar transport effects, such as viscous dissipation and thermal 
conduction, from bulk flow quantities, such as mean velocity 
and temperature. This approximation of micro-scale phenomena 
with macro-scale information fails as the characteristic length 
of the flow gradients (£) approaches the average distance trav- 
eled by molecules between collisions (the mean free path, X.). 
The ratio of these quantities is known as the Knudsen number 
(Kn = k/£) and is used to indicate the degree of flow rarefac- 
tion. For Kn < 0.01, the flow is considered to be in the 'contin- 
uum' regime and the Navier-Stokes equations are applicable in 
their common form. As Kn increases, the flow moves through 
the "slip-flow" (0.01 < Kn < 0.1) and "transition" (0.1 < 
Kn < 3) regimes and finally enters the "free-molecular" (Kn 
> 3) regime, each suggesting a particular type of analysis 
(Schaff andChambre, 1958). 

The Knudsen number of many MEMS-related flows is driven 
from the continuum regime by an extremely small feature size, 
which is often comparable to X, even for air at standard condi- 
tions. Noncontinuum effects, neglected in traditional analyses. 
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may therefore significantly affect device performance. As a re- 
sult, new models and analysis techniques must be developed to 
correctly predict the fluid behavior in and around MEMS. 

For numerical analyses, the direct simulation Monte Carlo 
(DSMC) method (Bird, 1994) offers an alternative to tradi- 
tional CFD that retains its validity at high Knudsen numbers. 
Commonly applied to reentry vehicles, this technique makes no 
continuum assumption. Instead, it models the flow as it physi- 
cally exists: a collection of discrete particles, each with a posi- 
tion, a velocity, an internal energy, a species identity, etc. These 
particles are moved and allowed to interact with the domain 
boundaries in small time steps during the calculation. Intermo- 
lecular collisions are all performed on a probabilistic basis at 
the end of each time step to minimize computational work. 
Macroscopic quantities, such as flow speed and temperature, 
are then obtained by sampling the microscopic state of all parti- 
cles in the region of interest. 

Algorithm 

The DSMC code developed for this investigation is written 
for unstructured grids to provide flexibility for complex geome- 
tries. Particle information is stored locally with each cell, fol- 
lowing Dietrich and Boyd (1994), to take advantage of the 
cache hardware of workstation-class computers and to prepare 
for a planned transition to parallel machines. Bird's No Time 
Counter (NTC) scheme (1989) governs colUsion pair selection, 
with collision cross-sections calculated according to his Vari- 
able Hard Sphere (VHS) model (1981). 

Particle movement and current-cell identification are per- 
formed simultaneously with a trajectory-tracing scheme similar 
to that proposed by Dietrich (1991). In this scheme, a particle 
is moved along its trajectory until it contacts a face of its current 
cell. It is then passed to another cell, reflected from a solid 
surface, or allowed to leave the calculation, as appropriate. 

Particles impinging on solid walls are reflected diffusely with 
full thermal and momentum accommodation. Those encounter- 
ing inflow/outflow faces are simply allowed to leave the do- 
main. The cell-based storage of particle information simplifies 
the latter operation; impinging particles are simply transferred 
out of their current cells without passing them to adjacent cells. 

At I/O faces, particles must be introduced to represent the 
influence of fluid outside the domain. In accord with standard 
CFD practice, their quantity and velocity distribution is deter- 
mined by considering the flow "characteristics" (cf. Hirsch, 
1990), or lines along which certain variables remain constant; 
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namely the entropy, the transverse speed, and the Riemann 
invariants, which are given (-for isentropic flow) by: 

7* = M ± 
2a 

1 (1) 

where u is the streamwise speed, a is the speed of sound, and 
y is the ratio of specific heats. 

The paths of these characteristics dictate how much informa- 
tion may be specified at the boundary a priori, with the remain- 
der obtained from the instantaneous state inside the domain. In 
a supersonic flow, all characteristics point downstream. In a 
subsonic flow, the 7_ characteristic points upstream and all 
others point downstream. 

Most DSMC appUcations to date have involved high speed 
flows. This greatly simpHfies I/O boundary treatment because 
all variables at the inlet may be specified by the user. At the 
outlet, where it would be necessary to determine all variables 
from the flowfield, no treatment is required because an insig- 
nificant number of particles travel upstream into the domain, 
making it possible to neglect the particle introduction step alto- 
gether. 

Most MEMS, however, involve low speed flows. It is there- 
fore necessary to determine some variables at both inlet and 
outlet faces from inside the flowfield. All cases discussed in 
this article are intended to represent portions of long devices far 
firom their pressure reservoirs. To accomplish this, the pressure, 
temperature, and transverse speed are specified at the inlet, 
leaving the streamwise velocity to be obtained from inside the 
domain. Only the pressure is specified at the outlet and the 
remaining variables are determined from inside the domain. 

In a continuum code, this operation is straightforward; the 
node just inside the boundary is simply queried for the necessary 
information. Unfortunately, DSMC's statistical nature compli- 
cates this step because there may be as few as 20 particles in 
a given cell at a given time. Determining its macroscopic state 
from an instantaneous sample therefore yields unacceptable sta- 
tistical scatter. Two immediate options exist for a steady flow: 
neighboring cells may be included in the instantaneous sample 
or it may be replaced with a time average. The proper applica- 
tion of the former option requires identifying neighboring cells 
with states "close-enough" to the cell in question to yield a 
meaningful spatial average. The latter option involves choosing 
a time averaging method that yields a sufficiently accurate esti- 
mate but still allows a boundary to be reasonably responsive to 
changes in the flow as it seeks its steady state. 

The latter option is implemented in the current code. An 
inflow/outflow cell's particles are sampled after a movement 
step is completed, incoming particles are introduced at bound- 
aries, and coUisions are performed. A weighted average is then 
taken between this result and a running value collected from 
previous time steps. The weighting of the instantaneous state 
may be varied to balance the speed of convergence with the 
accuracy of the running estimate. A weight of ^ was chosen 
for the cases presented in this article. 

Results 

Slip Flow Regime Micro-Channel. The first case explored 
with this code was a steady, low-speed, 2-D flow through a 
micro-channel with an outlet Knudsen number of 0.05, placing 
it in the slip flow regime. This geometry is similar to those 
investigated experimentally by Harley et al. (1995), Pong et 
al. (1994), and Arkilic et al. (1994) and numerically (with 
spectral element methods) by Beskok and Kamiadakis (1994). 
This is, historically, an important canonical case for determining 
the effect of rarefaction on the transport terms in the Navier- 
Stokes equations. It is also representative of flows along the 
narrow passages often found in MEMS devices, such as the 
space under the floating plate of a shear stress sensor or acceler- 
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Fig. 1 Comparison of computed and analytical pressure distributions 
for a micro-channel in the slip flow regime. Excellent agreement is ob- 
tained between code and theory including the nonlinear pressure distri- 
bution resulting from compressibility. 

ometer, which is typically only one micron high but hundreds 
of microns in breadth and depth (Padmanabhan et al., 1995). 
In addition, it serves as a convenient calibration case to assess 
the accuracy of the numerical algorithm because analytical solu- 
tions have been developed for this geometry. 

In one such effort, Arkilic et al. show that the Navier-Stokes 
equations may be solved analytically for a long, high aspect- 
ratio, isothermal channel in the slip flow regime if the boundary 
conditions are modified to include a Kn-dependent streamwise 
velocity (slip) at the wall, given (for diffuse reflection) by: 

= X 
du 

(2) 

where u is the streamwise velocity, Kn is the local Knudsen 
number and y is the transverse coordinate, which has its zero 
at the channel centerline. 

Through this analysis, an expression may be obtained for the 
pressure distribution as a function of streamwise channel loca- 
tion and overall pressure ratio: 

f(x) = -6 Kn„ 

+ J(6 Kn„ + ?;.)2 - 7 [(?? - 1) + 12 Kn„(fi - 1)]    (3) 

where f{x) and % are the local and inlet pressures, respectively, 
normalized by the outlet value, Kn„ is the outlet Knudsen num- 
ber, X is the streamwise coordinate, and L is the channel length. 

The distribution predicted by Eq. (3) may be compared to a 
DSMC resuh as a test of both theory and code. Such a compari- 
son is presented in Fig. 1 for a 31.14 X 1.04 fj,m channel filled 
with nitrogen at a pressure ratio of 2.47. A good agreement is 
obtained (max error =1.5 percent), including the pressure 
curve non-Hnearity. This nonlinearity is a result of the large 
down-channel pressure drop, which causes a significant density 
variation (the flow is essentially isothermal). This was observed 
experimentally by Pong et al. in silicon microchannels with 
integral pressure taps and the nonlinearity was found to become 
more pronounced as the pressure ratio increased. Interestingly, 
the form of disagreement between ihc-analytic results and 
DSMC presented here mirrors that found by Beskok et al. 
(1996) between their spectral code (with modified wall bound- 
ary conditions) and a DSMC code of Bird (1994). 
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Fig. 2 Theoretical (~) and computed (—) streamwise velocity distribu- 
tions (in m/s) for a micro-channel in the slip-flow regime. A good agree- 
ment is obtained, including the flow acceleration due to compressibility 
and the non-zero velocity at the wall due to rarefaction. 

A theoretical expression for the streamwise velocity distribu- 
tion was also developed by Arkilic et al.: 

_i_dp 
2fj, dx 

w2 

(4) 

where fx is the coefficient of viscosity, p is the pressure, and H 
is the channel height. 

This equation is plotted in Fig. 2, along with the DSMC 
result, for the geometry and conditions used above. An excellent 
agreement between theory and code is apparent, despite the 
statistical fluctuation present in the DSMC contours. Unfortu- 
nately, this fluctuation is an inherent feature of low-speed 
DSMC output because the macroscopic flow speed is small 
compared to the mean particle thermal speed. Calculating the 
flow speed is therefore a matter of isolating a small-amplitade 
signal superimposed on large-amplitude noise; an operation 
which requires an enormous number of samples. 

Several interesting features common in micro-channel flows 
are visible in this figure. First, the fluid accelerates as it moves 
down the channel, unlike in the famihar Poiseuille result. This 
is another consequence of the density drop caused by the de- 
creasing pressure in the streamwise direction; the mean stream- 
wise velocity must increase to maintain a constant mass flow. 
Second, the velocity at the walls is nonzero and increases with 
increasing j:-coordinate. This is the aforementioned "slip flow," 
which, by Eq. (2), is negligible for continuum flows due to 
their very small Knudsen numbers. The increase in slip velocity 
down the channel is caused by growth in both Kn (from the 
decreasing pressure) and velocity gradient at the wall (from the 
accelerating flow). This is contrary to the behavior very close 
to the entrance observed by Beskok and Kamiadakis (1994) 
and Oh et al. (1995), which is absent from this work because 
the boundary conditions were formulated to eliminate entrance 
effects. 

A further comparison to the theoretical analysis of Arkilic et 
al. may be obtained by normalizing the velocity distribution of 
Eq. (4) by the average velocity at a given x-location, «„„,, 
obtained by integrating u from the lower wall to the upper wall 
and dividing by H. After some rearrangement, this yields: 

-Kn -1- 
1 

+ Kn (5) 

The left side of this equation, which will be referred to as the 

"similarity speed," «„ is a function of x and y, while the right 
is a function of y alone. Consequently, if the slip-flow analysis 
holds, calculating the similarity speed using the local Kn(A:) 
and u(x, y) will eliminate the A;-dependence of the velocity 
distribution shown in Fig. 2, collapsing the profile at each x- 
location to a single parabola given by the right side of Eq. (5). 

This assertion was tested by computing a similarity speed 
distribution from the DSMC output. As predicted by the analy- 
sis, it was found that the down-channel variation of the stream- 
wise velocity profile seen in Fig. 2 collapsed to a constant 
similarity speed profile. It was therefore concluded that the 
similarity assertion expressed in Eq. (5) indeed holds for the 
slip-flow channel. 

Overall, excellent agreement was obtained between the ana- 
lytical solution of Arkihc et al. and the DSMC results. This 
supports the accuracy of both techniques. For the DSMC code, 
however, this a just a convenient validation case; many more 
interesting flows, for which there are no reliable analytical solu- 
tions, may be easily treated with this method. The remaining 
cases presented in this article are intended to demonstrate this 
capability. 

Transition  Regime Micro-Channel.   One  of DSMC's 
greatest strengths is its validity for dilute gases in all Knudsen 
number regimes. By far, the most unexplored of these is the 
transition regime, 0.1 < Kn < 3. Obtaining solutions at these 
Knudsen numbers is very difficult because the approximation 
of transport terms based on macroscopic quantities becomes 
unacceptably inaccurate, precluding the use of the Navier- 
Stokes equations, even with the slip-flow boundary condition 
of Eq. (2). Collisions are still important, however, so the coUi- 
sionless Boltzmann equation is not yet an option. 

Because DSMC is a direct method, rather than a numerical 
solution of a discretized system of equations, it is a very attrac- 
tive tool for investigating the transition regime. This direct na- 
ture also makes it one of the few tractable techniques which is 
uniformly vahd in mixed Kn-regime flows. These are very use- 
ful features because, due to the aforementioned problems, rela- 
tively little is known about these cases. Such knowledge is 
critical to MEMS designers, however, because many devices 
contain flows characterized by these difficulties. 

To highlight the changes that occur as Kn enters the transition 
regime, a micro-channel is again used as the sample case. This 
time, however, the analytical solution of Arkilic et al. serves 
only as a convenient reference, allowing transition regime re- 
sults to be compared to continuum (Kn = 0.0) and slip-flow 
predictions; significant disagreement is expected. The channel 
treated was 6.61 X 0.11 fxm, with a pressure ratio of 4.2 and 
an outlet Knudsen number of 0.44. The working fluid was, 
again, nitrogen. 

Proceeding along the same path of comparison used in the 
previous case, the computed pressure distribution is plotted with 
the analytical prediction in Fig. 3. The continuum curve (Kn 
= 0.0) is also shown for reference. As expected, the excellent 
agreement between DSMC and theory obtained for the slip- 
flow case (Fig. 1) is no longer present. The error between the 
curves has grown from less than 2 to almost 5 percent. The 
form of this disagreement is also significant: the computed curve 
is more linear than its analytical counterpart. A trend of increas- 
ing pressure curve linearity with increasing rarefaction is there- 
fore established by the relative shape of the continuum, slip- 
flow, and transition curves. 

This trend is contrary to the experimental observations of 
Pong et al. (1994) (Fig. 7), which were obtained by running 
a channel with nitrogen and then with helium at the same pres- 
sure ratio. It agrees, however, with the conclusions of Beskok 
et al. (1995). The source of this discrepancy between analytical, 
DSMC, and spectral results with this experimental data has yet 
to be identified. 
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Fig. 3 DSMC-computed pressure distribution for a transition regime 
micro-cliannel compared to analytical (slip-flow) solutions for the same 
Kn and for continuum flow (Kn = 0.0). A trend of increasing pressure 
curve linearity with increasing rarefaction is apparent. 

The streamwise velocity distribution predicted by Eq. (4) for 
this channel is presented in Fig. 4. Comparing this to Fig. 2, it 
is evident that Eq. (4) yields a much flatter profile for the higher 
Kn case. This may be attributed to the last term in Eq. (4), 
which is constant across the channel and proportional to Kn. 
The Knudsen number is an order of magnitude larger in this 
case, so the constant term has a much stronger influence on the 
shape of the distribution. 

Upon plotting the DSMC result for comparison in Fig. 5, it 
again becomes evident that the assumptions supporting Eq. (4) 
are beginning to fail. Both the slip flow and maximum speeds 
at a given ;c-location are higher than predicted by as much as 
40 percent. This allows the channel to support a much larger 
mass flow than predicted by the slip-flow solution, which is, in 
turn, a larger mass flow than predicted by the no-slip solution. 

Using the similarity expression developed in the previous 
section, the DSMC result may be used to determine the Kn 
limit for the sUp-flow solution, commonly given as Kn < 0.1. 
Because each j:-location has both a similarity profile and a 
Knudsen number associated with it, the Kn at which the slip- 
flow analysis fails may be determined by finding the point where 
the DSMC and analytical profiles begin to disagree. Toward 
this end, Fig. 6 contains the computed maximum and minimum 

Fig. 5 Computed streamwise velocity distribution for the channel of 
Figure 4. The magnitude of both the slip and the local maximum velocity 
are greater than the analytical prediction by as much as 40%. 

similarity speeds at each ;c-location, plotted with the analytical 
predictions (which form, by definition, straight lines). The Kn 
distribution was then overiaid to facilitate determining its value 
when the slip-flow analysis fails. 

It is evident from this figure that the slip flow analysis begins 
to fail at approximately Kn = 0.15. This limit may be under- 
stood if the boundary condition of Eq. (2) is viewed as an 
expansion of the wall velocity in powers of Kn. The no-slip 
condition and Eq. (2) are then the zeroth and first order approxi- 
mations, respectively. It is therefore logical that the neglected 
second and higher-order terms would begin to significantly af- 
fect the result when Kn exceeds approximately 0.1. A second- 
order accurate boundary condition in terms of the continuum 
variables is presented in Beskok et al. (1994). It should be 
remembered, however, that the Navier-Stokes equations them- 
selves are only strictly valid to first order in Kn. 

Supersonic Micro-Nozzle. The final case presented in this 
article is a supersonic micro-nozzle. In relation to the previous 
cases, this geometry may be viewed as a channel whose upper 
and lower walls form a parabolic contraction/expansion. The 
expansion region of similar nozzles was treated with DSMC by 
Zelesnik et al. (1994) with application to satellite station-keep- 
ing rocket motor design. The nozzle treated here is much smaller 
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Fig. 4   Theoretical streamwise velocity distribution for a transition-re- 
gime micro channel calculated using the slip-flow analysis 

Fig. 6 DSMC (—) and analytical (~) similarity speeds with a Knudsen 
number (-•-) overiay. The point at which the computed curve begins to 
diverge from the prediction corresponds well with the commonly-stated 
Kn for the onset of the transition regime (0.1). 
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however—only 15.4 fim high at the throat and 92.6 nm long. It 
is also 2-D, rather than axisymmetric, which is a more attractive 
configuration for a MEMS device due to the inherently planar 
nature of photohthographic manufacturing techniques. 

Such a nozzle may be considered quasi-ID if its area change 
is sufficiently gradual. The analytical solution of Arkilic et al. 
could then be used, with appropriate modifications for the x- 
dependent area. In the case discussed here, however, the total 
length is only six times the throat height. In addition, the large 
density variations brought about by the rapid expansion may 
cause the Kn-regime to change at one or more streamwise posi- 
tions. 

These factors make both analytical and continuum-based nu- 
merical treatment of this geometry prohibitively difficult. None- 
theless, nozzles such as these may play important roles in 
MEMS devices like micro-rocket thrusters and micro-gas tur- 
bine generators, for example. Investigating their behavior is 
therefore a valuable task for which DSMC is well-suited. 

Due to the large pressure variation across the nozzle and 
DSMC's requirement that a cell's linear dimensions be propor- 
tional to the local mean free path, 26,758 cells were required 
to properly discretize the domain. The inlet was charged with 
helium at 1 atmosphere and a 'vacuum' outlet condition was 
enforced. This condition was implemented by simply removing 
from the simulation any particle crossing the outlet boundary 
and refraining from introducing new particles at these faces. 
The resulting pressure at the outlet plane was approximately 
0.04 atmospheres, yielding an outlet Knudsen number, based 
on passage height, of 0.03 and a pressure ratio of 24. Approxi- 
mately 550,000 particles were present on the grid at steady 
state. 

The Mach number distribution for this nozzle is shown in 
Fig. 7. Qualitatively, the contours agree quite well with the 
results of Zelesnik et al. In addition, a number of interesting 
features are visible. First, contrary to the inviscid, quasi-lD 
result, the sonic point is actually slightly downstream of the 
throat. This is possible because the viscous effects are strong 
enough to overcome the deceleration due to the diverging shape. 
Second, a Mach number of 2.4 is reached; a considerable speed 
for such a short, narrow nozzle. Finally, the slip flow speed is 
substantial, exceeding Mach 0.5 near the oudet. 

The temperature distribution for this micro-nozzle is shown 
in Fig. 8. Again, a good qualitative agreement with the results 
of Zelesnik et al. is obtained. Clearly, unlike in the previous 
two cases, this flow cannot be considered isothermal. A strong 
temperature gradient exists in both the streamwise and trans- 
verse directions, creating yet another obstacle to analytical treat- 
ment. The presence of such strong temperature variation is a 
striking feature when the diminutive dimensions of the nozzle 
are considered. Though the walls are isothermal with full energy 
accomodation and only approximately 30 local mean free paths 
apart at the exit, the fluid is still able to realize a substantial 

Fig. 7 Mach number distribution for a supersonic micro-nozzle. A maxi- 
mum Mach number of 2.4 is obtained from a pressure ratio of 24. The 
slip speed exceeds Mach 0.5 near the outlet. 

Fig. 8 Temperature contours for a supersonic micro-nozzle, normalized 
by the inlet value. Significant temperature gradients are present, despite 
the fact that the walls are isothermal (at the inlet temp) with full thermal 
accommodation. 

reduction in temperature. The effect of rarefaction has therefore 
been to significantly reduce the thermal communication between 
the wall and the fluid. This assertion is further supported by 
noting the large thermal slip at the wall. 

Conclusion 
The direct simulation Monte Carlo method has proven to be 

a valuable tool for investigating the behavior of flows which 
are considered 'rarefied' due to miniaturization. This article has 
presented only a small subset of the many cases of interest to 
both the fluid-dynamicist and the MEMS designer which are 
easily treated with this method. 

The unique features of rarefied gas flows can significantly 
affect MEMS operation. The larger mass flow rate for a given 
geometry and inlet conditions must be considered when de- 
signing control systems for micro-chemical reactors and the 
decreased thermal conununication between the fluid and its 
surroundings must be considered for applications involving 
temperature measuring devices or heaters, for example. Unfor- 
tunately, these effects are neglected in many common design 
tools. 

DSMC, therefore, has great promise for improving the design 
and optimization of MEMS. Its ability to calculate in any of 
the four Knudsen number regimes without modification is an 
important feature for this task. This is especially valuable for 
flows with regions in different regimes. The addition of an 
unstructured grid capability and a trajectory-tracing movement 
scheme enables the code to handle arbitrary geometries. This 
is a valuable asset when analyzing the complex structures found 
in many devices. In addition, it is quite straightforward to in- 
clude flow features such as chemical reactions, multi-species 
mixing and particle transport in the code due to its modular 
nature. Finally, its cell-based structure makes it well-suited for 
parallel computation, which is an increasingly-important attri- 
bute for a large-scale numerical scheme. 
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DSMC MODELING OF MICROMECHANICAL DEVICES 

Edward S. Piekos* and Kenneth S. Breuer* 
Department of Aeronautics and Astronautics 

Massachusetts Institute of Technology, Cambridge, MA 02139 

A DSMC investigation of flows related to micro-eiectro-meclianical systems (MEMS) is detailed. This effort is 
aimed at increasing our understanding of rarefied gas behavior to facilitate the design and optimization of micro- 
devices. The code written for this work employs an unstructured grid and a trajectory-tracing particle movement 
scheme. Its results for slip-flow and transition regime micro-channels and a micro-nozzle are presented. The slip flow 
micro-channel output is compared to an analytical solution of the Navier-Stokes equations with a first-order (in Kn) 
slip boundary condition at the wall. Excellent agreement is found. A transition regime micro-channel is also 
compared to the analytical solution in order to investigate the effects of further rarefaction on flow behavior. A 
higher mass flow rate and a lower degree of pressure distribution noniinearity is observed. The micro-nozzle 
produces a maximum Mach number of 2.4 from a pressure ratio of 24. Though its walls are held at the reference 
temperature and full thermal accommodation is implemented, a large temperature gradient is established in both the 
streamwise and transverse directions. This allows the flow to reach a minimum temperature which is less than 40% 
of the wall value. 

I. Introduction 

MICRO-electro-mechanical systems (MEMS) are 
the subject of increasingly active research in a 

widening field of disciplines. These are very small 
(micron-scale) sensors and actuators manufactured with 
techniques similar to those used for integrated circuit 
(IC) chips. Applications for these devices range from 
consumer products (air-bag triggers, micro-mirror dis- 
plays), to industrial and medical tools (micro-valves, 
micro-niotors), to instrumentation (micro pressure sen- 
sors, micro shear-stress sensors).' 

