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Message from the Chairs 
Welcome to the Eighth IEEE Statistical Signal and Array Processing (SSAP) Workshop. Corfu, in Greek, 

means apex and thus sounds most appropriate as a choice to host the biannual SSAP'96 summit of the 
Signal Processing Society. We look forward to an exciting and memorable meeting. The workshop venue 
is the Corfu Hilton in the heart of Corfu, featuring beaches amid cliffs and pines, and the atmosphere to 
promote the exchange of technical ideas while enjoying the Greco-Ionean ambiance. 

Statistical signal and array processing continues to be the backbone of many real-world engineering 
applications, and consistent with previous meetings, we expect SSAP'96 to continue the tradition of 
excellence in the technical quality of presentations on state-of-the-art research. The international character 
of the workshop keeps growing, and this year's meeting, being the first one to move away from North 
America, is well attended by European participants. As with previous SSAP meetings, we have 
introduced some changes in the organization and the emphasis of the meeting. Correspondence with 
authors was primarily via e-mail, and for publicity and notifications we relied heavily on our regularly 
updated home page (http://watt.seas.virginia.edu/~spirit/ssap96/). Thanks to external support, we 
were able to offer bargain basement registration fees ($550 for regular and $450 for student attendees). 

We received 270 summaries from 45 countries- a record number of submissions for SSAP. Each 
submission was scored by three reviewers, and in order to maintain the workshop's atmosphere we 
accepted only 139 papers which we expect to be of high quality. Our apologies to authors whose fine 
submissions we could not accommodate, and our sincere thanks to reviewer experts, mostly drawn from 
the SSAP Technical Committee, for their help with excellent and timely reviews. Signal Processing for 
Communications and Array Signal Processing were well represented in the number of submissions (and 
thus iii the number of accepted papers). Applications, detection-estimation, non-Gaussian, non-stationary, 
and nonlinear formed other well-defined clusters, and all are represented in the ten poster sessions and 
five outstanding plenary talks. The center of focus for this year's research theme is SSAP for 
Communications. 

Our warm thanks go to the volunteers of the international program committee, the European and 
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Abstract 

A simple, flexible, and robust procedure to detect regu- 
larity in point processes versus the alternative of random- 
ness (i.e., a poisson point process) is the empty boxes test 
(EBT). The EBT can be extended to a multivariate statis- 
tical test in several ways including an implementation of 
a skeptical likelihood test (SLT). These approaches have 
previously been used to detect the regularity of minefields, 
a two-dimensional point process, where the alternative is 
termed complete spatial randomness (CSR). In this paper, 
these methods are applied to the problem of detecting reg- 
ularity in chaotic signals such as pseudo-random number 
generators. 

1. INTRODUCTION 

Detecting minefields in the presence of clutter is an im- 
portant challenge for the Navy. Minefields have point pat- 
terns that tend to exhibit regularity such as equal-spacing 
and col linearity that provide potentially valuable discrim- 
inants against natural occuring clutter which tends to ex- 
hibit complete spatial randomness (CSR). These tendencies 
arise because of a variety of compelling factors including 
strategic doctrine, safety, tactical and economic efficiency, 
and perhaps most intriguing the human element. In [4] and 
[5], several simple procedures were introduced to detect 
regularity in minefields and other point processes gener- 
ated by humans (e.g., lottery numbers). Figure 1 shows 
an example of a minefield that is not so apparent with the 
addition of clutter points. 

Another important problem where regularity is being de- 
tected as an alternative to randomness is the identification 
of chaotic signals. Chaos theory is being used to develop 
low probability of intercept (LPI) and spread spectrum 
communication signals where traditional detection meth- 

Minefield Consisting of 50 Points 

Figure 1. Examples of a minefield with 50 mines 
and 50 additional random clutter points 

ods would fail. In these cases, the EBT and its variants 
are alternative approaches to detection worth considering. 
A particular interesting example to illustrate this claim is 
a pseudo-random number generator (which is actually a 
deterministic, chaotic process) with a white spectrum. 

2. TESTS TO DETECT REGULARITY 

A variety of methods to detect deviations from CSR in 
point patterns have been developed for the most part on 
the alternative of tendency towards clustering rather than 
the tendency towards regularity. Cressie provides a com- 
prehensive overview of these and other techniques with a 
demonstration on the longleaf pine data set [2]. Some al- 
ternative approaches are introduced below. 

2.1. Empty boxes test 

Consider a CSR process with n points on a set A in 
Rd that has been partitioned into N reqions of equal area 
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to be referred to informally as boxes. A variety of tests 
to detect regularity can be based on Mo, Mi,..., Mn and 
Yi,Y2, ...,YN where Mr and Yi are random variables de- 
noting respectively the number of boxes containing exactly 
?• points and the number of points in box i. 

A simple test to test regularity is based on M0, that is, 
the number of empty boxes. The so-called empty boxes test 
(EBT) based on M0 has been around for at least forty years 
[3], but has traditionally been used to detect the presence 
of too many empty boxes as an indication of lack of fit. In 
this context, regular point processes (and humans) tend to 
overfit and clustered point processes tend to not fit well. 
A disadvantage of the EBT for minefield detection is that 
there is no explicit modelling of collinearity and regular 
spacing, per se; the EBT is a generic regularity detector. 
However, the advantages of the EBT include its flexibility, 
lack of edge effects and its robustness. 

Another advantage of the EBT is that the null moments 
of the test statistic can be calculated exactly without in- 
dependence assumptions onYi,Y2,...,YN. The expected 
value and variance of Mo under CSR is given by 

Ho = E\Mo]    = 

al = Var[M0]    = 

Npo 0) 

ßo + N(N-l)poo-ßZ    (2) 

Po = Pr{y< = 0}    = =    (1 ~ —)" v     N' 
(3) 

poo = Pr{Yi = 0, Yj = 0}    = =    (1 " -)" (4) 

and i ^ j in (4). 

2.2. Generalizing the empty boxes test 

The empty boxes test can be generalized by using 
Mi, M2,..., in addition to M0 to form test statistics. For 
general r and s the moments analagous to (1) and (2) are 
given by 

flr     =      Npr (5) 

4     =      ßr + N(N -l)Prr-flr (6) 

<Trs     =      N(N - l)prs ~ flrfls (7) 

where ars = cov[Mr, Ms] for r ^ s and 

»- (:)<><'->-' 
(8) 

- - (:)(";"K>'+*"-f >"-* (9) 

as in (3) and (4). 

Let M = Mfe be the multivariate statistic vector 
(M0, Mi,..., Mk)T with mean y. and covariance E. Un- 
der appropriate mild conditions,the quadratic form 

Q = Qfe=(M-/i)
TE-1(M-/x) (10) 

is approximately x2 with k + 1 degrees of freedom under 
CSR. By considering both the sign of M0 - fio with the 
strictly nonnegative Qk to form the real-valued statistic 

D — Dk— sign(Mo - fio)Qk (11) 

a one-sided test can be constructed . Positive values of D 
indicate clustering and negative values indicate regularity. 
Tests based on Do are equivalent to the EBT. Moreover, 
Qi is approximately exponential so that the test statistic 
Di is approximately double exponential. A one-sided test 
for regularity can be constructed using the approximation 

Pr{Z>i < -d} = -e" (12) 

where d > 0. 

2.3. Skeptical likelihood test 

It can be shown that the most likely configuration under 
CSR would reject CSR under the empty boxes test. The 
reason for this apparent paradox is that the test is rejecting 
observations that are too likely under the null hypothesis 
suggesting some skepticism is in order. Generally, even dis- 
tributions of the points among the regions are more likely 
than uneven distributions. Without specifying an alterna- 
tive, a skeptical likelihood test (SLT) for a statistic T with 
null distribution / is to reject H0 for high values of f(T). 

A skeptical likelihood test for minefield detection can 
be based on the test statistic 

T = y^Mrlogr! (13) 

where significantly small values of T indicate regularity. 
The mean and variances of (13) can be calculated directly 
using (5),(6), and (7). In practice, the summation in (13) 
can be truncated to simplify the computation. 

2.4. Detection Performance Results 

To demonstrate the EBT methods on the clutter example 
(n = 100) in Figure 1 a value of N = 100 was selected 
and the 80x720 region was divided into a 5x20 grid of 
rectangles of equal size (16x36). One could think of this 
example as having a SNR of 0 dB. The statistics for this 
partition are M0 = 30, Mx = 45, M2 = 20, and M3 = 5 
leading to P-values are of .017 , .045 , and .015 respectively 
for the EBT, Di, and SLT. 



Empirical ROC Curve with 50 Clutter Points 
Uniform Pseudo-Random Generator 

0.2 0.4 0.6 0.8 
Probability of False Alarm 

Figure 2. Empirical ROC curve for a point pro- 

cess with 50 mines and 50 additional random 
clutter points 

In order to get a better understanding of the relative per- 
formance of these three methods, 100 realizations of the 50 
random clutter points were simulated. Figure 2 shows the 
resulting empirical ROC curves, indicating that the three 
methods are fairly similar. For example, with a false alarm 
rate of . 1 is approximately . the probability of detection 
is approximately .8. This performance is impressive con- 
sidering that the patterns are not always visually obvious 
and these methods have no explicit modeling for collinear- 
ity and except, perhaps, for the selected dimensions of the 
regions no modelling of equal-spacing. 

3. Examples of Chaotic Signals 

Characterizing the difference between randomness and 
chaos is a fundamental question that is perhaps more philo- 
sophical in nature than mathematical, statistical, or physi- 
cal. As is discussed recently in [1], a striking example to 
illustrate the fuzzy boundary of these concepts is pseudo- 
random number generators. 

100 150 
Time 

0        0.1       0.2       0.3       0.4       0.5       0.6       0.7       0.8       0.9        1 
Normalized Frequency 

Figure 3. Example of a Pseudo-Random Pro- 
cess 

along with some initial integer "seed" value U0 (for exam- 
ple, see [8] pages 377-388). This method will necessarily 
repeat, but the constants a and T can be selected in such 
a manner to give a period on the order of T and a white 
spectrum. 

The EBT will be demonstrated on an example with 
n = 256 samples from the chaotic process with param- 
eters a = 31623 and r = 216 - 1 = 65535. The time 
series realization (U0 = 14349) normalized to give uni- 
form deviates on the unit interval along with its spectrum 
is displayed in Figure 3 along with its spectrum. With 
N = 256 equally spaced intervals, there are M0 = 84 
empty boxes which gives a statistically significant z-value 
of -2.0024 (P = .0226). The other statistics have val- 
ues of Mi = 106, M2 = 49, M3 = 16, and M4 = 1 
which leads to less significant results of Dx = -4A754 
(P = .0673) and T = -65.8104 (P = .0881) but still 
provide some evidence that the sequence is not random. 
Another pseudo-random generator that has been discussed 
extensively in [1] and [6] has the parameters a = 16807 
and T = 231 - 1 = 2147483647. 

3.1. Pseudo-Random Number Generators 3'2- Kakutani-von Neuman Map 

Uniform random variates UX,U2,U3,... can be gener- 
ated by multiplicative congruential methods of the form 

Uk+l = aUkmodT (14) 

In this section we look at a minefield generated by a 
variant of the Kakutani / von Neuman map shown in Fig- 
ure 4 which we will denote by the function K. The map K 
is an invertible, measure preserving map of the unit inter- 



0.2 0.4 0.6 0.8 1 

Figure 4. Kakutani / von Neuman Map 

val with a derivative of 1 (almost everywhere with respect 
to Lebesgue measure) that is weak mixing but not strong 
mixing (see [7] for details). 

The (x,y) locations for the points in Figure 5 were 
generated by 

«fc+i = K(xk)    yk+i K(yk + (yk + xk)7/l28) (15) 

The unit square was partitioned into N=400 sections to use 
the EBT. The M0 = 108 empty boxes are significantly 
less than expected under CSR (z-value=-5). In this case, 
the CSR hypothesis is rejected for a tendency to cluster. 
However, there are clearly regularities and periodicities of 
this "minefield" that could be exploited as well. 

4. Conclusions 

The empty boxes test and its extensions offer simple, 
flexible, and robust approaches to detecting regularity in 
point processes. These methods are particularly applicable 
to the problem of characterizing the difference between 
random and chaotic processes as was demonstrated on some 
nontrivial examples. 
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Figure 5. Chaotic minefield with 500 Points us- 
ing a perturbation of the Kakutani / von Neu- 
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Abstract 

Min-max simultaneous signal detection and param- 
eter estimation requires the solution to a nonlinear op- 
timization problem. Under certain conditions, the so- 
lution can be obtained by equalizing the probabilities of 
correctly estimating the signal parameter over the pa- 
rameter range. We present an iterative algorithm based 
on Newton's root finding method to solve the nonlinear 
min-max optimization problem through explicit use of 
the equalization criterion. The proposed iterative algo- 
rithm does not require prior proof of whether an equal- 
izer rule exists: convergence of the algorithm implies 
existence. A theoretical study of algorithm convergence 
is followed by an amplitude estimation example which 
shows that decoupling detection from estimation entails 
a very significant loss in estimation performance even 
when optimal decoupled decision rules rules are imple- 
mented. 

1. Introduction 

In practical applications, one frequently needs to 
design a signal detector or a signal parameter esti- 
mator without complete knowledge of the signal or 
noise model. Several approaches to detector and es- 
timator design exist in the case of incompletely char- 
acterized models. Among these are invariance meth- 
ods, Bayesian methods which use non-informative pri- 
ors, and min-max methods. Min-max methods form an 
important solution category because they ensure op- 
timal detector or estimator performance under worst 
case conditions. Furthermore, min-max solutions give 
rise to tight performance bounds which can be used 
to benchmark sub-optimal or ad hoc algorithms. Min- 
max methods have been applied to problems of adap- 

tive array processing, harmonic retrieval, CFAR detec- 
tion, and distributed detection. 

Signal detection and signal parameter estimation are 
typically considered as separate problems.   In other 
words, signal parameter estimation methods assume 
that there is no uncertainty about signal presence. 
However, there are many applications where signal pa- 
rameter estimation has to be done under signal pres- 
ence uncertainty, such as fault detection and estima- 
tion in dynamical system control and antenna array 
processing.   Such problems are refered to as simulta- 
neous detection and estimation problems. A min-max 
solution to simultaneous detection and estimation was 
recently given in [2]. The problem considered in [2] is 
estimation of a discrete parameter under a false alarm 
constraint.   The statistical decision procedure which 
solves the problem is called the constrained min-max 
classifier. The constrained min-max classifier is charac- 
terized by a set of optimal weights. In Bayesian termi- 
nology, the optimal weights represent a least favorable 
distribution on the unknown parameter values.   Nu- 
merical solutions to min-max detection or estimation 
problems involve nonlinear optimization to obtain the 
least favorable distribution [3, 1]. On the other hand, 
under certain assumptions, it is possible to formulate a 
min-max solution by making explicit use of a simplify- 
ing sufficient condition for min-max optimality. In the 
case of the constrained min-max classifier, this suffi- 
cient condition is the equalization of the correct classi- 
fication probabilities. The purpose of the present work 
is to present an iterative algorithm for efficiently com- 
puting the constrained min-max classifier through the 
equalization condition. An important attribute of the 
proposed iterative algorithm is that it does not require 
prior proof of existence of an equalizer rule.   Conver- 
gence of the algorithm proves existence, i.e. if we ob- 
serve convergence, then the associated solution is the 
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constrained min-max classifier. 
The correct classification probability of the con- 

strained min-max classifier provides a tight lower 
bound on the correct classification probability of any 
similarly constrained detection and classification pro- 
cedure. By using the proposed algorithm, we can com- 
pute both this lower bound and the classification per- 
formance of sub-optimal simultaneous detection and 
classification procedures. Comparison of the perfor- 
mance of sub-optimal procedures with the lower bound 
allows us to assess the performance loss incurred by 
employing a sub-optimal approach to simultaneous de- 
tection and classification. 

2. Problem Formulation 

Consider the indexed probability space (ü,a,Pß), 
where \i is a parameter that lies in a finite discrete 
parameter space E, a is a sigma algebra over ft and 
Pß is a probability measure defined on a. Let X be 
a random variable taking values in a sample space Q. 
Assume that X has a probability density function fß(x) 
with respect to a given measure. We will illustrate 
our approach for the case of a location parameter, i.e. 
ffi(x) = f{x - ß) for some fixed probability density 
function /. Applications of the location parameter case 
include modeling of a signal of unknown amplitude \i 
in additive noise whose probability density function is 
given by /. 

Define the hypotheses H0,Hi,...,Hn by: 

Hi X~/M,(a;) = f(x-ßi) ,   i = 0, (1) 

Let R0,Ri,...,Rn be the decision regions for hy- 
potheses H0, Hx,..., Hn, respectively, i.e. the classifier 
declares [i = \ii if and only if x G Ri, i = 0,1,..., n. 
The probability of a correct decision under hypothesis 
Hi, i = 0,l,... ,n is given by 

PM, (decide Hi)    =   PMi(XG#;) (2) 

We will be interested in choosing the decision re- 
gions Ro,Ri,...,Rn such that the worst case correct 
classification probability min; PMi (decide Hi) is maxi- 
mized subject to a given upper bound a G (0,1] on the 
false alarm probability 1 - PMo (decide H0). A decision 
rule which maximizes the worst case correct classifica- 
tion probability under a false alarm constraint is called 
a constrained min-max classifier. In [2] it was shown 
that the constrained min-max classifier is a weighted 
likelihood ratio test: 

max 
i>0 

Hi, 
> 
< 

Ho 

(3) 

i.e. if the maximum weighted likelihood ratio exceeds 
the threshold 7, then decide Hiiiiar, where imax = 
argmaxix) {cifßi(x)/fIJ,0(x)}; otherwise decide H0. 
The weights c\,..., CJV are computed as the solution 
to a nonlinear optimization problem: 

^T CiPMi (decide H) . (4) 

The threshold 7 is determined using the specified 
bound a. Solution of the nonlinear optimization prob- 
lem (4) could be computationally expensive. We will 
outline an alternative solution scheme which charac- 
terizes the min-max optimal classifier by means of a 
sufficient condition. 

Suppose that the parameterized density /M(x) = 
f(x - fi) has infinite support (f(x) > 0 for all x) and 
has a monotone likelihood ratio. The infinite support 
assumption is made to simplify the discussion of algo- 
rithm convergence. Infinite support is not absolutely 
necessary for the algorithm to work. An important 
class of probability densities that satisfies the mono- 
tone likelihood property is the single parameter expo- 
nential family. Furthermore, a sufficient condition for 
f(x - n) to have a monotone likelihood ratio is for the 
function - log f(x) to be convex in x [4, page 509]. The 
normal, the double exponential and the logistic distri- 
butions all satisfy the convexity condition. Under the 
monotone likelihood ratio assumption, it can be shown 
that the constrained min-max classifier (3) gives rise to 
the following decision regions Ro, R\,..., Rn: 

R0    =    (-00, x0]; 

Ri      ~      \%i—1, Xi\, 
Rn    =    (z„_i,oo) 

= 1, (5) 

The correct decision probabilities are given by: 

Pßo(X£R0)    =    F{x0-ix0) 

Pw(xefii)   =   F(xi - in) - F(x0 - m) 

PM„ (XeRn)      =      1 - F(xn-! - ßn) 

(6) 

where F is the cumulative distribution function with 
density /. The acceptance region R0 for the null hy- 
pothesis H0 can be specified explicitly. For any given 
value of a G (0,1], there exists a value of x0 that satis- 
fies the false alarm constraint: x0 = F_1(l - a) +m0. 
The remaining decision boundary values x\,... ,xn-i 
will be computed by an iterative procedure. 

A sufficient condition for min-max optimality is the 
equalization of the correct classification probabilities 
PMi(decide Ht) for i = 1,... ,n [2, Corollary 2].   The 



equalization condition is represented by the set of equa- 
tions 

Pßi(decide Hi) = p,   i = l,...,n (7) 

where p 6 (0,1) is the unknown common value 
of the correct classification probabilities. Let y = 
[xi,...,xn-i,p]T ("r" denotes matrix transpose) and 
define the function G(y) as follows. 

G(y) & 

F{xi -m)- F(x0 -fii)-p 
F(x2 - fi2) - F(xi - p2)-p 

F(xn-i - Hn-i) - F(a;„_2 - ßn-i) - p 
1 -F{xn-i - fin) -p 

(8) 

Then the set of equations (7) is equivalent to 

G(y) = [0,...,0]T (9) 

We propose to solve (9) iteratively using Newton's root 
finding method. More specifically, we consider the se- 
quence y(k) generated through the iterations 

y(k + 1) = y(k) - J-1 (y(k))G(y(*)) , (10) 

where J{y) is the Jacobian of the function G(y), i.e. 

def 
[J(v)h   = 

d[G(y)]i 

dyj 
(11) 

For j — 1,.. .,n — 1, yj = XJ and yn = p. Therefore, 
the elements in the first n — 1 columns of J(y) are found 
from (8): 

[J(y)h 

f(xj -Hj) , if * = j" 
-f(xj+i-Hj) ,iii=j + l 
-1 ,j = n 
0 , otherwise 

(12) 

A few words about the convergence of the iterative 
algorithm (10) are in order. Assume that there exists 
a solution y* to the equation (9). If 

1. J_1(y*) exists (the Jacobian is invertible); and 

2. \\J(y* + 6y)- J(y*)\\ < j\\Sy\\ for some 7 > 0 
and for all sufficiently small perturbations Sy (J is 
Lipschitz continuous); and 

3. ||J-1(|/*)II < ß for some ß > 0 (the norm of the 
Jacobian inverse is bounded from above); 

then for any starting point 2/(0) that is sufficiently close 
to y*, the sequence y(k) generated through (10) is well- 
defined, converges locally to y_* and has a quadratic rate 
of convergence with coefficient jß [5, Theorem 5.2.1]. 
Next we provide a sketch of the proof that the three 
conditions are satisfied in the present problem. 
Condition 1: Since f(x) > 0 for all x, the columns of J 
are linearly independent. 
Condition 2: The non-zero elements of the difference 
6 J of two Jacobians evaluated at points y + 6y and 
y, respectively, are of the form ±(/(XJ + Sxi — /Xj) - 
f(xt - pj)).   But f(xi + Sxi - fij) - f(xi - fij) = 

Ix! *' /'(* _ ßj)dt. Assuming that the derivative /' 
of the probability density function / is bounded, i.e. 
sups \f(x)\ < M for some M > 0, it follows that 
\f(xi + Sxi - Hj) - f{xi - HJ)\ < M\Sxi\. It can then 
be shown that the Frobenius norm of SJ, denoted by 
\\SJ\\F is bounded above by a multiple of the Z2 norm 
of the vector fry. Since the ^-induced norm of 6J is 
smaller than the Frobenius norm of SJ [5, Theorem 
3.1.3], Lipschitz continuity is satisfied. 
Condition 3: For arbitrary z = [z\,..., zn]T, consider 
the linear equation 

J(y(k))y(k + l) = z (13) 

For notational simplicity, we will write the Jacobian 
as J and suppress its dependence on y. After Gaus- 
sian elimination, the equation (13) can be re-written in 
terms of an upper triangular matrix J: Jy(k + 1) = z. 
The matrices J and J are related by a non-singular 
transformation T, i.e. J = TJ. It suffices to establish 
an upper bound on the Frobenius norm || J_1||^ of J-1 

because ||J_1
||F and ||J_1

||F are related by ||J_1
||F < 

II^IHI^IIF and ||T||F is bounded. Suppose that 
the last column of J is the vector [—a\,..., -an]T, 
i.e. [J]in = —a,i, i = l,...,n. It can be shown that 

O! = 1 and at = 1+a^ ii*'"1;/^, i = 2,...,n. The 

Frobenius norm of J~1 can be expressed as: || J~1 \\p = 
[tr((J-1)TJ-1)]1/2, where "tr" denotes matrix trace. 
After some algebra, we obtain an upper bound: 

(n-\ 1/2 

\Sf      al ripi-m)    a\t 

<    {{n-l)L+iyl\ (14) 

where L = maxj{(a2 + a2
l)//

2(a;i-/Lti)}, i= l,...,n- 
1. In finite dimensional spaces all norms are equivalent, 
therefore there exists some ß > 0 such that ||J|| < ß. 
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3. Applications on Simultaneous Detec- 
tion and Classification in Gaussian 
Noise 

We will illustrate the iterative algorithm (10) for the 
case of normal densities. Let f(x) = ^g2 exp(-^r) 
and m = i for i = 0,1,..., n. We consider three differ- 
ent simultaneous detection and estimation rules. One 
of the rules is the constrained min-max classifier de- 
scribed earlier, which maximizes the worst case clas- 
sification performance under a given false alarm con- 
straint. One can also perform simultaneous detection 
and estimation by combining a classifier with a sepa- 
rately designed detector. With this strategy, the data 
are not presented to the classifier unless the detector 
declares "signal present". In other words, the classifier 
is gated by the detector. 

We consider two gated classifiers and compare their 
performance to the performance of the constrained 
min-max classifier. Both of the gated classifiers use 
a min-max optimal detector for detection, but they 
differ in the design of their classifier structures. One 
of them uses an unconstrained min-max classifier de- 
signed independently of any detection objective. An 
unconstrained min-max classifier maximizes the worst 
case correct classification probability as if signal pres- 
ence is certain. This classifier is obtained by remov- 
ing the false alarm constraint (a = 1) in the con- 
strained min-max classifier. The other gated classifier 
uses a conditionally min-max classifier designed with 
explicit knowledge of the detector decision regions. 
A conditionally min-max optimal classifier maximizes 
the worst case correct classification probability condi- 
tioned on the detector having declared signal present. 
The conditionally min-max classifier is obtained by re- 
placing all the densities /Mi(a;) under the alternative 
hypotheses Hi,...,Hn with the conditional densities 
/Mi(i|X £ Ro) in the analysis of Section 2. Since we 
are using the min-max detector, i?0 = (-°o, ^o] as be- 
fore, and x0 is specified by the false alarm probability 
a. 

Figure 1 shows the variation of the worst case cor- 
rect classification probability mini PMi (decide Hi) for 
the three simultaneous detection and estimation rules 
as a function of the false alarm probability a. In this 
example a = 0.6, and there are five alternative hy- 
potheses (n = 5). In general, the constrained min- 
max classifier (solid line) performs best, while the un- 
constrained min-max classifier gated by the min-max 
detector (dashed line) gives rise to the lowest perfor- 
mance. The conditionally min-max classifier gated by 
the min-max detector (dashdot line), although bet- 
ter than the unconstrained min-max classifier, still 

solid line: constrained min-max classifier 

dashdot line: conditionally min-max classifier 

dashed line: unconstrained min-max classifier 

0.1        0.2        0.3        0.4        0.5        0.6        0.7        0.8        0.9 1 
a 

Figure 1. Worst case correct classification 
probability as a function of a. 

falls significantly short of the performance of the con- 
strained min-max classifier for small a. On the other 
hand, as a increases all three curves come together as 
expected. This is because for high a, the three simul- 
taneous detection and estimation rules degenerate to 
an unconstrained min-max classifier for the alternative 
hypotheses Hi,..., Hn. 
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Abstract 

A hypothesis H is parametric if every distribution from 
the process defined by H belongs to a family of 
distributions characterized by a finite number of 
parameters; on the other hand, if the distribution can not be 
definided by a finite number of parameters, the hypothesis 
is nonparametric. 

In this paper, we analyze a detector based on the 
optimum permutation test, in the Neyman-Pearson sense, 
and under Gaussian noise conditions, which operates on 
radar video signal. The computational complexity of the 
detector is high and its implementation in real time is 
difficult, due to the number of operations increases with 
the factorial of the number of samples. Also, we present an 
algorithm that reduces the computational work required. 

We also present the characteristic of detectability of the 
optimum permutation test under Gaussian noise 
environments and different types of target models 
(nonfluctuating, Swerling I and Swerling II). The detection 
probability versus signal-to-noise ratio is estimated by 
Monte-Carlo simulations for different parameter values (N 
pulse, Al reference samples and false alarm probability PfJ. 

l.-Introduction. 

There are many posibilities to solve radar detection 
problems by means of nonparametric tests, which do not 
have a global solution. We are interested in the class of 
binary nonparametric tests called permutation tests, which 
are distribution-free under independent and identically 
distributed (1ID) samples. 

The distribution of a block of IID samples is invariant 
under the permutation of its sample components. That is, 
consider a IID sample vector (x,,x2,...,xj of» samples where 
F0(x) is the distribution function of a sample, if 
F(x„x2,...,x,) = F0(xl)-F0(x2)...F0(xl), then 
^Px2 xJ=F(x},xl,...,xl)=J",>..=F(x, x2,xj 

To generate a permutation test the sample space R" is 
partitioned into n! regions 73,. (7=7,2 n!) where 

A = { *=(*;> *„): ifx eDt, x (permutation) eD,) 

in such a way that 
rt. 

D,nDj=0 i,j=l,2 n!  i?j, and     UA=ä" 

Each sample vector x belongs to one of these regions D< 
(i=I,2,...,«/), and we can get a different vector by permuting 
their components, each one belonging to one different 
region 73,, It is possible to partition 7?"-space in different 
ways in order to fulfil 73,-conditions. A particular case is the 
well known rank test [1,2,3], whose regions 73,. are 

7> = {x=(.v 1 7 2'" ,.rv ): X. <x. 
h      ': 

<x a 
wifh/,6- {l,2,...,n},   ij?ik    when j*kj,k =l,2,...,n 

Under the null hypothesis H0 (target absent), the 
probability that the sample vector x, belongs to one of the 
regions 73,. is 1/nl, i.e. ProbfxeDJ = llnl 

Under the alternative hypothesis H, (target present), 
there are 73,-regions with more probability measure than 
other ones and now the probability that x eD, (i=l nl) is 
not uniform. 

Given a 73,-partition, we define the decision region as the 
union of K regions 73;. In order to get the maximum 
probability of detection, we select the 73,-regions with 
largest probabilities. Just under H0, the false alarm 
probability Pfa is K/nl, where K is the number of 73rregions. 
The optimum permutation test would be the partition that 
achieves a maximum detection probability. 

In radar applications, we have N sample vectors 
x„x2,...,xN where N is the number of pulses per antenna 
beamwidth. Each sample vector X; has M noise reference 
samples xip j=l,2,...,M and the sample under test J^., i.e. xt = 
(xll,xl3,...xIKl,x^. Under the null hypothesis H0 (target absent) 
we suppose that the components ofx, are IID, but under the 
alternative hypothesis H, (target present) they are not IID 
(reference samples x„,xl3,...,xM are IID and x, has different 
distribution of xw j=l,2 AT). 

0-8186-7576-4/96 $5.00 © 1996 IEEE 
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Now, the distributions associated with H0 are 

JV   M 

/y//0)= ntn/o^.)]/^ (la) 

where /„,(•) is the probability density function of a noise 
sample in the /7/j-pulse. 

Under H„ we have 

i-1.7-1 

(lb) 

where /,,(*,) is the probability density function of a sample 
under test x, (signal + noise) in the ///j-pulse. 

2.-Permutation Test Algorithm. 

In order to test H0 against H, in Neyman-Pearson sense, 
we take the likelihood ratio 

permuting all the samples in each vectorXj=(xi,,xa,...xIM, x,), 
i=],2,...,N and selecting the upper results in (4). The number 
of K higher results selected depends on the false alarm 
probability P/a, i.e. P/a= K/(M+lf, where K is the number 
of D,-regions associated with upper results of (3) after doing 
permutations. 

We optimize the permutation test using (3) or (4) in the 
following way, from i=l to N we have the matrix (for 
application of (4a)). 

11    -M2 

'21       22 

2        2 

W    *N2 

2 
\\1 

2 
2W 

2 x2 

2 

2 

A/M 

*> 

(5) 

AT    A* 

*) 

i-i y-i 

(2) 

adding the elements of the right column, we have 

N 

i-l 

(6) 

In case of Gaussian noise conditions and nonfluctuation 
target models, applying (2) at the output of linear envelope 
detector, we have (after taking Neperian logarithm): 

fixlHJ   U      * 
(3) 

where S is the signal-to-noise ratio (SNR), and I0 (•) is the 
modified Bessel function of the first kind and order zero. 

(a) If signal-to-noise ratio (SNR) is low 

Lri- s.v-; (4a) 

(b) If SNR is high 

Ln ~ 1J \X. 
f(xlH0)    ,.,' 

(4b) 

We optimize the permutation test using (2) or (3), by 

Now permuting the components in each vector (row 
vector) in (5) and summing by columns, and ordering these 
(M+1)N summs from the lower to the upper, we get the set 
of A'th-greatest summs. If (6) is in this set, it is supposed 
target present (hypothesis H,); otherwise, it is supposed that 
target is absent (hypothesis H0). 

An efficient algorithm is as follows. First, in (5) we order 
from the lowest to the highest the components of each row 
vector, obtaining the matrix (7): 

zll     z12    -     Z\M    Z\M*\ 

Z2M    Z2M* 1 

2       2 2 2 
zil     %     -    ZiM    ZiM*\ 

ZN1  ZN2    -    ZNK1   zNM+\ 

where   zf, <z~2<- ■• < z;M< Z,~M +I 

(7) 
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we get 

. M+V. 
"iMH (8) 

Note that (8) is the upper value. Now, swapping z ,M 

and z1M+l and summing again the new right column, we get 
the next value yt

m, and so on in order to obtain the K upper 
values; so we have y/c) (C=M+1,M,-,1) In each step we 
compared the y/c> with the y value of (6), if y/c) < y, stop 
the process with the first row and go to the second row- 
vector of (7). So in (7) we swapp z ,M and z^, in order to 
gety/'0, and so on. We repeat this algoritm in order to know 
if they belongs or not to the K uppers values. If we get K 
upper values y/C) > y where (1<C<M and \<r<N), it is 
not necessary continue the process, testing the N rows and 
doing the M+l swapping in each row; in this case we 
supposed that the target is absent (hypothesis H0). 

3.- Computer results 

We have analyzed the detection performance of 
permutation tests in terms of detection probability Pd with 
constant false alarm probability P6, considering (4a), as the 
statistic for the implementation of algorithm described. 

For a particular target model, the detection probability Pd 

is a function of SNR, Pftf N, and M. We have considered 
.P^lO^and 10"8as practical radar values. We present in the 
Figures 1, 2 and 3, Pd -curves with M =6 and N= 10 and 12 
for different types of targets (Swerling II, Swelling I and 
nonfluctuating). As it can be seen, we obtain a important 
variation in Pd for a low difference in N-values. Also, it is 
observed that as P/a decreases then the diference between Pd 

curves increase. 
The Figures 4, 5 and 6 show /^curves for N=8 and M= 

10 and 16. The variation in Pd with N is more important 
than the variation with M, and this fact is because the 
integrate pulses convey more information than the noise 
reference samples. Also, from Figures 3 and 6, we can see 
very large differences in SNR for/^curves of N=10 and 12 
when PJa =10's. More reseach worn is required about this 
fact. 

Finally, due to Pfa = K/'(M+1)N, the computational 
complexity of the permutation test algorithm increases with 
M and N values for a specific /^„-values, because A' 
increases. Consequently an optimization process is required 
for the best determination of N, M and SNR in practical 
applications. 

Other results about optimum parametric and rank 
detectors against permutation test will be published 
elsewhere. Differences up to 1 dB in SNR are found 
between rank test and permutation test for the same Pd, P/a, 
N and M. 

SNTWB) 

Fig. 1: Detection Probablity Pd versus Signal-to-Noise (SNR) 
for permutation test with, M=6, N=10 and N=12 with false 
alarma probaility Pfa=106 and Pft =108 , for Nonfluctuating 

Fig.2: Detection probability Pd versus Signal-to-Noise (SNR) 
for permutation test, with M=6 ,N=10 and N=12 with false 
alarma probability Pfl= 106and Pfl = 10-8 , for Swerling I 
target model. 

Fig.3: Detection probability Pd versus Signal-to-Noise (SNR) 
for permutation test, with M=6,N=10 and N=12 with false 
alarm probability Pfa=10-6 and Vs, =108 , for Swerling II 
target model. 
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Fig.4: Detection probability Pd versus Signal-to-Noise 
(SNR) for permutation test, with N=8, M =10 and M=16 with 
false alarm probability Pfa=10-6 and P fa =10s , for 
Nonfluctuating target model.. 
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Fig.6: Detection probability Pd versus Signal-to-Noise (SNR) 
for permutation test, with N=8, M =10 and M= 16 with false 
alarm probability Pfa=10-6 and Pfa =10"8 , for Swerling H 
target model. 

Fig.5: Detection probability Pd versus Signal-to-Noise (SNR) 
for permutation test, wiht N=8, M=10 and M=16 with false 
alarm probability Pf=106 and Pfil =10"8 , for Swerling I 
target model. 
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ABSTRACT 

A generalized likelihood-ratio test (GLRT) detector is de- 
rived for detecting a space-time signal in the presence of 
unknown subspace interference and unknown target doppler. 
The near optimality and constant false alarm rate (CFAR) 
property of the GLRT is shown by the relationship to the 
uniformly most powerful invariant (UMPI) test using a sim- 
ple approximation. Examples are presented comparing the 
performance of the proposed detector against the UMPI test. 
The ROC curves indicate that the GLRT detector compares 
favorably to the UMPI detector. 

1.    INTRODUCTION 

We start by reviewing the subspace interference model. 
Suppose we have an array of m sensors that are simulta- 
neously sampled at time tk and the outputs stacked into 
the vector x(tk) = [xi(tk)x2(tk) ■ • -xm(tk)]T. We say the 
interference is subspace if at any instant of time, it can be 
represented as 

x(<t)=#0tt=yv<# (1) 

where if is a m x r matrix whose columns generate the 
interference space and Qtk is a r x 1 vector of scale fac- 
tors. The data vector x(tk) is a linear combination of 
the columns of H, which remain fixed, i.e., do not change 
as a function of time. The only dependence on time is 
through ©tt. The subspace model has wide application. 
Many type of interference components, e.g., clutter, can 
be represented using a subspace model (see Scharf [1] for 
an extensive treatise on subspace or reduced-rank model- 
ing and [2]). For example, if the sensor outputs x(t*) = 
[gil(t - TI) g2I(t -n) ■■■ gmI(t - rm)]T (where I(t) is 
some interference time series) are time delay steered to align 
the interference wavefronts (output of the Jfcth sensor is de- 
layed by rk - n), then x(tk) = I(tk)[gig2 ■ ■ • gm]T where 
gk is the gain of the fcth sensor. Also, colored noise can be 
modeled as subspace where the subspace dimension is pro- 
portional to bandwith [1, 2]. Thus narrowband components 
can be represented using a low order subspace model. An- 
other aspect of the subspace model is it inherently accounts 
for array calibration error, eg., gain errors. 

1.1.    Signal and interference model 

Usually the received signal has undergone multipath dis- 
tortion or time dispersion from the channel. Therefore the 
waveform received by the nth sensor is modeled as 

M*) = y~]cfcs( t-Tk-Srk 
(2) 

fc=i 

where s(t) is the signal replica, rk is the time it takes for 
the signal to travel from the source to sensor 1 over path 
k, Srk is the inter-sensor propagation time delay measured 
relative to sensor 1, a = (c + v)/(c — v) is the contrac- 
tion/dilation of the signal(s) due to target/platform motion 
(where c and v are the propagation and relative target ve- 
locities, assumed to be the same for each multipath), and 
et is a scalar corresponding to the attenuation from the kih 
path. The snapshot of sensor outputs at time tj is then 

L 

s>    =    22Ck fs('>/a - r*/a) s('j/a - r*/a - Sn/a) 
k=i 

■ ■ ■ s(tj/a - Tk/a - 6rm/a) f (3) 

or, after substituting Ck for the vector of data samples due 
to the Jfcth path, 

k-i 

(4) 

A total of K snapshots of data are collected at times 
Oilh, • ■ ■,<K} and stacked into a matrix. The matrix cor- 
responding to the signal component in the data is then 

2?° = [Si I s2 I ••• 

and has the equivalent form 

L 

is*] (5) 

(6) 

where V% = [<J | $ \ ... |Cf]. 
Using the above signal representation, the received space- 

time data matrices are modeled as 

■Ho-.X    =    H6 + N (7) 
L 

■Hi-.X    =    H9 + ^2ckVi + N (8) 
jt=i 
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under the signal absent and signal present hypotheses re- 
spectively where 9 = [0i©2 • • • ©2]T- The elements of the 
background noise matrix N are modeled as IID complex 
Gaussian distributed with zero-mean and variance a . We 
now discuss the uniformly most powerful invariant (UMPI) 
test for this hypothesis testing problem. 

1.2.    UMPI test 

We want to test the hypothesis that Y^k lc*|2 = ° (si8nal 

absent) or J2k lc*|2 > ° (siSnal present). We assume that 
the interference subspace H and doppler a are known, but 
that the parameters 9, ck, and <r2 in (7) and (8) are un- 
known and deterministic, ie., can take on a range of values. 
In sonar and radar, it is usually difficult or impossible to 
determine distributions for the interference and signal pa- 
rameters since the relevant scattering and channel physics 
are usually not known or at best, partially known. This 
type of detection problem is called a composite hypothesis 
testing problem [8]. 

It is difficult to find an optimum test when no probability 
density function is available for the unknown parameters 
[8, 4]. Ideally, we would like to construct an uniformly most 
powerful (UMP) test [4]. A problem is that UMP tests 
usually do not exist [8, 4]. 

In [3] it is argued that principles of invariance should 
be used to find the UMP test which is invariant to the 
unknown nuisance parameters (eg., noise variance, signal 
phase), known as the UMPI test. The motivation is that 
nuisance parameters are probably responsible for the non- 
existence of the UMP test in the first place [3]. Also, in 
many applications the test should be invariant to nuisance 
parameters such as the background noise level, ie., a CFAR 
test. However, the UMPI test is also difficult to find and 
may not exist. An alternative approach frequently used is 
to form the likelihood-ratio and replace the unknown pa- 
rameters by their maximum likelihood estimates [8]. This 
is called the generalized likelihood ratio test (GLRT). 

Scharf [6] derived the GLRT for the related problem of 
detecting in a single data snapshot a subspace signal in 
the presence of subspace interference (when the subspace is 
known) and showed that it is the UMPI test. The space- 
time signal and interference models we have are analogous 
to the data model used by Scharf [6] if the matrices in (7) 
and (8) are vectorized (by stacking the matrix columns into 
a vector). Vectorizing (7) and (8) and applying the results 
of [6], the UMPI test is 

I Ps> x' 

\Pi* 

Hi 
> 
< 

H0 

(9) 

where the _^ pro- 
jection operators are given by P& = I - H(H H) H , 
Ps, = S'(5/HS')-1S'H, and P£, = I - Ps<- The vectors 
are S' = [vec(P£V?) | vec(P^) \ ■ ■ ■ \ vec(P^Va

L)] and 
x' = vec(PjjX). The scalar A is some threshold. The 
operator t)ec(-) takes a matrix and converts it to a vector 
representation by stacking the columns. The numerator of 
(9) can be intrepreted as the magnitude-squared output of a 

space-time matched filter (beamforming-matched filter pro- 
cessing) using as the replica the part of the signal(s) which 
remain after the interference has been nulled. This is then 
normalized by an estimate of the background noise variance 
given by the denominator of (9). Because (9) is invariant 
to scalings of the data matrix and rotations in the column 
space of H, it is the best possible CFAR detector. 

Unfortunately, test (9) usually can not be implemented 
because the interference subspace matrix H is not known 
(e.g., H is a function of such things as the channel, direction 
of arrival, array geometry and sensor characteristics which 
are either unknown or at best, partially known) and the tar- 
get multipath structure and doppler are also unknown. In 
previous work Kirsteins [5] proposed a GLRT detector for 
the above problem given that doppler is known. The intent 
here is to extend those results to the case when doppler is 
not known and determine the effect on performance. In the 
remainder of this paper we derive the GLRT for the above 
hypothesis testing problem assuming the interference sub- 
space H and target doppler are both unknown and then 
discuss its relationship to the UMPI test and determine 
analytically the effect on performance when doppler is un- 
known. Finally, some numerical examples are presented 
comparing the performances of the GLRT and UMPI tests. 
We start by deriving the GLRT. 

2.    GLRT 

A GLRT statistic for choosing between hypotheses (7) and 
(8) is 

Z\ = 
minH0,e0 \\X — HQ80\\F 

mmHue1,a,c1,...,cL \\X - #i0i - J2k=i Ck ^*IIF 
(10) 

where H, 9, a, c*, and <r2 have been treated as unknown. 
The GLRT statistic (10) is simply a ratio of fitting errors. 
The numerator is the error in fitting the matrix X by a rank 
r matrix and the denominator is the error in jointly fitting 
X by a rank r matrix and 53fc=1 c*P£. 

The numerator in (10) is easily evaluated using the sin- 
gular value decomposition (SVD) of X as minjj0,e0  ||X — 

-ffoöo||F = EtLr+iT* where 7* are the sinSular values of 

X. We need to evaluate the denominator of (10). Un- 
fortunately, a direct solution is not available. We propose 
an iterative scheme to perform the minimization based on 
the criss-cross regressions method of Gabriel [7] for solving 
the weighted low rank approximation problem. Basically 
the idea is to linearize the optimization problem, for each 
hypothesized doppler a, by holding H constant and then 
minimizing with respect to only 9 and the cjt. This is a 
standard linear least-squares fitting problem and is easy to 
solve. The procedure is then repeated, except that this time 
9 is replaced with its estimate from the previous step and 
the minimization now done with respect to H and the c*. 
These steps are continued until convergence. The algorithm 
steps are summarized below: 

a. Initialization.  Iteration counter k is set to zero k — 0. 
Select initial guess Ho ■ 

b. Jb = fc + 1 
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c. Holding Hk-i fixed, minimize with respect to only 9 and 
Ck: 

L 

9k,ck=arg     min      \\X - Hk^6 - V ck Vi\\2F 

*=1 

d. Holding 8k fixed, minimize with respect to only H and 
ck: 

Hk,ck = arg      min 
H,ci cL 

\\X-H0k-Y^CkVak\\ 
k=\ 

e.  Check if converged. If not converged, go back to step b. 

The operator arg here means the solution to the mini- 
mization problem. 

2.1. Relationship to UMPI test 

We now discuss the relationship of the proposed GLRT to 
the optimum UMPI test. It was shown in [5] that when 
the signal ^2k=1 ck V% and background noise N are much 
weaker than the subspace interference H6 with doppler o 
known, the GLRT has the approximate form 

Z\ — 1 
I Ps» Iß- 
pk *" \?F (11) 

where Ps» = S"{S"HS")-^S"H, P£„ = I - Ps„, 
Pf = I- O"^11)-^, x" = veciPJiXPf), and S" = 
[vec{PJjVtPe

L) | veciPäVIPj-) | • • • | vec(P£l>iPJ-) ]. The 
approximation (11) and UMPI test (9) are nearly the same 
except for a post-multiplication of X and the signal by the 
projection operator P/. The post-multiplication of X by 
Pe corresponds to an additional temporal nulling of the 
data (Pg- projects onto the orthogonal complement of the 
complex conjugate of the row space of the subspace inter- 
ference matrix H6, which corresponds to the time series 
observed by each sensor due to this interference). The ex- 
tra temporal nulling can be intrepreted as a loss due to 
estimation. Test (11) is also CFAR since it is invariant to 
scalings of the data matrix. 

The distribution of (11) has been derived in [5] and was 
shown to be central and non-central F distributed under 
Ho and Hi respectively. 

2.2.    Performance degradation 

We now discuss the loss in performance when estimating 
doppler. When the signal is present and not too weak com- 
pared to the background noise N, we expect the test statis- 
tic (10) to be nearly the same as when doppler is known 
(at high signal-to-noise ratios doppler should be estimated 
accurately). However, when the signal is not present (noise 
only case) the value of (10) will clearly increase, resulting 
in an increased false alarm rate for the same threshold. We 
now determine the extent of the increase using (11). An 
exact analysis is difficult since it involves determining order 
statistics. Here we present an approximate analysis using 
(11) given that the possible range of dopplers is restricted 
to some small interval (often times we know the feasible 
target velocities). 

Approximation (11) can be rewritten as 

1 
z\ 

|Ps»x»||2F/||x»|| 
(12) 

When doppler is being estimated, the above approximation 
becomes 

z\ K max 
«       1-||PS»X»||2F/||X»||2F 

An equivalent test statistic is 

zx  = max 
x"HPsn x" 

x"Hx" 

(13) 

(14) 

Next linearize (14) about ao by keeping the first-order terms 
of its Taylor series expansion. This results in 

*I(a) » 
<PS»  x" 

«o . / d  *"HPS» x" 
+ (a-a0)     TT rP  y ' \ da      x"Hx" 

If a is restricted to some small interval [ao — A, ao + A], the 
maximum of (15) must occur at one of the end points of the 
interval. Therefore the maximum of (14) is approximately 

JlH Pal, 

«i x""x" + A d_ 
da 

x"HPfi» x" 
(16) 

where the first term in (16) is the GLRT when a is known 
and the last term is the perturbation due to estimating 
doppler. 

We now calculate the second moment of the last term in 
(16) (the first moment is difficult because of the absolute 
value), that is, the expected value of 

(x"Hx")2 

d_ 
da *"H^ *"L (17) 

Replacing (x"Hx")2 in (17) by its expected value 
{o2)2{{m-rf(K-rf+2{m-r){K-r)) and using some re- 
sults in [9] for the moments of complex Wishart distributed 
matrices, the expected value of e is found to be 

£[e] 
(m - rf{K - r)2 + 2(m - r){K - r)) 

(iraCeKlLPs° l^o)2] + "-ace2[^^' I.-J 

-„  . . (18) 
where Pg is obtained applying the previous formulas using 

8" = [vec{U0
HT>?V0) | ve^UfVSVo) | • • • | t>ec(t/0"X>£Vb)] in 

place of S" and the orthonormal columns of matrices UQ 

and Vo span the column spaces of Pjj and Pe
x respectively. 

Discussion 
As expected, to first-order the magnitude of the pertur- 

bation (relative to the detector when doppler is known) is 
related to the doppler resolution of the waveform. To ad- 
just detector thresholds, we can approximately determine 
the expected value of the perturbation using \fe and then 
(13) to determine the increase of z\. 
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3.    NUMERICAL EXAMPLES 

In order to evaluate the performance of the GLRT detec- 
tor a number of studies were made. We simulated an ac- 
tive sonar system with an array of 10 hydrophones with 
half-wavelength spacing. The reverberation component 
was modeled as arising from IID Gaussian point scatterers 
(Rayleigh distributed amplitudes and uniformly distributed 
phases) along a line perpindicular to the center of the array. 
The per sample reverbation power is normalized to unity. 
The ambient noise component is modeled as white Gaus- 
sian with variance 3.125 X 10-3. The transmitted pulse 
is a .6 second 400-425 Hz LFM waveform. The received 
target echo is modeled as Rayleigh fading with variance 
1.95 x 10~5. In all simulations the signal is arriving 1/2 of 
beamwidth from broadside, noting that the reverberation 
is arriving from broadside. 

The target velocity was set at 4 m/sec. A total of 200 
independent trials were performed. The UMPI test, GLRT 
when target velocity is known, and GLRT when target 
doppler is not known (doppler search is restricted to the 
interval 0-5 m/sec) were evaluated for each trial using the 
same realizations of interference and signal. 

The measured ROC curves are plotted in figure 1. Note 
that the unknown target doppler GLRT is close in perfor- 
mance to the GLRT using the correct target doppler and 
also the UMPI test. Next, the square root of (18) (second 
moment of the increase of the approximate test statistic 
(14)) vs. A is plotted in figure 2 (note that A = .004 cor- 
responds to a velocity change of about 30 m/sec). This 
is compared with the experimentally measured second mo- 
ment. The plots indicate the approximations are accurate 
over a wide range. 

4.    CONCLUSION 

The theoretical and experimental analysis indicates that the 
proposed GLRT detectors perform well. Furthermore, for- 
mulas are provided relating the GLRT's to the UMPI test 
and allowing the approximate calculation of the expected 
increase of the test statistic when doppler is estimated. 
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Figure 1. Experimentally measured ROC curves based on 
200 trials. The curves are labeled as follows: solid - UMPI, 
widely dotted - GLRT using true doppler, dashed - GLRT 
when doppler is unknown. 

1.5 2 z.5 
abs(a - a_nomlnal) 

Figure 2. Expected increase of test statistic (14). Solid line 
is theoretical and * is experimental. 
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ABSTRACT 

Muliplicative jumps have been considered in many ap- 
plications. These applications include speckle signal in 
radar images, mechanical vibrations, non-linear time 
series and random communication models. The prob- 
lem addressed here is the detection of multiplicative 
jumps using the Neyman-Pearson test. This test con- 
stitutes a reference to which suboptimal detectors can 
be compared. In practical applications, the parameters 
of the noise and of the jump have to be estimated. The 
Maximum Likelihood Estimator and the Cramer Rao 
bound for these parameters are then studied. 

1.  INTRODUCTION 

This paper studies the performance of a multiplicative 
jump detector based on the Neyman-Pearson test. For 
the sake of simplicity, we consider the case of a shifted 
step embedded in a multiplicative non zero mean white 
Gaussian process, which leads to simultaneous mean 
value and variance jumps. This kind of signal has 
been considered in many applications. These applica- 
tions include speckle signal on piecewise constant back- 
grounds in radar images, mechanical vibrations, non- 
linear time series and random communication models. 
In the first section, we formulate the problem and de- 
velop the optimal Neyman-Pearson test [1]. This test is 
optimal in the sense that it minimizes the probability of 
false alarm (Pfa) for fixed probability of non detection 
(Pnd). The second section is devoted to the estimation 
of the multiplicative jump parameters which leads to a 
suboptimal detector. 

2.  NEYMAN PEARSON TEST 

The problem addressed here is the detection of multi- 
plicative jumps using the Neyman-Pearson test. 

Under hypothesis Hi, the signal is a stationary 
white Gaussian process x(n) with mean m and variance 

Under hypothesis H0, the process x(n) is multi- 
plied by a step of amplitude A at time no: 

y(n) = x(n) [1 + A.U {n - n0)] 

where U(n) is the Heaveside step. The Neyman-Pearson 
test is then defined by: 

Ho rejected if f£jg*| > HPnd)       (1) 

In (1), L (Y \H) is the Likelihood function for the vec- 
tor Y = [y{\),...,y{N)]t under hypothesis Hi. Using 
the normality of vector Y, Ho is rejected if: 

'-iLK" (£*).' < S(Pnd)      (2) 

Introducing the unit normal n-dimensional variable W = 

and 

Y-m(l + A)      ,     „ 
W=     a(l + A)      UnderJ/o 

W = under Hi 

(3) 

we can express Z as the sum of N - n0 independent 
and identically distributed (i.i.d.) variables: 

N 

Z = dj    ^2   (*"(*) + Mif under Hj (4) 
«=«0 + 1 

with 

M) = mi + J ,do=a2(l + A)2 under H0     (5) 
<r(2 + A) 

and 
Mi = 

m 
-,di =a   under Hi (6) a (2 + A) 

Eq. 4 shows that, under hypothesis Hj, the distribu- 
tion of Z/dj is a non-central x2 distribution with N-n0 

0-8186-7576-4/96 $5.00 © 1996 IEEE 
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degrees of freedom and with non-centrality parameter 
X = (AT - n0) Mj [4]. The probabüities of false alarm 
and of non detection can then be expressed as functions 
of the cumulative distribution function of a non-central 
X2 distribution : 

f 

Js 

S(Pnd)/do 
f0(t)dt 

S(Pnd)/di 
h(t)dt 

(7) 

(8) 

In these equations, fj(t) denotes the probability den- 
sity function of the x2 distribution with N-n0 degrees 
of freedom and with non-centrality parameter Xj = 
(N - no) Mj. As an example, we consider N = 2048 
samples of a Gaussian distributed random sequence 
with m = 1 and a2 = 1. The multiplicative jump 
occurs at time n0 = 1024. The variations of pfa and 
pnd as functions of the threshold 5 are plotted in Fig. 
1 for different jump amplitude A: 

Threshold   S 1910 

Figure 1: Pfa and Pnd as functions of the threshold S 
(Dashed Line: A = 0.05, Continuous Line: A = 0.01). 

As it can be seen, the Neyman-Pearson test shows 
good performance. This test constitutes a reference to 
which suboptimal detectors can be compared. To study 
the sensitivity of the test as a function of the jump 
amplitude A, we have plotted in Fig. 2 the variations 
of the probability of false alarm as a function of A for a 
fixed probability of non detection (Pnd = 0.01). As can 
be seen, a multiplicative jump with amplitude A > 0.1 
can be detected with low probabilities of non detection 
and of false alarm. However, in practical applications, 
the parameters m, a2, A and no are unknown and have 
to be estimated. In the next part of the paper, we 
derive the Maximum Likelihood Estimator (MLE) and 
the Cramer Rao Bound for these parameters. 

0.02 0.04 0.06 0.08 
Jump Amplitude A 

0.1 

Figure 2: Probability of False alarm as a function of the 
jump amplitude for fixed probability of non detection 
PND = 0.01. 

3.  MAXIMUM LIKELIHOOD ESTIMATOR 

The Maximum Likelihood principle [1] provides a method 
to estimate the parameter vector 6 = (m,cr2,A,n0 ) 
from a finite length data record Y = (j/i,..., yNf. When 
a jump occurs at time no, the likelihood function of the 
Gaussian vector Y is defined by: 

L(Y;0)    = 
(W)* (1 + A) N-no 

exp — £{£(*-)'} (9) 

with di = 1 for i € {l,...,no} and d{ = 1 + A for 
i£ {no + l,..-,N}. The MLE of the vector 6 denoted 
by 0ML is the one which maximizes the likelihood func- 
tion over a subset 6 of R3 x E with E = {1,..., N}. 
When the vector (A, n0)' is known, the MLE of (m, a2) 
is obtained by setting to 0 the partial derivatives of 
L(Y; 8) with respect to m and a2: 

niML 

A2 aML 
1 v* fYi   -   V 

= N^1{di-
mML) 

(10) 

(11) 

When the vector (A,^)* is unknown, we substitute 
the expression of mML and aML in (9) and drop the 
constant terms. We need now to maximize: 

Ji (Y; A, no) = - (N - no) Ln |1 + A\ 

mäfife-mAno))' (12) 
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with: 

YV
 t=ia% 

(13) 

Setting to 0 the derivative of J\ (Y; A, n0) with respect 
to A leads to a second degree equation with respect to 
A. The solution of this equation gives us an expression 
of A as a function of the jump time UQ and of the obser- 
vations yi denoted by Ji (Y;no). When no is known, 
the MLE of A is then given by: 

AML = J2(Y;n0) (14) 

When no is unknown, its MLE is obtained by the ar- 
gument of the maximum of the criterion J3 (Y; no) = 

Ji (Y; AML, ™O) such that: 

J3 (X; noML) = Max   J3 (Y; n) (15) 
n=l,...,N 

In other words, the maximization of L(Y; 0) over the 
whole parameter vector 0 is equivalent to the maxi- 
mization of J3 (Y; no) with respect to no only. The 
MLE of m, a2 and A are then given by replacing no 
by noML in (10 ), (11) and (14). Note that the max- 
imization of J3 (Y; no) with respect to no is a discrete 
maximization which is very simple to implement. The 
mean and standard deviation of the MLE are shown 
in Fig. 2.a),b) , c) and d) and compared to the true 
parameters m = 1,CT

2
 = \,A = 0.5 and no = ^f for 

different number of samples N. 

True Parameter 
Estimated Parameter 
Standard Deviation 

512 
Number of Samples 

1024 

True Parameter 
Estimated Parameter 
Standard Deviation 

256 512 
Number of Samples 

1.1 • • 

—1 1  

0.9  - 

-"^"^        True Parameter 
— Estimated Parameter   . 
— Standard Deviation 

64 128      256 512 
Number of Samples 
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Q. 
B 
3 

•a u 

o 
Z 

True Parameter 
--■  Estimated Parameter 
— Standard Deviation 

64 128      256 512 1024 
Number of Samples 

Fig. 2. Mean and Standard Deviation of the estimated 
parameters for different numbers of samples N 

(a) AML (b) fhML (c) aML (d) no~ML/no. 

4.  CRAMER RAO BOUND 

It is well known that the covariance matrix of any unbi- 
ased estimator cannot be smaller than the inverse of the 
Fisher information matrix known as the Cramer-Rao 
bound (CUB). For a parameter vector 6 = (&i, ...,öp)', 
the elements of the Fisher information matrix are given 

(16) 
where L(y;8) is the probability density function of 
the vector y = (ylt ...,2/jv)'. For Gaussian time series, 
many equivalent expressions for the Fisher information 
matrix can be found in the literature [3]. For instance, 
we have: 

['(«)] *;,( £*{*-'m^ffljr'OT^M 

+ \dm{6)V 
[  d0k   J 

d0k 

R-^e) 

dOi } 
dm (0) 

80, 
(17) 

where tr{.} denotes the trace operator and R(0),m (0) 
are the covariance matrix and the mean of the vector 
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When no is known, using eq. (16) or (17), the 
Fisher's information matrix Ia corresponding to the 
vector a = (m, a2, A)* can be computed. The following 
results can be obtained: 

/ 

/„ = 

N 0 
U 2<T4 

m(N—no) 

m(N—no) 
(1+A)a* 
.N~na.. 
(1+A)cr* 

\ 

N-nn 
(1+A)a* 

N-n0 

(1+^4? f(g + l) 

The determinant of this matrix is of the form det (Ia) = 
Cno (JV - n0) with C > 0. Thus, when the jump occurs 
at time n0 = JV or n0 = 0, Ia is singular and we cannot 
estimate A with (14). 

When n0 is unknown, the parameter vector is 
6 = {m,a2,A,n0)

t. The problem of finding a bound 

for the covariance matrix of 9 ML becomes difficult be- 
cause no is a discrete parameter (belonging to the set 
{1,..., JV}). If we consider that the jump occurs at time 
to € [0,T], the MLE of t0 is obtained by maximizing 
J3 (V;n0 + 1), n0 = int(t0) being the integer part of t0- 
In this case, we cannot derivate the likelihood function 
with respect to t0 which prevents us to compute the 
terms [J^ 4 of the Fisher's information matrix. Thus, 
the CRB for the vector 9 cannot be computed. 

For a known parameter n0, a comparison between 
the mean square error (MSE) of 9ML estimated with 
Nr - 500 Monte-Carlo runs and the CRB is presented 
in Fig. 3. In this figure, the MSE of 6ML in the case of 
known and unknown parameter n0 is also compared. 

5. CONCLUSION 

The optimal Neyman-Pearson multiplicative jump de- 
tector is derived. For fixed probability of non detection, 
the threshold minimizing the probability of false alarm 
can be determined. This test constitutes a reference 
to which suboptimal detectors can be compared. In 
practical applications, the parameters of the noise and 
of the jump are unknown. The Maximum Likelihood 
Estimator and the Cramer Rao Bound for these pa- 
rameters are then studied. The next step in our study 
will be to compare our results with a wavelet based 
detection strategy [2]. 
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Abstract 

The problem treated in this paper is the Bayesian es- 
timation of the variance of the sampling jitter occuring 
when a process is irregularly observed. This problem 
is often met in practice [2], and has already received 
treatment in [1][5] using higher order statistics. The 
Bayesian solution to this problem is performed using 
powerful stochastic algorithms, the MCMC ( Markov 
Chain Monte Carlo) methods. 

1. Statement of the problem 

1.1. Motivations 

The problem addressed in this paper is the estima- 
tion of the variance of the jitter occuring while sampling 
irregularly a process whose a priori density is known. 
This problem has already received treatment in [5] 
for example, and [1] in the case of a Gaussian pro- 
cess, using higher order statistics: the second method 
is mainly based on the fact that a continuous Gaus- 
sian process does not give birth to a discrete Gaussian 
process when irregularly observed. In this paper we 
propose a Bayesian statistical approach for estimating 
this quantity, in a wider framework, because we remove 
the Gaussian assumption. 

The main interests of the approach we develope in 
this paper are that: 

- it does not require a lot of observations (as in the 
case of higher order statistics), 

- we remove the assumption of Gaussianity of the 
continuous process which is sampled, 

- we estimate the a posteriori probability density of 
the jitter, (thus allowing the calculus of conditional ex- 
pectations, confidence intervals...) 

- we use stochastic algorithms, the MCMCs (Markov 
Chain Monte Carlo), which have been very popular for 
fifty years in statistical physics, and more recently in 

image processing and statistics, but are not yet popular 
in signal processing despite their power. 

1.2. Assumptions-Notations 

- (x (t))t€R is a continuous time process, 
- this process is sampled at times: 

t„ = n + e„ (1) 

where the {e„)n&% are zero mean iid, and we note yn = 
x(tn). 

- Xi-tN is a useful notation for (xn)n:_1     N. 

2. Bayesian solution to the problem 

We wish to estimate the following density: 

PW«/I—>N) (2) 

where <r is the variance of the sampling jitter, and 
2/1—yN the observations. 

Remark 1 it is worth noticing that in this paper, we 
restrict ourselves to <r as an unknown parameter of 
the distribution of the time perturbations. Obviously 
a could be replaced in all what follows by the complete 
finite dimensional parameter vector 0, characterizing 
the distribution. 

This problem can be thought as a missing data prob- 
lem, where the yi—>.JV are the incomplete data, which 
can be completed by the ei-^jv to form the complete 
data set 2/i_+jV,£i_>./V. 

We thus use a stochastic algorithm that allows us to 
estimate the following joint density: 

p(<r,£i Ivi 0 (3) 

and thus the required density, p{a jy\ >N). 

A natural method would be here to use the Gibbs 
sampler [4], which consists in drawing iteratively and 
alternatively subsets of the parameters, according to 
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others, thus building a chain of samples. Under mild 
conditions [4], the joint density of the samples drawn as 
described above will converge to p(<r,£I_>.JV Ivi—>N) 

thus providing a representation of this joint density. 
In our case, sampling from the Gibbs sampler 

amounts to draw iteratively and alternatively with the 
following laws: 

p(<T/yi_-).jv,ei—>N) (4) 

p(ei—>N /<r, yi—+JV) 

which using the Bayes's rule yields: 

p(a/yi—>N,ei—>N)    oc    p(ei_>jv /<r)p(<r) (5) 

p(e1_>w/o-, 2/1—>-N)    OC    p(yX-^N le\^-N)p{ei—*N I<T) 

Where: 
- oc means here " is proportional to", 

- we note that p {EI—^N 1°, VI—+N) oc p(ex—>N /<?), 
and        that        p(yi—+N /o",£i—t-jv) = 

p(yi—-+W£i —>JV)- 

Remark 2 it is worth noticing that without any addi- 
tional difficulty it is possible to suppose that the process 
is embedded in noise, thus taking into account thermal 
noise, quantification noise, which was not so simple 
with previous methods. In that case, one would only 

write: 

p(yn.iv/<T, £n-N,^i->iv) oc p(xi-nt /yi-t-iv) 

xp(yi—t-W£i—*N) 

p(a/yi-^N,ei—>N,XI—>JV ) = p(o7yi—t-iv, £i—t-JV ) 

p (ei_>jv /<?, x\—yN, Vi—*N ) oc p (xi—KJV /yi—+N ) 

xp(yi—>N /SI-^N) 

xp(ei_t.jv/<r)    (6) 

where the x\ >N ore the observations including noise, 
which is assumed to be stationary for sake of convini- 
ence. We notice that it requires to be able to sample 

from p(yr_>.jv/ei—>JV). 

The simulation algorithm could thus be summarized 

as follows [4]: 

1. Draw 0-(fc+1) according to p I<r /yi—^ei—*-N J • 

2. Draw Jk+l) 

p(e^N/a^\yi- 

3. Goto 1. 

¥ N 

♦*). 

according to 

Nevertheless in practice it is generaly impossible to 
perform such an algorithm directly: 

- in most cases, it is impossible to apply an ac- 
cept/reject procedure [4] using (5), as it would require 

to determine an efficient generating density, so as to 
ensure a good acceptation rate, and to evaluate analyt- 
ical the normalization constant of the likelihood. 

- in most cases, one can not determine prior conjug- 
ate densities, which would simplify the drawing proced- 
ure. For example in the case where the £i_+jv are iid 

Gaussian, one could choose <r2 ~Inv-,\2 {a,ß). 

- due to the limited precision of computers small 
values are rounded to zero, and the algorithm may not 
converge. This often happens when we deal with joint 
densities of large size vectors. 

In order to circumvent all those problems, we 
propose a combination of two MCMC, more pre- 
cisely a product of two Metropolis-Hastings (M-H) 
kernels [4], whose respective invariant densities are 
the full conditional densities, p(cr/yi_+jv,ei—»N ) and 

p(s\—+N /<?> VI—^N)- This algorithm is no more a 
Gibbs sampler (which nevertheless is a particular case 
of product of specific M-H kernels). We use M-H based 
on random walk [4] (ie a simple Metropolis algorithm), 
that is we make the parameters evolve with random in- 
crements: in what will follow, the scalar increment for 
<T will be named z and will be distributed according 
to qz which must be symetric [4]. The vector incre- 
ment for ei—tN will be Ui —y/v, distributed according 
to qu which must be also symetric. (We notice that 
we could make the 'q' depend on the preceeding step). 
This provides a general algorithm which is ensured to 
work in all situations (under convergence conditions), 
but which may not be computationaly efficient in par- 
ticular cases, and thus would have to be adapted. 

The algorithm can thus be summarized as follows: 

1. Draw <r* according to p(cr) and e^l^jv conditionally to 

(Initialization:  i = 0) 
i = i + 1 

Draw z* according to qz 

Set <r| = a\ + z* 
Calculate a 

. r P{.?LJ-I)W 

Accept the value <r| with probability a. 
If a* is accepted then set 

*      _* 

2. while(i<M)< 

3. ^Wj 

4. while(i<M') 
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(Initialization: i = 0) 
i = i + 1 

Draw U*^N according to qu 

p(vi 

tN — el—(Jf + U*_^N 

Calculate a 

Accept e'^jv with probability o. 
If £*!_».jv 's accepted then set 

el—>N — £l—>AT 

5   e(*+i) _,• 
°-   £1—».AT—el—t-JV 

6. go to 2. 

One of the advantages of using the M-H kernels, is 
that ratios of densities appear, which allow to avoid the 
numerical problems discussed above. 

Remark 3 one notices that in the case where M, M 
are sufficiently high, so that the stationary regime is 
reached, this would lead to a Gibbs sampler. Neverthe- 
less as it will be shown in the next section, this is not 
required, but the algorithm obtained in such a case is 
no more a Gibbs sampler. 

3. Convergence of the algorithm 

We give sufficient conditions to ensure convergence 
of this stochastic algorithm using Markov chains theory. 
Let E be the state space of the Markov chain. We 
assume E = E\ x E2 is an open connected subset of 
JR^xM . Furthermore we use x\, 2/1 to denote elements 
of Ei and x2, y2 to denote elements of E2. Let T — 
Ti x T2 be the Borel tr-field on E. 

We make the following assumptions: 
- ■K (dx) admits a stricly positive density TV (dx) on 

E with respect to the Lebesgue measure. 

- ^i\i{dxi\x2) and 7r2ji (dx2\xi) admit densities 
7rt|2(a;i|^2) and ir2\i(x2\xi) on their space with re- 
spect to the Lebesgue measure. 

- Vj/i G Ei q{xi,yx\x2) (resp. \jx2 £ E2 

1 (Z2,2/212/i)) is stricly positive on E\ x Ex (resp. E2 x 
E2) 

The transition probability kernel P : E x T -» [0,1] 
is in our case defined as follows. Let us first consider 
the 'local' transition kernels: 

Pi{xi,dyi\x2) = q(xi,yi\x2)a(xl,yl\x2)dyi 

+ H q(xi,yi\x2)a(x1,yi\x2)dyi SXl (dyi 

r(zx/x2) 

where a(xi,y1\x2) is the probability of ac- 
cepting the candidate yi sampled accord- 
ing   to   q{xi,yi\x2).        In   a   zero-mean   random 

walk    setup    a(xi,yi\x2) 

Ki\2(xi\x2)q(xi,yi\x2) 
Similarly 

>     0 and   1   elsewhere. 

P2(x2,dy2\yi) = p(x2,y2\y\)dy2 + r (x2\ yi)5X2 (dy2) 

The total transition kernel is thus equal to 

P((xux2),(AuA2)) 

=      /     /    Pi(xi,dyi\x2)P2(x2,dy2\y1) 

To establish that this Markov chain converges towards 
the required posterior density TT (a; 1,2:2), it is sufficient 
to show that P admits n as invariant density and that 
P is 7r-irreducible and aperiodic. 

- Under the above assumptions, V(x,A) £ E x T 
P(x,A) > 0, thus P is 7r-irreducible and aperiodic. 

- 7T is invariant for P. Indeed, 
j fPi (xi,dyi\x2)P2 (x2,dy2\yi)n(xux2)dxidx2 

= fP2(x2,dy2\y1) 

x[/Pi (xi,dyi\X2)TT(XIIx2)dx!~\ n(x2)dx2 

= f P2 (X2,dy2\yi)iri\2 (dy1\x2)dx2 

_ fp/„    j.. i.. \ ^211(^2^1)^1(^1)    ,    1 j = J P2(x2,dy2\yi)—> ^pjj K(x2)dx2 

= TI (dyi) f P2(x2,dy2\yi)n2\1 (x2\yi)dx2 

= JTi (dyi)ir2\i (dy2\y!) = Tr(dyi,dy2) 
From 7T-irreducibility and aperiodicity one deduces 

that, 

||P" (x, .) - »r|| -K> V* € £ 

where ||.|| is the total variation norm. On the contrary 
of what is claimed in many papers, one can not con- 
clude about ergodicity of the Markov chain, because it 
would require to establish in addition that P is Harris 
reccurent. In many cases - when there is no measure- 
theoretic pathology - irreducibility implies Harris re- 
curence. However there exists yet no general results on 
the convergence of hybrid samplers, and we have not 
been able to establish this property rigorously. If that 
property was true, then this Markov chain would be er- 
godic, i.e. for any real-valued ir—integrable function / 
one would have 

1   " f 
— 2_. f (x CO) ~*  / / (x) * (dx) almost surely 

4. Simulation 

In order to compare the performance of our method 
with performance of previous methods we have chosen 
to follow [1]. The continuous process is thus assumed 
to be Gaussian, but we notice that normality is not 
required to perform the algorithm. One must only be 
able to evaluate p (yi y^ /si yff). 
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The correlation matrix of the Gaussian process is: 

[% («,»€[l,n] 2 =exp 
■ (ti - hf (7) 

where the (i,)i=1„ are the sampling times. 
- The perturbations are iid centered normal, 

(in the simulation M (0, .07)) restricted to [-.5, +.5] in 
order to place ourselves in a case similar to [1] and to 
ensure the convergence of the algorithm. 

- a has a noninformative prior, ie is distributed ac- 
cording to the uniform law on [0, .3]. 

- the increment laws are N (0, .3) and multivariate 
-/V(0,.3/iv). 

- the number of iterations for both Metropolis- 
Hastings algorithms are 200. 

- we performed the algorithm in two cases: 50 and 
100 data available. 

The results are good, and even better than those 
obtained by [1] althought a small amount of data was 
available. 

0 0.02       0.04       0.06       0.08        0.1 0.12       0.14       0.16       0.18        0.2 

5. Conclusion 

In our paper, we propose an original and efficient 
solution to a problem which is of interest in many ap- 
plications, when data are not sampled at regular in- 
tervals. This is a typical missing data problem that 
we have solved in a Bayesian framework using MCMC: 
this avoids complex expectation evalution and often un- 
tractable global optimisation encountered when using 
the E-M algorithm and related versions. Our solution 
allows one to estimate not only the density of the vari- 
ance of the jitter, but also the densities of each of the 

perturbation. We believe that the procedure is suffi- 
ciently flexible to be applied to many situations met 
in practice. Of course, MCMC techniques have many 
other applications in statistical signal processing, see 
[3] for an application to deconvolution. 
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Abstract 

We address the problems of modeling Doppler-shifted 
wide-band Gaussian random processes and of estimating 
the Doppler parameter from a finite series of discrete-time 
samples. Relations between the continuous-time process, 
the Doppler shift parameter, and the discrete-time process 
obtained by sampling are established. Approximate ratio- 
nal models are proposed. Various estimators are proposed 
for Doppler parameter when the second-order statistics of 
the original continuous-time random process are known. 
The Cramer-Rao bound is derived. The estimators are com- 
pared experimentally on synthetic Doppler-shifted data. We 
also hint at some extensions of the method to non-stationary 
processes and time-varying Doppler shifts. 

1. Introduction 

The Doppler-shift effect is well-known for narrow-band 
signals emitted by moving sources (Fig. 1). In that case, 
freshman's physics tells us that a harmonic wave of fre- 
quency u!0 emitted by a point source moving toward a fixed 
receiver with speed v is observed with apparent frequency 
u) = (1 + M)u>o, where M = v/c is the Mach number. In 
this paper, we consider wide-band moving sources that are 
modeled by continuous-time Gaussian random processes 
with known statistics. We address the problems involved in 
estimating the Doppler shift from samples of signals emit- 
ted by such sources. The estimators proposed here are mo- 
tivated by applications in acoustics, e.g., in environmental 
sound monitoring, where wide-band moving sources are of- 
ten encountered. For example, the maximum-likelihood es- 
timator, or one of its approximations, can be used in a GLRT 
for detection and classification of Doppler-shifted wide- 
band processes given a dictionary of possible non-shifted 
spectra. 

xc(t) Vc(t) 
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Figure 1. Source moving toward the receiver. 

2. Mathematical formulation 

Let xc(t) be a continuous-time Gaussian zero-mean sta- 
tionary random process modeling the signal emitted by the 
moving point source S and let yc(t) be the signal observed 
at the fixed receiver O (see. Fig. 1). For simplicity, we 
consider the one-dimensional case of a source moving at a 
constant speed v toward O. It can be shown that in the far 
field yc(t) is related to xc(t) by [5] 

yc(t) faaxc(at-S), (1) 

where a = 1 + v/c is the Doppler shift factor, a is some 
attenuation factor due to the propagation of the acoustic 
wave, 5 is a propagation delay, and c is the wave propa- 
gation speed. Equation (1) is also valid for sources moving 
away from the receiver: in that case v < 0 and, conse- 
quently, a < 1. It is straightforward to see that yc(t) is 
also a Gaussian zero-mean stationary random process with 
covariance function 

RVc(r) = E[yc(t)yc(t - r)] = a2RXc(ar), (2) 

where RXc (r) denotes the covariances function of the sta- 
tionary process xc(t). Equivalently, the power spectral den- 
sities (PSD) of the processes xc(t) and yc(t) are related by 

a a (3) 

where SXc(u) and Syc(u) denote the PSD of xc(t) and 
yc(t), respectively. 

In practice, we only have access to sampled versions, 
x[n] = xc(nTs) and y[n] = yc(nTs + K), n £ N, of the 
continuous-time processes xc(t) and yc(t); K is some arbi- 
trary time instant, and u>s = 2ir/Ts is the radian sampling 
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frequency. Both discrete-time random processes are Gaus- 
sian and zero-mean, with covariance sequences given by 

Rx[k] = RXc(kTs),        Ry[k] = a2RXc(akTs).     (4) 

Their PSD's are related to the PSD's of their continuous- 
time counterparts by 

1     °° ü + 2kTT 
), i = x,y (5) 

k=—oo 

where ti e [-ir, n] is the normalized radian frequency. 
The effect of the Doppler shift can be viewed as a change 

of sampling period with respect to the original signal x(t) 
from Ts to aTs. It is clear from (5) that the Nyquist con- 
dition (non-aliasing) for y[n] is that xc(t) must be band- 
limited to W < ws/2a. If this condition holds, then we 
have 

Sy(Ü)   =   St * a •Xa>-aTr (-)• (6) 

3. Rational Modeling 

Let us assume that the PSD of xc(t) is rational (i.e., xc(t) 
is the output of a linear filter excited by white Gaussian 
noise), 

SXc{w) = ri\Hte(ju>)\2=r, 
P(j") 
Q(ju) 

where P{s) and Q(s) are polynomials in s. Let 

HXc(s) = Yl 
fc=i 

Ak 

s- sk 

(7) 

(8) 

be the partial fraction expansion HXc (s), where we have as- 
sumed without loss of generality that all the poles of Ex? (s) 
are simple. Let us further assume that xc(t) is essentially 
band-limited1 to frequency W < ws/2a. Then, by the im- 
pulse invariant method [6], it is easy to show that 

Sy(n)ttVa2Ts\Ha(ejn)\ 

with 

Hc 

Ak 

skT,. 

(9) 

(10) 

Equation (10) leads to an heuristically appealing inter- 
pretation of the Doppler effect for rational random pro- 
cesses in terms of pole displacements. Consider, for ex- 
ample, the degenerate case where the poles in the s-plane 
are purely imaginary, sk = juk, then, in the z-plane, the 
Doppler effect rotate the poles on the unit circle by a fac- 
tor a. This interpretation is consistent with the analysis of 
the Doppler effect for deterministic harmonic signals. It is 

'That is, all but a negligible fraction of its energy is contained in the 
b<mA[-W,W]. 

interesting to note that, in the general case, the poles in the 
z-plane move on logarithmic spirals, not on circles. 

The rational modeling approach just introduced also sug- 
gests an efficient way to artificially synthetize Doppler- 
shifted processes with rational spectra. If a white Gaussian 
sequence is used the input of a digital filter with transfert 
fuction (10), it is straighforward to see that the output se- 
quence of the filter will be Gaussian and have the desired 
spectral shape. The scaling by a is trivial. This method al- 
lows easy implementation of the synthetizer, even for vary- 
ing shift a, via the parallel form of the filter defined by (10). 

4. Estimators of Doppler parameters 

Lety = (y[0],y[l\, ■ ■ ■ ,y[N-l]Y be a length A^ sample 
of the process y[n]. We address the problem of estimating 
the Doppler parameters a and a from y when the statistics 
of xc(t) are known (i.e., either RXc (r), SXc (w), or a rational 
model of SX(Q) is known). 

Clearly, there are situations in which it will not be pos- 
sible to identify the Doppler parameters, a trivial example 
being the white noise case. An identifiability condition for 
a and a from yc(t) is the a2RXc(ar) = a'2RXc(a'r) im- 
plies implies a = a' and a = a'. It can be shown that if 
xc(t) is of finite power the identifiability condition holds. 
For the discrete process y[k], the identifiability condition 
becomes Ry{a,a)[k] = Ry{a',a')[k),\lk € N, or, alter- 

nately, Sy{n;a,a) =■ S„(n;a>'). imPlies a = <*' and 

a = a'. 

4.1. Maximum-likelihood estimator 

A finite length vector y is realization of a Gaussian zero- 
mean random variable with covariance matrix S = Sy (8) 

•Ey(8)=a2-ZXc(a)=v2(RxAa\i-3\Ts))l<i<N, dD 
i<i<N 

with 8 = {a, a}. Thus, estimating 8 given y can be viewed 
as a structured covariance estimation problem. The covari- 
ance matrix £„(0) is linear in a2, but will generally be non- 
linear in a. 

The maximum-likelihood estimator 0ML minimizes [2] 

L(0)=log|£y(0)|+tr[£;1(0)S], (12) 

where S = yy* is the sample covariance matrix. In general, 
the minimization of L{8) is a, non-linear problem, and it is 
necessary to resort to iterative methods. However, for large 
N, the computational load involved by the matrix opera- 
tions in the computation of (12) can be greatly reduced by 
taking advantage of the Toeplitz structure of £y (Ö). It can 
be shown [3] (see also [4]) that the minimization of L{8) is 
asymptotically equivalent to the minimization of 

JV-l 

E 
fc=0 

„ ,27rfc   .. 
logSy( — ;6) + 

IN(
2

-&) 

SyC^O) 
(13) 
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where Sy(ft;6) is the PSD of y[n] considered as a func- 

tion of 6, ijv(fi) = ^ Y,k=o y[k]ejQk is the periodogram 
spectral estimate computed from y. Once /jv(^) has been 
computed (by FFT if N is power of 2), the evalution of 
L(9) by (13) requires only O(N) operations. The mini- 
mization of (13) can be viewed as the minimization of the 
Itakura-Saito distance between the empirical spectrum and 
the parametric model of the data. The ML estimator can 
thus be interpreted as a "spectral matching" estimator based 
on the Itakura-Saito distance. 

If an approximate value or a range for the Doppler shift a 
is known, it is possible to obtain an approximate ML estima- 
tor with a lower complexity. Consider the Taylor series ex- 
pansion of E(#) around some value of a = üQ. For exam- 
ple, for v <C ewe have a « 1, justifying an expansion about 
a® = 1. If we restrict the Taylor series expansion to the first 
two terms, it is trivial algebra to show that £y (0) can be ex- 
pressed as a linear combination Sy(0) « 7 A + </>B of two 
NxN Toeplitz matrices A = (a[i-j]) and B = {b[i-j]), 
with 

a[k] 

b[k] 

RXc(a0kTs) - 

8RXc{akTs) 

a0b[k], 

da 

and the reparameterization 6 = {7, <fi} where 7 = a2 and 
cj> = a2a. Even with this linear approximation, the min- 
imization of (12) is still a non-linear problem and still re- 
quires an iterative solution, but a simpler one than the orig- 
inal (see [1]). 

4.2. Method of moments estimator 

The iterative maximum-likelihood methods requires an 
initial estimate of the parameters. The method of moments 
(MoM) method can be used to provide such estimate. The 
MoM estimate ÖMOM is obtained by equating sample mo- 
ments Ry[k] of y with their theoretical values expressed as 
functions of 6. Using the first two covariance lags yields 

CMoM      = 
Ry[0] 

RxAOV 

0   =    Ry[l] — ö-MoMRXc(&MoMTs, 

(14) 

(15) 

Equation (15) needs to be solved numerically, unless a 
Taylor expension similar to that of the previous section is 
used for RXc(aTs). Note that using such a linear expan- 
sion is equivalent to performing only the first iteration of 
a Newton-Raphson algorithm for the solution of (15). The 
existence of a solution to (15) is guaranteed by the "maxi- 
mization at 0" property of covariance functions and of co- 
variances sequences, if RXC(T) is continuous and in L2- 
Note that the MoM method requires a stronger identifia- 
bility condition than the one introduced earlier, i.e., that 
RXc(aTs) = RXc(a'Ts) implies a = a'. If, in addition, 
RXC(T) (and, hence, Ry[k] viewed as a function of a) is 

continuous and differentiable, the MoM estimate can be 
shown to be consistent by Theorem 3.14. in [7]. 

To relax this strict identifiability condition, an alternate 
moment-based estimate can be obtained by equating a set 
of K moments, K < N - 1, and then solving in the least- 
square sense: 

K-l 

<?LSMoM = arg min ]T \\Ry[k] - Ry(0)[k] 
k=0 

(16) 

Under an identifiability condition for the first K lags, the 
LSMoM estimator can be shown to be consistent (by The- 
orem 3.14 in [7] again). From Parseval's theorem, it is 
not difficult to see that, for large K, (16) is equivalent to 
minimization the L-i distance between the theoretical PSD 
Sy(Q; 6) and a windowed periodogram spectral estimate. If 
the linear approximation of the covariance 

Ry{e)[k) « 7o[Jfe] + 4>b[k] (17) 

is used, we obtain a linear least-square problem. Equiva- 
lent^, linearization of the PSD Sy(tl; 0) could be used with 
a L2 "spectral matching" criterion. 

4.3. Rational modeling estimator 

Assume that a rational model (AR or ARMA) is avail- 
able for Sx(fl), letpk, k = 1,... ,p be its poles. Further as- 
sume that x[k] arise from a xc(t) that is essentially bandlim- 
ited. An ad-hoc estimator based on the rational modeling 
approach can be obtained as follows. An AR and ARMA 
model can be fitted to y with classical methods (e.g., Yule- 
Walker). For ARMA models, only the AR part (poles) is 
of importance. Letpk, k = 1,... ,p, be these poles. From 
(10), it follows that they are related to the original poles by 

Pk 

Minimization of 

Oalogpk k = l,...,p. 

Y2\\lo&Pk -alogpfc| 

(18) 

(19) 
fc=i 

with respect to a, which is a trivial linear problem, provides 
the rational modeling estimator of the Doppler shift ARM, 
and <TRM can be taken equal to CTMOM ■ Note that, like the 
ML and LSMoM estimates, the RM estimates can be inter- 
preted as a "spectral matching" estimator with the particular 
spectral distance defined by (19). 

4.4. Cramer-Rao bound X 

It can be shown that the Cramer-Rao bound (CRB) for 
the estimation of a and a is given by 

CRB(a)    =    2 [||*||^-TV-1 (tr*)2]"1    (20) 

CRB(a)    =    ^ ||*||^. CRB(a), (21) 
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c da 
If a is known, Whittle's asymptotic version of the CRB 

for a takes the form 

CRB(Q) (22) 

which has a nice intuitive interpretation. The CRB depends 
on the "sensitivity" of the PSD of y[n] to variations in a, 
this sensitivity beeing weighted by the PSD itself (i.e., the 
energy repartition in the spectral domain). 

5. Preliminary results 
In order to evaluate the performance of the proposed esti- 

mators, we conducted several Monte-Carlo simulations. We 
used a 4th order linear model for the continuous-time pro- 
cess x{t), i.e., 

HXc(s) —  10-i^s4+3Xio-i4s3+7.o2xlO-Hs2 + 1.2xlO-ss+l- 

The sampling frequency Fs was set equal to 40860 Hz. The 
process was simulated via the rational-modeling approach 
described in Sec. 3. 

Monte-Carlo simulations have been performed in Mat- 
lab, with 1000 independent runs for each estimator. Figure 2 
summarizes the results obtained for the MoM estimator, the 
rational-modeling estimator, and the LSMoM estimator, of 
the Doppler shift a. For the rational-modeling method, the 
least-square modified Yule-Walker algorithm [7] has been 
used to compute the poles of the rational model. Five co- 
variances lags were used in the LSMoM method with the 
linearization of the covariance (17) about a0 = 1. The 
ML estimator suffered from numerical convergence prob- 
lems and its results are not included here. 

Of the three estimators, the linearized LSMoM estimator 
has the lowest computational cost, followed by the rational- 
modeling estimator, and the MoM estimator (because of the 
numerical resolution of (15)). For samples of moderate and 
large size N, the rational modeling estimator of the Dopple 
shift alpha outperforms the two moment-based estimators 
which have very close variances. For the estimation of 
the gain a, all three methods offered very similar perfor- 
mances. More complete results, including performance on 
real Doppler-shifted acoustic data will be presented at the 
conference. 

6. Concluding remarks 
Various estimators of the Doppler parameters for 

Doppler-shifted Gaussian random processes have been pro- 
posed. All these estimator rely on a stationarity assumption 
of the Gaussian process. In the context of Doppler-shift 
for moving sources, this amounts to assuming that the wave 
source is moving at a constant radial toward (or away from) 
the fixed receiver. If the source is not moving at constant 
radial speed, the random process y(t) is no longer station- 
ary. The approach proposed here can be extended to treat 
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Figure 2. Variance of the estimators of the 
Doppler shift a. 

this case. For example, an adaptive ARMA modeling tech- 
nique could be easily combined with the rational model- 
ing approach to track the evolution of the Doppler param- 
eters in time. Likewise, the ML and moment-based meth- 
ods (or their "spectral matching" equivalent) could be ap- 
plied to a sliding window of adequate length so as to insure 
quasi-stationary of the signal. The resulting estimates of the 
Doppler shift a(t) and gain a(t) could be further smoothed 
by using a priori knowledge on the movement of the source, 
if is such knowledge is available. 

Another approach would be to use a non-stationary rep- 
resentation of the signal. An appealing candidate for this 
non-stationary representation is the wavelet transform (as 
suggested in [8]): moving noise sources result in dilatations 
of the time axis and propagation delays, which are exactly 
the operations (translation and dilatation) used in the defi- 
nition of the wavelet transform. 
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Abstract 

This paper is concerned with the estimation of mul- 
tiple constant velocity target trajectories in a low SNR 
environment. Each target trajectory is characterised by 
the initial position and velocity, which are to be esti- 
mated. A major difficulty is that the target amplitudes 
are unknown and will in general be time varying. The 
approach in this paper is to model the target amplitude 
as an autoregressive (AR) process. A maximum likeli- 
hood estimator is derived for the parameters of the AR 
process and the unknown target position and velocity 
using the expectation conditional maximisation (ECM) 
algorithm. 

1. Introduction 

This paper is concerned with the estimation of the 
trajectories of multiple constant velocity targets ob- 
served using an optical sensor, recording 2-£> images. 
In a low SNR environment, target locations cannot be 
estimated using a single image, so a number of frames 
must be recorded and processed. At the end of this 
observation interval estimates of all target trajectories 
are obtained. 

Previously the single target problem has been for- 
mulated in [1, 2, 3, 4] as either a maximum likelihood 
estimation problem, or frequency domain matched fil- 
ter problem. The amplitude is either assumed constant 
[1, 2, 3], or completely unknown and therefore uncorre- 

*This work was supported by the Co-operative Research Cen- 
tre for Sensor Signal and Information Processing (CSSIP). A. 
Logothetis is supported by the Australian Telecommunications 
and Electronics Research Board (ATERB) 

lated from pixel to pixel [4]. In addition, a discrete set 
of candidate target velocities is tested, resulting in per- 
formance loss in the presence of a mismatch between 
assumed and actual target velocity. 

In general the target amplitude is time varying. Re- 
cently in [5] a first order model is proposed for the time 
varying amplitude, but the mean, variance and corre- 
lation from one time to the next are assumed known 
a-priori. A numerical optimisation procedure is used 
to obtain continuous estimates of target position and 
velocity, overcoming the problem of mismatch. 

This paper extends the formulation in [5] to account 
for multiple targets. The time varying amplitudes of 
the targets are modeled as independent first order au- 
toregressive (AR) process, similar to [5], but the AR 
process parameters are assumed unknown a-priori. A 
maximum likelihood estimator, using the expectation 
conditional maximisation (ECM) algorithm, is derived 
to simultaneously estimate the parameters of the AR 
processes and the unknown target positions and veloc- 
ities. 

2. Problem Formulation 

2.1. Signal Model 

There are N constant velocity targets, with time 
varying amplitude. For simplicity, N is assumed known 
a-priori, but in practice would also need to be esti- 
mated. The time varying amplitude for the nth target, 
denoted £(") is modeled as a first order AR series, given 
by 

£<n>(*)-a<B>(*) = SnWn)(k-l)-aln\k-l))+vW(k) 
(1) 
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where a(")(fc) = a(n),Vfc is the constant mean am- 
plitude of the nth source (target). The v^n\n € 
{1,...,N} are statistically independent zero-mean 
white Gaussian sequences with variances <r^(n), so the 
target amplitude series are independent. The inter- 
frame amplitude correlation is given by Sn\ 

The measurements are images recorded using an 
optical sensor array consisting of C x D resolution 
cells (pixels) of dimension Ax x Ay. The measure- 
ment at time k is Y(k) € RCyD, the set of observa- 
tions recorded in all cells at time k. The signal from 
a point source is spread according to a point spread 
function, approximated here by a 2-D Gaussian. If 

(2;on)'2/o").^")'4")) represents the initial position (in 
x and y) and initial velocity (in x and y) for the nth 

source, then the signal in cell i, j at time k due to source 
is h\y{k)^(k), where 

h%Hk) 
1 

llSCxGy 
exp 

(4n) + kTv^ - iAxf 
2al 

exp 
(y^+kTv^-jAyf 

1*1 
(2) 

and ax and <ry are characteristic for the sensor and 
assumed known, and T is the sampling interval. 

The measurement in cell i, j at time k is given by the 
weighted sum of the time varying amplitudes embedded 
in white noise, given by 

w;(*) = X>&WB)(*)+ ««(*) (3) 
n=l 

where e,j(fc) are statistically independent zero-mean 
white Gaussian processes with known variance v\. Eqs 
(1) and (3) can be written in a state space form as 
follows 

where 

x{k) 

x(n\k) 

A 

A{n) 

B 

x(k)    =   Ax{k - 1) + Bv(k) 

z(k)    =   G{k)x{k) + w{k) 

=   vec(xM(k),...,xW{k)) 

£(")(*) 
£(")(fc-l) 

a(")(jfe) 

diag^1),...,^)) 

d(n)     0     l_rf(n)     0 

10 0 0 
0      0 10 

diag^1),...,^)) 

(4) 

ß(")    = 

v(k) 

z(k) 

Y(k) 

G(k) 

H^(k) 

w(k) 

E(k) 

=    vec (yM{k),...,v 

vec(Y(k)) 

(vecfff*1) (*)),. 

[h\]\k)] 

vec{E{k)) 

(N) 
(*)) 

=(#(">(*))) B' 

(5) 

and x(k) is of dimension 3N x 1, A is 3N x 3JV, B is 
3NxN, v(k) isNxl, z(k) is CDxl, G{k) is CDxSN 
and w(k) is CD x 1. 

The total number of images (observations) recorded 
is K, and the observation sequence (z(l),. -., z{K)) is 
denoted ZK- The state sequence (x(l),... ,x(K)) is 
denoted XK- 

2.2. Estimation Objective 

Let 0o = (0i, 02> • • •, 0s) € © denote the true model, 
(dW,...,dW) 

)    to 
such that 0 

and   03    to 
A") 

1  = (^(i).---.^(JV)). Ö2 

05    represent    (xK
0   , y0 
(i) „(i) „(i) „(i) 

(*o *', VoN). »^. vvN)) •    The va]ue of 5 depends on 
,6N how the parameter space 6 C RDJV is partitioned, and 

5€{3,...,4JV + 2}. 
Given a realization {z(l),.. •, z(K)}, of the stochas- 

tic model of (4), the objective is to obtain the maxi- 
mum likelihood (ML) estimate 

0ML=argmaxp(Zif|0) (6) 

where P(ZK |0) denotes the marginal density of the ob- 
servations ZK conditioned on the model 0. 

3. Proposed Algorithm 

The ECM algorithm [6] is used to obtain 0ML, meet- 
ing the objective in Section 2.2. As a by-product of the 
ECM, MAP estimates of the states x{k) are also ob- 
tained. 

The ECM algorithm is an extension of the expec- 
tation maximisation (EM) algorithm [7] and is an it- 
erative method of extracting the mode of the likeli- 
hood function. From an initial estimate 0{°' € 0 
a sequence of estimates {0^} are generated. Let 
F = {/»(0) : s = 1,..., S} be the set of 5 constraint 
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functions of 9, with fs(9) = {9U..., $,_U9I+1,..., 9S). 
At the (Z+l)st iteration ("pass") of the ECM algorithm 
we perform the following steps: 
E-step: Just like the EM, we evaluate the conditional 
expectation of the log likelihood of the complete data: 

Q(M{,}) = E{lnp(ZK,XK\ö)\ZK,eW}.      (7) 

Here p is the density function of the complete data 
MK = (ZK,XK) and O*-1* is the parameter estimate at 
the Ith iteration. 
CM-steps: For s = 1,.. .,S find ^'+s/5> that max- 
imises Q(6,6^) (as a function of 6) subject to the 
constraint f,($) = /,(^'+(*-1)/s>), ie 

Q(0i'+''s\$W)>Q(0,0W), 
for all 9 e 0 for which f,($) = /, (*{'+(»-1)/5})    W 

where 

^+'/5}=(ö{,+i},...,e+ii}^'+i}.»2i,-,4'}) 
The appealing property of the ECM algorithm 

is that likelihoods increase monotonically, i.e., 
P(ZK\Ö{1+1}) > p(ZK\0{l}) with equality holding at the 
ML estimate, provided the set F of constraints spans 
the parameter space [6]. The rate of convergence of 
this algorithm is studied in [8]. 

3.1. E-Step 

The evaluation of Q(9,9^) requires the density 
function of the complete data, P(ZK,XK\9). From the 
model in (4) 

K 

fc=i 

p(ZK,XK\9)   =   l[p(z(k)\x(k),0). 
:1 

K 

]Jp(x(k)\x(k-l),9) 
k = l 

K     C     D 

= nniirtwiww*),*)- 
k=li=lj=l 

K     N 

Hl[p(xW(k)\xW(k-i),e) 
k=ln=l 

(9) 

where the conditional densities of x(n\k) and y,j(Ar) 
are Gaussian and obtained from (1) and (3), and the 
definition of x^(k). Taking the conditional expec- 
tation of the log of (9) gives Q(0,0{'})- This re- 

quires  the  computation of x(k)       and  x(k)x(k)' 

(where (•) = E{-\ZK,9^}) which are obtained us- 
ing a Kaiman smoother [9]. Due to space constraints, 
Q(9, 9"') is not shown in full in this summary. 

3.2. CM-Steps 

The constrained maximisation of Q(0, OW) consists 
of the following S steps: 

CM-Step 1: Calculate 0<'+1/5> using (8). This 

step determines <r2(n 
{'+1} 1,..., N. A closed 

form solution is obtained for each of the c2
w 

by differentiating Q(0^+1/5>, $W) with respect to 
cr2(n) and setting the derivative equal to zero. 

CM-Step 2: Calculate 0{'+2/s> using (8). This 

step determines d(n>> , n = 1,..., N. A closed 

form solution for each d^ is obtained in the 
same way as for CM-Step 1. 

CM-Steps 3 to S: Calculate 9il+s/s\ s = 
3,..., S using (8). In this step the target position 
and velocity parameters are updated. In general 
there will be no closed form solution, so the sth 

CM-step will involve some form of iterative search 
in a parameter space 0' C 6. The dimensional- 
ity of 0' is determined by the dimensionality of 9S, 
and is less than that of 0. In this paper the param- 
eter space is partitioned such that S = N + 2 and 
each 9S, s = 3,..., S corresponds to the initial po- 
sition and velocity parameters for one target. This 
definition means each parameter update requires a 
4-dimensional search, which is implemented using 
a gradient descent technique. This results in more 
complex implementation, but faster convergence, 
than if each 9S corresponded to a single position 
or velocity parameter. 

4. Simulation 

The procedure has been implemented for the fol- 
lowing scenario: The measurement sensor consists of 
C x D — 20 x 20 resolution cells of dimension Aa; = 
Ay = 1 cell and ax = <xy = 0.6, with a measurement 
noise variance of <r2 = 1.0. The total number of frames 
processed is K — 100. There are TV = 3 targets mov- 
ing through the field of view, with amplitude statistics, 
inital positions and constant velocities as given in Ta- 
ble 1. For these trajectories there will be a number of 
frames for which there is signal from more than one 
target in some cells. The approximate average SNRs 
for the cells in which the targets are located are 1.5 dB, 
0.6 dB, and 1.8 dB respectively. 

The ECM algorithm was initialised randomly 
around the true position and velocity parameters, and 
with a<") = 0.0, <72w = 0.25 and d^ = 0.0. The esti- 
mated amplitude statistics and target initial positions 
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n a(") _2 d(") x0 
(n) 

Vo 
(n) 

1 2.5 5.00 0.7 1.25 1.35 0.17 0.16 

2 3.0 0.00 1.0 3.05 12.55 0.14 -0.05 

3 2.0 8.00 0.0 10.00 16.50 0.0 -0.15 

Table 1. True target parameters 

and velocities obtained from a single run are given in 
Table 2. The recovered trajectories, along with the 

true trajectories are shown in Figure 1. 

n a(") *„(») d<»> fo^ sb1"' i.™ ^»> 

1 2.78 5.34 0.76 1.17 1.30 0.17 0.16 

2 2.98 0.30 0.15 3.21 12.35 0.14 -0.05 

3 1.67 9.45 0.05 9.96 16.51 0.00 -0.15 

Table 2. Estimated target parameters 

The target amplitude parameters and the position 
and velocity parameters are recovered accurately, even 
for low SNR targets with crossing trajectories. The 
correlation (d) for target 2 is difficult to recover since 
a constant amplitude target can be represented by any 

d, with <T;) = 0. 

The rate of convergence of the ECM algorithm de- 
teriorates as the initialisation of position and velocity 
parameters moves further from the true values. Some 
form of grid search is required to provide adequate ini- 
tialisation. The rate of convergence also deteriorates as 
the SNR decreases. For this example about 30 passes 
of the ECM algorithm were required. 

5. Conclusion 

This paper presents a technique to estimate the tra- 
jectories of multiple constant velocity targets with time 
varying amplitudes, observed with an optical sensor. 
The ECM algorithm is used to obtain the ML estimate 
of the target trajectories and MAP estimates of target 
amplitudes. The technique has been applied success- 
fully to crossing targets in low SNR conditions. 
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ABSTRACT 
Estimation of parametric input-output (10) infinite im- 

pulse response (IIR) transfer function is considered. Some 
of the desirable properties of any approach to this prob- 
lem are: unimodality of the performance surface, consis- 
tent identification in the sufficient-order case, and stability 
of the fitted model under undermodeling. Some of the well- 
known approaches fail to satisfy one or more of these prop- 
erties. The time-domain equation error method (EEM) 
yields a unimodal performance surface, biased estimates 
in colored noise and sufficient-order case, and stable fit- 
ted models under undermodeling if the input is autoregres- 
sive. In this paper we propose a frequency-domain solution 
to the least-squares equation error identification problem 
using the power spectrum and the cross-spectrum of the 
10 data to estimate the 10 parametric transfer function. 
The proposed approach is shown to yield a unimodal per- 
formance surface, consistent identification in colored noise 
and sufficient-order case, and stable fitted models under 
undermodeling for arbitrary stationary inputs so long as 
they are persistently exciting of sufficiently high order. 

1    Introduction 
Consider the following widely used input-output linear 

system model: 

y(t) = H(q-l)u(t) + v(t) (1-1) 

where {u(t)} is the measured input sequence, t is discrete- 
time, {y(t)} is the noisy output, and {v(t)} is a measure- 
ment noise (disturbance) sequence. With g_1 denoting 
the backward-shift operator (i.e. g_1a(*) = u{t — 1)), the 
linear system H(q_1) represents an IIR (infinite impulse 
response) system: 

Hi-1) = £*«?-•'• (1-2) 

Given an input-output record {«(*), y(t), t = 1,2, •••}, 
but the underlying true system model if(g_1) unknown, 
it is of much interest in signal processing, communications 
and control applications to fit a rational function model 

G(q 

This work was supported by the National Science Founda- 
tion under Grant ECS-9504878. 

to given input-output record [l]-[6],[8]. A wide variety of 
approaches exist [1],[4],[5],[8]. 

In any model fitting and parameter estimation prob- 
lem, key issues influencing the choice of the approach are 
[1],[4],[5],[8]: 

(i) Global Convergence: Unimodality of the cost func- 
tion. Does there exist a unique global asymptotic 
convergence point? For instance, the prediction error 
method (PEM) and the output error method (OEM) 
[4],[5] do not have a unimodal cost function, in gen- 
eral, whereas the equation error method (EEM) [1], 
the Steiglitz-McBride method (SMM), and the instru- 
mental variable method (IVM) [4],[5],[8] all have a 
unique global asymptotic convergence point. 

(ii) Consistency: If the model set (i.e. the set from which 
the fitted model is selected) contains the true system 
(the so-called sufficient order case), does the fitted 
model asymptotically converge to the true model? Ig- 
noring the lack of unimodality, PEM is consistent un- 
der a broad class of conditions [4],[5] and so is IVM, 
but SMM and OEM are so only for white measure- 
ment noise and EEM (as modified in [1]) has similar 
limitations. 

(iii) Statistical Efficiency: What is the variance (and 
bias) of the fitted parameters? If it converges to the 
correct solution, PEM is known to yield the smallest 
variance [4],[5]. 

(iv) Reduced-Order Modeling (Undermodeling): When 
the true system does not belong to the model set (for 
instance, suppose that H(q~l) is not a rational func- 
tion), it is meaningless to talk of consistency. From 
a practical viewpoint, a key issue now is if the fit- 
ted model is stable like the underlying true model? 
It turns out that only EEM leads to a reduced-order 
stable model provided that the input {«(*)} is an AB. 
process. Indeed, it is noted in [1] that "... if the input 
can not be ascertained autoregressive, equation error 
methods should perhaps not be used." 

The main objective of this paper is to provide a 
frequency-domain solution to the problem of equation 
error (least-squares) system identification using spectral 
analysis. The proposed method is shown to lead to a uni- 
modal performance surface, consistent identification in col- 
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ored noise and sufficient-order case, and stable fitted mod- 
els under undermodeling for arbitrary stationary inputs so 
long as they are persistently exciting of sufficiently high 
order. 

2    Model Assumptions 
We impose the following conditions on (1-1): 
(AS1) {«(<)} and {y(t)} are zero-mean and jointly sta- 

tionary. The power spectral density Suu(eJ") of 
{«(*)} is > 0 for almost all w G [0, *]. 

(AS2) The true system transfer function  fT(g_1) is 
causal and stable. Therefore, £~0 h*(i) < co. 

(AS3) The noise sequence {v(t)} is zero-mean, station- 
ary and independent of {«(*)}• 

(AS4) The following summability conditions hold true: 

oo 

2        [l+|rj|]KW..,fc(n,-",Tfc-i)| < °°- 
TXi"iTfc-l=_0° 

for each j = 2, — ,fc — 1 and each k = 
2,3,-- where Zi(t) G {»(*),*(*)>«(<)} and 
Cr1z3-zfc(n,--,rk-i) is the fc-th order joint 
cumulant of the random variables {zi(< + 
Tl ), • • •, zk-i(t + Tk-l), Zk(t)}. 

Let the vector of unknown parameter be given by 

where 

Uk  =   Tpk,     k = 0,1, ■ .T-l. (3-4) 

Similarly define U(uk)- 
Given the above DFT's, following [7, Sec. 7.4] we define 

the cross- and auto-spectrum estimators as 

T-l 

*»«(*) = £ £ wW(*k-.)Y(Uh-.)U'(wk-.)   (3 - 5) 

and 

•=i 

T-l 

&-(*) = 5? E W^(wk-.)U(wk-.)U*(wk-.)   (3 - 6) 
«=i 

e [<Zl K? (2-1) 

3    A Frequency-Domain Solution 
Consider the cross-spectral density 

for 1 < * < T - 1, where the scalar weighting function 
W^T\a) is given by 

oo 

W<T>(«) = B? Y, W(Brl[a + 2rtH)        (3-7) 
t= —OO 

such that W(ß), -oo < ß < co, is real-valued, even, 
of bounded variation satisfying /^ W(ß) iß = 1 and 

/" \W(ß)\ iß < oo [7, Sees. 5.6 and 7.4]. It is conve- 

nient to take W{ß) = 0 for \ß\ > 2* and W(ß) = (4T)"1 

for \ß\ < 2ir. In this case (3-5) involves uniform weighting 
of the 2BTT + 1 cross-periodogram ordinates whose fre- 
quencies fall in the interval (w* - 2irBT , Uk + 2-KBT )• Thus 
(3-5) reduces to 

TTXy 

Syu(w) =   ^ E{y{t + k)u(t)}e-iuk. (3-1) SU^r^TT   E   ^^'W     (3 ~8) 
fc=-oo 

It then follows easily that 

*(«*") = ff(?-1)l,=e-i" 
Syu(üi) 

Suu(u)' 
(3-2) 

The basic approach to model parameter estimation con- 
sists of two steps. First obtain a consistent estimator 
H(eiu) of H{e?") via consistent estimators Syu(u) and 
5„„(w) of 5yu(w) and Suu(u), respectively, based upon the 
input-output record {«(t),»(i), t = 1,2,--,T}. Next es- 
timate the system parameters using the estimated transfer 
function matrix as "data." 

3.1      Transfer Function Estimator and Its 
Statistics 

This involves little more than estimation of cross- 
spectrum between {»(*)} and {tt(i)}, and of power spec- 
trum of {«(t)}. Numerous techniques are available for this 
purpose; see [7] and references therein. We will follow the 
approach of smoothing in frequency domain [7, Sec. 7.4]. 
Given a record of length T, let Y(u) denote the DFT of 
{y(t),   1 < t < T} given by 

T-l 

—m»j» 

where mr = BTT. Similar modification holds for (3-6). 
Let us choose BT to be such that as T —► co, we have 
BT -» 0 and BTT -+ co. Let Jfej(T) with T = 1,2, • • ■ be 
a sequence of integers such that ]imT-nxiki(T)/T = fi, a 
fixed frequency (in Hz). 

In light of (3-8) define a coarser frequency grid: 

2x1      2*I(2mT + l)      2irl(2BTT +1)      , . 
Ul=Lr~ = T = T (3_9) 

with I = 0,1,-•-,1T - 1 where LT = Lj^+iJ- Usin6 
the estimated spectra we have an estimator of the system 
transfer function at frequency w* (as in [7, Chapter 8]) 

£(«**) = SZt{k)Syu{k) (3-10) 

provided that 5~J(Jt) exists. If Su*(vh) exists, then it 
follows from [7, Thm. 8.11.1] that 

limT-.oo.ff(ei2") = limT^oo5-u
1(*(T))V(fc(T)) 

= H(ei2lc})   w.p.l (3 - 11) 

where limx-oo k(T)/T = f. Convergence in (3-11) is uni- 
form in /. Finally, by the asymptotic independence of the 
periodogram and cross-periodogram on the grid (3-4) for 
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0 < fc < T/2 (see also [7, Chap. 7]), it follows that H(eju») 
for k = l(2mT + 1), I = 0,1, • ■ ■, (IT/2) - 1, are (asymp- 
totically) independent. It follows from [7, Thm. 8.8.1] that 

&(*?•"•) for k = l(2mT + 1), J = 0,1,--.,(XT/2) - 1, 
are (asymptotically) jointly complex (circularly symmet- 
ric) Gaussian such that 

limT-.oo AT cov (H(eiü,-),H(eju»)\ 

Syy(Vk) \Syu{wk)\' 
=   or (wfc), 

Sw(u>k)     [ Syy(Wk)SUU(Uh)\ 

t~ ■ ~ ■ \ (3"l2) 
limr^oo AT cov \H(^U"), H*^"")J   =0,     (3 - 13) 

where 

BTT 

- - 2«r„w*i«)*« = 2BTT (if(3-8)isused)- 
(3-14) 

andcov{X,r} = E{XY'}-E{X}E{Y'}. Thus, H{eiu") 
on the coarse grid (3-9) is asymptotically a complex Gaus- 
sian (in the sense of [7, Sec. 4.2]) random variable, indepen- 
dent at distinct frequencies on the coarse grid over (0, TT), 

with the covariance structure (3-12). 

3.2      An Equation Error Formulation 
It follows from the definition of G(e>u) (cf. (1-3) ) that 

;=o 
(3-15) 

for any wk. We rewrite (3-15) after replacing G(e3Uh) with 
the true transfer function estimate H(e3"k) (see (3-10)), 
as 

na nj, 

-53l?(e*'*)C-*"**ai + Y^e-i"*%  =  H(eja>). 
t=l i=0 

(3 - 16) 
Using frequencies u>u = 2ir(k — 1)/LT for 0 < k < L = 
(LT/2) — 1, (3-16) may be rewritten in a matrix-equation 
form and a least-squares solution can be found, as in [3] 
(but in a different context). One may also wish to split (3- 
16) into its real and imaginary parts and then solve it in 
order to preserve the real-valued nature of the parameters 
(see [3]). 

The above least-squares formulation is equivalent to the 
following formulation.  Choose 8 to minimize the cost 

In order to deduce some desirable theoretical properties it 
will be convenient to work with (3-17) in the rest of the 
paper. 

Lemma 1.    Under (ASl)-(AS4), limT-co JIT(9) ™=1 

Jico(9) uniformly in 9 for 9 £ &c, any compact set, where 

Ji-(tf) =   ±j   \A{eiu;d)H{eiu)-B^u;B)\2 du, . 

(3 - 20) 
Proof: By [7, Thm. 8.11.1], convergence in (3-11) is uni- 
form in /. In particular, for u>i on the grid (3-9), given any 
e > 0 there exists an integer N(e) such that 

H(ejUl) - H{e3"') < e   w.p.l (3-21) 

uniformly in wi for T > N(e).   Moreover, by [13, Prop. 
1.2.16] and (3-21), we also have 

\H(e>">)\2 - |2T(e**)|2| < e   w.p.l (3 - 22) 

uniformly in u>i for T > N(e). Consider 

Di(0) =  \A(ejul<;9)H(eia<) - B(e3U>;6)\2 

-\A(e3"l;9)H(e'"<) - B(ejo,';9)\7 

= \A(e3"';9)f [\H(ej"l)\2-\H(e>">)\2] 

+A(e3U';6)B*(eju";9)   H(e3"')- H(e3"')} 

+ A\e~iu>; 6)B(ejUl; 9)   H(e3U>) - H(e}Ul)] * . 

(3 - 23) 
By compactness of ©c and continuity of A(e~3U';9) and 
B(e~}Wl;9) in 9 as well as in u>i, we have 

<*€?-*,*]    9Selc   H«*V)||<"<oo(3-24) 

and 

sup sup 
«,e[-x,.]   9elc ||^^)||<M<OO. 

(3 - 25) 
Therefore, by (3-21)-(3-25), given any ei (= 3M2e) > 0, 
there exists an integer JV(ei) such that 

\Di{9)\ < ei     w.p.l    V0 6 ©c,   V«,,   VT > N(a). 
(3 - 26) 

Now define 

JIT(9) :=  —  J2   \A(e3">;9)S{e3"<) - B(e3"';9) 
1=0 

where 

B(ej">;8)  =  jS^)«-*", 
i=0 

"a. 

A(ej0";e) =  1 + J2ai(S)e~JU 

(3 - 17) 

(3 - 18) 

(3 - 19) 
t=i 

JIT(0) :=  ^  ]T  \A{eiu>;9)H(J">) - B(e3U';8)\2. 
1=0 

(3 - 27) 
Using (3-17), (3-26) and (3-27) it follows that 

fx_i 

|JIT(*)-JIT(»)|  <  J-  Y,  l^'WI^i     w-P-1 

1=0 

(3 - 28) 
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V0 e ©c and VT > N(ei). Finally, for large LT as the fre- 
quency spacing becomes finer and finer, using the integral 
approximation to the summation in (3-27) it follows that 

lim^cJxTCö) = - f \A(e^;9)H(en - B(e^;8)\2 du, 
% Jo 

=  — /" U(e
J'";ö)ff(ej") - B(eiu;9)\2 du = Jleo(0). 

(3 - 29) 
The desired result then follows from (3-28) and (3-29).     D 

(4-1) 

4    Convergence Analysis 
Define 

flW  = arg {mine JIT(ö)} 

t'  = arg {mine Ji oo (0)}. (4-2) 
Using Lemma 1 and some standard arguments we can es- 
tablish Theorem 1. 
Theorem 1.    Under (AS1)-(AS4), 

lim n „&> wr w 
where 

2><l>   :=  {* | Jloo(0) = Jico^1') } ■ (4-3) 

Proof: Mimic the proof of Theorem 1 in [11] using Lemma 
1. Note that the convergence to the set I>(1) is to be in- 
terpreted in the sense of Ljung [5, p. 215].    □ 

The properties of 0*1' have been studied in [9]. First we 
need some definitions. 
Def. Sufficient Order Model Set: The true model 
fl^g-1) is of the type (1-3) such that the true model orders 
nao and re«) satisfy min(na — nao, it — nto) > 0. • 
Def. Reduced Order Model Set (Undermodeling): 
Either the true model fi"(g_1) is not of the type (1-3), or it 
is but the true model orders nao and reto satisfy min(raa — 
nao, Wfc — ™fco) < 0.    • 

It has been shown in [9] that under the sufficient order 
case, V^ equals the set 

2><"> := {8 iBfo-1;»)/^-1;«) = JTfo-1)} ■ 
(4-4) 

Under undermodeling (reduced order case), by [9], 

A(q~x;o ) is minimum-phase; hence the fitted model 

G(?_l) = B(q-1;8il))/A(q-1;9<1)) is stable. Moreover, 

under undermodeling, 8 is unique (i.e. V^ is a single- 

ton), and Jioo^0) > 0. 
Using the above results from [9] and Theorem 1, the 

following result is immediate. 
Theorem 2.    Under (AS1)-(AS4) and undermodeling, 

lirriT-*oo0;r      ==    0 

where ff~    is unique and is given by (4-2).  Under (AS1)- 
(AS4) and sufficient order modeling, 

]imT—«<T
l)  T1   V<>'°\ 

If mi^Tia - n*o, nb - nb0) = 0, then V^ is a singleton. 

5 Conclusions 
A frequency-domain solution to the least-squares equa- 

tion error system identification problem was considered us- 
ing the power spectrum and the cross-spectrum of the 10 
data to estimate the IO parametric transfer function. The 
proposed approach was shown to yield a unimodal per- 
formance surface, consistent identification in colored noise 
and sufficient-order case, and stable fitted models under 
undermodeling for arbitrary stationary inputs so long as 
they are persistently exciting of sufficiently high order. 
This is unlike quite a few existing approaches, such as the 
prediction error method, the output error method and and 
the instrumental variable method. 
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Abstract 

The rank selection problem of a multichannel data 
covariance matrix is addressed by the Bayesian method- 
ology. A maximum a posteriori solution is derived, and 
a bootstrap technique for its implementation proposed. 
Our rule is tested on simulated sensor array data that 
represent random signals embedded in white Gaussian 
noise. The tests include comparisons with the pop- 
ular AIC and MDL criteria. The results show that 
the Bayesian rule outperforms them, particularly for 
low signal-to-noise ratios and small direction-of-arrival 
separations. 

1. Introduction 

In many signal processing applications, the princi- 
ple of rank reduction plays an important role [4]. In 
sensor array processing it is often applied to determine 
the number of signals that arrive at an array using a 
finite set of observed data vectors. The rank reduc- 
tion is practically a model selection problem, and as 
such, in recent years, has been addressed by exploiting 
information theoretic criteria [1], [5]-[7]. 

In this paper, we examine the same problem and 
propose a maximum a posteriori (MAP) solution that 
is in form similar to the well known selection rules of 
Akaike (AIC) and Rissanen (MDL) [5]. Our rule has 
a different penalty for overparameterization, and un- 
like the AIC and MDL, the penalty is determined from 
the observed data. It contains terms that include co- 
variance matrices of the estimated model parameters. 
To estimate these matrices, we apply a bootstrap tech- 
nique as proposed in [3]. Our rank selection procedure 

has been tested by computer simulations and compared 
to the AIC and MDL. 

2. Problem Statement 

We formulate the problem using standard assump- 
tions and the notation from [5]. Namely, a set of p x 1 
complex data vectors x(f), t = 1,2,..., N, are observed, 
where 

x(t) = As(<) + n(t). (1) 

Here, A is a p x m (p > m) complex matrix of full 
rank whose columns are associated with different sig- 
nals and are parameterized by unknown signal param- 
eters, and s(t) is an ra x 1 random complex zero mean 
vector whose elements are the waveforms of the m sig- 
nals. The term n(t) denotes a p x 1 complex noise 
vector, which is a realization of a stationary and er- 
godic Gaussian process with zero mean and covariance 
matrix E(n(t)nH(t)) = <r2I. The noise and the signals 
are independent. 

The covariance matrix of the data can be expressed 
as 

R = 9 + <r2I (2) 

where 9 is the signal covariance matrix given by 

# = ASA H 
(3) 

"This work was supported by the National Science Founda- 
tion under Award No. MIP-9506743. 

with S being defined by S = E(s(t)sH(t)). Since A is a 
full column rank matrix and S is by assumption nonsin- 
gular, the rank of 9 is equal to m. On the other hand, 
the rank of R is p, and its (p — m) smallest eigenvalues 
are equal to a2. Thus, if we knew R, by observing its 
eigenvalues we could directly find the number of signals 
in the data. However, R is almost never available in 
practical applications, but instead, is estimated from 
the observed data vectors. To determine the number 
of signals based on the eigenvalues of the estimated R, 

0-8186-7576-4/96 $5.00 © 1996 IEEE 
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R, is not an easy task because the smallest eigenvalues 
of R are usually not easily distinguished from the re- 
maining eigenvalues. Our objective is to examine this 
problem and determine the rank of * from the esti- 
mated matrix R. 

3. Criterion for Rank Reduction 

As mentioned before, the rank reduction has been 
addressed by several authors who used the information 
theoretic criteria AIC and MDL [5]-[7]. Here, we pro- 
pose a different approach, which is based on the MAP 
criterion. We assume that the rank k can take one of 
the q values, k = 1,2, ..,q, where q < p. For each Ar 
we have a parametric model, which is denoted by Mk. 
The model Mk is described by the k largest eigenvalues 
of R, Aj, / = 1,2,..., ifc, their associated eigenvectors, v(, 
and the noise variance a\. 

Since our objective is to find the rank that has the 
maximum a posteriori probability, our criterion can be 
expressed as 

ife = argmax{p(A<j:|x(l),x(2), ■ 
k 

MN))}     (4) 

where p(X*|x(l),x(2), ■ • -,x(N)) is the a posteri- 
ori probability of the model given the data records 
x(l),x(2),---,x(JV). If all the rank hypotheses are a 
priori equally probable, the criterion (4) becomes, 

jfc = arg max{/(x(l), x(2), • • •, x(N)\Mt)}     (5) 
k 

where /(x(l), x(2), • • •, x(N)\Mk) is the marginal den- 
sity of the data given the model Mk- The marginal 
density is obtained from 

/(x(l),x(2),---,x(A0|A<*) 

= /   f(K(i)M^,---MN)\ek,Mk)f(ek\Mk)dek 
J&> (6) 

where &k is the parameter space of the fc-th model, 
and f(8k\Mk) is the a priori density of the model pa- 
rameters. 

We can show that the criterion (5) can be approxi- 
mately expressed by [2] 

k = argmin{- In /(x(l), x(2), • • •, x(N)\Ok, Mk) 
k 

-^ln|Cfc|-^ln(2x)} (7) 

where 6k is the maximum likelihood estimate of 8k, 
Cjfe is the estimated covariance matrix of 8k, and 
dk is the dimension of the model's parameter space. 

If vir, vij, v2r, v2i, ••-, VH denote the real and 
imaginary components of the eigenvectors, then 8k = 

[Ax A2 ... Xk S\ vfr vg"I} v£ yg-" ■ ■ • Tg"1'], where 
the vectors v[t- ^ are of size p — 1 with elements iden- 
tical to the first p — 1 elements of v/,-. 

Now, if we apply the selection rule (7), we may 
experience a scaling problem. Namely, for two sets 
of data which are only related by a scaling constant, 
the rule may yield two different results. This is 
unacceptable, and therefore we modify (7) so that 
the rule is based on the predictive densities /(x(L + 
l),x(L + 2),---,x(i\r)|x(l),x(2),---,x(Z,),.Mfc), for 
k = 1,2, ■ • •, q, where the data records x(l), x(2), • • •, 
x(L) can be considered as training data records. With 
the same approximations used for obtaining (7), we can 
show that the modified rule becomes 

k = argmin{-In/(x(l), x(2), • • •,x(JV)|0fc, Mk) 
k 

+ ln/(x(l),x(2),.--,x(L)|0fc,^)-^ln|Sj|} (8) 

where 8k and 8k are the maximum likelihood estimates 
of the model parameters obtained from all the data and 
the first L data records, respectively, and Cj, and Ck 

are the estimated covariance matrices of 0k and 8k, 
respectively. 

Now, using the model assumptions, our rule simpli- 
fies to 

k = arg min ■ 
k 

■In 
iBU+i^ , ,„niu+iÄf 

~2(p-k)N 
+ ln 

~2(p-fc)Z 

iln|Cfc| + iln|C* (9) 

where a\ = ^ EJU+i A/, and cr\ = ^ EiU+i A'- 
A critical step of the procedure that implements (8) 

is the evaluation of the covariance matrices Ck and 
Cfc. These matrices can be obtained by a bootstrap 
technique, which is described in the next section along 
with some other details of the procedure. 

4.   Implementation   by   the   Bootstrap 
Technique 

To evaluate (8) for every k, first we find the corre- 
lation matrix R according to 

N 

Ä = ^ !>(')*(*)" 
t=i 

(10) 
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where X = [x(l)x(2) • • -x(N)]. Similarly, we obtain 
R from the first L data vectors. Next, we determine 
the eigenvalues and eigenvectors of R and order them 
such that Ai > A2 > • • • > Ap. From the p - k smallest 
eigenvalues, we obtain a\, and from the so estimated 
a\ and the eigenvalues, we determine the first term in 
(9). We repeat these steps for the matrix R, and find 
the second term in (9). 

To estimate C* and C*, we use a bootstrap ap- 
proach [3]. First we estimate the parameters of the 
fc-th model for M different sets of bootstrap data X*, 
/ = l,2,---,Af, where X* is a p x N matrix whose 
columns are randomly chosen from the columns of the 
actual data matrix X, i.e., 

bootstrap data X* is v*, we rotate the vector v* by an 
angle (p so that we minimize 

d = (vi - ej*vt)H(vf - e^vf). 

The angle tp that minimizes d is 

tp — arctan 
Im(vt

gvf) 
Re(vf v*)' 

Finally, after the rotation, we have to choose the sign 
of e3ipv* so that the rotated vector points in the same 
direction as vj. The same steps are implemented in 
evaluating every eigenvector. So is the case in deter- 
mining the eigenvectors of Cj,. 

Cf   =    [x?(l)xf(2)...x?(J\r)] 
=    [x(h)x(l2)...x(lN)}. (11) 

It should be noted that some columns from the original 
matrix may appear more than ones in Xf, and some 
not at all. From each of the M bootstrap matrices, 
we first estimate the model parameters, and then de- 
termine the covariance matrix of the parameters. The 
same procedure is repeated for the X* data records to 
estimate 0*. Once C* and Ct are found, we compute 
the overall criterion of the examined model. 

Recall that the k—th model parameters are the 
largest k eigenvalues, the associated eigenvectors, and 
the noise variance. The eigenvectors have to be treated 
carefully for two reasons: the first is that they are 
normalized, and the second, that they are not unique. 
Since the eigenvectors satisfy 

M v, = 1,    / = 1,2 —ib (12) 

not all the elements of v; are free parameters. If v; is 
of length p, due to (12), the number of free parameters 
is 2p— 1. Therefore, in defining 0k, we have to exclude 
the non-free parameters. In our definition of 0* we 
exclude the last component of the imaginary part of 
each eigenvector. Therefore, the sizes of the Cj, and 
Cjb matrices are (2pk + 1) x (2pk + 1). 

Note also that if v; is the eigenvector corresponding 
to the /—th eigenvalue of R, i.e. 

Rv; = A;V; 

then any vector v;(y>) = eJvv; is also a legitimate eigen- 
vector of R. Since we use the eigenvectors to compute 
the covariance matrix of the model parameters, this 
ambiguity is undesirable. So, in our implementation 
of the bootstrap algorithm we proceed as follows. If 
the maximum likelihood estimate of the /-th eigenvec- 
tor obtained form X is vi, and the estimate from the 

5. Simulation Results 

We have tested the MAP rule in three experiments 
and compared it with the AIC and MDL by using com- 
puter simulated data. The columns of the matrix A 
were given by 

aT(<£) = [1 e~JTsin^'') e-j2*sin(<f>k)   . . _  e-i(p-l)irsin(0fc)j 

(13) 
where k — 1, 2, • • •, m, and <j>k is the direction of arrival 
of the fc-th signal. 

In all the experiments, there were two signals (m = 
2) whose amplitudes were given by 

sT(t) = [e-^tO e-«a<*>] (14) 

where r}\ and 772 are independent and uniformly dis- 
tributed random variables in the interval (0,2TT). The 
number of sensors was p = 7, and the maximum pos- 
sible rank q = 4. The evaluation of the covariance 
matrices was carried out by M = 300 bootstrap data 
matrices, and the number of training data records was 
£=10. In each experiment there were 100 independent 
trials. The used AIC and MDL rules were 

^AIC arg min < -2 In Oi=jfc+i \ 
fr2(p-k)N + 2k(2p - k) 

and 

&MDL = arg min 
lb I a' 

-.k+l \?     k(2p - k) 
2(p-ib)JV + 

(15) 

InJVl 

(16) 
In the first experiment the signal-to-noise ratio 

(SNR), defined by SNR = 101og(l/<r2), was equal to 
0 dB, and the directions of arrival were <f>\ = 20° and 
<f>2 = 28°. The number of data records was N = 80. 
The results are shown in Table 1. Each entry repre- 
sents the number of times the MAP, AIC, and MDL 
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jfe=l     k=2    k=Z    k=A 

MAP        0          99          1           U 

AIC        0          95          4           1 

MDL        0         100         0           0 

Table 1. Performance of the MAP, AIC, 
and MDL rules in 100 trials for SNR=0 
dB, ^1=20°, <j>2 = 28°, and N = 80. The 
correct model is A^2» 

fc = 1     A; = 2    k = '6    fc = 4 

MAP        2           92           5            1 

AIC         7          89          3           1 

MDL       47         53          0           0 

Table 3. Performance of the MAP, AIC, 
and MDL rules in 100 trials for SNR=0 dB, 
<j>i= 22°, <f>2= 28° and N = 50. The correct 
model is A4 2- 

k=l    k=2    k=i    k=4 

MAP        2          89          8           1 

AIC        13         74         12          1 

MDL       77         23          0           0 

Table 2. Performance of the MAP, AIC, 
and MDL rules in 100 trials for SNR=-3 
dB, <j>!= 20°, <j>2 = 28°, and N = 50. The 
correct model is M?. 

rules chose the models with ranks k = 1,2,3, and 4, 
respectively out of 100 trials. From the results we ob- 
serve that all the rules showed excellent performance. 

In the second experiment, we decreased the SNR to 
- 3 dB and the number of data records to N = 50, but 
kept all the remaining parameters identical to those in 
experiment 1. The results are shown in Table 2. The 
performance of the MDL degraded significantly. The 
AIC performed better, and the MAP was the best. 

Finally, in the third experiment, we decreased the 
separation of directions of arrival by setting <j>i = 22°, 
and 02 = 28°, increased the SNR to 0 dB, and kept 
the remaining parameters unchanged as in experiment 
2. The results are shown in Table 3. Again, the MDL 
performed poorly, and the MAP had the best perfor- 
mance. 

6. Conclusions 

A new approach to rank determination of covariance 
matrices has been proposed. It is based on the MAP 
criterion and implemented by the bootstrap method. 
The method in this paper requires assumptions of a 
specific structure of the covariance matrix. Current 
research is focused on relaxing these assumptions to 
make the current procedure applicable in a wider set 
of scenarios. 
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Abstract 

Using the information theoretic criterion the authors 
obtained in [4] three consistent estimates of the num- 
ber of signals for an additive model with white noise. In 
this paper the rates of convergence for the probabilities 
of wrong detections as a function of the sample size are 
studied. It is proved that under certain conditions and 
for a fairly general class of penalty terms, the proba- 
bilities of wrong detection are exponentially decreasing. 

1    Introduction 

In signal processing, a problem of great interest is 
the determination of the number of signals transmitted 
in the presence of noise. The received signal vector a;(t) 
is p x 1 complex vector given by 

x(t) = As(t) + n(t) 

where A is p x q matrix A = [A{<j>i), A(<f>2),... ,A(<f>q)] 
and A(<j>i) is a p x 1 complex vector which depends on 
some unknown <f>{ associated with the direction of ar- 
rival for the 2th signal, s(t) = (s1(t),s2(t),... ,sq(t))', 
S{(t) is the ith complex waveform signal, and n(t) is a 
p x 1 complex vector associated with the noise. The as- 
sumptions made here are (1) q < p; (2) s(t) is complex 
multivariate normal with mean vector 0 and nonsin- 
gular covariance matrix <J; (3) the noise vector n(t) is 
complex multivariate normal with mean vector 0 and 
covariance matrix cr2Ip, where Ip is the p x p identity 
matrix, and n(t) is also independent of the signals. The 
covariance matrix of the x(t) is given by 

AVA + o-2Ip 

where A* denotes the transpose of the complex con- 
jugate of A. The number of signals transmitted,  q, is 

equal to the rank of AW A*. Let Ai > A2 > 
the eigenvalues of E, 

^ /\2 ^ • • • > Xp be 

Ai >A2> > A? > Aa+i — A„ = <r2.- *?+i -       - "p 

Let {x(ti),x(t2),... ,x(tn)} be a set of observations 
and nS = J27=i x(U)x*(ti). Then E(S) = E. Suppose 
that Si > 62 > ■ • ■ > 6p are the eigenvalues of 5. Let 
Hk denote the hypothesis that 

Hk :  Ai > • • • > A* > Ajt+i = ■■ ■ = Xp = a2. 

Mk is the model that Hk is true. Let 

I{k,Cn) = L(k) + v{k,p)Cn. (1) 

Here L(k) is a statistic which will be specified later, 
v{k,p) denotes the number of free parameters that has 
to be estimated under Hk and Cn is some constant 
chosen to depend on n. The criterion for determing the 
number of signals is to estimate the number of signals 
q by qn which is chosen so that 

I(qn,Cn) = mm{I(0,Cn),I(l!Cn),---,I(p-l,Cn)}. 

i/(k,p)Cn in this case is called the penalty term. The 
choice of Cn is crucial and its selection was discussed 
in [5]. In general C„ is chosen to satisfy the following 
conditions: 

lim ^ = 0; 
n—>oo    n 

Cn 

rc->oo log log n 
OO, (2) 

and v(k,p) is either | or |(2p - k + 1). Let 

Li(k) = -n{ £  logfc-(p-*)log(-l-   £  Si)} 
«'=*:+1 

P 

P i=k + l 

P 

A* = -{ £ logA,-(p-^)log(^I   £ A,)}. 

It can be shown that -Li(k) is the likelihood ratio 
test statistic for testing Hk under the assumptions of 
normality and independence of observations. 
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With L(k) - Li(k) in (1) it was proved in [5] that 
the estimate of q by q is consistent. Its rate of conver- 
gence was shown to be exponential in [1]. The same 
result was obtained in [2] where white noise is not as- 
sumed. Recently a different formulation of L\(k) was 
provided in [3]. However it is not known if it will give 
a consistent estimate of q. Based on the result of [3], 
the authors proposed several consistent estimates in 
[4]. The main purpose of this paper is to investigate 
the rate of convergence for three of these consistent es- 
timates. It will be proved that for a fairly general class 
of C„ functions, the rate is again exponential. 

2    Preliminary Lemmas 

Lemma 2.1: Suppose that 0 < a < <r2/(2p) and 
max.j \<Tij - Sij\ < a. The followings are true: 

1. 0 < Li(k) < np3a2/(T4,    if k > q; 

2. Li(ifc) + KMCn-Li(2)-K9,P)Cn >n(At/2- 
4p2a/a2 - p3a2/a4) - v{p - l,p)Cn,     if k < q 

Proof:    For the proof, see Theorem 3.1 of [1]. 
Let E = K}?J=i and S = KKj=i- The following 
result can be found in [1]: 

max|(Ti;- - Sij\ < a => |Aj - b~i\ <pa, i = 1,2,... ,p 

(3) 
For £ > 0, define 

St 

j=i 

+ (p-k)(n-k)\ogh+i+    X)    log(Äi-Äj+0 
i, i = 1 

i < i 

+ 2(p-t)log(Äi-Ät+i+0 

j2   iog(«i-«j+o. 

»=i 

i,j=k+i 
i < i 

where A, and Ajt+i are solutions of 

h    =   Si-^7 £ TTT"' n   ^  \j - A,- + £ 

P-k      AjAt+i     ^    i = i,2 Jb 
n    Xj - Aj,fl +£ 

\ _    J,1^       ÄiÄfc+i (4) 
n j^ A,- - Ajt+i + £ 

|Äi-Äj|    <    K, |Ä,-|<n*logn,    *",i = 1,2, ..-.,*+ 1 

where 0 < p < 1 is a constant, <72 = ^- Yfi=k+i di- 
lemma 2.2:   There is a AT > 0 such that for all 

n > N, the system of equations (4) has at most one 
solution. 

Proof:    Define 

9j{xi,X2, 
i = i    j 

a?j-xfc+1 
:. for j 

5*+ 

n    Xj - xk+i + £ 

1   * 
i(*i,a!2,- ■ ■ ,**+i) = *2 + -£ T: 

."—1 ' 

1,2,. ..,* 

£.Zfc+l 

t=i 
Xk + l + £ 

and G(f) = (ffi,ff2, • • •, ff*+i)(*)- Then G(j7) = y if and 
only if y is a solution of (4). Let Dn = {x : \x{ — Xj \ < 
f>t, \xj\<n2'5\ogn,i,j = l,2,...,k + l}. Then Dn 

is convex. It is easy to show that on Dn, 

<(P-i)(t + i)^"',5|^1'f;)^"+{) 

where ||.|| denotes the Euclidean norm. Suppose that 
there exist two distinct fixed points x and yia Dn. By 
the mean value theorem there is a zeDn on the line 
segment joining x and y such that 

x-y = G{2)- G(y) = G'{?){x- y) 

Let N be so that for all n > N, M < 1. Then 
||x-y|| < M||£-y|| < ||ä?-y||. This is a contradiction 
and the uniqueness of solution is proved. 

Lemma 2.3: Suppose that p£ > Ai - a2 and 
maxfj \o~ij -  Si < a0 < min{o-2/(2p),(/j£ - Ai + 
<r2)/(4p)}. Then there is a N > 0 such that for n > N 
the system (4) has a unique solution and 

I*,--Äil    <    L,    1 = 1,2,...,* 
n 

\i + l I    < 
7 
n (5) 

*,  |xfc+i - a2\ < 

where 7 = p(Ax + 2pa0)
2/[(l - />)£]• 

Proo/; Consider the subset of Rk+1, 
Ek = {\xi - 6{\ < a0,i = 1,2, 
«o and \xi - Xj\ < pt,}. Let AT be large enough such 
that (p - 1)[A! + (p + l)a0]2/(^(l - P)0 < "o- If 
n> N, then it can showed that 

Ify - ffiO*)l < ao, j = 1,2,..., * 
|o-2 - gk+i{x)\ < ao, 
\9i(x) ~ 9j (x) I < \Si - 6j I + a0 < Ai - a2 + 4pa0 < p£ 

i,j=l,2,...,*+l. 
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Therefore G(x) £ Ek. Clearly G(x) is continous. By 
the fixed point theorem the system (4) has a solution 
(Ai, A2,..., Afc+i) in Ek and it follows that 

1-2     x      /-N|    ^     1 p(Ai + 2pa0)
2 

k   -A,+1(«)|    <    -     (1_^      • 

By Lemma 2.2, the solution is unique. 
Lemma 2.4: Suppose that p£ > Ai — a2 and 

max,-,,- |«T,J - Sij \ < a < a0 < min{cr2/(2p), (p£ - Ax + 
<r2)/(4p)}. There is a N > 0 such that for n > N, we 
have 

(a)   £ = 1 + ^ (i,*),    ,'=1,2,...,* 

(b)    E *,• 

t=*+i Ajfc+i 
(p-k)[l + R2(k)] 

(c) log(Ä,-) = log Si + i?3(i, *),    1=1,2,...,* 

(d) log(Ä,+ 1) = log(a2) + JR4(*) 

(e) log(Ä,- - Xj + 0 = Iog(fc - 6j + £) + Rs(i,3,*) 
hj = 1,2,...,*,  2 < j 

(f) log(Ä,- - Äjfc+i + 0 = log(«,- - a2 + 0 + Äe(2, *) 
i,j = 1,2, ...,* 

where |Ä,| < 77/n (1 < i < 6), 7 as in Lemma 2.3 and 
_ f     (AI+PQ0)T 7 27 

7?     maxi (ff2 _ (p + I)QQ)2 . a2 _ (p + 1)fto , (1 _ p)e ) 

Proof:    The proof requires simple calculus. 

3    Rates of Convergences 

Suppose that the assumptions made in Lemma 2.3 
are satisfied. Using the expansion of Lemma 2.4, we 
may rewrite 

p 

t=i 

The following simple bound for ß(n, *) can be obtained 
by the estimates of Lemma 2.4 and (3). 

\ß(n,k)\ < 2p2[r,+ |log(Ai + pa0)\ V |log(<r2 -pa0)\+ 

I log(Ai - Xp + 2pa0 + 01 V I log((l - p)£ - 2T/W)|] 
def r 
= At. 

For the first type of estimates define L(k) in (1) by 

L(k) = Äae(0 + Pac (6) 

where Pac = |*(2p - * - 1) log n - T,pi=P-k+i log r(i). 
With N given in Lemma 2.3 and n > JV, we have 

the following theorem. 
Theorem 3.1: Assume that p£ > Ai - a2 and as- 

sume also that the following conditions are satisfied: 

(a) 0 < a < a0 < min{<72/(2p), (p£ -Xi+ <r2)/(4p)}; 

(b) min{z/(* + l,p) - i/(*,p))C„}  >  2np3a2/<x4 + 
p 

2inax{Ä4} + 5^1Ogr(0; 
>=i 

(c) mjn{At} > 4p2a/o-2+pV/or4+Kp-l,p)C„/n+ 

p2 log n/n + 2max{Ajfe}/n. 
k 

Then 

P(9n + l\Hg) < EEPdsü - °n\ > «)• 

Proof: Suppose that max;j |<r,j — Sjj\ < a. By the 
assumptions, the results of Lemma 2.3 and 2.4 hold. 
By the definition of I(k,Cn), we have 

I(k,Cn)-I(q,Cn) = ±(k-q)[2p-(q + k)-l]logn 

[Lx(k) + u(k,p)Cn - Lx{q) - u{q,p)Cn] + ß(n, k) 

~ß(n,q)+     E     loSr(0-     E     loSrW- 
»=P-?+l i=p-k+l 

Hence, for * > q it follows from lemma 2.1 and the 
assumption (b) that 

/(*, C„) - I(q, Cn) > {u{q + l,p) - v(q,p))Cn    (7) 
P 

- 2np3a2/a4 - 2max{Ajt} - ElogT(i) > 0. 
t=i 

For * < q, it follows from lemma 2.1 and assumption 
(c) that 

/(*, Cn) - I(q, Cn) > n(Ak - 4p2a/a2 - p3a2/a*) 

-u{p- l,p))C„ -2max{Ät}-p2logn > 0. (8) 

In view of (7) and (8), we have q = q. Therefore, 

P(qn * q\Hq) < E E P^i - °H\ > «)• 

If v(k,p) is a strictly increasing function of * and 

a = a(n) | 0, ► 0,  —=■ 
n naz (9) 

then for />£ > Ai — a2 we have the following theorem. 
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Theorem 3.2: If v{k,p), a(n) and C„ satisfy (9), 
then the probability of wrong detection using q„ satis- 

fies the following inequality: 

P(qn # q\Hq) < E E P(N " ff'i I > «) 
«'     J 

Proof: It is obvious that the assumptions made in 
Theorem 3.1 hold. Then the result follows from Theo- 

rem 3.1. 

For f > 0 the second type of estimates is defined by 

letting L(k) in (1) to be 

L2(k) = (n - p + 1) E log 5,- + (p - *)(n - A) log(cr2) 
i=l 

k k 

+    £    log(6i-6j+0 + £(P-k)lo^i--*2-K) 
i, j = l i=l 

» < i 

P P 

-       J2      log(«i-«5j+0 = Li(k) + n^log5i 
i,j = it + i i=l 

i < i 

+ ß(n,k)-       J2      l°S(*i-*J+0 (10) 

chosen so that C„, a(n) and v(k,p) satisfy (9). Then 
for any s > K, we have 

P(gn # «|ff,) = 0(n/(rm)K) + 0((na2)"') 

as n —► oo. 
Proof: Indentical to that of Theorem 3.2 [1]. 

Similarly the following results as in [1] are true: 
Corolary 3.1: In Theorem 3.4, if we take a = 

a(n) I 0 as a slowly varying function and Cn = na, 

then 
P{qntq\Hq) = 0{n1-*(a)-') 

as n —> oo. 
Theorem 3.5: Suppose that xi,x2,--- are i.i.d. 

with E(xi) = 0, £(xixj) = S and #{exp(/c|xi |2} < oo 
for some K > 0. Then 

PiAn # ?|-ff}) < cexp(-6na2) 

as n —» oo for some constant 6 > 0 and c > 0. 
Corollary 3.2: If a(n) j 0 is a slowly varying func- 

tion, Cn — a(n)n and the conditions of Theorem 3.5 
are satisfied, for any e > 0 

P(qn # q\Hq) < cexpi-bn1-'). 

i < 3 

ß(n,k) = f^(p - k) log(*,- - cr2 + £) + (1 - p) E log *,• 

+ 2      £      log(«i - Si + 0 - k(p - k) log(«72) 
i, y = k +1 

• < i 

For the third type of estimates, use 

I(k,Cn) = L2(k) + pac + u(k,p)Cn (11) 

with L2(k) as in (10). Let qn be the estimate obtained 
by either the second and third type, then the following 
theorem with proof similar to that of Theorem 3.2 is 

true. 
Theorem 3.3: If v(k,p), a(n) and C„ satisfy (9), 

then the probability of wrong detection using qn satis- 
fies the following inequality: 

P(qn # q\Hq) < E E Pds'i " ff« I ^ a) 
*    i 

In the following, qn will denote an estimate given by 
any of the three types mentioned. 
Theorem 3.4:    Suppose that xi,x2,-- are i.i.d.   vec- 
tors of order p x 1 such that E(*i) = 0, J57(xixi) = £ 
and E\XI\

2K
 < oo for some K > 1. Also let C„ in (1) be 
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Abstract 

We address the influence of point spectrum on the 
large sample statistics of the AR(n) spectral estimator 
for fixed n as well as for the case where n approaches 
infinity. For fixed n we obtain the distribution of this 
estimator. We also obtain approximate expressions for 
its mean and variance. These expressions involve the 
nth order Capon spectrum. Using recently discovered 
convergence properties of this spectrum as n 
approaches infinity, we show that these expressions 
depend on the ratio of the AR(n) to the nth order 
Capon spectrum. This ratio gives insight into the 
statistical influence of point spectrum on the AR(n) 
spectral estimator, based on the well known difference 
in the resolving properties of these two spectra. 
Simulations are included to support the theoretical 
results. Finally, it is hoped that our attempt to bring 
to bear a number of recently published results in this 
area will also contribute to a better understanding of 
it, and possibly stimulate further investigations. 

Introduction 

This work addresses the statistics of spectral 
estimators associated with a zero mean wide sense 
stationary (wss) random process having mixed 
spectrum. From the Wold decomposition, any wss 
random process, Y^ , has a decomposition of the form 

*t   = Xt   +   U t (la) 

where X^ has an absolutely continuous spectral 
density, and where Ut is is independent of Y^ and is 
perfectly predictable given { U8 ; s <t }. In this 
work we restrict Ut to be a harmonic process; that is, 

Ut=H Aksin(ukt + 0k) (lb) 
k 

where   the   {Oj.}   are   independent,   and   identically 
distributed (iid) uniformly over the interval [ — *,*•], 
and    where    {Ak,u>k}    are    unknown    parameters. 
Consequently, Yf has an autocorrelation of the form 

ry(T)=   rx(T) + rti(r) 

=   rx(r)   + 

where   {rr(r)}°° 

£-^eo.(Wjfcr) (2) 

xv/i — cc *s absolutely summable. The 
statistics of spectral estimators related to the regular 
process, Xp have been studied extensively over the 
years. Only relatively recently, however, have those of 
Yt received much attention. There are a number of 
reasons for this recent interest. One is no doubt due to 
the increasing importance of such processes in the 
engineering and physical sciences. An example is the 
spectral analysis of signals associated with periodic 
systems such as rotating machinery in order to 
identify cyclostationary behavior [1]. Complications 
introduced by the presence of a harmonic process in 
these areas are illustrated in [1]. In fact, given the 
adverse influence of such a process on practically all 
methodologies related to not only spectral estimation, 
but also to system identification and feedback control, 
one might wonder why processes such as (1) have 
been of such limited interest. At least a partial answer 
to this question relates to the mathematical 
difficulties imposed by (lb). Afterall, a key 
assumption found in all these areas is that the 
autocorrelation function decay sufficiently fast; 
whereas (2) does not decay at all. 

The goal of this paper is to characterize the large 
sample statistical properties of a particular class of 
spectral density estimators, namely autoregressive 
(AR) estimators. We consider both a fixed order, n, 
model, as well as when n approaches infinity. Much of 
this characterization will be obtained by piecing 
together recent results of other researchers, and in 
particular, those published in statistical journals. A 
significant portion will also follow directly from the 
convergence results of [2] related to the family of 
Capon spectral estimators (see [1] for more recent 
related references). Consequently, while we believe 
that this work contains valuable original 
contributions, it is also our intent to contribute by 
combining a collection of recent developments along 
these lines into a self-contained work. To begin, we 
define the spectral density and power spectrum for the 
process (1): 
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Sy(")=   Ery(r)e — lUT 

— OO 

= SX(U)   +    -£ S(w±uk) , 

We remark in the mixed spectrum setting it follows 
from (3) that the spectral density is not well-defined, 
in the sense that it becomes unbounded as the number 
of available autocorrelation lags approaches infinity. 
Moreover, the power spectrum contains no 
information about the spectral density. Hence, it is 
natural to expect that the AR(n) spectral estimator 
will be poorly behaved near the point spectrum 
frequencies, and furthermore, that in the limit (as 
n-K») it will not exist at these frequencies. To arrive 
rigorously at these conjectures, consider the AR(n) 
prediction model 

y<=-EaJbJ't-Jk = yr° w 

where a& [a1,...,a-]*r, and define the prediction 
error a2 = E(yt-ytf. For clarity of understanding 
and notation, we present the minimum variance and 
least squares equations. 

Minimum Variance Approximation of a and <T 

amv=-R-lr   ;  c2
mv = ry(0) + a'r (5) 

where       R = {ry(i - j) = r,- _ ;-}" j - \ 

and   r^[r (1) ry(n)]tr.   In   the  statistical  sense 
used throughout this paper a™,, is not an estimator, 
since it is not random. For this reason, amv is termed 
the minimum variance approximant of a. 

Least Squares Estimation of a and <T 

THEOREM  1.  (Li et al [3]) . Let f = [fQ, ...,rn] r 

whose elements are given by (7). Then 

(3a) N-1'2  (f-r)  ^   Jf(0,E) • 

The elements of £ are complex expressions, and so are 
-«•"" omitted here for brevity. This recent (1994) result is 

an extension of the 1990 result of [4] for white Xt to 
the colored case. It leads immediately to our first 

(3b)        result. 

THEOREM 2. If for any sufficiently large N we have 
R > c > 0 almost surely, then 

2  ~   if{amv,<x2mvR-lIN)   and 

a2 ~ X(<rmv ,<T2
mv{r0-Cmv)lN) • 

The proof of this theorem is similar to that in [5] 
(p.352) for the case where Ut is absent. Our proof uses 
similar types of convergence results for random 
variables as those used in [5], but combined with a 
continuity property of means and variances, along 
with Theorem 1 to obtain normality. In [5] normality 
was obtained using a martingale difference argument 
which does not apply here. This theorem also extends 
the result of [6], which is essentially the same as that 
of [5], to the mixed spectrum setting. 

To continue on to the statistics of the AR(n) spectral 
estimator, define z — Z(u) = [e ,,..., ij   , 

p(ei") = z*[l .a" ] <rand pmv(eiu) i z* [l,amw f. 

Here, * denotes the conjugate transpose. Then 
2 

We will also require the Capon nth order spectrum 

Scap(u» ^ n/z*R~lz. (8) 

Our second result is then the following theorem. 

a= -R -1^ f2 = rJ0) + Ht? (6)        THEOREM 3. For large N we have 

N-j 

r, = (l/A0£ VtVt + j ' 
3 1 

Main Results 

(7) 

We now summarize the key results in this work. 

The correlation coefficient, 7, between p(etu) and d 
is given by 

Ä     Pm,,(^)U") 
7   =   n(r0-.L)1/2" 
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It follows from theorems 2 and 3 that for large JV, the 
AR(n) spectral estimator has a distribution which is 
the ratio of the normal random variable and a non- 
central chi-squared random variable with two degrees 
of freedom. Moreover, for large N these random 
variables are approximately independent. To gain 
further insight into this estimator we use a first order 
Taylor expansion to obtain approximate expressions 
for its mean and variance. This results in 

frequencies. In fact, it required two theorems in [4] to 
rigorously prove that the AR(n) spectral approximant 
becomes unbounded at these frequencies as n-»oo. 
This behavior, however, is a trivial consequence of the 
convergence results in [2]. 

Example. For the process (la) let X^ be AR(2) with 
a = [1.13 , -0.64]', and let Ut be a single sinusoid 
with A = 1 and u = x/4. It follows that the AR(2) 
mv approximant  values are  amt;=[-.94  ,  .57]' and 

E[S(u)] S Smv(u>) | ^—r-yj     ; (9a)       aL
mv= 1.61. For N= 100 samples per record, theorem 2 

S   I       "mtA _/_ viplrls tlift nredir.ted annravirnate distributions 

and 
1 + N Scap{w) 

yields the predicted approximate distributions 

VaAS{u)] =   An°™{r0-*mv)Smv{U) 
1 N2S„JU) 

(9b) 
Jcapy 

It must be emphasized that all of the above results 
are for a specified model order, n. Explicit dependence 
on n of any quantity has been omitted for notational 
convenience only. Expressions (9) offer some 
interesting insight. In particular, the nth order Capon 
spectrum plays a role in both expressions. It is well 
known that this spectrum can also be expressed as 

W^ME^«)]"1/»} \b = 0 

-1 (10) 

where S^(w) is the Hh order minimum variance 
spectral approximant. Since (10) involves a sort of 
averaging of higher resolution AR spectra, it is also 
well known that its resolution is notably less than the 
AR(n) spectral approximant [7]. Hence, the mean (9a) 
is liable to experience significant bias in the region of 
strong narrowband spectral components, and in 
particular, near point spectrum frequencies. The 
variance (9b) will also be influenced in these regions, 
possibly in an oscillatory manner, due to the spectral 
oscillations in the AR(n) spectrum induced by the 
point spectrum [7]. 

Next, we consider the properties of .^"'(u;) as 
n-*oo. From the fact that the AR(n) spectral 
approximant converges to Sx(u) at all point of 
continuity, it follows that the nth order Capon 
spectral approximant also converges to the same. 
Thus, at frequencies sufficiently removed from the 
point spectrum the above theorem, along with (9) and 
(10), give the large n statistical description of the 
AR(n) spectral estimator. They also show that the 
condition n/N-*0 is sufficient for reasonable behavior 
for large order and data lengths. The difficulty in 
identifying this large n behavior in the mixed 
spectrum setting is greatest near the point spectrum 

A- ~ wer --94i  r -007 --004 a ~ -Ml .R7J' L.nn4   .007 004    .007 ]);?2 ■Jf (1.61, .034). 

Using 1000 simulations of (la) we obtained estimates 

a ~ m j?], [Jos Jo? »•■?2 ~ *(1M> -050)- 
The approximate normality of a   and a are reflected 
in Figure 1 and Figure 2, respectively. 
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Figure 1. Histogram for <r . 

The accuracy of the mean approximation (9a) is 
shown against the sample mean in Figure 3. A 
comparison of (9b) and the sample variance, however, 
revealed major difference at all but very high 
frequencies far removed from the sinusoid. The sample 
variance was two orders of magnitude higher than 
(9b) in the region of the tone. At this stage it is not 
known whether this difference is due to the sample 
size, N, to the Taylor series approximation, or to 
some combination of the two. 
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further investigation for this and other ARMA types 
of noise processes supported the rate dependence of 
the variance on N, but actual variances were 
dramatically different from predicted ones, except in 
the most simple casees where the noise was essentially 
white. 

/ "\  Sample Mean 
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Figure 3. Comparison of (9a) and simulation estimate. 
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Figure 2. Histograms for  a^top) and ^(bottom). 

Conclusions 

The above results provide a partial description of the 
statistical behavior of AR spectral estimators for 
random processes having mixed spectrum. The 
example illustrated the claims of mv parameter 
estimator normality for record sizes as small as 
#=100 samples. Furthermore, the approximate 
expression for the mean of the AR spectrum compared 
well against the sample mean. While not shown here, 
investigation of the normal distribution claim in 
Theorem 3 also proved reasonable for the above 
example. But The variance expressions in both (9b) 
and in Theorem 3 were nowhere near to the sample 
variances at any but the very highest frequencies. A 
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Abstract 

This paper represents a new spectral estimation method 
for the time series with missed observations. An Auto- 
Regressive modeling approach is adopted. The AR param- 
eters are estimated by optimizing a weighted mean-square 
error criterion. The method can be used in real-time, adap- 
tive contexts where the AR parameters are time varying. In 
general, both regularly and randomly missed observations 
can be handled by this method. The spectral estimates are 
compared to those obtainedby well known AR parameter es- 
timators used in the cases where none of the signal samples 
is missed. The performance of the method is illustrated by 
some numerical examples. 

1. Introduction 

In many practical situations, periodically sampled sig- 
nals with missed observations may be encountered. This 
is caused by a variety of reasons such as accidentally loss 
of some portions of data, failure of the measurement equip- 
ment, etc. In some applications where data compression is 
needed, one may wish to reduce the whole number of data 
samples. This may result in a periodically sampled signal 
with "missed" observations. 
Some important recent works in this field are [1][2][3]. 
Jones [1] has developed a maximum likelihood algorithm 
for ARMA time series with missed observations. He uses 
state-space representation and Kaiman filtering to compute 
the likelihood function of the ARMA parameters and this 
function is then maximized using some non linear optimiza- 
tion procedure. Rozen and Porat [2] have developed an 
algorithm for the problem of spectral estimation through 
the ARMA modeling of stationary processes with missing 
observations. This algorithm is asymptotically optimal in 
the sense of achieving the smallest error-variance when the 
number of data approaches infinity. All of the mentioned 
methods handle only stationary time series and cannot be 

used in an adaptive context where the AR parameters are 
time varying. 
In this paper, we present a new method of AR spectral esti- 
mation when the data are not consecutive, but some of the 
observations are missed. In general, both regularly and ran- 
domly missed observations can be handled by this method 
[4]. The method is based on non-linear optimization of a 
weighted squared error criterion. All the formulae obtained 
are recursive, and real-time spectral estimation of non sta- 
tionary signals can also be handled [5]. 

2. Description of the method 

The basic idea of this method is very similar to that of 
the methods used in adaptive identification contexts (RLS, 
LMS,...). For the convenience and without loss of general- 
ity, in what follows, we suppose that the period of sampling 
is equal to 1. 
We suppose that {yn} is a discrete time zero-mean AR pro- 
cess defined as follows: 

yn = 0Ty„ + vn (1) 

where v„ is a zero-mean white process with variance a%, 
6 = [61,..., 0M] is the vector of the AR parameters and 
Vn = bn-i > • • •, VTI-M] is the vector of the last M signal 
samples, M being the order of the AR model. We suppose 
that the signal {yn } is subjected to random skipping or dele- 
tion of some samples. Let {tx,..., tn } be the set of instants 
where the signal samples are not missed. Our aim is to com- 
pute the vector 9 that minimizes the following cost function: 

1   n 1   n 

■yti) (2) 

where eti is the prediction error at instant U and yti is the 
estimate of yti. In order to compute the value of yt,, we use 
a well known result of the prediction theory that is recalled 
below. 
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The optimal Ar-step-ahead linear predictor    let {yn } be 
defined as in (1) and yn,..., yn-M be known. The best lin- 
ear mean square estimation of yn+k is obtained by the fol- 
lowing recursion: 

M 

Vn+k - ^2 QiUn+k-i (3) 

This means that at each instant U, in order to obtain the value 
of yt,, one has to use the recursion (3) for n = U-1 and for 
k = 1,2,..., U - U-1. In addition, each missed sample %• 
where j < t,-_i, has to be replaced by its estimated value. 
The algorithm can be summarized as below : 

1. Computation of ytn at each instant tn, using the opti- 
mal linear predictor described above, 

2. Non linear optimization of the cost function Jt„, 

3. Prediction of missed samples between instants tn and 
tn+i using the last estimated AR parameters. 

At step 2, one has to compute the gradient of the cost func- 

tion —^L. This is subsequently used in some non linear 

optimization procedure to minimize Jtn. Formal descrip- 
tion of the algorithm is given in [6]. Details of the gradient 
computation can be found in [4] [7] and is not given here but 
what is important is that the gradient can be updated recur- 
sively at each instant i„. In addition, the use of an iterative 
optimisation procedure (descent algorithms such as : gradi- 
ent or variable-metric methods) together with an exponen- 
tial weighting factor such as ut t = A'» ~ * % afford the possi- 
bility of operating in non- stationary environments. 

3. Some discussions about the cost function 

Eq. 3 shows that ytn is a polynomial function of 6 and 
hence, Jtn is not a quadratic cost function as it may be su- 
perficially expected, it is rather a polynomial whose degree 
at instant tn depends on the number of missed observations 
until tn. This may cause the problem of convergence to a 
local minimum and not necessarily to the global one. One 
solution may be to repeat the algorithm with several initial 
values to increase the chance of finding the global minimum. 
However, the cost function Jtn has some interesting proper- 
ties, at least in some special cases. For example, the follow- 
ing proposition has been proved [4]. 

Proposition Suppose that {yn } is an arbitrary AR( 1) pro- 
cess with parameter 9*. Assume that the random pattern of 
misses is a Bernoulli-type one in which each measurement 
has a fixed probability q = 1 - p of being missed and that 

the misses are independent. If we define the cost function as 
below : 

Jtn = E (wt„e?J = E (wt.dft. - Vtnf)        (4) 

where ytn is obtained by the method described above and if 
we setyi = y\, then Jtn is a convex polynomial of degree 
n — 1 with the minimum at 9 = 9*. 

The proposition describes the statistical behavior of 
the present method in the case of AR(1) processes. In 
several examples tested in the case of AR(2) processes, 
only one minimum has been observed for the cost function. 
The extension of the proposition to AR(p) processes has not 
yet been done. However, the simulations, partly discussed 
in the following section, give satisfying results in the cases 
where the AR process has a larger order. 

4. Simulations 

In all the examples, we consider the random Bernoulli 
pattern of misses where it is supposed that each sample has 
the probability q = 1 - p of being missed and the misses 
are independent. 

Example 1 In this example we illustrate the performance 
of the proposed algoritm in spectral reconstruction. In each 
case, and as a reference for comparison, the spectral estimate 
obtained by a classical AR estimator in the case where none 
of the samples is missed, is also given. The approach used in 
this case is the forward-backward approach where the sum 
of least-squares criterion for a forwad model and the analo- 
gous criterion for a time-reversed model is minimised [8]. 

The first test spectrum is a two peak one. It is supposed 
that the two peaks represent the sum of two zero-mean inde- 
pendent signals. Each signal is obtained by filtering white 
noise by a first order Butterworth filter. The experiment is 
repeated 100 times, each time using an independent realisa- 
tion of the test signal. The average spectral estimate is ob- 
tained by computing the average of the estimates over these 
100 independent trials of the experiment. The normalised 
frequencies and bandwidths of the peaks are : 

/i = 0.3,    A/i = 0.005   h = 0.35,    A/2 = 0.005 
(5) 

The probability of missing each sample is g = 0.4. 
There is approximately 15 dB of difference between the 
amplitudes of the sharp peaks. Fig.1 shows plots of the 
average estimated spectra for both cases : with and without 
missed samples. We note the correct reconstruction of more 
informative portions of the spectrum. 
The second test spectrum is that of the vowel "i" (in 
French!)   spoken by a male speaker.   The probability of 
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Figure 1. Spectral reconstruction.   Original 
PSD:  , estimated PSD: q = 0% : -. - 
.-,q= 40% :...., (M= 20). 

