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Message from the Chairs

Welcome to the Eighth IEEE Statistical Signal and Array Processing (SSAP) Workshop. Corfu, in Greek,
means apex and thus sounds most appropriate as a choice to host the biannual SSAP’96 summit of the
Signal Processing Society. We look forward to an exciting and memorable meeting. The workshop venue
is the Corfu Hilton in the heart of Corfu, featuring beaches amid cliffs and pines, and the atmosphere to
promote the exchange of technical ideas while enjoying the Greco-Ionean ambiance.

Statistical signal and array processing continues to be the backbone of many real-world engineering
applications, and consistent with previous meetings, we expect SSAP’96 to continue the tradition of
excellence in the technical quality of presentations on state-of-the-art research. The international character
of the workshop keeps growing, and this year’s meeting, being the first one to move away from North
America, is well attended by European participants. As with previous SSAP meetings, we have
introduced some changes in the organization and the emphasis of the meeting. Correspondence with
authors was primarily via e-mail, and for publicity and notifications we relied heavily on our regularly
updated home page (http://watt.seas.virginia.edu/~spirit/ssap96/). Thanks to external support, we
were able to offer bargain basement registration fees ($550 for regular and $450 for student attendees).

We received 270 summaries from 45 countries— a record number of submissions for SSAP. Each
submission was scored by three reviewers, and in order to maintain the workshop’s atmosphere we
accepted only 139 papers which we expect to be of high quality. Our apologies to authors whose fine
submissions we could not accommodate, and our sincere thanks to reviewer experts, mostly drawn from
the SSAP Technical Committee, for their help with excellent and timely reviews. Signal Processing for
Communications and Array Signal Processing were well represented in the number of submissions (and
thus in the number of accepted papers). Applications, detection-estimation, non-Gaussian, non-stationary,
and nonlinear formed other well-defined clusters, and all are represented in the ten poster sessions and
five outstanding plenary talks. The center of focus for this year’s research theme is SSAP for
Communications.

Our warm thanks go to the volunteers of the international program committee, the European and
Austral-Asian liaisons, the publication, publicity, and local arrangement chairs. The informative and
creative home page prepared by Guotong Zhou contributed significantly to the workshop (its format is
now being used as a template by other workshops). Maria Rangoussi’s efforts in Greece are also greatly
appreciated (she bridged the transatlantic distance with the organizers in the US). We finally wish to
acknowledge support from the U.S. Army Research Office, the U.S. Office of Naval Research, the Greek
General Secretariat for Research and Technology, and the Greek companies Intracom and Alpha.

We hope that your stay in Corfu will not only be technically enriching but will also give you the
opportunity to meet new fellow researchers, renew old acquaintances, and to enjoy the Greek sea and
sun. We look forward to meeting you in Corfu.

Georgios B. Giannakis and Ananthram Swami
Co-organizers and Co-Chairs
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CALL FOR PAPERS

This workshop is the eighth in a series of biannual meetings
sponsored by the IEEE Signal Processing Society. Following
the successful scheme of previous meetings, the workshop
will feature keynote addresses by leading researchers in the
area, and poster sessions consisting of both invited as well
as contributed papers. Participation will be limited.

Authors are invited to submit contributions in the areas of,
but not limited to :

e Power spectrum analysis

o Higher-order spectra in signal processing
e Detection and estimation theory

¢ Sensor array processing

o Performance analysis

o Nonlinear and chaotic signals and systems

o Non-stationary processes: Time-frequency and time-
scale representations; evolutionary spectra

e Cyclo-stationary signal analysis
e Signal processing for communications
¢ Computational and implementation issues

¢ Applications in all areas

Prospective authors should submit four copies of a
hundred word abstract and a two to four page extended
summary to G.B. Giannakis; the summary should include
affiliations, addresses, tel/fax numbers and e-mail addresses,
and keywords identifying one of the above topics. '

Important Dates:

Submission of summary
Notification of acceptance
Camera-ready paper

December 1, 1995
February 1, 1996
March 15, 1996

e-mail: ssap96@spirit.ee.virginia.edu

Home Page: http://watt.seas.virginia.edu/"spirit/ssap96

Co-sponsored by: ~ The U.S. Army Research Office and The U.S. Office of Naval Research
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Detecting Regularity in Minefields and Chaotic Signals using the Empty Boxes
Test

Douglas E. Lake
Office of Naval Research, Code 313
800 N. Quincy St.
Arlington, VA 22217
laked@onrhq.onr.navy.mil

Abstract

A simple, flexible, and robust procedure to detect regu-
larity in point processes versus the alternative of random-
ness (i.e., a poisson point process) is the empty boxes test
(EBT). The EBT can be extended to a multivariate statis-
tical test in several ways including an implementation of
a skeptical likelihood test (SLT). These approaches have
previously been used to detect the regularity of minefields,
a two-dimensional point process, where the alternative is
termed complete spatial randomness (CSR). In this paper,
these methods are applied to the problem of detecting reg-
ularity in chaotic signals such as pseudo-random number
generators.

