"Research problems on chaotic advection in three dimensions and at higher Reynolds number".

AFOSR Grant AFOSR-90-0284

Fourth annual technical report for period 5/01/93 - 6/30/94 and final technical report

The original grant was awarded to the PI at Columbia University for the two year period 5/01/90 - 4/30/92. Following the PI's move in 1992 to the University of Arizona to become Head of the Applied Mathematics Program, two no-fund extensions were granted for the periods 5/01/92 - 4/30/93 and 5/01/93 - 6/30/94 to enable the residual funds to be used for a number of grant related projects. This report describes the fourth and final year of activities and sums up the entire effort.

DTIC QUALITY INSPECTED 3

19970613 055

		AFOSR-TR-97		97 ———	
REPORT DOCUMENTATION PAGE			$\leq c$	oroved 704-0188	
Public reporting burden for this collection of in gathering and maintaining the data needed, an collection of information, including suggestions Davis Highway, Syite 1204, Artington, VA 22	nformation nd complet ns for redu 2202-4302	is estimated to average 1 hour p ting and reviewing the collection i cing this burden, to Washington F , and to the Office of Managemen,	Θ	DC.	ng existing data sources any other aspect of this Reports, 1215 Jefferson aton, DC 20503.
1. AGENCY USE ONLY (Leave bla	ank)	2. REPORT DATE	3. REPORT TYPE AN	ID DATES	S COVERED
		21 Dec 94	Final Technica	l Report	01 May 93 to 30 Jun 94
4. TITLE AND SUBTITLE		· · · · · · · · · · · · · · · · · · ·	1 (1'1 D 11	5. FUN	DING NUMBERS
number"	advect	ion in uree dimensions a	ind at higher Reynolds	AFUSE	<-9 0-0284
6. AUTHOR(S)					
M. Tabor	· .				
I. Klapper					
7. PERFORMING ORGANIZATION	NAME	S) AND ADDRESS(ES)		8. PER	FORMING ORGANIZATION
Columbus Universityin the City	of Ne	w York		REPO	ORT NUMBER
Box 20, Low Memorial Library	/				
New York, NY 10027					
9. SPONSOBING/MONITOBING A	GENCY	NAME(S) AND ADDRESS	-5)	10 SPO	
AFOSR/NA				AGE	ENCY REPORT NUMBER
110 Duncan Avenue, Suite B 11	15				
Bolling AFB, DC 20332-8050					
11. SUPPLEMENTARY NOTES					
					(
					}
Aproval for public releases dist	STATE	MENT n unlimited		12b. DI	STRIBUTION CODE
Aproval for public release; dist	tributio	n unlimited.		126. DI	STRIBUTION CODE
Aproval for public release; dist	r STATE	n unlimited.		12b. DI	STRIBUTION CODE
Aproval for public release; dist	tributio	n unlimited.		126. DI	STRIBUTION CODE
Aproval for public release; dist	ributio	m unlimited.		126. DI	STRIBUTION CODE
Aproval for public release; dist	ords)	n unlimited.	the chaotic motion of a	12b. DI	stribution CODE
13. ABSTRACT (Maximum 200 wo) Over the past ten years the study systems derived from velocity fi	y of ch	aotic advection, namely	the chaotic motion of paid	articles in	n deterministic dynamical
Aproval for public release; dist 13. ABSTRACT (Maximum 200 wo) Over the past ten years the study systems derived from velocity fi obtaining efficient mixing. The	y of ch ields as	aotic advection, namely ssociated with simple flui	the chaotic motion of paid id flows, has come to the research supported by	articles in this gran	n deterministic dynamical s a model and means of thas been to determine how
Aproval for public release; dist 13. ABSTRACT (Maximum 200 wo Over the past ten years the study systems derived from velocity fi obtaining efficient mixing. The useful the ideas and tools of dyn	y of ch ields as main o mamical	aotic advection, namely ssociated with simple flui question addressed in the	the chaotic motion of paid id flows, has come to the research supported by ful in analyzing chaotic	articles in this gran advectio	n deterministic dynamical s a model and means of thas been to determine how on models - are for studying
Aproval for public release; dist 13. ABSTRACT (Maximum 200 wo Over the past ten years the study systems derived from velocity fi obtaining efficient mixing. The useful the ideas and tools of dyn mixing in high Reynolds number	y of ch ields as main o namical er, i.e.	aotic advection, namely sociated with simple flut question addressed in the system theory - success turbulent, flows. The lit	the chaotic motion of paid id flows, has come to the research supported by ful in analyzing chaotic nk between dynamical s	articles in e fore as this gran advectio ystems id	n deterministic dynamical s a model and means of at has been to determine how on models - are for studying deas and turbulence is
Aproval for public release; dist 13. ABSTRACT (Maximum 200 wo Over the past ten years the study systems derived from velocity fi obtaining efficient mixing. The useful the ideas and tools of dyn mixing in high Reynolds number provided by the Lagrangian pict	y of ch ields as main of mamical er, i.e. ture of	n unlimited. aotic advection, namely sociated with simple flu- question addressed in the system theory - success turbulent, flows. The li- the fluid, namely the flu-	the chaotic motion of paid id flows, has come to the research supported by ful in analyzing chaotic nk between dynamical s id particle description.	articles in e fore as this gran advectio ystems io Accordi	n deterministic dynamical s a model and means of at has been to determine how on models - are for studying deas and turbulence is ngly our work has centered of