Figure 3. The frequency variation of the test 
signal in example 2. 
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Figure 2. Spectral reconstruction. Estimated 
PSD : q = 0% : , q = 40% : , (M = 20). 

0 TIME 

Figure 4. Time-frequency evolution of the 
spectral estimate for the test signal in exam- 
ple 2. A = 0.99, q = 40%. 

missing each sample is q = 0.4. The estimated spectra are        considerably the tracking capacity of the algorithm. 
shown in Fig.2. 
Example 2 In this example the performance of the proposed 
algorithm in the non-stationary environments is studied. 
In order to test the parameter tracking capacity of the 
method, we have considered a sinusoid that is subjected to 
an abrupt change in frequency as demonstrated in Fig.3. 
The period of sampling is T = 1. The AR model order is 
M = 2. Fig.4 shows the time-frequency evolution of the 
spectral estimates. We note the correct estimation of the 
frequencies/x = 0.3 and f2 = 0.1. The evolution of the 
AR parameters as a function of time is shown in Fig.5. We 
note that the choice of a forgetting factor A = 0.99 increases 

Eample 3 The convergence behavior of the mean 
squared prediction error for different values of q is illus- 
trated here. The test signal is an AR(2) pocess with the 
parameters 0T = [1 - 0.3 0.5]. Fig.6 shows the average 
results obtained from 100 independent realisations of the 
AR(2) process. It is important to note that the speed of 
convergence is the same for different values of q. Clearly, 
the residulal error is greater for larger values of q. This is 
obviously because of the accumulation of the errors due to 
missed sample estimations. 
From the previous and numerous other examples,  the 
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Figure 5. AR estimation for the test signal in 
examples A = 0.99,q = 0% : , A = 0.99,q = 
40%: ,A= l,q = 0%:-.-. 

200      400      600 1000 1200 1400 1600 1800 2000 
TIME 

Figure 6. Convergence behavior of the mean 
squared error. (M - 1),q = 0% :  ,q - 
20% :-.-., q = 30%  : q = 40% :  

following points are noted: 

• The performance of the AR estimators in both of the 
cases (with and without missed samples) are similar, 
particularly in the more informative zones of the spec- 
trum. 

• In the case where some of the samples are lost, a resid- 
ual noise level is observed in the spectral estimates. 
This becomes more pronounced as the number of lost 
samples increases. The level is situated at -40 dB for 
the signals in the example 1. The reason is obviously 
the lack of information from the signal. 

• A higher order AR estimator is needed to resolve 
neighbouring spectral peaks with the same fidelity as 
in single-peak cases. For peaks with greater amplitude 
ratios, higher model orders should be used. 

• In the case of spectra with larger bandwidths, one must 
choose larger model orders in order to have spectral es- 
timates with the same fidelity as in the case of sharp 
peak spectra. This is because the AR models are less 
adapted to these kinds of spectra than those with sharp 
peaks. 

5. Conclusion 

We presented a parametric spectral estimation technique 
for signals with incomplete data based on AR modeling. 
The method is adaptive and can be applied to non stationary 
cases. Both regularly and randomly missed data can be han- 
dled. Simulation results show the high performance of this 
method even in the cases where a large number of samples 
is lost. 
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Abstract 

An optimum Block Modified Covariance Algorithm 
is developed for computing time-varying autoregressive 
(AR) parameters. The method presented here differs 
from those presented previously [3] in that it uses op- 
timally selected time-varying convergence factors such 
that the block mean square error is minimized from one 
iteration to the next. In particular, the algorithm devel- 
oped here, called Block Modified Covariance Algorithm 
with individual adaptation of parameters (BMCAI), 
uses individual time-varying convergence factors com- 
puted using modified covariance matrix approximations 
along with the Gauss-Seidel method. Even though the 
BMCAI is gradient based it retains the attractive spec- 
tral matching properties of fixed-window least squares 
modified covariance algorithms while at the same time 
providing capabilities for time-varying spectral estima- 
tion. 

1. Introduction 

This paper is concerned with the development of an 
efficient algorithm for least-squares forward-backward 
prediction (FBP). Unconstrained FBP requires ma- 
trix inversion and most of the originally proposed al- 
gorithms compute AR parameters based on a fixed- 
window approach. Marple developed a fast Cholesky 
algorithm (FCA) which requires 0(p2) operations and 
more recently a fast QR algorithm (FQRA) [1] which 
was shown to have improved numerical behavior rela- 
tive to the FC A. The fast inversion algorithms [1] are 
order recursive and operate on a fixed N-point record, 
i.e., they are non-adaptive. A family of fixed-order 
sliding-window block gradient algorithms for FBP, 
namely the block modified covariance algorithms (BM- 
CAs), were proposed recently by Spanias [3].  In par- 

ticular, the BMCA worked reasonably well in a series 
of "benchmark" simulations, however its performance 
deteriorated considerably in scenario requiring estima- 
tion of the spectral content of multiple closely-spaced 
sinusoids. This is mainly because the BMCA uses a 
single convergence factor (or step size ßß) which does 
not allow for fast adaptation in cases where the mod- 
ified covariance matrix has large eigenvalue disparity. 
In this paper, we concentrate on the development of 
multiple convergence factors for adapting the AR pa- 
rameters. The use of multiple convergence factors in 
adaptive FBP was motivated by work done in adaptive 
FIR system identification by Mikhael et al [2]. The dif- 
ference between the algorithms presented in this paper 
and those presented by Mikhael are: a) the algorithms 
presented here are intended for modified covariance lin- 
ear prediction in which the structure of the equations 
to be solved is distinctly different than that encoun- 
tered in FIR system identification, b) the algorithms 
presented are studied in the context of spectral esti- 
mation applications and deal with the idiosyncrasies of 
some of complex spectral estimation examples such as 
multiple closely spaced sinusoids, and c) the proposed 
methods go a step beyond Mikhael's work in the sense 
that the computation of the individual pB is done ef- 
ficiently using fast and stable Gauss-Seidel numerical 
methods tailored specifically to deal with the structure 
of the modified covariance equations. The latter is the 
most important contribution of the paper in that it 
provides opportunities for reducing the complexity of 
the algorithms by using approximates of the modified 
covariance matrix while maintaining the attractive per- 
formance characteristics of least squares MC spectral 
estimators. 

The rest of the paper is organized as follows. Section 
2 presents the BMCA and Section 3 describes an algo- 
rithm that uses individual step sizes for adapting the 
AR parameters (BMCAI). An efficient Gauss-Seidel it- 
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erative procedure for computing the optimum conver- 
gence factors is also presented in this section. Section 
4, presents simulations using the BMCAI and Section 
5 gives the conclusions. 

2. The Block MC Algorithm 

In this section, a general technique for formulating 
the BMCAI is presented. We begin by defining the 
following parameters: let i be the block index, p the 
order of the AR model, N the number of samples for 
prediction, 2L the length of the processed block, n the 
time index, a*(i) the fc-th adjustable parameter in the 
i-th block (k = l,2,3,...,p), x(n) the input signal for 
linear prediction (adaptive filter), ee(i) the ^-th error 
signal in the i-th block {(. = 1,2, ...,2L), and S the 
number of samples per block shift. 

At the i-th iteration, the objective is to minimize 
the cost function J(i + 1) = \eT

}b{i + \)efb{i + \) where 
the 2L x 1 error vector efb(i) is given by 

efbii)    =    [ef(iS + p + l)...ef(iS + N) 

eb(iS+p + l)...eb(iS + N)f      (1) 

and e/(n) and eb(n) are the forward and backward pre- 
diction errors 

e/(n)    =    x(n)-^2ak(i)x(n-k), (2) 

p 

eb(n)    -    x{n-p)-^ak{i)x{n-p + k).   (3) 
fc=i 

Equations (1), (2) and (3) can be written block-wise 
as 

efb(i) - x{i) - Xfb(i)a(i) 

where the 2L x 1 vector x(i) is given by 

(4) 

x(i)    =    [xf(iS + p+l) xf(iS + N) 

xb{iS + l) xb(iS + N-p)]T      (5) 

and the 2Lxp matrix Xfb(i) and pxl vector a{i) are 
defined by 

Xfb(i) = 

x(iS+p) 
x(iS+p+l) 

x(iS + N-1) 
x{iS + 2) 
x(iS + 3) 

x{iS + N - p + 1) 

a(i) = [ai(i),a2(i),...,ap(i)]T. 

x(iS +1) 
x(iS + 2) 

x(iS + N -p) 
x(iS + p+l) 
x{iS + p + 2) 

x(iS + N) 

The BMCA uses the following update formula a(i + 
1) = a(i) - fJ.Vfb(i), with Vfb(i) = -£xjb(i)efb(i). 
The condition for convergence of the algorithm is 0 < 
ß < 2L/Xmax, where Amax is the largest eigenvalue of 
E{XT

fb(i)X}bii)). 

3. The BMCAI 

In this section, we propose the use of individual con- 
vergence factors that are optimally chosen to adapt in- 
dividual filter parameters. The step sizes are updated 
at each block iteration. 

3.1. Problem formulation 

We now consider the relation 

a{i + 1) = a{i) - M(i)Vfb(i) (7) 

to update the parameters, where M(i) is a p x p diag- 
onal matrix containing the p convergence factors, i.e., 

M(i) = 
M«) 

(8) 
HP(i) _ 

As in all block gradient algorithms, the block gradient 
vector Vfb(i) is replaced by an estimated block gradi- 
ent vector which is given by 

^»=i5Sr-^(i)e"(i)-   (9) 

From (7), (8), (9) one obtains the general form of the 
parameter updating formula in matrix vector form as: 

a(i + 1) = a(i) + -M{i)XT
}b{i)efb{i). (10) 

In the parameter update (10), there are p individual 
time-varying convergence factors, /ifc(«) (& = 1)2, •••,£>)• 
These factors are chosen at each iteration i so as to min- 
imize the functional J(i + 1). To this end, the forward 
and backward errors are expanded using the truncated 
Taylor series 

efb(i + l)    =   eM0 + ^|M0 

=    efb(i) - Xfb(i)(a{i + 1) - a(i)) 

=    efb(i) - ±Xfb{i)M(i)XT
fb(i)efb{i) 

=   efb(i)-Xfb(i)M(i)q(i) (11) 

with q(i) = ^X^b(i)efb{i) = -Wfb(i). Here the par- 

tial derivative " 

(6)       to -Xfb(i). 
da(i) 

is obtained from (4) and reduces 
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The next step is to choose M(i) such that J(i + 1) 
is minimized. This is done by setting 

dJ(i + 1) 
0 (12) 

for k = 1, ...,p. This leads to the system of equations 

^«^^0-^(0^(0  (13) 

for k = 1, ...,p, or 

R(i)M(i)q(i) = q(i). (14) 

Equivalently, 

M(i)q(i) = R-1(i)q(i), (15) 

Therefore the updating formula (7) becomes 

a(i +1) = a(i) + M{i)q{i) = a(i) + Ä_1(i)g(i). (16) 

The last equation is the weight update equation for the 
BMCAI with individual adaptation of parameters. Its 
main drawback is the requirement of computing the 
solution of a system of equations of order p. The asso- 
ciated cost can become intolerable especially for high- 
order prediction. The following section gives an ap- 
proach which can be used to approximate R~1(i)q(i) 
in an efficient manner. 

3.2. Implementation via a Gauss-Seidel It- 
eration 

The matrix inversion for computing the vector 
■R-1 (09(0 in (16) can be avoided altogether by solving 
the system 

R(i)z{i) = q(i) (17) 

for z(i) via an iterative method (which only requires 
matrix-vector products), then updating 

a(i + 1) = a(i) + z(i). (18) 

More precisely, z(i) is replaced by z^k\i) obtained by 
applying k iterations 

*<*>(i) = zl"-»(j) + Q~\i) (q(i) - Ri^-^ii)) 

(19) 
starting with a given vector z^°>{i). Here Q(i) is a 
matrix approximating R(i). Since the system (17) is 
symmetric and generally positive definite, for efficiency 
we will only consider Gauss-Seidel iterations, i.e., 

Algorithm Multiplies Additions 
BMCA 4Lp + p ALp 
BMCAI p(AN - 3p/2 + 3/2) p{AN - 3p/2 - 1/2) + 1 

Table 1. Computational Complexity of BMCA 
algorithms L = N -p. 

where D(i) and L(i) are the diagonal and (strictly) 
lower triangular parts of R{i), respectively. Note that 
the matrix R(i) is not always diagonally dominant (at 
least for the input data used), which explains why the 
Jacobi method (corresponding to Q(i) = D(i)) did 
not converge when applied to (17). In our experiments 
only 2 or 3 iterations were sufficient to obtain a good 
approximation of z{i) when starting with z^\i) = 0. 
For two iterations, this is equivalent to approximating 
z(i) by 

zW(i)    =    (JD(i)H-L(i))-1. 

(q(i) - LT(i)(D(i) + iWJ-^W) • (21) 

In order to reduce the computational complexity of the 
algorithm the sum D{i) + L(i) can be directly updated 
without forming R(i +1), by considering the lower tri- 
angular part (including the diagonal) of the recursion 

R(i + 1) = fl(t) + VT{i + 1) W(* + 1) (22) 

i.e.. 

D(i + 1) + L{i + 1) = D{i) + L{i) + Y(i + 1)   (23) 

where Y (i + 1) is the lower triangular part of VT(i + 
l)W(i + 1). Note that with V(») and W(i) defined as 

V(i) = 

-xi(i) 
xL(i) 

-xL+1(i) 
x2L(i) 

and    W(i) = 

xi(i) 
xL{i) 

xL+i(i) 
X2L{I) 

Q(i) = D{i) + L(i), (20) 

(24) 
where xt(i) denotes the ^-th row of Xfb(i) (l = 
1,..., 2L = 2(N - p)), then Y(i + 1) can be computed 
efficiently. 

The computational complexity of the BMCAI rela- 
tive to that of the BMCA is given in Table 1 

4. Simulation Results 

The performance of the BMCAI is examined in 
terms of its ability to resolve closely-spaced sinusoids 
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embedded in noise. The PSD obtained using the BM- 
CAI compared favorably against that obtained with 
the BMC A. In Fig. 1, we show a simulation with 10 
closely-spaced spectral peaks of a process given by 

10 

x(n) = Y^Ai cos(w*n) + W(n) (25) 
t=i 

■L,      A n i ■ 2?r(10+1.5(t-l)) 
for n = 1,...,32, with A> = O.h, Ui = —i—jf—LL 

and Q = 10-4 (noise variance). Here fs = 64 is the 
sampling frequency (in Hertz) and W(n) a pseudo- 
random white-noise sequence. The prediction order 
was taken to be equal to 32. The plot in Figure 1 
are formed by overlapping the spectra obtained using 
the BMCAI with individual adaptation of parameters 
based on Gauss-Seidel iterations, for 10 independent 
realizations. Each realization is a 100-sample record of 
the above input time series. The relative phases change 
randomly from realization to realization. Note that 
although the sinusoids are very closely spaced in fre- 
quency and the available data records are quite short, 
the BMCAI tracks accurately the frequencies (Fig. la 
and b) without missing any spectral peak. The BMCA 
on the other hand (Fig. lc) fails to resolve one of the 
peaks. 

5. Conclusions 

In this paper, the formulation of a block modified co- 
variance algorithm with individual convergence factors 
(BMCAI) has been presented. The convergence fac- 
tors are optimally selected to minimize the combined 
forward-backward squared error in each block. The 
BMCAI computes the individual convergence factors 
using Gauss Seidel iterations. The BMCAI has been 
applied in AR spectral estimation and outperformed 
the existing BMCA. 
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Figure 1. (a) PSD estimation using the BM- 
CAI based on Gauss-Seidel iterations with 10 
realizations of 100-sample records, p=32 and 
SNR=42dB, (b) average of the ten simulations 
shown in (a), and (c) PSD using the BMCA 
with the same record and prediction order but 
with a fixed \i = 0.001. 
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Abstract 

Simultaneous registration and tracking has advan- 
tages over other track registration techniques because it 
is capable of responding to changes in registration er- 
rors. The track registration problem is presented for 
a network of two geographically distributed radars with 
unknown measurement biases that are fixed or slowly 
varying. The extended Kaiman filter that receives un- 
registered and cluttered plots from the radars and out- 
puts registered tracks, is used to carry out centralized 
simultaneous registration and tracking. A multisensor 
probablistic data association filter (PDAF) that com- 
bines locally gated plots from the radars is developed to 
enable the system operate under clutter. The algorithm 
satisfies a number of important registration design cri- 
teria. 

1    Introduction 

In multisensor tracking, registration is vital if er- 
rors due to site uncertainties, antenna orientation and 
improper caliberation of range and time are to be min- 
imized. Errors that are fixed but unknown can be han- 
dled as part of a multisensor initialization procedure 
and a suitable off-line approach is the generalized lin- 
ear least-squares estimation (GLSE) technique [1, pp. 
180], [2, pp. 68]. 

Unfortunately sensor measurement biases can vary 
over time due to technical maintenance or the effect of 
a changing wind direction on the mechanics of a radar 
antenna [3, pp. 38]. This requires on-line estimation 
of biases and tracks under clutter using an algorithm 
that satisfies some basic registration design criteria [1, 
pp. 173]. 

In this paper we consider a system of two 2-D 

radar detectors A and B located at (rjiXi) and (772, C2) 
respectively and responsible for a common cluttered 
surveillance region that is being traversed by a single 
non-maneuvering target T. We assume that the tar- 
get position at time index k with respect to a common 
Cartesian coordinate system is (xi(k),x2(k)). 

Furthermore each radar measures target position in 
polar coordinates with the origin of the measurement 
system being located at the radar antenna. We there- 
fore assume that the target as reported by sensors A 
and B are at TA(Pl(k), 6>i(fc)) and TB(p2(k),02(k)) re- 
spectively and that these measurements (or plots) in- 
clude fixed but unknown biases dpi and 69{ and mea- 
surement noise Vi(k) for i = 1,2. The measurement 
equations for the two radars therefore take on the form 

Pi(k) 
öi(k) 

= hi(x1(k),x2(k)) + 6pi 
60, 

+ Vi(k) (1) 

where v,(Ar), i = 1,2 are respectively zero-mean, mu- 
tually uncorrelated, white Gaussian noise processes of 
known covariance Ri(k). 

With the bias terms unknown it is not possible to 
determine the true target position. We must therefore 
attempt joint estimation of the target state and biases 
using target measurements from the two sensors. To 
do this, we append the radar biases to the target state 
to obtain the augmented vector 

x(k) = [xf(k)    bT(k)f (2) 

where xt(k) = [xi(k) x^k) x2(k) x2(k)]T is the tar- 

get state and b(k) = [SPl(k) 89x{k) 6p2(k) 692(k)f 
is the bias vector. The resulting process equation there- 
fore takes on the form 

0-8186-7576-4/96 $5.00 © 1996 IEEE 
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as(Jb +1): 
F   0 
0    I 

x(k) + 
Gtwt(k) 

u(k) (3) 

where I denotes an identity matrix of dimension 4 
and u(k) is a small process noise term. The equa- 
tion can be more compactly written as x(k + 1) = 
F(k)x(k)+G(k)w(k), where F(k) and G(k) are known, 
and w(k) is a zero-mean, white Gaussian noise process 
with covariance Q(k). For centralized tracking, the 
combined measurement equation takes on the form 

6i(k) 
Pi{k) 
92{k)l 

hi(x(k)) 
h2(x(k)) 

+ [0    I]x(k) + 
vi(k) 
V2(k) 

which may be rewritten as y(k) = h(x(k)) + 
v(k) where h(.) is known but in general nonlin- 
ear. The measurement noise covariance is R(k) = 
block - diag(.Ri(fc), R2(k)). The process and measure- 
ment equations in (3) and (4) are in the form required 
for approximate conditional mean estimation by (first 
order) extended Kaiman filtering. 

2    Cluttered Environment 

We now extend the method to the case of clut- 
tered (false) measurements arising from two separate 
sensors that are tracking a single target through a 
common surveillance region. Denote the set of mea- 
surements obtained by sensor i at time k by Yi(k) = 
{2/iM,2/2(fc)>->24;(*0}- In heavily cluttered scenar- 
ios, validation gates can be applied to reduce the num- 
ber of measurements for processing. The number of 
validated measurements per sensor per scan m'k is a 
random variable. In addition to the unknown sensor 
biases, there is uncertainty as to which measurement 
(if any) in Yi(k) corresponds to the target of interest. 

Our approach to the problem is similar to that pre- 
sented in [5] where a method was developed for the 
fusion of multiple measurements arising from a com- 
mon target. The basis of the approach is probablistic 
data association (PDA) [4, pp.164]. This is a subop- 
timal state estimation scheme which approximates the 
Gaussian mixture density of the target state by a single 
Gaussian PDF at each processing stage. 

The set of mutually exclusive association hypotheses 
for the procedure follows: 

• 0oo(&) " no measurement in Yi(Jr) or Y2(k) is a 
target measurement; 

ei0(k) - measurement yj(k) in Yx(k) is a target 
measurement, all other measurements in Yi(fc) and 
Y2(k) are clutter, i = 1,..., ml nk' 

0Oj(k) - measurement yj(k) in Y2(k) is a target 
measurement, all other measurements in Yi(k) and 

2. Y2(k) are clutter, j = 1,..., mk; 

• 0ij(k) - measurement y}(k) in Yi(fc) and yj{k) in 
Y2{k) are target measurements, all other measure- 
ments in Yi(fc) and Y2(k) are clutter, i = 1, ...,m{, 
j= l,...,m|. 

We therefore have a total of m\m\ + m{ + m\ + 1 
possible association hypotheses each of which has an 

(4) association probability defined for i = 0,1, ■■■,mk and 
j = 0,l,...,m|by 

/3y(fc) = Pr{öii(fc)|Y1*,y2*} (5) 

where Y,fc denotes the cumulative data set for sensor i. 
The joint registration and tracking process consists 

of propagating the approximate conditional mean of 
the combined target and sensor bias state x(k-l\k-l) 
and its covariance P(k - l\k - 1) to obtain x(k\k - 1) 
and P(k\k - 1) from which 

fc(*|*-1) 
Si(k) 

Hi(k)x(k\k - 

Hi(k)P(k\k 
1) 

- l)Hi(kf + Ri 

where Hi(k) is the Jacobian of h(.) evaluated at the 
state prediction x(k\k - 1) and S.-(fc) is the covariance 
of the innovation process of sensor i = 1,2. The valida- 
tion gate for each sensor is then defined by an ellipsoid 
centred on the predicted measurement according to 

Gi(k)dä{yi(k)enN :Ci<li}, (6) 

where 

$ = (y>(k) - y\k\k - l))TS-\k)(y){k) - y\k\k - 1)), 

j — l,...,m\, i = 1,2, and N is the dimension of 
y'-(jfc). The measurements are assumed Gaussian and so 
£» ~ X2(N) with N degrees of freedom. The threshold 
-fi is therefore choosen from a x2(N) probability dis- 
tribution according to Pr{£) < T»} > pGi wnere pGi 
is sufficiently high. Using the argument in [4, pp.157], 

and the condition E?=koY,7=o&i(k) = l> e<luation (5) 
takes on the form 

ßij(k) =  < 

Ceij,    for i = 1,.., ml, and j = 1,.., m 
Cbi 
CCJ ,     for i 
Ca,      for i 

for i = 1, ..,mi, and j 
0, and j 
0, and j 

1,.., 
0 

0 
(7) 
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where C is a normalizing constant and 

a 

bi 

(l-Pi?1PG1)A1(l-P02PG2)A2 

(2*)*\Si{k)\i 

c.    _    (1 - i3pii3Gi)AiPD2 .-iv](k)Ts;l(k^](k-\ 
3 (2*)*|S2(Jfe)|* 

_ PpiPp2 -lViJ(k)rS-*(k)Vij(k) 
(2*)»\S(k)\h 

The vector V((k) is the innovation at sensor 1 based 
on measurement i, vj(k) is the innovation at sensor 2 

based on measurement j and Vij(k) — \v\{k) vj(k)] 
is the innovation from the two sensors for i = \,...,m\, 
j = \,...,m\. Ppi (Pa) is the detection (gate) prob- 
ability of sensor i, A,- is the spatial density of clutter 
measurements for sensor i = 1,2, and the probability 
mass function of the number of clutter measurements 
is Poisson for each sensor. Having obtained ßij(k), it is 
now possible to evaluate the conditional state estimate 
and error covariance. 

2.1   Conditional Mean and Error Covariance 

The state update equation of the PDAF therefore 
takes on the form x(k\k) = x(k\k — 1) + W(k)v{k) 
where W(k) is the filter gain and v(k) is the combined 

innovation given by v(k) = £™fc
0 £jl*0/?«j(fc)i>y(fc) or 

u{k). 

The error covariance associated with the updated 
state estimate has the form 

P(k\k)    = ß00(k)P(k\k - 1) + a1(Jb)P1(jfc|Jb) 

+ a2(k)P2(k\k) + a12(k)P12(k\k) + P(k) 

Pi(k\k)   = P(k\k-l)-Wi(k)Si(k)WT(k), 

Pi2(k\k)   = P(k\k-l)-W(k)S(k)WT(k) 

where W{k) = [ Wx{k) W2{k)} and Wi(Jfe) is the gain 
corresponding to measurements from sensor i = 1,2. 
With probability ßoo(k), none of the measurements is 
correct and so the covariance P(k\k — 1) indicating no 
update, appears with this weighting. Similarly, with 

probability ai(k) = J2?=ißio(k), target measurement 
is available only to sensor 1 and so the updated covari- 
ance Pi(k\k) has this weighting.   Furthermore, with 

2 

probability a2(k) = Y^=i ßoj(k) target measurement 
is available only to sensor 2 and so the updated co- 
variance P2(k\k) has this weighting. Lastly with prob- 
ability au(k) = (1 - ßo0(k) - c*i(fc) - a2(k)) target 

measurement is available to both sensor 1 and 2 and 
so the updated covariance Pi2(k\k) appears with this 
weighting. The last term P is positive semidefinite [4, 
pp. 324], and represents the effect of the measurement 
origin uncertainty since we do not know which of the 
mkm2 + rnk + mfc validated combinations actually rep- 
resents the target measurement combination. The fac- 
tors ßij(k) and P(k) are measurement dependent and 
so P(k\k) is a stochastic Riccati equation. 

3    Numerical Results and Conclusions 

Figure 1 shows a network of radars A and B each 
with fixed but unknown range and azimuth biases. For 
a target originating from location (250,95), two dis- 
tinct plots each displaced from the true trajectory are 
obtained. Tracking was done under Gaussian measure- 
ment noise and a clutter density that generates between 
0 and 6 validated clutter samples per sensor during 
each stage. Figure 2 shows the composition of vali- 
dated measurements. Figures 3 and 4 show bias esti- 
mates and their variances. 

The registration and tracking algorithm is robust 
under clutter condition once track initiation has been 
properly done. It can track fixed or slowly varying 
registration errors under clutter conditions and is based 
on a sound mathematical foundation. Furthermore, 
it provides quality estimates for the solution set and 
can be adapted to cater for a wide range of system 
configurations. 
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Figure 1. Trajectory estimate under clutter 
With PDi = 0.90, Ri = diag(4 x 10-2,4 x 10~4), 
PGi - 0.989 and A, = 0.0002, * = 1,2. 
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Figure 3. Estimates of radar biases during the 
tracking process. 
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Figure 2. Variation of validated clutter, missed 
detections and ungated detections during the 
tracking process. 
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Abstract 
An approach to array processing (i.e., direction- 

finding, signal separation and reconstruction, and cali- 
bration) based on the Analytical Constant Modulus Al- 
gorithm is considered. The main advantage of this 
approach is that the multidimensional search associ- 
ated with Maximum Likelihood based estimators or the 
single dimensional search associated ivith MUSIC type 
methods are eliminated. 

The sensor array elements are assumed to have the 
same, up to a multiplicative constant, angle dependent, 
unknown gain pattern. We show that under this as- 
sumption it is possible to estimate the array response 
matrix and then use the result for direction finding, if 
the nominal array manifold is known, at least approx- 
imately. It is also possible to use the estimated array 
response matrix in order to separate and reconstruct 
the signals, or calibrate the array shape or response. 

1    Introduction 
In recent years many approaches to direction finding 

were proposed. All of these approaches are associated 
with some form of search. Maximum Likelihood based 
techniques like the EM algorithm [1], IQML [2], APM 
[3], MODE [4] and others, require multidimensional 
search in the parameter space. The main difficulty in 
using these approaches is that the algorithms tend to 
converge to a local stationary point and convergence 
to the global maximum (or minimum) is not guaran- 
teed. Even MUSIC [5] type algorithms require a one- 
dimensional search which is indeed free from conver- 
gence problems but is associated with a lengthy search 
procedure (the search must be performed on a fine 
grid in order to avoid missing the narrow peaks of the 
MUSIC spectrum). Search-free techniques like Root- 
MUSIC and ESPRIT [9] require special array configu- 
rations that limit their applicability. 

We consider an approach to steering vector estima- 
tion that does not rely on a search procedure. The 
steering vectors of the array are estimated via a short 
non-iterative algorithm. The estimates are close to the 
true steering vectors, if enough data samples are col- 
lected. If desired, the estimates can be further im- 
proved using a few iterations that are guaranteed to 
converge.  These estimates of the steering vectors can 

be used for direction finding, signal separation and re- 
construction, or array shape/phase calibration. The 
fact that the algorithm is essentially search free is its 
most appealing feature. 

The method is based on a version of the Analytical 
Constant Modulus Algorithm that was recently pro- 
posed by van der Veen and Paulraj [6] for estimating 
constant modulus signals. However, the new approach 
is not limited to constant modulus signals or any other 
specific signals. 

2    Problem Formulation 
We begin by describing the data model for the ob- 

servation of narrowband signals by an array of sensors. 
We consider an M-element array of sensors and JV 

narrowband signal sources, and define the Afxl vector 
an to be the complex array response for the nth source. 

The outputs of the M array elements at the k—th 
sample are arranged in an M x 1 vector, 

x(Jfe) = As(ib) + u(*)        k=l,2---N,;       (1) 

where u(k) is the noise vector, s(k) is the signal vector, 
and 

A = [a1,a2,---1aAr] (2) 

Assuming that the signal vectors s(A;) and the noise 
vectors u(k) are realizations of stationary, zero mean 
random processes, and there is no correlation between 
the noise and the signals, the data covariance matrix 
is 

R i E{x(*)xH(ifc)} = AR,AH + rß (3) 

where  R,   is  the  signal  covariance  matrix   (a non- 
singular matrix) and nl is the noise covariance matrix. 

Given TV, snapshots, the sample covariance is given 
by 

1    N' 
Ä=ÄrEx(*)x"(*) (4) 

jfc=i 

We assume that the sensors have identical gain pat- 
tern, up to a multiplicative scalar factor. We therefore 
use the following model for A. 

L-*V|m,n — 9me (5) 

"This work was supported by the Office of Naval Research 
under Contract No. N00014-95-1-0912 

The scalar gm is the multiplicative factor of the mth 
sensor gain pattern, and the constants <f>m n are the 
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unknown sensor phase responses. We are interested 
in estimating the steering vector matrix, A. As a by 
product, we also estimate the noise variance, r). Note 
that the observations, namely x(k), do not change if 
A is right multiplied by a diagonal matrix while s(k) 
is left multiplied by the inverse of the same diagonal 
matrix. This means that the steering vectors and the 
signals can be observed (and estimated) only up to a 
multiplicative complex scalar. We therefore assume, 
without loss of generality, that the first element of each 
steering vector is one. 

Note that if the signals are uncorrelated then Rs is 
diagonal. In this case the scalars gp can be estimated 
by observing that the elements on the diagonal of the 
data covariance are given by 

N 

R-m,m = fa 5^[R*]n,n + ^ 
n=l 

Under the assumption that g\ = 1 we get 

N 

and 

n=l 

gm ^ 

R 1,1 

£i,i - v 

(6) 

(7) 

(8) 

where " indicates estimated values. 
This estimation procedure for gm does not hold in 

the general case of correlated signals. We therefore re- 
sort to the assumption that gm is given. This assump- 
tion is not restrictive in most direction finding appli- 
cations. However, it might be somewhat restrictive in 
the signal estimation problem for which the sensor re- 
sponse is not of prime concern. 

3    Steering Vector Estimation 
The eigenvalue decomposition of the data covariance 

is given by 

R=AR,AH + ??I=U,A5Uf+ »yUnU^     (9) 

where A, = diagjAi, • ■ •, XN} is a diagonal matrix con- 
taining the TV biggest eigenvalues in decreasing order, 
and the associated eigenvectors are the columns of the 
matrix U„. The columns of Un are the remaining 
M — TV eigenvectors, associated with Ajv+i = ••• = 
\M = T). Subtracting 77I from the above equation we 
get 

AR,A* = u.r.uf (10) 

where I\, = diag{Ai — 17, • • ■, Ajv — »?}. Hence, 

A = U,W (11) 

where W is a weighting matrix. 
Based on an estimate of U, we are interested in 

estimating the matrix A, under the constraint that the 
modulus of each column is given by [1, g2 • ■ • giu]T ■ This 

raises the question of how many vectors of this form are 
contained in the subspace spanned by the columns of 
A? We show in [8] that in some cases there are more 
than TV such vectors in the range of A, and therefore the 
solution of (11) is not unique. However, in most cases, 
there are exactly TV vectors with the given modulus in 
the column space of A. The later is assumed in sequel. 

The eigen decomposition of R provides the estimate, 
Us, of U5. Equation (11) indicates that minimizing the 
distance between its left hand side and the estimate 
of its right hand side corresponds to estimates of the 
steering vectors. 

In order to find W we follow the steps of [6]. Any 
column vector, w, in W must satisfy the equations, 

w"ümü£w = <^,        m = l,2,---,M; (12) 

where ü^ is the mth row vector of U,. These equations 
can be written in a different form as, 

P(w®w*) = g (13) 

where the mth row of P is given by vecT{ümü^} and 

Define the Householder matrix 

Q^I-2qq 
T q = g + l|g||ei        (15) 

where ei is a vector of zeros except for the first element 
which is one. By left multiplying (13) by Q we get 

QP(w<g>w*) = -||g||e1 (16) 

Define the (M - 1) x TV2 matrix P to be QP, with the 
first row deleted, so we get 

P(w<g>w*) = 0 (17) 

This equation indicates that w®w* belongs to the null 
space of P. Note that 

rank{P} < min{M - 1, TV2} < M - 1       (18) 

Substituting in 

dim{null{P}} = TV2 - rank{P} (19) 

We get, 

dim{null{P}} > TV2 - (M - 1) (20) 

In order that the null space null{P} will span the 
space of all the TV vectors w ® w* we must have 
dim{null{P}} = TV. Hence, we get the condition 

TV > TV2 - M + 1 

M > TV2 - TV + 1 

(21) 

(22) 
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If the condition (22) is met, then the solutions to (17) 
span the null space of P. Assume now that the null{P} 
is spanned by the vectors yi, • • • ,y;v. Each of these 
vectors can be obtained by a linear combination of the 
solutions of (17). Hence, 

N 

yn =X]aJ'"(wi®wi)'        n = l,---,N;      (23) 
3 = 1 

where ajn are complex scalar coefficients. Performing 
the inverse vec operation on (23) we get 

N 

vec-^y«} = X>;"(WJWJ) = W*A„WT ,     (24) 
3 = 1 

Hence, to obtain W we have to simultaneously diag- 
onalize the matrices vec-1{y„}, n = 1,2, • ■ •, N. An 
algorithms for performing this task can be found in [7]. 
Our approach is to simultaneously diagonalize only two 
matrices. This can be done by solving a generalized 
eigenvalue problem. Therefore we define, 

JV' 

Yj £ J^vec-^y«} = WÄjW7 (25) 

and 

n = l 

N 

Y2i\    J2   vec_1{yn} = W*Ä2W
T       (26) 

n=N' + l 

where N' is the integer part of N/2. The eigen vectors, 
Vj that satisfy 

YlVj = Y2vjßj (27) 

can be arranged in a matrix whose inverse is WT. 
In order to obtain the final estimate of A we mini- 

mize the cost function 

/(Ü„A)£||Ü,W-A||S (28) 

This can be done in two steps that can be repeated 
several times. Convergence is guaranteed since the cost 
function value decrease (or stay the same) in each step. 

1) In this step we use the last estimate of W and 
find A. Since the modulus of the elements of A 
are known we only have to find the phases of A 
which minimize the cost function. Obviously, the 
minimizing phase estimates are given by 

phase{ Aij } = phase{[Ü, W]tj } (29) 

2) In this step we use the last estimate of A to esti- 
mate W. The W that minimizes the cost function 
is given by 

W = Üf A (30) 

Usually, between 3 to 10 iterations are needed. 

4    Application to Direction Finding 
Once the steering vector phases have been esti- 

mated, the signal directions of arrival (DOAs) can be 
easily extracted. If the array response is close to the 
free space model of propagation, then the phase of the 
mth element of the nth steering vector is given by 

<t>, 'm,n 1ir{dx>m sin 6„ cos ipn + rfym sin 0„ sin i/>, 

+dz,m cos 6n) (31) 

where dXim, dy>m, dz>m are the Cartesian coordinates 
(in wavelength units) of the mth sensor, while 0n and 
Wn are the elevation angle (with respect to the z axis) 
and the azimuth (with respect to the x axis), respec- 
tively, of the nth source. Note that <j>m>n is known only 
modulo 2n. Hence, phase unwrapping must be used 
before applying the following method. 

Define 

H^2* 

**,i dyA V.» 
T-xfi      ay,2      dZi2 

dx,M    dyM    dzM 

Hn = [sin6n cos V>„, sin0n sinrp„, cos6n)T 

<t>n = y>l,n, 4>2,n • •■<j>M,n]T 

which yield the following matrix equation 

Hence we have 

H/*„ = <£„ 

ßn = Ht^„ 

(32) 

(33) 

(34) 

(35) 

(36) 

where fit is the left inverse of fi.   The estimates of 
0n, ipn follow immediately. 

If the array response is given by a calibration table 
rather than an analytic expression then the DOA is 
estimated by finding the calibration table entries that 
are close in some sense to the estimated steering vector. 
Interpolation is usually required to improve the system 
accuracy. 

5    Numerical Examples 
Consider a linear array of 3 sensors with element 

spacing of half a wavelength. The sensor gains are 
chosen arbitrarily to be 1.0, 1.02, 1.34. The array 
intercepts two equal power uncorrelated signals with 
Signal to Noise Ratio of lOdB. The direction of ar- 
rival (DOA) of one signal is 0° relative to broadside 
while the DOA of the other signal varies from 5° to 
30°. The algorithm is applied to simulated data matrix 
with 500 snapshots. Figure 1 shows the experimental 
standard deviation, o, and experimental bias, *, of the 
steering vector phases, vs. the DOA separation. Each 
circle/asterisk is based on 200 experiments. The solid 
lines represents the Cramer-Rao bound which coincides 
with the theoretical performance analysis, in this case. 
It is apparent that the bias is negligible and the stan- 
dard deviation agrees with the theoretical performance 
analysis and the bound. 
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Next, consider a linear array of 6 sensors with ele- 
ment spacing of half a wavelength. The sensor gains are 
chosen to be 1.0, 1.01, 1.35, 1.47, 1.12, 1.09. The ar- 
ray intercepts two correlated equal power signals with 
Signal to Noise Ratio of lOdB. The magnitude of the 
correlation coefficient is 0.95 and its phase varies from 
0° to 180°. The direction of arrival (DOA) of one sig- 
nal is 0° relative to broadside while the DOA of the 
other signal is 10°. The algorithm is applied to simu- 
lated data matrix with 500 snapshots. Figure 2 shows 
the experimental standard deviation, and experimental 
bias, of the steering vector phases vs. the correlation 
coefficient phase. Each circle/asterisk is based on 200 
experiments. The solid line represents the theoretical 
performance analysis, and the dashed line represents 
the Cramer-Rao bound. We note that the experiments 
verify the theoretical performance analysis and that the 
bias is negligible. Observe that due to the correlation 
between the signals the statistical efficiency is lost. 

6    Conclusions 
We examined a new approach to direction-finding 

and signal estimation based on steering vector estima- 
tion. We showed that it is possible to estimate the 
array response matrix and then use the result for Direc- 
tion Finding, if the nominal array manifold is known, 
at least approximately. It is also possible to use the ar- 
ray response matrix estimate in order to separate and 
reconstruct the signals or calibrate the array. The main 
advantage of the method is that the multidimensional 
search associated with Maximum Likelihood based esti- 
mators or the single dimensional search associated with 
MUSIC type methods is eliminated. The method can 
be applied in the presence of specular multipath (us- 
ing spatial smoothing) but it is not suitable for signal 
separation in the presence of diffuse multipath. 
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ABSTRACT 

We introduce a new joint spatial- and doppler-frequency 
high-resolution estimation technique based on the fractional 
lower-order statistics of the measurements of a radar array. 
We define the covariation matrix of the space-time radar 
observation vector process and employ subspace-based es- 
timation techniques to the sample covariation matrix re- 
sulting in improved target angle and Doppler estimates in 
the presence of impulsive interference. We name the intro- 
duced technique "2-D Robust Covariation-Based MUSIC" 
or "2-D ROC-MUSIC". We show that 2-D ROC-MUSIC 
provides better angle/Doppler estimates than 2-D MUSIC 
in a wide range of impulsive interference environments and 
for very low signal-to-noise ratios. 

1.   INTRODUCTION 

Most of the theoretical work in detection and estimation 
for radar applications has focused on the case where clutter 
is assumed to follow the Gaussian model. The Gaussian 
assumption is frequently motivated by the physics of the 
problem and it often leads to mathematically tractable solu- 
tions. However, in many practical instances, experimental 
results have been reported where clutter returns are im- 
pulsive in nature and cannot be appropriately modeled by 
means of the Gaussian distribution [1]. A number of distri- 
butions, based on empirical as well as theoretical grounds, 
have been proposed for the modeling of non-Gaussian clut- 
ter and interference environments [2, 3]. 

Recently, a statistical model for impulsive clutter has 
been proposed, which is based on the theory of symmetric 
alpha-stable (SaS) random processes [4]. The model is of a 
statistical-physical nature and has been shown to arise un- 
der very general assumptions and to describe a broad class 
of impulsive interference. In particular, it has been shown 
in [4] that the first order distribution of the amplitude of 
the radar return follows a SoS law, while the first-order 
joint distribution of the quadrature components of the en- 
velope of the radar return follows an isotropic stable law. In 

The work in this paper was supported by Rome Laboratory 
under Contract F30602-95-1-0001. 

addition, the theory of multivariate sub- Gaussian random 
processes provides an elegant and mathematically tractable 
framework for the solution of the detection and parameter 
estimation problems in the presence of impulsive correlated 
radar clutter. 

As mentioned in [5], much of the work reported for radar 
systems has concentrated on target detection in Gaussian 
or Non-Gaussian backgrounds [6, 7, 8, 9]. In this paper, 
we are addressing the parameter estimation problem with 
a space-time adaptive processing (STAP) radar operating 
in impulsive clutter and interference environments. We 
present a new subspace-based method for joint spatial- and 
doppler-frequency high-resolution estimation in the pres- 
ence of impulsive noise which can be modeled as a complex 
symmetric alpha-stable (SaS) process. In Section 2, we 
present some necessary preliminaries on a-stable processes. 
In Section 3, we formulate the STAP problem for airborne 
radar. In Section 4, we define the covariation matrix of 
the space-time radar sensor output snapshot and we show 
that eigendecomposition-based methods, such as the MU- 
SIC algorithm, can be applied to the sample covariation 
matrix to extract the angle/Doppler information from the 
measurements. Finally, in Section 5, the improved perfor- 
mance of the proposed source localization method in the 
presence of a wide range of impulsive noise environments is 
demonstrated via Monte Carlo experiments. 

2.  MATHEMATICAL PRELIMINARIES 

In this section, we introduce the statistical model that will 
be used to describe the additive noise. The model is based 
on the class of isotropic SaS distributions, and is well- 
suited for describing impulsive noise processes [4]. 

Stable processes satisfy the stability property which 
states that linear combinations of jointly stable variables 
are indeed stable. They arise as limiting processes of sums 
of independent, identically-distributed random variables via 
the generalized central limit theorem. They are described 
by their characteristic exponent a, taking values 0 < a < 2. 
Gaussian processes are stable processes with a = 2. Stable 
distributions have heavier tails than the normal distribu- 
tion, possess finite pth order moments only for p < a, and 
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are appropriate for modeling noise with outliers. 
A complex random variable (r.v.) X — Xi + 3X2 is 

isotropic SaS if Xi and Xi are jointly SaS and have a 
symmetric distribution. The characteristic function of X is 
given by 

V»(w) = £{exp{MwX*})} = exp(-7|w|Q), (1) 

where w = u>i + ju2. The characteristic exponent a is re- 
stricted to the values 0 < a < 2 and it determines the 
shape of the distribution. The smaller the characteristic 
exponent a, the heavier the tails of the density. The dis- 
persion 7 (7 > 0) plays a role analogous to the role that 
the variance plays for second-order processes. Namely, it 
determines the spread of the probability density function 
around the origin. 

Several complex r.v.'s are jointly SaS if their real and 
imaginary parts are jointly SaS. When X and Y are jointly 
SaS with 1 < a < 2, the covariation of X and Y is defined 
by 

v>Y^ = £{YmP1Y< 1-P<a'     (2) 

where 7y = [V, Y]a is the dispersion of the r.v. Y, and we 
use throughout the convention Y<p> = |V|P-1Y*. Also, 
the covariation coefficient of X and Y is defined by 

Ax,y = 
[X,Y]a 

[Y,Y]0' 

and by using (2), it can be expressed as 

E{XY<p-1>} 
Ax,y 

E{\Y\P} 
for 1 < p < a. 

(3) 

(4) 

The covariation of complex jointly SaS r.v.'s is not gener- 
ally symmetric and has the following properties: 

PI If Xi, X2 and Y are jointly SaS, then for any complex 
constants a and b, 

[aXi + bX2,Y]a = a[XltY]a + b[X2, Y]a; 

P2 If Yi and Y2 are independent and Xi, X2 and Y are 
jointly SaS, then for any complex constants a, b and 

c, 

[aXi,bYi +cY2]a = 

ab«'-^>[X1,Y1]a + ac<a-1>[Xl,YiU 

P3  If X and Y are independent SaS, then [X, Y]a = 0. 

3.   STAP PROBLEM FORMULATION 

Space-time adaptive processing (STAP) refers to multidi- 
mensional adaptive algorithms that simultaneously combine 
the signals from the elements of an array antenna and the 
multiple pulses of a coherent radar waveform, to suppress 
interference and provide target detection [10, 5, 11]. 

Consider a uniformly spaced linear array radar antenna 
consisting of N elements, which transmits a coherent burst 
of M pulses at a constant pulse repetition frequency (PRF) 
fr and over a certain range of directions of interest.   The 

array receives signals generated by q narrow-band mov- 
ing targets which are located at azimuth angles {6 k; k = 
l,...,q} and have relative velocities with respect to the 
radar \uk; k = 1,..., q} corresponding to Doppler frequen- 
cies {fk; k = 1,..., q}. Since the signals are narrow-band, 
the propagation delay across the array is much smaller than 
the reciprocal of the signal bandwidth, and it follows that, 
by using a complex envelop representation, the array output 
can be expressed as [10]: 

x(t)=V(e,w)s(t) + n(t), (5) 

where 

• x(t) = [xi(t),.. .,xMN{t)]T is the array output vec- 
tor (N: number of array elements, M: number of 
pulses, t may refer to the number of the coherent pro- 
cessing intervals (CPI's) available at the receiver); 

• s(t) = [si(t),..., sq{t)]T is the signal vector emitted 
by the sources as received at the reference sensor 1 of 
the array; 

• V(0,tt7) = [v(«9i1wi))...,v(ö„c7,)] is the space- 

time steering matrix (wk = f^)\ 

• Space-Time steering vector: v{dk,^k) = b(wk) ® 

a(0*); 

- a(0*) = [1, e****, • • •, e'<J*-1>2,r**f is the spa- 
tial steering vector (tf* = ^j-cos(flfc)); 

- b(w*) = [1, e*"""*, • • •, e*M-1)2*Wk]T is the tem- 
poral steering vector. 

• n(t) = [m(i), • • • > nMN(t)]T is the noise vector. 

Assuming the availability of P coherent processing in- 
tervals (CPI's) ti,..., tP, the data can be expressed as 

X = V(0, ru)S + N, (6) 

where X and N are the MN x P matrices 

X = [x(ti),...,x(tp)], (7) 

N = [n(t0,...,n(tp)], (8) 

and S is the q x P matrix 

S = [S(t1),...,s(tp)}- (9) 

Our objective is to jointly estimate the directions-of-arrival 
{9k; k = l,...,g} and the Doppler frequencies {fk; k — 
l,...,q} of the source targets. 

4.   THE ARRAY COVARIATION MATRIX 

We will assume that the q signal waveforms are non-coherent, 
statistically independent, complex isotropic SaS (1 < a < 
2) random processes with zero location parameter and co- 
variation matrix Ts = diagf/y,,,... ,7»,)- Also> the noise 

vector n(t) is a complex isotropic SaS random process with 
the same characteristic exponent a as the signals. The noise 
is assumed to be independent of the signals with covariation 
matrix TN = "IrJ- 
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Now, we define the covariation matrix, Tx, of the obser- 
vation vector process x(t) as the matrix whose elements are 
the covariations [xi(t),Xj(t)]a of the components of x(t). 
By using properties P1-P3, we obtain the following expres- 
sion for the covariation of the sensor measurements: 

[xt{t),x3{t)}a    =    y\vi{dk,wk)vfa-1>{ßk,mk)t.k + 

MUSIC (N=5, kfclO. TH=[-20 -40 40), D=t-.3 -.2.3), arf.5) 

k=l 

"tnSi,: i,j=l,...,MN. (10) 

In matrix form, (10) gives the following expression for the 
covariation matrix of the observation vector: 

Tx = [x(f),x(t)]. = V(0,^)rsV<a-1>(0,ro) + 7nI, 

(11) 
where the (t, j)th element of matrix V<Q >(©, w) results 
from the (j, j)th element of V(0, w) according to the oper- 
ation 

[V<a-1>(0, „)]ij = [V(0,va)]<rl> (12) 

Clearly, when a = 2, i.e., for Gaussian distributed signals 
and noise, the expression for the covariation matrix is iden- 
tical to the well-known expression for the covariance matrix: 

Rx = V(0, CT)SV
H

(0, ZU) + a2I, (13) 

where S is the signal covariance matrix. 
When the amplitude response of the sensors equals unity, 

it follows that 

rv^-'^e, «*)].■,,■ = [v(e, w)]* if 
and thus the covariation matrix can be written as 

Tx = V(0, tu)TsVH(0, w) + 7„I. 

(14) 

(15) 

Observing (15), we conclude that standard subspace 
techniques can be applied to the covariation or the covaria- 
tion coefficient matrices of the observation vector to extract 
the angle/Doppler information. In practice, we have to es- 
timate the covariation matrix from a finite number of array 
sensor measurements. A proposed estimator for the co- 
variation coefficient XXi(t),xj[t) is called the fractional lower 
order (FLOM) estimator and is given by [12, 13] 

\ri(0.*;(0 
Er=i *■(*)*; 

<p-l> (0 
E?=i !*>(*)!' 

(16) 

for some 0 < p < a/2. We will refer to the new algorithm 
resulting from the eigendecomposition of the array covari- 
ation coefficient matrix as the 2-D Robust Covariation- 
Based MUSIC or 2-D ROC-MUSIC. 

5.   EXPERIMENTAL RESULTS 

In this section, we show results on the resolution capabil- 
ity and estimation accuracy of the 2-D ROC-MUSIC and 
2-D MUSIC methods. The array is linear with five sensors 
spaced a half-wavelength apart (N = 5). The number of 
transmitted pulses is M = 10. Three moving targets im- 
pinge on the array from directions 0 = [—20°,—40°, 40°] 
and they have Doppler values D = [-0.3,-0.2,0.3]). The 

80        -60        -40        -20 0 20 40 60 
azimuth (degree) 

ROC-MUSIC (N=5, M=10. TH=[-20 -40 40], D=|-.3 -.2 .3], a=1.S) 
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Figure 1: 2-D MUSIC and 2-D ROC-MUSIC angle-Doppler 
spectra (N = 5, M = 10, 0 = [-20°,-40°, 40°] D = 
[-0.3, -0.2,0.3]). Additive stable noise (a = 1.5, y„ = 4). 

number of snapshots available to the algorithms is P = 
1000. The noise follows the bivariate isotropic stable distri- 
bution with a = 1.5. 

Since the alpha-stable family for a < 2 determines pro- 
cesses with infinite variance, we define an alternative signal- 
to-noise ratio. Namely, we define the Generalized SNR 
(GSNR) to be the ratio of the signal power over the noise 
dispersion ~fn: 

1 
G5ATJR = 101og(-i-^Kt)|

2). (17) 

The GSNR is 22.3 dB (-/„ = 1). The characteristic, expo- 
nent a of the additive noise is unknown to the ROC-MUSIC 
algorithm. The parameter p in the estimation of the covari- 
ation matrix (cf. (16)): was set equal to p = 0.8. Clearly, 
MUSIC can be thought as a special case of ROC-MUSIC 
with p—2. 

In Figure 1, isosurfaces of space-time spectral estimates 
are shown for the 2-D ROC-MUSIC and the 2-D MUSIC al- 
gorithms. We can see that the 2-D MUSIC method exhibits 
poor resolution performance and it does not resolve the two 
closely-spaced moving targets. On the other hand, the 2-D 
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SO.5 

ANGULAR SEPARATION [DEG] 

Figure 2: Probability of resolution (a) and mean square 
error (b) as functions of the source angular separation, a = 
1.5. 

ROC-MUSIC method exhibits high-resolution capabilities 
for non-Gaussian additive noise environments. 

Figure 2 illustrates the variation of the algorithmic per- 
formance with respect to the spatial angle separation of the 
two closely spaced incoming targets for GSNR= 22.3 dB, 
(a = 1.5). As expected, the resolution capability of both al- 
gorithms improves with increased angle separation between 
the two sources. But for a given probability of resolution, 
the 2-D ROC-MUSIC algorithm requires a lower angle sep- 
aration threshold than the 2-D MUSIC algorithm. 

6.   CONCLUSIONS 

We considered the problem of target angle and Doppler 
estimation with an airborne radar employing space-time 
adaptive processing. We introduced a new joint spatial- 
and doppler-frequency high-resolution estimation technique 
based on the fractional lower-order statistics of the mea- 
surements of a radar array. We showed that the proposed 
2-D ROC-MUSIC algorithm provides better angle/Doppler 
estimates than the 2-D MUSIC method, and it can result 

[2] S.   A. 
Noise 

to improved STAP radar systems operating in impulsive 
interference environments. 
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Abstract 

Antenna array pattern synthesis deals with choosing the 
complex weights of an antenna array in order to satisfy a set 
of specifications or to say if such a set is feasible. It appears 
that these problems can often be expressed as convex op- 
timization problems which can be solved numerically with 
algorithms such as interior point methods. Two examples 
are given dealing with constrained adaptive array proces- 
sing and robustness issues. 

1    Introduction 

It is well known that the antenna pattern of a linear array 
in direction 9 is given by the amplitude of 

N 

G(0) = £ Wie J* (1) 
i=\ 

where the complex weights u>,- are the parameters. The 
position of the elements are given by xt whereas A is the 
wavelength. The pattern is easily generalized to any array 
geometry with two angular variables (azimuth and eleva- 
tion). 

What may be not as well known is that the array pattern 
is a convex function of the real and imaginary parts of the 
weights. This important property makes possible the solu- 
tion of many antenna array synthesis problems using convex 
optimization and more particularly recently developed algo- 
rithms (interior point methods). 

This is all the more interesting as many other problems 
arising in array processing are convex. For instance, the 
noise or signal power with general form wTRw where R is 
some covariance matrix and wT denotes the conjugate of w 
are convex functions. The weight level ||w||, defined as a 
given norm of the weights vector is another convex function. 
More generally, convex quadratic functions appear often in 

antenna array design and we see in the next section how they 
can be solved. 

2 Convex optimization 

A convex optimization problem can be defined as the 
minimization of a convex function over a convex set. The 
important property is that for a convex problem, any local 
optimum is in fact global. Furthermore, by using optima- 
lity conditions or more generally the theory of duality, it is 
possible to obtain lower bounds on the optimal value and an 
absolute required precision on the desired results. 

It is impossible here to describe more precisely the pro- 
perties of convex optimization. Let us simply mention the 
recent book by Hiriart-Urruty and Lemarechal [3]. Even 
more interesting is the development of very efficient algo- 
rithms called interior point methods. The book by Nesterov 
and Nemirovsky [7] is the most complete account on the 
subject. 

Finally the article of S. Boyd and L. Vandenberghe [9] 
shows that convex optimization is of much interest in many 
engineering fields. Let us show now how to express an 
antenna array pattern synthesis problem as a convex optimi- 
zation one. 

3 Pattern synthesis as a convex program 

In general, it is possible to design optimal antenna array 
patterns by solving particular convex optimization problems 
of the general form 

minimize 
subject to 

T e   x 

\\AiX + bi\\2 <c?x + di,i=l,..., L, 
(2) 

where A{ G Rmxn, lH e R", a,e,x e R" and d{ £ R. 
These are called quadratically constrained convex quadratic 
programs (QCQP). They can be solved with an algorithm 
described in appendix A.      Let us notice that if a given 
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objective f(x) is given, it is easy to replace its minimization 
with the following problem 

minimize    t 
subject to    f(x) < t 

(3) 

so that the choice of a linear objective is general. 
Let us now express the array patern as a quadratic function 

in order to recover the general form of QCQP problem (2). 
Expression (1) is a linear complex function of the weights 
so that its amplitude squared is a quadratic function of the 
real and imaginary parts of the complex weights. Generally 
a normalization constraint G(d0) = 1 is used so that it is 
possible to eliminate one of the weights as 

jV-I 

wN — e -.7TTa:N COS Co i-E w;e j ^Xi cosffo 

8=1 

Combining the quadratic expression of the beam pattern and 
the elimination leads to the general expression \\Atx + 6,||2 

for a given |G(0,-) |2 where x includes the real and imaginary 
parts of the first (N-l) weights. In this case, m = 2 and 
n = 2( N - 1). Therefore if we want to constrain the beam 
pattern in L different directions we have to choose c,- = 0 
and the constrained level rf,- for i = 1 to L. 

A similar expression can be derived for the positive po- 
wer wTRw so that any constrained power can be included 
in problem (2) with correspondent c = 0 and d giving the 
power constraint. A difference is that here m = N. The ob- 
jective to be minimized is also in general one of the previous 
quadratic expressions \\A0x + b0\\2, so that we can replace 
it with the minimization of t = eT x with the constraint 
\\AQX + feoll2 < eTx. In this case c0 = e and d0 = 0 using 
the formulation (3). This also implies that x is modified in 
order to add the new variable t, so that n = 2N - 1. Finally 
we could also add constraints on the weights norm which 
can be very interesting for the signal to noise ratio. 

We want to show now through some simulation examples, 
the interesting applications of interior point methods to an- 
tenna array processing. 

4   Simulation Examples 

Applications of convex optimization to antenna array pro- 
cessing are numerous [6,5]. We want to show here two kinds 
of applications: creating broad gaps in the pattern for intefe- 
rence rejection with applications to adaptive beamforming 
and designing antenna patterns with robustness properties. 

4.1    Adaptive arrays 

In adaptive arrays problems, it is generally desired to put 
zeros in directions corresponding to interferences. Never- 
thess, it is sometimes more efficient to create a broad angular 
zone where the pattern is minimum even if not zero. 

4.1.1    Constrained pattern 

As an example, we deal with the minimization of the pattern 
level around 70° while keeping a OdB level at 90° for a 32- 
element linear regular array. The element distance is half 
a wavelength. The minimized area is 15° wide around 70° 
and we also want the pattern level to remain less than - 12dB 
in the sidelobe area (except of course the minimized region). 

The problem is discretized in the angular directions in 
order to be expressed with the general form (2). The figure 1 
presents the optimal result. Because the problem is convex, 
it is possible to state that within the required precision (which 
is here 10-6), it is impossible to find weights giving a better 
rejection level with the given constraints. It is also possible 
to compare the results with a given adaptive technique. 

Figure 1. Optimized pattern for interference 
rejection around 70 degrees. The straight 
line is the solution of the convex problem, 
whereas the dashed line gives the standard 
beamformer. 

4.1.2    Constrained adaptive beamforming 

We can now have a slightly different approach. Constrained 
adaptive beamforming is an important issue as recent articles 
show it [2,8]. The previous simulation could be criticized as 
the interference position needs to be known. Let us assume 
therefore that the region previously mentionned corresponds 
to clutter where the beam pattern level has to be less than 
-40dB. We can use the signal covariance matrix R as in 
standard array processing. For the simulation, we assume 
that this matrix is built with 

• a signal of interest in direction 90° with level OdB, 

• four interferences at position 20,45,50,70°, with 
identical level (60dB) 
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• a white noise density (-60dB). 

Figure 2 gives the result of standard adaptive beamforming 
with the same array as above, that is the minimization of 
wTRw subject to 6'(90°) = 1. The four interferences are 
eliminated as expected. The new problem becomes the mi- 
nimization of the signal power wTRw with constraints on 
the clutter zone (less than -40dB), the mainlobe zone (less 
than 0.08 dB) and the sidelobe zone (less than -12dB) and 
with a normalization constraint of OdB at 90°. Figure 3 gives 
the beam pattern for the constrained adaptive beamforming 
problem. The interferences are once again cancelled, fur- 
thermore the constraints on the clutter zone are achieved. 

0     20     40     60     80    100    120    140    160 

Figure 2. Interference rejection through stan- 
dard adaptive beamforming. 

Figure 3. Interference rejection through cons- 
trained adaptive beamfroming. 

4.2    Robustness issues 

The problem of robustness is particularly important for 
antenna array design. We will very quickly show here some 
results. More details can be found in [4]. The main ideas 
come here from a series of papers by Evans [10] and Can- 
toni [1] . Here we are just interested in the robustness of 
the weights themselves. More precisely, it is known that the 
optimal weights have to be discretized for implementation. 
What is the influence of the quantization on the optimal 
results? 

These problems can also be expressed as convex opti- 
mization problems and figure 4 shows such an example. 
The figure shows the optimal sidelobe level obtained with 
quantization steps Aw smaller than 6.10-3. This means 
that the difference between any quantized weight and the 
corresponding optimal weight is less than Aw in modulus. 
The straight line corresponds to a 10-element array with a 
mainlobe width of 25° whereas the dashed line is for a 30- 
element array with a mainlobe width of 25°. For both cases, 
the mainlobe direction is 45°. The optimal sidelobe level is 
obviously increasing with the quantization step. 
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Figure 4. Weight robustness:   optimal side- 
lobe level vs. quantization step 

5    Conclusion 

Through two examples, we tried to show the advantages 
of convex optimization. Of course all optimization problems 
are not convex, but it is of much interest to recognize convex 
ones and use their properties. From our point of view, the 
main one is to be able to state if a problem can be solved or 
not, and if it can be, to say with an absolute precision what 
the optimal result is.   Another important question is the 
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real-time capabilities of such algorithms which are already 
very efficient. The advance of digital computers will give 
answers although the problem remains opened. 

A    An interior point algorithm 

The algorithm used to solve problem (2) minimizes the 

function 

<f>(x,l) q log(e   x — I) 
L 

+ Y, '°g (tä*+di) - \\AiX+6'H2)(4) 

where / is a lower bound on the objective, through 

a:, <-initial feasible point; 
/i <— initial lower bound; 
k^-0; 
repeat { 

k + 1 <- k; 
minimize <j>(xk) through: 

y\ <r- xk;i 4-0; 
repeat { 

i + 1 <- i; 
compute vi, Newton direction of <j>{yi) 
then j/i+i <- yi + onvi with: 
a,- = argmina</)(j/i + avt) ; 

} until convergence; 

Xk+i +- j/i+i; 
compute a new lower bound lk+\; 

} until eTxk+\ —h+\ < tol; 

Let us add that at is computed through a line search and 
the updated lower bound k is obtained thanks to optimality 
conditions of the minimized function <f>. 
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Abstract 

Recursive methods for subspace tracking with appli- 
cations to 'on-line' direction of arrival estimation, have 
lately drawn considerable interest. In this paper, In- 
strumental Variable (IV) generalizations of the Pro- 
jection Approximation Subspace Tracking (PAST) al- 
gorithm are proposed. The IV-approach is motivated 
by the fact that PAST delivers biased estimates when 
the noise vectors are not spatially white. The result- 
ing basic IV-algorithm has a computational complexity 
of 3mn + ö(n2) complex multiplications, where m is 
the dimension of the measurement vector and n is the 
subspace dimension. The performance of the proposed 
algorithms in tracking sinusoids in colored noise is il- 
lustrated by computer simulations. 

1    Introduction 

One aspect of the sensor array signal processing 
field that has drawn much attention is the applica- 
tion of high-resolution frequency and direction of ar- 
rival (DOA) estimation techniques to non-stationary 
environments, see for example [1]. A drawback of tra- 
ditional subspace methods, in this scenario, is that the 
singular value decomposition (SVD) is time consum- 
ing to update. A specific example of a successful sub- 
space tracking algorithm is the Projection Approxima- 
tion Subspace Tracking (PAST) algorithm [5]. The ba- 
sic idea of PAST is that a projection like unconstrained 
criterion is approximated, which leads to a RLS-like al- 
gorithm for tracking the signal subspace. The DOA (or 
frequency) estimates can then be taken as the angles 

•This work was supported in part by the Swedish Research 
Council for Engineering Sciences (TFR). 

of the eigenvalues of a matrix obtained using the shift- 
invariant structure of the subspace (Uniform Linear Ar- 
ray, ULA). However, PAST assumes that the noise is 
spatially white, and tends to deliver biased estimates 
whenever this requirement is not fulfilled. This fact is 
the motivation of the algorithms proposed herein. The 
aim of this paper is to present Instrumental Variable 
(IV) generalizations of PAST. For a treatment of IV 
methods in the context of identifying linear systems, 
see [3]. Like all other IV-methods we require that an 
IV-vector, that is uncorrelated with the noise vector, 
can be found. As long as this requirement is fulfilled, 
the noise vectors can be allowed to have arbitrary (tem- 
poral and spatial) color. A certain rank condition must 
also be fulfilled. One possible approach to find the in- 
struments is to consider an array that is divided into 
sub-arrays. Then the outputs of one of the sub-arrays 
can be taken as instruments. Then, if the sub-arrays 
are sufficiently far apart, the noise in the main sub- 
array is uncorrelated with the IV vector. For a discus- 
sion on temporal IV's, see [4]. In the following, 11(A) 
denotes the subspace spanned by the columns of A and 
p(A) denotes the rank of A. 

2    Problem Formulation 

Let z(t) eCmxl be the observed data vector. In the 
array case, z(t) consists of the samples of an array with 
m sensors. In time series (sum of complex sinusoids) 
problems, z(t) = [z(t),... ,z(t + m- 1)]T consists of 
m consecutive samples of an observed scalar signal. It 
is assumed that z(t) consists of n narrow-band plane 
waves impinging on an antenna array or n complex si- 
nusoids corrupted by additive noise. Here the subspace 
dimension n, n < m, is assumed to be known. Hence, 
the following data model will be studied, see for exam- 
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pie [5]: 

z(t) = Tx(t) + e(t) (1) 

where e(t) is additive noise with arbitrary covariance 
matrix Ce = E[e{t)eH'(*)]. The structure of T may 
generally be arbitrary, but in this paper we focus on 
the special case of a ULA. The matrix T is deter- 
ministic and is constructed as T = [7(^1) • •-7(wn)] 
where i{wk) = [1 ^Uh .. .^ak(m~1)]T is a so-called 
steering-vector. Implicit in the definitions above is that 
the subspace Tl(T) might be slowly time-varying, i.e. 
K(T) = K(T(t)). 

With samples z(t),t = 1,..., we are interested m 
deriving an efficient algorithm which estimates 1l(T) 
at time instant t, given the subspace estimate at time 
instant t - 1 and the sample z(t). Typical for IV ap- 
proaches are the following. Assume that there exists 
an IV vector £(t) eC*1, l>n such that 

Al: E[e(t)£H(t)] = 0 

A2: p(E[x(t)£a(t)]) = p(Cs£) = n 

Assumption A2 is made in order to ensure that 
p{TCxi) = n, which implies that Tl{TCx^ = K(T). 
For the time series case, this assumption is discussed 
in [2]. Assumption A2 is not necessary for guarantee- 
ing DOA identifiability, see [4]. However, for reasons of 
simplicity, it is assumed to hold throughout the paper. 

3    Basic IV algorithm (IV-PAST) 

Consider the solutions to (W £ Cmxn): 

V(W) = (2) 

E[x(t)SH{t)] - WWHE[z(t)£H{t)] = 0 

<* v(w) = rcx{ - wwffrcIf = 0. 
Provided A2 is fulfilled, by definition of the orthogonal 
projector, all solutions to (2) will be of the form W = 
UrT where ft(Ur) = Tl{T), Ur € Cmxn is orthogonal, 
and T € CnXn is an arbitrary unitary matrix. Thus, 
for all solutions to (2) we have that 

wwff = nr = r (r*r)_1 vH = uru?   (3) 

is the orthogonal projector onto the space spanned by 
the columns of T. To derive a practical algorithm, con- 
sider the solutions to (compare with (2)) 

V(W(t)) = £7*-* (*(*)**(*)-        (4) 

-W(t)WH(t)z(k)£H(k)) = 0, 

where 7 is the forgetting factor (0 < 7 < 1). Using the 

projection approximation idea of [5], h(fc) = W (k - 
l)z{k), then gives 

W(t) = Cz{(t)C^(t) (5) 

with obvious definitions of the estimates of the covari- 
ance matrices. Using the matrix inversion lemma, the 
following algorithm is obtained: 

h(t)    =    WH(t-l)z(t) 
e(t)    =   z(t) - W(i - l)h(t) 

W(t)    =   W(t - 1) + e(t)K(t) 

(6a) 

(6b) 

(6c) 

1 
P(t)    =   - (P(i - 1) - P(t - l)h(*)K(t)) (6d) 

7 

K(t)    = 
£g(t)P(*-l) 

i + tHW(t-i)h{t) 
(6e) 

where P(t) = C^ (t). In the above we have assumed 
that initial values W(0),P(0) are given. These initial 
values only affect the transient behavior and are not 
important for the steady-state performance of the algo- 
rithm. They can for example be taken as any full-rank 
matrices. 

Due to the introduced approximations, the columns 
of W(i) will not be orthonormal. However, simulations 
show that they are 'nearly' orthonormal. Some appli- 
cations may require orthonormal columns, which may 
call for a reorthogonalization scheme such as Gram- 
Schmidt. However, in our simulations no orthogonal- 
ization is performed. 

Note that we have constrained the dimension of the 
IV-vector £(i) to I = n, which implies that no rank- 
reduction of the sample cross covariance matrix is per- 
formed. So, why not take W(t) = C^(t)? The main 

motivation is that the matrix Chi (t) post-multiplying 
in (5) forces the columns of W(t) to be 'nearly' or- 
thonormal, resulting in good conditioning. Thus, IV- 
PAST can be thought of as a simple way to approxi- 
mately orthogonolize the columns of Cz^(t). The ba- 
sic IV-algorithm will also serve as a preview of a more 
general rank-reducing IV-approach described in the fol- 
lowing section. 

4    Extended IV-algorithm (EIV-PAST) 

A straightforward extension of the previous discus- 
sion, I > n, leads to the following criterion 

V(W(t)) =   Czi(t) - W(t)WH{t)Czi{t) (7) 
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where W(t) € CTOXn, Cz€(t) 6 Cmx/. This approach 
corresponds to what in [3, Section 8] is called the Ex- 
tended IV estimate. Without loss of generality we as- 
sume that p(W(t)) = n. With probability 1 (w.p.l), 
p(Czz(t)) = min(m,Z) = n, but p(C^) = n < I. Con- 
sequently, a low-rank approximation of Cz^(t) is de- 
sired. Thus, the following theorem is needed. 

Theorem 1 Let Czi{t) have the SVD 

czi{t) = titvH =[ü.ü„] ss    0 

0       ±n 

(8) 

where Us € CmXn. The remaining partitions are of ap- 
propriate dimensions. W(t) is a stationary point of (7) 

iff W(t) = ÜT, where Ü denotes any n left singular 
vectors of U and T e Cnxn denotes an arbitrary uni- 
tary matrix. All stationary points ofV(W(t)) are sad- 

dle points except when Ü = Us. In this case V(W(£)) 
attains the global minimum. Note that for this choice, 

W(t)WH(t)Czi(t) = ÜsSsvf, which in the sense of 
the Frobenius norm is the best possible rank n approx- 
imation of CZf (t). 

Proof: See [2]. D 
Once again the projection approximation is applied: 

W*(t)C*(t) = W"(t) ]►>*-*«(*)€*(*) (9) 

$>*"* W"(* - l)z(k)tH(k) £ C^t) 
n~f      % v ' 

h(fc) 
fe=i 

which gives the (quadratic) criterion 

v-(w(*))= Ic^w-wwc^w 

The minimizing argument of (10) is given by 

*t W(t) = Czi(t)C^(t) 

(10) 

(11) 

where (.)t denotes the Moore-Penrose pseudo-inverse. 
This approach will in most cases improve the accu- 
racy of the estimates. For example, in Section 5 we 
will see that the tracking capabilities are much more 
'well-behaved' in this case. In Appendix A an efficient 
(3ml + ö(mn) complex multiplications) recursive up- 
dating formula of (11) is given. Note that the matrix 
inversion that arises in (14d) is of size (2x2), so it is 
a simple matter to invert it. 

)        100       120       140       160       180       200 
Sample No. 

Figure 1. One realization of the frequency esti- 
mates. SNR=5 dB, e(t) = —i-^ej*). 7 = 0.97 

5    Examples 

Consider the scalar signal 

2 

z{t) = ]T aj cos (2-n-fj(t)t + <Pj) + e(t) (12) 
i=i 

where a\ = a2 = V%- The random phases ipj 
are independent and uniformly distributed in (—7r,7r). 
Thus, n = 4. Chose m = 8 which gives z(t) = 
[z(t),... ,z(t + 7)]T. The (temporal) IV-vector is cho- 
sen as i*(t) = [z(t - M),... ,z{t-M -1 + 1)]T with 
M = 11. The number of instruments I is for IV-PAST 
/ = 4, and for EIV-PAST I = m = 8. The frequencies 
are estimated using the ESPRIT-approach, i.e. the 
angles of the eigenvalues of W^.m(£)Wi:m_i(£), where 
Wi:j denotes rows i to j of W. For all algorithms, the 
following initial values were used: 

p(o) = in w(o) = pBoL_n)XB] (13) 

However, the transient is typically not shown. In the 
simulations, e(t) = ^o^-ieffl, where q~l is the de- 
lay operator and e(t) is white Gaussian noise. Note 
that for this noise process, condition Al is violated: 
E[e(t)$H(t)] ^ 0. In the simulations, 7 = 0.97. From 
Fig.l we see that the IV based approach clearly re- 
duces the bias compared with PAST. Based on this 
observation, further simulations with PAST are omit- 
ted. The next example illustrates the tracking per- 
formance of the algorithms. The performance is also 
compared with the performance obtained with the fre- 
quency estimates obtained from the n dominant left 
singular vectors of Cz^(t). We consider a step-change 
in a frequency, see Fig.2 and Fig.3. In Fig.3 we have 
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Figure 2. One realization of the frequency esti- 
mates. SNR=8 dB, e(t) = ^„-^(t). 7 = 0.97 

Deration front Orthonormaity 

Figure 3. Deviation from orthonormality for a 
step-change. SNR=8 dB, e{t) = ^„-i^t). 
7 = 0.97 

used the following measure of deviation from orthonor- 
mality: ||WH(t)W(t) - I„||F. The basic IV-algorithm 
shows a tendency to 'over-shoot', but this behavior is 
reduced by EIV-PAST. This is perhaps the major im- 
provement offered by the Extended IV method. Note 
also that the estimates of the constant frequency are 
less affected for EIV-PAST than those of IV-PAST. 
Note also that it is almost impossible to distinguish 
the EIV-PAST estimates from those of the SVD, ex- 
cept during the transient phase. 

6    Conclusions 

In this paper Instrumental Variable generalizations 
of the subspace tracking algorithm PAST have been 
proposed. The presented algorithms are able to track 
slowly time-varying subspaces in colored noise fields. 
One requirement is that we must be able to find an 

rV-vector that is uncorrelated with the noise vector. 
Additionally, a certain rank requirement must be ful- 
filled. The conclusions are that an IV approach in our 
examples improves the results when the noise is not 
spatially white. 

A    Appendix 

In this appendix we give the recursive updating for- 
mulas for the Extended IV-PAST algorithm, P(i) = 

(Chdtf&hiitj)    ■ See PI for a derivation. 

W(t) = 

e(t) = 

X(t) = 

K(t) = 

*(*) = 

w(i) = 

72A(*) = 

v(t) 

6*«(*) 
h(t) 

P(*) 

(14a) 

(14b) 

(14c) 

(14d) 

(14e) 

(14f) 

W(i - 1) + e(t)K{t) 

v(t) - W(t - l)*(i) 

72A(*) + *H(t)P(i-l)*(t) 

X-\t)^H(t)P(t-l) 

[w(t) h(t)] 

chl:(t-mt) 

7 0 J 

=    [c,€(t-l)£(t)  *(*)] 
=   jChz(t-l) + h(t)ZH(t) 

=    <yC2i(t-l) + z(t)tH(t) 

=    WH(t-l)z(t) 

-    1 (P(i - 1) - P(t - l)*(t)K(*)) (141) 

(14g) 

(14h) 

(14i) 

(14j) 

(14k) 

r 
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Abstract 

The performance of DF-based beamformers is seriously de- 
graded in situations where the array is imprecisely calibrated, or 
when the spatial coherence of the signal wavefronts is perturbed. 
When the calibration errors or perturbation may be characterized 
by a set of parameters drawn from a known Gaussian distribu- 
tion, a maximum a posteriori (MAP) estimator may be used to 
separately estimate the directions of arrival and the perturbation 
parameters, resulting in essentially an on-line auto-calibration. 
This paper examines the improvement that results from using the 
MAP auto-calibrated steering vectors in standard DF-based beam- 
formers to estimate the received signal waveforms and suppress 
unwanted interference. For the special case of additive unstruc- 
tured calibration errors and uncorrelated signals, it is shown that 
the MAP beamformer is similar in form to so-called "subspace 
corrected" approaches. 

1. Introduction 

All methods for direction-finding (DF) and DF-based 
beamforming rely on the availability of information 
about the array response, and assume the signal wave- 
fronts have perfect spatial coherence. Depending on the 
degree to which the actual response or wavefronts dif- 
fer from their nominal values, DF and beamformer per- 
formance may be significantly degraded. To account 
for these types of perturbations, a slightly generalized 
model for the array response will be considered in this 
paper. The response will be parameterized not only by 
the directions of arrival (DOAs) of the signals, but also 
by a vector of perturbation or "nuisance" parameters 
that describe deviations of the response from its nomi- 
nal value. These parameters can include, for example, 
displacements of the antenna elements from their nom- 
inal positions, uncalibrated receiver gain and phase off- 
sets, etc.. With such a model, a natural approach is to 
attempt to estimate the unknown nuisance parameters 
simultaneously with the signal parameters. Such meth- 
ods are referred to as auto-calibration techniques, and 
have been proposed by a number of authors, including 
[1, 2, 3, 4] among many others. 

When auto-calibration techniques are employed, it is 
critical to determine whether both the signal and nui- 
sance parameters are identifiable. In certain cases they 
are not; for example, one cannot uniquely estimate both 
DOAs and sensor phase characteristics (unless of course 
additional information is available, such as sources in 
known locations, etc.). The identifiability problem can 

be alleviated if the perturbation parameters are assumed 
to be drawn from some known o priori distribution. 
While this itself represents a form of additional informa- 
tion, it has the advantage of allowing an optimal maxi- 
mum a posteriori (MAP) solution to the problem to be 
formulated. In [4] it is shown that, by using an asymp- 
totically equivalent approximation to the resulting MAP 
criterion, the estimation of the signal and nuisance pa- 
rameters can be decoupled, leading to a significant sim- 
plification of the problem. 

Presumably, any of the above auto-calibration meth- 
ods would provide not only improved DOA estimates, 
but also calibration information that would be useful 
in beamformer implementation. In this paper, beam- 
former performance is investigated for the case where 
the optimal MAP perturbation parameter estimates of 
[4] are used to update the array calibration. Simula- 
tions demonstrate that such an approach can result in 
a significant performance improvement, measured using 
either interference rejection capability or mean-squared 
error. In addition, for simple additive unstructured cal- 
ibration errors, the MAP approach is shown in certain 
cases to yield a beamformer similar to the subspace cor- 
rected algorithms described in [5, 6]. 

2. Mathematical Model and Algorithms 

The response of an arbitrary array of m sensors for a 
given DOA 6 will be denoted by the m-vector a(9,p), 
which is parameterized by a vector p € Mp that de- 
scribes the array perturbation. The array output is then 
modeled by the following familiar equation: 

x(t) = [a(61>P) !••• i a{6d,p)) 
8i(t) 

sd(t) 
+ n(0(l) 

= A(0,p)s(O + n(O, (2) 

where s(t) and n(t) represent the received signals and 
noise, respectively. It will be assumed that for a given 
collect, N samples are taken from the array. Both s(t) 
and n(t) are assumed to be temporally white zero-mean 
complex Gaussian random processes, with covariances 
given by cr2I and P, respectively. The perturbation term 
p is also assumed to be drawn from a Gaussian distri- 

0-8186-7576-4/96 $5.00 © 1996 IEEE 
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bution with known mean p0 (corresponding to the nom- 
inal, unperturbed array response) and covariance fi. 

Given the above, the covariance of the array output 
and its eigendecomposition may be written as 

R = A(ö,p)PA*(Ö,p) + tr21 = ESASE: + (72EnE;, 

where A„ contains the d largest eigenvalues, and the 
columns of the m x d matrix Es are the corresponding 
unit-norm eigenvectors. Similarly, the columns of En 

are the m - d eigenvectors corresponding to cr . 

2.1. An Asymptotic MAP Estimator 

In [4], it is shown that estimates of 0 and p asymptot- 
ically equivalent to those from the exact MAP estimator 
may be obtained by setting1 

0 = arg min ajJMao -f T    f 
0 

P = PO -r-1f, 

(3) 

(4) 

where 

ao = vec(A(0, p0)) ,  M = Ür ® (EBE;) (5) 

Ü = ,r-2ÄtE,Ä2Ä71E:Ät* , f = Re{D;Ma0} (6) 

f = ReJD;MD/) + 2^n-1| (7) 

öa(0,p) da(0,p) 
Dp = 

dpi dpp 
(8) 

fi.po 

and where a2 and Ä are "consistent" estimates deter- 
mined from some initial estimation step. The above 
approach is quite general in that, by proper choice of 
p, it can be applied to arbitrary types of model errors. 
Another key advantage is that estimation of 0 and p 
is decoupled; a search is required only for the d DOA 
parameters in 0, and not for p (which is calculated di- 
rectly given 0). Other properties of the algorithm are 
outlined in [4]. 

2.2. Optimal Beamformers 

The minimum mean squared error (MSE) beamformer 
weights are easily shown to be 

W MSE = R-1RIS = R-1A(0,p)P (9) 

When the desired signal is uncorrelated with the inter- 
ference, P is diagonal and the minimum MSE solution is 

1 Strictly speaking, the equivalence of the above estimator and 
the optimal MAP approach only holds for first order errors p - p0 

that are "of the same order" as the finite sample effects of the 
noise. In other cases (particularly those model errors are domi- 
nant), a different approach should be used. For more details, see 
[4, 7]. 

just a scaled version of the so-called minimum variance 
distortionless response (MVDR) beamformer: 

W = 
a*{§)R-la(6) 

(10) 

In the general case where the signal and interference 
are correlated, the optimal weights depend on the sig- 
nals themselves through Rxs or P, and thus they cannot 
be used directly (i.e., without a training sequence, for 
example). In the approach of [8], the quantities P and 
R in (9) are replaced by their structured ML estimates: 

PS = AJ(R-*
2
I)AJ*  ,  Rs = A0PSAS + *2I, 

where A0 = A(0,po), (-)f denotes a (left) pseudo- 
inverse, and R is a sample estimate of R. 

Since calibration errors were not addressed in [8], the 
nominal model p0 was used to calculate the beamformer 
weights. Nevertheless, the method performs well when 
calibration errors are present, as recently demonstrated 
in [9]. On the other hand, the MVDR approach is well 
known to be hyper-sensitive to array perturbations, es- 
pecially at high SNR. While ad hoc methods employing 
artificial noise injection have been used to combat this 
problem, other techniques based on subspace corrected 
(SC) weights have found success in experimental sys- 
tems [5, 6]. In these approaches, the R_1 term in (10) 
is replaced by ESA7XE*. This is equivalent to project- 
ing a{6) onto the signal subspace prior to forming the 
MVDR weights. 

One of the goals of this paper is to study the im- 
provement that results from using the method of [8] with 
A(0,p) rather than A(0,po), where p is obtained from 
the MAP estimator in (4). This approach will be re- 
ferred to as the MAP beamformer in the sequel. In the 
next section, an interesting connection is made between 
the MAP beamformer and the SC-MVDR method. In 
particular, it is shown that for simple unstructured ar- 
ray errors and uncorrelated signals, the SC-MVDR and 
MAP weights have a very similar form. 

3.  Some Special Cases 

For the moment, consider the following simple un- 
structured model for the perturbed array response: 

A(0,p) = A(0) + Ä 

P = 
Re{vec(A)} 
Im{vec(A)} 

(ID 

(12) 

where the columns of Ä, denoted äi, are modeled as zero 
mean Gaussian random vectors with moments 

E[äiäl) = vikl ,  Efcajn = 0       z,k = 1,• • •,d. 
(13) 
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This model corresponds to an additive, circularly sym- 
metric complex array perturbation that is uncorrelated 
from sensor to sensor, but possibly ^-dependent. It is 
easy to verify that under these assumptions, the covari- 
ance of p is given by 

n=2 
Re{T} ® I 
Im{T}®I 

•Im{T}®I 
Re{T} ® I (14) 

where the i,kth element of the matrix T is vik. 
It is interesting to examine the form of the MAP es- 

timate p for this case. To begin with, note that for 
the above model p0 = 0 and Dp = [I jl], where I is 
md x md. Thus, p = ~r_1f, and 

r = RefM + ^T-1 

ImfM+^T-1 

51} -IrnfM + ^T-1®]:} 

51}     Re{M + ^.T-1®I}_ 

f = Re{Ma0} 
Im{Ma0} 

Using the fact that, for any invertible matrix Z, 

Re{Z} -Im{Z} 
Im{Z}      Re{Z} 

-l 
RefZ-1} 
ImfZ-1} 

■ImfZ-1} 
Re{Z-x} 

it is easy to show that 

RejfM+iY-1 

Im{( 
P = - 

M+^T-1 

(15) 

(16) 

A further simplification of (16) is possible that is quite 
revealing. Using the definition of M in (5), note that 

= (ur + £T-1)-1 ® (E„E;) + NT ® (E.E;) . 

Multiplying this equation on the right by Ma0 and sim- 
plifying then yields 

p= - '(I+^(TUr)-1)-1®(E„E;) 

(i + i^u^-i)-1®^^) 

(17) 
Finally, using (12) and properties of the Kronecker prod 
uct, the MAP estimate of the array response becomes 

A(0,p)=A(ö)-EnE;A(ö) I+±(TUr)- 
-) 

-l 

(18) 
The key point of interest is that, if T_1 /N -* 0, then 

the MAP estimate of the array response converges to a 
subspace corrected version of the nominal response: 

lim     A(0, p) 
T-VJV-O 

: E.E;A(ö) 

Furthermore, if the estimated MAP arrav response is 
used in (10), the MVDR beamformer (10) will converge 
to the SC-MVDR approach. The condition T~l/N -> 0 
occurs either with a large data sample, or when the ar- 
ray perturbation is large. In either case, the information 
provided by the prior distribution of p is of little value, 
and is essentially ignored by the MAP criterion. This 
observation provides some theoretical justification for 
the SC-MVDR technique, which previously had been 
derived using ad hoc (but well motivated) reasoning. 
However, in cases where the prior cannot be neglected, 
using SC response vectors for beamforming will not be 
optimal and significant degradation can result. This is 
seen in the simulation examples described later. 

3.1. Gain and Phase Errors 

For arrays composed of nominally identical elements, 
a common approach used to describe deviations in the 
array response attempts to model the non-uniform gain 

. and phase effects of the receiver electronics behind each 
antenna element. In this model, the nominal response 
is perturbed by an unknown complex diagonal matrix: 

A(0,p) = GA(0)  ,   p = Re{g} 
Im{g} (19) 

where g = diag{G}. The mean of the distribution for 
p in this case is given by pQ = [er 0]T, where e is an 
m x 1 vector of ones. For simplicity, in this discussion 
the covariance of p will be assumed to be SI — (o^/2)I, 
which implies that the individual gain and phase errors 
are all mutually independent and identically distributed. 

The derivation of the MAP estimate of p and hence g 
is straightforward but somewhat cumbersome, and thus 
will not be presented here. However, the result is quite 
simple, and is given by 

g=(l + <#VZ)     e 

J2 ukiä{Öi)aT{6k) 
i,k=l 

O(E„E;; 

(20) 

(21) 

where uki is the k,ith element of Ü, (•) denotes conjuga- 
tion, and © an element-wise (Hadamard) product. Note 
that for very small gain/phase errors where cra -> 0, 
g —> e and hence G —* I as expected. 

4.  Simulation Results 

In this section, the performance of the MAP beam- 
former is studied by means of a number of simulation 
examples. The first example involves a nominally unit- 
gain uniform linear array perturbed by an unstructured 
calibration error in the form of equation (11)-(14) with 
T = all and aa = 0.2. The array receives 100 samples 
of two 20dB SNR uncorrelated Gaussian signals with 
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Figure 1: A Comparison of Beamformer Performance, Unstruc- 
tured Calibration Errors 
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Figure 2: Root MSE Performance of Various Beamformers for a 
Multipath Channel 

arrival angles of 5° and 15°. Using DOA estimates from 
the optimal MAP estimator, the relative interference re- 
jection capability of the MVDR, SC-MVDR, and MAP 
beamformers was calculated for various array sizes. The 
results are plotted in Figure 1 based on 500 indepen- 
dent trials. The plot shows the gain of the beamformer 
weights for the 5° source in the direction of the 15° in- 
terferer (normalized for a unit gain response at 5°). The 
subspace correction eliminates the signal cancelation ef- 
fect of the MVDR approach, but the MAP beamformer 
provides a significant advantage, especially for larger ar- 
rays. The above simulation was repeated assuming re- 
ceiver gain/phase errors as described by (19), also with 
aa = 0.2, and a plot almost identical to Figure 1 was 
obtained. Algorithm performance is seen in this case 
to depend very little on the type of calibration error 
encountered. 

When the signals arriving at the array are highly cor- 
related, interference rejection is no longer an appropri- 
ate performance criterion. In such cases, an optimal 
beamformer will attempt to combine correlated arrivals 
with the desired signal to improve the quality of the re- 
sulting estimate, as measured using (for example) mean- 
squared error. To examine beamformer performance for 
the case of correlated signals, a two-ray multipath chan- 
nel was simulated for various relative delays. A miscal- 
ibrated 5-element linear array was assumed to receive 
a random QPSK signal from -6°, as well as a slightly 
delayed copy of the signal from 6°. Both arrivals had an 
SNR of 0 dB, and the array was again perturbed accord- 
ing to (11)-(14) with T = all and <r„ = 0.15. For each 
trial, MAP DOA estimates were obtained based on 75 
samples from the array, and normalized RMS signal er- 
rors were computed. The results are plotted in Figure 2 
for various relative delays between the two arrivals. The 
"uncompensated" approach corresponds to the method 
of [8] implemented with A(0, p0) rather than A(0, p) as 
in the MAP beamformer. The minimum MSE curve was 
obtained using a known 75-sample training sequence to 
compute the optimal weights, and was included to give 

an idea of the "best possible" performance. 
While the SC-MVDR approach can to some degree 

compensate for array perturbations, it cannot eliminate 
signal cancelation due to the presence of a correlated 
arrival, and its performance in this case is quite poor. 
For small delays, correcting for calibration errors yields 
a 25-30% improvement in RMS error, which translates 
into a reduction in symbol error rate of approximately 
a factor of 6 (from .041 to .007) for this example. 
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Abstract 

An iterative algorithm (IVESPA) for narrow-band direc- 
tion finding and waveform recovery is presented which is 
based on the virtual-ESPRIT (VESPA) of [I]. IVESPA can 
handle the case where the data length is short and some 
of the sources have very small higher-order statistics com- 
pared to others, in which case VESPA needs more data to 
localize the weak sources. IVESPA can be applied to uncal- 
ibrated and arbitrary-shape arrays provided the array has 
two sensors having identical response-the same require- 
ment as in VESPA. Results of a real data experiment demon- 
strating IVESPA are presented. 

1. Introduction 

Estimating the parameters of narrow-band signals using 
an array of sensors has been a very attractive problem of 
research. Typically, the parameters of interest are the di- 
rections of arrival, polarizations and the waveforms of the 
signals. Existing approaches to this problem can be clas- 
sified into two main categories as the so-called subspace- 
and nonsubspace-based ones. The subspace-based methods 
are usually preferred, because they yield high resolution re- 
sults. These methods require eigendecomposition or singu- 
lar value decomposition of an array covariance or cumu- 
lant matrix, depending on the particular subspace-method 
used. From configuration point of view, subspace methods 
based on the array covariance matrix are applicable to ar- 
rays which have either analytically-known response or iden- 
tical but displaced subarrays, or calibrated arrays. Among 
the subspace methods, VESPA of Dogan and Mendel [1], 
which is based on a cumulant matrix, has the lightest config- 
uration requirements: two sensors having identical response 
are needed; other sensors in the array may have arbitrary and 
unknown responses and configurations. 

Like all subspace-based methods, VESPA relies on sam- 
ple statistics of the array measurements which suffer from 
cross terms due to the presence of multiple sources. When 

some of the sources have very small powers and cumulants 
compared to those of other sources, undesirable cross terms 
are present in the sample statistics of the weak sources due to 
the other sources for small numbers of samples. In this case, 
VESPA fails to accurately localize the weak sources. In 
practice, this case occurs when the source signals have dif- 
ferent constellations and significantly different power lev- 
els. Note that the denser the source constellation becomes, 
the smaller the cumulant of the signal becomes, because the 
signal looks more Gaussian. For example, fourth-order cu- 
mulants of unit-power BPSK, 4QAM and 16QAM signals 
are -2, -1 and -0.68, respectively. In addition, sources hav- 
ing small powers are deemphasized during the calculation of 
sample higher-order statistics, because higher than second- 
order powers of the data are computed. As an example of 
this case, we will present the results of a real data experi- 
ment, in Section 3, that involves three sources: a BPSK sig- 
nal, another BPSK signal with power -11.23 dB below the 
first one and a 16QAM signal with power -22.10 dB below 
the first BPSK signal. 

The problem is formulated and the solution is presented 
in Section 2. A real data experiment is presented in Sec- 
tion 3. Conclusions are provided in Section 4. Through- 
out this paper, lower-case boldface letters represent vectors; 
upper-case boldface letters represent matrices; and, lower 
and upper-case letters represent scalars. A(i, j) denotes the 
y-fh element of A. 

2. Problem Formulation and the Proposed Al- 
gorithm 

Suppose that we have an M element array containing an 
identical response pair of sensors. The other elements of the 
array may have arbitrary and unknown configuration and re- 
sponses. Consider a signal scenario where there are P in- 
dependent narrowband signals having nonzero fourth-order 
cumulants which are received by the array from directions 
fai, ■••,&>}. Letr(<) = [ri(*),.--,rjtf(i)]Tbethere- 
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ceived signal vector which can be expressed as 

r(t) = As(t) + n(t) (1) 

where A = [ai, • • •, aP]T is the M x P steering ma- 
trix, s(<) = [«i(t), • • •, sP{t)] is the P-vector of inde- 
pendent sources and n(i) is a Gaussian noise process inde- 
pendent of the signals. The problem of interest is to esti- 
mate thedirections {^i, • • •, <j>p}, and to recover the sources 
{si{t),---,sp(t)}. 

Before presenting the solution, we adopt the following 
notation for fourth-order cumulant matrices. Given two 
scalar processes xi(t) and x2(t) and an M-vector process 
y(t), we define cumfcifi), x2{t), y(t),y(t)H) as the M x 
M matrix whose ij-th entry is cum(xi(t), x2(t), yi{t), 
y*j(t)) where yi{t) and %■(<) are the f-th and j-th compo- 
nents of y(i), respectively. 

We propose the following iterative algorithm for esti- 
mating the directions of the signals: 

Step 1: Estimate the following two fourth-order cumulant 
matrices: 

Cn^cuimV! (*),*•?(<),!•(*), r(*)ff) 
p 

= £74,p|A(l,p)|2apap* 
P=I 

AAA H (2) 

and, 

Cn = cum(r2(t),r*(t),r(t)Mt)H) 

= f>,p|A(l,p)|2e-^si"^apa/ 
P=I 

= A*AA H (3) 

where {74,,,}^=! are the fourth-order cumulants of the 

sources; A = diag{\A{l, l)ff4,i, • • •, |A(1, P)|VP} 

and * = diagie-Wsin *»,•••, e^'3*4sin *'}. (2) is de- 
rived using cumulant properties [CP1], [CP3],[CP5], [CP6] 
in [2]. Note that the fourth-order cumulant of the additive 
Gaussian measurement noise is zero. 

Having estimated the matrices Cn and C12, and 
assuming only one source is present, the arrival angle 
<f>i of the most powerful source is obtained by follow- 
ing the ESPRIT solution described in the Appendix, as 
0! = -sin-1 (s^jZf/r//„)). Note that this step is the 
same as VESPA except that we assume there is only one 
source. The procedure in the Appendix also gives the 
steering vector ai of the most powerful source (i = 1, 
ai = bi). Then proceed by repeating the following steps 
fori = 2, •••,/>: 

Step 2: Form a modified signal, r,(t) = N<r(<) where 
Nj is the left null-space of the M x (i - 1) matrix 
A,- = [aj_i, • • •, ai], (A2 = a^. Doing so suppresses the 
most powerful (i - 1) sources in r(t). 

Step3: Estimate the following two (M-i+1) x (M-i+l) 
cumulant matrices: 

Cn = cum(r,-i(<), rtMMQM*)*) <4) 

Ci2 = cum(r,-2(<), !£(*), '<(*). n(*)B) (5) 

where rik {t) is the fcth element of (Af - i + l)-vector rj {t). 
Assuming only one source is present, find the modified 

steering vector b,- ofthat source following the procedure in 
the Appendix. 

Step 5: Compute as- = pmv(Nj)b,-, where pinv denotes 
pseudoinverse. 

Step 6: Use the elements of aj corresponding to the identi- 
cal response pair of sensors to find the direction <£, of the ith 
source. This is done as follows: 

Let the identical response pair be the m-th and (m + l)th 
sensors. Then the responses of these sensors to the i-th 
wavefront, i.e. the m-th and m + 1-th elements of a,-, are in 
the form aim = a and a,(m+1) = c.e-^sin *, where d 
is the separation between the m-th and (m + l)th sensors. 
Consequently, fa can be found from a,m and a;(m+i). 

Step 7: Recover the ith source using a, in an MVDR beam- 
former. 

3. Experimental Results 

In this section we demonstrate IVESPA and compare it 
with VESPA by means of the following experiment, using a 
set of data provided by our sponsor, CRASP. 

Three signals of 1000 symbols each are generated. The 
signal types are BPSK, BPSK and 16QAM, and they oc- 
cupy a bandwidth of 350 KHz. These signals were used 
to modulate wavefronts designed to approximate uniform 
plane waves impinging upon an 8-element uniform linear ar- 
ray with an element spacing of one half wavelength at 900 
MHz. The arrival directions are: BPSK1 at 6.3°, BPSK2 at 
25.2° and 16QAM at 40°. The 900 MHz 8-channel mea- 
surements were downconverted and sampled at 5.12 MHz. 

The eigenvalues of the estimated 8x8 array covariance 
matrix are as follows: 

104* [6.25,0.47,0.03,0.00,0.00,0.00,0.00,0.00]    (6) 

First, VESPA was applied to this data. VESPA starts by 
choosing a guiding sensor pair and estimating two cumulant 
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matrices. In our case, any two of the sensor measurements 
can be used as the guiding sensor pair since the array is uni- 
form and linear. We used the first two sensors for this pur- 
pose, and estimated the following fourth-order cumulants: 

C^cumMO,^),!^),!^)") 

C2^cum(r2(t),rl(t),r(t)At)H) (7) 

Before applying the rest of the VESPA steps we first 
checked the singular values of Ci and C2; e.g., the singular 
values of Ci are found to be: 

108 * [3.73,0.06,0.004, 0.00,0.00,0.00,0.00,0.00]   (8) 

Observe that the the second and third signal singular values 
which belong to the second BPSK source and the 16QAM 
source, respectively, are very small compared to the first sin- 
gular value, which belongs to the first BPSK signal. One 
reason why the singular values of the cumulant matrix are 
more separated than the eigenvalues of the covariance ma- 
trix is that, the computation of fourth-order cumulant esti- 
mates requires fourth powers of the data, and these increase 
faster than the second powers for high signal levels. Yet an- 
other reason is the difference between the fourth-order cu- 
mulants of equal-power BPSK and 16QAM signals, as men- 
tioned in Section 1. Applying VESPA, we obtained the fol- 
lowing angle estimates: 

6.37°, 6.30°, 7.43° (9) 

which shows that VESPA is biased towards the most pow- 
erful source. 

Second, we applied IVESPA to this data, and obtained the 
following angle estimates: 

6.34°, 25.86°, 40.59° (10) 

It is seen that the arrival angles are estimated correctly with 
IVESPA. 

Finally, we show that as the sample size is increased, 
VESPA gives accurate estimates. To show this, we simu- 
lated the same real data experiment in the computer paying 
particular attention to the signal conditions. We increased 
the sample size by 500 steps in this range, and for each 
sample size, we ran both VESPA and IVESPA on the sim- 
ulated data for 10 realizations of the experiment. The av- 
eraged direction-of-arrival estimates obtained from VESPA 
and the actual values of DOAs are plotted as a function of 
data length in Figure 1. It is observed that for short data 
lengths VESPA fails to give reliable estimates; however, as 
the data length increases, the estimates converge to their ac- 
tual values. On the other hand, IVESPA worked fine for all 
the values of the data length. 

4. Conclusions 

We presented an iterative high-resolution cumulant- 
based algorithm (IVESPA) for direction finding and wave- 
form recovery. Our algorithm is based on VESPA of [1]; 
however, IVESPA can handle some signal scenarios for 
which VESPA fails to localize all the sources accurately. 
rVESPA is more general than VESPA in terms of applicabil- 
ity, but computationally more intensive. We demonstrated 
IVESPA by means of a real-data experiment. 

5. Appendix: A procedure for estimating the 
arrival angle and steering vector of the 
most dominant source 

A modified form of TLS ESPRIT [3] for one source: 
Step 1: Stack C,i and Ci2 intoa2(M-i+l) x (M-i+1) 
matrix C as follows: 

Ci2 (11) 

and, perform the SVD of C; keep the first left singular 
2(M — i + l)-vector of C. Let this vector be ui. 

Step 2: Partition ui into two (M - i + l)-vectors uu and 
Ui2- 

Step 3: Perform the SVD of [uu, ui2]; keep the last right 
singular vector of [uu, ui2]. Let this 2-vector be f. 

Step 4: Partition f as f = Jx 
fv 

Step 5: An estimate of the modified steering vector of the 
source is obtained to within a scalar, as b, = un U Ul2- 
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Abstract 

Noise reduction of transportation is of major concern 
for environmental topics. As regards the railway, high 
speed creates new noise sources. This paper describes 
the last step of acoustic moving sources study. Localiza- 
tion methods using microphones arrays provide positions, 
acoustic powers, and spectrums of sources. The proposed 
one computes the directivity pattern of sources and gives 
a time-frequency representation of the emited signal while 
the sources pass the measurement point. Experiments are 
carried out to characterize acoustic sources of a high speed 
train (TGV) in real operating conditions. 

only concerns linear trajectories and constant speed move- 
ment. Sources are supposed localized thanks to a method 
described above. First, the principle of the technique is 
described. Then, the array processing technique is pre- 
sented. The choice of the bilinear time-frequency distri- 
bution is achieved. Some simulations are carried out to test 
the method with several directivity patterns. The directivity 
pattern of a moving source of a high speed train (TGV) is 
computed. 

2. Proposed method 

2.1    Principle 

1. Introduction 

Localization techniques, using an array of microphones, 
provide the acoustic power, the position and the spectrum 
of the source. The beamforming can not be used [4] to lo- 
calize high speed moving noise sources without modifica- 
tions. The dedopplerisation [1] is a method currently used. 
Another technique [5] needs a time-frequency analysis of 
the output of the array. In this case, the array is focused 
at the end-fire. The time localization property of bilinear 
time-frequency representation and the spatial selectivity of 
the array perform the localization. The directivity pattern 
of moving acoustic sources is much difficult to estimate. Its 
computation must be performed while the source passes the 
measurement area. 
In this paper, a method to measure the directivity pat- 
tern of a moving noise source is presented.  Our interest 

In order to estimate the directivity pattern of a noise 
source, its level is measured for several observation angles 
around. When the source is moving, it is difficult to turn 
around. On the other hand, the passing source can be ob- 
served through several angles. The array processing per- 
forms the tracking. Then, the evolution of its level may be 
computed by a time-frequency representation. The result is 
presented according to the observation angle in the source 
space in a polar plot. The figure 1 presents the three steps 
of the technique described below. 

2.2   Source tracking 

Firstly, an array processing focuses the moving source 
during its passby. The employed method is very similar to 
the dedopplerisation method used in the context of localiza- 
tion by [1]. Here, theposition of the source is considered to 
be choosen. The Doppler effect is removed by re-building 
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the emitted signal which would be received on sensor in the 
case of a non-moving source. The array output of N micro- 
phones is computed with the following equation : 

S(t)    = ET^ciW-i?) 
2-,» = l 

(1) 
Ri 

where Pi(t) is the pressure on the microphone i at time t, 
Ri is the distance between the microphone i and the focused 
source at time t, a,- is a coefficient of a weighting window 
and c is the sound velocity. The computation of the acoustic 
pressure at time t + ^ needs an interpolation between two 
samples. The output signal S{t) corresponds to the emited 
signal of the focused source, windowed by a spatial filter 
moving around it. The continuous estimation of the signal 
level provides the directivity pattern. 

2.3    Bilinear transformation of the reconstructed 
signal 

During the previous tracking, the Doppler effect is not 
perfectly removed because of the interpolations, so a fre- 
quency modulation remains. An efficient analysis tool must 
be able to track the signal level of the output of the array 
processing. Flandrin [2] has shown that some transforma- 
tions belonging to the Cohen's class are well suited to track 
frequency shifts: 

COs(t,f)} = J J js{t> + T-)S*{t> :) 

J^freJ2^(t'-t)f^T^drldt>dT (2) 

where f(r/, r) allows to build the transformation suited to a 
given frequency evolution. 
In a first approximation, the frequency evolves slowly ac- 
cording to a linear law. Among Cohen's transformations 
(equation 2), the Wigner-Ville (WV) transformation is opti- 
mal to follow linear frequency modulation : 

WVs(tJ) = js{t+T-)S*{t-T-)e-^Tdr. (3) 

Another property of this transformation, in contrast with the 
Fourier transform, is the conservation of the time support of 
the signal. This property allows to localize the apparition 
time of the signal with more accuracy. 
In practice, the Pseudo-Smoofhed Wigner-Ville (PSWV) 
transformation is used to reduce the interference terms due 
to the bilinear structure of the WV distribution. 

2.4   Directivity pattern representation 

The previous step of the proposed method provides a 
time-frequency diagram of the output of the array process- 
ing. It corresponds to the levels of the focused point at each 

frequency. An algorithm permits to follow the maximum 
level along the modulation curve around the emitted fre- 
quency. A reference of the source position is taken at thebe- 
gining of the tracking. The time axis of the time-frequency 
diagram is converted into observation angles in the source 
space. The directivity pattern corresponding to the position 
and the frequency selected can be drawn in the source space. 

3. Simulations 

In order to test the described method, some simulations 
are carried out. A sine-wave source at frequency /, consid- 
ered to be localized, is moving along a linear trajectory at 
constant speed v. Its directivity pattern is a cos 9 shape, like 
a dipole source. The received pressure on the microphone i 
is [3] : 

W) 

where 

— D{6i)   „,,„ sin (2nf(t - ^)),      (4) 

cos(0j) 
vt 

y/D* + (vt)2 

and where Ma = % is the Mach number, D is the distance 
between the trajectory and the receiver and £>(#;) describes 
the source directivity. 
The output of a linear array of 29 microphones spaced 
out 6cm and located at 6.5m away from the trajectory is 
computed. Figure 3 shows the directivity pattern D{9) of 
the simulated source in dotted line. The tracking of the 
supposed source position is achieved with the equation 1. 
The PSWV transformation of the re-builded signal is com- 
puted and presented in figure 2. In this simulated case, the 
Doppler effect is perfectly removed and the constant source 
frequency appears. The time axis is converted into a 9 axis. 
At time Os, the source is at the end-fire of the array. The 
measured directivity pattern drawn in the source space is 
presented in solid line in figure 3. This result can be com- 
pared with the directivity pattern of the simulated source 
presented on the same picture. 
The proposed method has been tested for several directiv- 
ity patterns with different shapes and directions and also for 
different source speeds. In all cases, it measures a directiv- 
ity pattern corresponding to the simulated one. 

4. Measurements 

This method is applied on acoustic sources in a real sit- 
uation. The previous linear array configuration is used. Its 
frequency rangeis [2000Hz, 4000Hz]. An experiment with 
a moving acoustic source for which the position and the fre- 
quency are known is carried out. A loudspeaker is fixed on 
a high speed train (TGV) and generates two sine-waves at 
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3000i7z and 3400Hz. 
The figure 4 shows the result of the localization [5] of the 
acoustic source on the train. The position along the train 
is -11.5m. This area is selected to be analyzed with the 
proposed method. The PSWV of the tracking signal is pre- 
sented on figure 5. The Doppler effect is not perfectly re- 
moved. The energy of the signal is concentrated round two 
frequencies corresponding to the emitted ones. The follow- 
ing of maximum levels along modulation curves permits to 
extract two directivity patterns at frequency 3000Hz and 
3400Hz shown in figures 6 and 7 in the source space. The 
frequency evolution of the source during the tracking shows 
that the algorithm follows a single source. 
For both frequencies, the shapes of directivity patterns are 
similar. The movement introduces a small rotation of the 
diagrams. This technique has been successfuly applied on 
noise sources of the train. 

5. Conclusion 

The proposed method is the final step of the study of 
moving acoustic sources. A localization technique provides 
for each source, the acoustic power, the position along the 
train, the height and the spectrum. The time-frequency rep- 
resentation of the source tracking permits to characterize the 
emited signal. If it is localized in position and frequency, 
the directivity pattern of the source can be computed. 
The main advantage of this technique is that the measure- 
ment is performed in real operating conditions. In this case, 
the rotation of the directivity pattern probably due to an 
aeroacoustic effect can be observed. Some other effects of 
the movement, depending on the source speed for example, 
have been noticed. Then, this method improves the under- 
standing of phenomena responsible for noise generation. 

LOCALIZATION 

Frequency 

£ 
TRACKING of the 

selected area 

TIME-FSEQUENCYREPRESENTATION 

of the tracking 

Frequency 

<-^h- 
TRACKING OFTHELEVEL 

along the modulation curve 

Figure 1. Diagrammatic representation of the 
method. 
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Figure 3. Directivity pattern in cos ö (dB) of the 
simulated source (dotted line) and directiv- 
ity pattern in dB measured by the proposed 
method (solid line). 
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Figure 4. Localization of acoustic sources on 
the train. 
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Figure 5. PSWV transformation of the tracking 
signal. 

Figure 6. Directivity pattern in dB of the 
source at frequency 3000 Hz and frequency 
error in percent during the tracking of the 
maximum level. 

Figure 7. Directivity pattern in dB of the 
source at frequency 3400 Hz and frequency 
error in percent during the tracking of the 
maximum level. 
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Abstract 

In this paper we present a novel method for spatial and 
temporal frequency estimation in the case of uncorrelated 
sources. By imposing the diagonal structure given in the sig- 
nal covariance matrix, it is possible to improve the perfor- 
mance of subspace based estimators. The proposed method 
combines ideas from subspace and covariance matching 
methods to yield a non-iterative frequency estimation algo- 
rithm. In a numerical example we show that the estima- 
tor has a lower small sample resolution threshold than root- 
MUSIC and similar large sample performance. 

1. Introduction 

Estimating frequencies from uniformly sampled data has 
been an active research area for decades. A number of, so 
called, high resolution algorithms or eigenstructure meth- 
ods have been presented and analyzed in the literature, e.g., 
[4, 6, 7, 8]. One disadvantage with these subspace based 
methods is that it is difficult to incorporate knowledge of 
the source correlation into the eigendecomposition. In this 
paper we propose an estimator which combines ideas from 
subspace and covariance matching methods. The objective 
is to find a frequency estimator which uses the knowledge 
of the signal correlation without significantly increasing the 
estimator complexity. In a numerical example we show that 
the proposed method has promising small sample perfor- 
mance. 

2. Problem Formulation 

The well known problem of estimating temporal or spa- 
tial frequencies from uniformly sampled data corrupted by 
additive white noise can be reduced to the problem of de- 
termining the parameters in the following model of the data 

covariance matrix 

R = AHSA*(w) + a2I (1) 

where d is the number of frequencies and where o> = 
[wi, • • • , Wd]T. In what follows we assume that d is known, 
if unknown, it can be estimated from the data by techniques 
described in [2, 9]. 

In (1), the d x d matrix S denotes the unknown diagonal 
signal covariance matrix, a1 is the unknown noise variance 
and the m x d Vandermonde matrix A(o>) is defined by, 

/       1 

AM 

1      \ 

\gi(m-l)wi      ...      ei(m-l)wd , 

(2) 

where m is the number of sensors in the array processing 
case and the data window length in the temporal case. 

In the spatial frequency estimation problem, the matrix 
A is often parameterized by the direction of arrivals (DOA) 
denoted by 6. For a linear array with uniformly spaced ele- 
ments, the relationship between w and 6 is given by 

Uk 
27rAsin(0it) 

(3) 

where A is the element spacing and c denotes the speed of 
propagation of the impinging wave, and where 6k is mea- 
sured relative array broadside. 

3. Frequency Estimation 

The focus of this paper is on how to estimate the frequen- 
cies in the vector u> = {u)X, ■ ■ ■ ,ud]T. In particular we 
would like to use the knowledge that the signals are uncor- 
related without increasing the estimator complexity consid- 
erably. 
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The so called subspace estimation techniques rely on the 
properties of the eigendecomposition of (1). Let {A*} de- 
note the eigenvalues of R arranged in descending order, i.e., 
Ai > A2 > ■ • • > Am. Since A is full rank, due to its Van- 
dermonde structure, and S is positive definite, it follows that 

Ajb>cr2 for k — 1, ,d 

Ad+i — ■ • • — A„ (4) 

The eigenvectors of R corresponding to {Ai, • ■ • , Am} are 
denoted with {ex, ■ ■ • , em}. Define 

Es = [ei,--- ,ed], (5) 

En = [ed+i,--- ,em], (6) 

As = diag[Ai,--- ,Ad], (7) 

An = diag[Ad+i, • • • , Am] = <r2I, (8) 

where the notation diag[-] refers to a diagonal matrix with 
the arguments as diagonal elements. With the notation in- 
troduced above we have 

R = EsAsE;+a2EnE;. (9) 

Combining the two expressions for R in (1) and (9) yields 
the following equality 

ASA* + a2l = ESASE: + <r2EnEn •        (10) 

Since EnE*, = I - E.EJ, it follows that 

ASA*=ESAE*, (11) 

where A = As - CT
2
I. By using the vec-operator (d = 

vec(D) is a vector obtained by stacking the columns of D) 
(11) can be written as (vec(XYZ) = (ZT ® X) vec(Y)) 

(Ac ® A) vec(S) = (EJ ® E.) vec(A)        (12) 

where ® denotes the Kronecker matrix product and where 
()c denotes complex conjugation. Since S and A are diag- 
onal matrices with real-valued entries, there exists a (d? x d) 
selection matrix L such that 

vec(S) = Ls,        vec(A) = LA, (13) 

where s and A are vectors consisting of the diagonal entries 
of S and A, respectively. 

Let R denote a sample estimate of the theoretical covari- 
ance matrix, and let Es be the estimated "signal subspace" 
obtained from an eigendecomposition of R similar to (9). 
Replacing Es and A with its estimates in (12) we have 

B(w)s«FA, (14) 

where B(w) = (Ac ® A) L and F = (E
C

S ® Es) L. We 

now suggest to estimate the unknown parameters by mini- 
mizing the following least squares criterion 

||B(W)s-FA||2. 

Minimizing with respect to s yields 

s = Bt(«)FA, 

(15) 

(16) 

whereB* denotes the pseudo-inverse of B. Substituting this 
back into the criterion we arrive at the following criterion for 
finding the frequency estimates 

min||PjL   .FAH2, (17) 

where Pg = I - BBt is the orthogonal projector onto 
the null space of B*. The criterion (17) is in general multi- 
modal, rendering the multidimensional search for a global 
extremum computationally expensive. In the following we 
will use the ideas in [1, 5, 6] to rewrite the minimization in 
(17) in a computationally much more attractive form. From 
the definition of B (w) it follows that the kth column of B is 
given by 

Bk = [lzk---z?-1:z?l---z ,m-2'   -2 „m-3: 

-(m-1) , 
l]1 (18) 

where zk = eiUk. Observing the shift structure in (18) it is 
possible to parameterize the nullspace of B* by the coeffi- 
cients in the following polynomial 

9o zd + g1z
d-1 + ■ ■ ■ + gd = go fl (* " ^")      <19) 

k=\ 

<to #0. 

Define a full rank matrix G of dimension m2 x (m2 - d), 
which depends linearly on the coefficients in (19), such that 

G*B = 0. (20) 

This implies that the columns of G constitutes a basis for the 
nullspace of B* and 

PG = G(G*G)-1G*=P£. (21) 

In order to illustrate the parameterization a simple example 
is provided. 
Example: Assume m = 2 and d = 1, which implies that 
the matrix B consists of one column only. The polynomial 
(19) will in this case be given by 

9oz + gi=0. (22) 
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Using (22) and the shift structure in (18), we can write (20) 
as 

G*B = 
si   go   o    o 
0    go    0    0i 
0     0    ji   jo 

z 
= 0 

By using the parameterization described above it follows 
that the criterion (17) can be reformulated as 

min||(G*G)-1/2G*FA||2 , (23) 

where the minimization is over the polynomial coefficients 
in (19). A two-step estimation procedure can now be de- 
vised as follows: 

1. Obtain a consistent estimate of {gk } by minimizing the 
quadratic function obtained by replacing (G*G)-1/2 

in (23) by some positive definite matrix W. 

2. Use the estimate of {gk } from step 1 to construct a con- 
sistent estimate of (G*G)-1/2. Insert this in (23) and 
solve a new quadratic problem. The frequency esti- 
mates are then given by rooting the polynomial (19). 

It can be shown that this two-step procedure has the same 
large sample accuracy as the estimates obtained by minimiz- 
ing (17). The main advantage is that we avoid the non-linear 
parameter search. For small sample scenarios it can be use- 
ful to reiterate step 2 a few times to improve the accuracy. 

4. Numerical Example 

Here a numerical example is provided to demonstrate the 
performance of the proposed method. We consider the di- 
rection of arrival estimation of two waves impinging from 
angles Qx = 10° and 02 = 20° on a ULA with 5 ele- 
ments separated by a half wavelength. The uncorrelated sig- 
nal sources are modeled as white and complex Gaussian dis- 
tributed, each with SNR = 3dB. The MSE errors for differ- 
ent data lengths are calculated for the proposed method and 
for root-MUSIC [3], each MSE are based on 200 indepen- 
dent trials. The MSE for 6X is depicted in Fig. 1. This exam- 
ple demonstrates the superior performance for small sample 
scenarios compared to root-MUSIC. 

5. Conclusions 

The main idea in this paper was to present a novel method 
for spatial and temporal frequency estimation in the case of 
uncorrelated sources. By imposing the diagonal structure 
given in the signal covariance matrix, it is possible to im- 
prove the performance of subspaced based estimators. 
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Figure 1. MSE values for 6X versus the number 
of snapshots, N: 'x' - proposed method, 'o' - 
root-MUSIC. The dash-dotted line represents 
the CRB when the correlation structure of the 
sources is known and the dotted line is the 
CRB without this knowledge. 
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Abstract 

The purpose of this paper is the passive angular lo- 
cation of the wideband sources using an array of sen- 
sors. The interest of the knowledge of the antenna 
shape, when the treatment is applied on the received 
data, is illustrated by the improvement of the signal 
to noise ratio and by the increase in of the antenna 
directivity. 

In this paper, the extension of the propagator method 
is presented: an algebraic operator is extracted from 
the cross-spectral matrices of the data or from the re- 
ceived signals. This technic avoids the rather expensive 
eigendecomposition of cross-spectral matrices at each 
frequency of the analysis bandwidth used in the known 
methods. The results of simulations support the theo- 
retical predictions. 

1. Introduction 

The estimation of direction of arrival (DOA) of multi- 
ple wideband signals is a recent problem in array signal 
processing. Many techniques have been reported in the lit- 
erature [1-3], of which eigenstructure methods are among 
the most established. The concept of the signal subspace 
processing have been used in the wideband case [1]. The 
basic idea is to use a coherent signal subspace estimate 
obtained by the eigendecomposition of a frequency do- 
main combination of modified narrow-band cross-spectral 
matrix estimates. It is shown that the coherent subspace 
method is an alternative to incoherent subspace method 
that improves the efficiency of the estimation by focus- 

. ing the energy of the analysis bandwidth into a focusing 
frequency. Similar technic have been proposed in [2], 
the originality of this method is the construction of the 
focusing operators; which used to transform the signal 
subspaces. Generally, these methods have better perfor- 
mances than the classical methods but their rather expen- 
sive computational load limits their implementation. To 
avoid this difficult, several papers [4-9] have been pub- 
lished in the aim to reduce the computational load for 
the eigendecomposition or to estimate the signal subspace 
without eigendecomposition.The propagator method [4-6] 

is one of these methods which is considered as an alter- 
native of the MUSIC method. 

In this paper, we introduce an extension of the propa- 
gator method for broadband sources. The transformation 
of the incoherent propagators is performed through focus- 
ing matrices. The obtained coherent propagator is used to 
estimate the antenna shape and the DOA of the sources. 

2. Problem formulation 

We consider an array of N sensors which received the 
wavefield generated by P wideband sources in the pres- 
ence of an additive noise. The array geometry is arbitrary. 
The received signal vector, in the frequency domain, is 
given by : 
r(/j) = A(/J.)s(/i) + n(/i) 
Where r(/) is the Fourier transform of the array ouput 
vector, s(/) is a source vector, n(/^) is a sensor noise, 
and A(/) is the N x P transfer matrix of the source- 
sensor array systems with respect to some chosen refer- 
ence point. 

It is assumed that the array is unambiguous and cali- 
brated, so that the rank of A(/.) is equal to P for any 
frequency. The sensor noise is assumed to be indepen- 
dent of the source signals and spatially white or the cross- 
spectral matrix is known but for a scale factor. In this 
case, a prewhitening step is required to create diagonal 
noise cross-spectral matrix. The sources are not fully cor- 
related. 

The cross-spectral matrix of the observation vector at 
frequency fj is given by : 
r(/i)= Mfi)Ts(fj)A+(fj) +^(f^i 
Where the superscript + represents the Hermitian trans- 
pose. r5(/) is the source cross-spectral matrix. 

Our aim is to estimate the angles 0,-,i = 1,—,P and 
the antenna shape from the received data. In this paper, 
the detection of the sources is not treated. We assume that 
the number of the sources P is known or can be estimated 
[10]. 

For locating the wideband sources several solutions 
have been proposed in the literature and are summarized 
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as following : 
-The incoherent subspace methods: the analysis band- 
width is divided into several frequency bins and then at 
each frequency the treatment is applied and the obtained 
results are combined to obtain the final result. 
- The coherent subspace methods: the different subspaces 
are transformed in a predefined subsapce using the focus- 
ing matrices. 
For estimating the antenna shape, the existing methods 
treat the narrowband case [5-11]. The temporal methods 
have been proposed for the wideband signals but they have 
not any success, because they have low spatial resolution. 

3. Narrow-band propagator method 

In this section, we recall briefly the propagtor method. 
We consider the no noisy situation, e.d.: 
*(/,■) = A(/i)s(/j). 

The direction of the sources matrix is partitioned [4-6] 
in two block matrices, let: 

"X(/>)' 
Mfj)=  

.Y(/;)J 
Where X(/j) is a P x P matrix and Y(fj) is a (N - 
P) x P matrix. We assume that the model propagation 
vector is such that X(/j) is nonsingular for example the 
P first sensors are linear and equispaced then X(/y) is a 
Vandermonde matrix. 
The (N-P) last rows of A(fj) are linearly dependent of 
the P first rows, we can write Y(/j) as : 

Y(/i) = n+(/,-)x(/i) 
orn+(/i) = Y(/i)X-l(/,-) 
The P x (N — P) matrix, H(fj), is called the propagator 
[4-6]. 
We define the matrix Q(/,) as : 
Q+(/,-) = \n+(fj) | -i] 
It is easy to see that : 

Q+(/i)A(/,-) = n+C/^XCf,) - Y(fj) = 0 
or Q+U^etpUj) = 0 forp = 1.....P and j = 1, ...,M 
The construction of Q(fj) needs the knowledge of the 
directions of the sources and the geometry of the antenna. 
For this we can not use directly the previous result. With 
the former partition the cross-spectral matrix is : 

r(/i) 

r(/j) = 

r»(/i) 
n+(/;)rii(/;) 

Tu(fj)  r„(/,-) 
r„(/,-)  T22(fj) 

rn(/i)n(/;) 
n+(fj)T11(fj)u+(fj) 

r11(/i) = x(/j)rs(/J)x+(/j) 
We have for example : 

ria(/i) = r11(/j)n(/J-) 

it follows, the estimate of the propagator is: 
n(/i) = r1r

1(/,)r12(/j) 
Other partitions of the cross-spectral matrix are given 

in [4-6]. We note that the partition in [4-6] can be lead to 
the computational complexity important for P « N. 
In a noisy situation, the optimal propagator is obtained by 
the constrained minimization problem 

TMM-TnitfUifj) for j = 1,...,M. mm 
n(/i) 
They used the Frobenius matrix norm. 

4.  Extension of the propagator method to the 
wideband signals 

4.1. Incoherent propagator 

The analysis bandwidth is divided into M frequencies. 
The narrowband propagator is applied at each frequency 
bin. The final result is obtained by averaging the different 
results. The directions of the sources are estimated by 
plotting, as function of 0, the following measure : 

1    M 1 

M^|Q+(/X0,/i)| 

4.2. Coherent propagator 

The transformation matrices are used at each frequency 
bin such that we obtain the focused propagtor at the center 
frequency and, then all the transformed propagators are 
coherently averaged to obtain the coherent propagator, i.e 
D(/i)n(/j) = n(/0) 
Where D(/j) is the focusing matrix, and TL(f0) is given 
by: 

fi(/0) = [x(/0)fs(/o)x+(/0)]_1ria(/0) 

with fs(/o) = &T,?=1X.-1(f:)Tn{fj) (X+Cfc))"1 

X(/j) is constructed by using an initial directions of the 
sources.  ri2(/0) is a block matrix of the cross-spectral 
matrix at the focusing frequency /„. 
The transformation matrix is given by : 
D(/,-) = n(/0)r+2(/,) [r^jr+ato)]-1 £„(/,) 
Using these transformation matrices, all the propagator 
can be combined to find the focused propagator, in the 
following manner, 

n(/.)4Ef=iD(/i)n(/i) 
The obtained propagator is, now, used to construct the 
coherent matrix, given by : 

Q+(/0) = fn+(/„) | -i 
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We have : Q+(/<,)ap(/0) = 0, for p = 1,...,P, using 
this result, the directions of the sources are given by the 
values of 6 for which the function J(0) is maximized, 

m = Q+(/o)a(/o,0) 
for 

7T    7T 

"2" 2J 

5. Algorithm for estimating the antenna shape 

The source vectors contain 2(N - 1) unknown param- 
eters corresponding to (N - 1) modulus and (N - 1) 
phases; however, there are only 2(N - 1) free parame- 
ters per source, which permit to treat only one source, to 
overcome this difficult two-step algorithm are used : 
- In the first step the modulus are eliminated by using 
the coherency matrix of the received data, and then by 
using the conjugate gradient algorithm the phase distribu- 
tion along the antenna is estimated. 
- In the second step the phase estimates obtained in the 
first step are introduced in the cross-spectral matrix and 
then modulus can be estimated. 

Note that for seperating different contributions of the 
phase estimates to obtain the antenna shape, an algorithm 
such that multidimensional Wiener filter can be used. 

6. Simulations results 

In the following simulations, an antenna of N = 20 
equispaced sensors with an arbitrary distorsion compared 
to a linear antenna. The source signals are temporally 
stationary zero-mean bandpass white Gaussian processes 
with the same bandwidth [100, 131Hz]. Two source sig- 
nals impinge on the array at #i = 10° and 02 = 12° 
respectively, with SNR = 3dB. The analysis bandwidth 
is decomposed into M = 32 narrowband components via 
FFT. 

Fig. 1 gives the arithmetic mean of the obtained results 
with the incoherent propagators method with P = 2. 
Fig. 2 shows the direction of arrival of the sources with 
the coherent propagator described above. We remark that, 
in the two cases, the sources are not perfectely localized, 
however the coherent method gives a better results that 
the incoherent method. 
Fig.  3 shows the estimation of the antenna shape using 
the proposed method. 

Figure 1 : DO A of the sources using incoherent 
method without antenna correction. 

Figure 2 :  DO A of the sources using coherent 
method without antenna correction. 

20 5 10 15 

Figure 3 : Estimation of the antenna shape. 
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7. Conclusion 

Figure 4 : DOA of the sources using incoherent 
method after antenna correction. 

Figure 5 : DOA of the sources using coherent 
method after antenna correction. 

Fig. 4 and Fig. 5 present the bearing estimation of the 
sources after the compensation of the phase due to the 
sensors displaced, these results show that after the antenna 
correction, the sources are exactely localized, however the 
coherent propagator is efficient compared to the incoherent 
treatment. 
This numerical example shows the interest of the estima- 
tion of the antenna shape. 

In this paper, we have extended the propagator method 
to the localization of the wideband signals using an array 
of sensors. This method avoids the eigendecomposition of 
the cross-spectral matrix. It is based on the transformation 
of the narrowband propagators. We have shown that the 
knowledge of the antenna shape permits the compensation 
of the fluctuations of the phase along the antenna which 
improves the localization. 
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1.    ABSTRACT 

In this paper an eigen decomposition technique based 
on cumulant matrices is proposed to passively local- 
ize narrowband non-Gaussian sources in the spher- 
ical coordinates viz., azimuth, elevation, range, us- 
ing signals recorded by a centro-symmetric cross ar- 
ray. The multiple degrees of freedom available from 
cumulants are exploited to transform the near-field 
data into pseudo-data collected by a virtual rectan- 
gular array observing virtual far-field sources. The 
centro-symmetric array structure is preserved in the 
pseudo-data thus allowing efficient real-valued pro- 
cessing via Unitary ESPRIT. 

2.    INTRODUCTION 

In recent years, several eigen decomposition algo- 
rithms have been proposed for passive source lo- 
calization using sensor arrays. However, most ap- 
proaches operate under the assumption of far-field 
sources and consequently can only estimate the az- 
imuth (1-D) or the azimuth and elevation (2-D) us- 
ing passive sensing (see for e.g. [4]-[7]) and are based 
on the planar wave-front approximation. In many 
a situation, sources are close to the array and the 
inherent curvature of the waveforms can no longer 
be neglected. Recent works on near-field source lo- 
calization concentrated on estimating the azimuth 
and range only. The algorithms in [2, 3] either in- 
volved multiple 1-D searches of a 2-D MUSIC cost 
function or Wigner-Ville distributions and provided 
poor resolution, while in [1] the invariant proper- 
ties of cumulant matrices were used for range and 
azimuth estimation. None of the existing works ad- 
dress passive 3-D localization which involves the es- 
timation of the spherical coordinates, namely az- 
imuth, elevation, and range. This paper proposes 
a 3-D localization algorithm, which employs cross- 
cumulants of signals recorded by a 2-D cross array. 

Consider a near-field scenario in which co- 
channel, narrowband signals from L sources located 
at azimuth, elevation, and range given by the vector 
[ai,6i,n], impinge upon a cross-array aligned with 

the X and Y axes (Figure 1). Although for sim- 
plicity, it is assumed that each of these branches 
consists of uniformly spaced omnidirectional sen- 
sors (with spacing d), the algorithm is applicable 
even when the sensor responses are not identical, 
as long as the array is conjugate centro-symmetric 
(see e.g. [5], for a description of centro-symmetric 
arrays). With inter-sensor spacing d and m,n G 
{_jVf _ 1,...,-1,0, l,...,Af}, the output of the 
sensor located at coordinates (md, nd) is : 

L 

Um,n(t) = Y, «/(<)e,'T-"(0 + »m,n(0, C1) 
(=1 

where, rm,„(/) = [uxim + <j>x\m2 + wyln + <j>yin
2 + 

ßlmn] is the phase difference between the /th 
source signal at sensor {m,n} and that recorded 
by the sensor located at {0,0}. The parame- 
ters {uxi,<t>xi,uyu4>yußi} are nonlinear functions of 
[a,,e,,r,]. With ß, = -f£sin26,sin2a, : 

Uyl = 

(1 - sin2 0; cos2 a;) ,    and 

— sin 0i sin ai, u/x, = - 2|4 sin 0, cos aj, 
A     — *d2 

^ = ^r(1-sin2ö'sin2a')- 

The narrowband signals s/(t) are zero-mean, sta- 
tionary, mutually independent, with non-zero 
fourth-order cumulants, while the sensor noise 
vm,n(i) is modeled as zero-mean, Gaussian and 
independent of s/(i). Localization involves the 
estimation of [a,,0i,r,], given the observations 
{um,n(<)} for * G {0,...,T- 1}. The parameter 
vectors wf = [uxi,. ■ .,UXL]',  <t>x = [4>xu ■ ■ -Axi]', 
Uy    =   [Uyl,...,UyL]',      ^^     <f>V    =    [^y 1 .  •  •  ■ » ^i]'     *™ 
first estimated via subspace methods and then 
paired to yield the locations. 

3.    ALGORITHM DESCRIPTION 

The proposed algorithm is implemented in two 
steps. Estimation of {ui„ <t>x) ({u>y, <j>y}) using the 
signals from X (Y) subarray is considered in the 
first step. In Step 2, the elements of {wx,<px} are 
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paired with those in {u>y,<py}. This last step is 
essential to obtain the final source spherical coordi- 
nates [a;, 9i, r{\. 

Gaussian. By collecting the cumulants C4mi„(r) for 
—M < m,n < M the matrix consisting of cross- 
cumulants is obtained as : 

Step 1 : Estimation of ux, <f>x, uy, and 4> 
From (1), the signals collected by the sensors 

along the X subarray umto(t) are : 

L 

«m,o(0 = £ s,(t)e^u"m+^m^ + vmi0(t).     (3) 

The model in (3) coincides with the signal model 
corresponding to azimuth and range only (2-D) es- 
timation of near-field sources with a 1-D array [1]. 

In order to gain insight into the possible 
source-sensor configuration which gives rise to the 
signal model in (3), consider a 2-D plane ABCD 
containing the X subarray and the /th source as 
shown in the Figure 2. From the figure we see that, 
as far as the X subarray is concerned, source / is 
at a distance 7"; from the array center, at an an- 
gle \i\ = sin- (sin#; cos a;) with the perpendicular 
AB, passing through the array center B and lying 
in the plane ABCD. In [1], a HOS based solution 
that yields paired estimates of r; and p,\ was pro- 
posed. The same approach can be applied to the 
model in (3) to obtain ux and <px. 

However, here we take a different view point 
and propose a solution which exploits the centro- 
symmetry of fourth-order cross-cumulant matrices. 
This new algorithm is based on the observation that 
as a result of the nonlinear operations involved in 
cumulant computation, the data collected from a 
1-D linear array (the X subarray) observing near- 
field sources can be transformed into pseudo-data 
collected from a virtual rectangular array observing 
virtual far-field sources. The azimuth and elevation 
of these virtual far-field sources will turn out to be 
functions of {^1,^1} in the original data. 

3.1 Transformation of Data 
Under the model assumptions, using (3), 

and cumulant properties, the fourth-order cross- 
cumulant of the signals from sensors at {—m,0}, 
{m, 0}, {n - 1, 0}, {n, 0} simplify to : 

C4m,n(r) = cum{ul    „(< + r),umfi{t),u*n_l 0(t), 
L 

unfi{t)} = 5^c4,I(r)c
J'Pw"m+2*"n+^,-*"M,   (4) 

1=1 

where c4s,(r) = cum{s*(t + r),si(t),s*(t),si(t)} is 
the fourth-order cumulant of the source signal si{t). 
Notice that the cumulants of the noise term vmß(t) 
do not appear owing to the fact that cumulants of 
order greater than two vanish when the process is 

C4x(r) = £c4s,(r)e^*<-^)aK;)a'(^,).   (5) 
/=i 

Note that the arrangement in (5) resembles 
the response of a rectangular array observ- 
ing far-field sources. With p representing ei- 
ther   uxi   or   <fixi,   the   partial   steering   vectors 

2p J2pM]' 
a(p) i [e-i2fM,...,e-i2",l,e> 
centro-symmetric with respect to the array cen- 

ter. Then, A{ux\,(f>xi) = a(u>x;)a'(0r;) is the ar- 
ray steering matrix for the /th source observed by 
a virtual rectangular array of size K x K (where 
K = 2M + 1) with elements uniformly spaced at 
{md, nd} for m,n G {—M,..., M}. Consequently, 
C4X(T) in (5) can be thought of as the data col- 
lected by an array which observes virtual far-field 
sources with direction cosines proportional to 2wxi 
and 2<f>xi. 

Instead of arranging the cumulants in a rect- 
angular array we can collect them in a single K2 x 1 
vector to obtain : 

L 

C4X(T) = YicMe'iu"'~*")*»iu*h<l>xt),      (6) 
7=1 

where, a®(uixi,<f>xi) = vec[A(wxi,<f>xi)] is obtained 
by column stacking elements of A(wxi, <f>xi). For 
the sake of notational convenience we henceforth 
denote A(oJxu<t>xi) as A\. Assuming that the 
source cumulants C4SI(T) are non-zero for lags r £ 
{0,1..., Tmax — 1}, vectors C4X(T) are collected in a 
matrix of size (A'2 x rmax): 

Cx = [C4z(0), c4x(l),. . . , C4x(Tmax - 1)] , (7) 

so as to obtain rmax "snapshots" from the virtual 
rectangular array. Each vector C4X(T) belongs to 
<S, the signal subspace spanned by the virtual array 
steering vectors {a®(wxi,<f>xi)}i=i- Thus, the cu- 
mulant based preprocessing maps the 2-D near-field 
azimuth-range estimation (using a linear array) to 
an equivalent 2-D far-field azimuth-elevation prob- 
lem (arising from a rectangular array). 

3.2 2-D Unitary ESPRIT 
As mentioned earlier, several algorithms 

have been proposed to solve this 2-D far-field prob- 
lem (see for e.g., [5] - [7]). From (6), we observe that 
the problem is two-fold : (i) estimation of the model 
parameters u>xi,(j)xi and (ii) pairing the parameters. 
We adopt the principle behind the Unitary ESPRIT 
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algorithm in [5] since it not only results in efficient 
real-valued processing but also automatically yields 
paired estimates of the model parameters. Owing 
to the symmetry in the cumulant definition of (4), 
the centro-symmetric property of the original ar- 
ray carries over to the new virtual rectangular array 
Ai- The description of the algorithm in the sequel 
closely follows that in [5] but with pseudo-data Cx 

instead of the original data. 
The   partial   steering   vectors   a(w^;)   and 

&(4>xi) satisfy the following invariance relationship 

ejpJiai(p) = 3ia(p),      for  p = uix, or 4>xl.     (8) 

With I(tf-i) denoting an identity matrix of 
size (K - 1), the selection matrices Ji = 
[I(tf-i) 0(K-i)xi] and J2 = [0(K-i)xi \K-I)\ se- 
lect the first and last (K - 1) rows of a(p). Let us 
next define a unitary matrix with conjugate centro- 
symmetric rows as follows : 

A    1 I/Vf 0 AM 
0' yjl 0' 

nM 0 -jÜAf 
(9) 

In (9), TIM is the permutation matrix with ones 
on the anti-diagonal. It can be shown that QK 

transforms conjugate centro-symmetric vectors into 
real-valued vectors. Thus, the real-valued manifold 
corresponding to At is 

d, = vec [Q%A,Q*K] (10) 

Consequently, a real-valued signal subspace can be 

generated by the columns of D = [di,..., d^]. Let 
Es be the orthonormal basis for this subspace. Con- 
sequently, there exists a real, non-singular T such 
that E5 = DT. Using (8), the following invariance 
relations can be shown to hold [5] : 

KwlEs*w=Kw2Es,   K01E5*0 = K^2ES    (11) 

where, *„= T^IVr,   *, = T^T,     (12) 

and K„,i = lK ® Ki, K„2 = I* ® K2, K*i = 
Ki®Ix, K*2 = K2®IK, KI = Re {Qg.iJaQx} , 
K2 = Im{Q^_,J2QA'}. 

Equations (11) and (12) are similar to those 
that show up in the classical ESPRIT. We can 
solve for *w and *«^ via the TLS solution in 
the presence of estimation errors which arise when 
finite data are used in practice. The matrices 
Ow = diag[tan(wxl),..., tan^r,)] and fi^ = 
diag[tan(^i),...,tan(^L)] are thus obtained as 
the eigen values of *w and *^ respectively. 

The two real-valued eigen decompositions 
in (12) can be replaced by the following complex 

valued eigen decomposition which also yields an au- 
tomatic pairing of {w,,^,} 

*i*w+i** = T-1(n«+in*)T-     (13) 
Thus, the /th parameter pair {wri,^i} can be ob- 
tained from the {real, imaginary} parts of the /th 
eigen value of * in (13). 

The basis Es needed in the preceding re- 
lations,   can  be  obtained  from  the  transformed 

data CXr =(QK®Q")
C

* 
which can be shoWn 

to lie in the subspace spanned by D. Thus Es 

can be extracted as the L left singular vectors of 
[Re(Cxr) Im(Cxr)] corresponding to the L largest 
singular values, provided L < min{A' ,2rmax + 1}. 

The signal model for the Y subarray data is 
similar to (3) with {uxi,<j>xt} replaced by {wyi,<t>yi}- 
Hence, we can obtain the paired estimates of the 
parameters {u>y,4>y} by following the same steps 
but using CY instead of CX- Since we can only 
obtain the paired-parameter estimates with a un- 
known permutation ambiguity, we denote this as : 
K>^} and {üy,4>y}- 

Step 2 : Pairing of {üx,(px} and {üy,<j>y} 
In computing the location coordinates 

[aiJi,ri] for the sources, the source parameter from 
the {üx,<j>x} set has to be paired with the right one 
from the {üj,,^,} set so that the nonlinear equa- 
tions in (2) can be solved. There are L\ possible 
pairings for the L sources. Let 

U(t) =  [u-M-l,o(t), ■■■> «M,o(<), U0,-M-l(t), 

...,«O,-I(0.«O,I(0.---.
U

O,M(0]' (14) 
denote the (2K + 1) x 1 data vector obtained by 
stacking the signals collected from the X and Y sub- 
array. Let B(2K+i)xi be the corresponding array 
steering matrix, s(t)ixi the source vector and v(t) 
the noise vector, then the matrix form of (1) is : 

u(«) = Bs(0+v(<). (15) 

For each combination {uxp, <j>xp, wyq, <l>yq}, the "pos- 
sible" array steering matrix Bp is constructed and 
the model mismatch error ep, 

t 

is evaluated where B^ is the projection matrix onto 
the null space of Bp. The combination which min- 
imizes ep is then the correct pairing. In contrast 
to the least-squares estimation of the source coordi- 
nates directly from the data, the minimization here 
is only over a parameter space of size L\ (finite set). 
Finally, the spherical coordinates of the sources are 

obtained from {«i,^,wS'^} via  (2)' 
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4.     SIMULATION RESULTS 

Example 1: The algorithm is tested with two non- 
Gaussian sources at [a,0,r] = [45°, 45°, 1.5A], and 
[-20°, 10°, 2A] and with 2M+2 = 4 elements in each 
of the subarrays. The source signals are generated 
as BPSK signals filtered with first-order Butter- 
worth filter with cutoff frequency of 0.4TT. The sen- 
sor noise is circular white Gaussian (SNR= 30dB). 
The cumulant matrices are estimated from T = 
2048 data samples (Tmax = 5). Figure 3 shows 
the sensor array configuration, with thick circles 
representing the sensor locations. The actual di- 
rections of arrival and ranges as seen by the ref- 
erence sensor and the estimates obtained from the 
proposed method (result of 500 trials) are also in- 
dicated. The estimates (mean ± std. dev.) are: 
[äi.öi, ri]  =  [44.76° ±0.6,44.48° ± 1.65,1.54A ± 

0.23] and [a2.ff2.r2] = [-17.55° ± 6.66,10.19° ± 
0.67, 2.03A±0.31] confirm the superior performance 
of the proposed approach. 
Exam-pie 2: The algorithm is tested on a second 
set of sources at [a,6,r] = [20°,45°, 1.5A], and 
[20°,10°,2A] respectively (same azimuth). The 
estimates [äiÄ, fi] = [20.19° ± 1.68,44.69° ± 
1.53,1.67A ± 0.66] and [a2,02,'Y| = [18.7° ± 
7.11,10.41°±1.18,12.1A±0.55] are close to the true 
values (Figure 4). 
Example 3: As a final example we consider two 
sources arriving at the same elevation angle. Table 1 
shows the true parameters along with the estimates 
for two sample sizes. As expected, the estimation 
variance decreases with larger sample size. 

Tab le 1 
Source 1 a, 0, ri 

True 45° 20° 1.5A 
Est  :(T = 2048) 47.6 ±9.8 19.4 ±2.1 1.58A±0.19 
Est  :(T = 4096) 46.7 ±7.3 19.5 ±1.9 1.58A±0.18 

Source 2 a? 0-, ;••> 
True -10° 20° 1.5A 

Est  :(T = 2048) -9.1 ±2.8 21.7 ±4.5 1.93A±0.58 
Est  :(T = 4096) -9.4 ±2.2 2l.3±3.8 1.91A±0.31 
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Figure 1. Near-field scenario. 

Figure 2. Source as seen by the X subarray. 
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Abstract 

This paper extends earlier results by Ward, Kennedy and 
Williamson [1,2] for the design of broadband arrays with 
frequency-invariant (FI) beam patterns to the case where 
it is desired to place an exact null in a given direction. 
The beamforming is done using appropriately selected FIR 
filters. 

First, the previous results for generating FI beam patterns 
using FIR filters are briefly summarised. Second, new results 
which give the conditions required for exact nulls in the 
beam pattern for all frequencies in any, possibly non-FI, 
beam pattern are given. Third, a method of generating beam 
patterns which possess an exact null and which are close, in 
an L2 sense, to an arbitrary FI pattern is presented. Finally, 
some preliminary experimental results which corroborate 
the theoretical findings are presented. 

1. Problems Addressed 
Consider an array of Ar spatially separated omni- 

directional microphones. The array has a nominal aperture 
of P half-wavelengths at a given frequency. The signals 
from each sensor are sampled at sampling frequency fs and 
are filtered using I-tap finite impulse response filters with 
frequency responses 

HJJ) := Y, hn[m]e-*"'m,  n = 1,2,..., N. 

This is illustrated in Figure 1. 
We wish to select the filter coefficients, hn[m], and the 

sensor locations, xn, so that the farfield array response from 
direction 6 

AiO, f) :=f^Hn(f)exp (j2nf^xnsin6) = hTd(6,f) 

"=l C (1) 

+ The authors wish to acknowledge the funding of the activities of the 
Cooperative Research Centre for Robust and Adaptive Systems by the 
Australian Commonwealth Government under the Cooperative Research 
Centres Program. 
Supported in part by the Australian Research Council. 

Figure 1. The array geometry assumed. 

possesses certain properties over the frequency range / £ 
[fL,fu]. The velocity of wave propagation is denoted c. 
The iVI-dimensional vector of FIR coefficients is 

hT = [hi [0]... M0].. - hi [L - 1]... hN[L - 1]] 

and 

d(0J) = 

,j2x.fr, ($) 

0}2nJrN(6) 

,,27r/[r,(«)-L+l] 

e.?27r/[rlY(9)-/,+ l] 

is the AT-dimensional delay vector with 

fa 
Tn{0) ■■= —xnsin9. 

c 

The property of frequency invariance has been investi- 
gated previously [1-3]. This paper examines obtaining exact 
nulls in a beam pattern and the interaction of this property 
with frequency invariance. 
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1.1. Problem One: FI 

Suppose it is desired that 

AFI(8,f) = A(6)   fe[fLJu]. 

It was shown in [ 1 ] how to choose the xn locations and that, 
when chosen appropriately, the array filters should have the 
dilation property 

KU) = Kf [ —f 
Zref 

where #£(/) is the filter response of the nth filter and 
Hrf(f) is the primary filter response at some reference 
location .Tref. 

Ward, Kennedy and Williamson [2] considered two pos- 
sible filter bank implementations with this property: a multi- 
rate approach and a single rate approach. This paper follows 
the single rate approach with the primary filter coefficients 
given by 

(L-l)/2 

E 
A-=-(£-|)/2 

hte{ [mjsinc ( k 

where jn = ^-. The secondary filter coefficients are cho- 
sen so that Hs(f) is a differentiator over / 6 [//,, fu]- 

The full frequency invariant shading filters are then 

hFI[m] = gnhp
n[m] * hs[m] 

where * denotes convolution in the m index and gn is a 
spatial weighting term to account for the (possibly) nonlinear 
array spacing. 

1.2. Problem Two: END 

The first new results of this paper are Proposition 1 and 
its Corollary, which are the conditions for Exact Null Design 
(END). 
Proposition  1 — Condition for a Broadband Null 
A broadband null at BQ will be available if and only if either 

AEND{60,f) := YJ
HnND(jy27tlTn(6tt) =0, V/  (2) 

n=l 

or, equivalently, 

N 

E 
n=\  L 

jENDr    I, sin(ir[m + T„(fl0)]) 
+ Tn(0O)] 

= 0, Vm    (3) 

Proof.   From (1), the array response in direction 9Q is 

A(e0j) (4) 

=    53 Hn(f)exp (j2r;f^xn sin6o) 

N 

- Y,H"(fy2nfTnieo) (5) 
n=l 
N   L-\ 

m]e-j2irfmeJ2TrfT„ (S0) 

n=l m=0 
L-\ 

=   E 
m=0 

iV 

Efc« m * 
.n=l 

sin (7r[m + rn(g0)]) 

71- [m + r„(0o)] 
-j2wfn 

(6) 

Equation (5) yields (2) and the inverse discrete Fourier trans- 
form of (6) gives (3). ■ 

It is not immediately clear how (2) and (3) may be easily 
enforced. The following result shows this. 
Corollary 1 — Integer Delay Property 
!fi~n(do) is an integer then 

N 

Y,hn[m + Tn(00)}=0,   Vm (7) 
n=\ 

is a sufficient condition for (3) being satisfied. D 
Proof.   If Tn(00) € Z then (3) becomes 

N 

53 hn[m] * 6[m + r„(0o)] = 0,   Vm 

where 8 is the Kronecker delta. I 

Remark  1: Note that it is always possible to place a null 
at #o = 0 because in this case 

fs TV, = '— xn sin #o = 0, Vn 
c 

and (3) reduces to requiring 

N 

J2hEND[i} = o,yi. 
n=0 

D 

Using this idea, the END condition for a null at broadside 
may be written as 

where 

CTh = 0 

C :=IL® ijv 

where * again denotes convolution in the m index. D 
where II is the L x L identity matrix and xN is the Ar-vector 
of ones. 
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1.3. Problem Three: FI with END 
Designing a frequency invariant array generates array fil- 

ters hFJ. Placing an exact null imposes the underdetermined 
constraints (7). The question of whether it is possible to do 
both arises, taking into account the slack of the exact null 
constraints. 

The approach we take is similar to that of Frost [4]. As- 
sume we time-delay beamsteer the FI beamformer to direc- 
tion -9Q. The effect of this is to move the null to broadside. 
In the remainder, we will use the tilde symbol (~) to indicate 
a steered quantity. 

The steered filter coefficient ArZ-vectors, with END con- 
ditions imposed, are given by HFIEND = hFi + hc where 
hc are the deviations from hFI which allow for exact null 
design. 

We approach the problem by imposing the exact null 
constraints (7) while minimising the cost functional 

/•+*•   fSv 
J =   (+7r j " \ÄFI(ß, f) - ÄFIEND(e, f)\2 dfdo 

=     [  * I* \hjd(0,f)\2dfd0 = hT
€Dh, 

J—K      JfL 

(8) 

where 

D-.= [ * fl'd(e,f)dH(ej)dfde. 
J-K     Jfl 

The best hc is then found as the solution to the optimisa- 
tion problem 

min ft.c Dhc 
K 

subject to CT{hFi + hc) = 0. The solution to this problem 
is 

F-opt r>-'c rD~lc]   'a 

tTr where a := — C  hFj. 
The matrix D is of full rank, provided no two sensor 

locations coincide; C is also of full rank. This solution 
has the same form as that presented in [4]. The optimum 
unsteered response is then 

<FIE*D(e,f) = (hFi + hr)Td(ej) A1 

where 

hT = 

/*°pt[o] 

hf[0] 

h°pt[L - 1] 

L hf[L-l] J 

/i°pt[-r,(0o)] 

hf[-rN(e0)} 

h^[i -1 - Tx(e0)] 

Kg[L - 1 - Tiv(0o)] 

2. Example Array Design 
The figures show the resulting array responses for the 

following array parameters: 

fL = 1000Hz,   fu = 2000Hz,  N = 7. 

The primary filters in the FI design are chosen to be 5 taps, 
the secondary filters are 3 taps long. The END design re- 
quired a null to be placed at 0 = TT/4 = 45°. The array was 
36cm long. 

Because the array was to be tested in a small anechoic 
chamber, the farfield design methodology presented here 
was modified to allow for a nearfield design. For the results 
shown, the source was 2.8 metres from the array. Space 
precludes inclusion of the derivations for the nearfield case 
[5]. For an alternative technique, see [6,7]. 

Figures 2, 3 and 4 show array responses at 20 regularly 
spaced frequencies between 1000Hz and 2000Hz for the 
original FI design [2], an END design with no account taken 
of frequency invariance and the FIEND design where filters 
are adjusted to cater for the null while minimising the cost 
function (8). 
Remark 2: Clearly the FIEND responses more closely 
resemble the FI-only response than does the END response; 
the value of J for the END response plotted is 0.0487 and 
the value of J for the FIEND response is 0.0114. □ 

Time constraints precluded measurement of the array re- 
sponses of all designs; only the END design was tested 
empirically. 

Good correspondence between theoretical and measured 
results were obtained for frequencies 995Hz, 1248Hz, 
1505Hz, 1748Hz and 2004Hz are displayed in Figure 5. 
Some problems were encountered with the response mea- 
sured at 1748Hz. 

3. Conclusions 
We have presented one new result which allows exact 

nulls to be incorporated into any broadband array design. 
If frequency invariance is required, another new result, pre- 
sented here, allows exact nulls while minimising a mean 
square error cost between a frequency invariant design and 
the design which includes a null. 

An exact null design was tested in the laboratory; theo- 
retical and measured responses compared favourably. 
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Figure 2. Array responses at various frequen- 
cies for Fl array. 
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Figure 3. Array responses at various frequen- 
cies for END array. 
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Figure 4. Array responses at various frequen- 
cies for FIEND array. 
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Abstract 

When the signal to noise ratio is relatively high, the 
angle of arrival of the strongest signal can be estimated 
with a very simple method and a small 3-D sensor array. 
The differences in the arrival times of the wideband signal 
received by spatially separated sensors are estimated 
using the polarity coincidence correlation. These time dif- 
ferences, i.e. time delays, determine the angle of arrival. 
In this paper the effects of quantization of the time delays 
are studied. It is found out that this simple method gives 
comparable performance to the conventional, direct cor- 
relation based methods in the case of a relatively high sig- 
nal to noise ratio. 

1. Introduction 

In this paper a low-complexity method for the estima- 
tion of the angle of arrival of a wideband signal with a 
small array is developed. The lower the complexity of the 
angle-of-arrival estimation method is, the simpler, the less 
expensive, and the more reliable is the hardware with 
which the method can be realized. A small array was set as 
the goal in order to make possible a less expensive array 
which could even be used as a part of portable equipment. 

A small sensor array is defined here as follows: The 
number of sensors is less than 8 and the maximum dis- 
tance between any two sensors is less than 20«7/c, where 
Ts is the sampling interval and c is the propagation veloc- 

ity of the signal. There are no other restrictions to the loca- 
tions of the sensors, so they can form a three-dimensional 
structure. 

In order to achieve a low-complexity method only the 
angle of arrival of the signal from the strongest signal 
source is estimated. The differences in arrival times of a 
wideband signal received by spatially separated sensors 
can be estimated one by one if the sensor array is receiving 
one dominating wave propagating signal. 

This work was sponsored by Nokia Foundation. 

2     Nokia Research Center 
Radio Communications Laboratory 
P.O. Box 45 
FIN-00211 Helsinki, Finland 
kari.kalliojarvi@research.nokia.com 

When the signal to noise ratio is relatively high (e.g. 5 
dB in the case of a one signal in white gaussian noise) time 
delays with which the signal reaches different sensors can 
be estimated using polarity coincidence correlation [1], 
meaning that signals are quantized to 1-bit representation. 
The signal to noise ratio needed to achieve a certain vari- 
ance of the time delay estimate depends on the signal and 
noise spectrums, cross-correlations of the signal and noise 
at different sensors, cross-correlations of noise at different 
sensors, the length of the estimation window, and the sam- 
pling rate. The variances of the time delay estimates are 
given in closed-form expressions for general signal and 
noise spectra in [2]. 

The main advantage of the polarity coincidence corre- 
lation is the possibility to use simple 1-bit quantization of 
signals. This results that simpler analog automatic gain 
control can be utilized when compared to multibit quanti- 
zation. Polarity coincidence correlation is also computa- 
tionally much simpler and less demanding than direct 
cross-correlation methods because it can be implemented 
without multiplications [3]. Also the handling of 1-bit sig- 
nals requires considerably less memory than that of multi- 
bit signals. 

The disadvantage of using 1-bit quantization is that 
interpolation of the signal values between sampled values 
isn't possible. Therefore the time delays can be estimated 
only with the accuracy of one sampling interval. The error 
of the time delay estimates caused by rounding to the near- 
est multiple of the sampling interval causes errors to the 
estimate of the propagation vector. This kind of error, 
which hasn't been considered earlier, is studied in this 
paper. The study is based on modeling the rounding error 
of the time delay estimates by independent white noise 
which is uniformly distributed in the interval [-TJ2, TJ2). 

2. Method 

In principle the introduced method for the angle of 
arrival estimation is as follows: First, signals received by 
spatially separated sensors are quantized to 1-bit represen- 
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Figure 1. Block diagram of the angle of arrival 
estimation method 

tation. Then, the time delays between signals in different 
sensors are estimated by polarity coincidence correlation. 
Finally, these time delays are used to determine the angle 
of arrival. The block diagram of the angle of arrival esti- 
mation method is presented in Figure 1. 

Let us assume that the sensor array is receiving a wave 
propagating signal s(t,x) caused by a distant event, t is 
the time and x is a three-dimensional vector representing a 
location in an orthogonal coordinate system. It is assumed 
that s (t, x) can be modeled as a sum of plane waves with 
common direction of propagation but with different fre- 
quency and amplitude, 

s(t,x) =Y,Ale\p[jal[t-kTx)J, (1) 

where; is the imaginary unit, co; is the frequency, A{ is the 

amplitude of the /th component of the wideband signal, 
and k is a propagation vector which determines the direc- 
tion and the velocity of propagation of the plane wave, ||ft|| 
= lie. T denotes matrix transpose. 

Let the signal received by the ith sensor located at *,■ be 

y,(0 = *(*,*.) +w.(0 (2) 

where w,(f) is the noise component received by j'th sensor. 
If sensors in the array are identical, then in the ideal noise- 
free case the only difference between signals received by 
different sensors is the time delay because s(t,x) is a sum 
of plane waves with a common direction of propagation. 

The time delay between the signals received by the ith 
and the mth sensor is 

*,«=*T <*,-*«>   =*T*,m. (3) 
where xim is called a sensor vector. The propagation vector 
k, which gives the angle of arrival, is determined by three 
time delays x.     , n = 1,2,3 if corresponding sensor vec- 

n    n 

tors x-      are linearly independent. In general, k is the 
n   n 

least squares solution of the matrix equation tM = VMk 

(where Mis the number of the time delay estimates used in 
the estimation of k), i.e. 

where 
* = vi( vxr V 

V    = \x      x x      1 M       I i,!»,    ,2m2 •■•    iMmu\ 

t.. =   [X-        X-        ... X. M        I i,»!,     i2m2 ,MmM\ 

(4) 

(5) 

provided that the rank of the matrix VM is 3. 

Time delays are estimated using polarity coincidence 
correlation: djm is taken as an estimate of the time delay 

xim if it maximizes the sum 

Rim (diJ = Isjgn (yf- (»7-,)) sign (ym (nTs - d.J) .   (6) 
n 

The estimated delays dim can only get values which are 

multiple of sampling interval because interpolation of the 
signals quantized to 1-bit representation is not possible. 
The error of the time delay estimate caused by rounding to 
the nearest multiple of sampling interval can be modeled 
as white noise which is uniformly distributed in the inter- 
val [-Ts/2,Ts/2). The error is assumed to be statistically 

independent of the time delay to be rounded and other 
time delays. 

If all pairs of the vectors x( m   contained in the matrix 

VM are linearly independent, meaning that no pair of vec- 
tors have equal direction, then the error of the time delay 
can also be assumed to be statistically independent of the 
errors of the other time delays. In this case the covariance 
matrix of the rounding error of the estimate of the time 
delay vector is 

cov{A^}   = r±I, 

where / is the identity matrix and 

A'M = <*M~'M> dM =  [</.Bi diimi ... d.^ 

The rounding of the time delays to the nearest multiple of 
sampling interval causes errors to the estimate of propaga- 
tion vector k. The covariance matrix of that kind of error 
can now be estimated because k is calculated by matrix 
multiplication of the time delay vector, 

where 

AkM = kM~k< kM=VT
M(vlvMYdM 

The more time delay estimates are taken into account in 
the calculation of the estimate of the propagation vector k 
the smaller are the variances of the error of the compo- 
nents of k 

(7) 

(8) 

(9) 

(10) 

"■w 
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Figure 2. The 3-D grid of 
four sensors used in 
simulations 

The computational load of the proposed angle-of- 
arrival method depends on the complexity of the estima- 
tion of the cross-correlation functions, the maximum 
allowed time delay xmax, and the number of the time delay 

estimates M used. When nonoverlapping estimation win- 
dows and polarity coincidence correlation are used, one 
conditional counter increment per sample is needed to 
estimate one value of the cross-correlation function. When 
conventional direct correlation method is used, one multi- 
plication and one addition per sample are needed. 
Qdmax+\) estimated values of the cross-correlation func- 

tion are needed for each of the M time delay estimate used, 
where 

d      = round max (ID 
s   J 

After estimating the cross-correlation functions their max- 
imal values are found out to estimate the time delays. 
Finally the propagation vector k which determines the 
angle of arrival is calculated by a multiplication of 3xM 
matrix and a vector of length M, see equation (10). 

3. Simulation Results 

A grid of four sensors with equal distance 20 • Tg • c 

between all sensors (see Figure 2) is used as the array in 
the simulations. 

Distribution of the rounding errors of the time delay 
estimates was verified by simulations. Randomly gener- 
ated vectors Jfe(n) , n = 1, 2,..., 100 000 were used as a 
test sequence. The vectors k (n) were generated as fol- 
lows: First three-dimensional vectors were generated, 
whose components were independent and uniformly dis- 
tributed in the interval [-1,1]. Then the vectors were scaled 
so that the norm of each vector was lie. The true values of 
all the six possible time delays were formed with the equa- 
tion 

VJ, (12) 

where 

- [x12 . 13 ' 
C34] 

*6 ~   |_T12 t13 T14 T23 T24 T34j 

After that the time delays were rounded to the nearest mul- 

.000 

■ 

-8 s        —o.«        — o.a        —0.2        —0.1             0             0.1           0.2           0.»           o.*           0 
til* rounding mrror of ths Urn* cfaUiy ["!"•] 

Figure 3. Histogram of rounding errors of time 
delays 

tiple of the sampling interval. Then the error between the 
original and rounded time delays was estimated. The his- 
togram of the error values is shown in Figure 3. The 
assumption of uniform distribution holds very well. 

The error of the estimate of A; caused by the rounding of 
the time delays to the nearest multiple of the sampling 
interval were formed by using 3 and 6 rounded time delay 
estimates in calculating the estimate of k. In the case of 3 
time delays 

TT r -|T 

^3  _   |_*12 ' 13 ■1 [T12 T13 T14J (14) 

were used. 
The sample covariance matrices and the covariance 

matrices of the errors M3 and M6 formed with equations 

(9) and (10) are shown in Table 1. The simulated values 
are quite close to the values given by the equation (9). It is 
noticed by comparing the covariance matrices of the errors 
M3 and Ak6 that in this case the use of 6 time delay esti- 

mates instead of 3 time delay estimates halved the vari- 
ance of the error of the components of the estimated 
propagation vector. 