1. INTRODUCTION

Detecting minefields in the presence of clutter is an im-
portant challenge for the Navy. Minefields have point pat-
terns that tend to exhibit regularity such as equal-spacing
and collinearity that provide potentially valuable discrim-
inants against natural occuring clutter which tends to ex-
hibit complete spatial randomness (CSR). These tendencies
arise because of a variety of compelling factors including
strategic doctrine, safety, tactical and economic efficiency,
and perhaps most intriguing the human element. In [4] and
[5], several simple procedures were introduced to detect
regularity in minefields and other point processes gener-
ated by humans (e.g., lottery numbers). Figure 1 shows
an example of a minefield that is not so apparent with the
addition of clutter points.

Another important problem where regularity is being de-
tected as an alternative to randomness is the identification
of chaotic signals. Chaos theory is being used to develop
low probability of intercept (LPI) and spread spectrum
communication signals where traditional detection meth-
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Figure 1. Examples of a minefield with 50 mines
and 50 additional random clutter points

ods would fail. In these cases, the EBT and its variants
are alternative approaches to detection worth considering.
A particular interesting example to illustrate this claim is
a pseudo-random number generator (which is actually a
deterministic, chaotic process) with a white spectrum.

2. TESTS TO DETECT REGULARITY

A variety of methods to detect deviations from CSR in
point patterns have been developed for the most part on
the alternative of tendency towards clustering rather than
the tendency towards regularity. Cressie provides a com-
prehensive overview of these and other techniques with a
demonstration on the longleaf pine data set [2]. Some al-
ternative approaches are introduced below.

2.1. Empty boxes test

Consider a CSR process with n points on a set A in
R? that has been partitioned into N reqgions of equal area




to be referred to informally as boxes. A variety of tests
to detect regularity can be based on Mo, My, ..., My and
¥, Ya, ..., Yn where M, and Y; are random variables de-
noting respectively the number of boxes containing exactly
r points and the number of points in box i.

A simple test to test regularity is based on Mp, that is,
the number of empty boxes. The so-called empty boxes test
(EBT) based on Mg has been around for at least forty years
[3], but has traditionally been used to detect the presence
of too many empty boxes as an indication of lack of fit. In
this context, regular point processes (and humans) tend to
overfit and clustered point processes tend to not fit well.
A disadvantage of the EBT for minefield detection is that
there is no explicit modelling of collinearity and regular
spacing, per se; the EBT is a generic regularity detector.
However, the advantages of the EBT include its flexibility,
lack of edge effects and its robustness.

Another advantage of the EBT is that the null moments
of the test statistic can be calculated exactly without in-
dependence assumptions on Y1, Ys,...,YN. The expected
value and variance of Mo under CSR is given by

0-3 = Va?'[]Wo] po + N(N - 1)1900 - Mg @

i

where

po = Pr{¥; = 0}

1
] - —=)"
-7 @
2
poo=Pr{¥i=0,Y;=0} = (1-7)" &
and 7 = j in (4).
2.2. Generalizing the empty boxes test

The empty boxes test can be generalized by using
M1, M, ..., in addition to Mg to form test statistics. For
general  and s the moments analagous to (1) and (2) are
given by :

ur = Npr &)
0'3 = fpr-t N(N - l)prr - Il'z (6)
Trs — N(N - 1)1’1‘3 — HUris Q)

where ¢,.s = cov[M,., M,] for r # s and
n 1 1
. — —A\T 1 —_—— n-—r 8
po= (DEra-9 ®
1

(g o

as in (3) and (4).

f

prs

Let M = M, be the multivariate statistic vector
(Mg, My, ..., My)T with mean . and covariance .. Un-
der appropriate mild conditions,the quadratic form

Q=Qr=M-p)TZ (M- p) (10)

is approximately x2 with k + 1 degrees of freedom under
CSR. By considering both the sign of Mo — po with the
strictly nonnegative Q. to form the real-valued statistic