Aproval for public release; dist 13. ABSTRACT (Maximum 200 wo) Over the past ten years the study systems derived from velocity fi obtaining efficient mixing. The useful the ideas and tools of dyn mixing in high Reynolds number provided by the Lagrangian pict developing Lagrangian description	y of ch ields as main o namical er, i.e. ture of ions of	n unlimited. aotic advection, namely sociated with simple flut question addressed in the system theory - success turbulent, flows. The lift the fluid, namely the flut the stretching and align	the chaotic motion of paid id flows, has come to the research supported by ful in analyzing chaotic nk between dynamical s id particle description. nent - the processes by	articles in a fore as this gran advectio ystems ic Accordi which m	n deterministic dynamical s a model and means of at has been to determine how on models - are for studying deas and turbulence is ngly our work has centered o ixing is achieved - for passiv
Aproval for public release; dist 13. ABSTRACT (Maximum 200 wo Over the past ten years the study systems derived from velocity fi obtaining efficient mixing. The useful the ideas and tools of dyn mixing in high Reynolds number provided by the Lagrangian pict developing Lagrangian description and non-passive scalars and vector	y of ch ields as main c amical cr, i.e. ture of ions of tors.	aotic advection, namely sociated with simple flut question addressed in the system theory - success turbulent, flows. The lin the fluid, namely the flu the stretching and align This has led to some new	the chaotic motion of paid id flows, has come to the research supported by ful in analyzing chaotic nk between dynamical s id particle description. nent - the processes by rinsights into the mecha	articles in e fore as this gran advectio ystems id Accordi which m nisms of	n deterministic dynamical s a model and means of at has been to determine how on models - are for studying deas and turbulence is ngly our work has centered of ixing is achieved - for passive f fine scale vorticity dynamic
Aproval for public release; dist 13. ABSTRACT (Maximum 200 wo Over the past ten years the study systems derived from velocity fi obtaining efficient mixing. The useful the ideas and tools of dyn mixing in high Reynolds number provided by the Lagrangian pict developing Lagrangian description and non-passive scalars and vecta and identified the subtle and critt	y of ch ields as main ch amical er, i.e. ture of ions of ions of tical ro	aotic advection, namely sociated with simple flu question addressed in the system theory - success turbulent, flows. The lin the fluid, namely the flu the stretching and alignn fhis has led to some new le of pressure fluctuation	the chaotic motion of paid id flows, has come to the research supported by ful in analyzing chaotic nk between dynamical s id particle description. nent - the processes by insights into the mecha as. In the case of the (n	articles in a fore as this gran advectio ystems io Accordi which m misms of on-passi	n deterministic dynamical s a model and means of at has been to determine how on models - are for studying deas and turbulence is ngly our work has centered of ixing is achieved - for passive f fine scale vorticity dynamic ve vector) dynamics of
Aproval for public release; dist 13. ABSTRACT (Maximum 200 wo Over the past ten years the study systems derived from velocity fi obtaining efficient mixing. The useful the ideas and tools of dyn mixing in high Reynolds number provided by the Lagrangian pict developing Lagrangian description and non-passive scalars and vecta and identified the subtle and critt magnetic field lines, a Lagrangian	y of ch ields as main ch amical er, i.e. ture of ions of tors. T tical ro	aotic advection, namely sociated with simple flut question addressed in the system theory - success turbulent, flows. The lin the fluid, namely the flut the stretching and align this has led to some new le of pressure fluctuation mulation of 3-dimensiona	the chaotic motion of paid flows, has come to the research supported by ful in analyzing chaotic nk between dynamical s id particle description. nent - the processes by insights into the mechans. In the case of the (nul magneto-hydrodynamical state)	articles in articles in a fore as this gran advectio ystems ic Accordi which m nisms of on-passiv ics equat	n deterministic dynamical s a model and means of at has been to determine how on models - are for studying deas and turbulence is ngly our work has centered of ixing is achieved - for passiv f fine scale vorticity dynamic ve vector) dynamics of tions has identified the