The proposed angle-of-arrival method was then simu- 
lated. The test signal used was a sum of 5 sinusoids with 
frequencies of 0.027t, 0.06TC, O.ITI, 0.26A, and 0.4671 with 
respect to the sampling frequency 2rc and with a common 
amplitude. The test signal was assumed to propagate as a 
plane wave. The same signal but propagating as a plane 
wave to a different direction was used as an interfering 
signal. The power of the interfering signal, v;(n), was 

increasing during simulation, 

v;(«) = 10 10       vs, (15) 

where vs is the power of the test signal. The signals 
received by the sensors were the sum of the test signal, the 
interfering signal and white independent gaussian noise 

(13)        with variance 0.1 v^. All the six possible time delays were 
estimated using polarity coincidence correlation presented 
in equation (6) with nonoverlapping estimation windows 

111 



sample covariance 

(divided by Kf3(-S)2) 

covariance 

(divided by 10"3(-J)2) 

A*3 0.2080 -0.1207 -0.0848 
-0.1207 0.3490 -0.0482 
_-0.0848 -0.0482 0.3809_ 

0.2083 -0.1203-0.0851J 
-0.1203 0.3472 -0.0491 
-0.0851 -0.0491  0.3819J 

Ak6 0.1043 0.0001 -0.0003 
0.0001  0.1046 0.0001 

-0.0003 0.0001  0.1046_ 

0.1042 0.0000 0.0000 
0.0000 0.1042 0.0000 
0.0000 0.0000 0.1042 

Table 1. Covariance matrices of the error of the 
estimated propagation vectors 

with a length of 104 samples. The length of the test signal 

was 10 samples. The estimate of the propagation vector Jfc 
was formed with equation (10). The components of the 
vector ck6 as a function of time are presented in Figure 4. 

In this simulation the method tracks the signal from the 
strongest signal source when the power of the stronger sig- 
nal is about 2.5 times the power of the weaker signal. The 
results achieved by using direct correlation instead of 
polarity coincidence correlation, i.e. using 

«™WJ =lyMTs)yJ»Ts-diJ        (i6) 
n 

instead of equation (6), are also presented in Figure 4. The 
proposed method gives comparable performance to the 
conventional correlation based method. 

4. Conclusions 

A low-complexity method for estimation of the angle 
of arrival of the signal from the strongest signal source 
was introduced. The method is based on the differences in 
the arrival times of the signal at different sensors. These 
differences are estimated using polarity coincidence corre- 
lation and as a consequence, 1-bit quantization can be 
used. Because of this the required amount of calculation is 
significantly reduced when compared to conventional 
methods without noticeable differences in the performance 
when the signal to noise ratio is relatively high. The intro- 
duced method also makes possible quite complex 3-D sen- 
sor placements if necessary. These characteristics make 
the introduced method very easy and cheap to implement, 
and robust to operate. Therefore the method is suitable for 
low-cost applications, where it is sufficient to find out only 
the angle of arrival of the strongest signal source. 
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Abstract 

Performance analysis shows the asymptotic optimality 
of the MUSIC technique applied to bearing estimation 
problems for a sufficiently large number of sensors and 
not fully-coherent sources (see for instance [1, 2]). This 
implies that a large number of covariance lags has to be 
computed; moreover, the computational load of the eigen- 
decomposition of large covariance matrices may be too 
severe for practical applications. 

With reference to uniformly spaced linear arrays 
(ULA's), in this paper we show that the accuracy gain 
associated to an increased number of sensors can be al- 
ternatively obtained by applying the MUSIC technique to 
particular configurations of pairs of ULA's, referenced to 
as subarrays, using a significantly smaller number of sen- 
sors. 

It is also shown that the accuracy loss of the proposed 
method, w.r.t. a full ULA covering the same array aperture, 
can be minimized by varying the distance between the two 
subarrays. 

The provided simulation results shows the applicability 
of the proposed method. 

1   Introduction 

The classical problem in array signal processing is to es- 
timate the directions of arrival (DOA) of plane waves with 
an array of sensors. Among others, the MUSIC technique 
[4] has became popular due to its simple formulation, easy 
implementation and high statistical efficiency. 

Moreover, performance analysis (see for instance [1,2]) 
shows the asymptotic optimality of the MUSIC technique 
for a sufficiently large number of sensors and not fully- 
coherent sources. On the other hand, a larger array implies 
the computation of more covariance lags and a more heavy 
computational load of the eigen-decomposition. 

Looking at the application of high-resolution DOA esti- 
mation methods based on subspace decomposition, such as 
MUSIC, ESPRIT, etc., to reduced covariance matrices, we 
analize here a sensors arrangements in pairs of ULA's; each 
ULA will be referred to as a subarray. We will show that 
the accuracy of the MUSIC technique is basically saved 
when the two subarrays are optimally displaced each other, 
having significantly reduced the number of array elements. 

This feature is substantially due to the fact that the array 
manifold associated to the proposed configurations of pairs 
of subarrays retains the same slope near the intersections 
with the signal subspace, when the two subarrays are opti- 
mally displaced. In fact, the loss of the estimation variance 
is limited by the effective aperture enlargement. 

To demonstrate this circumstance, we employ the ana- 
lytical expression of the estimation variance given in [1], 
particularized to the specific array manifold, as a function 
of the subarrays splitting distance. Moreover, by following 
the guidelines indicated in [2], we evaluate the angular dis- 
tance between the estimated and the true signal-subspaces. 
Interestingly, the splitting distance yielding the minumum 
angular distance between the estimated and the true signal- 
subspaces does not coincides with the splitting distance 
yielding the minimum estimation variance. Following the 
idea presented in [3], where a linear prediction method is 
applied to a pair of subarrays where the reference subarray 
is constituted by a single sensor, we show that the optimum 
splitting distance is still obtained by using a generalized 
minimum prediction error variance criterion also when the 
reference subarray is formed by more than one sensor. 

Finally, simulation results are provided to show the ap- 
plicability of the MUSIC to the proposed configuration of 
pairs of subarrays. 

2   Performance Analysis of MUSIC applied 
to subarrays 

For reference, let us refer to a ULA of M sensors spaced 
d meters apart. A general configuration of a pair of sub- 
arrays consists in forming the first subarray with the first 

113 
0-8186-7576-4/96 $5.00 © 1996 IEEE 



Ki sensors and the second subarray with the last K2 sen- 
sors at the other endpoint. Let us pose K=Ki+K2. The 
subarrays distance is V—A • d where A — (M-K+1). 

In other words, the subarray configuration is obtained by 
powering off A-l sensors in the middle of an M sensors 
ULA, so as to mantain the overall array aperture (M - l)d. 
The manifold associated to this sensors configuration is 
described by the steering vector 

a(w) = [l, eju ,■ ■ ; ej(Jfl_1)", eJ(*i+A-i)w ... gj(M-i)J 

where u = 2irdsm(6)/X, 6 is the generic DOA^nd A i 
the wavelength. 

When L sources are considered, the matrix of the steer- 
ing vectors (sometimes referred to as the mixing matrix) 
k2 

A= [a(wi),---, a(u)L)} (1) 

and   the   vector   of  the   array   sensors   measurements 
x= [xi ,■ ■ -, xKl xK 1+A ,- • •, xMf is given by 

x = A • f + w (2) 

where f = [/i ,• ■ •, fL]T is the vector of L < M indepen- 
dent, zero-mean, circularly complex, Gaussian distributed 
sources, and w = [tui ,• • •, wM]r is the vector of observa- 
tion noises, circularly complex, zero-mean and Gaussian 
distributed, independent of the sources f. Naturally, the 
observation model (2) is formally equivalent to the obser- 
vation model drawn from the full array configuration; the 
mixing matrix A takes into account the actual form of the 
array manifold, i.e. how the sensors are located along the 
receiver. 

The main advantage of using the subarrays configuration 
consists in mantaining the same end-to-end array aperture 
(M— l)d while using K sensors instead of M, so allowing 
for a significant computational saving. This is paid with 
an estimate accuracy loss. 

To evaluate the accuracy of the estimation carried out by 
using the MUSIC technique to the subarrays configuration, 
we start by recalling here the (approximate) expression of 
the mean squared value of the distance between the signal 
subspace, i.e. the range of the mixing matrix A, and an 
estimate of the signal subspace obtained from the eigen- 
decomposition of the sample covariance matrix 

N Ä*=^i>«-xH« 
i=l 

1 In the sequel, also the parameter w will be, improperly, referred to as 
DOA. 

2Strictly speaking, the matrix A is parameterized by the vector 
OS = [wi; ■ ■, wLf, and it should be denoted as A(<3). To avoid a 
too cumbersome notation, in the sequel we will omit the dependence on 
(3, writing simply A. 

where N is the number of available independent snapshots 
x(i). 

Said a the angle between the subspaces, we report 
here the following espression of the mean squared value 
E{(1 -cosa)2} of the subspaces distance, drawn from 
[6] (with some rearrangements of terms), in the case of 
two uncorrelated sources and white noises 

„;,, x21        12(^-2)      1 E{(1 -cosa)^} ~       v ' 
N     K2     SNR2 

l + -ftT-SNR-(l + z)     1 + K • SNR(1 - x) 

(1 + x)2 (1-x)2 (3) 

where SNR = (Px + P2)/2o-2 is the signal-to-noise ratio 
for sources with power Pi and P2 and white Gaussian noise 
with variance cr2. 

The parameter x depends on the array manifold as fol- 
lows: 

x=y/{\-A) + A-\<t>\ (4) 

where ^^P^A-Pi + -P2)2 depends only on the source 
powers and ^ = aH(w1)-a(a;2)/Ä" is the (normalized) scalar 
product of the steering vectors a(w) evaluated at the true 
DOA's w\ and CJ2, spaced 6u>=(u>2—wi)/2 apart. 

The correlation coefficient cj> relates the angular close- 
ness of the sources and the form of the array manifold, and 
it assumes the following form 

0 =lej(ifi-i)*u,. 1  
K sin (8w) 

■ (sin (Kioto) + sin {K28oj)e^M+A-^Su\ 
(5) 

The absolute minima of E {(1 - cosa)2} are obtained3for 
0 = 0, i.e. by choosing an array manifold in which the 
steering vectors associated to the sources are orthogonal. 
Despite of this fact, good signal subspace estimation does 
not results in a minimization of the estimation variance. 
This is due to the fact that the definition of the angular 
distance between subspaces relies on the maximum angle 
formed by vectors belonging to the subspaces, while the 
estimation variance also depends on the local slope of the 
array manifold measured at the intersection with the signal- 
subspace; sensible rotation of the estimated subspace is 
allowed, leaving the estimation variance quite unaffected. 

This fact is also deduced by looking at the expression 
of the mean squared estimation error, reported in [1], 

;{(W; -Ulf\ 
E ,,a \  „ |a>,)Sfc|

2 
21      a2

fcfi(CT2-A,)2 

2N K-L 

fc=i 

(6) 

3This is due to the increasing monotonic behaviour of (3) in the interval 
| < 1 or, equivalently, 1 — A < x < 1. 
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where 

dM du 
a(w) 

is the vector of the derivatives of the components of the 
steering vector, the vectors s^ are the eigenvectors of the 
true covariance matrix spanning the signal-subspace, A& 
are the associated eigenvalues, and the vectors g^ are the 
eigenvectors spanning the noise-subspace, i.e. 

Rx = E{x-xH} = £>fc 

K-L 

Sfc ■sk+a ^Ekgk 
k=l k=l 

For two uncorrelated sources the expression of the eigen- 
values is 

A1)2 = £ ((A + P2) ± ^(Pi-P2)
2 + 4P1P2H

2)+a2 

and (non-normalized) eigenvectors Sfc are 

si,2 = a(wi) +     'Kp a(w2) (7) 

By carefully looking at (6), we see that the numerator 
depends on 4> in the same way of (3), but the dependence 
of the denominator is not still clear. To better investigate 
the dependence on <f>, (6) has to be put in a more suitable 
form. 

To this end, let us consider two sources having the same 
power, i.e. Pi =P2 = P. After some algebraic manipula- 
tions, we obtain 

i|(wj -W;)2| = 
NSR/ÜT 

2N 
(1-M2) + NSR/X 

(l-|«/f)I-j2_I 
d 8u) 

2 f 9-1     (8) 

where NSR = 
tion, and 

K-X 

1/SNR, overbar denotes complex conjuga- 

=1 + 4 + 9 + • • • + (Ki - l)2 

+ (if! + A - l)2 + ■ • • + (M - l)2 

K ■ J =1 + 2 + 3 + • • • + (Ki - 1) 

+ {Kx + A - 1) + • • • + (M - 1) 

We can see that now <f> = 0 maximizes the numerator, while 
the denominator depends on the derivative of <j> w.r.t. the 
DOA spacing Su>. It is shown that the subspaces distance 
criterion cannot be used to determine a splitting distance 
which minimizes the estimation error . 

To this purpose, we follow here an alternative approach 
based on the minimization of the variance of the prediction 
error, as indicated in [3] where the particular case of a 
subarray formed by one sensor only has been addressed in 

a linear prediction framework. A similar approach has been 
also employed in [5] in speech compression applications. 

Specifically, denoting by 

Xi = [xi ,-•-, xKlf    ;    x2 = [xKl+A ,■ ■ ; xMf 

the measurements drawn from the first subarray and the 
second subarray, respectively, the linear prediction problem 
is solved by determining the matrix P which minimizes the 
the sum of the variances of the prediction errors 

e = x2 - P • xi 

The minimum value is readily found as 

(9) 

<T
2
 
d=f E {eHe} = Trace {R2 - R^B^Rai}        (10) 

where Ri = E{xi • x^} is the covariance matrix of the 
measurements of the first subarray, R2 = E{x2 -x2} is 
the covariance matrix of the measurements of the second 
subarray and R21 = E{x2 x"} is the cross-covariance 
matrix between the two subarrays. The absolute minumum 
of CT

2
 is found by sistematically varying A. 

3   Conclusion 

To show how the results of the previous section can 
be used in practical applications, simulation results are re- 
ported in fig.l, where the mean squared errors relative to 
the Root-MUSIC estimation of the DOA wi = -w2 = 3 de- 
grees, when a subarray configuration with K\ = Ki = 5 is 
considered, is plotted vs. the subarrays splitting distance 
A. For comparison purposes, the results relative to the full 
array with M = Ki+ÜT2+A-I sensors are also shown. 
The array spacing is half a wavelength 2d=A, three values 
of SNR = -5, 7, 15 dB are considered, the number of 
snapshots is N — 100 and averaging over 100 MonteCarlo 
runs have been carried out. 

We see that optimum performances of the subarrays con- 
figuration are obtained for A ~ 15 for all the SNR values 
and the given source spacing 6w = 6 degrees, correspond- 
ing to performance of a full array of M = 24 sensors, while 
only K = 10 sensors are used in the subarrays configura- 
tion. 

In figs. 2 and 3, we report the minimum error prediction 
variance (10) and the subspace distance (3) as functions 
of the subarrays splitting distance A, respectively. We see 
that the optimum splitting distance is correctly indicated by 
the minimum prediction error criterion, while the subspace 
distance shows a kind of a opposition-of-phase behaviour 
in indicating the optimum splitting distancet. This is due 
to the lack of dependence on the derivative of <f> w.r.t. the 
DOA spacing 6ui, which is inherently taken into account 
in the minimum prediction error criterion. 
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This fact does suggests some opportunities of practical 
use of the ideas here presented. For instance, this compu- 
tational saving technique can be used in tracking pairs of 
sources after a full array discovery stage by applying the 
following two step procedure: 

• fixed the subarrays aperture K\ and K2, search over A 
for the minimum prediction error. This implies inver- 
sion of a reduced order covariance matrix Ri, which 
can be suitably carried out using Levinson recursion 
in the case of a uniformly linearly spaced subarray xi; 

• apply the root-MUSIC techniques (or other techniques 
based on subspaces decompositions) to the KxK co- 
variance matrix of the subarrays configuration. 

The drawback is constituted by the increased ambiguity 
of the subarrays configuration, which is clearly show in 
fig.l for A large enough. In essence, this technique can be 
defined as a MUSIC interpherometric method. 

This technique can be used also in multiple invariance 
ESPRIT context. This is matter of current investigation, 
along with a more detailed theoretical analysis. 
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Figure 1: Comparison of performance of 
MUSIC applied to a full array (continuous 
curves) and to a subarrays configuration 
(dashed curves) as a function of the splitting 
distance A and for various SNR values. 
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Figure 2: Error prediction variance vs.   the 
splitting distance. 

Figure 3: MSE of the distance between the 
true and the estimated signal subspaces vs. 
the splitting distance. 
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Abstract 

In many implementations of digital delay and sum beam- 
forming, a sample rate much higher than the Nyquist rate 
is used. This allows for many synchronous beamsteering 
directions. Severe demands are made upon the analogue to 
digital converters however. Several methods have been pro- 
posed for reducing the sample rate required. These methods 
incorporate the delays that are needed for beamforming in 
time domain [3],[4] or in frequency domain [5]. A more effi- 
cient method for implementing a time-domain delay and sum 
beamformer using polyphase decomposition is presented in 
this paper. This method results in significant computational 
savings when the desired angular resolution is high com- 
pared to the number of sensors used and the number of 
simultaneously formed beams. 

1. Introduction 

Conventional continuous-time beamformers delay all 
sensor outputs so that propagation delays are cancelled and 
the sensor outputs can be combined coherently. In a discrete- 
time beamformer, these delays are performed digitally. Us- 
ing discrete time delays only allows for delaying over an 
integer multiple of the sampling time period. Therefore, the 
number of synchronous beam-pointing directions is small 
for low sample rates, resulting in a poor angular resolution. 
To illustrate this, it is shown in Section 2 that a linear ar- 
ray sampled at v times the Nyquist rate can only be steered 
to 1 + 2v synchronous angles. A signal arriving from a 
non-synchronous direction can be received by steering the 
beam to the most nearby synchronous angle or by rounding 
the delays needed for beamforming to the delays available. 
Both methods introduce severe distortion and poor spatial 
discrimination for small v. In Section 3 the concept of inter- 
polation beamforming is discussed. This technique uses in- 
terpolation, so that the sampling rate is increased artificially. 
In this way, delays are obtained which are a fraction of the 
unit delay [2]. In Section 4 an efficient method is presented 

for the implementation of the interpolation beamformer us- 
ing polyphase decomposition. The resulting complexity is 
discussed in Section 5 and a numerical example shown in 
Section 6. 

2. Linear Sensor Array Beamforming 

Although the method to be presented can be applied to all 
array geometries, an example of the steering capabilities of 
a linear array is discussed. For a linear array the anticipated 
propagation delay of a flat wave plane from the first sensor 
to the ith sensor equals 

id sin $ 
fmax (1) 

where d is the sensor inter-distance, 9 is the direction of 
arrival (DOA) relative to broadside (the direction perpen- 
dicular to the line-array), c is the wave plane propagation 
velocity and 7max is the propagation delay of the wave plane 
between the first and the last sensor. The wave plane incident 
to the linear array is depicted in Figure 1. The sensor outputs 

J   -    ]'   ä    'l   ä    ']'   d    ']   -    ] 

Figure 1. Wave front Incident to a linear array 

are sampled at the rate /, = ^ and consequently the beam 
can only be steered to the ang'les which yield a difference 
in propagation delay of uTs seconds between neighboring 
sensors, with u an integer. This delay is cancelled using 
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time-delays uT, dsm8 . The beam can thus be steered to 

e«=sm {—) (2) 

A common choice for d that prevents spatial aliasing is 
d = ^, A0 being the minimum wavelength of the signal 
to be received. For this sensor inter-distance and a sample 
rate equaling /, = 2vf0, it follows from (2) that |«| < v. 
There exist 1 + 2[v\ different u that obey this equation, 
so the beam can be steered to 1 + 2[v\ different angles. 
For example, when the sample rate for equals 4/0 (v = 2), 
it follows from (2) that the beam can only be steered to 
0, ±30° and ± 90". A higher angular resolution can be 
achieved by interpolating the sampled data. When v = 2 
and more than 5 synchronous directions are desired, the 
data can be interpolated by a factor M. This is depicted in 
Figure 2 for M = 4. The solid lines indicate the sampled 

Xi[k'T'a) 
* 

9     9 

T 

■ifc' 

Figure 2. Data interpolation 

data and the dashed lines indicate the interpolated data. A 
delay of ^ for example can now be achieved by selecting 
the interpolated samples indicated with an ] in Figure 2. 
Interpolating with a factor M = 4 now allows for beam- 
steering to 0, ±7.18°, ±14.5°, ±22.0°, ±30.0°, ±38.7°, 
±48.6°, ±60.0°, ±90.0°. Clearly, only one of every M 
interpolated samples is used for beamforming. 

3. Interpolation Beamforming 

The interpolation process for a single beam is depicted 
in Figure 3. First the sensor data is sampled at a rate equal 
to or exceeding the Nyquist sampling rate. The ith sampled 
sensor output x{[kTs] is zero padded to obtain Xi[k'T',] 

ii[k'T'] = I  Xi i^Ts forA;/ = 0,±M)±2M)... 
otherwise 

(3) 
with T's = j%. Then the x{ are filtered with the interpolation 
filter H to obtain the £, 

L-\ 

*iWT;] = Y,hvTsM(k'-iW]. (4) 

This filter is a Finite Impulse Response filter with impulse 
response h[k'Tj]. The x, are delayed over piT's seconds, to 
compensate for the anticipated propagation delays, where 
the piT', are equal to the r,-. Then down-sampling is used to 
obtain 

x'i[kTs] = xi[{kM-Pi)T'a]. (5) 

The beamformer output y[kTs] is obtained by summing the 
shaded x't. Shading means multiplying the x\ with weights 
to enhance the angular discrimination. To simplify notation, 
the shading is not mentioned explicitly in figures and equa- 
tions. Multiple beams can be formed from the interpolated 
sensor outputs £,■ without performing additional multiplica- 
tions. 

Pridham and Mucci [3] argued that the scheme of Figure 
3 is equal to the scheme in Figure 4 for the case that only 
one beam is formed. This can be seen by interchanging 
the filter H and the delays p{Tt and placing the filter H 
and the down-sampling in Figure 3 after the summation. 
This is allowed when all filters are identical, linear and time 
invariant. Furthermore, the filter and the down-sampling 
may be combined to reduce complexity. It will be shown 
in Section 5 that the complexity of the technique proposed 
in the following section is lower than that of the scheme in 
Figure 4 for high angular precision beamformers. Note that 
forming multiple beams is not possible without performing 
additional multiplications with this scheme. 

4. Polyphase Decomposition 

In this section an efficient implementation of the inter- 
polation beamformer is presented. First, consider the data 
processing in Figure 3 for ith sensor only. This is depicted 
in Figure 5(a). Here the delay piT', is interchanged with 
interpolation filter H. This is allowed since H is linear and 
time invariant. In Figure 5(b) filter H is decomposed into 
the filters H0, H\... HM-i using polyphase decomposition 
[1]. The impulse responses of the Hj can be calculated from 
the impulse response of H according to 

M^] = {0
ftl(t'+ira for*' 6 K 

otherwise (6) 

forj = 0,1,..., M-1 and « = {0, M,..., M I ^^1}. 
Down-sampling these filter outputs is equivalent to down- 
sampling the data and then filtering with Hj, as depicted in 
Figure 5(c). The impulse responses of the Hj are given by 

h'j[kTa] = hj[kMTa, (7) 

j=o 

for k = 0,1,..., [^=i J. Up-sampling with a factor M, 
delaying over p,T/ and down-sampling with a factor M is 
equal to delaying over j±T, if p{ is an integer multiple of 
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M, and equal to zero otherwise. Therefore Figure 5(c) can 
be interpreted as choosing the filter H'q and delaying over 
rT,, where 

r   = 

"El-"- 
q + Pi _ \pn 

M       IM I (8) 

The resulting scheme is depicted Figure 5(d). The combi- 
nation of the delay of rTs and the sub-filter H'q represents 
an approximation of the desired delay PiT's. The sub-filter 
must be of sufficient length to guarantee a good approxima- 
tion of the desired delay. In contradiction to this demand, 
a long sub-filter requires many multiplications per second, 
and introduces a long beamformer delay. 

5. Comparison of Computational Complexity 

As a measure of complexity, the number of multipli- 
cations per seconds of the interpolating filter is considered. 
The filter H is assumed to be of length L = wM throughout 
this section, with w integer. Although this is not necessary, it 
gives more insight in the calculation of the complexity. The 
proposed beamformer is compared with the beamformers of 
Figure 3 and 4. 

In the scheme of Figure 3, N filters of length L are cal- 
culated at a rate f's, with N the number of sensors. Using 
f's = M/, and taking advantage of the sparse input data of 
the interpolation filters, this yields a complexity of LNfs 

multiplications per second. This complexity is independent 
of the number of beams to be calculated, and is therefore 
efficient when a large number of beams is required. Fur- 
thermore, assuming that the filter H is a linear phase filter, 
the number of multiplications per second can be reduced 
by approximately a factor 2, yielding a complexity of ^JL 

multiplications per second. 
Filter H in Figure 4 is calculated for each beam at a rate 

/,, since only one of every M samples is needed. The num- 
ber of multiplications per second equals LNBfs, with NB 

the number of beams to be calculated. Again, assuming that 
the interpolation filter is a linear phase filter, the resulting 
number of multiplications per second equals LNgf-. 

The scheme in Figure 4 is more efficient than the scheme 
in Figure 3 if and only if the number of beams to be calcu- 
lated is smaller than the number of sensors (NB < N). 

In the proposed beamformer, sub-filters H'q are of length 
w. For each beam, N sub-filters are calculated at a rate 
/,. The total number of multiplications per second equals 
wNNsfs = LN

M
B!

' ■ In Senera1' il is not P°ssible to 

exploit the linear phase property of the interpolation filter 
to reduce the complexity further. When M < 2NB and 
N < NB interpolating all sensor data as in Figure 3 is most 
efficient. Combining all interpolation filters as in Figure 4 

is most efficient when M < 2N and N > NB. Thus the 
proposed method outperforms its alternatives when a high 
angular resolution is required (Af > 2N and M > 2NB). 
This scheme has a gain in computational complexity over 
its alternatives of ^ and ^ respectively. The quality of 
the delays formed depends on the sub-filter length w = ^. 
When both the filter length L and the interpolation fac- 
tor M are increased with the same factor, the number of 
beam-pointing directions further increases while the com- 
putational complexity does not increase for the proposed 
method. Consequently, the angles for which beams can be 
formed can now be chosen with arbitrarily precision while 
maintaining the same amount of multiplications per second. 
In practice, the filter length L is limited however since \ tab 
weights are stored into a finite amount of memory. For the 
two alternative methods the computational complexity does 
however increase proportionally with the filter length L. 

6. Example of Computational Complexity 

Next, an example is given to show that the conditions for 
the proposed method to be more efficient than its alterna- 
tives are easily met. Consider sub-filters of length w = 10, 
N = 7 sensors, M = 20 (41 different synchronous angles) 
and NB = 5 (five beams are formed). The main lobes of 
the unshaded beam-patterns corresponding to the resulting 
synchronous beam-pointing directions are depicted in Fig- 
ure 6 for 0 in between 0° and 90°. For negative angles, the 
figure is symmetrical. The figure shows that there indeed 
is a need for a high M to exploit the best possible angular 
discrimination. However, when M is chosen much larger, 
the angular discrimination no longer improves, as the suc- 
cessive beams merely overlap. In practice, M will be in 
between 15 and 40 for a 7 sensor array which is sampled 
at the Nyquist rate, and the proposed method outperforms 
the alternatives discussed. The complexity for the proposed 
beamformer equals wNNBfs = 350/, multiplications per 
second for this example. The alternate schemes of Figure 3 
and 4 require ^p- = 700 and ZZfL. = 500/, multiplica- 
tions per second respectively. A significant efficiency gain 
is thus obtained. 

7. Conclusions and Future Research 

A new method using polyphase decomposition was pro- 
posed for reduced complexity interpolation delay and sum 
beamforming. Significant computational savings are re- 
ported for beamformers with a high angular discrimination. 

In future research the polyphase equivalent scheme will 
be used to study relations between interpolation beamform- 
ing and other broadband array processing techniques. The 
use of an adaptive algorithms to track moving sources us- 
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ing delay and sum beamformers will also be considered in 
future research. 
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Abstract 2    Background 

This paper describes the design requirements for 
a QAM demodulator chip recently developed to be 
part of a settop convertorfor digital cable television. 
The chip demodulates 64- and 256-QAM signals at 
a maximum bit rate of 44 Mb/s and uses blind acqui- 
sition techniques so that no training or pilot signals 
need be sent by the transmitter. 

1    Introduction 

The desire to send many bits of data per Hertz 
of transmission bandwidth has caused the develop- 
ment of sophisticated communications systems us- 
ing quadrature amplitude modulation (QAM). First 
introduced for voiceband modems [1] the technol- 
ogy was then applied to microwave radio relay sys- 
tems [2]. Its success in those applications has led 
to great interest in its use for other communication 
situations in which economic or regulatory consid- 
erations limit the available transmission bandwidth. 
An important example of such an application is the 
wireless and cable distribution of digital television 
[3]. This paper describes how digital transmission 
is used for cable television distribution and how the 
characteristics of a cable system affect the design of 
a suitable demodulator. 

°CRJ's research on blind equalization is currently sup- 
ported in part by NSF Grant MIP-9509011 and Applied Sig- 
nal Technology. 

Figure 1 shows the block diagram of a digital 
communications system. The input data is applied 
to the modulator and transmitter, which convert 
the data stream into a bandlimited analog wave- 
form and frequency-translate it into the frequency 
band appropriate for transmission. As the signal 
propagates to the receiver it is delayed, attenuated, 
and sometimes distorted in a frequency-selective 
manner. These effects, on which we will elabo- 
rate shortly, are modeled in the block diagram as 
the propagation channel The receiver accepts the 
channel output, plus noise and interference inadver- 
tantly present at the receiver input, and attempts 
to recover the input data sequence. 

In the particular case of digital cable television 
transmission, Figure 1 gives way to the system 
shown in Figure 2. Compressed video, audio, tele- 
phony, and even other data services are combined 
into a composite data stream and modulated onto 
a carrier wave. Many of these, plus, possibly, older 
analog television signals, are summed together for 
transmission and distribution. Older systems do the 
transmission on coaxial cables only. Newer systems 
use both fiber optic transmission and coaxial cable 
(as shown in Figure 2), while the newest promise to 
send the signals directly to the customer premises 
on fiber. Once in the customer premises the signal 
is commonly split and distributed to many devices, 
including VCRs, television sets, and, in the future, 
cable modems. 

More detail on the "headend" is shown in Fig- 
ure 3.   The video and audio for a particular tele- 
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Vision source are digitized and compressed. The 
resulting output data rate depends on the type of 
compression used and the desired fidelity of the re- 
ceived image and sound. Quality comparable to 
high-SNR NTSC transmission can be obtained us- 
ing MPEG-2 compression, yielding an average bit 
rate of about 6 Mb/s. High definition television 
(HDTV), with its larger screen size and greater res- 
olution, requires about 25 Mb/s. Since the modu- 
lation anticipated (more on this shortly) can carry 
a raw data rate of 30 to 40 Mb/s, this permits sev- 
eral digitized video/audio sources to be multiplexed 
together on a single "digital signal". This multi- 
plexing can be done deterministically, that is, by 
giving each of the sources a fixed bit rate alloca- 
tion, or it can be done dynamically, allowing the 
number of sources, their quality, and the types of 
sources to be managed by the headend. For ex- 
ample, one HDTV and two normal resolution TV 
sources might share the bandwidth, or, conversely, a 
sports program with a high degree of motion might 
be allowed to use some of the bits allocated to a 
video signal with a more static image. 

Once the 30 to 40 Mb/s stream of multiplexed 
and possibly encrypted signals is put together, for- 
ward error correction bits are added and the com- 
posite stream is modulated onto a carrier. These 
modulated signals have a bandwidth less than 6 
MHz so that they can be frequency-division multi- 
plexed (FDM) onto the cable transmission medium. 
By adhering to the 6 MHz spacing, compatibility is 
maintained with older analog TV transmission sys- 
tems. Note also that the 30 to 40 Mb/s carried on 
the modulated signal need not be used completely 
(or even partially) for television. Such a "data pipe" 
is usually refered to as a "cable modem", and can be 
used for a variety of services, including high-speed 
Internet connectivity from a server to a computer 
at the home or office. 

In comparing Figure 1 with Figure 2 we see that 
the propagation channel includes all of the cable 
distribution equipment from the modulator output 
to the demodulator input in the destination device, 
and therefore includes all up- and downconverters, 
bandpass filters, combiners, trunk amplifiers, coax- 
ial cable runs, and splitters. How these devices 
and equipment disrupt the signal's transmission can 
be understood after a discussion of the method by 
which the digital data is prepared for transmission 
over the analog medium. 

Modern bandwidth-efficient transmission of digi- 

tal data is based on the concept of sending pulses [4]. 
The input data is partitioned into sets of N bits 
and those bits are then used to determine the phase 
angle and peak amplitude of the pulse. The pulse 
shape itself is chosen to ensure a bandlimited signal 
spectrum. The receiver is designed to determine the 
amplitude and phase of each incoming pulse, deter- 
mine which of the 2N possibilities has been sent, 
and then report out the corresponding N bits. If 
the pulses are transmitted at the symbol or baud 
rate of /B symbol per second, then the transmiss- 
sion system can carry N • fß bits per second. 

The effect of the cable transmission plant is to 
disperse the transmitted pulses in time. Its effect 
on a QAM signal is often assessed by looking at the 
signal's constellation. This is an overlay of many 
received symbol measurements. In the absence of 
noise, interference, and dispersion, and with perfect 
estimation of the signal's amplitude, carrier, and 
timing, the received measurements from a 64-QAM 
signal should look as they do in Figure 4(a). The 
presence of dispersion alone is sufficient to produce 
the degradation seen in Figure 4(b). In the ab- 
sence of additive noise and receiver imperfections, 
the displacement between an actual received con- 
stellation point and the transmitted point shown in 
Figure 4(a) is a combination of the channel disper- 
sion's effect on the particular pulse being consid- 
ered and the intersymbol interference (ISI) induced 
by the channel on the adjacent pulses. Some of the 
received symbols are displaced sufficiently that the 
nearest neighbor decision rule makes errors. Be- 
cause of the potential for frequent errors from this 
source, the demodulator requires an adaptive equal- 
izer of some type to compensate for the effects of the 
cable plant's dispersion. 

In further comparing Figure 1 with Figure 2 we 
see that the noise and interference includes all noise 
introduced by the active components of the sys- 
tem plus the interference produced inside the sys- 
tem and received from outside it. The noise is usu- 
ally controlled by careful design and maintenance of 
the system. The interference, usually refered to as 
ingress, is combatted by minimizing any intermodu- 
lation distortion within the system and by ensuring 
good maintenance of the system to prevent strong 
externally generated signals, such as from radio or 
broadcast television, from entering the distribution 
system. 
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3    The Demodulator's Requirements Characterizing The Cable Televi- 
sion Propagation Channel 

In light of this background, the requirements for 
the demodulator can be enumerated: 

• The modulator/demodulator pair must reli- 
ably carry as much data as possible over cur- 
rently available cable systems. The use of 
QAM on a 6 MHz channel limits the Baud 
rate to about 5 MHz. The noise floor present 
in a well-engineered conventional cable system 
limits the QAM constellation size to about 
256. For poorer systems, a constellation size 
of 64 might be used to add some "system mar- 
gin" at the expense of 25% of the available 
transmission rate. Thus, the demodulator is 
required to handle up to 256 QAM with a 
maximum baud rate of 5.5 MHz or so. 

• The demodulator must operate in a non- 
cooperative manner, that is, it should not 
need any special training or synchronization 
from the transmitting modulator. Further, 
the user should be able to change channels 
rapidly ("channel surf) without subtantial re- 
acquisition delays being introduced by the de- 
modulator. 

• The demodulator needs to be cheap and to 
operate with other cheap components. 

• Finally, the demodulator must handle the sig- 
nal impairments to which it may be subjected. 
These include both the interference (inter- 
modulation distortion and "ingress") and the 
signal dispersion introduced by the distribu- 
tion plant itself. Conventional demodulator 
design cannot inexpensively deal with large 
amounts of interference and therefore these 
are traditionally handled by vigilant system 
maintenance. Channel dispersion, however, is 
a fundamental characteristic of a distribution 
plant and the demodulator must compensate 
for it. In order to reach a suitable specifica- 
tion for it, however, we must first determine 
the degree of dispersion present in cable TV 
systems. 

While modeling of the cable propagation channel 
can and has been done analytically, the approach 
taken here is to measure it in real cable television 
systems. We first describe the method employed 
and then the results. 

In practical circumstances the propagation char- 
acteristics of the channel between a transmitter and 
receiver are not known a priori. Further, a one-time 
calibration of a channel's characteristics is not use- 
ful since channels are known to vary with time ow- 
ing to influences from environmental and manmade 
factors. To deal with this time variation it is use- 
ful to have channel modeling techniques which can 
use "signals of opportunity" to probe the channel to 
be analyzed. The method used here, first described 
by Gooch and Harp [6], uses a demodulator to ob- 
tain symbol estimates from a PSK or QAM signal 
of opportunity and then uses these symbols along 
with the received signal itself as inputs to a chan- 
nel modeller. This scheme is shown in Figure 5. 
The key to this technique's success is the use of a 
blind equalizer in the demodulator to "open the eye" 
enough for the demodulator to initially acquire the 
signal. Once acquisition has occured, the demodu- 
lator begins to use its own symbol decisions as the 
desired input to an LMS-directed equalizer update 
algorithm. (See Wolff, Treichler, and Gooch [10] for 
an early description of such a demodulator.) These 
symbol decisions are, of course, the same regener- 
ated symbols needed as one of the inputs to the 
modeling stage. 

Gooch and Harp [6] used a LMS-directed FIR 
adaptive filter to estimate the pulse response of the 
propagation channel. The filter's input is the stream 
of regenerated symbols, interpolated with alternate 
zeros to create a fractionally-sampled input rate of 
2/s, where fs is the symbol or Baud rate of the 
received signal. The reference or desired input to 
the adaptive modeller is a version of the input sig- 
nal delayed to compensate for the processing delay 
of the demodulator. The LMS algorithm is used 
to adapt the coefficients of the complex-valued fil- 
ter pulse response. The convergent solution is well 
known to closely approximate the least-squares fit 
between the actual channel and the model. The 
error signal e(k) contains unmodeled components, 
misadjustment noise, and receiver noise. In pass- 
ing it should be noted that this error signal can be 
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spectrum analyzed to reveal the presence and char- 
acteristics of additive signal impairments such as 
cochannel interference [6]. Use of this approach to 
identify ingress into a cable system will be discussed 
in Section 6. 

An example of the result of this modeling proce- 
dure is shown in Figure 6. The power spectrum 
of a 64-QAM, 5.1 MBaud signal appears in Fig- 
ure 6(a). Adjacent to it is the power transfer func- 
tion of the estimated channel. This was obtained 
by first developing an FIR model of the channel 
pulse response, as described above, and then com- 
puting the log magnitude square of the FFT of that 
complex-valued pulse response shown in Figure 7. 
Note the close correspondence of the channel shap- 
ing between the received spectrum and that of the 
model. 

By inspecting the log magnitude of the estimated 
pulse response in Figure 7, we can see that the chan- 
nel does not conform to a simple two- or three-ray 
specular model but in fact the received signal is 
the combination of many delayed and scaled ver- 
sions of the transmitted symbol stream.   A more 
detailed examination of many such channel esti- 
mates indicates that the dispersion can be broken 
into two classes, "microreflections'' and "macrore- 
flections". The macrorefiections have large ampli- 
tude compared with the transmitted signal and have 
relative delays on the order of microseconds, indi- 
cating a strong reflection from the end of a long im- 
properly terminated stub. (Recall that the round- 
trip delay on a coaxial cable is about 18 microsec- 
onds/mile.) The microreflections are multitudinous 
but small in amplitude, stemming from a large num- 
ber of lower level reflections on short cable sections 
within the system.   The macrorefiections must be 
found by the maintence crews and removed, since 
building the demodulator to compensate for them 
is uneconomical. The microreflections, however, are 
a fact of life even in a well-designed, well-maintained 
system and must be accommodated by the demod- 
ulator. Examination of a large number of the chan- 
nel models of the type seen in Figure 7 shows that 
a reasonable estimate of the maximum delays seen 
for a cable system's microreflections is 2 to 3 mi- 
croseconds. A database (to be resident in the Na- 
tional Science Foundation's Signal Processing Infor- 
mation Base (SPIB) at Rice University and linked to 
http://www.ee.cornell.edu/faculty/RJohnson.html) 
includes a representative sample of the received sig- 
nals used to draw these conclusions. 

Given this estimate for the maximum delay 
spread of 3 microseconds for the cable propagation 
channel, how long does the demodulator's equalizer 
need to be? This question has been recently ad- 
dressed in [9], which discusses the recent technical 
result that a fractionally-spaced equalizer need be 
no longer than the maximum expected delay spread 
of the channel. In light of this result the length of 
the fractionally spaced equalizer should be at least 
16 symbols long (so the data rate of 5.1 Mbaud < 
16 symbols / 3 microseconds). 

5    The Demodulator Design 

Many different approaches have been used to de- 
sign a demodulator for digital signals. An indica- 
tion of the choices available in this design process 
are shown in Figure 8. In general the demodula- 
tor must (1) bandpass filter the incoming signal, 
(2) adjust the input signal amplitude, (3) estimate 
and remove any carrier component, (4) equalize the 
channel's dispersive effects, (5) "slice" the input sig- 
nal to obtain pulse amplitude and phase measure- 
ments, (6) decide which pulse amplitude and phase 
was actually transmitted, and (7) convert that deci- 
sion into the associated bit pattern. Demodulators 
for digital cable transmission incorporate forward 
error correction as well. 

Even though it is only one component of the de- 
modulator, the adaptive equalizer's design takes on 
special importance for three reasons: (1) its perfor- 
mance is crucial to the goal of maximizing the trans- 
mission rate through the dispersive channel, (2) it is 
the most complicated of all the demodulator's com- 
ponents, and (3) it consumes a large fraction of the 
computation needed to implement the complete de- 
modulator. Amplifying on this third point, it is 
not unusual for the adaptive equalizer to consume 
more than 80% of the multiply/add cycles needed 
to demodulate a 256-QAM signal. Given that, it 
becomes an important design consideration to limit 
the length of the equalizer to only that required to 
handle adequately the range of propagation chan- 
nels expected to be encountered. 

With an eye toward minimizing and simplying 
the computation needs, early demodulators used so- 
called T'-spaced equalizers [4]. After filtering, gain 
control, and carrier removal, the input signal was 
sampled once per symbol (pulse). The timing of 
this sampling clock was adjusted so that the sam- 
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pies were taken at the "top dead center" of the 
received pulses. These samples then entered the 
equalizer's tapped delay line filter. A linear com- 
bination of them was fed on to the measurement 
and comparison stages. Error measurements made 
in the decision circuit were fed back to the equal- 
izer's adaptation algorithm to optimize the choice 
of filter weighting coefficients. 

While theoretically reasonable (i.e., "one sample 
per pulse") and computationally desirable, practi- 
cal design of high speed modems has gravitated 
away from T-spaced equalizers and toward the use 
of fractionally-spaced equalizers (FSE), so called be- 
cause the equalizer taps are closer together in time 
than the symbol interval T. Equivalently, and per- 
haps more intuitively, this means that the input to 
the equalizer is sampled faster than the symbol rate 
JB- The output rate is still at the symbol rate, 
making the FSE a decimating or even resampling 
filter. 

If the temporal spread of the equalizers are held 
to the same value, then the FSE obviously consumes 
more computation than a T-spaced design. Why 
then use them? The answer is that even though 
they require more computation, they simplify the 
rest of the demodulator's design and allow it to 
work at virtually theoretical levels. The principal 
reason for this is that even though the pulses arrive 
at rate JB, the actual bandwidth of the signal is 
somewhat larger, typically 10 to 40% higher. As a 
result, sampling the conditioned input at the rate 
of /B HZ is not enough to satisfy the Nyquist the- 
orem. While not important if all parameters of the 
signal were known, the fact that the input signal 
must be processed to extract timing and carrier in- 
formation means that sampling at JB is not fast 
enough. There are also some curious signal cancel- 
lation effects that arise when the signal components 
alias into a band of only fg Hertz. 

The actual input rate to the FSE is usually gov- 
erned by a variety of hardware considerations. The 
rate must be high enough to satisfy the sampling 
theorem, but lowering the rate reduces the compu- 
tational requirements. The most common choice 
is to sample the conditioned input signal at ex- 
actly twice the symbol rate /a, making the filter 
tap spacing equal to j, half of the symbol spacing. 
The resulting equalizer thus decimates its input by 
a factor of 2, producing one output for every two 
input samples. It is not uncommon to operate at a 
fractional rate either. The demodulator chip to be 

described shortly uses a &f design, in which a dig- 
ital timing recovery circuit and resampler supplies 
complex-valued samples into the equalizer at a rate 
only 20% higher than the symbol rate. 

In response to these requirements described in 
Sections 3 and 4, the QAM demodulator chip pic- 
tured in [9] was developed. The demodulator chip 
fits into a settop convertor design of the general type 
shown in Figure 9. A conventional TV tuner is used 
to extract the selected RF channel and translate 
it to the standard 45 MHz IF. This analog signal 
is then bandpass sampled and the resulting 8-bit 
samples are applied to the demodulator chip. The 
chip first measures the power of the input and feeds 
back a control signal to the amplifier which pre- 
ceeds the A/D. This loop constitutes an automatic 
gain control (AGC). The signal is then quadrature 
downconverted to produce a complex-valued sam- 
ple stream. The image rejection filtering is per- 
formed asynchronously to the input clock in such 
a way that the filter output rate is synchronous to 
the QAM symbol rate. This "asynchronous resam- 
pling" is controlled by a circuit which extracts a 
tone at the symbol rate and feeds information back 
to the filter. The resulting rate-synchronous sam- 
ple stream is applied to a fractionally spaced adap- 
tive equalizer. Its output, decimated to exactly one 
complex sample per symbol, is applied to the digital 
carrier tracking loop, which removes residual carrier 
frequency and phase, produces "soft decisions", and 
quantizes the soft decisions to produce 8-bit symbol 
outputs. The initial prototype chip consumes about 
3 watts and executes the equivalent of 700 million 
multiplications per second. 

In order to let the viewer select any TV channel 
at will, the demodulator must be able to acquire all 
of its tracking parameters, including the equalizer, 
without aid from the transmitter. To do this the 
adaptive equalizer uses the Constant Modulus Algo- 
rithm [7, 8] to initially "open the eye" and then au- 
tomatically switches over to decision direction once 
carrier phase acquisition is complete. Decision feed- 
back is not employed owing to the pipelined nature 
of the chip's VLSI design. 

Additional Uses of the QAM De- 
modulator Chip 

While developed originally for use in digital ca- 
ble settop converters, the demodulator chip will 
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be useful for at least three other applications as 
well. The first and second are for demodulation 
of digital TV signals which are broadcast over ra- 
dio frequency (RF) channels instead of being sent 
through a coaxial or fiber cable medium. High def- 
inition television is to be transmitted in the US 
over the same 6 MHz-wide VHF and UHF chan- 
nels over which analog television is now sent. Al- 
though vestigal sideband (VSB) transmission is cur- 
rently planned, the ubiquity of QAM will proba- 
bly win out. Once it does, the QAM demodula- 
tor chip can be used directly. The other broad- 
cast medium is Multipoint Microwave Distribution 
Systems (MMDS), also called "wireless cable", in 
which analog and digital television signals of the 
same structure as used for cable transmission are 
sent instead over a broadcast signal in the 2.5 GHz 
microwave band. Both of these scenarios have sub- 
stantially different propagation characteristics than 
cable-transmitted signals usually do, implying that 
the adaptive equalization used in the demodulator 
must be robust and that the equalizer's length must 
match the delay spreads of 2 to 3 microseconds often 
seen in the broadcast environment. 

The third application of the demodulator is in 
test equipment used for maintaining the cable sys- 
tem itself. By using the demodulator chip as a part 
of the block diagram shown in Figure 5 it is possible 
to build a handheld piece of equipment capable of 
noninvasively testing cable signals and characteriz- 
ing any problems encountered. Such a piece of test 
equipment is shown in Figure 10. It can tune to any 
RF channel, measure the signal quality, and test for 
the presence of macroreflections and ingress. As an 
example, consider Figure 11, which shows not only 
the signal constellation and spectrum, but also the 
channel model and ingress spectrum for an actual 
cable TV signal. The plots indicate that the quality 
degradation encountered stems not from a macrore- 
flection but in fact from ingress from a local FM 
radio station. 

7    Conclusion 

This paper has described a recently developed 
blind QAM demodulator chip designed to be part of 
a settop converter for digital cable television. The 
design considerations effecting the blind equalizer 
component, such as length and update algorithm, 
have been stressed. Field operating data and some 
data-based channel models for QAM transmission 

across cable are being made available (as described 
in [9]) as a stimulant to further research on blind 
equalization useful in this application. 
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Abstract 

Blind channel identification and equalization have 
attracted a great deal of attention recently due to their 
potential application in mobile communications and 
digital HDTV systems. In this paper, we present a new 
algorithm based on channel parameter outer-product 
decomposition. This neiu algorithm can be viewed as 
a generalization of a recently proposed linear prediction 
algorithm. It produces more accurate channel estimates 
and is more robust to over-modeling errors in channel 
order estimate. 

1    Introduction 
In popular data communication systems such as the 
digital mobile systems and digital HDTV systems, data 
signals are often transmitted through unknown chan- 
nels which may introduce severe linear distortion. In 
order to improve the system performance, it is im- 
portant for the receiver to remove channel distortions 
through equalization or sequence estimation. Because 
the available channel input training sequence may be 
too short or even non-existent for channel identifica- 
tion, blind channel identification can play useful roles 
in these systems. 

Blind channel identification relies solely on the re- 
ceived channel output signal and some a priori statis- 
tical knowledge of the original channel input signal. 

A linear prediction based approach was first pre- 
sented by by Slock [5] and was later generalized and 
refined by Meriam et al [6]. Unlike many of the sub- 
space methods that tend to be very unreliable when 
the channel order is over-estimated, the linear predic- 
tion approach is found to be rather robust. However, 
as will become clear in this paper, the linear prediction 
algorithm (LPA) does not fully exploit all the available 
second order statistical information of the channel out- 
put. 

In order to derive a more robust algorithm for chan- 
nels with weak precursor impulse responses, the focus 
of this paper is to derive the estimate based on the full 
outer-product decomposition of the channel parameter 
vector.   Our results will show that based on a com- 

plete outer-product decomposition, channel identifica- 
tion can be significantly improved. 

2    Problem Formulation 
A multi-user QAM data communication system can be 
captured by a baseband representation. If the N user 
channels are all linear and causal with impulse response 
{hu(t), u = 1,2,... JV }, the received output signal can 
be written as 

N       oo 

*(*) = £  X)  'k,uhn(t-kT-tu)+w(t),    5i>ue^, 
u=lk=- 

(2.1) 
where T is the symbol baud period and A^ is the input 
signal set of user u. The noise w(t) is stationary, white, 
and independent of channel input sequences Sk u, but 
not necessarily Gaussian. Note that /^(i) is the' "com- 
posite" channel impulse response that includes trans- 
mitter and receiver filters as well as the physical chan- 
nel response. 

It is known that channel identification based on sec- 
ond order statistics is possible only for oversampled 
channel output. Let the sampling interval be A = T/p 
where p is an integer. The oversampled discrete signals 
and responses are 

Xi ~ x(iA),    huli] = MtA)    and    Wi = w(iA). 
(2.2) 

Suppose {/i«(*)} has finite support [0, Th), which spans 
mo + 1 integer periods. By defining the following no- 
tations 

x[k]     =     [xkp  Xkp+i   ...   zjtp+p-i 

3(i-l)p    S(i-l)p+l     ...    Xjtp-Mp+l]' 

**     =     fat.i   «*,2   • •.   J»*,jv ]; 

■W      -       [«*    **-l     •••    Sk-mo-U+l]' 

vr[k]     =     [wkp  wkp+1   ...   u)*p_Afp+i]' 

M»1     =     [K[ip]   M*P+1]    •••   hu[ip + p-l]]', 

Hi     =     [hiflh2[i] ..-Mi]], 
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we can form a MP x (mo + M) block Toepiit. matrix      3    Algorithm Development 

H = 

Ho   Hi 

0      Ho 

H Wo 

Hi 

0 

Hm0 

Ho      H, 
0 
H Wo  . 

(2.3) 
Clearly, mo is the order of the N dynamic FIR chan- 
nels. With these notations, the sampled channel out- 
put signal vector can be written as 

x[Jb] = Hs[*] + w[Jb]. (2.4) 

Consequently, the channel output covariance matrix 
becomes 

Bmo = E{x[k)x[k]H} = cr?HHH + <£l (2.5) 

assuming that the channel input signal is white with 
zero mean and R, = E{s[k]s[k]H} = o*I while the 
noise is spatially white with zero mean with Ry, = 
E{w[k\w[k]B} = oiI. 

Our objective is to identify the channel H from the 
second order statistics of the channel output signal x[fc] 
given in Rm0 under the identifiability condition [1] that 
both H and R. are full-rank. The use of second or- 
der statistics for blind channel identification was first 
exploited by Tong, Xu, and Kailath [1]. The basic 
concept hinges on the signal and noise subspace sepa- 
ration through singular value decomposition (SVD) of 
the auto-covariance matrix Rm0. 

The sub-channel matching (SCM) method presented 
in [3] and the subspace method of [2] can both be posed 
as a minimum eigen-vector problem under proper chan- 
nel length constraints. The special block Toeplitz 
structure is utilized in both algorithms. When the 
channel length is over-estimated, common zeros must 
be factorized out from the sub-channel estimates. As 
a result, both algorithms are very sensitive to channel 
length mis-matching. 

In [5] and [6], a linear prediction algorithm (LPA) 
was presented for channel estimation. It is shown to be 
more robust to over-estimated channel length. How- 
ever, as we will show later in this paper, the LPA only 
uses part of the overall information because the chan- 
nel estimate is based on the first p columns of the esti- 
mated channel parameter vector outer-product matrix. 
As a more robust and accurate channel estimation algo- 
rithm, the outer-product decomposition algorithm we 
propose will exploit second order statistics more effec- 
tively. 

We will form an outer-product of the channel parame- 
ter matrix 

h^[H0 H; ... n'mo}' (3.1) 

Let 

X[k]=[xk, Xkp+i   ...   Xkp+p-i]' = X,Hia
/

t_i. 
<=o 

(3.2) 
For notational convenience, define 

fflo 

fi(n) ± E{X[k)X[k - nf} = o\ £ H^H? n.   (3.3) 
«=n 

The channel output covariance covariance matrix can 
be written as 

JU ± 2?{x[Jb]x"[k]} = a?HH* + all.        (3.4) 

Denote 

H± 

Ho      Hi 
Hi      H2    •••   0 

Hmo    0-  •   0 

Hmo    0 ..    0 0--    0 

If we define pxp block matrices as 

(3.5) 

Aj=   £ HtHf^.i,    l<i,j<mo + l,   (3.6) 
t=t-i 

it can be verified that 

HaHS H _ 
D3,i D2,2 ■ •     i?2,m0+l 

•Dmo+1,1     Ano+M     •"     An0+l,m0+l 
(3.7) 

This matrix is an (mo + l)p x (mo + l)p Hermitian 
matrix. Now define a new matrix as 

Ano+l — 

Da,7 

D3,2 
■Da.mo+l 
■D3,m0+1 

0 
0 

Ano+1,2     "•     Ano+l.mo+1     ° 
o • •   0 o 

(3.8) 

We can form another Hermitian matrix from 

Amo+i ± HmH* - Dmo+1 = hh".        (3.9) 
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Clearly, matrix Amo+i forms the outer-product of the 
channel parameter matrix h. Its singular value decom- 
position will generate hQ, in which Q is an N x N uni- 
tary matrix. This ambiguity is intrinsic to the multi- 
user blind identification problem and cannot be re- 
solved unless additional information is available. If a 
multi-channel equalizer is built according to the esti- 
mate hQ, the N receiver outputs will be memoryless 
combinations of the JV channel inputs and will need to 
be separated. 

In order to estimate the Amo+i matrix, first con- 
struct 

Rc = 

R(0)-all   R(l)    ...   R(mo) 
£(1) Ä(2)    •••   0 

= <r; HaK H 

R(mo) 0 •••   0 

In addition, it can also be easily shown that 

Rmo - all = (rjHH1. 

(3.10) 

(3.11) 

In order to estimate the product HaH^, it is important 
to note that when H has full column rank, HHÄ is 
invertible and Hlr(HHff)-1H = I. Then 

i2c(^ - <£/)-1fif = °*.BaH? (3.12) 

where a\ is known. 
If there is only a single user, the channel impulse 

response vector can be estimated from the rank one 
outer-product matrix, through eigen-decomposition, 
QR decomposition, or simply post-multiplying a ran- 
dom column vector. We thus name the method "outer- 
product decomposition algorithm" (OPDA). 

Notice that OPDA requires two singular value (or 
eigenvalue) decompositions in its implementation. Its 
complexity is therefore similar to the linear predic- 
tion algorithm (LPA) presented by Meriam et a/. [6], 
the TXK method [1], and the sub-channel matching 
method [3]. However, LPA estimates the channel only 
from the first p columns of the outer-product matrix. If 
the channel impulse response has weak precursor sam- 
ples, then LPA is likely to be highly inaccurate since 
noise and numerical error will likely dominate the first 
fewcolumnsof ADmo+1. Therefore, OPDA is expected 
to provide more robust performance than LPA. 

4    Simulation Results 
We now present simulation results to illustrate the 
channel identification performance of the proposed 
OPDA. Our experiments are based on a single user 
with a multi-path channel model. We consider a raised- 
cosine pulse P(t) limited in 6T with roll-off factor 0.10 

and a two ray multi-path channel 

c(t) = 6(t) - 0.76(t - T/3). 

The impulse response 

h(t) = c(t) * h(t) = P(t) - 0.7P(t - T/3) 

is shown in Figure 4. The data input signal is i.i.d. 
BPSK and the oversampling factor is p = 3. In all our 
simulations, M is chosen to be twice as long as P(t). 

In the first set of simulation tests, we compare the 
two methods OPDA and LPA based on 100 and 200 
bauds of channel output samples. The channel or- 
der is unknown and is estimated using the MDL cri- 
terion. The normalized mean square error (MSE) of 
the channel estimate under different channel SNR lev- 
els is shown in Figure 1. 

(a) Data length » 100T (b) Data length - 2O0T 

10 15 20 25 
Channel output SNR (dB) 

10 15 20 25 
Channel output SNR (dB) 

Figure 1: Normalized MSE of channel estimate given 
different SNR levels. 

For several different data lengths, the resulting nor- 
malized MSE is shown in Figure 2. Once again, the 
results show that OPDA and LPA are equally ineffec- 
tive when SNR is low. But when the SNR is higher, 
OPDA out-performs LPA significantly. 

We also tested the comparative robustness of the two 
algorithms when channel mismatching is present. Fix- 
ing SNR=20dB, we manually varied the channel length 
estimate from 2T to 10T. Notice that the true channel 
length is 6T. The results clearly show that while LPA 
is less sensitive to errors in channel order estimate, its 
performance is generally much worse compared with 
that of OPDA. When the channel order estimate de- 
viates modestly from the true channel order, OPDA 
generates a much smaller normalized MSE. 
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Figure 2: Normalized MSE of channel estimate given 
different data lengths. 
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Figure 3: Normalized MSE of channel estimate given 
channel length mismatch. 

Finally, we compare a group of typical impulse re- 
sponses estimated from 50 independent trials of the 
OPDA and LPA under 20dB SNR and data length of 
L = 400T. Assuming the channel length is correctly 
estimated, The estimated impulse responses are shown 
in Figure 4. 

5    Conclusions 

We present a new robust and accurate blind channel 
identification algorithm OPDA based on outer-product 
decomposition. This new algorithm can be viewed as 
a generalized method of the recently proposed linear 
prediction algorithm (LPA). The new OPDA is capable 
of generating much more superior identification results. 

Figure 4: 50 independent channel estimates. 
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Abstract 

The problem of separating superimposed digi- 
tally modulated signals using an array of antennas 
is considered. The proposed method exploits the 
finite alphabet structure to demodulate one sig- 
nal at the time, resulting in a computationally 
efficient solution. The resulting signal estimates 
are shown to be exact in the noise-free case. In 
noisy scenarios, the performance is comparable 
with that of the recently proposed iterative least 
squares approach, which demodulates all signals 
simultaneously at a higher computational cost. 

assume flat frequency fading. Generalizations are 
considered in [2, 6, 9] and [10]. This paper pro- 
poses a new approach, based on decoupling the 
estimation problem (i.e.treating one signal at a 
time). This leads to an algorithm with similar 
or better performance for a typical scenario, and 
furthermore reduces the computational cost in- 
volved in the estimation procedure significantly. 
These claims are supported by simulation results 
and a complexity count. Consistency and unique- 
ness issues are also addressed. 

2    Signal Model 

1     Introduction 

Array processing techniques can be used to dis- 
criminate between spatially separated co-channel 
signals, and can consequently increase the capac- 
ity in wireless communication systems. This pa- 
per discusses how to reliably demodulate one or 
more desired signals of interest (SOI) from the 
output of an array, in the presence of other co- 
channel signals and noise. Traditional approaches 
exploit the spatial structure of the array, and 
as such depend on high-resolution estimates of 
the DOA's (Direction Of Arrival) of the incom- 
ing signals. Since modern wireless communica- 
tion systems are characterized by a highly vari- 
able propagation environment, this spatial struc- 
ture is poorly defined [3]. On the other hand, 
these methods make no assumptions about the 
signals themselves, and are thus not exploiting 
the structural information present in the signals. 
Various blind copy algorithms have been proposed 
to alleviate this problem [1],[10]. The referenced 
techniques require synchronized signals and must 

'e-ma\\:ranheim@ae.chalmers.se,   phone:    +46-31-772 
1813, fax: +46-31-772 1782 

'e-mail:pe/in©ae. chalmers.se 

With d syncronized signals arriving at an m el- 
ement antenna array, the complex output vector 
after matched filtering and symbol-rate sampling, 
can be expressed by the following familiar equa- 
tion 

x(n)=As(n)+v(n) (1) 

where A is the collection of total array response 
vectors (spatial signatures), scaled by the signal 
amplitudes 

A = [piai ...pd&d}. (2) 

s(n) = [h(n)...bd(n)]T, 6,(n) = ±1 (BPSK), 
and v(n) is spatially and temporally white noise. 
For simplicity we consider BPSK signals, but ex- 
tensions to arbitrary linear modulation formats is 
straightforward. A block formulation is obtained 
by taking N snapshots, yielding 

X(AT) = AS(N) + V(N) (3) 

whre X{N) = [x(l).. .x(N)], S(N) ■= 
[s(l).. .s(N)], and V{N) = |v(l).. .\(N)]. The 
spatial structure of the data is represented by A, 
while the matrix S represents the temporal stru- 
cure. 

By defining one signal (at a time) to be the 
signal of interest (SOI), (3) can be rewritten in 
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the following way 
d 

X{N)    =   ais1+^
a's'+V(Ar) 

1=2 

=    aiSl+J(iV) (4) 

where the first signal is taken to be the SOI, with- 
out loss of generality. The term 3(N) thus corre- 
sponds to interfering signals plus noise. 

3    Decoupled   Symbol   Estimation: 
Algorithm 

Since it is desired to estimate the signals with 
little or no spatial knowledge, the idea is to itera- 
tively estimate a and s, based on the formulation 

in (4). 

3.1   Algorithm 

Given an initial estimate of A = A = 
[äi.-.äd], the following weighted least-squares 
criterion function is minimized 

min(X-as)*W(X-as) = min||W-*(X-as)||2 

t (5) 
Here, W should ideally be chosen as R,1 [5], 

which can be interpreted as a prewhitening of the 
data vector x(n). However, it can easily be shown 
using the matrix inversion lemma, that using the 
inverse of the sample estimate of the covariance 
of the array output produces asymptotically (for 
large N) equivalent signal estimates. Equation 
(5) can thus be reformulated as follows 

min||Z-bs||2 

b,s 
(6) 

with Z  =  Rj*X, b  =  Rr3a,  and Rr  = 
■^XX* The solution to (6) w.r.t. s is 

-^■Ib'Z = #b'Z 

(7) 

Exploiting the finite-alphabet property, this 
solution is projected onto its closest discrete val- 
ues in the signal space (±1 ). The (modified) 
steering vector b is then updated by minimizing 
(6) w.r.t. b. The solution is 

,      Zs* 
b = Zs'(s§T1 = ^r (8) 

Note that (8) is simply a temporally matched 
filter to the current signal estimate, whereas (7) 
represents a spatially mathed filter. The process 
is repeated until s converges, after which the al- 
gorithm continues with the next signal. 

32   Consistency and Uniqueness 

A relevant question is whether or not the al- 
gorithm is able to "capture" the transmitted sig- 
nals. Since the iterative scheme corresponds to 
a relaxed optimization procedure, it is a simple 
matter to show that it is guaranteed to converge 
to a local minimum. Whether or not this corre- 
sponds to a "true" minimum depends in general 
on the initial estimate. However, even if it does, 
it is a non-trivial question if the global minimum 
yields a consistent estimate of the transmitted 
waveform. Clearly, this is possible only for high 
enough signal-to-noise ratio (SNR), so we will an- 
alyze the quality of the global minimum assuming 
that the noise variance tends to zero. 

Substituting the solution for b in (8) into (6), 
gives the following minimization problem 

min||Z - ^Zs*s||2 = min ||Z - zg|j2 (9) 

Reformulating in terms of projection matrices 

min||Z(I-P. -»max||ZPs 
s 

<=> maxlIZs .*l|2 

(10) 

where the last equality follows since for BPSK 
signals Ps> = s^ss')-1* = s's/N. Furthermore, 
by using Z = R-*X, the following can easily be 

derived 

max||Zs*||2 = max{sPx-s*} 

Using Schwartz inequality, 

sPx-s* < 2||Px. Ill = * 

(11) 

(12) 

with equality when K(s*) C ft(Px-)> »-e; sj = 
X*t' for some column vector t'. In the noise-free 

case we have Xm|Ar = AS0, giving 

s; = (As0)*t' = s;t. (13) 

Thus, the signal estimate converges to a linear 
combination of the d transmitted signals. Under 
suitable "persistence of excitation" conditions, t 
must contain a ±1 in one position and zeros oth- 
erwise, implying that si is one of the true trans- 
mitted signals with a possible sign change. Specif- 
ically, since all signal vectors si .. .sd are treated 
likewise, we can write for the d signal estimates 

[s;...s3] = [soi"-»oJT (14) 

In [10] it is shown that the above can hold only 
if T is a diagonal matrix with ±1 entries, or 
a permutation matrix, or a product of the two; 
provided that the columns of S0 include all the 
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2d possible distinct d-vectors, with ±1 elements. 
The latter is a mild condition, which is satisfied 
in most cases of practical interest. We conclude 
that the global minimizer of the decoupled crite- 
rion function converges to any of the d transmit- 
ted signals as the noise variance tends to zero. 

4    Performance and Complexity 

4.1   Performance 

Figure 1 below shows the results of a simula- 
tion comparing the performance of the proposed 
algorithm with that of ILSP [8]. A total of d = 3 
signals are impinging on a 4-element uniform lin- 
ear array (ULA), and the BER vs. SNR is evalu- 
ated. A 5 bit training sequence was used to get an 
initial estimate of the steering vectors A. The re- 
sults clearly show that an improved performance 
has been obtained in this scenario, (the BER of 
the signal with DOA=106° was ~ 0.25 for both 
algorithms, regardless of SNR). 

::: •   "      ■■•■ ■ ■ = . .:■• : •• ■.  '■■■■■ -l.-y^nrj; >:■■■•- ••:••• 

- 
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Figure 1. Performance of decoupled WLS 
approach and ILSP algorithm. Simulated 
data. 

The algorithm was also tested on a real dataset 
collected at the University of Texas at Austin, 
and compared to ILSP. Two closely spaced sig- 
nal transmitted bursts of 198 symbols/burst (still 
BPSK), and 4 antenna elements was used at the 
receiver. Different noise realizations were then 
generated and added to the data in order to eva- 
lute the BER vs. SNR performance (for the 
strongest signal only). The results are given in 
figure (2), and demonstrates that the two algo- 
rithms performs similarly in this scenario. 

Figure 2. Performance of decoupled WLS 
approach and ILSP algorithm. Real data. 

In general, one can say that the decoupled al- 
gorithm outperforms ILSP for large burst lengths 
and a small array.   The explanation for this is 

that the approximation Rx oc RJ1, used in 
section 3.1 improves with larger N and smaller 
m. On the other hand, in scenarios with m>il 
and N relatively small; it is our experience that 
ILSP gives a slight improvement compared to our 
proposed method. 

Figure 3. Complexity of decoupled WLS ap- 
proach and ILSP algorithm 

42   Complexity 

Since the proposed algorithm is based on the 
same iterative approach as ILSP, it is interest- 
ing to compare the complexity of the two meth- 
ods. Before the iterative estimation of s and b 
begin, Rr 

3 and the product Rx 'X must be com- 
puted.   This requres 0(m2) + m2N flops.   Note 
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that this computation is only carried out once 
for a given block of data X(m|JV). Looking at 
eqn.(7), it is sufficient to compute the product of 
the b*(l|m)-vector with the modified data-matrix 
Z(m|JV), requiring 2mN flops [4]. Similarly, to 
update the b estimate, the same kind of product 
is computed. This gives a total of 4mJV flops per 
iteration and signal. A similar count for ILSP re- 
sults in 2Nmd+2d2(N - f) + md2 flops to solve 
for Ä and 2Nmd+2d2{m-1) + Nd2 flops to solve 
for S (both per iteration). Consequently, the pro- 
posed algorithm results in a significant reduction 
in computational complexity as compared to the 
ILSP algorithm. 

In order to get a fair comparison of complexity, 
one should also look at the convergence properties 
of the two algorithms. The number of iterations 
required for convergence is compared in figure 3 
(same scenario as in 4.1). Even if the total num- 
ber of iterations for the proposed algorithm (add 
the three solid lines) exceed that of ILSP in this 
case, it does not offset the large difference in com- 
plexity in terms of flops count. 

As an illustration, the following typical num- 
bers were obtained using a flops count in MAT- 
LAB for the scenario above at SNR = hdB: ILSP 
requires (w. ~ 10.4 iterations on the average, see 
figure 3) 

(10.4zier) (32650flops/iter) ~ 339000/Zops. 

The decoupled algorithm requires a total of 

(6552//op»/Äer)(6.2+6.5+4.2«er) ~ 110700//ops 

in addition to the inversion of Rr (only once!). 

5    Conclusion 

The simulation results indicate that the pro- 
posed algorithm has similar or improved per- 
formance compared to ILSP, and that this im- 
provement is accompanied by a significant reduc- 
tion in computational complexity. This is par- 
ticularly notable if not all signals are of inter- 
est. The method can be extended in a straight- 
forward manner in order to include the case of 
non-synchronized users and time-dispersive chan- 
nels, using e.g. conventional synchronization 
and equalization techniques [7]. Simulations per- 
formed by the authors (not included here due to 
space limitations), have confirmed this claim.1 
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Abstract 

The objective of this paper is to introduce a statis- 
tical and physically based mechanism giving rise to a- 
stable noise models. We show that the additive inter- 
ference which is present in many environments can be 
modeled as symmetric a-stable by assuming: (i) inde- 
pendent signaling (effects) from a large number of in- 
terferers of the same type (modulation); (ii) Poisson 
distribution of interferers in space; and (Hi) inverse 
power attenuation of signal strength with distance. Our 
approach to a-stable noise modeling is based on the 
LePage series representation [5] as opposed to the influ- 
ence function approaches taken in [1],[8]. The formulas 
derived are used to predict noise statistics in environ- 
ments with lognormal shadowing and Rayleigh fading. 
The LePage series framework allows us to investigate 
practical constraints in the system model adopted, such 
as the finite number of interferers and nonhomogeneous 
Poisson fields of interferers. 

1    Introduction 

The characterization of the corrupting noise distri- 
bution is an important requirement for most system 
design problems because it leads to the development 
of noise suppression methods. The most widely used 
noise model is the Gaussian random process. How- 
ever, in some natural environments, the Gaussian noise 
model may not be appropriate. This is evident from 
a higher probability of large amplitude values than is 
consistent with Gaussian distributions. A number of 
models have been proposed for such impulsive phe- 
nomena, either by fitting experimental data or based 

on physical grounds. Recently, it has been suggested 
that among all the heavy-tailed distributions, the fam- 
ily of stable distributions provides the most accurate 
model for impulsive noise [1],[8]. In communications, 
stable noise models have been verified experimentally 
in various underwater communications and radar ap- 
plications [1], [9]. Stable distributions share defining 
characteristics with Gaussian distributions, such as the 
stability property and the generalized central limit the- 
orem (GCLT), and, in fact, include Gaussian distribu- 
tions as a limiting case. Because stable distributions, 
except for the Gaussian case, have infinite variance, 
at first sight, it appears that stable noise models do 
not have the wide applicability enjoyed by second-order 
processes. However, in this paper we present a realistic 
physical mechanism giving rise to stable noise. We do 
this by considering the nature of noise sources, their 
distributions in time and space, and propagation con- 
ditions. 

2    System Model 

In our system model, a detector is located at the cen- 
ter of a plane where there is a large number (N -> oo) 
of transmitters using the same power and modulation. 
The distances between the detector and interfering ter- 
minals are denoted as n, where ri < r-i <,•••,< rjv- 
In general, after the correlation detection of passband 
interference, the interfering signal is represented as an 
n-dimensional vector given by 

N 
Y= Jim   y]a(ri)Xi' N-+oo (1) 

i=l 

"This work was supported by the Natural Sciences and Engi- 
neering Research Council of Canada (NSERC). 

where a(r) represents the signal attenuation over dis- 
tance r, and Xj = [X^i,... , XiiU] is a random vector 
with n coordinates Xitj,j = 1,... ,n which are real 
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random variables (RVs). The jth coordinate of Xj is 
the correlation of Xi (t) with the function <pj (t)1. In this 
paper, we are concerned with characterizing the distri- 
bution of Y, and in order to do this, we assume that 
Xj are spherically symmetric2 (SS) RVs. Because all 
interfering terminals use the same modulation scheme 
and transmit at the same power, it is reasonable to as- 
sume that the random vectors Xj are i.i.d. Moreover, 
the distribution of Xj is independent of n. To explain 
the noise modeling in (1), it is useful to consider a sys- 
tem with on-off frequency shift keying (FSK) and non- 
coherent detection. In this system, ipi(t) = COS(2TC f0t) 
and <p2(t) = sin(27r/o<), and the projection of Xi(t) onto 
Wi(t),<P2{t)} results in X, = [cos(0i),sin(0i)], where 
&i is uniformly distributed in (0,2ir]. This means that 
Xj is circularly symmetric (CS), a bivariate case of a SS 
vector. With respect to the terminal positions, we as- 
sume that terminals form a Poisson point process with 
the expected number of terminals per unit area/volume 
given by A [6]. 

3 Stable Interference Models in Envi- 
ronments with Deterministic Propa- 
gation Laws 

We assume initially that the signal amplitude loss 
function over distance r is given by the following de- 
terministic propagation law 

a(r) = 
K 

(2) 

where the constant K depends on the transmitted 
power. The attenuation factor m can vary from slightly 
more than 1 for hallways within buildings to larger than 
3 for dense urban environments and office buildings. 
Combining (1) and (2), the noise equation is 

OO      j£ 

(3) 
t=i 

In the Appendix A, we sketch the proof of the following: 

Theorem 1 If the RVs X» are i.i.d. and SS and 
the interferers/scatterers form a Poisson field, then 
the characteristic function of the interference vector Y 
in (3) is SS a-stable, i.e., 

«£Y(t) = exp(-7||t|r), (4) 
1The projection of a continuous-time waveform transmitted 

by the i-th terminal Xi(t) onto <fj{t), or equivalents the corre- 
lation of these two, is given as Xitj = /0

T <pj{t)xi{t)dt, where T 
is a symbol interval. 

2The random vector X is said to be SS if its characteristic 
function *x(t) depends only on the Euclidean (L2) norm of t, 

i.e., #x(t) - *(||t||) , where ||t|| = (E?=i *?)*■ 

where a = — and a = — for interferers distributed in 
the plane and volume, respectively. The parameter 7, 
called dispersion, is given as 

7 = -XPKa [ 
Jo 

*o(*) dx, 

or equivalently as 

7 = XPKaC~lE I Xij \a, 

(5) 

(6) 

where $o(x) = $x(||t||) *s a generating characteristic 
function of the SS RVs X, 3 ;' denotes differentiation, 

™* Ca = r(2-a)e~os(W2)- The constant V = * f°r 

interferers in the plane, and V = §7r for scatterers in 
the volume. 

For Xi = [cos(@i),sin(0i)] (non-coherent on-off FSK), 
with 0j uniformly distributed in (0,27r], we have 
$o(z) = JQ(X), where Jv{-) is a i/th order Bessel func- 
tion of the first kind [4]. This model for Xj is assumed 
in many radar applications. Because J'0{x) = —Ji(x), 
the formula 6.561.17 from [2] can be used in (5), to cal- 
culate that the dispersion of the SS stable RV Y in (3) 
with the deterministic power propagation law as in (2) 
is given for 0.5 < a < 2 by 

T(l - a/2) 
7determ = WKa- (7) 2ar(l + oj/2)' 

In this equation, the admissible range of the path loss 
exponent is 1 < m < 4 for interferers distributed in the 
plane, and § < m < 6 for scatterers distributed in the 
volume. 

4 Stable Interference Models in Log- 
normal Shadowing and Rayleigh Fad- 
ing Environments 

So far we have assumed that the received signal 
strength decreases with range raised to some exponent. 
However, experimental results show that this is only 
the average behavior of the signal. The received signal 
at fixed range is not constant because of different ter- 
rain characteristics and statistical fluctuations in prop- 
agation conditions. Typically, the following random 
effects should be included in a study: (i) the random 
link attenuation due resulting from lognormal shadow- 
ing and (ii) Rayleigh fading. 

In the presence of lognormal shadowing, the pdf of 
the signal strength is of the form [3] 

p(a(r)|^)) = —^exp[--ijlna(^)], 
y/2TTo-a(r) la a{r)      (8) 

3Here, *o(a:) is a function of the scalar variable x = ||t||, 
which for a SS RV X, does not depend on n. 
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where a{r) = £ is the median of a{r) as given in (2) 
and a = 0.5crs. The parameter as is the standard de- 
viation of the instantaneous power, and it depends on 
the environment. Values of as on the order of 8 to 10 
dB are reported in the literature [3]. So in order to 
include the lognormal shadowing effect in our model, 
we have to consider a{r) in (1) to be a RV given as 
a(r) = ^ exp (aG), where G is the standard Gaussian 
RV with zero mean (G ~ AT{0,1)). The interfering 
signal is then 

oo 

(9) 
i=l 

We assume here that G{ are i.i.d. The hypothesis of 
independence between shadowing effects from different 
users is generally accepted [4]. Therefore, we can apply 
Theorem 1 in (9) with Xj replaced by exp{aGi)Xi 4. 
Then, in environments with lognormal shadowing, Y 
is again a-stable with a = -?- and a = -^ for interferers 
distributed in the plane and volume, respectively. To 
calculate the dispersion, we use (6) 

7   =   \K«VC-lE | exp{aGi)XiJ |» 
=   XKaVC-1E\Xitj\

aE\exp{aGi)\
a     (10) 

=     7deterraexp(|a2CT2), 

where 7determ is a dispersion of the corresponding sys- 
tem with the deterministic power propagation law. The 
last equation in (10) follows from the first moment re- 
lation for lognormal RVs. 
If a{r) is Rayleigh distributed, for a given r, a{r) can 

be represented [3] as o(r) = £yJ%K, where the RV 

Tl = yjG] + G2
Q is Rayleigh distributed with GI,GQ ~ 

JV(0,1). Then, we have to substitute </f ftjXj for Xj 

in Theorem 1, and Y is a-stable with the same char- 
acteristic exponent as in the deterministic power prop- 
agation scenario. The dispersion is calculated in the 
same fashion as in (10). Because E\Tl\a = 2§r(l + f), 
the dispersion is 

7     =7determ(£)*r(l + f). (11) 

The dispersion factors 7dJerm 
for lognormal shadowing, 

Rayleigh fading and combined shadowing and fading 
are shown in Fig. 1 as a function of a. The curves are 
plotted with the shadowing standard deviation crs - 
10 dB. We see that in all cases examined, the dispersion 
factors are increasing functions of a. 

4The RVs exp(ffG;)Xj are spherically symmetric (SS) be- 
cause a product of a univariate RV and a SS RV is SS. Also, 
they are independent because {G{} and {X;} are assumed to be 
independent sequences of mutually independent RVs. 

■Rayleigh fading 

Figure 1. Dispersion factor for Rayleigh fading and 
lognormal shadowing (<rs = 10 dB). 

5    Practical Considerations 

In Section 2, we have made two idealized assump- 
tions: (i) we assumed an infinite number of interfer- 
ers; and (ii) we assumed that an interfering signal was 
present for the entire duration of the matched-filtering 
interval. In [3], we show that these assumptions do not 
constrain our analysis. Moreover, we demonstrate that 
the a-stable model applies when interferers form non- 
homogeneous Poisson fields. The last result is achieved 
by mapping the processes in the plane (volume) into 
homogeneous processes on the line. This is because 
the LePage series representation applies only to Pois- 
son processes with a constant rate. For example, if the 
non-homogeneous point processes in the plane has the 
rate function \{r) = X0r

ß-2 and ß < 2m, then rf rep- 
resents the homogeneous Poisson process with the rate 
^ = A0 j. With this result, we can proceed as in Sec- 

tion 2 and arrive at the stable model with a = &■ and 
/ m 

7 = -Ao2^Kaf™ ^dx. Also, if we assume that 
the interferers are Poisson distributed only in a sector 
of the plane with an angle <j>a and that their density is 
A, then we can map such a process to a homogeneous 
Poisson point process in the whole plane with the rate 

A* = A °27r = \t±. The latter scenario is applicable 
to directional antennas as opposed to omnidirectional 
discussed so far. 

6    Concluding Remarks 

In this paper, we have characterized interference for 
multiple access communication systems in which in- 
terferers are assumed to be Poisson-distributed in the 
plane. The same development applies to radar clutter. 
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Assuming the average inverse power attenuation of sig- 
nal strength over distance, interference in the system is 
shown to be an SS a-stable noise. This model specifies 
system noise with two parameters: the characteristic 
exponent a and the dispersion 7. The formulas de- 
rived in the paper allow us to predict noise statistics in 
environments with lognormal shadowing and Rayleigh 
fading. 
The hypothesis of a-stable noise is partially confirmed 
by the impulsive character of clutter and multiple ac- 
cess interference. But in the end, it must be resolved 
against experimental data. Alpha-stable noise model 
verification in radar applications is currently underway 
and the results will be announced shortly. 

Appendix A 

Our proof of Theorem 1 is based on the generalized 
LePage series representation of SS a-stable distribu- 
tions: 

Theorem 2 Let {T*} denote the "arrival times" of a 
Poisson process5 with rate X and let {Xj} be SS i.i.d. 
vectors in W1 satisfying E\Xi\a < 00, or equivalently 
E\Xu\a < 00. Then 

■Xi (12) 
t=i 

converges a.s. to a SS a-stable random vector Y with 
the characteristic function (ch.f.) 

<Mt)=exp(-7||t|n. 
The dispersion parameter 7 is given as 

1- •f Jo 
-dx. 

(13) 

(14) 

The detailed proof of Theorem 2 can be found in [3]. 
To link the multivariate version of the LePage series 
in Theorem 2 with the noise equation in (3), we need 
to map a Poisson point process in the plane (volume) 
onto the homogeneous Poisson process on the line. To 
achieve this, we use the following proposition which re- 
sults from the mapping theorem of Poisson point pro- 
cesses [6]: 

Proposition 1 For a homogeneous Poisson point pro- 
cess in the plane (volume) with the rate X, assuming 
that points are at distances r» (h < r2 < • • ■) from 
the origin, Tj = r\ (T* = r\) represents Poisson ar- 
rival times on the line with the constant arrival rate 
TTA (±W\). 

5In this paper, we use the term arrival times or occurrence 
times of a Poisson process to mean a Poisson process on the line, 
where time is just a hypothetical variable. 

Now, for interferers distributed in the plane, we rewrite 
Y in (3) as 

*£ t[«)' 
:Xi. (15) 

From Proposition 1, Tj = r? represents Poisson "oc- 
currence" times on the line with the arrival rate nX, 
and based on Theorem 2 6, Y is SS a-stable with 
the characteristic exponent a  =   ^ and dispersion 

7 = -XnKa /0°° ^£ß-dx. The multiplicative constant 
K changes the dispersion of a-stable RV by Ka [7]. 
Similar proof follows for interferers distributed in th 
volume. The equivalence of Eqs. (5) and (6) follows 
from the integral formula ([2], 3.823) 

Jo 

1 — cos(zt) 
dt=\z 

r(l-a)cos(fa) 

a (16) 

by replacing the constant z with RV Xij and taking 
expectation of both sides. 
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Abstract 
We study the Fractionally-Spaced Equalization by 

CMA (FSE-CMA) robustness to channel noise and lack 
of disparity. When there is lack of disparity, we will 
show that, whereas other recent technics as linear pre- 
diction or subspace like methods fail, FSE-CMA can 
still equalize. In particular for long enough equalizer 
FSE-CMA exhibits a "smoothing effect" which leads to 
an interesting trade-off between achieving zero-forcing 
equalization and noise enhancement. 

1. Introduction 
Constant Modulus Algorithm (CMA)[1], is one of 

the most commonly used blind algorithm to suppress 
InterSymbol Interference (ISI) in digital transmission 
systems. It is called FSE-CMA (Fractionally-Spaced 
Equalization by CMA) when used in a channel di- 
versity scheme generated by either oversampling the 
received data or multivariate data observed behind 
a sensors array. In a previous work ([2]), it has 
been shown that the FSE-CMA criterion minimization 
achieves perfect equalization (in the noise-free context) 
under the so-called Zero-forcing conditions (no com- 
mon zero in the multichannel transfer function, i.e., 
co(z) = l in Figure 1 and a long enough equalizer) ([2], 
[3]). Moreover, in the contrary of the second-order 
statistics based methods ([4], [3], [5], [6]...), FSE-CMA 
still performs reasonable equalization even when there 
is lack of channel disparity (i.e., c0(z) ^ l) (see the 
noise-free preliminary study [2], for instance). Further- 
more we have shown, in a previous study, that under 
ZF conditions FSE-CMA exhibits some robustness to 
channel noise ([7]). 

In this contribution we are motivated by the desire 
to evaluate the FSE-CMA global performance criterion 
in realistic noisy conditions. So, we address the effect 

of additive white noise and lack of channel disparity on 
the FSE-CMA criterion, in terms of the input-output 
remaining mean square error. This will also allow to 
define an equalizability bound that will permit to com- 
pare the optimal FSE-CMA performance to other re- 
cent Fractionally-Spaced Equalization technics. 

2. FSE under lack of disparity 

Under lack of disparity, we consider the Fractionally- 
Spaced model driven by a zero-mean i.i.d. sequence 
s(n) and corrupted by an L-dimensional additive noise 
w(n) = (wi(n),---,wL(n))T (Figure 1). 

toi(n) 

s(n)~ co(z) 

£i(*) 

wL(n) 

ei(z) 

eL(z) 

(n)&s(n — i') 

Figure 1. FSE Scheme Under Lack of Disparity 

The linear equalization problem consists on choosing 
the "best" L-variate Finite Impulse Response (FIR) 
equalizer transfer function e(z), of degree N, such as 
y(n)«s(n—u), with v is an arbitrary delay, (each ek(z) 
writes as ek{z) = ££L0

e*,p*~P)- The channel is de- 
scribed by c0(z) a possibly non-minimum phase scalar 
transfer function of degree Z0 and c(z) an L-variate 
FIR non-reducible vector transfer function (i.e., there 
is no common zero to all components ck(z) of degree 
(Q-Zo)). 

This problem formulation is turned on choosing the 
NL long equalizer impulse response e, such as: 

?/(«)= (eTCC0) S(n) + ?TW(n) « s(n - v)       (1) 

0-8186-7576-4/96 $5.00 © 1996 IEEE 
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where S(n) contains the last (N + Q) input symbols 
in the past of s{n) (with N-1>Q) and W(n) is the 
multivariate noise vector (w(n),■■■, w(n - N + 1)) . 
Hence, C0 denotes the (Q-Z0+N) x (N + Q) channel 
convolution matrix associated to c0(z) and C denotes 
the (NL) x(Q-Z0+N) channel convolution matrix as- 
sociated to the multichannel minimum phase transfer 
function c(z). Note that, C and C0 are respectively full 
column-rank and full row-rank Sylvester matrices ([2]). 

3. Smoothed FSE-CMA criterion 

Lemma 1  The FSE-CMA normalized criterion ([1]) 

A(e) = JE;[(r2-y2H)2]/£;[S
2]2 (2) 

with r2 = E[s4]/E[s2], and E[.] stands for the mean 
expectation operator. Assuming independence between 
the noise and source signals and a temporally/spatially 
white gaussian noise, we get: 

J7(e-) = J0(e) + T ||e||2 {2 (3|| C0
TCTe ||2-p)+37||e||2}   (3) 

where Jo{e) is the noise-free cost-function, j is the 
noise to signal power ratio writes as , j = E[w2]/ E[s2] 
and p = E[s4]/E[s2]2 is the input signal kurtosis. 

Proof: Using (1), the proof is deduced by a straightforward 
calculus (see [2]). Note that the expression can be easily 
extended for a non gaussian noise since we know the fourth- 
order moment of the noise contribution. □ 

3.1. Further results under lack of disparity 

The channel/equalizer impulse response setting ze- 
roing the noise-free cost-function Jo(e) writes as: 

/., = C0
TCTe   &   c(z)Te(z) = z-J/c0{z) (4) 

which is not possible with a FIR equalizers. Because of 
lack of disparity, the best achievable h may be far from 
any optimal setting hv = (0-•-010---0)T. More pre- 
cisely, the only achievable impulse responses h = C0 e 
live in the subspace spanned by the columns of CJ. In 
particular, the closest to hv achievable h is given by 
the orthogonal projection of hv on the range of C0 , 
Ä = Cj(C0Cj)-1CoAV) We set n0 = Cj(C0Cj)_1C0. 
In fact, for a given achievable h = Cje there exists a 
unique e such as e = Ce and NL-(N + Q-Z0) pos- 
sible settings for e. In this case, the cost-function 
extrema of Jo(e(e)), satisfy C0A(Cj"e)Cje = 0, with 
A(Cj"e) = (3||CoTe||2-p)/-(3-p)diag(C0

TeeTCo) , where 
diag(A) stands for the matrix extracted from A with 
the same diagonal entries and 0 elsewhere. They can 
be classified as ([2]): 

• one maximum (e = 0), 

• global minima (when Cje = h„ is achievable with 
e^O) or saddle points (A(C0

Te) C0
Te = 0 and Cj"e^h„), 

• local minima (C^A(Cj"e) Cj"e = 0 and e does not 
belong to the previous categories). 

Note that, a potential global minimum imply that 
the corresponding e is expressed as (CoCj)-1Co/ij,, 
i.e., h = n0/i„. Since C0 can not be square (it is a 
(N + Q - Zo) x (N + Q) matrix), there should exist 
no global minima such as h = hu. However, when N 
becomes "large", Co tends to become square so that 
IIo becomes close to the identity matrix. Of course, as 
in the non-fractional case, undesired settings may exist. 
However, the larger N is, the closer the corresponding 
channel / equalizer is becoming to some hu. 

3.2. Perturbation in noisy case 

From lemma 1, one can see in noisy context, that 
Jo(e) is regularized by an additional deterministic fac- 
tor $7(e(e)) driven by 7. This leads to a balance 
between the minimization of criterions: Jo and $7. 
The result is a "smoothing effect" expressed through 
twofolds constraints: (i) a minimization of || Cj"CTe ||2 

that leads to get an impulse response \\h\\ as small as 
possible; (ii) a minimization on ||e|| which tends to for- 
bid the equalizer norm to be too high, reducing conse- 
quently the noise enhancement 7||e]|2 (see (1)). 

Thus, the minima of J7(e) realize a desirable bal- 
ance between the noise-free good equalization settings 
and the noise enhancement due to the equalizer norm. 
To solve the minimization problem, we propose a two- 
steps minimization procedure. First, we minimize 
J1{e) over the subspace of vectors e such as e = C e 
for a given e. The resulting value of e* is a function of 
e, denoted e(e). Then, we minimize J7(e(e)) over the 
subspace of (N+Q-Z0)-long vectors e. Invoking equa- 
tion (3), the two steps minimization can be expressed 

minJ7(e(e))=min{Jo(el(e))-|-7   min    {$7(e(e))}}   (5) 

The procedure is simplified because J(e) is a function 
of e only, so that the first step consists of the smoothing 
cost-function $7(e) minimization only. 

The first step minimization of the quadric cost- 
function <57(e(e)) (for a given e), under the linear con- 
straint e = CTe, can be performed using Lagrange mul- 
tiplier technic and leads to the zero-order approxima- 
tion (for a SNR large enough): 

e(e) = C(CTC)_1e + o(l) 

The second step consists of minimizing: 

A(e(e)) = Jo(e(e)) + 7 ||e(e)||2(3||h(e)||2 - p) + 0(7)   (6) 
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where the noise-free cost-function Jo(e(e)) = E[(r2 — 
(eTC0S(rj))2)2]. Taking the derivative of (6) with re- 
spect to e, the extrema of (3) are solution of the equa- 
tion: 

4 CoA(C0
Te)C0

Te   +   2 y [3 ||C(CTC)-1e||2 C0C0
T e 

+ (3||C0
Te||2-p)(CTC)-1e]+o(7) = 0 (7) 

Our task is to provide a close-form solution to the 

equation (7). Since we don't know how to explicit the 
noise-free minima expression, we consider herein the 
perturbation of e = e^ = (CoCj)_1Co/i^, correspond- 
ing to h = hu. We know that for a "large enough" 
equalizer length it will be a good approximation in the 
noise-free case. 

4. Close-form extrema 

In order to get some insight in the noisy case, we as- 
sume that the approximation error is "smaller" than 
the perturbation due to the noise. This should hold 
for "large" values of N and "not too small" values of 
7. In the same time, 7 must be small enough to allow 
a first order approximation in terms of 7. The valid- 
ity of this assumption is checked by simulations in the 
sequel. 

Proposal 1 For a small enough 7, we assume the 
global channel-equalizer setting e7 to be a first order 
perturbation of e^ = (CoCj)_1Co/i„ in terms off as, 

§.-, =S1/+7e1/+o(7) (8) 

Then, e^ satisfies, 

I* « -f eJ^C)-1^ (Co^Co1")-1 CoCo1"^ 

-^=^(Co*,CoT)-1(CTC)-1e„ (9) 

The corresponding channel / equalizer settings can be 
viewed as a perturbation ofhu, 

+(3 - p)C0
H(CTC)-1C0

HT/l,] + 0(7)      (10) 

where *„ is a (N + Q) x (N+Q) diagonal matrix with 
entry (3 — p) when »'/1/ + I and 2p when i = t/+l, and 
Co =Co (C0C0 ) 

Note that, for a large value of N, the symbol » in 
(9) stands for the approximation of Cj e^ w hu. If we 
assume in addition that the input is constant modulus, 

p= 1 and $„ = 27, the global impulse response minima 
are of the form: 

h-, « hv — — [3 {hu C0 (C   C)_ C0    hv) /.„ 

+ CoH(CTC)-1C0
HT/l,] +0(7)    (11) 

This result is similar to the expression of h1 when ZF 
is exactly achievable (i.e., when (CTC)-1 is replaced 
by Cf (CTC)_1CfT. We notice once again that FSE- 
CMA criterion has very specific properties for constant 
modulus input signals. 

Proof of Proposal 1: Introducing assumption (8) in 
the equation (7), the proof consists on evaluating^; i.e., 
the first order solution (in terms of y) of the equation (7). 
Since C0 eu « hv for a large enough N, we obtain eas- 
ily e_v as a solution of the linear system: 2 Co^t-Col^ = 
-SeKC/CJ-^CoCo1"^ + (3 - />)(CTC)-1e„ + o(l). 
Where Co^Co is invertible if the input signal is not gaus- 
sian (i.e., p^3).0 

Simulations: A 2-dimensional multichannel vector c(z) 
is defined by the zeros of each transfer function as c\(z) = 
(—1.4, —0.4) and c2(z) = (1.1, —0.4). The observation num- 
ber is set to N=8. Figure 2 displays the impulse response 
taps of h-, (obtained by running the algorithm to minimize 
the criterion) versus SNR. Note that /i-, is very close to a 
canonical vector for a large enough N and SNR. In Figure 
3, we display the analytical impulse response introduced in 
Proposal 1. We can see that both curves are very close. 

Figure 2: h versus SNR 

AnaHtycal h voraus SNR 

Figure 3: analytical h versus SNR 
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5. Mean square input/output error 

In this subsection we are motivated in evaluating the 
mean equalizability performance in terms of normal- 
ized input/output mean square error (MSE) denned as 
E{(y(n)-s(n-v))2]/E[s2}. 

Proposal 2 The MSE is as a sum of residual ISI and 
noise enhancement (driven by j). For a large enough 
SNR the FSE-CMA MSE can be approximated by: 

||(/ - n0)M|2 +7 ÄjCf (C1"©-1^Th, +0(7)    (12) 

-: MSE w«n SNR -.: Inavofctabta MSE 

Zero—Forcing Noise Enhancement 

The equalizability bound is expressed as the sum of 
an irreducible error due to the pseudo-inversion of c0(z) 
and a linear error proportional to 7. Note that for a 
long enough equalizer, IIo«I , then the MSE is mostly 
due to noise enhancement. 

Proof of Proposal 2: The MSE writes as MSE 
= \\h - hu\\2 + 7 ||e||2- Introducing the parametrization 
h = Cje and the assumption (8), we get e7 = e(e„) = 
C(CTC)"1(CoC0

T)-1Coft, + o(l) = C^C)"1^ + o(l), 
and h-y - Cjey = Cjev+o(l) which yields immediately to 

(12) a. 

An interesting point is to notice that the first-order 
FSE-CMA MSE is the same as the MMSE deduced 
by minimization of E[(y{n) -s(n-u))2]/E[s2], even if 
the channel equalizer global impulse response minima 
differ between criterions. 

Simulations: We use a 2-dimensional multichannel vec- 
tor c(z) is defined by the zeros of each transfer function as 
(-1.4,1.1) and we take c0(z) = z + OA. The observations 
number is set to AT = 8 (Figure 4) and TV = 2 (Figure 5). 
Both curves show the accuracy between the experimentell 
and the analytical FSE-CMA MSE (12). In Figure 4, N is 

long enough to have to have ||(7 - IIo)M|2 ~°- In Figure 5 
the analytical curve (-) is the sum of the experimental irre- 
ducible zero-forcing (.—) and the linear Noise-Enhancement 

error ( ). 

-: MSE -: Aivi^tteal MSE 

Figure 4: FSE-CMA MSE (N=8) 

Figure 5: FSE-CMA MSE (N=2) 

6. Conclusion 

Under the realistic assumptions of lack of channel dis- 
parity and additive channel noise, we have established 
in this contribution an analytical close-form of the 
FSE-CMA global impulse response. Whereas other re- 
cent second-order methods fail, we have shown that 
FSE-CMA realizes an interesting trade-off between 
noise-enhancement and achievable equalizability. In or- 
der to evaluate the equalizability performance a close- 
form expression of the mean input/output steady-state 
square error has been derived. For large SNR value 
and large TV, FSE-CMA performances are very similar 
to the best achievable performances of a blind linear 

equalizer. 
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ABSTRACT 

In this paper, a blind adaptive beamforming algorithm 
is presented which improves the performance of CAB 
[4]. Noting that the weighting vectors of CAB are not 
in general proportional to signal steering vectors in the 
case of multiple signals, a singular vector rotation tech- 
nique is used to iteratively estimate the steering vec- 
tors. Using the estimated steering vectors as the con- 
straint matrix in the LCMV algorithm [2], better inter- 
ference suppression is achieved. Computer simulations 
are conducted to demonstrate that the performance of 
the proposed algorithm is superior to that of CAB for 
the scenario of multiple co-channel users transmitting 
at the same frequency. 

1.  INTRODUCTION 

The use of multiple high gain agile beams from a multi- 
ple element array antenna with on-board digital beam- 
forming [1] is being considered in the next generation of 
mobile satellite communication systems (MSCS). The 
main advantages of the system are that it offers a flex- 
ible solution for channel allocation and it can actively 
suppress co-channel interference. Active interference 
suppression can be achieved by using on-board adap- 
tation. The Linear Constrained Minimum Variance 
(LCMV) algorithm seems to be the most suitable adap- 
tive beamforming method for the multiple agile beam 
MSCS [8]. The LCMV method requires the locations 
of mobile users in order to steer the high gain beam 
towards the desired users and place the null at spe- 
cific co-channel interferences. Mobile user localization 
can be established by on-board processing using high- 
resolution techniques, which, however, can be very com- 
putationally intensive and calibration of the array is 
necessary.   On the other hand, blind adaptive beam- 

The authors acknowledge Canadian Space Agency for fund- 
ing the digital beamforming project. 

forming methods exploiting the cyclostationarity [3] of 
communication signals attract attention because of its 
advantages of no requirement for mobile localization 
and no need for array calibration. 

The cyclic adaptive beamforming (CAB) algorithm 
[4] being one of the blind adaptive beamforming meth- 
ods has been proposed as a good candidate for spa- 
tial re-use of frequency spectrum. However, the per- 
formance of CAB deteriorates when multiple desired 
signals are present. Here, an improved CAB algorithm 
is proposed which can iteratively generate a better es- 
timation of the steering vectors of multiple signals than 
CAB does. Using the estimated steering vectors as the 
constraint matrix in the LCMV algorithm, better inter- 
ference suppression is achieved. Computer simulations 
are conducted to demonstrate the performance of the 
proposed algorithm. 

2.  BLIND ADAPTIVE BEAMFORMING 
ALGORITHM 

The basic idea of CAB is to formulate the cyclic (con- 
jugate) correlation of the array output x(n) and its 
frequency-shifted version u(n) = x(n + n0)ej2'KC"1 (or 
u(n) = x*(n + no)e'2*an) at a particular cyclic fre- 
quency a of the desired signals so that the interference 
and noise which do not exhibit the same cyclic fre- 
quency can be eliminated. It has been proved [4] that 
the weighting vectors of CAB corresponding to indi- 
vidual desired signals are the left singular vectors of 
the cyclic (conjugate) correlation matrix of the array 
output fi°u, i.e., 

Ä*u = WCABASV1 (1) 

where WCAB is the left singular vector matrix (each 
column of WCAB denotes the weighting vector of each 
desired signal), A, is the singular value matrix and V 
is the right singular vector matrix. 
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CAB can asymptotically achieve optimal SINR when 
there is a single desired signal and the weighting vector 
WCAB is proportional to the steering vector of the de- 
sired signal. However, the performance of CAB deteri- 
orates when there are multiple signals, each having the 
same cyclic frequency. This is not surprising because 
in general the left singular vectors are not proportional 
to the individual signal steering vectors unless the mul- 
tiple signals are well-separated in the sense that signals 
have spatial separations of more than one beamwidth 
and/or are of very uneven power. Therefore, CAB in- 
tends to work in the scenario of single desired user, 
i.e., co-channel users all have different cyclic frequen- 
cies. This results in extra bandwidth consumption. 

In this section, an improved CAB algorithm is pro- 
posed which exploits the fact that the left singular vec- 
tors of Rxu and the signal steering vectors span the 
same subspace (signal subspace) so that a singular vec- 
tor rotation technique is used to iteratively estimate 
the steering vectors assuming that the signals are sta- 
tistically independent of each other. The steering vec- 
tor model includes both the individual elemental errors 
and the spatial properties of the signal, thus the pro- 
cedure is valid for uncalibrated array. The improved 
CAB algorithm allows multiple desired users, or co- 
channel users operating at same frequency to achieve 
bandwidth saving. 

It is well known that the matrix R°u can also be 
rewritten as its steering vector decomposition, i.e., 

Ra
xu = DRa,rt (2) 

where D is the matrix of signal steering vectors, R" is 
the cyclic (conjugate) correlation matrix of the signals. 
Therefore, we can see that 

Column space of WCAB = Column space of D  (3) 

It has been proved [5] that there exists a unitary matrix 
Q such that 

DR?1=WCABA?Q (4) 

Since D, R° and Q are unknown, then Eq.(4) does not 
have a unique solution, however, o priori information 
about the structure of a steering vector can be used to 
iteratively find the matrices D, Ä? and Q that satisfy 
the above equality. 

The detailed procedure of iteratively solving Eq.(4) 
can be found in [6,7]. 

3.  OPTIMAL-CONSTRAINED LMS 
WEIGHTING VECTORS 

Once D, i.e., the steering vectors of co-channel users 
are resolved, the LCMV beamforming algorithm can 

be used to suppress interference. The principle of the 
LCMV beamforming is to constrain the beamformer so 
that signals from the directions of interested are passed 
with specified gain and phase. The weighting vector 
Wk is chosen to minimize the output variance (power) 
subject to the response constraints, i.e., 

min    wlRxWk 
to* * 

(5) 

s.t.   D^wk = g (6) 

where R* = E{x(n)x^(n)} is the correlation matrix of 
the antenna array output and g is the response vector 
of the form such as 

ff = [0---0 10---0]T (7) 

where "1" in g occurs at the fcth position for the re- 
sponse to the ifeth desired user and "0" are the response 
to the interferences, and T denotes transpose. 

The optimal weighting is given as, by solving the 
minimization in Eqs.(5) and (6), 

wh ^ = R-'DID^R^D}-^ (8) 

Since the correlation matrix Rx is unknown a priori, 
it has to be learned by an adaptive technique. In con- 
strained gradient-descent optimization, the weighting 
vector is initialized at a vector satisfying the constraint 
in Eq.(6), and at each iteration the weighting vector is 
moved in the negative direction of the constrained gra- 
dient. Thus, the adaptation can be done as 

Jf+V   =    (I-JD(I>tl>)-1I>t)[w<B)       (9) 

-/iH.(n)tDJi">] + ™<0> 

w<0)    =   D{tfD)-xg (10) 

where fi is a scalar to control the step size of the adap- 
tive process and is usually chosen as 

0 < n < 1/A„ (11) 

with Amax being the maximum eigenvalue of the cor- 
relation matrix Rx. Rx(n) in Eq.(9) denotes an esti- 
mation for Rx at the nth iteration. An available and 
simple approximation for Rx at the nth iteration is the 
outer-product of array output x(n)x^(n). Substitution 
of this estimation into Eq.(9) gives 

,<»+D    =    (J-.D(DtD)-1I>t)[tDJj.',)     (12) w 

-»x(n)xl(n)wP] + w™ 

wjj,0)   =   D(D^D)-Xg (13) 

An alternative estimation of Rx(n) is given by 

1   N 

Ä*(n + JV-) = -5>(n+ *>'(„ + ;) (14) 
•=i 
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Substituting Eq.(14) into Eq.(9) yields an adaptation 
of weighting vectors using block data (block length is 
N), i.e., 

to 
(n+N)      _ 

(I-DiD^D)-1^)^ (15) 
AT 

«=i 

«J (0)      _ =    DiD^D)-^ 

,(°) 

(16) 

In this way, computational load can be reduced and 
possibly better performance can be achieved [9]. 

We notice that the estimated signal steering vectors 
provide an initial weighting. The detailed derivation 
and the convergence of the adaptive procedure can be 
referred to [2]. 

4.  COMPUTER SIMULATIONS 

The performance of the improved CAB algorithm is 
demonstrated by two computer simulations using a 7- 
element uniform linear arary with half-wavelength spac- 
ing. Simulated data are generated incorporating array 
calibration errors where calibration phase error are uni- 
formly distributed over ±w/8 and gain error are uni- 
formly distributed over [0.8,1.2]. White Gaussian noise 
at each array element is added. 

In the first example, three co-channel users of BPSK 
signals with identical normalized data rate 0.5, normal- 
ized frequency offset 0.2 and roll-off factor 0.5 incident 
upon the array from DOA of 15°, 0° and -30° with 
respect to (w.r.t.) the normal of the array. The rel- 
ative power are 0 dB, 0 dB and 10 dB respectively. 
Low SNR = -7 dB is chosen to illustrate the perfor- 
mance in the presence of weak desired signals. Fig. 1(a) 
shows the beam pattern resulting from Eq.(8) using 
the steering vectors estimated by Eq.(4) with the sig- 
nal from 15° being considered as the desired signal. 
We observe that two deep nulls are placed at -30° and 
0° to suppress the interferences, and 0 dB gain at 15° 
(the response of desired signal is chosen as 1). For com- 
parison, the beam pattern resulting from Eq.(8) using 
the weighting vectors of CAB, WCAB, is plotted in 
Fig. 1(b), it is apparent that the suppression of the sig- 
nal from -30°, which is far apart from the other two 
signals, is adequate resulting a deep null at -30° while 
the other two weighting vectors do not correspond to 
the steering vectors of the signal from 15° and 0°, and 
result no null at 0°. 

-20 0 20        40 60 
DOA (dag.) 

Fig.l(a) Beam pattern w.r.t. the signal 
from 15° using the estimated steering vectors 

-20 0 20 
DOA (deg.) 

Fig. 1(b) Beam pattern w.r.t. the signal 
from 15° using WCAB 

In the second example, three co-channel users of 
BPSK signals incident upon the array from 15°, 0° 
and -10° w.r.t. the normal of the array with identi- 
cal normalized data rate 0.5 and roll-off factor 0.5 but 
different normalized frequency offset 0.2, 0.2 and 0.3 
respectively. The signal powers are again 0 dB, 0 dB 
and 10 dB respectively. The signals from 15° and 0° 
are considered as the desired signals. SNR = 0 dB. 
In the experiment, the estimated steering vectors of 
the two desired signals are obtained by iteratively solv- 
ing Eq.(4). Then the block data adaptation given by 
Eqs.(15) and (16) with block length being equal to 5 
samples is employed. The output SINR are plotted in 
Fig.2. We observe that the output SINR of the signals 
converge after 600 samples. 
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Signal from 15 (dog.) 

200 400 600 800 1000        1200        1400        1600 
Number of samples 

Signal from 0 (deg.) 

"'o 200 400 600 800 1000        1200        1400        1600 
Number of samples 

Fig.2 Output SINR of the two desired users 

5. CONCLUSION 

The improved CAB algorithm provides a solution of 
user allocation in an agile beam system to achieve more 
efficient frequency re-use by improving the system per- 
formance for multiple users working at the same fre- 
quency. 
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Abstract 

In this paper, time-frequency distributions 
(TFD) are applied for interference excision in spread 
spectrum communication systems. The focus is on 
jammers consisting of pulses of constant envelop 
frequency modulated interference. The time-support 
and the instantaneous frequency (IF) information 
provided by the TFD are used to reduce the jammer 
effect on the receiver performance. This is achieved by 
applying an excision notch filter with a null placed at 
the interference IF. The filter is turned on and off in 
synchronous with the interference duty cycle. The bit 
error rates at different frequencies are given and 
compared with those obtained using the 
multiresolution analyses. 

I. Introduction 

Direct Sequence Spread Spectrum (DSSS) 
systems are widely used in communications in a variety 
of applications including suppression of a strong 
interfering signal due to jamming or multipath 
propagation and providing multiple simultaneous use of 
the same spectrum. These systems, however, are not 
jammer proof. In order to increase their jammer 
resistance, many existing DSSS systems are augmented 
with other forms of signal processing, which act on 
improving receiver characteristics and increasing the 
overall jammer resistance [1,2]. Linear excision filters 
are often used to mitigate interference. The filter 
coefficients can be generated using various estimation 
methods, including block high resolution and adaptive 
least mean squares techniques. Most of the existing 
interference excision algorithms, however, assume a 
stationary environment, or jammers with slowly- 
varying spectral characteristics. As such, receiver 
performance becomes unsatisfactory under highly 
nonstationary conditions and rapidly changing jamming 
environment. It is therefore desirable to devise excision 

methods which are based on jammer characteristics in the 
time-frequency domain, where the nonstationary 
characteristics of the jammer are revealed and accurate 
information on its power localization in both time and 
frequency is provided. In turn, one may be able to 
remove the nonstationary jammer with minimum 
distortion of the desired signal. 

Two time-frequency based interference excision 
techniques have been recently proposed for improved 
receiver performance under nontraditional jammers. In the 
first approach, interference excision is achieved using 
time-frequency distributions. This approach was 
introduced by Amin [3] and detailed in [4,5,6]. In this 
case, the interference instantaneous frequency, obtained 
using appropriate time-frequency distributions, is used to 
form a time-varying linear phase excision filter. This 
filter has a notch which is in tune with the jammer IF. 
The second approach is based on multiresolution 
analysis[7], where the energy localization properties of 
the wavelet transform are employed to overcome the 
windowing effects associated with the short-time Fourier 
transform. For jammer excision, the wavelet transform 
is applied to the data and the coefficients of highest 
values, representing the jammer energy, are then 
removed. From the nature of these two techniques, it is 
clear that while the time-frequency distribution excision 
methods are most efficient for constant envelop frequency 
modulated signals, where the jammer energy is 
concenterated around its IF, the wavelet transform is 
primarily effective when the jammer energy is captured 
in one or few of the transform bins. The later requires the 
wavelet tiling of the time-frequency plane to be in close 
match with the jammer characteristics. 

In this paper, the performance of the above two 
techniques under pulse jamming is investigated. The 
jammer is a train of sinusoidal or chirp pulses with fixed 
duty cycles. The time-frequency distribution using 
several kernels including Wigner, Choi-Willimas, the 
Cone shape, and others offer the means to detect the 
beginning and the end of each pulse [8]. Additionally, 
these kernels yield a good estimate of the jammer 
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instantaneous frequency during the pulse period. As such, 
the excision filter can be designed with an appropriate 
notch and can be turned on and off according to the duty 
cycle of the jammer. 

In Section 2, a brief review of TFD is presented 
with discussion on the interference excision systems 
based on the instantaneous frequency estimate. The 
wavelet transform, as it is applied to the underlying 
problem is discussed in Section 3, and Section 4 
presents the results of the bit error rate simulations 
where the TFD-based excision and the wavelet transform 
excision techniques are compared. 

2. TFD Interference Excision Systems 

Time-frequency distributions (TFD) are uniquely 
characterized by a two dimensional function, which is 
referred to as a "kernel". The t-f kernel can be designed 
such that the corresponding TFD satisfies several desired 
properties. For a full discussion of the time-frequency 
distributions and kernel design methods, the reader is 
referred to reference [8]. Among the desired t-f properties 
is the capability to satisfy the instantaneous frequency 
condition. Generally, this property allows the TFD to 
encounter peaks at the derivative of the phase of each 
signal component, irrespective of their time-varying 
nature. 

The  time-frequency  distribution   Cf   of  the 

signal f(t) is defined as 

Cf(t,<o;ip)= f \(p(t-u,T)f(u + T/2)f'(u-t/2)e-ic"dudT 

— (1) 
where "t" is the time index and "f' is the frequency index. 

The t-f kernel $(t,x) is a function of the time and lag 
variables. The well known Wigner distribution is a 

special case of (1) with <f>(t, T) = 8(t). A closer look at 
equation (1) reveals the simple fact that the TFD is the 
Fourier transform (FT) of an estimated autocorrelation 
function. However, contrary to the common way of 
performing time-averaging, the dependency of <p(t, x) on 
T allows the autocorrelation function estimation to be 
different for different lags. 

In addition to the instantaneous frequency, there 
are other common desired properties which qualify a TFD 
for proper representations of signals in time and 
frequency. These properties include the time support and 
frequency support. Both properties are important for the 
cases of excision of pulsed and bandlimited jammers, 
since they, respectively, allow the TFD to be zero 
(shows no power) at all time instants and frequency bins 
where the signal is not present. The TFD should also 
satisfy the marginals properties in which the distribution 
of signal power over only  the time  variable or the 

frequency variable can be separately obtained from the 
joint TFD. Output 

Input 
Adjustable Filter 

TFD 
IF Estimate 

'orrelator 
 TT~ 

Copy 
Filter 

PN (receiver) 
J 

Fig.l TFD Excision System 
The interference excision system based on the 

TFD is shown in Fig.l. The IF is estimated using t-f 
kernels with desirable properties. Most importantly, the 
IF and time-support conditions must be satisfied. The IF 
is used to define a notch of a three coefficient zero-phase 
filter. This filter is applied to both the input data and the 
PN at the receiver. The output of both filters are then 
correlated and a decision rule is applied . In the 
simulation section, the Choi-Williams kernel is used for 
IF estimation. 

3. Wavelet Domain Excision 

Much research has been accomplished applying 
wavelet and multirate methods to communications [ 9 ] 
and in particular, to the interference excision problem 
[7]. For this study, a standard discrete wavelet transform 
(DWT) is performed on the received spread spectrum 
binary phase shift keyed (SS-BPSK) signal (rectangular 
pulse shaping) and the resulting coefficients, representing 
the signal in the wavelet basis, are modified via an 
excision rule that zeroes out the highest 10% of the 
transform coefficients. The reader will take caution that 
this is only one of many excision rules available, and is 
not necessarily optimal for this application. It is an 
intuitively appealing rule in the sense that the DWT 
decomposes signals into dyadic subbands which localize 
narrowband interference. Assuming the jammer to signal 
energy ratio (JSR) is sufficiently high, this localization 
causes the coefficients in the frequency bin where the 
narrowband interference lies to be significantly greater 
than the rest of the transform coefficients. Except for 
high frequency interferers, excising the highest ten 
percent of the coefficicients is sufficient to remove the 
noise. Unfortunately, a significant portion of data is lost 
as well. 

The communication system simulated in this 
work consisted of a BPSK signal with a pseudo-noise 
(PN) spreading code applied at the transmitter, additive 
white gaussian noise (AWGN,) and constant frequency 
and frequency modulated continuous wave (CW) jammers 
with energies. At the receiver, the DWT output was sent 
to the excision block followed by despreading of the 
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wideband signal and a correlator. A signum based 
decision rule provided the data estimates. Spreading codes 
of 128 and 32 chips per bit were employed 10% jammer 
duty cycle. Typically 128 bits were simulated at a time 
and an 11- or 13-level DWT (12 or 14 dyadic frequency 
slots) was performed on the entire spread sequence. At 
128 chips per bit, this means a transform length of 
1282 = 214, hence the choice for number of levels in the 
DWT. The sampling rate for the system was chosen to 
be 1 sample per chip - effectively limiting the highest 
frequency jammer to half the chip rate. However, the 
first-null bandwidth of SS-BPSK is the chip rate, and 
hence only jammers in the lower half of the spectrum are 
considered. This is not a crucial issue, since TFD 
methods are not frequency dependent and so they are 
unaffected by this limitation, and the tiling of the DWT 
is such that signals with frequencies in the upper half of 
the spectrum only worsen the performance. 

4. Simulations 

Fig.(2-a) compares the bit error rates in the case 
of pulsed sinusoid with (1/7.1) normalized frequency 
using 128 chips/bit for the TFD and DWT excision 
methods. In addition, the BER corresponding to no 
preprocessing is also shown. For the TFD method, we 
have included the BERs with exact IF as well as 
estimates of the IF using equation (1) with 128 and 8 bin 
FFT. It is perfectly clear that all TFD BER curves are 
significantly better than the DWT method. The 128-bin 
FFT outperforms the 8-bin FFT, due to bias caused in 
the IF estimate using fewer frequency bins. It is 
noteworthy that exact IF provides no errors up to 80 oB 
Jammer-to-signal ratio. 

Fig.(2-b) shows the same set of curves as 
Fig.(2-a), except we now use 32 chips/bit. The relative 
behavior of the two time-frequency excision methods 
remain approximately the same. Overall, the reduction in 
the gain leads to an increase in the bit error across the 
JSR. The experiments conducted for Fig.l were repeated 
using higher frequency (1/2.3). The corresponding 
BER curves are shown in Fig.(2-a,b). The superiority of 
the TFD methods remain invariant. Fig.3 shows the 
BER curves for the case of a pulsed chirp jammer, using 
128 and 32 chips/bit. The performance of the TFD is 
slightly deteriorated from the case of fixed sinusoid. 
Still, the TFD has a remarkable performance which 
drastically improves over the DWT performance. 

5. Conclusions 

The interference excision system based on time 
frequency distributions shown in Fig. 1, outperforms the 
wavelet transform excision method for constant envelope 
pulsed interference of either constant or modulated 
frequency.  Using  exact IF  information   yields   better 

results than IF estimates, but this is to be expected. In 
defense of multiresolution methods, however, it should 
be noted that the jammer types considered here are not 
conducive to MRA decompositions, and as a matter of 
fact, a regular FFT outperforms the wavelet in this 
scenario, especially for constant frequency jammers. 
Pulsed interference without IF information (bursts of 
uncorrelated energy) were not considered in this study, 
but it is suggested that the TFD methods would not 
perform as well in this case, and the performance of the 
wavelet excision scheme would improve. 
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Abstract 

This paper describes a non-linear adaptive equalizer 
based on a sub-optimal HHMformulation leading to a small 
computational complexity. A similar approach was already 
proposed in the monochannel case in [4], and we show 
here that, in a multichannel context, large improvements 
are obtainable. It is well known that Maximum Likelihood 
methods are subject to local minima problems. Although of 
reduced importance in our previous approach (due to the 
on-line adaptation), the problem was still present. Since it 
is now well known that in the multichannel case, the blind 
equalization problem has a unique minimum, one can hope 
that the local minima problems can be solved in this context. 
However, a straightforward formulation of the previous al- 
gorithm in the multichannel case does not make it. Hence, 
we propose a new algorithm allowing Conditional Means 
estimates of the emitted symbols and blind identification 
of each impulse response of the channels, involving alto- 
gether a maximum likelihood formulation (by means of an 
approximated EM algorithm) and a criterion making use 
of the spatial diversity of the multichannel system. Simula- 
tions are provided, showing the identification of the impulse 
responses of the various channels, as well as the symbol es- 
timation performances in terms of Bit Error Rate (BER). The 
improvements over the single channel case are highlighted. 

1. Introduction 

We consider here reception through multiple sensors. In 
this case, the various sensors receive different continuous- 
time waveforms due to the different physical channels that 
separate them from the transmitter.  However, after sam- 

pling at the symbol rate, the corresponding received discrete 
sequence can be modeled as the output of a Finite Impulse 
Response (FIR) Filter. 

In the recent years, following the work by Tong, Xu, and 
Kailath [5] many methods have been proposed in order to 
equalize such systems, relying on the fact that the received 
signals have a rank-deficient correlation matrix [1]. Initially, 
these methods were proposed in block versions. This block 
formalism does not allow a tracking of the channels (when 
they are time-varying) and has the drawback that the corre- 
sponding arithmetic complexity is required by bursts, a fact 
which either requires a large hardware or introduces a large 
delay. Very few methods allow an on-line processing of the 
data as they come. Furthermore, they usually do not explic- 
itly take into account the effect of noise. Finally, a common 
feature of these methods is that they rely on structural prop- 
erties of the channel, meaning that they do not use any a 
priori knowledge about the input, which is often available at 
no cost in a communication situation. For instance, it can be 
useful to take advantage of the fact that the emitted symbols 
are taken from a discrete finite alphabet. 

The algorithm derived in this paper is an adaptive one, 
providing at each step an estimate of the impulse responses 
of the multiple channels (thanks to the combination of two 
criteria which results in a good tradeoff between residual 
error and sensitivity to initialization), as well as a Condi- 
tional Mean (CM) estimate of the symbols currently stored 
in the channel memory; The Hidden Markov Model (HMM) 
is used here in a sub-optimal way so that it does not involve 
the high computational complexity which is the issue of such 
an approach. Note that the model formulation is usable at 
a reasonable cost only by the use of the a priori knowledge 
that the emitted sequence belongs to a finite alphabet. Note 
that all computations provided in this paper are given in real 
variables. The extension to complex ones is straightforward. 
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2. Problem formulation 

Notations are as follows: 
- VT denotes the transposition of vector V 
-£(n) = [0(")(l)...0(n)(L - 1)]T denotes the impulse re- 

sponse of the channel from the transmitter to the nth an- 
tenna. (L being the channel memory length of all impulse 
responses). 

- *>(")(*) is the additive noise on the nth antenna. We 
assume these additive noises to be mutually uncorrelated. 
TV being the number of sensors, Bt, denotes the following 
vector: 

Bt = [bV(t)b(2Xt)...bW(t)]T 

- The transmitted sequence x is independent and iden- 
tically distributed (iid), and can take M different values 
qk, k = 1.. M depending on the modulation. Xt is the vec- 
tor containing all symbols stored in the channel memory at 
time t: 

Xt=[x(t)x(t-l)...x(t-L+l)]T 

Then, the signal received at time t on the nth antenna is 
given by: 

y(n>(O = £0<n)(*>(*-«') + *(n)(O      (i) 
i=0 

Thus, we have the stationary model: 

Yt = @TXt + Bt 

with matrix 0 and vector Y_t defined as: 

(2) 

Yt    =    [y^{t) y^N\t)f 
(3) 

(4) 

The model described by (2) defines a Hidden Markov Model 
in which Xt is the state vector of a Markov process described 
by the following state equation (T being a shift matrix): 

Xi+l =TXt+x(t+l)*[lO...O]T 

This hidden Markov process is only reachable through 
the observation equation (2) which is identical to that corre- 
sponding to a transmission through a single channel. How- 
ever, the hidden process can be reached through N different 
observations, which is the explanation for the improved per- 
formances of the multichannel algorithm in terms of BER. 

3   Conditional Mean (CM) estimate of the 
emitted sequence 

Suppose that current estimates of the channels 9t , n = 
1, • • -N and of the state vector Xt-\\t-i ^ available at 

time t. The state probabilities corresponding to the Forward 
recursion [2] (ie Pr(Xj = [«.•0....«,-jt_1)]|Öt,Vi, -,Yt)) 
would be very computationally demanding, even for moder- 
ate length channels since it requires the calculation of ML 

probabilities at each step. We use here the approximation 
derived in [4] which allows the amount of such calculations 
to be only M * N: in this approach, instead of computing the 
joint probability of all components of vector Xt, we evaluate 
the probability of each component separately, conditioned 
by the current prediction of the other ones. This prediction 
is obtained by taking advantage of the shift structure of the 
process X. X^_t being the prediction of the jth compo- 
nent of vector Xt, knowing the observations up to time t -1, 
we have x{f_, = X(

ti~^_v Let a^(k) be the probability 
that the jth symbol in the channel memory be equal to qk, 
knowing the observations up to time t, the current estimate 
of the channels parameters (©*), and the prediction of all the 
other symbols stored in the channel memory. Then, thanks 
to the so-called forward recursion, we can write: and: 

aü>(jb)    =    Pr((X{
t
j) = qk)\Yu .-, Yt,SuX§_vl £ j) 

=    ^_-\l,(k)^(Yt-eJXt{t^(j,qk))      (5) 

Where Af(.) is the N dimensional Gaussian distribution,and 
Xt\t-\{h Qk) is the vector Xt|(_i where its jth component 
is replaced by kth possible choice qk in the alphabet: 

At|t_i(ft) - [*t\t-r--1*-At\t-\ J 

, then, the estimate of vector Xt is given by: 

xt\t - [*t\t ■■■■At\t    J 

Where x\D is the Conditional Mean Estimate of xt-f- 

M 

fc=i 

The estimate of the emitted sequence being performed, 
we now focus on the update of the multi-channel impulse 
response. 

4. Estimation of the channel parameters by a 
combination of two criteria 

The parameters are estimated by minimizing a criterion 
which is a linear combination of a criterion based on the 
spatial diversity of the system C((@) on one side, and of 
L((@), the expected log likelihood, on another side. Both 
criteria are evaluated with an exponential forgetting factor 
A, as we wish tracking slow variations of the channels: 

Qt(S) = J2 A'"!'[(1 - a)Li&-0) + aCi&Ü     (6) 
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4.1. Calculation of the expected log-likelihood 

The criterion we deal with in this section is the so-called 
Kullback-Leibler function of the Expectation-Maximisation 
(EM) algorithm, defined as the expectation of the logarithm 
of the likelihood function for the complete data calculated 
at time t(see [3] for the terminology): 

Li(@t,@) = E(logßf(Yt,Xt;®)\Yu..,Yt;@t) 

M' 

Only simulations support this claim at that time. Physically, 
the criterion relies on the fact that the output of each antenna 
corresponds to the filtering of the SAME input vector by dif- 
ferent filters. Consider 2 antennas among the N ones: If 
we filter one received signal by the impulse response of the 
other antenna and vice versa, both outputs will be filtered 
by the same coefficients, hence should be equal (up to the 
disturbances introduced by the noise). This criterion can be 
written in many different ways. We have chosen : 

Lt(@u@)    =   ^rtU(l)log(Ar(Xt=^\Yu..,Yt,S) 

ML 

= £r*i«(0ry«-eT&l2 (7) 

ct(@) = Y, |y/mV") - y/n>0("»)|2 (9) 
n^m 

l=\ 

where Yt
{n) = [y^\t)...y^\i -L + l)] Note that other 

criteria share the same property and could be used in con- 
junction with the approximate log-likelihood. 

where £; is one of the ML possible realizations of vector Xt        4.3    Maximization step 
and r4(/) is the conditional probability of the state: Ft(l) = 
Pr(Xt = ^\Y,..,Yu&t) 

Because of the approximation developped in the previous 
section, consisting in computing conditional probabilities 
instead of joint probabilities , we have to deal with to the 
so-called "pseudo-likelihood": basically, we approximate 
each rt(/) which is defined as the joint probability on every 
component of Xt, by the product of the conditional proba- 
bilities of each component, given the prediction of the other 
ones: 

L-\ 
P{Xj = [qi0, «,-,,.... qiL_M ,.., Yt, @t) = H a>\in) 

n=0 

The expansion of this calculation (for high SNR levels) 
leads to the following expression of the expected pseudo- 
likelihood at time t: 

N 
L((©t,©) = ^|2/«-A^/')|2 (8) 

/=i 

4.2   Criterion based on the spatial diversity of the 
system 

We use the criterion described in [5]. Under the assump- 
tion that the impulse responses of the various channels have 
no common zeros, it can be shown [5] that this criterion has 
a single solution. This property is useful in our case since 
the EM algorithm is known to have local minima. Moreover, 
even if the log likelihood involved in this multi-channel case 
takes explicitly into account the effects of the noise, it does 
not take full advantage of the spatial diversity of the system. 
It is expected that a suitable weighting of both criteria can 
solve the local minima problem, while maintaining the ro- 
bustness towards noise close to that of the EM algorithm. 

The maximization over each channel 0W is performed 
by computing the partial derivatives of Q<(8) according to 
#('). Finally, the channels estimates are obtained recursively 
by: 

e%\   =  «c») + (i _ tt)Ä|-i (y(") _ e^TxAt)xAt 

+al(
t
n)-" J2 (Ytm)tin) - Yt

(n¥t
m))Yt

<m)T 

mj£n 

!■(") Rt and 7;    are defined as follows: 

Rt    =    XRt-i+XtXf 

4"'    =    \fc\+Yt
(n)TY}n) 

(10) 

Their inverses can be computed recursively using the inverse 
matrix lemma ([4]). 

5. Experimental results 

5.1. Adaptive behavior 

First consider the adaptive behavior of the algorithm, on 
a BPSK modulation, with N = 2, on non-minimum phase 
channels, A*1) = [0.15 0.9 0.3] and h™ = [0.30.3 0.3], 

Usefulness of the criterion based on diversity Fig.l 
shows the evolution of the taps of the first channel h,(l\ 
using a straightforward extension of the EM algorithm used 
in [4] (no spatial diversity explicitly taken into account). It 
is seen that the algorithm converges to a local minimum of 
the likelihood corresponding to a minimum-phase channel 
: A0) = [0.9 0.35 0]. Fig2 corresponds to a = 0.3, and the 
algorithm converges to the true parameters. 
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Usefulness of the MAP estimate The usefulness of 
Lt(H) in the criterion is easily seen by comparing on Fig3 
the MSE on the parameters estimates for a = 1 (Ct only) 
and a = 0.3. As the likelihood takes more efficiently the 
noise effects into account, the parameters produced by its 
minimization are more accurate than the one obtained when 
minimizing Ct{H) only. Both simulations were initialized 
to the same values/i(1) = /i(2) = [100], and performed with 
a \0db SNR at the output of the channels. 

5.2. BER results 

Fig4 compares the BER obtained by using two channels 
(/»(') and /i(2) altogether) to that obtained using a single 
channel (N = 1 on either h^ or hW). The improvement 
is significant, while the computational cost involved for the 
multi-channel case is still linear with the channel memory. 

6. Conclusion 

This paper proposes a new algorithm, which couples 
two different and complementary blind equalization meth- 
ods.The first one based on ML identification of the channels 
taps, and detection of the symbols thanks to a HMM for- 
mulation, brings robustness towards noise. The other one 
is based on a criterion involving the spatial diversity of the 
system and tends to constrain the solution to be unique. The 
proposed algorithm is shown to take advantage of the com- 
plementarity of both criteria, especially avoiding the prob- 
lem of the local minima of the likelihood, while providing 
accurate results in case of poor SNR. Moreover, the fact that 
the algorithm is adaptive allows a real time computation 
without the high computational complexity of the HMM- 
based classical methods. This has been obtained by the use 
of a suboptimal HMM formulation which has nevertheless 
a good efficiency. 
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Abstract 

We present in this paper an multiple objective optimiza- 
tion approach to fast blind channel equalization. By in- 
vestigating first the performance (mean-square error) of 
the standard fractionally spaced CMA equalizer in the 
presence of noise, we show that CMA local minima exist 
near the minimum mean-square error (MMSE) equaliz- 
ers. Consequently, CMA may converge to a local mini- 
mum corresponding to a poorly designed MMSE receiver 
with considerablely large mean-square error. Based on 
the multiple objective optimization techniques, we pro- 
pose next a blind channel estimator by exploiting simul- 
taneously the second-order cyclostationary statistics and 
the constant modulus of QAM-type communication sig- 
nals. Such a channel estimation-based blind equalization 
scheme has the advantage of designing FIR minimum 
mean-square error equalizer with the optimal delay. 

1.    INTRODUCTION 

Blind equalization has the potential to improve the effi- 
ciency of communication systems by eliminating train- 
ing signals. Difficulties of its application in wireless com- 
munications, however, are due largely to the character- 
istics of the propagation media - multipath delays and 
fast fading. The challenge is achieving blind equaliza- 
tion using only a limited amount of data. 

A widely tested algorithm is the constant modulus al- 
gorithm (CMA) [5, 10]. In the absence of noise, under 
the condition of the channel invertibility, the CMA con- 
verges globally for symbol-rate IER equalizers and frac- 
tionally spaced FIR equalizers [4, 6]. It is shown in [3] 
that CMA is less affected by the ill-conditioning of the 
channel. However, Ding et. al. [2] showed that CMA 
may converge to some local minimum for the symbol- 
rate FIR equalizer. In the presence of noise, the analysis 

This work was supported in part by the National Science 
Foundation under Contract NCR-9321813 and by the Ad- 
vanced Research Projects Agency monitored by the Federal 
Bureau of Investigation under Contract No. J-FBI-94-221. 

of convergence of CMA is difficult and little conclusive 
results are available. Another drawback of CMA is that 
its convergence rate may not be sufficient for fast fading 
channels. 

Another approach to the blind equalization is based 
on the blind channel estimation. Some of the re- 
cent eigenstructure-based channel estimations (see e.g. 
[7, 8]) require a relatively smaller data size compar- 
ing with higher-order statistical methods. However the 
asymptotic performance of these eigenstructure-based 
schemes is limited by the condition of the channel 
[12, 13]. Specifically, the asymptotic normalized mean- 
square error (ANMSE) is lower bounded by the con- 
dition number of the channel matrix. Unfortunately, 
frequency selective fading channels with long multipath 
delays often result in ill-conditioned channel matrices. 

The key idea of this paper is to combine the approach 
based on minimizing the constant modulus cost and 
that based on matching the second-order cyclostation- 
ary statistics. The main feature of the proposed ap- 
proach is the improved convergence property over the 
standard CMA equalization and the improved robust- 
ness for ill-conditioned channels. 

2.    THE MODEL 

Fractionally sampled channel and its equalizer can be 
represented by the cascade of a single-input multiple- 
output (SIMO) channel and a multiple-input single- 
output (MISO) equalizer. The system equations are 
given by 

,(0 J2hy3k-i+wy    ,i=l,---,M   (1) 
3=0 

t=l    j=0 
(2) 

where A(,), /(,) are the ith (sub)channel and its equalizer 
with length Lh,Lj respectively, s, w, x,y are transmit- 
ted symbol, additive noise, received data and equalizer 
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output respectively. In matrix form, we have 

Xk    =    Hsfc + wfc (3) 

fHxfc = qHsfc+fHwfc (4) Vk 

t    HHf, (5) 

where (-)H denotes Hermitian, H is channel matrix and 
q is the combined channel. We shall make the following 
assumptions: 

Al: The input sequence {sk} is zero-mean and 

E{skst} = S(k - I). 

Sk has the constant modulus property (CM) \sk\ = 

1. 

A2: Noise w^ is zero-mean, white Gaussian with vari- 
ance cr2. 

3.    PROPERTIES OF CMA EQUALIZERS 

The analysis in this section is restricted for real param- 
eters and equiprobable binary source. Generalizations 
of the complex case are readily available. The CMA 
minimizes, 

Je(f)     *=    E{(yl-lf} (6) 

=     3||f||4R-2||f||2R-2||q||t + l,       (7) 

where ||f||n_ is 2-norm denned by vT'Rf,  ||q||4 is 4- 

norm denned by (5Z 2*)41 an<^ 

R = E{xhx*h} = HH' + cr2I. (8) 

In [14], it has been shown that CMA equalizers must 
be in the signal subspace spanned by the columns of H. 
Therefore the analysis of CMA can be carried out in 
the combined channel q denned in (5). The equivalent 
CMA cost function is then given by 

J(q) 4 ^((H'j'q) = 3||q||^-2||q||2s-2||q||t + l,  (9) 

where * = HtR^')*. In the absence of channel noise, 
it has been shown that the CMA using fractionally- 
spaced equalizers converges globally [6] to one of zero 
forcing equalizers, i.e., qc = e„,Vl < i/ < nq where 
e„ a unit column vector with 1 at the i/th entry and 
zero elsewhere. In the presence of noise, some minima 
may become local minima. In this section, we study 
the locations of these CMA equalizers. Specifically, we 
will study the neighborhoods of MMSE equalizers which 
minimize 

J*(f)^£{(y-5fc_„+1)
2}, (10) 

where v is the delay of the equalizer. Note that the 
CMA does not have control of the delay v due to the 
nature of the blind equalization. 

There are several reasons to choose this type of re- 
gions. Since the MMSE equalizer is the optimal linear 
equalizer, any equalizer which is far away from it has 
a large MSE. Therefore, if there exist CMA local min- 
ima in these regions, one of the minima must be the 
optimum CMA equalizer which has the minimum MSE. 
The other reason is the strong relationship between the 
MMSE equalizer and the CMA equalizer. This can be 
seen when the noise approaches to zero. 

Without loss of generality, let's consider q in the 
neighborhood of MMSE equalizer qm at delay v = 1. 
q and $ can be partioned into 

"(i) 
b' 
C (11) 

where qi is the intersymbol interference part, tf repre- 
sents the signal energy, and 1 — tf is the bias between 
the ZF equalizer and q. 

In order to locate the CMA equalizer (the minimum 
point), we need following definitions, given the MMSE 

equalizer qm = 0m[l,qJni], 

6   =   llqi-qmillc 
-2       A dm 

A      1  
C°     -     3-2tf=l-2tf2n||qmi||| 

Cl(«) -2(«2 + f-) 
Om 

(12) 

(13) 

(14) 

(15) 

c2(fi)    =    3(52 + ^-)2-2(l + (5 + rm)4)    (16) 
tf. 

D(6) ci(5)2-4c2(«)c0. (17) 

The following theorem gives a sufficient condition of the 
existence local minimum, its location and also gives the 
size of the region. 
Theorem 1 Under the condition that Jm(fm) < j, if 
^(Hqmilh) < 0, then there exists a local minimum in 

where 

6b 

B±{0<6<6h,0*L<0<0b}, (18) 

inf      {6} (19) 
6>0,D{6)<0 

■         /-01(^-^(^-40.(^0 
6L    =       mm    \    o-./rv *.20) 2c2(5) 

OTT     —       max 
o<e<6' 

'-ci(Q+ Vci(g)2-4c2(g)c0| 

2c2(5) 
(21) 

This theorem provides an expression D(||qmi||2) to de- 
termine the region  of cylinder  B which includes  the 
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CMA equalizer. The procedure only needs the parame- 
ters of the MMSE equalizer. 

Perhaps the most interesting concern is the MSE of 
the CMA equalizer. With the result of Theorem 1, we 
are ready to give the answer. 
Theorem 2 (a) The MSE of the CMA equalizer in B 
is bounded by 

ißu - em)2 

<A£ <& x)   a- a2 f? (22) 

where A£ is the extra MSE, i.e., A£ = J^((ic) - 
^m(qm). (b) Let A£\j be the upper bound of CMA equal- 
izer associated with delay v, then the MSE of the opti- 
mum CMA equalizer is upper bounded by 

£„ = min{C + A££}. (23) 
V 

(c) The MSE of CMA is approximated by 

A£ (g, - M2 

e„ = Ml + 0(£2
m). (24) 

The consequence of these theorems is twofolds. (i) The 
CMA equalizers are very close to the MMSE equalizers; 
(ii) There may exist a CMA local minimum in the neigh- 
bourhood of a MMSE equalizer which has significantly 
large MSE. 

4.     THE MULTIPLE OBJECTIVE 
OPTIMIZATION APPROACH 

To avoid the undesirable local minimum of CMA, one 
can use the channel estimation based equalization ap- 
proach. Once the channel is estimated, an MMSE equal- 
izer can be constructed by selecting the optimal v in 
(10). Furthermore, this approach provides the flexibility 
to design other types of receivers, such as decision-feed 
back equalizer, or maximum likelihood sequence estima- 
tor. 

Considered in this paper are the costs associated with 
the constant modulus property Jciif(h), the second- 
order statistics JcF(h), and the observed data Jg(h): 

JcM(h)    =    ^(|j,fc|
2 - if (25) 

fc 

Jap(h)    =     53|rü(m)-rü(m)|a, (26) 

JQ(h)    =    hHQh. (27) 

Note that the optimization of JQ(II) leads to, among 
a number of eigenstructure-based algorithms, the least- 
squares [7] or the subspace channel estimators [8]. Ma- 
trix Q in Jq(h) can be obtained from the data directly. 

Both JcF(h) and J<j(h) involve the second-order statis- 
tics (in different ways) whereas JCM(II) involves the 
higher-order statistics. We present next the weighting 
and the constrained approaches, the two frequently used 
techniques in multiobjective optimization, to the opti- 
mization of the above cost functions. 

4.1. The CM-CF Algorithm 

The CM-CF algorithm is derived from the weighted op- 
timization of the constant modulus cost JcAf(h) and 
the correlation fitting cost Jcp(h): 

h = arg min aJcAf(h) + ßJopCb.), (28) 
h€Hv v ' 

j(h) 

where a,ß are weights of the two cost functions respec- 
tively. H is the subspace contains the channel vector. 
In practice, Ji may be constructed from the principal 
component structure of the fading channel [11]. 

The difficulty of this optimization is that the explicit 
form of the constant modulus cost Jcjw(h) as a function 
of the channel is unknown. Fortunately, from the anal- 
ysis in Section 3, the constant modulus equalizer can be 
approximated by the MMSE equalizer which can be ob- 
tained once the channel is estimated. A gradient search 
is used to minimize J(h), 

h„+i = h„ - pVh J(h„), (29) 

where fi is a step size. 

4.2. CMA with Subspace Constraints 

In the constrained approach, we consider the following 
optimization 

h = arg min Jcjvr(h)   subject to Jq(h) < a||h||2.  (30) 
h 

When Q is constructed from the true covariance ma- 
trix R,,, the "true" channel is in the null space of Q 
and the channel identification becomes one of finding 
the eigenvector associated the zero eigenvalue. When 
the estimated covariance matrix is used and the chan- 
nel is close to be unidentifiable [9], the null space is no 
longer easy to determine. It is therefore reasonable to 
extend the subspace to include additional dimensions. 
Mathematically, we may view this approach as restrict- 
ing the channel vector in a subspace that the quadratic 
cost JQ (h) is constrained by an upper bound. Let V be 
the linear subspace in which 

Jg(h)<«IW (31) 

for some pre-specified a. As a suboptimal approach to 
(30), the channel estimator is then obtained from the 
following constrained optimization 

min     JcAf(h). 
hew p| v 

(32) 
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The above optimization can then be transformed into 

an unconstrained optimization. It can be shown that 

C = H P| V can be obtained from the span of the eigen- 

vectors associated with the smallest several eigenvalues 

of matrix 4? = BHQB. A gradient-type optimization is 

used similar to (29). 

5.    SIMULATIONS 

The class of two-ray multipath fading channels with in- 

dependently faded components is used in the simulation. 

The channel impulse response is given by 

h(t) = Y^ a<?(* - Ti)' (33) 

where {a;} are independent zero-mean complex Gaus- 

sian variables; p(t) is the raised-cosine waveform with 

roll-off factor 0.25 and the length of 6 symbol intervals. 

Uniformly distributed in [0, 2T] (T is a symbol inter- 

val), the delays {r;} are statistically independent. The 

signal is sampled at twice of the symbol rate. 

We compared the mean-square error of the equalized 

channel using (i) the CM-CF approach; (ii) the CMA 

with Subspace Constraints; (iii) the Least-Squares CMA 

(LSCMA) [1]; (iv) the MMSE equalizer constructed 

from the subspace channel estimator. The cumulative 

percentage of the channel estimates for a fixed MSE is 

computed and shown in Fig. 1. When compared with 

the LSCMA algorithm (the dashdot line), the proposed 

algorithms (the solid and dashed lines) has consider- 

able improvement for the small MSE, such as the MSE 

less than 0.02, and improvement is reduced as MSE in- 

creases. 

Figure 1: Performance comparison. 
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Abstract 
In this paper we introduce several modifications to the 
Baum&Welch (BW) formulas used to reestimate the 
parameters of a Hidden Markov Model (HMM). The 
estimated parameter is the channel impulse response (CIR) 
of a communication system which is known to be time- 
varying. With these modifications, channel tracking 
properties of a BW-based algorithm are improved. The 
resulting algorithm is tested in a specific mobile radio 
environment (the GSM system), exhibiting good 
performance at expenses of higher computational 
complexity. 

1. Introduction 

It's well known that no high-speed band-limited digital 
communication can be carried out without the help of an 
equalizer. Conventional approaches to the adjustment of this 
equalizer require the transmission of a training sequence (i.e. 
known a priori by the receiver and the transmitter), which 
provides an accurate initial estimate for the equalizer taps; 
afterwards, slighter adjustments can be made on-line to adapt 
this first estimate to the, almost always, changing 
environment. Of course, the transmission of these training 
sequences, when possible, brings down the capacity of the 
system. For that reason, there is an increasing interest around 
blind equalizers [1,2,3] which deal with the problem of the 
adjustment without training sequences (i.e. blindly). 

In [3], an Estimation-Modification (EM) Viterbi-based 
algorithm is proposed to perform jointly a Maximum 
Likelihood (ML) channel estimation and sequence detection. 
However, modelling the received signal as a HMM allows us 
to make use of the complete theory developed for these 
models. For example, the Baum&Welch (BW) algorithm 
was proposed in [7] to estimate the parameters of the 
channel and the characteristics of the modulation. This 
algorithm is known to lead, at least, to a local maximum of 
the likelihood function [4], what is not guaranteed by the 
Viterbi algorithm (VA). In this paper, several modifications 

to this previously proposed algorithm are introduced to cope 
with the special features of mobile radio channels. 

2. Signal model 

As mentioned before, the environment in which the new 
algorithm is tested is the Paneuropean Mobile Radio System, 
also known as GSM. In this system, a constant- envelope 
Gaussian Minimum Shift Keying (GMSK) modulation 
scheme with equivalent bandwidth (BT) equal to 0.3 is used. 
The access strategy is TDMA with 8 timeslots per carrier 
and 156.25 bit-intervals per timeslot in Normal bursts. At the 
chosen bit rate (270.8 kb/s), multipath propagation leads to 
deep fades and to uncontrolled Intersymbol Interference 
(ISI). Besides, and due to the mobile nature of the receiver, 
Doppler effect is also observed. 

r/T 

m 

OMSK 

nodulalor 

«oP 

channel 

ho(t) 
[±^&EEh _y-\    oo«<wt)          

w0C) r/T 

BW 

detector 

m 

Fig. 1: Transmission subsystem. 

Taking into account the above mentioned features, the signal 
at the input of the BW detector can be modelled as: 

jc[/i] = f(s[ra])+w[ra] (1) 

where f(.) is a non-linear function of the present state s[n], 
and {w[n]} denotes a sequence of zero-mean Gaussian 
variables with variance a2 (AWGN). If we go on developing 
an expression for f(.) we get: 

/,.-! 

f(«M = XM'M"-0=I*['KM    (2) 
i=0 

where h and d are the baseband equivalences for h0 and do- 
For a modulation index of 0.5, 0[n] can be expressed as: 
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e2=-& 
±Yi[n)\x[n]-m?-m?-n\ 

\<i<N (13) 

Xr.M 
n=l 

Differentiating each component in the sum e=Se,   with 
respect to m/° and m/1 we obtain: 

'a?'* 

Ve? = 

,**"> 

= -2 

*i>;W(4n]-m<0-m<'.n) 
ln=l 

3ttrJl»](*]-mf-E!'"l'" 
Ln=l 

(14) 

whose Hessian is positive definite unless 

cl)        5>iM-0 (15) 

(i.e. that state was not observed along the timeslot), or 

c2) Xr,M=r,h] (16> 

(i.e.that state was observed only once, when n=nj). In those 
cases, of course, there is no sense in looking for a linear 
approximation. From equating the gradient to zero and 
carrying out proper transformations, we find that 

^Y,[n]j{n)-f]-B-[iäY,[nHn] 
,n=l / V"=' : 

c|lri[»H»]J-*{Xr.[»W»]- 

^n=l   i=l 

where 

A=£YH B=trM«; c=5>,M-»2 

(17) 

(18) 

(19) 

(20) 

A = A'C-B2 

provide the components of the desired vector and an estimate 
for the variance of the AWGN. 

Finally, special measures should be taken for the cases 
above mentioned in which m/° and m/1 remain undefined. In 
the first case, cl), those components of the means vector are 
not considered in order to obtain h. The method adopted is 
blocking them with a (diagonal) Weighting Matrix to be 
included in the LS estimate of step 3. The elements of such 
matrix are a measure of the reliability in the estimation of 
every component of vector m, as a function of the times this 
state was observed along the sequence. To be precise: 

W = 

w,     0     -     0\ 
0    w, 

0 
", = Xr,M (21) 

ii=i 

x0     -    0    wN) 

In the second case, c2), the static estimate for m replaces the 
linear approximation. That is: 

2r.M*[«] 
,„ro _ n=\ mi -   r •=*h] 

5>iM 
(22) 

n=l 

m,n=o 
The resulting algorithm will be referred from now on as the 
Time-Dependent BW (TDBW) algorithm. 

5. Simulation results 

We tested the performance of the algorithm for the 
channels described in the ETSI recommendations. The speed 
for the mobiles in each environment was chosen according to 
[8]. Among all the cases, the most interesting ones were 
RA250 and RA100 (Rural Area Environment; speed equal to 
100 and 250 km/h), since channel coherence time-intervals 
are the lowest ones. It should also be remarked that a 
sampling rate of 2 samples/symbol was considered to 
compensate for possible timing errors. 
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Fig. 2: Tracking for the first tap of a RA250 channel vs. time 
in amplitude and phase for the proposed algorithm. Dashed 
lines stand for the true channel; solid lines for the TDBW 
estimate. 

Channel tracking properties of the proposed algorithm 
are shown in Fig. 2 and Fig. 3. It can be observed that such 
properties are good as long as the linear approximation for 
the channel evolution is feasible. Comparing those figures 
with those obtained with the ABW algorithm (Fig. 4), we 
conclude that CIR tracking is now much less noisy. 

In addition to this, now there is no need for waiting the 
algorithm to converge within the first samples of each 
timeslot. Moreover, the TDBW version is far more robust 
against deep fades which usually make the ABW algorithm 
to lose tracking. The reason for this robustness is that 
TDBW is a batch-type algorithm, where every sample in the 
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timeslot is used to estimate the CIR in every instant (even 
though in deep local fades), whereas in the ABW version the 
estimate relies mainly on the previous and, maybe, already- 
faded samples. Of course, those improvements are 
conditioned to an approximately linear variation of the 
channel, what is not required in the ABW algorithm. 
However, if this requirement was not met, it would always be 
possible to increase polynomial order to obtain a better 
approximation for the channel evolution. 

Estimated channel vs. True channel 
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Fig. 3: Tracking for the first tap of a RA250 channel in 
rectangular coordinates (Re{h,(t)} and lm{h,(t)}). Dashed 
lines stand for the true channel; solid lines for the TDBW 
estimate. 
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Fig. 4: Tracking for the first tap of a RA250 channel vs. 
time. Dashed lines stand for the true channel; solid lines for 
the ABW estimate. 
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Fig. 5: Tracking for the first tap of a RA250 channel vs. time 
in amplitude and phase. Dashed lines stand for the true 
channel; solid lines for the BBW estimate. 

The main advantage with respect to the BBW algorithm 
described in section 3, is the ability to track the evolution of 
the CIR along the timeslot, instead of approximating each 

tap by  a constant value  (Fig.  5).  For mobile stations 
exhibiting rather high speed, it reverts in a lower BER. 

On the other hand, the main drawback of the proposed 
TDBW algorithm is the increase in the computational burden 
when compared with both the BBW and ABW versions. 
And, what is more, now the number of parameters to be 
estimated is double the quantity required before (m(0 and m(1 

vs. m), whereas the amount of data available to perform that 
estimation is just the same (one timeslot). Consequently, for 
CIRs exhibiting large delay-spreads such as HT (Hilly 
Terrain environment), the variance increase in the estimation 
of some components in m[n] is very severe and the 
Weighting Matrix cannot prevent the system from 
unstability. In those cases, the only way to make the 
algorithm to converge is considering larger timeslots which 
contain more symbols. 

6. Conclusions 

A new technique to include the time-varying nature of the 
parameters of a HMM in the BW reestimation formulas has 
been presented. The resulting algorithm for blind channel 
estimation, TDBW, has been compared with those proposed 
in previous references (BBW and ABW), and its 
performance qualitatively evaluated in a very concrete 
environment (the GSM system). The most important 
drawback of the algorithm is its high computational cost. 

Future work is concerned about applying the theory of 
HMMs and the developed BW-based algorithms to other 
communication environments such as Underwater Acoustics 
(UWA), or in other communication problems. 
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<p[n} = KZ,q[r]a[n-r]+d[n] (3) 

where q[r]e [0,0.5] are the weights corresponding to the 
(sampled) gaussian-shaping pulse and 0[n]e {0,7i/2,7t,3rc/2} 
accounts for the accumulated phase at instant n [5,6]. Now 
we conclude that the number of transmitter symbols (bits) 
involved in a single observation at the receiver is given by: 

/ =/+/-l = (2Ä+l)+/c-l (4) 

However, the amount of ISI produced by the GMSK 
modulator for BT=0.3 can be neglected without significant 
performance loss. Under this simplifying assumption, which 
reverts in a lower number of states and a reduced 
computational complexity, we get that: 

R = 0-- h=lc (5) 

At this point, we can already model each observation in the 
received sequence, xL=(4;],42],..,4L])T, as a probabilistic 
function of the present state s[n]=(fl[n],..,a[n-/,+7],0[n]) , 
obtaining a description of xL as a first order HMM with 
N=4-2" states. 

3. Overview of the BW algorithm 

On the basis of this first order HMM and by means of the 
BW algorithm, it is possible to obtain a solution to the 
problem of the identification of the unknown parameters of 
the model, that is, c2 and h=(/lo.../i/,.;)

T [7]. To be precise, 
the parameters really estimated are a2 and the means vector 
m=(m;../nA-)T corresponding to the noise-free ISI-corrupted 
received signal associated with the N states of the system. 
Assuming a FIR model for the channel, m is related to h 
through the linear constraints: 

m = Dh (6) 

h =D#m 
where D=(d„d2,..,d„)T is a Nxlc full-rank matm containing 
in its rows all the /,-tuples, dp(4 , dt ,.., fl, ') , 
corresponding to the modulator consecutive # outputs 
associated to the N different states of the system. D denotes 
pseudoinverse. The batch Baum&Welch (BBW) algorithm, 
thoroughly explained in [7], can be outlined as: 

1.  Projection of h on m by means of the additional 
linear constraints: 

m = Dh (7) 
BW r 2 Reestimation    ot    G 

reestimation formulas. 
and   m   using   the 

3. Least Squares (LS) estimation of h using again 
linear constraints. 

h = D*m (8) 
4. Repeat steps 1..4 until convergence. 

The BW reestimation formulas used in step 2, state as 
follows: 

.!. _J!=!  1 < i < TV 

£r,M (9) 
n=1 

a2 =-2l2iiYM]\x[n]-mi\ 
L „=i ,=i 

where Y,[n] is the probability of being in state i at instant n 
given the model and the observed sequence. However, these 
formulas implicitly assume the CIR to be stationary within a 
timeslot duration, what is not realistic when the timeslot is 
long enough or the channel varies rapidly. Hence, we will 
obtain other reestimation formulas to solve this problem. 

4. Modified algorithm 

Several strategies can be considered to cope with the 
time-varying nature of the channel: estimating the CIR with a 
recursive adaptation scheme such as LMS what is referred in 
[7] as the Adaptive BW (ABW) algorithm; or fragmenting 
each timeslot in subblocks. As opposed to those methods, we 
will try to include the time-varying nature of the channel 
directly in the reestimation formulas. 

We can approximate the evolution of every tap in the 
CIR, hj, by means of a polynomial in n: 

hj[n [n} = h^+hi°n + hJ (10) 

For the channels specified in the ETSI recommendations and 
assuming the speed of the mobile to be less than 250 km/h, 
the linear approximation was observed to be good enough. 
Assembling all the taps in a single column vector: 

h[n] = h(° + h(,-/i (ID 

and applying the linear transformation above described 

rh[„] = Dh[n] = D(h(0+h(1-n) = m(0+m(1-»   (12) 

we observe that the evolution for the means is also linear. 
Vectors m<0 and m° will be obtained in order to minimize 
the MSE given by the following expression: 
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Abstract 

The problem of identifying/equalizing a digital com- 
munication channel based on its temporally or spa- 
tially oversampled output has recently gained much 
attention (single-input/multiple-ouptut - SIMO - de- 
convolution). In this context, we propose a new joint 
data/channel estimation method. Our technique re- 
lies on the minimization of a bilinear MSE cost func- 
tion, where the variables to be adjusted are the chan- 
nel coefficient matrix and a linear equalizer. We 
show that this a priori choice of a linear equalization 
structure allows the derivation of a second-order uni- 
modal criterion, leading to globally convergent identifi- 
cation/equalization schemes. The proposed method is 
completely blind in that 1) no assumption is required 
upon the transmitted sequence statistics or alphabet, 
and 2) it shows some robustness with respect to the 
channel order estimation problem (thus improving on 
most previous related works). It also allows the free 
choice of a delay in the equalizer so that output noise 
amplification can be optimized. 

1    Introduction 

In the context of digital radiocommunications, the 
signals are transmitted through propagation channels 
which introduce intersymbol interference (ISI). The 
channels can be represented as FIR filters which have 
to be identified and/or equalized for the transmit- 
ted symbols to be recovered. Since the pioneering 
work by Sato [1], all blind equalization techniques 
(which do not rely on training sequences) have been 
based on the use of higher-order statistics (HOS) of 
the received signals, though HOS methods largely suf- 
fer from slow and ill convergence problems [2]. Re- 
cently, it was shown by Gardner [3] and Tong et al. 
[7] that blind deconvolution based on the sole second- 
order statistics was a feasible task, provided the ob- 
served signals could be seen as the outputs of a SIMO 
system with sufficient channel disparity (the differ- 
ent channels-polynomials should not have any com- 
mon zero). In this context, a number of contributions 
have been made in which the transmitted sequence 
or the channel coefficients are recovered through sub- 
space decompositions of either the received data ma- 

trix (see the so-called deterministic methods [4,5,6]) or 
the received data correlation matrix (see the stochastic 
methods [7,8]). Other interesting approaches were also 
studied in [9,10,11,12]. Here, we introduce a blind and 
mainly adaptive estimation method in which a multi- 
channel estimate and a linear equalizer are adjusted 
so as to minimize an observation fitting cost function. 
The possible local minima of the proposed criterion 
are investigated and global convergence is established. 
The presented algorithm shows several attractive fea- 
tures which make it an interesting alternative to most 
existing methods: 

• First, it shows some robustness with respect to 
the additive noise (though it is optimal only in 
the noise free case) and to possible errors in the 
channel order estimation. 

• It also allows the use of any reconstruction de- 
lays in the equalizer so that noise variance may 
be optimized at the equalizer's output. 

Notations: 3? real part of a complex. E{) statistical 
expectation; ()* complex conjugation; ()* transposi- 
tion; ()+ trans-conjugation; | . | £,2-norm of a vector 
or matrix; I identity matrix. 

2    Multichannel representation 

The SIMO equivalent model of a digital communi- 
cation system relies on the existence of a number L of 
different linear time-limited digital filters (channels) 
h1,.., hL, driven by the same PAM/QAM sequence 
Si,, the noisy outputs of which are observed: 

M 

k=0 

kK + bt     for 1..L (1) 

Sk and b'n,i = 1..L, are mutually uncorrelated pro- 
cesses, not necessarily white. We assume (w.l.o.g.) 
E | sk |2= 1, E 1b^ |2= <T\. In the context of antenna- 
array based reception, the channel h' represents the 
baud-rate impulse response of the propagation chan- 
nel linking the transmitter and the ith antenna (spatial 
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diversity). In a mono-antenna scenario, channel diver- 
sity can still be obtained by means of temporal over- 
sampling with a factor L (compared to the baud rate) 
at the antenna output, leading to fractionally-spaced 
(FS) reception. In the FS context, the channels ftW 
correspond to sampled versions (at rate T) of a sin- 
gle propagation channel, at various sampling phases 
(i - l)T/L, i = 1..L (see [7] for more details). Here, 
M denotes the ISI length. We adopt the following 
vectorized notations: 

Xn 
= [*„>■ 

bn = [bl- ,w, 
hfc = [hi- ,!$]*, 
h = [ho,- ■MM] 

Then, we have 

Xn — h[s„, ..., sn -M] + b„ (2) 

Consider the space-time 
samples vectors Xn = [x^x^.j, • • • ,xn_N+1] , Bn = 

K,K-ir ■ ■ Mn-N+lV   and   5»   =   [«n,-",*n-P+l]*> 
where N is the window size per channel and P — 
M+N is the number of symbols involved in the expres- 
sion of vector Xn. The following linear model holds 

Xn=T(h)Sn + Bn, (3) 

where T(h) is the so-called LN x P Sylvester matrix: 

h(0)    •••    h(M)      0      •••       0 

T(h) = 
0 0 h(0) h(M) 

To enable blind deconvolution of our SIMO system, 
we assume throughout the paper that (HI) T(h) has 
full column rank P, with LN > P. In the follow- 
ing, we concentrate on the joint blind estimation of 
the pair (h,w) where u is a LN x 1 linear equalizer 
satisfying the following condition in the noiseless case: 
w'T(h) = [0, ..,0,1,0, ..,01. Note that, although writ- 
ten as a zero-forcing (ZF) equalization problem, the 
actual (noisy) problem does not fully reduces to some 
ZF equalizer. 

3    The proposed method 

Assume in a first step that M is known. Consider 
an L x (M + 1) matrix h (channels estimate) and an 
LN x 1 vector u> (equalizer estimate). Our algorithm 
aims at tuning these channel and equalizer estimates 
so that the convolution product between each chan- 
nel estimate and the equalizer output matches the ob- 
served signals as sketched in fig.l. Mathematically, 
this writes: 

minimize     J(h,u>) = E | xn - hX^w |2,      (4) 

where Xn = [Xn,Xn-i, ..,Xn-M] is a LN x (M + 1) 
sample matrix.   This observation fitting criterion is 

bilinear in the coefficients of 9 = (h,w). It is simi- 
lar in spirit to the previously proposed deterministic 
maximum likelihood (DML) criterion [9]. The DML 
method, in which the linear equalizer is typically not 
a free variable (being replaced by a pseudo-inverse of 
T(h)), is however subject to ill-convergence and is 
computationally demanding as well. This is not the 
case here, as will be shown in the following. 

3.1 Criterion minima 

Assume a noise free (of = 0) situation. Consider 
any solution of the form 9 = (ah,w/a), where u is 
some ideal zero-delay equalizer and a is an arbitrary 
complex scalar. Clearly, 9 achieves global minimiza- 
tion of our criterion, thus provides a stationary point 
of J(), since J() is positive. Conversely, it may be 
shown that J — 0 leads to channel equalization and 
identification in the absence of noise: 

Lemma 3.1 Let z„ be the L x 1 residual error process 
for some 9 = (h,w), defined as zn = x„ - h.Xnu). 
Assume {s*} is persistently exciting of order at least 
2M. Suppose J{9) = 0, i.e. z„ = 0 almost surely. 
Then 9 = (ah,w/a), where u> is an ideal zero-delay 
equalizer and a is a complex scalar. 

Proof If x„ = hX^w, we also have from (3) 

Xn = T(h)Sn - T(h)[Xn, ..,Xn_p+i]*w 

under the persistent excitation condition, the subspace 
spanned by the observed vectors Xn is found to be 
simultaneously T(h) and T(h). By theorem 2 in [8], 
we have h = ah. It follows that sn = aX^ui, showing 
that ui/a is a zero-delay equalizer.D 

3.2 Stability of minima 

Here, we check the absence of undesired stable lo- 
cal minima. Let 9 = (h,w) be any stationary point 
(cancelling the first partial derivatives) of J(). The 
stability of 9 is investigated through the criterion sec- 
ond order expansion: Let SO — (Sh,Sui) be a small 
move around 9. Let AJ = J{9 + 69) - J(9), we find, 
up to the second order: 

AJ M E \z„ ShXiu-hXiSw -E 

where z„ is the residual of 9, i.e. (x„ - hX^w). It can 
be inferred that 

Lemma 3.2 9 is a stable minimum if and only if all 
components in zn are decorrelated from X*. Due to 
the particular form ofzn, this implies zn = 0. 

Due to lack of space, the proof of this lemma will be 
detailed in a forthcoming paper. Now we have estab- 
lished that a gradient-based algorithm based on the 
noise free criterion in (4) always converges to the true 
(channels, equalizer) pair, up to an arbitrary scalar 
constant. 
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3.3    Robustness 

With respect to noise The presence of additive 
noise causes bias in the results, however the simula- 
tions indicate that acceptable channel and equalizer 
estimates can be obtained from this algorithm under 
realistic SNR conditions. Bias removal techniques, 
based on some norm-constrained minimization, can 
also be adapted to our problem [14]. 