MEMS have many advantages over their macro- 
scale counterparts, where such counterparts even exist. 
First, because these devices are fabricated in a manner 
simitar to IC chips, they are extremely inexpensive to 
manufacture in large quantities. Second, the technology 
for such production is quite mature. Very precise specifi- 
cation of the geometry, far beyond that possible with 
macro-scale fabrication techniques, is therefore routine 
and a high degree of control over material properties is 
possible. Third, their small size and mass make them 
attractive where space is at a premium or weight is lim- 
ited. Finally, their minimal inertia allows them to react 
very quickly, enabling the creation of extremely fast 
actuators and sensors with previously unthinkable fre- 
quency response. 
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The small size of MEMS poses unique challenges in 
the design phase, however. While the mechanical prop- 
erties of micromachined materials are reasonably well- 
studied, fluid effects at micron scales are not. These 
effects, such as film damping of resonant structures, heat 
transfer in mass flow sensors, and unsteady pressure 
fields around microvalves, for example, must be under- 
stood if the full potential of these devices is to be real- 
ized. 

Unfortunately, traditional CFD techniques are often 
inaccurate for analyzing MEMS. At fault are the trans- 
port terms in the Navier-Stokes equations which are cal- 
culated from macro-scale flow quantities, such as 
temperature and mean velocity. This approximation of 
micro-scale phenomena with macro-scale information 
fails as the characteristic length of the flow gradients (£) 
approaches the average distance traveled by molecules 
between collisions (the mean free path, X). The ratio of 
these quantities is known as the Knudsen number (Kn = 
X/ L) and is used to indicate the degree of flow rarefac- 
tion. The Navier-Stokes equations ignore rarefaction 
effects and are therefore only strictly accurate at a van- 
ishingly small Kn. 

As is the case for other nondimensional numbers in 
fluid dynamics, such as the Mach and Reynolds num- 
bers, the type of analysis appropriate for a particular 
flow is dictated by its Knudsen number. The Kn domain 
(0 < Kn < oo) is often divided into four flow regimes.- 
For Kn < O.Ol, known as the 'continuum' regime, the 
Navier-Stokes equations, as commonly expressed, are 
applied. For 0.01 < Kn < 0.1, known as the 'slip-flow' 
regime, the Navier-Stokes equations are applied with 
the commonly-used, no-slip wall boundary condition 
replaced with a slip-flow condition (to be discussed 
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later). For 0.1 < Kn < 3, known as the 'transition' 
regime, the flow is too rarefied for Navier-Stoices-based 
analysis, but not rarefied enough to apply the collision- 
less Boltzmann equation. The full Boltzmann equation 
is therefore prescribed. For Kn > 3, known as the 'free 
molecular' regime, the flow is sufficiently rarefied to 
allow molecular collisions to be completely neglected in 
analyses. The coUisionless Boltzmann equation is there- 
fore applied. 

For many MEMS, Kn is driven from the continuum 
regime by an extremely small feature size, which is 
often comparable to A., even at standard conditions. The 
gap between the sensing plate and the substrate on a 
floating element shear stress sensor, for example, is typ- 
ically 1-2 microns. The mean free path of air at standard 
conditions is approximately 60nm. This places Kn in the 
slip flow regime, or even the transition regime for 
lighter gases or different conditions. Non-continuum 
effects in the gap, neglected in traditional analyses, may 
therefore have a significant impact on sensor operation. 
As a result, new models and techniques must be devel- 
oped to correctly describe the behavior of the fluid in 
and around these devices. 

For numerical analyses, the Direct Simulation 
Monte Carlo (DSMC) method offers an alternative to 
traditional CFD algorithms which retains its validity at 
high Knudsen numbers. Commonly applied to space 
vehicles, this technique makes no continuum assump- 
tion; it models the flow as it physically exists: a collec- 
tion of discrete particles, each with a position, a 
velocity, and, if required, an internal energy. These par- 
ticles are moved and allowed to interact with each other 
and the domain boundaries as appropriate during the 
calculation. Macroscopic quantities, such as flow speed 
and temperature, are then obtained by sampling the 
microscopic state of all particles in the region of inter- 
est. 

II. Algorithm 

MEMS devices typically contain a variety of com- 
plex geometries. To provide the flexibility necessary to 
treat these cases, the DSMC code developed for this 
investigation was written for unstructured grids. The 
cells for all calculations discussed in this paper were 
generated with Watson's algorithm^ as a 2-D Delaunay 
triangulation of points distributed in the domain and on 
the boundaries. Particle movement and current-cell 
identification were performed simultaneously with a tra- 
jectory-tracing scheme, similar to that proposed by 
Dietrich,"* where a particle is moved along its trajectory 
until it contacts a cell boundary. It is then passed to 
another cell, allowed to leave the calculation, or 
reflected from a solid surface, as appropriate. Particle 

information was stored locally in each cell, following 
Dietrich and Boyd,' to take advantage of the cache hard- 
ware of workstation-level computers and to prepare for 
a planned transition to parallel machines. Bird's No 
Time Counter (NTC) scheme* was used for collision 
pair selection, with collision cross-sections calculated 
according to his Variable Hard Sphere (VHS) model.^ 

Solid wall incursions were all treated as diffuse 
reflections with full thermal and momentum accommo- 
dation. Impinging molecules were therefore re-emitted 
with a velocity randomly selected from a Maxwellian 
distribution at the wall temperature without regard to 
their incoming state. 

Inflow/outflow faces required considerably more 
effort, particularly for low-speed cases such as those 
presented in sections III A and IIIB. These faces were 
involved in two stages of the calculation: particle move- 
ment and boundary enforcement. During the movement 
stages, particles were simply removed from the calcula- 
tion if they encountered an I/O face. Because particle 
information was stored locally and passed from cell to 
cell with the particle, this was a straightforward opera- 
tion; the particle was simply passed to 'nowhere'. Dur- 
ing the boundary enforcement stage, appropriate 
particles were introduced at I/O faces to maintain the 
specified macroscopic flow parameters. Pressure was 
specified at both inflow and outflow edges and tempera- 
ture and transverse speed were specified at the inflow 
edge. 

DSMC's statistical nature complicates the boundary 
enforcement process, however. To choose the quantity 
and velocity of the incoming particles, the non-specified 
macroscopic quantities must be determined from the 
current flow state. Unfortunately, there may be as few as 
20 particles in a given cell at a given time, so sampling 
the cell containing the I/O face to determine this state 
yields a poor estimate. This leaves two options: neigh- 
boring cells may be included in the sample or an aver- 
age over some length of time may be substituted for the 
instantaneous average. The former option involves the 
determination of which neighboring cells have states 
that are 'close-enough' to that of the cell in question to 
yield a meaningful spatial average. The latter option 
involves choosing an averaging method that yields a 
sufficiently accurate estimate but still allows the flow to 
properly reach its steady state in a reasonable time 
period. 

The latter option was implemented in the current 
code. The cell state was sampled after a movement step 
was completed, incoming particles were introduced at 
boundary enforcement, and collisions were performed. 
A weighted average was then taken between this result 
and a running value. The weighting of the instantaneous 
state may be varied to balance the speed of convergence 
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with the accuracy of the running estimate. A weight of 
1/20 was chosen for the cases presented in this paper. 

All quantities are nondimensionalized in the code 
and its output. This generalizes the construction of cal- 
culations and facilitates the interpretation of their 
results. Due to the paniculate nature of the scheme and 
the importance of the Knudsen number in the subject 
geometries, the mean free path at a reference condition 
is a natural choice for nondimensionalizing lengths. By 
similar reasoning, one of the molecular speeds (i.e. 
mean, rms, or most probable) is a logical choice for nor- 
malizing velocities. The most probable molecular speed 
was selected for the current code. Times are nondimen- 
sionalized by the quotient of these factors. Number den- 
sities, pressures, and temperatures are each 
nondimensionalized by their value at the reference con- 
dition. 

III. Results 

A. Slip Flow Regime Micro-Cliannel 

The first case explored was a steady flow through a 
micro-channel with an outlet Knudsen number of 0.05, 
placing it in the slip flow regime. This geometry is simi- 
lar to those investigated experimentally by Harley et al} 
and Arkilic et al.'^ and numerically (with spectral ele- 
ment methods) by Beskok and Karniadakis.'" This is, 
historically, an important canonical case for determining 
the effect of rarefaction on the transport terms in the 
Navier-Stokes equations. It is also useful as a represen- 
tation of the flow along certain features common in 
MEMS devices, such as the space under the floating 
plate of a shear stress sensor or accelerometer, which is 
typically only one micron high but hundreds of microns 
in breadth and depth. In addition, it serves as an interest- 
ing calibration case to assess the accuracy of the numer- 
ical algorithm because analytical solutions have been 
developed for this geometry. 

In one such effort, Arkilic et al. show that the 
Navier-Stokes equations may be solved analytically for 
a long, high aspect-ratio, isothermal channel in the slip 
flow regime if the boundary conditions are modified to 
include a Kn-dependent streamwise velocity (slip) at the 
wall, given by: 

2-F 
'wall Kn 

du 
dy (1) 

wall 

where u is the streamwise velocity, Kn is the local 
Knudsen number, and y is the transverse coordinate, 
which has its zero at the channel centerline. F is the 
tangential momentum accommodation coefficient and 
varies   from   0,   for   no   accommodation   (specular 

reflection),   to   1,   for   full   accommodation   (diffuse 
reflection). 

Through this analysis, an expression may be 
obtained for the pressure distribution in a microchannel 
with diffusely-reflecting walls as a function of stream- 
wise channel location and overall pressure ratio: 

Tix)  = - (>Kn„ + (2) 

(^Kn„ + 'PA  -£[[2'.-ll+12/rn„(!P,-l)] 

where Tix) and T^ are the local and inlet pressures, 
respectively, normalized by the inlet value, Kn„ is the 
outlet Knudsen number, x is the streamwise coordinate, 
and L is the channel length. 

The distribution predicted by Eq. 2 may be com- 
pared to a DSMC result as a test of both theory and 
code. Such a comparison is presented in Fig. 1 for a 
900x30 X channel with a pressure ratio of 2.4. 

' ' 

\^  OSMC 
- - Navier-Stokes 

"V 

N 
0 5 10 15 20 25 30 

x/H 

Fig. 1: Comparison of computed and analytical pressure 
distributions for a micro-channel in the slip flow regime. 
Excellent agreement is obtained between code and theory 
including the non-linear pressure distribution resulting from 
compressibility. 

A good agreement is observed, including the nonlinear 
pressure distribution that occurs due to the large 
pressure drop down the length of the channel. 

A theoretical expression for the streamwise velocity 
distribution was also developed by Arkilic et al.: 

\   dpi   2   H-   ^tj. 
 T-\y —-~H Kn 
2)1 dx ^^       4 

(3) 

where \i. is the coefficient of viscosity, p is the pressure, 
and H is the channel height. 

This equation is plotted in Fig. 2 for the geometry 
and conditions used above. Several features unique to a 
flow of this type are visible. First, the fluid accelerates 
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as it moves down the channel, unlike in the familiar Poi- 
seuille result. This is a consequence of the density drop 
caused by the decreasing pressure in the streamwise 
direction (the flow is effectively isothermal). The mean 
streamwise velocity must therefore increase to maintain 
a constant mass flow. Second, the velocity at the walls is 
nonzero and increases with increasing x-coordinate. 
This is the aforementioned 'slip flow', which, by Eq. 1, 
is essentially zero for continuum flows due to their very 
small Knudsen number. The increase in slip velocity 
down the channel is a result of growth in both Kn (from 
the decreasing pressure) and velocity gradient (from the 
accelerating flow). 

Fig. 2: Theoretical streamwise velocity distribution for a micro- 
channel in the slip-flow regime, showing flow acceleration due to 
compressibility and non-zero velocity at the wall due to 
rarefaction. 

Fig. 3: Computed streamwise velocity distribution for the micro- 
channel of Fig. 2, showing good qualitative and quantitative 
agreement between analytical and DSMC results 

The DSMC result for this configuration is presented 
in Fig. 3. Comparing this to the previous figure, it may 
be concluded that the DSMC calculation qualitatively 
reproduces the mean flow acceleration and the increas- 

ing slip flow predicted by the theory. In addition, good 
quantitative agreement is obtained between the velocity 
distributions. 

A further comparison with the theoretical analysis of 
Arkilic et al. may be found by normalizing the velocity 
distribution of Eq. 3 by the average velocity at a given 
x-location, obtained by integrating Eq. 3 from the lower 
wall to the upper wall: 

Rearranging the resulting expression yields: 

-Kn +\ y + Kn 
,6 / « 

(4) 

(5) 

The left side of this equation, which will be referred 
to as the "similarity speed", u,, is a function of x and y, 
while the right is a function of y only. Consequently, if 
the slip-flow analysis holds, calculating the similarity 
speed using the local Kn(x) and «(x,y) will yield identi- 
cal parabolas at all x-stations down the length of the 
channel. 

This assertion was tested by computing a similarity 
speed distribution from the DSMC output. The maxi- 
mum and minimum of the result at each x-location is 
shown in Fig. 4. It should be noted that the upper theo- 
retical line is not placed at 0.25 because an even number 
of cells was used in the DSMC run, so there is no data 
point in the center of the channel. Also, the lower line is 
not at zero because the macroscopic quantities for a cell 
are assumed to be associated with the cell centroid, so 
there are no data points on the walls themselves. 

e 
■"    0.10 
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Fig. 4: Comparison of computed and theoretical maximum and 
minimum similarity speeds for a micro-channel in the slip flow 
regime, showing that similarity is indeed achieved and that 
observed magnitudes compare well with predicted values. 

It may be concluded from this figure that the similar- 
ity assertion indeed holds for the slip flow channel. As 
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predicted by the analysis, the down-channel variation of 
the streamwise velocity profile seen in Fig. 3 has given 
way to a constant similarity speed profile. In addition, 
the maximum and minimum similarity speeds compare 
well with the predicted values. 

Overall, excellent agreement was obtained between 
the analytical solution of Arkilic et al. and the DSMC 
results. This supports the accuracy of both techniques. 
For the DSMC code, however, it is just the beginning. 
Many more interesting flows, for which there are no 
reliable analytical solutions, may be easily treated with 
this method. The remaining cases presented in this paper 
are intended to demonstrate this capability. 

B. Transition Regime Micro-Channel 

One of the great strengths of DSMC is its validity 
for dilute gases in all Knudsen number regimes. One of 
the most interesting of these is the transition regime, 
defined previously as 0.1 < Kn < 3. Here the mean free 
path is comparable to the characteristic dimension of the 
flow. This makes analytical solution very difficult 
because the approximation of transport terms based on 
macroscopic quantities becomes inaccurate, precluding 
the use of the Navier-Stokes equations (even with the 
slip-flow boundary condition of Eq. 1). Collisions are 
still important, however, so the collisionless Boltzmann 
equation is not yet an option. This leaves only the full 
Boltzmann equation; a very difficult expression to solve, 
either analytically or with standard numerical tech- 
niques. 

DSMC is therefore a very attractive tool for investi- 
gating the transition regime. It is also one of the few 
tractable techniques which is uniformly valid in mixed 
Kn-regimes. These are important features because, due 
to the aforementioned difficulties, relatively little is 
known about these flows. Such knowledge is critical, 
however, because many MEMS devices contain regions 
in both the slip-flow and transition regimes. 

The micro-channel was again used as sample case, 
this time to observe the failure of the slip-flow analysis 
as the flow enters the transition regime. The channel 
treated here is 120x2X, with a pressure ratio of 4.2 and 
an outlet Knudsen number of 0.44. The working fluid is, 
again. Nitrogen. 

Proceeding as for the slip-flow case, the computed 
pressure distribution is compared to the slip-flow pre- 
diction in Fig. 5. The continuum curve (Kn = 0.0) is also 
shown for reference. As expected, the excellent agree- 
ment between DSMC and theory obtained for the slip- 
flow case (Fig. I) is no longer present. The error 
between the curves has grown from less than 2% to 
more than 4%. The form of this disagreement is also sig- 
nificant: the computed curve is more linear than its ana- 

lytical counterpart. A trend of increasing pressure curve 
linearity with increasing rarefaction is therefore estab- 
lished by the relative shape of the continuum, slip-flow, 
and transition curves. 

Fig. 5: Comparison of computed, siip-flow and continuum 
pressure distributions for a micro-cliannel in the transition 
regime. The transition-regime curve is more linear than the slip 
flow curve which is, in turn, more linear than the continuum 
curve. 

The analytical prediction for the streamwise velocity 
distribution in this channel is presented in Fig. 6. Note 
that the theory predicts a flatter profile than for the pre- 
vious case. This may be attributed to the last term in Eq. 
3, which is constant across the channel and proportional 
to Kn. The Knudsen number is an order of magnitude 
larger in this case, so this term has a much stronger 
influence upon the distribution. 

Fig. 6: Theoretical streamwise velocity distribution for a 
transition-regime micro channel calculated with the slip-flow 
analysis. 

Upon plotting the computed distribution for compar- 
ison in Fig. 7., it becomes evident that the assumptions 
supporting Eq. 3 are beginning to fail. Both the slip flow 
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and maximum speeds at a given x-location are higher 
than predicted by as much as 40%. This allows the chan- 
nel to support a mass flow greater than would be pre- 
dicted by the slip flow theory, which, in turn, predicts a 
mass flow greater than the traditional Navier-Stokes 
analysis. 

tinuum variables is presented in Ref 10, though it should 
be remembered that the Navier-Stokes equations them- 
selves are only strictly valid to first order in Kn. 

Fig. 7: Computed streamwise velocity distribution for the channel 
of Fig. 6. The magnitude of both the slip and the local maximum 
velocity are greater than the analytical prediction by as much as 
40%. 

A final exposition of transition behavior may be 
made via the similarity analysis of the previous section. 
As mentioned previously, the transition regime is com- 
monly considered to begin at Kn = 0.1. This assertion 
may be tested by noting that Kn increases with down- 
stream position. The similarity profiles, which depend 
on the slip-flow solution, may therefore be computed for 
each position and compared to the analytical slip-flow 
prediction. Because each position has a Knudsen num- 
ber associated with it, the value for which the slip flow 
analysis fails may be determined by finding the point 
where the experimental and analytical curves begin to 
diverge. Toward this end. Fig. 8 contains the computed 
maximum and minimum similarity speeds, plotted with 
the analytical prediction in a fashion identical to that of 
Fig. 4. The Kn distribution was then overlaid to facili- 
tate determining its value when the slip-flow analysis 
fails. 

It may be seen in this figure that the slip flow analy- 
sis begins to fail at approximately Kn = 0.15. This sup- 
ports the oft-used boundary for the transition region, Kn 
= 0.1. This limit may be understood if the wall boundary 
condition. Eq. 1, is viewed as an expansion of the wall 
velocity in powers of Kn. The no-slip condition is then 
the zeroth-order solution, and the slip condition of Eq. I 
is the first-order solution. It is therefore logical that the 
neglected higher-order terms would begin to signifi- 
cantly affect the result when Kn exceeds 0.1. A second- 
order accurate boundary condition in terms of the con- 

:03 g. 

Fig. 8: Computed and analytical similarity speeds with Knudsen 
number overlay. The point at which the computed curve begins 
to diverge from the prediction corresponds well with the 
commonly-stated Kn for the onset of the transition regime (0.1). 

C. Supersonic Micro-Nozzle 

The final case presented is a supersonic micro-noz- 
zle. This is a channel whose upper and lower walls form 
a parabolic contraction/expansion. The grid for this cal- 
culation is shown in Fig. 9. 

3.5 

2.5 f 

X 

0.5 f' 

Fig. 9: Computational grid for supersonic micro-nozzle. The 
upper and lower walls are parabolic and the area ratio is 3.5. 

For a sufficiently long nozzle, this geometry would 
be quasi-ID and the analysis used in section IIIA, with 
appropriate modifications for the slowly varying chan- 
nel height, would be valid. For the case shown in Fig. 9, 
however, the total length of the nozzle is only six times 
the throat height, so the quasi-ID assumption is not 
applicable. In addition, the significant expansion of the 
fluid may also cause the Kn-regime to change at one or 
more streamwise positions. These factors make analyti- 
cal and continuum-based numerical treatment of this 
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geometry difficult. Nozzles such as these may play 
important roles in micro devices like micro-rocket 
thrusters and micro-gas turbine generators, for example. 
Investigating their behavior is therefore a valuable task 
for which DSMC is well-suited. 

This particular nozzle was run with an inlet pressure 
of 10 times the reference pressure and exhausted to 
'vacuum'. The latter condition was implemented by 
simply removing from the simulation any particle which 
crossed the outlet boundary and refraining from intro- 
ducing new particles on those faces. The resulting pres- 
sure ratio was approximately 24 and the outlet Knudsen 
number, based on the passage height, was 0.03. The 
walls were isothermal at the reference temperature with 
full energy and momentum accommodation. The work- 
ing fluid was Helium, which was supplied at the refer- 
ence temperature. 

The Mach number distribution for this case is shown 
in Fig. 10. A number of interesting features are visible. 
First, as expected, the flow is sonic at the throat. Second, 
a Mach number of 2.4 is reached. This is considerable 
when it is noted that the nozzle is only approximately 
600 inlet mean free paths in length. Finally, the slip flow 
speed is substantial, exceeding Mach 0.5 near the outlet. 

reduction in temperature. The effect of rarefaction has 
therefore been to significantly reduce the thermal com- 
munication between the wall and the fluid. This asser- 
tion is supported by noting the large thermal slip at the 
wall. 

Fig. 10: Mach number distribution for a supersonic micro-nozzle. 
A maximum Mach number of 2.4 is obtained from an inlet 
pressure of 10 and a vacuum outlet The slip velocity exceeds 
Mach O.S near the outlet 

The temperature distribution for the micro nozzle is 
shown in Fig. 11. It is clear that, unlike the channel case, 
this flow cannot be considered isothermal. A strong tem- 
perature gradient exists in both the streamwise and 
transverse directions, creating another obstacle to ana- 
lytical treatment. This is a very notable feature when the 
diminutive dimensions of the nozzle are considered. 
Though the walls are only ten mean free paths apart at 
the throat and are isothermal with full energy accommo- 
dation, the fluid is still able to realize a substantial 

Fig. 11: Temperature distribution for a supersonic micro-nozzle. A 
significant temperature jump is present despite the fact that the 
walls are isothermal (at temperature 1.0) with full thermal 
accommodation. 

IV. Conclusion 

The direct simulation Monte Carlo method has 
proven to be a valuable tool for investigating the behav- 
ior of flows which are considered 'rarefied' due to min- 
iaturization. This paper has presented only a small 
subset of the many cases of interest to both the fluid- 
dynamicist and the MEMS designer which are easily 
treated with this method. 

In section IIIA, DSMC results for a slip-flow regime 
micro-channel were compared to an analytical solution 
of the Navier-Stokes equations presented by Arkilic et 
al. Several aspects of computed and theoretical stream- 
wise velocity and pressure distributions were consid- 
ered. In all cases, the numerical results were found to 
compare well with their analytical predictions. 

By manipulating the analytical results, an expression 
for a streamwise velocity 'similarity' profile was also 
developed. It was subsequently found that the computed 
velocity distribution, which is a function of x, collapsed 
quite well to this x-independent profile when the flow 
variables were processed according to the theoretical 
expression. 

These findings support the accuracy of both the code 
and analytical work and demonstrate another valuable 
function of DSMC computations: the evaluation of ana- 
lytical models for rarefied flow behavior. Developing 
these models is an important task because a great num- 
ber of MEMS geometries fall into the slip-flow regime. 
Analytical  tools  have  great  value  to  the  designer 
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because they are much less expensive than a full DSMC 
calculation but are able to approximate behavior invisi- 
ble to continuum techniques. They are difficult to vali- 
date, however, because the effects they describe are 
often too small for effective experimental investigation. 