Aproval for public release; dist 13. ABSTRACT (Maximum 200 wo) Over the past ten years the study systems derived from velocity fi obtaining efficient mixing. The useful the ideas and tools of dyn mixing in high Reynolds number provided by the Lagrangian pict developing Lagrangian description and non-passive scalars and vect and identified the subtle and critt magnetic field lines, a Lagrangian possibility of a finite time singul	y of ch ields as mamical er, i.e. ture of ions of tors. T tical ro an forr larity a	n unlimited. aotic advection, namely sociated with simple flu- question addressed in the system theory - success turbulent, flows. The lin the fluid, namely the flu the stretching and align fhis has led to some new le of pressure fluctuation nulation of 3-dimensionar round magnetic null poin	the chaotic motion of paid flows, has come to the research supported by ful in analyzing chaotic nk between dynamical s id particle description. nent - the processes by insights into the mechans. In the case of the (n al magneto-hydrodynamints.	articles in e fore as this gran advectio ystems id Accordi which m nisms of on-passi ics equat	n deterministic dynamical s a model and means of at has been to determine how on models - are for studying deas and turbulence is ngly our work has centered of ixing is achieved - for passiv f fine scale vorticity dynamic ve vector) dynamics of tions has identified the
13. ABSTRACT (Maximum 200 wo) Over the past ten years the study systems derived from velocity fi obtaining efficient mixing. The useful the ideas and tools of dyn mixing in high Reynolds number provided by the Lagrangian pict developing Lagrangian descriptia and non-passive scalars and vect and identified the subtle and critt magnetic field lines, a Lagrangia possibility of a finite time singul	y of ch ields as main of namical er, i.e. ture of ions of tors. T tical ro ian forr larity a	aotic advection, namely sociated with simple fluctuation question addressed in the system theory - success turbulent, flows. The line the fluid, namely the fluctuation the stretching and alignm This has led to some new le of pressure fluctuation nulation of 3-dimensionar round magnetic null poin	the chaotic motion of paid flows, has come to the research supported by ful in analyzing chaotic nk between dynamical s id particle description. nent - the processes by insights into the mechans. In the case of the (n and magneto-hydrodynam nts.	articles in a fore as this gran advectio ystems ic Accordi which m misms of on-passiv ics equat	n deterministic dynamical s a model and means of at has been to determine how on models - are for studying deas and turbulence is ngly our work has centered of ixing is achieved - for passiv f fine scale vorticity dynamic ve vector) dynamics of cions has identified the
Aproval for public release; dist 13. ABSTRACT (Maximum 200 wo Over the past ten years the study systems derived from velocity fi obtaining efficient mixing. The useful the ideas and tools of dyn mixing in high Reynolds number provided by the Lagrangian pict developing Lagrangian descriptia and non-passive scalars and vect and identified the subtle and critt magnetic field lines, a Lagrangia possibility of a finite time singul	y of ch ields as main of namical er, i.e. ture of ions of tors. 7 tical ro ian forr larity a	aotic advection, namely sociated with simple flut question addressed in the system theory - success turbulent, flows. The lin the fluid, namely the flu the stretching and align This has led to some new le of pressure fluctuation nulation of 3-dimensionar round magnetic null poin	the chaotic motion of paid flows, has come to the research supported by ful in analyzing chaotic nk between dynamical s id particle description. nent - the processes by insights into the mechans. In the case of the (n al magneto-hydrodynam nts.	articles in e fore as this gran advectio ystems id Accordi which m misms of on-passiv ics equat	n deterministic dynamical s a model and means of at has been to determine how on models - are for studying deas and turbulence is ngly our work has centered of ixing is achieved - for passiv f fine scale vorticity dynamic ve vector) dynamics of tions has identified the
Aproval for public release; dist 13. ABSTRACT (Maximum 200 wo Over the past ten years the study systems derived from velocity fi obtaining efficient mixing. The useful the ideas and tools of dyn mixing in high Reynolds number provided by the Lagrangian pict developing Lagrangian description and non-passive scalars and vect and identified the subtle and critt magnetic field lines, a Lagrangia possibility of a finite time singul	y of ch ields as mamical er, i.e. ture of ions of tical ro an forr larity a	n unlimited. aotic advection, namely sociated with simple flu- question addressed in the system theory - success turbulent, flows. The lin the fluid, namely the flu the stretching and align fhis has led to some new le of pressure fluctuation nulation of 3-dimensionar round magnetic null poin	the chaotic motion of paid id flows, has come to the research supported by ful in analyzing chaotic nk between dynamical s id particle description. nent - the processes by insights into the mecha as. In the case of the (n al magneto-hydrodynam nts.	articles in a fore as this gran advectio ystems id Accordi which m nisms of on-passiv ics equat	n deterministic dynamical s a model and means of at has been to determine how on models - are for studying deas and turbulence is ngly our work has centered of ixing is achieved - for passiv f fine scale vorticity dynamic ve vector) dynamics of tions has identified the