With respect to model order In practical situ- 
ations, the multichannel order (M) is probably not 
well defined, especially in the case where the channels 
coefficients taper off at the ends. Then, overestima- 
tion of M is likely to occur. We stress the robust- 
ness of the proposed method with respect to such er- 
rors. The proof goes as follows: Let h = [ho,..,hjr] 
be the channel candidate, with K > M. As in 
the case of correct order estimation, the minimiza- 
tion of J(h,u)) leads to xn = hX^ui, this again gives 
span(T(h)) = span(T(h)). As a result the channels 
in h admit a K — M order common polynomial factor, 
denoted q(z), and T(h) factors into T(h)Q where Q 
is the Px(N + K) Sylvester matrix associated to q(z) 
[13]. We have 

T(h)5„    =    r(h)Q[5ni..,5n_Ä:_JV+i]«T(h)tä; 

Sn    =    Q[S„)..)Sn_if_JV+i]'T(h)*w 

and it is clearly seen that such a condition cannot hold 
with q{z) = 1, unless there exists some recurrence re- 
lationship between the successive emitted symbols, a 
fact which is not compatible with the persistent exci- 
tation assumption. As a result, the only possible solu- 
tion of the above equation is q{z) = 1 and T(h)*w = I. 
This result is checked below in the simulations section. 

4 Equalization with non-zero delay 

The performances of a linear multichannel equalizer 
generally depend on its delay [15]. Hence, it is useful 
to control the delay introduced by the equalizer. This 
is easily obtained by rewriting the proposed criterion 
as : J(h,w) = E \ x„_d - hX*w |2, where d is a 
chosen delay parameter. Note however that in case 
of model order overestimation, the actual equalizer's 
delay may not be determined in advance, since the non 
zero channel coefficents estimates in h are subject to 
a possible shift. However this problem should not be 
very severe in presence of noise. 

5 Adaptive algorithm 

A possible implementation of the proposed method 
which allows full adaptivity in the context of time 
varying statistics/channels is as follows, based on a 
stochastic gradient approximation. Note that other 
recursive least-square based approaches can also be 
used. 

Yn    =    Xnu>n, 

h„+i    =    h„ - X(hnYn - x„)Y+, 

wn+i    =    u>„ - AX^h+(hnyn - X«), 

where A is a small stepsize. 

6 simulations 

We consider the context of L = 2 randomly chosen 
channels of length M+l = 5, given by h1 = [—0.089- 
0.489J; -0.340 - 0.016J; 0.022 - 0.069J; -0.192 - 
0.031J; 0.464 - 0.613j], h2 = [0.422 + 0.467J; -0.075 + 
0.320J; 0.185 - 0.049J; 0.223 + 0.122;; 0.145 - 0.609J], 
driven by a white QPSK sequence. Output SNR is 
set to 15<iB on each of the (normalized) channels. We 
choose N — 5 and consider only the zero delay case 
(d = 0). Fig.2 shows the equalization results in terms 
of output mean square error between the transmit- 
ted and the recovered symbols, using the linear equal- 
izer provided by the algorithm w„, versus the iteration 
number n. Both cases of a correct model order esti- 
mation (K = M = 4) and of a severe overestimation 
(K — 8) are illustrated. 

Fig.3 shows the identification results in terms of 
the distance between hn and the true channels, up 
to a, where a is defined in lemma 3.1, defined by 
\h„/a — h |2 / | h |2. Note that channel identifica- 
tion is well achieved despite the additive noise. This 
is due to the MSE-like structure of the criterion. Ro- 
bustness with respect to the model order error is con- 
firmed by both equalization and identification results, 
though the obtained performances seem to degrade in 
the case K = 8. The rise in the steady-state error is 
due to adaptation noise, which can be compensated 
for by decreasing the stepsize. This robustness gives 
advantage over the methods found in [7,8,4,5]. 

7 Discussion 

We have addressed the problem of blind (adaptive) 
estimation of both the channel coefficients and the im- 
put in a SIMO context. In the proposed criterion, 
the channel estimate and a linear equalizer are inde- 
pendant variables to be adjusted so as to match the 
observed signal in a least mean square sense. The 
minimization of this criterion asymptotically leads the 
"true" (channel,equalizer) pair in the absence of noise, 
up to some scalar constant, and is robust to possi- 
ble model order errors thanks to the particular struc- 
ture chosen for the equalizer. A gradient descent im- 
plementation was proposed, providing however rather 
slow convergence. Further work will include the study 
of implementations of the recursive least-squares type, 
for example by alternating RLS algorithms on the 
equalizer and the channels estimates. 
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Abstract 

This contribution adresses the problem of optimal 
blind linear symbol recovery, using the channel diver- 
sity induced by a sensor array or time oversampling. 
We present a technique allowing the computation of a 
minimum mean-square error (MMSE) equalizer, based 
on the optimization of quadratic second-order func- 
tions. The proposed technique improves on existing 
multichannel equalization methods, in that previous 
methods generally build on criteria which are optimal 
in the sole noise free context. Our criterion also allows 
free choice of the delay for the symbol recovery. As a 
consequence, MMSE equalization performance can be 
enhanced through the use of an optimal delay. To this 
end, a performance analysis is conducted in order to 
investigate some of the links between the delay and the 
symbol estimation accuracy. 

1    Introduction 

Blind multichannel deconvolution exploiting the 
channel diversity induced by sensor arrays and/or time 
oversampling has attracted a lot of research efforts in 
the recent years. Methods can now be found in the lit- 
erature, based on the minimization of various second- 
order criteria, which offer promising alternatives to 
the previously reported higher-order based techniques. 
These methods are basically multichannel batch de- 
convolution techniques in which transmitted sequence 
or channel coefficients are recovered through subspace 
decompositions of either the received data matrix 
(see the so-called deterministic methods [3,5,4]) or 
the received data correlation matrix (see the stochas- 
tic methods [1,2]), while other interesting approaches 
were also studied in [7,8,9,12]. Some methods, per- 
forming a channel pre-identification, have to be linked 
to an extra equalization stage, thus increasing the 
global cost of the reception scheme. In the (nu- 
merous) communications applications where low com- 
plexity and/or tracking ability is sought, direct on- 
line equalization techniques requiring no channel pre- 
identification are to be favored. Significant improve- 
ments can also be gained in this context from chan- 
nel diversity. These improvements concern two main 
points :   (i) convergence reliability (diversity allows 

the use of second-order unimodal error function for 
equalization), and (ii) equalization accuracy, using a 
simple linear structure since finite-length zero-forcing 
equalizers are available in the multichannel context. 
However, these existing direct equalization methods 
generally suffer from a lack of robustness in the sense 
that they build on criteria which are optimal in the 
noise free context, but not (or even far from) opti- 
mal in the practical noisy situations. This typically 
includes the prediction-based methods [7,8] but also, 
in a lower extent, the mutually referenced equalizers 
(MRE) method in [9]. As another lack of optimal- 
ly, most existing on-line multichannel techniques ([9] 
being an exception) are unable to exploit the perfor- 
mance gain that stems from the choice of a proper 
delay for symbol recovery [7,10]. This paper investi- 
gates the solutions to these problems. Our contribu- 
tion is two-fold: (1) we present a technique, based 
on a modification of the criterion initially introduced 
in [9], allowing the derivation of a blind linear multi- 
channel equalizer, optimal in the MMSE sense. (2) By 
this approach, we show that we may improve on the 
robustness of the obtained equalizer through a proper 
tuning of the reconstruction delay : The criterion is 
optimal in the MMSE sense for a given reconstruction 
delay, which can be chosen so that the corresponding 
MMSE is minimal among all possible delays. Finally, 
a theoretical study is conducted, based on the compu- 
tation of Cramer-Rao bounds, that provides a guide- 
line for the choice of the optimal delay. Notations: 
E() statistical expectation; ()* complex conjugation; 
()' transposition; ()+ trans-conjugation; | . | L2-norm 
of a complex scalar, vector or matrix. 

2    Problem statement 

The multichannel model of a digital communication 
system relies on the existence of L different channels, 
modeled by finite degree linear digital filters hl,..,hL, 
driven by the same PAM/QAM sequence Sk- Their L 
noisy outputs xl

n are observed: 

M 

J^Sn^hi+bl       f0Ti=l..L (1) 
k = 0 

0-8186-7576-4/96 $5.00 © 1996 IEEE 
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We assume throughout the paper that the se- 
quences sk and 6^,1 = l..i, are mutually uncor- 
related. 6'„,i = 1..L being white processes, E \ 
Vn |2= a\. Note that the emitted sequence sk is 
not required to be white, in contrast with [7,8,10]. 
In a practical context, the ft''s either represent the 
baud-rate sampled versions of a single physical chan- 
nel with various sampling phases (time diversity), or 
the channel linking the transmitter and the ith sen- 
sor on an antenna array (space diversity), see [1,2] 
for further details. Here, M denotes the ISI length. 
Consider the LN x 1 space-time signal and noise 
processes with time window of size N defined by 
Xn = [^....«i-jv+i.-.^n.-.'n-Ar+i]* and Bn = 

note the number of symbols involved in the expression 
of Xn. The following linear model holds 

quadratic function 

Xn = 7iSn + B„ (2) 

where Sn = [sn, ...,s(n-P+l)]' and H is the so-called 
LN x P Sylvester matrix, denned by 

H = 

1 hi     • •   h\, 0     • •     0   \ 

0     • ■     0 hi ■ 
.     0 
•    h^ 

hL
0     ■ •• 4 0     • •     0 

\ o    • ■■     0 h% ■ 
•.    0 

The identifiability/equalizability conditions of the sin- 
gle input/multiple output system above are estab- 
lished in [1,6], and can be restated as 

• (HI) U has full column rank (LN > P). 

3    Blind MMSE Equalization 

In the following, it is shown how noise free adap- 
tive linear equalizers, i.e. vectors satisfying the ZF 
condition, can first be obtained using the method of 
mutually referenced filters, and then be exploited to 
train a blind MMSE equalizer. 

3.1    Derivation of adaptive ZF equalizers 

It is seen from (2) that a LN x 1 vector (denoted 
Vj), given by any line of any left-inverse matrix of H 
will satisfy the ZF condition up to a delay between 0 
and P- 1, i.e. V)+W = [0, ..,0,1,0, ..,0]. The MRE 
criterion introduced in [9], provides a useful means to 
compute blindly and adaptively such equalizers, in the 
noise free case. The main result of [9] can be restated 
as follows: 

Lemma 3.1  Consider a set of P linear equalizers 
Vo,Vi,...,Vp-i  and adjust them so as to cancel the 

P-2 

i=o 

under constraint 

p-i 

L 
3=0 

Vj \\2= i 

Then Vj, for j = 0..P - I, is a "j-delay" exact ZF 
equalizer , i.e. V^Xn - asn-j, where a is an arbi- 
trary constant scalar. 

In this result, the information redundancy provided 
by several independant equalizers associated with dif- 
ferent delays is exploited to build a second-order cri- 
terion. However, in the noisy situations, the minimiz- 
ers of the MRE criterion are no longer optimal and 
the obtained filters {Vj} are biased. Fortunately, the 
the MRE criterion can be modified so that the new 
performance surface gets noise independant. The pro- 
posed bias removal technique, inspired from [11], con- 
sists in replacing the former unit-norm constraint by a 
new quadratic constraint that incorporates the knowl- 
edge of the noise covariance matrix structure. The 
technique is as follows: Let V = [V0

+, V1+,.., Vp_i]+ 

be the LNP x 1 vector consisting of all the equal- 
izers entries. Jmre can be rewritten in a compact 
matrix form as Jmre{V) = V+TIV where 72. is a 
sparse LNP x LNP matrix made from sub-blocks 
E(Xn+iX+) and E(XnX+). Under the white noise 
and noise/signal decorrelation assumptions, H splits 
into a noise and a signal part as: 

Tl-ns+ <TlKh (3) 

where Us and Ub are the matrix forms of the crite- 
rion Jmre in the signal-only case and noise-only case 
respectively. Closed-form expression of 11, %s, and 
%h are provided in appendix A. Note that H, has a 
non trivial nullspace since Jmre can be cancelled in 
the absence of noise while Tib has full rank. 

Lemma 3.2 lei V* = [V°pt+,..,V^]+ be a 
LNPxl vector minimizing JmTe{V) = V+TZV, under 

constraint V+UhV = 1. Then, for each j, V?pt Xn = 

asn-j + V?pt+Bn, i.e V-Vt is an unbiased j-delay ZF 
equalizer. 

Proof It is easily shown using Lagrange multipliers 
that Vopt satisfies: 

Tiyopt _ (y°Pt+TlVopt)TlbV
opt = 0 (4) 

with (Vopt+7lVopi) taking the minimal possible value. 
From (3), the only solutions to this problem are such 
that KsV

opt = 0 which bring us back to the noise free 
solutions. Note that this technique do not require the 
knowledge of of. □ 
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3.2     Coupling with a MMSE equalizer 

Since the newly constrained mutually referenced 
equalizers {Vfpt} asymptotically provide ISI free sym- 
bols estimates, any of these can be used to train a 
MMSE equalizer as in a fully supervised context: Let 
the LNxl adaptive filter Wopt be obtained through 
the minimization of 

Jmse{W) = E | W+Xn - V°pt+Xn_d+j (5) 

Wopt is a rf-delay MMSE equalizer, provided the noise 
contributions in Xn and X„_d+j are decorrelated, so 
that the correct (unbiased) optimum is attained for 
Wopt. Since the noise is assumed to be temporally 
and spatially white, this condition is met iid-j>N. 
In the following, we provide theoretical hints enlight- 
ening the links between the delay and the steady-state 
performances of Wopt. A general guideline is provided 
for the choice of d. 

4    On the Delay for Symbol Recovery 

In this section, we investigate analytically the links 
between the chosen delay and the minimum achiev- 
able output MSE, regardless of the equalization cri- 
terion. The study is conducted by means of Cramer- 
Rao bounds. We essentially make the assumption that 
all transmitted symbols but one, within a temporal 
window of size N, are known deterministic quantities. 
Though this assumption may appear unrealistic, it not 
only greatly simplifies the mathematical developments 
but also permits the derivation of tractable and inter- 
pretable equations. We assume further that the noise 
is white gaussian. Then, at time (fixed) n, the p.d.f. 
of a space-time vector X„ writes: 

f(Xn) = Kexp{ 

dlog{f{Xn)) = __1 

Ö     dlog(f(Xn)) = | hd+1 p 
ds*d     <9s„_d                    0-2 

Xn — HSn I ) 

(Xn — TiSn)<  h.d+i 

where h^+i denotes the (d + l)th column of the chan- 
nel convolution matrix Ti. Now we get the classical 
estimation theory result: 

Lemma 4.3 Let Tj(Xn) be any unbiased estimator 
(possibly non-linear) of sn-d, the other symbols being 
seen as known deterministic variables.  Then, we have 

E | Tj{Xn) - sn_d |2> CRB{sn_d) = 
U+l 

(6) 

Due to the unrealistic assumptions made here, the in- 
dicated bounds have very limited practical applica- 
bility. For instance the obtained cramer-Rao bound 
does not account for the possible lack of channel dis- 
parity in Ti which may cause some severe degrada- 
tion in the estimation performance.    However, for 

a relatively "well conditioned" matrix Ti, the re- 
sults in (6) provide some insight into the shape of 
the distribution of performances versus the delay d: 
Due to the Sylvester structure in Ti, its columns are 
such that CRB{sn) > ... > CRB{sn„M) = ... = 
CRB(sn-N+i) < ■-. < CRB(sn„P+1), as long as 
N > M. This is a channel-independant result giving a 
simple guideline which consists in favoring the delays 
close to or, if possible, between d= M and d = N - 1 
symbol durations in order to improve the estimation 
accuracy. The fact that extreme values for the delay 
(typically d = 0 or d = P - 1), provide the worst 
noise enhancement properties was also confirmed in 
our simulations. 

5    Implementation and Simulations 

A possible implementation of the blind MMSE 
equalization technique presented in 3 is based on a 
straightforward coupled stochastic gradient descent of 
the criteria Jmre, under the bias removal constraint, 
and Jmse'- The ZF equalizers estimates Vb,...,Vp_i are 
updated according to the constrained cost Jmre, the 
output of one of them Vj, is selected as a reference 
signal, the MMSE equalizer estimate W being up- 
dated according to the steepest descent of Jmse. Due 
to the lack of space the implementation details are 
omitted here. A short validation of such a technique 
is presented in the following communication context: 
L = 2 randomly chosen channels, with degree M = 4 
(the channel coefficients are those given in [12]). The 
output SNR is lOdB and the symbols s„ are QPSK- 
modulated. We take N = 5 as the number of snap- 
shots considered altogether. Delay optimization to- 
gether with the condition d - j > N naturally sug- 
gests j = 0 for ZF equalization delay, and d = 5 for 
the MMSE equalization delay (though, strictly speak- 
ing, a 4-delay MMSE equalizer would provide better 
results). 

In fig. 1, we plot a typical learning curve for the 
output MSE between the transmitted and equalized 
data, using the estimated 5-delay MMSE equalizer, 
versus the iteration number. To check the result, the 
asymptotic MSE achieved by the true 5-delay MMSE 
equalizer is indicated in dashed line. The excess MSE 
provided by the adaptive equalizer is due to the adap- 
tation noise and can be reduced by decreasing the 
stepsize in the gradient algorithms . 

In fig. 2, we check the relevance of the theoretical 
results in section 3. The Cramer-Rao bounds provided 
by expression (6) are plotted for different delays, using 
'+' symbols. For comparison, the minimum achiev- 
able MSE with a linear equalizer is indicated, in V. 
As expected, the lower bounds provided by the sim- 
ple performance analysis in 3 are rather optimistic. 
However, the correspondance indicated between delay 
and performance is roughly verified, even assuming a 
sub-optimal linear structure for equalization. 

6    Conclusion 

In this contribution, it was shown that asymptot- 
ically ideal ZF adaptive equalizers could be obtained 
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through the minimization of the MRE criterion and 
used to train blindly an adaptive MMSE equalizer. 
In the presence of additive noise, the MRE criterion 
needs be modified to allow the derivation of unbiased 
equalizers. In the proposed algorithm, a non-zero de- 
lay can be chosen for the MMSE equalizer. A simpli- 
fied Cramer-Rao bounds analysis was used as a means 
to give practical guidelines for the choice of an optimal 
delay. The numerical simulations results match rather 
well with the theoretical derivations. 
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Appendix A 
RX = E(XnX+), R1X = E(Xn+lX+). Define A 

as the P x P diagonal matrix diag(l, 2,2,..,2,1), and 
JP as the P x P matrix with ones on the diagonal 
above the main one, and zeroes elsewhere. Then, it is 
rather straightforward that 

K = A®Rx-Jp®Rix-Jp® Rfx 

where ® is the conventional Kronecker product. We 
have in a similar way: 

Hi - of (A ®Ip- Jp~® RXB ~ JP ' '*&) 

where B refers to the normalized (unit-variance) white 
noise. Ip is the identity matrix of size P. Let 
Yn = HSn (noise free observation). The signal-related 
matrix writes: 

TZ, = A ® RY - Jp ® RIY ~ Jp ® R£Y 
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ABSTRACT 

Hidden Markov Models (HMMs) are employed in this pa- 
per to describe digital communication channels, and their 
parameters are estimated in a blind fashion. General non- 
linear channels can be accomodated which are not restricted 
to be of the Volterra type. Contrary to standard HMM 
parameter estimation techniques, which resort to nonlin- 
ear optimization of the likelihood function, the proposed 
method is based on a graph theoretic approach. We ex- 
ploit the De Bruijn property of the channel's state transition 
graph, and develop computationally efficient blind estima- 
tion procedures involving shortest path searches. We show 
identifiability of the associated graph problem and discuss 
convergence issues. Finally, some illustrative simulations 
are presented. 

1.    INTRODUCTION 

Most of the existing literature on channel estimation and 
equalization has focused on linear channels which can be 
described by an impulse response of finite length. However, 
in some applications the linearity assumption may not be 
valid, mainly due to nonlinear amplifiers in the transmitters 
(or repeaters), as for example in satellite channels [3], [5], 
[6]. 

Following the linear channel paradigm, a common 
method of describing nonlinear channels is by using trun- 
cated Volterra models [1]. Although Volterra series provide 
a general framework for treating nonlinear systems, they 
may not be perfectly suited for communication channels, as 
they do not take into account the finite alphabet nature of 
the input. Moreover, there is no clear indication of what 
the minimum Volterra order is, that would provide a satis- 
factory approximation. 

In this paper we regard the channel as a general nonlin- 
ear mapping with no particular parametrizable form. The 
instrumental observation however, is that the input (and 
hence the channel state) can take a finite number of different 
values. Thus, the channel estimation problem is equivalent 
to identifying the mapping from each state to the corre- 
sponding channel output. 

This approach to the channel estimation problem natu- 
rally leads to the theory of finite state machines and HMMs. 
In fact, general maximum likelihood (ML) techniques for 
blindly estimating the parameters of HMMs are well known 
[8], and have been applied in the context of communication 
channels [2], [4], [10]. These approaches however, suffer 
from increased computational complexity, and convergence 
problems related to the local minima of the likelihood func- 
tion [8]. 

In this paper, we employ graph theoretic techniques in 
connection with clustering methods to avoid the likelihood 
maximization procedure. The proposed method is compu- 
tationally efficient and a unique solution is guaranteed un- 
der some identifiability conditions. 

2.    PROBLEM STATEMENT 

Let the received data j/(n), n = 0,..., N — 1 be generated 
by the communication system shown in Fig. 1, i.e., 

y(n) = h[w(n)] + v(n) (1) 

where Y/(n)=[w(n), w(n - 1),..., w(n - q)]T and the trans- 
mitted sequence w(n) consists of i.i.d., equiprobable num- 
bers taking values from a finite alphabet set A = 
{t»i, Ö2, • • • aa } of size a. /»[•] is a linear or nonlinear channel 
of memory order q and v(n) is zero mean, white, additive, 
Gaussian noise. 

The channel h[-] does not have to obey a certain para- 
metric form; however, it is not allowed to map distinct state 
vectors to identical outputs, as formalized in the following 
assumption: 

(AS1) For every Wi # w2, the channel response is Mwil ^ 
Mw2]. 
Under this assumption, the goal of this paper is to iden- 
tify the channel mapping /i[w] for every possible state 
w 6 Aq+l. Once the identification step is completed, a ML 
input estimation procedure can be used (Viterbi algorithm) 
to recover the input. 

The proposed identification procedure consists of two 
steps: A clustering algorithm is employed first to estimate 
the a,+1 different values the (noiseless) channel output h[-] 
can take. Then, graph-theoretic techniques are developed 
to associate each of the cluster centers with the appropriate 
state vector w € ,4*+1. 

It should be pointed out at this point that the channel 
is uniquely identifiable only up to a permutation of the in- 
put alphabet values. For example, in the BPSK case A = 
{—1,+1} which is indistinguishable from A = {+1,-1} 
with appropriately permuted response h[-]. In linear chan- 
nels, this inherent ambiguity manifests itself as a scaling 
ambiguity. 

3.    CLUSTERING 

Clustering techniques have been employed in descriptions 
of communication channels when training data are avail- 
able [9]. They are used to provide the channel's (noiseless) 
response, associated with each HMM state.. In the case of 
negligible additive noise, the clustering step becomes trivial 
and can be solved by inspection of the received data y(n). 
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Figure 1. Nonlinear Communication Channel 

The most commonly used clustering method is the K- 
means algorithm (e.g., [11]), which adjusts the cluster cen- 
troids hk, k = 1,... ,aq+1 and associates each data point 
y(n) with a cluster membership set h, such that the fol- 
lowing minimization problem is solved: 

mm 
k=\  y(n)&Ik 

■fcfcl (2) 

The algorithm proceeds in an alternating fashion, optimiz- 
ing in turn the centroids hk and the cluster assignments 
h. 

4.    IDENTIFYING THE MARKOV MODEL 

Once the centroids and cluster assignments have been de- 
termined by the K-means algorithm, the state transition 
probabilities need to be estimated to complete the Markov 
Model description of the channel. For general HMMs, the 
transition probabilities are typically estimated by maximiz- 
ing the likelihood of the observed sequence [8]. In the cur- 
rent problem however, we should exploit the a priori infor- 
mation that is available about the channel and avoid the 
costly maximization step. For every channel state there are 
only a possible transitions, since the new input w(n + 1) 
can only take a values. Moreover, these transitions are 
equiprobable. 

Let I(y(nj) € {l,...,a,+1} be the cluster membership 
function obtained from the K-means algorithm (i.e., the 
nearest neighbor cluster assignment for each data point 
y(n)). We propose to replace the sequence y(n) by /(«/(")) 
and identify the transitions from a state ko by recording all 
the transitions form ko in that sequence. In the absence of 
noise, only the allowable transitions will be present, while 
in the noisy case, the a most frequently recorded transitions 
will correspond to the allowable ones. Indeed, if the clusters 
are separated so that the probability of misclassification in 
I(y(n)) is small (see also (AS1)), then the a most frequently 
recorded transitions should be distinguishable from the oc- 
casional spurious transitions. This simple procedure seems 
able to complete the graph describing the HMM in a com- 
putationally efficient way. However, it cannot provide the 
association between each state k € {1,..., aq+ } and the 
corresponding a-ary vector w& € Aq+1. In other words, 
although the noiseless channel outputs hk have been esti- 
mated for every state k, and the transition graph has been 
completed, the channel mapping h[vfk] has not been identi- 
fied yet, because the correspondence k <-> w* has not been 
obtained. This association is crucial in using the HMM to 
decode the input and needs to be recovered. 

The problem can be equivalently posed as labeling each 
state k € {1,... ,a,+1}, using a q + 1 length vector 
wjb = [wfcl,Wfc2,...,«;k9+1] of a-ary symbols wki € A, 
i = 1,... q + 1, in a way that is consistent with the channel 

operatrions. The main contribution of our work is in em- 
ploying graph-theoretic tools and developing an algorithm 
to solve this association problem. 

5.    IDENTIFIABILITY 

It is clear that for a general finite state model, there is 
a large number of different labelings possible, and further 
information is required to complete that task. HMMs de- 
scribing communication channels however, are of a special 
form and admit a unique labeling (under certain inher- 
ent ambiguities) as shown next. The key observation is 
that for a communication channel graph, a state transi- 
tion from Wk = [wki, u>k2,---, 

wkq+1] to w; is valid only 
if wi = [w/t2,...,Wfc+1,«i], w £ A. In other words, the 
channel acts as a shift register, at each transition shifting 
Wk2,..., Wk„+i and incorporating the new data point w. 

Graphs describing such systems are called De Bruijn 
graphs [7], and have been extensively studied in the area 
of computer science. They find applications in many di- 
verse problems from coding theory to routing in computer 
networks. However, to the best of our knowledge, they have 
not been studied from an identifiability/labeling viewpoint. 
The main identifiability result developed in this paper is 
summarized in the following proposition. 

Proposition: Every De Bruijn graph admits a unique la- 
beling of its states, within a permutation of the alphabet 
letters. O 

The proof is constructive and actually provides an algo- 
rithm to implement the association (labeling) procedure. 
Before developing the proof, it will be useful to note that 
every De Bruijn graph has exactly a nodes with self-loops. 
These correspond to the states wfll = [wai, wai,. ■., wai], 
W», = K,!»0j,...,«l0j], ..., W0o. = K,1 ■>»aj, 
and can be identified as the a non-zero entries in the diag- 
onal of the state transition matrix. Since permutations of 
those a labels simply corresponds to permutations of the in- 
put alphabet symbols, we can assume without loss of gener- 
ality that w0l, w.),..., w0cr are given; we call those nodes 
the roots of the graph. Also, for every node wt, we call the 
nodes that are accessible with one transition, the children 
of wjt. With this terminology established, the proposition's 
proof is based on the following lemma. 

Lemma: If the following information is given about a De 
Bruijn graph: 

i) the roots' labels, 
ii) the label of an arbitrary node, 

then the labels of that node's children are unique. □ 
Proof: Consider an arbitrary node w* = [w^, vik2, • • •, 
Wkq+1], and one of its children w; = [wk2, ■ ■ ■, Wkq+1, w\. 
Let us assume that there are two different valid labelings 
for wj, one corresponding (without loss of generality) to 
w = ai, and one to w ^ a\. Let us compute the shortest 
path from wj to the roots w0l, w02,..., wa„ (i.e., the min- 
imum number of transitions or shifts required). If w — a\, 
then clearly at most q shifts are needed to arrive at wai, 
while q + 1 shifts are needed to arrive at any of the other 
roots w02,..., wQa. If however w ^ ai, g + 1 shifts are 
needed to arrive at w0l which is a contradiction. Hence, 
both labelings cannot be valid. ü 

The proof of the lemma indicates a labeling procedure; 
namely starting by arbitrarily labeling the roots w0l, 
w,,,..., w0„, and proceeding by systematically visiting the 
remaining nodes and labeling them according to the short- 
est path test.   The details of the algorithm are explained 
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next. 

6.    PROPOSED ALGORITHM 

The proposed algorithm consists of four steps, namely clus- 
tering, transition matrix estimation, labeling and decoding: 

Step 1: (Clustering) Obtain the aq+1 cluster centers hk 
and cluster membership function I(y(n)) from (2), using 
the K-means algorithm. 

Step 2: (Transition matrix) For every state /to, obtain its 
children as the a most frequent transitions from fco in the 
sequence I(y(n)). 

Step 3: (Labebng) 
Initialization: 

(i) Mark all nodes as not.visited 
(ii) Find the a non-zero entries in the diagonal of 

the transition matrix (roots), and label them ar- 
bitrarily as w0,, w02,..., waa. 

(iii) Put the roots in the to_visit queue. 
Recursion: 

while to-visit queue is non-empty, 
(i) Get first node out of the queue 
(ii) If not_visited then 

(iia) Get its a children 
(iib) Put them in the to-visit queue 
(iic) Mark the node as visited 
(iid) Compute  the shortest  path between  each 

child and the a roots, 
(iie) Label each child using the root corresponding 

to the smallest shortest path value. 
Step 4: Employ the Viterbi algorithm to recover the trans- 
mitted symbols. 

7.    DISCUSSION 

Some remarks on the proposed algorithm are now in order: 
1. There are many computationally efficient algorithms 

to compute the shortest path from one node to every other 
node in the graph (e.g., Dijkstra's algorithm [7]). Their 
complexity is on the order of QlogQ, where Q = aq+i. 
Hence, the complexity of the proposed labeling scheme is 
aQ2logQ. 

2. The proposed method is suboptimal when compared 
with the maximum likelihood (ML) solution provided by 
the Baum-Welch algorithm. However, its computational 
requirements and convergence properties may be better. 
In medium to high SNR, clustering methods are known to 
perform satisfactorily, and may suffer less than ML meth- 
ods from local minima problems. If further computational 
power is available, the results from the proposed method 
can be used as initial conditions for the Baum-Welch algo- 
rithm, to improve the estimation accuracy. 

3. As a final remark, it should be noted that the ML 
methods suffer from the same identifiability problem (i.e., 
ambiguity with respect to permutations of the alphabet 
symbols), which is inherent to the blind problem at hand. 

8.    SIMULATIONS 

In this section, some simulations results are presented in or- 
der to evaluate the performance of the proposed method. In 
all the simulations, the data were generated by filtering the 
transmitted sequence (N=800), through a linear channel of 
order q = 2 with H(z) = l + (l+0.5i>-1 + (l-0.5t>-2, and 
passing the output through a memoryless nonlinear model 
of a 'travelling wave tube amplifier' [6] which is employed in 

satellite communications. The model parameters used were 
the ones proposed in [6] (see Fig. 5 in [6]). 

The transmitted and received BPSK symbols for the non- 
linear channel are plotted respectively in Fig. 2a and 2b. 
Additive Gaussian noise of SNR = 12 dB was added. The 
output of the clustering algorithm is shown in Fig. 2c, 
where each data point is assigned to one of eight possible 
clusters (Original cluster centers, Estimated cluster centers 
and received data are depicted by o,x,- respectively). Fi- 
nally, in Fig. 2d the output of the Viterbi algorithm is 
shown where only one error has occurred. Fig. 3 also de- 
picts the performance of the Viterbi decoder by showing 
the original and estimated state sequence (Fig. 3a and 3b) 
as well as the state error sequence (Fig. 3c). Only one 
excursion from the correct state sequence was observed in 
this data sequence. Fig. 4 shows the magnitude of the 
estimation error, 

£>("*)■ (3) 

experienced by the B-W algorithm at each iteration. In Fig. 
4b the results from the proposed method were used as ini- 
tial conditions, while in Fig. 4a the initial conditions were 
arbitrarily chosen close to zero according to the suggestions 
of [10]. Notice the difference in the number of iterations 
needed for convergence when good initial conditions are pro- 
vided. Results from 100 Monte Carlo runs (Probability of 
error versus SNR) of the proposed method (solid line) and 
the Baum-Welch algorithm (dashed line) with initial con- 
ditions from the proposed method are shown in Fig. 5. As 
expected, the Baum-Welch algorithm is slightly superior to 
the proposed method when properly initialized. 
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ABSTRACT 

Blind equalization of rapidly changing multipath chan- 
nels is important for mobile communications, and is ad- 
dressed here by expanding the time-varying channel over 
a basis. Time-variation offers diversity and in contrast to 
time-invariant channels, blind equalization of time-varying 
channels becomes possible under mild conditions provided 
that the expansion components can be separated. Multi- 
channel data are needed for the challenging non-separable 
case where it is shown that unique vector FIR equalizers 
exist under certain channel co-primeness conditions. Apart 
from persistence of excitation, no extra restriction is im- 
posed on the input. Order selection methods and blind 
equalizers are derived directly from the output data. Pre- 
liminary simulations are also presented. 

1.    MOTIVATION AND MODELING 

In wireless communications, multipath environments may 
change with time as the mobile communicators move. If 
the resulting time-varying (TV) channels exhibit variations 
which are too rapid for an adaptive algorithm to track, ex- 
plicit modeling of the variation is well motivated. 

Let the discrete-time data x(n), n = 0,... N — 1, be 

x(n) = ^2h(n;l)s(n - I) + v(n) (1) 

where the inaccessible input (or source) s(n) is allowed to 
be deterministic or random (white or colored) and indepen- 
dent of the AWGN v(n). The TV impulse response depends 
explicitly on time n, and we model it using a basis expan- 
sion. Depending on whether the basis modulates the input 
or the channel, we model h(n;l) respectively as (see also 
Figs. 1 and 2): V 

Ml:        Ä(n;7)    =    ]T A,(0 M» ~ 0 • (2) 
9=1 

Q 

M2:        h(n;l)    =    £&,(*) *«(»)• (3) 
9=1 

Expansion coefficients hq(hq) are time-invariant (TI), while 
the known basis sequences bq(bq) capture the time-variation 
and, depending on the application, are chosen a priori as 
e.g., polynomials, complex exponentials, or, wavelets. To 
allow for orders that vary with time or lag we define I = 
maxnin and Q = maxjQi. Basis expansions for non-blind 
TV modeling were reported in [2]. 

Using single- or multi-channel output data only, we first 
recast the blind TV equalization as a blind TI source separa- 
tion problem (Section 2). Structured time variations in (2) 
and (3) offer what we term channel diversity and degrees of 
freedom which render the blind TV equalization well-posed 
without use of higher-order statistics [8], or, restrictive as- 
sumptions on the input (e.g., whiteness [7]). In Section 3, 
we consider Af-channel data x'(n) := [z(1)(rc)... z(M)(n)] 
with each x(m)(n) obeying (1) and (2) of model Ml. The 
resulting vector model is: 

An) = £ 
4=1  Li=o 

J2tiq(l)bq(n-l)s(n-l) + v'(»),      (4) 

where prime stands for transpose, lower (upper) bold is used 
for vector (matrices), and the Mxl vectors h, and v are de- 
fined similar to x. We establish that M x 1 FIR zero-forcing 
(or perfect in the absence of noise) equalizers, {gq

d\k)}£=0, 
exist, so that within a delay d £ [0, L + K] (which is non 
identifiable in the blind case) they yield: 

K 

£x'(n - *) g,d>(*) = sq(n-d),    q = l,...,Q,    (5) 

where sq(n — d) :— bq(n — d)s(n — d) denotes the deconvolved 
input modulated by the gth basis. Determination of Q and 
L are addressed, and linear equation based methods to es- 
timate g^ >(k) directly from output data are also developed 
in Section 3. 

Model M2 was justified based on the mobile kinematics 
in [8, 7] and can be related to Ml via: bq(n) = bq(n - /), 
V / € [0,L]. However, as M2 is more general than Ml, it 
requires separate treatment and direct blind equalizers are 
derived in Section 4 (see also [3] for alternative solutions). 

The ideas herein are important generalizations of the TI 
results in [6, 4, 9, 5, 1] to TV channels. Relative to [7], 
the present approach allows for deterministic inputs, re- 
laxes identifiability conditions, and achieves the same per- 
formance with less data. 

2.    CHANNEL DIVERSITY 
Figs. 1 and 2 illustrate that the TV-SISO models of (2) and 

Q 
9=1 

(3) can be viewed as TI-MIMO models, if the {xq(n)} 
components can be obtained. For example, if in Fig. 2 the 
£q(n) components can be separated in the time-, frequency- 
or, cyclic-domain, the xq(n) = 6~1(n)x,(n) outputs can be 
recovered by demodulating with the known bases. Blind 
equalization can then be achieved using existing multichan- 
nel approaches (e.g., [4, 9]). Hence, time-variation (not 
necessarily that arising due to fractional sampling) offers 
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diversity which renders blind equalization of TV channels 
easier than that of TI channels when separation is achiev- 
able. The latter is possible if for example hq(n) channels 
are low-pass and bq(n) are band-pass with center frequen- 
cies far apart from each other. Intuitively speaking, a TV 
channel offers us "different views for each time point n," 
and hence the term channel diversity. 

Subsequently, we focus on the more challenging non- 
separable case which requires multichannel data xt-m'(n), 
m € [1,M], n € [0, JV — ll. Multichannel data become 
available either with multiple antennas (see e.g., [41, [3]), 
or, by oversampling the continuous counterpart of (1). 

To illustrate the latter, consider the (baseband) 
continuous-time data: xc(t) = £), s(l)hc{t;t - IT), where 
T is the symbol period. With oversampling rate M/T, we 
obtain: x(n) := xc(t)\t=nT/M = £,s(0Mn;n ~ lM)> and 

upon denning the sub-processes aAm)(n) := x(nM + m — 1), 
we find: x^m\n) = £, s(/)Ä(m)(«; n - /) for m = 1,..., M. 
Oversampling creates multiple channels but in contrast to 
the TI case, x(n) is not necessarily cyclostationary and 
z(m)(n) is not necessarily stationary. Our results reveal 
that channel time variation (not necessarily periodic) may 
be sufficient to deal with blind problems. 

J& h(n) 

s(n) 

hi(n) 
ii{n) 

;o 

U bQ(n) 

hq(n) 
xq{n) 

4 v(n) 

x(n) 

Figure 1. TV - SISO Channel Model Ml 

3.    MODEL Ml: BLIND EQUALIZATION 

Let S^R) := [i,(n)s(») ... bq(n -L- K)s(n - L - K)] and 
define for each q € [1, Q] the (L + K + 1) x M(K + 1) block 
Toeplitz matrix 

H„:= K(L) 

6' 

0' 

K(L-K) 

Consider (4) in the noise-free case and form the (N - K) x 
M(K + 1) block Hankel data matrix 

x'(N - 1) 

*(K) 

x'(N -\-K) 

x'(0) 

= S„H,   (6) 

where the (N - K) x Q(L + K +1) modulated input matrix 
Sb and the Q(L + K + l)x M(K +1) channel matrix H are 
given by 

S6:= 

si(JV-l) B'Q(N -1) 

«g(J0 

,H:= 

Hi 

kg 

We assume the following: 
(Ml.l)N - K > M(K + 1), which is satisfied by collecting 
sufficient data; 
(M1.2.1)H is at least fat; i.e., (M, L, Q, K) obey 

M(K + 1)>Q{L + K+1). (7) 

(M1.2.2)H is square; i.e., (7) holds as equality. To satisfy 
(7), a minimum Afm,„ = Q + 1 channels are required with 
a minimum equalizer order Km%n = QL — 1 (in the TI case, 
Mmin = 2 and Kmin = L - 1 (6j,M). 
(M1.3)H is full rank; i.e., rank(H) = Q{L + K + 1) which 

implies that transfer functions {Hq
m'(z), q € [1,Q], "» 6 

[1,M]} are co-prime. Note that {H^{z)}^=1 may have 
common zeros provided that for some 92 # ?i those are not 
also zeros of Hq™'(z). 
(Ml.4)bases bq(n) are sufficiently varying and s(n) is per- 
sistently exciting (p.e.) of sufficient order to assure that 
rank(Sb) = Q(L + K + 1). If modulated inputs {s,(n)}?=i 
are linearly independent (sufficiently distinct modes), then 
Sb is full rank. Note that relative to the TI case, p.e. con- 
ditions on s(n) are relaxed by the modulating bases. We 
stress that s\n) can be either random or deterministic. 

3.1.    Order determination 
Under (Ml.l)-(M1.4), matrix X is full rank Q(L+K+1). 
With K\ > K2 denoting known upper bounds on K, cor- 
responding matrices Xi, X2, will have rank(X<) = Q(L + 
Ki + 1), i = 1,2. It is thus possible to select the orders L 
and Q using: 

Q = 
rank(Xi) — rank(Xa) 

K!-k2 

i=rank^i)_(^ + 1) 

With Q, L available, K is chosen to satisfy (7) for a given 
M>Q + 1. 

3.2. Existence and uniqueness 
Under (Ml.2.1) and (M1.3), we infer from X = SbH, 
that a unique linear FIR equalizer exists to yield GX = S&. 

Matrix G is the pseudo-inverse H' which under (Ml.2.2) 
becomes H-1. Because (7) is not satisfied with M — 1, it 
follows that blind separation and equalization of TV chan- 
nels is impossible in the SISO case under (Ml.l)-(M1.4). 
The more channels (Mmi„ = Q + l) required relative to the 
TI case is the price paid for our ability to equalize (and thus 
invert) FIR TV channels with linear FIR equalizers. 

3.3. Direct blind equalizers 
Blind equalizers exist and are unique but in order to find 
them we first set n = JV - 1,... K in (5) and collect equa- 
tions to obtain 

Xtf =sq* :=§<«> s<d>, (8) 

where tf> := [g(,d) (0)...g^ (K)], #> := [bq(N - 1 - 

d)s(N-l-d)...bq{K-Q'(K~<*)]'> B«d) := diag[&,(^- 
1 -d) ... bq(K- <*)], and s(d> := [a(N -1 - d) ... s{K-d)]'. 
We use Matlab's notation X(ti : i2,:) to denote a submatrix 
of X formed by the ii through «2 rows and all columns of 
X. Next we define 

X0td:=X(d + l:N-K,:),   Xd := X(l : N - K - d,:) ,  (9) 

and B<°'d) := B(,d)(d + 1 : N - K, d + 1 : N - K), B(,d) := 

B(,d)(l : JV - K - d, 1 : N - K - d). 
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From (8) and (9) it follows that 

XM«S>    =    B%*>BW(d + l:N-K), 

Wd> <fl B(d) =(<0 sw(l: N-K-d).       (10) 

We note that s^°\d + 1 : N - K) = s<d>(l : N - K - d), 
which allows us to eliminate the input dependence from the 
equations in (10) and obtain the cross-relation: 

B[f X0,d Sql B^W,? (11) 

The pair of equalizers {f$,t£$) will be identifiable (up to 
a scale) as the eigenvector corresponding to the minimum 
eigenvalue of X^l in 

„(0,d) 
Oqltq2 *>,2 **,d -B (0,d) X, 

*<0) 
Sol 
Jd) 

. Bq2 
= 0 

(12) 
provided that the nullity v(X^^) = 1. It turns out 

that under (Ml.2.2), (Ml.3), the latter holds for the 
minimum- and maximum-delay equalizers corresponding to 
(0, d) = (0, L+K), provided that rank(S6) = 2Q(L+K+1). 

Under (Ml.l)-(M1.4), equalizers corresponding to all 
possible delays d € [0, L + K] and qt, q2 € [1,Q] can be 
found simultaneously; e.g., with d = L + K, qi = 1, and 
?2 = 1... Q, we obtain: 

B^+K>X, 
O.L+K 

B<l+K»X0,1+K 

_B(0,L+K)X L+K 

_B(0,L+K)X 
L+K    . 

= 0 (13) 

To recover s(n - d) from the g^ equalizer's output, 
we simply demodulate with 6"1 (n — d) to obtain 6"1 (n — 
d)sJn — d) = s(n — d). For each n, it suffices to have 
6,o(n) ^ 0 for at least one q0 £ [1,Q]. If more than one 
basis are non-zero, we may align and average the corre- 
sponding equalizer outputs. 

With the input available, one may readily obtain chan- 
nel estimates (if so desired) by solving (4) using standard 
regression techniques (see e.g., [2]). 

6i(n) 

s(n) 

fti(n) 
xi(n) 

hQ(n) 

bQ(n) 

xQ(n) 

o $ t>(n) 

x(n) 

Figure 2. TV - SISO Channel Model M2 

4.    MODEL M2: BLIND EQUALIZATION 
The counterpart of (4) for the model M2 of (3) is given by 
(see also Fig. 2) 

<'w = £ 
9=1 

X>J(l)S,(n)a(n-0 
1=0 

+ v'(n),        (14) 

but instead of (5), we form the N x M matrix X = SbH, 
as follows [3]: 

x'(JV-l) 

x'(0) 

Bj(JV-l) 

■1(0) 

■'o(tf-i) 

»'o(o) 

Hi 

H <3 J 

The entries in the N x Q(L + 1) input matrix Sb and the 
Q(L + 1) x M channel matrix H are given by: 

sq(n) := bq(n) 

s(n) 

s(n — L) 

H,:= 
t;(o) 

(16) 

Assumptions (Ml.lWMl.4) are replaced by: 
(M2.1)JV>Äf; 
(M2.2)triplet (Af, L, Q) obeys: 

M > Q(L + 1), 

which compared to (7) requires more channels; 
(M2.3)rank(H) = Q(L + 1); 
(M2.4)rank(S6) = Q(L + 1). 

Under (M2.1)-(M2.4), we have rank(X) = Q(L + 1). 
If L is a known upper bound on L, then order L can be 
obtained as [rank(X)/Q] - 1, but Q must be known. 

With G = fit, (M2.1)-(M2.3) guarantee that unique 
linear FIR equalizers exist to recover St from (15). If (16) 
holds as equality, then G = H-1. 

To derive blind equalizers directly from the data x(ra), 
we follow the notation of Section 3 and start from the zero- 
forcing condition: x'(ra)gld) = sq(n) := bq(n)s(n-d), which 
for n = N — 1,..., 0, leads to the matrix form 

Xg,d> = #>:=Bf. ,(<0 (17) 

where B, := diag[6,(AT - l)...i,(0)] and S^ := [a(N- 
1-d)...s(-d)]'. When compared to (5), the equalizers for 
model M2 have order K = 0. Defining X0,d and Xd as 
in (9) with K = 0, and B(,°'d), B(,d) accordingly, we can 
eliminate s(d) from (17) and arrive at the cross-relation: 

■"„■>   -A-0,d gfl        — ',2 5,1 Bi°'d>xdg<d> V 3,2 (18) 

Based on (18) and selecting M = Q(L+1) in (16), the (0, L) 
pair or all equalizers can be recovered by solving for the 
minimum eigenvalues of equations similar to (12) or (13); 
see also [3] for M > Q(L + 1) with gi = q2. In addition to 
(16), models Ml and M2 have different input matrices (SO 

and Sb) with correspondingly different decompositions: 

St    := 

s'(N-l)[B1(N-l)...BQ(N-l)] 

S'(K)[Bi(K)...BQ(K)] 

:=     [BIS...BQS] . 
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Further research is required to characterize and compare 
p.e. requirements in terms of the spectrum of s(n) and 
linear independence conditions among the basis sequences. 
Additional topics include development of adaptive algo- 
rithms, model validation studies, and especially for model 
M2, order and basis selection criteria. 

Although noise is included in our simulations, the zero- 
forcing equalizers were derived in the noise-free case. Argu- 
ing as in [1], it follows that the minimum norm solution in 
(12), (13), or, (18), minimizes the noise power at the equal- 
izer output. Future work will include noise explicitly using 
the linear prediction framework along the lines of [5]. 

5.    SIMULATIONS 

We generated N = 300 QPSK samples and with Q - 2 basis 
sequences, 6i(n) = 1, hM = exp(i27ro/50), we formed 
data x(n) according to models Ml and M2. Outputs of 
complex channels (order 1 = 3) were received by M = Q + 
1 = 3 antennas for Ml, and M = Q(L+1) = 8 for M2. One 
realization of the eye diagrams before and after equalization 
are shown in Fig. 3 at SNR=40dB for Ml. Corresponding 
diagrams for M2 at SNR=25dB are depicted in Fig. 4. 
The equalizer order for Ml was K = QL - 1. = 5, and 
its coefficients were obtained by solving (12) with gi = 1, 
q2 - 2, and d = L + K = 8. For M2, equalizer coefficients 
(K = 0) were found via (18) with qi = 1, ?2 = 2, and 
d = L = 3. To illustrate the importance of TV modeling, 
we show in Fig. 5 how the TI equalizers obtained from [9] 
perform on the data of Figs. 3 and 4. RMS performance of 
the errors s(n) - s(n) vs. SNR is plotted in Fig. 6 for Ml 
and M2 based on N = 150 samples and 100 Monte Carlo 
runs. M2 was less sensitive to noise than Ml which also 
appeared less robust to basis mismatch and p.e. conditions. 
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Abstract 

Afferent, whole nerve signals recorded using an im- 
planted nerve-cuff electrode were analyzed using three 
detectors based on the 1st, 2nd and 3rd order statistical 
properties of the signals. Results based on standard 
Rectified, Bin-Integrated (1st order statistical) processing 
are compared with two algorithms based upon a Singular 
Value Decomposition (SVD) of the signal's 2nd and 3rd 
order correlation (cumulant) matrices. Due to the very 
low signal levels obtainable from nerve-cuff electrodes 
and the high levels of interference from adjacent muscles, 
the overall signal-to-noise ratio (SNR) is very poor. In 
addition, the noise level is non-stationary. The inherent 
properties of the 3rd order statistics of these signals yield 
a detector that performs better than the other two. 

1. Introduction 

It has been known for more than 100 years that animal 
muscle tissue can be made to contract through application 
of electrical current. More recently, this has been applied 
in the development of Functional Electrical Stimulation 
(FES) systems, with the goal of restoring lost motor func- 
tion in paralyzed individuals. More than 30 years of FES 
development have lead to the now generally accepted con- 
clusion that, in order to reduce muscle fatigue and 
increase reliability, closed-loop systems, in which some 
sort of "feedback" information is used to control the 
stimulator's parameters, yield better results than simple 
open-loop systems. In restoring muscle function via FES, 
the goal is to emulate, as best possible, the body's lost 
natural functionality. Given the choice of using artificial 
sensors (goniometers, strain-gauges, accelerometers, etc.), 
versus utilizing the subject's still intact sensory system, 
the latter is likely to provide us with the closest emulation 
of the body's natural control system. In order for the 
body's natural sensors to be used effectively, the level of 
information obtained from them should be comparable to 
that obtainable from artificial sensors. This requires a 
reliable, stable, implantable transducer which is able to 

record the sensory signals (known as "afferent" nerve sig- 
nals) being passed along the body's nerve fibers, from 
local touch receptors, to the brain. The only appropriate 
such device presently suitable for use in humans (where 
nerve damage must be avoided) is the nerve-cuff 
electrode. Such cuffs are typically constructed from a 
silicone insulating tube, in which 3 non-insulated rings of 
stainless-steel or platinum wire act as electrodes. The 
cuff, which is slit longitudinally, is opened, placed around 
the nerve, and sutured closed. Lead wires connecting to 
the ring electrodes are routed to an appropriate exit site 
and through the skin, where they are attached to an 
external connector. For our purposes, these electrodes are 
connected to a special high-gain (110,000x), low-noise 
amplifier. The resulting amplified nerve signal is 
commonly referred to as the Electroneurogram (ENG). 

We have constructed a prosthetic device utilizing this 
ENG signal (a "neuralprosthetic") in which a custom 
designed DSP-based system controls an 8-channel FES 
stimulator. The entire device is small enough to be easily 
born by the subject, and uses standard rechargeable 
batteries. Natural sensory information can be applied to a 
variety of FES tasks. We have primarily been concerned 
with two: Hand Grasp Restoration in Tetraplegics, and 
Hemiplegic Drop-foot Correction. Tetraplegic subjects, 
who have limited use of their arms, are typically unable to 
firmly grasp objects. Through stimulation of the muscles 
in the hand and forearm, simple grasp functions can be 
restored, using the processed nerve signal as a feedback 
signal indicating when, due to insufficient stimulation, 
the grasped object begins to "slip". Subjects suffering 
from a "drop-foot" are unable to fully activate the muscles 
which rotate the foot up/down. Thus, because they can not 
achieve adequate toe clearance, they are unable to walk 
normally. Stimulation of these muscles can improve such 
subject's gait, provided it occurs at the correct time in the 
gait cycle. Timing has. traditionally, been determined via 
a mechanical switch placed in the subject's shoe, which 
turns stimulation off upon closure (heel-contact) and on 
upon opening (heel-lift). We have previously shown that 
the nerve signal recorded by nerve-cuff electrodes can be 
used as a sort of "natural" heel-contact switch, [2].   In 
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both applications, the fundamental problem is the reliable 
detection of the presence of nen>e signal activity in 
background noise. Essentially then, the problem reduces 
to one of pure endpoint or transition detection in the drop- 
foot application. 

2. Considerations Specific to this Problem 

There are certain aspects of the present problem (in the 
use of human nerve signals) that complicate detection: 

• The noise is some non-deterministic combination of 
tonic nerve firing, electrode thermal noise, and amplifier 
1// noise. Although, in the strictest sense, due to the pres- 
ence of background (tonic) nerve firing, this isn't pure 
noise, in practice, it is dominated by the thermal and 1// 
components of the electrodes and amplifier. In order to 
fully activate the paralyzed muscles using FES, it is often 
necessary to apply stimulation voltage pulses in excess of 
140V to'the skin's surface. These pulses (typically under 
300msec in duration) propagate through the body (acting 
as a volume conductor) and induce large stimulation 
artifact impulses in the recorded nerve signal. Also, the 
Electromyographic (EMG) signal from adjacent muscles, 
either naturally occurring though voluntary activation, or 
stimulation induced, acts as a high level noise source. In 
addition, external EMF sources (typically mains power) 
are often of sufficient intensity to induce large noise 
potentials. The nerve signal amplitudes typically recorded 
are in the 1-10 ^Volt range for common sensory stimuli. 
Therefore, the initial SNR of these raw nerve signals is 
often as low as -60dB! Fortunately, it is known that the 
majority of nerve signal information is confined to a 
narrow'frequencyband. from 1.0 to 3.0kHz. Therefore, an 
important first step in the detection process is the 
application of a simple (non-adaptive) bandpass filter. 
This filter, combined with other processing (windowing, 
adaptive thresholding, etc.) yields nerve signals with 
typical SNRs in the range from 0 to +3dB. 

• The nerve signals recorded by cuff-electrodes are 
dominated by the activity from what are termed fast 
adapting sensory receptors. These receptors respond, 
primarily, to the 1st derivative (i.e. velocity) of applied 
force. Consequently, during a period of activity, defined 
by the application of a mechanical stimulus to the skin 
within the nerve's innervation area, only the onset and 
offset of contact initiate detectably increased nerve 
activity. Thus, activity occurs in short bursts where it is 
usually not possible to distinguish between force 
application and force removal. The practical implication 
of this fact for the use of afferent nerve activity in a drop- 
foot correction system, is a contact onset/offset ambiguity 
that must be resolved by other means. 

• All methods we have tried to-date rely upon a single 
variable test against a fixed threshold. When the value of 

the processed ENG signal is below the threshold level, the 
null hypothesis H0 is true, and the present state (gait 
phase) is unchanged. Upon exceeding the threshold, the 
alternative hypothesis, Hu is indicated, and the present 
state is toggled (i.e., an edge occurred). Of particular 
significance is the constraint that the number of False 
Positives (FPs), or erroneous edge detections be, 
essentially, zero. The consequences of an FP are that the 
stimulator will be erroneously deactivated while the leg is 
still in motion, sufficient toe clearance will not be 
maintained, and the subject may fall. Thus, the detection 
threshold must be set sufficiently high such that the FP 
percentage is low. Conversely, if the threshold is too high, 
resulting in missed detections, the stimulator will not be 
turned off during the stance (standing) phase, the 
subject's muscles will tire rapidly and. again, the subject 
may fall. Thus, ideally, the processed ENG signal, as the 
input to the threshold detector, should have a very high 
SNR (i.e. the signal amplitude during transitions should 
be high, while the background level during constant force 
presence/absence should be close to zero). Given low SNR 
inputs (+3dB max.), and very non-stationary conditions 
(variable foot contact pressures, variable gait cycle timing, 
plus variable muscle and external EMF interference 
signals), the demands upon the signal processing 
algorithm for robust ENG processing are, indeed, strict! 

• Finally, it is important to note that this is an uncon- 
ditionally real-time processing application. Most ENG 
processing algorithms have, up until now, primarily been 
designed to characterize the properties of afferent nerve- 
cuff recordings off-line, and typically used inherently non- 
real-time methods, such as ensemble averaging, to 
enhance SNRs. When real-time information is desired, 
the standard processing method still widely used is to bin- 
integrate (over the inter-stimulation pulse interval) the 
rectified, filtered signal. Commonly referred to as the RBI 
(Rectified. Bin-Integrated) signal, this yields, essentially a 
standard lp-norm detector (or the energy over a window, 
if the squared signal is integrated), based on the signal's 
1st order statistics. Unfortunately, while simple to imple- 
ment (even with analog circuitry), energy detectors per- 
form poorly on low SNR signals, with non-stationary 
noise. In order to improve detection reliability, specifi- 
cally for the drop-foot application, an adaptive noise 
threshold was incorporated into the standard RBI algo- 
rithm, along with a windowed detector, [7]. Using these 
modifications, we obtained an average detection ratio of 
85%, with no FPs. Since this was deemed unacceptable, 
we began investigating more robust detectors, in which a 
fundamental criterion is the ability to reject non- 
stationary, wide-band (essentially white) noise. 

It has previously been shown, [4], [5], that good 
detection reliability is achievable using second- and 
higher-order statistics (HOS) on speech signals with 
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SNRs in the range mentioned above. This observation has 
prompted us to investigate the performance of detectors 
used for speech signals in the present problem. There are 
many similarities between the problems of detecting 
speech in noise and nerve-cuff signals in noise, indicating 
that similar methods may be applicable. However, one 
fundamental difference between speech and nerve signals 
is the onset/offset ambiguity issue mentioned above. 

2.1 Autocorrelation-based detectors 

The first, more advanced, detector investigated is based 
upon the signal's 2nd-order statistical properties. The 
method is based on the fact that the autocorrelation 
matrix R of a signal that contains only white noise is 
diagonal, with all diagonal entries equal to the variance 
of the noise, a2. All (say 0) eigenvalues of this matrix 
are, therefore, equal to a2, as well. If an information 
(non-white) component is also present in the signal, then 
R is no longer diagonal, and consequently its (real, 
positive) eigenvalues are not all equal. Testing for the 
presence of activity in the signal thus becomes equivalent 
to testing for (non)equality of the eigenvalues of R, under 
the assumption that the additive noise is white. Given 
that R can be estimated from a record of N samples 
through the observation matrix X, as R = X • XT, the 
singular values of X can be used for the test. These are 
obtained using a Singular Value Decomposition (SVD). 
It has been shown that a computationally efficient method 
of solving the SVD problem, when the data is real-only, is 
the use of the Jacobi rotation algorithm, [3]. 

The actual test is performed by comparing the differ- 
ence or the ratio of the maximum and the minimum 
eigenvalues, not to zero or one, respectively (as would 
ideally be the case), but to appropriately set thresholds. In 
theory, a significant advantage of this detection method 
over the RBI (or energy) method is that it is immune to 
the noise level (variance). This is because the white noise 
variance acts as a DC offset in the eigenvalue domain, 
which doesn't affect the eigenvalue difference. In prac- 
tice, this detector is much more immune to non-stationary 
noise levels than the RBI detector, and yields better 
detection SNRs. Yet, since it primarily acts as a whiteness 
versus non-whiteness test, it is sensitive to the color of the 
noise. Note that in our case a significant proportion of 
the noise is due to the amplifier's colored (1//) noise. 

2.2 Cumulant-based detectors 

In order to overcome this limitation, detectors based on 
the higher-order statistics (HOS) of the data were also 
tested. The 3rd-order statistics of a signal provide a 
measure of the skewness (difference from the Gaussian 
distribution) in the signal's statistical distribution, 
whereas the 2nd order statistics (autocorrelation and 

spectrum) only provide information about the signal's 
variance. Detectors based on 3rd-order cumulants have 
been successfully employed for speech signals due to the 
fact that quadratic phase coupling, present in voiced 
speech due to non-linearities in the vocal tract, [4], [1], 
can be detected using 3rd-order statistics. Although a 
precise model for the signals recorded by nerve-cuff 
electrodes has yet to be developed, it has been shown, [6], 
that these signals result in the non-linear combination of a 
series of action potentials, themselves modeled by a non- 
linear combination of sinusoidal functions. Thus it seems 
reasonable to assume that, in analogy with speech signals, 
there are significant (i.e. detectable) non-linearities in 
nerve-cuff electrode signals. In this case, it can be proven 
that the 3rd order cumulant of such signals cannot be zero 
for all lags. Thus a detector, using a method similar to 
that employed in the eigenvalue-spread algorithm, can be 
designed using only this diagonal vector as follows: 

The 3rd order cumulant of a record of data, x(n), is 

computed as: cix = (l / N)Y,nx(n)x(n + TQ)x(n + T,) 

for an appropriate set of lags (r0, T]), lying on the main 
diagonal (r0 = r,) of the 2-D plane. This is, essentially, 
equivalent to computing the autocorrelation of x(n) and 
x*(n).   The O x Q Toeplitz matrix C3 is formed from the 

first Q diagonal lags (where 0 is chosen empirically) and 
its SVD is computed, as in the 2nd order case. In the 3rd 
order case, however, it is sufficient to simply use the 
maximum eigenvalue (rather than the difference between 
maximum and minimum) as the single test parameter. In 
this case, we are testing the matrix entries against zero as 
an indication of the presence of skewed components in the 
data (here, noise is assumed to be colored, but non- 
skewed). In practice, the maximum eigenvalue is 
compared against an empirically determined threshold. 

The 3rd order method requires slightly more computa- 
tions than the 2nd order case; yet, it is substantially less 
sensitive to additive (non-stationary) noise variance than 
either the RBI or 2nd order methods. This is important in 
a neuralprosthetic application where noise levels (and 
signal properties in general) vary not only amongst 
applications (i.e. the nerve used, its size, the size of the 
cuff electrode, etc.), but also amongst patients, and even 
with the time after implantation. Finally, the storage 
requirements of both the 2nd and 3rd order algorithms are 
well within the bounds of the on-chip memory of most 
commercial DSPs in contrast to most frequency domain 
(FFT or wavelet) methods, which generally require the 
addition of external memory. This is an important 
consideration for portable (or implantable) systems, where 
low power consumption is essential. 
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3. Results, Discussion and Conclusion 

Figures 1 and 2 show a comparison of the 3 algorithms 
described, under non-stationary noise conditions. In 
Figure 1, linearly increasing white-noise (up to 100% of 
nominal) was added to a typical afferent nerve-cuff (ENG) 
signal in the region from 6000 to 10000 samples. The in- 
creased amplitude between samples 3000 and 5000 corre- 
sponds to increased nerve activity resulting from a single 
mechanical stimulation of the skin in the innervated area. 
This is also indicated by the arrow in Figure 2. The Ordi- 
nate is in Volts. The nerve-cuff output signal was ampli- 
fied by 220,000, filtered with a 4th order Butterworth 
bandpass (500Hz-3kHz) filter, and digitized to 12-bits 
(±5V range) using a sampling frequency of 10,000Hz. 

Figure 2 shows detection results when the 3 detectors 
are applied on the noisy signal in Figure 1. Note that all 
three detect the true ENG activity (arrow), although the 
noise baseline, which defines the SNR of the detector 
(since the data is normalized to the peak value), is highest 
for the RBI detector and lowest for the cumulant detector. 
Thus the cumulant detector yields the highest SNR and 
the RBI detector the lowest, with the eigen-spread detec- 
tor's SNR falling in between. As is evident in Figure 2, 
the SNR of the RBI detector decreases markedly with in- 
creased noise power. Both the eigen-spread and cumulant 
detectors continue to function at 100% added noise power. 

In order for a natural sensory based device to be 
accepted in clinical applications, the amount of parameter 
adjustment required by the user (or physiotherapist) must 
be minimal. This has proven to be a severe drawback with 
RBI based detectors. Although we have obtained 
reasonable success by adding adaptive noise thresholding 
to the basic algorithm, we have not yet achieved a truly 
robust RBI implementation that does not require frequent 
parameter adjustments. Although it cannot be claimed 
that HOS offer the best solution for all types of signals, 
our preliminary results show that they hold great promise 
in the detection of afferent nerve signals in noise. Further 
improvements are anticipated through the use of (i) 
automatic thresholding based on a fixed, specified FP 
ratio or (ii) a bi-frequency domain bi-coherence 
magnitude/phase detector, [1]. Further characterization 
of the statistical properties of nerve-cuff signals will be 
required to fully optimize future detection algorithms. 
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Abstract 

Here, we consider a speaker independent Hidden 
Markov Model (HMM) based isolated word speech 
recognition system. The most general representation of 
the probability density function (pdf), in the classical 
HMM, is a parametric one (i.e, a Gaussian). We intend 
here to derive an unsupervised, non parametric and 
multidimensional Bayesian classifier based on the well 
known orthogonal probability density function (pdf) 
estimator which does not assume any knowledge of the 
distribution of the conditional pdf s of each class. Such 
result becomes possible since this non parametric 
estimator is suitable and adapted to Expectation 
Maximization (EM) mixture identification algorithm. 

Keywords : Unsupervised non parametric Bayesian 
classifier, orthogonal probability density function 
estimate, Expectation Maximization, Cepstrum 
coefficients, Line Spectrum Pairs, Speech recognition, 
Hidden Markov Model. 

1. Introduction 

Let us consider the isolated word speech recognition. For 
each word of the vocabulary, we want to design a separate 
M-state HMM. We represent the speech signal of a given 
word as a time sequence of spectral vectors (i.e, the 
Cepstrum or the Line Spectrum Pairs (LSP) coefficients). 
In a recent study [4], we proved that these two different 
kinds of acoustic analysis set of parameters provide a 
comparable recognition rate performance. In this paper, 
we focus our attention on the use of the LSP parameters 
instead of using the Cepstrum coefficients. The d LSP 
coefficients are computed with the antisymmetric form of 
the Split Levinson algorithm. This method is shown to be 
better, in terms of complexity, than other known 
algorithms [8], d is chosen to be equal to 10. Thus, for 
each vocabulary word, we have a training sequence 

consisting of observations of d-multivariate LSP. The first 
task is to build individual word models by adjusting the 
model parameters in order to maximize the likelihood of 
the observation sequence. The most general representation 
of the conditional pdf, for which an estimation procedure 
has been formulated is a Gaussian distribution [1,2,5]. 
The goal  here is to make     refinements on the pdf 
representation so as to improve the capability of modeling 
the spoken word sequences. When we want to design a 
speech recognition system, two fundamental procedures 
are generally required. Firstly, some feature descriptors 
are extracted from the observed speech signal. Secondly, 
the signal is labeled using a classification rule in the 
features space. Different classification algorithms are used 
for such problem. The statistical approach is recognized as 
efficient (Hidden Markov model, Bayesian classification 
rule,..).    For    automatic    speech    recognition,    the 
unsupervised classifier is suitable since it is able to be 
adapted to the speaker. The best statistical classifiers are 
those based on the Bayesian classification rule since it 
minimizes the posterior probability of miss-classification 
which usually needs assumption on the pdf distributions. 
However, we verify experimentally that the conditional 
distributions with respect to a given class of the LSP are 
not close to a parametric one and change considerably 
according to the speaker, the pronounced word and so 
on... The common recognition mechanism is based on the 
HMM and  makes  use  of diagonal  Gaussian  output 
distribution for each state. Therefore, it is well easy to 
show that the usual Gaussian hypothesis is not an efficient 
approximation. In this paper, we intend to present an 
efficient    unsupervised    Bayesian    classifier    without 
assumption on the distributions of the LSP coefficients. In 
this unsupervised context, the Bayesian classification rule 
which known by its optimality in the mean of the posterior 
probability of miss-classification criterion usually needs 
some       parametric   hypothesis   for   the   conditional 
probability density function of each classes. Using the 
orthogonal probability density function estimate [10], the 
suggested   classifier   algorithm   does   not   need   any 
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assumption on the distribution of the observed data. In 
this work, the proposed classifier is designed in two steps. 
The mixture identification is the first step. It consists on 
the estimation of the mixture parameters : the a priori 
probability and the conditional probability density 
functions of each class. It will be done with the 
Expectation Maximization algorithm (EM) [9]. The 
second step consists of the application of the Bayesian 
classification rule. The paper is organized as follows : In 
section 2, we give some elements of the isolated word 
Hidden Markov Model. In section 3, we recall the 
classical EM algorithm. Section 4 is devoted to the 
presentation of the suggested non parametric classifier. 

2. Elements of the isolated word HMM 

An isolated word HMM is built up of the following : 
i) M, the number of states in the model. We denote Sj, the 
i* state for i=l, ,M. For our simulation M is equal to 
10. 
ii)   The   d-multivariate   pdf ftx)   for   eacn   state   Si 

(B={ f, (x)}       ). The observation is a continuous random 

variable, i.e, the Line Spectrum Pairs (LSP) coefficients, 
iii) The state transition probability distribution A=[ajj] 
with a^Prof CL+1=S/ q^ ] for l<i,j<,M, where qt 

denote the state at time t. For our case, i.e, left-right 
model (see Figure 1), we have a;j=0 for j<i or j>i+2. 

iv) The initial state distribution n={pj} for 1 <, i <, Mand 
p;=Pro[ q^Sj]. For our case, i.e, left-right model, we 
choose p,=l and p^O for i>l. 
The complete specification of an HMM requires then 
specification  of M  (the  number of states),  the M- 

continuous d-multivariate pdf B={X(x)};s/sA/>tne matTix 

transition A=[a;j], l<i,j<.M, and the initial state 
distribution n. For convenience, we use Xfl)=(A, B, II) to 
denote the HMM model for the i* word. A block diagram 
of an isolated word HMM recognizer is given in Figure 2. 

3. The classical EM algorithm 

The classical EM assumes that the observed data is a 
realization of a mixture of parametric distributions, so that 
its pdf can be written as : 

f(x) = Y,nkf(x/Qk), with 0<nk<l and X*k = 1 
k=! k-l 

where f(x/Qk) is the conditional pdf of class k and nk is 
the probability a priori of each class of a LSP vector. This 
algorithm is iterative and has three main steps. We 
propose to describe it here in the case of the Gaussian 
hypothesis ( i.e : Qk =(\i-k, Tk) where \nk is the mean 
vector and a rk is the covariance matrix of the class k). 

Figure 1. A M state left-right HMM model 
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Figure 2. block diagram of an isolated word HMM recognizer (^.f,): the HMM model for the i* word) 
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- Initialization step : We suppose the number of classes K 
is known and then an initial solution of the parameters of 
the mixture are extracted from the histogram. 
- Expectation step : It consists on the estimation of the a 
posterior probability n'^x,) for the realization JC. 

belonging to the class k at the n* iteration : 

n;f(Xl/Ql) 
<(*,) =-it 

• Maximization step : We build here the parameters 
needed for the next step, in the follow way : 

N'-' ILK^) 
1=1 

[rr=- r  
i=i 

for k=l K. 

4. The proposed non parametric EM 

4.1. Estimation based on orthogonal expansions 

The estimation of the pdf based on methods of Fourier 
analysis is suitable for this situation. Let X be a random 
vector taking values in the d-dimensional Euclidean space 
IR and suppose that the distribution of X is described by 
a   probability   density   function /   Given   a   sample 
Xj, ,XN of N independent observations of X, the fK 

estimator of/is the probability density function : 

fKJ
x)= L T.o( „,,<%,, mJ

x) where 
J=lmj=0 

4.2. Description of the non parametric EM 

This approach do not assume a knowledge on the kind of 
the conditional pdf of LSP parameters, so that: 

e> = ("(0 o)j> <a(K„ KKJ)J) and/fx/9,; = fKyj (x). 

a. Initialization step: We suppose the number of classes K 
is known and then an initial solution of the parameters of 
the mixture are extracted from the histogram. 
b. Expectation step : In this step, we estimate the a 
posterior probability ^(xj for the LSP vector xt 

belonging to the class k at the n* iteration by : 

c. Maximization step : The a posterior probability ^(x,) 
of each x;- is computed. So that, at (n+1)* iteration, we 
have: 

/    N 
71,    =—l,nl(x), 

N j=i 

K.n„ =/»f[f#,"'/'] whereN?' = Nn?' 

I^er-, ^)(
X
J)K(

X
J) 

j'i 
(•>, n.^;.* 

Hnk(
xj) 

form. =0, ,K.Mi 

J-l 

The Bayesian rule : After the mixture identification, the 
Bayesian rule are applied in order to classify the speech 
signal according to their LSP vector xi: 

k(xt) = kt% max 
HkzK 

.MvMJ 
i N 

%;,_..^; =—£<%-, „,>(*,) and 

\e,     m Jx)\ _ is a normal complete basis of 

L2Qa,b[ ). ]a,b[ is an interval of the real line. For 
simplicity we consider the same KJ

N = KN for all j=l, d. 
This assumption does not induce a bad behavior on the 
estimation of parameters since we use as orthogonal basis 
functions in the multivariate case the product one of the 
univariate basis. 

where k(x) represents the label of the class of the vector xr 

For the database, the set of speech sequences is separated 
into two parts : one for training, the other for testing. The 
database contains 10 digits (0 to 9) pronounced by 25 
speakers with ISO utterances in the training set and 100 in 
the test. The analog voice signal is digitized at 8 khz. The 
signal is multiplied by a 32 ms Hamming window. The 
LSP coefficients are computed every 16 ms. Finally, once 
the set of Word HMMs has been designed and optimized, 
recognition of an unknown word is performed by 
computing the probability of the observation sequence for 
each word model and select the word whose model score 
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is highest (i.e., the highest likelihood). As we have seen 
here, the non parametric aspect comes from the use of the 
orthogonal density estimates in the mixture identification 
step which is reduced to the estimation of the first Fourier 
coefficients of these densities. 

5. Conclusions 

We have considered a speaker independent HMM based 
isolated word speech recognition system. The speech 
signal has been represented as a time sequence of LSP 
coefficients. We have shown that the conditional 
distributions, with respect to a given state, are note close 
to a parametric one (i.e, a Gaussian). We have suggested 
an unsupervised and non parametric estimator based on 
orthogonal expansions to improve the pdf representation. 
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Abstract 

A new fast and robust HOS based algorithm for simulta- 
neous voiced/unvoiced detection and pitch estimation using 
3-level binary speech signals is presented. An accurate and 
reliable voiced/vnvoiced detection of a speech signal and 
associated pitch period estimation from the voiced part is 
made in coloured noise environments with low SNR. The use 
of the 3-level binary speech signals dramatically reduces the 
computational effort required in evaluating the third order 
cumulant. The superior performance of the new algorithm to 
the conventional autocorrelation method using real speech 
signals in low SNR environments is demonstrated. 

signal by using the maximum singular value of appropriate 
cumulant matrix. A voiced/unvoiced decision in the fre- 
quency domain using HOS has been reported in [8] that 
uses the bispectrum properties which approximate to zero 
for the fricative phonemes and a complex structure for the 
voiced phonemes. A main concern in using HOS in practice 
is the excessive computation involved in its estimation. In 
this paper we proposed a new fast and robust 3-level binary 
HOS based algorithm for simultaneous voiced/unvoiced de- 
tection and pitch estimation of speech signals that can work 
satisfactory in low SNR environments. In section 2 the new 
algorithm is described. In section 3 the simulation results 
using real speech signals are presented and its performance 
is compared to the conventional second order methods. 

1. Introduction 

Accurate and reliable voiced/unvoiced detection of a 
speech signal and associated pitch period estimation for the 
voiced part are crucial preprocessing steps in many speech 
processing applications and are essential in most analysis 
and synthesis (vocoder) systems. These include automatic 
detection of the beginning and ending of an utterance in a 
long recording, speech segmentation and automatic isolated 
word recognition (AIWR) [1, 4, 7]. Many algorithms have 
been reported in the literature for solving the detection and 
estimation problem using second order statistics such as au- 
tocorrelation, cepstrum and average magnitude difference 
function (AMDF) [1,4, 5]. A common problem with these 
second order statistics algorithms is that they are sensitive to 
various noises. Third order statistics have been shown to be 
particularly insensitive to various noises such as Gaussian 
and coloured, sinusoidal and car noise [6, 9]. HOS have 
been applied in [6] to speech signals for pitch determination 
using autocorrelation of the third order cumulants. In [7] 
HOS have been used for end point detection of a speech 

2. The Algorithm 

The block diagram of the 3-level binary HOS based de- 
tection and estimation system is shown in Fig. 1. The speech 
signal is segmented into overlapping 30 ms frames. The 
system uses center clipping and infinite peak clipping as a 
non linear spectrum flattening on the speech signal [2, 3]. 
For each frame a clipping threshold is computed as follows: 

c; = Kminlci^ci^ (1) 

where from computer simulations an appropriate value for 
K is found to be .2, c;, and c;2 are the maximum amplitude 
in the first and last third of the frame respectively. Thus a 
3-level binary speech signal is produced by center clipping 
and infinite peak clipping the speech signal with values of 
-1,0, -f 1 depending on the relation of the original speech 
sample to the clipping thresholds as follows: 

1 
x(n) = 

if   s(n) > c; 
if   s(n) < -c; 
otherwise 

(2) 
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Figure 1. Block Diagram of the NACC System 

3. Experimental Results 

where s(n) is the speech sample. Since the 1-d slice of the 
third order cumulants is defined as: 

C3(T) = E[x(n)x(n)x(n + T)] (3) 

each combination in Eq.(3) can assume the following 3-level 
binary values as: 

x(n)x(n)x(n + T) = < 

0 if{   x(n) = 0, 
or   if   x(n + r) = 0} 

1 if   x(n + T) - 1 
— 1        if   x(n + r) = — 1 

(4) 
Thus, a simple combinatorial logic circuit is only required in 
computing each term in the third order cumulant and an up- 
down counter to accumulate the actual third order cumulant 
value of Eq.(3). The 3-level binary HOS based detection 
and estimation system uses a normalized autocorrelation 
function of the 1-d slice of the third order cumulants NACC 
denned as: 

NACC(T) (5) 

The numerator and the denominator of Eq.(5) involves 
simple logical operation. To simultaneously detect the 
voiced/unvoiced region and the associated pitch period es- 
timation for each frame the peak value of the NACC is 
compared to a threshold as shown in Fig.l. If it is a voiced 
frame the pitch and its period are estimated directly from 
the positions where the NACC has its maximum peaks. 

To demonstrate the performance of the 3-level binary 
HOS NACC system for simultaneous voiced/unvoiced de- 
tection and pitch estimation, the utterances of 's»V is used 
where the utterance has three unvoiced/voiced regions. Ad- 
ditive coloured Gaussian noise of 5dB and OdB SNR areused 
for the simulations as shown in Fig.2. For voiced/unvoiced 
detection the maximum peak of the NACC in Eq.(5) is 
recorded for each frame as shown in (a) and (c) of Fig.3 re- 
spectively. From the figures it clear that a level close to zero 
signifies an unvoiced region while a significant value signi- 
fies a voiced region. From the voiced region the pitch is si- 
multaneously estimated from the periodicity of the NACC 
in Eq.(5) where for a voiced frame, the complete NACC(r) 
from that frame is plotted for the utterance as shown in 
Fig.3(b). Clearly the pitch period and location can be simul- 
taneously estimated from the index where the NACC(T) 

takes its maximum value. 
To assess the performance of the 3-level binary HOS 

NACC system for low SNR such as 5dB and OdB with the 
conventional second order statistics (autocorrelation auto) 
method [2, 5], the voiced/unvoiced regions for the utter- 
ances of 'six' is plotted in Fig.3(a), (c) respectively and for 
the conventional auto method in Fig.3(d) and (e) respec- 
tively. Comparing these figures to (a) (c) of Fig.3 we can 
see mat the conventional auto method has failed to iden- 
tify the voiced/unvoiced part while the new 3-level binary 
HOS NACC system maintains its good performance in the 
presence of a high level noise. The use of the normalized 
autocorrelation in the new system works better than the di- 
rect autocorrelation since it accounts for the non-stationarity 
in the speech signal [5]. This will reduce the possibility of 
pitch doubling or tripling encountered in autocorrelation 
based algorithms due to more similarities in these lags than 
that of the pitch period. 
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4. Conclusions 

Fast and robust 3-level binary HOS NACC system of a 
speech signals has been described for accurate and reliable 
voiced/Unvoiced detection and simultaneous pitch period 
estimation for the voiced part. The algorithm can easily be 
implemented in digital hardware using simple combinatorial 
logic, i.e., an up-down counter can be used to compute each 
cumulant point. The performance of the new algorithm has 
been assessed using real speech signal in the presence of 
low SNR. The robustness of the NACC algorithmhas been 
demonstrated and compared to conventional second order 
algorithm for high level coloured Gaussian noise. 
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ABSTRACT 

This paper addresses performance issues in the source 
separation problem. By drawing on the theory of optimal 
statistic matching, we derive new contrast functions which 
are optimal among those involving a given set of cumulants. 
In low noise, the optimal combination of a particular set of 
cumulants are shown to be parameter independent and can 
be pre-computed. We give specific exemples in close form 
for several choices of 2nd and 4th order cumulants. The 
resulting performance is investigated as a function of the 
SNR and of the non gaussianity of the source signals and 
further compared to suboptimal approaches. 

1.     INTRODUCTION 

Source separation algorithms assume a linear model for a 
vector x(t) of observations: 

x(t) = As(t) + n(t) (1) 

where matrix A is m x n with full column rank, n(t) is 
additive noise and s(t) is a vector of n x 1 independent 
components, si(t),... ,s„(t): the so-called 'source signals'. 

Source separation consists of recovering the source signals 
and/or estimating the 'mixing matrix' A without using a 
priori information about the latter. In this paper, we focus 
on approaches based on cumulant matching and on contrast 
functions. These two approaches are briefly reviewed below 

Contrast functions have been introduced for source sep- 
aration by Comon in [1]. The solution to source separation 
is defined by the separating matrix B such that its output 
y = Bx shows the largest possible 'contrast'. For instance, 
Comon in his ICA approach [1] suggests to maximize 

c(5) = ^|Cum(»i,»?,».->y?)|2 
(2) 

subject to EyyH = I„ (The constraint must be modified to 
take noise into account). A similar contrast is optimized 
by the joint diagonalization algorithm described in [2] as 
JADE. 

*(*)- x(t) 
B ►»(*) = *(*) 

n(t)        n x m 

1The work of S. Bose and B. Friedlander was supported by the 
National Science Foundation under grant NSF MIP-90-17221, 
and in part by the university of California MICRO program and 
Applied Signal Technology, Inc., and the Office of Naval Research 
under contract N00014-91-J-1602. 

Cumulant matching approaches [3, 4] to source separa- 
tion are a specific case of statistic matching. Denote f 
a vector of statistic such that Eet = T(0) where 8 is an 
unknown vector parameterizing the distribution of t. An 
estimate 0 of 6 may be obtained as 6 = arg mine c{6) where 
c(8) is some measure of discrepancy between t and T(6), 
like 

c{0) = (f - T{6))HW(f - T(8)) (3) 
with W a positive matrix. 

Contrasts and matching. This paper draws on the links 
between these two approaches. If T is a vector of sam- 
ple cumulants of xt and the unknown parameter 8 can be 
identified with matrix A, then an objective like (3) may be 
turned into a contrast function. The main benefit of this 
perspective is that, given a particular set of cumulants, the 
theory of optimal statistic matching indicates the optimal 
weighting to apply to these cumulants. 

This paper extends the work presented in [5] by consid- 
ering optimal blind estimation of the mixing matrix from 
both 2nd and 4th order cumulants (ref. [5] considered only 
4th order cumulants). Including 2nd order statistics is im- 
portant in the case where little information is available in 
higher-order statistics. It is also more robust to the effects 
of noise. 

2.     CUMULANT MATCHING AND 
CONTRASTS 

2.1.     Assumptions. 
To keep the exposition as simple as possible, we assume that 
the noise covariance matrix and the cumulants of orders 4, 
6 and 8 of the sources are known. They are denoted 

kp    =    Cum(sp,s*,5p,s*), (4) 

hp    =    Cum(sp,Sp,sp,Sp,sp,Sp), (5) 

Op    —    C\\m(sp,sp,sp,Sp,Sp,sl,Sp,Sp), (6) 

for p = l,...,w. We also assume that n = m (the case 
of m > n can be handled by first estimating the signal 
subspace, which has little effect in the source separation 
problem). We note that the source signals may be assumed 
to have unit variance: 

E\sp(t)\2 = l     p = l,...,n (7) 

because the amplitude of each independent component can 
be integrated in the corresponding column of A. The fol- 
lowing moments will appear in the sequel 

=    op + Shp + llkl + 20kp + 4 (8) 
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7p 

Ap 

hp + 5kp + 2, 

hp + 4fcp. 
(9) 

(10) 

For further reference, we mention that ap = 0 for constant 
modulus sources [i.e. \sp\~ = 1 a.s.). 

2.2.     Optimal matching and contrast functions. 

It is well known (see for instance [3]) that, under the ap- 
propriate assumptions, the optimal matrix W for weighting 
in (3) is the inverse of the (asymptotic) covariance of the 

vector of statistics T. 

Wopt = Cov^{f}. (11) 

Let. then fx denote a vector of sample cumulants of x and 
consider how optimal cumulant matching instantiates in the 
source separation case where, with the above assumptions, 
the unknown parameter is the mixing matrix, i.e. 6 = A. 

The optimal way of matching estimated cumulants Tx to 
their theoretical values TX(A) is to minimize 

C{A) = (tx - TX(A))H Covfit.) (?, - TX(A)) ■     (I2) 

We now make a key step: thanks to the multi-linearity of 
the cumulants, matrix A factors out to some extent in (13). 
As a matter of fact, setting B = A'1 and y - Bx, crite- 
rion (13) may be rewritten [6] as 

c(B) = {% - TS)
H Cov-1 (?,) (?„ - T.) (13) 

which depends on B via the random vector y = Bx and via 
the random vector 

s + Bn. (14) 

The net result is that an optimal criterion measuring cu- 
mulant mismatch at the array output (i.e. for the r.v. x) 
has been turned into a contrast function measuring the mis- 
match between the 'true' cumulants Ts of the sources and 
the sample cumulants % estimated at the output y = Bx 
of the separator. 

The beauty of this manoeuver is that for high enough 
SNR, we have z ftj s, so that the criterion (13) is approxi- 
mately equal to: 

c[B)=(ty-Tt )H Coy-1 (t.)(ty-T.) (15) 

with the key feature that the optimal weighting matrix 
Cov_1(Ts) does not depend on A: it is, as a matter of 
fact, a constant matrix which can be evaluated once for all 
for a given distribution of the sources. 

Further analysis is possible because, thanks to the as- 
sumption of independent sources, matrix Cov(Ts) has a 
nearly diagonal structure when fs is a vector of sample 
cumulants [7]. It follows that it can be 'manually' inverted. 
This leads, once a specific set of cumulants T has been cho- 
sen, to simple contrast functions in which cumulant mis- 
match is weighted on a statistically sound basis. 

3.    OPTIMAL CONTRAST FUNCTIONS. 

Some examples are investigated in the next section where 
we consider a cumulant statistic f containing both 2nd and 
4th order cumulants (extending the analysis of an earlier 

paper [5] where t could include only 4th order cumulants.) 
The empirical cumulants of vector y are denoted 

Tij 

9ik 

C-am(yi,yj) 

Cum{yi,y*,yk,y') 

(16) 

(17) 

where Cum is a standard cumulant estimator. 
In order to carry out a detailed investigation, we make 

the following simplifying assumptions. All the processes are 
assumed to be i.i.d. and circularly distributed ; sources have 
non-zero kurtosis: kp # 0 for p = 1,..., n; the noise is nor- 
mally distributed, independent of the signals with covraince 
matrix a I. 

On this basis, we consider various sets of cumulants. We 
do not present general analytical results when T is the whole 
set of 2nd and 4th order cumulants (except in sec. 3.1) be- 
cause we prefer to focus on more specific cases which can 
be detailed and because room is lacking for an exhaustive 
report. For the same reason, we leave out the hard core 
computations, namely explicit inversion of Cov(T). More 
details will be found in [6]. 

3.1.     The normal limit 
When the sources are close to being normally distributed, 
our analysis leads to a strikingly simple conclusion because 
the limit form of Cov(T) is itself very simple. The optimal 
criterion involving all 2nd and 4th order cumulants is 

C(-B)=E4^-^I2+£ 9p. fcpOpri (18) 

i.e. the mismatch of 2nd order cumulants receives a 4 times 
heavier penalty than the mismatch of 4th order cumulants. 
We have used the S symbol which evaluates to 1 when all 
its indices are equal and to 0 otherwise. 

Another limit case, which is in some sense complemen- 
tary to the normal limit, is when the sources have a maxi- 
mally low kurtosis. This is obtained when the sources have 
a constant modulus. In no noise, there is infinite weight 
on the auto-cumulant terms as well as on those containing 
cross-cumulants of the form q\], q% and on certain linear 
combinations of the 2nd and 4th order cumulants n,, q"j 
and q33. It would be interesting to determine if the CM A 
criterion which involves only 2nd and 4th order moments 
and is super-efficient in the constant modulus case, could 
be obtained as the limit of an optimally weighted criterion 
involving a specific subset of 2nd and 4th order cumulants. 

3.2.    Autocumulants 
Matching only outo-cumulants is to take 

rf, r~l    -2 -n    -11    -22 
Ty     =    [ri,r2,...,r„,9n.922,- 
Ts    =    [I,!,...,!,*!,**,...,*«]. 

The best criteria based on these cumulants turns out 
(maybe not surprisingly) to be a sum of criteria, each term 
being concerned with a particular output, i.e. cauto(5) = 

EU cp(5)with 

Cp(B)     =     (kp + 1) \qP
p
Pp - kp\2 + ap \r„ - 1 

-     2AP (fPp - l)(qpp - kp) (19) 

which can also be written as sums of squares: 

cp(B) = \U4PP - kp) ~ <p(fpp - ^l2 + Pp\f™ ~ 1l2  (2°) 
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where $p --- -,,, kp + 1, £p = Ap/^p and pp = ap — £2. Again, if 
the source distributions are close to normal, then all cumu- 
lants are close to 0 and, according to (8), a « 4. Thus, we 
have in the normal limit 

ut0(o) = ^4|7vP-l|2 + |^ Kn (21) 
P=I 

where the coupling between 2nd and 4th order cumulant 
estimates has disappeared. 

3.3. All 2nd and auto-4th order cumulants 
This criterion is interesting because it relates to Comon cri- 
teria in that the same set of cumulants are used, except that 
these are combined in an optimal way. The performance 
relationship between the two is illustrated in the following 
section. The criteria itself, optimally involving the whole 
2nd order information and only the auto 4th order cumu- 
lants is 

c2+a„to4(£) = cauto(5) + ^T \rpq\2. (22) 

It is seen that the cross-correlation terms add very simply 
to the Cauto(J5) criterion. 

3.4. 4th order cumulants only 
The case where the whole 4th order cumulant set 

Ty = {qij I 1 < i, j, k, I < n} (23) 

is involved in the estimation was investigated in [5].   For 
two identically distributed sources, we obtained 

C4(J) = i*a-fcr + isg-fcia + m\2 

(*+i) 
+ 

+ 2(i?i* I2 + I -21|2 \ 
l'J22|    ) 2fc2 1-11 -21 |2 

l?12  - 922 1 
7 + k2 

72 - fc4 

2 |g22P 
(k + 2)2 

(24) 

For instance, in the case of two QAM16 sources, one has 
k = -0.68, h = 2.08, o = -13.5184 (we assume that 
the phase of these constellations is randomized and we re- 
call that, by convention, the sources have unit variance). 
The optimal criterion based on 4th order cumulants for the 
source separation of two QAM16 signals is then approxi- 
mately, at low noise: 

22|2 c*(B) = 0.72(|</ü + 0.68|2 + \qll + 0.68|2) + 9.77|^ 

+ 1.15|<?n|2 + 1.75(|jJJ|2 + \qil\2) + 3.72|$ - q%\\ 

This shows that in this case the cross-cumulant q\l is a 
more reliable measure of independence than, say, g22. 

3.5.     Link to suboptimal criteria 
Now as pointed out before, a number of algorithms in 
the literature (ICA, JADE) can be interpreted in terms of 
statistic matching. However these do not use the optimum 
weighting. Rather they are based on a hard prewhitening in 
the sense that the (empirical) covariance matrix of the sig- 
nals at the output of the separating matrix is constrained 
to be exactly the identity matrix, leaving no room for an 
'approximate decorrelation'. 

This can be interpreted as the weighted statistic matching 
in which virtually infinite weights are put on the second 
order statistic terms and flat weights on the 4th order terms. 
In practice the limit  as one increases the weight on the 

second order terms can be taken. Results in the next section 
demonstrate the equivalence of this weighted statistic with 
the ICA/JADE contrasts. 

Use of this suboptimal weighting results in a performance 
loss which we illustrate in the next section. In addition 
we will consider the flat weighting which is simply statistic 
matching with equal weights applied to all the statistics. 

4.    ASYMPTOTIC PERFORMANCE 

We shall be using the interference rejection at the output 
of the separating matrix as the measure of performance in 
our analysis. The relevant figure of merit is the ISI (inter 
symbol interference) which is defined pairwise between two 
sources p and q as the ratio of the power of source j to 
that of source p at the channel output corresponding to q; 
since this is proportional to 1/N where TV is the number of 
samples, we shall really be considering the ISI rate, given 
by A x ISI in the subsequent expressions and plots. 

Indeed the performance can be expressed in terms of 
the perturbation of the global system from the identity, 
BA = I + £. Then ISIP, = E|<?P9|

2 and this may be 
computed from the covariance of £ which itself is given by 
(w,i/2i))#(^i/2Cov(:f)^i/2)(w,1/2z?)#„ where D .s the 

derivative 8T/d£. 

Two performance bounds. 
Denote ppq the (p, q) entry of matrix (AHA)~1 and let 

a be the noise power. Any source separation using hard- 
whitening has a pair-wise lower bounded rejection rates [8]. 
We call this the 'pre-whitening bound'. For n = m, it is 

ISIM + ISIW > i(l + crppp){\ + apqq) (25) 

Another bound is provided by computing what would be 
the ISI if matrix A was identified knowing the source signals. 
This is the so-called I/O (input/output) bound. It is: 

ISIpq > crppp (26) 

Some numerical evaluaions are given below for illustra- 
tion.. They are computed for a 2times2 matrix A = [<ii, a2] 
such that |o.i| = \a2\ and with the values of pi} indicated 
on the plot. We use QAM4 and QAM16 distributins with 
a randomized phase (to ensure circularity). 

Optimal contrasts. Figure 1 for the case of two identical 
sources shows the effect of strictly increasing information 
as we go from the optimal criterion using the 4th order 
cumulants to that involving entire second and 4th order cu- 
mulants to the input-output bound. The optimal criterion 
involving all the second order and the 4th order auto cumu- 
lants is also shown. We note that for QAM4 at good SNR, 
optimal matching of 2nd and 4th order cumulants is close 
to I/O performance (there is a ratio of 2 in terms of ISI); in 
this situation includind 2nd order information seems crucial 
for good performance (see how the curve for 4th order lev- 
els off at increasing SNRs). These conclusions do not apply 
to the QAM 16 case (there is clearly a 'constant modulus 
effect' here). 

Suboptimal contrasts The next figure 2 indicates the 
performance of actual JADE/ICA contrast based algo- 
rithms compared to the suboptimum criterion employing 
flat weighting. The bound for pre-whitening is included for 
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Figure 1. ISI:qam:4+4:16+16: 

ISI_(1,2) for QAM4 and QAM4 
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Figure 2. ISI:4+4:16+16 

reference. We note that the use of the optimum weights in- 
stead of the hard weights for pre-whitening overcomes that 
bound. Moreover the actual performance of the above algo- 
rithms can be dominated by this effect in high SNR, a point 
which is more evident in the upper panel for two QAM4 
sources. 

Effect of source distributions We round off this discus- 
sion with an illustration of the effect on performance as the 
source distribution varies from the constant modulus limit 
to the Gaussian limit. Figure 3 illustrates the variation of 
ISI rate as we start with two QAM4 sources and make them 
progressively more Gaussian by adding a Gaussian compo- 
nent to the source with a relative amplitude of t, which 
can then be treated as a "Gaussianity parameter". Note 
how the pre-whitening loss constrains the performance of 
the JADE/ICA algorithms at small values of t while the 
optimum 4th order criterion does uniformly worse. Further 
note the flattening of the optimum 2+4 curve near the CM 
limit and the transition near t = 1 corresponding to the 
Gaussian component effectively smearing out the discrete 
nature of the distribution. On the other hand, we see that 
ICA/JADE contrasts do as well as optimal matching of 2nd 

and 4th order cumulants as the distribution of the sources 
gets close to normality. 

ISI_12 as two identical QAM4 sources become increasingly Gaussian 

rho_pp = 1.593 , rho_12 = 0.6439-0.7273i 

^ » »_*  *., * -  - /^ - £-•*• 

■ 

/            ___ Opt 2+4 

jf                         ... Opt 4 

yf                             — IO Bound 

r s<                                          * JADE/ICA                                   : 
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Gaussianity parameter t —> 

Figure 3. ISI:ToGauss.eps 

CONCLUSION 

This paper develops the link between contrasts for source 
separation and criteria based on optimal statistic matching. 
A number of optimal and sub-optimal criteria are proposed, 
studied and compared. The ICA contrasts of Comon and 
of Cardoso are investigated within the same framework; it 
is seen from the examples that the primary cause of per- 
formance loss of those algorithms relative to the optimum 
criteria at high SNR is caused by the hard pre-whitening. 
The effect of source distributions on performance is also il- 
lustrated; we find in particular that JADE/ICA constrasts 
are very suboptimal for constant modulus sources but tend 
to be optimal as the source distributions are pulled from this 
limit case. More illustrative examples will be presented at 
the workshop. 
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Abstract 
In this paper, an algorithm using the well-known 

notch filter and an algorithm using a peak filter are 
proposed to estimate the frequencies of sinusoidal sig- 
nals with a given set of Gaussian noise corrupted mea- 
surements y(n) provided that the number of sinusoids is 
known in advance. The former processes y(n) such that 
a single fourth-order cumulant of the notch filter out- 
put is minimum in absolute value, while the latter pro- 
cesses y{n) such that the same fourth-order cumulant 
of the peak filter output is maximum in absolute value. 
Then the unknown frequencies are obtained from the 
optimum notch filter and the optimum peak filter, re- 
spectively. A performance analysis of the proposed two 
algorithms is then presented followed by some simula- 
tion results for a performance comparison of the pro- 
posed algorithms and Swami and Mendel's SVD low- 
rank approximation method. 

1. Introduction 

Estimation of parameters of sinusoidal signals is a 
problem to estimate frequencies 0 < W{ < -K and ampli- 
tudes Ai > 0 with a given set of noisy measurements 
modeled as follows: 

y(n) = ^ A;cos(w;7i + <f>i) -f w(n) (1) 
i=i 

where p is the total number of sinusoids, <j>i's are ran- 
dom phases and w(n) is additive noise. This is a 
well defined problem in some statistical signal pro- 
cessing areas such as noise and interference cancel- 
lation and estimation of direction of arrival (DOA) 
of narrowband source signals in sonar and radar ar- 
rays. Usually, frequency estimation is followed by am- 
plitude estimation because the former often resorts to 
a nonlinear search procedure while the latter can be 
solved from a set of linear equations once w;'s are es- 
timated.    There have been a number of correlation 

(second-order statistics) based algorithms reported for 
the estimation of w,'s such as Pisarenko's harmonic 
decomposition procedure [1], Tufts and Kumaresan's 
method [2], over determined Yule-Walker method [3] 
and maximum-likelihood method [4]. Chicharo and Ng 
[5] proposed an adaptive notch filtering approach for 
the enhancement and tracking of sinusoids in additive 
noise. The transfer function of notch filters (IIR filters) 
of order equal to 2p is given by 

HP(z) n°=i(i+/^-1+/^~2) 
nLiCl + aa^ + a2*-2) (2) 

This work is supported by the National Science Council un- 
der Grant NSC 85-2213-E-007-012. 

where 0 < ß < 1 and 0 < a < ß. The w,'s are obtained 
by solving roots of the numerator polynomial of the 
adaptive notch filter. 

Higher-order (> 3) statistics, known as cumulants, 
have been used for frequency estimation of sinusoidal 
signals when measurement noise is Gaussian because 
all higher-order cumulants of Gaussian noise are equal 
to zero. Thus cumulant based frequency estimation 
algorithms [6-8] are insensitive to additive Gaussian 
noise. In this paper, the notch filter and a peak filter, 
using a single fourth-order cumulant are proposed for 
frequency estimation of sinusoidal signals. A perfor- 
mance analysis of the proposed frequency estimation 
algorithms (one using the notch filter and the other 
using a peak filter) is presented followed by some sim- 
ulation results. 

2. Cumulant based harmonic retrieval 
using notch filters and peak filters 

Assume that we are given a set of noisy measure- 
ments y(n), n = 0,1, • • •, iV — 1 modeled by (1) under 
the following assumptions: 

(Al) The number p of sinusoids is known a priori; 
amplitudes Ai > 0 and frequencies 0 < w,- < 
7T, i = 1, • • •, p are unknown. 

(A2) Measurement noise w(n) is Gaussian with un- 
known statistics. 

0-8186-7576-4/96 $5.00 © 1996 IEEE 
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(A3) Phaser's are i.i.d. random variables with a uni- 
form probability density function over [—7r, TT) 

and they are statistically independent of w(n). 

Let CM,e(*i,---.*M-i) denote the Mth-order cu- 
mulant function of a non-Gaussian signal e(n). We 
need the following proposition on which the two fre- 
quency estimation algorithms to be presented are 
based. 

Proposition 1. Let e(n) be the output of a linear 
time-invariant system H(z) with input y(n) given by 
(1) under the assumptions (Al) through (A3), i.e., 

oo 

e(n) = y(n) * h(n) =   £  h(k)y(n - k)       (3) 
fc = — oo 

where h(n) is the impluse response of the system. Then 

C4,e(0,0,0) = -|^^MF(e^)|4 (4) 
8 = 1 

A. Notch filter based algorithm: 

By Proposition 1, one can infer the following fact: 

(Fl) Let e(n) be the output signal given by (3) of the 
notch filter Hp(z) with ß = 1 given by (2). Then 
|C4,e(0,0,0)| = mm{|C4,e(0,0,0)|} = 0 occurs 
only when \Hp(ejUi)\ - 0 for all i, i.e., 

a; = -2 • cos{u)i) (5) 

Let C4ie(0,0,0) denote the fourth-order sample cu- 
mulant associated with C4,e(0,0,0). By (Fl), we pro- 
pose the following frequency estimation algorithm: 

Algorithm 1: 

(51) Let e(n) be the output signal given by (3) of the 
notch filter Hp(z) {ß = 1) given by (2). Find 
the optimum parameters Sj, i = 1, • • •, p of Hp(z) 

such that |C4>e(0,0,0)| is minimum. 

(52) Obtain w,- by (5), i.e., 

Ui = arccos(—a,i/2) (6) 

B. Peak filter based algorithm: 

The peak filter used for frequency estimation is an 
IIR filter with transfer function 

V(A   TILAI + W-' + P
2
«

2
*-

2
)     (7) P['~      nP=i(1 + aa.z-l + a2^-2) W 

where 0 < a < 1 and 0 < p < 1. The peak filter differs 
from the notch filter in that each pair of complex con- 
jugate poles (with magnitude a) are closer to the unit 
circle than the associated pair of complex conjugate 
zeros (with magnitude ap < a ). 

Again, by Proposition 1, one can infer the following 
fact: 

(F2) Let e(n) be the output signal given by (3) 
of the peak filter Vp(z) given by (7). Then 
|C4,e(0,0,0)| = max{|C4,e(0,0,0)|} occurs when 
a;, i = 1, • • ■ ,p of Vp(z) are given by (5). 

The following frequency estimation algorithm is due to 
(F2): 

Algorithm 2: 

(51) Let e(n) be the output signal given by (3) of the 
peak filter Vp(z) given by (7). Find the opti- 
mum parameters az-,i = l,---,p of Vp{z) such 

that |C4]e(0,0,0)| is maximum. 

(52) Obtain Qi using (6). 

To find the optimum a; required in (SI) of the pro- 
posed two algorithms, we have to resort to iterative 
optimization algorithms because 

\   2 

C4,e(0,0,0) 
1 

JV-1 N-l 

- y e4(") 
N      n n = 0 

r   1   jv — x i 

(8) 
71 = 0 

is a highly nonlinear function of a,-. A gradient type 
iterative algorithm is used to search for the optimum 
a = (ai, • • •, ap)

T.  At the nth iteration, a is updated 

by 
d|C4,e(0,0,0)| 

a(n) = a(n — 1) ± 77- 
3a a=a(n-i) (9) 

where r\ is a small positive constant and " — " is for Al- 
gorithm 1 and " + " is for Algorithm 2, respectively. 
An initial condition for a(0) is needed to initialize the 
iterative algorithm given by (9). Swami and Mendel's 
method [6] can be used to obtain an estimate for each 
Ui and the associated a; computed by (5) can be used 
for a(0). 

3. Performance analysis 

To illustrate the performance of the proposed two fre- 
quency estimation algorithms, let us assume that p = 1, 
Ai = 1, ux = 0.57T and w(n) is white with variance u\. 
Then 

|C4,e(0,0,0)| 
f  (3/8)|#!(e^ 
i (3/8)|y!(e^)|4 

4
   for Algorithm 1 

for Algorithm 2 

with the same optimum solution a\ = a = 0 by (5). 
Figure 1 (a) shows /ofifi0|C4,e(0,0,0)| associated with 
the peak filter used by Algorithm 2 for p = 0.9 and 
a = 0.9 (dashed line), 0.95 (dotted line) and 0.99 (solid 
line), respectively, and Figure 1 (b) shows |C4,e(0,0,0)| 
instead of logw\CA>e{0, 0, 0)| associated with the notch 
filter used by Algorithm 1 for ß = 1 and a = 0.9 
(dashed line), 0.95 (dotted line) and 0.99 (solid line), 
respectively. One can see, from these two figures, that 
a single peak (whose magnitude is larger for larger a) 
in Figure 1 (a) and a single notch (|C4,e(0,0,0)| = 0) 
in Figure 1 (b) located at a — 0 are associated with 
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each curve, and that the larger a, the narrower is the 
peak for the former and the notch for the latter. 

It can be shown that 

C4,e(0,0,0) « C4>e(0,0,0) + CV(0,0,0)        (10) 

where C$IWI(0,0,0) is the fourth-order sample cumu- 
lant of the Gaussian noise w'(n) in the filter output e(n) 

due to the presence of w{n). Note that 6*4^'(0, 0,0) it- 
self is a random variable. For the notch filter, it can be 
shown that for a = 0 

2 

E[C2,(0,0,0)] >a2 = 
6 N 

££(' N 
l=-N 

N 
)rl(l) 

where rwi(l) (autocorrelation function of w'(n)) is given 
by 

'(0 
1 = 0 'W 1 + Qf2 

2     (a2-l)ol'leos(fa/2) 
w ' (1 + a2)«2 ' /#0 

Therefore, min{\Ciie(0, 0, 0)|} = 0 is easily smeared by 

C4lU,'(0, 0, 0) if ffi > 0 (low SNR). On the other hand, 
for the peak filter, it can be shown that for a — 0 

E[Clw,(0,0,0)]<a2
2 = 1050-1 + 

Q>2-l)2q4^4 

1-a4 

One can easily infer that if max{\C4 e(0,0, 0)|}/cr2 = 
(3/8)|^i(e>'°-5,r)|4/ff2 > 1, the optimum a = 0 can be 
accurately estimated even if SNR is low. For instance, 
max{\Cite(0, 0,0)|} = 4316 > <r2 = 28.6 for SNR = 
0 dB, p = 0.9 and a = 0.99. Therefore, the previous 
performance analysis leads to following fact: 

(F3) Algorithm 2 outperforms Algorithm 1 for fi- 
nite data, because the former is more robust to 
additive noise than the latter. 

4. Simulation results 

As mentioned in Section 2, SM method [6] was used 
to provide an initial condition for the proposed two fre- 
quency estimation algorithms. In the simulation, thirty 
independent runs were performed to compute the mean 
square error (MSE) defined as 

1     30       p 

(ii) 
J = l     ! = 1 

where /,• = w;/27r and fy is the obtained estimate for 
fi at the jth run. Two sets of simulation results (p = 1 
and p = 2, A\ — A2) for measurement noise w(n) as- 
sumed to be white Gaussian were obtained using Al- 
gorithm 1 with ß = 1 and a — 0.99 and Algorithm 
2 with p = 0.9 and a = 0.99, respectively. 

Let SNR = A2/(2a2
J) where a% is the variance 

of w(n). Table 1 shows the simulation results for 
p = 1,  Ai = 1,  A = 0.2,  N = 1024,  2048,  4096 

and SNR = 0, 5, 10, 15, 20 dB. From this ta- 
ble, one can see that Algorithm 2 performs best, SM 
method performs second and Algorithm 1 performs 
worst. On the other hand, Table 2 shows the corre- 
sponding results for p = 2, Ai = A2 = 1, /i = 0.1 and 
/2 = 0.2. From Table 2, one can see that Algorithm 
2 performs best except for the case that SNR = 0 dB 
when N = 1024 and 2048 while SM method performs 
best for this case. These simulation results indicate 
that the latter may perform better than the former for 
small N and low SNR. However, Algorithm 1 always 
performs worst as predicted by (F3), and its perfor- 
mance for low SNR may not improve even when N is 
increased (see the results for N = 2048 and 4096 when 
SNR = 0 dB, 5 dB and 10 dB in Table 2). The rea- 
son for this is that although N was doubled, the notch 
of min{|C4|f,(0,0,0)|} = 0 in some realizations was 

severely smeared by C4)U,;(0,0,0) « C4>e(0,0,0) at the 
vicinity of (ai,a2)

T = (-2COS(0.2TT), -2COS(0.4TT))
T 

where w'(n) was the Gaussian noise in the notch filter 
output due to measurement noise w(n). 

5. Conclusions 

We have presented two frequency estimation algo- 
rithms with a given set of noisy sinusoidal signals un- 
der the three assumptions (Al) through (A3). Al- 
gorithm 1 uses the notch filter and Algorithm 2 
uses the peak filter, while the former tries to minimize 
but the latter tries to maximize the same single abso- 
lute fourth-order cumulant. A performance analysis for 
the proposed two algorithms was also presented. Then 
some simulation results obtained by the proposed two 
algorithms and Swami and Mendel's method were pre- 
sented for a performance comparison. The presented 
simulation results support that Algorithm 2 performs 
best for the case of p = 1, but for the case of p = 2 it 
performs best except that when N is small and SNR 
is low, Swami and Mendel's method performs best. 
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(a) (b) 

Figure 1. (a) logw\Ci „(0,0,0)| associated with the peak filter for p = 0.9 and a = 0.9 (dashed line), 0.95 (dotted 
line) and 0.99 (solid line), respectively; (b) |C4,e(0, 0,0)| associated with the notch filter for ß = 1 and a = 0.9 

(dashed line), 0.95 (dotted line) and 0.99 (solid line), respectively. 

N SNR 

MSE(xl0~7) 
SM 

Method 
Algori 
-thm 2 

Algori 
-thm 1 

1024 

20 dB 0.0171 0.0026 0.0471 
15 dB 0.0266 0.0122 0.1401 
10 dB 0.0634 0.0310 0.3955 
5 dB 0.3141 0.1838 1.6149 
OdB 4.4869 2.3268 8.3789 

2048 

20 dB 0.0026 0.0003 0.0478 
15 dB 0.0059 0.0026 0.1439 
10 dB 0.0214 0.0112 0.5197 
hdB 0.1717 0.0856 1.7674 
OdB 3.7787 1.6415 8.2338 

4096 

20 dB 0.0010 0.0003 0.0199 
15 dB 0.0019 0.0004 0.0617 
10 dB 0.0060 0.0015 0.1888 
hdB 0.0480 0.0152 0.5698 
OdB 0.9703 0.3434 1.7159 

N SNR 

MSE(xl0~7) 
SM 

Method 
Algori 
-thm 2 

Algori 
-thm 1 

1024 

20 dB 1.4042 0.0035 0.5792 

15 dB 1.5070 0.0041 2.0163 
10 dB 1.8507 0.1120 100.93 
5 dB 4.8170 0.0266 1394.9 
OdB 86.835 148.69 3034.0 

2048 

20 dB 0.2858 0.0010 0.5308 
15 dB 0.3233 0.0011 1.7446 
10 dB 0.5162 0.0023 42.250 
5 dB 2.3045 0.0066 269.14 
OdB 39.381 41.777 1605.0 

4096 

20 dB 0.0974 0.0002 0.5556 
15 dB 0.1133 0.0005 1.8608 
10 dB 0.2016 0.0006 239.27 
5 dB 0.9268 0.0013 518.37 
OdB 10.896 0.0035 10596 

Table 1. MSE's associated with the SM method, Al- 
gorithm 1 (using the notch filter) and Algorithm 2 
(using the peak filter) for p = 1 and /i = 0.2. 

Table 2. MSE's associated with the SM method, Al- 
gorithm 1 (using the notch filter) and Algorithm 2 
(using the peak filter) for p = 2, /i = 0.1 and f2 = 0.2. 
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Abstract 

Estimates of Higher Order Statistical quantities (such as 
the bicoherence) have higher variances than their second- 
order counterparts. Reliable estimates can be obtained by 
using longer data records, but in practice this is often not 
possible. In direct-method bicoherence estimation, estim- 
ates from shorter records can be highly dependent on meas- 
urement errors and background noise. To try to get around 
these problems, a new bicoherence measure based on the 
a-trimmed mean bispectrum is described. Simulations in- 
dicate how well this new measure performs compared to the 
standard bicoherence measure. 

1   Introduction 

The discrete bispectrum of a discrete, stationary, 
stochastic process x(n) can be estimated using a segment- 
averaging approach [4]; the signal x(n)(n = 1, ..,N) is 
divided into K non-overlapping segments (m = l,..,K), 
each of length NDFT (N = NDFTK). The A^FT-point 
DFT Xm{k) is computed in each segment m, and the bis- 
pectrum is estimated using 

B(k,l) = ^£>m(M) = ^Xm(k)Xm(l)X*m(k+l), 

■ ■ K (1) 

m which £ = J2m=v As it stands the variance of this 
estimate is different in each bifrequency bin (k, I) [3]. The 
variance can be (approximately) flattened by normalising 
the bispectrum to form the squared bicoherence b2(k, I) [4] 

b2(k, I) = 
B(k,l) 

S(k, l)P(k +1) 
(2) 

in which 

=    ^£l*m(*)*m(OI2, 
* supported by EPSRC and BT Laboratories. 
t supported by NERC. 
* supported by The Royal Society. 

=   iEX™(H/Ä(H0,     (3) 

are the denominator components and again J2 = Sm=i- 
The methods used in this paper are equally applicable to 
other bispectrum normalisations, and similar results (not 
shown) have been achieved for the skewness function. 

Previous applications of the bicoherence for Quadratic 
Phase Coupling (QPC) detection [4, 1] have considered 
coupled sinusoids in white Gaussian background noise, but 
therehas been no investigation into how well the bicoherence 
detects QPC if the background noise includes disturbances 
such as transients. Furthermore, previous analyses have typ- 
ically used long data records such that A' xs NDFT, but in 
practical applications the data length TV* (and thus K) may 
be limited. 

Under these more demanding conditions, new problems 
can arise. Although the bispectral estimate (Eqn. 1) is 
asymptotically complex normal [3], if if is small the dis- 
tributions of %t[B(k, I)} and Q[B(k, /)] may be non-normal. 
Furthermore, bispectral estimates from short records are 
small-sample estimates of large-variance quantities, and so 
occasional large values (possibly due to estimation errors, 
or to external transients) can exert a strong influence over 
the bispectral estimate. In other words, the distributions of 
bispectral estimates based on small, noisy samples may have 
long tails, and so bispectral averages formed using the mean 
estimator (as in Eqn. 1) may be susceptible to outliers. 

The new method developed in this paper is based on 
forming a bispectral estimate without using the values in 
the tails of the distribution. Obviously this will reduce the 
variance of the estimate, and in the case where the sources 
of error described above are small the new estimate will be 
worse than the raw estimate. However, in cases where the 
sources of error are significantly large (and this can often 
be gleaned from inspection of the time series and power 
spectrum) the new method can result in improved estimates. 

The key assumption in this new method is that the sources 
of error described above influence the bispectral estimate in 
a small number of segments only. i.e. that extreme bispec- 

0-8186-7576-4/96 $5.00 © 1996 IEEE 
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tral values (due to either measurement errors or transients) 
occur only in a small number of segments. By excluding 
these it is hoped that the resulting bispectral estimate, and 
subsequent bicoherence estimates will be more robust. Pre- 
vious applications of robust techniques to HOS have been 
limited to time domain parameter estimation problems [5]. 

2   An a-trimmed mean estimator for the bis- 
pectrum 

The key steps in the computation of the a-trimmed- 
mean bispectrum estimate will now be described. These are 
based on the a-trimmed mean algorithm described in [6]. 
The a-trimming is applied to the real and imaginary parts 
of the bispectral estimate separately, because a-trimming 
is only appropriate on signals which are symmetrically dis- 
tributed [6] (For this reason it cannot be applied directly 
to the bicoherence estimate). The algorithm is described 
below. 

1. Divide the time series x(n)(n = 1, ...N) into A" seg- 
ments (for clarity it is assumed that there is no over- 
lapping of the frames). 

2. Compute the raw bispectral estimates Bm(k, l){m - 
l,..,/f)(seeEqn. 1). 

3. For each (k, I) form two vectors r = [ri,.., rx]T and 
i = [ii, ..,I'K]

T
. each containing K integers. Each 

integer in r (or i) identifies a segment m, and hence a 
value of $l[Bm(k,l)} (or 3<[£m (&,/)])• The integers 
in r and i are arranged so that 

»[flri(jb,0]    =   mjn»[Bm(*,/)], 

»[Brjc (*,/)]    =   max*[Bm(*,0], m 

QIBi^Jb,/)]    =   nnn9[Bm(M)], m 

S[£!K(M)]   =   max3[Bm(M)].       (4) 
m 

Note that the ordering is done separately for real and 
imaginary parts, r and i thus determine the order 
statistics [6] of the real and imaginary parts of the raw 
segmental bispectrum estimates. 

4. The a-trimmed mean estimate at a particular bifre- 
quency (k, I) is then evaluated as the sum of the 
a-trimmed real and imaginary parts. 

Ba   = 
1 

.1 + 

ÜT(l-2a) I 
(l-r)[$l[Brg+l + BrK_gl 

mBig+l+BiK_g]} 

+      J2   ^[Brm]+MBim}\,     (5) 
m=g+2 

where g is the largest integer less than or equal to 
aK, r — aK - g and the (k, I) has been dropped 
for clarity. Eqn. 5 is a summation over the segments 
identified by the middle K - 2g values of r and i (i.e. 
[rg+i,.., rK-g] and [ig+i,.., iK-g})- 

5. This estimate is thus formed for all bifrequencies (fc, /) 
of interest. 

This estimate is based on the absolute values of the real 
and imaginary parts of the bispectrum estimates. It discards 
the contributions to B of a fraction of segments. If a is 
increased then the contributions from more segments will 
be discarded. 

It is important to stress that the list of segments for which 
bispectral values are discarded can be different at different 
bifrequencies. This is intended to accommodate interference 
such as bandlimited transients, which will affect the raw 
bispectral estimates at some bifrequencies only. 

Furthermore, the choice to apply the a-trimming al- 
gorithm separately to the real and imaginary parts of the 
bispectral estimate means that at any given bifrequency, the 
segments from which the real part of the bispectral estimate 
is discarded may be different from the segments from which 
the imaginary part is discarded. The tacit assumption here is 
that the real and imaginary parts of the segmental bispectral 
estimates Bm (k,l) are independent of each other. Although 
this is asymptotically true (because the estimator is asymp- 
totically complex normal[3]), it is not at this time clear how 
valid this assumption is in practical situations. 

2.1    Normalisation 

Since the contributions to the bispectrum estimate from 
the tails of the sampling distribution are excluded by the 
a—trimming technique described above, the denominator 
of the normalisation in Eqn. 2 also needs to be changed. In 
order to try to preserve the magnitude of the bicoherence, 
the following, slightly ad-hoc approach is taken at each 
bifrequency. Since both real and imaginary parts are treated 
in the same way, only the real part will be considered here. 

• Form the vector r, which lists the segment numbers 
associated with $l[Bm], ordered according to the size 
of $l[Bm], as described above. 

• The segments listed at the top and bottom of r 
(i.e. n, ..rg, rK-g+i, -rK) are excluded from the 
a-trimmed estimate Ba (Eqn. 5). 

• Halve the contributions of these outlying segments 
(ri, ..rg,rK-g+i, -VK) to the estimates on the de- 
nominator of Eqn. 3. 

In this last step, the reason for halving, rather than exclud- 
ing altogether, contributions to denominator estimates is 
explained as follows. Consider one segment m in which 
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the raw estimates of the numerator and denominator of the 
bicoherence are Bm(k, 1), Sm(k, I) and Pm(k + I). Now 
the contribution of segment m to the final bispectral estim- 
ate will be zero only if both $[Bm(k, /)] and 9[jBm(i, /)] 
are extreme values (i.e. so both the real and the imaginary 
parts are trimmed). In such circumstances it is desirable that 
the contributions to S(k, I) and P(k + I) are also zero. If, 
on the other hand, %[Bm(k, /)] is trimmed but S[Bm(k, /)] 
is not, then the segment m does contribute something to 
the numerator estimate Ba, and so it should also contribute 
something to the denominator estimates Pa and Sa. 

Although this method seems to work well, it is not satis- 
factory from a mathematical perspective, and finding a better 
way of doing this is a topic of current research. 

2.2   An efficient implementation 

The algorithm presented above can be very memory con- 
suming, since the raw bispectral estimate for every segment 
has to be stored before the order statistics can be computed. 
Since the trimming factor a is typically small (0 < a < 0.2) 
a more efficient algorithm can be constructed by rewriting 
the estimation equation; instead of a summation over the seg- 
ments which are not in the distribution tails (as in Eqn. 5), 
rewrite this as a summation over all segments followed by 
a subtraction of the tail values. Using this implementa- 
tion, only the 2g + 2 (real and imaginary) tail values need 
to be stored, resulting in a large saving in memory needs. 
However, the new implementation requires a local sort1 on 
each segment in turn. 

The form for this algorithm becomes evident by writing 

£*« 
m=l 

5+1 

E*» 
m=l 

K-g-1 

+ E x„ 
m=g+2 

+ 
K 

E 
m=K-g 

X„ (6) 

and subsitutingfor the summation Y^iZg+2 m Fqn. 5. 
The estimate is then written as 

Ba   = 
1 K 

-    r[3t[Br,+l+BrK_g] + 

mBig+l + BiK_t]] 

~    X>[5rJ+j9[5,J 
m—1 

K 

E  WJ+JW-J 
m=K-g+l 

(7) 

Four vectors R(L"), R(
RH

\ t™) md i(RH) each store 
g+l extreme values of the real and imaginary parts 
of the raw estimates as m  =   1,..K.    For example, 

1A simple bubble sort was used in the current work. 

R(^) = [R[
LH

\ .., l{™¥, stores the left-hand extreme 
values (i.e. values in the left hand tail of the distribution 
of »[£„,(*, /)]). When J5m(jb, /) is calculated for a new 
segment m, 9t[Bm(k,l)] is placed as the (g + 2)th ele- 
ment of R(LH\ A sort is carried out, so that R[

LH)
 = 

nhrn=i,..,g+2R%H) and ä£? = maxfB=li..i,+2Ä^^. 

The value in Rf$ is discarded. When all K segments 
have been processed in this way, these four vectors Bf-LH^, 
R(RH)f J(LH) md J(RH) will cmt^n ^ quantities needed 
to calulated the trimmed mean estimate from Eqn. 7. 

Since a is typically about 0.05 this represents a storage 
saving of roughly 80%2 over the standard method of com- 
puting the trimmed mean. 

3   Results 

We propose that the modified bicoherence, described 
above, be used as a detector of Quadratic Phase Coup- 
ling (QPC) in signal processing environments influenced 
by background noise and transients. 

In order to see how well this measure works in practice, 
several simulation signals have been analysed. In common 
with other simulations used to measure the performance 
of the bicoherence as a QPC detector, the signal [m(n) = 
x(n)+v(n)] is modelled as the summation of an underlying 
sinusoidal component [x(n)] and an additive disturbance 
[v(n)]. x(n) exhibits QPC, but this may be difficult to 
detect with the ordinary bicoherence because of extraneous 
noise. 

The signal of length N is generated segment by segment 
as follows; 

*(") = E cos(27r/j" + fa), 
J=I 

(8) 

with f3 = fi + h and <j>3 = 4>\ + 4>i- The phases <f>i,<j>2 

are re-randomised U[0,2w) in each frame (this satisfies the 
Phase Randomisation Assumption which renders the bico- 
herence magnitude suitable for QPC detection[2]). 

In previous applications of the bicoherence [4, 1] v(n) 
was whiteGaussian noise. In this paper, v(n) = t(n)+g(n) 
is a summation of randomly occurring short-lived transients 
(modelled by damped sinusoids) and white Gaussian noise; 

N, 

v(n) = Ecos(2,rAin + 9j)e-i'n + g(n), (9) 
J=I 

in which hr = U[0,0.5), Oj = U[0,2w] ,rj = U[Q, I) and 
g(n) is white Gaussian noise. The transients are triggered 
randomly, with the probability of a transient beginning at 
any one time sample is controlled by a paramter y. 

2based on an assumption that K ■■ 
l-(2g + 2)/K = 87%. 

: 64, or = 0.05,fl = 3. the saving is 
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Figure 1. Left: Time series ofm(n). Right: Power 
spectra ofm(n) (signal plus noise) and x(n) (clean 
signal no noise). 

a £(0.2,0.1) /?(%) notes 
0 

0.05 
0.20 

0.82 
0.82 
0.84 

1.7 
3.2 
7.3 

standard method 
« 2 segments discarded 
RS 6 segments discarded 

Table 1. Performance measure of new technique. 

Hg. 1 shows the time series of one example of the 
noisy signal m(n) (TV = 1024, 7 = 0.02, SNR= 
lOlogm^/a? = OdB), with h = 0.1, h = 0.2, together 
with the Power Spectrum (NDFT = 64, K - 16) for both 
the signal with no noise [x(n)], and the signal with the tran- 
sient and steady state noise added [m(n) = x(n) + v(n)]. 
Clearly the noise has a very detrimental effect on the power 
spectrum, almost obscuring the spectral peaks. Hg. 2 shows 
the squared bicoherence of m(n) with different levels of 
a-trimming. The bicoherence should peak at (0.2,0.1) 
(which is equivalent to (0.1,0.2) because of symmetry). The 
top plot a = 0 corresponds to the ordinary squared bicoher- 
ence estimate - the peak at (0.2,0.1) is barely visible above 
the noise floor. However, the a-trimmed estimates show 
much lower noise floors. 

The improvement in performance can be measured by 
ß = 62(0.2,0.1)/£/T62(fc,/) x 100% - the percentage 
of total bicoherence "energy" which occurs in the correct 
bin3. Better QPC detectors will have higher values of ß. 
Table 1 shows how this varies for a typical example of 
this simulation. It is clear that the a-trimmed estimates 
perform better as QPC detectors than the ordinary squared 
bicoherence. Further simulation results will be shown at the 
conference. 

4   Discussion and Conclusions 

The proposed QPC detector based on an a-trimmed 
bispectral estimate appears to give reduced noise floors in 
the simulations investigated so far, and peaks due to QPC are 
easier to pick out using this detector than using the standard 
bicoherence. In particular the new detector is robust to 
interference from additive transients. The normalisation 
scheme used in this paper appears to work successfully, 

Figure 2. Squared bicoherences of m(n). Top: Or- 
dinary (standard approach). Middle: a = 0.05. Bot- 
tom: a = 0.20. 

although it does not have a rigorous mathematical basis. 
The performance of the new estimator as a QPC detector for 
other types of interference (such as Amplitude Modulation) 
is a topic of current work, which will also be described at 
the conference. 
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Abstract 
The work is addressed to provide realistic modelling of 
generic noise probability density functions (pdfs), in order 
to optimize signal detection in non-Gaussian 
environments. The target is to obtain a model depending 
on few parameters (quick and easy to estimate), and so 
general to be able to describe many kinds of noise (e.g., 
symmetric or asymmetric, with variable sharpness). To 
this end, a new HOS-based model is introduced, which 
derives from the generalized Gaussian function and 
depends on three parameters: kurtosis (fourth order), for 
representing variable sharpness, and Igft and right 
variances (whose combination provides the same 
information of skewness - third order) for describing 
deviation from symmetry. The model is applied in the 
design of a LOD test for detecting signals corrupted by 
real underwater acoustic noise in a low-frequency range. 

1. Introduction 

Realistic and simple statistical modelling of generic 
background noise is addressed in order to optimize signal 
detection in non-Gaussian environments. Detection 
purpose is to decide between the two hypotheses of the 
presence (H,) or the absence (H0) of a transmitted 
deterministic signal fsh k=l, .., K} (the approach can be 
extended to the stochastic case), on the basis of acquired 
observations {yh k=l, .., K} (application of binary 
hypothesis testing) [1]; the noise, {nk k=l, .., K} 
corrupting the signal during the propagation is assumed 
additive, independent and identically distributed, 
stationary, and generally non-Gaussian and unimodal. 

The work main target is to design a detector 
characterized by: (a) high performances in the case of 
weak signals; (b) easy applicability to real cases (in 
particular, easy and realistic estimation of needed 
parameters, realistic noise modelling, and robustness to 
variable boundary conditions); (c) algorithmical 
simplicity. 

Detection optimization in the case of low/middle values 
of the Signal-to-Noise Ratio (SNR) (in the range  [-30,0] 

dB) (property (a)), is reached by selecting the Locally 
Optimum Detector (LOD) [1] as statistical inference 
approach. 

For satisfying conditions (b) and (c), the investigation 
is addressed to express generalized noise pdf models, 
usually depending on parameters difficult to be estimated 
from real data samples, in terms of Higher-Order-Statistics 
(HOS) parameters [2], which are very easy and quick to be 
extracted from data and are particularly suitable for 
quantifying deviation from Gaussianity in terms of 
asymmetry (with third-order parameters) and variable 
sharpness (with fourth-order parameters). 

As conventional signal processing algorithms based on 
the Second Order Statistics, optimized in presence of 
Gaussian noise, may decay in non-Gaussian noise, various 
works used HOS theory [2] as signal-processing basis for 
noise analysis and detection optimization; however, some 
methods work only with non-Gaussian signals [3][4][5] or 
only in Gaussian noise [5][6][7]; some can be applied only 
under certain assumptions of noise distributions [8][9]; 
some are not optimized in the case of weak signals [3]; 
finally some algorithms are complicated [8]. 

In order to overcome at least some of the aforesaid 
limitations and improve robustness, simplicity and 
generality of HOS-based detectors, the parametric 
asymmetric generalized Gaussian pdf model is introduced. 
It derives from the combination of the well-known 
generalized Gaussian pdf [10] and of the asymmetric 
Gaussian model presented in [11]. 

The first model is symmetric and depends on a real 
parameter, c, which is not easy to estimate from data. 
Nevertheless, c presents a physical meaning, as linked 
with the pdf sharpness. The HOS parameter which better 
describes sharpness variability is the fourth-order kurtosis, 
ß2- Hence the analytical relationship between c and ß2 is 
introduced (see [12] for details). The resulting symmetric 
function based on kurtosis has the same characteristics of 
the generalized Gaussian, and is a realistic noise-pdf 
model for 1.865<ß2<30. 

In order to introduce into this variable-sharpness model 
also possible deviation from symmetry, the resulting 
kurtosis-based function is modified by taking into account 
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the asymmetric Gaussian model [11]. It directly derives 
from the Gaussian shape, but is asymmetric and depends 
on two second-order parameters, the left and right 
variances [11]. By introducing these two parameters in the 
kurtosis-based generalized Gaussian function, the 
"asymmetric generalized Gaussian" model can be 
obtained. 

The new model is compared with the generalized 
Gaussian and the asymmetric Gaussian pdfs, which result 
as its particular cases. It is applied in the design of a LOD 
test, used for detecting deterministic signals corrupted by 
real underwater acoustic noise radiated by ship traffic 

[13]. 

2. The asymmetric generalized Gaussian pdf 

In the context of noise modelling, one of the most 
noticeable ways in which estimated noise distributions 
deviate from Gaussianity is in kurtosis ß2, i.e., the ratio of 
the fourth and the square of the second central moments. It 
is equal to 3 in the Gaussian case; the sharpness of the pdf 
shape is higher (lower) than the corresponding Gaussian 
function as ß2 is larger (smaller) than 3. A good model for 
general pdfs has variable sharpness. 

One of the well-known symmetric pdf models is the 
generalized Gaussian, which depends on the parameter c: 

P^n)-2Y{\lc)e 0) 
where {n} is generic noise with mean value u and variance 

j  +00 

c2 y=     r(3/c)    r(*)= \e-xxk-xdx 
,y   V°2r(i/c)' o 
c cannot be directly estimated from data samples; hence 

the relationship between c and ß2 
was found t12^ II 

derives from the ß2 definition and is expressed by the 
following formula: 

mx
d E{(n-\i)4}      Y(5/c)Y(l/c)   ^ 

e»x2)2~(Ef(n-»f})2  w^ 

c = c(P2) 
ß2-1.865 

-0.12 for 1.865<ß2<30. 
(2) 

This formula allows one to express pgo(n) in terms of 

ß2 [12]. Its validity is confirmed by observing that for 
ß2>3 the resulting pdf has heavy tails, as expected [10]. 

In order to generalize this model so that it can be also 
asymmetric, the asymmetric Gaussian model presented in 
[11] is taken into account. It depends on two second-order 

2 
parameters (deriving from the definition of variance), <T/ 

and G2., called respectively "left" and "right variances" 
and estimated from finite sequences of the process fn) 
according to the following formulas: 

aj = 1 
N,-l 

N, 
1    (»k-\iY 

k=\,nk<)i 

and 

°2r = 
1 

Nr-\ 

(3) (     Nr 

where Nj (Nr) is the number of nk samples <u (>u). The 
model expression follows: 

Pad") = 
27t(a/ + rjr) 

" 2a? 

"  2a2 

n<\i 

n>\i 
(4) 

__ /27t(a/ + CTr) 
As well as the kurtosis-based generalized Gaussian 

model, it is analytically simple and easy to be estimated if 
some data sequences are available (the model includes the 

Gaussian case for a? = a2
r). The left and right variances 

are linked with the variance (the well-known second-order 
parameter) and with the skewness (the third-order 
parameter describing and quantifying pdf asymmetry) as 
follows [11]: 

7       2       2 a =c/ +GJ.- a/ ar 

/  n< + „4)    (5) 

(where E is the expectation value). 
In a similar way, these two parameters are introduced 

in the kurtosis-based generalized Gaussian pdf in order to 
transform it into the following asymmetric generalized 
Gaussian model: 

PagaW = • 

CJa     e-Yn-(»-u)f 
r(i/c) 

r(i/c) 

where v   = ■ la 
1 r(3/c) 

a/ + arlvf(l/c) 

1/2 
Y/ 

J_ (TQ/c) 
r(i/c) 

(6) 

1/2 

r(3/c) 
r(i/c) 

1/2 
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It is easy to notice that if   a/ =ar, then the pdf 
coincides with the generalized Gaussian,  hence  it is 

2      2 symmetric; if  C7/ =<5r and ß2=3, then it coincides with 
the Gaussian model. Figure 1 presents a family of the pdf 
as ß2 varies. 

Asymmetric Generalized Gaussian pdf family (varl=1. varr=2) 
0.8 

0.7 ■ 

0.6 ■ 

0.5 

10.4 ■ 

__^ beta2 = 3.762 

^^—- beta2 = 3 

0.3 T" beta2 = 2.631 

0.2 % 

0.1 Xk 

A -2 0 2           4           6           8 
X 

Fig. 1. Asymmetric generalized Gaussian family 
(u = 0). 

3. The LOD test designed on the basis of the 
new model 

The model is suitable for the design of a LOD test [1], 
as the non-linearity gioC) and the maximum asymptotic 
relative efficiency p can be expressed in terms of 
elementary functions. In particular: 

I    cyr(y-n)c 

fi-i 
y<\i 

y>y. (7) 

D_yaclr(2-l/c)(yl+yr)    2      2 

 nw)  (8) 

The respective graphs are presented in Figs. 2 and 3. 
From their analysis it is easy to conclude that the test 
works better for values of the kurtosis larger than 3 (i.e., 
for super-Gaussian and, in particular, for impulsive noise 
pdfs), as expected; nevertheless it can reach good 
performances even in more critical conditions of sub- 
Gaussian noise. 

In order to deduce test performances from a theoretical 
point of view, these graphs can be compared with similar 
graphs for other well-known pdfs: for example, LOD non 
linearities and maximum ARE curves computed in terms 
of the c-based generalized Gaussian, the generalized 
Cauchy, the generalized beta functions are presented in 
[10], those expressed in terms of the asymmetric Gaussian 

and the kurtosis-based generalized Gaussian pdfs are 
shown in [12][14]. 

LO non-linearities for Asymmetric Generalized Gaussian noise 

Fig. 2. 9IQU graphs as ß2 varies -a} = 3, aj = 1. 

10r 
MAX ARE for Asymmetric Generalized Gaussian noise 

102 

■E 
111 a. < 
x < 

101 

1Cf 
10" 

varl = 1, varr^3y 

varl = 1, varr?=2     /j 

varl = 1, varr = 1 

10' 

Fig. 3. p graphs as ß2 and (sr varies. 

4. Experimental results on real data 

From an experimental point of view, the capability of 
the proposed model of describing realistically generalized 
noise pdfs was evaluated by applying it to the problem of 
detecting known constant signals corrupted by underwater 
acoustic ship-traffic-radiated noise [13]. The noise data 
sequences were analysed and characterized at average by 
the estimated parameters u=-17.5, ß2=2.51, cf= 1550 and 
ar=1350 [13]. A comparison between noise histogram 
(computed on 10 records of 10000 samples) and the new 
pdf model estimated on the basis of the aforesaid second- 
and fourth-order parameters can be deduced from Figs. 4 
and 5: a good fitness between data and model is shown. 
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Fig. 4. The non-normalized data histogram. 
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x 

Fig. 5. The asymmetric generalized Gauss, pdf. 
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Fig. 6. Comparison of test results. PFA = O.OS. 

The detection performances obtained by applying the 
HOS-based model to a LOD test are presented by means 
of experimental curves of the Detection Probability PD as 
SNR varies, given a certain value of the Probability of 
False Alarm, PFA. In the diagram of Fig. 6 the 
performances obtained by using the new pdf model 

(depending on the left and right variances and on the 
kurtosis) are compared with those provided by an 
asymmetric Gaussian model (depending only on the left 

and right variances). 
The performance improvement is mainly associated to the 
capability of the new pdf to model non-Gaussian noise in 
a more realistic way, so that it can be better filtered. 
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Abstract 

This paper considers the use of composite property map- 
pings for MA cumulant matching. The algorithm makes use 
of two property mappings corresponding to rank and struc- 
ture properties of a matrix consisting of MA cumulants. It 
is proved that these two properties are sufficient to charac- 
terise a matrix consisting of true MA cumulants. This result 
clearly implies that provided that convergence is achieved, 
the composite property mapping algorithm performs some 
kind of cumulant matching. The issue of convergence is also 
discussed in the paper. Numerical results are presented to 
show the performance of the algorithm. Keywords: Higher 
Order Statistics, System Identification. 

1   Introduction 

C0 = 

% % ■ c ,   c 
1-1,q   q.q 0 

o   ■'■■   o 

^l.q-1 C0.q-1 Cljql 

Q.q-2   ^l/q-2 C0.q-2 

Cl-q.l ^-q,! C3-q.l' 

c ,   c 
q-i.q   q.q 

0 
0 

0 

0 

Cq-l,q^q^ jO 

q-'.q  q,q 

0.q ^l,q 

Cq-l.q-1  Cq.q-1  0 • • • 0 

"Cq-l/t-l Cql,q-2 Cq,q-2   '  '  '        0 

'Cq-3,1    Cq-2,1    C q-1,1   Cq,l    0 

'Cq-4,0    Cq-3,0    Cq-2,0   Cq.jß $,0 

Figure 1. The cumulant matrix used in the CPMA al- 
gorithm. It is assumed that cTl jT2 = c3a;(ri, r2). 

Consider the following finite impulse response (HR) sig- 
nal model: x(t) = £?=0 h(i)w(t - i) where the system 
input is assumed to be non-Gaussian, independent identi- 
cally distributed (HD), random process with E{w(t)} = 0, 
E{w(t)w(t + n)} = ß2S(n), and E{w(t)w(t + ni)w(t + 
"2)} = T3*(ni,n2). We assume that A(0), h(q) ^ 0. A 
method for the enhancement of third order cumulants of MA 
models was presented in [1]. That method is based on the 
use of Composite Property Mapping Algorithms (CPMA) 
[3]. The reader is referred to [3] for further information 
on CPMA and to [5] for a general introduction to set the- 
oretic estimation. Composite property mapping algorithms 
have originally been used within a HOS framework in [4] 
for blind array processing. This is a follow-up to the work 
described in [1]. Some of the material presented here is also 
included in [2]. 

2   Cumulant Enhancement 

In the following we summarise the main steps involved 
in the method of [1]: 

1. Collect the sample cumulants corresponding to the 
minimal sufficient set of lags in the following vector: 

^0 = [£3I«(0,0))C3,r(0)l),C3,,(l,l))...) 

C3,*(0, «),..., C3,x(q - 1, q), c3,«(«, q)]T. (1) 

2. The elements of §0 are then used to build the matrix C0 

depicted in figure 1 C0 is a (2q +1) x (2g +1) matrix. 
The matrix C 0 contains all the third order cumulants in 
the vector 0O. It can be shown that a matrix C which re- 
sults from matrix C0 after replacing sample cumulants 
with true MA cumulants, possesses the following two 
theoretical properties: 

(a) rank(C) = q + 1 

(b) The structural composition of C is determined by 
a characteristic matrix A and we say that C is a 
linear structured matrix. (More details in [1]) 

3. We perform the following iteration: Ct+1 = 
HVh) = ^A(J7,+i(Ct)).untUl-r,+1(Ck+i) < e, 
where e is a predefined small positive number. The 
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mappings Tx ,Fq+i and the quantity r?+i(Cjk+i) are 
defined as follows: 

(a) The mapping J^+i corresponds to the 
rank property of C. It is implemented 
using   SVD   (SVD-based   rank   reduction) 
JF?+1(X) = Elt\^nkvJ.   where 
X € R(2«+i)x(2«+U andX = J2lg=x ^tufcvj. 

(b) The mapping Tx corresponds to the 
linear-structure property of C: ^A(X) = 
T-1(A[ATA]-1AT T(X)). 

(c) It is possible to get an idea of how close a matrix 
X is to a q + 1-rank matrix, by examining how 
close the following quantity is to 1, provided that 
0-j+i > <Tq+2'- 

f?+l (*) 
<Tk (2) 

3   CPMA for Cumulant Matching 

In [1] this composite property mapping method was used 
as a preprocessing step before applying some linear methods 
for system identification. A question that rises naturally, is 
whether a matrix that possesses both properties defined in 
the previous section, contains true cumulants of some MA 
model. 

To start with we assume that the matrix sequence gener- 
ated by the iterative algorithm described earlier converges 
to a matrix S, which has both the desired structure and rank 
properties. It is interesting to examine whether this matrix 
consists of real cumulants of some MA model. Since the 
matrix S has the same structural characteristics as those of 
a matrix constructed of real cumulants, then if S{ j is a non- 
zero element of S, we denote Sij ass(ri, r2), where (n, r2) 
are the lags we associate with the i, j-element of a struc- 
turally equivalent matrix which is constructed from real cu- 
mulants. Then because of the structure property, the same 
symmetries that apply to lags of cumulants will apply to 
these associated lags of «(n, r2). In the following it is as- 
sumed that s(0, 3), s(q, q) £ 0. The following Lemma is 
required: 

Lemma 1 Suppose that we are given a (2q +1) x (2g +1) 
matrix S, which has the two prescribed properties (structure 
and rank). Then the following equation holds for S(TI , r2) : 

forn = 0, ..3— 1 and j = n — q, ...,q. 

The proof of this Lemma is given in the Appendix. 
Sinceweknowthats(0,g),s(3,g) ^ 0wecanfinda73 # 0 
such that 

«(*'. «) = 73 
s(0,q)s(q,q) s(i,q) 

(4) 
s(0,q)s(0,q)s(0,q) 

If we combine equations (3) and (4), we obtain the follow- 
ing: 

^s(i,q)s(i + n,q)     s(fi,q) s(q,q) s(i + j,q) 
sU,n)-2^    s(0,3)5(3,3)   l3s(0,q)s(0,q)    5(0,3) 

y^ s(i, 3) s(i + n, 3) s(i + j, q) ^ 

»•=0 
8(0, q)    5(0,g)        s(0,q) 

Equation (5) shows that s(j, n) is the third order cumulant of 
an MA model with parameters h(i) — s(i, q)/s(0,3). Thus 
the following theorem holds: 

Theorem 1 Every (2q + 1) x (2q + 1) matrix S possess- 
ing the structure and rank properties defined in this section, 
consists of real cumulants of some MA(q) model. 

The above theorem implies, that the cumulant enhancement 
method summarised earlier, when it converges to a matrix 
with the prescribed properties, performs some kind of cumu- 
lant matching. 

4   Convergence Properties 

An important issue that needs to be addressed here is that 
of convergence. Let us consider a matrix sequence gener- 
ated according to the algorithmic rule, 

Ci=^(Ct_i),    for   *>1 (6) 

in which the initial matrix C0 is the experimentally gener- 
ated matrix C0. Then at every step, the matrix Ck has the 
right structure and is "nearer" to a matrix with rank 3 + 1 
than C k -1 • In iterative mappings of this type, convergence 
is guaranteed only when all property sets are convex [5]. 
However, in our case, it is obvious that the set of matrices 
with rank 3 + 1 is not convex, and this violates the assump- 
tions required for Theorem (1) in [3]. In [7], Dologlou et al 
provide an interesting theorem which shows that the norm 
of the difference C* - Ci+i and the distance between Cj, 
and the set of matrices with rank less than or equal to 3 + 1 
both converge to 0 when k —>■ 00. The behavior predicted by 
this theorem is verified by our numerical simulations (sum- 
marised in figs.2 and 3). For system identification the fol- 
lowing methods are used: The Least Squares method of [2] 
(LS), the Closed Formula (CF) of [6] and a nonlinear method 
for cumulant matching [8]. It has been observed though, that 
for some MA models convergence in the sense described in 
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Figure 2. The singular value ratio (2), the square er- 
ror of the enhanced cumulants and the square error of 
the estimated parameters as a function of number of 
iterations. The dark curve represents the CF method 
[6] and the light curve represents the LS method [2]. 
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Figure 3. Sjwte/n identification results after 100 
Monte Carlo runs. Length of output sequence: 3000 
samples. The horizontal lines represent the true val- 
ues of the system parameters (model order=3). The 
vertical bars represent the average estimate +/- stan- 
dard deviation. The last graph shows the MSE of the 
estimation. 

[7] can some times require thousands of iterations. Conse- 
quently there are cases where practically we cannot achieve 
convergence. In these cases, the algorithm can still be used 
for preprocessing the cumulants as proposed in [1]. Since 
convergence can sometimes be difficult to achieve, com- 
posite mapping algorithms cannot replace existingnonlinear 
methods for cumulant matching. The drawback of nonlinear 
cumulant matching methods is that there is always a danger 
of becoming trapped in a local minimum However, in order 
to avoid this occurrence, good initial conditions are required 
and these are usually provided by linear methods. Because 
cumulant matching does not require any initial conditions, 
it can be applied1 prior to linear methods in order to provide 
improved initial conditions for the nonlinear methods. 

References 

[4] J.-F. Cardoso. Fourth-Order Cumulant Structure Forcing. Ap- 
plication to Blind Array Processing. In Proceedings IEEE SP 
Workshop on SSAP-92,1992. 

[5] P. L. Combettes. The Foundations of set Theoretic Estimation. 
Proceedings of the IEEE, 81(2):181208, February 1993. 

[6] G. Giannakis. Cumulants: A powerful Tool in Signal Process- 
ing. Proceedings of the IEEE, 75(9):1333-1334, September 
1987. 

[7] I Dologlou, J-C Pesquet and J Skowronski. Projection Based 
Rank Reduction Algorithms for Multichannel Modelling and 
Image Compression. Subitted to Signal Processing, 1995. 

[8] K Lii and M. Rosenblatt. Deconvolution and estimation of 
transfer function phase and coefficients for non-Gaussian lin- 
ear processes. Ann. Statist, 10:1195-1208,1982. 

APPENDIX 

[1] A G Stogioglou , S McLaughlin. Third Order Cumulant En- 
hancement for MA Models. In Proceedings of IEEE Workshop 
on HOS, June 1995. 

[2] A G Stogioglou, S McLaughlin. MA Cumulant Enhancement 
and Parameter Estimation. IEEE Transaction on Signal Pro- 
cessing, July 1996. 

[3] J. Cadzow. Signal Enhancement- A Composite Property Map- 
ping Algorithm. IEEE Transactions on Acoustics, Speech and 
Signal Preocessing, 36(l):49-62,1988. 

without necessarily achieving convergence 

Proof of Lemma 1: The vectors corresponding to the first q+1 
rows of the matrix S are denoted as s^ where d - 0,..., q and the 
vectors corresponding to the last q rows of the matrix are denoted 
bys9_i,...,s0. Jf we assume that s(0,q),s(q,q) / 0, then it is 
evident from their structure, that the q +1 vectors s£ ,d - 0,..., q 
are linearly independent. Given that the rank of the matrix is q+1, 
we can conclude that the vectors corresponding to the last q rows 
of the matrix, belong to the space spanned by the first q + 1 rows. 
In particular since the last n elements of the vector sn (n = q - 
1,..., 0) are zero, it can easily be seen that they belong to the space 
spanned only by s% for d = 0,..., q - n. We can write this as 
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follows: 

snespan{s°„...!Sr
n}    n = 9-l,...,0. (7) 

Now if we take n — g - 1, it is straight forward to prove that, 

s(0,q) s(q,q) 

In scalar form, this translates to, 

l 

s(j,q-l)=Yl 
t=0 

s(i,q)s(i + q- 1) 
s(g,g)s(0,g) 

«0' + i, q) 

j = -l,...,q, (9) 

so equation (3) holds for n = q — 1. 
Assumption 1: Let us suppose that equation (3) holds for every 

n such that q-l>n>k,for some k > 0. 
We want to prove that it also holds for n = k - 1. 

q-k + l 

Sk-i =   2_^  ^fc-i,>s<r 
«=0 

(10) 

Because of the cumulant like symmetries in the lags of s(fc — q - 
l,fc-l), the first element of sk_! iss(fc-g-l,fc-l) = s(q- 
k + 1, q). It is related with s(0, q) as follows: 

s(g - k + 1, g) = A)t-i,os(0, g). (ID 

From equation (11) we can obtain the value of Xk-i,o = s(g - 
k + 1, g)/s(0, g). Since s(fc - g - 1, fc - 1) = (s(g - * + 
1, g)/s(0, g))s(0, g), equation (3) holds for n = k - 1 and j = 
k-q-1. 

Assumption 2: Suppose that equation (3) holds for n — k — 1 
and k — q—\ < j <tn where m < — 2. 
In other words we assume that we know that 

q-k+l 

s(m,k-l)=   ^ 
s(i,q)s(i + k - l,g) 

s(0,g)s(g, g) 
s(i + m,q) = 

q-k + l 

y^   Afc_i,,_fc+i-is(i + m,g).  (12) 

We want to obtain the value of \k-i,m-k+q+2 and use this to 
show that equation (3) is valid for n = k - 1 and j = m +1. So, 

«-fe+i 

s(m + l,fc-l)=   ]jP s(t,g)a(i + fe-l,g) 
s(0,g)s(g,g) 

+ (A*_i,m_fc+9+2)s(0, g), 

s(i + m + l,g) 

(13) 

buts(m+l,fc-l) = s(-ra-l,fc-m-2),wherefc-m-2 > k. 
Then according to Assumption 1 we have, 

s(m + l,k — 1) = s(—m — l,k — m — 2) 

q—k+m+2 

£ 
>=0 

s(j, g)«0' + k - m - 2, g) 
s(0, g)s(g,g) 

\{j-m- l,g). 
(14) 

Consequently, the previous equation can now be rewritten as fol- 
lows, 

q-k+m+2 

£ 
3=1 

s(m + l,k-l) = 

s(0,g)s(g,g) 

,(0,g).(*-m-2,g) (15) 

s(0,q)s(q,q) 

If we make the transformation j — i + m + 1 in equation (15) we 
obtain, 

q-k+l 
s(i + m + 1, g)s(t + k - 1, g) 

-*"-° "!s(_m_i)?). (16) + 

s(0,g)s(g,g) 
1=—TTl 

s(0,q)s(k — m — 2, g) 
s(0,q)s(q, q) 

Now observe that the summations in equations (16) and(13) are 
equal, thus we can deduce that 

s(k — m — 2, q)s(—m — 1, g) 
Afc_lim_*+,+2 = s(0,g)s(g,g) ' 

and consequently equation (13) can be rewritten as 

s(m + 1, k — 1) = 
9-fc+l 

E 
t=—m—1 

,(i,gKi + t-l,g) (17) 

s{0,q)s(q,q) 

Equation (17) demonstrates that equation (3) is valid for j = m+1 
and n = k — 1. Now, knowing that the initial equation correspond- 
ing to n = k — 1 and j = k — q — 1 holds, we have demon- 
strated that we can prove equation (3) to be valid for n = k - 1 
and k — q — 1 < j < — 1. From expression (7) we know that, 

q-k + l 

Sfc-1 =    2_^   ^k-l,iS'q. 
i=0 

(18) 

We havealready obtained the values of Afe_i,o toAfc_i,g_fc,butwe 
stillneedtofindAi_i,?_fc+i. This is easily obtained if we consider 
the following expression for the last non-identically zero element 
ofsjc-i: 

s(q, k - 1) = Afc_i,,_*+is(g, g), 

s(q,k-l) 
^k-l,q-k+l   = 

s(q,q) 

(19) 

(20) 

Since we know all the A's in (18), we can now write (18) in scalar 
form: 

s{3,k-l)=   >        V     J,n
y ,  , H^-s^ + J,?)       (21) 

Z-j s(0,q)s(q,q) 
t=0 

where j=k-l-q q. Given that equation (3) is valid for n = g — 1 
we have shown that it is valid for every n such that g — 1 > n > 0. 
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Abstract 

The problem of estimating the parameters of a non causal 
ARMA system, driven by an unknown input noise with un- 
known probability density function (PDF) is addressed. A 
maximum likelihood approach is proposed in this paper. The 
main idea of our approach is that the assumed PDF of the 
input noise is the PDF minimizing the Fisher information 
(FI) among PDFs matching the estimated cumulants up to 
4th order. This minimization problem is hard to solve, so we 
use an over-parameterized PDF model, which is a gaussian 
mixture, and minimize the FI in this set. A new parame- 
ter estimation method is given and its robustness properties 
are detailed. The performances of the resulting identifica- 
tion scheme are compared to those of another higher order 
method. 

1. Introduction 

The identification of the parameters of a discrete linear 
shift-invariant system by observation of its output is of con- 
siderable interest in time series and spectral analysis, filter- 
ing and prediction. In non gaussian case, numerous methods 
based on higher order statistics (HOS) have been introduced 
due to the fact that the output of these systems carries phase 
information. Their main disadvantage is that they do not 
provide any information about the theoretical performances 
of the estimator and its optimality in the sense of the covari- 
ance matrix of the estimated parameters. 

To obtain an optimal estimator, it is necessary to know the 
exact probability density function (PDF) of the input noise 
in order to calculate the maximum likelihood (ML) estima- 
tor. If the PDF is unknown, we can assume a certain class 
of PDFs for the input and obtain the optimality in the min- 
imax sense by using a ML approach with the PDF which 
minimizes the Fisher information (FT) in this class and pro- 

vides the most robust (in Huber's sense) [3, 6] parameter 
estimates. 

In connection with higher order statistics, we consider 
the class of cumulants constrained PDFs and determine the 
PDF which minimizes the FI under cumulant constraints. 
This optimization problem was partially solved in [9] but the 
results are limited to the symmetrical sub-gaussian PDFs. 
So this problem is always open for super-gaussian and non 
symmetrical PDFs. 

In this paper, we propose a new parameter estimation 
method based on the prediction error method (PEM) using 
cumulants of second, third and fourth order and the mini- 
mization of the FI. We use a model of PDF, appropriate for 
non gaussian processes with heavy tails, which is a gaussian 
mixture (GM) PDF: 

/M(U) = p®i(u) + (1 -p)®2(u), 0<p<l      (1) 

where 3>i (w) and <&2(u) are Gaussian PDFs. We consider the 
case of a non symmetrical PDF (see the symmetrical case in 
[4]) constrained by the second, third and fourth order cumu- 
lants, used in practice. 

In section 2, we present the procedure for the determi- 
nation of the set of centered GM PDFs having the same 
variance, skewness and kurtosis (second, third and fourth 
order cumulants), and the element of this set minimizing 
the FI. This solution is given analytically for the null skew- 
ness case. In section 3, the proposed parameter estimation 
scheme is explained and the robustness properties of our es- 
timator are given. The estimation algorithm and simulation 
results are presented in section 4. In section 5, a conclusion 
is given. 

2. Model for the input PDF 

Here we introduce the cumulant matched GM as the 
model for the input distribution. Despite the fact that it does 
not result from any constrained mini- or maximization of 
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PDF measure, it has very useful characteristics and interest- 
ing properties (see [4]). 

So, let C2, C3 and C4, respectively the variance, the 
skewness and the kurtosis of any PDF (C2 > 0, C4 > 
C\fC2 - 2C|). We will show that there exists always a non 
empty set FM of centered GMs (1) having these cumulants. 
The problem is which mixture to choose in this set, when it 
contains more than one element, as model for the input PDF. 
So we decide to take the mixture model of FM minimizing 
the FI, i.e. 

f% = arg min ls (2) 
feFM 

where 1/ is the FI defined as 

j—< 

(/')2 
du (3) 

With the GM, this integral can be evaluated only numeri- 
cally. 

Consider mi, m2 and V\, V2, respectively the means and 
variances of 3»i(u) and ^(u) in the GM given by (1). To 
obtain a centered GM with given variance C2, skewness C3 

and kurtosis C4, we must have: 

(pmi + (1 — p)m2 = 0 (a) 
\p(Vi+m\) + (l-pW2 + ml) = C2 (b) 
pmi(3Vi + m\) + (1 - p)m2(3V2 + m\) = C3   (c) 

|p(3Vi2 + 6m?Vi+m?)+ 
(1 - p)(3V2

2 + 6m\V2 + m\) - 3C2
2 = C4 (d) 

(4) 

We can see that if p = 0 or p = 1, the PDF fM(u) (1) is 
Gaussian with variance C2 and it is possible only if C3 = 
C4 = 0.So,ifC3^0orC4^0then0<p< 1. 

Now, the problem is to determine the set of solutions of 
the system (4). To do this, we use a new parameterization: 

mi = k(l — p) 
m2 = — kp (5) 

where it is real. So, the relation (4a) is always verified and 
mi and m2 can take all values. 

For convenience, we consider now that k 4 0. k = 0 case 
will be precised later. Then in using (4b) and (4c), we get 
the formula of the variances Vi and V2 in function of p and 
ib 

(«) 
(6) 

Next, by replacing (6) in (4b), (4c), (4d) and by combination 
of these, we obtain the equation linking p and k: 

P2(l - P)V - P + I)*6 + P(l - P)(4P - 2)x 
C3Jfc3 + §p(l-p)C4*

2-f = 0 

This equation is analytically solvable only if C3 = 0 and k 4 
0, so if C4 < 0. In the general case, we solve numerically 

(7) in order to determine the pairs (p, k), with 0 < p < 1 and 
jfe y 0, solutions of (7). We can remark immediately that, if 
the pair (p, fc)is solution of (7), then the pair (1-p, -fc)too. 
And the two resulting mixtures are identical. 

If Jb = 0, then we cover the class of symmetrical super- 
gaussian PDFs studied in [4]. So, it ensues the following 
proposition: 

Proposition 1: Let C2, C3 and C4, respectively the vari- 
ance, the skewness and the kurtosis of any PDF. Then there 
exists a non empty set FM of centered GMs having these 
cumulants. We have to distinguish three cases: 

(i) C3 4 0: then FM is characterized by the pairs (p, *), 
where 0<p< landifc>0, solutions of the equation 
(7) and for which the variances Vi and V2 of the two Gaus- 
sian PDFs of the mixture are non negative, mi and m2 being 
given by (5). FM is noted GMPik- 

(ii) C3 = 0 and C4 < 0: then jfe 4 0. FM is characterized 
by the pairs (pi, k) and (1 - pi, k), where 

P1-5- TA -1+2W1 + 
6C4 

ifc4 (8) 

and (-8C4)? < k < Jfifi t0 have 0 < pi < 1 and Vi 

and V2 non negative. FM is noted SBGMk. 
(Hi) C3 = 0 and C4 > 0 (super-gaussian): then k = 0. 

FM is characterized by 

mi = m2 = 0 

(9) 

y  V     T+Ö1 

FM is noted SGMa. 
Remark 1: For the cases (0 and (ii), we show easily that 

in the boundary case C4 = C\IC2 - 2C|, the sets GMPik 

and SBGMk contain an unique PDF which corresponds to 
the Bernoulli distribution. 

Now the determination of the PDF fM (2) of FM which 
minimizes the FI leads to the following results: 

Proposition 2: The GM of SBGMk minimizing the 
Fisher information (3) is fM, where FM = SBGMk in (2), 
with 

mi = —m2 = ( 

Vl = V2 = C2- (10) 

It is quite natural that the solution be the symmetrical 
PDF (sub-gaussian PDFs class) of the set SGMk because 
it is the more Gaussian of this set (all its cumulants of odd 
order are null) in the sense that the minimum value of the 
FI, for any PDF, is reached for the Gaussian PDF [7]. 

Proposition 3: The mixture PDF model of SGMa mini- 
mizing IfM is obtained for a —► 0 and then C2IjM —► 1. 
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Due to the Proposition 3, it seems that the model of 
Proposition 1 (Hi), when a tends to 0 but is not 0, is an 
e-approximation of the solution of the FI minimization un- 
der constraints of Cz and CA, for the class of super-gaussian 
PDFs since the absolute minimum of Cjlf is 1, obtained for 
the Gaussian PDF. In practice, a is taken small enough (see 
[3]). 

3. ARM A parameters estimation 

Let the observed process {yt} be modeled as the output 
of a discrete stable linear shift-invariant system Hg0(z) with 
input {et}: 

yt = Heo(z)et (11) 

where 

A(z)C(z-i) _ (E,"><*-f)(Er.S<**)  m, 
9"KZ)    B(z)D(z-i)~ <Hifcz-0(£?.5**) 

with ao = 6o = co = do = 1 and 

0o = [ai... anA bi...b„Bci...c„cdl... dnD\T     (13) 

We assume that all the roots of A(z) and B(z) are inside the 
unit-circle (causal minimum phase part) and all the roots of 
C(z) and D(z) are outside the unit-circle (anti-causal max- 
imum phase part). The input {et} is an independent identi- 
cally distributed (i.i.d.) sequence with unknown PDF fe(u). 

Given N consecutive samples of the system output yt, 
t = 1, ...,N, we want to estimate the actual parameter 0O- 
The prediction error sequence {wt(0)} [5,7] is related to the 
data through 

wt(ß) = Hj\z)yt (14) 

With PEMs, the estimate 6 of 0Q is equal to 9 which mini- 
mizes some criterion depending on the sequence of predic- 
tion errors 

1   N 

^)=T;E«C)) 
*=I 

where £(.) is a scalar-valued norm, i.e. 

6 = arg min/(0) 

(15) 

(16) 

Like fe(u) is unknown, there are two possibilities: either 
choosing a norm giving satisfying results for a broad class 
of input PDFs (robustification), or estimating fe(u) from the 
available data. Our approach is nearest of the robust iden- 
tification in the sense where we take the PDF /^ (2) of the 
class FM, which is GMP:k or SBGMk or SGMa, depend- 
ing on the values of the second, third and fourth order cu- 
mulants of the PDF fe(u) for the choice of this class. The 
criterion to minimize is J(6) with the norm £(w) = £°(w) = 
- log[/^(w)] (ML approach). 

In Huber's sense [3, 6], if the true PDF fe belongs to 
the class FM, we obtain the most robust estimator (16) of 
the estimator class generated by FM with the norm ^(.). 
It is possible to show that the proposed estimator 6 (16) is 
asymptotically optimal in the minimax sense for the partic- 
ular class of PDFs FM- Under some assumptions (see [7]), 
the estimate (16) is consistent and the following expressions 
hold 

f y/N(0-6o)   ~   m,V{P,fe))    (a) 
I      V&Je))   <    V(P,fM) = V*    (b) 

On the other hand, we find that 

cov(6-0o)>N-lV* 

(17) 

(18) 

Thus, for fe = fy, the asymptotic covariance V(^°,/e) 
of the proposed estimate (16) reaches the lower possible 
boundary V*, which depends on the FI of /^ and on 0O. Its 
calculus is detailed in [7]. For other fe 6 FM, the asymp- 
totic covariance does not exceed V*. If fe £ FM, only the 
relation (17a) holds. In all the cases, V(£°, fe) is obtained 
theoretically with the results of [7] and [5]. 

4. Algorithm and simulation results 

Each step of the algorithm consists of the three parts: 
1) Estimate the cumulants of the prediction error process 

wt (14). 
2) Calculate the model fM for the input PDF by (2), 

based on the estimated cumulants of wt. Following the val- 
ues of these cumulants, we choose between the numerical 
procedure given in Proposition 1 and the models (10) or (9) 
for the calculus of /^. 

3) Find the minimum of the criterion (15) (with £(w) = 
£°(w)) in the search direction of a quasi-Newton algorithm, 
calculated with the input model f%. This calculus is not 
detailed here but it is similar to the one presented in [7]. 

In the initialization phase of our ML approach, any 4th- 
order methods can be used, for example, the J^-slice algo- 
rithm [8], to avoid convergence to false local minima. 