D = Dy, = sign(Mo — po)Qxk (11)

a one-sided test can be constructed . Positive values of D
indicate clustering and negative values indicate regularity.
Tests based on Dy are equivalent to the EBT. Moreover,
Q, is approximately exponential so that the test statistic
D, is approximately double exponential. A one-sided test
for regularity can be constructed using the approximation

4

Pr{D; < —d} = -21—6_2 (12)

where d > 0.
2.3. Skeptical likelihood test

It can be shown that the most likely configuration under
CSR would reject CSR under the empty boxes test. The
reason for this apparent paradox is that the test is rejecting
observations that are foo likely under the null hypothesis
suggesting some skepticism is in order. Generally, even dis-
tributions of the points among the regions are more likely
than uneven distributions. Without specifying an alterna-
tive, a skeptical likelihood test (SLT) for a statistic T with
null distribution f is to reject Hq for high values of f(T).

A skeptical likelihood test for minefield detection can
be based on the test statistic

T=Y) M,logr! (13)
=2

where significantly small values of T indicate regularity.
The mean and variances of (13) can be calculated directly
using (5),(6), and (7). In practice, the summation in (13)
can be truncated to simplify the computation.

2.4. Detection Performance Results

To demonstrate the EBT methods on the clutter example
(n = 100) in Figure 1 a value of N = 100 was selected
and the 80x720 region was divided into a 5x20 grid of
rectangles of equal size (16x36). One could think of this
example as having a SNR of 0 dB. The statistics for this
partition are Mo = 30, M; = 45, My = 20, and M3 =5
leading to P-values are of .017 , .045 , and .015 respectively
for the EBT, D,, and SLT.
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Figure 2. Empirical ROC curve for a point pro-
cess with 50 mines and 50 additional random
clutter points

In order to get a better understanding of the relative per-
formance of these three methods, 100 realizations of the 50
random clutter points were simulated. Figure 2 shows the
resulting empirical ROC curves. indicating that the three
methods are fairly similar. For example, with a false alarm
rate of .1 is approximately . the probability of detection
is approximately .8. This performance is impressive con-
sidering that the patterns are not always visually obvious
and these methods have no explicit modeling for collinear-
ity and except, perhaps, for the selected dimensions of the
regions no modelling of equal-spacing.

3. Examples of Chaotic Signals

Characterizing the difference between randomness and
chaos is a fundamental question that is perhaps more philo-
sophical in nature than mathematical, statistical, or physi-
cal. As is discussed recently in [1], a striking example to
illustrate the fuzzy boundary of these concepts is pseudo-
random number generators.

3.1. Pseudo-Random Number Generators

Uniform random variates Uy, Us, Us, . .. can be gener-
ated by multiplicative congruential methods of the form

Ug+1 = allxmodT (14)

Uniform Pseudo-Random Generator

Energy (dB)

1 1 1
01 02 03 04 05 06 07 08 09 1
Normalized Frequency

-35 i ! 1
0

Figure 3. Example of a Pseudo-Random Pro-
cess

along with some initial integer “seed” value Uy (for exam-
ple, see [8] pages 377-388). This method will necessarily
repeat, but the constants a and T can be selected in such
a manner to give a period on the order of T and a white
spectrum.

The EBT will be demonstrated on an example with
n = 256 samples from the chaotic process with param-
eters ¢ = 31623 and T = 26 — 1 = 65535. The time
series realization (Uy = 14349) normalized to give uni-
form deviates on the unit interval along with its spectrum
is displayed in Figure 3 along with its spectrum. With
N = 256 equally spaced intervals, there are My = 84
empty boxes which gives a statistically significant z-value
of —2.0024 (P = .0226). The other statistics have val-
ues of M; = 106, My = 49, M3 = 16, and My =1
which leads to less significant results of D; = —4.4754
(P = .0673) and T = —65.8104 (P = .0881) but still
provide some evidence that the sequence is not random.
Another pseudo-random generator that has been discussed
extensively in [1] and [6] has the parameters a = 16807
and T = 231 — 1 = 2147483647.

3.2. Kakutani-von Neuman Map

In this section we look at a minefield generated by a
variant of the Kakutani / von Neuman map shown in Fig-
ure 4 which we will denote by the function K. The map K
is an invertible, measure preserving map of the unit inter-
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Figure 4. Kakutani / von Neuman Map

val with a derivative of 1 (almost everywhere with respect
to Lebesgue measure) that is weak mixing but not strong
mixing (see [7] for details).