 13. ABSTRACT (Maximum 200 wo). Over the past ten years the study systems derived from velocity fi obtaining efficient mixing. The useful the ideas and tools of dyn mixing in high Reynolds number provided by the Lagrangian pict developing Lagrangian descriptia and non-passive scalars and vect and identified the subtle and crit magnetic field lines, a Lagrangia possibility of a finite time singul 14. SUBJECT TERMS 	y of ch ields as main of namical er, i.e. ture of ions of tors. T tical ro ian forr larity a	n unlimited. aotic advection, namely sociated with simple fluctuation question addressed in the system theory - success turbulent, flows. The line the fluid, namely the fluctuation the stretching and alignment the stretching and alignment	the chaotic motion of paid flows, has come to the research supported by ful in analyzing chaotic nk between dynamical s id particle description. nent - the processes by insights into the mechans. In the case of the (n al magneto-hydrodynam nts.	articles in a fore as this gran advectio ystems id Accordi which m misms of on-passi- ics equat	n deterministic dynamical s a model and means of at has been to determine how on models - are for studying deas and turbulence is ngly our work has centered of ixing is achieved - for passiv f fine scale vorticity dynamic ve vector) dynamics of tions has identified the
 13. ABSTRACT (Maximum 200 wo. Over the past ten years the study systems derived from velocity fi obtaining efficient mixing. The useful the ideas and tools of dyn mixing in high Reynolds number provided by the Lagrangian pict developing Lagrangian descriptia and non-passive scalars and vect and identified the subtle and critt magnetic field lines, a Lagrangia possibility of a finite time singul 14. SUBJECT TERMS 	y of ch ields as main of ions of tors. T tical ro an forr larity a	n unlimited. n unlimited. aotic advection, namely sociated with simple flu- question addressed in the system theory - success turbulent, flows. The lin the fluid, namely the flu the stretching and alignr Chis has led to some new le of pressure fluctuation nulation of 3-dimensionar round magnetic null poin	the chaotic motion of pa id flows, has come to the research supported by ful in analyzing chaotic nk between dynamical s id particle description. ment - the processes by insights into the mecha ns. In the case of the (n al magneto-hydrodynam nts.	articles in e fore as this gran advectio ystems id Accordi which m nisms of on-passiv ics equat	n deterministic dynamical s a model and means of at has been to determine how on models - are for studying deas and turbulence is ngly our work has centered of ixing is achieved - for passiv f fine scale vorticity dynamic ve vector) dynamics of tions has identified the 15. NUMBER OF PAGES 6
 13. ABSTRACT (Maximum 200 wo) Over the past ten years the study systems derived from velocity fi obtaining efficient mixing. The useful the ideas and tools of dyn mixing in high Reynolds number provided by the Lagrangian pict developing Lagrangian descriptia and non-passive scalars and vect and identified the subtle and critt magnetic field lines, a Lagrangia possibility of a finite time singul 14. SUBJECT TERMS 	y of ch ields as mamical er, i.e. ture of ions of tical ro an forr larity a	n unlimited. n unlimited. aotic advection, namely ssociated with simple flu question addressed in the system theory - success turbulent, flows. The lin the fluid, namely the flu the stretching and alignn fhis has led to some new le of pressure fluctuation nulation of 3-dimensionar round magnetic null poin	the chaotic motion of paid id flows, has come to the research supported by ful in analyzing chaotic nk between dynamical s id particle description. nent - the processes by insights into the mecha is. In the case of the (n il magneto-hydrodynam nts.	articles in e fore as this gran advectio ystems id Accordi which m nisms of on-passiv ics equat	n deterministic dynamical s a model and means of at has been to determine how on models - are for studying deas and turbulence is ngly our work has centered of ixing is achieved - for passiv f fine scale vorticity dynamic ve vector) dynamics of tions has identified the 15. NUMBER OF PAGES 6 16. PRICE CODE
 13. ABSTRACT (Maximum 200 wo). Over the past ten years the study systems derived from velocity fi obtaining efficient mixing. The useful the ideas and tools of dyn mixing in high Reynolds number provided by the Lagrangian pict developing Lagrangian description and non-passive scalars and vect and identified the subtle and crit magnetic field lines, a Lagrangia possibility of a finite time singul 14. SUBJECT TERMS 	y of ch ields as main of amical er, i.e. ture of ions of tors. T tical ro ian forr larity a	ment n unlimited. aotic advection, namely sociated with simple flu question addressed in the system theory - success turbulent, flows. The li- the fluid, namely the flu the stretching and align This has led to some new le of pressure fluctuation nulation of 3-dimensionar round magnetic null poin	the chaotic motion of paid flows, has come to the research supported by ful in analyzing chaotic nk between dynamical s id particle description. nent - the processes by insights into the mechans. In the case of the (n al magneto-hydrodynam nts.	articles in a fore as this gran advectio ystems id Accordi which m misms of on-passi ics equat	n deterministic dynamical s a model and means of at has been to determine how on models - are for studying deas and turbulence is ngly our work has centered of ixing is achieved - for passive f fine scale vorticity dynamic ve vector) dynamics of tions has identified the 15. NUMBER OF PAGES 6 16. PRICE CODE