To demonstrate the asymptotic efficiency of our ML 
approach, we made many simulations with a non-causal 
ARMA model driven by different symmetrical (belonging 
to sub- or super-gaussian class of PDFs) or non symmetri- 
cal input noises. We took a model in [2] and inversed its 
causal real pole to obtain our non-causal model. It has poles 
at 5 and 0.6179 ± jO.5077 and zeros at -0.7 and 2, so with 
transfer function given by: 

H(z) = (1 +0.72-0.(1-0.5z) 
(1 - 1.2358z-1 +0.6396*-2).(l - 0.2*) 

The algorithm was tested by simulation on the presented 
model considered as unknown and driven by three differ- 
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Table 1. ARMA parameter estimates (N=2000, 
100 h lonte-Carlc > runs). 
Input 

True 
parameter 

ML LS+max|/q 
Mean Std Mean Std 

oi=0.7000 0.7018 0.0246 0.7003 0.0267 
&i =-1.2358 -1.2243 0.0295 -1.2266 0.0412 

I 62=0.6396 0.6329 0.0270 0.6358 0.0436 
ci=-0.5000 -0.4756 0.1329 -0.4838 0.1485 
di=-0.2000 -0.1865 0.1525 -0.1969 0.1687 

oi=0.7000 0.7046 0.0231 0.6996 0.0255 
h =-1.2358 -1.2299 0.0306 -1.2267 0.0408 

n 62=0.6396 0.6337 0.0276 0.6356 0.0448 
ci =-0.5000 -0.4846 0.1308 -0.4932 0.1361 
di=-0.2000 -0.1862 0.1443 -0.2061 0.1585 
ai=0.7000 0.7002 0.0136 0.7038 0.0266 
h =-1.2358 -1.2336 0.0162 -1.2262 0.0440 

m 62=0.6396 0.6369 0.0175 0.6360 0.0430 
ci=-0.5000 -0.4998 0.0560 -0.4839 0.1514 
di=-0.2000 -0.2030 0.0624 -0.1934 0.1719 

ent i.i.d. input noises: laplacian (I)(super-gaussian), uni- 
form (n)(sub-gaussian) or exponential (in). 100 indepen- 
dant Monte-Carlo runs were performed for each simulation. 
The signal's length used is N = 2000 samples. We com- 
pared this results with a method [1] (noted LS+max|Ä" |), 
where the spectrally equivalent minimum phase system is 
primarily identified using least squares method (LS). Then, 
among all the spectrally equivalent systems, we choose the 
model which maximizes the absolute value of the estimated 
normalized kurtosis of the innovation process. 

In Table 1, the mean and the standard deviation (Std) 
of the parameter estimates are summarized for the differ- 
ent input noises. The presented results show the good be- 
haviour of our method compare to the LS+maxjlf | method 
with smaller bias and Std. 

means to find the analytical form of the PDF fM in the case 
of non symmetrical PDF. 
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5. Conclusion 

A possible way to obtain an efficient parameter estimates 
in case of unknown non gaussian input is presented. The in- 
novation of the proposed PDF model is that it is the element, 
minimizing the FI, of a set of GMs having the same four first 
cumulants than the true input PDF. This PDF model is pa- 
rameterized by its second and fourth order cumulants for the 
classes of null skewness PDFs, and determined numerically 
for the non zero skewness PDFs class. An interesting result 
has been obtained in the super-gaussian case for which the 
PDF model (9) seems to be an e-approximation of the solu- 
tion of the more general problem of FI minimization under 
constraints of C% and C». 

Simulation results seem to confirm the good behaviour 
and robustness of our method compared to other methods 
based on higher-order statistics. Future works will address 
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Abstract 
The Minimum Entropy Method is studied with regard 

to its performance in removing multipath distortion from 
passive transients, to improve the performance of 
classifiers. It was found that the method often works well 
if the kurtosis of the associated multipath Green's function 
is high enough, and that signal stationarity is not required. 
We also found that, while there are usually a few filter 
lengths at which the best solutions are obtained with 
conventional convergence criteria, good solutions exist 
across a much broader range of filter lengths if the 
iterations are not allowed to proceed to convergence. That 
is, kurtosis needs to be increased, but not maximized. In 
many cases, two or three iterations is sufficient. 

1. Introduction 

The passive sonar classification problem can be 
decomposed into two stages: 1) recovering the source time 
signature of a transient event from a set of received 
signals by accounting for environmental distortion effects, 
and 2) applying a pattern recognition algorithm to the 
estimated source signature for final classification. By 
environmental distortion, we refer to effects present in the 
received data at the sensor array that are not present in the 
source signature. In our case, environmental effects consist 
primarily of multipath and low level ambient noise. For a 
spatial point source, if we incorporate the environmental 
effects into a Green's function, and assume time- 
invariance, the received pressure time series at a desired 
location can be modeled as the convolution of the transient 
source signature with the Green's function. A term 
representing additive noise effects can be added to the 
convolution. The Green's function, of course, depends on 
the environmental acoustic parameters and the source and 
receiver location. 

When a Green's function has been determined by 
numerical solution of the wave equation, it can be used to 
deconvolve the measured time series for an estimate of the 
source signature, which is referred to as the deterministic 
approach. Broadhead etal. [1] reviewed this approach, and 
performed an additional  study  in a bottom-limited 

propagation environment, showing that there was extreme 
sensitivity to inaccuracy in the bottom geoacoustic 
parameters. 

Broadhead [2] used a statistical source estimation 
approach to address the problem of recovering a source 
signature without specific knowledge of its location, or the 
environmental parameters necessary to accurately compute 
the Green's functions. He gave examples, for the single 
channel case, where this can be done if the Green's 
functions representing environmental distortion are lepto- 
kurtic (a specific type of non-Gaussianity). The method 
used, called the minimum entropy deconvolution method 
(MED), was introduced by Wiggins in 1977 [3]. This 
method was further refined and interpreted by various 
researchers (see bibliography in Ref. [4]). The goal of this 
method is to produce a filter that drives the output of the 
system to lower entropy (greater order), or equivalently, 
drive the governing distribution more towards non- 
Gaussianity (higher kurtosis). The success of MED 
depends on the non-Gaussianity of the input random 
process, but apparently does not require stationarity 
(examples are given in [2]). 

In this paper we continue the work begun in [2] with a 
more thorough and systematic exploration of the solution 
space provided by the MED parametric method. The results 
in this paper show that exploitation of higher order 
parametric methods to achieve classification performance 
gains for nonstationary sonar signals appears promising. 

2. MED Algorithm 

The MED algorithm has been thoroughly described in 
the literature, and will not be repeated here, but a 
minimum of terminology must be defined. We seek the 
MED filter / of length N that is a stationary point of the 
functional 

(?ij) • 0) "-K 
where 

g;=S/,: ■j-l (2) 
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g is the Green's function estimate, x is the input signal 
and V is the Varimax norm (essentially kurtosis). The 
resulting nonlinear system of equations is solved 
iteratively. A starting point is given by taking / as a 
delta function. After iterating to some stopping criterion 
(to be discussed), we are left with the filter / and the 
Green's function estimate g. To obtain an estimate of the 
source signature .?, we calculate the inverse of /. 

1.0 
S     0.5 

i  o.o 
J -0.5 

-1.0 

fWr- 
b) 

r  fit 4«' '♦■—"- 

0.0 0.5 1.0 1.5 2.0 

1.0 
TIME (s) 

Fig. 1. Signal type examples for the 4300 m 
range, (a) Data, (b) PE Green's function, (c) 
Short pulse simulation, (d) Long pulse 
simulation. 

3. Signal Description 

We have three types of input signals: l) data, 2) short 
pulse simulations (SPSIMUL), and 3) long pulse 
simulations (LPSIMUL). The data analyzed was obtained 
in an experiment conducted in the Atlantic Ocean, in the 
vicinity of Blake Plateau. For details, refer to Refs. [I.], 
[2], and [5]. A typical time series is shown in Fig. 1 (a) 
(250 m receiver depth, 4.3 km source-to-receiver range). 
The bottom interacting events occur after about 0.4 
seconds. 

In Fig. 1(b) we show the corresponding calculated (PE 
model) Green's function. We used this and the two pulses 
shown in Fig. 2 to create (by convolution) two types of 
simulations: 1) a short simulation representative of the 
data, as shown in Fig. 1(c), and 2) a long pulse 
simulation, shown in Fig. 1(d), that creates more overlap 
between the various arrivals. We have displayed only the 
4.3 km range, but have also processed the 600 meter and 
7.9 km ranges. Refer again to the above references for 
more examples of time series. 

In Fig. 2, as mentioned, we display the two pulse 
types. In 2(a), the short pulse is our best estimate from 
measurements from a source array mounted hydrophone of 
the true source pulse on the data. The longer pulse in 2(b) 
is an exponentially damped sinusoid. 
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Fig.  2.  Source types. 

4.  Processing  Methodology 

We developed two basic processing methodologies, 
which will be referred to as CONVRG and BEST. 
CONVRG uses a conventional convergence criterion, and 
the output is a correlation coefficient between the source 
estimate and the known source at each filter length from I 
to 50. (The correlation coefficient, given by the symbol y 
is standard except that we always report it as the absolute 
value). The convergence criterion was as follows: the 
correlation coefficient is calculated between the current 
MED filter iterate and the previous. When this value 
exceeds the specified tolerance, the iteration is stopped. We 
used a tolerance level of 0.9999. 
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Fig. 3. Results for LPSIMUL, 600 m case. 
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We mimic the case of doing no preprocessing before 
classification, that is, just correlating trie received signal 
with the source signature. This value gives a measure of 
how much distortion was introduced by the multipath, and 
will be indicated by short dashes in the figures. The output 
of CONVRG will be indicated by a solid curve. 

20 30 
FILTER LENGTH 

Fig. 4. (a) CONVRG/BEST (Solid/Dash) 
results for SPSIMUL, 7900 meter case, (b) 
Number of iterations for results in (a). 

BEST outputs the correlation coefficient between the 
best possible source estimate and the known signature at 
each N out of a possible itermax iterations, without regard 
to actually trying to maximize V. itermax was variously 
either 30 or 40 iterations. This curve will be represented 
by long dashes in the figures. In both cases, the number of 
iterations actually performed at each filter length, and the 
estimated Green's function kurtosis were also output. 

There were two stages in both algorithms where some 
regularization could be required: I) on a given iteration, the 
Toeplitz coefficient matrix, which may become ill- 
conditioned, and 2) the calculation of the inverse of the 
MED filter, which may have spectral zeros (a frequency 
domain method was used). The data and SPSIMUL cases 
used a pre-whitening value of 0.01% for stage I). The 
4300 m range of LPSIMUL also used this value. No pre- 
whitening was used for the other two ranges. In no case 
was pre-whitening used for the inverse filter. A definite 
sensitivity to the amount of pre-whitening was noticed. 

5.   Results 

In Table I we summarize the results in the form of 
correlation coefficients between the estimated and known 
pulses. For the different signal type and processing 
methodology combinations, only the highest coefficient 

Range (in) 600 4300 7900 
DATA/ 
CONVRG 

0.896 0.802 0.822 

DATA/ 
BEST 

0.902 0.865 0.858 

SPSIMUL; 
CONVRG 

0.975 0.946 0.864 

SPSIMUL/ 
BEST 

0.975 0.958 0.893 

LPSIMUL/ 
CONVRG 

0.995 0.963 0.992 

LPSIMUL/ 
BEST 

0.995 0.965 0.993 

TABLE   i   Summary   of   highest   correlation 
coefficients for all cases. 

obtained is reported in each case. In most cases the highest 
coefficient obtained for BEST and CONVRG were 
comparable. They were significantly different at other filter 
lengths, for some cases, however, which we will discuss 
later. LPSIMUL results were typically better than 
SPSIMUL. We will speculate as to why, also later. 

In all cases, the best results were a significant 
improvement over doing no preprocessing of this kind, 
where the ys then are less than 0.7. As would be expected, 
the results were better for the simulations than for the real 
measurements. Not only did the data have some noise, but 
the "true" source is no known pulse with complete 
accuracy. 

In Fig. 3, we display results for LPSIMUL, 600 m. 
This figure demonstrates that conventional convergence 
criteria can work very well. This also happens to be a case 
where the associated Green's function kurtosis was very 
high (124.6). The resulting simulated data kurtosis (after 
convolution with the long pulse) was 26.2. 

We consider a short pulse simulation example in Fig. 
4(a) for the 7900 in range. This figure shows that for some 
cases, beyond a certain value of /V, the algorithm 
performance drops off significantly (often worse than doing 
nothing) for conventional convergence criteria. However, 
the long dashed line (BEST) shows that good solutions are 
available, only at many less iterations (often, only 2) than 
needed to maximize V. This is shown in Fig. 4(b), where 
the solid curve represents the number of iterations required 
to satisfy the conventional convergence criterion 
(CONVRG), and the long-dash curve represents the 
number of iterations associated with the best possible 
source estimate in 40 or less iterations. 
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In contrast to the previous case, the initial Green's 
function kurtosis was much lower (27.3). Also, the change 
in kurtosis after convolution with the short pulse was less 
(kurtosis of simulated data = 14.8). Note that the starting 
kurtosis for this signal is comparable to the final kurtosis 
of the convolved signal in the example in Fig. 3. These 
factors are probably significant for determining when 
conventional convergence criteria will or will not work 
well. 

In Fig. 5, we display the kurtosis of the MFD Green's 
function estimates produced by both CONVRG and BEST, 
as a function of filter length. This figure is fairly typical 
of the results. It shows a steady increase in the final 
(maximized) kurtosis value for CONVRG, but a level 
average value for BEST, indicating that the most accurate 
estimate of the Green's function is not necessarily the 
estimate with the highest kurtosis. 

In Fig 6, we show pulse estimates for the highest and 
lowest correlation coefficients for SPSIMUL/CONVRG. 
This gives a rough idea of the visual quality of match 
expected for the range of correlation coefficients relevant to 
this study. In Fig. 6(a), for the 600 m case, y = 0.975. 
In Fig. 6(b), y = 0.864, and the range is 7900 m. 
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Fig. 5. Green's function estimate kurtosis 
for SPSIMUL, 7900 meter case. 

6. Discussion and  Conclusions 

We have found that for the cases studied the processor 
is always capable of providing better results than doing no 
preprocessing at all. In most cases, the best results were 
very good (y > 0.9). Even when the processor gave good 
results only over a narrow range of filter lengths, many 
good solutions were still available at other filter lengths, 
only at a smaller number of iterations than maximizing 
the V norm would require. Since our goal is to produce a 
class of candidate solution signals for classification, this is 
useful in that it may be exploitable in increasing the 
probability of having a "good" solution in the class of 
signal candidates, albeit at the expense of adding a 
dimension to the search space. 

The degree of kurtosis possessed by the Green's 
function representing the multipath distortion appears to 
be an important factor in the quality of the results. The 
final kurtosis value of the convolved signal may also be 
important, which remains to be determined. 
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Fig. 6. Best and worst source estimates for 
SPSIMUL/CONVRG a) 600 meter range, y = 
0.975,  b) 7900 meter range, y=  0.864. 
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Abstract 

In this paper we introduce a general distribution, called 
the Generalised Bessel K (GBK) distribution, that involves 
the modified Bessel function of the second kind. The sta- 
tistical properties of the proposed distribution as well as its 
application to coherent modelling of radar clutter are in- 
vestigated. It is shown that the GBK-distribution includes 
a large number of the well known clutter models and is still 
mathematically tractable. 

1. Introduction 

Detecting targets embedded in clutter is one of the im- 
portant tasks for a radar signal processing practitioner. In 
parametric detection it is essential that the clutter be under- 
stood and properly modelled. 

In many applications clutter cannot be assumed to be 
Gaussian. This has motivated work on modelling clutter 
by non-Gaussian probability distributions. In practice, two 
main problems are apparent. Firstly, it is not unusual to en- 
counter the data which is incompatible with a given distribu- 
tion at hand. Secondly, for optimal (in the Neyman-Pearson 
sense) detection of signals in coherent and correlated clutter, 
multivariate probability density functions are required [2,7]. 

To overcome these problems one may consider modelling 
clutter by a number of different probability models and use 
classification techniques for determining which probability 
model fits the given data most closely [10]. In practice, 
however, this technique is difficult and involves a consid- 
erable amount of computation. Thus, more general models 
for clutter that lead to optimal detection are sought. 

In this contribution we introduce a new clutter model that 
involves modified Bessel functions of the second kind. We 
call it the Generalised Bessel K function (GBK) distribu- 
tion unlike the other generalisations of the Ä"-distribution [5] 
which involve modified Bessel functions of the first and sec- 
ond kind. The GBK-distribution includes a large number of 
the well known clutter models. At the same time it is math- 

ematically tractable. Application of the GBK-distribution 
reduces the complexity in an adaptive radar system such as 
the one proposed in [10], since only one clutter model needs 
to be employed. 

2. Genesis of the GBK-distribution 

A if-distributed random variable can be obtained from 
the multiplication of a Rayleigh and a Gamma variate [6]. 
Another .ftf-distribution can be obtained by multiplying an 
Exponential and a Gamma variate [9]. Taking into account 
the fact that the Exponential distribution is included by the 
Gamma distribution, the If-distribution can be generalised 
by considering a distribution that originates from compound- 
ing two Gamma distributions. Teich and Diament call such 
a distribution the UT'-distribution [9]. 

The üf'-distribution can be generalised further by not- 
ing that the Gamma distribution is included by the gener- 
alised Gamma distribution [8]. Thus we consider a distri- 
bution which originates from compounding two generalised 
Gamma distributions. The two component distributions may 
be then given as 

fx\r(x | y) = 
ex cai—l 

and 

Mv) = 
cy 

2/c«ir(ai) 

COf2 —1 

exp 

■exp -(f)' 

0) 

(2) ßcc2r(a2) 

where all parameters are assumed to be positive, /(• | •) 
denotes the conditional pdf, and T(-), is the standard Gamma 
function. The pdf of the GBK-distributed random variable 
X is derived using the integral formula [3, p. 313, Eq. 17] 
as 

fx(x) 
TOO 

/     fx\r(x | y)fY(y)dy 
Jo 

(i) /9T(ai)r(aa)     A<a»—»> 

=    fx(x;ai,a2,ß,c) (3) 

where Kv{-) is the modified Bessel function of the second 
kind of order v. 
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3. Properties of the GBK-distribution 

The GBK-distribution is fully characterised by the four 
parameters, ax,a2, ß, and c. Note that ai and a2 are in- 
terchangeable due to the symmetry property of the modified 
Bessel function. The parameters oi, a2, and c control the 
shape of the probability density function while the parameter 
ß controls its scale. In Figures 1-3 the probability density 
curves are shown where one parameter at a time is varied. 

*AO-l.*ta-2-a.M»1 
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Figure 1. Pdfs for a GBK-distributed variate 
with ai = 1, a2 = 2, and /? = 1 for four different 
values of c. 

u      a      U      >      u 

Figure 2. Pdfs for a GBK-distributed variate 
with ai = 1, a2 = 2, and c = 2 for four different 
values of ß. 

Figure 3. Pdfs for a GBK-distributed variate 
with a2 = 2, ß = 1, and c = 2 for four different 
values of ai- 

The GBK-distribution includes a large number of distri- 
butions which occur frequently in data modelling. In Ta- 
ble 1 some of these distributions are reproduced with the 

appropriate parameter selection. The notation used for 
each of the distributions corresponds to the given refer- 
ence in the third column of Table 1. In particular, the 
GBK-distribution includes the generalised Gamma distri- 
bution, both types of aforementioned if-distributions, the 
if'-distribution, and the Jakeman and Tough's generalisa- 
tion of the AT-distribution derived from a random walk in 
other than 2 dimensions [5, Eq. 2.11]. 

In radar applications it is desirable that the Rayleigh dis- 
tribution (the first order amplitude distribution of a complex 
Gaussian process) be included in the general model [2]. 
For the GBK-distribution the Rayleigh distribution is in- 
cluded for two sets of parameters, fx(x; |, 1,2a,4) and 
fx(x;l,v -> oo,2a,2). Note that the second set of param- 
eters has a limit as in the case of the ÄT-distribution [6]. On 
the other hand the first set of parameters is finite. Thus, the 
reduction of the GBK-distribution to the Rayleigh distribu- 
tion is numerically more stable than the If-distribution. 

Moments. The fcth-order moment of the GBK-distribution 
is derived using [3, p. 313, Eq. 15] as 

E[Xk]    =     /   xkfx(x) 
Jo 

dx 

(a, + !) r (a2 + -~\ r  ai + 

r(ai)r(aa) 

where E[ • ] denotes the expectation operator. 

cLp (4) 

Spherical Invariance. In order to design optimal detection 
schemes one needs to show that the first order envelope pdf 
given by (3) fulfils the requirements of spherically invariant 
random process (SIRP). The clutter process is spherically 
invariant if its JVth-order pdf can be given as 

fx(x) = (27r)-N|M|-1/2/i2N(a;TM-1x)) (5) 

wherex = [xcixc2 • • • xcNxsl xs2 •■■ xsN]T, wherexci 

and Xsi, i = 1, • • ■, N are the in-phase and quadrature com- 
ponents of the radar clutter process, respectively, M is the 
covariance matrix of x, and h2u( ■) is a suitable function. 
Following [2,7], we derive 

h,2N {q)    = (s/äq) 
r(oi)r(o2) 
N    {_1)m+kp{Nk) 

%(ai+a2+N-l)-2N 

y N-k 
K{a2-ai-k+1)[2(^q)*], 

(6) 

where q = xTM 1x, 

r(tti + g)r(aa + f) f 1,   N 
a= 2TMTW        ' I °>    N 

and the coefficients P(Nik) are calculated recurrently 

P(N,k) = P(N-l,k) C(N,k) + P(N-l,k-l), 

odd 
■even 
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with 

o, k>N 
1, k = N 
fai -(W-l) + £l^!l, k<N, 

C(N,k) = 

-P(o,o) = 1. P(Nfi) = 0, and P(0)fc) = 0. The result 
given in Eq. (6) satisfies the monotonicity condition for 
a\c < 2. Thus, the GBK-distribution, can be used for 
coherent modelling of clutter when <*ic < 2. Such a result 
enables us to determine which of the nested distributions 
can represent a first order amplitude distribution of an SIRP. 
The conditions for this representation are given in the last 
column of Table 1. 

4. Parameter Estimation 

The practicality of the GBK-distribution requires the es- 
timation of its parameters. The derivation of maximum like- 
lihood estimates of the parameters of the GBK-distribution 
is cumbersome [4]. Therefore, a feasible alternative for es- 
timating the parameters c,ai,a2, and ß in (3) is the one 
based on higher order moments. Using (4) one can estimate 
the required parameters using any four sample moments of 
the data including fractional moments. In general, the esti- 
mation procedure has to be performed numerically in a four 
dimensional parameter space. 

Estimation is greatly simplified if the parameter c is 
known. In such a case, the parameters «i, a2, and ß can be 
obtained using the set of three different moment ratios 

E[Ar(*i-!)c] = (ai+fc-l)(a2+fci-l)/3c,    i = 1, 2,3. 

(7) 
Letting fci = p, k2 = q, k3 — r, and replacing the moments 
by their sample counterparts one obtains 

ß = p(Rr -Rq)+ q(Rp -Rr) + rjR, - R„) 
, 1 

(q - p)(p - r)(r - q) (8) 

and 

öl2    =     4[(r ~ I)2 ~ (P ~ I)2] + Uiq - I)2 + (r - D21 
2[Rp(r-q) + Rq(p-r) + RT(q-p)] 

+ Rr[{p-l)2 + {q-l)2]±VZ 
2[Rp(r -q) + Rq(p-r) + Rr(q -p)]' 

(9) 

where 

= R2
p(q-ry + R2(p-r)4 + iZ(p-q)* 

- 2RpRq[r
i-2r3(p + q) + r2(p2+4pq + q2) 

- 2r(pq2+p2q)+p2q2] 

- 2RqRT\p
4-2p3{q + r)+p2(q2+4qr + r2) 

- 2p(qr2 + q2r) + q2r2] 

- 2RpRT[q4-2q3(p + r) + q2(p2 + 4pr + r2) 
- 2q(pr2 + p2r) + p2r2]. 

Taking into consideration the fact that estimates based on 
higher order moments show large variability, it is of interest 
to estimate the parameters from lower order moments by 
appropriately selecting the parameters ki, k2, and k3. Thus, 
one can use fractional moments, i.e., of order other than a 
positive integer. 

This estimation technique can be extended to the case 
where c is unknown as follows. 

STEP 1. Set the parameter c to co > c (via initial guess). 
STEP 2. Calculate the estimates of au a2, and ß. 
STEP 3. Repeat STEP 2 with a = c0 - s, where s 
 is a step until ai, a2, and ß are positive. 

In the algorithm we take into consideration the fact that for 
Co greater than the true value of c the obtained estimates 
of ai, a2, and ß may be negative or complex. Simulation 
results for ki = 1.001, k2 = 1.05, fc3 = 1, and Co = 6 
are given in Tables 2-4 where the parameters selections are 
equivalent to the ones in Figures 1-3, respectively. Averages 
were computed over 500 independent trials in each case. 

From the results one concludes that there exists a strong 
relationship between the estimates of ß and c, a weak rela- 
tionship between the estimates of a2 and c and practically 
no relationship between the estimates of c*i and c. Also, 
there exists a relationship between the estimates of ai and 
a2 which, as mentioned earlier, are interchangeable. An 
attempt has been made to improve upon ß when c < 2 by 
using the maximum likelihood based result 

ß = exp 
1   N 1 
-^log(a;i)-T(*(äi) + *(a2)) 

«=i 

where *(•) is the digamma function, but no significant 
changes in the estimates were observed when compared to 
the ones obtained using moments. 

5. Conclusions 

A general distribution, called GBK-distribution, was de- 
rived for coherent modelling of radar clutter. The GBK- 
distribution is completely characterised by the set of four 
parameters. It includes a large number of popular distribu- 
tions, being at the same time mathematically tractable. The 
estimation of the parameters of the GBK-distribution was 
investigated and an estimation method based on moments 
was proposed. 
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Table   1.   Special   Cases   of   the 
distribution, fx(x;ai,a2,ß,c). 

GBK- 

Type1 

X 
CG 
exp 
r 
Gr 
GHG 
GHL 
HG 
J&T 
K 
Ko 
K 
K' 
R 
R 
SG 
W 

pdf Ref. 

fx(x;Z, ^,2,4) 
fx(x;zz¥,2,2) 
/x(z; §,1,2,4) 
fx(x;l,l,2a,2) 
fx(x;^^-,2a,2) 
fx(x^,^,a21^,2p) 
fx(x;±^,a2V,2v) 
fx(x;lv,i,2) 
Ms;!,f,2,4) 
fx(x;*,a,%,2) 
fx(x;l,u + l,2a,2) 
/x(x;l,l,JV,l) 
/x(x;l,a *, 1) 
fx(x;ß,a,^,l) 
/x(x;i,l,2<7,4) 
fx(x;l,v-¥ oo,2a,2) 

fx(x;ll2,4) 
/x(x;i,l,a21^,2p) 

SIRP 

[8] n<2 
[8] n<4 
[8] Yes 
[8] Yes 
[8] i/<2 

[8] pv<2 

[1] Yes 

[1] Yes 
[8] Yes 
[5] n<2 

[6] Yes 
[9] Yes 
[9] Yes 
[9] ß<2 

[8] Yes 
[6] Yes 
[8] No 

[8] p<2 

^G-Circular Gaussian, T-Gamma, Gr-Generalised Gamma, GHG- 
Generalised Half Gaussian, GHL-Generalised Half Laplace, HG-Half 
Gaussian, J&T-Jakeman & Tough's model, R-Rayleigh, SG-Spherical 
Gaussian, W-Weibull. 

Table 2. Sample mean and variance of the pa- 
rameter estimates of a GBK variate with ai = 1, 
a2 = 2, ß = 1, and varying c for N = 500. 

ai <*2 

c E[6!] Var[öi] E[d2] Var[d2] 

1 
2 
3 
5 

1.0938 
1.1080 
1.0979 
1.1160 

0.1694 
0.1617 
0.1939 
0.2025 

1.2391 
1.2575 
1.3342 
1.5599 

0.2409 
0.1904 
0.1892 
0.3208 

ß c 

c Z[ß) Var[/3] E[c] Var[c] 

1 
2 
3 
5 

2.1744 
1.3421 
1.1844 
1.0613 

1.9842 
0.1959 
0.0643 
0.0189 

1.1617 
2.2838 
3.3874 
5.3943 

0.0723 
0.1976 
0.3285 
0.5649 

Table 3. Sample mean and variance of the pa- 
rameter estimates of a GBK variate with ai = 1, 
a2 = 2, c = 2, and varying ß1orN = 500. 

ai 02 

ß E[äi] Var[äi] E[a2] Var[Ö2] 
1 

! 
2 
1 
2 

1.0941 
1.1115 
1.1262 
1.1366 

0.1623 
0.1690 
0.1785 
0.1646 

1.2381 
1.2514 
1.2836 
1.2813 

0.1881 
0.1974 
0.1967 
0.1843 

ß c 

ß m Var[/3] m Var[c] 
1 

! 
5 
1 
2 

0.4549 
0.6756 
1.3234 
2.6448 

0.0204 
0.0484 
0.2123 
0.7808 

2.3038 
2.2894 
2.2705 
2.2592 

0.1903 
0.1927 
0.2158 
0.1938 

Table 4. Sample mean and variance of the pa- 
rameter estimates of a GBK variate with Q2= 2, 
ß = 1, c = 2, and varying ax for N = 500. 

Ql a2 

<*1 E[4i] Var[öi] E[d2] Var[Q2] 
1 
2 
1 
2 
3 

0.4421 
1.0533 
2.0831 
2.4552 

0.0178 
0.1260 
1.5862 
3.0989 

0.6801 
1.1983 
2.3401 
2.7858 

0.0515 
0.1358 
2.1653 
4.0916 

ß c 

Ql E[fl Var[/3] m Var[c] 
1 
2 
1 
2 
3 

1.8653 
1.4043 
1.1210 
1.2372 

0.0670 
0.1748 
0.3175 
0.4245 

2.7534 
2.3418 
2.0974 
2.1504 

0.1080 
0.1853 
0.2458 
0.2786 
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Abstract 

This paper deals with robust estimation of AR parame- 
ters. We compare the performance of the LMS algorithm 
to the performance of two robust, adaptive algorithms: the 
LMAD algorithm of Shao and Nikias in which the error 
signal in the LMS algorithm is hard-limited before used 
to control the weights, and the LLMS algorithm in which 
the input process is soft-limited before the LMS algorith- 
m is applied. The comparison is done in terms of rate of 
convergence and stability (steady state variance). We show 
that with a proper choice of limiting level, the LLMS algo- 
rithm outperforms the LMAD algorithms when applied to 
symmetric, a stable processes ofl<a<2. 

1. Introduction and background 

Recently, there is an increasing interest in signal pro- 
cessing of non-Gaussian processes. In general, a zero-mean 
symmetric distribution deviates from the normal distribution 
either by its local properties (about the origin) or by the fact 
that the tails of the probability density function {pdf) decay 
slower than the tails of the Gaussian pdf. While local fea- 
tures of the pdf are very sensitive to the presence of additive, 
Gaussian noise, the heavy tails signals preserve their nature 
even in the presence of such noise. In this paper we are 
focused on heavy-tails non-Gaussian processes, which re- 
flect rare but strong values in the signal, i.e., impulsive-like 
processes. 

The traditional approach to robust signal processing in 
the presence of impulsive noise involves passing the input 
through a non-linear device (such as a limiter) prior to the 
conventional, second order processing (e.g., [1]). Alterna- 
tively, Shao and Nikias [3] suggest to model a zero-mean, 
symmetric heavy tails process as an a-stable process [2] 
and to match an optimal procedure to the underline distri- 
bution. In this paper we study the differences between the 
two approaches by comparing the performance of the algo- 

rithms based on two approaches for adaptive estimation of 
AR parameters. 

Consider the first order AR process: 

x(n) = ax(n - 1) + v(n) (1) 

where a is a constant to be estimated and v(n) is a heavy- 
tails, zero-mean, symmetric process. We compare the per- 
formance of 3 adaptive algorithms for estimating a: 

• The LMS algorithm [4]: 
In this algorithm, which is optimal for Gaussian pro- 
cesses, the estimate of the AR parameter a, üLMS, is 
the steady state solution of the difference equation: 

wLMs(n + 1) = wLMs{n) + px(n - l)e(n)    (2) 

where e(n) = x(n) - wLMS{n)x(n - 1) and 
WLMS(0) = 0. 

• The LLMS algorithm: 
Here the estimate of a, aLLMS, is the steady state 
solution of the difference equation: 

WLLMs(n+l) = wLLMS(n)+pxL(n-l)e(n) (3) 

where e(n) = xL{n) - wLLMS(n)xL(n - 1) and 
WLLMS(0) — 0. XL(TI) is the limited input signal, 
i.e., x(n) after passing through a limiter. 

• The LMAD algorithm [3]: 
In this algorithm, the estimate of a, &LMAD, is the 
steady state solution of the difference equation: 

U>LMAD(TI+1) = wLMAD(n)+px(n-\)sign{e{n)} 

(4) 
where e(n)   =   x(n) - wLMAD(n)x{n - 1)  and 
WLMAD(0) = 0. This algorithm is based on modeling 
the signal as a symmetric a-stable signal and matching 
an algorithm to the assumed distribution. Note that the 
LMAD algorithm of  [3] suggests hard-limiting the 
error signal in the usual LMS algorithm (2). 

0-8186-7576-4/96 $5.00 © 1996 IEEE 
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Table 1. Percentage of samples truncated by 
a limiter for various a and limit values 

Table 2. Steady state value and variance of 
the LLMS for various a and c 

alplu,    j        c=l        |      3.1ft      |        M>        |      31.6      |       MM)      |     316.2     |      1000     |    3162.2    | 

1.0 50.0248 6.3325 0.628X 0.0623 0.0060 0.0005 0.0001 0 

1.1 49.61)25 4.X290 0.3753 0.0297 0.0024 0.0002 0 0 

1.2 4U.2903 3.577« 0.2190 0.0142 0.0012 ().(XH)1 0 0 

1.3 49.1153 2.634X O.I2lJ9 0.0070 0.0004 0 0 0 

1.4 4X.90K6 i .X972 0.0720 0.0025 0 0 0 0 

1.5 4X.6X15 1.3296 0.0411 0.0016 0 0 0 0 

1.6 4X.54K9 0.8X10 0.0219 0.0005 0 0 0 0 

1.7 4X.4386 0.5553 0.0114 0.0002 0 0 0 0 

l.X 48.2056 0.3037 0.0042 0 0 0 0 0 

1.9 4X.0656 0.1295 0.0017 0 0 0 0 0 

2.0 47.9901 0 1) 0 0 0 0 0 

The LMS algorithm is well known. The LMAD algorithm 
is deeply discussed in [3]. We discuss the LLMS algorithm 
in Section 2. In Section 3 we present the results of the 
comparison between the 3 algorithms and discuss them. 

2. The LLMS algorithm 

The LLMS algorithm presents the traditional approach 
for robust signal processing of impulsive-like signals, where 
rare, strong values are replaced by a pre-fixed value. In this 
paper we suggest the use of a soft limiter, so 

xi(t)    =    x(t) 

xL{t)    =    cL 

\t\<c 

\t\>c (5) 

where c determines the limiting range and CL determines the 
limiting value. The LMS algorithm is then applied to the 
limited input, xL{n). The main question is, how to choose 
the values of c and of cLl To study the effect of a limiter, 
we have simulated zero-mean, symeteric a-stable processes 
of unit covariation. 

Fig. 1 presents the average of the learning curves (with 
the same /z) of 200 runs of a processes with a — 1 for 
which LüLLMS of (3) as a function of n is plotted. For 
all different values of c, /z is chosen such that the rate of 
convergence of the algorithm is maximized while keeping its 
steady state variance smaller than a given value. It shows that 
the rate of convergence of the LLMS algorithm increases 
as c decreases. Table 1 presents the percentage of samples 
truncated by a limiter for various values of a and of c, 
where CL = 0. It shows that for c > 300, the number of 
truncated samples is practically negligible for any 1 < a < 
2. The translation of this observation to the design of the 
LLMS algorithm is not straight-forward since the effect 
of truncation on a sufficient statistic for estimating the AR 
parameters of a sequence is not simple. In Table 2 we present 
the mean and the variance of the steady-state estimate of the 
AR parameter a = 0.99 using the LLMS algorithm for 
different values of c (here cc = 0). We derive the statistics 
of the estimate based on 100 Monte-Carlo runs, at each of 
them 3000 samples were used, which are significantly more 

c a= 1.0 a = 1.3 a= 1.5 a= 1.7 a = 2.0 

1.0 0.968614 0.947430 0.941695 0.932215 0.888754 

(0.003705) (0.004636) (0.005341) (0.006189) (0.007360) 

3.2 0.965060 0.939276 0.926273 0.919618 0.866334 
(0.003293) (0.003610) (0.003585) (0.003737) (0.004694) 

10.0 0.957781 0.931475 0.917954 0.919880 0.895272 

(0.002835) (0.002261) (0.002955) (0.002124) (0.002302) 

31.6 0.943861 0.930466 0.933893 0.945618 0.945512 
(0.002202) (0.001670) (0.000897) (0.000408) (0.000160) 

100. 0.942769 0.955895 0.962565 0.973128 0.945521 

(0.001475) (0.000315) (0.000326) (0.000035) (0.000160) 

316.2 0.961561 0.976227 0.981633 0.977140 0.945521 
(0.000371) (0.000418) (0.000007) (0.000018) (0.000160) 

1000.0 0.979454 0.969481 0.982322 0.977140 0.945521 
(0.000047) (0.003460) (0.002821) (0.000018) (0.000160) 

3162.3 0.986577 0.956853 0.982322 0.977140 0.945521 
(0.000778) (0.028933) (0.002821) (0.000018) (0.000160) 

10000.0 0.943689 0.946341 0.982322 0.977140 0.945521 
(0.017883) (0.018018) (0.002821) (0.000018) (0.000160) 

than the acquisition time of the algorithm, as shown in Fig. 
1. It shows that at all values of 1 < a < 2, the steady state 
performance is the best for 300 > c> 100. 

Therefore, the well-known trade-off between speed of 
reaction and stability is also preserved in the LLMS algo- 
rithm. The best choice of the parameter c which controls 
this trade-off by maximizing the rate of convergence without 
hurting much the steady-state performance of the algorith- 
m, seems to be c = 100. Note, however, that this value is 
applicable to processes of unit covariation. For processes 
with different covaration, the value of c should be scaled 
accordingly. 

The choice of CL depends on the application. In our case, 
we try to match an AR model to the data. Since a first 
order AR process is unlikely to have very strong values, it 
is reasonable to suppress them by letting CL be the median 
of the data (in our case, CL = 0). Indeed, our simulation 
study shows that as CL decreases, the steady state variance 
of the LLMS algorithm decreases (see Fig. 2). In other 
applications, where the rare, strong values may better fit the 
problem, it may be more reasonable to assume ex, = c or an 
in-between value as ci = 0.5c. 

3. Comparison of the 3 algorithms and discus- 
sion 

We have simulated the 3 algorithms for a = 0.99 where 
x(n) is a symmetric, normalized (to unit covariation) a- 
stable signal of 3000 samples. For the LLMS algorithm 
we have determined cL — 0 and c = 100, following the dis- 
cussion in Section 2. The performance of the algorithms is 
evaluated from 100 Monte-Carlo runs. In Fig. 3 we present 
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Figure 1. The learning curves (averaged over 
200 runs with the same n) of the LLMS al- 
gorithm with different limiting levels (c = 
l, 3,10,30, 100,300,1000,3000,10000, cL = 0). 
The input is a symmetric a-stable process of 
Q=   1. 

the average of 100 learning curves of the 3 algorithms for an 
a-stable process with a = 1.5, built as for the experiment of 
Fig. 1. It confirms that with a heavy-tails signal, the LMAD 
outperforms the LMS significantly, as first suggested in [3]. 
Note, however, that if /z is chosen under the same criterion 
(to maximize the rate of convergence of the algorithm while 
keeping its steady state variance smaller than a given value) 
for each run separately and then the learning curves of the 
100 runs are averaged, the advantage of the LMAD over 
the LMS is dramatically less significant. (See Fig. 4). 

The difference between Fig. 3 and Fig. 4 is explained 
by the effect of a rare, large value of x(n) on the LMS 
algorithm. For a given ß, the presence of such large value 
slows down the convergence of the algorithm dramatically. 
When ß is adjusted to each sequence separately, the spread 
of the ps over the 100 a-stable sequences can be shown to 
be large, but the averaged learning curve converges much 
faster than that of the averaged algorithm (with the same /i) 
and is much smoother. 

In Fig. 5 we present the equivalent of Fig. 3 for the case 
where the input happens to be Gaussian (a = 2). It shows 
that while the LMAD algorithm is worse than the LMS 
algorithm, the LLMS algorithm works similarly well to the 
LMS for Gaussian data. 

That is, with heavy-tails signals, where the LMS algo- 
rithm fails, the LLMS algorithm outperforms the LMAD 
algorithm (but not significantly) in both rate of convergence 

Figure 2. The steady state learning curves (av- 
eraged over 200 runs with the same y) of the 
LLMS algorithm with different limiting levels: 
cL = 0,100 (c = 100). The input is a symmetric 
a-stable process of a = 1.3. 

and stability, independent of the presentations used (Fig. 3 
and Fig. 4). With Gaussian data, the LMS algorithm out- 
performs the LMAD but not the LLMS. Therefore, the 
LLMS algorithm, when properly designed, is better than 
the LMAD in handling heavy-tails signals in terms of ro- 
bustness: its performance is as good as that of the LMAD 
when applying to heavy-tails signal while performing as 
good as the LMS (and better than the LMAD) with Gaus- 
sian signals. 

The advantage of the LLMS over the LMAD algorithm 
can be explained by comparing equations (3) and (4) to (2). 
In the LMS algorithm, the adaptation is controlled by the 
error signal e(n) - if the error is large the adaptation step is 
larger, so it converges faster to the region of small errors, 
where the fine adaptation is done. By hard-limiting the error 
signal in the LMAD algorithm one looses this automatic 
weighting of the adaptation step. The LLMS algorithm, on 
the other hand, keeps this feature while handling spikes by 
limiting the dynamic range of the input. 
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Figure 3. The learning curves (averaged over 
100 runs with the same /x) of the LMS, the 
LMAD and the LLMS algorithms (with c = 
100, CL = 0). The input is a symmetric er- 
statte process of a = 1.5. 
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Figure 4. The averaged learning curves (aver- 
aged over 100 runs with optimizing yu for each 
run) of the LMS, the LMAD and the LLMS 
algorithms (with c = 100, CL = 0). The input 
is a symmetric ec-stable process (a = 1.5). 
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Figure 5. The averaged learning curves (av- 
eraged over 100 runs with the same ß) of the 
LMS, the LMAD and the LLMS algorithms 
(with c = 100, CL = 0). The input is a symmet- 
ric a-stable process of a = 2, i.e., a Gaussian 
process. 
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Abstract 

In the frequency estimation of sinusoidal signals 
observed in impulsive noise environments, techniques 
based on Gaussian noise assumption are unsuccess- 
ful. One possible way to find better estimates is to 
model the noise as an alpha-stable process and to use 
the fractional lower order statistics of data to esti- 
mate the signal parameters. In this work noise and 
signal subspace methods, namely MUSIC and Princi- 
pal Component-Bartlett, are applied to fractional lower 
order statistics of sinusoids embedded in alpha-stable 
noise. The simulation results show that techniques 
based on lower order statistics are superior to their 
second order statistics-based counterparts, especially 
when the noise exhibits a strong impulsive attitude. 

1. Introduction 

Most of the work on the frequency estimation prob- 
lem assumes that the additive noise has Gaussian dis- 
tribution. This is partly because of the nice properties 
of the Gaussian model which allows for simplification of 
the theoretical work and decreases the computational 
complexity in signal parameter estimation. As long as 
the noise distribution can fit approximately to a Gaus- 
sian model, in particular for the tails of the distribu- 
tion, one can obtain good estimators with the Gaussian 
noise assumption. But if the noise process belongs to a 
non-Gaussian, especially a heavily-tailed, distribution 

*This work was supported by TÜBITAK under contracts 
EEEAG-83 and EEEAG-139. 

tOn leave from the Department of Electrical and Computer 
Engineering, University of Southwestern Louisiana, Lafayette, 
LA 70504-3890, USA. 

class or when the noise is of impulsive nature, param- 
eter estimators which are based on Gaussian noise as- 
sumption break down. 

Impulsive noise processes can be modeled using sta- 
ble distributions. If a signal can be thought of as the 
sum of a large number of independent and identically 
distributed random variables, the limiting distribution 
will be in the class of stable distributions according 
to Generalized Central Limit Theorem [5], and stable 
distributions cover Gaussian distribution in the limit. 

If the additive noise has a heavily-tailed distribution 
which is successfully modeled by alpha-stable distribu- 
tions, the performance of covariation-based frequency 
estimators is better than that of the traditional esti- 
mators which are based on second order statistics. 

In this work subspace-based estimation methods us- 
ing covariations are considered. In Section 2, the SaS 
distributions are briefly discussed. In Section 3, the ap- 
plication of fractional lower order moments (FLOM) to 
frequency estimation problem is presented. Section 4 
covers the results of the simulation experiments. Fi- 
nally conclusions are in Section 5. 

2. SaS Distributions 

An important sub-class of stable distributions are 
symmetric alpha-stable (SaS) distributions. The char- 
acteristic function of SaS variables is given by: 

<f>(w) = exp{j6w — 7|w|a} (1) 

where a is the characteristic exponent (0 < a < 2), 6 
is the location parameter (-co < 6 < oo) and 7 is the 
dispersion (7 > 0). Without losing generality we may 
take the location parameter 6 = 0 as in the zero mean 
Gaussian noise assumption case. This assumption will 
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lead to the characteristic function: with 

(2) 

For SaS processes only the moments of order p < 
a exist. So the estimation methods based on second 
order statistics of the data cannot be applied. One 
solution is to use FLOM of the process [5]. The so- 
called covariations [4] of two random variables are used 
instead of second order moments in the analysis. The 
covariation of two jointly SaS real random variables 
with dispersions jx and jy are given as: 

[X,Y]a = E[\Y\*] 7v (3) 

where jy = [Y, Y]a is the dispersion of random variable 
Y and Y^-^ = \Y\r~2Y. 

3. Frequency Estimation Problem 

In the  frequency  estimation problem the signal 
model assumed consists of multiple sinusoids 

K 
sn = ^2Ak sin {wkn + 8k} 

observed in additive SaS noise 

Xn = Sn+Zn,        n=l, .N. 

(4) 

(5) 

where Ak is the amplitude, wk is the angular frequency, 
and 6k is the phase of the fcth real sinusoid. K is the 
number of sinusoids and N is the sample size. x„ and 
zn are realizations of observation sequence Xn and SaS 
noise sequence Zn, respectively. 

When the noise samples are independent and identi- 
cally distributed, the observation sequence can be mod- 
eled as a stable AR-process: 

Xn = ai-Xn-i H h aMXn-M + hZn-       (6) 

This leads to the Generalized Yule-Walker Equation 
when Xn-m is given as [5]: 

E[Xn\Xn-m] aiE[Xn-i\Xn-m} + •'■ 
+ajvf E[Xn-M \Xn-m], 

E[Xn+l\Xn]    =    X(l)Xn 

CO 

(8) 

where m = 1, • • •, M. If A(Z) denotes the covariation 
coefficient of Xn+i with Xn, one can find the AR- 
parameters by solving the following linear set of equa- 
tions: 

Ca= A (9) 

A(0) 
A(l) 

A(-l) 
A(0) 

A(M - 1)   A(M - 2) 

a = 

A(l-M) 
A(2 - M) 

A(0) 

A(l) 
A(2) 

A(M) 

In the frequency estimation of sinusoids given by the 
Equations 4 and 5 the sinusoidal signal component can 
be assumed to be a stable AR process of order 2K. As 
in the Gaussian additive noise case, the model order M 
of the AR model for the noisy signal should be selected 
higher than 2K in order to allow sufficient additional 
subspace dimension for the noise component. Assum- 
ing that the signal and the noise components are stable 
processes with the same characteristic exponent, their 
covariation can be calculated as follows: 

[Xj,xk]a    =    [*,• + ej, sk + ek]a 

=     [Sj,Sk]a + [sj,ek]a 

+[ej,sk]a + [ej,ejfe]a 

(10) 

where j,k = 1,...,N. Since the signal and addi- 
tive noise are assumed to be independent, the cross- 
covariation of noise and signal components with each 
other is 

[sj,ek]a    =    0 

[ej,sk]a    =    0. 
(11) 

On the other hand the covariations of the signal com- 
ponent and noise component with themselves are found 
as: 

[sj,sk]a A(i - k)j3l, 

Sj,k7eh 

(12) 

(13) 

where 6j>k is the Kronecker delta. 
The covariation matrix for alpha-stable processes 

has the same meaning as that of the covariance ma- 
trix for Gaussian processes. As one performs eigen- 
decomposition of the covariation matrix, the larger 
eigenvalues will correspond to signal subspace eigen- 
vectors and the remaining eigenvectors will constitute 
the noise subspace. So one can perform eigen-analysis 
on the covariation matrix and then apply a suitable 
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Figure 1. Sample variance and bias of PC-Bartlett 
and ROC-Bartlett frequency estimators versus 
normalized angular frequency, a) PC-Bartlett, b) 
ROC-Bartlett (a = 1.0, p = 0.8 (ROC-Bartlett), 
M = 20, GSNR = 5 dB, N = 50, 100 noise real- 
izations, 20 phase realizations). 
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Figure 2. Bias of MUSIC and ROC-MUSIC fre- 
quency estimators versus characteristic exponent 
of alpha-stable noise, a) PC-Bartlett and MU- 
SIC, b) ROC-Bartlett and ROC-MUSIC (w = 
0.76 rad/sec, M = 20, GSNR = 5 dB, JV = 50, 
100 noise realizations, 20 phase realizations). 

ordered eigenvalues such that Ai > A2 > ■ • • > XM, and 
the corresponding eigenvectors of M x M autocorrela- 
tion matrix. ROC-Bartlett is obtained by substituting 
the covariation matrix for the autocorrelation matrix. 

4. Simulation Experiments 

noise subspace or a signal subspace technique to esti- 
mate the parameters. Note that the covariation matrix 
is not symmetric. This makes the eigen-analysis more 
complicated and renders many of the subspace-based 
parameter estimation techniques developed for Gaus- 
sian processes unsuitable for the general alpha-stable 
processes. 

One such technique applied to direction of arrival 
estimation problem is the Robust Covariation-Based 
MUSIC (ROC-MUSIC) [6]. In this work, we first ap- 
ply ROC-MUSIC which is a noise subspace method 
to frequency estimation in alpha-stable environments 
problem and then we also apply Robust Covariation- 
Based-Bartlett (ROC-Bartlett) which is a signal sub- 
space method, to the problem. 

The second order statistics-based principal compo- 
nent Bartlett frequency estimate is obtained by the 
peaks of the spectrum estimator [3]: 

1   2K 

PC-Bartlett(w) = — ]T Ai |dH
Vi 

i = l 
(14) 

where   d   is   the   complex   sinusoidal   vector   d    = 
[1   exp {ju}   ■■■   exp {JLü(M - 1)}], and A; and vf are 

We have used ROC-MUSIC and ROC-Bartlett 
methods to estimate the frequency of a single real sinu- 
soid. The modified FLOM (MFLOM) estimator given 
by [6] 

C(M) £■ 
JV-M + 1 

-X"fc+t-l|-X"i-H-l|p   2Xi+i„i 

k,l=l,---,M, (15) 

is defined for moment order p G [0, 2] and it is used 
to estimate the (k, Z)th element of the sample covari- 
ation matrix C. M denotes the order of AR-model. 
We have applied SaS noise sequences with varying a 
and 7 parameters. To generate the SaS noise pro- 
cess we used the method described by Tsihrintzis and 
Nikias [7] which is a special case of the more general 
method including the non-symmetric alpha-stable ran- 
dom variable generation given by Chambers, Mallows 
and Stuck [2]. The moment order p and the sample 
size N were equal to 0.8 and 50, respectively. The AR- 
model order was chosen as 20 in the simulations. The 
generalized SNR, GSNR = 10log(^£«=1 |s(n)|2) is 
equal to 5 dB. 
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Figure 3. Variance reduction of ROC-Bartlett 
with respect to PC-Bartlett frequency estimator 
versus GSNR averaged on the frequency axis, a) 
a = 1.0, b) a = 1.4, c) a = 1.8, d: a = 2.0 
(M = 20, N = 50, 100 noise and phase realiza- 

tions). 

4.1. Frequency 
Variance 

Dependence   of  Bias   and 

In Figure 1 the sample variance and the bias of 
PC-Bartlett and ROC-Bartlett frequency estimators 
are plotted against the angular frequency for a = 1.0 
(Cauchy distribution) and GSNR = 5 dB. The number 
of noise realizations and phase realizations are 100 and 
20, respectively, making a total of 2000 Monte Carlo 
runs. The ROC-Bartlett has approximately 5 dB lower 
sample variance than the PC-Bartlett. 

The bias curves depict a symmetry around approx- 
imately u) = 1.7 rad/sec. The ROC-Bartlett performs 
much better than the PC-Bartlett. The difference of 
their bias value is more than 0.4 rad/sec around w = 

0.2 rad/sec. 

4.2. Dependence of Bias upon a 

The bias behaviour of the estimators for w = 0.76 
rad/sec as a function of the characteristic exponent a 
of the noise is shown in Figure 2. The figure indicates 
that the bias gets smaller as a increases. When a — 1 
the bias values are 0.45 rad/sec for PC-Bartlett and 
MUSIC and it is less than 0.1 rad/sec for their ROC 
versions. As this figure depicts for the single tone case 
as in our experiments, MUSIC and Bartlett estimators 
show exactly the same performance. 

4.3. Dependence   of  Variance   Reduction 
upon the GSNR 

In Figure 3, the variance reduction achieved by 
ROC-Bartlett with respect to PC-Bartlett is plotted 

against GSNR for different values of a. The num- 
ber of Monte Carlo runs is 100, each with a different 
noise and phase realization. The curve exhibiting the 
highest gain belongs to a = 1.0 (Cauchy noise). This 
gain is approximately 17 dB when GSNR = 20 dB. 
The curves show that the variance increase introduced 
by the ROC-Bartlett against PC-Bartlett is negligible 
with the exception of Gaussian noise case where the 
GSNR threshold of ROC estimator is higher with re- 
spect to that of the second order statistics-based es- 
timator. This behaviour validates the robustness of 
FLOM-based subspace techniques and it is also shared 
by the noise subspace technique ROC-MUSIC. 

5. Conclusion 

When the additive noise in the frequency estimation 
problem can be modeled as an alpha-stable process, 
the FLOM-based subspace techniques perform better 
than their second order statistics-based counterparts. 
Both ROC-MUSIC and ROC-Bartlett methods showed 
superior performance with respect to MUSIC and PC- 
Bartlett methods in our experiments, especially for low 

a values. 

References 

[1] M. A. Altinkaya. Frequency Estimation of Sinusoidal 
Signals. PhD thesis, Bogazigi University, Istanbul, 
Turkey, 1996. 

[2] J. M. Chambers, C. L. Mallows, and B. W. Stuck. A 
method for simulating stable random variables. Jour- 
nal of Amererican Statistical Association, 71:340-346, 
1976. 

[3] S. M. Kay. Modern Spectal Estimation: Theory and Ap- 
plication. Prentice Hall, Englewood Cliffs, New Jersey 
07632, 1988. 

[4] G. Miller. Properties of certain symmetric stable dis- 
tribution. Journal of Multivariate Analysis, 8:346-360, 
1978. 

[5] M. Shao and C. L. Nikias. Signal processing with frac- 
tional lower order moments: Stable processes and their 
applications. Proceedings of the IEEE, 81:986-1010, 
1993. 

[6] P. Tsakalides and C. L. Nikias. Subspace-based direc- 
tion finding in alpha-stable noise environments. In Pro- 
ceedings of IEEE International Conference on Acous- 
tics Speech and Signal Processing, Detroit, Michigan, 
U.S.A., May 8-12 1995. 

[7] G. A. Tsihrintzis and C. L. Nikias. Performance of op- 
timum and suboptimum receivers in the precence of im- 
pulsive noise modeled as an alpha-stable process. IEEE 
Transactions on Communications, 43(2/3/4):904-914, 
February/March/April 1995. 

237 



DATA-ADAPTIVE ALGORITHMS FOR SIGNAL DETECTION IN IMPULSIVE 
NOISE MODELED AS A SUBGAUSSIAN, ALPHA-STABLE PROCESS 

George A. Tsihrintzis Chrysostomos L. Nikias 

Communication Systems Lab 
Department of Electrical Engineering 

University of Virginia 
Charlottesville, VA 22903-2442 

Signal and Image Processing Institute 
Department of Electrical Engineering-Systems 

University of Southern California 
Los Angeles, CA 90089-2564 

ABSTRACT 

We address the problem of coherent detection of a signal 
embedded in heavy-tailed noise modeled as a subGaussian, 
alpha-stable process. We assume that the signal is a complex- 
valued vector of length L, known only within a multiplicative 
constant. The dependence structure of the noise, i.e., the 
underlying matrix of the subGaussian process, is not known. 
The intent is to implement a generalized likelihood ratio de- 
tector which employs robust estimates of the unknown noise 
underlying matrix and the unknown signal strength. The 
performance of the proposed adaptive detector is compared 
to that of an adaptive matched filter that uses Gaussian esti- 
mates of the noise underlying matrix and the signal strength 
and is found to be clearly superior. The proposed new algo- 
rithms are evaluated via Monte-Carlo simulation. 

Key words - Signal detection, subGaussian process, adap- 
tive matched filter 

1.   INTRODUCTION 

The design of modern signal processing systems includes the 
design of signal detectors that will operate in noise/interference 
that is inherently nonGaussian and rather follows some dis- 
tribution with tails that are significantly heavier than the 
tails of the Gaussian distribution. Such interference is termed 
"impulsive" and is characterized by a significant probability 
of its attaining high values. In an impulsive operational en- 
vironment, traditional Gaussian receivers will perform very 
poorly and exhibit a number of false alarms or misses that 
is unacceptably high. Thus, a need arises to design re- 
ceivers that maintain high performance when operating in 
the radar environment and are robust to fluctuations in 
the characteristics of the interference. This task can be 
achieved only if good statistical models are available to 
quantify the interference. 

Classical statistical-physical models for impulsive inter- 
ference have been proposed by Middleton [2, 4, 3, 5] and are 
based on the filtered-impulse mechanism. These models in- 
clude three different classes of interference, namely A, B, 

This work was supported by the Office of Naval Research 
under contract N00014-92-J-1034. 

and C. Interference in class A is "coherent" in narrowband 
receivers, causing a negligible amount of transients. Inter- 
ference in class B, however, is "impulsive," consisting of a 
large number of overlapping transients. Finally, interference 
in class C is the sum of the other two interferences. The 
Middleton model has been shown to describe real impulsive 
interferences with high fidelity; however, it is mathemat- 
ically involved for signal processing applications. This is 
particularly true of the class B model, which contains seven 
parameters, one of which is purely empirical and in no way 
relates to the underlying physical model. Moreover, math- 
ematical approximations need to be used in the derivation 
of the Middleton model, which are equivalent to changes in 
the assumed physics of the noise and lead to ambiguities 
in the relation between the mathematical formulae and the 
physical scenario [1]. Very recently, an alternative to the 
Middleton model was proposed, which was based on the 
theory of symmetric, a-stable (SaS) distributions [8, 6]. 

In particular, it was shown in [9, 6] that, under very 
general assumptions, the first order distribution of impul- 
sive interference follows a SaS law. The stable model was 
then tested with a variety of real data and found, in all cases 
examined, to match the data with high fidelity [9]. The 
performance of optimum and suboptimum receivers in the 
presence of SaS impulsive interference was examined in [12], 
both theoretically and via Monte-Carlo simulation, and a 
method was presented for the real time implementation of 
the optimum nonlinearities. From this study, it was found 
that the corresponding optimum receivers perform in the 
presence of SaS impulsive interference quite well, while the 
performance of Gaussian and other suboptimum receivers 
is unacceptably low. It was also shown that a receiver de- 
signed on a Cauchy assumption for the first order distribu- 
tion of the impulsive interference performed only slightly 
below the corresponding optimum receiver, provided that 
a reasonable estimate of the noise dispersion was available, 
which for real-time signal processing purposes could be ob- 
tained via the fast algorithms in [11]. 

The study in [12] was later extended to include the 
optimum demodulation algorithm for reception of signals 
with random phase in impulsive intereference [13], as well 
in the direction of asymptotically optimum, multichannel 
detection structures for reception of amplitude-fluctuating 
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bandpass signals [14]. In all cases, the key finding has been 
the same robustness result for Cauchy-based algorithms as 
opposed to their Gaussian counterparts. 

In this paper, we look at the problem of coherent de- 
tection of a signal embedded in heavy-tailed noise modeled 
as a subGaussian, alpha-stable process. SubGaussian pro- 
cesses are a special class of multidimensional alpha-stable 
processes which can efficiently model the presence of out- 
liers, as well as a wide range of dependence structures in 
time series. We assume that the signal is a complex-valued 
vector of length L, known only within a multiplicative con- 
stant. The dependence structure of the noise, i.e., the un- 
derlying matrix of the subGaussian process, is not known. 
The intent is to implement an adaptive detector in which ro- 
bust estimates of the noise underlying matrix and the signal 
strength are obtained from independent, multiple observa- 
tions.  The performance of the proposed adaptive detector 
is compared to that of an adaptive matched filter that em- 
ploys Gaussian estimates of the noise covariance matrix and 
the signal strength [15]. More specifically, the paper is orga- 
nized as follows: Section 2 provides a brief review of the ba- 
sic definitions and properties of subGaussianSaS processes. 
In Section 3, we derive adaptive algorithms for detection of 
a (within a multiplicative constant) known signal in sub- 
Gaussian noise of unknown underlying matrix.  In Section 
4, we illustrate the performance of the proposed detector in 
a'computer simulation study in which we also compare it 
to the adaptive matched filter performance. We summarize 
the paper,  draw conclusions,  and suggest possible future 
research topics in Section 5. 

2.  SUBGAUSSIAN SYMMETRIC, 
ALPHA-STABLE PROCESSES 

A subGaussian random vector X can be denned as a ran- 
dom vector with characteristic function of the general form 

<H^) = exp[-|(wT£u,)a/2], (1) 

where R is a positive-definite matrix. Unfortunately, closed- 
form expressions for the joint pdf of subGaussian random 
vectors are known only for the Gaussian (a = 2) and Cauchy 
(a — 1) cases: 

fo{X)    = 

fc(X)    = 

= exp(-XT£-1X) (GaussianX2) 

[i+£TiT1*](L+1)/2 
(Cauchy)(3) 

is the where L is the length of the random vector, 

determinant of R_, and c = n(L+i)j2 T(   2   ). 
The following proposition relates Gaussian and subGaus- 

sian random vectors and can, in fact, be used to generate 
subGaussian random deviates [7, pp. 77-84]: 

Theorem 1 Any subGaussian random vector is a SaS ran- 
dom vector. In addition, any subGaussian random vector 
can be expressed in the form 

where w is a positive f -stable random variable [7] and G 
is a Gaussian random vector of mean zero and covariance 

matrix R. 

SubGaussian SaS processes combine the capability to 
model statistical dependence with the capability to model 
the presence of outliers in observed time series of various 
degrees of severity. The example in Fig.l is indicative 
of the concept. Consider a subGaussian vector of length 
L = 100 and diagonal underlying covariance matrix R_ - 
diag {1,1,...,1}. Typical realizations of the vector are 

shown in Figs. 1(a) and 1(b) for characteristic exponents 
a = 2 and a = 1.5, respectively. Clearly, it is difficult to 
distinguish one vector from the other visually. However, 
if we look over 1000 independent realizations of the first 
component of the vector, we obtain Figs. 1(c) and 1(d), 
respectively, in which a clear difference is observed. 

While Gaussian vector (alpha - 2) While sub-Gaussian vector (alpha = 1.5) 

1000 realizations ol lirst componenl. alpha - 2 1000 realizations ol lirsl componenl, alpha - 1.5 
30 r • " 

lWi^i<iil»wJlWf''1 

Figure 1: Typical realizations of subGaussian random vec- 
tors 

The following proposition expresses the underlying ma- 
trix of a subGaussian vector in terms of its covariation ma- 
trix and can, therefore, be used to obtain high quality esti- 
mates of the underlying matrix of the vector from indepen- 
dent observations [7, pp. 89]. 

Theorem 2 Let X^ [XUX2, ■ ■ ■ ,XL]T be a subGaussian 
random vector with underlying matrix R_. Then, its covari- 
ation matrix C_ will consist of the elements 

Cij = [Xi,Xj]a = 2-iRi]R]]
2 (5) 

Eq.(5) can now be used to compute an estimate of the 
underlying matrix £ from the estimate of the covariation 
matrix C. 

Theorem 3 Let 

: W2G, (4) 
ctJ = c(P, a)[^t,x'^<p~1>]alP[i £ l^|P] kip-ia/p-l 
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be the estimator of the covariation matrix elements, where 
p < a/2.  The estimates 

Ä, 

Ri 

[2*cr>;]« 
(6) 

=    2-Ci3IR-f 
are consistent and asymptotically normal with means Rjj 
and Rij, respectively, and variances as in [10]. 

The procedure is illustrated with the following simu- 
lation study: Consider a subGaussian random vector of 
length L = 32 and underlying matrix Ä = diag {1,1,...,1}. 
We assume that K = 500 independent realizations of the 
vector are available and plot the 16nd row of the mean over 
100 Monte-Carlo simulations of the following two estimates: 

k = if^T 
(7) 

*=i 

E.    =     as obtained from covariation matrix estimate^) 

We examined the cases of a = 2 and a = 1.5. Clearly, the 
Gaussian estimate fails when a = 2, while the covariation- 
based estimate maintains high performance in both the 
cases of a = 2 and a = 1.5. 

alpha - 2, Gaussian estimate a|pha - 2, FLOS-based estimate 

0 10 20 30 

alpha - 1.5, Gaussian estimate 

Figure 2:  Illustration of the performance of estimators of 
the underlying matrix of a subGaussian vector 

Next, we consider the estimation of the amplitude of 
a signal of known shape embedded in subGaussian noise 
from a number of independent observations. The following 
Proposition outlines the procedure and states its perfor- 
mance. 

Theorem 4 Consider the collection of K vectors X_k = 
As + Nk, k = 1,2,_..., K, where sTs=l. Form the least- 
squares estimates Äk = sTXk = sTAs+sTN_k = A+sTN_k, 
k = 1,2, ...,K. Define Ä = sm {Äu Ä2,..., ÄK), where 
sm{- ■ ■} indicates the sample median of its arguments. The 
estimate A is consistent and asymptotically normal with 
mean equal to the true signal amplitude A and variance 

v1/ 
M-irii/c)]2' where 7 = 2« (sTE£) 2 

3.  DATA-ADAPTIVE ALGORITHMS FOR 
COHERENT SIGNAL DETECTION 

We consider the hypothesis testing problem 

#o    :    Xk = Nk 

k = l,2,...,K 
H, X = S + Nk, 

where all the vectors have dimension (length) L and k = 
1,2,..., K indexes independent, identically distributed re- 
alizations. 

We make the following assumptions: 

1. The noise vectors N_k have a sub-Gaussian distribu- 
tion, i.e., 

K" = wlGk, 
where Wk is a positive (a/2)-stable random variable 
of unit dispersion, Gk is a Gaussian random vector of 
covariance matrix R_, and Wk and Gk are independent. 

2. The signal vector 5 = As consists of a known shape 
s (for which 5Ts = 1) and an unknown amplitude A. 

The proposed test statistic is a generalized likelihood 
ratio test that makes use of the multidimensional Cauchy 
pdf denned in Eq.(2): 

<c = £>g[ i + xTE   X 
l + (X-Äs)TR  \X-As) 

(9) 

For the estimates J| and Ä, we choose the estimates 
proposed in Eq.(6) and Proposition 4, respectively. 

Assuming Gaussian noise of unknown covariance matrix 
ß_ and unknown signal amplitude, the data-adaptive detec- 
tor attains the form of an adaptive matched filter [15], i.e., 
it computes the test statistic 

K _ 

to = {2/K) Y^iUfk 'x - |i| Vjf ^ (10) 

where Ä = (1/K) £* , ^^ and t = (1/K) £f=1 (X- 

As){X-Xs)T. 

4.   COMPUTER ILLUSTRATION 

The small sample performance of both the Gaussian and 
the proposed Cauchy detectors can be accurately assessed 
only via Monte-Carlo simulation. To this end, we chose an 
observation vector of length L = 8 and K = 10 independent 
copies of it, while for the signal we chose a shape of a square 
pulse of height 1/vT and an amplitude of A = 1. The sub- 
Gaussian interference was assumed to be of characteristic 
exponent a = 2,1.75,1.5,1.25,1, and 0.75 and underlying 
matrix £ = diag {1,1,...,1}. The performance of the 
Gaussian and the Cauchy detectors was assessed via 10,000 
Monte-Carlo runs. 
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In Fig. 3, we compare the performance of the Gaussian 
and the Cauchy detectors for different values of the char- 
acteristic exponent a. We see that, for a = 2, the Gaus- 
sian detector, as expected, outperforms the Cauchy detec- 
tor; however, for all other values of a, the Cauchy detector 
maintains a high performance level, while the performance 
of the Gaussian detector deteriorates down to unacceptably 

low levels. 

to"2 10 

o 
o a 
010"1 

a alpha-1.5 

10 

10"1 

:                    alpha-1.75 

10-3                            10 

T7,U                 .> 
o i'y^^ 

O10"' 

•°    -a 
J^                  alpha - 1.25 

Q. lO"8                          10 

^^y" 
10"1 ^^ 

4A-2 
alpha - 0.75 

10J 10" 
Probability ol False Alarm 

10"* 10" 
Probability ol False Alarm 

Figure 3: Comparison of the small sample performance of 
the Gaussian (dotted line) and the Cauchy (solid line) de- 

tector. 

5    SUMMARY, CONCLUSIONS, AND FUTURE 
WORK 

In this paper, we addressed the problem of detection of a 
signal, known within a multiplicative constant, in subGaus- 
sian impulsive interference of unknown underlying matrix. 
From this study, we found that the Gaussian detectors for 
the same problem deteriorate in performance when required 
to operate in subGaussian interference. On the other hand, 
a detector based on the multidimensional Cauchy distribu- 
tion exhibited resistance to the presence of the subGaussian 
interference and high performance, comparable to the per- 
formance of the Gaussian detector in Gaussian interference. 
Future research in this area seems to indicate the need for 
evaluation of both the proposed subGaussian interference 
model and the corresponding detectors on real data sets. 
Such a process in underway and its results are expected to 
be announced soon. 
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SUMMARY 

This paper emphasizes the statistical properties of the wavelet 

transform (WT) and discusses some recent examples of 

applications in medicine and biology. 

The redundant forms of the transform (continuous wavelet 

transform (CWT) and wavelet frames) are well suited for 

detection tasks (e.g., spikes in EEG, or microcalcifications in 

mammograms). The CWT, in particular, can be interpreted as a 

prewhitening multi-scale matched filter. Redundant wavelet 

decompositions are also very useful for the characterization of 

singularities, as well as for the time-frequency analysis of non- 

stationary signals. We briefly discuss some examples of 

applications in phonocardiography, electrocardiography (ECG), 
and electroencephalography (EEG). 

Wavelet bases (WB) provide a similar, non-redundant 

decomposition of a signal in terms of the shifts and dilations of a 

wavelet (hierarchical or pyramidal transform). There are also 

non-hierarchical versions that constitute a direct extension of the 

traditional block transforms (Fourier, DCT, etc.). This makes 

WB well suited for any of the tasks for which block transforms 

have been used traditionally: data compression, data analysis 

(decorrelation), and data processing (generalized filtering). 

Wavelets, however, may present certain advantages because 

they can improve the signal-to-noise ratio, while retaining a 

certain degree of localization in the time (or space) domain. We 

present three illustrative examples. The first is a straightforward 

denoising technique that applies a soft threshold in the wavelet 

domain.   The second is a more refined version that uses 

generalized Wiener filtering; it was initially proposed for 

reducing noise in evoked response potentials. The third is a 

statistical method for detecting and locating patterns of brain 

activity in functional images acquired using magnetic resonance 
imaging (fMRI). 

Finally, we conclude by describing a wavelet 

generalization of the classical Karhunen-Loeve transform. In 

particular, we provide the solution for the optimal 

decomposition of a wide sense stationary process 
(unconstrained case). 

1. THREE TYPES OF WAVELET TRANSFORMS 

The wavelet transform is a linear signal transformation that uses 

templates \[{ttM=amy/((x-b)la), which are shifted (index 

b) and dilated versions (index a) of a given wavelet function 

VW [11, 53]. The wavelet transform of the signal / e H is 

parameterized by the scale and shift parameters a and b; it is 
typically written as 

Twf(a,b) = (f,\V(ah}), (1) 

where (-,■> is the inner product associated with the Hubert space 

H (/2 or L2 depending on whether the signal / is discrete or 

continuous). A basic requirement is that the transform is 

reversible, that is, that the signal/can be reconstructed from its 

wavelet coefficients Twf(a,b). The distinction between the 

various types of wavelet transforms depends on the way in 

which the scale and shift parameters are discretized. 

At the most redundant end, one has the continuous wavelet 

transform (CWT) for which these parameters vary in a 

continuous fashion [20]. This representation offers the 

maximum freedom in the choice of the analysis wavelet. The 

only requirement is that the wavelet satisfies an admissibility 

condition; in particular, it must have zero mean. 

In practice, it is often more convenient to consider the WT 

for some discretized values of a and b (e.g., the dyadic scales 

a = 2' and integer shifts b = k with (i,k) e Z2). The transform 

will be reversible if and only if the corresponding (countable) set 

of templates defines a wavelet frame (WF) [10, 19, 1]. In other 

words, the wavelet must be designed such that 

VfeH,  A-||/|f<X|</,V(,„6)>|2<5.||/|f (2) 

where A and B are two positive constants (framebounds). 

A WF is just a redundant version of a wavelet basis (WB) 

which can be obtained for the critical sampling rate: a = 2', 

b = 2' ■ k with (i,k) e Z2. In this case, the templates must also 

be linearly independent, which imposes even stronger 

constraints on the choice of y. If the framebounds in (2) are 

such that A = B = \, then the transformation is orthogonal. 

Such  wavelets  can be constructed  by  starting from  a 

0-8186-7576-4/96 $5.00 © 1996 IEEE 
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multiresolution analysis of L2 [26, 27]. The better known 

examples are the Daubechies wavelets [9], which are orthogonal 

and compactly supported; and the Battle-Lemari6 wavelets 

which are splines with exponential decay [24, 27]. In the case 

of semi- and bi-orthogonal wavelet bases [8,49,2], one has the 

following signal representation 

/ = SX</.V«>'Vu • (3) 

i   *<=Z 

with the short form convention yl>t =2~'n\f(,xll' -k). The 

analysis wavelet \jf is *e dual of V (the synthesis wavelet); in 

the orthogonal case, both wavelets are identical. 

Basic texbook references on the wavelet transform are [11, 

29, 53]. For computational issues, we refer the reader to [46]. 

An extensive review of its various uses in medicine and biology 

is given in [47]; specific biomedical applications are also 

described in [3]. 

2. WAVELET ANALYSIS AND FEATURE 

DETECTION 

The redundant forms of the transform (CWT and WF) are 

usually preferable for signal analyses, feature extraction, and 

detection tasks for they provides a description that is truly shift- 

invariant. Next, we discuss some wavelet properties that are of 

special interest for this class of applications. 

A. Wavelets and time-frequency analysis 
An analysis wavelet \y is typically a well localized 

bandpass function with a central frequency at (00; a standard 

requirement is that its time-frequency bandwitdth product is 

close to the limit specified by the uncertainty principle: 

A   • A- > 1/2. Thus, each analysis template y<„,w tends to be 

predominantly located in a certain elliptical region of the time- 

frequency plane centered at t - b and (0 = (ü0 / a.   The area of 

these localization regions is the same for all templates 

((a A )x(A-/a)) and is constrained by the uncertainty 

principle.   Thus, by measuring the correlation between the 

signal and each wavelet template, we obtain a characterization of 

its time-frequency content (scalogram).  The main difference 

with the short-time Fourier transform is that the size of the 

analysis window is not constant for it varies in inverse 

proportion to the frequency. This property enables the wavelet 

transform to zoom in on details, but at the expense of a 

corresponding loss in spectral resolution.  In this respect, we 

should note that most biomedical signals of interest include a 

combination of impulse-like events (spikes and transients) and 

more diffuse oscillations (murmurs, EEG waveforms) which 

may all convey important information for the clinician. The 

short-time Fourier transform or other conventional time- 

frequency methods are well adapted for the latter type of events 

but are much less suited for the analysis of short duration 

pulsations. When both types of events are present in the data, 

the wavelet transform can offer a better compromise in terms of 

localization. This may explain its recent success in biomedical 

signal processing. Recent examples of applications where time- 

frequency wavelet analysis appears to be particularly appropriate 

are the characterization of heart beat sounds [22, 21, 31], the 

analysis of ECG signals including the detection of late 

ventricular potentials [21, 16, 28, 39] , the analysis of EEGs 

[38, 37, 50], as well as a variety of other physiological signals 

[36]. 

B. Wavelets as a multi-scale matched filter 
In essence, the continuous wavelet transform performs a 

correlation analysis, so that we can expect its output to be 

maximum when the input signal most resembles the analysis 

template \f(aM. Consider the measurement model 

/(x) = cp„(x-Ax) + n(x) where <p„(x) = <p(x/a) is a known 

deterministic signal at scale a, Ax an unknown location 

parameter, and n(x) an additive white Gaussian noise 

component. Classical detection theory tells us that the optimal 

procedure for estimating Ax is to perform the correlation with all 

possible shifts of our reference template and to select the 

position that corresponds to the maximum output (matched 

filter). Therefore, it makes sense to use a wavelet transform-like 

detector whenever the pattern <p that we are looking for can 

appear at various scales. 
If the noise is correlated instead of white, then we can get 

back to the previous case by applying a whitening filter. 

Interestingly, the wavelet-like structure of the detector is 

preserved exactly if the noise has a fractional brownian motion 

structure. Specifically, when the noise average spectrum has the 

form <t>„(ö>) = o2/|cof with a=2H+l where H is the Hurst 

exponent, we can show that the optimum detector y(x) is 

proportional to the ccth fractional derivative of the pattern <p that 

we want to detect. Consequently, for tf>0, the optimal detector 

is an admissible wavelet even if the initial template cp(x) is not 

(e.g. it is a lowpass function). For example, the optimal 

detector for finding a Gaussian in 0(«T2) noise is the Mexican 

hat wavelet (2nd derivative of a Gaussian). As suggested by 

Strickland, this is perhaps one of the main reasons why the 

wavelet transform works well for detecting microcalcifications 

in mammograms [7, 32,41]. 

3. WAVELET BASES 

Wavelet bases provide a non-redundant decomposition of a 

signal in terms of the shifts and dilations of \|/ (hierarchical or 
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pyramidal transform). Hence, it is possible to represent a signal 

through its wavelet expansion 

/ = IIW« (4) 
i   keZ 

where the c!t =(/>¥,,*> are the wavelet coefficients (scale 

index i, and position index k). There are also non-hierarchical 

versions (wavelet packets, M-band perfect reconstruction 

filterbanks) that constitute a direct extension of the traditional 

block transforms (Fourier, DCT, etc.). The important point for 

our purpose is that, in the discrete case, the decomposition 

formula (4) provides a one-to-one representation of the signal in 

terms of its wavelet coefficients (reversible linear 

transformation). This makes WB well suited for any of the 

tasks for which block transforms have been used traditionally: 

data compression, data analysis (decorrelation), and data 

processing (generalized filtering). Wavelets, however, may 

present certain advantages because they can improve the signal- 

to-noise ratio, while retaining a certain degree of localization in 

the time (or space) domain. 

A. Data Compression 

Data compression can be achieved by quantization in the 
wavelet domain, or by simply 

discarding certain coefficients that are insignificant. This form of 

orthogonal (or close-to-orthogonal) decomposition has been 

used effectively for image compression [25, 4, 14, 40]. 

Traditionally, this has been one of the primary applications of 
wavelets. 

B. Data Processing: wavelet denoising 

One of the first application of the wavelet transform in 

medical imaging was for noise reduction in MR images [54]. 

The approach proposed by Weaver et al. was to compute an 

orthogonal wavelet decomposition of the image and apply the 

following soft thresholding rule on the coefficients 
ca=</.Va>: 

ci,t-ti 

0 kJ<r; (5) 

where t, is a threshold that depends on the noise level at the ith 

scale; the image is then reconstructed by the inverse wavelet 

transform of the cik's. This is essentially the wavelet shrinkage 

denoising method later systematized by Donoho and Johnston 

[18, 17], as well as DeVore and Lucier [15]. This algorithm is 

extremely simple to implement and works well for moderate 

levels of noise. Asymptotically (as the scale goes to zero and as 

the noise energy gets distributed over more and more sample 

values), it has some interesting min-max optimality properties 

for a relatively large class of signals [17]. 

The approach can easily be taken one step further by 

considering more general pointwise non-linear transformations 

Kk - F(ci,k)- Consider the measurement model c, t = c'n + n{ 

where c*k denotes the wavelet coefficient of the noise-free 

signal and nik is an independent noise component. In principle 

at least, one could apply the optimal Bayesian estimation rule : 

c,.t = E[clk I C,,*J> which minimizes the mean square error. This 

of course requires the knowledge of the a posteriori probability 

density function p(c'\c), which depends on our a priori 

knowledge on c*t (p(c')), and on the noise distribution 

(/>(») = p(c I c*)). We can also constrain ourselves to the class 

of linear estimators, and derive the optimal linear estimate 

£[«*)2] 
£[«* + %)2] 

(6) 

which has the form of a generalized Wiener filter. This particular 

algorithm was first proposed by Bertrand et al. for the 

processing of evoked response potentials (ERPs) [5]. These are 

very noisy signals with a strong deterministic component. 

Because ERPs are usually acquired using multiple trials (typ. 

100-600 repetitions), the optimal weighting factors in (6) can be 

estimated on a coefficient-by-coefficient basis in an initial 

training phase, or even updated recursively. In this particular 

application, the wavelet transform appears to be superior to the 

Fourier transform, the latter being optimal only when both the 

signal and noise are stationary (conventional Wiener filter). 

C. Data Analysis: detecting changes in fMRI 

Functional neuroimaging is a fast developing area aimed at 

investigating the neuronal activity of the brain in vivo. The data 

for those studies is provided by positron emission tomography 

(PET), and functional magnetic resonance imaging (fMRI). 

PET measures the spatial distribution of certain function-specific 

radiotracers injected into the bloodstream prior to imaging. A 

typical example is the measurement of cerebral glucose 

utilization with the tracer [18F]2-fluoro-2-deoxy-D-glucose 

(FDG). fMRI, which is a more recent technique, allows for a 

visualization of local changes in blood oxygenation believed to 

be induced by neuronal activation. It is substantially faster than 

PET and also offers better spatial resolution. Yet, there is still 

disagreement among specialists concerning the exact nature of 

the biological processes that produce the observed changes in 
the MR signal. 

The functional images obtained with those two modalities 

are extremely noisy and variable, and their interpretation 

requires the use of statistical analysis methods [51].  What is 
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typically of interest is the detection of the differences of activity 

between different groups of subjects (e.g. normal versus 

diseased) or between different experimental conditions with the 

same subject (e.g. rest versus word generation). In either case, 

the variability of the signal is such that multiple subjects or 

repeated trials are required in each subgroup. 

The first step in this analysis is to register the various 

images so that they can be compared on a pixel-by-pixel basis 

[42]. The second step is to compute the difference between the 

aligned group averages and perform the statistical analysis. 

Testing in the image domain directly is difficult because of the 

amount of residual noise and the necessity to use a very 

conservative significance level to compensate for multiple testing 

(one test per pixel!). A better solution is to perform the testing 

in the wavelet domain [35, 33, 51]. The main advantage is that 

the discriminative information, which is smooth and well 

localized spatially, becomes concentrated into a relatively small 

number of coefficients, while the noise remains evenly divided 

among all coefficients. In addition, the number of statistical 

tests can be reduced considerably by first identifying the few 

wavelet channels that contain significant differences. A recent 

application of this technique to fMRI is presented in [34]. 

4. EXTENSION OF THE KARHUNEN-LOEVE 

TRANSFORM 

One stage of the fast wavelet transform algorithm can be 

conveniently described as a multivariate filtering operation using 

the so-called polyphase representation [53]. The corresponding 

filterbank system is shown in Fig. 1. 

y{k) 

Fig. 1: Polyphase representation of a P-band wavelet analysis filterbank. 

In this diagram, x(k) represents the input signal and the y's are 

the various wavelet channels after one level of decomposition. 

In the standard dyadic case, there are only two channels (P=2), 

but the concept is also valid for larger values of P (P-band 

perfect reconstruction filterbank) [52, 53]. It turns out that the 

transformation is orthogonal if and only if the PxP transfer 

function matrix H(z) satisfies the paraunitary condition: 

H(z)H(\lz) = IP, (7) 

where Ip is the PxP identity matrix. Note that for traditional 

block transforms, the matrix H(z) does not depend on z (i.e., 

the various blocks are processed independently of each other). 

In order to design the optimal wavelet transform for a given 

class of input signals, it is therefore natural to seek the 

paraunitary matrix H(z) that provides the maximum energy 

compaction in the wavelet domain [44]. If the matrix H is 

constrained to be real (no delays), the solution corresponds to 

the classical Karhunen-Loeve transform (KLT). If we allow for 

more general structures (for example, H(z) is an TV-point FIR 

transfer function), we can get better results but the filter 

optimization subject to constraint (7) is a rather difficult task 

[44, 30, 6, 13]. One interesting property of the optimal solution 

is that the transformed components are uncorrelated; however, 

this is not a sufficient condition for optimality, in contrast with 

the standard KLT [44]. 

If we do not impose any order constraint on H(z), it is 

possible to derive the optimal solution analytically for any given 

wide sense stationary process with spectral power density 

5,(0)). The two channel case is considered in [45]; the more 

general P-band case is treated in [43] using an elegant principal 

component formulation in the frequency domain. In each case, 

the solution depends on the spectral characteristics of the input 

signal and has the form of an ideal filter with pure "on" and 

"off" frequency bands. If the power spectral density is non- 

increasing, then the optimal solution is the ideal filterbank with 

P uniformly-spaced subbands. Interestingly, there are a number 

of wavelet transform constructions that converge asymptotically 

to this limit. The better known example is the family of Battle- 

Lemarie spline wavelets which converge to an ideal bandpass 

filter as the order of the spline goes to infinity [24, 48, 2]. 

Daubechies wavelets also exhibit similar convergence properties 

[23]. This partially explains why higher order wavelets usually 

result in smaller approximation errors. 

These unconstrained solutions are primarily of interest 

from a theoretical point of view. For example, they can be very 

useful for deriving asymptotic bounds on the best performance 

achievable (e.g. coding gain over PCM) [12]. They are less 

relevant for implementation purposes because of the 

disadvantages of ideal filterbanks (slowly decaying impulse 

responses, Gibbs oscillations). This provides a good motivation 

for investigating more constrained solutions. As far as we 

know, there is not yet any general procedure for designing 

optimal FIR wavelets that is entirely satisfactory; this is 

currently an active area of research. 
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Abstract 
The problem of estimating the speed of a particle of air pass- 
ing through the region of interference fringes generated by 
two coherent laser beams is addressed. The signal detected 
being oftheform Aexp{-2a2./jt2} cos(27r/d£) -where the 
Doppler frequency fd is related to particle's velocity- this 
paper is concerned with the best accurate estimation of the 
parameters A and fd in the model considered. Cramer- 
Rao bounds on the accuracy of estimates of A and fd are 
derived and closed-formed expressions are given. Approx- 
imated formulas provide quantitative insights into the in- 
fluence of a and fd. Additionally, a Maximum Likelihood 
Estimator is presented. Numerical examples illustrate the 
performance of the MLE and compare it with the CRB. The 
influence of the SNR, the sample size, the optical parame- 
ter a and the frequency fd on the estimation performance 
are emphasized. 

1.   Problem statement 
Laser velocimeters have gained popularity in the fluid 
mechanics application, where they have been used to 
estimate particles velocity in a flow[l][2], mainly for 
measurements in wind tunnels. Since this system pro- 
vides a non-intrusive and reliable way of measuring 
local velocities in fluid flows, it has become an inter- 
esting alternative to mechanical systems, for instance 
in situations where one does not want to disturb the 
flow. Furthermore, these systems have been reported 
to yield precise estimation. Examples of laser velocime- 
try applications include analysis of flow surrounding 
the blade tips of a hovering rotor, measurements of 
mean velocity and turbulence intensity in unsteady ul- 
trasonic flow. In aeronautics applications, there is a 
vital need in having a reliable aircraft's speed mea- 
surement system. Moreover, this system must fulfil se- 
vere constraints regarding size, weight, accuracy and 
robustness. With the emergence of a new generation 
of cheap and small laser diodes, laser anemometers be- 
come a conceivable and promising technique for on- 
board measurement of aircraft's speed. The principle 
of such a system is now briefly described. Two coher- 

ent laser beams are crossed and focused in the vicinity 
of the aircraft. They generate a symmetric ellipsoidal 
probe volume composed of equidistant bright and dark 
fringes. As a particle of air passes through this region, 
the fringes will cause it alternatively to scatter and not 
to scatter light, according to the particle's velocity and 
interfringe width. More exactly, the signal received by 
the photodetector can be shown[l] to have the form 

V. 
x(t)    =   A.e~2(") t2.cos(2irjt) + w(t) 

=   A.s(t) + w(t) t = 0,±l,...,±T (1) 

where V represents the particle's velocity, 2W is the 
total length of the interference fringes, I denotes the in- 
terfringe width. The amplitude A depends on the par- 
ticle's size, the power emitted and optical transmission 
coefficients. In (1) the additive noise {w(t)} is assumed 
to be a sequence of i.i.d. Gaussian variables with vari- 
ance a2.,. It should be pointed out that the Gaussian 

-o(xX.\2t2   ■     j- shape of the time-varying amplitude e V w j is di- 
rectly induced from the Gaussian shape of the inten- 
sity distribution within the laser beam. In what fol- 

lows, we note a = -fa and let fd = j denote the 
"Doppler" frequency, so that s(t) in (1) can be rewrit- 
ten as s(t) = e~2a •£»•' .cos(27r/rfi). Here, we are con- 
cerned with the best accuracy that can be achieved 
when estimating the parameters A and fd in (1). It 
should be noted that the model studied here belongs 
to the class of amplitude modulated sinusoidal signals 
(see [3] for a thorough overview of multiplicative mod- 
els). However, in contrast with most approaches, the 
time-varying amplitude cannot be viewed just as a per- 
turbation term. Moreover, the amplitude and phase 
are not decoupled from one another, as they both carry 
information about the frequency of interest. 

2.   Cramer-Rao Bounds 
Let 6 = [A, fd, o\,] be the parameter vector to be es- 
timated from the measurements {x(t)}t__T T. For 

later use, we define 
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8 = K-r))...)S(0),...)5(T)]Tand 
w = [w(-T),...,w(0),...,w(T)]T so that (1) can be 
written in the following compact form 

x = As + w (2) 

2.1. Exact CRB 
Under the white Gaussian assumption for w(t), the 
log-likelihood function is given by[4] 

A(x,e) = cte-?^±±\nol-±\\x-Asf    (3) 

Twice differentiating (3) wrt 6 and taking expecta- 
tions, it is straightforward to show (see [5] for details) 
that the Fisher Information Matrix (FIM) is given by 

F = 
r ^-sTs -4- sTs' 

4; s/Ts' 
0 

$-sT*f 0 
0 0 2T+1 

2<r< 

(4) 

where s'* = -gj-. Inverting (4), the diagonal terms of 
the Cramer-Rao Bound (CRB) are obtained as 

In4 

CRB(A) = a\ -^2 

2T+1 

s/7V s/s/ 
(s^s)(sfs))-(s^)(s^) 

T SJ s 

(5) 

(6) 

(7) CRB(fd) — "To. 7 r 7 r—7 r- 
A2   (»TS) (8f 8>) - (fs'f) (sTs>f) 

which provides closed-form expressions of the CRB. 
The influences of a and fa are of interest as they can 
guide the selection of the sampling frequency and the 
optical parameters. However, it turns out that an an- 
alytical study from (7) of the dependence of CRB(fd) 
on a and fd is intractable, the derivatives  Qa      > 
—a/J being difficult to interpret. This influence 
will therefore be evaluated numerically. However, fur- 
ther insights into the analysis of the CRB can be gained 
by considering the large-sample case and approximated 
formulas for the FIM, as shown in the next section. 

2.2. Approximated CRB 
The aim of this section is to get simplified expressions 
for the CRB which could provide direct relations be- 
tween CRB(fd) and the parameters a,/d,i4,<72. We 
consider that T is "large" (as exp {—2a2/d

J£2} decays 
very quickly, this assumption is not restrictive). First, 
observe that the asymptotic FIM depends on the quan- 
tities lim sTs, lim sTs'r and lim s'Js'f. Therefore, 

T->oo T-«x>        ' T-»oo   *    ' 

it will consist of a combination of terms of the forms 

lim  £f=_rexp{-4a2/2*2}.f\ "* (4irfdt). To get 
1 —»OO Ö111 

further insights into their values, we propose to use the 
following approximation: 

lim   y>xP{-4a2/d
2*2K. 

T-*oo   ■*-—' l ' 

/oo 
exp {-4a2 fit2}.tn. 

•oo 

COS 

sin 
(4nfdt) 

(4vfdt).dt   (8) 

This corresponds to a rectangular approximation of 
the integral. More intuitively, consider either a signal 
x(t) = e~4a f*r .tn or a random process with auto- 
correlation r(r) = e~4a f*T .rn. The left-hand (resp. 
right-hand) sides of (8) are the real and imaginary 
parts of the Discrete Time (resp. Continuous Time) 
Fourier Transform of these sequences, evaluated at 2/j. 
Hence, (8) amounts to say that the DTFT fairly ap- 
proximates the CTFT, which is a common hypothesis. 
However, it is only an approximation and the ensuing 
expressions are not exact. Nevertheless, as will be il- 
lustrated by numerical examples, it is a very accurate 
approximation. Based on (8), it can be shown[5] that 

lim sTs: 
T-*oo 

lim 
T-»oo 

T  I 3   Sy 

4otfd 

"8a/2' 

1 4-exp 

1 +exp 

I    «2J 
(9) 

(10) 

lim  s/V*    ~ 
r->oo  '   ' 

V^(3a2-h27r2) 

16a3/j 

+■ 
^F(3a2-27r2) 

16aVI 
exp {4} 11) 

Furthermore, we note that, in general, a (the inverse 
of the number of interference fringes) is small which 

implies that terms of the form ß. exp i — ^y >, 

7. exp < — 2 J? > are negligible compared to 1. By ne- 

glecting these terms in (9)-(ll) the (approximated) 
asymptotic FIM corresponding to [>l,/d]r is given by 

lim  '. 
T->oo \A,fä) ~ ~2 

8af iafd 
(12) 

With this simplification, inverting (12) and rearrang- 
ing terms, it comes: 

CRB(A) ~ a\ 

CRB(fd) ~ 

2. (3a2 + 2TT
2
) .a.fd 

y/n. (a2 + 7T2) 

°l       8.a3./d
3 

A2'x/?.(a2 + 7r2) 

(13) 

(14) 
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The approximated formulas (13) and (14) are believed 
to be of interest from both a theoretical and practical 
point of view. It will be shown in the section 4 that they 
provide very accurate approximations of (6) and (7). 
These formulas give a direct expression of the CRB as 
a function of a (which is a design parameter) and fd- 
It should be pointed out first that the CRB tends to 
a constant as the sample size goes to infinity. This is 
in contrast with most estimation problems where the 
Cramer-Rao bound is usually of order 0(l/T). There- 
fore, for T above a threshold, it can be expected that 
the CRB will not decrease (hence no improvement is 
achieved): this will be illustrated in section 4. Note 
also that CRB(fd) is roughly proportional to a3./j 
whereas CRB(A) is proportional to a.fd- Therefore, 
increasing the probe volume by a factor of 10 could 
possibly result in a gain of 1000 on the variance of the 
frequency estimate. Additionally, observe that 

dCRB(fd) _ 8.o2
w.fi a

2, (a2 + 3TT
2
) ^ Q 

da sft.A2     (a2 + 7T2)2 

dCRB{U) 

dfd 

24.a3./3 3  ft 

A2'v^.(a2 + 7r2) 
>0 

(15) 

(16) 

which implies that CRB(fd) monotonically increases 
with a and fd- 

3.  Maximum Likelihood Estimation 
In this section, we derive maximum likelihood estima- 
tors of A and fd in the model (1). For any given value 
of fd, A (x, 6) in (3) being a quadratic function of the 
parameter A, the minimization w.r.t. A reduces to a 
simple least-squares problem and leads to 

sTx 
(17) 

Ä will be the MLE of A if fd is replaced by its ML esti- 
mate in (17). Reporting (17) into (3), the ML estimate 
of fd is then found to be the solution of the following 
minimization problem: 

fd 

Ji(f) 

arg min Jr (/) 

2 
SJX 

X =7--S 
sJ s 

d=f Hell2 

(18) 

(19) 

Since Ji(f) is a non-linear function of /, no analytical 
solution for the problem exists and one has to resort 
to numerical methods [6]. In an attempt to provide a 
computationally efficient algorithm, we propose to use 
a Gauss-Newton procedure which uses exact first-order 
derivatives and approximated second-order derivatives. 

Therefore, only J[ (/) = ^P needs to be computed. 
The derivative e' = Jy can be written as 

^.{[(xTs')(S
T

S)-2(x7s)(sV)]s 

+ (xTs)(sTs)s'} (20) 

e     = 

Hence 

J[(f) 2e'Te 
T 

.{(xTs)(sTs')-(xTs')(sT
S)} 

(21) 

The Gauss-Newton makes use of the following approx- 
imation for the Hessian 

J{'(/) « 2e'V (22) 

The frequency is thus estimated in an iterative way 

/(n+l) = /(n) _ J ryre/] ~ *  e>T^   ^ (23) 

The iterations are stopped whenever /(n+1) — /(nM < 

S /(") where 6 is a user defined parameter. In order 
to avoid possible convergence towards a local minima, 
care is to be taken in order to properly initialize the 
algorithm. In the simulations presented in the next 
section, a Fast Fourier Transform of the data followed 
by a coarse search for the maximum is used. 

4.   Numerical examples and conclusions 
In this section, we present some numerical examples in 
which we compare the CRB derived in Section 2 with 
the performance of the MLE. Since the FFT-based es- 
timate is also available as the initial step of the MLE 
and because it is the most intuitive way for spectral 
estimation, we will also compare its performance with 
the CRB. Additionally, we provide a comparison be- 
tween exact and approximated CRB and we illustrate 
the influence of various parameters on the estimation 
performance. We concentrate on the estimation of the 
frequency fd which directly provides particle's velocity. 
The value of a is selected as a — 0.122857 and A = 1 
thorough the simulations. The Signal to Noise Ratio 
(SNR) is defined as SNR = •$?. First, we study the 
influence of the number of sampfes T. Figures 1 and 2 
show the MSE of the estimates versus T for different 
values of/d and with SNR = !5dB. Exact CRB (given 
by (7)) are shown in solid lines whereas approximated 
CRB (see (14)) appear in dashed-dotted lines. From 
these figures, it can be seen that the MLE has a per- 
formance very close to the CRB and superior to the 
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FFT estimator. The approximate formula (14) gives 
a very accurate approximation of the exact CRB, as 
long as T is large enough (which is an expected result 
since the approximated formula is "asymptotic" in T). 
However, the number of samples needed for the two 
expressions to be equal is reasonable (this number de- 
creases while fd increases). Note also that, when T 
increases above a threshold (typically T > l/afd), no 
improvement is achieved. This is due to the fact that, 
for large t, e~2c?^ti « 0: hence, the signal essentially 
contains noise. 

MBAN-SQUARE ERROR OF FREQUENCY ESTIMATE 

tti>i»i«i»»*iii»i««iiii»*l*«''»** 

B=0.<b 

3NR=lSdB 

m »o aoo 3M »o 
NUMBER OF SAMPLES 

"«MOl     «fnxCXB       »     MLE 

Fig.l. CRB and performance of MLE and FFT esti- 
mators versus T. SNR = 15dB. fd = 0.05. .4 = 1. 

MEAN4QUARB ERROR OF FRBQUENCY ESTIMATE 

^» ,■»»■»'■»«■■■' 

B=0.I5 

SNR=1MB 

NUMBER OF SAMPLES 

— mxoxCXB       *      MLB 

Fig. 2. CRB and performance of MLE and FFT esti- 
mators versus T. SNR = 15dB. fd = 0.15. ,4 = 1. 

We now investigate the dependence of CRB(fd) on 
fd and a in Figures 3,4. As can be seen, the CRB in- 
creases with fd or a, which was expected from (15),(16). 
As fd (or a) increases, the bandwidth of the time- 
varying amplitude exp {—2a2f%t2} increases, which in 
turns complicates the frequency estimation. Finally, 
note that CRB(fd,a > 0) > CRB(fd,a = 0), this 
latter case corresponding to the constant amplitude si- 
nusoidal signal. Therefore, although information about 
fd is contained in both the amplitude and the phase of 
s(t), this does not improve the estimation compared 

with the constant amplitude case where the ampli- 
tude does not bring information about the Doppler 
frequency. 

MEAN4QUARE ERROR OF FRBQUENCY BSTMATB 

MK41 U0C41 
FRBQUENCY 

Fig. 3. CRB and performance of MLE and FFT esti- 
mators versus fd. T = 300. SNR = 1MB. ,4 = 1. 

MEAN-SQUARE ERROR OF FREQUENCY ESTIMATE 

—— ouctCXB    — — «pmcOtB      *     MLE • " I*T 

Fig. 4. CRB and performance of MLE and FFT esti- 
mators versus a. fd = 0.15. T = 350. SNR = 1MB. 
,4 = 1. 
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ABSTRACT 

We present a sequential test and parameter estimation 
technique for measured seismic data from the GERESS 
array situated in Germany. A new approximation of 
the test statistic distribution and the test threshold is 
proposed. The sequentially rejecting Bonferroni-Holm 
test guarantees a global test level. This allows to avoid 
the computationally expensive bootstrap method and 
leads to a more simple algorithm. Approximate condi- 
tional maximum likelihood estimates in the frequency 
domain are used to overcome the resolution limits of 
conventional methods for wideband signal processing 
and to construct the sequential test. The combination 
of global optimization via genetic algorithm and a local 
one using the scoring seems to be a good compromise 
to handle the problem of cumbersome maximization of 
the log-likelihood function over the parameters of in- 
terest. The algorithm for testing the number of signal 
phases is applied simultaneously with the estimation of 
the model parameters. 

1.    INTRODUCTION 

Earthquakes and regional evens give rise to a number 
of different types of waves, e.g. pressure waves, shear 
waves, or surface waves. The first waves to be observed 
on a seismogram are compressional P-waves ("primary" 
waves). S-waves ("secondary") are transverse (shear) 
waves with the particle motion in the plane perpendic- 
ular to the direction of propagation. The characteris- 
tics of the various possible types of seismic waves in a 
"perfect" medium are well known [1]. The difference in 
polarization of seismic waves can be used for the anal- 
ysis with an array containing 3-component sensors [7]. 
In this contribution we analyse the outputs of an ar- 
ray of vertically sensitive seismometers in order to de- 
tect and separate different phases of a regional seismic 
event. General heterogeneities existing along the travel 
path and underneath the array reduce the signal coher- 
ence and produce travel-time residues between the sta- 

tions of the array. In this scenario there are more than 
one phase impinging on the array within a short ob- 
servation interval. Consequently, approximate condi- 
tional maximum likelihood estimates (ACMLE) in the 
frequency domain [3] can be used to resolve different 
phases of a seismic event. We combine the global op- 
timization by means of a genetic algorithm and a lo- 
cal one using scoring in order to handle the problem 
of maximization of the log-likelihood function over pa- 
rameters of interest and not to be too computationally 
expensive. Simultaneous usage of the model parame- 
ter estimation and testing algorithm with the bootstrap 
approximation is investigated in [6] and [4]. General re- 
sults in the seismic application of detection algorithms 
for narrowband signals can be found in [8]. The se- 
quentially rejecting Bonferroni-Holm test has been for- 
mulated in [5]. We present an appropriate test statistic 
and a method of wideband signal testing. 

2.   DATA MODEL AND WAVE 
PARAMETER ESTIMATION 

We assume that m = 1,..., M different types of waves 
arrive at the array. The positions of the sensors of the 
nth station (n = 1,..., N) can be described by a vector 
rn. The outputs of the sensors are Fourier-transformed 
with a rectangular window of length T: 

T-l 

y/1   t=0 
(1) 

The reception-propagation situation is described by a 
(N x M) matrix H(u>)( =[d1,..., d^)'. 
The vectors ^ = [e^'-i^i,.. .,e_J^.'^]' are the phase 
vectors where 

hi — -rz • [cos<j>i cos oci, cos </>{ sin a,, sin <j>i\' 

is the wavenumber vector of a wave at frequency u 
with velocity Vi, and seen at the origin of the array 
at azimuth a,- and elevation (/>*.  Since only vertically 
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sensitive seismometers of a plain array are involved 
in the analysis, we have <j>i — 0 in this application. 
The wavenumber vectors may be written as kt — w£. 
(i = 1,..., M) where £. is the slowness vector. The pa- 
rameters of interest are M slowness vectors £., i.e. 77 = 

(£')••• i i'M)'i tne spectral parameters of the sources, 
and spectral parameters of noise. Approximately one 
can express the sensor output vector for each discrete 
frequency u>k by 

X(u>k) = H(uk)S(wk) + U(uk), (2) 

where S(wjb) and U_(wk) are the Fourier transform of 
the signals and noise. We assume that H(w) and spec- 
tral power of noise v(w) change slowly with w, and 
frequencies w'(i — 1,..., P) suffice to describe the be- 
havior of H(w) and v(w). If noise is stationary, the 
X(wfc) given S_(u>k) is approximately complex normal 
with mean H(w')5(wj;) and covariance matrix v(ul)l. 
Wideband ACMLE's maximize 

p 

L(v, S, v) = -^[pN logv^^ 

^(X(Wfc)-H(W
i)5(o;)t))*(X(Wi)-H(a;i)^(wfc))], 

i/(u{) 

where the inner sum is over the p discrete frequencies 
wt around u'. Maximization of the function £(77, 5, u) 
over the S_(uk) and ^(w8) leads to the explicit solutions 
S(wfc) and £(u/) [4]. Then, we can find ACMLE's 77 by 
minimizing of 

«(!Z) = 4Elogtr[(I-pi(!Z))Ck]- (3) 
8=1 

Pl is the projector onto the signal space of M signals 
p< = H(ui)[n*(üJi)n(ui)]-1n*(ui). 

cl
x Cx{^) = - ^I(wt)lK)' (4) 

denotes a non-parametric estimate of the spectral den- 
sity matrix (SDM). We smooth here over p discrete 
frequencies wk around uil. 

3.   SEQUENTIAL DETECTION 

The main idea of the sequential test is to detect the 
strongest signal, extract it and continue such procedure 
until the hypothesis that there exists no further signal 
will be accepted. Approximate conditional maximum 
likelihood ratio tests (ACMLRT) for the hypotheses 
that there is no m + 1st signal if m signals are already 
detected, in analogy to [4], results in a test statistic 

tm+i(X) = 2pPN [-qm+i(Vm+1) + qm(Vm)}-      (5) 

77 = (77' , f'      )' is the vector of wave parameter 
—m+l K—m—m+lJ 

for m + 1 signals, qm+i and qm are defined as in (3) 
for m + 1 and m signals, respectively. The assumption 
that 

9m+i(Vm+1) =  inf qm+i(vm+1) « inf flm+i^,^) 
—m + l S.m+1 

reduces the numerical effort for sequential ACMLRT. 
Thus, the hypothesis that there is no m + 1st signal is 
rejecteded if 

G»»+l(äm>L+l) = PaX3m+l(2m>£m+i) > «m+l « 

with Qm+i(??m,£m+1) 
(6) 

Qm+i is a kind of geometric mean of i.i.d. F-variables, 

Qm+l(lm,im+l) ^log(1 + ^+1(,m,L+i)), 

■Jm+idJm'in+i)- 

n2 H(Pi
m+i(Rm,jn+1)--Pi

m(Rm))Cix] 

where JF^,+1 is, under the hypothesis, approximately 
F-distributed with n\ and n2 degrees of freedom and 
stochastically independent for different frequencies «'. 
The degrees of freedom are as follows, 

»11 = 2p(l + r),   n2 = 2p(N -(m+l)- r). 

r is the number of the model parameters (in this appli- 
cation r = 2). It should be pointed out that the degrees 
of freedom n\ and n2 were corrected compared to those 
in [4] and [6]. This gives more accurate approximation 
of the test statistic distribution and improve the data 
analysis. F^+1 can be interpreted as an increace of 
spectral signal-to-noice ratio for a possible m + 1st sig- 
nal at £     ,.   The mean and variance of the random 

2-m+l 

variable V = log(l + ^m+i(*?m,£m+1)) 
can be cal" 

culated under hypothesis approximately as 

2ni 
v V 2 / V 2        2 /      n2(7ii + n2) 

where the function \?(z) is defined as a log-derivative of 
the T-function: V(z) = £ lnr(z). In this case we can 
approximate the distribution of Qm+i using the central 
limit theorem. The detector for the m + 1st signal then 
is 

VP 
(TV 

< Km+li 
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where K")+1 is the test threshold by the given probabil- 
ity a of the false alarm. We now approximate the test 
statistic T by a standard normally distributed variable. 
This formulation allows to avoid the cumbersome boot- 
strap technique used in [4], [6] and leads to a simple al- 
gorithm. To guarantee a global level a we alternatively 
use the sequentially rejecting Bonferroni-Holm test [5] 
with maximal possible number of signals Mo = 5. Hav- 
ing detected the m + 1st signal, we have to determine 

Rm+1 
hY further minimizing of gm+i(??m+1) over 2m+1, 

e.g., using initial value (vm,tm+J- 

4.   EXPERIMENTS WITH MEASURED 
SEISMIC DATA 

We apply the proposed algorithm to measured seismic 
data recorded by 24 seismometers of the GERESS array 
situated in the Bavarian Forest. Detection and localiza- 
tion of regional and local events is one of the main tasks 
of the GERESS array. The localization depends mainly 
on the velocity analysis of dominant onsets in the seis- 
mograms and the ability to discriminate between P- 
and S-phases. If we know the structure of the crust, a 
detailed classification is possible. 
The regional seismic event caused by a blasting in an 
iron mine on the distance of 171 km from the array is 
analysed. We use a sliding window with length T = 
3.2 s corresponding to 128 sampling values by a sam- 
pling frequency of 40 Hz and a shift of 20 values (0.5 s). 
This short window length does not allow to smooth 
over frequencies as in (4). Instead we stabilized the 

estimate Cl
x by use of Thomson's orthogonal windows 

[9] with L = 3. The frequency band used in the anal- 
yse contains P = 33 frequency bins in the range from 
0,5.ff.;"tol0,5.ffz. The maximization of the likelihood 
function over the components of the parameter vector 
is a computationally difficult task. Nevertheless, the 
problem becomes manageable when a global optimiza- 
tion technique like genetic algorithm [2] is applied to 
(6) followed by a local optimization technique like scor- 
ing around parameters ij_ ,£ , ,• The population size 

for genetic algorithm is 20, the probability of crossing 
two strings is 0.80, and the probability of mutation is 
0.05. We represent the elements of the vector £ by a 
bit string of length 12. Signals were detected and, af- 
terwards, estimated. Observing Figure 1 we note that 
detected signals are mostly in the arrival domains of 
the P-phase ("fast" longitudinal waves) and S-phase 
("slow" transverse waves). Analysis of a regional seis- 
mic event was carried out using sequential testing with 
a global level a = 0, 01 and ACMLEs for azimuth and 
phase-velocities. The estimates of azimuth and veloci- 
ties are in agreement with the physics of seismic wave 

propagation and azimuth of arrival detected by the In- 
stitute of Geophysics at the Ruhr University. 
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Figure 1: Analysis of a regional seismic event using sequential testing with a global level 
(a = 0,01) control and ACMLEs for azimuth and phase-velocities. The received signal of a 
reference seismometer is shown on the top. 
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Abstract 

This paper presents a new approach to the problem 
of modeling nonstationary CW ultrasonic Doppler sig- 
nals. A time-dependent ARMA model whose parame- 
ters vary periodically in time is proposed. The time 
variation of the model parameters is approximated by a 
weighted sum of a small number of Fourier base func- 
tions. It is seen that the spectral characteristics of the 
model output closely approximate to the spectral char- 
acteristics of the nonstationary CW ultrasonic Doppler 
signals. 

1. Introduction 

Doppler ultrasound is an important and powerful 
technique for noninvasive measurement of the velocities 
of moving particles within the body. The technique is 
particularly used for the measurement of the blood ve- 
locity and a number of other parameters related with 
blood flow. When employing the technique for blood 
velocity measurement, an ultrasonic signal is transmit- 
ted by an ultrasonic transducer through the blood ves- 
sel under examination. This signal is reflected by the 
red blood cells, causing an echo which is demodulated 
to yield an audible signal called Doppler signal. Fre- 
quency content of the Doppler signal is closely related 
with a number of flow parameters that provide valuable 
clinical information regarding the diagnosis of various 
vascular diseases and flow disorders. Time-variation 
of these parameters can be extracted from the Doppler 
signal by processing it with appropriate spectral analy- 
sis techniques. 

In order to obtain clinical diagnostic information 
from the Doppler signal with minimum error, it is es- 
sential to use accurate and reliable techniques for the 
analysis of the signal. Since the Doppler signal is highly 

nonstationary and its true time-varying spectrum is un- 
known, it is impossible to test the accuracy and reli- 
ability of a technique with real Doppler signals. For 
this reason, new Doppler signal analysis techniques are 
first tested with simulated Doppler signals and then 
employed for the analysis of real signals if they prove to 
be reliable. Therefore it is very important to generate 
artificial signals whose power spectral density functions 
are known and spectral characteristics are as close to 
those of real Doppler signals as possible. 

Modeling ultrasonic Doppler signals has been of high 
interest in the last decade since the models developed 
have not only led to a better understanding of the 
mechanism governing the generation of the Doppler sig- 
nal but also provided valuable tools for the assessment 
of various Doppler signal analysis methods. 

The classical method for the simulation of Dopp- 
ler signals is based on the principle that the output 
of a linear filter excited by a white Gaussian noise is a 
Gaussian random process whose power spectral density 
is equal to the magnitude squared of the filter response. 
This approach is used by Kristoffersen and Angelsen [1] 
in a time shared B-mode imaging and Doppler mea- 
surement system to generate Doppler signal segments 
for filling in the gaps due to B-mode interruptions in 
the output of the Doppler unit. 

Another approach to Doppler signal simulation is 
to first generate some stationary Doppler signals and 
then modulate their spectral characteristics with ap- 
propriate time-varying filters.This approach was used 
by Leeuwene< al. [2] to test some Doppler blood veloc- 
ity measurement systems. 

In all of the methods above, a theoretical time- 
varying Doppler power spectral density function is as- 
sumed. Next, a filter whose magnitude squared time- 
varying frequency response is similar to the theoretical 
Doppler spectrum is designed. This filter is excited 
with a white noise signal to yield nonstationary Dopp- 
ler signal at its output. Although this approach is very 
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practical, the design of the filter can be quite com- 
plicated if the spectral density of the signal changes 
rapidly in time as in the case of CW Doppler signals. 

In order to overcome the diffulties arising from the 
design of filters having time varying frequency re- 
sponses, Mo and Cobbold [3] proposed a nonstationary 
Doppler signal simulation model based on a weighted 
sum of sinusoidal components. The magnitudes of the 
components are obtained by evaluating a theoretical 
Doppler power spectrum. Though this approach does 
not require complex filter designs, it still relies on a the- 
oretical Doppler power spectrum and is computation- 
ally more expensive than the other methods mentioned 
above. 

In this paper, we present a new method for the sim- 
ulation of the CW ultrasonic Doppler signals. The ap- 
proach presented here does not depend on a theoretical 
power spectral density. When the time-frequency spec- 
trogram for a CW Doppler signal is calculated, it is 
seen that the variation of power spectral density along 
the time-axis is similar to periodic with a period ap- 
proximately equal to the average cardiac cycle dura- 
tion. Then, if this signal is modeled using a paramet- 
ric model, one expects the model parameters to show a 
similar periodic time variation provided that the model 
order, that is the number of the model parameters, is 
fixed. Based on these observations, a time-dependent 
autoregressive moving average (ARMA) model is em- 
ployed in this paper to model the data. The variation of 
the model parameters is assumed to be periodic with a 
period equal to the average cardiac cycle. Hence, these 
parameters are approximated with a weighted combi- 
nation of a small number of base functions. The Fourier 
base is chosen here among a number of bases available 
in the literature [4]. Comparisons in both time and 
frequency domain show that the method proposed here 
can successfully be used to model the CW ultrasonic 
Doppler signals. 

2. Method 

Let x(0),..., x(N — 1) denote the N signal samples 
to be modeled which are obtained by equally sampling 
a CW Doppler signal along the cardiac cycle. For the 
purpose of modeling this signal, we propose a time- 
dependent ARMA model [5] 

x(n)+'Y^ai(n-i) x(n-i) = e(n)+^6j(n-»')e(n-i) 
t=i «=i 

(1) 
where a.i(n — i) and bi(n — i) are the time dependent 
model parameters, p and q are model orders and e(n) 

is the driving process which is a zero mean and unity 
variance white noise process. 

Based on a priori knowledge, we assume that the 
time variation of the model parameters is periodic with 
a period equal to the number of the signal samples 
N. Then these parameters can be approximated by a 
weighted combination of a small number of base func- 
tions. By employing this approach and choosing the 
Fourier base, an approximate representation for the 
time variation of the parameters can be obtained as 

m 
_ /„\      \ "*    _        iknwo 

k=—m 

m 

Hn)= 5D d«\*ei fcnwn 

fc=-m 

where 2m + 1 is the number of base functions, c,,* and 
dif are the weights and ti>o = 2ir/N. Then the quanti- 
ties a{(n — i) x(n — i) and 6,(n - t) e(n — i) become 

m 

ai(n-i)x(n-i)=  £ ci,fcz(n-ly
i("-'>° 

k=—m 

m 

bi(n-i)e(n-i)=   £  d,,fc e(n - i) e>*("-'>° 
*=—m 

which can also be expressed in vector form as follows 

di(n -i) x(n - i) = uT(n - i) ct (2) 

bi{n - i) e(n - i) = vT(n - i) dt (3) 

where 

u(n - 0    =    x(n - i) [e>'(-mX"->° ... e>'n(n->°]T 

v(n - i)    =    e(n - ») [e'<-m>(n->° ... <Jm(n->°f 

Ct      =      [Cj _m Cti_(m_i)   ...Cj,m] 

dj     =     [d,-,_m <f«,-(m-l)   •••  rf«",m] 

Here the superscript T denotes matrix or vector trans- 
position. 

By substituting (2) and (3) into (1) we obtain 

x(n) + uT(n - 1) ci + • • • + uT(n - p) cp = 

e(n) + vT(n - 1) di + • • • + vT(n - q) dq 

which may shortly be rewritten as 

x(n) + <l>T(n)0 = e(n) 

where 

(4) 

*(n)    =    [uT(n - 1) uT(n - 2) ... uT(n - p) 

-yT(n-l) -vT(n-2) ... -vT(n-q)]T 
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(4) is identical to (1) but it offers an important ad- 
vantage: model parameters of (4) are just constants 
and not dependent on time. Therefore, we converted 
a time-varying modeling problem into a time-invariant 
modeling problem by making the definitions so far. 

We now employ a least squares method to es- 
timate the parameter vector 0 of the new time- 
invariant model of (4) from the original signal samples 
x(0),...,x(N-l). If we define 

x(n) = -<l>T(n)0 (5) 

(4) takes the following form 

x(n) - x(n) = e(n)    =J>   x(n) = x(n) + e(n) 

Here x(n) may be thought of an approximation to 
the original signal sample x(n) at time n. In this case 
e(n) represents the approximation error. If we apply 
this approach for all the signal samples available, we 
obtain the following set of equations: 

*(0).   =    *(0) + e(0) 

x(l)    =    *(l) + e(l) 

x(N-l)    =    x(N - 1) + e(N - 1) 

By substituting the definition (5) in the above set 
of equations, we get 

*(0)    =    -<j>T(0)6 + e(0) 

x(l)   =    -^(l)0 + e(i) 

x(N-l)    =    -<j>T(N-l)0 + e(N-l) 

which can also be written in matrix form as 

x = $ 6 -)- e (6) 

where 

x    =    [x(0) *(1) ... x(N- 1)]T 

$    =    [<PT(0)<i>T(l) ...<f>T(N-l)) 

e    =    [e(0) e(l) ... e(N - l)f 

If we choose a cost function V(0) as the sum of squared 
approximation errors 

m^eTe=ffe2(n) 
n=0 

a least squares solution to the parameter vector 0 in 
(6), which minimizes V(0), can be found as 

ö = ($i$)-1$Tx (7) 

3. Results and discussion 

We modeled a CW Doppler signal recording ob- 
tained from the carotid artery of a healty subject. The 
average cardiac cycle duration is found to be approxi- 
mately 0.86s. The signal at the output of the Doppler 
unit is sampled along one cardiac cycle at a sampling 
rate of 10kHz. 

The samples are then modeled using the time- 
varying ARMA modeling approach proposed in the 
previous section. Several values for the parameters m 
and p are tried. It is seen that the performance of the 
simulation is not strictly dependent on m. The results 
presented here are for m — 8 and p = q = 5. 

The signal at the output of the ARMA model is 
compared with the original CW Doppler signal both 
in frequency and time domains. For time-domain com- 
parison, two sets of signal samples from original CW 
Doppler recording, one obtained during peak systole 
and the other at end-diastole, are compared with the 
corresponding sets of signal samples obtained from the 
simulated model. Each set contained 100 samples. For 
frequency domain comparison, time-frequency spectro- 
grams for both signals are calculated by using the fast 
Fourier transform method via periodogram approach. 
The frame length is chosen to be 256 with a 50% over- 
lap. Frames are windowed by using a length-256 Han- 
ning window before taking the FFT. 

Figure 1 shows the comparison of the original sig- 
nal and one realization of the simulated signal in time 
domain. In this figure, solid line represents the model 
output while the dotted line represents the original sig- 
nal. Here it is seen that the model output very closely 
approximates to the original signal both at peak systole 
(a) and end-diastole (b). 

Figure 2 shows the comparison of signal spectro- 
grams for one cardiac cycle. In this figure, the horizon- 
tal axis shows time (t), the vertical axis frequency (/) 
and gray level at the coordinates (t, f) the power of the 
signal component with frequency / at time instant t. 
As it can easily be seen, the gray-scale speckle patterns 
are very similar. This shows that the time variation of 
the spectral characteristics of the CW Doppler signal 
is well represented by the simulation model. Further- 
more, when the signal obtained at the output of the 
ARMA model is converted to analog form and played 
back for an audio comparison, it is found to be almost 
indistinguishable from the original recording. 

The main advantage of the simulation method pro- 
posed in this paper over other methods in the literature 
is that it does not require the assumption of a theoret- 
ical power spectral density function. The parameters 
of the time varying ARMA signal model are estimated 
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Figure 1. Comparison of original (dotted line) 
and simulated (solid line) signals in time do- 
main: (a) peak systole, (b) end-diastole. 

Figure 2. Comparison of (a) original and (b) 
simulated CW ultrasonic Doppler signal spec- 
trograms. 

by directly using the signal samples available. 
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Abstract 

The continuous growth of electromagnetic pollution 
produce! many problem» during radioastronomy obser- 
vations. A method of rejection of industrial interfer- 
ence wa$ proposed and tested.The main idea eonsits of 
using change- point detection with implementation in 
digital signal proeessor.The modified cumulative sum 
(CVSVM) method which analyzes several moments of 
empirical probability distribution of input noise and 
uses adaptive thresholds was elaborated, simulated on 
computer and then tested in the real observations on 
radiotelescope. The obtained sensitivity was much bet- 
ter than without such a processing. The proposed real- 
time signal processing procedure may be used at many 
of those radiotelescopes which suffer from the industrial 
interference, especially at long wavelengths. 

1. Introduction 

Electromagnetic pollution limits the real sensitiv- 
ity of modem radiotele8cope8,especially at long wave- 
lengths. Industrial interference, radars, cars,radio- 
stations etc. produce a lot of noise which is aver- 
aged with the natural noiselike signals from extrater- 
restrial radiosources. There were several attempts to 
build new radiotelescopes at radioecologically isolated 
places. Also radiointerferometry is less sensitive to in- 
dustrial interference due to the absence of correlation 
of such a noise at long distances. But the problem of 
single-dish widesprectrum radioobservations in bad ra^ 
dioecological conditions forces to look for the special 
methods of signal processing which could improve the 
output precision of observational data. This report de- 
scribes work on an real-time digital signal procssing 
(DSP) system using special DSP processors from the 
TMS320 family - TMS320C53. This system was tested 

at RATAN-600 radiotelescope during 13cm and 31cm 
wavelength radioobservations. 

2. Proposed Method and Main Results 

The block diagram of radiometer with postdetec- 
tion DSP stages is shown in Fig.l. The sampling fre- 
quency /, of 10-bit analogue-digital converter^ADC) 
was limited by the serial link between ADC and DSP - 
6 Mbit/s. In our case /, was equal to 200 Ksamples/s. 

antenna 

> 
radio 
amplifiei 

square 
detector 

video 
amplifier 

onalagae- 
digrtal 
rnnvKfti-f 

digital 
signal 
processor 

host 
computer 

Figure 1. Block diagram of the reoehrer with 
digital back end. 

First of all the form and structure of industrial 
noise were studied. The most typical were stochas- 
tic bursts with complex structures and radar impulses. 
The common processing in radiometers includes the 
averaging of fluctuations after detector during several 
seconds, minutes and sometimes hours. It is clear 
that in the presence of such an interferences smooth- 
ing of bursts deteriorates the output standard devia- 
tion (r.m.8. error). It is necessary to intercept these 
bursts without smoothing and eliminate them. The al- 
gorithm making this procedure must be quick, simple 
and effective. Several procedures were tested from this 
point of view and finally the modified cumulative sum 
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method(CUSUM)[l] with, adaptive threshold was cho- 
sen, simulated on computer and implemented in real ra- 
dioobservations. The quality criterion of the algorithm 
was the radiometer fluctuation sensitivity - the r.m.s 
level of output oscillationsAT. For the ideal total- 
power radiometer the minimum detectable change in 
the radiometer antenna temperature is equal[2] 

T = iT.y.y/AF/Af (1) 

where A/ - radio- 
frequency(predetection) bandwidth of the receiver, AF 
- postdetection bandwidth,!1,,,, - effective noise tem- 
perature of the radiotele8cope. Ideal niters with rect- 
angular passband forms are supposed. The mean value 
after the square-law detector is proportional to T,y, 
and must be measured with the most possible preci- 
8ion(minimum standard deviation).Factor (7 > 1 de- 
pends on the structure of radiometer[2] and in this 
work the radiometer with noise adding and antiphase 
gain modulation was used[3]. In the presence of inter- 
ference the output postdetection oscillations may be 
written as 

V = a?«*t + c#y» (2) 

where x,y,- noiselike system signal which mean 35^7 
and variance 6xn, are proportional to T,yf, and cut 
- oscillations due to interference. In digital case /, = 
2AF and the time of integration r = no//., »0 - num- 
ber of averaged samples which characterize the integra- 
tion interval,no = N - M,N - length in samples of the 
modulation halfperiod, M - number of modulation pe- 
riods in total averaging interval. The output standard 
deviation (1) in these terms is proportional to 

6x1 m 5r^\/l/(A/r) (3) 

The post detection interference burst e;»t has mean 
€int and duration nKut (in samples). The output mean 
pa (system + interference) is equal to 

Pa — 37J7{1 - a) + (s.y. + ?ut) - a (4) 

where n,*t/n0 = a < l,n;»« as J^issi -tH6»»« > 
0},indicator function /[t] is denned as I[t[ = 1, e»m«[»l > 
0 and I[i[ = 0, €,-«<[»] = 0. Fbr the detection of change 
points of mean at the f-th interval, I = 1 • • • M, the 
following CUSUM procedure was used: 

So=0, 
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Figure 2. The ratio of the r.m.e.error 
without Interference elimination to the 
error after thla elimination, Q= IOOOO. 

a'0.2 ,a=0.4 , 
a=0.tt— ,a=0.8  

the moment of mean change ieh = argS» [I, i[ - m» > 
A, A - threshold defined as A = ß • Syi-i, fyj-i- estima- 
tion of standard deviation at /—1 -th interval, ß - factor 
chosen by operator, v - the minimum expected value of 
mean chamge, i = 1 • • • N - number of samples at each 
/-th interval. 
After elimination of "contaminated" intervals with to- 
tal duration n»»t the standard deviation is 

6y3 = 2^7N/1/2A/(1 - or)r, (6) 

which is worse comparing with (3). The ratio of 
standard deviation without elimination of interference 
to 6j/3 may be considered as the gain obtained in con- 
sequence of this procedure and is equal to 

Go » y(l-a)(l + aag(W?^7)a), (7) 
where Q = 2A/r - radiometer factor. The curves 

for Go versus ^ü"/e^7 are shown in Fig. 2, each curve 
corresponds to definite or, from 0.2 till 0.8.,Q as 500.// 

The nonideal elimination due to the finite threshold 
A gives reduced Gj: 

Gx = 
AA^/^^ + I/Q) 

y/a*2ß/(QoN) + l/(g0NM(l - a))' (8) 

m» = min£fc, 0 < k <n (5) 

where Qo = A//AF. 
The results of interference elimination during RATAN- 
600 radioobservations at 31 cm wavelength in real time 
are given in Pig.3. One can see considerable elimination 
of interference without losing the total r.m.8. sensitiv- 
ity. 
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3. Conclusion 

Real time digital signal processing in a wide 
videoband may improve the observational situation in 
the presence of industrial interference. Rapid progress 
in DSP processing gives tope that the whole postde- 
tection processing in radioastronomy technique will be 
made digitally. 
This work was supported by the RPF1 grant 95-02- 
03779. 
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same radloaouroe.both records were 
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Abstract 

A Pseudo-Linear method for the estimation of Frac- 
tionally Integrated ARMA (ARFIMA) models is intro- 
duced. The method uses a long binomial series expan- 
sion of the fractional differencing operator, as well as 
the relationship of the AR/MA parameters and bino- 
mial expansion terms with the model's inverse function. 
It is based upon a pseudo-linear formulation motivated 
by the fact that this relationship leads to a special-form 
regression problem that can be decomposed into a scalar 
non-linear and a multiple linear regression. The perfor- 
mance characteristics of the method are demonstrated 
via Monte Carlo experiments and comparisons with the 
frequency-domain Maximum Likelihood method. 

1. Introduction 

Most of the work on time series analysis has been 
concerned with series characterized by the property 
that distant observations behave independently, or 
nearly so. Yet, in many empirical studies [1-3] the de- 
pendence between distant observations is not negligi- 
ble and decays very slowly. Series with such long-term 
persistence are referred to as long-memory time series, 
and their power spectral density increases indefinitely 
as the frequency approaches zero, while their autocor- 
relation decays hyperbolically. 

Long-memory time series aren't well represented by 
the usual stationary AutoRegressive Moving Average 
(ARMA) models, which are characterized by limited, at 
the origin, power spectral density and an exponentially 
decaying autocorrelation [4]. 

A class of models that exhibits the foregoing long- 
memory characteristics is that of Fractionally Inte- 
grated ARMA (ARFIMA) models. This in essence is 
an extension of the Integrated ARMA (ARIMA) mod- 
els of Box et al. [4], in which the differencing operator 

is raised into a fractional, instead of the usual integer, 
power. 

The majority of the available ARFIMA model esti- 
mation methods follow a two-step approach, according 
to which an estimate of the fractional power is obtained 
(usually in the frequency domain) in the first step, and 
a standard ARMA estimation technique is applied to 
the adjusted (filtered by the fractional differencing op- 
erator) time series in the second. These methods have 
been criticized for failing to produce good estimates for 
relatively short data records [2]. The alternative one- 
step methods advocate the simultaneous estimation of 
all model parameters based upon variants of the Max- 
imum Likelihood procedure in either the time or the 
frequency domains [2,5-7]. A major drawback of this 
category of methods is their high computational com- 
plexity. 

In this paper a simple and computationally effi- 
cient Pseudo-Linear method for ARFIMA model es- 
timation is introduced. The method uses exclusively 
time-domain operations and is based upon the decom- 
position of a special-form regression problem into a 
scalar non-linear and a multiple linear regression. 

2. Problem statement 

An ARFIMA(n, d, m) process is of the form: 

$(5) • (1 - B)d ■ Xt = 0(5) • at 

at ~ i.i.d.tf(0, al)   d € (-0.5,0.5) (1) 

with t indicating discrete time, Xt the observed time se- 
ries, at an independently identically distributed (i.i.d.) 
Gaussian sequence with the indicated mean and vari- 

ance, B the backshift operator (BXt = Xt-i), d the 
fractional power, and $(B), 6(5) the autoregressive 

0-8186-7576-4/96 $5.00 © 1996 IEEE 
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(AR) and moving average (MA) polynomials: 

n m 

d>(s) = i + ]>>ßi     ew^i + Y^OiB*   (2) 
2 = 1 8 = 1 

Fractional differencing is defined by the binomial se- 
ries expansion: 

CO 

(1 - B)d = l + ^2arB' = l + arB+a2.B
2 + ... (3) 

ai = -d,    <*j=    3       KJ. 1    (i = 2,3,...) 

(4) 
The process representation (1) is assumed to satisfy 

the following standard assumptions: 

Al. d G V = (-0.5,0.5) , $(5) £ 0 for |5| < 1 
(siationarity conditions) 

A2. 0(2?) ^ 0 for |S| < 1 (invertibiliiy condition) 

The problem of ARFIMA process estimation may 
be then stated as follows: "Given time series data Xt 

t G [1,/V"], select a particular model A4(p) from the 
model set1: 

M = {M(p) : $(B) • (1 - B)d ■ Xt = Q(B) ■ et(p) 

p i [d 4? eT o-2ef G v x w($) x «(e) x &+} (5) 

where e((p) represents the model's one-step-ahead pre- 
diction error, c\ its variance, tf>, 9 the AR and MA 
parameter vectors, respectively, and «($), H(Q) the 
regions of 3?", 3£m in which the stationarity and invert- 
ibility, respectively, conditions hold." 

3. The pseudo-linear estimation method 

The substitution of a truncated, p-th order, binomial 
series expansion of the fractional differencing operator 
(3) into the ARFIMA representation (1) yields the 
ARMA(p +n,m) representation: 

(l + p1-B+... + pp+n.B"+n).Xt = 

= (l + e1-B + ...em-Bm)-ai 

with pi defined by the convolution expressions: 

(6) 

Pi = J2ak<f>i-k        (i = 1,2,...,p+n)       (7) 
* = 0 

■■Bold   face   lower-case/capital   characters   represent    vec- 
tor/matrix quantities. 

with a0 = 1, ak = 0 (k > p), <j>a = 1, <j>k = 0 (k > 
n). Denoting this representation's inverse function op- 
erator as: 

1(B) = 1 + J2 IiB( = P{B)/Q{B) (8) 
x'=l 

and combining it with (7) yields: 

(*i + $! - 6i = Ix 
a2 + «i$i + $2 - 2i0i - 62 = h 

ap + ap_! •$! + ... + ap_n ■ $n - Ip_x • 0! 
*p—m ' f m = 2p 

ap ■ $i + ... + ap_n+1 • $„ - I  ■ 6i - ... 
-/» •0 p-m+l ' ^m — -*p+l 

ap ■ $2 + ■ • • + «p-n+2 • $n ~ 2p+l • 01 - . . 
— Ip-m+2 ■ 0m = ^p+2 

ap ■ $„ - /„+„_! ■ ©j 

3.1 Stage one estimation 

lp+n—m ' "m — *p+n 

(9) 

In this stage initial parameter estimates are obtained 
based upon the inverse function operator (8). 

Inverse function estimation 
Consider the model: 

I(BA).Xt = e?(i) (10) 

that corresponds to the process representation implied 
by (8). In this model I(B,i) represents a finite (trun- 
cated) s-th (s > p+n) order approximation (permitted 
by way of assumption A2) of the inverse function oper- 
ator, i the corresponding parameter vector, and e"r(i) 
the model's one-step-ahead prediction error at time t. 

An interval estimate of the inverse function param- 
eter vector is obtained through the expressions: 

N 

-(E^wf   -(jb+rxt)  (ID 
\t=s+l ) \t=s+l ) 

Cov[i] = (ä?) 
i    N r1 

^ E +ra>rr 
t=s+l 

N 

^)2 = ¥37 E [era)]2 

(12) 

(13) 
t=s+l 

withvr = [*t-ix(_2...*t_,F. 
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Initial parameter estimation 
Initial parameter estimation is based upon expressions 
(9) that relate the fractional power and AR/MA pa- 
rameters with the model's inverse function. Given in- 
verse function estimates, these lead to: 

Ji — ax 

j3 
[A   J ]-p 

■&■ X-p = y + e 

+ e -& 

where: 

A[(p+„)xn]0',i) = 

J[(p+n)xm](«,j) = 

(14) 

(15) 

(16) 

(17) 

[  h      ■■■     Ip   ]     ,     J2 -  [  Ip+l      ■ ■ ■     Ip+n   ] 

ai = [ ai    ...    ap ] 

(18) 

(19) 

with e representing an error vector. Expressions (14) 
define a special-form regression problem that is non- 
linear in the fractional power d but linear in the 
AR/MA parameter vector p. The optimization of the 
regression cost function: 

J(d,p)- -zekQkxkek (20) 

may be then accomplished through a pseudo-linear 
two-step procedure, according to which the fractional 
power is varied through an appropriate search scheme 
and conditional, upon it, AR/MA parameter estimates 
are obtained as: 

p(d) = (x£x(n+m)QfcxfcXfcX(n+m)J 

xL(n+m)Q*x*yfcxi (21) 

In the above k(n + m<k<n + p) refers to the 
number of scalar equations of (14) actually used in the 
regression, while Qkxk represents a proper weighting 
matrix. The procedure is terminated once the mini- 
mum of J(d, p) is achieved. The innovations variance 
is then estimated as: 

al = al(d,P) = ^-  f>t
2(d,p) 

9 t=q+l 

(22) 

with q = p+n + m. 

3.2 Stage two estimation 

This stage aims at refining the estimates of stage 
one. Let: 

Pi_i =   di-i 4>i_x 0i_x (o-Ji-i 

denote the vector of ARFIMA parameter estimates 
obtained at iteration i - 1, and initially equal to those 
provided by stage one. At iteration i these estimates 
are updated as follows: 

Fractional power and AR parameter estimation 
Assuming  small  perturbations   in   the   MÄ   param- 
eter  estimates  during successive  iterations,   that  is 
©(•B.Pi-i) « 0(5, Pi) the ARFIMA model (5) may, 
at iteration i, be approximately expressed as: 

e1fo)«*(JB,£,.)-(l-.B)*-*('-
1 (23) 

with: 
xr^Xt/ecs, ?,-_!) (24) 

The model (23) is of the Fractionally Integrated Au- 
toRegressive [FIAR(n,d)] form, and its parameters 
may be estimated via a procedure similar to that of 
Stage 1. In this case equation (14) is such that X = A, 
p = <j>, and the weighting matrix Qkxk in (20) is se- 
lected equal to the corresponding submatrix of the es- 
timated inverse function covariance (12). Due to the 
form of (14) in this case, this leads to optimal, in the 
sense of the Gauss-Markov theorem [8], estimates. 

MA parameter and innovations variance estimation 
The MA parameters are then updated by solving the 
linear regression problem [obtained from (14)]: 

J • 0 = yM + eM (25) 

with eM denoting the regression error vector, and: 

i 

yf = ii-Y,^i-k        (i = 1,2, ■■■p + n)    (26) 
Jfe=0 

where a0 = 1, afc = 0 (k > p), <f>0 = 1, <t>k = 0 (k > n). 
The innovations variance is updated through (22). 

4. Numerical experiment 
Consider the ARFIMA(l, d, 2) process with param- 

eters indicated in Table 1. This process is character- 
ized by a sharp spectral valley, owing to the proximity 
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Parameter      Actual Estimate ± std. deviation 
PL ML 

d 0.30 0.313 ± 0.086 0.301 ± 0.067 
4>i 0.60 0.582 ± 0.073 0.587 ± 0.062 
0i -0.40 -0.396 ± 0.032 -0.380 ± 0.032 
02 0.99 0.916 ± 0.031 0.865 ± 0.097 
°l 1.00 0.950 ± 0.086 1.124 ± 0.136 

Table 1. Monte Carlo estimation results by the 
Pseudo-Linear (PL) and Maximum Likelihood 
(ML) methods (N = 300; 20 runs). 

of its complex conjugate pair of zeros to the unit circle 
(magnitude of 0.995). 

Monte Carlo estimation results by the Pseudo- 
Linear (PL) (p = 20, s — 30) and frequency-domain 
Maximum Likelihood (ML) [9] methods are, based 
upon 300-sample-long data records, summarized in Ta- 
ble 1. Despite the relatively short data record length 
and the significantly higher computational complex- 
ity of the ML method, the performance characteristics 
of the two methods appear similar. The ML method 
provides a slight improvement in the fractional power 
estimate, while, quite interestingly, the PL method 
achieves a noticeable improvement in the MA parame- 
ter estimates. 

These observations are additionally confirmed from 
the estimated spectra, which are contrasted to the the- 
oretical process spectrum in Figure 1. From these it 
is indeed evident that the PL method achieves a sig- 
nificantly reduced estimation scatter in the neighbor- 
hood of the spectral valley, while also providing a few 
estimates that are practically indistinguishable from 
the theoretical curve in the proximity of the spectral 
minimum. Similar behavior is observed with longer 
(N = 1,000) data records and processes characterized 
by sharp spectral peaks [10]. 
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Abstract 
The stationarity and local Gaussianity of ambient 

shipping noise recorded during an experiment conducted 
in the San Diego port area is investigated. First 
through fourth order moments are used to identify time 
periods of nonstationarity in the noise. Comparison of 
the shipping data with colored Gaussian noise indicates 
that the third order moments deviate from Gaussianity 
more than the fourth order moments. The local 
Gaussianity is quantified using the Kolmogorov- 
Smirnov test.  While the shipping noise at the deeper 
depth appears somewhat nonGaussian during certain 
time periods, the shallower depth data appears 
Gaussian. 

1.   Introduction 

In an effort to detect quieter signals in noisier 
environments, alternative detection algorithms using 
higher order statistics have been proposed by various 
researchers and have shown promise in simulations for 
a variety of scenarios. Many of these detectors exploit 
the difference between the higher order statistics of the 
signal and the noise, which is ideally stationary and 
Gaussian. However, in shallow-water environments 
complicated by factors such as heavy shipping, surf 
noise, and multipath signal distortion, detection 
algorithms are generally not optimal and the 
assumption that ambient noise is Gaussian, or even 
stationary, may not hold. 

Computer simulations and theoretical developments 
have shown that higher order moments can passively 
detect transient signals in Gaussian noise better than 
the ordinary cross correlation detector. In studies by 
Ioup et al. [1] and Pflug et al. [2], [3], correlations are 
calculated using information from multiple sensors, 
with the number of sensors required being equal to the 
order of correlation. In this situation, the second and 
higher order moments of the noise have no effect on 
detector performance if the noise is uncorrelated. 
However, if correlations are formed by repeating 
information from only one sensor, which is sometimes 
all that is available for processing, then the higher 

order moments of the noise can affect detection. To 
extend this work on higher order correlation transient 
detectors to complicated shallow water environments, it 
is important to have a realistic estimate of the higher 
order moments of ambient noise and their stationarity. 

In this work, measured shallow water ambient noise 
due primarily to shipping is investigated with the goal 
of determining whether stationarity and Gaussianity 
assumptions for transient detectors are appropriate, and 
if so, for what time periods. While it is generally 
accepted that ambient noise due to nearby shipping is 
nonGaussian, only a few attempts have been made to 
explore the nature of the nonGaussianity [4]-[7]. In [4], 
Brockett et al. examine the third order statistics of 
noise dominated by distant shipping or by one nearby 
ship. In [5], Hinich et al. show that the towing 
platform in an experiment has strong bispectral 
components. Richardson and Hodgkiss [6] use the 
bicoherence to determine that a recorded deep-water time 
series is nonGaussian. Only Dalle Molle and Hinich 
[7] consider the fourth order statistic, showing that the 
noise generated by two ships approximately 460m 
from a sonobuoy is not significantly different from 
Gaussian noise. However, none of these studies 
investigates the statistics of ambient noise generated by 
a multitude of nearby ships, such as would occur in a 
port area. 

2.    SWellEX-3 Experiment 

Ambient noise recorded during the SWellEX-3 
experiment is used to investigate the first, second, and 
higher order moments of ambient noise due to shipping 
in a moderately busy port area. The data were taken 
near the port of San Diego, California, in July-August 
1994 [8]. Ambient noise measurements were recorded 
on a vertical 64-element array with 2 m spacing, 
located in water approximately 200 m deep. Two 
channels of data were chosen for analysis, 2 and 43, 
with respective depths of 192 m and 116 m. 

The data are sampled at 1500 samples/second. Only 
3-minute data segments have been used for analysis so 
far. The data are calibrated and mooring platform self- 

271 
0-8186-7576-4/96 $5.00 © 1996 IEEE 



noise is reduced/removed. Additionally, a high-pass 
Butterworth filter of order nine with a cutoff frequency 
of 15 Hz was applied in an attempt to reduce the effects 
of sensor motion, or flow noise, that appeared in the 
uppermost phones. 

Ships in the port were tracked with radar during the 
experiment and are used to identify times of low, 
moderate, and high shipping activity for analysis. It 
should be noted that shipping traffic in the area is 
always significant, and the terms low, moderate, and 
high are only relative and describe the number of ships 
in the general area and to some degree the proximity to 
the array. 

moments and the stationary Gaussian noise moments 
reveals that the moments of the shipping noise vary 
much more than those of the stationary noise for this 
case. To some extent, these differences can be used to 
quantify the degree of nonstationarity present in the 
data. 

Firat Moment: Mean—-3.86 Std-955.7 

3.   Higher Order Moment Analysis i^^^*^ 

Second Moment: Mean-5.18e+10Std<-l.ollo+10 

Three different length processing windows are used to 
calculate the changing first through fourth order 
moments of the data, defined by 

At N-' 
mp     = —  InP(kAt) 

I    k=0 
where n(t) is the recorded noise, At is the sampling 
interval, T is the window duration, and p is the order of 
correlation. A 99% overlap of the sliding window 
corresponding to a moment sampling rate of 50 
samples/second was found sufficient to prevent aliasing 
in the time-variation of the second, third, and fourth 
order moments. However, a small degree of aliasing 
still exists in the first order moment. Calculations of 
processing window length versus mean moment values 
indicate that the moments are reasonably stable for one- 
second intervals. 

The moments for channel 2 using a one-second 
processing window during the moderate noise period are 
given in Fig. 1. For comparison, simulated stationary 
Gaussian noise with the same standard deviation and 
approximate color as the data segments is also analyzed 
with the results shown in Fig. 2. The moment means 
and standard deviations are given above each plot. The 
colored Gaussian noise is high-pass filtered in the same 
manner as the data. As expected, the filtering has 
little effect on the moments of the Gaussian noise. A 
similar analysis is performed for the remaining data, 
and is summarized by the moment means and standard 
deviations in Tables 1, 2, and 3 in the Appendix. The 
three sets of Gaussian noise in each table have the 
same 3-minute standard deviation as the corresponding 
shipping noise. 

From visual comparison of Figs. 1 and 2, the 
shipping data appear nonstationary over the 3-minute 
time segment. Theoretically, the moments of a 
stationary process are constant over time. The 
variability seen in Fig. 2 is a result of using finite, 
rather than infinite, sums in the moment calculations. 
If the shipping data were also stationary, they should 
have a similar variation in their moments. 
Comparison of the standard deviations of the four data 

80 OO 100 120 140 ieo leo 

Thkd Moment: Mean->7.796e+13 Std*2.057e+15 

<fc\>v\J!/^>y^\Hv^^ 
40 60 ao 140 1SO 180 

Fourth Moment: Meen-1.076e+22 Std-3.982e+21 

''"'^^^ 

Fig. 1. Moments vs time for the channel 
2 moderate-noise shipping data. 

Even in the presence of nonstationarities, inferences 
about the local Gaussianity of the data can be made. 
For a zero-mean Gaussian process, infinite sums in the 
moment calculations should result in m, = m3 = 0 and 

m4 = 3m2. The use of finite sums in the calculations 
results in deviations from these relationships. For 
example, the mean value of m4 for the Gaussian noise 

shown in Fig. 2 shows a 1.35% difference from 3m2- 
However, the corresponding comparison for the 
shipping data shown in Fig. 1 reveals a -34.17% 
difference, indicating a departure from Gaussianity, 
averaged over time, due to other than finite sums. For 
the data analyzed, this is by far the largest difference 
between the data and simulated Gaussian averages. For 
the low and high level of noise at channel 2, the 
differences are -1.18% and -3.02%. At channel 43, the 
differences between 3mj and m4 for the low and 
moderate levels of noise are -6.98% and -3.51%. The 
various sets of Gaussian noise show differences 
between 1.35% and 2.48%. Except for the moderate 
noise at channel 2, the means of the fourth moments of 
the shipping data match those for simulated Gaussian 
noise closely and have relationships to the second 
moment that are consistent with Gaussianity. In 
contrast, the means of the third moments of the 
shipping data do not match those for the simulated 
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Gaussian noise except for the high shipping noise at 
channel 43, which differs by only -7.34%. The 
remaining sets of data have third moments that differ 
from the simulated Gaussian noise by at least 80.95%. 
Although the values for m3 in Tables 1 and 2 appear 
large, they are small when compared to the magnitude 
of the cube of the data. 

First Moment: Mean-O.2111 std-943.2 

Second Moment: Mean-5.16e+10 Std=3.494e+09 

n/V'\lA^*^«^^»WWV*/^*^^ 

SO BO 100 120 1« 160 160 

Third Moment: Mean-4.235e+13 Std-1.053o+15 

*v\^A''M*^*v\N**^^ 

Fourth Moment: Mean-7.876e+21 Std>1.142e+21 

}^/**J>**S*+*t***J^^^ 

20 4o «O ©O 100 1» 140 160 160 
Time (sec) 

Fig.   2.     Moments   vs  time  for  colored 
Gaussian  noise. 

4.   K-S Test for Gaussianity 

Although the shipping data has periods of 
nonstationary, the Kolmogorov-Smirnov (K-S) test can 
be used to assess the local Gaussianity of the data. 
Using a 1-second sliding window with 90% overlap, 
the K-S test was applied to both the shipping data and 
the simulated stationary Gaussian data. Values of the 
K-S statistic over the three-minute moderate noise time 
period for channels 2 and 43 are shown in Figs. 3 and 
4. The horizontal lines at 0.035 represent the level 
above which the K-S statistic is different from a 
theoretical Gaussian distribution at the 5% significance 
level. The Gaussian assumption is rejected 18.38% of 
the time for channel 2. In contrast, Fig. 4 shows that 
the Gaussian assumption is rejected only 0.0057% of 
the time for channel 43. The simulated Gaussian noise 
is never rejected as Gaussian at the 1% level and is 
rejected less than 0.0458% of the time at the 5% level. 
The average K-S statistics for all the Gaussian noise 
sets range from 0.0163 to 0.0175. The average K-S 
statistics for the shipping data are also within this 
range, except for the noise at channel 2 during the 
moderate noise period. However, channel 2 during the 
moderate and high noise periods exhibits local peaks 
suggesting local nonGaussianity. 

Fig. 3.    K-S test for channel 2 moderate 
level shipping noise. 

100 120 
Time (sec) 

Fig. 4.    K-S test for channel 43 moderate 
level shipping noise. 

5.    Conclusions 

The higher order statistics of ambient noise due 
primarily to nearby ship traffic in a port area are 
analyzed. The analysis includes two channels of data 
from a vertical array for three different periods of noise. 
Examination of the first through fourth order moments 
over time reveals apparent nonstationarities in the 
shipping data. Comparison with moments of 
stationary colored Gaussian noise supports this 
conclusion. While the third order moments of the 
shipping data differ somewhat from that of the 
Gaussian noise, the fourth order moments differ much 
less. The Kolmogorov-Smirnov test indicates that the 
noise at the deeper hydrophone appears to have periods 
of local nonGaussianity during the moderate and high 
noise segments, while the noise at the shallower 
hydrophone, and at both hydrophones during the low 
noise segment, appears relatively Gaussian. 
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Noise   Type 
Low Gaussian Noise 

Moderate Gaussian Noise 

High Gaussian Noise 

Low Shipping Noise 

Moderate Shipping Noise 

High Shipping Noise 

mi 
0.34 

308.60 
0.21 

-943.20 
0.26 

760.90 
-7.40 

670.80 
-3.90 

955.70 
-1.50 

1028.00 

m2 
l.lOelO 
5.06e8 
5.16el0 
3.49e9 
4.85el0 
2.85e9 
l.llelO 
1.69e9 
5.18el0 
l.OlelO 
4.87el0 
8.39e9 

m3 
7.98el2 
8.33el3 
4.23el3 
1.05el5 
3.73el3 
9.00el4 
1.52el2 
8.83el3 
7.80el3 
2.06el5 
•1.13el4 
9.38el4 

ni4 
3.54e20 
3.35el9 
7.88e21 
1.14e21 
6.93e21 
8.54e20 
3.74e20 
1.21e20 
1.08e22 
3.98e21 
7.33e21 
2.59e21 

Table 1.    Channel 2 moment mean and standard deviations using a 1-second 
processing  window. 

Noise   Type mi m2 m3 m4 
Moderate Gaussian Noise 0.45 

1007.00 
5.91el0 
3.62e9 

7.27el3 
1.13el5 

1.03e22 
1.30e21 

High Gaussian Noise 0.62 
964.80 

6.31el0 
3.70e9 

7.22el3 
1.37el5 

1.17e22 
1.44e21 

Moderate Shipping Noise -6.50 
1407.00 

5.96el0 
1.34el0 

1.61el4 
1.29el5 

1.14e22 
4.88e21 

High Shipping Noise -4.30 
1441.00 

6.37el0 
1.03el0 

7.75el3 
1.45el5 

1.26e22 
4.12e21 

Table 2.   Channel 43 m oment mean « and standard deviations us ng a 1-second 
processing window 

Noise   Type 

Low Shipping Noise 
Moderate Shipping Noise 
High Shipping Noise 

Channel 2 
Average K-S 

Statistic 
0.0163 
0.0280 
0.0171 

Level 

0.000 
3.347 
0.0011 

5%  Level 

0.000 
18.28 
0.3777 

Channel 43 
Average K-S 

Statistic 

0.0171 
0.0177 

1% Level 

0.000 
0.000 

5%  Level 

0.0057 
0.0343 

Table 3.     Average  K-S  statistic and  percentage  processing  windows for which  K-S 
statistic is above the 1% and 5% significance levels. 
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Abstract 
A method of constrained adaptive beamforming 
employing a self-focussing technique for an uncalibrated 
array is described and experimental results are 
presented. Constrained adaptive beamforming was 
employed to assess the performance of adaptive nulling to 
suppress non-gaussian atmospheric noise and Doppler- 
spread ionospheric clutter received during bistatic radar 
experiments. A self-focussing method based on principal 
component analysis of the received data was devised and 
used to estimate the induced steering vectors of sources 
of interest. The procedure is described and results of 
subspace projection nulling of the unwanted noise and 
interference to enhance signal-to-noise ratio are 
presented. 

Introduction 

A method of constrained adaptive beamforming 
employing a self-focussing technique was used with an 
uncalibrated array. The receiving antenna consisted of a 
thinned planar array of 96 high frequency vertical 
elements deployed randomly over a 3-kilometer aperture 
to produce a narrow pencil beam, but with elevated 
sidelobes. Constrained adaptive beamforming was 
employed to assess the performance of adaptive nulling 
to suppress non-gaussian atmospheric noise and Doppler- 
spread ionospheric clutter received during bistatic radar 
experiments. During the experiments the random array 
had not been calibrated for receiver phase and amplitude 
differences, or cabling differences, although the surveyed 
positions of the elements were known. A self-focussing 
method based on principal component analysis of the 

iThis work was performed as part of the sponsored research 
program of The MITRE Corporation while the author was 
affiliated with Gemini Industries, Inc. 2 The author is currently 
affiliated with MIT    Lincoln Laboratory, Lexington, MA. 

received data was devised and used to estimate the 
induced steering vectors of sources of interest. The 
procedure will be described and results of subspace 
projection nulling of the unwanted noise and interference 
to enhance signal-to-noise ratio are presented below. 

The Experiment 

An   aerial   view   of  the   receiver   site   taken   during 
construction is shown in figure 1, indicating the cable 
runs to the 96 elements randomly deployed over the 
essentially planar aperture. Figure 2 shows a schematic 
diagram  of  the  adaptive  processing   applied  to  the 
elements of the planar antenna array.  The principal 
component inverse version of the generalized sidelobe 
canceller, described by Kirsteins and Tufts, was used. 
This was applied after range-Doppler processing the 
outputs of the antenna array receiver elements, which 
formed the receiving station of a bistatic over-the horizon 
radar transmitting a linear fm waveform. When the 
analysis was performed, the array data had not been 
calibrated   to   compensate   for   receiver   phase   and 
amplitude differences, cable length differences, and siting 
errors. Therefore, instead of computing the beamsteering 
vectors and beamforming constraint vectors from the 
known  parameters  of the  array  based  on  a  planar 
wavefront propagation assumption, it was necessary to 
estimate these vectors from the principal components 
induced by the incident field, accomplished by applying 
an eigenvector beamforming technique. To estimate the 
beamsteering weight vector that points the array in the 
direction of a received signal at a particular Doppler 
frequency in a range cell being analyzed, a subset of 
Doppler samples for the array,  local to the chosen 
Doppler  frequency,   was   used  to  estimate   a   signal 
subspace for that frequency. The principal eigenvector 
belonging to the largest eigenvalue was used to estimate 
the beamforming vector w0. The beamforming constraint 
matrix   C   was   formed   from   beamforming   vectors 
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Figure 1. Aerial View of the Receiving Array Site 
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Figure 2. Principal Component Inverse Adaptive Sidelobe Canceller 
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similarly estimated in adjacent range cells. This 
procedure was repeated as a sliding window of Doppler 
cells was scanned across the Doppler spectrum of the 
range cell to detect Doppler shifted signals and observe 
the adaptive spatial cancellation of the background noise 
and Doppler-spread ionospheric clutter. Since the 
illuminated ground clutter spectra are easily recognised, 
not important to the detection of Doppler-shifted signals 
and an unecessary burden for the adaptive spatial 
processor, the Doppler cells corresponding to the ground 
clutter were removed before forming the data matrix to 
be processed and analyzed. The samples to be excised in 
each range cell were determined by analysis of the 
principal components of the unexcised data, easily 
revealing the spectrum of the main ground clutter 
component. 

Adaptive Processing Results 

An example of the results of applying this method of 
adaptive spatial processing to the data is presented next. 

We applied the self-focussing technique to range cell 
166, and a few adjacent range cells, choosing a Doppler 
band near 2 Hz, to estimate the beamsteering weight 
vector and linear constraint matrix. The estimated 
beamforming constraints were then used in an adaptive 
beamformer applied to all of the range cells in the 
coherent processing interval. Figure 3 shows the 
unadapted and spatially adapted Doppler spectra for 
range cell 166 with the beamsteering weight vector and 
linear constraint matrix estimated from a band of Doppler 
cells centered near 2 Hz. Adaptive results are shown for 
64 DOF and 87 DOF. Figure 4 displays the unadapted 
range-Doppler map for 128 range cells for this example 
(129-256) and figure 5 displays the range-Doppler map 
after spatial adaptation using 87 DOF. For this example 
the increase in SINR was measured as 23.4 dB for 64 
DOF and 30.3 dB for 87 DOF. Other applications of this 
technique to the experimental radar data produced similar 
results. It is evident from the example that substantial 
suppression of the clutter has been obtained without loss 
of   signal,   facilitated   by   the   use   of   constraints. 
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Figure 3. Doppler Spectra for Range Cell 166 
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Figure 4. Unadapted Range-Doppler Map 

Figure 5. Spatially Adapted Range-Doppler Map 
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Abstract 
In this paper, a new method that exploits the ideas of 
independent source separation in the context of Speech 
Enhancement in single sensor signals, is developed and 
tested in various situations. The channel distortions 
of the two sensor case are artificially reproduced by 
suitable linear and nonlinear filters. Separation is im- 
plemented via a Lagrange neural network. Results on 
speech signals are shown. 

1. Introduction 

Recently there has been considerable work on the prob- 
lem of source separation (see e.g [7], [8], [10]). In its 
simplest form the problem is given a linear mixture of 
signals (sources), to separate the contribution of each 
of the sources present assuming they are independent. 
Other interesting work in the area has been presented 
in [3], [6] and [9]. Previous research has focused mainly 
on multisensor approaches to the problem where differ- 
ent mixtures of the source signals arrive at each one of 
the sensors. Such approaches are difficult to use in 
practice, because of the increased complexity imposed 
by the presence of an array. The approach of our work 
is to produce estimates of the signals present using just 
one sensor. The different distortions normally suffered 
by the signals in the channel are modelled locally by 
suitably filtering the received signal. A Lagrange min- 
imisation problem is formed to be solved by a Lagrange 
programming neural network ([11]). The results of the 
application of the method on contaminated speech sig- 
nal are included. 

2. The Source Separation Problem 

Consider two independent signals x\ and X2 propagat- 
ing in the same medium and two sensors, each receiv- 
ing a different mixture of the two signals, i.e.   yi = 

aii^i + Ü12X2 and yi = o^i^i + «22^2- 
It can then be shown that the initial signals can be 

recovered as ([1]): 

Sl = bixi = wnyi + U712J/2 

«2 = M2 = W212/1 + W222/2 

(1) 

(2) 

where 61 and 62 are constant gains and the wtj de- 
pend only on the a,js. This recovery may be performed 
provided that 011022 — 012021 ^ 0. 

Since the a,js are of course not known, the IU,JS 

must be estimated through some kind of optimisation 
procedure. The two signals are by assumption idepen- 
dent, zero mean implying that their odd powered cross 
moments are zero. This fact can be exploited for this 
optimisation. Examples of ways to estimate these mo- 
ments are given in [1] and [7]. The method of estima- 
tion used in our work will be presented later on in this 
paper. 

A typical block diagram of a source separation ap- 
paratus, is given in figure 1. The first part of the circuit 
( marked as 'CHANNEL' ) reproduces the distortions 
that would normally be suffered by the signals in the 
channel. The second part (marked as 'NEURAL NET') 
is the one that recovers the mixed signals. The weights 
W{j are controlled by some adaptive mechanism, spe- 
cific to each method. 

source I all 

—V*—7 
sensor 1 wll output 1 

\ *    / "Y •'Y 
source 2 

a22 

sensor 2 
> 0  

w22 

output 2 

4 , v j 

CHANNEL NEURAL NET 

Figure 1: Standard source separation setup 
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3. The single sensor case 

The modified arrangement for the new method is de- 
picted in figure 2. In our case there is only one sig- 
nal available, namely the noise contaminated signal 
(marked as 'sensor'). A two sensor simulation can be 
made in such a manner that the distortions that the sig- 
nal would undergo when travelling through a channel 
are modelled by passing it through two different filters 
(shown in figure 2 as HI and H2). Some guidelines for 
chosing these filters are given later in this paper. This 
produces two pseudo-sensor signals, shown as "sensor 
1" and "sensor 2". These two signals are then used as 
substitutes for the signals from the two sensors. 

output 1 

output 2 

NEURAL NET 

In this study i and j are restricted so that: 

(*',./) €{0,1}2 

For reasons of simplicity only the two source case is 
considered. 

4. Implementation Issues 

The received signal which is assumed to be a linear 
mixture of the two source signals is passed through 
two separate filters. The two outputs are used in our 
setup in the manner of a standard source separation 
problem ([5], [7]). These filters should not have high 
stopband attenuation so that both the outputs convey 
information about all frequency components of the sig- 
nals. Further investigations as to the choice of these 
filters are currently under way. 

It can be easily seen that the following modification 
to the objective function, reduces the computational 
load considerably: 

Figure 2: Block diagram of the setup used for the new 
method 

The adaptation mechanism is further assisted by 
the introduction of constraints. A constrained optimi- 
sation problem is set up and its solution implemented 
through the use of Lagrange Programming Neural Net- 
works. This type of neural networks are based on the 
Lagrange minimisation theory. They were chosen be- 
cause they permit the introduction of constraints, but 
exhibit further advantages in terms of speed of conver- 
gence, ability to readapt and good stability. Details 
about them are given in [11] and [4]. 

It has already been mentioned that odd power cross 
moments of the outputs must be zero, and the function 
to be minimised is therefore taken to be 

^ = E(^i+1^'+1]); (3) 
«j 

subject to the constraint that Si +S2 = V where y is 
the received signal. This gives the following Lagrange 
function to be minimised: 

J = £ (E[S?
+1#'+1])2 + A(Sl + s2 - y)     (4) 

»j 

The update equations for Wij and A can be obtained 
by using (1) and (refequ2) and differentiating the above 
expression. A steepest descent adaptation is then per- 
formed. 

3 =  IE Els?+14i+1] J    + A(«i + s2 - y)        (5) 

Possible further implications of this modification 
are currently under investigation. 

Several alternative methods for estimating the cross 
moments of the signals have been investigated. Clearly, 
since we are dealing with higher order moments, a large 
number of samples must be used for reducing the vari- 
ance of the estimation. The fact however that the sig- 
nals can not be assumed stationary poses a limit on 
the number of past samples that can be meaningfully 
used in the estimation. For these reasons the following 
recursive formula was used: 

(E[s\4])n = <f>x (E[s\4])n_ +(!-<]>) xsl,ns2,n (6) 

where 

{E[s\4))n 

is the estimate for the moment at time n, and Skin 

is the value of signal s^ at time n and ^ is a forgetting 
factor. Equation (6) provides an unbiased estimate for 
the moments. Clearly it produces good estimates of the 
value of the moments, since a large number of samples 
is involved. Additionally, with a suitable choice of <j>, it 
can quickly respond to changes in the statistics of the 
signal. 
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A variable gain adaptation was used to give better 
stability and eliminate oscillations of the weights in a 
dynamic Lagrange neural network realisation. For sta- 
tionary environments the adaptation gain modification 
is taken to follow the rule: 

1 
\i = ßo 

(iteration number)^ (7) 

where ß is a positive constant. Typically 0 < ß < 2. 
This update method is used in current literature ([1]). 
It gives an initial, near optimal solution quickly and 
then convergences with small missadjustment. 