In section IIIB, a DSMC computation for a transition 
regime micro-channel was compared to predictions 
from the slip-flow expressions of Arkilic et al. By con- 
sidering the form of disagreement between these results, 
the behavior of transition-regime flows was illuminated. 
This is an especially important application of DSMC 
because very few techniques, either analytical or numer- 
ical, are available for analyzing these flows. This is a 
significant problem for the MEMS community because 
the geometries and working conditions for many 
devices place them in this regime. 

In section IIIC, a parabolic micro-nozzle was inves- 
tigated. This case is intended to represent devices which 
contain complexities not amenable to other forms of 
solution. Its more complicated geometry, lack of isother- 
mal flow, and sharp gradients pose problems for many 
types of analysis. No special considerations for these 
features were required to perform the DSMC calcula- 
tion, however. It is therefore demonstrated to be a very 
versatile method whose value increases with flow com- 
plexity. 

The unique features of rarefied gas flows have many 
implications for MEMS designers. Their larger mass 
flow rate for a given geometry and inlet conditions must 
be considered when designing control systems for 
micro-chemical reactors and the decreased thermal com- 
munication between the fluid and its surroundings must 
be considered for applications involving temperature 
measuring devices or heaters, for example. 

DSMC therefore has great promise for improving 
the design and optimization of MEMS. Its unique 
strength for this field is its ability to calculate in any of 
the four Knudsen number regimes without modification. 
This is especially valuable for flows that have regions in 
different regimes, as is the case for some MEMS. The 
addition of unstructured grid capability and the trajec- 
tory-tracing scheme give the code the ability to handle 
arbitrary geometries. This is a valuable asset when ana- 
lyzing the complex structures included in many of these 
devices. In addition, it is quite straightforward to 
include flow features such as chemical reactions, multi- 
species mixing and particle transport in the code due to 
its modular nature. Finally, its cell-based structure 
makes it well-suited for parallel computation, which is 
an increasingly-important attribute for a large-scale 
numerical scheme. 
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Abstract 

Numerical results on the convergence of the Di- 
rect Simulation Monte Carlo (DSMC) technique are 
presented for both well-resolved cases and cases in 
which the cell size is much larger than the mean- 
free-path of the gas. Results from two test cases 
are presented: a one-dimensional Rayleigh flow and 
a two-dimensional spatially-developing shear layer. 
Two main effects are observed as the cell Knudsen 
number decreases. Firstly, the particle population 
in each cell approaches an equilibrium distribution, 
suggesting that the DSMC is formally solving the 
Euler equations, not the Navier-Stokes equations. 
Secondly, an artificial viscosity whose magnitude is 
inversely proportional to the cell Knudsen number is 
observed to produce unreasonably thick shear lay- 
ers. This viscosity is due to thermal fluctuations 
which cause an unphysical diffusion of momentum 
across cell boundaries as the cell size increases. This 
diffusion (related to the position-independent na- 
ture of the DSMC collision algorithm) decreases at 
higher Mach numbers as the relative magnitude of 
the thermal fluctuations decreases. Numerical re- 
sults are presented showing the ability of the DSMC 
method to accurately solve complex (inviscid) con- 
tinuum flows. 

Nomenclature 

c Most-probable molecular speed 
/ Velocity distribution function 
H . Computational domain height 
/o Reference (Maxwellian) distribution 
K Rayleigh-problem     Knudsen     number: 

X/^/u-Kt 
Kc Knudsen Number based on cell: A/Az 
Ma Mach number 

N, Number of CoUision pairs 
Na Number of particles-per-cell 
Nref Reference number density 
R Gas Constant 
Re Reynolds number 
t Time 
T Temperature 
U Streamwise velocity 
u',v' Streamwise and wall-normal perturbation 

velocities 
Uo Wall Speed 
UuU2 Upper and Lower speeds in shear layer 
Vo Cell Volume (normalized by A) 
x,y Streamwise and wall-normal coordinates 
Axd Dimensional cell size 
A.X Non-dimensional cell size: Axd/X = l/Kc 
Aid Dimensional time-step 
Ai Non-dimensional time step: cAt/X 

V Similarity coordinate: y/{2\/i4) 
X Mean free path of gas 
V Kinematic viscosity 
e Momentum thickness 
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1    Introduction 

Thanks to numerous advances in Computational 
Fluid Dynamics (CFD) over the past thirty years, 
it is now relatively straightforward to compute 
problems of engineering interest in two and three- 
dimensions, solving both the Euler equations and, 
to a lesser extent, the Navier-Stokes equations. In 
parallel to this development, numerical techniques 
for rarefied gas flows have also developed rapidly in 
the past several years. Although a variety of tech- 
niques have been used, including Molecular Dynam- 
ics [7] and solution techniques based on the Bur- 
nett equations [8], the most popular has been the 
Direct Simulation Monte Carlo (DSMC) technique, 
popularized primarily by Bird [3]. In the DSMC 
approach, the evolution of test particles, each rep- 
resentative of a large number of real molecules, is 
computed. While test particle motion is computed 
exactly, collisions between test particles are treated 
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in a probabilistic manner. Although the technique 
is not formally identical to the exact gas behavior, it 
has been shown to be useful for problems spanning 
a wide range of flow conditions ranging from one- 

, dimensional shock structure [3] to the flow over the 
Magellan Spacecraft as it descends into the Venusian 
atmosphere [5]. Although the method is motivated 
by problems in rarefied flow regimes, it is of interest 
to examine how the method handles flows with van- 
ishing Knudsen number, K, that is, flows in which 
the characteristic geometry is much greater than the 
mean free path of the working gas. The reasons for 
this interest is for computations which contain both 
continuum and rarefied regimes as well as for use 
in fully continuum flows where a particle approach 
might offer some advantages over a fleld equation 
formulation. It is this issue that is discussed in the 

current paper. 

2    Scaling issues for DSMC 

Central to the DSMC approximation is the as- 
sumption that gas properties, such as temperature, 
pressure, etc. are constant across each cell. This 
allows for collision pairs selected within a cell to be 
independent of position in the cell and requires that 
the cell size be smaller than the gradients in the 
flow field. This is the first condition that must be 
satisfied in scaling to low-Knudsen number flows and 
can be satisfied without any difficulty. An example 
of what happens when this is violated is discussed 
in the section 4.1 with regard to the resolution of 
shock thicknesses. A more subtle issue, however, is 
the scaling of the time step and particle collisions 
and this is discussed in the following section. 

A typical rule-of-thumb for the DSMC technique 
is that the typical cell size be of the order of the 
mean-free-path of the gas, A. This can be expressed 
as a condition on the "cell Knudsen number", Kc- 

Kc = 
Axd 

>1 (1) 

where Axd is a typical cell size dimension (the sub- 
script "d" referring to dimensional quantities. A 
second requirement is that the time step be small 
compared to a characteristic time: 

Aid< 
Axd 

(2) 

where c is the most probable molecular speed. Bor- 
rowing from traditional computational mechanics, 

this constraint may be conveniently expressed as a 
"CFL", or Courant-Friedrich-Lewy condition: 

cAU 

Axd 
<1. (3) 

The basis for this constraint is that a particle should 
reside in a given cefl for a few time-steps so that 
there are enough opportunities for each particle to 
effectively interact with other particles so that in- 
formation can be distributed throughout the com- 
putational domain. It should be reahzed that, un- 
hke its CFD counterpart, the CFL condition for 
DSMC computations is not a stability requirement, 
but rather a validity requirement. Violation of the 
condition will still yield results, but they may be 
inaccurate due to the lack of residence time for a 
particle in each cell. 

Inherent in the DSMC method is the decoupling of 
particle movement and their interactions (collisions, 
reactions, etc.). Once the particles have moved their 
collisions may be computed though a variety of tech- 
niques. A common technique is the so-called No- 
Time-Counter (NTC) method [2], in which the num- 
ber of collision pairs, Np, to be considered in a given 
cell is computed through the equation: 

7V2 
Np oc /It '-— 

UrefVc 
(4) 

where Vc is the volume of a cell, Nc is the number 
of test particles in the cell, Uref is the simulation 
number density (the total number of simulated par- 
ticles divided by the total simulation volume). All 
quantities are now normalized by A and c. By realiz- 
ing that the normalized cell volume scales like K~^ 
and that the simulation number density scales like 
NcKl, we see that 

Np 

N, 
oc Af. (5) 

In other words, for a fixed size computation {Nc held 
constant), Np depends only on the non-dimensional 
time step chosen to advance the solution. We term 
this ratio the "over-collision ratio" since it is an indi- 
cation of the ratio of collision pairs to the number of 
particles in the cell and a value equal to one implies 
that every particle will considered for a collision in- 
teraction during each time step. In a well-resolved 
DSMC computation, where Ai « 0.2, approximately 
20% of a given's cell's particles will be considered for 
collisions. 

The over-collision ratio reveals the essential scal- 
ing problem when applying DSMC methods to low- 
Knudsen number flows. As the size of the problem 



increases, it becomes computationally impractical to 
continue to maintain a cell size that is of the order 
of the mean-free-path. Given that, one is forced to 
let the cell size increase or, in the framework out- 
Hned above, to let Kc decrease below one. As the 
cell size increases, the size of the time step needs 
to be reconsidered. We have two options: By scal- 
ing the time step so that the CFL number remains 
constant, information propagation across the com- 
putational domain and computational efficiency is 
preserved. However, this option implies that the 
number of collision pairs to be considered quickly be- 
comes extremely large, resulting in an over-colHsion 
ratio larger than one (in fact, much larger) as well as 
a computationally unreasonable number of collisions 
partners to process. A second option is to maintain 
Ai at some small value. While this maintains a rea- 
sonable value of Np/Nc, it results in a very small 
value of the CFL number which results in an ineffi- 
cient advancement of the solution and accumulation 
of statistics. Additionally, one can argue effectively 
that a small CFL number makes no sense for it im- 
plies that most particles will take many time steps 
to cross a given cell. Given this, the collision phase 
of each time step will involve the same group of par- 
ticles as in the previous time step since almost no 
particles leave or enter a cell. The net effect, there- 
fore, is as if a larger time step were used, but with the 
computationally pointless exercise of moving all the 
particles some small distance in-between each colli- 
sion phase of the calculation. For this reason, we 
argue that it only makes sense to maintain a con- 
stant CFL number, regardless of the cell Knudsen 
number, Kc- 

A solution to this problem was proposed by Bartel 
et al. [1] who recognized that the large number of 
collisions in a cell suggested by (4) do not serve any 
purpose other than to reinforce a Maxwellian distri- 
bution amongst the particles in a given cell. Given 
this, it should be sufficient to restrict the number 
of collisions to some small number (comparable to 
the number of particles in the cell) and still take 
large time steps during the computation. In the cur- 
rent terms, Bartel's suggestion was to limit the over- 
collision ratio to some (arbitrary) value less than its 
"true" value given by (4). This approach was illus- 
trated by Bartel et al. for a Couette flow and an 
expanding nozzle flow with good results. One pur- 
pose of this paper is to examine the implications of 
the collision limiter under somewhat closer scrutiny. 

K\\\\\\<^^^^^\^ 

Figure   1:     Schematic   of  the   One-Dimensional 
Rayleigh flow 

3    Numerical Results 

To explore these ideas, one-dimensional unsteady 
Rayleigh flow was chosen as a model problem. This 
flow (illustrated in Figure 1) consists of a stationary 
gas subjected to the sudden motion, Uo, of the wall. 
The problem is well-suited for this study since it does 
not have an length scale imposed by geometry, but 
rather by time. In addition, it is a one-dimensional 
flow so computations are quick, allowing for several 
test cases to be considered. 

3.1    Analytic Considerations 

We can solve this problem analytically in two dis- 
tinct regimes. If the Knudsen number is high, the 
collisionless Boltzmann solution is given by: 

u = -^erfc I    , 
2      WwTt (6) 

where R is the gas constant and T, the temperature 
and erfc is the complimentary error function. At the 
other extreme, if the Knudsen number is small, the 
Navier-Stokes equation (for incompressible flow) for 
this geometry is given by: 

du 
'di (7) 

where u is the kinematic viscosity (proportional to 
the mean-free-path. A). This equation can be solved 
with a slip-flow boundary condition: 

u\y=o = A 
du 

resulting in: 

U = Uo 

dy 

eric{T]) 

K + 1 

y=0 
(8) 

(9) 



where r; is a similarity variable: 

y 
V = 1-Jvt 

(10) 

and K is the Knudsen number, here defined in a 
somewhat unusual, but convenient manner as: 

K 
A 

(11) 

This is a more general version of the classical 
Rayleigh solution [6]. Note that in this solution, K 
is a function of time and becomes infinite as i —> 0. 
This makes intuitive sense since the characteristic 
scale of the solution is the momentum thickness of 
the viscous layer which is initially zero, but grows 
as time increases. One imphcation of this time- 
dependent Knudsen number, however, is that some 
care must be taken in evaluating the solution at 
77 = 0 and 00 where appropriate limits of both t 
and y must be taken. 

3.2    Well-Resolved Computations 

This section presents DSMC results for cases that 
were well-resolved - i.e. where the cell Knudsen num- 
ber was greater than or equal to one. For these 
case the CFL number used was 0.3. In order to en- 
sure that the incompressible Navier-Stokes solution 
was valid, the wall velocity was chosen to be 0.2 
{Ma — 0.22). The DSMC computations were car- 
ried out using a two-dimensional DSMC code writ- 
ten for unstructured grids. The gas for all cases 
presented here is Helium and the collision cross- 
sections were computed using the Variable-Hard- 
Sphere model of Bird [2]. 

Figure 2 shows the near-wall velocity profile, U{y), 
for very small times (t = 0.004) i.e. times for which 
the collisionless Boltzmann solution should still be 
valid. The solid line represents the analytic solution 
given by (6) while the symbols represent the DSMC 
solution. For this computation, the cell Knudsen 
number was 1.3 x 10'* and the time-step 2.5 x 10~^. 
We see that the agreement is excellent. 

Figure 3 shows the velocity profile at a later time 
{t = 100) where we would expect the continuum so- 
lution to apply. Note that at this time, K = 0.07 and 
there is still a perceptible velocity slip at y = 0. The 
DSMC results are now compared with the Navier- 
Stokes solution (9) and show good agreement. 

If, as figure 3 suggests, the DSMC is correctly solv- 
ing the Navier-Stokes equations, the velocity distri- 
bution should refiect this as a slight perturbation 

Figure 2: Velocity profile, U{y) at t = 0.004(J!: = 
11.2). The symbols correspond to the numerical 
solution from a well-resolved DSMC computation 
while the solid line is the analytic solution to the 
collisionless Boltzmann equation (6). the y axis is 
normalized by A. 

Figure 3: Velocity profile, U{y) at t = 100 {K = 
0.07). The symbols correspond to the numerical 
solution from a well-resolved DSMC computation 
while the solid line is the analytic solution to the 
slip-flow Navier-Stokes equations (9). 



Figure 4: Distribution of velocity perturbations for 
a well-resolved computation, y = 6.14, t = 40, The 
reference (Maxwellian) distribution has been sub- 
tracted and the four quadrants of {u',v') have been 
collapsed onto one using the known anti-symmetry 
of the Chapman-Enskog distribution. 

from Maxwellian, given by the Chapman-Enskog 
distribution for a one-dimensional isothermal shear 
flow [3]: 

(12) f{u',v')=fo[l- 
[RTY dy 

where /o is the equilibrium distribution. This was 
computed and is shown in figure 4, sampled at 
y = 6.14, i = 40. Here, the average mean veloc- 
ity, f/, has been subtracted and the four quadrants 
of {u',v') have been collapsed onto one, preserving 
the appropriate anti-symmetry by subtracting across 
the axes. The Chapman-Enskog distribution is for- 
mally only valid for small perturbations compared to 
unity and since this is a low Mach number compu- 
tation, the thermal fluctuations are not that small 
and so only qualitative comparisons are appropri- 
ate. Nevertheless, we see that the deviation from 
Maxwellian computed in the DSMC simulation is in 
good agreement with its predicted structure indicat- 
ing, as expected, that the gas is weakly perturbed 
from equilibrium by the shear. 

Figure 5 shows the time-dependence of the vis- 
cosity as the computation evolves from t = 0 
to 200. The viscosity is computed via a nonlin- 
ear least-squares fit of the analytic solution (9) to 
the numerically-derived velocity profile. Given the 
non-dimensionalization described above, the correct 
value for the viscosity of Helium is 0.64 and we see 
that for small times, the solution under-predicts the 
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Figure 5: DSMC-computed viscosity as a function of 
time for a well-resolved computation. Also plotted 
is the computed Knudsen number, K. 

viscosity, but that it appears to asymptote to the 
correct value as K —> 0. The variation in the data, 
and the slight overprediction of the viscosity at later 
times is most likely due to a variety of factors includ- 
ing statistical scatter due to the low-Mach number 
and, at later times, a weak influence of the far wall 
(located 200A from the moving surface). 

The good agreement between DSMC and analytic 
results presented in this section are not surprising 
since the success of the DSMC technique in modeling 
the true gas physics is well-documented (e.g. Bird, 
[3]). We present these results purely for calibration 
purposes. What is of real interest is to investigate 
what happens as the cell Knudsen number decreases 
below one or, in other words, as the cell size increases 
to become much larger than the mean-free-path of 
the gas. 

3.3    Under-Resolved Computations 

Given the high over-collision ratio in a continuum 
application of the DSMC, one would expect, as has 
been argued above, that the particles in each cell 
will approach a Maxwellian distribution. This is 
confirmed in figure 6 which shows the velocity dis- 
tribution from an over-collided case {Kc = 0.0095). 
For this case, the distribution was sampled at the 
same grid point and same time-level as before (fig- 
ure 4) which, with the current scaling corresponds to 
y = 245, t = 4000. In contrast to figure 4 however, 
we see that there is no well-defined structure to the 
perturbations and that the magnitude of the devia- 
tions from Maxwellian are much smaller. This result 



Figure 6: Distribution of velocity perturbations for 
an over-collided (under-resolved) computation, y = 
245, i = 4000, The reference (Maxwellian) distri- 
bution has been subtracted and the four quadrants 
have been collapsed to one utilizing the known anti- 
symmetry of the Chapman-Enskog distribution. 
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Figure 7: DSMC-computed viscosity versus cell 
Cell size: l/Kc = Ax. Under the current non- 
dimensionalization, the correct value of v is 0.64. 

is one we had predicted for the over-collided DSMC 
computations, but it contains an implication that 
is somewhat more subtle. If each cell in the over- 
coUided computation contains an equilibrium distri- 
bution, then we are no longer solving the Navier- 
Stokes equations (which correspond to a weak per- 
turbation from the Maxwellian state of the gas) but 
rather the Euler equations which correctly represent 
an ideal gas in a perpetual state of equilibrium. In- 
deed, the closer we drive each cell to equilibrium, 
the more "ideal" the fluid should become. If this 
is in fact true, then the computed viscosity of the 
Rayleigh layer should go to zero as the cell Knudsen 
number decreases and the effect of the accommoda- 
tion at the solid surface should become confined to 
a thinner and thinner layer, asymptoting towards a 
vorticity sheet singularity at y = 0. 

However, instead of a decrease in viscosity as 
Kc -> 0, we actually observe the opposite and, as 
figure 7 indicates, the viscosity of the gas computed 
from the DSMC computations increases as a func- 
tion of the cell size, Ax = l/Kc- For these compu- 
tations, the time step was increased in proportion to 
the cell size so that the CFL number was maintained 
at 0.33 (selected computations were performed with 
varying CFL numbers yielding almost identical re- 
sults. Three sets of data are actually reported in 
figure 7. In the first set (denoted by circles), the 
number of collisions computed in the collision phase 
of each time step was not limited. The second series 
of results, denoted by stars, a collision limiter of 5 
was enforced. Finally, the data indicated by crosses 
represents computations which employed a collision 
limiter of 1. (A collision limiter value of one implies 
that Np = Nc regardless of the value of Np called for 
by the NTC equation (4). At low values of l/Kc, we 
see that the correct value of i/ is computed. How- 
ever, as the cell size rises above about 10, the value 
of the viscosity begins to rise. The computed value 
of viscosity appears to rise linearly over a very wide 
range of Kc- 

Upon reflection, the reason for this increase in vis- 
cosity is clear and stems from the nature of the par- 
ticle simulation. At low Mach numbers, the random 
thermal velocity of the gas will always result in par- 
ticles moving up and down in the y-direction even 
though there is no net motion normal to the sur- 
face. Since the DSMC chooses collision partners in 
a given cell without regard to their location, momen- 
tum in the cell is uniformly diffused to neighboring 
cells within a few time-steps. In a properly-resolved 
computation, where the cell dimension is approxi- 
mately one mean-free-path, this diffusion is molec- 



|y 

— 

^ to 
—► 
—► 
—► 
—► 

Uz 
"^ 

Figure 8:   Schematic of Free-Shear flow computa- 
tional geometry. 

ularly "correct" and results in the correct physical 
viscosity of the fluid (helped, of course, by the appro- 
priate choice of VHS colhsion exponent). However, 
in a under-resolved computation, the disregard for 
a particle's location in a cell results in the diffusion 
of momentum due to thermal motion that is far in 
excess of the physical viscosity and it is this arti- 
ficial viscosity that is exhibited in these results. In 
many cases, this thermal motion would not present a 
problem. However in the presence of a strong mean 
velocity gradient (as in the case of the wall-driven 
Rayleigh problem), the thermal motion, coupled to 
the mean shear, results in an artificial Newtonian 
viscosity, inversely proportional to the cell Knudsen 
number, Kc- 

This argument suggests that the artificial viscos- 
ity is most apparent at low Mach number, and that 
as the Mach number increases, this phenomenon will 
abate since the relative importance of thermal fluc- 
tuations decrease. For the Rayleigh problem this 
was not found to be the case, but this was ex- 
plained by the restriction of one-dimensional flow 
which was enforced in this computation by wrap- 
around boundary conditions which simply recycle 
particles back into the domain where they can con- 
tinue to diffuse in the y-direction. A more careful 
assessment of Mach number effects is given in the 
following section. 

3.4    Boundary-Free Shear Flows 

In order to verify this argument, it is necessary 
to consider a more complex geometry and we show 
results from a truly spatially developing flow - a 
boundary-free shear flow, illustrated in flgure 8. 
Here two streams at different velocities are intro- 
duced at a; = 0. the upper stream is moving at 
Ma = 2.2 while the lower stream is moving at 
Ma = 1.6. 

Figure 9: Contours of streamwise velocity in a well- 
resolved DSMC computation of a supersonic mixing 
layer. The x and y dimensions are normalized by A. 

Figure 9 shows contours of velocity in the x - y 
plane for a well-resolved calculation. Note that the 
singularity at x = 0 quickly diffuses and a slowly 
thickening shear layer results. By integrating the 
streamwise velocity across the layer, we can charac- 
terize the flow by the momentum thickness: 

e 
HUf Loo ^ 

{Ui-U)iU-U2)dy- (13) 

where 6 has been normalized by the upper stream 
velocity, Ui and the computational domain height, 
H. The momentum thickness is shown in figure 10 as 
a function of x for several computations at different 
Kc. The theoretical evolution of a laminar shear 
layer [6] has a square-root growth of the momentum 
thickness: 

(9 a v^ (14) 

which is well captured by all of the test cases. How- 
ever, on comparing the baseline (well-resolved) case 
with the other two cases (scaling factors of 20 and 
40 respectively). We would expect that, were the 
computation to replicate the correct level of molec- 
ular viscosity in the flow, the effect of a twenty- 
fold increase in the linear dimensions will result in a 
\/20 = 4.47 decrease in the shear layer at the same 
value of x/H. In contrast, we observe that the shear 
layer only decreases by a factor of approximately 
1.3, and that this value is unchanged when the scal- 
ing factor is increased from 20 to 40 (relative to the 
baseline case). This "saturation" is due to the fact 
that, for this Mach number, the grid has imposed 
its own level of viscosity and that further increases 
in the scaling factor have no further effect on the 
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Figure 10: Development of mixing layer momentum 
thickness, 6, as a function of downstream distance, 
X. Each line represents a different value of Kc and 
free-stream Mach number. The a;-direction is scaled 
by the domain height, H which ranges from 60 A to 
2400. 