 13. ABSTRACT (Maximum 200 wo) Over the past ten years the study systems derived from velocity fi obtaining efficient mixing. The useful the ideas and tools of dyn mixing in high Reynolds number provided by the Lagrangian pict developing Lagrangian description and non-passive scalars and vect and identified the subtle and critt magnetic field lines, a Lagrangia possibility of a finite time singul 14. SUBJECT TERMS 17. SECURITY CLASSIFICATION OF REPORT 	y of ch ields as mamical er, i.e. ture of ions of tical ro an forr larity a	n unlimited. aotic advection, namely sociated with simple fluctuation question addressed in the system theory - success turbulent, flows. The lint the fluid, namely the fluctuation the stretching and alignn this has led to some new le of pressure fluctuation nulation of 3-dimensionar round magnetic null poin CURITY CLASSIFICATION THIS PAGE	the chaotic motion of paid id flows, has come to the research supported by ful in analyzing chaotic nk between dynamical s id particle description. nent - the processes by insights into the mecha ns. In the case of the (n al magneto-hydrodynam nts.	articles in a fore as this gran advectio ystems id Accordi which m nisms of on-passiv ics equat	n deterministic dynamical s a model and means of at has been to determine how on models - are for studying deas and turbulence is ngly our work has centered of ixing is achieved - for passiv f fine scale vorticity dynamic ve vector) dynamics of tions has identified the 15. NUMBER OF PAGES 6 16. PRICE CODE 20. LIMITATION OF ABSTRACT
 13. ABSTRACT (Maximum 200 wo). Over the past ten years the study systems derived from velocity fi obtaining efficient mixing. The useful the ideas and tools of dyn mixing in high Reynolds number provided by the Lagrangian pict developing Lagrangian descriptia and non-passive scalars and vect and identified the subtle and crit magnetic field lines, a Lagrangia possibility of a finite time singul 14. SUBJECT TERMS 17. SECURITY CLASSIFICATION OF REPORT Unclassified 	y of ch ields as main of namical er, i.e. ture of ions of tors. T tical ro an forr larity a	aotic advection, namely sociated with simple flu: question addressed in the system theory - success turbulent, flows. The lin the fluid, namely the flu the stretching and alignr This has led to some new le of pressure fluctuation nulation of 3-dimensionar round magnetic null poin	the chaotic motion of paid id flows, has come to the research supported by ful in analyzing chaotic nk between dynamical s id particle description. nent - the processes by insights into the mecha is. In the case of the (n il magneto-hydrodynam nts.	articles in a fore as this gran advectio ystems ic Accordi which m misms of on-passiv ics equat	n deterministic dynamical s a model and means of at has been to determine how on models - are for studying deas and turbulence is ngly our work has centered of ixing is achieved - for passive f fine scale vorticity dynamic ve vector) dynamics of cions has identified the 15. NUMBER OF PAGES 6 16. PRICE CODE 20. LIMITATION OF ABSTRACT
 13. ABSTRACT (Maximum 200 wo. Over the past ten years the study systems derived from velocity fi obtaining efficient mixing. The useful the ideas and tools of dyn mixing in high Reynolds number provided by the Lagrangian pict developing Lagrangian descriptia and non-passive scalars and vect and identified the subtle and crit magnetic field lines, a Lagrangia possibility of a finite time singul 14. SUBJECT TERMS 17. SECURITY CLASSIFICATION OF REPORT Unclassified 	y of ch ields as main of amical er, i.e. ture of ions of tors. T tical ro an forr larity a	n unlimited. aotic advection, namely sociated with simple flu- question addressed in the system theory - success turbulent, flows. The lin- the fluid, namely the flu- the stretching and alignr This has led to some new le of pressure fluctuation nulation of 3-dimensionar round magnetic null poin CURITY CLASSIFICATION THIS PAGE Unclassified	the chaotic motion of paid flows, has come to the research supported by ful in analyzing chaotic nk between dynamical s id particle description. nent - the processes by insights into the mechans. In the case of the (n and magneto-hydrodynamints.	articles in e fore as this gran advectio ystems id Accordi which m nisms of on-passi ics equat	n deterministic dynamical s a model and means of at has been to determine how on models - are for studying deas and turbulence is ngly our work has centered of ixing is achieved - for passiv f fine scale vorticity dynamic ve vector) dynamics of tions has identified the 15. NUMBER OF PAGES 6 16. PRICE CODE 20. LIMITATION OF ABSTRACT UL