The (z,y) locations for the points in Figure 5 were
generated by

wrer = K(zr) vir1 = K (r + (e + zx)7/128) (15)

The unit square was partitioned into N=400 sections to use
the EBT. The My = 108 empty boxes are significantly
less than expected under CSR (z-value=-5). In this case,
the CSR hypothesis is rejected for a tendency to cluster.
However, there are clearly regularities and periodicities of
this ”minefield” that could be exploited as well.

4. Conclusions

The empty boxes test and its extensions offer simple,
flexible, and robust approaches to detecting regularity in
point processes. These methods are particularly applicable
to the problem of characterizing the difference between
random and chaotic processes as was demonstrated on some
nontrivial examples.
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An Iterative Solution to the Min-Max Simultaneous Détection and
Estimation Problem

Biilent Baygiin
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Abstract

Min-maz simultaneous signal detection and param-
eter estimation requires the solution to a nonlinear op-
timization problem. Under certain conditions, the so-
lution can be obtained by equalizing the probabilities of
correctly estimating the signal parameter over the pa-
rameter range. We present an iterative algorithm based
on Newton’s root finding method to solve the nonlinear
min-max optimization problem through ezplicit use of
the equalization criterion. The proposed iterative algo-
rithm does not require prior proof of whether an equal-
izer rule exists: convergence of the algorithm implies
ezistence. A theoretical study of algorithm convergence
is followed by an amplitude estimation example which
shows that decoupling detection from estimation entails
a very significant loss in estimation performance even
when optimal decoupled decision rules rules are imple-
mented.

1. Introduction

In practical applications, one frequently needs to
design a signal detector or a signal parameter esti-
mator without complete knowledge of the signal or
noise model. Several approaches to detector and es-
timator design exist in the case of incompletely char-
acterized models. Among these are invariance meth-
ods, Bayesian methods which use non-informative pri-
ors, and min-max methods. Min-max methods form an
important solution category because they ensure op-
timal detector or estimator performance under worst
case conditions. Furthermore, min-max solutions give
rise to tight performance bounds which can be used
to benchmark sub-optimal or ad hoc algorithms. Min-
max methods have been applied to problems of adap-
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tive array processing, harmonic retrieval, CFAR detec-
tion, and distributed detection.

Signal detection and signal parameter estimation are
typically considered as separate problems. In other
words, signal parameter estimation methods assume
that there is no uncertainty about signal presence.
However, there are many applications where signal pa-
rameter estimation has to be done under signal pres-
ence uncertainty, such as fault detection and estima-
tion in dynamical system control and antenna array
processing. Such problems are refered to as simulta-
neous detection and estimation problems. A min-max
solution to simultaneous detection and estimation was
recently given in [2]. The problem considered in [2] is
estimation of a discrete parameter under a false alarm
constraint. The statistical decision procedure which
solves the problem is called the constrained min-maz
classifier. The constrained min-max classifier is charac-
terized by a set of optimal weights. In Bayesian termi-
nology, the optimal weights represent a least favorable
distribution on the unknown parameter values. Nu-
merical solutions to min-max detection or estimation
problems involve nonlinear optimization to obtain the
least favorable distribution [3, 1]. On the other hand,
under certain assumptions, it is possible to formulate a
min-max solution by making explicit use of a simplify-
ing sufficient condition for min-max optimality. In the
case of the constrained min-max classifier, this suffi-
cient condition is the equalization of the correct classi-
fication probabilities. The purpose of the present work
is to present an iterative algorithm for efficiently com-
puting the constrained min-max classifier through the
equalization condition. An important attribute of the
proposed iterative algorithm is that it does not require
prior proof of existence of an equalizer rule. Conver-
gence of the algorithm proves existence, i.e. if we ob-
serve convergence, then the associated solution is the




constrained min-max classifier.

The correct classification probability of the con-
strained min-max classifier provides a tight lower
bound on the correct classification probability of any
similarly constrained detection and classification pro-
cedure. By using the proposed algorithm, we can com-
pute both this lower bound and the classification per-
formance of sub-optimal simultaneous detection and
classification procedures. Comparison of the perfor-
mance of sub-optimal procedures with the lower bound
allows us to assess the performance loss incurred by
employing a sub-optimal approach to simultaneous de-
tection and classification.

2. Problem Formulation

Consider the indexed probability space (2,0, P,),
where p is a parameter that lies in a finite discrete
parameter space =, o is a sigma algebra over ( and
P, is a probability measure defined on o. Let X be
a random variable taking values in a sample space ().
Assume that X has a probability density function f,(z)
with respect to a given measure. We will illustrate
our approach for the case of a location parameter, i.e.
fu(z) = f(z — p) for some fixed probability density
function f. Applications of the location parameter case
include modeling of a signal of unknown amplitude p
in additive noise whose probability density function is
given by f.