Solutions for non-stationary cases are currently be- 
ing explored. 

5. Results 

Convergence is fast and due to the variable gain there 
are no weight oscillations after the final values are reached. 
Sample convergence curves for the weights of the neural 
network can be seen in figure 3. 

The tests were performed on single sinusoid plus 
white, zero-mean, gaussian noise, speech plus sinu- 
soid and speech plus white, zero-mean, gaussian noise. 
Sample results for speech plus white noise, can be seen 
in figures 5 (the original and the contaminated signals) 
and 6 (the reconstructed signals). 

1000  2000  3000  4000  5000  6000  7000  8000  9000 

(a) 

0 20 40 60 BO        100       120       140       160       180 
ITERATION NUMBER 

Figure 3: Sample convergence curve for the weights 

1000  2000  3000  4000  5000 7000  8000  9000 

(b) 

INPUT (SEOMENTAL) SNR (dB) 

Figure 4: Improvement in SNR after processing versus 
input SNR (both measured as segmental SNR) 

Figure 5: Example of the application of the method: 
Speech plus White Gaussian Noise, a: original signal, 
b: contaminated signal 

The graphs clearly show a definite improvement of 
the reproduction of the different signals in each case. 
The outputs are acoustically close to their original ver- 
sions. The improvement in SNR versus input SNR is 
given in figure 4. It can be seen that the proposed 
method gives good results in very adverse conditions. 
Note that the SNR displayed is a segmental SNR. 

Tests for removing sinusoidal interference from speech 
were performed. For an input SNR of-3.7 dB, the out- 
put SNR was 16.12 dB for a fixed frequency of the sine 
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Figure 6: Example of the application of the method: 
Speech plus White Gaussian Noise, a: reconstructed 
signal ,b: reconstructed noise 

wave (improvement 19.81 dB ) and 12.2 db for a slowly 
varying one (improvement 15.9 db). 

6. Conclusions 

A new method to enhance signals, based on source sep- 
aration techniques is presented. The initial results ob- 
tained are quite promising. Several improvements are 
possible in a variety of directions, for example in using 
different filters and different objective functions. The 
method is potentially useful in many applications to 
other signal processing problems, such as for example 
Voice Activity Detection. Research is currently un- 
der way to explore the fundamental parameters that 
influence this approach in a decisive manner and to 

determine the limits of its applicability. Further devel- 
opment of this work is reported in [2]. 
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Abstract 

We propose an automatic signal segmentation algo- 
rithm for piecewise constant signals, which is based on 
Hidden Markov Models (HMM). It segments the ob- 
served data without the need for training data and ini- 
tial conditions. One of the problems for automatic seg- 
mentation using HMM models is the determination of 
their number of states. In this paper, the number of 
states is estimated according to a maximum a poste- 
riori (MAP) criterion. The proposed algorithm is it- 
erative. Its initial conditions are chosen by a Tree- 
Structure technique, which is completely data driven. 
The segmentation is further improved by the multiscale 
technique. The performance is evaluated by computer 
simulations. 

1. Introduction 

Signal segmentation is an important problem that 
occurs in many applications including speech recogni- 
tion, biomedical signal processing, and pattern anal- 
ysis. The commonly used maximum likelihood seg- 
mentation tends to have poor performance, since it ig- 
nores the temporal correlation among the samples. To 
include temporal correlation, we use Hidden Markov 
Models (HMM's) [6]. An optimal segmentation by 
HMM's can be achieved by the well known Viterbi al- 
gorithm [6]. However, this algorithm assumes that the 
number of states is known and requires sufficient data 
for training the estimators to achieve good results [6]. 
Therefore, it is not quite practical when it is applied 
to data for which such information is unavailable. 

In this paper, we propose a novel algorithm that can 
circumvent these problems. We analyze piecewise con- 
stant signals whose levels (states) and number of states 

"This work was supported by the National Science Founda- 
tion under Award No. MIP-9506743. 

are unknown. The number of states and the best seg- 
mentation are determined by a maximum a posteriori 
(MAP) criterion. The proposed algorithm has modest 
computational requirements even when it is extended 
to two dimensional data. 

2. Problem Formulation 

Let yT = [2/12/2 • • • VN] be an observed data vector 
of N samples comprised of a signal embedded in ad- 
ditive noise. Let xT = [x\X2 • • -x^] be the unobserv- 
able vector of signal states which is a realization of 
an m-state HMM process, i.e. x, € {1,2, •••,m} for 
i = 1,2, • • •, N. Also, suppose that the observed data 
can be modeled by 

Vi =g(xi) + Wi,    i=l,2,---,N, (1) 

where g(xi) is a function that maps the underly- 
ing state n to a constant \iXi. The vector wT = 
\w\w<i • ■ -WN] represents noise, and its elements are 
independently distributed Gaussian random variables 
with zero mean and unknown variance <r5!.. We model 
the underlying state vector x as a first order HMM, so 
the probability mass function of the vector x is given 
by 

JV 

p(x) = p(ii) JJp(a:,-|ar,-_i) (2) 
t=2 

where p(xi) denotes the state probability of the first 
sample and p(ar,|ar,_i) is the state transition proba- 
bility. The density of y, given the underlying hidden 
states x, is 

N 

/(y|x)  =  n/(»!*<) 
»=i 

= S(^exp(-4("~^)2)- 
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The number of states ra, the parameters associated 
with each state, (^x^^, cr^), p(x\), and the state transi- 
tion probability p(ar,|a;,_i), are unknown. 

The problem is to determine the number of states 
m, estimate all the unknown parameters, and label the 
observed data with one of the ra states. 

3. The Segmentation Approach 

For a given number of states m = k, we would like 
to estimate the underlying state vector x*, where a;,- 6 
{1,2, • • ■, k}. From Bayes' theorem we can obtain the 
posterior probability of the state vector x*, that is, 

P(*k |y) 
/(ylxjfcMxfc) 

/(y)     ' 
(3) 

Since we would like to adopt as an estimate the most 
probable value of Xfc given the data y, we write 

it = argmax{/(y|xjb)/(xt)}. 
Xk 

(4) 

Note that /(y) is dropped from (4) because it is not a 
function of xj,. 

To develop an efficient algorithm that searches for 
the optimal solution, we iteratively optimize individu- 
ally the Xj, i — 1,2, • • •, N, according to 

£,=arg      max      {f(y\xk)p(xk)}. (5) 
»»€{1,2,■••,«} 

When we eliminate the terms which are not functions 
of Xi, (5) simplifies to 

ii = arg      max     {f(yi\xi)p(xi\xi-i)p(xi+1\xi}. 
x,e{i,2,■•-,&} 

This is iteratively solved according to 
(6) 

j.Ü+1) arg      max 
*.e{i,2," *} 

{f(yi\xi)p(xi\x U+1))p(*&\xi)} 

(7) 
and where   j   denotes   iteration,    and   p(x,|x^1   ) 

P(.xi+i\x>) are *ne estimates of the transition probabil- 
ities from Xi-i to Xi and X{ to Xi+i, respectively. The 
optimization of (7) can be implemented, for example by 
the Iterated Conditional Modes (ICM) algorithm [1]. 
Since this is an iterative techniques, the initial condi- 
tions play an extremely important role, and therefore 
they need to be handled with great care [4], [5]. In our 
approach we choose them by a recently developed Tree 
Structure (TS) scheme [4]. 

In (7), the labeling of x,- depends only on the Xj_i 
and x»+i. At low signal-to-noise-ratios (SNR's), the 
initial states may contain many mis-labeled data sam- 
ples, which could lead to poor results. To overcome this 
shortcoming, we use a multi-scale technique similar to 

the one proposed in [2]. We refer to it as Multi-scale 
HMM (MS-HMM). It is composed of a series of seg- 
mentations progressing from coarse to fine scale. This 
is implemented as follows. 

Let the observed data and the underlying labels 
at scale s, s — 0,1,2, ■ ■',sroM, be denoted as y<»> 
and x<j>, respectively. The initial label sequence at 
scale s, x<,> is obtained from the estimated sequence 
x< j+i>. The number of data at scale s +1 is only half 
of the number at scale s. For example, y<o> = y and 
x<o> = x are the observed data and their labels at the 
finest (original) scale, respectively. Each sample at the 
first scale, y<i> and x<i>, corresponds to two points 
in the original scale s = 0. For the observed data we 
use j/,<i> = ^(y2»-i<o> + y2.<o>), and for the labels 

Sim- l2t-l<0> = ^2»<0> = %i<l>, lor I = 1,2, •■ •, y. 
ilarly, each sample at scale s = 2 corresponds to two 
samples at scale s = 1, and so on. Note that, at coarser 
scales, the noise in the data y<„> is decreased due to 
averaging. 

4.  The MAP  Solution for Number of 
States 

In general, the number of states is also unknown. 
Our objective now is to obtain a criterion for choosing 
this number. From Bayes' theorem we have 

P(x*|y) = 
/(y|x*)p(xfc)p(fc) 

/(y) 
(8) 

where /(y|xjt) is the likelihood function given the hid- 
den states and the number of states, p(xjb) is the prob- 
ability mass function of x given k, and p(k) is the a 
priori probability mass function of the model with k 
states. If we let p(k) be uniform, the MAP solution of 
(8) becomes 

(**) = argmax{/(y|xfc)p(xi)}- 
■A-fc 

(9) 

Given the number of states k, we can find the under- 
lying labels Xi for k = 1,2, ■ • •, kmax by the proposed 
algorithm. Once we obtain the Xfc's for various k's, the 
number of states is selected according to 

k    =    argmax{/(y|xjfc)p(xjfc)} 
k 

=    argmin{-ln/(y|xjt) - lnp(xjt)}. 
k 

To determine ln/(y|xj;) we use 

/(y|xt)= /   f(y\xt,ek)f(9u)d9k 

(10) 

(11) 

(12) 

where 0k = \ßi, <r\,[i2,0"!> • • •,Pk, ^l]T is the parame- 
ter vector associated with all the states. If we Taylor 
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expand ln/(y|xjb) around the maximum likelihood es- 
timate of 9k, 9k, we obtain 

ln/(y|xt) ~ lnf(y\xk,9k) - \{9k -9k)
T7{k(9k -9k) 

(13) 
where Hk is the Hessian of — ln/(y|xfc,0t) evaluated 
at 9k. By plugging (13) into (12), we obtain 

ln/(y|xt)^ln/(y|xt)ek) + iln|Wt|. (14) 

Using a similar approach, we can show that 

lnp(x*) ~ lnp(xt|^) + i In \H'k\ (15) 

where <f>k is the parameter vector of the state tran- 
sition matrix for Jb states, and 7i'k is the Hessian of 
— lnp(xk\<j>k) evaluated at <}>k. 

Based on (11), (14), (15), and after some algebra, 
the MAP criterion becomes 

where 

kMAP = arg min{Fs,(fc) + Fx(k)} (16) 
K 

Fy(fc) = -ln/(y|xt,0*) + £ölnn<       <17) 

and 

Fx(k) = -lnp(*fc|^) + £E?lnAfor nij > 0 

(18) 
where n,- is the number of samples that are in the i—th 
state, and n,j is the number of jumps from the i—th to 
j—th state. 

This criterion is a penalized maximum likelihood 
with a simple interpretation. Fy() has two terms, 
one corresponding to the fitting error of the applied 
model and the other to the penalty for overparameter- 
ization. Fx(-) on the other hand, reflects the temporal 
constraints imposed by the HMM and the penalty for 
imposing the constraints. 

5. Implementation of the Proposed Cri- 
terion 

We implement the procedure by using three different 
scales. We start with the assumption that the number 
of segments is equal to one, that is k = 1, and initialize 
all the underlying states to 1 for s = 0,1,2. We then 
evaluate ßi, which is simply the sample mean of all the 
data samples, and &\ = jj H<=i(j/» — ßi)2- 

We continue by setting k = 2, and using ßi +e and 
ßi—e, where e is some small positive number, as initial 
conditions to estimate X2<2> according to 

z.-<2>='  if d(yi<2>,ßi) <d(yi<2>,ßi'),  I # /', 
(19) 

where </(•) is the Euclidean distance. Then we update 
ßuß7,a\,cr\ by 

ßi = — y]yf<2>,  z«2> = ' 

v? = — Y.(yi<2> - A*/)2,   xi<2> = I 

(20) 

(21) 

where / = 1,2, and n\ is the number of samples in 
the state /. When the labeling process converges, we 
estimate the transition probability P(XJ<2>|XJ_I<2>) 

by 

P(*I<2>|Z.--1<2>) 
'a:i-i<2> 

where a;«2>,*»-i<2> G {1,2}, nXi_1<3> is the number 
of samples that are in state x,-_i<2>, and "xi<3>a;i_i<3> 
is the number of jumps from state x,_i<2> to state 
xi<2>- As initial state probabilities p(xi<2>), we use 
the uniform distribution. Now we are ready to start 
with the iterative process. We iteratively label the 
state vector xjt<2> using (7) and update all the pa- 
rameters until the process converges. We then start 
the next scale s = 1, and as its initial parameters we 
use the final estimates from the previous scale. After 
we finish the scale s = 1, we repeat the procedure for 
s = 0. 

Once the segmentation with k = 2 is completed, 
we set k = 3.  We have two sets of initial conditions 

{M0) = £i+e> ßi0) = ßi~e > ß^ = ßi) and iß^ = ßi> 
fr2 ' = ß2 + e , /4 — ß2 — e}• We then apply the same 
procedure to each of the initial conditions, evaluate 
the criterion (16) based on the segmentation results 
and choose the one with smaller criterion value. The 
results of the last step are used as initial conditions for 
k — 4. We continue by increasing k and applying the 
same steps until k = kmax. Finally, we choose the k 
that minimizes (16). 

6. Simulation Results 

To verify the performance of the MS-HMM, we ap- 
plied it to synthesized and real data. The first experi- 
ment was on a synthesized data record with 500 sam- 
ples, three different states, and eight transitions. The 
signal intensities of these states were 100, 120, and 140. 
The SNR is defined by min{£} , where A is the in- 
tensity difference of the transitions. The SNR varied 
between 1 and 5, and there were 100 trials for each dif- 
ferent SNR. Figure 2 represents the synthesized noisy 
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data for SNR=2. The number of different states is 
equal to three, whereas the maximum number of pos- 
sible states is equal to five. The segmentation results 
are shown in Table 1. Figure 3 is the histogram of 
the detected state transitions for 100 trials. The peaks 
of the histogram are at the correct locations of state 
transitions. 

In the second experiment we applied the criterion to 
real patch clamping data, which are used in the study 
of ion permeation mechanisms in biological membranes 
[3]. Figure 4 displays the patch clamp data to which 
we applied our segmentation algorithm. The result is 
shown in Figure 5 with 8 states detected. 

SO  100  1SO  ZOO  2SO  300  3SO  400  4SO  SOO 

Figure 1. A realization with 3 classes and 
8 transitions with SNR=2. 
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SNR/K 1 2 3 4 5 

1 0 83 17 0 0 
2 0 0 100 0 0 
3 0 0 100 0 0 
4 0 0 100 0 0 
5 0 0 100 0 0 

Table 1. The entries represent the number 
of times k states were detected in 100 trials. 
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Figure 2. Histogram of the detected edges 
from 100 trials with SNR=2. 

100  200  300  400  SOO  GOO  700  SOO  SOO 10OO 

Figure 3. Real data with unknown number 
of classes. 

100 200 SOO 400 soo eoo 700 800 soo 1000 

Figure 4. Estimated signal from the data 
in Figure 3 with 8 states detected. 
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Abstract 

Using subspace techniques we present simulated 
results investigating variations in the geometry of the 
sensor array for EEG measurements. We have shown that 
the performance of the subspace techniques degrades as 
the sources are brought closer to the array. This 
degradation can be counteracted by changing the 
curvature of the array. An optimum array curvature 
exists which exhibits best detection performance for a 
given angle of arrival. We also present preliminary 
results applying subspace techniques to a sample of real 
EEG data. 

Introduction 

Recent work on the estimation of the direction of 
arrival (DOA) problem uses the subspace approach to 
determine the angular location of multiple emitters, for 
example! 1]. These approaches include MUSIC[2], 
MLM[3] and J&D[4], where these methods have been 
traditionally applied to the fields of RADAR, SONAR 
and seismology. The application area of these techniques 
can be extended to other fields such as biomedical 
problems[5]. One such application is that of estimating 
the position of electrocortical generators in the brain from 
the electroencephalogram (EEG). The estimation problem 
is complicated by a number of factors: 
• The geometry of the array. 
• The source distance from the array . 
• Noise present in the system. 

The work described here investigates the application 
of subspace techniques to the processing of signals where 
two of the above factors are varied. This simulates a 
simplified environment similar to that in which EEG 
signals are measured. Using subspace techniques on real 
EEG data the aim is to estimate the position of possible 
electrocortical generators in the brain. 

This paper consists of five sections. Section one 
reviews  some of the  work  in  the  area of subspace 

techniques for solving spectral estimation problems. 
Section two describes the area of application to both EEG 
and driven EEG. The results of simulations using 
subspace algorithms, and a discussion of the limitations of 
these algorithms under the conditions outlined, are 
presented in section three. Section four discusses the 
results of the application of subspace techniques to the 
EEG context. The final section offers conclusions and 
comments on possible further work in this area. 

1. Signal Subspace Methods 

This section briefly reviews signal subspace methods. 
These methods are primarily derived from the covariance 
matrix which is constructed from incoming signal data. 
The covariance matrix can be broken down through the 
use of appropriate matrix properties and eigen- 
decomposition techniques into two subspaces, the signal 
subspace and a noise subspace [ 1 ]-[5] 

Assuming a system model in which M far-field sources 
are viewed by N sensors (N > M). The sensors may exist 
in any configuration, for example a linear, circular or 
curved array. Consider the system 

x = Vs + n, (1) 
where 
x = [x(l), x(2),..., x(n)..., x(N)]T represents the signals at 
the N sensors at any instant; 
s = [s(l),s(2),...,s(m),...,s(M)]T represents the plane 
wavefronts from the M sources; 
n = [n(l), n(2),....,n(n),...,n(N)]T represents the receiver 
noise contributions to the signals at the N sensors, and the 
(N x M) matrix V represents the response of the N 
sensors in the M signal directions. The matrix V cannot 
be specified until the directions to the sources are known, 
thus eqn. (1) cannot be solved directly. 

The subspace methods use the covariance matrix of the 
system model which is defined as: 

C = E{xxH}=E{(Vs + n)(Vs + n)}H       (2) 

where E is the expectation operator and H is the hermitian 
operator. If the sources are uncorrelated with the receiver 
noise then: 
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E{nsH}=E{snH}=0 (3) 
and if the noise is white Gaussian with variance a2 

C = VCSVH + Cn = VCSVH +o2I, (4) 

The direction finding (DF) problem in this system is 
the identification of the direction vectors 

vm
T=[v(l,m)>v(2,m),...,v(N,m)],    m=l,...,M        (5) 

Given that all the possible correlations between a pair 
of individual sensor signals exist in C it is possible 
through the use of eigen-decomposition techniques to 
decompose the complex space that C spans into two 
mutually orthogonal subspaces. These are the signal 
subspace and the noise subspace. It can be shown that 
either the signal or the noise subspace contain all the 
necessary information required to determine the number 
of sources and the direction of arrival [2]. 

Using the hermitian property of C we are able to 
transform it into a real diagonal matrix A using a unitary 
matrix U as shown below: 

UHCU = A or C = UAUH 

where   the   columns   of   U=[U[,   u2,...,   uN] 
eigenvectors of C and A holds the eigenvalues. 

A =diag[^,,^2,...A,N]  with A,, > X,2 >...> A-N 

are 

(6) 

the 

(7) 

The transformation can be written as: 
N N 

C = Y  A.nunii?   and CT1 = T  ^unun
H 

n=i Si (8) 
and since UH = U"1 (a property of a unitary matrix), UjHu: 
constitute an orthonormal set. 

Assuming that there are more sensors than unknown 
sources, i.e. M<N, [2] shows that there must be (N-M) 
eigenvalues Xn equal to the noise variance a2. The 
corresponding (N-M) eigenvectors form the noise 
subspace. As a result the M largest eigenvectors of C are 
the M orthonormal vectors which form a subset of the 
entire complex vector space. This space is known as the 
signal subspace and it contains the signal vectors. 

The subspace approach can be expressed concisely by: 

c=[us ".(*." 

0 
(9) 

It can be shown [2] that VHun=0 for n=M+l,...,N. By 
sweeping the direction vector vT(0) through all possible 
values of 0 and over all noise eigenvectors we derive the 
MUSICn[2] and Johnson and DeGraaf (J&Dn)[4] 
direction finding functions. Whereas MLMn[3] is derived 
by sweeping vT(0) over all eigenvectors. 

X|v»un|- 
n=M+l 

(     N 

I^|vH(e)un| 
n=M+l 

VH(0)   X^n«nUnHv(0) 
n=M+l 

(10) 

(ID 

(12) 

2. Area of Investigation 

Since the discovery of the EEG 60 years ago, 
innumerable studies have investigated the relationships 
between neural phenomena, the performance of cognitive 
tasks, and associated changes in the EEG which are called 
Event Related Potentials[6]. A novel extension of 
traditional methodology, has been developed by SCAN, 
based on the technique of Steady-State Visually Evoked 
Potentials (SSVEP) in which the subject is exposed to a 
continuously flickering visual driving signal whilst 
performing cognitive tasks[7]. The signal processing 
significance of the visual driving signal is that in excess 
of 38% of all sensory input pathways to the brain's cortex 
are linked to the visual pathways[8], so that driving the 
visual pathways presents a substantial known input 
driving signal to the cortex. The system identification 
problems which are intrinsic to most EEG signal analysis 
work are therefore ameliorated to some extent. 

The EEG is recorded using a specially designed helmet 
with 64 sensors. The rigidity of the helmet guarantees the 
relative position of the electrodes, which are positioned 
according to the International 10-20 system. Additional 
electrodes are placed at sites resulting in an average inter- 
electrode spacing of approximately 2.5 cm[7]. 

By measuring the spatial distribution of EEG activity 
under well-defined, stringent test conditions[7][8], 
estimation of the positions of the electrocortical 
generators in the brain is equivalent to the classical 
problem of estimating the location of multiple emitters. 
The estimation problem is complicated by: 
• The geometry of the array. Most of the research in the 

area of direction finding using spectral estimation 
techniques is based on either linear or circular planar 
arrays. This assumption may not be valid in EEG 
measurements where the sensors are placed on the 
surface of the scalp. 

• The well known model-based direction finding 
techniques assume that the array is far enough from 
the sources to ensure planar impinging waves. This 
may not be true for the EEG measurements. 

• Noise present in the EEG usually is not Gaussian, but 
more likely closer to 1/f noise. 
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3. Simulation Results 

This section describes the results of simulations with 
the subspace algorithms, and a discussion of the 
limitations of these algorithms under the conditions 
outlined below: 
• Varying the separation between sources and sensors to 

investigate the effect of the curvature of the arriving 
waves. 

• Varying the radius of curvature of the array. 
The following simulations were based on 1000 data 

samples, S/N of 20dB and 8 sensor elements. Note the 
three subspace algorithms produced similar results, thus 
the figures only show the results for MUSIC. Figures 1-3 
present results for one source, whilst figures 4-5 are for 
two sources. 

-10 

-20 ■• 

Ampl._3o 
(dB) 

-40  ■ 

-50 

-60 

= 1021 

= I04X 
 1 1     T~^ 

90   -70   -50   -30   -10 70    90 10    30    50 
Angle of Arrival (deg) 

Figure 1 DOA= -30°, linear array, x=distance from array. 

-90   -70   -50   -30-10    10    30    50    70    90 
Angle of Arrival (deg) 

Figure 2 x=5A,, 9 = 60°, r= radius of curved array. 

Given a linear array, figure 1 shows that as the source 
is brought closer to the array the performance of the 
subspace algorithms deteriorates. This is expected since 
the curvature of the impinging wavefronts increases. To 
improve the performance in the "close source case" we 
investigated varying the radius of curvature of the array. 
Figure 2 shows that there is a particular radius of 
curvature (ropt) of the array which results in optimum 
performance of the algorithms. 

Figure 3 shows how the performance of the subspace 
algorithms varies with the direction of the source when 
the source is close to the array. An interesting observation 

is that the larger the angle of arrival the lower the noise 
floor. A larger angle of arrival implies that the distance 
between the source and the furthest sensor is greater than 
when the source has a smaller angle of arrival. This extra 
distance implies the waves travel further thereby better 
approximating a plane wave. 

■e =-2o° 

-90   -70   -50   -30-10    10    30    50    70    90 

Angle of Arrival (deg) 

Figure 3 x=5A., linear array, 0 = DOA. 
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Figure 4 DOA 0] = 60°, 02 = -30°, x, = x2 = x, linear array. 

r=lX 

-90   -70   -50   -30-10    10    30    50 
Angle of Arrival (deg) 

Figures 9,= 60°, 02= -30°, x, = x2 =SX, curved array. 

As expected, in figure 4 we see similar results to those 
obtained in figure 1. As the sources are moved closer to 
the array the performance of the algorithms degrades. 
Note that the strength of the detected peaks is different. 
This is expected because the performance of the 
algorithms is better for larger angles, as can be seen from 
figure 3. Again, varying the radius of curvature of the 
array, results in the best performance occurring at ropt as 
per the single source case. Figure 5  shows that r,,,,, 
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depends on the angle of arrival. Given that both sources 
are 5X from the array ropt = 5.SX for source 1 and ropt = 
9.5A. for source 2. Note peaks of equal strength can be 
obtained when rop, = 6.7X for 0,= 60°, 62= -30°. 

4. Analysis of Preliminary EEG Results 

In this section we present the preliminary results of 
applying the subspace techniques to the EEG data. The 
EEG data was recorded in the presence of visually 
applied driving signals at a range of frequencies. The 
particular case under investigation is when the subject is 
exposed to a sinusoidal visual driving signal of 13 Hz. 
Seven sensors were chosen located from the front to the 
back of the head. The sensors chosen were spaced at 
approximately 35mm. Assuming an average wave 
velocity in the cortex of 7ms"' the separation becomes 
approximately 0.065 wavelengths. The EEG signal was 
filtered to remove unwanted components, the correlation 
matrix formed and the direction functions plotted. 

MUSIC [2] 

MLM 

J&D 
[3] 

[4] 

Ampl. -4 
(dB) .5 

-90   -70   -50   -30-10    10     30     50    70    90 
Angle of Arrival (deg) 

Figure 6 

The result shown in figure 6 indicates that there is no 
localisation of the sources, ie. no distinct angle of arrival 
is identifiable. This result is promising in that the data 
used was obtained using a visual stimulus of 13 Hz. This 
stimulation excites the parts of the brain which are not 
taking part in any other activity, hence we expect several 
areas of the brain would pose as possible source 
locations. 

To improve the estimate of the location of the sources 
the following factors need to be considered; 

The curvature of the detection array of sensors needs 
to be adjusted to obtain ropt. In this particular experiment 
it wasn't possible to alter the curvature of the detection 
array. This will be the subject of a subsequent paper. 

The result also shows that Music gives a different 
outcome in comparison to J&D and MLM. This 
observation may be due to the fact that the MUSIC 
method doesn't have a weighting function, see equ. 10,11 
and 12. 

Conclusion 

We have shown that the performance of the subspace 
techniques degrades as the sources are brought closer to 
the array. This degradation can be counteracted by 
changing the curvature of the array. An optimum array 
curvature exists which exhibits best detection 
performance for a given angle of arrival. 

Application of the subspace techniques to the EEG 
context seems promising as a method for the location of 
electrocortical generators in the brain. Whilst the results 
obtained here are encouraging, there is scope for further 
work. For example the investigation of a compensation 
filter which would correct the non-optimum array 
curvature. This may need to be implemented using an 
artificial neural network, because the exact source 
distance will be different for different cases. 
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Abstract 

A two-step incoherent signal subspace 
averaging technique is applied to locate the sonobuoy 
in the presence of a highly coherent environment 
generated by the scattering of the sonobuoy signals 
from the aircraft propellers. The proposed technique is 
based on the assumption that accurate modeling of the 
scattering modulation effects of the propellers is 
available. This information gives insights into the 
relative contributions of the direct and multipath 
components to the signal subspace. The first step of 
the proposed technique amounts to modifying the 
MUSIC spectrum by projecting a weighted sum of 
steering vectors onto the noise subspace. The second 
step is to perform incoherent subspace averaging across 
the sonobuoy frequency channels. We show that 
significant improvement is achieved using the proposed 
technique over the case of applying noise subspace 
eigenstructure methods. 

1. Introduction 

One application of an airborne antenna array 
is to receive information from sonobuoys as well as to 
locate their positions. The aircraft drops sonobuoys in 
the water and starts to monitor their signal 
transmission. As the aircraft moves along its 
flight path, the same buoy could be at different 
positions at different times with respect to the aircraft, 
due primarily to aircraft motion and to a much lesser 
extent, movement of the buoy by ocean current. The 
buoy could be at some distance from the aircraft or 
directly underneath it. Therefore, the incident angle of 
the signal on the aircraft array and propellers will not 
be constant. One of the primary tasks for these flying 
missions is to locate the sonobuoy with reasonable 
accuracy. 

With the blades of the aircraft propellers in 
continuous rotation, it can he much expected that the 
This work is supported by ONR grant N00014-94-1-1052 

sonobuoy signal scattered from the propellers and 
arriving at the array to be a modulated version of the 
direct path signal. Models describing distributed 
source environment [1], and specifically the propeller 
return [2] have been recently described. Also, accurate 
scattering calculations can be performed using the 
FDTDC [3]. Except for the angle of arrival of the 
direct path, almost all parameters defining the 
modulation effects are known [1]. This includes the 
rotational speed, distances of the blades tips and roots 
from the center of rotation, number of blades and 
propellers, and the range of the propeller from the 
array. 

The modulation effects of the propellers 
depend on several parameters. A number of sidebands 
often result about the center frequency of the sonobuoy 
signal. Depending on the number of the propeller 
blades and the frequency of rotation, one or several 
sidebands of the propeller reflection fall into the 
information bandwidth of the direct signal, causing 
severe multipath degradation effects on the performance 
of the localization and nulling techniques of the 
airborne array system. Due to the coherent signal 
environment, the optimum beamformers (high 
resolution DOA spectra) not only fail to form nulls 
(peaks) in the direction of the signals incident on the 
array, but also it tends to cancel the desired (look 
direction) signal in the output. This failure occurs even 
with the decorrelation effects introduced by the motion 
of the array on the aircraft [4,5]. 

Preprocessing techniques may prove 
inefficient for the underlying problem. Spatial filtering 
methods [6,7] place a low array gain over the 
interference spatial sector to remove, or at least 
attenuate the interference outside the sector of interest. 
Subarray averaging methods [8,9] decorrelate the 
coherent arrivals under certain conditions which relate 
the number of sources and array sensors. Both methods 
reduce the array aperture and are impractical for planar 
arrays with small number of sensors.  Further,  the 

0-8186-7576-4/96 $5.00 © 1996 IEEE 
291 



decorrelation methods are only proper for point sources 
and do not work using models of distributed sources. 

In this paper, we estimate the sonobuoy 
elevation and azimuth positions by making use of 1) 
the knowledge of the propeller spatial coordinates, 
relative to the array, 2) the availability of accurate 
modeling of the multipath signals. While the former 
defines the spatial sector of the multipath signals, an 
accurate model of the propellers provides the means to 
obtain the relative phase and power of the multipath 
signal relative to its direct path in each of the 
sonobuoy's frequency channels. 

Due to the narrowness of the interference 
spatial sector or/and the strong coherence of the 
mutipath signals, the propellers scattered waveforms 
can be presented by rank one covariance matrix, i.e., 
their source representation subspace is spanned by a 
single vector [10]. This vector can be selected as the 
directional vector corresponding to the center angle of 
the spatial sector, or more accurately, can be chosen as 
the principle eigenvector of the covariance matrix. 
Each snap shot can, therefore, be modeled as a 
weighted sum of three directional vectors; one 
corresponds to the sonobuoy direct path and the others 
to the two propellers on the aircraft. This paper 
assumes knowledge of these fixed relative weights, and 
modifies the noise subspace based eigenstruture 
methods [11] so as their spectra include only peaks 
whose number and locations, respectively, equal the 
number and positions of sonobuoys in the field of 
view. 

2 .The Principle Assumption 

The covariance matrix of the multipath signals over 
the sector e, , i=l,2 for the two aircraft propellers can 
be expressed as 

Ä, = ji](0,<p)a(G,(p)aH(0,<p)d6d(p 

(1) 
where a(6,(p) is the directional vector which is a 
function of both the elevation and the azimuth, and 
t](6, <p) provides the distribution of the energy over 
9,. The source representation subspace of the propeller 
scatters is taken as the principle eigenvector e of R. 
Therefore, the vector spanning the subspace of the 
overall covariance matrix of the coherent direct and 
mutipath signals takes the form 

ea=s(6,(p) + ael + ße2 2 

The weights a, ß are complex values and reflect the 
propeller amplitude and phase changes to the sonobuoy 
signal. The primary assumption in this paper is the 
apriori knowledge of these weights from existing 
distributed sources and propeller scattering models[l-3]. 
In the simulation section, we assume equal 
distribution of energy over the spatial sectors of both 

aircraft propellers. In this case, the covariance matrix 
in (1) is produced by replacing the integral with a sum 
and incorporating several directional vectors which 
uniformly cover the interference sectors. 

3. Modified Eigenstructures 

For narrowband signals, the multiple signal 
classification (MUSIC) spectrum is given by 

S(9, (p) = -  
sH(9,<p)WHs(0.<P) (3) 

where 'H' stands for hermition. The matrix V spans 
the noise subspace, which in the underlying problem, 
is of dimension Nx(N-L), where L is the number of 
sonobuoys. In the proposed technique, we use 
equation (2) to gain insights into the make up of the 
signal subspace through proper modeling of the aircraft 
propeller effects. We modify the above equation to 

mod\^> T)      U  ,~    [7/77/7      Tr\    T 

where 
(4) 

*w(0> 9) = s(d> (p) + ae1+ ße2 (5) 

The difference between (3) and (4) is that in (4), the 
steering vector s along with the two fixed vectors e,, e2 

is projected onto the noise subspace. 
For broadband signals, the above projection is 

averaged over the entire frequency band of the 
sonobuoy signal. Assuming M channels, then 

s^(e.q>)=- 
£k/(ft*;/,W|2 

(6) 

'maid <P!fi) = tfft Wf,) + <*fil(i) + ßfiiO) (7) 
The above type of averaging constitutes the second 
step of the proposed technique and is similar to 
incoherent subspace averaging [10], which is proposed 
for increasing the SNR. 

4. Simulations 

In the first example, the simulation performed 
consisted of two groups of completely correlated 
signals. The first group consists of a desired signal 
arriving at(0,(p)= (15,15) degrees with two clusters of 
multipath signals arriving on the different sides of the 
desired signal. The two clusters, representing the 
propeller scattering signals are centered at (56, 170) and 
(49,10) degrees. Each cluster spans A8 = 3,A(p = 6 
degrees. The second group has a desired signal arriving 
at (35,-60) degrees and also with two clusters of 
propellers multipath  signals arriving  at  the  same 

292 



angles and spanning the same spatial sector as in the 
first group. The clusters associated with each desired 
signal are correlated with the desired signal for that 
group only. The sonobuoy signals are 20 dB higher 
than the uncorrelated Gaussian noise. The number of 
data snapshots taken to generate the estimate of the 
noise subspace was 1024. 

The comparison of the conventional two 
dimensional MUSIC algorithm and the proposed 
technique is shown in Figure 1. The proposed 
technique resolves the direction of arrival (DOA) of the 
desired signal of each group whereas the MUSIC 
algorithm completely fails to resolve the DOA of any 
of the incoming signals. Figure (1-a) shows the 
contour plot for the MUSIC algorithm applied just for 
the first group. Figure (1-b) shows the contour plot 
for the proposed technique where the source location is 
successfully estimated at (15,15) degrees. Figure (1-c) 
shows the contour plot for the MUSIC algorithm 
applied to the above two groups occurring 
simultaneously. Figure (1-d) shows tha the proposed 
technique correctly resolve the DOAs for the desired 
signals from each group, (15,15) and (35,-60). 

The second example deals with a broadband 
signal, where averaging across the frequency band is 
performed via equation (6). The wavefroms incident on 
the array consisted of one group of coherent signals, 
covering half of the total normalized bandwidth. The 
desired signal arrives at (15,35) degrees with two 
clusters of multipath signals arriving on its different 
sides as in the first example. 

The comparison of the incoherent signal- 
subspace (ISS) of the two-dimensional MUSIC 
algorithm and the proposed technique is shown in 
Figure 2. The ISS for the MUSIC algorithm 
completely fails to resolve the DOA of the incoming 
signal, as shown in the contour plot of Figure 2 (a). 
The contour plot of Figure 2 (b) shows the clear 
resolution of the DOA of the direct path signal. 

5. Conclusions 

The problem discussed in this paper is the 
estimation of sonobuoy position in the presence of 
highly coherent environment generated by the propeller 
scatters of the sonobuoy signals. A two-step 
incoherent subspace averaging technique was introduced 
which mitigates the effect of multipath on the noise 
subspace-based eigenstructure methods. This technique 
is based on the knowledge of the propeller spatial 
coordinates, relative to the array, and the availability of 
accurate modeling of the propeller multipath 
reflections. The two steps correspond to two types of 
averaging. The first is to project a weighted sum of the 
steering vector and the source subspace representations 
of the multipath spatial sectors on the noise subspace. 
The second averaging is   designated  for  broadband 

signals, and is performed over the above projections at 
different frequency bands. It was shown that the 
proposed technique performs properly in the presence 
of one and two sonobuoy signals. The use of coherent 
subspace averaging in place of the second step is 
expected to improve resolution and was not explored in 
this paper. 
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ABSTRACT 
Incoherent and coherent wideband array processing 

techniques for aeroacoustic detection and tracking of ground 
vehicles are contrasted. Experimental results for a circular 
array are presented, illustrating complexity and performance 
tradeoffs. Incoherent and coherent MUSIC are used for 
comparison. Complexity is dominated in both cases by 
singular value decompostion (SVD) calculation performed M 
times for the incoherent case and S times for the coherent case, 
where M is the number of frequency bins and 5 is the number 
of look angles. Good results are obtained with the incoherent 
method for small M provided adequate narrowband SNR is 
available. The coherent approach is more statistically stable, 
and 5 can be reduced by employing a priori coarse direction 
estimates. 

1. Introduction 
We contrast coherent and incoherent wideband array 

processing techniques for aeroacoustic detection and 
tracking of ground vehicles. Experimental results for a 
circular array of 6 sensors plus 1 at the array center are 
presented, illustrating complexity and performance 
tradeoffs in coherent versus incoherent processing. 

JOk «iilute^Ayj 
Time (s) 

Figure 1. Spectrogram of a ground vehicle and helicopter. 

In this application, array baselines are physically 
constrained by system requirements and variable spatial 
coherence, motivating use of super-resolution methods 
[1]. The problem is made difficult by a number of 
factors. Source acoustic signatures are generally 
nonstationary and undergo severe fading. The usable 

channel is largely restricted to [20,200] Hz due to wind 
noise at low frequencies and poor propagation at higher 
ones. The channel response is generally nonstationary 
due to a variety of atmospheric and terrain factors. 
There may also be significant time-varying multipath. 

A typical spectrogram of a moving vehicle at close 
range, with a helicopter flying nearby, is shown in figure 
1. The helicopter's signature consists of sharp and stable 
harmonics emanating from the main rotor blade. These 
are evident in the time interval 50-100 seconds. The 
ground vehicle also exhibits a harmonic structure but it is 
very nonstationary and exhibits strong fades during 
vehicle maneuvering. Note the lack of acoustic energy 
beyond 200 Hz. The combined effects of source and 
channel nonstationarities produce significant signal 
variability, even at relatively close ranges of hundred of 
meters. 

2. Incoherent and Coherent Processing 
A natural extension of narrowband high resolution 

subspace methods is to combine narrowband 
beampatterns over many temporal frequencies [2]. This 
approach is useful for aeroacoustics if there is sufficient 
SNR in multiple frequency bins, such that narrowband 
methods such as MUSIC yield good results 
independently for each bin. In addition to the relatively 
high narrowband SNR requirement, disadvantages of this 
incoherent approach include degradation in the presence 
of correlated multipath, and a general lack of statistical 
stability when compared to wideband coherent methods. 
The incoherent averaging can lead to false peaks in the 
resulting averaged beampattern. 

To overcome the nonstationary nature of the source, 
the data is segmented before processing into fixed 
blocks, and stationarity is assumed over each block. We 
have found that this is a reasonable assumption for 
intervals on the order of 1 sec. Over each processing 
interval it is assumed that a single frequency bin is 
occupied by a single source only. This takes advantage 
of the nonstationarity of the sources, and simplifies the 
algorithmic complexity as well as estimation of the 
number of sources. This assumption is justified because 
different wideband sources are not likely to occupy all of 
the same bins in any given processing interval, and 
change bins as a function of time. In practice, the 
direction of arrival (DOA) estimates are fed into a 
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tracker that is reasonably robust and therefore able to fill 
in missing or remove outlying data. 

Wideband coherent processing gain is possible using 
the steered covariance method (STCM) originated by 
Wang and Kaveh [3,4]. STCM is based on forming the 
composite covariance matrix given by 

*(e) = Y    r(o)m,0)/?y(com)r(com,e)tf       (i) 

where M is the number of narrowband frequency bins, 

and RY (co m) is the estimated spatial correlation matrix 

at frequency com. The steering or focusing matrix 
T{(üm ,0) is a function of both frequency and look angle 

G . Here it is defined as 

7Tcom,e)=       :        "    _ -        " (2) 

where Ar,- =—sin<j),, <|). = 0-oc,- where a,- is the 
c 

relative angle to the normal for sensor i for i=\, 2,..., N, 
d is the radius of the circular array, and c is the speed of 
sound in air. Other forms for 7(co m ,0) have been 

suggested to reduce focusing errors. The resulting 
focused covariance matrix R(Q) is such that signals in 
the respective narrowband correlation matrices are 
mapped into the same subspace, yielding coherent 
processing gain over multiple frequencies. Conventional 
subspace methods such as MUSIC can then be applied to 

R(Q), thus requiring eigenanalysis for each 0. 
The complexity of the coherent approach is increased 

due to the need for computing R(Q) for every 0. 
However, the computational load can be lowered by 
using preliminary estimates of the source locations, 
obtained, e.g., by conventional beamforming [3]. Also, it 
is assumed that there is at most a single source for a 
single look angle 0. As we will see, the relative 
computational complexity between the coherent and 
incoherent techniques depends on the relative size of the 
number of look directions versus the number of 
narrowband frequency bins over which wideband 
processing occurs. 

3. Implementation 
In this section the processing schemes are described, 

and estimates of complexity presented for comparing the 
coherent and incoherent approaches. In both cases 
MUSIC is used as the means of computing the 
beampattern. The basic steps are (i) use block-adaptive 
pre-processing to adaptively select the narrowband 
frequency bins, (ii) apply incoherent or coherent 

techniques, and apply MUSIC, and (iii) estimate the 
directions of the sources from the resulting beampatterns. 

Let y, (n) denote the output of the rth sensor from an 

array of N sensors, and let Yt(k) denote DFT{y;(n)}. 

The average sum of the \Yt(k)\2 is obtained in order to 

adaptively select frequency bins of interest. This can be 
performed in a variety of ways, from simple thresholding 
based on bin SNR, to more complex schemes such as 
harmonic association. Here, we simply select the M 
highest power bins within the range co,w to (ühigh. 

The conventional narrowband MUSIC beampattern is 
computed M times. For each look angle 0, we compute 

^coA(e) = Xr=1[^
COm.0)//nX(CDm)£(COm,0)]"1   (3) 

where £(co m, 0) = diag{Ts (co m, 0)} is the steering 

vector and the noise orthonormal projector is defined as 

^  n1(com) = [/n(com){/„(com)H. (4) 

Taking RY (co m) to be N x N then, by assumption, the 

noise subspace consists of N-\ eigenvectors 
corresponding to the N-l smallest eigenvalues of 

RY (co m), and these form £7(co m). 

The computational complexity is approximately 

M[0(N2) + 0(N3) + SO(N2)], where M is the number 
of frequency bins and S is the number of look angles. 
The first squared term in the bracket corresponds to the 
formation of the correlation matrix RY (co m), the cubic 

term is for an SVD calculation to form Un (co m), and the 

last term corresponds to (3) which is computed for each 
look angle. 

The STCM approach requires focusing as a function 
of look direction. Experimental results shown in the next 
section are based on computing over 360 degrees in 1 

degree steps. After computation of R(Q)  for some 

angle 0, the SVD of R(B) yields the unitary noise 

subspace estimate U„ (0). We assume only one target 

for each look angle, so that the signal subspace consists 
of one eigenvector, with the other JV-1 eigenvectors 
forming the noise subspace. The coherent wideband 
MUSIC spatial-spectrum is then calculated via 

PCoA(0) = [L"<y„(0)£n(0)"L]_1 (5) 

where L is an iV-element vector of ones. 
The computational complexity is approximately 

SIM 0(N2) + 0(N3) + 0(N2)]. The first term in the 

bracket corresponds to the formation of RY (co m) and 

the focusing operation of (1). Note the diagonal form of 
T(com,0) reduces the computation in (1). These 
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operations must be performed over the range of 
frequencies (M), and the range of look angles (5). The 

cubic term is for the SVD of R(Q), and the last term is 

for calculation of PCoh (9) in (5). These are repeated for 

each look angle, i.e., S times. 
For both methods, the most expensive computational 

cost is the SVD which is 0(N3). This term tends to 
dominate the complexity comparison. Note that for the 

incoherent method it is M-0(N3) while for the 

coherent it is 5 ■ 0(N3), so that the relative complexity 
is controlled by the relative size of M and 5. By 
assuming a single target for each distinct frequency bin 
(for incoherent processing) and a single target for each 
look angle (for coherent processing), we can potentially 
apply faster eigenanalysis algorithms than the SVD. To 
reduce the number of frequency bins, harmonic line 
association techniques can be used to group a set of 
frequency bins for each source and then only applying 
MUSIC to the largest narrowband frequency for each set. 
To reduce the number of look angles S, coarse angle 
estimates can be used to narrow the field of view. 

4. Experimental results 
In this section experimental results for DOA 

estimation of ground vehicles traveling on a 2 km area 
of open grass field are presented. For each test run, one 
of the vehicles was equipped with a GPS sensor to 
provide accurate positioning ground truth. Figure 2 
shows raw experimental DOA estimates, for a single 
source, for incoherent and coherent wideband MUSIC 
versus the GPS angles on a test run of 250 seconds in 
length. Mean square error (MSE) and mean absolute 
error (MAE) results are shown in table 1 for various sets 
of M frequency bins. The M frequency components are 
selected based on the highest bin SNR's in the frequency 
range of [20,200] Hz. 

The MSE's and MAE's are calculated with the 
outliers removed using the criteria 

|e - median(e)\ > 3a MAD (8) 

where £ is the angle error or angle difference between 
the DOA estimate and the true angle measured by GPS, 
ando mD is the mean absolute deviation [5]. An 

example of this is shown in figure 3, with ±30 MAD 

shown as straight lines. The outliers can be caused by 
several factors including fading, wind noise and acoustic 
source variations. For the error analysis in table 1, the 
number of outliers ranges from 15 to 24 out of a total of 
125 processing intervals of length 1 sec each, sampling 
rate of 1 kHz, and 1024-pt FFT's. For M = 1, 
incoherent and coherent wideband MUSIC reduce to the 
narrowband case. Processing gain is evident for both 

methods, in that the estimates generally improve for 
increasing M. For this single source experiment, the 
incoherent approach produced smaller errors both in 
terms of MSE and MAE, reflecting the generally high 
SNR in this experiment. 
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Figure 2: Raw DOA estimates for (a) incoherent and (b) coherent 
wideband MUSIC for A/=50 and GPS ground truth. 

Incoherent MUSIC Coherent MUSIC 

M MSE MAE MSE MAE 

1 
10 
20 
50 
100 

3.558 
2.144 
1.235 
1.221 
1.172 

1.419 
1.083 
0.870 
0.863 
0.838 

3.558 
3.948 
3.684 
2.345 
2.684 

1.419 
1.422 
1.366 
1.130 
1.178 

Table 1. MSE and MAE for wideband processing over M frequency 
bins between [20,200] Hz. 

While the single source, high SNR case can be 
handled with incoherent MUSIC and small M, the 
situation changes with multiple sources and low SNR's. 
A two-source example is illustrated in figure 4, with 
sources at 50 and 180 degrees. Here beampatterns are 
shown for a single processing interval, with M varying 
over 10, 20, 50 and 100. The incoherent method 
accurately locates the directions of the sources for all 
four cases. It produces more distinct and sharp 
beampatterns than the coherent method. However, for 
M=50 (figure 4c) and especially M=100 (figure 4d), the 
incoherent method produced additional spurious peaks in 
the beampattern that can be misconstrued as sources. 
The explanation for this behavior is that there is high 
SNR in only a few of the spectral components and no 
significant SNR elsewhere in the data signature. By 
incoherently averaging additional beampatterns from low 
SNR spectral components, the overall beampattern 
degrades. The beampattern for the coherent method on 
the other hand, becomes more pronounced as M 
increases, and exhibits very good statistical stability. 
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Figure 3: DOA error estimates for incoherent wideband MUSIC 
(A/=50) illustrating outlier removal for MSE and MAE calculation. 
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Figure 4: DOA spectra estimates for 2 targets located at 9=50 and 
9=180 for incoherent (thin line) and coherent wideband MUSIC for (a) 

Af=10 (b) M=20 (c) M=50 and (d) Jtf=100. 

5. Conclusions 
Both the incoherent and coherent wideband MUSIC 

methods provide processing gain over narrowband 
MUSIC, as exhibited by experiment. Here the sources 
used are generally characterized as a sum of narrowband 
frequency components for a majority of the time. Thus, 
given adequate SNR, incoherent MUSIC performed well 
and yielded sharp and distinct peaks in the beampattern. 
However, frequency selection is an issue as the inclusion 
of low SNR bins tends to degrade the resulting 
beampattern, reducing source peaks and introducing 
spurious ones. In contrast, the coherent MUSIC 
approach is much more statistically stable, with a 
beampattern that generally improves (rather than 
degrades) with the addition of lower SNR bins. 
However, the coherent approach requires more frequency 
bins be included (i.e., larger M) to achieve the same 
accuracy, although this is a function of SNR as well. The 

bias introduced in the coherent processing has been 
ignored, and results in table 1 may partly reflect this fact. 
It appears that the coherent approach will degrade more 
gracefully as the SNR is decreased. Thus, further 
experiments are warranted for lower SNR (longer range) 
cases, as well as including sources that do not exhibit 
strong narrowband signatures. 

The computational complexity comparison between 
the two methods is largely governed by the SVD 

calculation which is 0(N3), with a multiplier given by 
the number of spectral components M (incoherent) or 
number of look angles S (coherent). As we have seen, M 
can be made small when the source signatures consist of 
a sum of high SNR narrowband components, enabling 
use of the incoherent approach. The number of look 
angles can be reduced by incorporating coarse DOA 
estimates obtained in a preprocessing step such as a 
conventional beamformer. Thus, the complexity of the 
coherent approach can be made manageable (with 
respect to the incoherent complexity), and is likely to be 
warranted for more difficult sources at longer ranges. 

It is of interest to consider methods for calculating 
the signal subspace only, as opposed to the full SVD 
calculation, because in both methods the signal subspace 
is assumed to consist of one component only. Further 
work of interest includes reducing computation by 
exploiting the radial symmetry of the circular array, e.g., 
see Doron [6], and effects of calibration and sensor 
placement errors, e.g., see Swindlehurst [7]. We note 
that only rudimentary effort was made to calibrate the 
array used in the experiments. 
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Abstract 

This paper is focused on the design of partial re- 
sponse equalized channels and maximum-likelihood se- 
quence detection for high density magnetic recording 
systems. Methods for designing linearly equalized par- 
tial response channels are presented and applied to a 
Lorentzian model for the magnetic recording channel. 
Reduced-state maximum-likelihood sequence detection 
methods are employed for the partial response equalized 
channels and the error rate performances of the detec- 
tors are evaluated. 

1. Introduction 

A major factor that limits the density of magnetic 
recording (MR) systems is intersymbol interference (ISI). 
To reduce the effects of ISI on high density MR chan- 
nels, various types of equalizers have been employed 
[1]. Among these are linear equalizers (LE), decision- 
feedback equalizers (DFE), and maximum-likelihood 
sequence detection (MLSD). The latter is efficiently im- 
plemented by means of the Viterbi Algorithm (VA). 

MLSD is known to be the optimum detection crite- 
rion in a channel with ISI, in the sense that the error 
rate for a sequence of symbols is smallest among the 
class of equalization methods. However, the computa- 
tional complexity of the MLSD criterion increases ex- 
ponentially with the length of the channel memory [2]. 
Hence, when the span of the ISI is large, the compu- 
tational complexity of MLSD becomes prohibitive. On 
the other hand, a LE is significantly simpler to imple- 
ment. Its major limitation is that it enhances the addi- 
tive noise in a channel with ISI. The loss in performance 
of a LE due to noise enhancement is unacceptably high 
in a high density MR system. 

A commonly used method for reducing the compu- 
tational complexity of MLSD is to combine a LE with 
MLSD. In particular, the LE is used to equalize the MR 

channel to a partial response of the type (1-D)(1+D)", 
where D represents a delay of one symbol and n is a 
non-negative integer that is selected to take the values 
n = 0, 1,2, •••. In general, the optimum choice of n 
increases as the density of the MR system is increased. 
By employing a LE to equalize the MR channel to a 
partial response of short duration, the noise enhance- 
ment of the LE is significantly reduced compared to a 
full response LE. The MLSD that follows the LE is used 
to detect the data symbols in the partial response sig- 
nal. Thus, the combination of a LE-MLSD (or LE-VA) 
is a practical method for achieving high density mag- 
netic recording with a lower computational complexity 
than MLSD. 

In this paper, we investigate another partial re- 
sponse (PR) equalization method for reducing the com- 
putational complexity of the MLSD method. For the 
Lorentzian channel model, we determine the optimum 
PR targets and the corresponding noise enhancement 
values for different lengths of the equalized channel. 
We have found that the optimum method for design- 
ing the PR equalized target results in a lower noise 
enhancement compare to the PR target (1-D)(l+D)n. 
However, the noise reduction is achieved at the expense 
of an increase in the length of the equalized PR tar- 
get. For PR targets of large length, the computational 
complexity of MLSD is still prohibitive for high rate 
MR systems. We have addressed the problem by in- 
vestigating reduced state MLSD methods. We have 
found that delayed decision-feedback sequence estima- 
tion (DDFSE) as described in [3] is particularly effec- 
tive for the PR equalized channel. 

2. Optimization of the LE 

With the conventional LE-VA technique, a linear 
prefilter(P) or LE is used to adjust the channel (H) to 
a desired impulse response (Q), which is seen by the 
VA. 
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Desired Impulse Response (DIR), Q 

Channel (H)-(J> Prefilter (P) 

Figure 1: Channel truncation using linear prefilter 

We consider methods for selecting P. In all cases, 
the LE is an FIR filter of length 2M+1. Furthermore, 
the channel is also modeled as an FIR filter. 

A. Optimization of the LE for a Specified 
DIR 

The mean-squared error (MSE) at the output of the 
LE may be expressed as: 

MSE = P'AP + Q'Q - 2P'HQ (1) 

where P is the LE impulse response vector, Q is DIR 
vector, H is the channel impulse response vector , A 
is the channel covariance matrix with elements &ij = 
r,- Vj, and 

P = \P-M---PM] 

Q ~ [?0-'-?L-l] 
H = [ft_jv • • -Ay] 
For a specified DIR Q, the impulse response P of 

the LE that minimizes the MSE is 

P = A~1HQ (2) 

B. Optimization of the LE for a DIR with 
Energy Constraint 

Falconer and Magee [4] considered the problem of 
finding the optimum LE response that minimizes the 
MSE in (1) where the DIR of a specified length is con- 
strained such that Q'Q = 1. The solution to the op- 
timization problem is also given by (2) where the DIR 
Q is the eigenvector of the matrix (I-H'A_1H) corre- 
sponding to the minimum eigenvalue. 

C. Optimization of the LE for a DIR with 
Element Constraint 

Suppose we specify the first element q0 of the DIR 
to be unity and leave the remaining elements of Q un- 
specified. That is, Q = [1 qi q2 ••• qL-i]- The LE 
impulse response P and the remaining values of Q are 
selected to minimize the MSE 

MSE = P'AP + Q'Q - 2P'HQ - 2X(J'Q - 1)    (3) 

where J is an L-element column vector whose first ele- 
ment is 1 and all the other elements are zero. Taking 
the derivatives of the right hand side of (3) with respect 
to P, Q, and A, respectively, and setting the resulting 
expression to zero, we obtain: 

A = 
1 

J'(I-H'A-lH)J 

Qopt = X(I-H'A-1H)    J 

(4) 

(5) 

Popt = A-LHQopt (6) 

where I is an identity matrix and A is equal to the min- 
imum mean-squared-error. 

3. Linear Equalizer for MR Channels 

The magnetic recording (MR) channel is modeled 
as a linear filter whose step response is the Lorentzian 
pulse 

s(t) = 
1 + (    2«    \2 x   '   \pw5Q' 

(?) 

where pw50 is the "half-amplitude width" of the pulse, 
which is equivalent to the amount of time that s(t) is 
greater than or equal to half of its peak value. The 
input to this channel is a binary data sequence{aj; = 
±1}, the channel output is assumed to be corrupted by 
additive white Gaussian noise(AWGN). The bit rate is 
jr, where Tb is the bit interval. The ratio S = ^ 
is called the normalized information density. For the 
continuous-time system model, Bergmans [5] has de- 
rived an equivalent discrete-time system model which 
is illustrated in Fig. 2, where the parameters are 

pw50S »5   i 
9k = [—g—tanh{—)\ 

*2 + (f)2 

9k - 9k-i 

(8) 

(9) 

a* 
hk «■ H(n) 

►ff>- 

MF 

rik 

Figure 2: Discrete-time MR system model 

4. Performance of the LE-VA system 
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When the LE is followed by the MLSD that is ef- 
ficiently implemented by the VA, the error probability 
of the system may be approximated by 

w>*-W^ (10) 

where K is a constant that depends on the characteris- 
tics error events and MSE is the mean-squared-error at 
the output of the LE. dmin is the minimum Euclidean 
distance for error events. 

We note that the probability of error depends on 

the ratio 

Ra 
<£.-, 

(11) 8MSE 
Here, the ratio may be used as a performance index for 
comparing MR systems with different DIR. It should 
be emphasized that in using the ratio Ra as a perfor- 
mance index, we have ignored the fact that the noise at 
the input to the VA is generally correlated. The VA is 
assumed to ignore this correlation in the computation 
of the metrics. 

5. Reduce-state MLSD 

We have observed that by constraining the DIR to 
have the characteristics Q = [1 qi • • • qt-i], m°st 

of the energy in the DIR is contained in the first few 
coefficients, say qi,q2,- • ;<IL2 where L2< L. This obser- 
vation suggests that we reduce the computational com- 
plexity of the VA by truncating the channel response. 
Duel-Hallen and Heegard [3] have described an algo- 
rithm , called delayed decision-feedback sequence esti- 
mation (DDFSE), which performs channel truncation. 
The complexity of the DDFSE algorithm is controlled 
by a parameter \i that can be varied from zero to the 
memory of the channel(in our case, the DIR). The al- 
gorithm is based on a trellis search with the number of 
states equal to 2". When p = 1, the DDFSE reduces 
to the DFE. When ft equals the length of the chan- 
nel(DIR), the DDFSE is identical to the full complex- 
ity VA. Hence, for 1< fi <L, the DDFSE is a reduced- 
state VA with feedback incorporated into the structure 
of path metric computations. 

In the Duel-Hallen and Heegard paper [3], it is sug- 
gested that the channel be minimum phase. However, 
this condition is not necessary. As long as most of the 
channel energy is contained in the first few coefficients 
of Q, the parameter fi can be selected accordingly to 
include the larger terms. 

For the MR channel with S = 3 and S = 4, the 
designed DIR's with element constraint are shown in 
Tables 1 and 2. For these two cases, we have selected 

H = L2 = 3 and ft - L2 = 4, respectively. The values 
of <Pmin for the truncated channel and the ratio Ra are 
given in Tables 3 and 4. For comparison, we also give 
the corresponding values of d2

min and Rafor the LE-VA 
when Q is chosen as (1-D)(l+D)n in Table 5 and Table 
6.From Tables 1 and 2, we can see the main energy of 
the DIR is contained in the first few coefficients of Q. 
We note that for L> 9 and S=3 and for L>12 and S = 
4, there are relatively small performance gains. 

6. Simulation Results 

We used the two estimation methods, LE-VA with 
Q chosen as (1-D)(1+D)", and LE-DDFSE, to perform 
simulations with the MR channel S=3 and S=4. The 
performances are shown in Fig. 3 and Fig. 4. The in- 
put SNR is defined as (SNR)in = ^r- We can see the 
LE-DDFSE has a 2dB and 3dB performance improve- 
ment over the LE-VA for S=3 and S=4 respectively. 

7. Conclusion 

In this paper we have presented a method for re- 
ducing the computational complexity of the MLSD for 
high density MR systems. We showed that by proper 
design of the DIR, a LE followed by a DDFSE algo- 
rithm yields superior performance to existing methods. 
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L 

5 

6 
7 

8 
9 

10 

11 
12 
13 

Q 
Table 1. DIR at (SNR)in = 13dB (S=3) 

1 0.66 - 0.33 - 0.63 - 0.34 

1 0.74 - 0.18 - 0.54 - 0.47 - 0.22 

1 0.77 - 0.11 - 0.46 - 0.43 - 0.31 - 0.14 

1 0.78 - 0.08 - 0.41  - 0.39 - 0.29 - 0.20 - 0.09 

1 0.79 - 0.07 - 0.39 - 0.36 - 0.27 - 0.19 - 0.13 
1 0.79 - 0.06 - 0.38 - 0.35 - 0.25 - 0.17 - 0.13 

1 0.79 - 0.06 - 0.38 - 0.34 - 0.24 - 0.16 - 0.11 
1 0.79 - 0.06 - 0.38 - 0.34 
1 0.80 - 0.06 - 0.38 - 0.34 

0.24 
0.23 

■ 0.16 - 0.10 
0.15 - 0.10 

■ 0.06 
■ 0.09 - 0.04 
■ 0.08 - 0.06 - 0.03 
■ 0.07 - 0.06 - 0.04 - 0.02 

0.07 - 0.05 - 0.04 - 0.03 - 0.01 

Table 2. DIR at (SNR)in = 13dB (S=4) 

1 0.86 -0.13 - 0.67 -0.41 

1 1.00 0.10 - 0.61  - 0.67 - 0.32 

1 1.08 0.28 - 0.44 - 0.67 - 0.53 - 0.23 

1 1.12 0.37 - 0.32 - 0.58 - 0.56 - 0.39 - 0.16 

11.14 0.42 -0.25 -0.50 -0.51  -0.42 -0.28 -0.11 

11.15 0.44 -0.21 -0.45 -0.46 -0.39 -0.30 -0.20 -0.08 

1 1.15 0.46 - 0.19 - 0.43 - 0.43 - 0.36 - 0.28 - 0.22 - 0.14 

1 1.15 0.46 - 0.17 - 0.41 - 0.40 - 0.33 - 0.26 - 0.20 - 0.16 
1 1.16 0.47 - 0.17 - 0.40 - 0.40  - 0.32  - 0.24  - 0.19 - 0.15 

- 0.06 
-0.11 

- 0.12 
-0.05 

- 0.08 - 0.02 

Table 3. DIR L2=3) at (SNR)in = 13dB LE-DDFSE ( 
L Q(truncated) <&,. MSE Ra (dB) 
5 1 0.66 - 0.33 6.19 0.053 11.65 
6 1 D.74 - 0.18 6.32 0.051 11.95 
7 1 0.77 - 0.11 6.43 0.050 12.12 
8 1 0.78 - 0.08 6.49 0.049 12.20 
9 1 0.79 - 0.07 6.52 0.049 12.23 
10 1 0.79 - 0.06 6.53 0.049 12.25 
11 1 0.79 - 0.06 6.54 0.049 12.26 
12 1 0.79 - 0.06 6.54 0.049 12.26 
13 1 0.79 - 0.06 6.54 0.049 12.26 

Table 4. DIR(L2=4) at {SNR)in = 13dB with LE-DDFSE (S=4) 
L Q (truncated) d2 • mm MSE Ra (dB) 
5 0.86 - 0.13 -0.67 7.51 0.096 9.91 
6 1.00 0.10 - 0.61 7.89 0.086 11.62 
7 1.08 0.28 - 0.44 7.56 0.081 11.68 
8 1.12 0.37 - 0.32 7.36 0.079 11.68 
9 1.14 0.42 - 0.25 7.31 0.078 11.71 
10 1.15 0.44 - 0.21 7.30 0.077 11.74 
11 1.15 0.46 - 0.19 7.30 0.077 11.76 
12 1.15 0.46 - 0.17 7.30 0.077 11.77 
13 1.16 0.47 - 0.17 7.31 0.077 11.77 

Table 5. DIR at (SNR)in = 13dB with LE-VA (S=3) 
n Q min MSE Ra(dB) 
0 1 -1 8 0.37 4.36 
1 10-1 8 0.11 9.45 
2 11 -1 -1 16 0.12 12.29 
3 12  0    -2   - 1 24 0.21 11.69 
4 132   -2   -3   -1 48 0.46 11.15 
5 1450   -5   -4   -1 120 1.227 10.89 

Table 6. DIR at (SNR)in = 13dB with LE-VA (S=4) 
n Q d2 • m»n MSE Ra(dB) 
0 1     - 1 8 0.87 0.59 
1 10-1 8 0.29 5.40 
2 11    - 1    - 1 16 0.26 8.80 
3 12  0   - 2   - 1 24 0.38 8.98 
4 132   -2    -3   -1 48 0.73 9.20 
5 1450   -5   -4   -1 120 1.66 9.58 

MRS-3 
o — LE-VA [n-2) 
* — LE-DDFSE(12.2) 
♦ — LE-DDFSEI12.4) 

(SNH)in dB 

Figure 3 The simulation results for 
S=3 with LE-DDFSE and LE-VA 

MF bound 

MRS-4 
* — LE-DDFSE(12,4) 
X— LE-DDFSE(12.5) 
o — LE-VA (n-2) 
» — LE-VA (n-3) 

Figure 4 The simulation results for 
S=4 with LE-DDFSE and LE-VA 
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Abstract 

The formation of microcracks in a material creates 
propagating ultrasonic waves that are called Acoustic 
Emissions (AEs). These AEs provide an early warning 
to the onset of material failure. In practical cases, how- 
ever, these AEs have to be detected at very low SNRs, 
amongst strong interference and random noise. This 
paper presents some preliminary results from an on- 
going investigation into the modeling and detection of 
AEs as a viable technique for predictive diagnostics. 

1    Introduction 

A/O Conversion/ 
Preprocessing 

Rrofiltering/ 
Noise cancellation 

m 
^ 

Sensors 

*] 
Detection 

Localization/ 
Classification 

Figure 1. Block diagram of proposed proce- 
dure for AE signal processing 

Automatic monitoring techniques are being consid- 
ered as a means to safely simplify or dispense of peri- 
odic fault inspection procedures. One such automatic 
monitoring technique is based on the detection of AEs, 
that are generated due to the formation of microcracks 
in a material. 

AE signals have been extensively studied (e.g. 
[7][2][1]). However, these studies were using data ac- 
quired from isolated material specimens in controlled 
laboratory conditions. Hence, they do not directly re- 
late to a practical case wherein the AE signal has to be 
detected in the presence of strong interference, caused 
due to mechanical motion in the machine. This paper 
addresses the problem of detecting the AE signal in 
such a "real world" scenario. The various stages of the 
proposed procedure is shown in Figure 1. The paper 
presents some preliminary results obtained on real AE1 

and interference data. 

•This work was supported in part by ONR under URL 
1 Thanks to Professor Gerberich and David Bahr of the Ma- 

terial Science Department for their kind assistance in providing 
us with data. 

2    Acoustic Emissions 

AEs are transient in nature, and can be modeled as 
a sum of decaying complex exponentials [4] as, 

K 
J2 Ake

a^-^ COS(2TTfk[t -T) + <j>k)u{t - T)     (1) 

where u(t) is the step function, and Ak, <f>k, &k, and fk 

are amplitude, phase, decay rate, and frequency of the 
kth AE signal component. AE signals may be broad 
band, with energy ranging as high as several MHz [7]. 

Figure 2 shows an AE obtained from a 600nm thick 
Tantalum Nitride specimen deposited on sapphire, and 
the corresponding model obtained via Prony's method, 
([3]). The estimated parameters are tabulated in Ta- 
ble 1. 

This AE was generated by a microcrack that was 
initiated using a nanoindenter (a device which pushes 
a diamond tip into a material in a controlled manner). 

0-8186-7576-4/96 $5.00 © 1996 IEEE 
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0 0.005       0.01       0.015       0.02       0.025       0.03       0.035       0.04       0.045      0.05 
time in sees 

Figure 2. Tantalum Nitride acoustic emission 
measured, (dotted), and model, (solid). 

Table 1. Exponentially decaying sinusoid pa- 
rameters corresponding to Tantalum Nitride 
AE. 

Figure 4. Measured lawnmower noise 

A(V) (/»(radians) a(/sec) /(Hz) 
0.102 
0.099 
0.080 

0.075 
2.720 
1.938 

-2.225e+04 
-8.116e+04 
-7.214e+04 

1.057e+05 
6.218e+04 
3.923e+04 

The setup to generate such a "microevent" is shown in 
Figure 3. 

5.3        5.35        5.4        5.45        5.5        5.55        5.6        5.65        5.7        5.75        5.6 

Figure 5. Typical input of prefilter 

3    Prefiltering 

We are looking at scenarios where the AE signal is 
buried in strong interference (which could be periodic) 
due to mechanical motion, like the movement of a pis- 
ton in an engine or the rotation of helicopter blades. 
In consequence, it becomes necessary to first mitigate 
this interference using a suitable prefiltering technique. 

Figure 4 shows typical interference data recorded 
from a lawnmower at 2MHz. The duration of the ob- 
servation was one-twentieth of a second. The power 
spectrum of this lawnmower noise is dominated by the 
power at frequencies below 30 kHz.   Hence, it would 

be reasonable to conclude that a simple high pass filter 
with a cutoff of about 30KHz should suffice to filter out 
this periodic noise from a Tantalum Nitride AE, which 
has a single dominant component at about 105 KHz. 

Another possible method for performing the pre- 
filtering is to use a linear prediction (LP) filter designed 
using the method in [8], using the first 8000 samples of 
the data. The coefficients can be updated or redesigned 
after a certain period of time to reflect any changes in 
the characteristics of the machine noise. We found that 
LP filtering worked better than an HP filter, for some 
types of AEs, (cf. Figures 5 and 6). Of course, a 
combination of HP filtering and LP filtering can also 
be considered. 

LZ J==\ 
Vs 

N anoi n dent e r 
probe 

Figure 3. Setup to generate a microevent 

4    Detection 

At the output of the prefilter the AE signal, if 
present, is usually buried in additive noise at very low 
SNRs. In this section, we present results from two 
methods that we have considered for possible robust 
detection of the signal. 
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Figure 6. Output of linear prediction filter 

frequency (Hz) 

Figure 8. F-statistic for Tantalum Nitride sig- 
nal embedded in lawnmower noise. 

Figure 7. Tantalum Nitride signal embedded 
in lawnmower noise. 

4.1   Optimal Tapers 

We applied the techniques described in [5] to de- 
termine whether each exponentially decaying sinusoid 
detected via Prony's method was actually present, or a 
false reading produced by noise. The method consists 
of applying an optimal window function to the data, 
(optimal in the sense that it minimizes spectral leak- 
age for constant SNR), then testing the fit of the model 
to the data with an F-statistic. 

The optimal windows are determined by parameters 
P, v, and ß: We chose time-bandwidth product P = 4, 
(NW = 87r). Experiments showed that noise param- 
eter v had a small effect on the final result, so we let 
v = 0. The exponential decay parameter ß was chosen 
to match the value returned from Prony's method. 

The method works well for high SNR. The Tanta- 
lum Nitride signal was embedded in lawnmower noise, 
(cf. Figure 4), as shown in Figure 7. Figure 8 shows 
the resulting F-statistic. There is a clear peak near 
106 kHz, the frequency identified by Prony's method. 

4.2   Dominant Component 

At the output of the prefilter, the AE signal (if 
present), is usually buried in additive noise at very low 
SNRs. Under the assumption that both the noise and 
the AE can be modeled as Gaussian random vectors, 
we can state the detection hypothesis problem as, 

Hn : Y = N H1:Y = N + 9S (2) 

where N ~ N (ßn,Rn) is the noise vector and S ~ M 
(ßs,Rs) is the signal (AE) vector. 9 is the unknown 
amplitude of the signal vector. No uniformly powerful 
test (UMP) exists for the above hypothesis with respect 
to 9. However, a locally most powerful (LMP) test can 
be found assuming low SNRs. 

The LMP test statistic T;0 for the above hypothesis 
after pre-whitening of the additive Gaussian noise is 
given by, ([6]), 

Tl0($) oc yTRsy (3) 

where y is the observation vector. This is equivalent 
to, 

Tio{y)ocJ2X>'<y^k>2 (4) 
k-l 

where Afc is the kth eigenvalue and Vk is the kth eigen- 
vector of Rs. r is the rank of Rs. The decision statistic 
Tio given in (4) can be implemented with a bank of r 
causal, linear filters in parallel as shown in Figure 9. 
The impulse response of the kth channel filter is given 
by, 

hk(n) = vk(N - n) (5) 

where n — 1,2...N. N is the number of samples in a 
data block. The output of each channel is squared and 
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Figure 9. Implementation of test statistic Figure 11. Test statistic (Equation 4) 
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5    Conclusions 

Some preliminary results from our investigation into 
AEs as a viable technique for predictive diagnostics 
have been presented. HP filtering and LP filtering ap- 
proaches have been considered for prefiltering. Two 
possible detection methods have also been considered. 
The choice of the technique to be used for prefiltering 
and detection is heavily dictated by the specific appli- 
cation under consideration. 

Classification and crack localization are possible fu- 
ture directions in our research. 

Figure 10. Output of prefilter 

the test statistic is obtained by a linear combination 
(with the corresponding eigenvalues as the weights) of 
these squared outputs. 

Four AEs from the Tantalum Nitride specimen were 
used to estimate the signal covariance matrix. The 
rank of the estimated covariance matrix was found to 
be 2. An AE signal from a Tantalum Nitride specimen 
was then added to the lawnmower noise to simulate a 
practical case, wherein the AE signal is measured at 
very low SNRs amidst strong correlated noise. It is 
important to note that the AE signal which was added 
to the noise was was not one of the AE signals used 
to estimate the covariance matrix. Since the rank is 2, 
only two channels of filtering is required. The impulse 
response for these two filters are given by (5). A typical 
output of the prefilter is shown in Figure 10. The AE 
(starts at n=55000) signal is buried in noise. The corre- 
sponding test statistic obtained with the above output 
of the prefilter is plotted in Figure 11. It is evident that 
the test statistic performs quite well in identifying the 
occurence of the acoustic emission. 
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Abstract 

Developing fast and robust methods for identifying 
multiple FIR channels driven by an unknown common 
source is important for wireless communications. In this 
letter, we present a new method that exploits a minimum 
noise subspace (MNS). The MNS is computed from a set 
of channel output pairs which form a "tree". The "tree" 
exploits with minimum redundancy the diversity among 
all channels. The MNS method is much more efficient in 
computation and only slightly less robust to channel noise 
than the subspace method by Moulines et dl. 

1. Introduction 

Blind identification of multiple-channels FIR system 
driven by a common source has recently received much 
attention due to its potential applications in wireless 
communications. In contrast to the traditional cost- 
function based adaptive approaches and the more recent 
higher order statistics (HOS) based methods, the second 
order statistics (SOS) based methods appear to be a "hot" 
topic in this community, e.g., see [2]. Apparently, this 
trend started from the work by Tong et al [3], Among 
many SOS based methods known so far, the subspace (SS) 
method by Moulines et al [1] is an outstanding one. The 
SS method applies the MUSIC concept to a relation 
between the channel impulse responses and the noise 
subspace associated with a (»variance matrix of the system 
output. In this paper, we present a new variation of the SS 
method. Instead of exploiting the full noise subspace, this 
new method exploits a minimum noise subspace (MNS). 
The MNS method represents a solid extension of an 
observation made by Moulines et al [1] that the full noise 
subspace of the system output covariance matrix is 
generally not necessary to asymptotically yield the unique 
(up to a constant) estimate of channel responses. We will 
show that the minimum dimension of the noise subspace 
required for unique system identification is M-\ where M 
is the number of FIR channels, and each of the required M- 
1 noise vectors can be computed from one of M-\ 
covariance matrices corresponding to properly chosen M-\ 

(distinct) pairs of channel outputs. Any M-l pairs of 
channel outputs that span a "tree" pattern (Figure 1) are a 
proper choice. The MNS method is much more efficient in 
computation than the SS method. Simulations have 
shown that the MNS method is only slightly less robust 
to channel noise than the SS method. 

2. Channel model and the SS method 

We consider M parallel FIR channels driven by a common 
source. The output vector of the i* channel can be written 
as 

yi(n) = His(n) + wi(n) 
where 

yi(n) = [yi(n)   y,(/t + l)   ...   y^n + N-l)}1 

s(n) = [s(n-L)   s(n-L + l)   •••   s(n + N-l)f 

w,(n) = K(/i)   w,(/i + l)   ...   w^n + N-l)]1 

H = 

ML)     -     Ä(.(0)      0 
0      ht{L)     .-     A,.(0) 

0 

Nx(N+L). 

0      ML) 

0 

0 

ä,(0) 

ytfn) denotes the output sequence of the ith channel; s(n) 
the input sequence; wtfn) the noise sequence on the *tn 

channel; and htfk) the impulse response of the t-tn channel. 
L denotes the maximum order of the M channels; and N 
the window length on each channel output Then we write 

y(n) = Hs(/i) + w(«) 

0-8186-7576-4/96 $5.00 © 1996 IEEE 
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"Jlto" 

where y(n) = w(n) = 

JMC"). 

w,(n)' 

*«("). 

and 

H = 
'*! 

LH*J 

The matrix H is known as MNx(N+L) 

}"' u"]" where   the 

generalized Sylvester matrix [6] which has the full column 
rank N+L under the assumptions: Al) the M channels do 
not share a common zero; and A2)AfeL+l. The blind 
identification problem here is to find H from the sequence 
{y(n) forn=l,2 T). The SS method [1] exploits the 
covariance    matrix    of   all    channel    outputs: 

1  T 

R  = — ]£y(n)y(/t)w where H denotes the conjugate 

transpose. This matrix has the inherent structure: 
1  T 

Ry = HR,HH +RW with R, = -Xs(n)s(n)w "* 
•««»I 

1  T 

Rw = — ]£w(n)w(n)H.   The   SS   method   then 

computes    the    eigendecomposition    of    Ry 

L        ~ * J 
matrix Un consists of the MN-N-L non-principal 
eigenvectors of Ry- In addition to the assumptions Al- 
A2, if A3) the source covariance matrix Rs has the full 
rank N+L, and A4) the noise covariance matrix Rw is 
proportional to the identity matrix (which is true when the 
noise is white and T is very large), then it can be shown 
[1] that range(Un) is the orthogonal complement of 
range(H). Hence, range(U„) is referred to as the noise 
subspace. The SS method yields an estimate He of H by 
solving the equation Un

HHe = 0 in a least square sense 
(where Ue is subject to the same structure as H). This 
estimate is uniquely (up to a constant scalar) equal to H 
under the assumptions A1-A4 [1]. 

3. The MNS method 

In the MNS method, we first select Af-1 distinct pairs 
from the M channel outputs [ji(n), i=l,...,Af}. The Af-1 
pairs must span a "tree" which connects all M channel 
outputs. The channel outputs are the "nodes" of the tree as 
shown in Figure 1. 

Figure 1: This illustrates a "tree" which connects Af=5 
channel outputs as its "nodes". A tree must have no loop 
and connect all its nodes. Here, the nodes 2, 4, and 5 are 
"ending" nodes, and the nodes 1 and 3 are "branching" 
nodes. (The tree spanned by Af-1 pairs of channel outputs 
is the same as the tree by Af-1 pairs of the columns of 

H(z) in the proof for Lemma 3.) 

Then for each pair of channel outputs, we compute the 
j    T 

covariance matrix R>'"/ = — 2^ 
,00 
(n) 

and 

',••/ — its least dominant eigenvector V   . Let v'  — yJu\ 
where each subvector has the dimension Nxl. Then define 

vy(l) 
t.j _ "zero   padded"   vector   v" = 

v'-^M) 
where 

.,«./ 

\iJ(i)       k = / 

(k)=\iJU) ^-J • Then we form a 

0 otherwise 
MNx(M-\) matrix Vn of the Af-1 vectors {\lJ}. Similar 
to the SS method, the MNS method yields an estimate He 

of H by solving the equation V„HHe = 0 in a least square 
sense (where He is subject to the same structure as H). 
The significant compuational advantage of the MNS 
method over the SS method is obvious. In particular, the 
SS method requires a full eigendecomposition of an 
MNxMN matrix, but the MNS method computes the 
single least dominant eigenvector of a 2Nx2N matrix in 
parallel for each of Af-1 pairs of channel outputs. 

We will now establish that under the assumptions Al- 
A4, a) the MNS method yields the unique estimate of H, 
and b) Af-1 is the smallest number of vectors from the 
noise subspace in order for an equation like V/iHHe = 0 to 
yield the unique estimate of H. We note that due to the 
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limited space, the proofs shown below might be too brief 
for some readers. 

Lemma 1 (easy to prove): For any equation v#H=0 where 

v = [v(l)T    -   y(M)Tf with 

v(0 = [v,(0)   .-   v,(iV-l)]r   and   H     is   a 

MNx(N+L) generalized Sylvester matrix, there uniquely 
M 

corresponds a polynomial equation ^ V^ (z)Hi (z) = 0 

of degree JV+L-1, where //,(z) = £/J,(/)Z~' of degree 
1=0 

N-l 

Land V^z) = ]£v,.(/)z~' of degree AM. The converse 
/=o 

is also true. 

Lemma 2: If there are q MNxl vectors {v/ for i=l,..„q] 

such that {v,//H=0 for i=l q) where H is a 
MNx(N+L) generalized Sylvester matrix, then H is 
(possibly) unique up to a constant scalar only if q>M- 

Proof: Using Lemma 1, it is straightforward to show that 
[\iHH=0 for i=l,...,q) is equivalent to the polynomial 

matrix equation V(z)h(z) = 0 of degree N+L-l, 

where V(z) is a qxM polynomial matrix of degree AM 

uniquely corresponding to {v/for i=l,..,q} and h(z) is 
an Mx 1 polynomial vector of degree L uniquely 
correspondingjo H. But using the polynomial matrix 

theory [5],  h(z)  is determined by the equation 

V(z)h(z) = 0 uniquely up to a polynomial (or 
constant) scalar only if q>M-\. 

It is easy to show that under the assumptions A1-A4, the 
vector v'J satisfies (vI'</)//H=0. Since the MNS method 
only relies on At-I noise vectors, Lemma 2 has now 
established that the MNS method exploits a "minimum" 
noise subspace. 

Lemma 3: The MNS method yields the unique (up to a 
constant scalar) estimate of the channel responses under 
the assumptions A1-A4. 

Proof: From Lemma 1, the equation (v'V)//H=0 is 
equivalent to a polynomial equation 
VJ(z)Hi(z) + Vi(z)HJ(z) = 0 of degree N + L-l, 
where Vtfz) and Vp) are of degree AM and Htfz) and 
Hj(z) are of degree L. Similarly, each sub-equation 

(v'J)#He=0 in the overall MNS estimation equation 
vn He=0 is equivalent to a polynomial equation 
Vj (*)#«,•(*) + Vt(z)HtJ(z) = 0 where the degrees of 

all polynomials are the same as in the previous 
polynomial equation. Combining these two polynomial 
equations yields Hj(z)Hti(z)-Hi(z)Ht.(z) = 0. 

Using this equation for each of the M-\ pairs of 
channels, one can show that the solution to Vn"Hg=0 
is_equivalent tojhat of the polynomial matrix equation 

H(z)ht(z) = 0 of degree 2L, where H(z) is an (M- 

l)xM polynomial matrix of degree L uniquely 

corresponding to [Hi(z) for i=l,...M], and h,(z) is an 

A/xl polynomial vector of degree L uniquely 
corresponding to [Hei(z) for i=l,...M] (or equivalently 

He). Note that each row of H(z) only has two nonzero 
entries and hence defines a pair of columns. The Af-1 

pairs of columns defined by the M-\ rows of H(z) also 

span a "tree" which connects all M columns of H(z) as 
its "nodes". This tree is identical to the tree spanned by 
the pairs of channel outputs (Figure 1). Because of this 

structure in H(z), one can show by induction that 

H(z) has the full row rank M-\. ( Note that removing 

a column and a row of H(z) associated with an "ending 

node" decreases the rank of H(z) by one, and when 

H(z) is 1x2 its rank is one.) Therefore, the solution 

for  the Mx\   vector   he(z)   to   the   equation 

H(z)h€(z) = 0 must be unique up to a polynomial 

scalar [5]. Furthermore, since h(z) is a solution of 

degree L to H(z)he(z) = 0 and there is no common 

zero among all channels (Al), h(z) must be the 
unique solution up to a constant scalar. 

Lemma 3 has established that the MNS method yields 
asymptotically the unique estimate of H. This section has 
provided a much stronger result than a discussion in [4] on 
the MNS method. 

4. Performance of the MNS method 

In our simulation, we used a system of four (A/=4) parallel 
FIR channels. The first channel is given by the GSM test 
channel [7] with 6 (L=5) delayed paths. The other three 
channels are generated by assuming a plane propagation 
model for each path with corresponding electric angles 
uniformly distributed in [0, TC/3]. A realization of the 
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Channel impulse responses is shown in the table shown 
below. The output observation noise is an i.i.d. sequence 
of zero-mean Gaussian variables. The input signal is an 
i.i.d. sequence of zero-mean, unit-variance QAM-4 
variables independent from the noise. The performance is 

f 1   N 21 

measured by MSE(dB) = 101og10 jJ-ZK-H 
r=l 

where Nr is the number of independent runs (A^lOO), h 
is the true (unit-norm) vector of the impulse responses 
{hi(k) for i'=l,.„M and k=0,...JL}, hr is the estimated 
(unit-norm) vector of impulse responses at the rth run. 

(The equation vV*He=0 was solved subject to flhj = 1. 

For each run, hr=ahe where a=he
wh is a phase adjuster.) 

The signal-to-noise ratio is defined as 
f HUH-   N 

VMcru 

where as and aw SNR(dB) = 201og10 

denote the deviations of the input and the noise 
respectively. Figure 2 compares the performances of the 
SS and NMS methods. This figure (associated with the 
case defined by the table) is quite typical among all the 
cases that we considered in our simulation. In the 
operational region where the MSE is relatively small, the 
MNS method required SNR no more than 3 dB higher than 
the SS method to yield a given value of MSE. 
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MNS method. MSE versus SNR. 
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k=l 
k=2 
k=3 
k=4 

hi(k) 
k=0        0.4972-1.2784i 

-0.0370+0.7256i 
1.4158-K).2768i 
0.6417+0.4440i 
-1.2418+0.5984J 

k=5        0.0235+1.1777J 

h2(k) 
1.3516-0.2333J 
-0.5251+0.502H 
0.8012+1.1996i 
0.2181+0.7492i 
-1.2837+0.5023J 
-0.7049+0.9438i 

h3(k) 
0.8970+1.0377i 
0.7265+0.0046i 
-0.2867+1.4138i 
-0.303 l+0.7190i 
-1.3182+0.403 2i 
-1.1360+0.3118i 

l»4(k) 
-0.4264+1.3037i 
-0.5314-0.4955i 
-1.2052+0.7927J 
-0.6886+0.3669i 
-1.3450+0.3018J 
■ 1.0879-0.4518J 

Table: Impulse responses of the M-channel system. Other parameters are M=4, L=5, N=6, T=245. 
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ABSTRACT 
This paper is concerned with the problem of blind sep- 

aration of independent signals (sources) from their linear 
convolutive mixtures. The problem consists of recovering 
the sources up to shaping filters from the observations of 
MIMO system output. The various signals are assumed to 
be linear but not necessarily i.i.d. (independent and identi- 
cally distributed). An iterative, normalized higher-order 
cumulant maximization based approach is developed us- 
ing the third-order and/or fourth-order normalized cumu- 
lants of the "beamformed" data. The approach is source- 
iterative, i.e., the sources are extracted (at each sensor) 
and cancelled one-by-one. The proposed solution provides 
a decomposition of the given data at each sensor into its in- 
dependent signal components. The proposed approach is an 
extension/application of a recently proposed approach for 
MIMO system identification where the system is driven by 
unobserved i.i.d. inputs. 

1    Introduction 
Given measurements yi(k), (t = 1, 2, ■ • ■, N), at time k at 

N sensors, let these measurements be a linear convolutive 
mixture of M source signals xj(k), (j = 1, 2, • • •, M): 

M 

Vi(k)  =  ^Gyfa-1 >,-(*),   *= 1,2,--.,JV,      (1-1) 
i=i 

=>    y(fc) = Gfa-X*), (1-2) 
where  ij—th   element   of G(g-1)  is   Gi,-(y-1),   y(Jfc)   = 

[yi(k):y2(k):---:yN(k)]T, similarly for x(*), g_1 is the 
backward-shift operator (i.e., g_1z(/fe) = x(k - 1), etc.), 
Xj(k) is the j'-th input at sampling time k, yi(k) is the i-th 
output, and 

Gy(a_1) :=   J2 *«(0r' (1-3) 

is the scalar transfer function with Xj(k) as the input and 
yi(k) as the output. We will also use the notation 

Gij(z) :=  Giiiq-1)^.  =  J2gij(l)z-\        (1-4) 

the ^-transform of the sequence {ffy(0}£-oo-  We allow 
all of the above variables to be complex-valued. 

We wish to design a MIMO dynamic system E(g_1) 
with N inputs and M outputs such that the overall MxM 
system 

Tfo"1) := Efa-'jGfo-1) (1_5) 

decouples the source signals. Following the 2x2 case con- 
sidered in [7], this implies that we must have 

Ty^"1)    =0    for    i^ij 
/ 0    for    i = ij (1-6) 

This work was supported by the National Science Founda- 
tion under Grant MIP-9312559. 

where i = 1,2, •■■,M; j = 1,2, ---.Af and ij £ 
{1,2, ■■■,M} such that ij / it for j ^ I. That is, in 
every column and every row of T(g_1) there is exactly 
one non-zero entry. In a blind separation problem, the 
nonzero entries of T(g~l) are allowed to be a scalar linear 
system (shaping filter), unlike the equalization problems 
where they must be constant gains. 

The problem considered above arises in a wide variety 
of signal processing and communications applications; see 
[l]-[8], and references therein. One obvious application is 
array signal processing where the array manifold may be 
unknown or imprecisely known [5]. Separation of sources 
differs from blind equalization [9],[10],[13],[14],[17] in that 
the source signals are not necessarily i.i.d. (independent 
and identically distributed). In this paper we allow N > M 
(N = number of sensors, M = number of sources) with M 
arbitrary, whereas quite a few existing papers are restricted 
to M = N = 2 ([1],[7],[8]) or M = N ([2],[3],[17]). Our 
proposed approach has aspects that follow from [14] (see 
also [16]), yet our approach is more general in that it ap- 
plies to signals with nonzero normalized fourth cumulant 
whereas [14] and [16] are restricted to signals with negative 
normalized fourth cumulant. Moreover, [16] deals with in- 
stantaneous mixtures of a restricted type and [14] deals 
with blind equalization, not source separation. 

2    Model Assumptions 
We impose the following conditions: 

(ASl) N > M, at least as many outputs as inputs. 

(AS2) The various components of x(jfe) are mutually 
independent and the coupling system is stable. 

0-8186-7576-4/96 $5.00 © 1996 IEEE 
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(AS3) x(k) is linear, i.e. 

x(fc) = F(g-l)w(fc), (2-1) 

where w(Jfe) is a zero-mean, M—vector station- 
ary non-Gaussian process, temporally i.i.d. and 
spatially independent, with nonzero fourth cu- 
mulants. Because of (AS2) we may take F(g~ ) 
to be diagonal. Assume also that the composite 
system 

y(fc) = Gfo-'jFfo-'W*) - B(9_l)w(fc), 
(2-2) 

is stable. Let B(z) denote the transfer function 
B(g_1) in the ij-transform notation.   Assume 
that rank{B(z)} = M for any \z\ = 1. 

We will denote the ij-th element of B(g_1) is fly(g-1). 

3    A Solution 
Let CUM4(ifl) denote the fourth-order cumulant of a 

complex-valued random variable w, denned as 

CUM4(itf) := cunH{™,™*,w,w*} (3 - !) 

=  E{\w\1} - 2[E{\w\7}]2 - \E{w2}\2. 
(3-2) 

We will use the notation 74™ = CUM4(w;(fc)) and trwi = 
E{\wi(k)\2}. Consider an 1 x N row-vector polynomial 
equalizer CT(g_1), with its j'-th entry denoted by Cj(q~l), 
operating on the data vector y(k). Let the equalizer out- 
put be denoted by e(fc). We then have 

e(k) =  Y^Ciiq-'Mk) 

N     M M 

(3-3) 
i=i j=i i=i 

where 

N 

B&-1) ■■= X^or1)^«-1)       (3-4) 
i=l 

so that 

H(8"1)  := CT{q-')G{q-')¥{q-"). 

In general, we have 

fc= —OO 

Define hj{k) = <Twjhj(k), yiwj = 7*v/i/°'tj and fömaJ := 
maxi<,-<M-|74il- 

As in [13], we propose to consider maximization of the 

COSt _   |CUM4(e(fe))| 
J42   := {E{\e(k)\*}]* 

(3-6) 

for designing a linear equalizer to recover one of the inputs. 
It can be shown [13] that 

<   l7«B 
(3-7) 

with equality iff 

hj(k) = d5{k-ko)6(j-j0),    ioG{l,2,---,M}, (3-8) 

where d is some complex constant, fco is some integer, jo 
indexes some input out of the given M inputs such that 
l74io = ftmJ. and fi(fc-feo) = 1 if fc = fco, = 0 otherwise. 
Thus, (3-3) reduces to 

e(k) = dwj0(k — fco), (3-9) 

i.e., the equalizer output is a possibly scaled and shifted 
version of one of the system inputs. It has been established 
in [13] that under (ASl)-(ASS), such a solution exists 
and all locally stable stationary points of the given cost 
w.r.t. the combined composite channel-equalizer impulse 
response {hj(k)} are characterized by solutions such as 
(3-8) and (3-9). Moreover, if doubly-infinite equalizers are 
used then all locally stable stationary points of the given 
cost w.r.t. the equalizer coefficients are also characterized 
by solutions such as (3-8) and (3-9). 

The above discussion suggests an iterative solution 
where we iterate on input sequences one-by-one. Max- 
imization of (3-6) w.r.t. the equalizer C(g_1) leads to 
the solution (3-9) under the sufficient conditions (ASl)- 
(AS3). Given (3-9) we can estimate and remove the con- 
tribution of u)j0(fc) from (1-1). Then we have a MIMO sys- 
tem with N outputs but M-l inputs (instead of M inputs 
as in (l-l)-(l-2)). Repeat the process, i.e., maximize (3-6) 
w.r.t. a new equalizer to get a solution e{k) = d'wji(k — fc0) 

where j0 G ({1, 2, ■ ■ ■, M} - {jo}). That is, we follow the 
following procedure. 

Step 1. Maximize (3-6) w.r.t.   the equalizer C(g-1) to 
obtain (3-9). 

Step 2.  Cross-correlate {e(fc)} (of (3-9)) with the given 
data (l-l)-(2-2) and define a possibly scaled and 
shifted estimate of bij0(r) as 

bijoi-r) 
E{yi(k)e'(k-r)} 

E{\e(k)\*} 
(3-10) 

Consider now the reconstructed contribution of 
e(k) to the data yi(k) (t = 1, 2, ■ • •, M), denoted 

by 2/i,jo(fc): 

Vi.it ,(*):= X>„('M*-0- (3-11) 

Step 3. Remove the above contribution from the data 
to define the outputs of a MIMO system with 
N outputs and M-l inputs. These are given 
by 

ViW ■■= w(fc)-»«.(*)■ (3~12) 

Step 4. If M > 1, set M <- M - 1, 2/;(fc) <- y'i(k), and 
go back to Step 1, else quit. 
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In practice, all the expectations in (3-10) are replaced with 
their sample averages over appropriate data records. 

Analyzing the above algorithm we have 

E{yi(k)e*(k - r)} = £ Bijiq-^Eiwjikytk - r)} 

(3 - 13) 

i=i 

=  hj0{ho + r)d* <rwio 

Using (3-13) in (3-10) we have 

6'ioW  =    TTTi-j   =  bijo(ko + r)/d. \d\ 

It follows from (3-11) and (3-14) that 

ViJoW = J2 *««, (')»*>(* - I). (3 - 15) 

Now use (3-12) and (3-15) to deduce that 

M 

y'iW =    Yl   B«(*K-(*).  f = l, a, - - -, JW. (3-i6) 
i=i,jVio 

It is seen that we have decomposed the observations 
at the various sensors into its independent components: 
Vi.ioW m (3-11) represents the contribution of {xj0(k)} to 
the i—th sensor. Eqn. (3-11) represents an embarrassment 
of riches: we have a large class of solutions to the problem 
of blind separation of convolutive mixtures. We empha- 
size that in our solution knowledge of F(g_1), G(g-1) or 
B(g- ) has not been assumed. Our solution is guaranteed 
to converge unlike that of [7]. 

Remark 1.    We may replace the cost (3-6) with [13] 

._   |CUM3(e(fc))| 
J32  -   [JS{|.(*)|>}]" <3 - 17> 

where 

CUM3(iu) := cum4{™, w*, w} = E{\w\2w).      (3 - 18) 

The preceding discussion pertaining to (3-6) holds in this 
case with obvious modifications provided we replace the 
phrase "nonzero fourth cumulants" in (AS3) with the 
phrase "nonzero third cumulants." O 
Remark 2. It follows from the preceding developments 
that under the conditions (AS1)-(AS3), the proposed iter- 
ative approach is capable of blind identification of a MIMO 
transfer function B(z) up to a time-shift, a scaling and a 
permutation matrix provided that we allow doubly-infinite 
equalizers. That is, given B(z), we end up with a A(z) 
where the two are related via 

A{z) = B(z)DAP (3 - 19) 

where D is an M x M "time-shift" diagonal matrix (recall 
fco in (3-8^), A is an M x M diagonal scaling matrix (recall 
d in (3-8)1, and P is an M x M permutation matrix (recall 
jo in (3-8), we don't "know" which input it refers to). See 
also [13].     D 

4    Simulation Example 
Here we consider a 2-input 3-output MA(6) system 

model resulting in N=3 and Af=2 in (2-2). Its 3 x 2 
transfer B(z) in (2-2) is given by (B;(g-1) denotes the 
i-th column of B(g  *)) 

FiOr1) = 
0.7426 + 0.7426g-2 

0.4456g-1 + 0.7426g" 
0.8911g-2 + 0.5941g" 

(4-1) 

(3-14) F2(?  l) 

(0.5678 +0.3407g-1) 
(-0.2385g-1 - 0.5678g-2 + 0.8176g-3 

+0.4088g-4 + 0.2385g-6) 
(0.6814g-1 + 0.9085g-2) 

(4-2) 
The inputs {wj(k)} (j = 1, 2) in (2-1) and (2-2) are mutu- 
ally independent, zero-mean i.i.d., 4-QAM sequences tak- 
ing values ±l±j with probability 0.25 each. The additive 
noise at the various sensors was complex (circularly sym- 
metric) zero-mean white Gaussian with identical variance. 
The equalizer length was chosen to be 15 taps, i.e., with 
N = 3, C^g-1) ({ = 1,2,3) have 15 taps each. The ini- 
tial guess for optimization of J42 was always taken to be 
center-tap initialization, i.e. we took ci(7) = 1 with the 
remaining taps a(k) (t = 1, 2, 3) set to zero. For the pur- 
pose of impulse response estimation and extracted signal 
cancellation (see steps 2 and 3 in Sec. 3), 6y0(r) was esti- 
mated for -20 < r < 20 (see (3-10) ). 

It is clear from (3-11) that how well one estimates the 
channel impulse response strongly influences how well one 
can separate the given observations into their constituent 
independent components. Therefore, we will take accuracy 
in impulse response estimation as a performance measure. 
In order to assess the performance of the proposed ap- 
proach, one first needs to remove the ambiguities associ- 
ated with the matrices D, A and P in (3-19). This was 
accomplished by aligning (via cross-correlation and shift- 
ing) the estimated impulse responses with their true coun- 
terparts and by scaling them to have a fixed norm. For 
instance, the true model (4-l)-(4-2) is such that 

ICSlWI2  =  3    for ^' = 1>2- (4-3) 
i=l   fc=0 

We chose to truncate the estimated impulse responses to 
12 samples (after proper alignment with the true impulse 
responses); this is much longer than the true length of 7. 
The estimated impulse response bij(k) after truncation was 
normalized in a manner similar to (4-3): 

££M*)|2  =  3   for i = l,2. (4-4) 

We will use the normalized mean-square error (NMSE) in 
estimating the channel impulse responses as a performance 
index. The length of each subchannel (Bij(q~l) (i, j 6 
{1,2}) ) was restricted to 12.  For Mc Monte Carlo runs, 
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the NMSE.-j for subchannel Bij(q  1) is denned as 

Mr1 ES 
NMSEjj  = 

E"=_i ^M-AiM 

Er=-1 IM')!' 
(4-5) 

where 6^9 denote the estimate of the ij-th subchannel im- 
pulse response for the i-th Monte Carlo run. The overall 
NMSE (called ONMSE) is obtained by averaging over all 
subchannels: 

N    M 

ONMSE = (MJV)-1 ^ J2 NMSE« • (4 - 6) 
t=l  3 = 1 

Table I shows the various NMSE's for different SNR's and 
record lengths for using the cost J42. It is seen that the 
proposed method works well even for rather low average 
SNR of 13 dB. 

TABLE I. Normalized mean-square error (4-6) in 
estimating the system matrix channel impulse response. 
4-QAM (complex-valued) inputs and cost J42 • SO Monte 
Carlo runs, equalizer length =15 taps (per subchannel) 

Table I 

Record 
Length 33 dB 

SIS 
23 dB 

FR 
13 dB 3 dB 

750 0.0161 0.0167 0.0271 0.5201 
1500 0.0080 0.0082 0.0102 0.5091 

3000 0.0039 0.0040 0.0053 0.1973 

5 Conclusions 
The problem of blind separation of independent linear 

signals (sources) from their linear convolutive mixtures was 
considered. An iterative, normalized higher-order cumu- 
lant maximization based approach was developed using the 
third-order and/or fourth-order normalized cumulants of 
the "beamformed" data. The approach is source-iterative, 
i.e., the sources are extracted (at each sensor) and can- 
celled one-by-one. The proposed solution provides a de- 
composition of the given data at each sensor into its inde- 
pendent signal components. The proposed approach is an 
extension/application of a recently proposed approach for 
MIMO system identification where the system is driven by 
unobserved i.i.d. inputs. 
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Blind Source Separation of Convolutive Mixtures 

C.Serviere 

CEPHAG-ENSIEG BP 46 38402 Saint-Martin cffieres cedex FRANCE 

Abstract 
Vollen a priori information about the propagation or the 
geometry of the array are not available, the model can be 
generalized to a blind source separation problem It 
supposes the statistical independence of the sources and 
their non-gaussianity. In this paper, the observed signals 
are supposed to be convolutive mixtures of wide-band 
sources. Several criteria of source separation are studied, 
which are based on the cancellation of different fourth- 
order cross-cumulants. For these criteria, we show in 
which conditions the separation is achieved. Results on 
real data illustrate the proposed methods. 

1. Introduction 

The problem of separating a mixture of several 
independent signals is encountered in many fields : in 
digital communication multipath channels, in speech 
enhancement (cocktail party problem), or in the diagnostic 
of rotating machines. Several methods have been recently 
proposed in [1] [2] [3] [4]. The problem, generally called 
"blind source separation", consists in identifying p 
independent and non-gaussian sources from M observed 
linear mixtures of these sources. These techniques are 
necessary when the propagation between sources and 
sensors cannot be modelled (unknown paths, unknown 
antenna deformation, complicated array geometry, or 
unavailable hypothesis of plane waves...). 
Several methods [1] [2] [3] [4] [5] have been developed in 
time domain in the case of linear instantaneous mixtures, 
using higher-order statistics (usually fourth-order 
moments or cumulants, or non linear functions of the 
observations) or using a deflation approach. In the 
frequency domain, several methods based on the cross- 
bispectra or the trispectra of the estimated sources have 
been proposed in [6] [7] [8]. [9] and [10] propose an 
adaptive approach in the time-domain in the case of 
convolutive mixtures. [11] uses a priori information on 
the probability densities of the sources. In a general blind 
source separation problem, the observed data vector r(t) 
may be represented in frequency-domain by an 
instantaneous complex mixture for each frequency bin f. It 
leads to the following model: 
(1)        Rk(f) = A(f)S_k(f) + Bk(f) 

where Rk(f) is the N-point Discrete Fourier Transform 
(DVT) of the kth data block of the observation r(t). £k(f) 
represents the p sources vector and A(f) is an unknown 
matrix (M.p) which characterizes the linear propagation 
from sources to sensors. Bk(f) represents an additive M- 
dimensional gaussian noise. The problem consists in 
identifying the matrix A(f) as a product of three matrices: 
(2) A(f)=V(f)A(f)iI(f) 
The matrices V(f) (a unitary matrix) and A(f) (a diagonal 
matrix) are identified thanks to second-order criteria, by 
eigenvalue decomposition of the covariance matrix of 
Rk(f)- After this first usual step using only second-order 
moments (developed in §2), we suppose that the 
components of the observations are normalized and 
uncorrelated, which is not a restrictive assumption. 
We focus then in this paper on the identification of the 
matrices n(f) (which are unitary matrices) thanks to 
fourth-order criteria. In the case of instantaneous 
mixtures, two methods have been already proposed [1] 
[2]. We focus in this paper on the generalization of the 
source separation problem to convolutive mixtures of 
wide-band sources. C.Jutten proposes in [9] to cancel 
certain fourth-order cross-cumulants. The separation is 
only proved under the condition of independent, 
identically distributed (i.i.d.) processes with the same sign 
of kurtosis. 
In this paper, we study several criteria based on the 
cancellation of other fourth-order cross-cumulants of the 
estimated sources and we show in which conditions the 
separation is achieved. 

2.   Modelization of the problem 

The first step consists in the identification of the matrices 
V(f) and A(f) (which may be adaptively computed). The 
signals, noted Xk(f), issued from the projection of the 
observations Rk(f) in the signal subspace (which is 
spanned by the columns of V(f) associated to the 
dominant eigen values of the covariance matrix of the 
observations) are uncorrelated and normalized. The p 
normalized sources, called NSj^f), are relied to the p new 
data, Xk(f) by: 

(3)        NSk(f) = (n(f)P(f)D(f))+Xk(f) 
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where P(f) is a (p.p) permutation matrix and D(f) is a 
diagonal one. The notation '+' means transpose and 
conjugate. 
The unitary matrix 11(f) [2] can be decomposed into a 
product of Givens rotations. In the case of two sources, 
for example, 11(f) is a function of two angles 9(f) and 
<J)(f), at frequency bin f. The modelization of the 
normalized sources NSi(f) and NS2(f) after the second- 
order step is the following: 
(4)NSi(f)=cos(0(f))Xl(f)+sin(e(f))exp(-j(|)(f))X2(f) 
(5)NS2(f)=sin(e(f))exp(j(|)(f))Xi(f) - cos(9(f))X2(f) 
In the time-domain, the p normalized sources ns.(0 are 
expressed as convolutive mixtures of the p new data x(t): 

(6) ns;(t)=  2rf hü 
J        i=l,P 

|(0*Xi(t) j=l p 

where xi(t) is the i-th component of the vector x(t) and 
nsj(t) is the j-th component of the vector ns(t). The 
vectors hjj(t) represent the finite impulse responses of the 
filters between the i-th component of the data x(t) and the 
j-th normalized source. They are exactly the N-point 
inverse Discrete Fourier Transforms of the filters, 
characterized in frequency-domain by the N matrices (11(f) 
P(f) D(f))+ • In the case of two sources, the impulse 
responses of the filters hij(t) are the inverse Discrete 
Fourier Transform of [cos(0(f))] and [sin(0(f))exp(-j<|>(f))] 
for (f=0,..., N-l). 

3 Independence criterion 

Thanks to the previous step (at second order), the 
components of x(t) are normalized and uncorrelated. As 
the information provided by the second-order statistics is 
not sufficient to identify the N matrix (11(f) P(f) D(f))+, 
we use an additive assumption : the statistical 
independence of the sources. The aim of the second step 
of blind source separation procedure is the identification 
of the vectors hjj(t) (or the matrices (11(f) P(f) D(f))+) 
such that the estimated sources nsj(t) are independent. In 
that case, if the sources nsi(t) and nsj(t) are statistically 
independent, we must have the cancellation of each cross- 
cumulant for any delay k, 1, m, n inferior to N, 
(7)C22(nsi(t-k),nsi(t-l),nsj(t-m),nsj(t-n)),C31(nsi(t-k), 
nsi(t-l),nsi(t-m),nsj(t-n)),Cl3(nsi(t-k),nsj(t-l),nsj(t-m), 
nsj(t-n)). C represents the fourth-order cumulant as defined 
in [12]. It leads in the strict sense to a fourth-order 
independence. 
In the case of instantaneous mixtures, P.Comon first 
proposed to maximize a contrast function based on the 
kurtosis of the estimated sources [2], such that the 
maxima are obtained for solutions which actually separate 
the sources. E.Moreau and OMacchi proposed in [3] an 
approach based on the adaptive maximization of others 
contrast functions, using the kurtosis and the fourth-order 
cross-cumulants of the estimated sources. 

In the case of convolutive mixtures of wide-band sources, 
the purpose of this paper is to study several criteria and to 
show in which conditions the separation is achieved. 
CJutten proposes in [9] to cancel the symmetrical fourth- 
order cross-cumulants C2?(nsi(t),nsi(t),nsj(t-k),nsj(t-k)), 
functions of one delay k. He proves that it is a sufficient 
condition to separate two sources under the hypothesis of 
independent, identically distributed (i.i.d.) processes with 
the same sign of kurtosis. The cancellation of the two 
others cross-cumulants Cl3(nsi(t),nsj(t-k),nsj(t-k),nsj(t- 
k)) and C31(nsj(t),nsi(t-k),nsi(t-k),nsi(t-k)) are not 
applicable because spurious solutions exist. 

3.1 Study of the criteria 

In [9], the case of one delay is dealt with. We propose in 
this section to study the cancellation of two 
dissymmetrical cross-cumulants, functions of two delays 
kandl: 
(8)        Cl3(nsi(t-k), nsj(t), nsj(t), nsj(t-l)) =0 

C31(nsi(t), nsi(t), nsi(t-k), nsj(t-l)) = 0 
As the estimated sources nsi(t) and nsj(t) are researched as 
uncorrelated signals, it leads to minimize the following 
cost function Y: 

N-l 

i*j k,l=0 

(El3(nsi(t-k) nsj(t) nsj(t) nsj(t-l))) 

|Bi;j(fl,f2) 

*P can also be computed as 
N-l   , 

»F = N22,    ^ 
i*j    fl,f2=0 

where By (fl,f2) represents the two-dimensional Fourier 
Transform of E(nsi(t-k) nsj(t) nsj(t) nsj(t-l)), relative to 
the time variables k and 1. By(fl,f2) is equal to 
E{nsi(t)2NSi(fl)NSj(f2)}.  The function ¥ is then 
minimized (and equal to zero) when By (fl,f2) is canceled 
for each frequency bin f 1 and f2. The cancellation of By 
(fl,-fl) leads to two types of solutions : the first one 
achieves the separation while the second one consists in 
spurious solutions. These spurious solutions only exist 
in the case of sources with identical statistical properties 
at the fourth-order. However, we can show, computing 
the value of the function ¥, that these spurious solutions 
do not cancel it. Consequently, the cancellation of *F (9) 
always assures the separation of the sources. 
In the case of two sources, the estimated normalized 
sources NSi(f) and NS2(f) can be expressed in function of 
the normalized sources, called Sln(f) and S2n(f) with: 
(10)NSi(f)= Hl'(f) Sln(f) + H2'(f) S2n(f) 
(ll)NS2(f)= Hl"(f) Sln(f) + H2"(f) S2n(f) 
The source separation is achieved at frequency bin f when 
Hl'(f) and H2"(f) (or H2'(f) and Hl"(f)) are equal to zero. 
The criterion ¥ can also be expressed in function of 9(f) 
and <!>(f), or in function of the complex gains Hi'(f) and 
Hi"(f). The cancellation of B]^ (fl,-fl) and B24 (-fl,fl) 
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leads to one or two types of solutions in function of the 
sources. If the sources not verify the following condition 
at each frequency bin fl, relative to the fourth-order 
statistics of the sources: (12) 
N-l N-l 

£E{|Sln(f)|2|Sln(fl)|2} = £E{|S2n(f)|2|S2n(fl)|2} 
f=0 f=0 

the cancellation of (Bi;2 (fl,-fl) + B24 (-fl.fi)) leads to 
(Hl'(fl)Hl"(fl)*=0) for each frequency bin fl. The 
separation is then achieved at each frequency bin. If the 
condition (12) is realized, several spurious solutions exist 
which verify: 

(13)|Hr (f)|2 = |Hl"(f)|2 = 1 

However, if we replace (13) in the function \j/, we remark 
that these spurious solutions do not cancel it. We also 
can show by studying the minima of B12 (fl,f2) and 
B2,i (fl,f2) that the separation is not independently 
achieved for each frequency bin f. The sources associated 
to the identified signals are necessarily the same from one 
frequency bin to another. Consequently, the source 
separation is assured with the minimization of the 
criterion \j/, function of two delays k,l, or two frequency 
bins fl, f2. 

3.2 Case of different sources 

In the case of two different enough sources (relative to 
their fourth-order statistics), we deduce from §3.1 a 
simplificated criterion y which achieved the separation at 
each frequency bin. It cancels the N following equations : 
(14) B 1,2 (fl,-fl) + B2,l (-fl,fl) = 0 
Y is deduced from (14) by : 

N-l _ 
(15)7=   Z| Bu(f,-f) + B2J(-f,f) |2 

After some computations, we obtain that: 
(16)B12 (f, -f) + B2jl (-f, f) = HI' (f )H1" (f) * F(s(t), f) 

where F(s(t),f) only depends on the fourth-order moments 
of the two sources. From the expression (16), we 
conclude that it only depend on the coefficients 6(f) and 
<Kf) at frequency bin f. In order to estimate them, it is 
then theoretically equivalent to minimize the function y 
(15) or to find the solutions which cancel the equation 
(14) at frequency bin f. Call y(f), the contribution of the 
cost function y at the frequency bin f. The function y(f) 
can be adaptively minimized. After some computations, 
we obtain three types of solutions which cancel the 
derivative of y(f), relative to the variables 9(f) or <|>(f). 
The first one leads to (Hl'(f)=0) which separate the 
sources. The second one provides : (IHl'(f) I 2 =1/2) and 
we easily verify that these solutions correspond to 
maxima of y(f) which are not stable points. The third 

type of solutions which verify : (- 
a|Hl' (f) 

38(f) 
• = 0) or 

(■ 

HI' (f) 

39(f) 
= 0) contains all the previous points. The 

same conclusion is obtained with the derivatives relative 
to the variables <|>(f). As a result, the proposed cost 
function has no local minima and it assumes that the 
proposed criterion may be adaptively minimized. We 
obtain the following adaptation laws for the estimation of 
8(f) and <|>(f) at time t+1, 8(f,t+l) and <Kf,t+l) : 

N-l 
(17)0(f,t + l) = 0(f,t)-2/x   X   [E13(k,l)B+E31(k,l)C] 

k,l = 0 

B = ns2(t)2ns2(t - l)i°^M + nsl(t- k) ^2(t)2ns2(t-l) 
39 39 

=-sin(9(f,t))Xi(f)+cos(9(f,t))exp(-j(j)(f,t))X2(f) 

=cos(9(f,t))exp(j(t)(f,t))Xi(f)+sin(9(f,t))X2(f) 

C = nsl(t)2nsl(t -1)-^f^ + nS2(t - k) fal(ffisl{t-l) 

with : 
3nsl(t) 

39 
3ns2(t) 

39 
We obtain similar adaptation laws for <|>(f,t-i-l) 

^l1(t) = -j exp(-j(|>(f,t))sin(9(f,t))X2(f) 
with:     3<j) 

8gS2(t)=J exp(j<Kf,t))sin(9(f,t))Xi(f) 

The unknown moments in (17) are adaptively estimated 
with the available data. 

3.3 Case of similar sources 

In the case of two similar sources (relative to their fourth- 
order statistics), the dissymmetrical cumulants Bi;2 (fl,- 
fl). and B2,l (fl,-fl) are zero for any estimated complex 
gains H'i(f) and H"i(f). We study here the cancellation of 
the two-dimensional Fourier Transform of the 
symmetrical cumulants C22(nsi(t),nsi(t),nsj(t-k),nsj(t-l)), 
funtions of two delays. The cancellation at frequency bins 
(f 1,-fl) is equal to: 

(17)  I f|H"l(fl)|2|H'l(f)|2 + |H"2(fl)|2|H'2(f)|21 

f L 

E{|S(f)|2|S(fl)|2}-l]-4|H"l(fl)|2|H'l(fl)|2 = 0 

From (17), we can deduce that the separation is achieved 

in several conditions. If |E[|S(f )|2|S(fl)|2] - 1 =0 (which 

is the case of sinusoids, rotating machines noises [13]), 
the separation is obtained at each frequency bin fl. 

Lf[E{|S(f)|2|S(fl)|2}- <0, it can be shown that the 

separation is jointly obtained for each frequency bin. 
Consequently, the estimated temporal sources are actually 
independent. 
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4.   Results 

The simulation here after illustrates the behavior of the 
proposed method in §3.3, in the case of convolutive 
mixtures of two sources. The two processes are rotating 
machine signals. The filters of the mixtures are MA 
filters of order 100. We compared the method to existing 
algorithms [9] [10] which in that case converge to local 
minima. We present the spectral densities of the 
observations in Figl-2, of the right sources in Fig3-4, 
and of the estimated sources in Fig5-6. We remark the 
good correspondence between the spectra Fig3-4 and Fig5- 
6, which reveals the convergence of the proposed method 
towards a good solution. 

5 Conclusion 

We focus in this paper on the generalization of the blind 
source separation problem to convolutive mixtures of 
wide-band sources.Several criteria of source separation are 
studied, which are based on the cancellation of different 
fourth-order cross-cumulants. For these criteria, we show 
in which conditions the separation is achieved. Results on 
real data illustrate the proposed methods (separation of 
rotating machine noises). 
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Abstract 

Blind equalization and blind deconvolution have been 
an important interesting topic in diverse fields including 
data communication, image processing and geophysical 
data processing. Recently, Inouye and Habe proposed a 
multistage maximization criterion and a single-stage max- 
imization criterion for attaining the blind equalization of 
multichannel linear time-invariant systems. However, their 
maximization criteria should be subjected to several con- 
straints of equations. In this paper, we present uncon- 
strained new maximization criteria for accomplishing the 
blind equalization of multichannel linear time-invariant sys- 
tems. Stochastic gradient algorithms are proposed for solv- 
ing the unconstrained maximization problems. Simulation 
examples are included to examine the performance of the 
proposed algorithms. 

1   Introduction 

ing the optimization. 
In this paper, we present unconstrained new maximiza- 

tion criteria for accomplishing the blind equalization of mul- 
tichannel linear time-invariant systems. Stochastic gradient 
algorithms are proposed for solving the unconstrained max- 
imization problems. Simulation examples are included to 
examine the performance of the proposed algorithms. 

2   Problem Formulation 

Let us consider the system shown in Fig. 1. It is a cascade 
connection of an unknown multichannel system preceding 
a multichannel equalizer. 

«(*) \yW z(*) 
H(z) W(z) 

n    | Unkr own sysiei Equalizer 

G(z) 

Blind equalization and blind deconvolution have been 
an important interesting topic in diverse fields including 
data communication, image processing and geophysical data 
processing [l]-[3]. Recently, Shalvi and Weinstein pre- 
sented several new criteria for blind equalization of single- 
channel linear time-invariant systems [2]. Inouye and Habe 
extended the Shalvi-Weinstein approach to the multichannel 
case [3]. They proposed a multistage maximization crite- 
rion and a single-stage maximization criterion for attaining 
the blind equalization of multichannel linear time-invariant 
systems. However, their maximization criteria should be 
subjected to several constraints of equations. In general, 
unconstrained optimization criteria are generally better than 
constrained optimization criteria for the purpose of achiev- 

Figure 1. Unknown system and equalizer 

We make the following assumptions on the system and 
the signals involved. 

(Al) The unknown system H{z) is described by 

y(t)=   £ H(k)u(t-k) (1) 

where y(t) is a real/complex n-column output vector, u(t) 
is a real/complex n-column input vector, and {H(k)} is 
a real/complex n x n matrix sequence called the impulse 
response. The system is stable, that is, the impulse response 
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satisfies the absolute summability condition 

oo 

E  l|H(fc)ll<oo 
k——oo 

(A2) The transfer function defined by 

oo 

H(z) :=   £  H(k)zk 

(2) 

(3) 
fc=—oo 

1 (this implies it has is of full rank on the unit circle \z\ 
no zero on the unit circle). 

(A3) The input process {«(*)} is a zero-mean, non- 
Gaussian vector process, whose component processes 
{ui(t)}, i = 1,■■■,n, are mutually independent. More- 
over, each component process {ui(t)} is an independently 
and identically distributed (i.i.d.) process with variance 
o\. ^ 0 and fourth-order cumulant K4)Ui ^ 0. 

(A4) The equalizer W(z) is described by 

*(*)=   £  W(k)y(t-k) (4) 
k=—oo 

where z(t) is a real/complex n-column vector, called the 
equalizer output, and {W(k)} is a real/complex n x n 
matrix sequence. It is assumed that the equalizer W is also 
stable. 

For the blind equalization of the unknown system, we 
cannot observe the input, but can observe only the output. 
This implies there are inherent ambiguities in the solution 
to the multichannel equalization problem as follows: In 
general, we cannot identify the order of the arrangement of 
the components in(t), ■ • -,«„(*) of input vector u(t), the 
time origin of each component Ui(t), and the magnitude of 
each component Ui(t). 

Taking these ambiguities into account, the multichannel 
blind equalization problem is formulated such that it is to 
find an equalizer W so that the transfer function G(z) of 
the combined system takes the form of 

G(z) = PA(z)D (5) 

where P is a permutation matrix, A(z) is a diagonal matrix 
with diagonal entries Xu(z) = zli, i = 1, • • • ,n (where U 
is an integer), and I? is a constant diagonal matrix. More- 
over, if we know all the magnitudes of the variances of the 
components of the input process ahead, we can constrain to 
make the diagonal matrix D in (5) be equal to a diagonal 
matrix with the diagonal entries all being unit magnitude. 

It is said that a stationary random process {«(t)} satisfies 
the normalized whitening condition if the all the compo- 
nent processes {Ui(t)},i = 1,•••,n, of {u{t)} are white 
random processes with unit variance and they are mutu- 
ally uncorrelated. When the random process is zero-mean, 

this condition is equivalent to E{u(t + k)u*(t)} = IS(k), 
where I denotes the identity matrix and S(k) denotes the 
Kronecker delta. 

By the multilinearity property of cumulants, we can de- 
rive the following formula for the components of the equal- 
izer output vector z(t) from (1) and (4) with (A1)-(A4). Let 
{G(t)} be the impulse response of the cascade system in 
Fig. 1. Then for any ii,J2 G {l,2,---,n}, 

n       oo 

^2fr) = E   E  diAr + r^Ur)^       (6) 
j=\ r=-oo 

Foranyii,z2,i3,üe {l,2,---,n},wehave 

04,^,^3,^(7-1,T2,T3) 

n        oo 

= E   E  9ilj(
T + Ti)9i2J(r + T2) 

j=\ T=-0O 

SW^ + ^KJ-WH«,-     <7) 

3   Blind Equalization 

To begin with, let us assume that the input process {u(t)} 
satisfies the normalized whitening condition by dividing 
each component {ui(t)} by the square root of variance a\. 
to eliminate the magnitude ambiguity. Let Z denote the set 
of all integers. 

3.1    Constrained Criteria 

In the previous work [3], the following two maximization 
criteria, the multistage maximization criterion (A) and the 
single-stage maximization criterion (B), were proposed and 
analyzed. 

The multistage maximization criterion (A): 

(Stage 1): Maximize |K4>2I| subject to a\x = 1. 

(Stage k): Maximize |K4,*J subject to o-2Zk = 1 and 
rZi,z'{r) =0forallT e Zandallt = 1,2,••-,*- 
1. Here k moves successively from 2 to n. 

The single-stage maximization criterion (B): 

Maximize £"=1 |«4,2J subject to rZi,zr(r) = 5(r) for 
alii = 1, • • •, n and rZi,z- (T) = 0 for all T e Z and all 
distinct i,j = l,---,n. 

Theorem 1: Under the normalized whitening condition of 
the input process {«(*)}, the multistage maximization cri- 
terion (A) and the single-stage maximization criterion(B), 
both yield a solution to the multichannel blind equalization. 
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3.2   Unconstrained Criteria 

It is generally more difficult to solve a maximization 
problem with constraints than to solve a constraint-free max- 
imization problem equivalent to the original one. In the 
sequel, we develop constraint-free criteria for solving the 
multichannel blind equalization. 

Let us assume that we know all the magnitudes of the 
fourth-order auto-cumulants of the components of the vector 
process ahead and that they satisfies the following decreasing 
sequence condition 

l7l|>N>"->|7n| (8) 

where 7< :- K4,Ui for i = 1, • • •, n. Consider the following 
potential function [2] defined by 

4>i{zi) :=|«4,»J + |7i|/(^) (9) 

where /(•) is a continuous real-valued function over [0, oo) 
such that 

p(x) := x2 + f(x) (10) 

monotonically increasing in 0 < x < 1, monotonically 
decreasing x > 1, and has a unique maximum at x = 1. 
Such a function, for example, is given by p{x) = lax - 
ax2, a > 0. 

Corresponding to the multistage maximization criterion 
(A), we consider the following unconstrained criterion. 

The unconstrained multistage maximization criterion 
(C): 

(Stage 1): Maximize 

•/i:=|«4,z,| + |7i|/«) (ID 

(Stage k): Maximize 

l«4,,J + l7*l/(<d) 
fc-1 

-^(EEk^jwl2)2   (12) 
i=irez 

where  Ao  is  a  positive  constant  greater than 
|7,|,i.e.,A0 > |7,|. 

Based on Theorem 1, we have the following theorem. 

Theorem 2: Under the normalized whitening condition of 
the input process {«(£)}, the unconstrained multistage max- 
imization criterion (C) gives a solution to the multichannel 
equalization problem. 

Corresponding to the single-stage maximization criterion 
(B), we need another assumption for the time being that all 

the magnitudes of the fourth-order cumulants are identical, 
i.e., 

l7l| = N = "' = |7n| (13) 

Under this condition, we consider the following uncon- 
strained criterion. 

The unconstrained single-stage maximization criterion 
(D): 

Maximize 

n 

J  ■=  E<K*J + l7*l/«)} 

k=2j=lT€Z 

where A0 is a positive constant. 

Based on Theorem 1, we can obtain the following theo- 
rem. 

Theorem 3: Under the normalized whitening condition 
of the input process {u(t)} and the condition (13), the un- 
constrained single-stage maximization criterion (D) gives a 
solution to the multichannel blind equalization problem. 

Remark 1: When all the magnitudes of the fourth- 
order auto-cumulants of the components of the input vector 
process are not the same, the criterion function (14) with Ao 
being a small positive constant can not be generally applied 
for achieving the multichannel blind equalization. In such 
a general case, it is not clear at the present how to choose 
a large number for A0 in the criterion function (14) to solve 
the multichannel blind equalization problem. 

4   Simulation Examples 

In order to see the effectiveness of the proposed criteria, 
we developed two stochastic gradient algorithms for solving 
the problem of the multistage maximization criterion (A) and 
the unconstrained multistage maximization criterion (C). 
They are omitted for page limit. The algorithm for criterion 
(A) requires (multichannel) spectral prewhiting of the output 
process of the unknown system. We used a finite impulse 
response (FIR) system to approximate the equalizer. 

We took following system that is a 2-input and 2-output 
all-pass system described by 

(15) 

1 

h 2 

2 2 
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We note that H(z) satisfies the all-pass condition 
H(eju)H*{eju) = I. Hence we need not perform prewhit- 
ing in this case. The first channel input signal U\ (t) was 
16-QAM with unit variance, and the second channel input 
signal u2{t) was 4-PSK (phase-shift keying) with unit vari- 
ance. We used a 2-input, 2-output and 24-tap equalizer 
W{z). The both algorithms contain stochastic expectation. 
Therefore, we used 50 data points to calculate expectation. 
The step size was chosen to be 0.02. The positive constant 
Ao in (12) was set to be 1. As a measure of performance we 
used the multichannel intersymbol interference denoted 
by MISI, defined in [3]. The initial Mm in the logarithmic 
(dB) scale was 8.0411 dB. 

sol Id I ine (a) 
dashedline(b) 

300 400 
Iterations 

Figure 3. Performances of the algorithms of 
the constrained criterion (A) and the uncon- 
strained criterion (C). The solid line (a) de- 
notes <MjSI> using the constrained criterion 
(A), and the dashed line (b) denotes <MISI> 
using the unconstrained criterion (C) with 
a=10. 

(a) Equalized output of 
channel 1 using crite- 
rion (A) 

(b) Equalized output of 
channel 2 using crite- 
rion (A) 

(c) Equalized output of 
channel 1 using crite- 
rion (C) 

(d) Equalized output of 
channel 2 using crite- 
rion (C) 

Figure 2. Signal constellations after equaliza- 
tion. 

The both algorithms were tested in 10 Monte Carlo runs 
using 20,000 data samples at each of the two channel outputs. 
Fig. 2 shows the equalized signal constellations obtained by 
using the constrained criterion (A) and the unconstrained 
criterion (C) with a = 10, respectively. Since the magni- 
tude of fourth-order cumulant of the 4-PSK signal is greater 
than that of the 16-QAM signal, the 4-PSK signal was recov- 
ered as the first channel output z\ (t) at Stage 1 and 16-QAM 
as second channel output z2(t) at Stage 2. We see from Fig. 
2 that the equalized output of channel 1 using the uncon- 
strained criterion (C) converges better than that using the 
constrained criterion (A), though there is no clear differ- 
ence between the two equalized outputs of channel 2 using 
the constrained criterion (A) and using the unconstrained 
criterion (C). 

In Fig. 3, we plotted the averaged MKI, denoted by 
< MISI > over 10 Monte Carlo runs. By comparing the 
constrained criterion (A) with the unconstrained criterion 
(C) we found through simulations that the unconstrained 
criterion (C) exhibits better convergence behavior than the 
constrained criterion (A) except for the case of a = 1. 
Therefore, we had better choose the value of a greater than 

1. 

5   Conclusions 

We have proposed the unconstrained multistage maxi- 
mization criterion and the unconstrained single-stage max- 
imization criterion. Simulation examples have shown to il- 
lustrate the performance of the algorithm of the constrained 
multistage criterion (A) and the performance of the algo- 
rithm of the unconstrained multistage criterion (C). We have 
not yet developed two stochastic gradient algorithms for the 
problems of the single-stage maximization criterion (B) and 
the unconstrained single-stage maximization criterion (D). 
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Two unknown non-white stochastic sources (e.g. speech 
signals) are dynamically mixed by an unknown multi- 
path channel and subsequently measured by two sen- 
sors. The objective is to construct an inverse filter 
that separates the two signals, based only on their in- 
dependence. It is known that, under certain conditions, 
second-order statistics provide sufficient information to 
identify the filter. In contrast to the usual cost func- 
tion optimization techniques, we propose an algorithm 
that computes the filter coefficients algebraically, using 
linear algebra techniques such as the singular value de- 
composition. 

Keywords: stochastic signal separation 

1. Introduction 
We consider the problem of separating two mutually 
uncorrelated non-white stochastic sources jointly re- 
ceived over two unknown multipath channels. A num- 
ber of papers have been published in this context, un- 
der various assumptions on the signals or the channels, 
and using various techniques; see [2-5,7-9,12,13] and 
the references therein. Techniques may broadly be clas- 
sified as (a) block-methods based on high-order statis- 
tics (second and fourth-order cumulants), (6) adaptive 
methods based on optimization of a blind cost func- 
tion (or nonlinear contrast function), (c) maximum- 
likelihood estimation, presuming the source distribu- 
tions are known. In many cases, a limited scenario 
with only scalar mixtures is considered. 

The algorithm proposed in this paper is a block- 
method based on second-order statistics of the mea- 
surement data only. The parameters of the inverse fil- 
ter are to be found such that the resulting filtered out- 
put signals yi(t) and y2(t) have zero cross-covariance 
function. Assuming a certain filter structure, the re- 
sulting conditions take the form of bilinear equations. 

Channel system I     Separation structure 
I 

Figure 1. Separation scenario 

The usual approach at this point is to set up a cost 
function whose minimum coincides with the solution 
of the equations, and to apply a stochastic gradient or 
Newton-type search algorithm to find the minimum [5]. 
Our main point is the observation that the equations 
can also be solved algebraically, via a singular value 
decomposition (SVD). This gives an exact solution to 
the problem in case the covariance data is exact. With 
estimated covariances, a subsequent step is needed, in 
which we have to find a linear combination of a col- 
lection of matrices such that the result has rank 1. A 
similar problem arose in the context of separation of 
constant-modulus signals [11]. 

2. Problem formulation 
The data model that we consider in this paper is de- 
picted in figure 1. The source signals are si(n) and 
s2(n), which are linearly filtered white noise processes 
&(«)> &(")• We make the following assumptions: 

Cl: £i(n) and £2(1) are realizations of mutually un- 
correlated identically distributed sequences with 
non-zero variance and zero mean. 

C2: si(n) and s2(n) are generated by convolving fi(n) 
and £2(rc) with two different asymptotically stable 
rational filters. 
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The source signals are measured via an unknown mul- 
tichannel, with outputs xi(n) and x2(n). The struc- 
ture of the channel is supposed to consist of a single 
direct path for the transfer of s\ to xi and s2 to x2, 
and short FIR multipaths Bi(g_1) and B2{q~l) for the 
crosscoupling si to x2 and s2 to xi. The objective is 
to retrieve si(n), s2(n) from Xi(n), x2(n). This can be 
done in a two step procedure where step one is a separa- 
tion and step two a post-filtering: (1) from xi,x2, find 
yi{n) = ifsi(n) and y2(n) = Hs2(n), where if (g-1) is 
some FIR filter; (2) inverse filter the sequences Hsi{n) 
and Hs2{n) with if_1(g_1) to retrieve sx and s2. Here, 
we focus on the first step: the actual signal separation. 

The separation structure is a direct feedforward fil- 
ter as depicted in figure 1, where Dx{q~l) and D2{q~l) 
are adaptive FIR filters. When Dx = Bu D2 = B2, 
the separation structure is equal to the channel inverse 
times the filter Hfar1) = l-D^q-^D^q'1), in which 
case the filter outputs j/i, y2 are equal to Hsi, Hs2. 
More generally, 

Vi 

2/2 

1 
-D2 1 

Xl 

x2 

l-B2Di    Bi-Di 
B2-D2    l-BiD2 

...   dw-i   d2o   ■ ■ 

(1) 

where 6 = [dio ••• dw-i d20 ■■■ d2v-i] = 
[df dJ]T is the parameter vector of the separation 
structure. To enable separation, the filter lengths U, V 
of D\ and D2 should be at least as large as the channel 
lengths, L\ and L2. This is only possible if the natural 
assumption 

C3: Li < U and L2 < V 

is introduced. Condition C3 assures that the separa- 
tion structure is in the model class. 

In order to recover the sources we require that 

C4: H(q~l) is minimum phase. 

This is natural since H{q-X) has a stable inverse only 
if it is minimum phase. The condition C4 is fulfilled if 
\Bi{e^)B2{e^)\ < 1 for all u G [0,2*], cf. [1]. 

3. An algebraic separation algorithm 
The proposed algorithm is based on finding the co- 
efficients 6 of the separation filter such that the fil- 
ter outputs 2/1 and y2 are mutually uncorrelated. Let 
R$ (I) = E{yi(n)y2{n - I)) be the cross-correlation 
between the filtered signals. We will only force inde- 
pendence with respect to second order statistics, i.e. 
the cross-correlation of j/i and y2 is equal to zero for a 
selected number of (2L + 1) lags [7]: 

The cross-correlation ÄjSk(0 is. under assumption Cl 
and C2, given in terms of the measured data xi, x2 as 

<»2(0 =*.!«»(0 - <ffrxaX9(J) - dJrXlS1(0 + 
+ dfRX2Xl(0d2, (3) 

where 

rXlXl(0 =[Ä,1,1(0 ••• RXlX>(l+V-l)f     (4) 

rX2X3(I) =[RX.X*(0 • ■ • R***2(1-U + 1)]T    (5) 

R*a-,(0 =['««.(0 ••• rwi(i+v-i)]       (6) 

rX3Xl(I) =[fix2ll(0 • • • R**X1 (1-U + 1)]T    (7) 

Thus, the separation problem reduces to solving a sys- 
tem of bilinear equations. In [5] it is proven that there 
are at least as many equations as unknowns under con- 
ditions Cl-3 with the exception of the static channel 
and white sources. By adding the condition C4, this 
identification problem becomes parameter identifiable 
(apart from static channels), cf. [6]. 

The equations (3) with left hand side equal to zero 
can be solved iteratively, in conjunction with a crite- 
rion, by means of gradient minimization techniques, 
cf. [5]. However, since such techniques are usually 
bothered by local minima and require accurate initial 
points, it is interesting also to consider an exact solu- 
tion of the equations, as follows. 

The idea is to rewrite the bilinear equations (3) in 
matrix form, using Kronecker products to collect all 
unknowns into a single (structured) parameter vector. 
This produces 

Ryivii-L) 

. RyiV2(L) 

d2 ®di 

= p d2 

dx 

1 

= 0, (8) 

where '&' is the Kronecker product, and 

<y2«)=0, -L<KL. (2) 

vec(RX2Xl(-L))r rlXl(-L) r£X2(-L) i?XlX2(-L)' 

.vec(RX2Xl(L))r     r£Xl(L)     r£X2(L)    RXlX2(L). 

'vec' denotes the vectoring operation which stacks all 
columns of a matrix into a single column. Thus, the 
problem is equivalent to finding a vector with a certain 
structure in the null space of the data matrix P. This 
null space can be determined, or estimated, by a sin- 
gular value decomposition of P. Thus let a basis for 
the null space be given by {vx, • • • , v*}, where S is the 
dimension of the null space. Since the precise basis is 
arbitrary, the problem is to find a linear combination 
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of these vectors such that we obtain a vector with the 
required structure, i.e. to find Ai, • • • , A,5 such that 

Aivi + ■ • • + A.5V.J = 

d2 ®di 
d2 

dx 
1 

(9) 

To make this equivalent problem more tractable, we 
move from vectors to matrices. For a vector x parti- 
tioned as 

x=[xf £4 (10) 

= [Z11   • ■ • X±tUV X2\  ■■• X2V Z31  • • • X3U Xi]T 

define the operator 

mat(x) := vec x(xi)    x3 

X4 (11) 

where vec(M) is a vectorization of the matrix M and 
vec(vec_1(xi)) = xi. Note that 

mat( 

d2 O di 
d2 

di 
1 

) = 
did^   di 

d%       1 [d2
T    1]. 

Denote Vi = mat^), ■ • • , Vs = mat(vÄ). Equation 
(9) is equivalent to finding Ai, • ■ • , Xs such that 

VA:=AiVi + --- + AaVa = [d2
T    1]. 

(12) 

Basically, we have to select A*'s such that the resulting 
linear combination of matrices V\ is rank 1, in which 
case it can always be scaled and factored into the re- 
quired structure. 

What is the value of 61 At first sight, given enough 
conditions (lags) we would expect 6=1, since the 
solution to the separation problem is usually unique. 
However, the Toeplitz structure of R^si adds ex- 
tra vectors to the null space of P: certain columns 
of P are duplicated, which reduces its rank. The 
number of repeated entries in the Toeplitz matrix is 
UV - (U + V - 1) = (U - 1)(V - 1), so that we expect 
6 = 1 + (U - 1)(V - 1). The resulting null space basis 
also has structure: e.g. for U = 3, V = 3, a possible 
matrix basis is of the form 

{V1,---,V5} = { 

"1 
-1 

0 ) 

"0 
1 
-1 

. 0 0 

"01 r° * * * - 

0-1 1 0 * 0 0 d. 
0 ) -10 ) * 0 0 

_ 0_ 0 L   du' |lj 
}.(13) 
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Figure 2. Singular values of P 

If we simply remove the duplicate columns of P, then 
the 'trivial' null space solutions (Vi, • • • , V4) are sup- 
pressed. Only one vector in the null space is left, corre- 
sponding to V5 in (13). Hence, estimates of dx, d2 are 
immediately available, even without solving the rank-1 
problem. 

The above is true only for perfect knowledge of the 
covariance lags, i.e. for an infinite amount of data. 
In actuality, the estimates of these lags converge only 
slowly to their true values, and the null space is not 
well-determined. For accuracy reasons it is usually 
necessary to overestimate the value of 6, and actually 
search for Ai, ■ • • , AÄ that produces VA in (12) that is 
as close to rank 1 as possible. This is reminiscent of 
the problem considered (and solved) in [11], where it is 
shown how a simultaneous diagonalization of (square) 
matrices Vi,--- ,V<5 provides good estimates of the 
Ajt's. The simulation results reported in section 4 are 
based on a blunt application of this diagonalization al- 
gorithm, followed by a few steps of an optimization 
routine to improve the A^'s. Although the results are 
reasonable, it should be remarked that the diagonal- 
ization algorithm is theoretically not well motivated 
for this application, because unlike the case in [11], we 
now expect only one solution [Ai • • • A«?], rather than 
6 independent solutions. This means that the Vk need 
not be simultaneously diagonalizable. 

4. Simulations 

We investigate the performance of the algorithm by 
simulation. In accordance with conditions Cl and 
C2, the source signals si(n) and s2(n) are generated 
by filtering two mutually uncorrelated white Gaus- 
sian noise sequences through two autoregressive fil- 
ters. One filter has a complex pole pair at radius 
0.8 and angle ±7r/4; the other filter has a radius of 
0.8 and angle ±3TT/4.    The channel in this simula- 
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Method N Mean Variance xlO ä 

dio du d20 d2i dio du Ö20 d2i 

True/CRB 
500 

2000 
4000 

0.5 -0.1 0.7 0.3 
0.134 
0.034 
0.017 

0.130 
0.033 
0.016 

0.104 
0.026 
0.013 

0.104 
0.026 
0.013 

Algebraic 
500 

2000 
4000 

0.499 
0.502 
0.500 

-0.098 
-0.098 
-0.100 

0.701 
0.697 
0.700 

0.299 
0.297 
0.299 

0.691 
0.162 
0.086 

0.719 
0.157 
0.086 

2.15 
0.480 
0.232 

1.88 
0.481 
0.229 

Recursive 
500 

2000 
4000 

0.500 
0.500 
0.500 

-0.100 
-0.100 
-0.100 

0.697 
0.700 
0.700 

0.302 
0.300 
0.300 

0.718 
0.043 
0.017 

0.582 
0.048 
0.016 

1.21 
0.032 
0.016 

2.57 
0.035 
0.016 

Weinstein 
500 

2000 
4000 

0.748 
0.651 
0.668 

0.074 
0.024 
0.055 

0.748 
0.651 
0.668 

0.419 
0.480 
0.493 

1677 
62.3 

1334 

873 
276 
104 

1677 
623 

1334 

254 
47.5 

101 

Table 1. Mean value and variance of the estimated filter coefficients 
l tion consists of two filters J3i(g *) = 0.5 - O.lq 

and B2(q~1) = 0.7 + 0.3g-1. The correlation matrices 
(4)-(7) are estimated from N = 500, 2000, and 4000 
samples of xi, x2. We took L = 4 lags into account, 
which gives a total of 9 equations for 4 unknowns. The 
Cramer-Rao Bound (CRB) for this scenario is derived 
as ATVare = [0.067,0.065,0.052,0.052], cf. [10]. 

A total of 200 independent runs were performed for 
each sample size. The estimated mean value and pa- 
rameter variance for the present algebraic algorithm 
are given in table 1, along with two other algorithms. 
The "recursive" algorithm is basically a stochastic 
Newton search algorithm based on [5], and the "We- 
instein" algorithm is the one found in [13]. 

For the algebraic algorithm, theoretically 0 = 2, but 
we have used c5 = 3 because even for N = 4000 there 
is no clear gap between the large and small singular 
values, as is illustrated in figure 2. Even so, the al- 
gebraic algorithm performed less good than the recur- 
sive method and did not reach the CRB. Given exact 
(rather than estimated) covariance data, P does have 
precisely two zero singular values, and the algorithm 
did produce the exact solution. 

It is known that the "Weinstein" algorithm cannot 
separate the sources unless bio = ho, and this shows 
up in the results. For a scenario where bw = b2o the 
algorithm works, but yields estimates with a higher 
variance than the other two algorithms. Note that the 
variance for "Weinstein" is larger for N = 4000 than 
for N = 2000. This is due to large deviations for some, 
typically two, parameter trajectories. 
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Abstract 

This paper considers some aspects of the source sep- 
aration problem. Unmeasurable source signals are as- 
sumed to be mixed by means of a channel system result- 
ing in measurable output signals. These output signals 
can be used to determine a separation structure in order 
to extract the sources. When solving the source sepa- 
ration problem the channel filter parameters have to be 
estimated. This paper presents a compact and com- 
putationally appealing formula for computing a lower 
bound for the variance of these parameters, in a gen- 
eral Many Inputs Many Outputs scenario. This lower 
bound is the asymptotic (assuming the number of data 
samples to be large) Cramer-Rao lower bound. The 
CRLB formula is developed further for the two-input 
two-output system and compared with the results from 
a Recursive Prediction Error Method. 

1    Introduction 

The problem of separating two signals that are 
mixed through an unknown dynamic channel is consid- 
ered. Both the source generating niters and the mixing 
channels are modeled as ARMA-filters. This model is 
realistic in applications such as hands-free and hand- 
held mobile telephony in the presence of acoustic in- 
terference. Noise reduction in hearing-aids is another 
application. 

A lower bound for the covariance matrix of unbi- 
ased parameter estimates is given by the Cramer-Rao 

»This work was financially supported by the Swedish Re- 
search Council for Engineering Sciences (TFR) and the Swedish 
National   Board   for   Industrial   and   Technical   Development 
(NUTEK). 

Lower Bound (CRLB) [3, 8]. The Prediction Error 
Method (PEM) is, for Gaussian distributed distur- 
bances, asymptotically efficient, cf [5]. This means that 
the covariance matrix of the estimated parameters is 
asymptotically equal to the CRLB. 

Source separation is an intensive area of research and 
in the past years many algorithms have been presented 
[2, 6, 7, 4]. It is of great interest to compute the CRLB 
for the source separation problem, since it provides a 
bench-mark to compare algorithms. 

2    Problem formulation 

Figure 1 depicts the scenario under consideration. 
Unmeasurable source signals, xi and x2, are mixed by 
means of a channel system resulting in measurable out- 
put signals j/i and y2. These output signals can be used 
to determine a separation structure in order to extract 
the sources. A two-input two-output (TITO) system is 
used to specify the source separation problem. 

ft „ xl *r?\ >i 

—»■ -{ Bi 
Al 

B2 

A2 

*2 

.&) Fl 
» 

"W —► 

Figure 1. The data generating system. 

It is assumed that the source signals, xi and x2, can 
be modeled as finite order ARMA processes, and that 

0-8186-7576-4/96 $5.00 © 1996 IEEE 
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the channel filters have rational transfer functions. The 
resulting equations can be put in a matrix form as 

Denote 

2/1 (t) 
V2(t) 

G2B2 

F2 
&(*) 

(1) 

where Ai, A2 etc. are polynomials in the unit delay op- 
erator q~l, and the signals y1} y2 etc. are functions of 
the discrete time variable * = 1,2,... (To simplify nota- 
tion the dependence on q'1 and t is omitted whenever 
appropriate). Without any restriction Fi,F2,Ai, and 
A2 are assumed to be monic and minimum phase, and 
Gi and G2 to be minimum phase with nonzero direct 
terms. Also, the two driving sequences & and £2 are 
assumed to be zero mean, unit variance, mutually un- 
correlated white Gaussian noises. 

Denote B^q'1) = bw + buq'1 + ... + blniq~ni, 
B2{q-r) = b20 + b2iq~1 + ... + b2n2q~n2, etc. Let, 
for A; = 1,2, o-jfe = Gfe(O), and introduce the following 
scaled versions of {Gk} and {&} : Gk «- Gkl^k,ik — 
ak£k (For convenience we use the same notation for the 
scaled and un-scaled {Gk} polynomials). 

The system in (1) can be rewritten as (assuming 

&10&20 7^ 1 ) : 

y(t) = 
yi 

. 2/2 . 

1      la 1       A2 
SL      1 

I Al 0 
0 
Ga 
FT. 

1       &20 

fcio     1 

-1 

|l + &206 

&iofi + 6 

H 

-l^ H(g-1)e (2) 

The purpose of the latter manipulation is that H(0) = 
I, which simplifies the following derivations. 

3    A compact expression of the CRLB 
for MIMO-systems 

In this section a compact expression for the CRLB 
is derived. It should be noted that the derivation and 
formulae are independent of the number of source sig- 
nals i.e. the results can be used for a general Many 
Inputs Many Outputs (MIMO) system. 

Lemma 1 
Consider a transfer matrix H(g-1) with y = He and 

A = E{eeT}. Assume that H and H_1 are stable, 

H(0) = I, and e(t) is white noise. Parameterize 

the model with the vector 6 which contains the 

unknown coefficients of H and A. 

__   _ ÖH       _ dA 
Uk ~ Wk'Kk - Wk 

and let the number of samples be N. 
Then, for N > 1, the CRLB is given by 

CRLB = J-\ 

where J is the Fisher information matrix: 
1 -1 A . A—1 [J]M = N Tr {O-oAfcA^AiA 

+Real 
\27TJj 

HfcAH,*H-*A-1H 
-idz 

(3a) 

(3M 

and where * denotes conjugate transpose. 

Proof  Consider Whittle's formula [8] for the asymp- 
totic information matrix 

[J]*.i Tr 
N_ 

4nj 
-.j>r\z) dcf>{z)     t     d<t>{z)dz 

where <j)(z) denotes the spectral density completely de- 
fined by the unknown vector 9. The spectral density 
can be written as <j>(z) = HAH*. Taking the derivative 
of <j){z) and A with respect to an arbitrary element in 
6 and inserting into (4) yields 

[Jki    =    ^ H-*A-iH- 

=    Tr 

I inj J 
(HfcAH* + HAfcH* + HAH£) 
H-*A_1H_1 

(HAH* + HA,H* + HAH*)— J 

I 47TJ J 
^H^H, 

+(n-1HkH-1H,y 

+A-1H-1H,A; + (A^H^HjtA,)* 

+AfcA-1AiA-1 

+A-1H-1HiAfc + (A^H^HjA*)* 

+A-1H-1HfcAH,*H-* 
Hz} 

+(A-1H-1H,AHrH-*)*-|.        (5) 

The integral above can be considered as the inverse z 
transform evaluated at t — 0. For the causal terms the 
initial value theorem can then be used, i.e. the value 
of the inverse z-transform evaluated at t = 0 is equal 
to the value at z_1 = 0. Since H(0) = I, the terms 
1, 2, 3, 4, 6, 7 are all zero. Term 5 is independent of 
z and can be moved outside the integral and equation 
(3b) follows. D 
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4    Computational aspects 

The expression (3) is still very tedious for computa- 
tion. The computations can be reduced using some of 
the symmetry of the source separation problem. In this 
section a TITO system will be considered. Parameter- 
ize the problem with the vector 6 which contains the co- 
efficients of Bi,Ai,Gi,F1,ai,B2,A2,G2,F2, and a2 

in this order. 
Consider the model in (2). The transfer matrix H can 
be divided into three parts 

H   = 
1 

Si. 
§2. 
A2 

1 

Ox 

0 

0 

Fi 

1 

&10 

&20 

1 

1-1 

CGD"1 
(6) 

Consider the second term in (3b). It is easily verified 
that HfcAHj* is zero if H* corresponds to an arbitrary 
derivative in (8) and Hj to an arbitrary derivative in 
(9), and vice versa. This follows from the property that 
ui and u2 are orthogonal vectors. Thus, the second 
term in (3b) contributes with a block diagonal matrix 
to J. The first term of (3b) is zero except when 8 k and 
6i equals 6io,&2o,<7i or <x2, due to the fact that A* is 
zero otherwise. 

In order to visualize the compact form of J, denote 
the first and the second term in (3b) with Lk,i and 
Sk,i respectively. The Fisher Information matrix then 
becomes 

J   = 
Ai    A2 

A3    A4 
+ Ei     0 

0     E2 
(10) 

and the covariance matrix of e in (2) can in a similar 
way be written as 

A   = EeeT = °i + 62>2 
&1O01 + &2O02 10"1 

1        &20 

610     1 

DÄDT. 

'i 0 1 

&io 
ho 

1 

(7) 

Computing the derivatives of H w.r.t. the ele- 
ments of 6 and denoting u* a column vector with 
unity   in   position   k   and   zeros   elsewhere,   yields 

an 
dalk 

&B_ 

dbik 
dn 
dfik 
m_ 
dgik 
9B 

da 
da2k 

du 
9b2k 

da 
dhk 
dB 

dg2k 
dB 

dal 

-f^uf^GD-1 

—i^uf^GD-1 

Ax 

-^Cmuf.^D-1 

T„-Ark-1 
Fi 

0 

CuiuJz-*D 

-§uii^'«-*GD- A\ 

uiu^~*GD" 

-SlCu.u^-^D-1 

n 
A2 

t2 

=    0. 

(8a) 

(8b) 

(8c) 

(8d) 

(8e) 

(9a) 

(9b) 

(9c) 

(9d) 

(9e) 

where Ai, A2, A3 and A4 have nonzero values only in 
the corners, whereas Ei and E2 vanish at the last row 
and column: 

Ai    = 

Ei    = 

£l,l 
0 

0    • ••    0 
0 

0 
0    • ••    0 

0 

J-'m,m 

Si,i s l,m 

Sm-1,1 
0 

<->m- l,m-l 

0 

(11) 

0 
0 

(12) 

5    Simulations 

Using formula (3) and the structure discussed in sec- 
tion 4 the CRLB was computed for a TITO system with 
FIR-channels and AR(2) source generating niters. The 
numerical values for the CRLB are presented in Ta- 
ble 1. 

value CRLB value CRLB 
&10 0.6 0.0626/AT hi 0.5 0.0628/W 
on -0.2 0.0620/N Ö12 0.1 0.0622/iV 

/ll -1.3 0.518/iV /21 1.1 0.655/JV 

/l2 0.7 0.514/JV /22 0.6 0.643/iV 
o\ 1 2.13/N 0"2 1 2.18/JV 

Table 1. CRLB values for FIR-channel and 
AR(2) source filters 
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Simulations with a Recursive Prediction Error 
Method (RPEM) applied to the source separation 
problem are presented in figure 2. For a presentation 
and analysis of the algorithm, see [1]. 

From figure 2 it is seen that the variances of the 

Variance of estimated channel parameters 

Figure 2. Asymptotic CRLB value (dashed) 
and parameter variance from an RPEM esti- 
mate (solid) 

parameters approach the CRLB. The fact that the 
variances of the source filter parameters deviate from 
the theoretical CRLB can be explained by the parsi- 
mony principle. This is due to the fact that the model 
used in [1] is overparameterized in the estimation of 
the noise covariance matrix (7). The estimation of 
this matrix includes estimation of three parameters, 
whereas it only depends on two independent variables 
namly <j\ and CT2 in addition to the channel parameters 

bio and 620- 
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6    Conclusions 

In this paper a formula for the CRLB for the source 
separation problem is derived. After a reformulation of 
the problem the CRLB formula was found to be com- 
pact and computationally appealing. Values of this 
bound are computed for a simple test scenario and com- 
pared with simulations of a recursive prediction error 
method. 
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Abstract 

Deterministic multichannel blind deconvolution is an im- 
portant problem arising in numerous areas of engineering. 
Recently, two different approaches to solving this problem, 
Maximum Likelihood techniques (like IQML) and subspace 
techniques (like EVAM), have been proposed. These meth- 
ods are theoretically elegant and computationally efficient, 
and questions arise as to what the properties of these esti- 
mators are. We attempt to answer some of these questions 
in this paper. We show that the subspace based EVAM es- 
timator is a coarse approximation of the IQML estimator. 
We present a new iterative scheme to compute the M-L es- 
timator, and Cramer-Rao bounds for the channel and input 
estimates. In addition, we present a Monte-Carlo compari- 
son study of the two estimators and establish the superiority 
of ML based techniques. 

1. Introduction 

Formally, the multichannel blind deconvolution problem 
can be posed in the following manner. Given yi,... , yp 
where 

a*Xi = yi,   l<i<p (1) 

and .T,(0) = 1,  1 < i < p, it is required to recover the 
x,- e !""». and ael"-. 

This problem arises in various areas of engineering. For 
example, in seismic signal processing, it is required to re- 
cover the seismic trace from its convolutions with different 
(unknown) acoustic inputs. The problems of blind channel 
identification and equalization in communication systems, 
and image restoration when different blurred versions of the 
same image are available can also be posed in this fashion. 

"This work was supported in part by the National Science Foundation 
grant No: M1P 91-57377, and a Schlumberger-Doll research grant 

t Yoram Bresler is on sabbatical leave at the Technion, Israel Institute 
of Technology during 1995-96 

The single channel blind deconvolution problem has 
multiple solutions and prior knowledge is required for its 
solution. In contrast, the multichannel blind deconvolution 
problem in Equation (1) has a unique solution if the chan- 
nels Xj are FIR, and their ^-transforms have no common 
zeros [1,4]. 

In this paper, we address the deterministic problem, 
where the input a and the channels are x, treated as 
unknown, constant vectors. Recently, two different ap- 
proaches to solving this problem, Maximum Likelihood 
techniques (like IQML) and subspace techniques (like 
EVAM), have been proposed. These methods are theoret- 
ically elegant and computationally efficient. However, to 
date their performance limitations in the presence of noise 
have not been satisfactorily explored. In this paper, we at- 
tempt to do this. For the case of additive white Gaussian 
noise, we 

1. Present an efficient algorithm for the computation of 
the Maximum Likelihood estimate (MLE). 

2. Show that the EVAM estimate is an approximation to 
the result obtained after the first iteration of an IQML- 
based strategy to compute the M-L estimate. 

3. Present an asymptotic analysis of EVAM. 

4. Present Cramer-Rao bounds for the channel and input 
estimates. 

5. Present the results of Monte-Carlo comparison stud- 
ies of the performance of EVAM and the MLE, and 
demonstrate that the MLE is the superior estimator. 

From this point on, we consider the case of p = 2. (Note 
that both the techniques under study here can be easily ex- 
tended address the case of more than 2 channels. ) 

2   The Maximum Likelihood Estimator 

Consider the noisy version of the multichannel blind de- 
convolution problem, defined by 

yi =a*Xj +ai)i i £ {1,2} (2) 

0-8186-7576-4/96 $5.00 © 1996 IEEE 
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where the T^ are noise vectors whose components J\f(Q, 1) 
and uncorrelated. In this case, the ML estimator is given by 

(a,xi,x2)Mi =argmin^||a*Xi-yi (3) 

Consider the case when the x* have equal length N, and 
their ^-transforms have no common zeros. (When nXl ^ 
nX2, the shorter one can be assumed to be zero-padded). 
Let yi and y2 be according to Equation (2), and let y = 

[yf y?]T-  For x G ^n* and inteSer m' we define the 

(nx + rn -1 x m) Toeplitz "convolution matrix" Cm(x) as 

Cm(x) = 

Xl 

L 0 

0 

Xnx—1 

0 

0 
0 

Xn,— 1- 

(4) 

Slock et al [10] have shown that the MLE of the channels 
can be written as 

{X1,X2)MLE = argmaxyT [A (A
T

A)
_1

 A
T

] y;    (5) 

whereA=[[C„a(xi)]T | [C„a(x2)]T]T.      (6) 

They have further shown that this can be re-written as 
(xi,x2)Mifi = argmin J(xi,x2) where 

J(x1>x2) = yT[BT(BBr)-1B]y; (7) 

B = [[Cn„+Ar-i(-x2)]  I [Cna+jv-i(xi)]]       (8) 

The latter step follows from the "minimal null-space pa- 
rameterization" concept suggested by Slock [10], who have 
proposed an IQML-type [2] iterative strategy to solve this 
problem. We propose another scheme based on gradient 
minimization of the cost function J(). Following a devel- 
opment similar to the one in [9], it can be shown that the 
gradient VJ() 

ot" •/() can be written as Q(x)x, where Q is 
an appropriate matrix. A stationary point of J(x) satisfies 
Q(x)x = Ox.This nonlinear eigenvalue problem is solved 
using the following iterative algorithm. 

1. Choose a starting point x0. 

2. For each x/i, construct Q(xfc). 

3. Choose Xfc+i to be the eigenvector corresponding 
to the smallest absolute eigenvalue of Q(xfc). 

4. Repeat until convergence. 

The computation can be performed efficiently, by using 
the inverse power method to find the smallest eigenvalue 
and corresponding eigenvector of Q(x), and exploiting the 
structure of Q. Simulations show the algorithm to converge 
rapidly to the correct solution for moderate and high signal 
to noise ratios (SNRs). 

Simulations indicate that in terms of convergence char- 
acteristics and breakdown thresholds, this algorithm is very 
similar to the IQML-based strategy. Osborne et al [9] show 
that, when B is a single Toeplitz matrix matrix with the 
structure Cm, the eigenvector-iteration algorithm has linear 
convergence. It is conjectured that a similar result holds for 
our application. 

3   Subspace techniques 

Consider Equation (1) for the case when p - 2. If 
Y\, Y2, Gi and G2 are the z-transforms of the sequences y i, 
y2, gi and g2, respectively and length(gi) = length(g2) = 
m&x{nXl,nX2)^N, all solutions (Gi(z),G2(z)) to the 
equation 

Y1(z)G1{z)+Y2{z)G2{z)=0VzeC (9) 

have the form Gx{z) = aX2(z) and G2(z) = -aXi{z) for 
some a £ C (ref [4]). This equation (and variants thereof 
forp > 2) forms the basis for the efficient and elegant sub- 
space techniques that seem to have been developed simul- 
taneously and independently by Liu et al [8] and Gurelli 
et al [4]. Gurelli et al call this technique EVAM, and we 
shall continue to do so here. Although EVAM can be used 
successively to solve for xi and x2 even if only upper lim- 
its for their lengths nXl and nxo_ are available [4], we limit 
ourselves to the case when these lengths are known exactly. 
The EVAM estimator can be used to recover the channels 
up to a scale factor, as 

(x1,x2)ß = argmin[x2^ -xf]R^[x^ - xf]T;   (10) 

R°y = [C&(yi) | C£(y2)] [c£(yi) | c£(y2)]
: 

(11) 

and C is the convolution matrix defined earlier. (The appro- 
priate scale factor has to come from prior knowledge, say 
||xf || = 1 or a;i(0) = 1.) Equation (11) can be re-written as 

(Xl, x2)B = argminyT [BTB] y (12) 

where B is defined as in Equation (8). Thus it can be seen 
that the subspace technique is an approximation of the first 
iterate of the IQML technique (with BBT in Equation (7) 
replaced by the identity). 

The EVAM estimate is exact when there is no noise and 
a is "persistently exciting" [4], a condition that is satisfied 
with probability one when the elements of a are drawn from 
a continuous probability distribution. However, when there 
is noise present, the matrix Ry formed by the EVAM pro- 
cedure is a perturbed version of Ry. The eigenvalues of 
the matrix are also perturbed, and the perturbation is not in- 
dependent of a. The application of EVAM to noisy data is 
justified in [4] with the following argument: the perturba- 
tion Ry - Ry is a random matrix with mean a21 and the 
variance of each element of the order of n~laA. When na 

tends to infinity, it can be seen that the Ry « Ry +a2I, the 
eigenvectors of which are the same as those of Ry. So the- 
oretically EVAM can work even for very large noise levels 
in the presence of sufficiently large data lengths. 
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In this paper, we present a theorem that provides further 
evidence of the reliability of EVAM at large data lengths. 
Using tools found in [3, 7], we have been able to show [5] 
the following. 

Theorem 1. Let xE be the EVAM estimate of the channel 
Xj obtained for the noisy multichannel blind deconvolution 
problem presented in Equation (2). Then xB is "asymptoti- 
cally unbiased to second order". This means the following. 
Let a -C 1 and na » nXl + nX2. Then we can write xB as 

= Xi + ^(<m, -0.5 V )'t. 2,J (13) 
i=i 

where the tid do not depend on a or na. (Refer [11]). Let 
En[] denote expectation with respect to different noise real- 
izations. Then £„[tu] = 0, En[ti2] = Ofori £ {1,2}. 
7/!«.yJEn[xy = xi + 0(a3n-1-5). 

4   The Cramer-Rao bound 

Given a family of distributions pe(z) for a random vari- 
able Z £ Z, indexed by a parameter 6 £ 0, the Cramer 
Rao bound is a lower bound on the covariance of any unbi- 
ased estimator 0(z) of 0. It is not always achievable, but 
is a commonly used benchmark against which the mean 
square errors of proposed estimators are compared. Let 
C'm to be equal to the convolution matrix Cm without its 
first column. With these definitions, and defining 9 - 
Ml),... ,zi(nxi - l),x2(l),... ,x2(nX2 - l),ar]T,it 
can be shown [5] that the Cramer-Rao bound for 6 in the 
scenario in Equation (2) is given by K(6), where 

K(0) = a2 A     B' 
BT    ]D> 

^.(aflC^fa)] 
O 

O 

[C'    (a)nc^»] 

' [C'nri(*)]T[Cna(xi)] 
_ [CL2(a)]T[C„Q(x2)] 

2 

£[Cn.(xi)]r[Cno(xO] 

(14) 

(15) 

(16) 

(17) 

Note that cr2A_1 is the CRB for any unbiased estimator 
of the channels x, when the input a is known, and CT

2
D

_1 

is the CRB for any unbiased estimator of a when the chan- 
nels are known (non-blind case). Equation (14) can be 
further simplified (using standard results on matrix inver- 
sion [6]). The part of the CRB corresponding to the chan- 
nels, K(XI , x2) can be shown to be 

«(xi,x2) =a2 + . 
(18) 

It can be seen that the Cramer-Rao bounds for the blind case 
are greater than those for the non-blind case, as expected. 
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Figure 1. Plots of eE{) (solid lines), eMLE{) 
(dashed lines) and ?() (dotted lines) as a function 
of the input length na. 