Work performed during last year of project.

The principal theme of research has been the study of chaotic advection in three dimensions at high Reynolds numbers. During the first two years this took the form of studies of the Lagrangian evolution of vorticity and strain and their role in stretching, aligning and mixing of both passive scalars - and hence chaotic mixing - and vorticity itself. A detailed analysis of vorticity stretching and alignment led to some new insights into the generation of small scale vorticity in turbulence and the subtle role of pressure fluctuations. During the past year two main directions have been pursued: (i) the nature of pressure fluctuations in turbulent flows and (ii) the stretching and alignment of non passive quantities.

<u>Pressure fluctuations and structures in turbulence</u>. Work by graduate student Emanuel Leveque (supervised by Z-S She) has, by direct visualization and conditional sampling analysis, studied the correlation between high magnitude structures for coarse grained dissipation and the vorticity and the low amplitude structures of the pressure fluctuations. The studies show that this correlation becomes more noticeable as the Reynolds number increases and that the structures tend to filaments. (This is different from the past claims that have been made for more sheet like structures.)

Additional work has also involved an exploration of the eigenstates of the pressure Hessian which determines the propagation of vorticity disturbances.

<u>Stretching and Alignment of non-passive quantities.</u> During the past year we have extended our studies of stretching and mixing of scalar quantities to the cases of passive vectors such as scalar gradients and, in addition to vorticity, other *non-passive vectors* such as magnetic field lines in fully coupled magneto-hydrodynamics (i.e in which the magnetic field and velocity field motions are coupled). Many of these ideas are reviewed in an invited review article "Stretching and alignment in chaotic and turbulent flows" written with post-doctoral colleague Isaac Klapper. A particular emphasis was placed on the stretching of magnetic field lines. In work with Klapper and graduate student Anita Rado, a new Lagrangian formulation of the 3 dimensional MHD equations was developed. By making certain reasonable assumptions about the pressure field (namely, locally isotropic) a closed system of odes (of traces of the relevant tensors) is obtained which can be subjected to detailed numerical and analytical studies. Our studies reveal the formation of a finite time singularity at null points and the use of various analytic continuation techniques have identified the detailed structure of the singularity itself.