Define the hypotheses Hy, Hi,. .., Hy by:

H;: XNf“i($)=f(£E—[,Li), 1=0,...,n (1)

Let Ro,Ri,..., R, be the decision regions for hy-
potheses Hy, Hy, ..., Hy, espectively, i.e. the classifier
declares p = p; if and only if z € R;, 4 = 0,1,...,7n.
The probability of a correct decision under hypothesis
H;,i=0,1,...,nis given by

P,.(decide H;) = P, (Xe€ R)) (2)

We will be interested in choosing the decision re-
gions Ro, Ry, ..., R, such that the worst case correct
classification probability min; P, (decide H;) is maxi-
mized subject to a given upper bound a € (0, 1] on the
false alarm probability 1 — P, (decide Hp). A decision
rule which maximizes the worst case correct classifica-
tion probability under a false alarm constraint is called
a constrained min-maz classifier. In {2] it was shown
that the constrained min-max classifier is a weighted
likelihood ratio test:

ful®) o
ma (e F ®

i.e. if the maximum weighted likelihood ratio exceeds
the threshold v, then decide Hj,,,, where imee =
argmax;so {¢ifu (2)/fu,()}; otherwise decide Hp.
The weights c1,...,cy are computed as the solution
to a nonlinear optimization problem:

(min Z ¢;P,, (decide H;) . (4)

i=1

The threshold v is determined using the specified
bound «. Solution of the nonlinear optimization prob-
lem (4) could be computationally expensive. We will
outline an alternative solution scheme which charac-
terizes the min-max optimal classifier by means of a
sufficient condition.

Suppose that the parameterized density fu(z) =
f(z — p) has infinite support (f(z) > 0 for all z) and
has a monotone likelihood ratio. The infinite support
assumption is made to simplify the discussion of algo-
rithm convergence. Infinite support is not absolutely
necessary for the algorithm to work. An important
class of probability densities that satisfies the mono-
tone likelihood property is the single parameter expo-
nential family. Furthermore, a sufficient condition for
f(z — p) to have a monotone likelihood ratio is for the
function — log f(z) to be convex in z [4, page 509]. The
normal, the double exponential and the logistic distri-
butions all satisfy the convexity condition. Under the
monotone likelihood ratio assumption, it can be shown
that the constrained min-max classifier (3) gives rise to
the following decision regions Ry, Ry, ..., Ry:

Ry = (—00,%0];
Rz' = (.’Ei_l,CL‘i], i:l,...,n—l; (5)
R, = (.’En_l,OO)

The correct decision probabilities are given by:

P, (X € Ro) F(zo — o)
Pu(X€R) = F(z1—m)— Flzo—pm)

: (6)
P,.(X€ER,) = 1- F(zp_1 — itn)

where F is the cumulative distribution function with
density f. The acceptance region Ry for the null hy-
pothesis Hy can be specified explicitly. For any given
value of a € (0, 1], there exists a value of zp that satis-
fies the false alarm constraint: ¢ = F~1(1 — a) + mgq.
The remaining decision boundary values z1,...,Zn-1
will be computed by an iterative procedure.

A sufficient condition for min-max optimality is the
equalization of the correct classification probabilities
P,.(decide H;) for i = 1,...,n [2, Corollary 2]. The




equalization condition is represented by the set of equa-
tions

P, (decide H;) )
where p € (0,1) is the unknown common value
of the correct classification probabilities. Let y =
[z1,.- s ZTn-1,P]T (“T" denotes matrix transpose) and
define the function G(y) as follows.

=p, t=1,...,n

Flzs —m) - F(zo—pm) —p
s F(mg—uz)—F(an—ﬂz)—P
G(y) <
F(:L‘n 1= Un— 1)_ (mn—2"/-Ln 1) p

1= F(Tp-1—tn) — P

(8)
Then the set of equations (7) is equivalent to
G(y) =10, 9)

We propose to solve (9) iteratively using Newton’s root
finding method. More specifically, we consider the se-
quence y(k) generated through the iterations

T (y(k)G(y(k)) »
where J(y) is the Jacobian of the function G(y), i.e

def  O[G(y)l
@) = 3y,

.07

y(k+1) = y(k) - (10)

(11)