5   Monte Carlo Comparison Studies. 

In the studies described in this section, we attempt to 
evaluate the performances of the EVAM and ML estimators 
for the 2-channel blind deconvolution scenario described 
by Equation (2), by comparing them to each other and to 
the Cramer Rao bound, under different conditions, In what 
follows, xB and XMLE are the EVAM and ML estimators 
for the channels, and aE and SLMLE are similar estimators 
for the input. eE(x) £ En[\\xE - x||2]/(nX] + nX2) and 
e£>(a) =JEn[||aij-a||2]/(na), where the expectation En is 
over different realizations of the noise vectors 77^. eML£;(x) 
and eMLE(a) are similarly defined. Also, we define the 
Cramer-Rao bounds ?(x) ^ trace(K(x))/(nXl + nXo) and 
<T(a) £ trace(K(a))/(n0). 

In the first study described here, we demonstrate the ef- 
fect of the input length na on the 2 estimators. Here is a 
description of the study. 

• Choose nXl, nX2, a. 

• Choose random xi £ 

• Choose u £ 

,x2 £ 

• For nu = 10 : 10 : 200a = u(l : nu). 

• Compute eß(x), eE(a), eMLE{x), eMLE(a), <r(x), ?(a) 
for each nu. 

The results of one typical run (for a specific realization 
of the Xi and u) is in Figure 1. In this case n^, = nX2 = 5 
and o = 0.001, corresponding to an SNR of 60 decibels. 
Note that the a was chosen to be rather small on purpose. 
In accordance to our analysis, it ensures that the EVAM es- 
timates are essentially unbiased, thus justifying comparison 
with the CRB for unbiased estimation. 

For all the plots in this chapter, the ?/-axis is calibrated on 
a logarithmic scale. Though ML has performed uniformly 
better than EVAM at all input lengths, the difference in per- 
formance becomes small for large na. 

The next study compares the performance of the EVAM 
and ML estimators at different signal to noise ratios (SNRs). 
The methodology is the same as in the previous case, except 
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that the quantities e and c are computed at different values 
of er. The result of a typical run (for a specific choice of the 
Xi and u) is shown in Figures 2 (a) through (d). 

It can be seen that ML outperforms EVAM by a substan- 
tial margin at all SNRs. However, the iterative algorithms 
for ML do not converge for low SNRs. So the ML esti- 
mates used in the eMLE P'ots in Figures 2(c) and (d) were 
computed using a descent algorithm. Note that the EVAM 
technique breaks down much sooner than ML. By SNR = 
10 dB, both estimators have broken down. 

(a): EVAM vs ML (b): ML vs CRB 

2        3        4        5        6 

(a): SNR = 80dB 

3        4        5        6 

(b): SNR = 40dB 

2 3 4 5 6 

(c): SNR = 20dB 

2 3 4 5 6 

(d): SNR = lOdB 

Figure 2. Plots of e£(x) (solid lines) and eMLE{*) 
(broken lines). Thex-axis is numbered in multiples 
of max(nXl, nX2). 

The last study compares the errors in the M-L estimates 
to those in the EVAM estimates and to the Cramer Rao 
Bound by Monte-Carlo studies that sample various realiza- 
tions of the channels and the input. The numbers na = 12, 
nXl = 5, nX2 = 5 and a = 0.01 (corresponding to SNR 
= 40 dB) are fixed, and the vectors a, xi and x2 are gen- 
erated randomly (according to some distribution) in R™°, 
Rn* i and W1* 2, respectively (100 times for this study). c (x) 
and c(a) are computed for each (XJ, a). eEQ and eMLE are 
also computed by an internal Monte-Carlo run, with ran- 
dom noise realizations. Figure 3(a) contains a histogram of 
the quantity e£(x)/eMii?(x). It can be seen that the ratios 
are often very large, indicating that the EVAM estimates 
are far worse than the M-L estimates. Figure 3(b) contains 
a similar histogram of the ratio eMLE(x)/<r(x). The ratio 
is nearly always one, showing essentially efficient perfor- 
mance of the M-L criterion with finite data at this SNR. 

Recall that for the value of a chosen, the inferior perfor- 
mance of EVAM is not due to threshold behavior. 

Figure 3. (a): Histogram of the ratios 
eB(x)/eMiB(x) (b): Histogram of the ratio 
eMLß(x)/c(x). In each case, the last bin has 
everything greater than 100. 
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ABSTRACT 

The problem of multichannel blind signal deconvolution is 
considered. We show that input signals can be restored 
(or separated) using only the condition that they are sta- 
tistically independent. Two main necessary and sufficient 
conditions involving high order cumulants are given and 
proved. Hence, a class of criteria for multichannel signal 
deconvolution are obtained. Self adaptive gradient based 
algorithms are derived in order to optimize the proposed 
criteria and computer simulations are presented in order to 
demonstrate that the proposed algorithm works. 

1.  INTRODUCTION 

The problem of multichannel blind signal deconvolution (or 
blind equalization) of Linear Time Invariant (LTI) systems 
is currently receiving a lot of attention, see [l]-[8] and ref- 
erences therein. The problem finds numerous applications 
in diverse fields of engineering and applied sciences, e.g. 
data communication, sonar processing, seismic exploration, 
antenna processing, speech processing. 

In the past ten years most of the proposed approaches 
consider a restrictive model known as source separation [9]- 
[12]. Indeed in that case the coupling channels are assumed 
(unknown) constant gains. Here we consider the more gen- 
eral model in which the coupling channels are unknown LTI 
systems. It can be simply formulated as follows. Several lin- 
ear (temporal and spatial) mixtures of certain independent 
signals called sources are observed. We want to recover the 
unknown original sources without knowing the mixing fil- 
ter. Hence, this must be realized from the only knowledge 
of the observations. This is the reason why this kind of ap- 
proach is often qualified as "blind" or "unsupervised". In 
this paper the case of complex signals is considered. 

2.   PROBLEM FORMULATION 

We consider the multichannel LTI and generally non-causal 
system described by 

x(*) = ^G(fc)a(i-fc) (1) 

where a(t) is the (N,l) vector of statistically independent 
sources, x(i) is the (JV,1) vector of observations and {G(.)} 

is a sequence of (N,N) matrices which describes the impulse 
response of the LTI mixing filter. 

The multichannel blind deconvolution problem consists 
in estimating a LTI filter (equalizer) {H(.)} thanks to the 
only observations x(t) of an unknown LTI system {G(fc)} 
and such that the vector 

y(t) = ^H(fc)x(t-fc) (2) 

restores the N input signals at.  We define the global LTI 
filter {S(.)} according to 

y(i) = ^S(fc)a(t-fc) (3) 

It is necessary to make the two following assumptions. 
Al Each source m is a sequence of zero-mean complex in- 
dependent and identically distributed (i.i.d.) continuous or 
discrete random variables. Without any loss of generality 
they are assumed unit power. Moreover we shall assume 
that non-zero cumulants of random variables exist and are 
finite whenever they are introduced. In particular, this im- 
plies that sources must be non-Gaussian. Finally we assume 
that the p-th order joint cumulant of the real and imaginary 
parts of each source are equal. 
A2 The unknown LTI system {G(.)} is assumed stable and 
invertible. 

Notice that assumption Al is not very restrictive e.g. in 
digital communication since most signals have a symmetric 
constellation, e.g. 4-QAM, 16-QAM, V27. 

Because sources are assumed inobservable, there are 
some inherent indeterminations in their restitution. That 
is, in general, we cannot identify the order, the power and 
the time origin of each sources. Indeed this combines the 
inherent indeterminations of the source separation problem 
together with those of the classical blind scalar deconvolu- 
tion problem. Hence signals are said separated if and only 
if (iff) the global LTI system {S(.)} reads 

S(z) = J>(fc)*-fc = D^DxP (4) 

where D(z) is a diagonal matrix such that its entries are 
dii(z) = z n\ i = 1,...,JV, m integers, Di an invertible 
constant diagonal matrix and P a permutation matrix. 

0-8186-7576-4/96 $5.00 © 1996 IEEE 
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3.  DECONVOLUTION CRITERIA 

Contrast functions as defined in [2] constitute blind decon- 
volution criteria in the sense that they are maximum iff 
the relation in (4) holds for S(z). In the following "white" 
vectors y are considered, i.e. vectors such that 

E[y(t)yH(t-r)]=K(r) (5) 

where I is the (N,7V) identity matrix, 6(.) the dirac distribu- 
tion and E the mathematical expectation operator. White 
vectors y are deduced from sources a thanks to (3) if 

S(z)SH(p) = I. 

Let us define the two functions if and Ip according to 

(6) 

i?(y) = £ lc"^)l'  ?(y) = £ lc*I(j/i)l    (7) 

i=l «=1 

where Cpu is the p-th order joint cumulant of real random 
variable u, p an integer greater or equal to 3 and Tl(yi) 
(resp. I(yi)) stands for the real (resp. imaginary) part of 
complex random variable y,. The following theorems are 
proved in the paper. 

Theorem 1 The function lf(.) (resp. lj(.)) forp>3is 
a contrast over the set of white random vectors having at 
most one null cumulant of order p of its real part (resp. 
imaginary part) . 

Proof: We only consider I*(.) because the proof for Ip(.) 
is completly similar. Clearly, lf(.) is symmetrical and in- 
variant under scale change. Let us show that if {S(.)} is 
such that (6) holds then 

I?(Sa) < I?(a) . (8) 

From (3) one has 

yi(t) = ^2sij(k)aj(t-k) (9) 
j,* 

Thus thanks to the independence of the sources 

(10) 
Since CpTl(aj) = CP1(,aj) one has 

N N 

t=l .7=1 

where 

As = 53(|»(««(k))f + \l{sis(k))\P) ■ (12) 
i,k 

Now from (6), Vj, £. fc M
fe)l2 = 1, thus Vj, Aj < 1 and 

(8) is realized. 

Let us consider the equality in (8). If one source, say 
as, is such that Cp7^(aw) = 0 then equality in (8) requieres 
equality Aj = 1 for j = 1,..., JVi which holds if it exists 
one and only one (i,j), i = 1,...,N; j = l,...,Ni and 
Vfc such that \K(Sij(k))\ = 1 or |X(sy(fc))|. Because fS(.)} 
is such that (6) then S(z) is of the form (4) and Ip (.) is 
a contrast over the set of white random vector having at 
most one null cumulant of order p of its real part. • 

Hence by the theorem, for white random vectors y deduced 
from eq.(3), necessary and sufficient condition for blind de- 
convolution is 

N N 

5]|Cp'fc(j/i)| = 5>prc(ai)|, (13) 

or 
N N 

5>Px(3/*)i=52ic',J(ai)i-       (14) 

t=l i=l 

This leads to the two following constrained blind deconvc- 
lution criteria 

N 

max y^\CpTl(yj)\    subject to   y white       (15) 

i=l 

N 

max y]\CpI(yi)\    subject to   y white        (16) 
t=i 

Now in the specific case of sources o, with identical sign ep 

of the p-th order cumulant of Tl(ai) and I(a,) for all i, we 
have the following theorem. 

Theorem 2 For even integer p > 3, the functions 

N N 

J?(y) = e„5IWw) and Jp(y) = £P53c"J(2/i) 

are contrasts over the set of white random vectors having 
non zero cumulant of order p of its real and imaginary part. 

The proof is easily deduced from Theorem 1 and eq.(10) 
where if p is even then sign(Cp72.(j/i)) =sign(Cp7£(ai)) = ep. 

If we consider the value p = 4, we have the following 
simplified theorem. 

Theorem 3 The functions 

N N 

K*(y) £ £4]TErc4(2/0    and   Kz(y) £ e4 £ ET4(yi) 

are contrasts over the set of white random vectors having 
non zero cumulant of order 4 of its real and imaginary part. 

Proof: We only consider Kn. One has C4^(j/i) = ETl4(yi)- 
3E272.2(j/i). Since white vectors are considered E1Z2(yi) is 
constant Vi. Thus K^(y) = J?(y) + cst where cst is a 
certain constant. Then the theorem is proved. • 

As previously we can deduce necessary and sufficient con- 
ditions for blind deconvolution and the corresponding max- 
imization criteria. 
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4.   SELF-ADAPTIVE ALGORITHM 

In order to achieve the deconvolution, we have to find a fil- 
ter {H} such that the proposed contrasts are maximum. A 
stochastic gradient based adaptive algorithm is proposed in 
this section. The set of definition of the proposed contrast is 
the set of white vectors. Hence in the following we consider 
that a first stage realize a multichannel spectral prewhiten- 
ing of the observations. This "classical" stage will not be 
discussed here. In order to ensure the whiteness of y, {H} 
must be such that 

H(*)H"(-L) = I (17) 

that is the filtering transfer matrix is lossless or all-pass. 
Such transfer admits a special parametrization thanks to 
planar (Givens) rotations, see e.g. [4]. In the simplest case 
(N = 2,k = 0,1) one has 

H(z) = Qi(0i,fc) (*o    I) Q2(02,tf>2) 

where 

n (f)  M \ - ( e^cosfli shift       \ 
Q.(ft,*)-^   _sin6i    e-»icMOi ) ■ 

(18) 

(19) 

Using this parametrization, we have now to find the angles 
Oi and 4>i in order to maximize one contrast. Denoting p 
anyone of parameters (&,&), a deterministic procedure is 
to reach the maximum of a contrast C thanks to an iterative 
algorithm which updates p with the increment 

Ap = ß 
ac 
dp (20) 

where p is a small positive constant. Hence the optimum is 
found as the limit of the sequence 

p{n) = p(n - 1) + p. — (21) 
p=p(n-l) 

In cases of the contrast in this paper, it is possible to express 
the criteria as the expectation of some random variable. We 
use a loss complex version of the gradient algorithm (21) 
by dropping the expectation. It will be called a "stochastic 
algorithm". For N = 2 and contrast KTC(.), one easily has 
the stochastic increment 

Ap = 4//£4CK3(j/i) 3^,^(3/!) ,^gK(j/2) 
dp 

+ Tli(y2y- 
dp ')        (22) 

where öft(?/i)/dp are deduced from (2) and (18). 
Convergence analysis of the proposed algorithm is be- 

yond the scope of this paper. However computer simula- 
tions are presented in order to demonstrate that the pro- 
posed algorithm works. 

5.   COMPUTER SIMULATIONS 

The performances of the algorithm are associated to an in- 
dex/measure of performance defined on the global filtering 

matrix {S} according to 

ind({S})    £    I EE M*)la 

3,k 
max|s^(m)| 

+ EE M*)la 

i,k 
max\sej(m)\2 

-1 

1 

This positive index is indeed zero if {S} is such that S(z) 
satisfies (6) and a small value indicates the proximity to 
the desired solution. We present simulations in the case 
of two sources. Three kind of sources are considered: i) 
two 4-QAM communication sources; ii) two 16-QAM com- 
munication sources and iii) two constant modulus sources: 
expO» where 0 is a random variable with uniform proba- 
bility density over [0, 2TT[. The mixing filter is of the form 
(18) where 6>i = TT/6, <£I = TT/18, 62 = TT/9 and <j>2 = TT/36. 

The algorithm (22) is tested via Monte Carlo simulations. 
In Fig.l, 2 and 3 we have plotted the sample average over 
500 data realizations of the index as a function of iterations 
respectively in cases i), ii) and iii). The index decreases 
monotically and achieve the steady state level of -33dB, 
-27dB and -28dB respectively in the three cases. In Fig.4 
and 5 we have plotted one realization of the performance 
index, the estimated parameters, the observed signals and 
the reconstructed signals at channel 1 when steady state is 
achieved. 
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Abstract- Problems of separation of convolutive mix- 
tures of wideband signals impinging on an antenna of 
sensors often arise in signal processing. In seismic signal 
processing, techniques have been developed to perform 
separatton of seismic waves (f-k or median filters, spec- 
tral matrix filtering, Radon or Karhunen-Loeve trans- 
forms, Maximum Likelihood methods). They give good 
results in most cases, yet, their limits might occur in dif- 
ficult contexts (waves of very close energies or/and near 
slowness). We analytically study the resolving power of 
spectral matrix filtering to theoretically explain why the 
method does not work any more for waves of close ener- 
gies. This problem brings us to the question of links be- 
tween two basis: eigenvectors and steering vectors. 

Keywords- Array Processing, Spectral Matrix Filtering, 
Seismic Signal Separation, Blind Processing of Wide- 
band Signals. 

I. Introduction 

Problems of separation of convolutive mixtures of 
wideband signals impinging on an antenna of sensors 
are widely spread. Typical examples can be found in 
passive sonar, geophysics, etc... In geophysical opera- 
tions, the aims of signal processing are the separation 
and the identification of waves to get a better under- 
standing of the onshore. Techniques have been devel- 
oped to achieve these purposes (Karhunen-Loeve trans- 
form [5], f-k filter, median filter [4], spectral matrix fil- 
tering [7,8], Radon transform [2], Maximum Likelihood 
Estimator [3]). They give good results in many cases but 
their limits might occur for waves of very close energies 
or too near slowness. Focusing on spectral matrix filter- 
ing, we determine its resolving power by analytically 
studying links between two basis : on the one hand the 
eigenvectors basis which is the mathematical object 
given by the eigendecomposition of the spectral matrix 
of observed signals and on the other hand the steering 

vectors basis which is the physical object we are inter- 
ested in. We explain how these two basis fit together. 
This fitting depends on different parameters, yet, our 
choice was to express results versus a geometrical crite- 
ria (i.e. the spatial coherency of waves vectors) and the 
energy ratio of the sources. 

n. Theoretical background 
II.1. The model 

We suppose that the antenna is linear and composed by 
Ar sensors. The signal rtft) recorded on the £* sensor is a 
linear combination of the p detected waves, plus an ad- 
ditive noise [9]. This noise is supposed to be spatially 
and spectrally white, gaussian and independent of the 
signals of interest. Its spectral density is notedo-fc

2. These 
assumptions are written in the time domain as follows : 

v^ P 

where * is the convolution operator, a,{f) is a determi- 
nistic amplitude term (referred to as the /* source or 
wave-front): it does not convey information about the 
propagation, ski(t) describes the propagation of the /th 

wave recorded on the k* sensor and b^t) stands for the 
noise. The transcription of (1) into matrix notations 
gives: 

p 

R(t)= S(t)*A(t) + B(t)=^Oj(t) + B(t) (2) 
J=i 

using following notations: 

•   R(.0=[n(.t),-,r„(t)f is the (N,l) vector of the ob- 
servations. T stands for the transposition operation. 

7.th S(/)=[s,(0,-",S//)] is a (N,p) matrix whose A* col- 

umns is the so-called A* steering vector expressed as : 

\*(0.-,W)]r- Sk(t)=[ 

0-8186-7576-4/96 $5.00 © 1996 IEEE 
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The phase of its first component is assumed to be null 
which implies that the first sensor is chosen as a ref- 
erence. This convention ensures the unity of the 
sources. Besides, these steering vectors describe 
propagation on the antenna. Under the plane waves 
assumption with neither attenuation nor dispersion, 
the complex gain between two sensors reduces to a 
pure phase term. But in the general case, more com- 
plex phenomena have to be taken into account. 

•   Oj=Sj(ty*aj(t) is they* wave vector. 

Equation (3) is obtained by Fourier transforming (2). 
The general problem is then divided into a set of prob- 
lems of separation of instantaneous mixtures of signals. 
The calculus at a given frequency bin does not depend 
any more on those made at other frequency bins. 

R(v)=S(v).D(v).D-\v)A(v) + B(v) (3) 

S'(v) " A'iy) 
We will focus on the problem of separation of colored 

but uncorrelated sources;!. The diagonal renormalisation 
matrix D we have introduced, ensures spectral whiten- 
ing of the sources (i.e. the new sources A'(v) have unit 
power). Whatever S'(v), matrix of the new steering vec- 
tors, its Singular Values Decomposition (SVD) is given 
by [12]: 

S'(v)=V(K).A^(v).n(v) (4) 

where V is a unitary (N,N) matrix (i.e. V.V" = IN; 
H de- 

notes transconjugaison operator and IN is the (N,N) iden- 
tity matrix), A is a (N,p) diagonal matrix whose N-p last 
lines are null (it is obviously supposed that N>p), U is a 
(p,p) unitary matrix, parametered in the general case as a 
product of Givens rotation matrices (II'), multiplied by a 
diagonal matrix of pure phase terms (P) [12]. In the most 
simple case which is the two waves case, its expression 
simplifies to: 

T(v)^R.RH]= 

n(0,*r,^,^2)=rr.p= 

cos0(v) sia0(v).eMv) 

smd{v).e~Mv)       cos0(v) 

,M(V)        o 

0       eiVlW 
(5) 

It only depends on four parameters which vary with the 
frequency. 

II.2. Eigendecomposition of spectral matrix and 
estimation of matrices V and A 

To analytically determine the two matrices V and A in- 
volved in the parametrisation of S', we build the spectral 
matrix T(v), related to the observations R(\) and defined 
as: 

(6) 
<$S'.A'.A'H.S'H] + ^B.BH] 

where Q stands for an averaging operator. Equation (6) is 
obtained by reintroducing the parametrisation of the 
propagation matrix S' that was given in equation (4). It 
can also be identified with the eigendecomposition of the 
spectral matrix because of the uniqueness of this one. 
Thus, eigendecomposition enables the determination of 
two of the matrices that are looked for : the p first col- 
umns of matrix V are the p first eigenvectors of matrix T 
(assuming that eigenvalues have been arranged in a de- 
scending way). In the same way, the p largest eigenvalues 
At of T are related to A. In fact, we have : 

V^i-^ ° 
0 A = V^2~ oi (7) 

The eigenvectors associated with the p largest eigenva- 
lues belong to the same subspace (called the Signal Sub- 
space (SS)) as the one spanned by the p steering vectors of 
the desired waves vectors. Yet, nothing guarantees the 
exact fitting between these two basis. This is obviously 
due to the fact that the unitary matrix II also involved in 
the equation statement is not reachable by this own 
treatment. We can even notice that eigenvectors define an 
orthonormal basis whereas steering vectors are not neces- 
sarily orthogonal. 

In next sections, we explain how the two basis fit to- 
gether, and we quantify resolving power of the spectral 
matrix filtering. The analytical calculations prove that, in 
most cases, treatments based on exploitation of second 
order properties of received signals are not sufficient to 
separate waves but enable extraction of the most energetic 
one. To reach separation, treatments have to be com- 
pleted, in other words matrix II has to be estimated. In 
blind separation of wideband independent sources, this 
matrix is determined using the fact that it has to lead to 
most independent sources [6,1] in the sense of a higher 
order criteria. Blind separation of seismic waves has been 
performed replacing this criteria by a local distance sta- 
tionarity criteria applied on the phases of the estimated 
wave vectors [10,11]. 

m. Spectral matrix filtering : resolving power 

We now focus on the case of two uncorrelated plane 
waves. The two vectors K/(v) and V2(v) associated with 
the two largest eigenvalues Xx and A2 have to be analyti- 
cally calculated. To reach this purpose, we exploit the two 
following properties: these vectors are eigenvectors of 
matrix T(v) (equation 8) and they are linear combination 
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of steering vectors because of their belonging to the SS 
(equation 9): 

T{v).Vk (v)=AK.l\ (v) \/k=1..2 

=(si.S{»+SlS? + o?.lN).Vk(v)    (8) 

V2(v)=d,S[ + d2S[ (9) 

where c,, c2, </,, d2 are complex numbers. 
This set of hypothesis leads to the following system : 

Lu-oZ-Pa^CzSf.Si- 
1 ? „ (10) 

where Pa{ = S'". S; = || 5;' ||2. To solve this system, differ- 

ent cases have to be distinguished: 

(i) Waves are geometrically orthogonal (i.e. S{.S2
H=0) 

but sources have different energies, then the eigenvector 
which is associated with the largest eigenvalue is collin- 
ear to the steering vector of the most energetic wave, and 
the eigenvector associated with the second eigenvalue is 
collinear to the steering vector of the less energetic wave. 
This appears in eq. (11). The treatment is completed at 
the end of the second order stage to the extent that the 
found basis already coincides with the wanted basis : 

U^cxt+Pa,    ;   V,={\lJPa~,).S[ 

[A2= cx\ + Pa2 ;   V2 = (1 /JfyySi 
(11) 

(ii) The case of orthogonal waves with the same energy is 
a singular one. Eigenvalues are found to be always identi- 
cal. Whatever the vector belonging to the space spanned 
by steering vectors, it is an eigenvector. The system al- 
ways remains undetermined... 

(iii) We now suppose that the waves are not orthogonal. It 
can be easily established that the two largest eigenvalues 
of the spectral matrix are given by : 

^1/2= \\Pai + Pai ±^(Pa,-Pa2)
2+4.\s^.Si\2 

A condition about cx,c2 is deduced : 

v= 
+ o> 

2.S{H.S2 

(Pa2- Pa,) + ^(Pa,-Pa2f+4.\S2
H.S{\2 

We obtain the same kind of relation for dvd2. These two 
ratios are representative of the geometrical organization 
between the two considered basis. The transformation 
which ensures the passing from one basis to the other one 
is the multiplication by a compression matrix (A) and a 
unitary matrix expressed as a complex rotation matrix. 
In the two waves case, it becomes : 

s'(v)=v.A>2.n= 

fo FJ [-sinöV^'-^    cos^e**   , 0       jA2-ag 

Conditions on coefficients ch c2, dh d2 are deduced 
from this last equality : 

Thus we have to parameter the unknowns. Uniqueness 
of this parametrisation is ensured by the normalisation of 
the eigenvectors: 

arg(q)+Vi=0 

arg(^2) + V2=° 

and: 

K=arg(</2)-arg(c2) 

|c,| = cosö/^A,-<^ 

|c2| = sin0/ 1*1-°? 
=tanö 

\d2\=cos0/ J&2 

°b 
~ÄznO 

We now quantify the dependency of angles 6 and K of 
the unitary matrix on parameters of interest. In our case, 
the two desired angles are expressed versus E the energy 
ratio of the sources {E=Pa^Pa,) and the spatial coher- 
ency p between the two waves, p is the normalized scalar 
product between steering vectors (it is a geometrical crite- 
ria). In the case of plane waves, with equispaced sensors, 
we have: 

SfW-SjW        1   sin(N.AQ>(v))   /(AM)AO(v) piv)- 
$Hvtf.fo(vtf~N'   **Wv)) 

O,-*! 
with: A® 

The steering vector of the A* wave is defined in the fre- 
quency domain by: 

S'tM =JP*-SkM=ffi ' ]  e'J2'n'T>.' 
- j2xv. TK_lt 

\ 

In the plane wave case with equispaced sensors, the 
propagation matrix has a special structure : it is a 
Vandermonde matrix. The time delay on /w* sensor is 
then given by: 

m.d.sm{Ok)     m.Q>k 

Tm-k~ C =2.7t.V 

where d is the distance between two sensors, c the propa- 
gation velocity of the sound, and $ the angle of arrival 
on the antenna of the k& wave. 
The module of the spatial coherency varies between 0 and 
1 ;p= 0 for geometrically orthogonal waves. It becomes 
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true if the number of sensors is great and the angles of ar- 
rival are different; p= 1 for collinear waves. Finally, we 

find that: 

OB first eigenvector : 
Power of second sonrce / Power of first sonrce 

SAME ENERGY 

v2 

c2/ = tan0= 
{E-\) + j{\-E)2+4\tf.E 

2.|/+VE 
and K= y/x - y/t - (N -1). AOj, 

It is also possible to get the expression of eigenvectors, 
which will make it possible to quantify the resolving po- 
wer of the spectral matrix. We have established that: 

Power of S, on V, ___!__ = Power of S2 on V2 

Power of S2 on V, ~ {\m9f     Power of S, on V2 

Waves of identical energy characterize a singular case 
because angle 9 does not depend on spatial coherency any- 
more. It remains equal to 45° (figure 1). Moreover it is 
the less favorable one in terms of separation to the extent 
that, after the second order stage, sources still remain to- 
tally mixed (the same proportion of each source on both 
whitened signals (figure 2)). In the case of orthogonal 
waves (spatial coherency coefficient equals 0), angle 6 
remains equal to 0° (separation is achieved after simple 
projection onto eigenvectors). In all other cases, the sepa- 
ration is still not performed after the second order stage, 
but on the first eigenvector : proportion of the most ener- 
getic source is widely superior to the proportion of the 
least energetic source. In spite of the fact that second 
source is less energetic, its proportion remains superior to 
the proportion of most energetic source, as far as the se- 
cond eigenvetor is concerned. 

Angle 6 versus the energy ratio of the sources & 
the spatial coherency of the wave vectors 

Spttisl cohcrmcy p 

OrthogoSrl^aves (p«0) 

0 in degrees 

40 

30 

20 

to 

ORTHOGONAL WAVES 

O.Z       0.4      O.G       0.8 1 £ 

Figure 1 : Variations of the angle 8 versus energy ratio and spatial 
coherency of the waves 

ORTHOGONAL WAVES 

;s2    v, I 
Figure 2 : Fluctuations versus spatial coherency and energy ratio 

IV- Conclusion 

In this work we explain how the basis of steering vec- 
tors and eigenvectors fit together and how this fitting de- 
pends on different parameters such as the energy ratio of 
waves and their spatial correlation degree. 

V- References 

[1] Comon, P., 1989, "Separation of sources using higher or- 
der cumulants" : SPIE Conf. On Advanced Algorithms and 
Architectures for Signal Processing, Real-Time Signal 
Processing, vol. XH, pp. 170-181, San Diego, CA. 

[2] Durrani T. S., Bisset D. 1984, "The radon transform and 
its properties" : Geophysics, n°49, pp. 1180-1187. 

[3] Esmersoy, C, 1990, "Inversion of P and SV waves from 
multicomponents offset vertical seismic profiles" : Geo- 
physics, vol. 55, pp. 39-50. 

[4] Hardage, B. A., 1985 "Vertical seismic profiling, Part A : 
Principles" : Handbook of geophysical exploration, Sect. I: 
Seismic exploration, K. Helbig and S. Treitel Editors, Geo- 
physical Press, London. 

[5] Hcmon, C, Mace, D., 1978, "Essai duplication de la 
transformee de Karhunen-Loeve au traitement sismique" : 
Geophysical Prospecting, vol. 26, pp. 600-626. 

[6] Lacoume, J. L., Ruiz, P., 1988, "Sources identification : a 
solution based on the cumulants" : IEEE ASSP, Workshop 
on Spectrum Estimation, Minneapolis, pp. 199-203. 

[7]      Mars, J., Glangeaud, F., Lacoume, J. L., Fourmann, JL 
M, Spitz, S. 1987, "Separation of seismic waves" : JJ 
Annual SEG Meeting, New Orleans, pp. 489-492. 

[8] Mcrmoz, H-, 1969, "Elimination des brouilleurs par 
traitement optimal d'antenne" : Annales des Telecommuni- 
cations, tome 24, n°7-8, pp. 282-293. 

[9] Robinson, E. A., 1967, "Predictive decomposition of time 
series with application to seismic exploration" : Geophys- 
ics, vol. 32, pp. 418-484. 

[10] Thirion, N., Mars, J., Lacoume, J. L., 1995, "Separation 
aveugle de signaux large bände : un nouveau challenge en 
prospection sismique" , GRETSI, Juan-les-Pins. 

[11] Thirion, N., 1995, "Separation d'ondes en prospection 
sismique" : these de doctoral I 'I.N.P.G. 

[12] Wilkinson, J. H., 1965, "The algebraic eigenvalue prob- 
lem" : Oxford University Press. 

343 



Multichannel Equalization Lower Bound: 
a function of Channel Noise and Disparity 

I. Fijalkow 
ENSEA / ETIS, 6 av. du Ponceau, 95014 Cergy-Pontoise Cdx, France 

e-mail:    fijalkowoensea.fr, fax:     (33-1)  30 73 66 27 * 

Abstract 

Recents studies have shown that provided spatial or 
temporal diversity, blind identification / equalization is 
perfectly achievable under some conditions on the chan- 
nel transfer function and amount of data considered. 
However, in the presence of channel noise, equalization 
can no longer be achieved perfectly. We study the best 
achievable linear equalizer performances in terms of the 
input / output minimum mean square error (MMSE), 
defining the channel equalizability as a function of 
the multichannel transfer function roots and the signal 
to noise ratio (SNR). We show that a channel dis- 
parity lower bound can be deduced as a function of 
the SNR in order to achieve a given amount of MMSE. 

Keywords:   Fractionally spaced   /  multichannel 
equalization, channel disparity. 

1. Introduction 

Equalization is a crucial part of digital communi- 
cation systems [1]. The way equalization is imple- 
mented is a trade-off between reaching high perfor- 
mances and computation cost. In particular, the equal- 
izer length determines the computation need. However, 
it must be chosen carefully so to guaranty the perfor- 
mances required by the remaining parts of the system. 
The usual one-input / one-output channel equalization 
problem is known to require an equalizer length pro- 
portional to the inverted channel impulse response, the 
value of which is prohibitive for short FIR channels. 
One-input / multiple-outputs equalization induced by 
channel diversity was recently shown to be perfectly 
achievable within a finite length equalizer, ([2], [3], [5], 
[6]....) under some Zero-Forcing (ZF) conditions to 
be recalled later. First, we quantify equalization best 
achievable performances when the propagation is dis- 
turbed by additive channel noise.   Performances are 

measured by the input / output minimum mean square 
error (MMSE). We investigate then the links between 
this lower bound and a measure of channel diversity. 
This should provide, for a given amount of channel 
noise, a measure of constraint on the channel so to 
equalize to a given amount of MMSE. It should help in 
evaluating the benefit of additional diversity with re- 
spect to the equalizer length to be used. Such a bound 
should also be very useful in order to compare algo- 
rithms and criterions performances. 

2. Spatio-Temporal Equalization 

,(n) / 

\ 

ci(z) 

wi(n) 

ei(z) 

cL(z) * e- eL{z) 

y(n) = s(n - v) 

wL(n) 

Figure  1. Noisy Fractionally-Spaced Equalization 
scheme 

The one-input / multiple-outputs channel model 
(c(z) = (ci(z),...,cL(z))T) is a well suited formal- 
ism for spatial diversity (i.e., a sensors array) as well 
as temporal diversity (i.e., sampling the received sig- 
nal at an higher rate than the emitted sequence), 
see [4]. The induced equalization problem consists of 
choosing a L-variate equalizer transfer function e(z) = 
(ei(z),...,e/,(z))T such that 

y{n) = [e{z)T]r(n) = eT R(n) (1) 

estimates at best s(n - v), as in Figure 1.   R(n) is 
the observation regression vector containing the N past 
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observations of r(n). v is the channel-equalizer de- 
lay. Assuming c(z) is a polynomial vector of degree Q, 
equation (1) can be rewritten as 

j,(n) = eTC%) + eT^(n) 

where S(n) = (*(n), *(n - 1),.... s{n-Q-N + 1))T 

contains the N + Q past observations of s(n). W(n) is 
defined alike R{n). C is a NL x (N + Q) (Sylvester) 
channel convolution matrix defined by the taps of 
the degree Q multivariate transfer function, c(z), as in 

[4]- 
ZF is defined here in terms of the channel transfer 

function invertability as: 

eT(z)c(z) = z~v 

and is guaranteed under the following conditions ex- 
pressed in terms of C. Under the ZF conditions (i.e., 
N — 1 > Q and no common roots to all subchannels 
transfer functions), C is full-column rank so that any 
channel-equalizer global impulse response h = C e is 
achievable, in particular the ZF K corresponding to 
z~v. So that in the absence of noise, these conditions 
allow perfect identification of the channel transfer func- 
tion and perfect equalization, i.e., y(n) = s(n - v). 

However, as soon as there is a "non-negligible 
amount" of channel noise, perfect equalization can 
no longer be performed even if the channel impulse re- 
sponse is exactly identified. In particular, if the noise 
is filtered by a ZF equalizer, (the transfer function of 
which will be calculated as function of the channel 
transfer function poles and zeros locations), it may be 
enhanced so that the signal to noise ratio (SNR) at the 
equalizer output is reduced. 

Example 1: the roots of Ci (z) and c2 (z) are respec- 
tively 0.59, -0.1 and, 0.6, 1.3, ZF may be achieved for 
N — 2 and the equalizers corresponding to the differ- 
ent possible delays have their norm displayed in the 
following table: 

V 0 1 2 3 

INI 250.0 250.0 326.9 25.8 

So that the noise may be enhanced by a factor of more 
than 250 at the equalizer output, reducing all the more 
the output SNR and performances. Of course, some 
algorithms do not try to achieve ZF but a trade-off in 
terms of performances between ZF and noise enhance- 
ment, see [8] for instance. 

In order to design robust algorithms, i.e., so to bal- 
ance noise enhancement, we need to better understand 
what induces it. This goal motivates the following 
study of the channel roots locations effect on the equal- 
ization performances. 

3. MMSE 

When the channel is affected by additive white noise 
(independent from the source sequence), a measure 
of achievable direct linear equalization performance is 
given by the minimization of the input-output normal- 
ized MSE, 

E [(y(n) - a(n - v)f] /E [s2] = \\h - h„f + j\\ef    (2) 

under   the   constraint   h    =    CTe,   where   7    = 
E [w2] /E [s2] is the noise to signal ratio. 

Under the ZF conditions, any value of the NL long 
vector h is achievable so that the minimization of (2) is 
proved ([8]) to correspond to e7 = C(CTC)-1/i7 with 

h1 = {i + 1{cTc)-1ylK 

which is all the more distinct from ZF than 7 is high. 
The resulting MMSE is expanded in terms of 7 as: 

00 

7ftJ(CTC)-1^ + 72Xl(2m + 1)(-^m^T(CTC)"(m+2)/j1' 
m=0 

Such an expansion is valid for small enough values of 
7, precisely when ||7(CTC)_1|| <C 1. 

Note that when a channel identification method is 
used, the maximum likelihood estimator of the input 
sequence in the presence of white gaussian noise in- 
duces an input / output MSE equal to 7/1J (CTC)_1/i„ 
when the channel is perfectly estimated. Namely, it is 
equal to the minimal value of -y11e112 constrained to ZF, 
i.e., hv = CTe. It appears this expression of MSE is 
the first order approximation of the preceding MMSE 
full expression. It will be denoted as, 

MMSE(7) = 7||e||2 = ^ (CT C)-1 hu (3) 

The optimal delay v is therefore chosen so to mini- 
mize /jJ(CTC)-1h„. This value, which is bounded by 
the inverses of the extremal eigenvalues of C C, is the 
one of interest here. 

4. A Measure of Channel Disparity 

Under the ZF conditions, the invertability of CTC 
is given, for L = 2, by: 

det (CTC) = KUijlzl - 4\ (4) 

where II stands for product, K is a polynomial function 
of (INI2 + INI2)2 with ||cfc||

2 = £i=o,Q<*(«)2, and z{ 
is the root i of subchannel k, k = 1,2. Note that it is 
quite difficult to fully express K, even using Sylvester 
resultant results ([9]) and symbolic calculus. 
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(4) allows to connect the ZF condition "no common 
roots" to the identification / equalization performances 
given by (3). In particular, (4) shows also how close 
subchannels roots can create important noise enhance- 
ment as in Example 1 where one root difference is 0.01. 
From there, we can define a measure of channel dispar- 
ity by y/KUij |4_Z/12 which is all the more important 
than zeros of different subchannels get close to each 
other. However, one should note that a small value for 
det(CTC) does not necessarily imply a large value for 
MMSE(7), see Example 1 for v = 3. 

The question of interest here is: 
When are two "numerically close" roots so close that 
there is "lack of disparity" ? 

We propose to study the minimum distance between 
the two closest roots allowing "disparity". Thus, we de- 
fine there is channel lack of disparity when the ac- 
tual equalization MMSE is better approximated by the 
MMSE value obtained by considering the two roots as 
equal than by the value deduced from (3). Otherwise, 
i.e., when the actual MMSE is better approximated by 
(3), we say that the channel presents spatio-temporal 
diversity. 

4.1. Non-achievable ZF 

To be able to quantify a bound of disparity, we need 
to look at the extreme case when there are mathemat- 
ically equal roots. 

In a previous contribution [7], we have shown that 
when there are common roots to all subchannels (re- 
ferred to as lack of disparity), C is no longer full 
column-rank but can be factored as a product of two 
Sylvester matrices as C = CC0 where C is full column- 
rank, and C0 full row-rank. C0 is the convolution ma- 
trix associated to cQ(z) which is formed by the Z0 com- 
mon roots. C is associated to the remaining multichan- 
nel transfer function, c(z). In that case, ZF is no longer 
achievable and the closest achievable equalizer to the 
ZF K is h = CjfCoCjj^Coft,, = n0A„ which is the 
projection of hv on the range of the non-full column- 
rank cj. 

The MMSE must then to be calculated using the 
previous factorization of C. In the contrary of the case 
of ZF conditions, h is no longer an unconstraint param- 
eter since it has to lay in the range of Cj. The only un- 
constrained parameter to be used for the minimization 
is also e such as h = cje and e = CTe. The optimal 
value of e for a given e is also e(e) = C(CTC)_1e. So 
that the MMSE is obtained by minimizing over e: 

We can thus deduce a first order approximation in 
terms 7 of the MMSE, MMSE0(7) = 

||(7 - U0)K\\2 + 37^C0-
L(CTC)-1(C0-L)TAI/    (5) 

withC0-L = C0
r(C0C0

r)-1. 
To define the disparity bound, we want to con- 

sider the conditions where ||7(CTC)_1|| <C 1 and 
||(CTC)-1|| > 1. Thus, MMSE(7) in (3) must be 
compared to the 0 order approximation in terms of 7 
of MMSE0(7). Therefore, we can define the disparity 
bound as: 

7Aj(CT£)-% = Al(J-n0)A,. (6) 

where v and \i are the value minimizing the expression 
in which they are involved. 

Example 2: In order to look at the lack of diversity 
bound, let us first consider the simplest case of two 
subchannels given by ck(z) = 1 - &z-1, k = 1,2. De- 
noting £2 = £1 + e, we want to check what happens 
as |e| decreases towards 0. The "numerical border of 
disparity" occurs when the MMSE calculated for sup- 
posedly distinct roots in (3) becomes larger than the 
MMSE calculated for these roots taken as equal in (5). 
With N = 2 (which is a large enough equalizer length 
when the roots are distinct), a simple formal calculus 
leads to the two expressions, 

(3): MMSE(7) = 7/„(&)A2 + «(7A2), 
(5): MMSE„(7)=ff„(6)+°(l). 

where fv and gß are rational bounded functions, the 
expressions of which are omitted for sake of space and 
clarity. 

Disparity bound tor SNR values of: 15dS'-', 2SdB'..', 35dB '.■ 

|c0V ^||2 + 7||C(CTC)-1< 

Figure 2. Disparity bound v.s root location and SNR 

Next, we propose a disparity bound: 

e2=7/46)/flM(6) 

depending  on the  signal to  noise  ratio,   SNR  = 
-101og(7) and the location of the root £1. We display 
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in Figure 2 the disparity bound, e, i.e., the distance one 
should ensure between two "close roots" to provide dis- 
parity, versus their location £ and for several values of 
SNR. 

Indeed, the greater the SNR is, the closer roots can 
be and still provide disparity. Note that the bound val- 
ues can become so large that disparity is not possible. 
Furthermore, it appears the closer £1 is to 1 (i.e., the 
unit circle when generalizing to complex numbers), the 
smaller the disparity bound is. It means that diver- 
sity is all the more important that the channel roots 
are close to the unit circle. This result is crucial since 
roots close to the unit circle is a very difficult condition 
for equalization when there is no diversity. 

4.2. Additional Diversity 

Another important question is whether additional 
channel diversity improves significantly the equaliza- 
tion performance. 

We also want to extend the expression of det(C C) 
to the case of L > 3 to fully understand the condi- 
tion "no comon roots to all subchannels". General- 
ized Sylvester resultant calculus (see [9] for classic re- 
sults) lead to the fact that the rank of CTC is equal 
to N + Q - ZQ, each common zero reducing the rank 
by its multiplicity. So that the determinant must be 
expressed by a weighted sum of products. Symbolic 
calculus and simple examples lead us to suggest the 
following expression: 

det(CTC) = ^Kk,iUitj\zi - z\ J|2 

k<l 

where Kk,i is some polynomial bounded function of the 
subchannels k and /. This measure shows the possible 
gain of disparity when one increases the disverity, i.e., 
when the number of subchannels is increased by either 
spatial or temporal diversity. 

Example 3: To explicit this gain, let consider the two 
subchannels in Example 2 to which we add a third one, 
c3(z) = l-t3z-1. Thus, 

det(CTC) = K ((6 - 6)2 + (6 - &)2 + (6 - 6)2) 

It appears clearly that the additional subchannel in- 
duces disparity. Note that the additional terms in the 
determinant result in a value greater than this for the 
"best" two subchannels combination. 

5. Conclusion 

may induce enough disparity to allow equalization with 
a finite length equalizer. However, ZF equalization may 
have very poor performances when some subchannels 
are closer than the disparity bound depending on the 
SNR and on the other channel roots. The effect of close 
roots location versus the unit circle was also studied 
and results in diversity being all the more important 
that roots are close to the unit circle, which is the diffi- 
cult case in monovariate channel equalization. Further 
study of the improvement of additional diversity is un- 
dertaken. 

We hope these simple theoretical results will help 
in understanding the contribution of spatio-temporal 
diversity in more realistic channel conditions. 

Acknowledgements: The author would like to 
thank J.R. Treichler for fruitful conversations, A. 
Touzni for his daily collaboration and D. Declercq for 
his help in symbolic calculus. 

References 

[1] J.R. Treichler, I. Fijalkow, C.R. Johnson Jr., How long 
should an equalizer be ?, submitted to IEEE DSP mag- 
azine, november 1995. 

[2] L. Tong, G. Xu, and T. Kailath, Fast blind equalization 
via antenna arrays, in Proc. ICASSP'93, 1993. 

[3] Z. Ding, Y. Li, On channel identification based on 
second-order cyclic spectra, IEEE Tr. on SP, May 1994. 

[4] E. Moulines, P. Duhamel, J.-F. Cardoso, and S. Mayrar- 
gue, Subspace methods for the blind identification of 
multichannel FIR filters, IEEE Tr. on SP, February 
1995. 

[5] D.T.M. Slock, C.B. Papadias Further results on blind 
identification and equalization of multiple FIR channels, 
in Proc. ICASSP'95, 1995. 

[6] G.B. Giannakis, S.D. Halford , Blind fractionally-spaced 
equalization of noise FIR channels: Adaptive and opti- 
mal solutions, in Proc. ICASSP'95, 1995. 

[7] I. Fijalkow, J.R. Treichler, C.R. Johnson Jr., Fraction- 
ally Spaced Blind Equalization: Loss of Channel Dis- 
parity, in Proc. ICASSP'95, 1995. 

[8] A. Touzni, I. Fijalkow, J.R. Treichler, Robustness of 
fractionally-spaced equalization by CM A to lack of chan- 
nel disparity and channel noise, in Proc. SSAP'96. A 
full version has been submitted to the IEEE Tr. on SP 
special issue on advances in communications. 

[9] T. Kailath, Linear Systems, Prentice-Hall, 1980. 

We have proposed a channel disparity bound based 
on the channel noise power and multichannel trans- 
fer function. It explains how spatio-temporal diversity 

347 



Multiple Input Multiple Output ARMA systems: second order 
blind identification for signal extraction 

A. Gorokhovt 
Telecom Paris, Dept. Signal 

46 rue Barrault 
75634 Paris Cedex 13 FRANCE 

P. Loubaton 
UF SPI (EEA) Universite de Marne la Vallee 

2 rue de la Butte Verte 
93166 Noisy-le-Grand Cedex FRANCE 

Abstract 

This paper addresses the blind identification of mul- 
tiple input multiple output (MIMO) systems with the 
number of inputs strictly less then the number of out- 
puts. On the contrast to the standard FIR modelling 
we assume the overall channel with arbitrary finite or- 
der rational transfer function. Certain quite reasonable 
technical hypotheses allow to adapt the existing linear 
prediction and sub space based approach and implement 
a finite order zero-forcing equalizer in the noise-free 
case. The noise-free condition also yields a simple per- 
formance analysis which is quite accurate at low noise 
levels and provides a meaningful comparison of the pro- 
posed estimators. The robustness to additive noise is 
studied here by computer simulations for both tech- 
niques. 

Keywords:  blind identification, equalization, per- 
formance analysis. 

1. Introduction 

Convolutive properties of the propagation media is a 
typical shortcoming in various applications. In digital 
communications it leads to severe inter symbol interfer- 
ence (LSI) dramatically reducing the channel capacity. 
Many recent publications consider the problem of blind 
dentification i.e. channel evaluation analyzing the out- 
put observation and further extraction of the input sig- 
nals. Classical approaches to single input single out- 
put (SISO) identification [1, 2] usually exploit higher 
than two order statistics (HOS) and are demanding in 
sample volume. A noticeable improvement has been 
achieved due to either multiple antennas or the obser- 
vation oversampling, see [3, 4]. Both of them allow 
to recast the problem into the single input multiple 
output (SIMO) identification where the second order 
estimation as well as finite length zero-forcing equali- 
zer (ZFE) are available. A certain part of these re- 
sults has been recently generalized for the MIMO case, 
[5, 6].   Most of them still treat the finite order poly- 

fThis study is supported by CNET (France Telecom), ENST 
and partially by the SASPARC project of INTAS. 

nomial transfer functions originating from multipath 
propagation environment. However the precise analy- 
sis of some secondary phenomena e.g. mutual coupling 
of sensors/receivers could enable certain improvement 
through a more sophisticated channel modelling espe- 
cially at low noise levels. 

We consider here rational transfer functions usually 
satisfying most of the applications. As a matter of 
fact a matrix-valued transfer function admits many dif- 
ferent parametrizations (i.e. corresponding to various 
canonical forms, see [7]). One of the possible solutions 
is based on the AR factorization of the actual ARMA 
model obtained as a generalization of the similar re- 
sults for the multivariate FIR case [6]. An alternative 
approach originates from the right matrix-fraction de- 
scription (MFD) which implies a two step identification 
procedure with the MIMO subspace based estimator [5] 
followed by the linear prediction of a reduced size. Both 
methods yield finite order causal ZFE providing the in- 
stantaneous mixture of source signals. Such a mixture 
can be conventionally treated by any of the existing 
source separation techniques. We focus here on the 
deconvolution performance i.e. the residual ISI at the 
output of ZFE. Further asymptotic analysis given in 
section 5 allows to establish the residue ISI variances 
which appear to be invariant to a particular channel 
realization. We further compare the above mentioned 
estimation approaches and simulate their behaviour in 
the noisy case. 

2. Data model and hypotheses 

Let us consider M-variate time series {x(t)}t 2 

being the output of some M x m linear system with 
rational transfer function H(z) = £^10 H(r) Z~T 

and m-variate input series {s(*)}4eZ7- The sequences 
{«(OljgZZ and {*C0}<e2Z addressed in the sequel as 
observation and excitation satisfy the linear equation 
written in the operator form: 

x(t) = [H(z)]s(t), tez. (i) 

Here each entry [H(z)]pq may be interpreted as a trans- 
fer function between input q and output p. In the 
special case of constant transfer functions   H(z) = H 
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we have the instantaneous mixture separation prob- 
lem. On the other hand, one deals with multichannel 
equalization if m = 1. In the most general case of 
linear processing, we look for a MIMO ZFE EH(Z) — 
YT°=o E#(T) Z~

T
 associated with channel H(z) so that 

EH(z)x\t) = s(t) i.e. EH{z)H(z) = lm. Moreover it 
is preferable to have a finite order polynomial ZFE for 
practical applications. Any consistent channel estimate 
H(z) calculated from the finite observation {x (t)}t=i 
yields a sample equalizer EH (Z) and consistent extrac- 
tion of the input signals 

s(t) = [EH(z)]x(t),       te (2) 

We study the conditions providing the existence of 
EH(Z) and the extraction accuracy subject to various 
channel estimators. Some further results are available 
under the following hypotheses: 

HI The number of inputs m is strictly less than the 
number of outputs M. 

H2 The emitted sequences {sk (t)}t€Z£, k = l,...,m, 
are statistically independent and temporally non- 
correlated non-gaussian series. 

H3 The rational matrix H(z) is irreducible, see [7]. 

More involved analysis of (H3) provides quite clear 
interpretation in terms of inter-channel diversity and 
shows that this constraint is met in typical applica- 
tions, [8]. Meanwhile this assumption plays a key role 
for channel identification and signals extraction since 
it. ensures the existence of a finite order ZFE. 

Lemma 1 Let H(z) be finite order rational function 
satisfying (H3). Then there exists finite NE and the 
associated EH{z) with deg ( EH(Z) ) = NE such that 
EH(z)H(z) = lm. 

One can presume that ZFE is not uniquely defined un- 
der (HI) since there exists a non-trivial left null-space 
of H(z). Our reader will see how the choice of ZFE 
can be adapted to the particular factorization of H(z) 
used at the preceeding channel evaluation stage. 

3. Linear prediction approach 

This kind of technique has been recently proposed 
in mono-source context [9] and later developed for the 
MIMO case of FIR channels, [6]. We propose a staight- 
forward extension based on the following property. 

Lemma 2 Let H(z) be a finite order rational func- 
tion satisfying (H3).  Then there exists finite Np and 

an associated P(z) = IM + 12T=I 
P(r) Z~T verifvin9 

P(z)ff(z) = H(0). 

In the other words, any irreducible ARMA channel is 
also an AR channel of finite order. Consequently the 
equation (1) can be written as follows: 

[P(z)]x(t) = H(Q)s(t),        tez. (3) 

The prediction coefficients P  =   [P(l),.. .,P(NP)] 
and the innovation covariance matrix D = H(0) H(0)^ 
may be consistently estimated by solving a multivariate 
Yule-Walker equation with the empirical counterpart of 
the block-Toeplitz spatio-temporal covariance matrix: 

Rx = {RX(T)}?:0, R,(r) = IE {x(t)x(t -T)
H
). (4) 

Some more details on calculating P and D the consis- 
tent estimates of P and D can be found in [10]. Notice 
also that a similar estimation procedure is valid when 
the observation {x (t)}t€2l *s corrupted by an additive 
temporally white noise with known spatial structure 
since a consistent estimate of TLX is still available. 

Now any M x m square root F(0) of D such that 
F(0)F(0)" = D verifies H(0) = F(O)0 with some 
unitary m x m matrix 6. Let us consider a FIR fil- 
ter EF(z) = F(0)#P(z). According to (4), we have 
[EF(z)]x(t) = e*(<) i.e. EF(z) is a kind of ZFE 
providing the instantaneous mixture of source signals. 
Due to (H2), further extraction of each source sig- 
nalsjfc(i) can be completed by HOS source separa- 
tion techniques. Let us denote by Q some consistent 
estimate of the m x m separator obviously verifying 
limy—oo Q = QH ■ We finally apply a finite order Np 
FIR filter 

EH(z) = Qt(0)*P(z) (5) 

to the observation series as indicated in (2). Due 
to the strict consistency of each empirical quantity, 
lilTlT^oo s(t) = s(t). 

4. Generalized subspace approach 

This method stamps from the canonical right MFD 
of rational functions. Let us denote by S(z) the column 
space of H(z) i.e. S(z) = span { H{z) }. In the most 
general case one can deduce the following result, see 
[11] for definitions. 

Lemma 3 Let (H3) hold and let 'polynomial M x m 
matrix B(z) be any minimal polynomial basis (MPB) 
ofS(z) with invariant column degrees deg ( [B(z)]k ) = 
Lk, L\ <,...,< Lm. Than there exists mxm poly- 
nomial C(z) of finite degree Nc and full rank almost 
everywhere in <D such that    H(z) = B{z) C{z)~l. 

According to lemma 3, the identification procedure 
can be accomplished now in two steps: (i) iden- 
tify any MPB of S{z); (ii) identify the associated 
C(z). Let us focus on the first stage. We denote 
by {B(z), C(z)} any arbitrary pair satisfying lemma 3 
i.e. H(z) = B(z)C(z)~1. Now the observation se- 
ries can be rewritten as x(t) = [B(z)]v(t), where 
v(t) = [C(z)-1] s(t). Notice that B(z) is some MPB of 
S(z) and v(t) has a full-rank covariance matrix R„ of 
any order (see definition (4)). As indicated in [5], one 
can perfectly identify some MPB of S(z) from a finite 
observation sample. Such a MPB may be consistently 
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estimated in the noisy case. For more details concern- 
ing the estimation of a particular MPB we address the 
reader to [12]. 

Let us denote by B (z) a consistent estimate of some 
MPB B(z)._ As shown in [11] any MPB matches (H3) 
and according to lemma 1 there exists a finite order 
EB(z) verifying EB(z) B(z) = Im. In practice such 
a left inverse of B(z) can be calculated from the al- 
gebraic analog of (1): [x(t)T, ...,x(t- NB)T]T = 
TNB(B) [v(t)T,..., v(t -NB-Lm)T]T, where TNB(B) 
is a generalized Sylvester matrix of order NB associated 
with the polynomial B(z), see [7]. The input signal 
s(t) can be extracted by applying m x M(NB + 1) ma- 
trix EB = [EB(0),...,EB(NB)] to[x(t)T,...,x(t- 

A'B)
T

]
T
 when NB > Y,T=i Lk- In this case EB is cal- 

culated from the left pseudo-inverse of TNg(B) by tak- 

ing its m upper rows. Its consistent estimate EB can 
be readily obtained using the empirical quantity B(z) 
instead of the true one. Further pre-filtering provides 
the intermediate output signal 

v(t) = [EB(z)\ x(t), rlim  v(t) = [C(z)-1} s(t).    (6) 

The described preliminary processing forms the kernel 
of the generalized subspace approach since it allows to 
reduce the initial problem to the identification ofmxm 
polynomial matrix C(z). One should notice that due 
to perfect identification of MPB B(z) in the noise-free 
case the intermediate output v(t) = {EB(z)]x(t) satis- 
fies v(t) = [C(i-)_1]s(<) i.e. the generalized subspace 
estimator is statistically equivalent to the estimation of 
C[z) from the series {v (t)}tG2Z- 

Let us consider the identification of C(z). Due to 
(H3), its zero coefficient C(0) = lirn^oo C(z) is 
nonsingular and we can define matrix A(z) = lM + 

J2r=iMr)z-T such that A(z) = C(0)-1C(2). It is 
easy to check that v(t) and s(t) verify the following 
equation 

{A(z)]v(t) = C(0r1
S(t) (7) 

i.e. {v(t)}t€2i is the AR process with the predic- 
tion coefficients A = [A(l),..., A(NC)] and the the 
innovation covariance matrix D' = C(0)-2. Obvi- 
ously further identification of model (7) may be ac- 
complished by means of the linear prediction approach 
described in section 3. Now v(t) is treated as the ob- 

servation. Let us denote A the esimate of A, F'(0) the 

empirical square root square root of D' and Q' some 
in x in separator estimate. Similarity to (5) we obtain 
s(t) = Q'F'(0)-1[i(2)]u(i). Finally 

EH(z)±Q'F'(0)-lÄ(z)EB(z), (8) 

the complete ZFE can be found by plugging v(t) from 
(6). This filter provides the consistent extraction of 
source signals from the observation according to (2) 
i.e. limT^co s{i) = s(t),   similarily to (5). 

5. Performance analysis 

In this section we compare statistical efficiency of 
both identification techniques in the noise-free case. As 
it follows from section 4, the generalized subspace es- 
timator allows perfect identification of factor B(z) i.e. 
the only error is caused by the estimation of C{z) e.g. 
linear prediction. Therefore we just need to compare: 
(i_) extraction (2) via linear prediction according to (5); 
(ii) extraction of source signals from v(t) via linear pre- 
diction according to the model (7). For this purpose 
we use some general asymptotic results concerning sig- 
nals extraction via linear prediction in the noise-free 
case. Let {«/(i)}<62 be a M-variate time series satis- 
fying the AR equation [V(z)] y(t) = Hs{i) with V{z) 
any prediction filter of order not more that N-p and 
some M x m full rank matrix U. We assume further 
identification procedure described in section 3 and the 

associated estimate E(z) = J^TLo MT) Z~T of ZFE de- 

fined according to (5) with Q providing the consistent 

signals estimate s(t) = [E(z)]y(t). As a matter of 
fact consistent extraction yields that the global causal 

transfer function f(z) = E(z)V(z)-lH, such that 

s(t) = [f(z)]s(t), verifies limT-.oo/(z) = Im i-e. its 
Fourier coefficients match limj^oo f (r) = 0 for r > 0. 
The equalization errors defined as the residue convolu- 

tive contribution to s(t): *s(t) = J2T=i ^(T) s(* ~ r) 
will be considered throughtout this paper as a perfor- 
mance index for the deconvolution techniques taking 
into account that the residual separation error essen- 
tially depends upon the source separation technique. 

Theorem 1 The asymptotic equalization errors &s(t) 
verify limT^^ T IE (AS(<) *s(t)H} = rlm, where r 
is the rank of Ry of order N-p — 1. 

Notice that the equalization errors variances later ad- 
dressed as the equalization rates are asymptotically in- 
variant to the instantaneous separation performance 
as well as to the system parameters, they depend only 
upon the rank of Ry. We further denote r = r(Ry,N) 
the rank of Ry having the order N - 1, N > 0. Let 
Nvmin be the minimum prediction order. Then for 
any Nv > NVmin we have r{Ry,NT) > r(Ry, NVmin) 
i.e. order overestimation always leads to performance 
degradation. To compare the potential efficiency of 
both methods one certainly needs to know minimum 
orders NP and Nc, these latter non-trivially depend- 
ing upon H(z). More involved study of this quanti- 
ties for typical channel realizations is being currently 
investigated. On the other hand, in the case of un- 
known Np and Nc one can estimate channel via both 
of the designed methods if the observation window 
N-p is chosen sufficiently large. More precisely, we as- 
sume that the window of linear prediction approach 
and subspace method are chosen equal to N-p. The 
corresponding number of the observable input samples 
including each source signal, equal to N-p + L\ (see 
section 4), provides us with the window for the sec- 
ondary linear prediction e.g. identification of C(z). It 
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is easy to show that ?'(R:r, N-p) = mNp + J2k=i Lk, 
?-(R„, N-p + L\) = m(Np +Li) i.e. the performance of 
the generalized subspace technique is not worse than 
the performance of the pure linear prediction. The 
equality holds only if L\ = ... = Lm, i.e. when m — 1. 

6. Simulations 

We present in this section some numerical exam- 
ples validating theoretic results on both estimators in 
the noise-free case and their robustness to the addi- 
tive noise. The overall propagation channel has been 
modelled as a left MFD form: H(z) = A{z)~lB{z) 
so that [A(z)]x(t) = [B(z))s(t). In digital multi- 
sensor communication, B(z) reflects the FIR propa- 
gation media between the user and the reception cite 
while A(z) might correspond to the mutual coupling 
of receivers. We compare linear prediction and gen- 
eralized subspace approaches completed by joint di- 
agonalization source separation procedure, see [13]. 
For system dimensions M = 4, m = 2 and ob- 
servation sample size T = 500, we plot the residue 
equalization rates versus the degree of denominator 
A{z) for deg ( B(z) ) = 2, the degree of the first col- 
umn of numerator deg ( [#(2)]i ), deg ( [#(z)]2 ) = 0, 
deg ( A{z) ) = 2 and versus the average signal-to-noise 
ratio, deg ( A(z) ) = deg ( B(z) ) = 2. Each simulated 
value is equiped with the confidence interval of ± 2 em- 
pirical standard deviation and the true value. 

1 2 
Numerator order 

e- a & e. 

'd. 

x  
 """ * " " -H 

15 20 25 30 
Signal to noise ratio, dB 

Fig.l. Equalization rates: 
Linear prediction:   — true, ..x.. numerical; 
Generalized   subspace:   - - true, ..o.. numerical. 

As it follows from Fig.l, the actual performance of 
two methods might be slightly different in favour of 
the subspace technique. On the other hand, this latter 
displays fatal degradation in the presence of noise, the 
values from lOdB to 25dB lead to the abnormal error 
in many cases even when the degrees Lk are perfectly 
known, identification of these quantities being a partic- 
ular problem in the noisy case. Meanwhile the linear 
prediction approach appears to be robust at high and 
moderate signal-to-noise ratio levels. 
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Abstract 

Subspace based estimates, i.e. estimates obtained by exploit- 
ing the orthogonality between a set of vector statistics and a 
set of parameter-dependent vectors have gained much pop- 
ularity in the signal processing litterature. The purpose of 
this contribution is to develop a general theory for such es- 
timates. We in particular discuss the generalization of the 
optimal weighted subspace fitting approach, introduced by 
Viberg [2] in the DO A estimation context. We then establish 
that the optimally weighted estimate enjoy some invariance 
properties 

1.    SUBSPACE FITTING ESTIMATION 

This section is concerned with general properties of sub- 
space fitting estimates: we define a general framework and 
give the asymptotic performance of (optimal) subspace es- 
timates. 

1.1.    Assumptions and notations 

The common strand behind subspace estimation is to ex- 
ploit the geometrical prope rty of a certain matrix-valued 
statistics for estimating unknown parameters. May be the 
most well-known example of such techniques is the so-called 
Pisarenko's method, which makes use of the eigen-subspace 
of a certain covariance matrix to estimate the frequency of 
the sine-waves in white noise. These methods have gained 
much popularity in the signal processing community in the 
last decade, and have been applied successfully to a variety 
of problems, such as the estimation of direction-of-arrivals 
in narrow-band array processing [1, 2], or more recently in 
system identification [3, 4, 5]. As seen below, this theory 
can be formulated in fairly general terms. 

Consider a parametric statistical model where the distri- 
bution of n observations yi,..., yn depends on a parameter 
vector u = (ö,j1)€f)cEfc,C€0CEl,(ie Ht*"', where 
0 is a. compact subset of IR'. Here, 9 is the parameter of 
interest and ji is a nuisance parameter (the values of ft are 
needed to make inferences about 9 even through they have 
little informative import of their own). 

A matrix-valued statistic N„ € ]Rrxq is computed from 
yi,... ,y„. This statistic forms the basis for inferring the 
parameter of interest 9. Actually, we make no assumption 
on the distribution of the data themselves, but only on the 
asymptotic distribution of N„: 

Assumption 1 (Asymptotic normality) For all w e 
Q, N„ is asymptotically normal with asymptotic mean N(u) 
and asymptotic covariance matrix EAT(W). 

This assumption uses the following convention: A sequence 
Yn of random r x q matrices is said to be asymptotically 
normal with asymptotic mean Y and asymptotic covariance 
matrix C if the rgx 1 random vector v/w(Vec(y„) — Vec(Y)) 
tends in distribution to a zero-mean random vector with 
correlation matrix C. We write: Y„ ~ AA/"(Y, C). 

Subspace fitting estimation is relevant when Nn converges 
to a rank deficient matrix N(LO) and when it exists a matrix- 
valued S(9) g JRrxp, depending only on the parameter of 
interest and satisfying the following assumption. 

Assumption 2 (Identifiability) For any u = (9, n) £ O, 

ST(6')N(u) = 0  =»  9'=9. (1) 

Hence the basic mechanism of subspace fitting which con- 
sists in obtaining an estimate 9 of 9 such that the columns 
S(9) are 'as orthogonal as possible' to the columns of N„ 
as detailed in next section. Note that we do not require 
that Span(S(0, /1)) and Span(N (0)) are orthogonal comple- 
ments. 

The following notational conventions hold throughout. 
First, bold face letters will denote values of functions of 
9 taken at the 'true value' of the parameters. In particular, 
we denote 

S = S{9),      TSI = N{9,n). (2) 
It is often needed to collect derivatives of matrix valued 
functions w.r.t. 9 into a unique larger matrix. A suggestive 
notation is needed for this construction. We will typically 
denote: 

[S]    d=* 

[STN]    S 

[VeC(f|)> ...Vec(f)]. 

[vec(fTN)'-'vec(ffN)]- 

(3) 

(4) 

where all the quantities at evaluated at point 9 or (9, ft). 
Since matrix S(6) has size rxp, matrix [S] has size rp x /. Fi- 
nally, with several asymptotically normal matrix sequences 
appearing in the following, it will be convenient to note 
C = Cov(y) whenever Y„ ~ ,/W(Y, C) under the distri- 
bution 10 = (9, n). 

This study being restricted to regular (root-convergence) 
estimation, we impose some regularity to functions S(-) and 
N(-) and also want to exclude cases where some linear com- 
bination of the parameters can be estimated at a super- 
efficient rate. 

Assumption 3 (Regularity) Functions S(-) and N(-) 
are differentiable with respect to 9 at point w = (Ö, (i) and 

Span([STN]) C Span(Cov(STiVn)). (5) 

0-8186-7576-4/96 $5.00 © 1996 IEEE 
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Loosely speaking, this regularity assumption means that 
there is no direction in the parameter space which is not 
excited by the matrix errors S  Nn- 

Definition 1 A pair (5(), Nn) is said to be admissible for 
subspace fitting estimation if it satisfies assumptions  1-3. 

Before proceeding, we stress that it is not assumed that 
Span(N) © Span(S) = W neither that N or S have full 
column rank. If it holds that Span(N) © Span(S) = W, 
we say that a 'saturation condition' is fulfilled. In this case, 
additional properties of subspace estimates can be obtained 
(see section 2.4). 

1.2.    Subspace fitting estimates 
Subspace fitting estimates are obtained as the minimizers of 
a criterion quantifying the orthogonality between the range 
space of Nn and the range space of S(n): 

argmm||5   (v)Nn\\w 
1760 

(6) 

where W is a (possibly rank deficient) symmetric non- 
negative matrix and || • \\w is the Weighted Euclidean norm, 
||Af Hfv- = Vec(M)TWVec(Af). For a given admissible pair 
(S(-), Nn), weighting matrix W must be chosen to preserve 
the identifiability of assumption 2 : A matrix W is said to 
be admissible for the value (6, ft) of the parameters if it pre- 
serves identifiability i.e. if \\ST(8')N(8,n)\\2w = 0 => 8' = 8 
With this definition, we can state the following theorem. 

Theorem 1 If (S(-),Nn) is an admissible pair and matrix 
W is admissible at point (8, ß) for this pair, then 8™ defined 
by (6) is a consistent estimate of 6. 

Of course, any fixed positive definite matrix W is admissible 
for any value of 8, the most straightforward choice being the 
identity matrix. As shown below, in the context of interest, 
'optimal' weighting matrices are often rank deficient (in or- 
der to null out 'spurious' error terms) and the null space of 
the weighting matrix will generally depend on 8. This fact 
may appear problematic since the value of 8 is unknown. 
However, one may show that a consistent estimate of the 
optimal weighting matrix can be used without affecting the 
asymptotic performance. 

Weighted subspace estimates are asymptotically charac- 
terized as follows. 

Theorem 2 // (S(-), Nn) is an admissible pair, then for 
any admissible weighting matrix W, the sequence {8n } of 
estimates admits the stochastic expansion: 8n — vn + 
op(n~1'2) with 

v™ = ([STN]TW[STN])-1[STN]TWVec(STiV'„).      (7) 

It follows that {8^} ~ AM{8,Cw) with asymptotic covari- 
ance matrix: 

Cw = ([STN]TIV[STN])-1[STN]T W 

x Cov(STNn)W [STN] ([STN]TW[STN])_1. (8) 

Covariance matrix Cw depends on the choice of the weight- 
ing matrix W. This raises the issue of an optimal choice of 
the weighting matrix, i.e. the existence of an optimal ma- 
trix W+ such that Cw+ < Cw for all admissible W, this 
inequality being understood in terms of the partial order- 
ing of the Hermitian matrices. The following lemma allows 
to conclude easily about optimality. 

Lemma 1 LetQ andT be two matrices with the same num- 
ber of rows; QTQ invertible and T a non negative symmet- 
ric matrix. //Span(Q) C Span(r), then for any symmetric 
matrix W such that QTWQ is invertible, it holds that 

{QTWQYl QTWTWQ (QTWQ)~1 > (QTT*Q)-\   (9) 

This is a classic inequality, holding unconditionally when 
matrix T is full-rank. However, our purpose requires to 
deal with possibly singular matrices F; As shown by the 
lemma, the inequality stills holds provided the range of T 
is 'large enough'. Straightforward application of lemma 1 
with T = Cov(STNn) and Q = [STN] yields the following 
optimality theorem. 

Theorem 3 For an admissible pair (S(-), N„) and any ad- 

missible weighting matrix W Cw >(</')       where 

rS,N def rcTMnTCov#(sT^)[sTN] [STN]3 (10) 

and this lower bound to the asymptotic covariance is reached 

forWi, = Cov*(STNn). 

A few comments are in order. First, this result obviously 
parallels the theory of maximum likelihood estimation in 
regular statistical models. Here JS,N plays the role of the 
Fisher information matrix in the M.L. framework. It appar- 
ently depends not only on the statistics of Nn but also on 
the particular function S used to express the orthogonality 
between subspaces. Next section is devoted to establishing 
that this lower bound does not depend on functions S and 
N but only on 'subspace quantities'. Second, it must be 
stressed that it may exist many different weighting matri- 
ces attaining the lower bound. In other words, Cw = Cw+ 
does not necessarily imply that W = W*. Finally, the op- 
timal weighting depends on the parameter 8 but may be 
shown that its substitution by a consistent estimate does 
not affect the asymptotic distribution of 8™*. 

2.    INVARIANCE OF SUBSPACE FITTING 
ESTIMATES 

This section is devoted to establishing two invariance prop- 
erties related to optimal subspace fitting. The basic intu- 
ition is that optimal procedures 'tend' to be independent of 
specific parameterizations. For instance, estimation based 
on optimal matching of a statistic is invariant under invert- 
ible transformation of the statistic. Since subspace fitting 
estimation is ultimately based on orthogonality between 
spaces, it may be expected that the behavior of optimal 
estimates is governed only by 'subspace quantities'. 

2.1.    Pseudo-scores 
Our approach is based on first-order stochastic expansions 
of estimates: If a sequence {6„} of estimates of a parameter 
8 can be written as 

9„ = 8   +   T^Un + op(n-1/2), (11) 

where {un} ~ AAf(0, Tu), then {u„} is said to be a sequence 
of pseudo-scores for {8n}- This terminology is clearly in 
analogy to classical M.L. estimation theory. It is easily 
found that if a sequence {8n} admits a sequence of pseudo- 
scores {tin} ~ A/V(0,ru), then {9„}~ ArfiÖ, Tu1). In the 
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following, we shall establish invariance properties by com- 
paring pseudo-scores. Clearly, if two estimators are associ- 
ated to pseudo-scores differing only by a op(n-1'2) term, 
they have the same asymptotic distribution. 

Pseudo-scores of optimally weighted subspace fitting es- 
timates have a characteristic form: 

Theorem 4 The optimally weighted subspace fitting esti- 
mate based on an admissible pair (S(-),Nn) admits a se- 

quence {«„'     } of pseudo-scores given by 

u (S,N) 
[STN]TCov#(STjVn)Vec(STiVn).       (12) 

This form of the pseudo-score suggests that matrix S may 
factor out, leaving an expression of the pseudo-score not 
depending explicitly on function S(-). A key device for this 
kind of manipulation is the following lemma. 

Lemma 2 Let {«•„} denote an asymptotically normal se- 
quence: {«>„} ~ AM(0, Cov(t))). For two matrices A and B 

with compatible dimensions, sequences {u^} and {u^}: 

„(2) 

A'Cov*^ 

ATB(BTCov (v)B)*BTv, 

(13) 

(14) 

,M) are equivalent, i.e. uKn> = u[n' + oP(n 1/2), if the following 
two conditions hold: 

rank(5TCov(t))) = rank(Cov(ü)), (15) 
SpanU) C Span(Cov(t>)). (16) 

2.2.     Invariance with respect to the probe 
We start by proving invariance with respect to the probing 
function S(-). Denote Ps(v) the orthogonal projector onto 
Span(S(»y)) and denote Ps its value at the true parameter 
t) = 0: 

Ps(v) = S(V) (S(V)TS(r,))*S(n)T,       Ps ^ Ps(6). (17) 

We want to relate estimates based on the pair (S(-),JV„) 
to estimates based on the pair (Ps(-),Nn). The first prop- 
erty to be established is that estimates based on the pair 
(Ps(-),Nn) do exist. This is guaranteed by the following 
theorem. 

Theorem 5 If(S(-),N„) is admissible, so is (Ps(-),Nn). 

It follows that theorem 4 applies to the optimally weighted 
subspace estimate based on the pair (Ps(-),Nn). Accord- 
ing to theorem 4, a pseudo-score associated to the pair 
(Ps(-),N„) is: 

„(?*•*) - = [PSN]J Cov*(P5jVn)Vec(PsjVn). (18) 

It is not difficult to establish that 

[STN] (/®S)T[PsN], 

Vec(STjV„)     =    (/®S)TVec(PsiVn) 

(19) 

(20) 

Note that inserting identities  (20)  and  (19) into expres- 
sion (12) of M

(
„
5,JV)

 results in 

„y    >     )       — =    [PsNf(/ ® S) ((/ ® S)TCov(PsJVn)(J ® S))* 

which would be identical to expression (18) of uifs'N\ if 
matrix I ® S canceled out in (21). That such a cancelation 
occurs is not a priori granted because matrix 7 ® S is not 
invertible. However, one may prove that for an admissible 
pair (S(-), Nn): 

rank((7 ® S)TCov(PsA>„)) = rank(Cov(Ps#„X22) 

Span([PsN]) C Span(Cov(PsjV„)). (23) 

Thus the technical conditions required to apply lemma 2 
are fulfilled : matrix I ® S does cancel out in (21) and we 
can conclude with this theorem. 

Theorem 6 (Invariance w.r.t. the probe) 
Optimally weighted subspace fitting estimates based on the 
pairs (S(-),N„) and (Ps(-),Nn) have equivalent pseudo- 
scores, i.e. u(,?-N) = uifs^+opin-1'2). 

2.3.     Invariance with respect to the statistic 

We turn to invariance w.r.t. the statistic. We define 

PN(n) d^ N(n) (N(V)TN(V))*N(r,f,       PN d=^ PN(6). 
(24) 

The 'sample projector' PN must be defined via a S.V.D. be- 
cause the rank of Nn is not necessarily equal to the rank of 
PJV. Thus, if pN is the column rank of N, matrix PN is de- 
fined as the orthogonal projector onto the space spanned by 
the pN most significant left singular vectors of N„. Without 
strengthening our assumptions, we can establish admissibil- 
ity of the pair (£(•), PJV). 

Theorem 7 If(S(-),Nn) is admissible, so is (S(-),PN). 

Thus theorem 4 applies to the optimally weighted subspace 
estimates based on the pair (S(-),PN): they are associated 
to a pseudo-score irn ' N' given by: 

uis'PN) = [STPN]TCov*(STPN)Vec(STPN). (25) 

Contrary to invariance w.r.t. the probe S(-), an additional 
'rank condition' is required to actually obtain invariance 
w.r.t. Nn. 

Definition 2 We say that the rank condition is fulfilled 
when it holds that 

STNn = STiVnN#N + op(n-
1/2). (26) 

(7©S)TVec(PsjV„). (21) 

One can show that the rank condition holds in several famil- 
iar contexts. For instance, it is verified if matrix N has full 
column rank or if matrix N„ has (almost surely) the same 
rank as its limiting value N. Under the rank condition, we 
can prove 

[STN]    =    (N®/)r[STIV], (27) 

Vec(STJVn)     =    (N®J)TVec(STiV) + 0p(n-1/2)(28) 

Inserting relations (27) and (28) in (12) yields 

u(/'W) = [STIV]T(N ® /) ((N ® J)TCov(STPJV)(N ® /))* 

x (N ® J)TVec(ST/V) + op(n-1/2) 
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which reduces to (25) if matrix N <g> I cancels out in (29). 
For an admissible pair (S{-),Nn), we can prove under the 
rank condition that 

rank((N ® I)TCov(ST PN)) = rank(Cov(STiVX>29) 

Span([STPjv]) C Span(Cov(STPjv)). (30) 

Thus the technical conditions required to apply lemma 2 
are verified : matrix N ® I does cancel out. We obtain: 

Theorem 8 Under the rank condition, optimally weighted 
subspace fitting estimates based on the pairs (S(-),Nn) 

and (S(-), PN)  have equivalent pseudo-scores:   un '       — 
JS,Ps + op(n -1/2, 

2.4.     Discussion 
We now combine the results of previous sections. In partic- 
ular the pair (PS{-),PN) is admissible and under the rank 
condition, the optimal subspace fitting estimate based on 
(P.S(-),PJV) admits a pseudo-score u(

n
Fs'FN) which is equiv- 

alent, to «i,5'P), «S,Ps'N) and uiS'PN). It also follows that the 
asymptotic covariance matrix of subspace fitting estimates 
based on any of the pairs (S(-), Nn), {Ps(-), Nn), (S(-), PN) 

and [PS(-),PN) is lower bounded by Jf1 where: 

^ = [Pll I]
T

COV
#
(PSPN)[P*PN]. (31) 

We have thus completed a first part of our invariance pro- 
gram in showing that only subspace quantities are relevant 
to subspace fitting. The next step is to consider the case 
when the spaces spanned by S and N are complementary: 
if S(8) and N(6) taken altogether span the whole space i.e. 

PN(6) + PS(0)=I, (32) 

we say that the saturation condition is met. One can then 
express pseudo-scores and information matrices in terms of 
quantities pertaining to only one of the two (complemen- 
tary) subspaces.  For instance, one easily find that 

JF 
dJ? [P?p5fC0V#(PsPs)[P£Ps] (33) 

where Ps = I - PN- The saturation condition makes it 
possible to compare subspace fitting to subspace matching 
as is done next. 

3.    RELATION TO SUBSPACE MATCHING 

We consider optimal estimation based on PN (subspace 
matching) and its relationship to subspace fitting estimates 
studied in previous sections. The saturation condition is 
assumed to hold throughout this section since no close re- 
lationships between the two approaches can be expected to 
be found otherwise. 

Statistic matching estimates are obtained as 

Öl =argmin||Piv-PN(»/)||v. (34) 

For appropriate choices of weighting matrix V, statistic 
matching estimates are AAf{6, £v) for some covariance ma- 
trix Ei/. Theory of statistic matching can easily be adapted 
to the current context in spite of the fact that COV(PN) nec- 
essarily is rank deficient.   In particular, one finds that the 

asymptotic covariance matrix Ev is lower bounded by the 
inverse of matrix JM'- 

JM
d=([i>N]TCov#(PN)[PN] (35) 

whose relation to JF is given below. It is well known that 
under appropriate regularity conditions, JM is an asymp- 
totic lower bound to any estimate of 8 obtained as a function 

of PN. 
We set out to comparing subspace matching estimates 

based on  PN to subspace fitting estimates based on the 

pair (J>s(•).£»)■ 
Theorem 9   Under the saturation condition (32), for any 
admissible weight W, C = ¥n + oP{n~xl2) for V = (PN® 

Ps)TW(PN®Ps)- 

Thus we see that any subspace fitting estimate using weight 
W is equivalent to some subspace matching estimate with a 
weight V which is simply related W. The converse property 
is more difficult to establish because not any matrix V can 
be put in the form mentioned in theorem 9. However, we 
do we have 

Theorem 10 Under the saturation condition (32), for any 
admissible matrix V, 6~Z = 8™oP{n-1/2) for some admissi- 
ble weight W. 

Unfortunately, space is lacking to describe how the weight 
W relates to V in th. 10. A direct consequence of the pre- 
vious two theorems is 

Theorem 11   Under saturation condition (32), JM = JF- 

This theorem shows that optimally weighted subspace fit- 
ting estimates are asymptotically 'efficient' under satura- 
tion in the sense that their asymptotic performance reaches 
the lower bound set by optimal subspace matching estima- 
tion. 
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Abstract 

Most conventional techniques for Independent Compo- 
nent Analysis (1CA) resort to second-order statistics to 
decorrelate the observed data. The prewhitening step makes 
these algorithms sensitive to the presence of additive Gaus- 
sian noise. In this paper a higher-order-only technique is 
presented. The identification problem is approached in a 
(linear and multilinear) algebraic framework: our deriva- 
tion starts with the observation that the solution can be ob- 
tained from the Canonical Decomposition (CANDECOMP) 
of a higher-order cumulant tensor. Next, it is demonstrated 
that the CANDECOMP components follow from the simul- 
taneous diagonalization, by congruence transformation, of 
a set of matrices. A reformulation in terms of orthogonal 
unknowns leads to a simultaneous Schur decomposition, 
which is solved by a Givens-type iteration. The technique 
can be considered as the higher-order-only equivalent of 
the popular JADE-algorithm. 

1    Introduction 

The basic statistical model for Independent Component 
Analysis (ICA), or Blind Source Separation, is in this paper 
denoted as: 

Y = MX + N (1) 

*This research was partially supported by the Belgian Program on In- 
teruniversity Attraction Poles (IUAP-17, IUAP-50), the European Commu- 
nity Research program ESPRIT, Basic Research Working Group nr. 6620 
(ATHOS), the Flemish Institute for Support of Scientific-Technological 
Research in Industry (I.W.T.) and is part of a Concerted Action Project 
of the Flemish Community, entitled "Model-based Information Processing 
Systems". Lieven De Lathauwer is a Research Assistant supported by the 
l.W.T. Bart De Moor is a Research Associate of the National Fund for Sci- 
entific Research (N.F.W.O.) The scientific responsibility is assumed by the 
authors. 

in which the observed vector Y, the source vector X and the 
noise vector iV are zero-mean random vectors with values 
in K or C. The components of X are mutually statistically 
independent, as well as statistically independent from the 
noise components. The goal of ICA now consists of the es- 
timation of the transfer matrix (or "mixture matrix") M and 
the corresponding realizations of X, given only realizations 
ofY. 

Without a priori knowledge the ICA-problem cannot 
be solved using only second-order statistics. Usually the 
second-order statistics of the observation vector Y are used 
for a whitening of the data. In this way the transfer matrix 
can be estimated up to an orthogonal factor U. In the second 
step U is then obtained from higher-order cumulants of the 
standardized data. Several algorithms have been presented 
in literature. Among the most well-known approaches are 
the one by Comon [3] (further analyzed in [7]), where U 
is computed by a Jacobi-type diagonalization of the stan- 
dardized cumulant tensor, and the JADE-algorithm (Joint 
Approximate Diagonalization Estimation) by Cardoso and 
Souloumiac [2], where U is found as the solution of a si- 
multaneous eigenvalue decomposition. 

In our paper the problem is solved using only the higher- 
order cumulant. This approach has the advantage that it 
is conceptually blind for the noise term N, when this term 
is Gaussian. For simplicity of notation, the exposition in 
this summary is restricted to fourth-order processing of real- 
valued data. The technique can be applied to cumulants of 
any order (higher than 2), as well as to complex data. 

The paper is organized as follows. In the next section 
the relation between the columns of M and the fourth order 
observation cumulant is explicited. This relation takes the 
form of a tensorial decomposition of the cumulant in a sum 
of symmetric rank-1 tensors, and the uniqueness of this de- 
composition is discussed. In Section 3 the estimation of the 
transfer matrix from the cumulant model is presented as a 
simultaneous congruence transformation. In Section 4 it is 
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explained how the problem can be reformulated in terms of 
unknown orthogonal matrices. This leads to the simultane- 
ous Schur decomposition of Section 5, for which a Givens- 
type computation scheme is derived. Section 6 contains a 
concluding discussion. 

2   Canonical Decomposition 

2.1 Model 

As the name already suggests, the CANDECOMP of 
higher-order tensors is a basic concept in multilinear alge- 
bra. First we define the tensorial outer product of a set of 
vectors: 

Definition 1 The outer product of the vectors Uw € Rh, 
C/(2> e Rh f/(JV) G IR7", denoted as U^ o U^ o 
... o {/W, is an(h x I2x ...x IN)-tensor A, defined by 
the following element-wise equation: 

_     (1)    (2) (N) 
0-i1i2...iN — uii ui2   • • • UiN 

In analogy with the vector/matrix case, the outer product 
leads to the definition of rank-1 tensors: 

Definition 2 An Nth-order tensor A has rank 1 when it 
equals the outer product of N vectors U^\ U^ U(N\ 

These elementary definitions allow to define the CANDE- 
COMP: 

Definition 3 The Canonical Decomposition (CANDE- 
COMP) of an Nth-order tensor A is the decomposition of 
A in a minimal sum of rank-1 components. 

The decomposition is also known as Parallel Factors Model 
(PARAFAC). It can be considered as the tensorial gen- 
eralization of the diagonalization of matrices by equiva- 
lence transformation (unsymmetric case) or by congruence 
transformation (symmetric case). Despite the importance 
of CANDECOMP no robust general computation schemes 
have been proposed in the past. 

2.2 Link with ICA 

When the noise N is Gaussian, it does not contribute to 
the fourth-order cumulant of Y. This cumulant, denoted by 
C, then shows the following structure: 

C — ^2 KpMp o Mp o Mp o Mp (2) 

where KP denotes the fourth-order cumulant of the pth 
source (1 < p < P) and Mp symbolizes the pth "steer- 
ing vector" (i.e. the pth column of M). Eq. (2) is clearly 
a symmetric CANDECOMP-model. The contribution of a 
non-Gaussian noise component, and the effect of other es- 
timation errors when C is a finite sample cumulant, is con- 
sidered as a perturbation of the equation. 

2.3    Uniqueness 

The uniqueness properties of CANDECOMP and its ma- 
trix counterparts are thoroughly different. Here we assume 
that the transfer matrix is square and regular, and that all the 
sources have non-vanishing kurtosis. It can be proved [9] 
that these conditions are sufficient to guarantee that decom- 
position (2) is unique up to the following trivial indetermi- 
nacies: 

• permutation of the terms 

• scaling of the steering vectors with a factor ap, com- 
bined with inverse scaling (factor a~4) of the coeffi- 
cients Kp. 

(The interested reader is referred to the overview paper [4] 
for a discussion of some other uniqueness properties.) Note 
that in our setting different sources can have the same prob- 
ability distribution, as long as they are mutually statisti- 
cally independent in fourth order. The conditions can be 
weakened for the identification of at most one non-kurtic 
source. It is also possible to handle the "more-sensors-than- 
sources" case. 

3   Simultaneous Congruence Transformation 

We associate to C a linear matrix transformation in the 
following way: 

B = C(A) bij = 2_jCiJkiakl ^ 
kl 

for all index values. From Eq. (2) follows that every matrix 
in the range space of C can be written as a linear combi- 
nation of the "steering matrices" MpMj (1 < p s$ P). 
In other words, the transfer matrix M diagonalizes every 
matrix in the range space of C by congruence transfor- 
mation. Assume a basis for the range space is given by 
Ti, T2, • • ■, Tp, then we have the following simultaneous 
congruence transformation: 

Ti    =   M • Dx • MT 

=    M-Da-M' 

Tp    =    M • Dp   M3 (4) 

where Di, D2,. • •, Dp are diagonal. Remarkably, a simi- 
lar set of equations arises in the blind separation of constant- 
modulus signals [11], which suggests a weird link between 
the constant-modulus property and non-Gaussianity. The 
computational technique of this paper differs from the one 
presented in [11], the latter being suboptimal. 
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Although two equations in (4) are generally sufficient to 
estimate the transfer matrix, we prefer to solve the com- 
plete set simultaneously, in order to exploit all the available 
information. This can be substantiated by numerical argu- 
ments [9]. 

The simultaneous solution of Eq. (4) is the higher- 
order-only equivalent of the simultaneous eigenvalue de- 
composition on which the ICA-algorithm by Cardoso and 
Souloumiac is based [2]. In the latter algorithm pre- 
whitening leads to a simultaneous matrix decomposition 
from which an orthogonal matrix has to be computed; in the 
current approach a general regular matrix has to be deter- 
mined (up to the indeterminacies mentioned in Section 2.3), 
corresponding to the fact that there is no pre-whitening. 

4   A new matrix representation 

The fact that the unknown transfer matrix is basically 
an arbitrary regular matrix, makes it hard to deal with in 
a proper numerical way. Therefore we will represent the 
mixture matrix by a pair of orthogonal matrices, obtained 
from the Q-R-factorisation M = QTR' and the RQ- 
decomposition MT = R" ZT. The pair (Q,Z) is actually 
an equivalent representation of the transfer matrix, within 
the limits of identifiability. From the definition of Q and Z 
we have: 

(Q • Z) ■ R"T = R' (5) 

The orthogonal matrix Q- Z will be denoted as V. The lower 
triangular part of Eq. (5) is a system of linear equations in 
the unknown coefficients of R": 

[  Vp,P-l      Vpp   ] ' P-1,P-1 
r" 

.     rP-l,P 
= 0 

P-l.P-2      VP-1,P-1 

Vp,P-2             VP,P-1 

vp-i,p 
vp,p 

r"                 1 ' P-2,P-2 
r" rP-2,P-l 
r" 
' P-2,P     . 

= [o  o]: 
(6) 

Note that a scaling of the rows of R" does not affect this 
homogeneous set of equations, which is consistent with the 
fact that the steering vectors can only be determined up to a 
scalar multiple. By substitution of R" in Eq. (5) R' can be 
found as well. 

5   Simultaneous Schur Decomposition 

5.1    Principle 

The notation of the simultaneous congruence transfor- 
mation in terms of Q and Z leads to a set of matrix equa- 

tions that we will denote as a simultaneous Schur decompo- 
sition: 

q-Ti-z  = 

Q-Ta-Z    = 

Ri = R' • Di • R" 

R2 = R  D2   R" 

Q   TP   Z    =    RP = R'   Dp   R" (7) 

From these equations the orthogonal matrices Q and Z have 
to be determined such that Ri, R2,..., RP are "as upper 
triangular as possible" (in least-squares sense). The crite- 
rion function / to be minimized can be written as: 

/(Q, Z) = IIQ • Tx ■ Z|||F + ... + IIQ ■ TP • Z|||F (8) 

in which ||A||/,F denotes the below-diagonal Frobenius- 
normof A, i.e. 

I
A

II^ = (E£4)
1/2 (9) 

j<i 

It can be proved that the criterion / satisfies all the con- 
ditions for a higher-order-only contrast function [3, 5] that 
discriminates over the set of regular transfer matrices. Con- 
trarily to classical approaches this contrast depends on two 
orthogonal matrices. 

5.2    Solution by Givens-iteration 

The core of our method is the computation of Q and Z 
from Eq. (7). The criterion function /(Q,Z) is optimized 
by an iteration technique, in which Q and Z are determined 
as a sequence of elementary Givens rotations. Each elemen- 
tary rotation makes the set Rx, R2,..., RP simultaneously 
as upper triangular as possible. 

First, the estimates of Q and Z are initialized as any 
orthogonal matrix, e.g. as the identity matrix: Q(°) = 
2(0) _ i The estimates of Ri,R2, ...,RP are ini- 
tialized accordingly: R^0' = Ti, R2

(0) = T2, ..., 
Rp = Tp. In each iteration step k either Q(fc) or 
ZW is updated. An update of Q<*) takes the form of 
Q(*+!) = Gy • Q<*), in which Gij denotes an elemen- 
tary Givens rotation that affects rows i and j; at the same 

■      -(*)n_<*) >Rp(*) are updated as Rl(*+i) = timeRi(fc),R2W 
Gf. . Rx(

fc) ,(*+!) ,(*+!)    - R2^
+1J   =   GX.R2w   .... Rp, 

Rp( ).  z^ is updated in a similar way, by work- GT. 
ing on the columns. 

Let us focus on the updating of Q^ by multiplication 
with Gy. The Givens-rotation should be determined such 
that it minimizes the below-diagonal norm of all the ifh and 
j'th rows in Ri'^1',... ,Rp(fc+1). If we define 

EJ, (ft) _ 

(Rp   )j, i-j-l 

(10) 
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using MATLAB-notation, then Gy should be determined 

such that the second row of E?jfc+1) = G? • EJJ0 has mini- 
mal Frobenius-norm. Hence Gy can be obtained as the left 

in this way the norm of the sec- singular matrix of Ey  : 
!.(*) ond row equals the smallest singular value of E^;, which 

is the best one can do. In simulations the Givens-iteration 
shows a monotonous convergence to the global optimum of 

/(Q,z). 

6   Discussion and conclusions 

We presented a new ICA-technique that resorts only 
to the higher-order cumulants of the observations. The 
transfer matrix estimate that is obtained shows exactly 
the same uniqueness properties as in the classical ICA- 
algorithms [2, 3], which also exploit second-order infor- 
mation in a prewhitening step. Higher-order-only Blind 
Source Separation has the advantage that it is asymptoti- 
cally insensitive to additive Gaussian perturbations of the 
data. When dealing with finite sample cumulants, the ac- 
curacy of higher-order-only versus classical approaches is 
subject to a trade-off, caused by the fact that higher-order 
statistics are harder to estimate than second-order statis- 
tics [1, 10]. 

Our approach is based on the observation that the data 
cumulant can be expanded as a sum of rank-1 tensors. This 
implies that all the matrices in the range space of the cu- 
mulant tensor, considered as a super-symmetric matrix-to- 
matrix mapping, satisfy a simultaneous congruence trans- 
formation. For the numerical computation of this set of 
matrix equations we proposed a new representation of the 
transfer matrix: it turns out that any matrix, of which the 
columns are fixed up to multiplication with a scalar, can 
be represented by a pair of orthogonal matrices, obtained 
by QR- and i?Q-factorisation. In this new format the si- 
multaneous congruence transformation takes the form of a 
simultaneous Schur decomposition, that can be computed 
by a Givens-type iteration. The result can be considered as 
an approximate solution of other cumulant-based identifica- 
tion criterions, e.g. least-squares cumulant matching can be 
realized by means of a standard optimization routine, using 
the simultaneous Schur-solution as starting value [8]. 

The technique established in this paper is in fact 
the higher-order-only equivalent of the well-known com- 
bined second/higher-order ICA-algorithm by Cardoso and 
Souloumiac [2]. The concepts of this paper also lead to a 
higher-order-only equivalent ([9]) of the ICA-algorithm by 
Comon [3]. 

The technique can also be generalized for higher-order 
tensors without symmetry properties [6]. The unsymmetric 
version of the algorithm can be used for Factor Analysis of 
multiway datasets. 

References 

[ 1 ] C. Bourin and P. Bondon. Efficiency of high-order mo- 
ment estimates. Proc. IEEE SP/ATHOS Workshop on 
Higher-Order Statistics: 186-190, Girona, Spain, June 
12-14,1995. 

[2] J.-F. Cardoso and A. Souloumiac. Blind beamforming 
for non-Gaussian signals. 1EE Proceedings-F, 140(6): 
362-370,1994. 

[3] P. Comon. Independent component analysis, a new 
concept? Signal Processing, Special Issue Higher Or- 
der Statistics, 36(3): 287-314, April 1994. 

[4] P. Comon and B. Mourrain. Decomposition of quan- 
tics in sums of powers of linear forms. Accepted for 
publication in Signal Processing. 

[5] P. Comon, L. De Lathauwer and B. De Moor. A 
contrast-based independent component analysis with- 
out second-order moments. Proc. SSAP-96. 

[6] L. De Lathauwer, B. De Moor and J. Vandewalle. 
Canonical decomposition of a fourth-order tensor. 
IMA Conf. on Linear Algebra and Its Applications, 
Manchester, U.K., July 10-12, 1995. 

[7] L. De Lathauwer, P. Comon, B. De Moor and J. Van- 
dewalle. Higher-order power method - Application in 
independent component analysis. Proc. NOLTA'95,1: 
91-96, Las Vegas, USA, December 10-14,1995. 

[8] L. De Lathauwer, B. De Moor and J. Vandewalle. A 
technique for higher-order-only blind source separa- 
tion. Proc. ICONIP'96, Hong Kong, September 24- 
27,1996 (to be published). 

[9] L. De Lathauwer. Signal Processing by Higher-Order 
Tensors. Ph.D. thesis, K.U.Leuven, E.E.Dept.-ESAT, 
Belgium (in preparation). 

[10] J. Fonollosa. Sample cumulants of stationary pro- 
cesses: asymptotic results. IEEE Trans, on Signal Pro- 
cessing, 43 (4): 967-977, April 1995. 

[11] A.-J. van der Veen and A. Paulraj. An analytical con- 
stant modulus algorithm. Submitted to IEEE Trans. 
Signal Processing. 

359 



Cross-Correlation Based Multichannel Blind Equalization 

Haralambos Pozidis and Athina P. Petropulu 
Electrical and Computer Engineering Department 
Drexel University, Philadelphia, PA 19104, USA 

pozidis@cbis.ece.drexel.edu,    athina@artemis.ece.drexel.edu 

Abstract 

A novel cross-correlation based framework is pro- 
posed for the problem of blind equalization in communi- 
cations. We assume that we have access to two obser- 
vations, corresponding to the outputs of two channels 
excited by the same input. We propose a new algo- 
rithm which estimates the channels using as basic tool 
the phase of the cross spectrum of functions of the ob- 
servations. The proposed method is computationally 
attractive, requires small input sample sizes, and per- 
forms well in low signal-to-noise ratios. 

1. Introduction 

Blind equalization is the problem of reconstructing a 
signal from a filtered version of it, without knowledge 
of the signal nor the filter. Research results dealing 
with the case of non-white signals have been reported 
in the past [1], [4], [5], [2], [3], using either multiple 
observations of the distorted signal [4], or oversampling 
of the received signal, [2], [3]. Both approaches lead to 
a multichannel scenario where the input signal is to be 
estimated from multiple distorted versions of it. 

The approach of [4], [5] uses higher-order statistics 
of the observations, while that of [2], [3] is based on 
the cyclic autocorrelation of the observations. The sec- 
ond approach has the advantage that it can be applied 
to any type of input signals, as opposed to the first 
approach which applies to non-Gaussian signals only. 
The cyclic approach has a lower complexity compared 
to the higher-order statistics based approach, however 
its performance and the uniqueness of the solution is 
critically related to the knowledge (or ability to get ex- 
act estimates) of the lengths of the unknown channels. 

In this paper we present a new cross correlation 
based approach which estimates the channels by simul- 
taneously minimizing two error criteria involving the 
phase of a combination of the two channels. This phase 

is estimated from the observations based on cross corre- 
lation operations. We show that the proposed method 
is not very sensitive to channel lengths mismatch, re- 
quires small input sample sizes, and performs well in 
low SNR's. 

2. Problem Formulation 

The two channel case will be described next, how- 
ever the results can be easily extended to the multi- 
channel case. The unknown system model is described 
by 

Xi (k) = hi(k)*s(k) + m{k),       t = 1,2       (1) 

Xi(k), i= 1,2 denote the observations; h{(k),i =1,2 
are the unknown FIR channels; s(k) is stationary, gen- 
erally non-white, zero-mean random process; nj(jfc) are 
noise processes uncorrelated to each other and to s(k). 
It is assumed that h^k) and h2(k) have no common ze- 
ros, that there are no zero-pole cancellations between 
hi(k),i = 1,2 and convolutional components of s(k), 
and that there are no common zeros between convo- 
lutional components of s(k) and each of the channels. 
Under these conditions, the channels hi(k) and h2(k) 
are identifiable within a constant and a delay. In the 
sequel we present an algorithm that performs the iden- 
tification task. 

3. The Cross-Correlation Blind Equaliza- 
tion Algorithm 

Let us model the random process s(k) as 

s(k) = e(k) * h(k) (2) 

where e(k) is a white, zero-mean process.  Combining 
(1) and (2) we get 

Xi(k) = e(k) * h(k) * hi(k) + m(k) = e(jfe) * 9i(k) + „,-(*) 

(3) 
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The cross correlation of xi(k) and x2(k) equals 

r,ira(t) = E{Xl(n+k)x*2(n)} = 7| ffi(*)*ffS(-*) (4) 

where ~i\ is the variance of e(k). The contribution of 
ni(fc) and n2(ik) to (4) is zero, due to the fact that 
the noise processes are zero-mean and uncorrelated to 
e(n). 

The minimum phase equivalent of an all-zero se- 
quence y(n), denoted by ymin{n), is a minimum phase 
sequence, whose zeros consist of the minimum phase 
zeros of y(n) and the maximum phase zeros of y(n), re- 
flected inside the unit circle at their conjugate recipro- 
cal locations. One simple method to estimate ymtn{n) 
is the power cepstrum based approach,i.e., 

ymin(n)   =    F-^explCiu)]} 

c(n)    =    F-HlogpiuttfMn), (5) 

where C(u) is the Fourier transform of c(n) and u(n) is 
the unit step function. The minimum phase equivalent 
of a random sequence x(k) = h(k) * e(k) where e(k) is 
white and h(k) deterministic, is equal to the minimum 
phase equivalent of the deterministic part h(n). 

Let d(k) be defined as 

d(k) = rXlX2(k) * ~gfn(k) * (9?in(-k)T       (6) 

The z-transform of a deterministic, FIR, generally 
complex sequence can be decomposed as 

H{z) = chz-
rhIh(z-1)Oh(z) (7) 

where ift(z-1),0h(z) are the minimum and maximum 
phase parts of h(n) respectively, c/, is a constant and 
rh equals the number of zeros of h(n) outside the unit 
circle. 

Taking the Fourier transform of d(k) and using (4) 
and (7), we get 

D(z) = le
2cgic*g3z^-^[Igi(z-')i;2(z*)?Pi(z),   (8) 

with 

PiW = Ogi(z)0*gi(l/z*)Og2(z)0*g2(l/z*)     (9) 

Since Fi(w) is zero-phase, (8) leads to the following 
phase relation 

arg{D{u)} = 2arg{Itl(u)I^(u)} + (rfll - rSa)w 

= 2arg{Ihl(u)Ila(u>)} + (rkl - rh> (10) 

where we ignored the phase contribution of the terms 
cgi and Cg3, since this is an additive constant, con- 
tributing a complex scalar to the corresponding time 
domain signal. 

Equation (10) is of key importance, since the equal- 
ization scheme described in the sequel, is based on it. 

Let us consider the filtered observations yi(k),i = 
1,2 obtained as: 

yi(k) = xi(k)*wi(k) (11) 

where tu,(fc)> » = 1,2 are FIR channels. Let 

Emin(z)    =    Iyi(z)i;2(l/z*) 

Emax(z)    =    Oy2(l/z)0*yi(z*) (12) 

be the cross spectrum of the minimum and maximum 
phase parts of the adaptive filter outputs respectively. 
We show that 

arg{Emin(u)} = 0   V u <=> 
ihi(n) = iw2(n)  and ih2(n) = iWl(n). 

and similarly, 

arg{Emax(uj)} = 0   V u <=> 
o/n(«) = oW2(n)  and oh2(n) = oWl(n) 

(13) 

(14) 

The proofs can be found in [5], [6]. Combining Propo- 
sitions 1 and 2, we get that 

arg{Emin(u)} = 0  and arg{Emax{u)} = 0 V u   -£=> 
hi(n) = w2(n)    and   h2(n) = wi(n). 

(15) 

3.1. Channel Identification/Equalization 

Let 

Wm<n(w) = !«,»£»,    Hmin{u) = Ihl{w)I*h2{w), 
(16) 

and also let us assume temporarily that the length of 
wmin(n), Lmin is known. Setting the phase of Emin(uj) 
to zero and after some mathematical manipulations we 
get 

Eni-WWO wmin(n)sin(^n - VVmn(w))- 
EnL-N, «tf,in(n)«in(wn + i>'min(u)) = sin(ipmin(u)) 

(17) 
where 

ipmin(u) = arg{Hmin(u)},    Vw(w) = % ~ ^"»"(w)> 
(18) 

Ni is the length of the causal part of wmin(n), and N2 

the length of its noncausal part. Through (10), (18) 
becomes 

Vw(w) = \{arg{£>(«)} - (rhl - rfc»        (19) 

In (17) it was taken w^in(0) = 1. 
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Repeating (17) for different w's in the set {w = 
-j-k, k = 0,..., L/2}, we can form the system of equa- 
tions: 

'^min'Wmin = 4* mini (20) 

and subsequently solve it for wmi„ via least-squares. 
An adaptive solution can be obtained via LMS algo- 
rithm. 

Due to the structure of wmin(n), as defined in 
(16), and from Proposition 1, the cepstrum of wmin(n) 
equals 

wmin(n) = th2(n) + i*hl(-n) (21) 

where ihi (n) denotes the cepstrum of the minimum 
phase part of A,-(n). Since h2(n) is a causal sequence 
and i*hi (n) is a noncausal sequence, (21) can be used to 
obtain the causal cepstra of the two channels. A sim- 
ilar procedure can be followed to yield the noncausal 
cepstra ohl(n) and oh2(n), based on the minimization 
of the phase of Emax(u). Finally, the channels can be 
reconstructed via inverse cepstra operations, within a 
scalar and a time delay. In the channel equalization 
case, where the inverse channels are of interest, they 
can be reconstructed as 

A5n»(n) = JF{er<-*'(")>})    i=l,2 (22) 

In many cases the inverse channel obtained that way 
may enhance the noise at the receiver, thus raising the 
probability of error at the decision device. This prob- 
lem can be bypassed by using the so-called constrained 
Wiener filter approach [7], which estimates the desired 
input symbols in a least-squares sense. This method 
was used in our case. 

4. Implementation Issues 

There are several issues in the reconstruction proce- 
dure that have to be addressed. As seen from (21), 
Wmin{n) is a two-sided sequence of unknown length 
Lmin. The length of wmin, together with the length 
N2 of its causal part, have to be taken into account in 
forming (17). Moreover, the phase ^min(uj), as given 
by (19), contains a linear phase component (r/^ -r^2)w 
and also a constant phase c = arg^^} - arg{ch2], 
both of which are unknown. Neglecting the term c 
will result in a sequence wmin(n) which will differ by 
the true one by a complex constant. The linear phase 
component does not possess additional problems also, 
since it corresponds to a circular shift of the original 
sequence. 

Let us suppose that Lmin is known. Assuming an 
incorrect value for N2, will effectively shift wmin(n). 
This will appear as a circular shift in the reconstructed 

sequence wmin(n). Therefore, if two solutions exist for 
two different values of shift, they should differ by a 
time delay. If no solution exists for some amount of 
shift, the algorithm will not converge. To determine 
the existence of a solution we look for a low value of 
the mean square error corresponding to the shortest 
length Lmin(Lmax). 

Now suppose Lmin is unknown. Assuming a value 
L > Lmin for the length of wmin(n) in (17), we 
will result in a sequence wmin(n) which will have the 
same phase as wmin(n), but greater length. There- 
fore> w'min(n) will be related to wmin(n) by a zero- 
phase sequence, which has zeros in conjugate reciprocal 
pairs. This, together with (21), imply that the mini- 
mum phase parts of the reconstructed channels h[(n) 
and h'2(n) will have common zeros. The number of 
common zeros is the difference between L and Lmin, 
and can be found as the number of zero eigenvalues 
of the Sylvester matrix formed based on i'h (n) and 
i'ha(

n)> tne minimum-phase equivalents of h'^n) and 
h'2{n) respectively. 

5. Simulations 

A channel was generated from two delayed raised 
cosine pulses, as an approximation to a two-ray multi- 
path environment. The channel is given by 

h{t) = 0.2c(t, 0.11) + 0.4c(t - 2.5,0.11),        (23) 

where c(t, a) denotes a raised-cosine pulse and a is the 
roll-off factor. The length of the channel was taken to 
be 6 symbols. Two virtual channels hi(n) and h2{n) 
were generated by oversampling h(t) by a factor of two. 
The source symbols were drawn from a 16 QAM signal 
constellation with uniform distribution. The noise pro- 
cesses were white, zero-mean and Gaussian distributed. 

In the implementation of the algorithm we used 100 
input symbols, solving (20) in a least-squares sense. 
The average least-squares errors over 100 simulations 
were used to estimate the lengths Lmin,Lmax and the 
parameter N2. The first substantial drops of the errors 
ocurred at the correct values, however a length mis- 
match was found not to cause errors to the estimation 
procedure. Fig. 1 shows the actual channels and the 
sample mean of 100 estimates of the channels for SNR 
10 dB. Fig. 2 shows a plot of 1000 output symbols of 
the unequalized channel hi(n) corrupted by additive 
noise at SNR 20 dB. The channels were then recon- 
structed and equalized. 1000 symbols were then trans- 
mitted and the equalized channel output is shown in 
Fig. 3, which indicates that the eye is well opened. 
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Figure 1. True (solid line) and recon- 
structed channels at SNR=10 dB. Dashed 
line indicates sample mean of 100 Monte 
Carlo runs of the reconstructed channels. 
Dotted lines indicate standard deviation. 
100 output symbols were used in the esti- 
mation procedure. 
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Figure 2. The output of the unequalized 
channel hi(n), for SNR=20 dB. 
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Figure 3. The output of the equalized chan- 
nel /ii(n). 1000 symbols were plotted. 100 
output symbols were used in the estima- 
tion, at SNR=20 dB. 
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Abstract 

We consider additive nonlinear Autoregressive Exoge- 
nous (ARX) time series and we propose projections as means 
of identifying and estimating its endogenous and exogenous 
components. The estimates are nonparametric in nature and 
involve averaging of kernel type estimates. Such estimates 
have very recently been treated informally in a univariate 
time series situation. Here we extend the scope to nonlinear 
ARX models and present a rigorous theory, including the 
establishment of consistency and asymptotic normality for 
the projection estimates. 

1. Introduction 

Nonlinear time series analysis has received much atten- 
tion in recent years due primarily to the fact that linear mod- 
els, such as ARMA, fail to capture many nonlinear features 
present in commonly encountered time series, as in econo- 
metric data. See Tj0stheim [10] for a recent review. Both 
parametric (Lewis and Stevens [4] and Granger and Terasvi- 
tra [3]) and nonparametric models (Chen and Tsay [2]) were 
introduced in the literature. While a rigorous theory is avail- 
able in the parametric case (Potscher and Prucha (1991)), 
much less has so far been achieved for nonparametric mod- 
els; the work of Chen and Tsay is algorithmic/computational 
in nature lacking analytical convergence results. 

In this paper we consider nonlinear bivariate autoregres- 
sive exogenous (ARX) time series modeled by: 

y<+«+i = 

ffi(y<+i.• • •,Yi+q) + g2(Xt+i,...,Xt+P) + et+t+i   (1) 

Xt+p = &s{Xt+\,..., Xt+p-i) + et+p. 
where p < q + 1 and {e<} and {et} are independent series 
each consisting of zero-mean independent identically dis- 
tributed variables (iid) with variance o* and of, respectively. 

Under certain regularity conditions, the bivariate process (1) 
is jointly stationary. The variables {Xt} and {YJ} are ex- 
ogenous and endogenous respectively. The nonlinear ARX 
model is of fundamental importance in modelling econo- 
metric time series. A popular subclass is when both g\ and 
& are themselves additive so that, for example, 

i 

9i(xu ••■,*,) = ^2 9i,i(xi) 

(see for example Chen and Tsay [2]). We do not limit our- 
selves to this special case. Our goal is to identify/estimate 
the functional structure of the time series from the observa- 
tions {Y{, Xift-J. We note that 

E[Xt+p\Xt+i = xi,...,Xt+p-i = Xp-\] = 

S3(*i,--.,*p-i) (2) 

and 

m{xi,...,xp,yx,...,yq)k 

■^[^«+»+1 l-^i+l = *i > • • • i Xt+P = xp; 
Yt+i=yi,...,Yt+1 = yq] 

= 9i(tn,---,yi) + 92(xi,...,Xp). (3) 

The function g$ can be estimated in a straightforward manner 
by kernel methods and was treated in Masry and Tj0stheim 
[5]. From (3) it is seen that regression estimation methods 
could consistently estimate only the sum of the functions 
g\ and &• Our approach to additive modeling in general 
and to the additive ARX model (1) in particular is through 
projections. Projections were introduced by Auestad and 
Tj0stheim in [1][11] for a univariate additive model with 
the purpose of identifying the functional structure of the 
components. In this paper we establish the consistency and 
asymptotic normality of projection estimates for the more 
general ARX framework. In this way we extend rigorous 
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analysis of estimates in additive models from the indepen- 
dent component case of Stone [9] to the present ARX case, 
where dependence is an integral part of the system. 

We remark that projection estimation theory draws on 
traditional kernel regression results (cf. Robinson [8]) 
and on corresponding results for the ARCH (autoregres- 
sive conditionally hetroskedastic) model treated in Masry 
and Tj0stheim [5]. 

It is possible to generalize the system (1) to a full 
nonlinear ARX-ARCH system by multiplying et+1+i 
and €t+p by nonlinear functions ^(Vi+i»• • • > Yt+t) and 
gs(Xt+i,...,Xt+p-i), respectively. A univariate ARCH 
system was treated at length in Masry and Tj0stheim [5]. 
By combining the results of that paper with the theory of 
the present one it is possible to construct an ARX-ARCH 
estimation theory. 

2. Projection Estimates 

Projection estimates are defined as follows. Let 

Yt = (Yt+u.--,Yt+1)   and   I, = (Xt+i X(+p). 

The vectors x and y are defined analogously, and a more 
general version of (3) can be written as 

m(x, y; p, q) = E{<f>(Yt+q+i )\Xt = x,Y4 = y)    (4) 

where^ismeasurableontoereallineand£{|<0(Yi)|} < oo. 
The introduction of <f> allows us to estimate conditional mo- 
ments, <fi(Y) = Yr, and conditional distributions, 4>(X) = 
I{Y < u}. Set 

h(x, y; p, q) = m(z, y; p, q)f(x, y;p,q)       (5) 

where f(x, y;p,q) is the joint density of (2C*»Ht). assumed 
to exist Let 6n be the bandwidth parameter and set 

Kn(u) = b^+i)K(u/bn) 

where K(«) is a kernel function. Given the observations 
{X{, Y{}^ we estimate / by 

For the ARX model (1) we estimate the sum of the functions 
gi and gz as follows: 

{g\ (y) + 92(*)}n = fnn (x, y;p,q) (9) 

where m„ is given in (8) with <j>{x) = x. We then employ 
the projection technique to estimate g\ (y) essentially up to 
scale and location. Let S\ be a compact subset of RP and 
Si be a compact subset of Rq and let D = Si x Si. Put 

,     x     fl   for (x,y)£D (10) 
for (x,y)tD 

Then define the projection 

Py(y) = E[m(Xt, y ;p, q)w(2Lt,y)y (11) 

and, for the ARX system (1), we then have 

Pv(y) = ls,(y)[ffi(s/)M2Co e Si}+E{g2(2L0)isl(Xj0)}] 

Thus the projection identifies gi(y) for y € Si up to a 
multiplicative and additive constant Moreover, it is seen 
that the multiplicative constant will approach 1 when the 
support D of w is taken to be large enough. 

In view of (11), we estimate Py (y) by 

1      "2 

Py(y) = —^—yiw(Xt,y)fhn(Xt,y;p,q)     (12) 

where n2 = n - p - 1 and fhn(x,y ;p, q) is given by (8). 
One can similarly estimate the function gz, related to the 
projection, 

Px(x) = i*ü0[ftte)JMZoG Siy+EfaO^^OU)}] 

by 

Px(x) = -4-ry;«'(x)y<)mn(£,y4 ;p,q)    (13) 

* 1 
fn(x,y\P,q) = r-ry^Knix-Xt^-Yt)    (6)        wheren3 = n- q - I. 

and 

h„ n(x,y;p,q) = -^j^ttYt+^K^x-X^y-Yt) 

(7) 
where ni = n-?-2is assumed to be positive. We now 
estimate m(x, y\ p, q) by 

mn(x,y;p,q) = 
hn(x,y;p,g) 

fn(x,y;p,q) 
(8) 

3. Results 

We present in this section the main results of the paper 
without proofs. The full proofs, along with the precise 
regularity conditions needed, can be found in Masry and 
Tj0stheim [6]. We first show that the projection estimate 
JY(y) is consistent We have 

Theorem 1. Assume that the functions / and h are Lip^ 
for some 0 < 7 < 1 and that the bandwidth parameter 
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bn satisfies nb^ —► oo as n —* oo. Then, under certain 
regularity conditions we have 

JV(B) - Py(y) = op{{nVn)-W} + op{bi). 

The first term on the right-side is the contribution of the 
variance and the second term is the contribution of the bias. 
Note that the above rates for the projection estimates coin- 
cide with the classical regression rates. 

Now define 

His, V) = w(x, y)f(x ; p)/f(x, y; p, q) 

and 

V2(u, v;p, q) = var{^(Yt+,+1 | X, = «, y, = v] . 

Also define 

a2(v>y) = 

J r [V2(u, m P, q) + {m(u, v; p, q) - m(u, y; p, g)}2] 

x H2(u, y)f(u, v; p, q)du. (14) 

Assume that the kernel K(u) on BP+* is factorable: With 
« = (£, J/), let AT(«) = ^(^(IJATC

2
)^). We then have the 

following result on the asymptotic normality of the projec- 
tion estimate Py(y). 

Theorem 2. Assume that the bandwidth parameter 6„ 
satisfies nfc» —>■ oo as n—>■ oo. Then, under certain regular- 
ity conditions we have 

(nbtf'2{Py(y)-Py(y)-Bn(x,y)} 

±Af(0,a2(y,y)\\KW\\l) (15) 

at continuity points of a2(v, y) as a function of v. 

Remark. The term Bn (x, y) in Theorem 2 represents the 
"bias" of the projection estimates. When the functions / and 
h are Lipy, as in Theorem 1, then Bn(x, y) = Op(b%). It 
is seen from Theorem 2 that the projection estimate Py(y) 
is asymptotically normal and a precise expression for the 
asymptotic variance is given by a2(^, y)\\K^\\l. 

4. Example 

We carried out a small simulation experiment for the first 
order system 

Yt+1 = 0.5Yt + 0.5X2
+i + e(+, (16) 

Xt+i = 0.5Xt + et+i (17) 

where {et} and {et} are generated as independent processes 
consisting of Gaussian iid random variables with zero mean 
and variance. The {Xt} and {Yt} processes were subse- 
quently adjusted so that they have zero mean (already the 
case for the {Xt}-process) and unit variance. The projec- 
tion estimates (12) and (13) were computed for the scaled 
processes taking the set [-3,3] x [-3,3] as the compact 
set D and using a bandwidth 6„ = n-1/5. The results 
clearly reveal the linear dependence on Yt and the quadratic 
«-dependence on Xt+i in (16). 
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ABSTRACT 

Blind equalization of general Volterra models has not been 
addressed, despite its practical value in communications, 
acoustics, and physiological modeling. Relying upon di- 
versity (sufficient number of multiple outputs), we estab- 
lish existence and uniqueness conditions which guarantee 
that single-input, FIR nonlinear Volterra channels can be 
perfectly but blindly equalized using linear FIR equalizers. 
Apart from a minimal order persistence-of-excitation condi- 
tion (also present with input-output approaches), the inac- 
cessible input is allowed to be deterministic or random and 
of unknown color or distribution. With the kernels also sat- 
isfying a certain co-primeness condition, we develop direct 
blind equalizers which by-pass the channel estimation step. 
Preliminary simulations corroborate our analytical results. 

1.    INTRODUCTION 

Identification of nonlinear systems is of paramount impor- 
tance in acoustics, physiological modeling [5], magnetic 
recording [1], satellite and microwave communication links 
[4]. Using input-output data, methods for identifying FIR 
Volterra models have been proposed (see e.g., [9]). But 
apart from special cases, dealing with memoryless nonlin- 
earities and imposing extra conditions on the input [8], [7], 
the blind scenario has not been addressed. Its practical 
significance is evident with high-speed (over 5 kb/s) com- 
munication channels, especially when no training inputs are 
available or when new receivers are added in the link and 
transmission can not be interrupted to initiate a new train- 
ing session. 

In this paper we address the blind equalization and iden- 
tification of FIR nonlinear Volterra channels by exploiting 
the temporal and/or spatial diversity offered in the form of 
multichannel output time series. The latter are collected by 
oversampling the continuous-time data at a rate faster than 
the symbol rate and/or by multiple antennas. Diversity is 
also exploited in [10], [6], [11], [2] for blind identification and 
equalization of linear time-invariant FIR channels, and the 
present work extends these ideas to the challenging set-up 
of nonlinear Volterra models. 

We present our results in the linear-quadratic case (proofs 
and generalizations to nonlinearities of arbitrary order are 
reported in [3]). To link temporal with spatial diver- 
sity we start with the (baseband) continuous-time Volterra 
model xc(t) = £, s(l)hlc(t-lT)+^h E,2 s(h)s(l2)h2c(t- 
lxT,t - l2T), where T is the symbol period. As 
with the linear case, oversampling by a rate of M/T 
yields x(n) := xc(t)|t=„r/M = Ei *(0Mn " lM) + 
Ei Ei s(h)s{l2)h2{n - hM,n - l2M), where hi{n) :- 
hic\nT/M), and similarly for h2(nx,n2). Time series x(n) 
is cyclostationary with period M.   But upon defining the 

sub-processes z(m)(n) := i(nM+m-l), m = 1,..., M, the 
M-channel process x'(n) 
stationary, and for n 

■= [*(1)(n).. (M), 
.X 

0,1,. .*., JV'-' 1 is given i by: 
(»)], becomes 

x'(n)    =    5>i(*>("-0+v(«) 
1=0 

+    ££h£(»i,i2Wn-liMn-l2),     (1) 

(,=0(2=0 

where: (i)prime denotes transpose and lower (upper) bold 
is used for vectors (matrices); (ii)M x 1 vector hi(h2) cor- 
responding to the linear (quadratic) kernel is defined sim- 
ilar to x; (iii) the inaccessible scalar input s(n) is allowed 
to be either deterministic or a realization of a random 
process (white or colored); (iv)the range of h is chosen 
so that h2(Ji,fe) is defined over its non-redundant region 
0 < h < ill (v)v(n) is AWGN (see also Fig. 1). 

 *-xW(n) 

«(") 

NL Channel 
#1  

NL Channel 
-*•© ^c(M)(n) 

Figure 1. SIMO linear-quadratic model 

Given {x(n)}^T0
1 obeying (1), we first transform it to a 

specific multi-input multi-output (MIMO) linear model, de- 
termine orders L\,L2, and establish conditions for FIR vec- 
tor equalizers to exist (Section 2). Blind linear FIR equal- 
izers {gi,.(fc)}f=o °f order K. satisfying (in the absence of 
noise) the zero-forcing condition 

K 

^2 x'(n-*)gi,i(*) = s{n-i), (2) 

are derived in Section 3 and simulated (with noise present) 
in Section 4. Their uniqueness is established within a shift 
i G [0, L\ + K] which is non-identifiable in the blind case. 

2.    MULTICHANNEL APPROACH 

With new variables i = h - h, I = h, we view the 2-d 
kernel h2(/i, h) as a collection of L2 + 1 linear (1-d) kernels 
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defined as:  h2i(l) := h2(/ + t",/), i = 0,1,... ,L2 and / 
0,1,..., i2 — ». Such an interpretation reduces (1) to: 

x'(n)    =    £hl(J)«(n-7) + v(n) 

+ 
'L2— i 

1=0 

E 
i=o L i=o 

J]h2,(/)s(n-:-/)s(n-/) (3) 

and casts the SIMO problem into a MIMO one, but with 
special L2+2 inputs si(n) = s(n), s20(n) = s2(n), s21(n) = 
s(n - l)s(n), ..., s2L2 (n) = s(n - L2)s(n). 

Let us now define the (Li + K + 1) x M(K + 1) block 
Toeplitz matrix associated with hj(/) 

H, := 

hi(0) 

M(£i) 

0' 

0' 

K{Li-K) 

hi(Ij) 

Similarly, for each i £ [0,L2], we denote the (Z2 + K + 
1 - t) x M(K + 1) matrix corresponding to h2l(Z) as H2i. 
We also define the 1 x (Li + K + 1) input vector sl0(n) := 
[s(n); s(n - 1);...; s(n - K - Li)] and respectively for each 
i € [0,12] the 1 x (L2 + K + 1 - i) vector sUn) := [s(n - 
i)s(n);...; s(n - A- - I2)s(n - ÜT - Z2 + t)]. With these 
definitions, we obtain the matrix version of (3), X = SH 
where the (N - K) x M(K + 1) block Hankel data matrix 
X is formed as 

X:= 
x'(N - 1) x'(N -l-K) 

(4) 
x'{K)        ... x'(0) 

j?r    iN r7, K\ ,
X
   

d(Li>L?,K)   input    matrix   S   and 
d{Li,L2, K) x M(K + 1) system matrix H are given by 

sio(tf-l) 
<o(N-2) 

.     Bio(Ä') S2t2 (0) 

Hi 
H2o 

H •2L2   . 

The common dimension of S and H is d(Xi,L2,K) = L! + 

^ + 1+Ef=2o(i2 + /f+l-i),or, 

d{L!,L2,K) = (L2+2)(K+1) + (L2
2 + L2+ 2X,)/2 . (5) 

We adopt the following assumptions: 
(al)JV - K > max(i!, L2) + K+ 1, which is easily met in 
practice by collecting sufficient data; 
(a2)input s(n) is persistently exciting (p.e.) of order ps = 
d(Li,L2,K); i.e., rank(S) = d(L!,L2, K).  White noise is 
p.e. of any order, but d(Li,L2,K) modes in the spectrum 
of s(n) may not guarantee p.e.  as in the linear case; s(n) 
must also have sufficient amplitude levels (note that if e.g., 
s(n) = 0,1, S is rank deficient because s(n) — s2(n)); 
(a3)quadruplet (M,K,LltL2) obeys 

M(K+l)>d(LltL2,K), (6) 

which for a given M and (Ii,i2) is satisfied by choosing 
K > \{Ll + L2 + 2L1)/2{M - L2 - 2)1 - 1, where fa] de- 
notes the smallest integer > |o|. The minimum number of 

channels required is thus Mmin = L2 + 3 which depends on 
the memory of the nonlinearity; e.g., memoryless nonlinear- 
lties (often encountered with satellite links) correspond to 
t = 0 in (3) and require Mmin = 3 channels and a minimum 
equalizer order Kmin = L\ + L2 - 1 (recall that for linear 
channels Mmin = 2 and Kmin = Li - 1) [10], [11]; 
(a4)matrix H has full row rank; i.e., rank(H) = 
a(Li,L2,K), which implies that there are no common zeros 
among the 1-d kernel transfer functions {H[m\z), H^^z), 

_ff2r (z)> • • • > #2zj, (2)} across all M channels. 
We stress that apart from p.e. (also needed for input- 

output methods) no extra assumptions are imposed on s(n). 
Matrix H must be at least fat (square if equality holds in 
(6)), which along with (a4) expresses the need for diversity 
(sufficient number of "sufficiently different" channels). 

2.1. Order determination 

Assume noise-free data and equality in (6) to obtain, [3]: 
Lemma   1:     Under  (al)-(a4),   matrix X   in   U)  has 
rank(X) = d(L\, L2, K). U 
Let (Ii,£2) be known upper bounds on (Li,L2). With M 
given, choose two distinct orders (K!,K2) both > Kmin := 
\{ll + L2 + 2Li)/2(M -L2- 2)1 - 1, and form matri- 
ces Xi,X2 as in (4). It follows from Lemma 1 that p; := 
rank(Xi) = d(Li,L2,Ri), i = 1,2. Knowing (KUK2), 
evaluating pup2 (using SVD), and using (5), we establish: 
Corrolary 1: For the model in (l)z the orders Lt,L2 

can be found as L2_ = (Pl - p2)/{Ki - K2) - 2, and 
Li=/n- (L2 + 2)(#! + 1) - (L\ + L2)/2. O 
From now on we assume Li,L2 known and choose K to 
satisfy (6) for a given M. 

2.2. Existence and uniqueness 

Consider (2) with n = N - 1,..., N - K, and define g'1:i := 
fei,i(°) • • • Si,i(K)] to obtain the matrix-forms 

Xgi.i  = Si   &   SHgi,,  = s, , (7) 

where s, denotes the (i + l)st column of S. But (7) holds 
iff: Hgi,i = e, where e, is a d(LltL2,K) x 1 vector with 
unity in its (i + l)st entry and zero elsewhere. Given H and 
a fixed shift i G [0, Lx + K], we prove that [3]: 
Theorem 1: Under (aS) and (a4), a linear FIR equalizer 
gi.i = Hfei, i e [0, Xi + K], exists. It is unique if (6) holds 
as equality, or, if the pseudoinverse Hf is adopted when (6) 
holds as strict inequality (minimum-norm solution). G 
The vital role of diversity offered by multichannel data is 
transparent if we note that (6) is not satisfied with M — 1; 
i.e., single channel linear FIR equalizers of FIR Volterra 
channels are impossible. With Mmin = L2 + 3, (6) is satis- 
fied as an equality if we choose Kmin = (L2+L2+2Li-2)/2. 
On the other hand, gj»'»-'»«™ may be preferable for sup- 
pressing AWN as in the linear channel case [2]. 

Although the number of antennas (and thus complexity) 
increases in the nonlinear case, our ability to equalize non- 
linear channels with linear FIR equalizers is very appeal- 
ing, especially because stability of inverse Volterra systems 
is difficult to define and even more difficult to check. 

3.    DIRECT BLIND EQUALIZERS 

To solve (7) in the blind case we must eliminate the input 
dependence. Consider (2) with i = 0 to find £2fclo x'(n - 
k)gi,o(k) = s(n), and also substitute n + i <- n in (2) to 
obtain £f=0 x'(n + i - *)gi,i(*) = s(n). Eliminating s(n) 
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from these equations, we arrive at the cross-relation: 

K K 

£x'(n-k)gi.o(*) = 5^x'(n + i-k)gi,i(fc) 
fc=o 

which forms the basis of our blind approach. In matrix form 
we use Matlab's notation X(t'i : t2,:) to denote a submatrix 
of X formed by the :'i through »2 rows and all columns of 
X. For the s< vector in (7), it holds that s0(* + 1: N — K,: 
) = s,(l : N - K -*',:), which implies that the left-hand 
sides of (7) for different »'s are related. Upon denning 

Xi-.= X{i:N-K,:) ,   X0,i = X(l : N - K - :,:) , 

we infer that X;gi,o = X0,<gi,i; i.e., for i = 1,..., £i + K, 

Ab.igi.oi := [Xo,i — Xi] gi,o = 0 (8) 

The pair of equalizers (gi,o,gi,.) will be identifiable (up to 
a scale) as the eigenvector corresponding to the minimum 
eigenvalue of Xo,i iff the nullity v(Xoj) = 1- It is also 
possible to collect all pairs of shifts (0,1), (0,2),..., (0, £i + 
K) and recover simultaneously equalizers corresponding to 
all shifts by solving Xo-.Li+Kgi = 0; i.e., 

—Xo,: gi,o 

gi,£i+* 

= 0 

(9) 
X-Ll + K 0 ...      -Xo.Lj + K 

where XO-.L^K has dimensions X^**1 (#-#-») x(£i + 
regards to the 
9) we prove [3]: 

K + 1)M(K + 1).   With regards to the ranks of Xo^+K 
and Xo-.Lt+K in (8) and (9} we prove [3]: 
Theorem 2: Suppose x(n) comes from (1) with v(n) =0, 
(al), (aS), (a4) are satisfied, and (6) holds as equality. 
If ii > £2 and p.e. order p3 > 2d(Li,L2,K) + 1, then 
V{XO,LI+K) = 1 and the minimum and maximum delay 
equalizers are identifiable from (8). If Li > £2 and (aS) 
holds, then V(X0;LI+K) = 1 and all equalizers in gx are 
identifiable from (9). O 
Note that (8) involves a smaller matrix than (9), but also re- 
quires stronger p.e. conditions. Among all (0, t) pairs only 
the (0, L\ + K) pair of equalizers can be identified alone. 
Two questions arise at this point: when does £1 > £2 hold 
in practice? and what if £1 = £2? Condition £1 > £2 
requires memory domination of the linear part which is ex- 
pected in most practical cases. Also, in magnetic record- 
ing applications we have £1 = £2 = £ =2 or 3, but 
s(n) = 0,1; hence, s(n) = s2(n) which allows us to combine 
the quadratic kernel h2o(0 (of order £) with the linear one 
hi(0, leaving the remaining kernels h2;(0 with orders L-i, 
i € [1, £]• In this case too, Theorem 2 applies because there 
is a single kernel attaining the maximum order £. 

If £1 = £2, then it turns out that V{XO-.L1-\-K) =2, in 
which case supervector gx in (9) is a linear combination of 
the null eigenvectors Ui,u2: g, = A1U1 + A2u2. To deter- 
mine the Ai, A2 constants we take advantage of "quadratic" 
equalizers such as g2o,i whose output satisfies: 

^x'(n - Jb) g20,i(*) = s2(n - i) . (10) 

fc=0 

It turns out that similar to gx, supervector £20 also satis- 
fies (9) and hence, g2Q = piiii +/12U2. Eliminating s(n-t') 
from (2) and (10), a cross-relation between £j and g20 re- 
sults which allows determination of the (Ai, A2, IH,H2) co- 
efficients [3]. 

If the linear kernel is absent (homogeneous model) we 
again find V(X0:LI+K) = 1, and the£20 equalizer is uniquely 
identifiable although of limited value since its output s2(n) 
is only sufficient when sign ambiguity is not a problem (e.g., 
transmission with non-negative signals). 

Our conclusions on the nullity of XO-.LX+K carry over to 
nonlinearities of arbitrary order although some cases are 
easier than others (e.g., odd order nonlinearities only) [3]. 
Equalizing nonlinear channels with linear deconvolves is 
neat and can be justified intuitively if one views the vector 
equalizer as a beamformer which, thanks to its diversity, 
is capable of nulling the nonlinearities and equalizing the 
linear part. With equalizers corresponding to all possible 
shifts, we can align their outputs and average in order to 
estimate the input via (c.f.(2)): 

s(n) = 
1 

Li + K 

Li+K+1 
£V(„ + ,_*)gl|i(*) 

If blind equalization is the goal, direct equalizers offer ad- 
vantages over indirect approaches which estimate first the 
channel H and then invert it to obtain the equalizer. When 
the noise spectrum is known, the Wiener inverse trades off 
perfect (or zero-forcing) equalization with SNR improve- 
ment. Similarly, SNR gain is obtained if (9) is solved using 
(weighted or total) least-squares depending on whether v(n) 
is colored or white. 

If blind channel identification is the objective, the esti- 
mated equalizers can be used to recover s(n) from which H 
can be obtained by solving (3) using (batch or recursive^ 
linear regression methods. The linear forms of (8), and (9) 
should lend themselves to adaptive schemes which are cur- 
rently under investigation together with linear prediction 
formulations and methods needed to select the optimum 
shift. 

4.    SIMULATIONS 

Example 1: We generated 2-level PAM i.i.d. data (s(ra) = 
0,1) and passed them through M = 3 FIR channels (m = 
1,2, 3) to obtain the data: 

*<•»>(„) = £ h™(l)s(n-l)+Y^h%\l)S{n-l-l)s(n-l). 
1=0 1=0 

The impulse response vectors were hi(0) = [1,0.5,2], 
hi(l) = [-2.5,3,0]', hi(2) = [1,5,2]', 1131(0) = 
[2,0.3, -0.7]', h2i(l) = [0.7,1.2, 3]. Such a channel has form 
similar to that used in magnetic recording models [1]. The- 
orem 2 applies to this channel (£1 = 2 > £21 = 1) and 
using one SVD we computed the 3 x 1 vector equalizer of 
order K = 2 by solving (8) with i = £1 + K. Fig. 2a depicts 
root mean-square error (rmse) between the true and esti- 
mated equalizer coefficients for lengths N = 100,..., 900 
at SNR 20dB and 40dB; rmse vs. SNR is shown in Fig. 
2b for N = 50,100 (averages were computed based on 100 
Monte Carlo runs). Interestingly, with as little as N = 200 
symbols, it is possible to equalize linear-quadratic channels 
with rmse=O(10-2) at SNR=20dB. A typical eye-diagram 
of one channel's output is plotted in Fig. 3a along with its 
equalized version in Fig. 3b. 
Example 2: A similar simulation was carried with 4-level 
PAM data (s(n) = ±3, ±1) and M = 4 channel outputs 
were generated according to the model (m = 1,2,3,4): 

x(-)(„) = ^^(o^-o+E^co^^-o 
(=0 1=0 

+    4™)(0Kn-l)SW + t.(ra)(n), 
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Figure 2. RMSE curves for Example 1 

-1.1]', with hj(0)   =   [1,0.5,2,0.1]',  hi(l)  =  [-2.5,3,0,- 

h2o(0) = [0.01,0.5,0.2,0.03]',        h20(l) 
[0.2,0.3,-0.7,-0.001], h2i(0) = [0.007,0.001,0.3,-0.15]. 
Figs. 4 and 5 show that about an order of magnitude more 
data are required to achieve performance similar to that in 
Figs. 2 and 3, a consequence of the fact that two SVDs are 
required for this model [3] (note that here L\ — L2o = 1, 
L21 = 0, K'= 1). To illustrate the importance of incorpo- 
rating nonlinearities over adopting linear approximations, 
we supposed that the data come from a linear channel of 
order L = 3, and using M = 2 outputs we designed an order 
K = 2 linear equalizer by inverting the channel estimate of 
[11]. The equalized eye-patterns for the 2- and 4-level PAM 
data are shown in Fig. 6. The importance of adopting the 
correct model is evident if one compares Figs. 3 and 5 with 
Fig. 6. 
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Abstract 

In order to maximise the efficiency of the RF amplifier 
located in a transmitter, for instance in both analog and 
digital terrestrial TV links, it is forced to work near 
saturation introducing thus an undesirable nonlinear effect. 
A common solution includes a predistortion system 
before the modulation that compensates as much as 
possible the posterior nonlinear distortion, in such a way 
that the overall performance of the transmitter results in a 
linear and efficient amplifier. Polynomial models usually 
implement the predistortion, but in this paper we propose 
an alternative model based on the Fourier-exponential 
series that shows better performance in the design stage 
without a significant increase of the complexity. 

1.  Introduction 

The distortion introduced by a High Power Amplifier 
(HPA) located in the transmitter of a terrestrial link is 
usually equalised by the so-called feed-forward method, the 
negative feedback method or the predistortion method. The 
first one has a cost limitation since it needs two HPAs, 
which are quite expensive elements of the RF link. The 
so-called negative feedback method is another RF or 
intermediate frequency solution, which has an inherent 
instability problem. On the contrary, the predistortion 
method has no loop (avoiding thus any instability) and it 
results in a cheap solution since it can be implemented at 
the baseband level by a DSP. Nevertheless, in order to be 
able to apply the predistortion at the symbol level, several 
aspects should be taken into account. First of all, the fact 
that the HPA is located in the transmitter ensures the 
introduced nonlinear distortion is memoryless. This 
property, along with the bandpass behaviour of the HPA 
[1], allows a lowpass equivalent formulation where the 
HPA is completely characterised by the so-called AM/AM 
and AM/PM curves which relates the input amplitude to 
the output amplitude and output phase, respectively. 
These curves are supposed to be independent of the 
frequency for narrow bandpass signals and they can be 
obtained by measuring the output of die HPA when it is 

*This work was supported by PRONTIC/CICYT TIC-95-1022-C05-01 
and CIRITTGeneralitat de Catalunya" GRQ93-3021 

driven with a pure tone of the carrier frequency. The 
AM/AM and AM/PM relations are needed for the design 
stage, where the parameters of the predistortion are set. In 
general, a memoryless Volterra system is chosen to model 
the predistortion, being its coefficients fitted by an 
adaptive learning that is applied periodically before the 
data transmission due to the slow-time variation in the 
HPA characteristics. 

In this paper, the authors propose an alternative system 
to model the predistortion that shows better performance 
in adaptive designs than the Volterra model does. Section 
2 is thus devoted to present this model, which is based on 
a Fourier series development. In Section 3, the particular 
HPA predistortion problem is focused emerging the role 
and design of the memoryless nonlinear models. Finally, 
the simulation results are included in Section 4 where the 
performance of the Fourier versus the Volterra model in 
this particular topic is compared. 

2.   The Fourier model 

The Fourier model arises from the Fourier series 
development of the input/output relation of the actual 
nonlinear system (NLS). If g[x] denotes the relation of a 
given memoryless NLS, and x is the input, the 
approximation of a N-order Fourier is the following one. 

g[x]«g[x]=   £c„Vfl,<'x 

n=-N (1) 
It is important to remark that, in order to avoid 

aliasing in the approximation provided by the Fourier 
model, the input signal x should be bounded, i.e. xe [- 
Xmax, Xmax], being also the principal frequency upper- 
bounded. 

In <    In 
00 " 2X0 ~ 2Xmax (2) 

Some previous works about the Fourier model have 
been already done, even with nonlinear problems with 
memory [2,3]. Without going into details, an important 
feature of this model is the fact that, once the order N and 
the principal frequency coo are chosen, the model is linear 
with the rest of coefficients, {cn}. This property allows a 
MMSE criterion for designing the coefficients {cn} and, 
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moreover, the use of classical adaptive methods to lead the 
model to this solution can be also applied [4]. 

In the HPA predistortion problem, the simplified 
model versions that consider an even or odd symmetry in 
the NLS input/output relation are specially interesting. 
Thus, the Fourier model allows a simplification when 
g[x] has an odd (eq.3.a) or an even (eq.3.b) symmetry. The 
complexity is considerably reduced in comparison with 
the general Fourier model (eq.l) due to the real character 
of the coefficients and the functions. 

N 
Vg[x] = -g[-x]   =>   g(x)='Zansm(nco0x) 

"=1 (3.a) 
N 

!fg[x] = g[-x]   =>   g(x)= XV«>s(n(Box) 
"=° (3.b) 

Before dealing with the HPA predistortion problem, it 
is interesting to compare the Fourier model and the 
Volterra model in terms of complexity. Thus, an N-order 
Volterra model needs of the order of 0(N) multiplications 
to provide the successive powers of the input signal, 
whereas an N-order Fourier model needs 0(4N) real 
multiplications to compute the successive powers of the 
first order complex exponential, exp(j(öOx). In fact, the 
memoryless Fourier model can be basically viewed as an 
N-order Volterra model preceded by an exponential 
transformation (fig.1) and, in consequence, both models 
involve the same order of operations to generate the 
respective input data space (apart from the cost of 
computing the first complex exponential function). 

expjj «äffi)J 

LC = Linear 
Combiner 

PG=Power 
Generator 

Figure    1.    The    memoryless    Fourier    model 
implementation 

In case of dealing with the symmetric models, the 
Volterra model uses the half of the operations, whereas 
the Fourier model (eq.3.a,3.b) needs the same because the 
cosine/sine functions are obtained as the real/imaginary 
parts of the respective exponential functions. Concerning 
the number of coefficients that determine the computation 
load in the adaptive design, the Volterra model has N 
coefficients and the Fourier model has (2N+1) complex 
ones. Nevertheless, this number for the symmetric 
Volterra model is N/2, and for the Fourier Cosine or Sine 
models becomes N real coefficients. 

3.   The HPA predistortion problem 

Let's consider a digital link with a transmitter as the 
one shown in figure (2). In a practical situation, the 

predistortion is located before the modulation, being 
usually designed by means of an adaptive method applied 
previously to the data transmission. 

I- 

Q- 

± 
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HJ-JL   D/A —© 

z 
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D/A 

Tx(t)j 1 y(t) 
<±H- HPA -i—- 

sin(cüct) 

Adaptive 
Algorithm 

DEMOD 

Adaptive learning of the predistortion Figure 2. 
system. 

The input to the HPA is denoted by x(t) and results in 
a narrow bandpass signal, centred round the frequency coc 
with an instantaneous amplitude and phase represented by, 
Rt and 6t, respectively. Thus, the output of the HPA can 
be approximated by the following bandpass signal, 
y(t) = HPA[x(t)] = F[Rt ] • cos(<v + 0t + <t>[Rt ])    (4) 

which involves the functions F[R] and <|>[R] that represent 
the so-called AM/AM and AM/PM relations of the HPA. 
hi the simulations, these functions approximate the actual 
AM/AM and AM/PM curves proposed in [5]. Whereas the 
amplitude distortion (fig.5.a) follows the relation, 

F[R] = sign(R)* 0.62 * (l - exp(-/?2 / 0.25)) 
(5) 

the phase predistortion <)>[R] (fig.5.b) is implemented by 
an even polynomial with 9 coefficients. 

The actual HPA output (eq.4) makes evident the fact 
that these curves completely characterise the HPA and, 
moreover, that they can be seen as a lowpass equivalent 
transformations. Thus, as it is shown in figure (3) for a 
discrete system, the predistortion design allows a lowpass 
formulation useful not only to find the design equations, 
but also for the simulations since we have not available 
real data. 
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Concerning the amplitude predistortion denoted by 
gA/A[.]» it can be designed in order to minimise the 
amplitude eiror eR(k), defined as the difference between the 
HPA AM/AM output and the desired magnitude Rk (note 
that the HPA amplification is an scale factor, not included 
in the predistortion design). 

eR(k) = Rt- F[Rk] = Rk - F[gA/M]" 0      (6) 

Thus, ideally, the relation gA/A[R] should be the 
inverse transformation of F[R]. With respect to the phase 
predistortion denoted by the function gA/P[.]> note that the 
minimisation of the phase error, 

ee(k) = 6k - 6k + <p[Rk] ~ 0 => gA/p[h] - -4^1(7) 
conveys to a basic identification problem since the phase 
predistortion is applied after the amplitude predistortion. 

It is important to remark that, although some noise 
will be present at the output of the actual HPA, the 
predistortion design equations derived from expressions (6) 
and (7) are useful since the main goal of the predistortion 
is to compensate nonlinearities, without taking care of the 
noise. In the simulations, an additive Gaussian noise at 
the output of the HPA curves will be considered with a 
high SNR (as it usually happens in terrestrial RF 
transmission) that allows a good performance of the 
proposed predistortion design. 

3.1.        The Predistortion Models 

The odd symmetry of the AM/AM curve determines 
the model that implements the amplitude predistortion. In 
fact, the function gA/A[.] should also follow an odd 
relation and two possible models arise from die respective 
Volterra or Fourier series. 

8V
A,Al*khU(n)-Rk^ = (alj-uZ 

n=l 

N 

(8.a) 

n=i (8.b) 

The linear dependence of both models allows a vector 
notation in terms of die coefficient vector ak and the data 
vector uk, which gathers the power functions for the 
Volterra model and the sine functions for the Fourier-Sine 
model. The coefficients in both models are time dependent 
since they are modified during the learning stage in order 
to minimise the power of the amplitude error. In [5], a 
kind of gradient adaptive algorithm is considered to update 
the value of the coefficients in die opposite direction of 
the instantaneous gradient. The resulting adaptive 
algorithm is called predistortion LMS (PLMS) algorithm 
and it involves the gradient of the AM/AM characteristic 
of the HPA with respect to die input value. 

a(k + l) = a(.k) + ßeR(k)- 
dx 

«(*) 
-* 

In the simulations, the exact gradient of the proposed 
function F[J has been used although in a real situation it 
can be also estimated in sections and stored in a table. 

Similarly, the AM/PM curve follows an even relation 
and thus, the phase predistortion system should be also 
even. An even memoryless Volterra model (eq.l0.a) and 
also a Fourier-Cosine model (eq.lO.b) both of order N are 
proposed to implement the phase predistortion denoted by 
gA/P[.]. 

n=0 
L2k 

■K) v*V 

(10.a) 

N-l ..FC 

(9) 

gA?p\Rk}= lbk
FC(n)-co&(nco0Rk) = b[c   vf 

L    J    „=o V (lO.b) 
The update equations for the coefficients bk involved 

in the phase predistortion models can be performed by 
classical adaptive methods (the NLMS algorithm is 
proposed), since the design problem consists in a basic 
identification problem with a model that is linear in terms 
of its coefficients. 

b(k + l) = b(k) + -^-ee(k)v(k) 
P(k) (11) 

The term p(k) denotes die estimated input power 
approximated by a lowpass filtering of the input data 
vector vk with a memory factor named ß. It is interesting 
to note that, since the output of the amplitude 
predistortion drives die phase predistortion, die learning of 
the coefficients of the gA/P[.] model will be conditioned 
to the learning of the amplitude predistortion system. 

4.   Simulation  Results 

In this section, the results obtained in the simulation 
of the adaptive learning of the predistortion (fig.3) are 
presented. The input signal is a 64-QAM modulation 
generated from two 8-PAM signals, for the in-phase Ik 
and die in-quadrature Qk components. The resulting 
magnitude should be less than 0.62, which is the range 
capable of being compensated since the output of the 
normalised F[.] function of the BJT transistor is bounded 
to diis range (eq.5). A Gaussian noise (SNR=60dB) is 
also added to die output of die HPA distortion. 

Concerning the amplitude distortion, gA/AlL two 
different models are considered: an odd Volterra (oV) 
model (eq.8.a) and a Fourier-Sine (FS) model (eq.8.b), 
both with N=5 coefficients. The principal frequency for 
die Fourier model is chosen equal to coo=n/(2*0.62) since 
the input value R is bounded to 0.62. The coefficients are 
updated by die PLMS algorithm (eq.9), where the step 
size parameters are normalised to the power estimate of 
the respective data vector u dj«v(k)=0.003/(poV(k)) with 
poV(-l)«0, uFS(k)=2/N). At this point it is worth valued 
to remark that the diversity managed by the Fourier 
model, i.e. the sine functions of successive harmonics, 
has not so scattered power values as the Volterra model. 
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This feature, together with other aspects concerning the 
correlation between the components of the vector uk [3], 
usually provides the Fourier model with a better 
performance than the Volterra model in adaptive 
solutions. A clear example is shown in figure (4.a) that 
represents the squared amplitude error achieved by both 
models averaged over 25 independent realisations (the 
better result is achieved by the FS model). The step-sizes 
have been fitted after various tests to achieve a similar 
convergence rate for both models. Additionally, the 
amplitude predistortion system implemented by the 
Fourier model and Volterra model after the learning stage 
are included in figure (5.c). 

HPA AM/AM Characteristic HPA AM/PM Characteristic 

AM/AM Predistortion. Odd Volterra 5 coef. Fourier_Sine 5 coef. 

S-10 

|-20 

« 
g-30 » 

■o 
S>_40 

<-50 

I :T   ' I' '(['11:11 I" "n'TT'W'r'^p'IJ!n|rP11 

500 1000 2000 2500 1500 
Time Step    (a) 

AM/PM Predistortion. Even Volterra 9 coef. Fourier_Cosine 9 coef. 

500 1000 1500 2000 2500 3000 
Time Step    (b) 

Figure 4. Squared envelope error (a) and 
squared phase error (b) averaged over 25 
realisations. 

Similarly, the averaged squared phase error achieved by 
the AM/PM predistortion is included in figure (4.b) (the 
Fourier model also shows the better results). For this 
nonlinear system, an even Volterra (eV) model and a 
Fourier-Cosine (FC) model with 9 coefficients are used. 
The respective coefficients are updated by the NLMS 
algorithm (eq.ll) with the following step-sizes (p.Ve=0.05 
pVe(-l)=0, fiFC=0.3 pFC(-l)=l). In this case, the principal 
frequency of the Fourier model is chosen equal to 
coo=7t/(2) because the input to our model, denoted by ARk 
is bounded to one. At the beginning of the learning, this 
assumption does not hold and the phase predistortion 
learning could be in troubles. Thus, in the simulations, 
the output of the amplitude predistortion system is forced 
to be less than one in order to avoid this problem. From 
the error performance, it can be seen how the phase 
predistortion is conditioned to the convergence of the 
amplitude predistortion as it was expected. Finally, the 
AM/PM predistortion implemented by both models after 
the learning stage are also shown in figure (5.d), where 
the superior performance of the Fourier model becomes 
evident. 

-1 -0.5 0 0.5 1 
Input HPA Amplitude  (a) 

Desired!-) Volterraf—) Fourier_sin(:) 

-0.5 0 0.5 1 
Input HPA Amplitude  (b) 

Desired(-) Volterra{—) Fourier_cos(:) 

-05 0 0.5 -1 -0.5 0 0.5 1 
Input AM/AM predistorter  (c) Input AM/PM predistorter  (d) 

Figure 5. (a) HPA AM/AM relation, (b) HPA 
AM/PM relation. (c) Ideal amplitude 
predistortion (solid) and final amplitude 
predistortion of the Fourier-Sine model 
(dotted) and odd Volterra model (dashed), (d) 
Ideal phase predistortion (solid) and final 
phase predistortion of the Fourier-Cosine 
model (dotted) and odd-Volterra model 
(dashed). 

Remarks 

In this paper the HPA predistortion implemented by a 
Fourier model is compared with the performance achieved 
by the classical solution of using polynomial models. 
Although the Fourier model requires more computational 
load than the Volterra model, the existing fast DSP 
processors as well as the considerably superior 
performance achieved in this particular problem by the 
Fourier model seem to justify the use of this last one. 
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Abstract 

We consider the identification of a class of multiple input-output 
nonlinear systems when the inputs are stationary non-Gaussian 
processes. Currently, there are very few identification techniques 
which exist to solve this complicated problem. In an attempt to 
provide a solution, we extend the single input-output Hammer- 
stein series to a multiple input-output version. Our solution for the 
multiple input-output problem in the non-Gaussian case is math- 
ematically tractable and computationally attractive. Real data 
experiments are shown to indicate the usefulness of the method. 

1. Introduction 

The identification and analysis of multiple input-output systems 
is a problem of practical importance, which finds special applica- 
tion in seismic and array processing, physiological modelling, and 
vibration analysis (e.g., [1, 2, 4]). Most multiple input-output 
system identification procedures are based on the assumptions of 
linearity and Gaussianity, which inevitably exhibit limitations and 
weaknesses in practice. This is problematic as there are many 
multiple input-output nonlinear systems where the inputs are non- 
Gaussian processes (e.g., [4, 1, 9]). However, very few com- 
putationally efficient techniques exist to solve this identification 

problem. 
A multiple input-output Volterra model has been proposed [1], 

but this can lead to an unwieldy multiple input-output system de- 
scription. In addition, the Volterra approach necessitates large 
computational requirements in estimation. In an attempt to over- 
come these problems, we consider extending the single input- 
output Hammerstein series model (see [8]) to the multiple input- 
output case. The Hammerstein series has been shown to exhibit 
distinct practical advantages over the Volterra series in the non- 
Gaussian case. We derive solutions for the multiple input-output 
problem using the Hammerstein series and also derive multiple 
nonlinear coherence functions. The approach represents a math- 
ematically tractable and computationally attractive solution to the 
multiple input-output nonlinear system identification problem in 
the non-Gaussian case. 

2. The Identification Procedure 

2.1   The Multiple Input-Output Model 

We consider the multiple-input multiple-output (MIMO) non- 
linear system, as it represents the most generalised configuration of 
the four multiple input-output scenarios (i.e., the single/multiple 
input-output configurations). We define the m-input, fc-output, 
nth order discrete-time time-invariant Hammerstein series as 

q=l p=l T——0O 

T)9+Nr{t),      (1) 

with inputs Xp{t), p = 1,2,... ,m and outputs Yr(t), r = 
1,2,... , k and where the Hammerstein kernel, gPTq{r), relates 
to the pth input, rth output, and gth nonlinearity respectively for 
q = 1,2,... , n. Note also that we have allowed for an additive, 
zero-mean disturbance signal Nr(t), where we assume that Xp(t) 
and NT (t) are independent for all p, r and that Nr (t) and Na (t) 
are independent for all s, r = 1,2,... , fc, s ± r, and all t. We 
also assume that the inputs are real, zero-mean, and stationary 
processes with bounded cumulants up to 2nth order. Equation (1) 
represents an extension of the Hammerstein series which has been 
successfully applied in the single-input single-output (SISO) case 

[9, 8]. 
In order to simplify the formulation of the problem, consider a 

vectorial version of the MIMO nonlinear system in (1), i.e., 

n        oo 
YW = E   E   &(T)'X0«(t-T) + N(t), 

g=l r——oo 

where X(t), Y(t), and N(t) respectively represent the m, k, 
and it vector-valued input, output and noise processes, and where 
the gth order [m x k] MIMO Hammerstein kernel matrix gq(t) 
represents the collection of all Hammerstein kernels of order q, 
i.e., thep,rth element of g,(t) is gPrq(t). The notation X0,(t) 
represents the g-fold Hadamard self-product of X(t) with itself, 
i.e., the pth element of X°« (t) is Xp(t)

q. The vectorial notation 
conveniently enables us to express the MIMO model in similar 
manner to the SISO nonlinear case [8]. Note however that unlike 
most other nonlinear system identification procedures in the non- 
Gaussian case, we do not linearise the model in finding a solution 
(e.g.,cf.[5,6]). 
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2.2   Solving for the MIMO Hammerstein Kernels 

Since we are considering the identification of a nonlinear sys- 
tem in the non-Gaussian case, our solution naturally involves the 
use of higher order cumulant sequences [3]. We are able to greatly 
simplify the formulation of the solution by only requiring a partic- 
ular slice of the cumulant sequence instead of the usual cumulant 
sequences [8]. The required (p + q)Ü\ multivariate cumulant se- 
quence slice, CXPXI (r), is defined as 

CXPXJ{T) = cum{X0J,(i),X0?(f-r)'} , 

for p, q = 1,2,... , n, where cum represents the cumulant op- 
erator and ' is the matrix transpose operator. Note that the above 
cumulant sequence slice involves products of multivariate random 
processes, which can be expressed in terms of (p + g)fh and lower 
order cumulant sequences (see [3]). 

A minimum mean-square error criterion for the MIMO nth 
order Hammerstein kernels leads to the set of [n x n] linear (block) 
matrix equations 

n        oo 

CYX" (v) = ^2  ^2  gq (T)'CX<,XU (V-T), (2) 
g=l r~~oo 

for u = 1,2,... , n.  Taking the Fourier transform of (2) with 
respect to v gives 

CYX» (OJ) = ^ G, (W)'CM- (O>) , (3) 
9=1 

for u = 1, 2,... ,n where Cx««(w) is the one-dimensional 
(integrated) polyspectral representation [8] corresponding to the 
Fourier transform of cxixy (r), and Gq{u>) is the Fourier trans- 
form of gq(t) with respect to t which we call the Hammerstein 
transfer functions. The key result to note is that the MIMO Ham- 
merstein transfer functions have separated from the multivariate 
integrated polyspectra (cf. the Volterra series in the non-Gaussian 
case). Using the Hammerstein series greatly reduces the computa- 
tional requirements in estimation. Simultaneously solving (3) leads 
to optimal mean-square solutions for G, (w), 9 = 1,2,... , n 

•Gi(«)- 
G2(w) 

LG„(a))J 

■ Cxxwy ... cxnx(uy 
C2UL2(0J)'     ...    CXnx2(w)' 

Cxx" 

' CYX_(W)' 

CYX2(<j)' 

Crx" (w)' 
(4) 

.(w)'  ... Cx»r(u)'_ 

Thus we have derived a general solution for a multiple input- 
output nth order nonlinear system identification in the general non- 
Gaussian case. Note that we do not perform a discrete frequency 
regression as in [5], but solve (4) with respect to the Hammerstein 
transfer functions as a continuous function of w. 

2.3   MIMO Nonlinear Coherence Function 

The coherence function is very important in system identifica- 
tion as it provides a practical mechanism for model validation and 
system analysis. We use the notion of system coherency [5, 8] to 
derive a MIMO nonlinear coherence function. A block matrix ver- 
sion of the MIMO model is introduced so that the derivation of the 

MIMO nonlinear coherence function is not obscured by notation. 
Let the system of block matrix equations in (2) be expressed as 

eYx(u) = 3(u)eXx{u), (5) 

where Cyx(w) and eXx(v) are [k x mn] and [mn x mn] block 
matrices, respectively. The above equation leads to the general 
solution for S(w) as in (4), 

9(w) = eyjc(w)exx(w)-1. (6) 

Let the [k x k] output spectral density matrix of the MIMO non- 
linear system, CW(o>) be denoted by 

CYY(UJ) = S(u)eXx(u})S(u)H + CNN(U) , (7) 

where the dimensions of (7) are [k x k] = [k x mn] [mn x 
mn] [mn x k]. An expression for the [k x k] MIMO nonlinear 
coherence function is found by substituting the expressions for 
S(w) in (6) into (7). Thus the MIMO nonlinear coherence matrix, 
3t(w), is given by 

Ä(w) = Cyy;(w)-1eyjr(w)exJc(ü;)-1eyx(w)Jir . 

where the above matrix dimensions are [kxk] = [kx mn] [mn x 
mn] [mn x k]. This yields an expression for the MIMO nonlinear 
coherence function. Since the MIMO nth order Hammerstein 
series has fc-outputs, it follows that Ol(w) is a [k x k] matrix with 
elements 

3t(w) = 

\Rn(w)    Äi2(w)    ■••     Äi*(w)- 

Ä2l(w)       Ä22H       •■•        Ä2fc(w) 

.Rki(u)    Äfci(w)    •••     Äjb*(w). 

(8) 

where R^v (w), u, v = 1,2,... , k represents the nth order coher- 
ence function of the MIMO model. Thus a solution for the MIMO 
nth order coherence function has been derived which does not 
depend on any unknown MIMO Hammerstein transfer functions. 

2.4   Discussion 

Special Cases. It is straightforward to show how the MIMO model 
in (4) reduces to the single-input multiple-output, multiple-input 
single-output, and single-input single-output configurations, i.e., 
m = 1, r = 1, and m = r = 1, respectively. 

Parameterisation Considerations. Although the Hammerstein 
series is not as general a mathematical model as the Volterra se- 
ries, its use leads to significant reductions in the number of co- 
efficients required in system modelling. As a simple example 
of the parameterisation advantages achieved in using the Ham- 
merstein series, consider a two-input, two-output cubically non- 
linear system with a system memory of M = 10 lags. To 
model this system, the Hammerstein series requires Mnkm = 
120 coefficients, whereas the Volterra series requires a total of 
£"=i(M + 9 - 1)!/((M - l)!g!)*m = 1140 distinct coeffi- 
cients. 
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2.5   Estimation 

We make estimates of the multivariate integrated polyspectra 
using an averaged periodogram based approach [3]. A similar 
approach is used for the univariate case in [8,10]. 

We assume that the input-output sequences X(t) and Y{t) are 
available fort = 0,... ,T-1. Given that the data is stationary, we 
segment the sequences into M stretches each of length N, denoted 
by X{t, m) and Y(t, m), respectively, for m = 1,... , M, such 
that T = MN. The finite Fourier transform of X(t, m)n is given 

by [7] 

N-\ 

We propose the use of a single-input two-output quadratically 
nonlinear Hammerstein series model (i.e., m = l,r = 2,n = 2 
in (1)) to model the transmission characteristics of a combustion 
engine operating in a knocking condition. Note that we do not 
attempt to solve the engine knock problem here, but rather focus 
on the application of the MIMO Hammerstein series as a nonlinear 
model. The cylinder pressure and engine vibration cycles measured 
from the engine were used as the system's input and output signals 
respectively1. A 1.8 /, 4 cylinder engine operating under strong 
knocking conditions at full load was used in the experiment. 