Figure 11: Geometry and Euler solution (Mach con- 
tours) for Ni's Bump. The bump is 20% of the duct 
height. The Euler solution was computed on a 97 
by 30 grid with an inlet Mach number of 3.28. 

Figure 12: Contours of Mach number for a DSMC 
computation in a 125 by 30 duct. The bump dimen- 
sions are 50 by 6 (All lengths normalized by A). The 
inlet Mach number is 3.28 and the chord Reynolds 
number is 243. 

results (i.e. the "physical viscosity has fallen below 
the grid-induced artifical viscosity). 

When the reference Mach number, Ui, is increased 
(Keeping the velocity ratio constant), we see that the 
shear layer thins further (still not reaching its cor- 
rect value, but closer nevertheless). This improve- 
ment is due to the lower relative importance of ther- 
mal (random) fluctuations which result in a lower 
artifical viscosity. It should be noted that, as in the 
Rayleigh problem presented in the previous section, 
the artificial viscosity was observed to be relatively 
insensitive to the use of a collision limiter and to the 
choice of the CFL number. In fact, it was observed 
that a collision limiter did thin the layer very slightly. 
This was speculated to be due to the fact that, with 
a collision limiter, there is slightly less "uniformity" 
within each cell since there are less coUisions and so 
momentum is not being smeared out quite so quickly 
across the shear layer. 

4    Euler Simulations 

The results of the preceding section illustrate the 
two trends that compete in the DSMC computa- 
tion as the cell Knudsen number decreases. On 
the one hand, the high value of the over-collision 
ratio, Np/Nc, drives the cell particles towards a 
Maxwellian, or equilibrium, distribution. If this 
were the only effect present, the DSMC method 

would formally solve the Euler equations which are, 
after all, the governing dynamic equations for an 
equilibrium gas. However, a competing effect is that 
the essential nature of the DSMC technique - the 
random motion of particles coupled to the disregard 
for location of two collision partners - creates and ar- 
tificial viscosity even if the cell state is Maxwellian. 

From this, we might expect that the DSMC code 
should be optimal in modeling a high Mach num- 
ber, inviscid flow and fail most dramatically when 
attempting a low-Mach number viscous flow. The 
latter has already been demonstrated, but we now 
present results to confirm our predictions of the ap- 
plicability of the DSMC method to high Mach num- 
ber Euler simulations. 

The test case computed in this investigation is a 
common test case for inviscid CFD methods known 
as "Ni's Bump" [4] in which the geometry consists 
of a two-dimensional duct with a circular-arc bump 
placed on the floor. For the present work we have 
used a bump with height equal to 20% of the duct 
height. The geometry and a traditional Euler equa- 
tion solution is shown in flgure 11. Here the inlet 
Mach number is 3.28. A typical run for these cases 
contains about 40,000 particles in a grid of about 
2,000 cells. The solution takes about 10 minutes to 
reach statistical equilibrium. Adequate sampling of 
statistics takes one or two more hours of CPU time 
(on an SGI Indigo). 
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Figure 13: Contours of Mach number for a DSMC 
computation in a 125,000 by 30,000 duct. The bump 
dimensions are 50,000 by 6,000 (all lengths normal- 
ized by A). The inlet Mach number is 3.28 and the 
chord Reynolds number is 243000. 

4.1    Results 

Figure 12 shows contours of Mach number for a 
DSMC computation of Ni's bump in which the duct 
geometry is 125 by 30 A. Although we are using 
specular walls and thus not attempting a viscous so- 
lution to the problem it is instructive to know that 
the effective Reynolds number of the DSMC com- 
putation (based on the inlet Mach number and the 
bump length) is 243. In comparing the solution to 
the Euler flow computation one sees that the ba- 
sic solution is faithfully reproduced with the excep- 
tion that the shock thickness in the DSMC result is 
overly large. This is to be expected since, although 
there are no viscous effects due to the boundaries, 
the DSMC method is accurately solving the shock 
structure, where viscous effects are strong and, at 
this low Reynolds number, the shocks are accord- 
ingly thick. Despite this, all of the features of the 
flow are accurately predicted including the shock an- 
gles, the leading and trailing edge shocks, the shock 
reflections and the shock-shock interaction towards 
the rear of the duct. 

Figure 13 shows the same computation, now 
scaled by a factor of 1,000 so that the dimensions of 
the duct are now 125,000 by 30,000 (approximately 
9 by 2 millimeters at atmospheric conditions). For 
this case, a collision limiter of one was used. The 
grid resolution was also doubled in each direction 
(compared to the last case) to approximately 8,000 
cells. This was necessary since the shock thickness 
was observed to reach a minimum value regardless 
of the cell Knudsen number. As with the shear layer 
case presented above, this problem was identified as 
being an issue of grid resolution and it was found 
that, in common with standard CFD practice, the 
computed flow converged to a grid-independent solu- 
tion through successive refinements in the grid (the 
number of test particles was also increased although 
the average number of particles per cell was smaller 
than in previous case). 

When compared with the previous case, the shock 
thickness is much smaller, although still larger than 
"physical". This artificiafly thick shock is due to 
grid resolution and the inherent artificial viscosity 
inherent in the continuum apphcation of the DSMC 
solution. However, this is not to say that the so- 
lution is invalid. It is common practice in contin- 
uum CFD methods for solving the Euler Equations 
to explicitly introduce an artificial viscosity (usually 
second-order) in order to stabilize the solution near 
steep gradients such as shocks. The effect of the 
artificial viscosity is, as in the DSMC, to thicken 
shocks. The DSMC does not require any explicit in- 
troduction of artificial viscosity, it provides its own 
as demonstrated by these results. Additionally, no 
oscillations in the solution are observed in the re- 
gions surrounding the shock. 

5    Conclusions 

The discussion and results presented here demon- 
strate the issues associated with scaling of a DSMC 
method to continuum flows. Two effects are ob- 
served as the cell Knudsen number decreases. The 
first is, as identified by Bartel et al. [1], that each 
cell's particles approach an equilibrium state. The 
imphcation of this, and something not previously re- 
ahzed, is that that the DSMC technique is formally 
solving the Euler equations, not the Navier-Stokes 
equations in these regions. Computationally, the 
continuum problem is made tractable by employ- 
ing a collision limiter sufficiently large so that the 
cell does approach equilibrium, but small enough to 
retain computational efficiency. 

A second imphcation of the use of DSMC tech- 
niques for continuum methods is that the thermal 
fiuctuations of the particles in the computation, cou- 
pled to the physically large cell size result in an 
artificial viscosity which is proportional to the cell 
Knudsen number and decreases with the Mach num- 
ber (as the thermal fluctuations become less impor- 
tant). This is a result of the DSMC collision algo- 
rithm which tends to distribute momentum and en- 
ergy uniformly over the entire cell, particularly when 
the number of collision pairs during each time step is 
large (because of the value of Kc) ■ This artifical vis- 
cosity can be regarded as dangerous if one is trying 
to solve the Navier-Stokes equations at low Knudsen 
numbers, but may be regarded as an asset for solving 
the Euler equations since it acts as a built-in self- 
adjusting artificial viscosity for broadening poorly 
resolved flow features such as shock structures. 



Given the advanced nature of continuum CFD, 
the motivation for using a DSMC method for solv- 
ing a continuum problem might seem weak. How- 
ever, to our minds there are several reasons in 
which this might be attractive, including: (i) mixed 
regime flows in which both low, moderate and even 
high Knudsen regimes exist simultaneously, and (ii) 
problems for which a particulate description is ad- 
vantageous - particle transport, multi-species flows, 
etc. For these applications, DSMC approaches of- 
fer many advantages. Lastly, their natural advan- 
tages on massively parallel architectures might make 
DSMC techniques competitive with traditional CFD 
for some applications and computational implemen- 
tations. 

Several techniques might be appropriate for accu- 
rate computations of continuum flows using particle 
techniques such as the DSMC. One suggestion is to 
recognize that the fluid is well described by a well- 
known distribution function (either a Maxwellian or 
a Chapman-Enskog distribution) and then, rather 
than go through collision routines, simply assign the 
particles in each cell by sampling from a distribution 
obtained from that cell. This "bootstrap" method 
would avoid the collision phase of the DSMC and re- 
place it by a sampling phase. At this point it is not 
clear if this would be computationally cheaper and 
it is additionally not clear that it would solve the ar- 
tifical dissipation due to thermal fluctuations. The 
idea is merely presented as a possibility for contin- 
uum adaptations to the DSMC approach warranting 
further investigation. 
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a speed of sound 

c'„j most probable thermal velocity 

d mean thermal velocity 

Cr relative speed of colliding partners 

F tangential momentum accommodation coeff. (l=full accom.)    2.7.1 

H channel height 

Ht nozzle throat height 

k Boltzmann constant, k = 1.380658 x 10"^^ J/K 

Kn Knudsen number 
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L channel length 

C scale length of flow gradients 

m molecular mass 
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V normalized pressure, V = p/poutiet 3.1 

R gas constant, R = k/m 4.2.1 

Rf random fraction, 0 < Rf < 1 2.7.2 

t time 4.2.1 

T temperature 2.2 

u, V, w macroscopic (mean) velocity components 2.7.2 

u', v', w'       microscopic (thermal) velocity components 2.7.2 

Un macroscopic velocity component normal to I/O face 2.7.2 

u., similarity speed 3.1 

Uo wall speed in Rayleigh problem 4.2.1 

Ui, U2 shear layer stream velocities 4.2.2 

Vc cell volume 4.1 

x,y spatial coordinates 3.1 

7 specific heat ratio 2.7.2 

At time step 4.1 

Ax typical cell dimension 4.1 
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6 momentum thickness 4.2.2 
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i^p particulate collision rate 2.8.1 
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Chapter 1 

Introduction 

The direct simulation Monte Carlo method (DSMC) is a particle-based numerical 
fluid modeling technique pioneered by G. A. Bird.[l] This particulate nature enables 
it to remain valid where traditional, continuum-based, computational fluid dynamics 
(CFD) techniques break down due to flow rarefaction. To date, most work using 
this method has centered on problems related to vehicles operating at high-altitudes, 
where continuum-based methods become inaccurate due to the low ambient density. 
With the advent of micro-electro-mechanical systems (MEMS), however, flows around 
devices with micron-scale features have also become important. Because their sharp 
gradients often cause continuum methods to fail, even at standard conditions, DSMC 
is an attractive tool for these flows as well. 

This report explores DSMC's application to geometries related to MEMS devices. 
With this task in mind, the current chapter presents an introduction to MEMS, non- 
continuum flows, particle methods, and DSMC. The algorithm developed for this 
work is then outlined in Chaper 2. Non-continuum flows, the traditional realm of this 
method, are treated in Chapter 3 to evaluate theoretical models as well as explore 
regions for which no tractable models exist. Chapter 4 then examines scaling issues 
inherent to efficiently applying DSMC to general continuum flows, with the intention 
of expanding its useful range. Finally, Chapter 5 presents conclusions which may be 
drawn from this work and points to several features which remain to be explored in 
this area. 

1.1    MEMS 

Micro-electro-mechanical systems (MEMS), are very small (micron-scale) sensors and 
actuators manufactured with techniques similar to those used for integrated circuit 
(IC) chips. They are the subject of increasingly active research in a widening field 
of disciplines. Applications for these devices range from consumer products (airbag 
triggers, micro-mirror displays), to industrial and medical tools (microvalves, micro- 
motors), to instrumentation (micro pressure sensors, micro shear-stress sensors). [2] 

MEMS have many advantages over their macro-scale counterparts, where such 
counterparts even exist.    First, because these devices are fabricated in a manner 



similar to IC chips, they are extremely inexpensive to manufacture in large quantities. 
Second, the technology for such production is quite mature. Very precise specification 
of the geometry, far beyond that possible with macro-scale fabrication techniques, is 
therefore routine and a high degree of control over material properties is available. 
Third, their small size and mass make them attractive where space is at a premium 
or weight is limited. Finally, their minimal inertia allows them to react very quickly, 
enabling the creation of actuators and sensors with frequency responses previously 
unthinkable for mechanical systems. 

The small size of MEMS poses unique challenges in the design phase, however. 
While the mechanical properties of micromachined materials are reasonably well- 
studied, fluid effects at micron scales are not. These effects, such as film damping of 
resonant structures, heat transfer in mass flow sensors, and unsteady pressure fields 
around microvalves, for example, must be understood if the full potential of these 
devices is to be realized. 

1.2    Non-Continuum Flows 

The vast majority of computational and analytical tools for studying fluid behavior 
are based on the Euler or Navier-Stokes equations. An important underlying assump- 
tion of these equations is that the fluid may be treated as a continuum, rather than as 
a collection of discrete particles, as is done in the, more difficult, Boltzmann equation. 
This allows the transport terms to be calculated using macroscopic variables, such as 
temperature, rather than microscopic variables, such as molecular velocity distribu- 
tion function, yielding an expression which is much more amenable to solution, both 
analytically and numerically. Unfortunately, this approximation becomes inaccurate 
as the scale length of the flow gradients (£) approaches the average distance trav- 
eled by a particle between collisions (the mean free path, A), which occurs for many 
MEMS-related flows. The ratio of these quantities is known as the Knudsen num- 
ber {Kn = X/C) and is used to indicate the degree of flow rarefaction. The Navier- 
Stokes equations neglect rarefaction effects and are therefore only strictly accurate 
for vanishingly-small Kn. 

As is the case for other non-dimensional numbers in fluid dynamics, such as the 
Mach and Reynolds numbers, the type of analysis appropriate for a particular flow 
is dictated by its Knudsen number. Consequently, the Kn domain {0 < Kn < oo) 
is often divided into four flow regimes.[3] For Kn < 0.01, known as the 'contin- 
uum' regime, the Navier-Stokes equations, as commonly expressed, are applied. For 
0.01 < Kn < 0.1, known as the 'slip-flow' regime, the Navier-Stokes equations are 
applied with the usual no-slip wall boundary condition replaced by a slip-flow condi- 
tion (detailed in Section 3.1). For 0.1 < Kn < 3, known as the 'transition' regime, 
the flow is too rarefied for Navier-Stokes-based analysis, but not rarefied enough to 
apply the collisionless Boltzmann equation. The full Boltzmann equation is therefore 
prescribed. For Kn > 3, known as the 'free molecular' regime, the flow is sufficiently 
rarefied to allow molecular collisions to be neglected. The collisionless Boltzmann 
equation is therefore applied. 



For many MEMS. Kn is driven from the continuum regime by their extremely 
small feature size, which is often comparable to A, even at standard conditions. The 
gap between the sensing plate and the substrate on a floating element shear stress 
sensor, for example, is typically 1-2 microns. [4] The mean free path of air at standard 
conditions is approximately 60 nm. This places Kn in the slip flow regime, or even 
the transition regime for lighter gases or different conditions. Non-continuum effects 
in the gap, neglected in traditional analyses, may therefore have a significant impact 
on sensor operation. As a result, new models and techniques must be developed to 
correctly describe the behavior of the fluid in and around these devices. 

1.3 Particle Methods 

Particle methods, such as molecular dynamics (MD), particle-in-cell (PIC), and direct 
simulation Monte Carlo (DSMC) are attractive tools for the study of rarefied gas-flows 
because they lack continuum assumptions. These techniques model gas behavior by 
tracking the interaction of computational particles, each with a position, a velocity, 
an internal energy, etc., mimicking the discrete molecular nature of the actual flow. 
This strategy differs considerably from that of traditional CFD, which numerically 
solves differential field equations formulated to describe fluid behavior in terms of 
macroscopic variables. 

Particle methods are intuitively attractive because fully physical simulations would 
be devoid of assumptions and would therefore be valid for all flow regimes and geome- 
tries. Unfortunately, a fully-physical simulation, even for a simple problem, typically 
requires computational power several orders of magnitude greater than is currently 
available. In addition, it is arguable that a complete understanding of intermolecular 
and molecule-surface interactions is not yet reached, so some detail would necessarily 
be neglected if such a calculation were even attempted. 

Fortunately, many features of molecular behavior have negligible influence on most 
engineering problems. The key to an efficient simulation is therefore to include the 
minimum level of complexity required to correctly reproduce the important features 
of a given flow. Consequently, all current particle methods make simplifications in 
the quantity, movement, and/or interactions of their computational particles. The 
form of these simplifications differentiates between the various techniques. 

1.4 DSMC 

DSMC is, by far, the most popular particle method for the analysis of collisional 
flows, ie. flows for which intermolecular collisions significantly aflfect fluid behavior. 
It is called a simulation (rather than a solution) scheme because it was originally 
formulated to capture the important physical features of the flow, not to solve a par- 
ticular set of equations. Nevertheless, Nanbu later showed that the various techniques 
solve either the Kac Master equation or the Boltzmann equation.[5] As a result, some 
current algorithms were subsequently derived from these equations, rather than from 
physical arguments. 
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DSMC has undergone considerable development by many researchers for more 
than two decades. Consequently, a considerable number of variations from the original 
algorithm now exist. A number of features nonetheless remain common to most 
implementations. These defining features are associated with the simplifications made 
to the physical situation and differentiate DSMC from other particle methods. 

1.4.1    Particle Quantity 

The number of particles in the simulation must be reduced due to memory constraints 
as well as CPU time considerations. For example, a cubic centimeter of gas at stan- 
dard conditions contains approximately 2.69 x 10^^ molecules. To represent only 
position and velocity in 3-dimensional space for these particles with single-precision, 
floating point numbers would require a total memory of 6.5 x lO^'* Mb, far beyond the 
capacity of even modern supercomputers. 

The crucial assumption made by DSMC developers in the face of this problem 
is that, at any given time, a number of molecules are in virtually indistinguishable 
microscopic states. These molecules may therefore be collectively represented as a 
single 'computational particle', which is then a statistical, rather than a physical, 
entity because it represents a small volume in phase space, rather than an actual 
molecule. 

The ratio of real to computational particles is known as the 'weight factor' and 
may be constant for a given computation or vary with position and/or time. Variable 
weight factors are useful in rapidly expanding and axisymmetric flows, where large 
changes in number density or cell volume occur across the domain, to hold the num- 
ber of particles in each cell at a computationally efficient level. [6] These weighting 
schemes must be applied with caution because particles are usually 'cloned' when they 
move into a region with a smaller weight factor. This is problematic because cloned 
particles are not statistically independent. Introducing significant numbers of them 
will therefore cause a larger scatter to be observed in the results than is expected for 
the given number of particles. In addition, their lack of relative speed may cause a 
non-physical reduction of the local temperature. 

The accuracy of the particle quantity approximation increases with the number of 
computational particles because each particle is required to represent a smaller region 
of phase space. In addition, the statistical scatter in a given sample of the flowfield 
is reduced through increased particle quantity. These factors are balanced by the 
computational cost and machine requirements of the simulation, which also increase 
with particle quantity. This issue is treated in detail by Chen and Boyd in Ref. [7]. 

It is notable that MD also uses a reduced number of computational particles but 
continues to treat them as physical entities. This is justified by noting that Kn is 
maintained (for flow similarity between the real and simulated cases) if the particle 
diameter is increased to hold the mean free path constant as the number density 
is reduced. [8] A large number of small particles may therefore be replaced with a 
small number of large particles without affecting the important flow characteristics. 
This argument fails, however, when the resulting particle diameters become too large 
compared to the geometric feature size or the inter-particle spacing. 



1.4.2 Particle Movement 

In a real gas, molecules move along their current trajectories until they strike another 
molecule or a boundary. This is the procedure used for movement in MD, consis- 
tent with its treatment of computational particles as physical entities. Unfortunately, 
each particle's next collision depends on its trajectory and position with respect to 
all other particles in the domain, as well as the boundaries. In the worst case, the 
computational work of this combined move/collide operation therefore scales as .'V^, 
where A^ is the total number of computational particles. While clever ways of mini- 
mizing this work have been proposed, such as storing the time of next interaction for 
all particle pairs and recalculating only when it changes through the collision of one 
or both members[8], the computation quickly becomes unmanageable as the number 
of particles increases. 

One of DSMC's defining assumptions is made in response to this problem: if par- 
ticles are only allowed to move for a short time (some fraction of a molecule's mean 
time between collisions), then the movement and intermolecular collision steps may 
be decoupled. The calculation is therefore divided into 'time steps', each consisting of 
independent move and collide phases. Interactions between particles and the domain 
boundaries are still handled as they occur in the move phase, but all intermolecu- 
lar collisions are performed in the collide phase. This reduces movement from an 
order A''^ to approximately an order A'' calculation. It may be noted that this also 
makes it possible for two molecules to simultaneously occupy the same position. This 
seemingly troublesome, non-physical event is not significant, however, because the 
computational particles each represent a range of positions due to their statistical 
nature. Their exact position on the grid is therefore not important. 

1.4.3 Particle Collisions 

In MD, interparticle collisions are physical events, with the collision partners and 
post-collision velocities determined according to the pre-collision particle trajectories 
and diameters. These diameters, as mentioned above, are scaled to maintain the 
proper collision rate for the reduced number of particles in the calculation. 

For DSMC, however, the simplifications made above have eliminated the physical 
means for determining these collisions. An alternate approach must therefore be 
supplied. This involves both calculating the correct number of collisions to perform 
and choosing proper partners for each of them. 

Quantity Calculation 

Physical arguments from classical kinetic theory may be used to develop an expression 
for the number of collisions per unit time per unit volume of a gas, A^^c^ 

Nc = -n^ac; (1.1) 



where n is the number density, a is the molecular cross-section (single-species flow), 
Cr is the relative speed of the colliding partners, and the overbar signifies a mean 
taken over all possible partners. Unfortunately, the computational work to evaluate 
this mean scales as the total number of particles squared. Several ways of eliminating 
this term have therefore been proposed, such as Bird's Time Counter (TC) and No 
Time Counter (NTC) schemes and Baganoff and McDonald's method.[9][10][11] The 
current code uses the NTC scheme, where the local maximum aCr encountered in the 
calculation is used in Eq. 1.1 to determine the number of particle pairs to consider 
for collision. These pairs are then accepted with a probability proportional to their 
aCr- 

Partner Selection 

Choosing potential collision pairs is best done according to some sort of 'close physical 
proximity' criterion. The most computationally convenient of these is to divide the 
domain into a number of 'cells', as is commonly done for traditional CFD calculations. 
Collision pairs are then chosen among particles in the same cell. For this to be a valid 
approximation, these cells must be 'small'. Rigorously, this means that their linear 
dimensions should be comparable to the mean free path, A. The implications of 
relaxing this requirement to the 'negligible gradients across the cell' constraint used 
in continuum CFD, are investigated in Chapter 4. 

1.4.4    Result Reporting 

The cells required by the collision scheme are also used in reporting the results of 
a simulation. This is necessary because macroscopic variables, such as pressure and 
temperature, are typically the quantities of interest from a computation while the 
method functions in terms of microscopic variables, such as individual particle posi- 
tions and velocities. To determine the former from the latter, the state of all particles 
in some small volume surrounding the point of interest must be sampled. In the 
current code, the particles in each cell are used to calculate the macroscopic variables 
which are reported at its centroid. 

Due to the total particle quantity restrictions, imposed by computational consid- 
erations, and the cell size constraints, imposed by collision and sampling concerns, 
there may be as few as twenty computational particles in a given cell. Calculating 
the macroscopic variables from a single sample will therefore yield unacceptably large 
uncertainties. Several samples of each cell are therefore necessary. If steady-state 
information is required, these samples may be taken every few time steps^ until ac- 
ceptable statistical convergence is reached. If time-accurate information is required, 
ensemble averaging is performed, were the entire flow evolution is calculated repeat- 
edly, sampling at the same temporal locations in each iteration. 

A flowchart of a typical DSMC calculation is presented in Figure 1-1. 

Hhe samples would not be statistically independent if they were taken every time step 
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Move particles along their trajectories 
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if unsteady 
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Figure 1-1: Flowchart for a typical DSMC calculation. 
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Chapter 2 

Algorithm 

Due to the wide variety of geometries and flow conditions present in MEMS devices, 
flexibility was a primary goal in constructing the algorithm for this investigation. 
DSMC has an inherent advantage over traditional CFD in this regard because its 
particulate nature makes it uniformly valid for all Kn, without regime-specific modi- 
fications. This is especially important for MEMS work because many devices contain 
mixed-regime flows. 