Forj=1,...,n—1,y; = z; and y, = p. Therefore,
the elements in the first n—1 columns of J(y) are found
from (8):

f(fﬂ(j—uj) ) ifi=j

o —f$j+1-—[l,j Jdfi=g54+1

[J(?i)]w - -1 ,j =n (12)
0 ,otherwise

A few words about the convergence of the iterative
algorithm (10) are in order. Assume that there exists
a solution y* to the equation (9). If

1. J71(y*) exists (the Jacobian is invertible); and

2. |[J(y" + 6y) — J(yO)Il < 718yl for some v > 0
and for all sufficiently small perturbations 8y (J is
Lipschitz continuous); and

3. []lJ7Y(y*)|| < B for some B > 0 (the norm of the
Jacobian inverse is bounded from above);
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then for any starting point y(0) that is sufficiently close
to y*, the sequence y(k) generated through (10) is well-
defined, converges locally to y* and has a quadratic rate
of convergence with coefficient 43 [5, Theorem 5.2.1].
Next we provide a sketch of the proof that the three
conditions are satisfied in the present problem.
Condition 1: Since f(z) > 0 for all z, the columns of J
are linearly independent.

Condition 2: The non-zero elements of the difference
6J of two Jacobians evaluated at points y + 6y and
y, respectively, are of the form +(f(z; + 6z; —_,uj) -
f(zi — py)). But f(z: + 6z — py) — flzi - Bi) =
f zitni ¢ f'(t — p;)dt. Assuming that the derivative f’
of the probability density function f is bounded, i.e.
sup, |f(z)] € M for some M > 0, it follows that
|f(zi + 0z — pj) — f(zi — pj)] £ M|6z;|. It can then
be shown that the Frobenius norm of §J, denoted by
[|6J]| is bounded above by a multiple of the I3 norm
of the vector §y. Since the ly-induced norm of 6J is
smaller than the Frobenius norm of §J [5, Theorem
3.1.3], Lipschitz continuity is satisfied.
Condition 3: For arbitrary z = [z1,...
the linear equation

,2n)T, consider

Jy(R)yk+1) =2z (13)

For notational simplicity, we will write the Jacobian
as J and suppress its dependence on y. After Gaus-
sian elimination, the equation (13) can be re-written in
terms of an upper triangular matrix J: jg(k +1)=72.
The matrices J and J are related by a non-singular
transformation 7', i.e. J = T'J. It suffices to estabhsh
an upper bound on the Frobenius norm ||J~!||r of J~1

because || J7!||r and ||J || are related by [|J~1||F <
ITlFIlJ~2||F and ||T||F is bounded. Suppose that

the last column of J is the vector [-a1,...,~a,]7,
ie. [J]m = —a;, it = 1,...,n. It can be shown that
al—landaz=1+ai_1#(z"—ﬂ—_“;) i=2,...,n. The

1K 1)7
Frobenius norm of J~! can be expressed as: ||J HiF =
[tr((J1)TJ-1)]/2, where “tr” denotes matrix trace.
After some algebra, we obtain an upper bound:

=, a 1 1)
j—1 = Sy -
< (-4, (14)
where L = max;{(a? +a2)/f*(z; — )}, i=1,...,n—

1. In finite dimensional spaces all norms are equivalent,
therefore there exists some 8 > 0 such that ||J|| < 8.




3. Applications on Simultaneous Detec-
tion and Classification in Gaussian
Noise

We will illustrate the iterative algorithm (10) for the

case of normal densities. Let f(z) = ﬁ exp(-—%;)

and p; =ifori=0,1,...,n. We consider three differ-
ent simultaneous detection and estimation rules. One
of the rules is the constrained min-max classifier de-
scribed earlier, which maximizes the worst case clas-
sification performance under a given false alarm con-
straint. One can also perform simultaneous detection
and estimation by combining a classifier with a sepa-
rately designed detector. With this strategy, the data
are not presented to the classifier unless the detector
declares “signal present”. In other words, the classifier
is gated by the detector.

We consider two gated classifiers and compare their
performance to the performance of the constrained
min-max classifier. Both of the gated classifiers use
a min-max optimal detector for detection, but they
differ in the design of their classifier structures. One
of them uses an unconstrained min-max classifier de-
signed independently of any detection objective. An
unconstrained min-max classifier maximizes the worst
case correct classification probability as if signal pres-
ence is certain. This classifier is obtained by remov-
ing the false alarm constraint (o = 1) in the con-
strained min-max classifier. The other gated classifier
uses a conditionally min-max classifier designed with
explicit knowledge of the detector decision regions.
A conditionally min-max optimal classifier maximizes
the worst case correct classification probability condi-
tioned on the detector having declared signal present.
The conditionally min-max classifier is obtained by re-
placing all the densities fy; (z) under the alternative
hypotheses Hi, ..., H, with the conditional densities
fu:(z]X ¢ Ro) in the analysis of Section 2. Since we
are using the min-max detector, Ry = (-0, Zo) as be-
fore, and z is specified by the false alarm probability
a.