Papers published during final year

M. Tabor and I. Klapper, "Stretching and alignment in chaotic and turbulent flows", *Chaos, Solitons and Fractals*, 1031 - 1055, 4 (1994), special volume edited by H. Aref.

Manuscripts in preparation

I. Klapper, A. Rado and M. Tabor, "A Lagrangian study of singularity formation at magnetic null points in ideal 3 dimensional magnetohydrodynamics"

E. Leveque and Z.-S. She "Structure of dissipation, vorticity and pressure fluctuations in isotropic turbulence"

Overall project summary

Over the past ten years the study of chaotic advection, namely the chaotic motion of particles in deterministic dynamical systems derived from velocity fields associated with simple fluid flows, has come to the fore as a model and means of obtaining efficient mixing. The main question addressed in the research supported by this grant has been to determine how useful the ideas and tools of dynamical system theory - successful in analyzing chaotic advection models - are for studying mixing in high Reynolds number, i.e. turbulent, flows. The link between dynamical systems ideas and turbulence is provided by the Lagrangian picture of the fluid, namely the fluid particle description. Accordingly our work has centered on developing Lagrangian descriptions of the stretching and alignment - the processes by which mixing is achieved - for passive and non-passive scalars and vectors. This has led to some new insights into the mechanisms of fine scale vorticity dynamics and identified the subtle and critical role of pressure fluctuations. In the case of the (non-passive vector) dynamics of magnetic field lines, a Lagrangian formulation of 3dimensional magneto-hydrodynamics equations has identified the possibility of a finite time singularity around magnetic null points.

Published papers

E. Dresselhaus and M. Tabor, "The Kinematics of Stretching and Alignment of Material Elements in General Flow Fields", J. Fluid. Mech. 236, 415 - 444 (1991).

M. Tabor, "Stretching and alignment in general flow fields: classical trajectories from Reynolds number zero to infinity" in "Topological aspects of the dynamics of fluids and plasmas", NATO ASI series E, **218** (editors: H. K. Moffatt, G. M. Zaslavsky, P. Comte and M. Tabor; Kluwer Academic Publishers, 1992).

M. Tabor and I. Klapper, "Stretching and alignment in chaotic and turbulent flows", *Chaos, Solitons and Fractals* 4, 1031 - 1055 (1994), special volume edited by H. Aref.

Manuscripts in preparation

I. Klapper, A. Rado and M. Tabor, "A Lagrangian study of singularity formation at magnetic null points in ideal 3 dimensional magneto-hydrodynamics"

E. Leveque and Z.-S. She "Structure of dissipation, vorticity and pressure fluctuations in isotropic turbulence"

Research report

E. Dresselhaus and M. Tabor, "The genesis of small scale vorticity in turbulence" (1992).

Dissertations

E. Dresselhaus, "Stretching and Alignment in Turbulence", Department of Applied Physics, Columbia University, New York (1991).

Invited presentations of research supported by grant

2/22/91 University of Colorado, Boulder, Applied Mathematics Colloquium, "Stretching and Alignment in Turbulence"

2/25/91 University of Texas, Austin, Nonlinear Dynamics Colloquium, "The Kinematics of Stretching and Alignment"

3/4/91 Princeton University, Applied Mathematics Colloquium, "Stretching and Alignment in Turbulence"

3/6/91 City College New York, Physics Colloquium, "Stretching and Alignment in Turbulence"

3/21/91 APS Meeting Cincinnati, session on Fluid Mechanics (H-Swinney, chair), "Stretching and Alignment in Turbulence"

5/7/91 CEN, Saclay, Physics seminar, "Stretching and Alignment in Turbulence"

6/25/91 (Pt I) & 6/28/91 (Pt II) Observatoire de Nice, seminar on "The Kinematics of Stretching and Alignment in Turbulence"

10/28/91 U. C. Santa Cruz, Physics Colloquium, "Stretching and Alignment in Turbulence"

5/13/92 Utah State University, Mathematics Colloquium, "Stretching and Alignment in Turbulence"

7/16/92 Australian National University, Canberra, Physics Colloquium, "Stretching and Alignment in Turbulence"

8/3/92 Univ. of New South Wales, Applied Mathematics Colloquium, "Stretching and Alignment in Turbulence"