Flexibility concerns also drove the particular implementation of DSMC developed 
for this work. First, C was chosen for the coding due to its flexible structure, dy- 
namic memory allocation, and recursive function capability. In addition, the code was 
written to run in non-dimensional form, use unstructured grids, and store most data 
locally. The details of the resulting algorithm are discussed in the following sections. 

2.1    Non-Dimensionalization 

All quantities in the code are non-dimensionalized. This generalizes the construction 
of calculations and facilitates the interpretation of their results. The normalization 
factors selected for this purpose are relatively common in the DSMC community. 

Due to the importance of Kn in the subject geometries, the mean free path, at 
some reference condition, is a logical choice for non-dimensionaUzing length. Simi- 
larly, DSMC's particulate nature points to one of the molecular speeds (ie. mean, 
rms, or most probable) as the normalizing factor for velocity. These speeds differ by 
a constant factor near unity, so the choice is essentially arbitrary. The most probable 
molecular speed, c^, is used in this work. The quotient of the length and speed nor- 
malizations, A/c^, (2/v^ times the mean collision time) is used to non-dimensionalize 
time. Temperature, pressure, and number density are non-dimensionalized by their 
values at a reference condition. 

To non-dimensionalize the expression governing the number of collision pairs to 
be sampled in the NTC scheme: 

Np = -'n^{(JCr)max (2.1) 
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Variable Scale Factor 

Length Kef 

Velocity c' 

Time Kef 
d "^ref 

Temperature Tref 

Pressure Pre! 

Number Density Href 

Collision Cross-Section 1 
^refKef 

Table 2.1: Non-Dimensionalization / Normalization Factors 

a normalizing factor must be chosen for the collision cross-section, a. Here it should be 
noted that the probability of a particular molecule suffering a collision is proportional 
to the product of its cross-section, its path length, and the number density. For a 
non-dimensional flow representation to be similar to its dimensional counterpart, the 
collision probabilities for comparable particles must match. As a result, the scale 
factors for collision cross-section, length, and number density must have a product 
of unity. The proper cross-section scale factor is therefore l/(nre/-^re/)-[12] This 
conclusion may also be reached through purely dimensional arguments if the units 
for a are viewed as 'length-units squared per particle', rather than simply 'length- 
units squared'. 

The non-dimensionalization / normalization factors used in the code are summa- 
rized in Table 2.1. 

2.2    Molecular Model 

An important defining feature of any DSMC code is its molecular model. This spec- 
ifies the collision cross-section used in Eq. 2.1 as well as the post-collision scattering 
law. There is, again, a tradeoff to be made between physical realism and compu- 
tational efficiency. The full physical description of intermolecular interaction is not 
known and, for most flows, not necessary. As a result, many models have been pro- 
posed which attempt, with varying degrees of detail, to enable the computation to 
reproduce the important features of a coUisional flow, such as the viscosity coefficient 
and its temperature dependence, without becoming unnecessarily complex. Exam- 
ples include the Inverse Power Law (IPL), Hard Sphere (HS) and Maxwell models of 
classical kinetic theory, the Variable Hard Sphere (VHS) model of Bird, the Variable 
Soft Sphere (VSS) model of Koura and Mastumoto, and the Generalized Hard Sphere 
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(GHS) model of Hassan and Hash.[13][14][15][16] 
The VHS model is implemented in the current code. This model grew from 

the classical HS representation, which assumes a constant collision cross section and 
isotropic scattering. For real molecules, however, the effective cross-section is reason- 
ably constant only at very low temperatures; at higher temperatures, it decreases with 
increasing translational kinetic energy and relative speed of the colliding partners. [1] 
In addition, post-collision scattering is decidedly non-isotropic. Bird noted, from nu- 
merical and analytical studies, that changes in collision cross-section have a strong 
influence on the gas behavior while changes in the scattering law do not. He therefore 
constructed a model with a Cr-dependent cross-section, but with isotropic scattering; 
essentially creating hard-sphere molecules with variable diameters (hence the name). 
This retains most of the computational simplicity of the HS model, but more accu- 
rately reproduces the temperature dependence of the viscosity coefficient. 

In this model, an empirical constant, u, related to the exponent, 77, of the inverse 
power law molecular force by 

u; = 2/(r?-l). (2.2) 

is supplied to establish the working fluid. The collision cross-section is then given by 

CTTl    C \ 

2{2-2)kJ     ' ^'-'^ 
where k is Boltzmann's constant and rUr is the reduced mass of the colliding pair, 
TUr = mim2/{mi + m2), which is always m/2 for the single-species gases considered in 
this work (m is the molecular mass). Subscript "d" denotes a dimensional quantity. 

Under the normalizations introduced in the previous section, using the VHS mean 
free path given by Bird: 

Ad = (T/T,e/)"/[y2(2 - ur r(2 - uj)ndarefj, (2.4) 

the non-dimensional collision cross-section becomes: 
2UJ 

a = (2.5) 
v^r(2-a;) '    ' 

where r() denotes the gamma function. 

2.3    Grids 

In response to the stated goal of maximum flexibility, the current code was written 
for unstructured grids. This enables it to treat geometries of arbitrary complexity 
without modification. In addition, several sophisticated generation and adaptation 
schemes are available for grids of this type. Though the code was written with a 
generalized cell geometry in mind, all calculations discussed in Chapters 3 and 4 
use 3-sided cells generated as a Delaunay triangulation of points distributed in the 
domain and on the boundaries.   This triangulation was performed using Watson's 
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algorithm[17], which made possible the inclusion of 'point-and-click' node placement 
for pre-calculation local refinement. 

A sample grid generated in this manner is presented in Figure 2-1. The geometry 
shown is a channel with a 25% bump, similar to the case run in Section 4.2.3. Grid 
refinement is demonstrated at the left edge of the bump. 

Figure 2-1:  Example of an unstructured grid with local refinement generated with 
Watson's algorithm. 

2.4    Particle Movement 

It is common practice for DSMC codes on structured grids to displace all particles 
a full time step along their trajectories, then determine their resulting cell indices 
through a search or mathematical operation. By their nature, however, unstructured 
grids make this type of scheme very difficult. A solution to this problem was pro- 
posed (though for structured 3-D grids) by Dietrich[18]: perform particle movement 
and current-cell identification simultaneously by maintaining knowledge of a parti- 
cle's current cell at all points in its trajectory. To accomplish this computationally, 
a particle is displaced until it contacts a face of its current cell. It is then passed 
to an adjoining cell, reflected from a solid boundary, or allowed to leave the calcula- 
tion through an inflow/outflow edge, as specified by a 'neighbor identifier' stored for 
each face of the cell. This arrangement is extraordinarily flexible because the grid 
need only be composed of cells with valid neighbor identifiers on each of their faces. 
These cells can, strictly speaking, possess an arbitrary number of edges and be of any 
shape or orientation. From a computational viewpoint, however, this method is most 
convenient if the cells are required to be convex. This allows the faces to be treated 
as infinitely long and the impacted face to be found by selecting the line that the 
particle trajectory intersects at the earliest time. 

This portion of the code proved to be the most sensitive to numerical accuracy 
issues. Due to the imperfect machine resolution of position and cell information, it is 
difficult to calculate the proper destination cell for particles which are close to faces or 
cross near nodes. A number of measures were implemented to combat this problem. 

The first of these involves noting the face through which a particle entered its cell. 
This face is then excluded from consideration as a crossing site for the remainder of 
the current time step. Unfortunately, due to the unstructured nature of the grid, 
no mathematical means exist for identifying the entry face of the new cell from the 
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(known) exit face of the old cell. A search for a face in the new cell with a neighbor 
identifier pointing to the particle's former cell is therefore performed. 

From this effort, calculating a useless (and problematic) intersection time is avoided. 
This quantity is problematic because particles are displaced to their intersection point 
when passed to a new cell. The intersection time in the new cell for this face should 
therefore be zero, but will, in practice, be a small number due to machine resolu- 
tion issues. If this number is positive, this face is Ukely to be selected as the next 
intersection because it has the smallest time to occurrence, causing the particle to be 
passed back to its original cell, which will return it, resulting in an infinite loop. The 
computation and memory cost of searching for and storing a particle's entry face is 
therefore justified. 

Another test is included for crossings which occur very close to cell nodes, such as 
that shown in Figure 2-2. In this case, the particle will be transferred from cell one to 
two and then to three without difficulty. A problem is encountered when searching for 
intersections in cell three, however. The face between cells two and three is rejected 
because it was just crossed, but an intersection time near zero is calculated for the 
other face which shares the node skirted by the particle. This causes the particle to be 
(erroneously) passed to cell four without significantly moving it (due to the miniscule 
intersection time). In a similar fashion, cell four transfers the particle to cell one, 
which transfers it to cell two, and so on. This results in an unending cycle because 
each of these moves has a negligible duration, so the time step is never completed. 

Figure 2-2: Sketch of a particle crossing near a grid node 

To avoid establishing this cycle, a 'direction test' is performed on potential inter- 
section faces. In this test, the particle trajectory is projected onto the inward-pointing 
normal of the face in question. If the projection has a positive sign, then the particle 
is not moving in the proper direction to strike this face and the intersection is rejected. 
To avoid encumbering routine cases with this test, a tolerance is defined. The test 
is then only performed on faces whose intersection times fall within this tolerance of 
zero. 

A code listing of the movement function is provided in Appendix A. 

2.5    Data Structure 
Many DSMC codes use a single array to store the data for all particles in the simula- 
tion. A 'cross-reference vector' is then maintained by each cell, containing the indices 
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of its particles in the central array. Moving a particle from cell to cell then consists 
of simply transferring its index from one cross-reference vector to another. This is a 
very efficient arrangement for machines with rapid access to all their memory, such 
as supercomputers, because very little data must be moved with the particle. 

Dietrich and Boyd noted, however, that this scheme causes a significant loss of 
computational efficiency on 'workstation' computers.[19] These machines, unlike su- 
percomputers, have a relatively slow main memory but a very fast cache. Before 
performing an operation, this cache is loaded with the segment of main memory con- 
taining the required data. If subsequent operations access only items already in the 
cache, they execute very quickly. Conversely, if the cache must be reloaded with new 
data, a condition known as a 'cache miss', a considerable amount of time is lost in 
the process. The central storage of particle data causes many cache misses when 
performing inherently cell-based operations, such as collisions and sampling, because 
the members of a given cell are scattered through a very large area of main memory. 

The alternative is clear: physically store a particle's data in its current cell instead 
of in a large, centralized array. This increases the expense of moving a particle from 
cell to cell, but greatly decreases the number of cache misses suffered by cell-based 
operations. 

An algorithm using the trajectory-tracing particle movement scheme outlined in 
the previous section is easily written with entirely cell-based operations, so consid- 
erable gains are possible from improved utilization of the cache. In addition, for 
an equilibrium gas with a properly chosen cell size and time step, less than 50% of 
particles typically leave their cell during a given time step, and, of these, less than 
10% typically leave their new cell. The increased cost of inter-cell movement in this 
arrangement is therefore greatly overshadowed by the increased speed of cell-based 
data structures. 

This data structure has the additional advantage of easy adaptability to a message- 
passing parallel environment. If a particle moves to a cell on a different processor, the 
inter-cell communication step is simply augmented with an inter-processor commu- 
nication step. In addition, because a cell is now a complete data unit, containing its 
geometry, neighbors, and resident particles, it is easily passed as a whole to another 
processor as part of a dynamic load balancing scheme. 

2.6    Inter-Cell Communication 

Upon adopting a cell-based data structure, an efficient means for moving particle 
information between cells is required. The simplest method, which is similar to that 
used by Dietrich and Boyd for communication between parallel domains, is to main- 
tain a 'communication link' for each cell. This is an array for particles waiting to 
be accepted into the cell. If a particle leaves its cell during the movement step, it 
is simply placed in the communication link of its destination cell. When a cell has 
completed the movement step for all of its particles, it begins to process its com- 
munication link: each of the incoming particles is checked to see if it will remain in 
the cell; if so, it is moved to the particle list for that cell, if not, it is moved to the 
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communication link of its next cell. This process continues until all communication 
links are empty. This arrangement was found to be fast, but extremely demanding of 
memory: the communication links typically grew to be about half as large as the par- 
ticle arrays for their cell. The total memory required for the program was therefore 
50% larger than without links. 

To circumvent this difficulty, a new scheme was devised whereby particles are 
simply marked with a flag signifying that they are not leaving the cell, the index 
of their destination cell, or a flag signifying that they have exited the cell and their 
position on its particle list is now vacant. Once the initial movement step is completed 
for all particles in all cells, a 'communication phase' is entered in which particles 
leaving their current cells, referred to as 'travelers', are moved to their destination 
cells. To accomplish this, the particle array in a traveler's destination cell is checked 
for empty positions. If one is found, the particle is moved to its new cell, marking its 
former position as vacant. If no vacancies are found, the destination cell is searched 
for travelers. If a traveler is found, the communication function is recursively called 
to move this particle to its destination cell, then the original particle is moved into 
the space it left. If neither vacancies nor travelers are found in the particle array of 
the destination cell, the incoming particle is simply added to the end. 

After careful optimization, this scheme was found to run nearly as fast as the 
communication link case, but with a 20% reduction in memory requirements for a 
half-million particle calculation. 

A code listing of the communication function is included in Appendix B. 

2.7    Boundary Conditions 

As for any solution method, proper specification of the boundary conditions is critical 
to a successful DSMC simulation. The means of specifying these conditions in particle 
methods, however, differs considerably from continuum CFD. In continuum CFD, 
macroscopic variables, such as temperature and velocity, are imposed at given points 
based on their intended physical state. For particle methods, these conditions must 
be translated into rules for treating individual particles near these points. 

2.7.1     Solid Walls 

As noted for intermolecular collisions, many details of gas-surface interaction are still 
unknown. Again, models which reproduce the important features of the physical 
situation have been developed. The most common of these divides particle reflection 
from solid surfaces into two classes: specular and diffuse. A given interaction may be 
described completely by one of these classes or by some combination of the two. This 
description is quantified by the tangential momentum accommodation coefficient, 
F, which varies from 0, for no accommodation (specular reflection), to 1, for full 
accommodation (diffuse reflection). In the code, this is accomplished by treating F 
as the probability a given particle reflection will be treated diffusely. 
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Specular Reflection 

In a specular reflection, the normal component of the impinging particle's velocity 
vector is simply reversed and the tangential component is left unchanged. No modifi- 
cation is made to the energy of the particle. This is intended to model an interaction 
with a perfectly smooth (ie. frictionless) surface. It may also be used to simulate a 
symmetry plane. 

Diffuse Reflection 

In a diffuse reflection, the impinging particle is emitted from the surface without re- 
gard to its incoming state. The outgoing velocity is randomly assigned according to 
a half-range Maxwellian distribution at the wall temperature. This is known as full 
thermal and momentum accommodation and may be viewed in terms of a particle 
that is absorbed, then re-emitted at equilibrium with the surface. This is intended 
to model an interaction with a completely rough surface, which is considered a valid 
description of most engineering materials. MEMS devices, however, often contain 
surfaces which are cut along the crystal planes of Silicon wafers. Tangential momen- 
tum accommodation coefficients considerably less than one are therefore possible on 
these extraordinarily smooth surfaces. 

2.7.2    Inflow/Outflow Faces 

Inflow/outflow (I/O) faces are considerably more difficult to treat than solid bound- 
aries, particularly for low-speed cases, such as those presented in Sections 3.1 and 
3.2. Ironically, this task appears to be straightforward and well-defined: simply in- 
troduce and remove particles to obtain the desired flow state. Upon closer inspection, 
however, it is found to be another sensitive compromise between physical detail and 
computational efficiency. In this case, an improper formulation leads to a strong 
flow adjustment (very similar to a shock) near the boundary. This effect is shown 
in Figure 2-3 for a channel with a specified pressure ratio of 4, which relaxed to ap- 
proximately 3.65. Unfortunately, the strength of this relaxation is difficult to predict, 
frustrating efforts to model a specific geometry and flow condition. 

In the current formulation, I/O faces are treated in two stages of the calculation: 
particle movement and boundary enforcement. 

During the movement stage, particles are simply removed from the calculation if 
they encounter an I/O face. The data structure and communication schemes outlined 
previously make this a straightforward operation: the particle's position in its cell is 
marked vacant, as if it has moved to another cell, but it is not labelled as a traveler, 
effectively moving it 'nowhere'. 

During the enforcement stage, particles are introduced at I/O faces to maintain 
user-specified boundary conditions, which are expressed in terms of macroscopic vari- 
ables. These boundary conditions, combined with quantities calculated from the 
current flow state, determine the number of particles to introduce and their velocity 
distribution, as detailed below. It should be noted that, although the mechanism 
for enforcing boundary conditions differs considerably between particle methods and 
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Figure 2-3: Pressure distribution for a channel with poorly-formulated 10 treatment. 

continuum CFD, the choice of which macroscopic variables to specify externally and 
which to calculate from the domain is determined in both techniques by the 'charac- 
teristic lines'. 

Characteristics lines, or simply 'characteristics', are paths in space and time, de- 
rived from the Euler equations, along which certain flow variables remain constant. [20] 
They are therefore said to "carry" information from one place to another. Charac- 
teristics are used when formulating boundary conditions to prescribe how much in- 
formation is communicated to the boundary from inside the domain and how much 
is communicated from outside. This determines which variables may be specified and 
which must be calculated from the flow itself. 

There are four characteristic lines; one carries the entropy, one carries the trans- 
verse speed, and two carry the Riemann Invariants, J+ and J_, which are given by: 

J± = u± 
2a 

7^ 
(2.6) 

where u is the flow speed, a is the speed of sound, 7 is the ratio of specific heats, and 
all quantities are dimensional. The first two of these move through space with speed 
u and the second two with speed u + a and u - a, respectively. Thus, three of the 
characteristics always point in the flow direction and the fourth points upstream for 
subsonic flow {u < a) and downstream for supersonic flow {u > a). A subsonic inlet 
therefore takes information from outside the domain on three characteristics and from 
inside the domain on one. A supersonic inlet, however, takes all of its information 
from outside the domain.   Similarly, a subsonic outlet takes three characteristics 
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from inside the domain and one from outside while a supersonic outlet takes all its 
characteristics from inside the domain. Over-constraining the boundary, by specifying 
too many variables for the number of incoming characteristics, leads, in DSMC, to 
strong local flow adjustments of the type shown in Figure 2-3. 

Although the characteristics constrain the number of state variables that can 
be specified at the I/O faces, there is some freedom to choose their identity. [21] One 
possible arrangement is to specify the streamwise speed, transverse speed, and density, 
calculating the pressure from the domain. This is useful for modeling aerodynamic 
bodies at a given flight speed, angle of attack, and altitude, for example. A more 
common arrangement is obtained by substituting temperature for density in the above 
case so angle of attack and Mach number are the input parameters. Another possible 
arrangement was used for the calculations presented in Chapter 3. For these flows, the 
pressure, temperature, and transverse speed were specified and the streamwise speed 
was calculated from the domain at inflow faces. Only pressure was specified at the 
outflow^ faces of the subsonic cases and nothing was specified in the supersonic cases. 
These boundary conditions are intended to model fully-developed flows in channels 
and nozzles, (ie. flows which appear to represent a segment of a device which is far 
from its pressure reservoirs). This is accomplished by enabling the streamwise speed 
to self-adjust to a parabolic profile at the inlet and outlet which smoothly blends with 
the velocity profiles in the remainder of the channel. 

DSMC's statistical nature complicates the boundary enforcement process, how- 
ever. To determine a cell's macroscopic variables, its microscopic state must be 
sampled. Unfortunately, there may be as few as 20 particles in a given cell at a given 
time, so a single sample produces unacceptable statistical scatter. This leaves two 
options: neighboring cells may be included in the instantaneous sample, or it may be 
replaced with a time average. The former option involves the selection of neighboring 
cells with states 'close-enough' to that of the cell in question to yield a meaningful 
spatial average. The latter option involves choosing a time-averaging method that 
results in a sufficiently accurate estimate but still allows the flow to reach its steady 
state with reasonable speed. The latter option was implemented in the current code. 
The cell state was sampled after a movement step was completed, incoming particles 
were introduced at boundary enforcement, and collisions were performed. A weighted 
average was then taken between this result and a running value collected from previ- 
ous time steps. The weighting of the instantaneous state may be varied to balance the 
accuracy of the running estimate with the convergence speed; a large weight makes 
the estimate sensitive to the statistical scatter inherent in the instantaneous average, 
causing error in the estimate, while a small weight causes prior information to decay 
slowly, retarding convergence to steady-state. A weight of 1/20 was chosen for the 
cases presented in this work. 

Once the necessary macroscopic variables are obtained from either the user or the 
domain, the boundary enforcement process is identical for inflow and outflow faces: 
particles are introduced in sufficient quantity and with the proper velocity distribution 
to satisfy local constraints. It should be noted that a significant number of particles 
are introduced at both the inflow and the outflow faces in low-speed calculations, 
consistent with the existence of the backward-running characteristic discussed above. 
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First, the number of particles to introduce at an I/O face must be calculated. To 
accomplish this, a target number density for the cell containing the face is obtained 
from the specified/calculated macroscopic variables and the ideal gas relation, which 
is simply 

p = nT (2.7) 

under the non-dimensionalizations of Section 2.1. A target particle quantity is then 
calculated through multiplication by the cell volume. The actual particle quantity 
is compared to this target to determine the number of particles to introduce. If the 
actual particle quantity is greater than or equal to the target, no action is taken; 
particles are never removed from a cell. 

Velocity components perpendicular to the I/O face are then assigned to the in- 
coming particles according to a Maxwellian distribution at the specified/calculated 
temperature. In non-dimensional form, the velocity distribution for a thermal velocity 
component in the transverse direction, say v', is given by: 

/(.•') = -^ e-^ (2.8) 

Values are selected from this distribution directly using a method presented by Bird 
in Ref. [1]: select two independent random numbers, Rf^ and Rf^, then calculate v' 
from: 

27rR, 

r   =   ^-Tln{Rf,) (2.9) 

v'   =   rsin(^) 

At inflow faces, the specified transverse velocity (which is zero for all cases in this 
report) is added to this value. At outflow faces, the calculated transverse velocity 
is added. This operation is identical for all cases because one of the characteristics 
discussed above carries the transverse velocity specifically and always moves in the 
flow direction. 

The velocity component normal to the I/O face is then assigned according to 
a fluxal distribution, ie. a distribution which is shifted based on the mean normal 
velocity through the face. The resulting (non-normalized) velocity distribution is 
given by: 

A-=«'e-("'-"")', (2.10) 

where u„ is the normal component of the macroscopic (mean) velocity across the face 
and a positive value denotes motion into the cell (for both u' and u„). This distri- 
bution is sampled via the acceptance-rejection method, where a randomly-selected 
value for u' is either accepted, with a probability equal to fu'{u')/{fu')max, or rejected 
and another value chosen, repeating until an acceptance is made. Situations where 
u' < 0 are non-physical, because the particle could not enter the cell, and are therefore 
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excluded from consideration. 
A low aspect ratio channel with a pressure ratio of 3 and the fully-developed flow 

boundary conditions described above served as the test case during 10 boundary 
development. This case was chosen because it produces strong gradients yet remains 
subsonic at the outflow, presenting a signiflcant challenge to boundary enforcement. 
The channel geometry was 150x30 A (referenced to the inlet) with 4000 uniform cells 
and approximately 180,000 particles at steady-state. A sample run is presented to 
demonstrate the effectiveness of the current boundary formulation. 

Figure 2-4 contains the complete (ie. all cells were plotted) streamwise velocity 
distribution. End-effects are almost imperceptable at both the inlet and the outlet. 
The "long channel" boundary conditions were therefore successful and the flow in 
the entire domain can be considered fully-developed. The corresponding pressure 
distribution is shown in Figure 2-5, also with good results, exhibiting very little of 
the flow adjustment present in Figure 2-3. 

Figure 2-4: Complete streamwise velocity distribution for I/O test channel. 

A code listing of the boundary enforcement function is given in Appendix C. 

2.8    Verification 

Before treating more complicated cases, simple verification runs were made to test 
the algorithm formulation and coding. Cases with either an analytical solution or 
published results were chosen for this task to facilitate comparison with the current 
code. An equilibrium gas in a box and a 1-D shock wave are examined below. 
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150 

Figure 2-5: Complete pressure distribution for I/O test ciiannel. 