Figure 1 shows the variation of the worst case cor-
rect classification probability min; P, (decide H;) for
the three simultaneous detection and estimation rules
as a function of the false alarm probability . In this
example o = 0.6, and there are five alternative hy-
potheses (n = 5). In general, the constrained min-
max classifier (solid line) performs best, while the un-
constrained min-max classifier gated by the min-max
detector (dashed line) gives rise to the lowest perfor-
mance. The conditionally min-max classifier gated by
the min-max detector (dashdot line), although bet-
ter than the unconstrained min-max classifier, still
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Figure 1. Worst case correct classification
probability as a function of a.

falls significantly short of the performance of the con-
strained min-max classifier for small c. On the other
hand, as a increases all three curves come together as
expected. This is because for high a, the three simul-
taneous detection and estimation rules degenerate to
an unconstrained min-max classifier for the alternative
hypotheses Hy,...,Hnp.
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Abstract

A hypothesis H is parametric if every distribution from
the process  defined by H belongs to a family of
distributions  characterized by a finite number of
parameters; on the other hand, if the distribution can not be
definided by a finite number of parameters, the hypothesis
is nonparametric.

In this paper, we analyze a detector based on the
optimum  permulation test, in the Neyman-Pearson sense,
and under Gaussian noise conditions, which operates on
radar video signal. The computational complexity of the
detector is high and its implementation in real time is
difficult, due to the mumber of operations increases with
the factorial of the number of samples. Also, we present an
algorithm that reduces the computational work required.

We also present the characteristic of detectability of the
optimum  permutation test under Gaussian noise
environments and different types of target models
(monfluctuating, Swerling I and Swerling 11). The detection
probability versus signal-to-noise ratio is estimated by
Monte-Carlo simulations for different parameter values (N
pulse, M reference samples and false alarm probability P,).

1.-Introduction.

There are many posibilities to solve radar detection
problems by means of nonparametric tests, which do not
have a global solution. We are interested in the class of
binary nonparametric tests called permutation tests, which
are distribution-free under independent and identically
distributed (IID) samples.

The distribution of a block of IID samples is invariant
under the permutation of its sample components. That is,
consider a IID sample vector (x,,x,,...,.x,) of n samples where
Fox) 1s the distribution function of a sample, if
Flx,x,,...%,)= Fofx,) Fy(x,)...Fy(x,), then
Fepxy %) =F(,x,.05,) =" =F(x,,...x,x,)

To generate a permutation test the sample space R” is
partitioned into »! regions D, (i=1,2,...,n!) where
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D;={x=(x, ... x,) 1 ifx € D;, x (permutation) D}
in such a way that

”
D;nD;=0 ij=12..n! i%, and L}Jl)i:Rn
=

Each sample vector x belongs to one of these regions D,
(i=1,2,...,n!), and we can get a different vector by permuting
their components, each one belonging to one different
region D, It is possible to partition R"-space in different
ways in order to fulfil D,-conditions. A particular case is the
well known rank test [1,2,3], whose regions D, are

X <x <--<x.
L] i in

1

D.:{x:(x1 Ko X,):

with ;e {1,2,..,n}, i;#, when j=k,jk=12..n

Under the null hypothesis H, (target absent), the
probability that the sample vector x, belongs to one of the
regions D, is I/nl, i.e. Prob{xe D} = I/n!

Under the alternative hypothesis H, (target present),
there are D,-regions with more probability measure than
other ones and now the probability that x €D, (i=1,....n!) is
not uniform.

Given a D -partition, we define the decision region as the
union of K regions D, In order to get the maximum
probability of detection, we select the D, regions with
largest probabilities. Just under H,, the false alarm
probability P, is K/n!, where K is the number of D;-regions.
The optimum permutation test would be the partition that
achieves a maximum detection probability.

In radar applications, we have N sample vectors
X}, X5, Xy Where N is the number of pulses per antenna
beamwidth. Each sample vector x; has M noise reference
samples x;, j=1,2,..,M and the sample under test x,, i.e. x, =
(%;pX2---x,%;). Under the null hypothesis H, (target absent)
we suppose that the components of x; are IID, but under the
alternative hypothesis H, (target present) they are not IID
(reference samples x,,x,,,....x,, are IID and x, has different
distribution of x;, j=1,2,....M).

i




Now, the distributions associated with H, are

N M
Ao Hy= IILA (x )1 o (x)) (la)

i=] j=1

where /() is the probability density function of a noise
sample in the ith-pulse.
Under H,, we have

N M

Sell =TT 61, ) (1b)
i=] j=

where f,(x,) is the probability density function of a sample
under test x, (signal + noise) in the ith-pulse.

2.-Permutation Test Algorithm.

In order to test H, against H, in Neyman-Pearson sense,
we take the likelihood ratio

N M

H [I:Efo(xy)] :/;,(xi) B I}%fi’(v,)

oy B
i1 (6)

Aol Hy)

N M

1 (RITRCR PACY

i=l j=l

In case of Gaussian noise conditions and nonfluctuation
target models, applying (2) at the output of linear envelope
detector, we have (after taking Neperian logarithm):

N
L) S L (29 +(-N9 @)

ﬂX/HO) izl

where S is the signal-to-noise ratio (SNR), and I, () is the
modified Bessel function of the first kind and order zero.

(a) If signal-to-noise ratio (SNR) is low

fodH) ¥

L ~ By}
"y ()
(b) If SNR is high
SeH) X
L ~Zix,
"f(v/HO) i=l x| (4b)

We optimize the permutation test using (2) or (3), by
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permuting all the samples in each vector x=(x;; X5 Xas» X)),
i=1,2,...,N and selecting the upper results in (4). The number
of K higher results selected depends on the false alarm
probability Py, i.e. P ,=K/(M+] )V, where X is the number
of D,-regions associated with upper results of (3) after doing
permutations.

We optimize the permutation test using (3) or (4) in the
following way, from i=/ to N we have the matrix (for
application of (4a)).

22 2 2
11 X2 Xune X
2 2 2 2
oy Xon .. Xay X3

5

2 2 2 2 )
T Xind %
22 2 2
NI XNz Xng XN

adding the elements of the right column, we have
N 2
Y=y % ©

Now permuting the components in each vector (row
vector) in (5) and summing by columns, and ordering these
(M+1)¥ summs from the lower to the upper, we get the set
of Kth-greatest summs. If (6) is in this set, it is supposed
target present (hypothesis H,); otherwise, it is supposed that
target is absent (hypothesis H, ).

An efficient algorithm is as follows. First, in (5) we order
from the lowest to the highest the components of each row
vector, obtaining the matrix (7):

2 2 2 2
2N a2 IOM Zimen
2 2 2 2
1 ZoM  Pae
7
2 2 2 2 ™
Zi X2 Zing ZiMa
2 2 2 2
ZN1 ZN2 a0 Zan 4

~
P

y 2 2 2
where 2 <zp< "<Zp/[<Zppa




we get
Q4 +1) A
Vi :2 Zirte (8)
-

Note that (8) is the upper value. Now, swapping z ,,
and z,y,, and summing again the new right column, we get
the next value y,*”, and so on in order to obtain the K upper
values; so we have y,© (C=M+1,M,,1) In each step we
compared the y,© with the y value of (6), if @ <y, stop
the process with the first row and go to the second row-
vector of (7). So in (7) we swapp z , and z,,,, in order to
get »,™, and so on. We repeat this algoritm in order to know
if the y belongs or not to the K uppers values. If we get K
upper values y,/“ > y where (1<C<M and 1<r<N), it is
not necessary continue the process, testing the N rows and
doing the M+1 swapping in each row; in this case we
supposed that the target is absent (hypothesis H,).

3.- Computer results

We have analyzed the detection performance of

permutation tests in terms of detection probability P, with
constant false alarm probability P, considering (4a), as the
statistic for the implementation of algorithm described.

For a particular target model, the detection probability P,

1s a function of SNR, P,, N, and A{. We have considered
P,=10and 10 ®as pr actlcal radar values. We present in the
Figures 1, 2 and 3, P, -curves with M =6 and N=10 and 12
for different types of targets (Swerling II, Swerling I and
nonfluctuating). As it can be seen, we obtain a important
variation in P, for a low difference in N-values. Also, it is
observed that as P, decreases then the diference between P,
curves increase.

The Figures 4, 5 and 6 show P -curves for N=8 and M=
10 and 16. The variation in P, with N is more important
than the variation with M, and this fact is because the
integrate pulses convey more information tha