2.8.1    Equilibrium Gas 

All flows examined in this work have Knudsen numbers which place them comfortably 
in the collisional regime. The proper treatment of inter-particle encounters is therefore 
crucial to an accurate simulation. To test the mechanisms governing the collision 
frequency, the equilibrium collision rate of several different gases was calculated by 
simulating a resting fluid in a closed domain. The results were then compared to the 
theoretical prediction. 

The theoretical equilibrium particulate collision rate, fp, represents the average 
number of collisions suffered per particle per unit time. It is given by the mean 
molecular speed, c', divided by the mean free path, A. From Section 2.1, the non- 
dimensionalization factors for length and speed are A and c^, respectively, both at 
a reference condition. Noting that d = 2/i/7r c^ the non-dimensional equilibrium 
collision rate is found to be: 

1.13 
■K 

(2.11) 

To verify that the DSMC code correctly produces this rate, a 10x10 domain, 
composed of 100 cells and specularly-reflecting walls, was constructed. Five-thousand 
particles were distributed in this domain with velocities selected from a Maxwellian 
distribution at the reference temperature. The flow was then run for 1000 time steps, 
to allow any initial condition effects to die out, then sampled every four time steps 
until 1000 samples were obtained. This was performed for four gases with significantly 
different values of u and the results are presented in Table 2.2. 

First, it may be noted that the collision rate is independent of molecular species. 
This is supported by the theoretical prediction, as no gas constants appear in Equa- 
tion 2.11. In addition, the computed rate is within 2% of the theoretical value. This 
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Gas iO i^p 

Neon 0.16 1.15 
Nitrogen 0.24 1.15 
Argon 0.31 1.15 
Carbon Dioxide 0.43 1.15 

Table 2.2: Computed Equilibrium Collision Rates for Various Gases 

error was found to be a function of the number of particles per cell, Nc, in accor- 
dance with the statements made in Section 1.4.1. This dependence is demonstrated 
in Table 2.3. 

Nc yp %Error 

100 1.14 1.0 
50 1.15 1.9 
20 1.17 3.7 
10 1.23 9.0 

5 1.32 17.0 

Table 2.3: Computed Equilibrium Collision Rates for Various Cell Particle Numbers 

2.8.2     1-D Shock Wave 

To assess thu accuracy of the non-equilibrium collision rate and the post-collision 
scattering law, a 1-D shock wave was computed. This case was selected because 
analytical expressions exist for the state variable jumps across the shock and published 
DSMC results for the shock profile are available. 

This calculation was performed on a 100x40 grid with 4000 uniform rectangular 
cells. The simplicity of this geometry allowed a particle's current cell to be determined 
by mathematical means, based on its position, the grid dimensions, and the number of 
cells. The trajectory-tracing movement scheme outlined in Section 2.4 was therefore 
not required. This enabled the shock to be created by moving the left side of the 
domain, compressing the entire grid with each time step to maintain its regularity. 
The grid was initialized with a resting fluid, and the wall was set in motion at t=0. 
Ensemble averaging was performed for a total of 50 ensembles. 

The resulting jump in state variables across the shock may be compared to the 
analytical predictions derived from the 1-D flow equations. [20] This comparison is 
presented in Table 2.8.2 for a Mach 8 shock in Argon {u^au = 5.39, tv = 0.31). An 
excellent agreement is obtained in all cases, with a maximum error of less than 2%. 

The spatial profile of the shock may also be compared to other DSMC results, 
such as those presented by Baganoff and McDonald. [11] This comparison is shown in 
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Variable Analytical Computed %Error 

Pressure 79.75 79.54 -0.26 
Temperature 20.87 20.58 -1.39 
Density 3.82 3.86 +1.05 
Wave Speed 8.00 8.08 -fl.OO 

Table 2.4: Analytical and Computed State Variable Jumps Across a Mach 8 Shock 

Figure 2-6 for a Mach 3 shock in a Maxwellian gas, which is equivalent to a VHS gas 
with uj = 0.5. The agreement is, again, excellent, providing evidence that the code is 
indeed properly simulating the fluid behavior. 

o    Current Work 
 Published DSMC 

Figure 2-6: Comparison of Mach 3 shock profiles from the current code and published 
DSMC results. 
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Chapter 3 

Non-Continuum Results 

As discussed in Chapter 1, DSMC is primarily used for flows in non-continuum 
regimes, for which Navier-Stokes based methods break down. Formerly, most of 
these flows involved high-altitude flight. Now, MEMS devices provide a rich array of 
interesting flows in these regimes that have practical applications in a wide variety of 
areas. A sampling of these cases are examined in this chapter. This effort is intended 
to investigate DSMC's ability to accurately and efficiently model micro-flows as well 
as illuminate some of their unique features which are important to MEMS designers. 

3.1     Slip Flow Regime Micro-Channel 

The first case explored was a steady flow through a micro-channel with an outlet 
Knudsen number of 0.05, placing it in the slip flow regime. This geometry is similar 
to those investigated experimentally by Harley et a/. [22] and Arkilic et a/. [23] and 
numerically (with spectral element methods) by Beskok and Karniadakis.[24] This is, 
historically, an important canonical case for determining the effect of rarefaction on 
the transport terms in the Navier-Stokes equations. It is also useful as a representation 
of the flow along certain features common in MEMS devices, such as the space under 
the floating plate of a shear stress sensor or accelerometer, which is typically only one 
micron high but hundreds of microns in breadth and depth. In addition, it serves 
as an interesting calibration case to assess the accuracy of the numerical algorithm 
because analytical solutions have been developed for this geometry. 

In one such effort, Arkilic et al. show that the Navier-Stokes equations may be 
solved analytically for a long, high aspect-ratio, isothermal channel in the slip flow 
regime if the boundary conditions are modified to include a Kn-dependent streamwise 
velocity (slip) at the wall, given by: 

2 - F ^^    du 
F dy 

(3.1) 
■wall 

where u is the streamwise velocity, Kn is the local Knudsen number, y is the transverse 
coordinate, which has its zero at the channel centerline, and F is the tangential 
momentum accommodation coefficient, discussed in Section 2.7.1. 
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Through this analysis, an expression may be obtained for the pressure distribution 
in a microchannel with diffusely-reflecting walls as a function of streamwise channel 
location and overall pressure ratio: 

V{x) = -GKuo + 
X 

{6Kno + V,r--[{Vf 1) + UKrioiV, - 1)] (3.2) 

where V{x) and V^ are the local and inlet pressures, respectively, normalized by the 
outlet value, Kuo is the outlet Knudsen number, x is the streamwise coordinate, 
and L is the channel length. The distribution predicted by Equation 3.2 may be 
compared to a DSMC result as a test of both theory and code. Such a comparison is 
presented in Figure 3-1 for a 600 x 20A (referenced to the outlet) channel run with 
Nitrogen [u = 0.24) at a pressure ratio of 2.47 with the infinite channel boundary 
conditions discussed in Section 2.7.2. A good agreement is obtained (max error = 
1.5%), including the nonlinear pressure distribution that occurs due to the large 
pressure drop down the length of the channel. 
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Figure 3-1: Comparison of computed and analytical pressure distributions for a micro- 
channel in the slip flow regime. 

A theoretical expression for the streamwise velocity distribution was also devel- 
oped by Arkilic et al.\ 

1 dp ( 
u = r~ \y 

2iidx \ 
(3.3) 

where n is the coefficient of viscosity, p is the pressure, and H is the channel height. 
This equation is plotted in Figure 3-2 for the geometry and conditions used above. 
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Several features unique to a flow of this type are visible. First, the fluid accelerates 
as it moves down the channel, unlike in the familiar Poiseuille result. This is a 
consequence of the density drop caused by the decreasing pressure in the streamwise 
direction (the flow is effectively isothermal). The mean streamwise velocity must 
therefore increase to maintain a constant mass flow. Second, the velocity at the walls 
is nonzero and increases with increasing x-coordinate. This is the aforementioned 
'slip flow', which, by Equation 3.1, is essentially zero for continuum flows due to their 
very small Knudsen number. The increase in slip velocity down the channel is a result 
of growth in both Kn (from the decreasing pressure) and velocity gradient at the wall 
(from the accelerating flow). 

Figure 3-2:  Theoretical streamwise velocity distribution for a micro-channel in the 
slip-flow regime. 

The DSMC result for this configuration is presented in Figure 3-3. Comparing 
this to the previous figure, it may be concluded that the DSMC calculation qualita- 
tively reproduces the mean flow acceleration and the increasing slip flow predicted 
by the theory. In addition, good quantitative agreement is obtained in the velocity 
distributions. 

A further comparison with the theoretical analysis of Arkilic et al. may be found 
by normalizing the velocity distribution of Equation 3.3 by the average velocity at a 
given x-location, obtained by integrating u from the lower wall to the upper wall and 
dividing by H: 
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Figure 3-3: Computed streamwise velocity distribution for the micro-channel of Fi^ 
ure 3-2. 

H^ dp 
''''''~ ~ I2^i dx 

Rearranging the resulting expression yields: 

1 + &Kn) 

Kn+ {- + Kn 
u 

u„ 
1 
4 

(3.4) 

(3.5) 

The left side of this equation, which will be referred to as the 'similarity speed', 
Us, is a function of x and y, while the right is a function of y only. Consequently, if 
the slip-flow analysis holds, calculating the similarity speed using the local Kn{x) and 
u{x,y) will yield identical parabolas at all rc-stations down the length of the channel. 

This assertion was tested by computing a similarity speed distribution from the 
DSMC output. The maximum and minimum of the result at each x-location is shown 
in Figure 3-4. It should be noted that the upper theoretical line is not placed exactly 
at 0.25 because an even number of cells was used in the DSMC run, so there is no 
data point in the center of the channel. Also, the lower line is not at zero because 
the macroscopic quantities for a cell are assumed to be associated with its centroid, 
so there are no data points on the walls themselves. 

It may be concluded from this figure that the similarity assertion indeed holds for 
the slip flow channel. As predicted by the analysis, the down-channel variation of the 
streamwise velocity profile seen in Figure 3-3 has given way to a constant similarity 
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Figure 3-4: Comparison of computed and theoretical maximum and minimum simi- 
larity speeds for a micro-channel in the slip flow regime. 

speed profile. In addition, the maximum and minimum similarity speeds compare 
well with the predicted values. 

Overall, excellent agreement was obtained between the analytical solution of Ark- 
ilic et al. and the DSMC results. This supports the accuracy of both techniques. 
For the DSMC code, however, it is just the beginning; many more interesting flows, 
for which there are no reliable analytical solutions, may be easily treated with this 
method. The remaining cases presented in this chapter are intended to demonstrate 
this capability. 

3.2    Transition Regime Micro-Channel 

One of the great strengths of DSMC is its validity for dilute gases in all Knudsen 
number regimes. One of the most interesting of these is the transition regime, de- 
fined in Section 1.2 as 0.1 < Kn < 3. Here the mean free path is comparable to 
the characteristic dimension of the flow. This makes analytical solution very difficult 
because the approximation of transport terms based on macroscopic quantities be- 
comes inaccurate, precluding the use of the Navier-Stokes equations (even with the 
slip-flow boundary condition of Equation 3.1). Collisions are still important, however, 
so the collisionless Boltzmann equation is not yet an option. This leaves only the full 
Boltzmann equation; a very difficult expression to solve, either analytically or with 
numerical techniques. 
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DSMC is therefore a very attractive tool for investigating the transition regime. It 
is also one of the few tractable techniques which is uniformly valid in mixed i^n-regime 
flows. These are important features because, due to the aforementioned difficulties, 
relatively little is known about these cases. Such knowledge is critical, however, 
because many MEMS devices contain flows of this nature. 

The micro-channel was again used as a sample case, this time to observe the failure 
of the slip-flow analysis as Kn enters the transition regime. The channel treated here 
is 136.4 X 2.3 A, with a pressure ratio of 4.2 and an outlet Knudsen number of 0.44. 
The working fluid is, again. Nitrogen. 
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Figure 3-5: Comparison of computed, slip-flow, and continuum pressure distributions 
for a micro-channel in the transition regime. 

Proceeding as in the slip-flow case, the computed pressure distribution is compared 
to the slip-flow prediction in Figure 3-5. The continuum curve {Kn = 0.0) is also 
shown for reference. As expected, the excellent agreement between DSMC and theory 
obtained for the slip-flow case (Figure 3-1) is no longer present. The error between the 
curves has grown from less than 2% to more than 4%. The form of this disagreement 
is also significant: the computed curve is more linear than its analytical counterpart. 
A trend of increasing pressure curve linearity with increasing rarefaction is therefore 
established by the relative shape of the continuum, slip-flow, and transition curves. 

The analytical prediction for the streamwise velocity distribution in this channel 
is presented in Figure 3-6. Note that the theory predicts a flatter profile than for 
the previous case. This may be attributed to the last term in Equation 3.3, which 
is constant across the channel and proportional to Kn. The Knudsen number is an 
order of magnitude larger in this case, so this term has a much stronger influence on 
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the shape of the distribution. 

Figure 3-6: Theoretical streamwise velocity distribution for a transition-regime micro 
channel calculated with the slip-flow analysis. 

Upon plotting the computed distribution for comparison (Figure 3-7), it becomes 
evident that the assumptions supporting Equation 3.3 are beginning to fail. Both 
the slip flow and maximum speeds at a given x-location are higher than predicted by 
as much as 40%. This allows the channel to support a much larger mass flow than 
would be predicted by the slip flow theory, which, in turn, predicts a larger mass flow 
than the traditional Navier-Stokes analysis. 

A final exposition of transition behavior may be made via the similarity analysis of 
the previous section. As discussed in Section 1.2, the transition regime is commonly 
considered to begin at Kn = 0.1. This assertion may be tested by noting that Kn 
increases with downstream position. The similarity profiles, which depend on the slip- 
flow solution, may then be computed for each position and compared to the analytical 
prediction. Because each position has a Knudsen number associated with it, the value 
for which the slip flow analysis fails may be determined by finding the point where 
the experimental and analytical curves begin to diverge. Toward this end, Figure 3-8 
contains the computed maximum and minimum similarity speeds, plotted with the 
analytical prediction in a fashion identical to that of Figure 3-4. The Kn distribution 
was then overlaid to facilitate determining its value when the slip-flow analysis fails. 

It may be concluded from this figure that the slip fiow analysis begins to fail at 
approximately Kn = 0.15.   This supports the oft-used boundary for the transition 
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Figure 3-7: Computed streamwise velocity distribution for the channel of Figure 3-6 

region, Kn = 0.1. This limit may be understood if the slip boundary condition, 
Equation 3.1, is viewed as an expansion of the wall velocity in powers of Kn. The 
no-slip condition is then the zeroth-order solution, and Equation 3.1 is the first-order 
solution. It is therefore logical that the neglected higher-order terms would begin to 
significantly affect the result when Kn exceeds 0.1. A second-order accurate boundary 
condition in terms of the continuum variables is presented in Ref. [24], though it 
should be remembered that the Navier-Stokes equations themselves are only strictly 
valid to first order in Kn. 

3.3    Supersonic Micro-Nozzles 

The final cases presented in this chapter are supersonic micro-nozzles. These may 
be viewed as channels whose upper and lower walls form a parabolic contraction / 
expansion. Two such nozzles are discussed, one with an area ratio of 3.5 and sonic 
flow at the throat, and one with an area ratio of 2.0 and subsonic flow at the throat. 
The grid for the latter case is shown in Figure 3-9. 

Analytically, a sufficiently long nozzle can be considered quasi-ID and the solu- 
tion given in Section 3.1 may be used, with appropriate modifications for the slowly 
varying channel height. The nozzles presented in this section, however, have a total 
length of only six times their throat height, so the quasi-lD assumption is not valid. 
In addition, the significant expansion may cause the Kn-vegime to change at one or 
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Figure 3-8: Computed and analytical similarity speeds with Knudsen number overlay. 

more streamwise positions. These factors make analytical and continuum-based nu- 
merical treatment of these geometries difficult. Nonetheless, nozzles such as these 
may play important roles in devices such as micro-rocket thrusters and micro-gas 
turbine generators, for example. Investigating their behavior is therefore a valuable 
task for which DSMC is well-suited. 

Both cases were run with an inlet at 10 times the reference pressure and ex- 
hausted to 'vacuum'. The latter condition was implemented by simply removing 
from the simulation any particle which crossed the outlet boundary and refraining 
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Figure 3-9: Computational grid for a micro-nozzle with area ratio 2.0. 

37 



from introducing new particles at those faces. The walls were isothermal at the ref- 
erence temperature with full thermal and momentum accommodation. The working 
fluid was Helium {u = 0.20), which was supplied at the reference temperature. 

3.3.1    Sonic Throat 

The first nozzle presented has an area ratio of 3.5 and 4200 cells. With the boundary 
conditions given above, the resulting pressure ratio was approximately 24 and the 
outlet Knudsen number, based on the passage height, was 0.03. 

The Mach number distribution for this case is shown in Figure 3-10. A number 
of interesting features are visible. First, as normally expected, the flow is sonic at 
the throat. Second, a Mach number of 2.4 is reached. This is considerable when it 
is noted that the nozzle is only approximately 600 inlet mean free paths in length. 
Finally, the slip flow speed is substantial, exceeding Mach 0.5 near the outlet. 

Figure 3-10: Mach number distribution for a micro-nozzle with a sonic throat. 

The temperature distribution for this micro-nozzle is shown in Figure 3-11. It 
is clear that, unlike the channel case, this flow cannot be considered isothermal. A 
strong temperature gradient exists in both the streamwise and transverse directions, 
creating another obstacle to analytical treatment. This is also a very notable feature 
when the diminutive dimensions of the nozzle are considered. Though the walls are 
only about 30 local mean free paths apart at the exit and are isothermal with full 
energy accommodation, the fluid is still able to realize a substantial reduction in 
temperature. The effect of rarefaction has therefore been to significantly reduce the 
thermal communication between the wall and the fluid. This assertion is supported 
by noting the large thermal slip at the wall. 
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Figure 3-11: Temperature distribution for a micro-nozzle with a sonic throat. 

3.3.2    Subsonic Throat 

The second nozzle presented is identical to the first, except its area ratio is reduced 
to 2.0 and its grid to 2400 cells. With the boundary conditions given above, the 
resulting pressure ratio was 10.2 and the outlet Knudsen number was 0.03. 

The Mach number distribution for this case is shown in Figure 3-12. This dis- 
tribution was plotted in the same manner as the previous case, only the viewpoint 
was shifted to look along the y-axis. An interesting feature is now visible: the outlet 
flow is supersonic, but the sonic point is downstream of the throat. This result is at 
odds with the inviscid, quasi-lD conclusion that sonic flow may only be attained at 
a point of minimum area. [20] The highly viscous nature of this flow (due to the close 
proximity of the walls) invalidates this prediction, however, causing the gas to con- 
tinue to accelerate downstream of the throat despite the fact that it is still subsonic 
and the duct is diverging. 

Because a significant portion of this nozzle is subject to the competing effects 
of deceleration due to geometry and acceleration due to viscosity, its outlet Mach 
number is considerably {^ 30%) smaller than the previous case for similar boundary 
conditions. This highlights the importance of proper design in such a device. As one 
of the few analysis tools valid for these flows, DSMC has considerable value to such 
an effort. 
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Figure 3-12: Mach number distribution for a micro-nozzle with a subsonic throat. 
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Chapter 4 

Scaling Issues^ 

The previous chapter demonstrated that a conventional DSMC code can accurately 
treat many geometries of interest to MEMS designers. Unfortunately, the demanding 
cell size and time step constraints outlined in Chapter 1 make DSMC modeling of 
even certain micro-devices very difficult. For example, the mean free path and most 
probable molecular velocity of air at standard, sea level conditions are approximately 
60 nm and 414 m/s, respectively. Sizing the cell lengths at one A and the time steps 
at |c^, as called for in Chapter 1, a 2-D simulation of the smallest micro-channel of 
Arkilic et al. (1.33x5000 //m) [23] would require over a million cells and, consequently, 
at least ten million particles. In addition, the time steps would be only 36 ps, causing 
unsteady cases, even those with microsecond time scales, to be very expensive. 

In response to this situation, the consequences of relaxing the cell size and time 
step requirements commonly placed on DSMC are explored in this chapter. The goal 
of this effort is to allow the cells in these calculations to be sized by the flow gradients, 
as in continuum CFD, rather than by the molecular scales. This is a complex issue, 
however, because this sizing violates some of DSMC's underlying assumptions as 
the scale length of the gradients increases, reducing the Knudsen number. Certain 
features of the physical situation are therefore altered or lost. The key to a successful 
simulation, and the goal of this chapter, is to identify these features and assess their 
importance to the flow. 

4.1    Scaling Rules 

As discussed in Section 1.4.3, the cell size in a DSMC calculation should be comparable 
to the mean-free-path of the gas so collision partners may be selected without regard 
to their position in the cell. In this chapter, it will be convenient to express this 
constraint in terms of a 'cell Knudsen number', Kric'- 

Kn, = -—>1 (4.1) 

^The author is indebted to David Gonzales, a co-author of the paper (AIAA-95-2088) on which 
this chapter was based, for allowing the material to be presented here. 
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where Axrf is a typical cell dimension (again, the subscript "d" refers to dimensional 
quantities). 

A second requirement (discussed in Section 1.4.2) is that the time step, Atd, be 
small compared to a characteristic time so particle movement and collisions may be 
decoupled: 

At, < ^ (4.2) 

where c'^ is the most probable molecular speed. 
Borrowing from traditional computational mechanics, this constraint may be con- 

veniently expressed as a 'CFL', or Courant-Friedrich-Lewy condition: 

Physically, satisfying this condition requires a particle to reside in the same cell for 
a few time-steps to provide it with ample opportunity to interact with other particles. 
This ensures that its information can be distributed properly through the computa- 
tional domain. It is important to realize that, unlike its CFD counterpart, this CFL 
condition is not a stability requirement, but a validity requirement. Violation of the 
condition will still yield results, but they may be inaccurate. A DSMC computation 
must therefore be constructed with very careful attention to its scaling constraints 
because the algorithm itself will give no indication that its results are completely 
non-physical. 

Under the NTC collision method outlined in Section 1.4.3, the number of collision 
pairs, Np, to be considered in a given cell is computed through the equation: 

Np DC At-^ (4.4) 
' c 

where Vc is the normalized cell volume, Nc is the number of computational particles in 
the cell, and n is the reference simulation number density, which is the total number 
of computational particles divided by the non-dimensional domain volume. 

Noting that the normalized cell volume scales like Knc~^ and the simulation num- 
ber density scales like NcKric^, it may be concluded that: 

^ DC At. (4.5) 
A^, c 

Thus, for a fixed size computation {Nc held constant), Np depends only on the time 
step chosen to advance the solution. 

The ratio of potential collision pairs to the number of particles in a cell will be 
referred to as the 'over-collision ratio'. A value of one implies that, on average, each 
particle will considered for a collision during every time step. In a well-resolved 
DSMC computation, where At ^ 0.2, roughly 20% of a given cell's particles will be 
considered for collisions. 

The preceding expressions reveal the essential scaling issues involved in applying 
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DSMC methods to \ow-Kn flows: as the physical size of the problem increases, it 
becomes computationally impractical to maintain a cell size on the order of the mean- 
free-path. It must therefore increase or, using the terminology introduced above, Ktic 
must decrease, violating the constraint of Equation 4.1. In addition, as the cell size 
increases, the time step should be reconsidered. Two options exist: scale At so the 
CFL number remains constant, or hold it at some small value and let the CFL number 
decrease. 

The first option maintains proper information propagation across the domain, 
preserving computational efficiency. Unfortunately, increasing At also causes rapid 
growth in the number of collision pairs to be considered, resulting in an over-collision 
ratio greater than one, as well as a large number of computationally expensive colli- 
sions to process. 

The second option maintains a reasonable value of Np/Nc, but results in a very 
small CFL number, causing an inefficient advancement of the solution and accumu- 
lation of statistics. This inefficiency springs from the fact that a small CFL number 
implies that most particles will require many time steps to cross a given cell. The 
collision phase of each time step will then involve essentially the same group of parti- 
cles as the previous time step because very few particles leave or enter the cell. This 
situation is therefore equivalent to using a large time step but adding the compu- 
tationally pointless exercise of moving the particles some small distance at several 
points in the collision phase. It may therefore be argued that it only makes sense to 
maintain a constant CFL number, regardless of the cell Knudsen number. 

A solution to this problem was proposed by Bartel et a/. [25], who recognized that 
many of the large number of collisions called for by Equation 4.4 serve no purpose 
other than to reinforce a Maxwellian distribution amongst the particles in a given 
cell. It should therefore be sufficient to restrict the number of collisions to some small 
value (comparable to the number of particles in the cell) and still take large time 
steps during the computation. In the current terms, Bartel's suggestion was to limit 
the over-collision ratio to some (arbitrary) value less than its "true" value given by 
Equation 4.4. This approach was applied by Bartel et al. to a Couette flow and an 
expanding nozzle flow with good results. 

4.2    Numerical Investigation 

To explore these issues in detail, two canonical cases were run with the current code: 
a Rayleigh flow and a free shear layer. These cases were chosen for their simplicity, 
the existence of either analytical or published solutions, and their relatively small 
CPU time requirements. Ni's bump was also run to confirm assertions made in the 
course of this work. 

4.2.1    Rayleigh Flow 

One-dimensional, unsteady Rayleigh flow was chosen as the first model problem for 
this investigation.   This fiow, illustrated in Figure 4-1, consists of a stationary gas 
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subjected to the sudden acceleration of its lower boundary to a constant speed, Uo- 
It is well-suited to this investigation because its length scales are not imposed by 
geometry, but rather by time and viscosity. In addition, it is a one-dimensional 
flow so computations are compact and run quickly, allowing several test cases to be 
considered. 

Uo*- 

Figure 4-1: Schematic of a One-Dimensional Rayleigh Flow 

For this series of calculations, the wall velocity, [/„, was set to 0.2 {Ma = 0.22) in 
order to ensure the applicability of the incompressible Navier-Stokes solution (given 
below). All cases were run with Helium {to = 0.20) and the CFL number was held at 
0.3. 

Analytical Solution 

The analytical solution of the Rayleigh problem has two distinct regimes based on 
the Knudsen number. For large Kn, the collisionless Boltzmann equation is applied. 
The resulting solution is given by [9]: 

u = -r-erfc      , 
2        \VWTt. (4.6) 

where R is the gas constant, T is the temperature, and erfc() is the complimentary 
error function. 

For small Kn, the incompressible Navier-Stokes equation is applied.    For the 
Rayleigh problem, this reduces to: 

du        d^u 
(4.7) 

where ly is the kinematic viscosity coefficient, which is proportional to the mean free 
path. 

This expression can be solved using the slip-flow boundary condition of Equa- 
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tion 3.1, resulting in: 

11. = U^ 
Kn + l 

rr erfc(e) 
" = UoT7-~ (4.8) 

where .^ is a similarity variable: 

and Kn is the Knudsen number, defined here in a somewhat unusual, but convenient 
manner as: 

^" = 7^- ("»' 
This is a more general version of the classical Rayleigh solution.[26] Note that, 

in this solution. Kn is a function of time and becomes infinite as t -> 0. This 
makes intuitive sense because the characteristic scale of the solution is the momentum 
thickness of the viscous layer, which is initially zero, but grows with time. One 
implication of this time-dependent Knudsen number, however, is that care must be 
taken in evaluating the solution at ^ = 0 and cx), where appropriate limits of both t 
and y must be computed. 

Well-Resolved Computation 

This section presents DSMC results for well-resolved cases (i.e. where Kric > 1). 
These are intended to demonstrate the resolution of the current grid, which was used 
for all Rayleigh flow cases, as well as to serve as points of comparison for later sections, 
where the geometries are not fully resolved and scaling issues are important. 

The first of these results, Figure 4-2, shows the computed near-wall velocity pro- 
file, u{y), at t = 0.004. Because this time is significantly smaller than the mean 
collision time (\/7r/2, under the non-dimensionalizations of Section 2.1), the collision- 
less Boltzmann solution (Equation 4.6) applies. The solid fine represents the analytic 
solution while the symbols represent the DSMC result. For this computation, the 
cell Knudsen number was 1.3 x 10"* and the time-step 2.5 x 10~^. The agreement is 
excellent, providing evidence that the grid is sufficiently dense to accurately resolve 
the profile. 

As the boundary layer grows with time, Kn increases through the point where 
collisions become important and the fluid begins to behave as a continuum. When 
Kn leaves the transition regime (defined in Section 1.2 as 0.1 < Kn < 3), the sHp- 
flow Navier-Stokes solution of Equation 4.8 becomes applicable. Figure 4-3 contains 
a comparison of DSMC results with this solution at t = 100. It may be noted that 
Kn = 0.07, so there is still a perceptible velocity slip at the wall (ie. u(0) < Uo). 

If, as Figure 4-3 suggests, DSMC is correctly solving the Navier-Stokes equations, 
the velocity distribution should be a slight perturbation from Maxwellian, given by 
the Chapman-Enskog distribution for a one-dimensional isothermal shear flow [1] as: 
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Figure 4-2:   Comparison of DSMC and collisionless Boltzmann solutions to the 
Rayleigh problem at t = 0.004. 
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Figure 4-3:    Comparison of DSMC and slip-flow Navier-Stokes solutions to the 
Rayleigh problem at t = 100. 
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where fo is the Maxwellian distribution. This distribution was computed and is shown 
in figure 4-4, sampled at y = 2.33, t = 40. Here, the mean velocity, u, has been 
subtracted and the four quadrants of (u', v') have been collapsed onto one through 
algebraic operations which reinforce the perturbation by taking advantage of its anti- 
symmetry. It should be noted that the Chapman-Enskog distribution is formally only 
valid for small perturbations. Because this is a low Mach number computation, the 
thermal fluctuations are significant and therefore only qualitative comparisons are 
appropriate. Nevertheless, the deviation from Maxwellian computed in the DSMC 
simulation is in good agreement with its predicted structure, indicating, as expected, 
that the gas is weakly perturbed from equilibrium by the shear. 

> 1.5 

Figure 4-4: Distribution of velocity perturbations for a well-resolved computation. 

In the following section, where this case is recomputed with various values of Kric, 
a quantitative comparison of the shear layers will be needed. One such a measure 
is obtained by performing a non-linear least-squares fit of the streamwise velocity 
data to the profile of Equation 4.8, with i/ as the free parameter. To demonstrate the 
dependability of this measure, Figure 4-5 shows the time-dependence of the computed 
viscosity for the well-resolved computation as it evolves from t = 0 to 200. 

With the non-dimensionalizations used in the code, the normalized kinematic 
viscosity coefficient of Helium is 0.64. From Figure 4-5, it may be seen that the DSMC 
solution under-predicts this viscosity for small times, but appears to asymptote to 
nearly the correct value as Kn —>• 0. The under-prediction at early times may be 
explained by noting that Kn is not yet in the region of validity for Equation 4.8. The 
slight over-prediction at later times is most likely due to a variety of factors including 
statistical scatter due to the low-Mach number and, a weak influence of the far wall 
(located 200 A from the moving surface). 
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Figure 4-5: DSMC-computed viscosity and Knudsen number as a function of time for 
a well-resolved computation. 

Under-Resolved Computations 

The previous section demonstrated that the DSMC code can accurately reproduce the 
analytical solution of the Rayleigh problem. This is not surprising, however, because 
the method's ability to model the true gas physics was demonstrated in the previous 
chapter and by many other researchers. These results were presented mainly as a 
means of verifying the proper matching of the code and grid to the problem and for 
calibrating the measures used in the scaling investigation. 

This investigation is begun in the current section by manipulating the previous 
Rayleigh calculation. In all cases, the grid geometry was maintained, but it's lin- 
ear dimensions were increased by a multiplicative factor. To hold the CFL number 
constant^, this factor was also applied to the time step. The number of particles was 
not changed. 

In a scaled calculation with a high over-collision ratio, it is expected, as argued 
above, that the particles in each cell will approach a Maxwellian distribution, rather 
than the proper, perturbed Maxwellian shown in Figure 4-4. This hypothesis was 
tested by running a case with an over-collision ratio of approximately 5 {Kric = 0.05). 
The distribution was then sampled from the same grid location as the previous case 
at a time selected to obtain approximately the same point in the profile (ie. the 
same value of u{y)/Uo). With the current scaling, this corresponds to y = 46.67 
and t = 2700. The resulting distribution is shown in Figure 4-6, collapsed onto one 

^Selected computations performed with lower CFL numbers yielded almost identical results, 
supporting the assertions made in Section 4.1. 
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quadrant in the same manner used in Figure 4-4. 

> 1.5 

Figure 4-6: Distribution of velocity perturbations for an over-collided (under-resolved) 
computation 

In contrast to the previous case, there is no well-defined structure to the pertur- 
bations in Figure 4-6. This lack of structure may be quantified by noting that the 
integral of the collapsed distribution shown here is an order of magnitude smaller 
than that for the well-resolved case. The implications of this result are somewhat 
subtle: if each cell in the over-collided computation contains an equilibrium distri- 
bution, then the Navier-Stokes equations, which correspond to a weak perturbation 
from the Maxwellian state, are not being solved, but rather the Euler equations, which 
represent an ideal gas in a perpetual state of equilibrium. Indeed, the closer each cell 
is driven to equilibrium, the more "ideal" the fluid should become. If this is in fact 
true, one could argue, then the computed viscosity of the Rayleigh layer should go to 
zero as the cell Knudsen number decreases, confining the eflFect of the wall motion to 
an increasingly narrow layer which asymptotes to a vortex-sheet singularity at y = 0. 

When this assertion is tested through a series of runs with different grid scalings, 
however, a surprising result is found: instead of a decrease in viscosity as Kn^ -^ 0, 
the opposite occurs. As Figure 4-7 indicates, the gas viscosity calculated from the 
DSMC computations increases as a function of the cell size (Ax = l/Kric). 

Three sets of data are reported in Figure 4-7: in the first set, denoted by circles, 
the number of collisions computed during each time step was not limited; in the second 
set, denoted by stars, a collision limiter of 5 was enforced; in the last set, denoted by 
crosses, a collision limiter of 1 was employed. (A collision limiter of 1 implies that 
Np = Nc regardless of the value of called for by the NTC equation (Equation 4.4).) 
At low values of l/Kuc, the correct u is produced.   However, as the cell size rises 
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Figure 4-7: DSMC-computed viscosity versus cell size. 

above about 10, the effective viscosity begins to increase. This increase appears to 
be linear over a very wide range of Kn^. 

This behavior stems from the particulate nature of the simulation. At low Mach 
numbers, the random thermal velocity of the gas will always result in particles mov- 
ing in the y-direction even though there is no net motion normal to the surface. In 
addition, because DSMC chooses collision partners in a given cell without regard to 
their location, momentum is uniformly diffused through the cell within a few time- 
steps. In a properly-resolved computation, where the cell dimension is approximately 
one mean-free-path, this behavior is molecularly "correct" and results in the proper 
physical viscosity of the fluid (helped, of course, by an appropriate value of the VHS 
exponent, UJ). However, in an under-resolved computation, the disregard for a par- 
ticle's location in the cell results in a diffusion of momentum due to thermal motion 
that is far in excess of the physical viscosity and it is this artificial viscosity that is 
exhibited in these results. In many cases, this thermal motion would not present a 
problem. However in the presence of a strong mean velocity gradient (as in the case 
of the wall-driven Rayleigh problem), the thermal motion, coupled with the mean 
shear, results in an artificial Newtonian viscosity, inversely proportional to the cell 
Knudsen number, Kuc, and greater than the physical viscosity. 

This argument suggests that the artificial viscosity should be most apparent at 
low Mach number and will abate as Ma increases because the relative importance of 
thermal fluctuations is reduced. In other words, at high speeds, particles will be 
swept from the domain by the mean flow before they have the opportunity to diffuse 
appreciably in the transverse direction.  This was not found to be the case for the 
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Rayleigh problem, however. The apparent discrepancy is explained by noting the 
flow's one-dimensional nature, which was exploited in this calculation by employing 
a Svrap-around' boundary condition. Here, exiting particles are reintroduced to the 
domain on the opposite edge, where they can continue to diffuse in the y-direction. 
A 2-D, spatially-developing flow is therefore needed to verify the above argument. 

4.2.2    Boundary-Free Shear Flows 

A boundary-free shear flow was selected to test the above assertion. Here, two streams 
at different velocities are introduced at x = 0; the upper stream moving at Ui, and 
the lower at 1/2- This arrangement is illustrated in Figure 4-8. 

^ ^ 

Ui    ^   

>• 
V                                    ^ 

^^^-^^^^ 

^ U2 

^ 

Figure 4-8: Schematic of boundary-free shear flow computational geometry. 

Figure 4-9 shows contours of velocity in the x — y plane for a well-resolved calcu- 
lation where f/i = 1.5 {Ma = 1.6), U2 = 2.0 {Ma = 2.2), and the working fluid is 
Argon {uj = 0.31). Note that the singularity at x = 0 quickly diffuses and a slowly 
thickening shear layer develops. 

By integrating the streamwise velocity across the layer, a flow can be characterized 
by its momentum thickness, 6: 

9 = j^ J^^{U, - u){u - U2)dy (4.12) 

where 6 has been normalized by the upper stream velocity, Ui and the computational 
domain height, H. This momentum thickness is shown in Figure 4-10 as a function 
of X for several computations at different Kuc- 

Theoretically, the spatial evolution of a laminar shear layer shows a square-root 
growth in momentum thickness [26]: 

^cx (4.13) 
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120 

Figure 4-9: Contours of streamwise velocity in a well-resolved DSMC computation of 
a supersonic shear flow. 

which is well captured by all of the test cases. Anamolies are observed, however, 
when comparing these cases to one another. 

First, comparing the well-resolved case (120x60) to the first scaled case (2400x 
1200), it is expected that the twenty-fold increase in linear dimensions will result 
in a \/20 = 4.47 decrease in the shear layer thickness at the same value of x/H. 
In Figure 4-10, however, the shear layer only decreases by a factor of approximately 
1.3. This is again explained by the artificial viscosity introduced by the under-resolved 
grid: as the grid is scaled from the well-resolved case, this artificial viscosity surpasses 
the physical viscosity, altering the proper relationship between the curves because the 
cases appear to be run with different fluids. 

Second, a further doubling from a scale factor of 20 to 40 (relative to the base- 
line case) is expected to further reduce the shear layer thickness, but was found 
to have a negligible influence. This "saturation" effect is related to the particle- 
transport/collisional-smearing mechanism causing the artificial viscosity. Because the 
grid dimensions and time step were scaled by the same factor (ie. the CFL number 
was held constant) identical particles moving through the two cases will pass through 
the same locations on the grid and undergo the same number of collision phases. In 
other words, for this Mach number, a characteristic level of artificial viscosity has 
been reached which is dependent on the grid itself. For these scaling factors, this 
grid-based viscosity is so much greater than the physical viscosity that the flow has 
become insensitive to its physical dimensions. 

Finally, when the Mach number of the incoming flow is increased, keeping the 
ratio U1/U2 constant, the theory predicts no change in the shear layer thickness. The 
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Figure 4-10: Development of shear layer momentum thickness as a function of down- 
stream distance. 

trace in Figure 4-10 for this case (labelled '4800x2400 High Speed) shows a thinner 
shear layer, however (still not reaching its correct value, but closer nonetheless). This 
improvement is due to the lower importance of thermal velocities with respect to the 
stream velocity, which results in a lower artificial viscosity. It should be noted that, 
as in the Rayleigh problem presented in the previous section, the artificial viscosity 
was observed to be relatively insensitive to the use of a collision limiter and to the 
choice of the CFL number. In this geometry, however, it was observed that a collision 
limiter did thm the layer very slightly. This is perhaps due to the fact that, with a 
collision limiter, there is slightly less "uniformity" within each cell because there are 
fewer collisions, so momentum is not smeared across the shear layer as rapidly. 

4.2.3    Euler Flow 

The results of the preceding section illustrate two competing trends in DSMC com- 
putations as the cell Knudsen number decreases. On one hand, a high value of the 
over-collision ratio, N^jN^ drives the particles in each cell toward a Maxwellian, or 
equilibrium, distribution. If this were the only effect present, DSMC would therefore, 
in these cases, formally solve the Euler equations, which are the governing dynamic 
equations for an equilibrium gas. A competing effect exists, however, because the 
essential nature of DSMC - the random motion of particles coupled with a disregard 
for the location of collision partners in a cell - creates an artificial viscosity from the 
diffusion of momentum through the domain. 

From this, one might expect that a scaled DSMC code should fail most dramati- 
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cally when attempting a low Mach number viscous flow and be optimal for modeling 
a high Mach number, inviscid flow. The former assertion was demonstrated in the 
previous sections; this section presents results to confirm the latter. 

The test case selected for this task, known as "Ni's Bump", is often run to demon- 
strate inviscid CFD methods. [27] The geometry consists of a two-dimensional duct 
with a circular-arc excrescence placed on the floor. A bump with 20% of the duct 
height was chosen for this work. This geometry and a traditional Euler code solution 
are shown in Figure 4-11. The inlet Mach number is 3.28 and the working fluid is 
Argon. 

100 - 

0 100 200 300 400 500 

Figure 4-11: Mach number contours of an Euler solution to Ni's Bump. 

Results 

Figure 4-12 shows Mach Number contours for a well-resolved DSMC computation of 
Ni's bump with duct dimensions of 125x30 A. This run utilized about 42,000 particles 
on a grid of 1,860 cells with u = 0.31. The flow reached statistical equilibrium 
in approximately 10 minutes, but an additional two hours were required to gather 
adequate statistics for data analysis (on an SGI Indigo). Although specular walls 
were employed, and thus a viscous solution is not being attempted, it is instructive 
to note that the effective Reynolds number of the DSMC computation, based on the 
inlet Mach number and the bump length (which is dimensional due to the mean free 
path grid scaling), is 243. 

30 rr 

100 120 

Figure 4-12:  Mach number contours of a well-resolved DSMC computation of Ni's 
Bump. 

By comparing this solution to that of the Euler code, it may be concluded that 
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Figure 4-13: Mach number contours of a scaled DSMC computation of Ni's bump. 

the flow is faithfully reproduced except for an apparently large shock thickness in 
the DSMC result. This is to be expected since, although there are no viscous effects 
due to the boundaries, the DSMC method is accurately solving the shock structure, 
where viscous effects are strong. Because the entire grid is only 125 mean free paths in 
extent, however, this shock appears excessively thick, though its thickness is actually 
quite comparable to the physical case (?a 10 A). In addition, other features of the flow, 
including the shock angles, the leading and trailing edge shocks, the shock reflections 
and the shock-shock interaction toward the rear of the duct, are properly reproduced. 

Figure 4-13 shows the same computation, scaled by a factor of 1,000 so the di- 
mensions of the duct are now 125, 000 x 30, 000 A (approximately 9x2 millimeters at 
atmospheric conditions). For this case, a collision limiter of one was used. The grid 
resolution was also doubled in each direction (compared to the last case) to 7,750 
cells. This was necessary because the shock thickness was observed to asymptote to a 
larger-than-expected minimum value as the cell Knudsen number decreased. This was 
identified as a grid resolution issue and it was found that, in common with standard 
CFD practice, the computed flow converged to a grid-independent solution through 
successive refinements in the grid (the average number of particles per cell was held 
constant). 

When compared with the previous case, the shock appears to be much thinner, 
although it is now actually thicker than a physical shock due to the much larger grid 
dimensions. This large shock thickness is due to the artificial viscosity inherent in a 
continuum application of DSMC. This does not render the solution invalid, however; it 
is, in fact, common practice in inviscid continuum CFD codes to explicitly introduce 
an artificial viscosity (usually second-order) in order to stabilize the solution near 
steep gradients such as shocks. The effect of this artificial viscosity is, as in the 
DSMC solution, a thickening of the shocks. DSMC does not require any exphcit 
introduction of artificial viscosity, however; it provides its own, as demonstrated by 
these results. Additionally, no oscillations in the solution are observed in the regions 
surrounding the shock. 
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Chapter 5 

Conclusions 

This report has presented many aspects of DSMC's appUcation to micromechanical 
devices. In the preceding chapters, the motivation behind this application, the al- 
gorithm developed for it, some of its results, and the issues involved with scaling it 
beyond its traditional range were discussed. This chapter draws conclusions from 
these efforts to evaluate DSMC's potential as a tool for MEMS development. 

As discussed in Chapter 1, the high Knudsen numbers of many flows of interest 
to MEMS designers make them inaccessible to continuum-based numerical methods. 
While analytical models are being developed for moderately-rarefied flows in simple 
geometries [23], the complexity and mixed-regime nature of many MEMS limits the 
applicability of these methods. Experimental study of these flows has also proven to 
be difficult due to the miniscule quantities which must be measured. In the course 
of their micro-channel investigation, for example, Arkilic et al. [23] were required to 
develop a system capable of measuring mass flows on the order of nanograms per 
second. In response to this situation, Chapter 3 presented a small subset of the 
micro-flows of interest, to both the fluid-dynamicist and the MEMS designer, which 
are easily treated with DSMC. 

In Section 3.1, DSMC results for a slip-flow regime micro-channel were compared 
to an analytical solution presented by Arkilic et a/. [23] Several aspects of the computed 
and theoretical streamwise velocity and pressure distributions were considered. In 
all cases, the numerical results were found to compare well with their analytical 
predictions. In addition, by manipulating the analytical relations, an expression for a 
streamwise velocity 'similarity' proflle was developed. It was subsequently found that 
the computed velocity distribution, which is a function of x, collapsed quite well to 
the predicted x-independent profile when the flow variables were processed according 
to the theoretical expression. 

These findings support the accuracy of both the code and the analytical work 
and demonstrate another valuable function of DSMC computations: the evaluation 
of analytical models for rarefied flow behavior. Developing these models is an impor- 
tant task because a great number of MEMS geometries fall into the slip-flow regime. 
Analytical tools have great value to the designer because they are much less expensive 
than a full DSMC calculation but are able, for certain geometries and flow regimes, 
to quantify behavior invisible to continuum techniques. They are difficult to validate, 
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however, because, as mentioned above, the effects they describe are often too small 
for effective experimental investigation. 

In Section 3.2, a DSMC solution for a transition regime micro-channel was com- 
pared to predictions from the slip-flow expressions of Arkilic et al. By considering 
the form of disagreement between these results, several aspects of flow behavior in 
this regime were illuminated. This is an especially important application of DSMC 
because very few techniques, either analytical or numerical, are available for analyz- 
ing these flows. This is, consequently, the least understood of the four Kh-regimes, 
posing a significant problem for the MEMS community because the geometries and 
working conditions for many devices place them here. Additionally, through the sim- 
ilarity analysis developed in the previous section, the onset of transition behavior was 
observed as the Knudsen number increased down the channel. This type of work is 
intended to determine the applicable range of various models and the mode of their 
failure. This is valuable because applying convenient models to the largest possible 
range of problems is preferable to performing large numerical simulations, especially 
early in the design process. 

In the final section of Chapter 3, parabolic micro-nozzles were examined. These 
cases are intended to represent devices which contain complexities not amenable to 
other forms of solution. Their more complicated geometry, lack of isothermal flow, 
and sharp gradients pose serious problems for many types of analysis. No special 
considerations for these features were required to perform the DSMC calculation, 
however. This demonstrates the versatility of the method and its value for complex 
flows, which are common in MEMS devices and will become more so as the field 
matures. 

Chapter 4 extended this work by investigating the issues inherent in scaling a 
DSMC code to treat continuum flows. It is important to understand these issues 
because many MEMS devices contain regions in this regime. Due to its molecular- 
level scaling, however, treating them with a fully-resolved DSMC calculation is very 
computationally expensive. A greater understanding of DSMC's behavior when its 
scaling constraints are relaxed is therefore valuable because it may enable the simpli- 
fied treatment of certain geometries. 

In this chapter, two primary effects were observed when the grid was scaled beyond 
the traditional constraints of DSMC calculations. The first of these was previously 
identified by Bartel et al. [25]: when the scaling reaches a point where particles 
undergo multiple collisions every time step, the velocity distribution in each cell 
approaches an equilibrium (Maxwellian) form. The implication of this, which was 
not previously realized, is that the DSMC technique is formally solving the Euler 
equations, not the Navier-Stokes equations, in these regions. In cases where this is 
appropriate, Bartel et al. note that the computation may be greatly accelerated by 
employing a 'collision limiter' large enough to enable each cell to reach equilibrium, 
but not so large that this state is needlessly reinforced through continued interaction. 

A second implication of DSMC's application to continuum flows is that the thermal 
velocity of the computational particles, coupled with the physically large cell size, 
results in an artificial viscosity which is proportional to the cell Knudsen number 
and decreases with flow Mach number (because the thermal fluctuations become less 
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important). This is a consequence of the DSMC collision algorithm, which tends to 
distribute momentum and energy uniformly through the entire cell due to its disregard 
for the position of colliding partners within that cell. This tendency is particularly 
strong when a large number of collisions are performed during each time step, as is 
the case when Kric is small. This artificial viscosity can be a nuisance when solving 
the Navier-Stokes equations at low Reynolds numbers, where the physical viscosity 
is important to the overall flow behavior, because it is implicit to the scheme and 
represents a first-order error term. Large reductions must therefore be made in the 
cell size to bring the computed viscosity acceptably close to the true value. This 
artificial viscosity may be an asset for solving Euler flows, however, because it acts 
as a built-in, self-adjusting means of broadening poorly-resolved flow features such 
as shock structures, serving a similar function as the artificial viscosity explicitly 
included in many traditional CFD methods. 

In summary, the unique features of rarefied flows have many implications for 
MEMS designers. The larger mass flow rate for a given geometry and inlet conditions, 
found in Sections 3.1 and 3.2, must be considered when designing control systems for 
micro-chemical reactors and the decreased thermal communication between the fluid 
and its boundaries, demonstrated in Section 3.3, must be considered in applications 
involving temperature measuring devices or heaters, for example. These flows are 
not well-studied, however, due to the breakdown of the transport assumptions which 
characterize the Navier-Stokes equations, the basis of most common fluid-dynamic 
analysis tools. 

DSMC's ability to calculate in any of the four Xn-regimes without modification 
makes it ideal for investigating flows related to MEMS devices, particularly those with 
regions in different regimes. It is therefore useful to MEMS researchers for validating 
analytical models, investigating flow behavior, and modeling potential devices. In 
addition, it is quite straightforward to include flow features such as chemical reactions, 
multi-species mixing and particle transport in the code due to its particulate nature 
and modular construction. In addition, inclusion of unstructured grid capability 
and the trajectory-tracing movement scheme enable the code to handle arbitrary 
geometries. This is a valuable asset when analyzing the complex structures included 
in many of these devices. Finally, its cell-based structure makes it well-suited for 
parallel computation, which is an increasingly important attribute for a large-scale 
numerical scheme on modern computers. 

These attributes are especially important to consider in light of the scaling inves- 
tigation performed in Chapter 4. Given the speed and maturity of continuum CFD 
methods, it appears, at first glance, that the scaling attempted in this chapter is 
irrelevant because, given the choice, the continuum method would always be selected. 
This is not necessarily true, however, because continuum methods are often more dif- 
ficult to parallelize and complexities, such as those mentioned above, each represent 
large increases in computational work. It is therefore possible that the speed of a 
DSMC calculation in certain problems and on certain machines, may be quite com- 
parable to that of a continuum technique. In addition, mixed regime flows are not 
generally treatable with continuum methods because they cannot effectively model 
the rarefied areas. While hybrid continuum/particulate codes are under development 
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[28] for these flows, it would be desirable to treat the entire domain uniformly to max- 
imize code flexibility and avoid, if possible, the problems associated with interfacing 
two techniques of entirely different natures. 

Many aspects of DSMC's application to MEMS remain to be explored and devel- 
oped. To model actual devices in their entirety, for example, the current code will 
require an upgrade to three-dimensional calculations. The corresponding increase in 
computational requirements will then make it necessary to move from the current, 
workstation-class, computers to large-scale supercomputers. As mentioned previously, 
DSMC's structure is very amenable to efficient parallelization, so this move will likely 
be to a parallel machine. On these architectures, many computational issues remain 
to be explored which promise to increase the speed and eflBciency of the technique. 
In complex cases for which a particle description is an asset, such as multispecies and 
chemically reacting flows, this method may then be advantageous even in regimes to 
which continuum techniques are currently applied. For mixed-regime flows, hybrid 
DSMC-continuum techniques represent a promising area which still requires signif- 
icant investigation. When mature, these techniques will allow both methods to be 
applied where they are most desirable and 'swapped out' where they become ineffl- 
cient or inaccurate. A numerical solution will then involve applying the best of each 
discipline to a problem, rather than choosing one or the other when setting up the 
calculation and patching together corrections and modifications for certain portions 
of the flow. 
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Appendix A 

Particle Movement Function 

This appendix contains the function which performs particle movement. It is intended 
to serve only as an annotated listing; the full description of the movement operation 
is given in Section 2.4. 

Arguments 

The movement function takes four arguments. The first argument, 'eel' is a pointer 
to the current cell of the particle(s) to be moved. The second argument, 'particles' 
is a pointer to the first particle in a list of those to be moved. In the case of a 
routine global move, such as at the beginning of a time step, this is simply the 
cell's particle list. For single particle moves, such as when one is introduced at an 
inflow/outflow face or emitted from a diffusely-reflecting surface, this is simply the 
address of the particle to be displaced. The third argument, 'nparts' is simply the 
number of particles to be moved. The final argument 'sel_move_flag', is an integer 
constant that tells the function whether or not to read the movement times remaining 
for individual particles. When the flag is set to 0, all particles are considered to be 
moving an entire time step, as is the case in a global move. 

Cell Face/Node Numbering Scheme 

When calculating intersection times, a simple relation between the face and node 
indices is required. In order to preserve the trajectory-tracing method's ability to 
function in cells with an arbitrary number of faces, the following scheme was adopted: 
face i connects nodes i and {i + l)%ns where i is an index which starts at zero, n^ is 
the total number of sides for the cell, and % is the modulus operator, which returns 
the remainder resulting from the division of its operands. The macro, 'IRING', that 
appears in this function performs this modulo-division operation to cycle through cell 
nodes. For the current, triangulated mesh, it is given by: 

#define IRING (A) = ((A) % 3)) 

This numbering scheme is shown in Figure A-1. 
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2 

Figure A-1: Schematic of cell node and face numbering. 

Code Listing 

void Move_Particle(struct cell_unit *cel, struct atom ^particles, 
unsigned short n_parts, short sel_move_flag) 

short fc, face, entryjace, yjntersect; 
float timejnterval, tjnt, t_min, traj_slope; 
unsigned curr_cell; 
struct atom *part; 

if(!sel_move_flag) { 

I *^^* ^g^ particle movement time interval to be the time step ****j 
timejnterval = T_STEP; 

/ **** Set the entry face to he a nonexistant side ****/ lo 
entry_face = 3: 

} 

for (part = particles; part < particles + n_parts; part++){ 

/ **** Skip if this is an empty particle position ****/ 
if (part—>dest_cell == 0) continue; 

/**** If particle has somehow left grid, bring it back ****/ 
if (part->x > x_max+0.1 || part->y > y_max+0.1 || part->x <-0.1 

II part->y<-0.1){ 
printf("Relocating Particle at t = '/.f: \n",t_global); 
printf("     x:     '/.f y:     '/.f u:     '/..24fv:     '/..24fcell:     '/.d particle:     7.d\n", 20 

part->x, part->y, part->u, part->v, eel - cell, part - particles); 
Random_Plcmt2(cel, part); 

} 

if(sel_move_flag) { 

/**** Determine time interval over which to attempt to move particle ****/ 
timejnterval = part—>mvmt_time; 

/ **** Skip if this particle is finished moving ****/ 
if (timejnterval == 0.) continue; 

} 

/ **** Determine which face is ineligible for intersection because it was 30 
just crossed (selective moves only) ****/ 

if(sel_move_flag) 
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entryjace = (short)part —>crosdJace; 

14:*** Calculate the slope of the particle trajectory ****/ 
if(part->u == 0.) 

traj_slope = INFINITY; 
else 

traj_slope = part—>v / part—>u; 

if (traj_slope * traj_slope > 1.) 
yjntersect = 1; 40 

else 
yjntersect = 0; 

/**** Initialize tjnin with a large value ****! 
t.min = 1.05 * T_STEP; 

for (fc = 0; fc < 3; fc++){ 
if (fc == entryjace) continue; 

I **** If particle path is parallel to face, they will never intersect ****/ 
if(cel—>slope[fc] == traj_slope) continue; 

I**** If particle's vertical component is greater than its horizontal (in 
absolute value), use y—intersects for time determination ****/ 50 

if(y_intersect) 
t_int = (((traj_slope *cel->slope[fc] *{cel->x[fc] - part->x) 

+ cel->slope[fc] *part->y -traj_slope *cel->y[fc]) 
/ (cel->slope[fc] -traj_slope)) - part->y) /part->v; 

else 
tjnt = (((cel->y[fc] - part->y + traj_slope*part->x 

- cel->slope[fc]*cel->x[fc]) / (traj_slope - cel->slope[fc])) 
— part—>x) / part—>u; 

I**** If t_int<0 then particle is heading the wrong way to hit this face ****/ 
if (tJnt < -LTEST) continue; 60 

I **** If the intersect time is zero, make sure this particle is heading 
in a direction which makes striking this face possible before accepting 
it to avoid an infinite loop of zero time steps ****/ 

if (tJnt <= I_TEST kk ((part->y + part->v - cel->y[fc]) 
* (cel->x[IRING(fc+l)] -cel->x[fc]) -(part->x + part->u 
- cel->x[fc]) *(cel->y[IRING(fc+l)] -cel->y[fc])) 
/ ((cel->y[IRING(fc+2)] -cel->y[fc])*(cel->x[IRING(fc+l)] 
- cel->x[fc]) - (cel->x[IRING(fc+2)]   -cel->x[fc]) 
* (cel->y[IRING(fc+l)] -cel->y[fc])) >= 0.0) continue; 70 

if (tjnt < 0) tJnt = 0; 

I**** If this is the minimum time so far, record it and current face ****/ 
if (t_int < t_min) { 

t_min = tjnt; 
face = fc; 

} 
} 

I **** If the time to collide with all faces is greater than time remaining 
for movement, displace particle along trajectory and mark it as maintaining 
its current cell ****/ so 
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if (t_min >= tiine_interval){ 
part—>x += part->u * timejnterval; 
part —>y += part->v * timejnterval; 
part->dest_cell = 1; 
part—>mvmt_time = 0.; 

} 

I **** If the rain time for collision is smaller than remaining time, particle 
has hit something, determine what that was and act appropriately ****/ 

else{ 
if (cel->nbr[face] == SOLID_BOUNDARY){ 90 

I **** If a solid boimdary vjas contacted, displace particle to boundary 
and call function to process reflection ****/ 

part—>x += part->u * t_min; 
part—>y += part->v * t_min; 

part->mvmt_time = timejnterval — t_min; 
part—>crosdJace = (char)face; 
Solid_Boundary(part, eel, face); 

} 
else if (cel->nbr[face] == INFLOW OUTFLOW){ 

#ifdef lO.BOUNDARY 100 
I **** If particle left grid, mark its place as empty and decrement 

the number of particles in this cell ****! 
part—>dest_cell = 0; 
eel- >n_particles—; 
eel->n_vacancies++; 

#else 

#endif 

I**** If we're not doing inflow/outflow, make these bounds solid ****j 
part —>x += part—>u * t_min; 
part —>y += part—>v * t_min; 
part—>mvmt_time = timejnterval — t_min; no 
part->crosdJace = (char)face; 
Solid_Boundary(part, eel, face); 

} 
else{ 

/ * // it didn't hit a boundary of some sort, particle has crossed 
into another cell */ 

/ **** Displace particle to boundary ****j 
part—>x += part—>u * t_min; 
part—>y += part—>v * t_min; 120 

I**** Increment the current cell traveler counter ****/ 
cel->n_tvlrs++; 

I **** Decrement the current cell particle counter ****! 
eel—> n_particles ; 

I *^^* p^^^ current cell index ****j 
curr_cell = eel — cell; 

I **** Find index of intersection face in new cell ****j 
for(fc = 0; fc < 3; fc++) 

if(cell[cel->nbr[face]].nbr[fc] == curr_cell) break; 
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/**** Store index of crossed face in new cell ****/ 130 
part->crosd_face = (char)fc; 

/**** Store destination cell ****/ 
part —>dest_cell = eel—>nbr [face]; 

I **** Store time remaining for movement ****j 
part —>mvmt_time = timejnterval - t_min; 
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Appendix B 

Particle Communication Function 

This appendix contains the function which transfers particles between cells. It is 
intended to serve only as an annotated listing; the full description of intercell-com- 
munication is given in Section 2.6. 

Arguments 

The communication function takes two arguments. The first argument, 'eel' is a 
pointer to the cell that the particle is departing. The second argument, 'pJndx', is 
the index of this particle on the list in its current cell. It may be noted that the 
function accesses other cells in the course of its task. This is possible because the cell 
data was made globally-accessible to shorten the argument lists of oft-called functions. 

Code Listing 

void Communicate(struct cell_unit *cel,unsigned short pJndx) 

unsigned short d_cell, dcpjndx; 
struct atom *dc_part; 

I **** Decrement the traveler counter for old cell ****/ 
eel—>n_tvlrs—; 

/**** Note this particle's intended destination ****/ 
d_cell = eel—> particle [p_indx].dest_eell; 

/ **** Mark destination cell as having received a traveler ****/ 
cell[d_cell].tvlr_recd = 1; 

/ **** Mark this particle as stationary so it is not moved by a subsequent recursive 
call, leading to an infinite loop ****/ 

eel—> particle [pjndx].dest_cell = 1; 

I **** Don't bother searching through particle list if this cell has no 
vacancies and no travelers ****j 

if (cell[d_cell].n_vacancies != 0 || cell[d_cell].n_tvlrs != 0){ 

I**** Cycle through destination cell's particles, looking for an open space ***/ 
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for (dc_part = cell[d_cell].particle: dc_part < cell[d_cell].particle 
+ cell[d_cell].plistjength; dc_part++){ 

/ **** U destination cell for a particle is one, its space is unavailable 
(it's not leaving current cell) so keep looking ****/ 20 

if (dc_part->dest_cell == 1) continue; 

/**** If dest. cell is zero, space is open.    Place particle and return ****/ 
else if(dc_part->dest_cell == 0){ 

/ **** Place particle in new cell ****/ 
*dc_part = cel->particle[p_indx]; 

I**** Increment new cell's particle counter ****/ 
cell[d_cell].n_particles++; 

/**** Decrement new cell's vacancy counter ****/ 
cell [d_cell]. n_vacancies—; 

/**** Mark its old position as vacant ****/ .30 
cel->particle[p_indx].dest_cell ~ 0; 
eel—> n_vacancies++; 
return: 

/ **** If dest. cell is a true cell, recursively call this function to move 
the particle to its new cell then put current particle in its place ****/ 

else{ 
dcpjndx = dc_part - cell[d_cell].particle; 
Communicate(dcp_indx, &cell[d_cell]); 
cell[d_cell].particle[dcp_indx] = eel-> particle [pjndx]; 40 
cell[d_cell] .n_particles++; 
cell [d_cell]. n_vacancies—; 
eel-> particle [pjndx].dest_cell = 0; 
eel—> n_vaeancies++; 
return; 

} 
} 

} 

I* If no spaces are found in list, place particle at the end */ 

I **#* First ensure there is room, making some if necessary ****j 50 
if (cell[d_cell].plist_length == eell[d_cell].pll_max){ 

cell[d_cell].pll_max += P_LIST_INCREMENT; 
cell[d_cell].particle = (struct atom *)realloc(cell[d_cell].particle, 

(size_t)(cell[d_cell].pll_max * sizeof(struct atom))); 
} 
if(cell[d_cell].particle == NULL) printf("FAILED REALLOC!\n");fflush(NULL); 

/ **** '^ow place particle, increment the particle counter of destination cell 
and decrement traveler counter of old cell ****/ 

cell[d_cell] .particle[cell[d_cell] .plist JengtlH-+] = eel- >particle[p_indx]; 
cell[d_cell].n_partieles++; go 
cel->particle[p_indx].dest_eell = 0; 
eel — > n_vaeancies++; 
return; 
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Appendix C 

Inflow/Outflow Function 

This appendix contains tiie function which enforces boundary conditions at inflow / 
outflow cells. It is intended to serve only as an annotated listing; the full description 
of the inflow outflow boundary treatment is given in Section 2.7.2. 

Arguments 

The 10 boundary function takes only one argument. This is a pointer to an array of 
structures containing 10 cells, named 'io-cell'. Each of these structures contains the 
computed mean velocities as well as a pointer to the cell in the main array to which 
the 10 face belongs. 

Code Listing 

void ProcessJO(struct io *io_cell) 
{ 

float u, u_mean, u_norm, u_ext, u_distmax, dist_max, dist, xtemproot, 
x_temp, yjemp, zjemp, temp, v_mean, w_mean; 

int inp_diff, sgn, flag, pLpos, ip; 
unsigned long which; 
struct io *io_cI; 
struct cell_unit *cel; 
struct atom *part; 

I **** Enforce boundary conditions at 10 cells ****/ lo 
for (io_cl = io_cell; io_cI < io_cell + njocells; io_cl++) { 

/**** Figure out to which cell this 10 face corresponds ****/ 
eel =  &;cell[io_cl->cell]; 

u_mean = io_cl->u_mean; 

/**** Determine sign of inward—facing normal ****/ 
if (cel->x[l] < 0.5*x_max){ 

/ **** If this is an inflow face, enforce temperature and transverse speed ****/ 
sgn =   1; 
xjemp = y_temp = zjemp = 1.0; 20 
v_mean = w_mean = 0; 
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temp = 1; 

} 
else{ 

I**** Ij this case is exhausting to vacuum, skip outflow faces ****/ 
#ifdef VACOUT 

continue; 
#endif 

I **** If this is an outflow face, get temp and t.v. speed from flow sample taken 
elsewhere (after the collision routine) ****/ 30 

sgn = -1; 
v_mean = io_cl—>v_mean; 
wjnean = io_cl->w_mean; 
xjemp = 2*(io_cl—>u2 — u_mean*u_mean); 
yjemp = 2*(io_cl—>v2 — v_mean*v_mean); 
z_temp = 2*(io_cl->w2 - w_mean*w_mean); 
temp = (x_temp + y_temp + zjemp) / 3.0; 
if (temp == 0.0) temp = 1; 

} 

I**** Calculate difference between target and actual number of particles, 40 
adding any round— off from previous steps and storing that from this 
step to lessen its effect in overall number of particles introduced **/ 

io_cl—>fnp_diff += eel—>n_particles - 
(io_cl—>pressure * eel—>volume  * njnf / temp); 

inp_diff = io_cl—>fnp_diff; 
io_cl—>fnp_difF —= inp_diff; 

/ * Add particles if there aren't enough in cell */ 

if (inp.diff < 0) { 

I **** Normal velocity is positive for inflow ****/ 
u_norm = sgn * u_mean; 50 

I**** Calculate the maximum of the incoming velocity distribution****/ 
u_distmax = sgn*0.5*(—u_norm +sqrt(u_norm*u_norm   +2)); 
dist_max = sgn* (u_distmax+sgn*u_norm) *exp (— (u_distmax) * (u_distmax)); 

xtemproot = sqrt(x_temp); 

/**** Set the extremum of particle speed. If u and ujnorm are equal and 
opposite, the particle will not cross the boundary (inflow only)**/ 

if (u_norm < 3.0) 
u_ext = — u_norm; 

else 
u_ext = —3.0*xtemproot; /*restrict the selection range to lower rejections*/    60 

I **** First, ensure there is room on cell's list for incoming particles ***/ 
if (eel—>plist_length H—inp_diff —eel->n_vacancies >= eel->pll_max){ 

eel—>pll_max += 2 * (—inp_diff — eel—>n_vacancies); 
eel—>partiele = (struct atom *)realloc(cel—>particle, 

(size_t)(cel—>pll_max * sizeof(struct atom))); 

} 

I **** Initialize particle list position pointer ****/ 
pl_pos = 0; 
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for (ip = 0; ip < -inp_diff; ip++){ 

I**** Search remaining positions in particle list for empty spots ****/ 70 
for( ; pLpos < cel->plist_length; pl_pos++) 

if (cel->particle[pl_pos].dest_cell == 0){ 
eel— >n_vacancies—; 
break; 

} 

I **** Incerement the cell's particle counter ****/ 
cel->n_particles++; 

I **** If above search put us off particle list, extend it ****/ 
if (pLpos >= cel->plistjength) cel->plistjength++; 

/**** Assign a pointer to this particle for later convenience ****/ so 
part = &cel->particle[pi_pos]; 

I **** Increment particle list position for next cycle ****/ 
pl_pos++; 

/ **** Set particle's destination cell and crossed face registers ****/ 
part->dest_cell = 1; 
part—>crosd_face = (char)io_cl—>face; 

I**** Place the particle randomly on the cell's 10 edge ****j 
part —>x = eel—>x[io_cl—> face]; 
part->y = eel->y[io_cl->face] + ran2(seed)* 

(eel->y[IRING(io_cl->faee + 1)] - eel->y[io_cl->faee]); 90 

I**** Assign tangential velocities according to equilibrium 
distribution ****/ 

part->v = v_mean + sqrt(y_temp*-log(ran2(seed))) * sin(2.0 * M_PI 
*ran2(seed)); 

part->w = w_mean + sqrt(z_temp*-log(ran2(seed))) * sin(2.0 * M_PI 
*ran2(seed)); 

/**** Set u using a selection/rejection technique on a fluxal 
distribution ****/ 

do 
{ 100 

I**** Randomly select a value of u ****/ 
if (sgn>0) 

u = (u_ext + (3.0 *xtemproot — u_ext) *ran2(seed)); 
else 

u = (-(u_mean + 3.0 *xtemproot) + 3.0 *xtemproot *ran2(seed)); 

/ **** Compute the value of the distribution for this u ****/ 
dist = sgn*(u/xtemproot + u_mean)*exp(-(u*u)/x_temp)/dist_max; 

}while (dist < ran2(seed)); 

/**** Add mean velocity to assigned thermal speed ****/ 
part—>u = u_mean + u/xtemproot; 110 

I **** Move new particle a random fraction of one time step ****/ 
part->mvmt_time = ran2(seed) * T_STEP; 
Move_Particle(cel, part, 1, SELECTIVE_MOVE); 

71 



/""'* Process comm.unication links until all are empty ****/ 
do{ 

flag = 0; 
for(cel = &cell[2]; eel < &cell[2]+N_CELLS; cel++){ 120 

/**** Skip if this cell has no travelers ****/ 
if (cel->n_tvlrs == 0) continue; 

I **** Set a flag to signify that a traveler was found ****/ 
flag = 1; 

/**** Process all travelers in this cell ****/ 
I *NOTE:   Do not use pointers into the particle array in Communicate 

or its calls because it contains a realloc*/ 
for(ip = 0; ip < cel->plist_length; ip++){ 

/ **** Skip if this is an empty position or stationary particle ****/ 
if (cel->particle[ip].dest_cell < 2) continue; i30 

Communicate(ip, eel); 

/**** Go on to the next cell if we just placed the last traveler ****/ 
if (cel->n_tvlrs == 0) break; 

} 
} 

/ **** If communication was performed, move newly-placed travelers ****/ 
if (flag) { 

for(eel = &eell[2]; eel < &cell[2]+N_CELLS; eel++){ 

/ **** Skip this cell if it received no travelers ****/ 140 
if (!eel->tvlr_reed) continue; 

/**** Reset cell 'traveler received' flag ****j 
eel—>tvlr_reed = 0; 

I**** Move any particles which have remaining time ****/ 
Move_Partiele(eel, eel->partiele, cel->plist_length,SELECTIVE_MOVE); 

} 
}while(flag); 
return; 

150 
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