A schematic of the assumed quadratically nonlinear system is 
shown in Figure 1, and has an input-output relationship given by 

d^Mm) = Y/m,m)-cxm)ne-^,   » = 1,2, y^)= g^(rWt_r)+ £ 9r2(r)X(t-r)2+ Nr(t) 

where cXm is the sample mean of X(t, m). For the third-order 
case, the cumulant-moment relationship is given by 

Cx2x(T)    A    cum{X(t)X(t),X(t-r)} 

=    E{X(tfX(t-r)} 

forE{X(t)} = 0, which represents the sliced third order cumulant 
sequence of X(t). This expression suggests the estimator 

AN)f «(-.^^^v.^wr (9) 

which is a form of cross-periodogram. An estimate for CX2X (w) 
is found by averaging over the M terms in (9), and smoothing 
with an appropriate weighting function in the frequency domain 
[7]. In using the weighting functions we assume that the spectra 
have some smoothness properties. The large sample properties of 
this class of estimate are discussed in [3]. 

Estimates of Cxx(w), CVy(w), CXX2(u), CX2X2(u>), 
CVx (w) and Cyx= (w) are found in a similar manner to the above. 
The estimates of the Hammerstein transfer functions and the non- 
linear coherence function are subsequently found by substituting 
the estimated polyspectra into (4) and (8), respectively for a given 

n, k, and m. 

3. Engine Transmission Modelling 

We first verified the multiple input-output system identification 
technique using a simulated nonlinear system where we obtained 
good results. We then applied the method to a practical identifica- 
tion problem relating to engine knock (see [8,12]). 

An effective means for lowering fuel consumption and im- 
proving the efficiency of a combustion engine is to increase the 
compression ratio. However, this also increases the occurrence of 
an abnormal combustion phenomenon called knock. Knock needs 
to be avoided as it results in an excessively noisy, over-heated 
and inefficient engine. If the knocking condition can be detected, 
then it can be minimised without adversely effecting overall engine 
efficiency. The knocking condition can be detected by placing rel- 
atively inexpensive vibration sensors on the engine housing. Previ- 
ously, a SISO quadratic Volterra series has been used to model the 
engine transmission characteristics between the cylinder pressure 
signal and a structural vibration signal [11]. 

with input X(t) and outputs Yr{t) for r = 1,2. We assume 
that the additive noise terms Nr(t) are zero-mean and stationary, 
and that X(t) and NT(t) are independent. The cylinder pressure 
and structural vibration signals were used form estimates of the 
quadratically nonlinear Hammerstein transfer functions and the 
quadratic coherence function. 

Using the results from Section 2, explicit solutions for the Ham- 
merstein transfer functions are given by 

CX2X2(u))CYlX(u) - CX2X(u)CYlX2(u) 
Gll(w) " Cxx(w)CW(«) - Cxx*(u)Cx»x{u) ' 

CXx(u)CYlX2(w) - CXX2(U>)CYIX(U) 
Gl2(w) _ Cxx(u)CX2X2(u>) - CXX7(u)Cx,x{u)' 

CX2X2(UJ)CY2X(UI) - CX2X{üJ)CY2X2(U) 
Gn{"> " Cxx(w)Cx»x»(w) - CXX2(u)CX2X(w) ' 

CxxMCy2X2 M - <?xx2 MCy2x(f) 
G22(") - Cxx(u)CX2X2{u) - CXX2WCx*x<M>) ' 

The above results represent an extremely efficient method for 
computing the MIMO Hammerstein transfer functions as the solu- 
tion is in closed form (cf. matrix inversion techniques [5]). The 
quadratic coherence function associated with the quadratic model 
is found in a similar manner. Figure 2 shows estimates of the lin- 
ear and quadratic Hammerstein series kernels for the two paths of 
the model, and the linear and quadratic coherences for the model. 
The closeness of the coherence function to unity indicates the gen- 
eral goodness of fit of the model. We found that the quadratic 
model provided a better characterisation of the engine block than 
a single-input multiple-output linear model. 

4. Summary 

We have formulated a procedure for identifying a class of mul- 
tiple input-output nth order nonlinear systems when the inputs 

1 Acknowledgement: We would like to thank Professor J. F. Böhme 
from the Signal Theory Division of Ruhr University Bochum and Volkswa- 
gen AG, Wolfsburg, Germany, for kindly providing the knock data used in 
the paper. 
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are stationary non-Gaussian processes. We have validated the 
model by deriving a multiple input-output nonlinear coherence 
function. The solution has been formulated using special forms 
of polyspectra, which significantly simplifies the estimation and 
implementation of the model. In addition, we have avoided the 
parameterisation issues associated with the Volterra series by us- 
ing the Hammerstein series as the system model. The solution 
represents a simple and practical approach to a difficult system 
identification problem. The technique has been validated with an 
application to an automotive engineering problem. 
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Figure 1. The single-input dual-output 
quadratically nonlinear Hammerstein series 
used as the system model. 
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(a) Hammerstein transfer functions 
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I      .    ;;j 

Ml i::; ■ 
3»" ■!^/u 
(b) Path 1 coherences 

Fwgwnqi (n wn«li rt) 

(c) Path 2 coherences 

Figure 2. (a) Hammerstein transfer functions: 
Path 1 (top) and path 2 (bottom) showing lin- 
ear (solid line) and quadratic (dashed line) 
transfer functions; (b) Ordinary linear (solid 
line) and quadratic (dashed line) coherences 
for path 1; (c) Ordinary linear (solid line) and 
quadratic (dashed line) coherences for path 2. 

382 



Second Order Volterra System Identification 

Panos Koukoulas 
koukoula@di.uoa.gr 

Nicholas Kalouptsidis 
University of Athens 

Department of Informatics 
Division of Communications and Signal Processing 

kalou@di.uoa.gr 

Abstract 

In this paper closed form expressions for the identi- 
fication of second order Volterra systems are developed. 
Two main cases are considered. The first case imposes 
natural constraints on the Volterra kernels leaving the 
input signal quite general. The second case leaves the 
kernels in general form but puts constraints on the in- 
put. In particular signals obtained as outputs of linear 
systems driven by higher order white noise are consid- 
ered. 

1. Introduction 

We will be concerned with second order Volterra sys- 
tems of the form 

oo 

y(n) — ^2 hi(ki)u(n - ki) + 
jb1=0 

oo       oo 

J2 £ h2(h,k2)u(n - ii)«(n - k2) + i?(n)       (1) 
ki=0 fc2=0 

The disturbance and input signals are independent zero 
mean processes. The Volterra kernels /ii(&i), h2(ki,k2) 
are causal, absolutely summable, symmetric sequences. 

Closed form expressions for the Volterrra kernels, for 
a second order system, have been determined when the 
input is a zero mean stationary Gaussian process [1]. 
The general p—th order system with the same assump- 
tions for the input is treated in [2]. These expressions 
utilize cumulant information in the time or frequen- 
cy domain. Recall that if x(k) is a stationary discrete 
time random process then the p — th order cumulant 
of x(k), denoted c£(fci, k2, • • • ,kP-i), is defined as the 
joint p — th order cumulant of the random variables 
x(k), x(k + ki), ■■■,x(k + kp-i), i.e., 

c£(*i ,k2r ; kp-i) =cum(x(k), x(k+ki){ ■; x(k+kp-i)) 

The p - th order polyspectrum is the (p - 1)- 
dimensional discrete time Fourier transform of the 
p - th order cumulant cP(ki,k2, •• -,kp-i). Cross- 
cumulant and cross-polyspectra of two jointly station- 
ary stochastic processes are similarly defined. 

The Gaussian asumption is not always realistic. At- 
tempts to handle the non Gaussian case for kernels of 
compact support are presented in [3]. This paper de- 
rives closed form expressions for the identification of 
the Volterra kernels of (1) in two important cases : a) 
banded Volterra kernels and general inputs b) general 
Volterra kernels and inputs of special type. 

2    Formulation as a fredholm integral e- 
quation 

We first compute the cross-cumulant of y with one 
and two copies of the input, respectively. Using the 
properties of cumulants and Leonov - Shiryaev theorem 
[4], we obtain 

cum[2/(n), u(n-si)] =^/ii(fci)cum[u(n-fci), u(n-si)] 
fci 

+ ]T ^2 h2(h, k2)cmn[u(n - h), u(n - k2), u(n - si)] 

cum[y(n), u(n - Si), u(n - s2)] = 2J M*i) 

■cam[u(n-ki),u(n - si), u(n - s2)]-fy^~] fojh, h) 

•cum[u(n - ki), u(n - k2), u(n - si), u(n - s2)}+ 

+2 ^2 $3 h2(kl' fc2)cum[w(n - kx), u(n - Si)] 
fci    kt 

•cum[u(n — k2), u(n — s2)] 

Passing to frequency domain we obtain 
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Cyu(-w) = H1(w)CS(w) + 
l r 

+ 2ir /    H^W ~ W3' w^Cu(w ~ W3' w3)dw3       (2) 

Cyuu(-wi,-w2) = #i(iui + w2)Cl{-wi, -w2)+ 

+2H2(w!, w2)Cl(w1)Cl{w2)+ 

i  r 

■C*(-w2, wi + w2- w3, w3)dw3 (3) 

Let w € [-Tr.fl-]. Note that as long as we move on 
the line wi + w2 = w, eq. (3) takes the form 

CyUU(-(w - w2), -w2) = Jfi(u>)C*(-(iu - w2), -w2)+ 

+2H2(w - w2,w2)Cl{w - w2)Ct(w2)+ 

1    /"* 
+ 2^/    H2(w -W3,W3)C*(-W2,W-W3,W3)dw3     (4) 

Solving eq. (2) with respect to Hi(w) and substitut- 
ing into eq. (4) we obtain 

Hi(w) = 
_    Cyu(-W) 

■L 

Cl{w)        Cl{w) 2i 

H2(w - w3, w3)Cl{w - w3, w3)dw3 (5) 

■/. 

H2(w-w2,w2)-(-■—) 
Alt 

* ,C*(-w2,w- w3, w3)C*(w) 

L*y2Cl{w)Cl{w-w2)CZ{w2) 

C^-{w-w2),-w2)C%w-w3,w3) 
2C*{w)Cl(w-w2)Cl{w2) 

2Ci{w - w2)C*(w2) 

)H^W-W3,W3)dw3 

Cyu(-w)C*(-(w - w2), -w2) 
2C*{w)Cl{w - w2)C*(w2) (6) 

We observe that eq. (6) is a Fredholm integral equa- 
tion of the second kind of the form 

x(t)-\ I K(t,t)x(t)dt = f(t) 
Ja 

The 2 - D function K(t,ft is the so called, kernel of 
the integral equation. In our case 

x(t) = H2(w - w2,w2) A = 
_1_ 

"2TT 

Kit ft = gu(-^2, w - w3, w3)CZ(w) 
*'*'      2Ci{w)CZ(w - w2)C*(w2) 
Cu(-(w ~ w2), -W2)C*(w - W3, W3) 

2Cl{w)Cl{w-w2)Ci(w2) 

ftt\ = cy*>»(-(w ~ w*)> ~wi) 
n>        2Cl{w-w2)Cl(w2) 

Cyu(-w)Cl{-{w - w2), -w2) 

2Cl{w)CZ{w-w2)C*{w2) 

The solution of these equations can be studied by vari- 
ous methods, including iterated kernels, successive ap- 
proximation, the determinants method and the eigen- 
values method. Approximate expressions are obtained 
if the integral is replaced by a finite sum. Then finite 
dimensional linear systems of equations result. Here 
we confine ourselves to the determinants method. It 
can be proved [5] that a necessary and sufficient con- 
dition for the existence of a unique continuous solution 
is that the Fredholm's determinant 

*w = '+Ec-ir£jf••/*(<; % ::: |;) 
d£id£2 ■■■d£v 

is not zero. The solution is given by 

x(t) = f(t)-\ f r(U;A)/(£K 
Ja 

where the kernel r(<,£;A) is 

A(t,£A) r(t,fcA) = ~ 
A(A) 

and 

A(t,t; \) = K(t, ft+ <T (-I)' 
v=l 

A" 
v\ 

Ja Ja U     6     6      ••     t,   ) 
The notation 

*(l; 

ft •   Z 
6 ■■  I 

ft   ■■ ■   I» 
ft   •• ■  t» 

dft<*ft--<*ft 

tf(ft,ft)    A'(6,ft)    •••    A"(ft,ft) 
Kfa,ti)    A(ft,ft)    ■••    A'(ft,ft) 

A(ft,ft)    Kfo,t2)    •••    A(ft,ft) 
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is employed. The above expressions are invoked in sec- 
tion 4 for the computation of the Volterra kernels when 
the input is of special type. 

An alternative expression for the system of eqs. (2) 
and (4) is next derived having the advantage that the 
resulting format is pointwise linear in the kernels. More 
specifically let us introduce the LTI filters with impulse 
responses 

Aa,t(0 = M* + M)  .     Mez 

Then 

m     n 

= SS/i2.*(/)e_iu'l(*+0e~'""2'= 
It    I 

= H2io(wi +«*) + ;£ H2ik (tax + w2)(e-^k + e-^k) 
it=i 

Hence eqs. (2) and (4) become 

Cyu(-w) = Hi{w)C%(w) + H2,o(w) — 

°° 1 
C%(w - it*, w3)dw3 + ^2 HV (w)^ i 

■ f" Cl(w - W3,W3){e-^-^ + e~^)dw3      (7) 
J — Tt 

Cyuu(-(w - w2), -w2) = Hi{w)C*(-(v) - w2), -w2)+ 

+H2,o{p){2Cl{w - w2)Cl{w2) + — 

oo 

Cu(-U>2, V ~ ™3, V>3, )dw3) + £) Hv(W) 

banded case eqs. (7), (8) reduce to the linear system 
Ax = b, where the vector of the unknown parameters 
is 

x = [#i(u>)    H2io(w)   #2,1 H    ••    H2iM(w)]T 

the first row of the matrix A has the form 

1    f 
(Cu(w)    2~ /    Cl(w-w3,w3)dw3 

— I' Cl(w - w3,w3)(e-^w-w^ + e-ilw*)dw3 ■ ■ ■ 

■4- f C3
u(y-^,w3)(e-iM^-^ + e-iMw')dw3) 

The first column of A has the form 

iPl{w)    Cl(-(w - w2)0), -w%0)    ■■■ 

■ ■ ■      C%(-(w - W
2,M), -W%M))

T 

Likewise the second column of A is 

(JL /   C*(w-w3,w3)dw3    2CZ(w-w2i0)CZ(w2io)+ 
2TT J_r 

1     f" 
— /    Ct{-w2fi,w- w3,w3,)dw3--2C2(w-w2iM) 

■C2
JW2M) +7T I     C*{-W2,M,W- W3,w3,)dw3)

T 

The remaining elements of A are 

am,fc=2Cu
2(u,-U;2,m-2)Cu

2(U,2,m_2)(e--'(*-2)("'-^-- > ■I. 
[2Cl{w - w2)Cl{w2){e-^w~w^ + e-i,w>) + ^ +e-j(*-2)«,2,m-2) + J_ T C$(-w2,n-2,w - w3,w3) 

fct(-w2,w- 11,3, w3)(e-^w-^+e-^')dw3]   (8) 

3    Banded second order volterra forms 

We say that (1) is banded Volterra if the matrix 
H2 associated with the second order kernel is a band- 
ed matrix, i.e. there exists an integer M such that 
h2(h, ib2) = 0 for |Jbx - k2\ > M. The meaning of these 
systems is that input products with sufficiently wide 
time separation do not contribute to the output. In the 

.(c-j(*-2)(«<'-«'») + e-
jVe~2)w*)dw3 

Finally the vector 6 is given by 

b = (Cyu{-w)   Cyuu(-(w ~ «'a.o), -u>2,o) • • • 

•••    Cyuu(-{w - w2iM), -W2,M))
T 

If the banded Volterra model is restricted to compact 
support Volterra kernels the above set up is analogous 
with the frequency domain approach of [3]. 
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4    Volterra  systems  with   special  non- 
gaussian inputs 

In this section identification of second order Volterra 
systems using inputs of special type is considered. 

Let us first assume that the input signal is an IID 
zero mean random process with 

c*(«'i, • • •, ik-i) = JkS(h ,■■■, h-i) 

8(h > ■ • • i h-i) is the (k — 1) dimensional unit sample, 
i.e, 

Then 

v _ J  1    if ii = • • • = ik-\ 
»i,---,u-u-| 0   otherwise 

= 0 

2T2 

T4T2 - 73 _ 2T2
3
 + 7472 - ll 

A^ = 1+       27! 272
3 

A(W2,W3;A)=747
o

2;73 

and 

r(u;2,^3;A) = -T-j 

272
3 

7472 - 73 

272 + 7472 - 73 
Therefore the first and second degree kernels are given 
by 

TT    I \ Cyuu(—(W   ~  W2),  —Wo) 
H2(w - w2,w2) =    s    v 2    ' —- 

272 

7472 — 73 1   /"r 

2722(2723 + 7472-732)2^y_^uuHu;" "*>• -™3)^3 

73 

272
3 +7472-71   " 

272
2 + 74 

Cyu(-tü) 

272 + 7472 - 73 
Cyu{-w)- 

73 1    /"r 

2^ /     Cyuu(-(i(; - u>3), -w3)dw3 272
3 + 7472 - 7s 2TT .,_, 

Next we assume that the input signal is obtained 
as the output of a linear time invariant system with 
transfer function G(w) driven by a higher-order white 
noise. Then the spectra of the input signal have the 
form 

CU
2K) = 72%)G*K) 

C3(u>i,u>2) = j3G(w1)G(w2)G*(w1 + w2) 

Cl(wi, w2, w3) = y4G(w1 )G(w2 )G(w3 )G* (iui +w2+w3) 

It can be proved in this case that A(A) and A(w2, w3; A) 
are given by 

Am = 1 + -L f f
c

u
4Ki,^-6,6)c» 

V ' 2* J_S2C*(w)C2(w -6)Q2(6) 

)«i 

Cg(-(u>-ft),-6)Cu
3(u>-ft,li) 

2C*(u,)CI
u>-fc)C'u'(fc) 

A/..,, ,..,. Ax _ Ct(-w2,w-w3,w3)C^(w) 

-^(-(^ ~ w2), -w2)Cl{w - w3, w3) 
2Cl{w)Ci{w-w2)Cl{w2) 

Hence 

T{w2,w3;X) = - 
A(w2, w3; A) 

A(A) 

Therefore the Volterra kernels are 

Cyuu(-(w - w2), -w2) H2(w — w2,w2) = 
2CS(w-w2)C*(w2) 

dw3- 

Cyu(-w)C*(-(w ~ W2), -W2) 
2C5(w)C*(w - w2)Ci{w2)   

+ 

,     1       r   TV \\CyUU(-{w — W3), -W3) +97 /   r(^2,w3;A) v   v      /> 

~~tz\ r(^2,w3;A     ' v      '  ")     ''        '<fo3 2T7-T 2C2(U;)C2(U; - W3)C2(u;3) 
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Abstract 

The performance of many analogue and digital signal processing 
systems is limited by nonlinear distortion mechanisms which can be 
modelled with a Volterra series. The nonlinear distortion can be 
compensated by the application of post (orpre)-distortion based on 
a Volterra inverse. The computational complexity associated with 
this type of compensation can be very high, particularly for systems 
with high nonlinearity order and long memory. In this paper we 
determine the 3rd and 5th order analytical Volterra inverses, and 
examine their associated computational complexity. We show how 
the analytical Volterra inverse can be used to determine the memory 
span of the kernels of an adaptive Volterra inverse, leading to 
computational complexity expressions. We then compare the 
computational complexity of the analytical and adaptive Volterra 
inverse. The results show that the analytical inverse has a much lower 
complexity than the adaptive inverse. 

1. Introduction 

The Volterra representation uses a set of functional and kernels to 
model a wide class of nonlinear systems with memory [1]. The 
continuous time Volterra model is given by (1): 

y(t) = H0 + H ,[x(0] + • • • H.W01 + • • • ffwWOl      (1) 

where H0 = h0 is the DC term, Hn[.] is the nth order Volterra 
operator given by (2), and An(r„r2, . . . ,r„) is the nth order 
Volterra kernel. 

H„{x(t)] ■■ 

»00 * oc 

J — oo J— a 

hn(Tl,T2...T„)x(t-ti)x(t-T2)..Jc(t-Tn)dTldT2...dt„    (2) 

A Volterra inverse can be used to compensate for nonlinear 
distortion. For example, in a previous paper [2] we demonstrated how 
a Volterra inverse may be used to compensate for nonlinearities in a 
sample and hold with input dependent timing jitter. In this paper we 
give analyticalexpressionsforthe5rdand5th order Volterra inverses, 
and examine their computational complexity. We show how the 
analytical expressions can be used to determine the memory span of 
the kernels of an adaptive Volterra inverse. We then compare the 
computational complexity of analytical and adaptive Volterra 
inverses, illustrating that the analytical inverse has a much lower 
computational complexity than the adaptive inverse. 

»Contact information: Defence Science and Technology Organisation, 
Communications Division, PO BOX 1500, Salisbury, South Australia, 5108, 
Australia, Tel: +61-8-82596403, Fax: +61-8-82596328, Email: 
john.tsimbinos@dsto.defence.gov.au 

2. Computational complexity of the Volterra 
model 

The discrete-time Mh order Volterra model with memory length 
truncated to Mfor all orders, and symmetric Volterra kernels (to avoid 
redundancy), can be written as: 

y(k) = Hm[x(k)] 

= H0 + »,[*(*)] + • • • + »»«*)] + • • ■ + ff«W*)l     <3> 

where  Hn[x(k)] = 

M-l      M-l M-l 
Y     Y   ...    ^    hn(mltm2...m„)jc(fe-m1)x(fe-m2)..jc(A:-m„) (4) 

For the Volterra model given by  (3), the total number of 
multiplicationsrequiredgivesameasureofthecomplexity, G(N, M): 

N    (M-l + n)!_ V1   (M-l + n)\ 
W "> - ? (n-l)!(M-l)! (5) 

Fig. 1 shows how the complexity varies with Volterra model 
nonlinearity order N, and memory M. The high computational 
complexity places much emphasis on the development of efficient 
implementations and fast kernel estimation algorithms [3]-[6]. 

N = 4 

Memory span, M 

Fig. 1: Computational complexity as a function of Volterra 
model order N, and memory span M 
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3. The Volterra inverse 
Consider Fig. 2, where an Mhorder Volterra model represented by 

Hm[.] as in (3), is followed by a pth order Volterra inverse 
compensator Gw[.] as in (6). In this paper we consider two types of 
inverses: an analytical inverse which is derived to eliminate all terms 
up to pth order, and an adaptive inverse which is obtained by 
minimising the mean square error between jc[ft] and jt[£|. 

Input Nonlinear 
System With 

Memory 
H, m 

y(k) 

pth Order 
Inverse 

G<P) 

Compensated 
Output 

_x(*) 

Fig. 2: Nonlinear system followed by a Volterra inverse 

GWEK*)] = G0 + G^k)} + ... + Gm[y(k)} + ... + Gp[y(k)} (6) 

3.1 Analytical Volterra inverse 

The analytical pth order Volterra inverse G^ is defined as one 
which, when cascaded with the Mh Volterra model Hm, results in a 
system Q[.) with Volterra operators ß,[]> in which the 7st order 
Volterra kernel is a unit impulse and the higher /th order Volterra 
kernels are zero, for j = 2, . . . p, [1], [7], as in (7). 

x(k) = G^ff^M*)]] = QMk)l 

= x + QP+MW + ß,+2W*)] + - + QpNly(k)] 

pN 

= x+ X ß;WW (7) 

We first consider a 3rd order Volterra inverse. Using (7), it is 
possible to derive the expressions for the Volterra inverse operators: 

G, = ffj1 , G2 = -GlH2G1 , (8) 

G3 = G,[-#2 + H2[\ + GJId-HiGiHi-HjPi (9) 

Fig. 3 gives a block diagram of the 3rd order Volterra inverse, and G3 
is shown in Fig. 4. 

**)- 

G, = H- 

-//j H2^i 

Fig. 3: 3rd order Volterra inverse 

**) 

_ 
~"3 

H2 G, -//2 

i 
(V "2 

j T —H2 ' 

GMW 

Fig. 4: G3 of the 3rd order Volterra inverse 

We now consider a 5th order Volterra inverse. It is possible to 
obtain the ist, 2nd, 3rd, 4th and 5th order Volterra inverse operators 
[8]. However, for the purpose of this paper we will consider the case 
of a 5th order Volterra model with only odd order terms, such as the 
oneweconsideredin[2].NotethatG2 = G4 = 0, and the remaining 
Volterra inverse operators are: 

G, = //71 ,     G3 = -GlH3Gl , (10) 

G5 = G,[-tf5 -fl3[l + G,«3] -3tf3 + 0.5#3G,tf3 + 0.5ff3[2 + G,ff3]]c, 

(11) 

Fig. 5 gives a block diagram of the 5th order Volterra inverse with 
only odd order terms, and the 5th order operator G5 is shown in 
Fig. 6. 

**)- 

G, = fff1 

G3 = -H~lH3H- 

Fig. 5:5th order inverse of a Volterra system 
with only odd order kernels 

-JGI»* 
y(k) ■ 1 

 -GHZ? 
— 

-O—HSr G5W*)] 

Fig. 6: G5 of the 5th order inverse of a Volterra 
system with only odd order kernels 

3.2 Adaptive Volterra inverse 

It is also possible to obtain a Volterra inverse compensator by 
using an adaptive approach illustrated in Fig. 7. The inverse is 
obtained by minimising the mean square error between the ideal 
output x[k] and the compensated output x[k], as in (12). 

Input Nonlinear 
System with 

Memory 

Adaptive , 
Volterra' 

- '  Filter 
y(k) 

-U^L 

*(*) 

Fig. 7: Volterra inverse by adaptive method 

E{e2[k]} = E{{4k]-jHk])2} (12) 

The adaptive method of obtaining a Volterra inverse compensator 
may appear to be more straightforward than deriving an analyticalpth 
order Volterrainverse.Afterall.thekernelsforthe Volterra inverseare 
estimated without the need for obtaining a Volterra model of the 
original system. However, this method would be more difficult to 
apply in practice. Setting the nonlinearity order and memory of the 

388 



adaptive Volterra inverse requires some prior information about the 
original system. The significant nonlinearity orders of the system 
would determine the nonlinearity order of the adaptive inverse. 
However, determining the memory requirement of the inverse 
Volterra kernels is not trivial, even if the Volterra kernel memories of 
the original system are known. The memory of the inverse Volterra 
kernels will usually be higher than that of the Volterra kernels of the 
original system. The memory lengths of the kernels of the derived 
Volterra inverse given in Section 3.1 provide a method of determining 
the required memory of the kernels for the adaptive Volterra inverse. 
This will be discused in Section 4.2. 

4. Computational complexity of analytical and 
adaptive Volterra inverses 
We will now determine the computational complexity of the 

Volterra inverses. We restrict our discussion to two cases: one 
involving a 3rd order Volterra system, the other involving a 5th order 
Volterra system with only odd order terms. For both cases, all Volterra 
system kernels are assumed to have the same memory span, M. 

4.1 Complexity of analytical volterra inverse 

First we consider the complexity of a 3rd order analytical Volterra 
inverse. We assume that an IIR filter is used to implement the first 
order inverse operator G, = H\l, resulting in a memory span of M, 
the same as that of Hv In any case, G, does not contribute 
significantly to the overall computational complexity of a 3rd order 
Volterra inverse. From (8), we have G2 = -G,ff2

Gi> and the 

computational complexity contributions of G2 are summarised in 
Table 1. 

components 
of inverse 

operator G% 

memory 
span 

nonlinearity 
order 

complexity number of 
components 

G\ M 1 M 2 

Hi M 2 (Af+1)! 1 

(M-l)! 

Scaling 
coefficients 

- — 1 1 

Table 1: Computational complexity contributions of G2 

From (9) and Fig. 4, we can summarise the computational complexity 
contributions of G3 in Table 2. 

components 
of inverse 

operator G3 

memory 
span 

nonlinearity 
order 

complexity number of 
components 

Gi M 1 M 3 

Hi M 2 (M+l)! 4 

(M-l)! 

H3 M 3 (M+2)! 1 

2(M-1)! 

Scaling 
coefficients 

— — 1 2 

By summing all contributions of Table 1 and Table 2, we can obtain 
the total complexity of the 3rd order analytical inverse, efl„(3, M): 

(M + 1)! 
eflB(3, M) = 3 + 6M + 5K

{Ml); + 
(M + 2)! 
2(Af-l)! 

(13) 

Next we consider the complexity of the 5th order analytical 
Volterra inverse with only odd order terms. By considering all 
computational complexity contributions from each of the 
components shown in Fig. 5, it can be shown that the complexity of 
the 5th order analytical inverse with only odd order terms is given by 
e„„(5, Af): 

(M + 2)!     (M + 4)! 
eflB(5, M) = 7 + 6M + 6lörüf + üö^y (14) 

4.2 Complexity of adaptive Volterra inverse 
Now consider anadaptiveVolterrainverse. Sufficient memory has 

to be set for the measurement of all inverse Volterra kernels. In order 
to determine the required memory span of each adaptive Volterra 
inverse kernel, it is necessary to make use of analytical Volterra 
inverse operators. In general, the adaptive Volterra inverse (which 
minimises the mean square error at the output), would not be directly 
equivalent to, or give the same compensation performance as thepth 
order analytical Volterra inverse (which is designed to remove the 
nonlinear distortion terms up topth order). However, the analytical 
Volterra inverse operators provide a method of determining the 
memory requirements of the adaptive Volterra inverse operators. 

First we consider the 3rd order Volterra system with all orders /st, 
2nd and 3rd, having a memory span M. Again we assume that the 
memory span for G, is M. To determine the memory requirement of 
the 2nd and 3rd order Volterra kernels, we make use of the analytical 
expressions for of G2 and G3 given in (8) and (9). Since the memory 
span of G, and H2 is M, the memory requirement of G2 is 
(2(M-1) + 1). Since the memory span of G,, H2, and H3 is M, the 
memory requirement of G3 is (4(M-1) + 1). Using these memory 
spans as a guide to the memory requirement of the adaptive Volterra 
inverse operators, it can be shown that the computational complexity 
of the 3rd order adaptive inverse ead(3, M), is given by: 

(2M)\        (4A/-1)! 
eaJ3, M) = M + ^£2)! + 2(4A/-4)! (15) 

Now we consider an adaptive 5th order Volterra inverse with only 
odd order terms. Using the kernel memory length of the Volterra 
model, and the analytical Volterra inverse operators G3and G5, given 
in (10) and (11), we can determine the memory requirement of each 
of the adaptive Volterra inverse kernels. We have G3 = -G1W3G1. 
Since the memory span of G, and H3 is M, the overall memory 
requirement of G3is(2(Af-l) + 1). Now consider the expression for 
G5. Since the memory span of G„ ff3, and Hs is M, the memory 
requirement of G5 is (4(M-1) + 1). Again, using these memory 
spans as a guide to the memory requirement of the adaptive Volterra 
inverse operators, it can be shown that the computational complexity 
of the 5th order adaptive inverse Q<J5, M), is given by: 

Table 2: Computational complexity contributions of G3 

P /<   v\ - M + VM + 1)! + {4M + 1)! 
ea(/(5, M) - M + 2(2Af_2), + 4!(4A/_4)! (16) 
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The computational complexities of the adaptive inverses are 
compared with those of the analytical (derived) inverses for varying 
values of M. The 3rd order case is shown in Fig. 8, and the 5th order 
case is shown in Fig. 9. As can be seen, the analytical inverse has a 
much lower computational complexity than the corresponding 
adaptive inverse. This may not be surprising since the analytical 
inverse is derived using the actual Volterra model of the system which 
would be obtained by estimating a set of Volterra kernels. The 
adaptive inverse on the other hand, is implemented using less prior 
information about the system, resulting in a more general Volterra 
inverse, and a correspondingly higher computational complexity. We 
can also compare the complexity of the Volterra inverses with that of 
the corresponding Volterra models shown in Fig. 1. It can be shown 
that the computational complexity of the analytical Volterra inverse 
is of the same order of magnitude as the corresponding Volterra 
model, while the adaptive Volterra inverse has much higher 
complexity. 

Complexity 
zouu 

1750 

1500 

1250 

1000 

750 

500 

250 

L.u. i D - 

Adaptive 
Inverse 

ea„(3, M) 
Analytical 
(Derived) 
Inverse 

4 5 
Memory span, M 

Fig. 8: Computational complexity comparison between the 
analytical inverse and adaptive inverse (3rd order case) 

Complexity ea/5, M) 
2000 , Adaptive 

,'   Inverse 
1750 

1S00 / 

1250 / 
1000 i * 

t 

750 
i * 

t * 
500 / 

i 

250 
/ 

• 

efl„(5, M) 
Analytical 
(Derived) 
Inverse 

4 5 
Memory span, M 

Fig. 9: Computational complexity comparison between the 
analytical inverse and adaptive inverse 
(5th order case with only odd kernels) 

5. Conclusion 

In this paper we have presented the architectures for 3rd and 5th 
order analytical Volterra inverses. We showed how a Volterra inverse 
can also be obtained by an adaptive approach. We explained how the 
analytical Volterra inverse may be used to determine the memory 
requirements of the adaptive Volterra inverse kernels. The 
computational complexity of the two types of Volterra inverse 
(analytical and adaptive) was examined. It was shown that the 
analytical Volterra inverse gives much lower computational 
complexity than its adaptive counterpart. The computational 
complexity of the analytical Volterra inverse is of the same order of 
magnitude as the Volterra model, while the more general, adaptive 
Volterra inverse has much higher complexity than the Volterra model 
beingcompensated.Processortechnology governs the operation rate, 
so for high sampling rates, real time compensation using a Volterra 
inverse is limited to low order, short memory cases. Using a Volterra 
model of the system to derive an analytical /rth order Volterra inverse 
would give implementation advantages over the use of the more 
general, higher-complexity, adaptive Volterra inverse. This paper 
carried out comparisons for cases involving the compensation of 
Volterra systems for which all kernels are assumed to have the same 
memory span. An extension to this work would consider a Volterra 
system with different memory spans for each order. Future work will 
investigate the use of more efficient implementation and computing 
structures to reduce the computational burden of the Volterra inverse 
based compensators. 
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Abstract 

Estimation of frequency rate of linear frequency 
modulated signals based on phase angles of fourth order 
sample moments is considered. Three low-complexity 
estimators are proposed whose performance is close to 
optimal, that is their error variance is close to the 
Cramer-Rao lower bound. 

1. Introduction 

An important signal processing problem is the es- 
timation of the parameters of complex-valued linear 
frequency modulated signals from noisy discrete time 
observations. Often, the frequency rate is the only pa- 
rameter of interest. In this paper, a novel set of meth- 
ods is proposed for this estimation problem, that is 
methods based on normalized phase angles of fourth 
order sample moments. 

An extensive review of different algorithms for this 
estimations problem is given in [2]. Methods that 
have been suggested include maximum likelihood es- 
timates, [1], estimates utilizing the polynomial phase 
transform, [4], and a Markov based estimator derived 
from the phase angles of the sequence {zk}%=3 where 
zk = Xkxl^xl^Xk-2 and where {xk}%=1 denotes the 
observations, [3]. For the estimator proposed in [4] 
the frequency rate is estimated by the spectral posi- 
tion of the highest peak of the magnitude squared dis- 
crete time ambiguity function. This method is easily 
implemented by a grid search of the periodogram of 
the sequence {yfc}f=i+T where yk = xkx*k_T. For the 
choice r = N/2 the quotient of the error variance di- 
vided by the Cramer-Rao lower bound (CRB) tends 

*In part supported by the ISS'90 Foundation. 
tNow with Ericsson Radio Systems AB, Stockholm, Sweden. 
tphlBsyscon.uu.se, Fax: +46-18-503611. 
Stichavsk@utia.cas.cz, Fax: +42-2-66414903. 

for SNR-+ oo to 16/15 « 1.07, [4].   The estimators 
proposed here require no numerical search, thus they 
directly provide an estimate of the frequency rate. 

Consider, 

Xk 

Sk 

=      Sk+Vk 1,...,N 
(1) 

where A is a complex-valued amplitude, and the noise 
Vk is zero mean complex-valued white Gaussian with 
variance a2. The real and imaginary parts of vk are in- 
dependent with variances <r2/2, respectively. Further, 

*» = 2* (/* + f *') (2) 
where / G (-1, 1) is the normalized frequency, and a e 
(-0.5, 0.5) is the frequency rate. The parameters (A, 
/, a, a2) are all unknown, but often the frequency rate 
is the only parameter of interest. For this estimation 
problem, the CRB is given by, [3] 

CRB [a] = 
90 

SmLn2N(N2 - 1){N2 - 4) 
(3) 

where a denotes  the estimated frequency rate and 
where the SNR is denned by SNR = \A\2/cr2. 

A set of frequency rate estimators is proposed based 
on normalized phase angles of fourth order sample mo- 
ments, that is 

JV N-l 
(4) C{m)=^2 xkx*k_mx*k_mxk-2m    m=l,. 

jfe=2m+l 

where, for simplicity, N is assumed to be odd. Further, 

$(m) = 
2-KTT? 

[6(m)\ (5) 

In (4)-(5), * denotes complex conjugate, and Z[-] de- 
notes the phase angle (in (-ir,  ir)) of the expression 
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between the brackets. If |a| > l/(2m2), equation (5) 
has to be replaced by another one that takes into the 
account the phase unwrapping, for example 

$(m) 
27T7712 

ip(m) = { m24(l) 

C(l)\ m=l 

C(m)   +2irV>(m)    m = 2,...,J 

- [C(m)] 
2ir (7) 

where {-}z denotes the round-off operation to the near- 
est integer applied to the quantity between the brack- 
ets. 

The estimator is motivated by the fact that for a 
noiseless signal sk it gives the correct (true) value of 
the frequency rate, because 

JV 

C(m)    =       J2    |A|4ei<*fc-2*fc—+*«—=•-*) 
*=2m+l 

=    \A\4(N - 2m)ei2Tm]°. 
(8) 

Here, C(m) is the sample moment calculated for the 
noiseless signal, (vk = 0). 

In this paper, frequency rate estimators are con- 
sidered that are based on the set of sample mo- 
ments {C(m)}£=1 where J = 1,..., (N - l)/2. For 
the unwrapped sequence {*(m)}^_x it holds that 
#(m) = a + e(m) where e(m) is a zero mean col- 
ored noise. Therefore, with 1 = (1 ••• 1)T and 
* = ($(1) ••• <£(J))T, the Markov estimator of a 
is given by, [5] 

a 
lTR-1! (9) 

where R is the (J\ J)-covariance matrix with elements 
Rm,n =cov(<§(m), <£(n)). 

The matrix R depends on SNR as well as on JV 
and J. A full expression for R is in principle possible 
to derive. In this paper, however, two approximate 
expressions of R are derived and used instead of R. 
One expression valid for high SNR (SNR/JV > 1), and 
one valid for low SNR (JV/SNR> 1). The motivation 
to use approximate expressions for R is as follows. The 
SNR is, in general, unknown and has to be estimated 
leading to a multi step procedure where in the final 
step the frequency rate is estimated using (9) with R 
replaced by an estimate R. The use of approximate 
expressions, however, give estimators independent of 
SNR, leading to a direct method for which closed form 
expressions can be derived. As shown in the sequel, the 
performance of the proposed methods is (very) close to 
the CRB. 

2. Covariance elements of $(m) 

First, the covariance elements of 4(m) is expressed 
in terms of covariance elements of C(m). Let 6C(m) = 
6(m) - C{m) and 

6${m)    =    $(m) - $(m) 

*  -J_imJ^W\ 
27rm2      \ C(m) J- 

The last approximation in (10) is valid for \6C(m)\ < 
1. Using the assumptions that the noise is circular 
white Gaussian one can find that E[C(m)] = C(m) for 
m > 0. Next, let 

Gm,„ = cov(C'(m), C(n)) = V[6C*{m)6C{n)} (11) 

Hm,n = cov(C'*(m), C{n)) = E[6C(m)6C(n)] (12) 

Rm,n = cov($(m), <£(n)) M B[f*(m)f«(»)].  (13) 

Using (10) it follows that 

R-m.n   W 
1 E [£ (6C{m) _ 6C*(m)\ 
m?n*    [2i \ C(m)       C*{m) ) 4ir2m 

xi (6C(n)      6C'(n)\] 
2i \ C{n)       C*(n) )\ 

(14) 

 p_ J *^m,n Hm>n       1 
!n2      \C*(m)C(n)     C{m)C{n) J 8;r2m2 

where the identity Im {z} — (z - z*)/{2i) was used. 
Next, note the dependence of Gm,n, Hm>n and R^« 
on the SNR. Following the reasoning of [6], it can be 
seen that 

Gm,n   =  5^ffmnfcSNR-* 

4 

Hm,n    =    ^/WfcSNR -* 

fc=l 

4 

Rm.n   =    ys rmnkSNR- 

(15) 

(16) 

(17) 
Jb=l 

For simplicity, we restrict ourselves to calculating the 
terms proportional to SNR-1 and SNR-4. Thus, we 
obtain two approximations to the true covariance ele- 
ments: the former approximation is valid for high SNR 
scenarios, and the latter one is good for low SNR sce- 
narios. Indeed, in the latter case the sample size has 
to be considerably large in order to achieve reasonable 
estimates. 
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The decomposition of the covariance elements in 
(15)-(17) corresponds to the decomposition 

6C{m) = Y^ 6{k)C{m) (18) 
it=i 

where 6^C(m) consists of the terms where the noise 
appears in the fc-th power, namely 

N 

S^C{m) =    £    VksUmsUmsk-2m     (19) 
k=2m+l 

+2skV*k_mS*k_mSk-2m + Sksl-msk-mVk-2m 

N 
6^C{m)=    Yl    vkV*kv*kvk-2m. (20) 

fc=2m+l 

A straightforward calculation gives 

ffmn4SNR-4    =    V[6Wc*(m)6Wc(n)] 
N N 

= Y   E v[(vkvi-mvt-mvk-2my 
Jfe=2m+l/=2n+l 

=    2(N - 2m)<78*mn (21) 

Ämn4SNR-4    =   E[6^C(m)S^C(n)} 
N N 

=  Y      2   E[t»»Bj_mi»;_mi»k-am 
Jt=2m+l*=2n+l 

y.viv*t_nv*t_nvt-2n] = 0 (22) 

1      Smn4SNR-4 

rmn4SNR-4    = 
87T2m4     \C{m)\2 

«mnSNK 
-4 

4ir2m4(iV - 2m) 
m,n = 1,. . .,J.(23) 

In order to evaluate coefficient rmni introduce a nor- 
malized noise ek = vk/sk. Properties of ek read 
E^e»] = ff2/l^|2*mn, E[eme„] = 0. Using this nota- 
tion, a combination of (8) and (19) gives 

N 

6^C(m) = - ̂&L     Y    **+2*Um+e»-am(24) 

ffmnl    =   E[6WcT{m)6Mc{n)]SHR 

C*{m)     C{n)       ^      A   r , 

fc=2m+l *=2n+l 

+6fc-2m,f + 5fc-2m,*-2n + 45jfc-m/-n]      (25) 

/w    =    E[^1)C(m)6(1)C(n)]SNR 

o   g(ro)      C(»)        ^       V    fiw 

Jb=2m+l*=2n+l 

+Sk-2m,l-n + 6jfe-m,£ + **-m,/-2n] (26) 

Tmnl      — 
8ir2m2n2 

9mnl %inl 

C*{m)C(n)      C{m)C{n)_ 
.(27) 

(28) 

For m,n < JV/4 it holds that 

_ max(0, min(m, n) — \m — n\) 
Tmnl ~ 2ir2m2n2(N - 2m){N - 2n)' 

3. Three Estimators 

The low SNR estimator 
For large N and low SNR, it follows from (23) that R 
is approximately diagonal, given by 

R 
4TT

2
SNR 
^diag(l, l,.-.,^) 

Inserting (29) into (9) gives 

. 30ELi*4*W 
J(J + 1)(2J + 1)(3J2 + 3J - 1) 

(29) 

(30) 

The high SNR estimator 
For high SNR, the elements of R are approximately 
equal to rmniSNR~\ where rmnl is given by (27). 
Note that both this and the above estimator assign the 
largest weight to $(J). This fact motivates the simple 
estimator proposed below. 

A simple estimator 
Consider the simple estimator 

4(j) (31) 

where #(J) is calculated, for example, using (6)- 
(7). For J < JV/4, the asymptotic variance of a for 
SNR/JV > 1 directly follows from (27) 

var[a] = 
rjji 
SNR      2TT

2
SNRJ

3
(2V - 2J)2 (32) 

The variance (32) is analytically minimized for J = 
3JV/10, for which the quotient of the error variance di- 
vided by the CRB is 115/90 w 1.27. 

Robust phase unwrapping 
A significant improvement of the algorithm perfor- 
mance at low SNR scenarios can be achieved using 
an alternative robust unwrapping scheme in (6) and 
(7), that proceeds recursively: In (7), <£(1) is replaced 
with #m, which is an average of the previous estimates 
{*(fc)}r=i1- The quantity *m 1S calculated as the arit- 
metic mean of i^k)}™'*, for fc > 4 with the addition 
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Figure 2.   The quotient of the error variance di- 
vided by the CRB as a function of SNR. 

empirical efficiency is close to the predicted theoretical 
result rjji/SNR. In general, the curves in Fig. 1 have 
two minima with respect to J. 

The results from a similar experiment with perfor- 
mance versus SNR are given in Fig. 2. Here, J = 14 for 
the "low SNR" estimator, J = 12 for the "high SNR" 
estimator, and J = 8 for the "simple" estimator. Also, 
the frequency rate estimators in [3] and [4] are consid- 
ered. The SNR threshold for the three estimators is 
4dB below the threshold for the estimator in [3], how- 
ever the latter estimator marginally performs better in 
the SNR range between lOdB and 20dB. For the esti- 
mator in [3] the threshold is sharp at lOdB, while for 
the estimators proposed in this paper there is a grace- 
ful degradation in performance for low SNRs above the 
threshold at 6dB. The SNR threshold for the method in 
[4] is 4dB and thus this method has the lowest thresh- 
old among the considered estimators. For high SNR 
its efficiency is close to the predicted theoretical result, 
that is slightly inferior performance compared to the 
"high SNR" estimator and the estimator in [3]. 

4. Conclusions 

Three algorithms for estimating the frequency rate 
of a noisy complex-valued linear FM signal have been 
proposed, and their performances have been character- 
ized. The methods rely on phase angle calculations of 
forth order sample moments of the noisy signal. It has 
been demonstrated that the performance of the pro- 
posed methods is nearly optimal for proper choices of 
the design variable J. The proposed algorithms re- 
quire no numerical search, and can achieve lower SNR 
threshold than the algorithm in [3]. 
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Abstract 

The work is devoted to the mathematical theory of 
the "Caterpillar" method which has proved to be a very 
powerful tool of analysis of time series. This method 
is based on the use of the principal component analy- 
sis technique applied to a multivariate sample which is 
obtained from the initial sample by the method of de- 
lays. A natural language used to analyse the method 
is the Hilbert-Schmidt operator theory. We give condi- 
tions when two deterministic functions are completely 
separated from each other for a finite period of obser- 
vations. We also show that under mild conditions any 
deterministic function can be asymptotically separated 
from any ergodic random noise. 

1. Introduction 

The work is devoted to the mathematical theory of 
a method of time series analysis. A natural language 
used to analyse the method is the Hilbert-Schmidt op- 
erator theory. 

Let / be a function on [0,t]. We assume that this 
function belongs to a Hilbert space H and is a realiza- 
tion of some, perhaps random, process, characteristics 
of which are unknown. We also assume that / can be 
represented as a sum of several functions /,■ with ev- 
ery function related to a certain effect or to the noise 
component. We thus seek for an expansion 

/=!> (i) 

where the terms ft are "interpretable" and "indepen- 
dent". 

We do not assume any parametric model for / and 
therefore the regression analysis technique can not be 

used to get (1). "Independence" of ft in (1) can some- 
times be achieved through an expansion of / with re- 
spect to an orthogonal basis, but the selection problem 
of the basis presents big difficulty and could not be 
uniquely resolved. 

The main essence of the present approach is that 
the functions /,• are constructed through / itself. More 
precisely, in the case of discrete time, /,■ are related to 
principal components of a multivariate sample gener- 
ated from / by introducing the lag, or delay, variable. 

2. Description of the Principal Scheme 

Let (fi)iLx be a numerical sequence, or time series, 
and let r, 1 < r < N, be an integer. Define a collection 
of r-dimensional vectors X^\ . ..,X^n\ n = JV-r+1, 
by the formula X^ = (««,*)[=!, where xi<k = fk+i-i, 
and define the matrix 

X=(X^,...,X^) = 

(h h ■■■        /»    \ 
h        h       ■■■    fn+l 

V/r      /, r+1 fN   I 

This matrix will be called the noncentered matrix of 
delay observations. Define the mean vector X — 
(xi,x2,...,xT)   , where 

1   " 
ii = ~ Y] fs+i- li i=l,. ,f. 

Subtracting this vector from each of X^,..., X(n) we 
get the matrix Y of centered vectors Y^,..., Y(n). 

Consider now the covariance matrix of the vec- 
tors y(1),...,Y(n) considered as a n-sample of r- 
dimensional vectors and apply the principal component 
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method to this sample. Let 

Vx=(yM,vW,...MT)) 

(v\ (!)  „m 
„(!)      „(2) 

\v. (!)      „(2) 

'A 

&I 
be the matrix of eigen-vectors of the covariance matrix 
ofyW,...,^"). 

The standard for the principal component analysis 
operations of computing principal components: 

Ux = VT
xY = (U1,...,UTj

r 

and reconstruction  of the initial (centered)  sample 
based on a selected number r of principal components: 

Y = (vM, n^r)) 

K\ 
KUiJ 

= 5><'.><C 
J=l 

where 0 < ix < i2 < ... < ir < T, can be applied as 
usual. After reconstruction of the matrix X = Y + 
X, where X - is a matrix with columns equals X, the 
initial sequence is reconstructed by averaging over the 
diagonals of X: 

/.= < 

s   ZJ 
xi,s-i t + 1 

r  L-i x',s — i+l 

1  <S <T, 

T < s < n . 

N-s+l 
N-s + 1      !C     %i+s-n,n-i+l       Tl < S < N . 

i=l 

Thus, we have presented a method of analysis of 
time series which we call "caterpillar". The first refer- 
ence to this notation and also the first numerical ex- 
amples comes back to [1]. Note, that similar method 
was investigated from the geometrical point of view in 
[2]. Our assumption differ from the mentioned above 
by the successive application of the methods of func- 
tional analysis. We have applied this method to many 
practical problems and the method proved to be very 
powerful in analysis of time series, particularly nonsta- 
tionary and short, with the value of N starting at 20. 
(It is well known that such time series are hard to anal- 
yse.) The method has been generalized to multivariate 
time series and random fields. In the next section we 
present some results concerning the theoretical proper- 
ties of the method. 

3. Some Results of Theoretical Study 

Let us describe a method in the case of the functions 
of continuous argument. We first need to transform the 

interval [0, t] into a rectangular 7r and "transfer" / from 
[0, t] to 7T. Formally this operation can be defined with 
the help of a mapping 9 : n ->■ [0, t] and consideration of 
the two-variate function g = f o 6 instead of /. In the 
standard variant of the additive caterpillar, we have 
6(x,s) = x + s, (x,s) € 7T = [0,r] x [0,t - T] and 
g{x,s) =f(x + s). 

Function g can often be considered as the kernel of 
an integral operator which happens to be the Hilbert- 
Schmidt operator and possesses therefore a number of 
attractive features. In particular g can be expanded 
with respect to two orthogonal sequences of the base 
functions. 

9 = ]C ^n ® ^n (2) 

Selecting several terms in the expansion and project- 
ing the two-dimensional function back to [0,t] we thus 
get one or several terms in (1) which should then be 
interpreted and analysed. 

Let us introduce one notation. Functions /i and 
/2 are separeted in bi-ortogonal expansion (2) if the 
corresponding fields gW and gW are satisfying to the 
following conditions 

/ 
g(1)(x,s)gW(y,s)ds = 0, 

for almost all (x,y), and 

g{l)(x,u)gW(x,v)dx = 0, 
/ 

for almost all (u,v). 
We formulate different features of the method, con- 

sidering for simplicity only the additive case 0(x, s) = 
x + s, (x,s) €TT= [0,r] x [0,t-r]. 

When fx and /2 are continuous functions then the 
separability condition under mild conditions for func- 
tions fx and /2 follows from the following two equali- 
ties: 

/' 
Jo 

fi(S + z)f2(z)dz = 0 

for any 8 G [0,t - r], 

f Jo 
fi{a + y)f2{y)dy = 0 

for every a € [0,r], and two "periodicity conditions": 

A (6 + T + v)f2 (T + v) = h {8 + v)f2 (v), 

for all v e[0,t-r] and 8 G [-v, t - r - v]. 

fx(a + t-T + y)f2{t -T + y)=fx(a + y)f2(y) 
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for all y G [0, r] and a G [-y, r-y]. 
Assume now that (fl.^.P) be some probability 

space, /i(s), f2{s) be two random processes defined for 
s > 0. Define / = /i + h and letting r = r(i) G (0, t) 
define the random fields 5(x, y) = f{x+y), g{1)(x, v) = 
fx(x + y) and gW{x,y) = f2{x + y)- Let us consider 
the noncentered correlation coefficients p"' and p2 be- 
tween the random fields gW and gW. We shall say that 
random processes /i and f2 are stochastically separa- 
ble when t -¥ oo if the correlation coefficients px (u, v) 

and PiHx, y) converge in probability to 0 when t ->■ oo 
for almost all (u, v) and (x, y). 

Let now f(s), s > 0 be some deterministic function 
from L2[[0,oo)] and £(s) be a random process inter- 
preted as a "pure noise". Let E£(s) = 0 for any s and 
R/:{x,y) be covariance function of £(s). Assume (i) for 
any s G [0, oo) there exists S = 8{s) > 0 such that 

P(/   £2(x + s)dx/T<6)^0 
Jo 

for T -*• oo; and (ii) for any u, v G R 

T->oo. 
Theoretical results are in a very good agreement 

with the numerical results: when the number of ob- 
servations is large then simple trend functions, like ex- 
ponential and trigonometric functions, can usually be 
explicitly seen in the first components of (1). 

4    Multiplicative "Caterpillar" 

In this section we consider the multiplicative variant 
of the "Caterpillar" method. Although this case does 
not have a great partical value, nevertheless it shows 
that the choice of the function 0(x, s) differing from 
x + s can also lead to interesting results. 

Let / be given on the interval [-t, t], the sets Dx and 
D2 have the form £»i = [r, r], D2 = [-t/r, t/r], with 
r G (0,*) and 6(x,s) = xs, x G Du s G D2. In the 
noncentered case, that is when Y = X, g(x, s) = f{xs). 

The separation conditions can be written as 

/: 
fi(xu)f2(xv)dx = 0 (4) 

L fTdx [TdyfT(x,u)fT(y,u)Rd*+W+v)^0     (3)        for any "'V G H/M/r] and 
Jo      Jo T2 

when T -¥ oo, where 

fT(x,s) = f(x + s)/J^jo   P(y + s)dy. 

The following theorem holds. 
Theorem. Ifr->oo,i-r->-oo, and the condi- 

tions (i) and (ii) hold then / and £ are stochastically 
separable when t —> oo . 

Note that (i) and (ii) hold if the process £(s) is sta- 
tionary, 

11   e(s)ds^Ri(0)>0 

/t/T 

fi(xs)f2{ys)ds = 0 
■ tlr 

when T -> oo , 

1 
T2 
l-j   dxj   dy\R((x-y)\^0, 

and / is bounded and satisfies 

for any x,yG [-r.r]. 
This implies that if one of functions /i or f2 is an 

even function and another is an odd one, then these 
two functions are always separable. It is also possible 
to demonstrate that the above condition is not only 
sufficient, but also necessary. 
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liminf m T-K»    T ijf/■(.+•> rfx>0. 

If / is unbounded then the sufficient conditions be- 
come different. For example, if / is linear then (3) can 
be rewritten as 

±JT dx£ dy(x + l)(y+l)\Rdx-y)\ = o(T2), 

397 



Structurally Robust Weak Continuity 

N. D. Sidiropoulos, J. S. Baras, and C. A. Berenstein 
Institute for Systems Research 

University of Maryland 
College Park, MD 20742 

nikos@glue.umd.edu 

Abstract 

We pose the following optimization: Given y = 
{j/(")}„=o G ^N, find a finite-alphabet x= {x{n)}^ e 
.4^, that minimizes d(x,y) + g(x) subject to: x satisfies 
a hard structural (syntactic) constraint, e.g., x is piecewise 
constant of plateau run-length > M, or locally monotonic 
oflomo -degree a. Here, d(x,y) = £n=o dn(y(n),x(n)) 
measures fidelity to the data, and is known as the noise 
term, and g(x) = X)n=i 9n(x(n),x(n - 1)) measures 
smoothness-complexity of the solution. This optimization 
represents the unification and outgrowth of several digital 
nonlinear filtering schemes, including, in particular, digi- 
tal counterparts of Weak Continuity (WC) [6, 7, 2], and 
Minimum Description Length (MDL) [4] on one hand, and 
nonlinear regression, e.g., VORCA filtering [11], and Dig- 
ital Locally Monotonic Regression [10], on the other. It 
is shown that the proposed optimization admits efficient 
Viterbi-type solution, and, in terms of performance, com- 
bines the best of both worlds. 

1   Introduction 

One of the classic problems in the true spirit of non- 
linear filtering is that of detecting and estimating edges in 
noise. Among the great many approaches proposed so far, 
a particularly noteworthy one is the (nonconvex) variational 
Weak Continuity (WC) paradigm of Mumford-Shah [6, 7] 
and Blake-Zisserman [2] (see also the excellent recent book 
by Morel and Solimini [5]). Weak continuity is a rigorous 
paradigm for edge detection, which attempts to fitpiecewise- 
smooth candidate "interpretations" to the observable data 
(thus the term weak continuity). 

In real life we nowadays most often deal with digital 
data, i.e., sequences of finite-alphabet variables. Following 
Blake and Zisserman [2], we present a digital version of 
discrete-time WC. Given a (generally real-valued) sequence 
of finite extent y = {y(n)}"~Q e RN, the problem is to 

find a finite-alphabet sequence, x = {x(n)}^r_0
1 G AN (the 

"reproduction process"), that minimizes 

N-l N-l 

]T(tf(n) - xfr))2 + J2 h^wc«n) - x(n - 1)) 
n=0 n=l 

where 

"a,Ajyc W — 
A\x/r<t> WC1 

a 

t2 <    ° 

, otherwise 

There exist essentially two ways to go about solving this 
problem: Dynamic Programming (DP) [1], and the so-called 
Graduated Non Convexity (GNC) algorithm [2]. For one- 
dimensional data, DP is probably the best way to go. Ac- 
cording to Blake and Zisserman [2], Papoulias [8] was the 
first to implement a DP WC algorithm. The drawback of 
DP is that it does not generalize in higher dimensions, for 
lack of total ordering. The GNC, by comparison, carries 
over quite effortlessly in higher dimensions. 

A related optimization has been advocated by Leclerc [4], 
based on the Minimum Description Length (MDL) principle 
of Rissanen; the goal is the minimization of: 

/Z ^2 *"X) ^MDL [l - 5(x(n) - x(n - 1))] 
n=0 n-l 

where <5 is the Kronecker delta function, and a1 is noise 
variance. Here, XMDL > 0. 

2   Unification and Motivation 

Both WC and MDL seek to minimize a nonconvex cost 
of the following general form 

N-l N-l 

V(y,x) = ]T dn(y(n),x(n)) + ]T gn(x(n),x(n - 1)) 
n=0 n=l 

In the digital world, Leclerc's MDL formulation is a spe- 
cial case of WC. Indeed, if Xwc is sufficiently large 

0-8186-7576-4/96 $5.00 © 1996 IEEE 
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(i.e., \lyC > a), then, t being integer, ha%\wc{t) = 
a [l - 5(t)]. If, in addition, a = \MDL<7

2
, then WC re- 

duces to Leclerc's MDL approach. 
Both WC, and Leclerc's MDL approach are powerful 

and meritorious paradigms; however, both share a nontrivial 
shortcoming: they are not robust with respect to outliers, in 
the sense of being susceptible to noise-induced "impulses". 
Consider a single such outlier, i.e., a Kronecker delta of 
height A. If (£)2 > 2\MDL, then Leclerc's MDL approach 
will preserve this "impulse"; similarly, if A2 > ^L-, and 

A2 > 2a, then WC will also preserve it. Observe that 
these statements should be interpreted as follows: for each 
given choice of respective optimization parameter(s), one 
can find a sufficiently large A which forces both "filters" to 
preserve "impulses" of height > A. In the context of edge 
detection in impulsive noise, this behavior is undesirable; 
these "impulses", no matter how powerful, should not be 
preserved [12]. 

"Traditional" nonlinear filters (e.g., the root of the me- 
dian) are robust with respect to outliers. This robustness 
stems from the fact that the implicit goal of these filters is 
to enforce (albeit suboptimally) "hard" structural (syntactic) 
constraints on the data, e.g., of the type x is piecewise con- 
stant of plateau run-length > M, or locally monotonic of 
lomo-degree a. How to optimally enforce such constraints 
has been the subject of previous work by the first author in 
so-called VORCA filtering [11] and digital locally mono- 
tonic regression [10]. VORCA filtering amounts to solving: 

has been proposed in [10], and it amounts to solving: 

JV-l 

minimize ^ dn(y(n),x{n)) 
n=0 

subject to : x = {x{n)}n~0 G PM 

where P$ is the set of all sequences of N elements of A 
which are piecewise constant of plateau (run) length > M. 

A real-valued sequence (string), x, of length N, is lo- 
cally monotonic of degree a < N (or lomo-a, or simply 
lomo in case a is understood) if each and every one of its 
substrings of a consecutive symbols is monotonic. Local 
monotonicity appears in the study of the set of root signals of 
the median filter [3]; it constraints the roughness of a signal 
by limiting the rate at which the signal undergoes changes 
of trend (increasing to decreasing or vice versa). In effect, 
it limits the frequency of oscillations, without limiting the 
magnitude of jump level changes that the signal exhibits. 
Local monotonicity implies a different notion of smooth- 
ness, as compared to e.g., limiting the support of the Fourier 
transform; the latter imposes a limit on both the frequency 
of oscillations, and the magnitude of jump level changes. 

In [9], Restrepo and Bovik developed an elegant mathe- 
matical framework in which they studied locally monotonic 
regressions in R^.  Digital locally monotonic regression 

JV-l 

minimize ^ dn(y(n), x(n)) 
n=0 

subject to : x Hn)}^-0
leA(a,N,A) 

where A(a, N, A) is the set of all sequences of N elements 
of A which are locally monotonic of lomo-degree a [10]. 
Both approaches are robust, in the sense of suppressing 
impulse-like inputs, while retaining "true" (consistent) edge 
signals. However, both do not take into account the signif- 
icance of level changes ("discontinuities") in the solution, 
i.e., they may declare an edge even when the two result- 
ing levels are very close. This is often undesirable; and it 
happens exactly because the latter two approaches do not 
explicitly account for smoothness/complexity, i.e., unlike 
WC, they do not incorporate a "soft" smoothness/complexity 
penalty into the cost function. 

3   Structurally Robust Weak Continuity 

It appears quite natural, then, to combine the power 
of WC with the appeal and demonstrated effectiveness of 
"hard" structural constraints, and propose the minimization 
of: 

JV-l JV-l 

J2 dn(y(n),x(n)) + J2 9n(x(n),x(n - 1)) 
n=0 n=l 

subject to : x 6 5 

where <S is the set of all sequences of N elements of A sat- 
isfying some local "hard" structural constraint. Here, again, 
d(x,y) = Y,n=odn(y(n)>x(n)) is a fidelity measure, 
and g{x) = ^~l gn(x(n),x{n - 1)) is a smoothness- 
complexity measure. We will refer to this optimization 
as Structurally Robust Weak Continuity (SR-WC). When 
S = P$, Runlength-Constrained Weak Continuity (RC- 
WC) results; similarly, if <S = A(a,N,A), then Locally 
Monotonic Weak Continuity (LM-WC) results. Both retain 
the unique merits of WC, are robust with respect to out- 
liers, take complexity into consideration, and admit efficient 
Viterbi-type solution. In fact, RC-WC, and LM-WC can 
be solved using exactly the same resources and computa- 
tional structures as VORCA, and digital locally monotonic 
regression, respectively [12]. The extension to weak conti- 
nuity (i.e., the incorporation of the first-order smoothness- 
complexity measureg{x) = Y,n=\ 9n(x(n),x{n-l)) into 
the cost functional) essentially comes "for free", due to 
the structure of the Viterbi Algorithm. The resulting com- 
plexity of RC-WC, LM-WC is 0((|.4|2 + \A\{M - 1))N), 
0(\A\2aN), respectively. 
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By virtue of the above, efficient computation of SR-WC 
can be taken for granted. What is intriguing and unex- 
plored is how to go about choosing fidelity and smooth- 
ness/complexity measures. We know that, at least for some 
specific choices, e.g., "classic" WC, MDL, or VORCA, we 
may expect very good nonlinear filtering results. The ques- 
tion is, can we make even better choices, and in what sense. 
This is partially explored in the following. 

4   Example 

This particular example demonstrates the effectiveness of 
simple RC-WC. Figure 1 depicts a typical input sequence. 
This particular input has been generated by adding i.i.d. 
noise on some artificial "true" noise-free test data. The 
noise has been generated according to a mixture of a uniform 
distribution and an "outlier" distribution, the mixture being 
heavily weighted in favor of the uniform distribution, and 
most of the data points are contaminated. It should be 
stressed that we do not utilize our exact knowledge of the 
noise model to fully match the optimization to the noise 
characteristics, which is certainly a possibility [11, 10, 9]. 
Instead, as it will be explained shortly, we only use some 
crude noise measurements to help us pick reasonable values 
for two optimization parameters. The noise-free test data 
has not been reproduced on its own, due to space limitations; 
instead, it has been overlaid on the restoration plots, using a 
dashed line. This is meant to help the reader judge filtering 
"quality". 

Here we take dn(y(n),x(n)) = \y(n) - x(n)\, 
Vn € {0,l,---,N-l}, and gn(x(n),x(n - 1)) = 
AW* "'(*(»)-*(»-l))].Vn 6 {O.l.-.-.JV-l}, 
A = {0, • • •, 99}, N = 512, and «S = P$. 

For M = 1, we obtain "plain" WC, and the result for 
\\rC = 25 is depicted in Figure 2. This is excellent fil- 
tering, yet powerful outliers are preserved. We could, in 
principle, further increase A^,c, thereby eventually elimi- 
nating outliers, but, at the same time, also "mending" true 
edges. Clearly, this is not the way to go about ameliorating 
this problem, for, no matter what our choice of A^c is, one 
can always find a sufficiently powerful outlier that will fool 
WC. 

For A^,c = 0, we obtain "plain" VORCA, and the result 
for M = 15 is depicted in Figure 3. This too is excellent 
filtering, the outliers have been effectively eliminated, yet 
some undesirable "weak" edges still remain. For \\yC = 
25, and M = 15 we have "true" hybrid RC-WC, and the 
result is depicted in Figure 4. It is obvious that RC-WC 
combines the power of both methods: this is, indeed, almost 
perfect filtering. 

One obvious objection may be anticipated: one may won- 
der about how we came up with the particular choices of 
M, A that led to these results. In the following, we address 

this subject. 

4.1    Selection of Optimization Parameters 

We will use the following definitions. A feature (outlying 
burst) of width w < M is a "short" arbitrary deviation from 
a plateau, consisting of a total of w perturbed samples. A 
constant segment ofsaliency (width-strength product) p. = 
w ■ H is a (potentially long) equidistant deviation from a 
plateau, i.e., a string of w equal samples which differ by H 
from the plateau level. 

The following two claims refer to this particular in- 
stance of RC-WC, i.e., dn(y(n),x{n)) = \y(n) - x(n)\, 
Vn G {0,1.---,JV-1}, and gn(x(n),x{n - 1)) = 
X2

WC [1 -6(x(n) -x(n- 1))], Vn e {0,1,- --,N - 1}. 
Proofs can be found in [ 12]. 

Theorem 1 Assume that M is odd. RC-WC eliminates all 
features (outlying bursts) of width w < ^f^-, regardless 
°ftfvc> and the same is true for A^,c = 0, i.e., "plain" 
VORCA filtering with respect to the above choice ofdn (•,•). 

Theorem 2 RC-WC suppresses all constant segments of 
saliency (width-strength product) p = w ■ H < 2AfpC, 
i.e., "mends" the "weak" edges at the endpoints of such 
segments, and the same holds for M = 1, i.e., "plain" WC 
with respect to the above choice ofdn(-, •), gn(-, ■). 

The overall conclusion is that this particular instance of 
RC-WC suppresses features of either (i) width w < ^=± 
(M: odd), regardless of strength, or (ii) saliency (width- 
strength product) p = w ■ H < 2A^C. This allows us 
to essentially separately fine-tune two important aspects of 
filter behavior. In a nutshell, M controls outlier rejection, 
whereas A|^c controls residual ripple. 

5   Conclusions 

Motivated by the power of WC-based methods [6,7,2,4], 
"complementary" previous work by the first author in op- 
timal nonlinear filtering under "hard" structural (so-called 
syntactic) constraints [11, 10], and realizing that a poten- 
tial shortcoming of WC could be ameliorated by introduc- 
ing "hard" structural constraints, whereas a drawback of 
the methods of [11, 10] could be rectified by introducing 
"soft" weak continuity constraints, we have posed, solved, 
and demonstrated the effectiveness of a novel hybrid op- 
timization, dubbed Structurally Robust Weak Continuity, 
combining the advantages while avoiding the shortcomings 
of its constituent elements. SR-WC includes its constituent 
elements as special cases, and inherits efficient Viterbi im- 
plementation from [11,10]. What is most intriguing is how 
to go about choosing fidelity and smoothness/complexity 
measures. This deserves further investigation, and long- 
term research in this direction is currently underway. 
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Abstract 

We present new finite dimensional filters for estimating 
the state of Markov jump linear systems, given noisy mea- 
surements of the Markov chain. Discrete time as well as 
continuous time models are considered. A robust version of 
the continuous time filters is used to derive a discretization 
which links the continuous and discrete time results. Simu- 
lations compare the robust discretization with direct numer- 
ical solutions of the filtering equations. The new filters have 
applications in the passive tracking of maneuvering targets 
and speech coding. 

1. Introduction 

Consider a discrete-time Markov jump linear system 
whose (vector) state equation evolves as: 

Sn = C(Xn-l) Sn-l + Vn 

where Xn denotes a finite state homogeneous Markov chain 
and vn is a zero mean stochastic process which is indepen- 
dent of the process Xn. Assume that we have noisy mea- 
surements yn of the Markov chain X„ in white Gaussian 
noise. In this paper we show how to compute filtered es- 
timates S„ of the state s„, i.e., s„ = E{sn\yn} where yn 

denotes the filtration generated by the observations. 
Instead of noisy measurements of the Markov chain X„, 

suppose that only noisy measurements of sn are available. 
In such a case, it is well known that the optimal state filter is 
infinite dimensional [1]. Indeed the optimal state estimates 
would involve a computational cost that is exponential in 
the data length. Sub-optimal finite dimensional approxima- 
tions are given in [1]. However, as we show in this paper, 
given noisy observations yn of the Markov chain, the opti- 
mal state filter for sn is finite dimensional. We also derive 
continuous-time versions of the filters. 

The key contributions of this paper can be summarized 
as follows: 

'This work was partially supported by ATERB and ARC 
grants, the Cooperative Research Centre for Sensor, Signal and 
Information Processing (CSSIP) and a Telstra Research Labora- 
tories Postgraduate Fellowship. 

1. Finite Dimensional Filters: In Sec. 2 we derive fi- 
nite dimensional filters for state estimation of discrete-time 
Markov jump linear systems given noisy observations of the 
Markov chain. These derivations are based on the reference 
probability method and thus lead to filtering equations in 
unnormalized or Zakai form. Finite dimensional filters are 
presented for the state estimation problem in continuous- 
time in Sec. 3. 
2. Robust Discretization: Having derived both continu- 
ous and discrete-time filters independently, our next contri- 
bution is to show that an appropriate robust discretization 
of the continuous-time filters results in the discrete-time 
filters. This is the subject of Sec.. 4. 
3. Numerical Examples: Using computer simulations in 
Sec. 5, we compare the performance of robust discretized 
filters with two standard numerical approximations, namely 
the Euler-Maruyama and Milstein algorithms. The robust 
scheme is seen to outperform these methods as the dis- 
cretization step size is increased. 

2. Discrete-Time Filters 

2.1. Signal Model and Aim 

Let Xi, I € Z+ = {1, 2,... , } denote a S-state discrete- 
time Markov chain defined on a probability space (fi, T, P) 
with state space {ei,... , es} where e; denotes the unit S- 
vector with 1 in the ith position. Denote the transition 
probabilities a,, = P(X„ = ej|Xn-i = e,) and A for the 

; = 1 that J2*= S x S matrix (ay,), 1 < i,j < S.  Notf 
for 1 < i < 5. 

Consider the following jump linear system driven by Xn- 

Sn = C(Xn-l) s„_i + vn (1) 

where sn,v„ € TLM and vn is a is a zero mean process 
independent of the Markov chain Xn. Assume that X„ is 
observed indirectly via the scalar process y„ as follows: 

yn = (g,Xn) + wn (2) 

where g = (gi g2 ... gs)' is the vector of levels of the Markov 
chain.  Also (•,•) denotes the scalar product in IIs.  w„ is 
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white Gaussian noise with variance *c2 independent of the 
processes Xn and vn. 

For any n € Z+, let fn denote the sigma field generated 
by Xm, m < n. Let V„ denote the sigma field generated 
by ym, m < n. Let Qn = Tn\lyn, i.e., the sigma field 
generated by {Xm,ym}, m < n. 
For any measurable process {^n}, let <j>n = E{^„|yn} where 
E denotes expectation under measure P. 
Aim: For fixed known values of A, g and K,, and of the ini- 
tial state «o, compute the filtered estimates sn = E^nDM- 

2.2. Zakai State Filter for Jump Linear System 

Define the probability measure P0 such that the Qn-\ 
restriction of the Radon-Nikodym derivative of P with re- 
spect to Po is 

1 < i < S, the probability distribution pt = {p\ Pt ■ ■-Pt) 
satisfies the forward equation dp,/dt = Apt- Also note that 

Ef=i °y = 0 for 1 < i < 5. 
Consider the following Markov jump linear system 

,t =   f C{XT 
Jo 

) sr dr + vt (5) 

where st,vt € RM, «o is known and vt is a zero mean 
process independent of T%. Also for each given XT, C{Xr) 
is a M x M known matrix. 

Assume that Xt is observed indirectly via the process yt 

where 

yt =  f (9,Xr)dr 
Jo 

+ wt 

dP 

dPo 
= A„ = JJ exp f 

-1 m=l ^ 

-((g,Xm)2-2ym(9,Xm)y 
2 K

2 

If <j>n, n € Z+ is a measurable sequence, then an abstract 
version of Bayes theorem states 

1       FU  |v i _ Eoi^IilM 
rf„=E{*„|y„}-    Eo{An|yn} 

where Eo denotes expectation with respect to Po- De- 
fine the un-normalized conditional expectation <Tn(<j>n) = 
E0{A„«£„|y„} and let 

k(ym) = exp (-y^G?? - 2 »m 9i)J ,  i = 1,... , S. 

Theorem 2.1   T/ie filtered state is given by 

»»(*») = Ef=l »»(*» X"('))   U,',ere 

where we is a standard Wiener process independent of the 
processes Xt and vt- 

Let Tt and V, denote respectively, the sigma-algebras 
generated by X„ s < t and y,, s < t. Also let Qt = yt \f Ft- 
Aim: Compute the filtered estimate st = E{st|3M a.s. 
where E denotes expectation under measure P. 

3.2. Zakai State Filter for Jump Linear System 

Define the probability measure Po such that the Tt re- 
striction of the Radon-Nikodym derivative of P with respect 
to Po is 

*E.\ 
dPo IjF, 

= At = exp [j*{Xr,g) dyr - i /„'(Xr.ff)2 <*r) 

Note that under Po, j/t is a standard Wiener process inde- 
pendent of the process Xt [4]. 

Now for any measurable process Ht we write crt(Ht) — 
Eo{AtH,\yt) where Eo denotes expectation with respect 
to Po. An abstract version of Bayes' theorem then states 
that 

Ht = E{Ht\yt} = <Tt{Ht)/<rt(l) 

<r„(sn *»(«')) = fc'(3/") X! C^ a,J ff"-»(s"-1 Xn~1^)3\ Theorem 3.1   The Zakai filter for st defined in (1) is 
>=1 ( ' nAsA = TS . <Tt(stXt(i)) where 

Proof See [2] D 

To compute 5„ we use Thm. 2.1 and the normalization: 

s 

Sn = <Tn(s„)/<rn(l) where  <rn(l) = ^2<rn(XnU)) 

where the un-normalized state estimate tr„(Xn{j)) is com- 
puted using the standard HMM state filter [3] 

*'(s<) = Ef=i *t(stXt{i)) «>here 

at(st Xt(i)) = so Xo(i) + C(ei)  f <rr(sr Xr(i)) dr 
Jo 

+ 
s      ft 

i-1 J° 

(sr Xr{j)) oij dr + I     giO-r(srXr 
Jo 

(i))dyr    (6) 

Proof See [2] 

To obtain st from (6) we use 

<rn(Xn{j)) = bj(yn)J2a)i »»-i(^-iW) (4) st = ff,(j,)/«r.(l)   where  "(1) = £ff'(**0')) 

3. Continuous-time Filters 

3.1. Signal Model and Aim 

Let Xt, t > 0 be a continuous-time Markov chain de- 
fined on a probability space (fi,.F,P) with state space 
{ei,... ,es}. Let the transition rate matrix (infinitesi- 
mal generator) be A.  That is, defining p\ = P(Xt = e;), 

where the un-normalized state estimate at(Xt(j)) is com- 
puted using the standard HMM state filter [4], 

        s     ft 
<Tt{Xt(j)) = Xo(i) + ]T /   <rr(Xr(j)) ai} dr 

+ / ff.-<rP(Xr(i)) dyr    (7) 
Jo 
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4.   Rapprochement  of Continuous   and 
Discrete-time Filters 

Given a continuous-time Markov jump linear system and 
a realization of the observation process, we are interested 
in obtaining a computable approximation of the continuous 
time filters. We consider two approaches: 
1. One way to proceed is to discretize robust versions of the 
continuous-time filters derived in Sec. 3. This is discussed 
in Sec. 4.1 and 4.2. 
2. Alternatively, the continuous-time jump linear system 
can be approximated by a discrete-time system and the 
discrete-time filters of Sec. 2 applied. This is discussed in 
Sec. 4.3. 

The aim of this section is to establish the equivalence 
of these two approaches. In particular, we will show that 
a standard first-order discretization of the robust filter is 
identical to the discrete-time filter of Sec. 2 applied to a 
discrete-time approximation of the continuous-time Markov 
jump linear system. 

4.1. Robust Continuous-time Filters 

In this subsection we derive a version of the continuous- 
time filter which depends continuously on the observation 
path. This so called robust filter [5] involves the solution of 
an ordinary differential equation as opposed to the stochas- 
tic differential equation of (6). This robust reformulation 
of the filtering equations is also applied in [6]. 

Let <j>\ = exp {ff.-yt — jff?*}. Then we can re-express the 
Zakai filter (6) in robust form as follows: 

Theorem 4.1 Suppose *t(Xt(i)) and ät(stXt(i)) are the 
solutions of the ordinary linear differential equations 

d 1     5 

Tt*t(Xt(i)) = ^7 52fll> * *(*«0")) (8) 

d s 

j:M»tXt(i)) = C(e.) <ft(stXt(i)) + -r V) a0 <j>{ <r,(«,X,(») 
*' i?x (9) 

respectively. 
Then for allO<t<T 

M"tXt(i)) ±     fl*(**'(«')) 

defines a locally Lipschitz continuous version of 
E[s,Xt(i)\y,]. That is, 

M*t*.(i))|jri] - *t(stX,(i))[y2]\ < K\\yi - KH 

where 

\\y\\=   sup   \y(t)\, 
0<t<T 

I • | is the Euclidean norm of a vector, and K depends on 
\\yi\\ and\\y2\\. 

Proof See [2] □ 

4.2. Explicit Time Discretization of Robust Filters 

In what follows we consider a regular partition of the in- 
terval [0, T\ into N intervals of length A with („ = nA, n = 
0,...,N. 

If we use an explicit first-order Euler approximation for 
(9) and transform back to the standard unnormalized con- 
ditional expectations, we arrive at the following approxi- 
mation for (6) 

<Tn(s„X„(i)) =Vn <Tn-l(sn-lX„-l(i)) 

+ A^„ C(ei)«r»-i(*n-i Jf„-i(f)) 
s 

+ A^n Y, «y »»-i(*»-i.x»-i(i))(10) 

where V£ = #,/#>-i- 
A similar procedure leads to a robust, explicit discretiza- 

tion for (7) as given in [5, 6] 

<rn(X„(i)) = Ä(T„.1(X„.1(i)) 
s 

+ AV-; £a0 <r„_i (*„_,(/))    (11) 

4.3. Discrete-Time Approximate Model 

We now wish to consider a discrete-time Markov jump 
linear system that approximates the continuous-time one. 
We use superscripts c and d to distinguish between discrete 
and continuous-time parameters and signals. 

Consider the discrete-time Markov jump linear system 
with 

Ad = I + AAc 

Cd(-) = I + ACc(-) 

Vi = (3/n -J/£_l)/A 

K2 = 1/A 

The discrete-time filter equations of Sec. 2 become 

s 

»»(*»*»(«')) = ^2(1 + A Cc(ej))(«0 + A «?,-) 
J=I 

b](j»-y»->yn_l{Sn_lXn_l{j)) 

(})) 

Note that bj (""""a""') = Vi-   Finally expanding the 

above equations and neglecting the 0(A2) terms, we obtain 
identical filters to those obtained via explicit discretization 
in Sec. 4.2. The important conclusion then is that a first 
order discretization of the robust continuous-time filter is 
equivalent to the discrete-time filter derived in Sec. 2. 
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5. Numerical Examples 

Rather than using this robust discretization scheme, the 
filtering equations (7) and (6) may be directly discretized 
using standard techniques for the numerical solution of 
stochastic differential equations. 

In this section we compare the robust discretization with 
two direct techniques: the Euler-Maruyama and Milstein 
schemes. Roughly speaking, the Euler scheme is a first 
order approximation (more precisely it is an order 0.5 strong 
Ito-Taylor approximation) while the Milstein scheme is a 
second order discretization scheme (an order 1 strong Ito- 
Taylor approximation) [7, Chapter 10]. 

We consider a two-dimensional continuous-time jump 
linear system driven by a two state continuous-time Markov 
chain. The system parameters A, g, C(ei) and C(e2) used 
in the simulations are given by 

-(? JO -(-0 ei-"-e $"«-(? °) 
For all results, the simulation period was 10 seconds and the 
fast-sampled versions of the continuous-time sample paths 
were generated using a time step of 10~4 seconds. We as- 
sume perfect knowledge of the initial state of the Markov 
chain and jump linear system. In what follows, we assume 
each component of vt is an independent Wiener process 
with zero drift and diffusion coefficient 0.01. 

Fig. 1 and 2 illustrate the performance of the robust, 
Euler and Milstein discretizations of the continuous-time 
filter. 

For each of the discretization step sizes, A = 0.1 (Fig. 1), 
A =0.25 (Fig. 2 ), we plot of the evolution of the mean 
square error. The mean square error values were calculated 
based on 100 sample path runs. For ease of comparison 
each run was performed using the same realization of the 
Markov state. 

With a small discretization step size the performance of 
all schemes is comparable. However as the discretization 
step size is increased we notice that the behaviour of the 
Euler (first order) and Milstein (second order) schemes be- 
comes quite erratic. In contrast, the robust discretization 
(first order) continues to track satisfactorily. 

6. Conclusion 

In this paper we have derived finite dimensional optimal 
recursive filters for estimating the state of a Markov jump 
linear system given noisy observations of the underlying 
Markov chain. 

We then presented a robust discretization of the^contin- 
uous time filters which is based on the discretization of a 
robust version of the stochastic filtering equations. The ro- 
bust discretization leads to a difference equation which is 
equivalent to that obtained using the discrete-time niters 
on a discrete approximation of the continuous-time model. 

Simulations illustrated the advantages of the robust dis- 
cretization over techniques based on the direct numerical 
solution of the stochastic filtering equations. 
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ABSTRACT 

Recent developments in the theory on the zeta func- 
tion, algorithms on generalizations of Euclidean do- 
mains, and variations on equidistribution theory have 
led to algorithms for several classes of problems in pa- 
rameter estimation that are general and very efficient. 
We present the theoretical justifications for these algo- 
rithms, and discuss their use in the analysis of periodic 
pulse trains. 

1. INTRODUCTION 

Problems in harmonic analysis and synthesis are 
intertwined with their applications in signal and image 
processing. Some recent advances in this analysis have 
used number theory to extend existing theories (e.g., 
sampling theory, fast transform computations) and de- 
velop new approaches to problems (e.g., interpolation). 
Number theoretic methods have also been successfully 
applied to the analysis of periodic point processes. The 
purpose of this note is to discuss several recent develop- 
ments in which number theory has been used to develop 
algorithms for several classes of parameter estimation 
problems. 

We first present modifications of the Euclidean al- 
gorithm which determine the period from a sparse set 
of noisy measurements [1, 2]. The elements of the set 
are the noisy occurrence times of a periodic event with 
(perhaps very many) missing measurements. The pro- 
posed algorithms are computationally straightforward 
and converge quickly. A robust version is developed 
that is stable despite the presence of arbitrary outliers. 
The Euclidean algorithm approach is justified by a the- 
orem which shows that, for a set of randomly chosen 
positive integers, the probability that they do not all 
share a common prime factor approaches one quickly 
as the cardinality of the set increases. The theorem is 

'First author on sabbatical leave from American University. 
Research partially supported by AFOSR Grant F49620-94-1- 
0196. 

in essence a probabilistic interpretation of the Riemann 
Zeta Function. In the noise-free case this implies con- 
vergence with only ten data samples, independent of 
the percentage of missing measurements. In the case of 
noisy data simulation results show, for example, good 
estimation of the period from one hundred data sam- 
ples with fifty percent of the measurements missing and 
twenty five percent of the data samples being arbitrary 
outliers. 

We then use these algorithms in the analysis of pe- 
riodic pulse trains, getting an estimate of the underly- 
ing period [6, 7]. This estimate, while not maximum 
likelihood, is used as initialization in a three-step algo- 
rithm that achieves the Cramer-Rao bound for moder- 
ate noise levels, as shown by comparing Monte Carlo 
results with the Cramer-Rao bounds. An approach us- 
ing multiple independent data records is also developed 
that overcomes high levels of contamination. 

We close by discussing our work on the deinterleav- 
ing of multiple periodic pulse trains. Here we give a 
variation on Weyl's Equidistribution Theorem, which 
shows that noisy phase-wrapped data is equidistributed 
on [0,1) almost surely. We then use periodogram-like 
operators in a multistep procedure to isolate funda- 
mental periods. 

2. MODIFIED EUCLIDEAN ALGORITHMS 

Our problem begins with a set of noisy occurrence 
times of a periodic event with (perhaps very many) 
missing measurements. We have developed modifica- 
tions of the Euclidean algorithm for determining the 
period from this set [1], [2]. This problem arises in 
radar pulse repetition interval (PRI) analysis, in bit 
synchronization in communications, in biomedical ap- 
plications, and other scenarios. We assume our data is 
a finite set of real numbers 

S = {«;}"=!. with Sj =kjT + </> + rlj, (1) 

where r (the period) is a fixed positive real number, the 
kj 's are non-repeating positive integers, cj> (the phase) 
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is a real random variable uniformly distributed over 
the interval [0,r), and the T?/S are zero-mean indepen- 
dent identically distributed (iid) error terms. We as- 
sume that the T/J-'S have a symmetric probability den- 
sity function (pdf), and that |^| < f for all j. We 
develop an algorithm for isolating the period of the pro- 
cess from this set, which we shall assume is (perhaps 
very) sparse. In the noise-free case our basic algorithm, 
given below, is equivalent to the Euclidean algorithm 
and converges with very high probability given only 
n = 10 data samples, independent of the number of 
missing measurements. We assume that the original 
data set is in descending order, i.e., Sj > Sj+i. 

Modified Euclidean Algorithm 

1.) After the first iteration, append zero. 
2.) Form the new set with elements Sj - Sj+i. 
3.) Sort in descending order. 
4.) Eliminate elements in [0,T?0] from end of the set. 
5.) Algorithm is done if left with a single element. 

Declare f = s\. If not done, go to (1). 

Here, 0 < rj0 < T is a noise threshold. Noise-free 
simulation examples demonstrate successful estimation 
of r for n = 10 with 99.99% of the possible measure- 
ments missing. In fact, with only 10 data samples, it 
is possible to have the percentage of missing measure- 
ments arbitrarily close to 100%. There is, of course, 
a cost, in that the number of iterations the algorithm 
needs to converge increases with the percentage of miss- 
ing measurements. In the presence of noise and false 
data (outliers), there is a tradeoff between the number 
of data samples, the amount of noise, and the per- 
centage of outliers. The algorithm will perform well 
given low noise for n = 10, but will degrade as noise 
is increased. However, given more data, it is possible 
to reduce noise effects and speed up convergence by 
binning the data, and averaging across bins. Binning 
can be effectively implemented by using an adaptive 
threshhold with a gradient operator, allowing conver- 
gence in a single iteration in many cases. Simulation 
results show, for example, good estimation of the pe- 
riod from one hundred data samples with fifty percent 
of the measurements missing and twenty five percent 
of the data samples being arbitrary outliers [1], [2]. 

Our algorithm is based on several theoretical results, 
which we now present. The first leads to a modification 
of the basic Euclidean algorithm, allowing a reformu- 
lation using subtraction rather than division. 

Proposition 1 ([1]) 

gcd(Tfci,...,T/c„) = 

rgcd((fci -k2),-..,(
kn-i -kn),kn).     (2) 

We then show that our procedure almost surely con- 
verges to the period by proving the following result. 
The Riemann Zeta Function is defined on the complex 
half space {z £ C : U(z) > 1} by <(z) = En=in~Z- 
Euler demonstrated the connection of C with number 
theory by showing (in 1736) that 

oo 1 

where P = {pi.pa.Ps,--.} = {2,3,5,...} is the set of 
all prime numbers. In the following, we let P{} denote 
probability, card{-} denote the cardinality of the set 
{•}, and let {1,..., t}n denote the sublattice of positive 
integers in Rn with coordinates c such that 1 < c < L 
Therefore, Nn(i) = caxd{(h,..., kn) e {1,...,*}" : 
gcd(fci,..., fc„) = 1} is the number of relatively prime 
elements in {1,..., £}n. 

Theorem 1 ([1]) For n>2, we have that 

lim ML = [CM]"1 
(3) 

Therefore, given n (n > 2) randomly chosen positive 
integers {ki,.. ■ ,kn}, 

(4) 

Also, 

P{gcd(*i,...,*n) = l} = [C(n)]  * • 

lim [C(n)]"1 = 1, 
n—Kx> 

(5) 

converging to 1 from below faster than 1/(1 - 2    n). 

Thus, from (4) and (5), as n grows it quickly becomes 
very likely that n randomly selected integers have a 
gcd of 1. This fact, together with Proposition 1, make 
estimation of r via our algorithm possible. 

3. PRI ANALYSIS 

The parameter estimation techniques given above 
lead to an effective method for periodic pulse inter- 
val analysis (see [6], [7]). We assume time is highly 
resolved and ignore any time quantization error. We 
are primarily concerned with a single periodic pulse 
train with (perhaps very many) missing observations 
that may be contaminated with outliers. Our data 
model for this case, in terms of the arrival times tj, 
is given by (1), with the additional assumption that Vj 
is zero-mean additive white Gaussian noise. Outliers 
are included as arbitrary arrival times. The problem, 
again, is to recover the period r and possibly the phase 
</>. With Gaussian noise the minimum variance unbi- 
ased estimates for this linear regression problem take a 
least-squares form.  However, this requires knowledge 
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of the kj's. We therefore propose a multi-step pro- 
cedure that proceeds by (i) estimating r directly, (ii) 
estimating the kj's, and (iii) refining the estimate of r 
using the estimated kj's in the least-squares solution. 
This estimate is shown to perform well, achieving the 
Cramer-Rao bound in many cases, despite many miss- 
ing observations and contaminated data. The direct 
estimate of r (step (i)) is obtained using the modi- 
fied Euclidean algorithms described above. While not 
maximum-likelihood (ML), the modified Euclidean al- 
gorithm performs well under difficult conditions. 

We now give the maximum likelihood solution and 
Cramer-Rao bounds for estimating r and <f>. Our anal- 
ysis has led us to work with the data set {t,+1 -t,-}""/, 
so as to avoid estimating <j> (which can be unreliable). 
Given the sample data set S from (1) we may write 

(6) 

where kj+i > kj. In compact form this is 

t = xß + v, (7) 

where ß = [(/>, T]
T
 and the definitions of t, rj, and X 

follow from (6). We eliminate <j> by forming the dif- 
ferences Vj = tj+i - tj = (kj+1 - kj)r + (TIJ+I - rjj), 
yielding 

= 

' l   ki ' 

1   k2 '4>' 
T 

+ 

' Vi 

n [ 1    kn J . Vn 

Vi 

Vn-l 

k2 - ki "   Si   1 
k3 -ki 

r + 
62 

n — "-n—1 . Sn-l 

(8) 

where 5j = r)j+i - rjj. Similar to (7) we may write (8) 
compactly as 

y = XdT + S. (9) 

Equations (7) and (9) are linear regression prob- 
lems whose least squares solutions yield the minimum- 
variance unbiased estimate when the noise is zero-mean 
Gaussian, e.g., see Kay [4]. Generally, use of (9) is pre- 
ferred for estimating r, avoiding estimation of <f> which 
has high variance. The solution to (9) corresponds to 
ML estimation and takes the form of a least squares 
estimate 

f=(XjR7'Xd)-'xjR7'y> (10) 

where Rg = E[88 ]._We have assumed white noise so 
Rg = cr^Rg where Rg has 2's on the main diagonal, 
-l's on the first upper and lower diagonals, and zeros 
elsewhere. In general Rg is full rank and its inverse can 

be expressed element-wise as [Rj%j = min(i,j)-ij/n, 
and is therefore easily computed. Although optimal, 
use of (10) requires knowledge of Xd. This is not a 
problem if there are no missing observations for then 
kj = j for j = 1,2,.. .n. However, when observations 
are arbitrarily missing then the kj's are not known in 
general, and one is faced with more unknowns than 
equations in (9). 

The pdf of the noise 77 in (7) is multivariate Gaus- 
sian, leading to the Cramer-Rao bound (CRB) for (10) 

var{r ■ ?}>al{XjR7'Xd)-\ (11) 

with ag = 2<7„. Generally, the CRB is reduced for 
smaller a\. Also, for fixed n, it is reduced when the 
spread of the kj's increases. 

Now, if r were known then Xd could be estimated 
using (1/r) y. Ideally, this estimate is composed of 
positive integers, but imperfect knowledge of r and 
the presence of noise will generally yield an estimate 
of Xd that has non-integer components. We therefore 
propose to estimate Xd via 

Xd = round 
TMEA 

(12) 

where TMEA is the estimate of r obtained via the mod- 
ified Euclidean algorithm, and round[-] = [• + f J is 
rounding to the nearest integer. A refined estimate of 
r is then obtained by using Xd in (10) yielding 

?=(XjR7
lXd)-ixjR7iy. (13) 

This result approaches the optimal minimum variance 
performance when Xd is close to Xd. The refinement 
algorithm is summarized as follows. 

Refined Estimation Algorithm 

1.) Estimate r via the modified Euclidean algorithm, 
calling this estimate TMEA- 

2.) Estimate Xd via (12). 
3.) Refine the estimate of r using Xd in (13), calling 

this estimate r. 

Performance analysis of the estimate TMEA depends 
not only on the distribution of the noise rjj, but also 
on the distribution of the kj's. We have completed this 
analysis for some specific cases in [6]. We also com- 
pare the estimates to Cramer-Rao bounds via Monte 
Carlo simulation, revealing the very good performance 
of the algorithm with many missing observations and 
contaminated data (see [6], [7]). We can also apply our 
estimation procedures to estimation of the frequency 
of a single sinusoid in Gaussian noise. We address the 
problem [8], using only very sparse noisy zero-crossings 
with the presence of outliers. 
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4. DEINTERLEAVING 

We close by discussing our work on deinterleaving. 
Our data model is the union of M copies of (1), each 
with different periods or "generators" T = {n}, fcy's 
and phases. Let r = max^r*}. Then our data is 

A = U^ {4>i + kijTi + %•}%, , (14) 

where rn is the number of elements from the ith gen- 
erator, {kij} is a linearly increasing sequence of nat- 
ural numbers with missing observations, fc is a ran- 
dom variable uniformly distributed in [0,n), and the 
jjy's are zero-mean iid Gaussian with standard devia- 
tion ZcTij < T/2. We think of the data as events from 
M periodic processes, and represent it, after reindex- 
ing, as A = {«j}£Li ■ Assuming only minimal knowl- 
edge of the range of {n}, namely bounds TL, Tv such 
that 0 < TL < Tt < Tu, we phase wrap the data by the 
mapping 

M*) = (?K- YP \ 
(15) 

where p G [TL,Tu], and |_-J is the floor function. Thus 
(•) is the fractional part, and so $p(oci) G [0,1). 

Definition 1 A sequence of real random variables 
{XJ} C [0,1) is essentially uniformly distributed in the 
sense of Weyl if given a,b, 0 < a <b < 1, 

-card {1 <3<n:xj£ [a, b]} —> (6 - o)       (16) 
n 

as n —> oo almost surely. 

Weyl's Theorem is presented in [3]. For our variation, 
we assume that for each i, {kij} is a linearly increas- 
ing infinite sequence of natural numbers with missing 
observations such that fcy —>• oo as j —> oo. We 
must make this assumption because the result is only 
approximately true for a finite length sequence. 

Theorem 2 For almost every choice of p (in the sense 
of Lebesgue measure) $p(a0 is essentially uniformly 
distributed in the sense of Weyl. 

Moreover, the set of p's for which this is not true are 
rational multiples of {n}. Therefore, except for those 
values, $p(aij) is essentially uniformly distributed in 
[0,1). Moreover, the values at which $p(ctij) = 0 al- 
most surely are p £ {n/n : n G N}. These values of p 
cluster at zero, but spread out for lower values of n. 

We then map the phase wrapped data by non-linear 
variations on the periodogram, 

,ir. 

for r = 2,3,   Now, the periodicity of sin and cos 
gives us that cos2r_1 (27r$p(cti)) = cos2r_1(27r^L) and 

sin2r-1(27r$p(ai)) = sm2r-\2irf). By Theorem 2, 
the random variables $p(aj) are uniformly distributed 
on [0,1) for almost every choice of p. We can then com- 
pute the distributions of the real and imaginary parts of 
F. The "noise-like" behavior of $p(a{) for a.e. p leads 
to a "flat" range for F. However, at p e {n/n : n G 
N}, we have increasingly strong peaks as n decreases. 
In turn, this gives the following. Let io denote the in- 
dex of the most prolific generator, and 5i, 9 denote the 
real and imaginary parts. 

Theorem 3 

max(SRF-|3F|) = rio, 
p 

(18) 

We then isolate the data generated by rio by convo- 
lution with a pulse train of width n0, and subtract it 
out. We then repeat the process, terminating when A 
equals the empty set. 
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Abstract 

This paper presents a test which accepts or rejects, based 
on the data collected by an array ofN sensors, the hypoth- 
esis that the sampled tempo-spatial field is spatially sta- 
tionary. The proposed test is applicable to arrays in an 
arbitrary but known 3-dimensional geometry. It is based on 
the estimated second order spatial cumulant spectrum ma- 
trix, which is theoretically diagonal for a stationary spatial 
field. We show how the proposed test can be used for robust 
detection of a source in shallow water. 

1. Introduction 

This paper presents a test which accepts or rejects, based 
on the data collected by an array of N sensors, the hypothesis 
that the sampled tempo-spatial field is spatially stationary. 
Unlike the test proposed in [1] which is applicable only 
to uniform spatial sampling (i.e., only to linear, uniform 
arrays), our test is applicable to arrays in arbitrary but known 
3-dimensional geometry. Similarly to the test for temporal 
stationarity of time series [3], our test uses the cumulant 
spectra of the tempo-spatial field. In particular, it is based 
on the estimated second order spatial cumulant spectrum. 

It can be shown that the necessary and sufficient condi- 
tions for the spatial fields to be spatially stationary are: 

1. The sources are uncorrelated and are located in the far 
field zone. 

2. The sources are zero mean, temporally stationary. 

3. The additive noise is spatially stationary. 

The last two conditions are satisfied in most applications1 

and therefore the test can be used for studying the phys- 
ical scenarios related to condition 1.   For example, if the 

1 It can be shown that while with real data collected in shallow water, 
condition 3 is not always satisfied, a certain operation on the data can 
impose the additive noise to be spatially stationary. 

propagation medium is known to be bounded (as in shallow 
water), spatial non-stationarity indicates existence of one or 
more sources in the sampled tempo-spatial field. 

The proposed test (detector) does not employ any prior 
knowledge about the source, the number of the sources, the 
noise and/or the bounded propagation environment. There- 
fore, it is robust to modeling uncertainties or mismatches, 
which are a major problem in underwater acoustics. The 
performance degradation due to this robustness is studied 
by comparing the performance of the proposed test to those 
of two generalized likelihood test (GLRT) detectors: 

• GLRTl, in which only the spatial spectrum of the 
additive noise is assumed to be known, 
and 

• GLRTl, in which the spatial spectrum of the additive 
noise and the propagation channel are assumed to be 
known. 

We show that, as expected, if there is no mismatch in prop- 
agation channel, the GLRTl outperforms GLRTl which 
outperforms the proposed test. In the presence of modeling 
mismatches the performances of the two GLRT detectors 
reduce dramatically. However, as the proposed test reflects 
the degree of stationarity, its performance does not signifi- 
cantly vary. 

2. The proposed test 

Assume an array of sensors with N elements located at 
{xi}fLv Let yi(t) denote the measured random field by 
sensor * at time t: yt(t) = y(t,Xi), i = l,---,N. If 
the random field is zero mean, the entries of the N x N 
spatial covariance matrix are given by the samples of the 
cross-correlation function Ry(t, X], x2): 

P*(*)]y    =    R»(*.Xi,xi)=JB{y(t,x«)i/*(*>xj)} 
i,j = l,...,N (1) 
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If the field is temporally stationary, then [Rj,(*)]ij = 
[Ryjtj   =   Ji.y{Xi,'X.j). 

The second order cumulant spectrum is defined by a 
two dimensional Fourier transform of the cross-correlation 
function: 

Sy(k„k2)=/   /  Ry(x„x2)e-^x-+k^dx1dx2. 
7x' JK

> (2) 
where k is the 3-dimensional vector of the wave numbers at 
the three directions. If the field is spatially stationary, then 
Ry(xi, x2) = /unc(xi - x2). In [2], it is shown that this 
condition leads to: 

Sy(k,,k2) = /tmc(ki)5(ki +k2) (3) 

We construct the stationarity test by studying the estimated 
second order spatial cumulant matrix [S]ij = Sy(kij,k2j). 
Theoretically, if the field is spatially stationary, only the di- 
agonal of the matrix § consists of non-zero elements. Our 
proposed test is based on this property. 

The test is based on accepting or rejecting the null hy- 
potheses: 
H0: spatially stationary field: S„(ki,k2) = /(ki)(5(ki + 
k2). 
If the received signal at the array is (temporally) ergodic, 
then: 

Ra(X|,x2)=  lim ^ / y(t,xi)y*(t,x2)dt     (4) 

and the spatial covariance matrix can be estimated by inte- 
gration over sufficiently large observation time T. Hence, 
the samples obtained from an array of sensors are used to 
estimate the covariance matrix. The second order cumulant 
spectrum, §, is calculated by applying the discrete Fourier 
transform. 

Our test is an ad-hoc one, and it suggests to evaluate the 
intensity of the off-diagonal entries2 of § and to compare it 
to a given threshold: 

(5) 

Selection of the threshold 7 determines the probability of 
"false alarm," P/a. For example, if the additive noise is 
zero mean, i.i.d. Gaussian noise such that its time samples 
at different sensors satisfy: 

E{nm(l)n;(l)} = Rn(m,p) = a2
nS{m-p)      (6) 

then, the asymptotic distribution of the test statistic C under 
H0 is complex Wishart [2] with degrees of freedom f (N - 

2 Since S is an Hermitian matrix, the test uses either the upper or the 
lower off-diagonal matrix. 

*\      J • (Mel)2 

1) and covariance     L
n   : 

2 (7) 
L is the number of time samples, which is roughly the time- 
bandwidth product, and x2(M) is the Chi squares distribu- 
tion with M degrees of freedom. That is, for any give false 
alarm probability, Pfa = Prob{C\Ho > 7}, the threshlod 7 
can be set. 

3. The alternative tests 

While the proposed test only uses the fact that under H0 

the field is stationary, both alternative tests employ spe- 
cific prior information about the propagation field. For 
GLRTX only the noise covariance matrix, Rn(m,p) = 
E{nm{l)n*p(l)}, m,p = l,...,N, is assumed known. 
Therefore, the test accepts H0 (no signal) if the measured 
covariance matrix is Rn and rejects it otherwise. Since 
there is a one-to-one correspondence between the covari- 
ance matrix and the cross-spectral matrix (the second order 
spatial cumulant spectrum), the test can similarly be put in 
terms of the estimated spectral matrix S. Since S is Hermi- 
tian, it is sufficient to look at either the upper or the lower 
off-diagonal entries of § and the diagonal terms. Putting 
these N + y(iV - 1) entries in a vector s, this vector is 
asymptotically complex Gaussian. Under Ho its mean, no, 
and covariance, Ao, are assumed known while under H\ its 
mean vector, fi\, and its covariance matrix, A], are free. 
Thus, the GLRT takes the form: 

C = 
/(TO 

maxWiA, /(s|i?i) 
/(TO 

f(s\^L,AfL) 
7     (8) 

where \xfL and AfL are the maximum likelihood esti- 
mates of Hi and A, (the sample mean and covariance of S). 
For large observation time (where the Gaussian assumption 
holds) the test is equivalent to: 

C,=(s-Mo)i?A0"1(§-w) "i 7. (9) 

For the case of white, i.i.d. noise the test gets a form similar 
to (7) and the threshold 71 can be evaluated for any given 

Pfa- 
Note that GLRT I can be also phrased in the domain of 

the covariance matrix, as in [1]. 
The other alternative test, GLRT2, employs even more 

prior information than GLRT I: it assumes also that the 
propagation channel is modeled with unknown parameters. 
The test decides on one of the two hypotheses: 

H0:    y(0    =n(I) 

H,:    y(Z)    = e(9)s(l) + n(/) (10) 
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where I = 1, ...,L are the time samples, n is the noise 
vector, s is the source signal of unknown power a2

s and g(-) 
is a known function which characterizes the propagation 
channel. 8 is the vector of the unknown source location and 
channel parameters, n and s are assumed to be zero mean, 
uncorrelated Gaussian processes of known covariance An 

and 1, respectively. The distribution of the data under H0 is 
completely known (as in GLRTl). Under Hi it is known up 
to few parameters (as and 8) which appear in the covariance 
of a Gaussian distribution, and therefore the GLRT can be 
formed. The resulting test is: 

(2 = mm{ln<f)(y,8)-<f>(y,d)} 72 (11) 

where   for   white   noise   of  variance   a\,   <t>{y,0)    = 

S*4w and ky = * E'=' y®yHw-For this test' 
however, it is hard to establish the threshold 72 analytically 
for a given Pfa even when the noise is white. 

Equation (11) shows that unlike GLRTl and the pro- 
posed test, GLRTl involves a multidimensional search pro- 
cedure over the unknown vector parameter 8. Furthermore, 
it requires knowledge of the number of sources under hy- 
pothesis H\. 

Since a test which employs more prior information per- 
forms better, we expect that the GLRTl would outperform 
the GLRT 1 which would outperform our ad-hoc stationar- 
ity test. In the next section we consider a practical problem 
where we demonstrate that this is indeed the case when the 
propagation channel corresponds to the modeling assump- 
tion. If, however, there are modeling mismatches, as is usu- 
ally the case, e.g. in underwater acoustics, the difference in 
performance of the three tests becomes negligible. 

4. Simulation results and conclusions 

In this section, we focus on one of the applications of 
the test in a shallow water waveguide. Fig. 1 describes the 
environmental scenario which was one of the more complex 
benchmarks used in the May 1993 NRL Workshop on A- 
coustic Models in Signal Processing [5]. We apply our test 
to detect a source in the channel. Using a normal mode prop- 
agation program, KRAKEN [4], we simulated the channel 
in which a narrow band point source at frequency 100Hz in 
a temporally and spatially white, zero mean, Gaussian noise 
is assumed. The source was located at depth ZQ = 50m and 
range of r0 = 7000m from the array. 200 snapshots of the 
received field were obtained by a uniform, vertical array of 
13 sensors whose aperture is the depth of the propagation 
channel. 

Figure 2 compares the receiver operation characteristic 
{ROC) of the tests presented in this paper, assuming no 
mismatch in the channel environmental parameters.   Fig. 

3 presents the probability of detection of a source in the 
channel as a function of the signal-to-noise-ratio (SNR) per 
sensor per snapshot, with false alarm 10~3. 

In the second experiment mismatches were induced in 
the environmental parameters according to Fig. 1. The 
performance of the test is depicted, in its two representations 
of Fig. 2 and Fig. 3, in Fig. 4 and in Fig. 5, respectively. 
The performance of the GLRTs reduces, while that of the 
proposed stationarity test even improves slightly. 

These results show that the proposed test for source detec- 
tion in shallow water is robust while the other tests, specially 
the GLRTl are very sensitive to errors in the assumed en- 
vironmental parameters. In addition it is computationally 
simple and does not involve a search procedure over the 
unknown parameters. 
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Figure 2. Receiver operation characteristic for 
source detection with no environmental mis- 
match. 

Figure 4. Receiver operation characteristic for 
source detection under environmental mis- 
match. 
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Abstract 

The problem addressed in this paper is the detec- 
tion of cyclostationarity, and the measurement of the 
trend of a process to have this property. This problem is 
of great importance, because in applications algorithms 
using the property of cyclostationarity assume the peri- 
odicities of the statistics to be known. Thus the period- 
icities need to be detected/estimated, and furthermore, 
a measure must be given in order to qualify the trend 
of a process to have a given periodicity. This measure 
will give information about the opportuneness of using 
a cyclostationary modelization instead of a stationary 
one. 

1. Introduction 

As pointed out by the number of publication on 
the subject, cyclostationary processes (processes whose 
statistics depend periodically on time) are of great 
interest in many fields (communications, signal pro- 
cessing, hydrology, multivariate analysis, array pro- 
cessing...) and have shown to provide a better mod- 
elization in many cases of interest than the stationary 
"syndrome". 

The problem addressed in this paper is the hypo- 
thesis testing, of cyclostationarity versus stationarity 
for Gaussian processes. Indeed, althought interesting 
and useful tests for the presence of cyclostationarity 
have been introduced in [7] [8] [10] [5], we got interested 
in developing another test relying on the theory of de- 
tection [2]. As it will be stated in this paper, the test we 
develope, will lead to a natural "measure" of cyclosta- 
tionarity, in close connection with the Kullback-Leibler 
information. 

We first recall some properties of second order cyc- 
lostationarity and notations useful in a cyclostationary 
framework. We then briefly recall the works of [8] [10] 

and [5] on the problem of detection. We then present 
our test, and results concerning the cyclostationary 
version of Whittle's approximant, and the asymptotic 
power and false alarm probability of our test. 

1.1. Cyclostationarity 

A real valued time series (£*)fceZ is said to be cyc- 
lostationary when the following properties are respected 
for all n and an integer T [9]: 

E [xi]     <    +oo 
E[sn+r]    =    E[x„] 

rx[n,r] = E[xnxn+r]    =    E[X„+TX„+T+T]      (1) 

The correlation matrix E„ of size nT of the process 
(arfe)feeZ is block-Toeplitz in the general case, and Toep- 
litz when the process is stationary, that is T = 1. 

Due to periodicity in time, the correlation can be 
written as follows [9]: 

T-l 

rx [n,r] = '^2ir
k

x [T]exp I   "L"l 
V    T   ) (2) 

The (r£ ['"])fc_0 T_x ,.eZ are called the cyclocorrela- 
tions. One can associate to those cyclocorrelations the 
cyclospectra, defined as[9]: 

rkAr] -f Jo 
exp(i\r)F?x(\)d\ (3) 

1.2. The Zivanovic-Gardner's Degree of Cyclostation- 
arity 

Zivanovic and Gardner have defined a degree of cyc- 
lostationarity by a distance between the correlation of 
the cyclostationary process to the correlation of the 
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"dosest" stationary process [8].  This definition leads 
to the usefull following expression: 

DCSX = 
L-/WWI^ (4) m°wi2dA 

which is none but the ratio of energy of the non station- 
ary part of the process with the stationary one. 

1.3. Hurd-Gerr's test 

This test relies on the property of correlation of the 
spectral measure of a cyclostationary process. We thus 
calculate a normalized spectral correlation: 

y(\jfh,M) = m=0   
Af-1 

£ 
m=0 

2 M-l i^ 
7W(AJ+m)       J2   Uw(\,+/i+m) 

m—0 

(5) 

where  IN (A)   = /2nN 
En=o x„exp(-iAn),   Afc 

2irk/ N and M is a smoothing parameter.   Then the 
result of Goodman is used:   P (7 > c) = (1 - c) 
under given conditions [10]. 

1.4. Dandawate-Giannakis's test 

This test uses the asymptotic properties of the es- 
timators of cumulants, and the test is formulated as 
follows: for a candidate cycle a one makes the follow- 
ing hypothesis testing: 

Ho    :    Cgx = Sk,x for all arguments. (6) 

H\    :    dk,x = Ck,x + £k,x f°r some arguments. 

where Cj?x is nonzero (it is the kth cyclic-cumulant 
of cycle a of the process x), and e^x is a zero mean 
random variable. The asymptotic statistics of e^ are a 
classical result, from which an hypotheses test is built, 
allowing one to take a statistical decision. 

2. Testing Cyclostationarity versus Sta- 
tionarity 

2.1. Expression of the test 

We consider a Gaussian random process (a;fc)feeE 

which can be cyclostationary of period T or stationary. 
Without any loss of generality, we assume the process 
to be 0 mean. The aim of the test will be to decide 
wether: 

#0    :    (zfc)fceE is stationary 

#1    :    (zfcJfcez is cyclostationary 

We build our test on the basis of the likelihood ratio 
[2], whose optimal properties are well known: 

ftl„ {{xk)k=l n) 

FE„ ((**)*=! n) 
(8) 

where Sw  is Toeplitz, and En is T-block-Toeplitz, 
which corresponds to the two hypothesis we are testing. 

The log-likelihood of a Gaussian random process 
takes the well known following form: 

L„    =   log (P„ ((x*)*=i „)) 

=    -|{nlog(27r)+log(|E|) + x]IE-1
£„}    (9) 

Studying the asymptotic behaviour of the test is not 
straightforward, and an alternative consists in develop- 
ping the "principal part" of the log-likelihood. 

2.2. Approximant of the log-likelihood 

We introduce the following notations: 

Z„    =    LnT(^) + ^:[/^log(det(JF(A))) (10) 

nT log (2JT) 
+Tr(£,(A)^-1(A))dA] 

(7) 

[2»(A)1 =    IT (^») i:T (*=#*) 
L J (a,b) 

F(A)](.,6) = ^;b{{^-^)iT)      (ii) 

We will call T, the Gladysev's spectral matrix associ- 
ated with («fc)fceB- The following scalar product will be 
required: 

<Fo, F> 1/2 = £ |*| Tr (Fj [k] Fx [*]) (12) 
fcez 

on the Banach space BT of Tx T matrix valued periodic 
functions F G C1 whose associated series converge to F 
and \\F\\1/2 < +00. {F [k] is the kth Fourier coefficient 
of F (.)). We will also use the same notation for the 
scalar case: more precisely, when being concerned with 
scalar products containing Tr (A) or det (A) the same 
notation will be used. 

One can extend the results, available in the scalar 
Gaussian stationary case [3], concerning the asymp- 
totic behaviour of the log-likelihood, of a cyclostation- 
ary Gaussian process [1], which leads to the following: 

Theorem 1 // TQ and T\ are the Gladysev's spec- 
tral matrices of two Gaussian cyclostationary random 
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processes,   such that To  and Ti   belong to &r   end 
det (Ti) > 0, then 

ZrolZniK)]    =    -i[jl|log(det(^))li;/2 

+ <log(det(^1)),Tr(^o^r1)>1/2 

+ (Tr(To,Tr(rr1)))1/2]+o(l) 

VarjrJZ»^)]    =    O(l) (13) 

anrf when Ti = Ty #»en, 

Varr0[Zn(Ti)]    =    -(log(det(^)),Tr(jFr2)>1/2 

-2 11^(^)1^+0(1) 

Similar results have already been demonstrated in 
the multivariate case in several papers (see references 
in [6]), but the results presented here are more precise. 
These results will allow in practice, under given hypo- 
thesises, to obtain the precise rate of convergence to 
the approximation of the likelihood ratio. 

2.3. Asymptotic behaviour of the test 

This section holds with a direct application of the 
result obtained in the preceeding section, and allows 
one to define a degree of cyclostationarity relying on the 
likelihood ratio test, and has interpretation in terms of 
the Kullback-Leibler information. 

The log likelihood ratio takes the following well 
known form: 

eNT    =    ]og(po((*»)B=1>...iOT)) 

- log (pi ((*„)„_! NT))       (14) 

and we introduce the asymptotic form of the likelihood 
ratio: 

®"T    =    £jf^,°g(det(^(A))/(^(A))T)       (15) 

+ Tr [lN (0) (T-
1
 (A) - (*?. (A) 7,)"1) }] dX 

The results introduced in the preceeding section shows 
that: 

|^/i (eNT - eNT) | N =+°° o (i) (i6) 

Furthermore, one has the following Lemma (see refer- 
ences in [6]), whose scalar proof was given by Gren- 
ander and Rosenblatt: 

Lemma 2 Let F be a bounded odd matrix valued func- 
tions, and In the multidimensionnal periodogram as- 
sociated with a realisation of a Gaussian processes of 
spectral $ density then, as n —>■ +oo: 

E* (j     Tr (fnFJ dx) ->   /    Tr ($F)dX and, 

Vor* ( (    Tr (?nFJ dx) ~ ^  f" Tr ((F$)2) dX 

This Lemma can be straightforwardly extended to 
the cyclostationary case [1], where F is replaced by the 
Gladysev's spectral matrix T. 

Then, using this Lemma, and considering —JJ-QNT 

as N -» +oo under hypotheses Hi, one obtains: 

1  JX q.m. 
(17) 

where 

"    =    -Sj[,r[,0g(det(^/^-)T)      (18) 

+ T-Tr(F/?l)]d\ (19) 

which can be interpreted according to the Kullback- 
Leibler information of the corresponding cyclostation- 
ary and stationary processes that is 

li = K{T,T0
rJT) (20) 

3. Asymptotic probabilities 

In this section, we study the asymptotic power a and 
the asymptotic false alarm probability ß of the likeli- 
hood ratio test. These results have been developped in 
the framework of stationary scalar Gaussian processes 
[4]. As shown below, the proof of the results in the 
cyclostationary case, is not different from what can be 
found in [4]. The results had only to be checked and 
written once for all. 

3.1. Preliminary 

Here we recall the following theorem: 

Theorem 3 //log (det (T0)) and log (det (Ti)) belong 
to C1 then for t G [0,1] 

where 

G„T (<)"^°° So (*) 

Qo(t) = ^£ [<l0g(dfit(*b)) 

+ (l-t)log(det(*i)) (21) 
- log (t det (T0) + (!-<) det {Tx))] dX 

QnT(t)=— log Eo I exp 11 log 
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The calculus for the proof are the same matrix ma- 
nipulations in the block-Toeplitz case as in [4] for the 
stationary case, and Szego's theorem for the cyclosta- 
tionary case (which is required for the proof), is impli- 
citely shown in [1]. 

The series (P0®",Pf") of probabilities associated 
with the spectral matrices T§ and T\, is said in that 
case to be of Chernoff. 

3.2. Formula "ä la Chernoff" 

The following theorem is demonstrated in [4] for the 
stationary scalar case, and the extension to the cyc- 
lostationary case is not difficult [1]. 

Theorem 4 Let us consider a series (P^",P^n) of 
Chernoff, we further suppose that: 

1. K{P0,Pi) andK{Pi,P0) exist. 

2. We define a £ [-K (P0,Pi),K (Pi, Po)] 

then, as n -> +oo 

Ilog(pr(I.og(g;)<a))    -»    . + M.) 

where 
h0 (a) =sup (6a - Q0 (0)) (22) 

and K (P0, Pi) is the Kullback information between the 
two processes. 

Thus in the cyclostationary case, in the framework 
of our test, the asymptotic power and false alarm of the 
Neyman-Pearson test can be written in the interesting 
following manner: 

a (a)    =    -h(a) and/? (a) = a-a(a)     (23) 

hi {a)    =    sup (0a - Qi (0)) 

4. Conclusion 

We propose a test for cyclostationarity based on the 
theory of decision which gives birth to a measure of cyc- 
lostationarity which can be connected to the Kullback- 
Leibler information of information theory. This test 
allows one to test wether a frequency is a cyclic fre- 
quency of a given process, and gives an indicator of the 
degree of cyclostationarity according to this cyclic fre- 
quency. This work has two main interests: we provide 
a statistical test, a strong theoretical background to the 

notion of degree of cyclostationarity first introduced by 
Zivanovic and Gardner, and a new measure of cyclosta- 
tionarity. Application of this test will appear in a later 
paper. 
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Abstract 

This note is concerned with the problem of deter- 
mination of the countable set A = {Ai,A2,...} of 
frequencies belonging to an almost periodic sequence 
by methods in which a finite number of frequencies 

{\" , A2
nJ, •••>^jf„} = A„ are are produced at each 

stage n. We seek algorithms for which A„ converges 
to A but yet each A„ is not too big. 

1. Introduction 

Almost periodic sequences share many properties of 
AP (almost periodic) functions. [1] For example, the 
Fourier coefficient 

l""1 

a(X) = lim - >   Xk exp(-iAJb) 
n->oo n *—' (1) 

*=0 

exists for every A and ParsevaFs equality 

AgA *=o 

implies that the set of frequencies A = {A : a(A) ^ 0} 
belonging to the AP sequence, is countable. In the 
case of AP sequences the frequencies may all be taken 
in the interval [0,2ir). The frequencies A and coeffi- 
cients {a(A),A G A} are uniquely determined by the 
AP sequence X and for this reason it is said that each 
AP sequence has an associated (unique) Fourier series, 

Xk ~   5Z a(Aj)exp(»'Ajfc) (2) 

where ~ is not to be taken as equality except under 
additional assumptions, for example, when A is finite. 

This work is motivated by some problems of esti- 
mation [4, 3] and detection [2] for stochastic processes 
connected with almost periodicity. Here we begin to 
treat a simpler problem, the empirical determination 
of the frequencies A of an AP sequence, to illustrate 
a problem involving finite computation. That is, sup- 
pose we are given the sequence {xj} one element at a 
time; in other words, we are given the finite sequences 
Xn = {xk,k = 0, l,...,n} for n = 0,1,.... Now if we 
are told, a priori, that some A € A, then from (1), the 
sequence 

n-l 1 *  : 
an(A) = - ^2 xk exp(-j'Afc) (3) 

fc=o 

converges to a(A) ^ 0, and if A g A, then a„(A) -+ 
0. But if A is unknown a-priori, we are faced with 
performing the limit1 for an uncountable collection of 
A to determine the countable set A on which a(A) ^ 0. 

So given the practical constraint of finite computa- 
tions, we wish to determine A by some sort of limit of 
a sequence of operations, each of which involves only a 
finite number of calculations. We address the problem 
in the following manner: at each computation stage n 
we compute a finite number of frequencies 

1*1    1*2    1 •••tAK.i ~ An (4) 

using only the subsequence Xn. We seek algorithms 
for determining A„ from Xn that have the following 
properties: 

J=-00 

1In the context where the index k corresponds to time, we 
must know the sequence for infinite time. 
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1. A„ converges to A in the sense that for every A € A 
there is a sequence {An} with An € A„ and A„ —► 
A; 

2. A„ is not too big in the sense that convergent se- 
quences taken from the A„ converge only to ele- 
ments of A; this additional constraint is needed 
because the finite set {2irj/n, j = 0, l,...,n - 1} 
satisfies the property 1., but yet is too big in the 
sense that some elements may not be near an ele- 
ment of A; 

2'. a sufficient condition for 2. is that there exists a 
resolution function c(n) -> 0 such that for every 
A' 6 A„ there is a A € A with 

|A'-A|<c(n). (5) 

Our approach is through the weighted Fourier coef- 
ficient estimator 

a^(A) = ^^E^4n
+

)n-pHAt)      (6) 
2n 

1=0 

where w^ is the Bartlett weight sequence that has 
considerable application in spectral density estimation. 
It is given by 

(n) _ / 2(1 - \k/n\)    |*| < n 
*   ~ \ 0 |*| > n (7) 

and in order to keep the estimation procedure one-sided 
as in (6), we center the sequence at n. The discrete 
Fourier transform of (7) is 

n-l 

Wn(A)    =        ]T     t/>texp(-»A*) 
t=-(n-l) 

2 sin2 (n A/2) 
~    n s»n2(A/2) 

and this is related to (6) by 

(8) 

2n 

exp(.An) £ «ft exp(-.AJb) = Wn(X).       (9) 
t=o 

The factor of 2 appears in (7) in order to ensure 
/im„^oo<(A) = a(A) and the exp(»An) is needed to 
account for the centering of the window in [0,2n] rather 
than [-n, n]. The fraction l/2n appearing in (6) is used 
in place of l/(2n + 1) for ease in computation and in 
the presentation. 

Note that Wn(X) is periodic with period 2T, 

W„(X) = Wn(X + 2ir), and W„(0) = 2n. 
The fact Wn(0) = 2n and the observation that 

|W„(fl-)| does not exceed 2/n together motivate the fol- 
lowing lemma. 

Lemma 1 For the Bartlett kernel W„(X), given 6>Q 
there exists a number K > 0 and an integer n0 for 

»W<* (10) 
Wn(0)      «2 

for all |A| > 6 and |A - 2ir| > 6, provided n > n0. 

Proof.        Choose no > */&, then 

jUA)      2 stn2(nA/2)      2 _}__       (n) 

WM ~ n2 sm2(A/2)  ~ n2 sin*(6/2) 

and the result follows by the identification K   = 
2/«n2(5/2).       I 

2. A is a singleton 

In this case, 

Xk = a0 exp(»Ao*) 

and for any A we have 

ao 
<(A) = i„-W,(A-Ao). 

(12) 

(13) 

It may be easily shown that Wn(X - A0) has a global 
maximum at A0 and is locally maximum in the neigh- 
borhood of A0 given by |A - A0| < v/n. 

The following procedure meets the constraint of fi- 
nite computation at each stage n and produces the re- 
quired convergence of A„ to A. First, compute a^(A) 

for the distinct values A<n) = j2ir/n, j = 0,1, ...n - 1 

and put \$ into An provided it maximizes |a^(A}n))| 

for; = 0,1°..., n-l. 
The localization properties of the function W„(X) 

show that each set A„ will contain at most two el- 
ements, the two AJn) surrounding A0. That is, if 

A$? < Ao < A{ält then one or both of A^A^ 
will be elements of An and so every element A(n) € A„ 
satisfies |A<n) - A0| < „-• 

3. A is finite 

When A is finite, say card(A) = J, 

j 

a;t = ^aiexp(fAifc) (14) 

and note that there exists a 6 > 0 for which |A,- -Xj> \ > 
«forallj.i'withj^/. 

We will choose the elements of A„ to be the strong 
local peaks among the finite collection of a^(A) com- 
puted at each stage. 
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To complete the argument, first take n sufficiently 
large, say n > n0, so that ^~*'> > 10. For any fixed 
n > no, let 

arg     max     K(A<">)|. 
A<n)e(A',A») 

But for there to be a strong local peak at xft) also 
requires 

I<(A5:})I > ioi<(A<n>)i 
for 3C < \j* - j\< AC, which thus requires 

\°l£(>i%c)\ 
>10 

From the preceeding discussion, for sufficiently large n, 
this ratio must converge to 1 and hence will not exceed, 
say 2. It may be seen that for sufficiently large n, no 
Aj"^ G (A', A") will be selected as a strong local peak. 

Finally we note again that we do not know A or the 
numbers {a(A), A € A} a-priori and so the value of no 
for which n > n0 produces these results is not known 
to us. One cannot say when these events occur, only 
that they will. 

4. A has isolated cluster points 

Here we consider the class of AP sequences for which 
DA laMI < °°- Suppose A0 is the cluster point of A 
and a0 = a(X0). We shall assume A0 is an interior point 
of [0,2ir), and omit the adjustments for the case when 
A0 = 0. For any e > 0 there is a deleted neighborhood 
D(\0,6) = (A0 - 6, A0 + «5)\{A0} of A0 for which 

E      M<</2- 

Take c = |a0|/10. The examination of aJJ'(A) at the 
point A0 will help us understand the new situation. 
Consider then 

<(A0) = a0 + ^     E     aiW„(A0-Ai)+ 

^      E      °jWn{*o-Xi) (22) 2n 

Because the last sum is finite we know from the pre- 
vious section it is 0(^j) so there is an n0 for which 
n > n0 implies this quantity will not exceed e/2. As 
for the middle term, 

1^     E     «i^Ao-Aj)! 

<     1^       E        \°A\Wn(*0-\j)\ 
A,eß(Ao,*) 

<    E   M<e/2 
Aj6X>(A0)«) 

(23) 

Of course we already know that a%(\0) —► a(A0) but 
this permits us to see what happens when we evaluate 
a%(\) at the nearest point AJn^* to A0. For n suffi- 
ciently large, the points not in D(X0,6) will contribute 
to a*(AJ"^*) as described in the finite case. The mid- 
dle term contributes at most e/2 (or |ao|/10) and so 
an ("j" ) w"l eventually dominate the rest (in this ex- 
ample, by a factor of 10). 

The demonstration that A„ is not too big is in 
progress; we expect to follow as in the finite case. The 
idea is to show that any interval (A', A") containing no 
points of A, a™ (A) will ultimately not have any strong 
local peaks. Even though A is infinite, there are only 
a finite number of frequencies outside a neighborhood 
of Ao, and those inside have summable amplitudes, so 
their contribution to a"(A) for A G (A', A") will even- 
tually become negligible. 
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To be more specific, we compute <(A) for the values 

A(n) = j2v/Cn, j = 0,1, ...Cn -1 where C is a positive 

integer. For some arbitrary AJ0 G A denote Avv as the 

A(n) closest to Aj0 and consider the expression 

I £ *wn{\<rj0 - A,). (15) 

If the A(n) are sufficiently dense with respect to the 
kernel W(-), then the first term on the right is close to 

«jjoi say 

l^ioWn(Aß)
0-Ajo)|>.9|ai0| (16) 

and the second term is 0(4j) because all the remaining 

Aj are "far" from A^. We are lead to conclude that 
there exists an interval In(jo,h) between Aj0 and the 
next largest A;- (call it A;i) for which 

(»h <W) o(iL O(i) 
O(aj0) + O(±)        yn 

(17) 

for all A$n)) € In(jo,h)- In other words, for sufficiently 

large n, the value of K(AW)| will begin to dominate, 
as n2, the values taken in a nearby interval. Imme- 
diately neighboring values may have to be excluded 
because of the shape of W(-). 

A frequency index j* is said to produce a strong local 
peak with parameters K\,K2, K3 if 

I<(A;"
)
)I>K(A;."

)
)I 

for|i*-i|<Üfi, and 

K(\P)\ > *sK(A<">)| 

for K2 < \j* - j\ < K\. So a strong local peak is 
at least K3 times larger than it's neighbors except for 
those nearby (\j* - j\ < K2). The elements of A„ 
are the frequencies Aj. associated with the strong local 
peaks. 

In general, the value of K3 is to be considered large 
(e.g. K3 = 10 or K3 = 100), and the values of Kx and 
K2 will depend on the Fourier transform of the weight 
sequence w*. 

For some arbitrary Aj0 G A, if we take C = 4, K\ = 
16, K2 = 12 and K3 = 10 with the Bartlett sequence, 
then for n sufficiently large we will obtain a \yjg that 

satisfies \)fjnJo - Aio| < 27r/Cn. Hence for each Aio G A 

one may find a sequence {A^} with A}"> G A„ and 

In     """^      JO* 
Now we must show that the A„ are not too big. We 

will show that in any open interval (A', A") contain- 
ing no points of A, <(A) will ultimately not have any 
strong local peaks. 

Consider the expression 

<w = ^Eai'w»(A-v) (18) 
i'=i 

for A in (A', A"). Although the values |<(A)| can vary 
significantly for A G (A', A") , we will now show that 

lim 
n—>oo 

K(A + 2^/n)| 

K(A)I 
(19) 

for A in this interval. Clearly A + 27r/n -> A as n -* 00. 
The ratio in (19) may be expressed as 

j        A<?'(A+2T/n) 
2-Q'=l   Bj,(A+2ir/n) 

(20) 

where ^(A) = aj,sin2[n(A - AjO/2] and By{\) = 

«m3[(A-A,-i)/2]. Because A<f)(X + 2ir/n) = A§\\) is 
bounded with respect to n, the following Lemma may 
be applied. 

Lemma 2 // {aj.n)}f ,j = 1,2,..., J are each bounded 

sequences and i/{/?jn)}f ,j = 1,2,..., J are each con- 

vergent sequences with ßy' —* ßj, then 

/imn_K 
ö-i^nj-rt »(") 

Ö=i ^nj« A 
= 1. (21) 

The proof follows from setting /?jn) = ßj+rfjn) where 

ijjn) -* 0 for all j. 

In our current problem we set ay' = A? (A), 

ßW = Bj{\ + 2*/n) and ßj = Bj(X), and we note that 

ßf?) _> ßi because Bj (A) are continuous functions of 
A. Thus by application of the Lemma we obtain (19). 
Furthermore, considered as functions of A, the conver- 
gence is uniform because the a's are uniformly bounded 
and the ß's come from shifts of the single continuous 
function l/sin2(x) for x bounded away from 0 and 2ir. 
And all this is also true when \ + 2ir/n is replaced with 
A ± Klir/n for finite (fixed) K. 
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Abstract 

An important feature available in certain scenarios for 
the underwater sonar detection of broadband signals is 
the formation of "striated" patterns in spectrograms. The 
observed striations can be modeled by a broadband mul- 
tipath signal whose time delay between arrivals is slowly 
varying linearly. This model leads to generalized notion 
of cyclostationarity where the cyclic frequency varies lin- 
ear with frequency. In this paper, noncoherent and co- 
herent methods to detect these broadband energy patterns 
based on this model are presented and demonstrated on 
a nontrivial example. While noncoherent methods cannot 
distinguish between the positive and negative delay rates, 
coherent methods determine both the sign in addition to 
an estimate of the initial multipath delay. 

1. INTRODUCTION 

Very low frequency (VLF) underwater signals can be 
exploited at long ranges because of their propagation char- 
acteristics. In certain scenerios, an important characteris- 
tic of VLF broadband energy propagation is the formation 
of "striated" patterns in the time-frequency domain (i.e., 
spectrograms) caused by multipath interference. This phe- 
nomenon is sometimes referred to as "Lloyd's Mirror" by 
the sonar community. In [3], acoustic propagation models 
were demonstrated to predict these VLF multipath inter- 
ference patterns and a variety of detection methods were 
developed. In this paper, methods to detect these broad- 
band energy patterns based on a generalized notion of cy- 
clostationarity are presented and demonstrated on realistic 
simulated data. 

2. Affine Time Delay Multipath Model 

The observed striation patterns can be modeled by a 
broadband multipath signal whose time delay between ar- 
rivals is varying linearly. This linear relationship could 
perhaps arise from a variety of environmental factors, but 
in practice the cause is the motion of the source. In a 
multipath environment, the received signal x(t) in the time 
domain can be written as 

x(t) = s(t)+-ys(t-T(t))+n(t),     0<t<T      (1) 

where s(t) is the direct path stationary signal s(t - r(t)) 
is a delayed version of the signal from an alternative path 
(possibly with a different amplitude), and n(t) is a station- 
ary process representing the aggregate effects of all noise 
factors. 

A first order approximation to the delay function T is 
linear so that T(t) = at + ß. The delay is assumed to 
be slowly varying so that the delay rate a is small. In 
order to distinguish the two paths in the model, the initial 
multipath delay ß is assumed to be strictly positive. With 
this simplification, (1) becomes 

x(t) = s(t)+js(t-at-ß)+n(t),     0<t<T    (2) 

which will be referred to as the affine time delay model. 
In [2], several applications are discussed where the affine 
time delay model has been used to model the propagation 
effects on signals from sources in motion. 

We assume the delay rate is sufficiently small that the 
signal is approximately stationary over short time windows. 
In particular, the expected amount of energy at frequency 
u) at time t, denoted by P(t,u), is well-approximated by 

P(t,u>) = (l + 72+27cos(wQt+w/3))S(ü;)+JV(u;)  (3) 

where 5(w) and N(w) are the power spectral densities of 
the signal and noise, respectively. For simplicity, this can 
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be written alternatively as 

P(t,w) = A(w) + B(w)cos(wat + wß) (4) 

where A (w) represents the energy of the agregate stationary 
components and B {w) represents the peak energy of the 
nonstationary or striating components. 

In our discussion P(t, w) is the spectrogram, that is, the 
short-time Fourier transform (STFT). In principle, however, 
P could be any time-frequency distribution and could be 
optimally matched to this model (as is discussed in the 
conclusions section). This spectrogram model contains in- 
terference patterns with peaks along the following family 
of hyperbolic curves 

wat + wß = k,     fc = 0,±l,±2,... (5) 

as is shown in the example in Figure 1 with Nyquist fre- 
quency normalized to 1. 
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Figure  1.  Spectrogram  for  Affine  Multipath 
Delay Model with White Signals and Noise 

The signal s(t) in this example is band-limited white 
noise with a cutoff frequency equal to Nyquist. The de- 
layed signal is obtained by an initial interpolation using the 
MATLAB function INTERP with an oversampling factor 
of 4 and additional resolution using linear interpolation. 
The results do not change significantly using higher initial 
oversampling factors. The noise n(t) is white and the SNR 
is OdB, i.e., the noise energy equals that of s(t). The re- 
ceived signal time series x(t) consists of N = 215 = 32768 
samples over T = 1 second. The spectrogram is calcu- 
lated with 128 nonoverlapping FFT's of length 256 re- 
sulting in a 128 x 128 image.  The multipath parameters 

are 7= l,a= -8 samples/second and ß = 32 sam- 
ples. So the multipath delay varies from an initial value 
of T(0) = ß = 32 samples to a final value of T(1) = 24 
samples over the second interval. Note in Figure 1 that 
there are T(0)/2 = 16 peaks at time 0, r(l)/2 = 12 peaks 
at time 1, and |a|/2 = 4 peaks for frequency 1. 

3. Generalized Cyclostationary Approaches 

Although the process x(t) is nonstationary, it does have 
some stationarity properties that allow the application of 
traditional signal processing methods. For each fixed fre- 
quency UJ, consider the marginal process Q(t) = Qw(i) = 
P(t,uj). This process is stationary with significant spec- 
tral energy at cyclic frequency X — aw. Moreover, the 
cyclic phase of Q is ßw. Because the cyclic frequency 
(or one over the cyclic period) is not constant, but varies 
with frequency (in this case linearly), x(t) can be called a 
generalized cyclostationary process. 

3.1. Noncoherent Detector 

A simple noncoherent detector of the delay rate can 
be constructed based on these generalized cyclostationary 
properties. The first step is to estimate the stationary com- 
ponent A(w) in (4) and subtract it out of each frequency 
column. Prewhitening of the received signal can be impor- 
tant in practice, but in our example we assume the signal is 
already white for the sake of simplicity. The power spec- 
tral density can estimated for each fixed frequency giving 
a two dimensional function of frequency w and cyclic fre- 
quency A. Energy integrated over frequency and the cyclic 
frequency bins corresponding to A = aw (i.e., lines through 
the origin) provide a measure of the marginal likelihood for 
a given delay rate. These steps are simplified notationally 
by first defining the cyclostationary gram C(a,w) by 

C{a,w) -iocojt P(t,w)dt (6) 

which effectively accounts for the linear relationship be- 
tween cyclic frequency and frequency (i.e., concentrates 
all the energy along a vertical line). Figure 2 shows the 
cyclostationary gram for our example. The noncoherent 
delay rate likelihood function L(a) can now be written as 

L(c Heia, 
Jo 

w)\~dw (7) 

which is shown in Figure 3. 

3.2. Two-parameter Coherent Detector 

Note that L(a) is symmetric about 0. This points out 
one inadequacy of this approach, that is, only absolute 
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Figure 2. Cyclostationary gram taking into ac- 
count linear dependency of cyclic frequency on 
frequency. 

Noncoherent Detector 
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Figure 3. Noncoherent likelihood function for 
multipath delay rate parameter a. 

value of the delay rate is being detected and there is no 
discriminatin between sources that are opening and clos- 
ing the receiver at the same speed. We therefore consider 
a coherent detection approach with a two-parameter joint 
likelihood function L(a,ß) which incorporates the cyclic 
phase 

L(a,ß) = f Jo 
e-^Cte.wJdu; (8) 

which can be interpreted as the Fourier transform of the 
coulumns of the complex cyclostationary gram. The joint 
likelihood for our example is shown in the right image of 
Figure 4. The peak is clearly evident at (-8,32) corre- 
sponding to the corect values of our model. 

Joint Likelihood 
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Figure 4. Joint two-parameter likelihood func- 
tion for a and ß. 

A coherent marginal likelihood function for the delay 
rate can be found by integrating out the ß parameter and 
is shown in Figure 5. The coherent detector is now able 
to distinguish between positive and negative values of the 
delay rate. 

4. Conclusions and Future Directions 

Coherent and noncoherent methods based on a general- 
ized notion of cyclostationarity can be constructed to detect 
broadband multipath signals with affine time delay. A re- 
sult demonstrated in this paper (and widely known in radar 
and other similar applications) is that while noncoherent 
methods cannot distinguish between the positive and nega- 
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Figure 5. Coherent detector obtained by inte- 
grating joint likelihood function over ß. 

tive delay rates, coherent methods determine both the sign 
in addition to an estimate of the initial multipath delay. 

Several possible research directions for this model and 
these detection methods are apparent. The affine time de- 
lay model can be generalized by letting r be an arbitrary 
slowly varying function (i.e., small r'). The use of alterna- 
tive time-frequency distributions, especially ones matched 
to the hyperbolic patterns (see [4] and [1]) are worth in- 
vestigating. The detection performance of these methods 
also need to be assessed for varying parameters(.e.g., A) 
and multiple signals with possibly more than two paths. 
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ABSTRACT 

Periodogram is a useful tool to reveal hidden periodici- 
ties in a given time series but the resulting spectral lines 
have often been associated with constant amplitude har- 
monics. Possibilities exist where the harmonics actually 
have non-zero mean random (as opposed to constant) am- 
plitudes because the two can have identical periodograms. 
Applications exist to support the random amplitude mod- 
els. Cyclic statistics are employed here as effective tools 
to distinguish constant from random amplitude harmonic 
models. The algorithms are FFT based and are easy to 
implement as illustrated by numerical examples. 

1.     INTRODUCTION 
Detection of hidden periodicities embedded in a random 
process has been a concern over 100 years. Schuster in 
1894 devised the periodogram as a means of searching for 
hidden periodicities. It has had much success in many ar- 
eas ranging from seasonal and economic time series, seis- 
mology, geophysics, spectroscopy, and communications to 
sonar and radar signal processing (see e.g., [2], [1], [5] and 
references therein). In this paper, we consider a single har- 
monic e}(-"ot+4'0'> which may be "hidden" in a discrete-time 
series {x(t)}l~0

l. The periodogram of x(t) is defined as 

l2xia) t \*pr, 
T-l 

XT(a)    =    ^z(«)e^'a(, 

(1) 

(2) 

where (2) is simply the DFT of the data {x(t)}f=T0
1. 

If the periodogram shows a peak at w0, one tends to be- 
lieve that x(t) is of the form 

x(t) = A ei(u">t+M + „(*), (3) 

where A, UJ0, <f>o are deterministic constants and v(t) is sta- 
tionary additive noise. On the other hand, if (1) does not 
show any peak, one is tempted to say that x(t) is stationary. 

These are the pitfalls that researchers are easily subject 
to, and they are the interest of this paper. Our purpose 
here is to clarify that (i) when the periodogram exhibits a 
peak at w0, x(t) can also be of the form 

x(t) = s(t) e j(u0t+j>0) 
+ «(*)> (4) 

where s(t) is an ergodic random process with mean ms = 
E[s(t)] / 0 and is assumed to be uncorrelated with v(t). 
We refer to (3) as the constant amplitude harmonic model, 

and (4) as the random amplitude harmonic model. Alterna- 
tively, we will also call (4) a harmonic in multiplicative and 
additive noise. Note that (3) can be regarded as a special 
case of (4) with s(t) = A. 

Another point that we wish to clarify is (ii) when the 
periodogram does not show any peak, it is still possible for 
x(t) to obey (4) but with ms = 0. The goal of this paper 
is to provide tools that can distinguish stationary processes 
such as v(t), constant amplitude harmonics (3), and random 
amplitude harmonics (4), using cyclic statistics. 

Random amplitude harmonics show up in a variety of 
applications. In radar processing, when a non-point tar- 
get is fast maneuvering or scintillating, the resulting har- 
monic (due to Doppler shift) carries a random amplitude 
[6]. In underwater acoustics, when the medium (the ocean) 
is dispersive or fluctuating, the sonar return also experi- 
ences some random amplitude effect [3]. The model in (4) 
is also appropriate for Doppler weather radar/lidar returns, 
where s(t) is due to the randomness in the scatterers (hydro- 
meteors or areasol particles). Due to carrier modulation, (4) 
is suitable for communications signals as well. 

We wish to point out that it is important to identify 
the correct model at least for the following reasons: 1) 
Whether the harmonic has random or constant amplitude 
reveals partial information about the source (target) such 
as scattering or fading; 2) The Cramer-Rao bounds on the 
parameter estimates are different for the two models [7]; 3) 
The corresponding maximum likelihood (ML) estimates are 
also different. For example, in the nonzero mean (ms / 0) 
case and when v(t) is zero-mean white Gaussian, estimates 
rhs (or A),Q0, <f>0 obtained by minimizing the mean square 
error between x(t) and mse

j(w°t+M are ML when s(t) = A 
but are not when s(t) is random [8]. Therefore by assuming 
the wrong model, one may intend to obtain ML estimates 
but cannot. 

We will show that (3) and (4) can have identical peri- 
odograms when ms ^ 0. However, when a peak is detected 
in the periodogram, one easily tends to believe that the 
true model is (3), and the possibility of (4) being present is 
usually overlooked. 

The rest of the paper is organized as follows: in Section 
2 we examine the cyclic statistics of (3) and (4) and devise 
algorithms to distinguish the two. Some practical aspects 
of the algorithms are discussed in Section 3. We use sim- 
ulated data to illustrate the procedures in Section 4 and 
draw conclusions in Section 5. 

2.    RETRIEVAL USING CYCLIC STATISTICS 

The processes in (3) and (4) are called wide-sense cyclosta- 
tionary because their mean or variance are periodic func- 
tions of time. The mean of (3) is given by 

mlx{t) = E[x(t)] = A ej{"°t+M + mv, (5) 
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whereas the mean of (4) is 

mlx(t) = mse
i{"ai+*o)+mv, (6) 

with mv = E[v{t)]. If wo / 0 mod (2TT)^ we realize from 

both (5) and (6) that liniT-t» T'1 Y,J=o mix^ = ™v> 
hence one can always remove the time average of x(t) to 
equivalent^ remove the mean of v(t). W.l.o.g, we hence- 
forth assume that m„ = 0 and rewrite 

mix(t) — A e 

■■ ms e 

_    A   -j(wo*+*o) for   (3), 

mlx(t) = mse
j^°t+M        for  (4). 

(7) 

(8) 

Since (7) and (8) are periodic functions of t, we consider 
their Fourier Series (FS) coefficients, which we call the cyclic 
mean [4], 

T-l 

ML ix(a)= lim -Vmi.(<) e 
—jat 

(9) 

For (7) and (8), they are given by 

Mix (a)    =    Aejl"° 5(a-u0), (10) 

Mi*(a)    =    m.e**° <5(a-wo), (11) 

respectively, where S() is the Kronecker delta function. 
Consistent sample estimate of Mix (a) is given by [4] 

T-l 

Mlx(a)^5>(*)e- ■jott (12) 

t=o 

which is simply the normalized DFT of the data. 
From (10) and (11), we see that if m, / 0, a plot of 

|Mix(a)| will show a peak at a = w0 for both (3) and 
(4), the location of which provides an estimate of w0. The 
phase at the peak, arg[Mix(w0)], Sives 4>o, and the peak 
strength |Mix(w0)| yields an estimate for A or ms. We 
proved in [8] that these estimates are consistent with the 
following variance rates: var(w0) = 0(T~ ), var(ms) = 
0(T-J), var(i)=0(T-1), andvar(0o) = O(T-1). 

It is easy to see that the periodogram in (1) is related 
to (12) as follows: I2x(a) = T |Mix(a)|2. Hence, a peak 
in | Mix (a) I is equivalent to a peak in hx(a) at the same 
location. In this sense, cyclic mean and periodogram are 
equivalent. However, the latter does not contain phase in- 
formation. 

Because when ms # 0, cyclic mean peaks at w0 tor both 
(3) and (4), the two models cannot be distinguished. How- 
ever, their respective variance tells the difference: <rx(t) 
= <r2, for (3), and a2

x(t) = a2 exp{2j(wo*+*o)} +<?l for (4), 
where cr2 denotes the variance of v(t) and similarly for crs. 
We term the FS coefficient of a2

x(t) as the cyclic variance of 
x(t) and it is given by 

i — i 

C2x(a) = limiyVW«" 
■jcxt (13) 

t=o 

which equals a2 6(a) for (3), and <r2 e2'*° *(o - 2w0) 
+ff2 6(a) for (4). It is this quantity that reveals the differ- 
ence between the two models (3) and (4): a peak at a / 0 
hints towards the random amplitude model (4). 

Note that we can also use the cyclic covariance of x(t), 
defined as the FS coefficient of cov{x(t), x(t + r)} w.r.t. t, 
at lag r ^ 0, to achieve similar results. But cyclic variance 
is slightly easier to implement. 

Under (4) and for (13), the peak at a = 2w0 relies on 
cr2 ^ 0 to be visible. We always have u2 > 0 when s(t) 
is a real random process. However, when s(t) is complex, 
a2 = 0 may happen - this is the case for QAM processes 
for example. The fourth-order cyclic statistic proposed in 
[4] resolves the problem. 

Sample estimate of (13) is given by 

T-l 

few^Eh- ms e ̂ '(üo'+^o) —jat (14) 

which is the normalized DFT of the square of the mean- 
compensated process. For constant amplitude harmonics, 
we simply replace the above formula by m3 = A. 

Therefore we obtain the first result: If the cyclic mean 
of x(t), or the periodogram of x(t), shows a peak at wo, 
we need to further compute the cyclic variance of x(t), or 

the periodogram of [x(t) - mse^
at+M}2 in order to dis- 

tinguish (3) and (4). If the resulting quantity shows a peak 
at 2wo, then the model is (4); otherwise, (3) is in force. 

Now let us see what happens if Mix (a) does not show any 
peak at all. This implies that the possibility for the con- 
stant amplitude harmonic model (3) is ruled out. Our task 
here becomes deciding whether x(t) is a purely stationary 
process or model (4) with ms = 0. 

To resolve this problem, we again compute the cyclic vari- 
ance. The cyclic variance of a stationary process shows a 
single peak at a = 0, whereas (4) shows an additional peak 
at a = 2w0. The following observation is made: If the cyclic 
mean of x(t), or the periodogram of x(t), shows no peak, 
then we rule out the possibility of (3). We then compute 
the cyclic variance of x(t), or the periodogram of x2(t). If 
the latter shows a peak at a / 0, then x(t) is due to (4). 

We want to point out however, that it is possible to design 
a rigorous statistical test to decide on the peaks, and this 
constitutes an interesting future research direction. 

When there are multiple harmonics present and we wish 
to decide between the models x(t) = £f=i Ai e3<-u''t+'t'') 

+v(t) and x(t) = Ef=i *'(*) e^'t+M +v(t), where 
Ai,ui,<j>i are deterministic constants and {s;(*)}i=i {~>{v(t)} 
are mutually uncorrelated, the cyclic mean exhibits peaks at 
{wi}f=i for both models if E[si(t)} # 0. However, the cyclic 
variance only peaks at a - 0 for the constant amplitude 
model but shows peaks at {0} U {2w;}f=1 for the random 
amplitude model instead. Hence the cyclic algorithms of 
this section still apply for multicomponent harmonics. 

3.    PRACTICAL CONSIDERATIONS 

When x(t) is zero-mean, the cyclic variance can be eas- 
ily computed as the normalized DFT of the data squared. 
However, the nonzero-mean case is more interesting because 
this is where one could be confused between random and 
constant amplitude harmonic models. It is also more cum- 
bersome since one has to first estimate the time varying 
mean mix(t), remove it, and then compute the cyclic vari- 
ance. Estimates rhs (or A), w0 and 4>o can all be computed 
from Mix (a) to form mix(t). But if the data length is 
short, these estimates may not be very accurate. As a re- 
sult, spurious peaks may occur in the cyclic variance of (3) 
at a ^ 0 due to the "residue" harmonic not completely re- 
moved. This may hamper the performance of the detection 
scheme based on the cyclic variance. 
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The following alternative can be considered which avoids 
the aforementioned problem and requires somewhat less 
computation. We first compute the sample cyclic mean and 
if we detect a peak at a jt 0, we record that peak strength 
and denote it as ms. Next, instead of the variance, we 
consider the mean square of x(t), 

m2x(t) = E{x\t)} = m2s e
2^°'+*o) + ^       (15) 

where m2s = E[s2(t)] = <r2 + m2.   When s(t) = A, we 
simply replace m2s by A2. 

Since (15) is a periodic function of t, we consider its FS 
coefficient which we term the cyclic mean square, 

1 T_1 

M2x{a)    =     lim±Yx2(t)e~jat, 
T-KXT t—/ 

t=0 
(16) 

=    m2s ej24"> 6(a - 2w0) + of 6(a),    (17) 

whose consistent sample estimate is given by 

T-\ 

M2 

t=0 

jctt 
(18) 

Now for both (3) and (4) with m, # 0, (18) will show 
peaks at a = 0 and a / 0.   Denote the peak strength at 

a / 0 as rh2s and compute a2 = m2s -rh2. If of is close 
to zero, we decide that (3) is more appropriate; otherwise, 
we choose (4). The rationale is that a2 = m2s - m

2 is 
nonzero for s(t) random, and a2 = 0 for s(t) = A. Of 
course, an interesting research problem here is to develop 
a statistical test in order to decide on the zeroness of the 
random variable of. 

We wish to point out that the value of of, obtained either 
from m2s — ms using the cyclic mean and mean square, or 
from the peak strength of the cyclic variance at a = 2u;0, 
may be used as a measure of dispersion or fading in Doppler 
radar or sonar applications. 

The advantage of the cyclic mean square approach is that 
one can avoid estimating ui0 and <j>0. However, the difference 
between the models (3) and (4) is revealed more numerically 
than graphically. 

4.    SIMULATIONS 
We illustrate the algorithms proposed in this paper using 
simulated data. The following specifications apply to all 
examples: T = 512, w0 = 1, <j>o = 0.6. In addition, additive 
noise v(t) is a zero-mean uniformly distributed process with 
variance u2 = 0.5. 
Example. 1: Consider xx{t) which is given by (4) with i.i.d. 
Gaussian s{t) having ms = 1.2 and a2 = 0.4, and x2(t) 
which is given by (3) with A = 1.2. The real parts of xi(t) 
and x2(t) are shown in Figs, la and lb, and the sample 
cyclic means are shown in Figs, lc and Id, respectively. It 
is difficult to classify xi(t) and x2(t) into (3) or (4) using 
the figures obtained so far. From Clxi(a) and CiX2{a) we 
obtained ms = 1.1902, w0 = 0.9999 for both Xl(t) and 
x2(t), fa = 0.6371 for xi(t) and 4>0 = 0.6367 for x2{t). We 
then subtracted the respective rh\x(t) = rhs e^o'+^o) fj.om 

x\(t) and x2(t), squared the resulting quantities, and took 
their normalized DFT, the magnitudes of which are plotted 
in Figs, le and If. A distinct extra peak occurred at a = 2 
in Fig. le, and we therefore subscribe xx(t) to (4) and x2{t) 
to (3). 

Alternatively, we can bypass the estimation of ui0 and <£0 
by adopting the approach in Section 3. From Figs, lc and 

Id, we estimated the peak strength at a / 0 to be rhs = 
L1902. We then computed the sample cyclic mean square 
M2x(a), the magnitudes of which are shown in Figs, lg 
and lh for x\{t) and x2(t) respectively. The peak strength 
at the nonzero cycle yielded m2s = 1.7798 for xi(t) and 
rh2s = 1.4234 for x2(t), from which we inferred of = 0.3632 
for xi(t) and of = 0.0068 for x2(t). Since the latter can be 
regarded as statistically zero, x2(t) is attributed to (3) and 
xx(t) to (4). 
Example 2: We consider here the case with ms = 0. All 
other parameters remain the same as in Example 1. The 
real parts of the time series are plotted in Figs. 2a and 2b. 
The sample cyclic mean does not show a dominant peak for 
xi{t) (Fig. 2c) but does so for x2(t) (Fig. 2d). The sample 
cyclic variance magnitudes are plotted in Figs. 2e and 2f 
for xi(t) and x2(t) respectively. The extra peak at a ^ 0 
in Fig. 2e distinguishes zi(r) from x2(t). The sample cyclic 
mean square magnitudes are plotted in Figs. 2g and 2h, 
from which a2 = 0.4211 and of = 0.0086 were estimated for 
xi(t) and x2(t) respectively. Since the latter is statistically 
zero, we decide that x2{t) came from (3). 

5.    CONCLUSIONS 
Our focus here has been on random and constant amplitude 
harmonics. Traditionally, one examines the periodogram 
and based on the presence or absence of a peak, decides 
whether the process contains a constant amplitude har- 
monic or is purely stationary. We argue here that for both 
cases, a random amplitude harmonic could be present, ei- 
ther with non-zero mean or with zero-mean random am- 
plitude. By employing the cyclic variance or cyclic mean 
square, one can easily tell the difference between the fol- 
lowing pairs: random (with ms / 0) vs. constant ampli- 
tude harmonics, and random amplitude harmonics (with 
ms = 0) vs. a purely stationary process. Simulation stud- 
ies corroborate these findings. Rigorous statistical tests lie 
ahead as further studies and the results can be easily ex- 
tended to multicomponent processes. 
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Abstract 

In this paper we introduce a new time-frequency based 
method for classifying non-stationary random signals. The 
method involves dividing the signal into overlapping or non- 
overlapping segments considered to be subpopulations of 
the entire population. From each sub-population we calcu- 
late a test statistic which can be used to construct a single 
hypothesis test. To control the global type-I error it is nec- 
essary to consider the hypotheses from all subpopulations 
simultaneously. We use the generalised sequentially rejec- 
tive Bonferroni multiple hypothesis test which provides an 
efficient method to simultaneously test multiple hypothe- 
ses while maintaining the global type-I error. Finally, we 
show the results of classifying time-dependent AR(I) pro- 
cesses which have identical expected instantaneous power 
and power spectral densities but different time-frequency 
representations. 

1. Introduction 

The problem of signal classification can be divided into 
three consecutive sub-problems: detection of the presence 
of a signal; segmentation to determine the time interval of 
the signal; and classification of the signal into one of a finite 
number of classes. In this work we will focus on classifying 
an observation signal into one of two classes, i.e., we assume 
that the signal is present and its time interval is known. 

The original contribution of this paper involves the exten- 
sion of a frequency domain classifier for stationary signals 
[7] to a time-frequency classifier for non-stationary signals. 
The motivation for this extension is straightforward: the 
classical technique is only optimal (in the sense of minimis- 
ing the probability of misclassifying an observation of one 
kind for a fixed misclassification rate of the other kind) if 
the signal is stationary. This leads us to consider a technique 
that does not require the signal to be stationary. In particular, 

we introduce a time-varying quadratic discriminant function 
using the spectrogram. We apply the generalised sequen- 
tially rejective Bonferroni test to the multiple hypotheses 
that can be constructed at different points in time from this 
discriminant function. 

Other classification techniques have been suggested re- 
cently using time-frequency distributions (TFD). In [8] 
the authors extended the log-spectral distance to the time- 
frequency case and in [3] the authors proposed a technique 
based on the cross Wigner-Ville distribution. In the sequel 
we will discuss how our method deviates from the existing 
solutions. 

2. Time-frequency discrimination 

In this paper we developed the theory for the simplest 
case of classifying the signal into one of two classes. It 
is straightforward to extend the results for a larger number 
of classes. To classify a signal into one of two classes we 
formulate the test 

H:   X = S! + U 

K:   X = S2 + U 

where Si and S2 are zero mean non-stationary Gaussian 
signals and U is zero mean white Gaussian noise. A 
discrete time-frequency distribution of a random vector 
X = [Xx,..., XN]', is defined as [2] 

(Jv-i)/a 

Sx(n,k)=       £       Rxx{n,m)e-#"mklN     (1) 
m=-(Af-l)/2 

for n £ [0, N -1], where Rxx (n, m) is the time-dependent 
covariance of the signal. In this case we choose Rxx (n, m) 
such that the resulting TFD is the spectrogram, however, in 
general, this discriminant function is applicable for any TFD. 
For the case of classifying a signal into one of two classes, 
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we define the time-dependent discriminant: 

N-l 
(2) 

*=o 
where: Sx(n,k) is an estimate of the TFD from x = 
[a;1,a;2,---)^N]'»arealisationofX;5,(n,A;),9 = 1,2, are 
estimates of the TFDs representing the two different classes 
and are assumed to be non-zero; and k = 0,..., N - 1, 
is discrete frequency (assuming x is analytic). This time- 
dependent discriminant function can be interpreted as an ex- 
tension of the power spectrum quadratic discriminant func- 
tion defined for stationary random processes in [7]. 

In general, existing classification algorithms form a sin- 
gle test statistic from a discriminant function and this is 
used to perform a single hypothesis test to determine if the 
observation belongs to class 1 or class 2. In our case the 
discriminant function given by Eq (2) returns a value at each 
time. Each value is used to construct a hypothesis, which are 
then combined and treated simultaneously. This approach 
differs from previous time-frequency based methods [1,3,8] 
where the solutions all involve integration over time to form 
a single hypothesis which can lead, in practical situations, 
to misclassification. 

Smoothing. If there are zero terms in the TFDs of the pop- 
ulation they will dominate Eq (2). To reduce this problem, 
and to lower the variance of the estimates, the discriminant 
function can be evaluated using a smoothed TFD 

Sx(n, Jb) = 52 W(n + m>k + 05x(n + m,k + l)   (3) 
m,l 

where W (n, k) is an appropriate window [2]. 

3. Multiple hypotheses 

Multiple comparison procedures provide a technique for 
simultaneously treating a collection of separate tests derived 
from sub-populations, while maintaining a global level of 
significance. If the level of significance for each individual 
test is set at a, then the global level of significance may be 
much higher [4]. In the time-frequency setting the signal is 
divided up into non-overlapping or overlapping segments. 
Each segment is a sub-population for which a test statistic 
can be derived and a hypothesis test can be constructed. 

In the following section we discuss the generalised se- 
quentially rejective Bonferroni test which controls the global 
level of significance. 

3.1. Generalised sequentially rejective Bonferroni 
test(GSRBT) 

The GSRBT was successfully applied to a signal process- 
ing problem in [9]. Eq (2) is defined for all time samples, 

however we are using the spectrogram, so we only evaluate 
d(x, n) at the centre of the window. We use the statistic 
Di = d(X, (2i - l)M/2) where M is the size of the sub- 
population or the spectrogram window length (no overlap). 
If the signal is from class q then M-1A is normal and 
estimates of the mean and variance are given by [7] 

1   M-l 

*=o 
-   Si_1((» - 1/2)M, k))Sx((i - 1/2)M, *) (4) 

and 

M-l 

a<H     = M2 E(52_1((i-l/2)M,fc) 
fc=0 

-    Sf1«» - l/2)M),k)2Sx((i - 1/2)M,*)2(5) 

If the smoothed TFD from Eq (3) is used then Eq's (4) and (5) 
will need to be adjusted according to the chosen window. 
Each local test can be constructed as testing if» : D, ~ 
N(mit,o-2t) against the alternative Ä",-: Dt ~ iV(m2j,o-2i)' 
for i = 1,..., P, and P is the number of test statistics. 
However, as previously discussed, we need to test all P 
hypotheses simultaneously. To do this we use the GSRBT 
as follows: 

1. Calculate the p values, i.e., the probability that D,- 
exceeds its observed value under if». The p values 
are calculated as Vi = 1 - F((di - mu)ßu), where 
we assume F(y) is the normal cumulative distribu- 
tion function since D, is asymptotically normal. 

2. It is possible to customise the p values to take into 
account a priori information pertinent to an appli- 
cation. This is achieved by using a set of positive 
real constants a,...,cP, which have values directly 
proportional to the importance of the individual hy- 
pothesis. The constants can be set to attain a more 
powerful test. If the constants are all equal then 
this procedure reduces to the sequentially rejective 
Bonferroni test which the GSRBT is a generalisation 
of [5]. The new p values are defined as <S, = Vila- 

3. Order the p values in ascending order, 5(i) < 5(2) < 
... < S(p) and let c(i) and H{i) be the corresponding 
constants and hypotheses respectively.   Also, let 
ai = a/£f=,c(j)- 

4. The GSRBT, depicted in Figure 1, is performed as 
follows: If 5(i) > ai then retain H{1),...,H{P) and 
stop; otherwise, reject H(1) and test the next hypoth- 
esis. This procedure is repeated until either all the 
hypotheses are rejected or a set of hypotheses is 
retained. 
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(Start) 

Accept H(1),...,H(P)   —(Stop) 

AcceptH(2),...,H{P)   -»(Stop) 

Reject H(2) 

T 

Accept H(p) 

fStop) 

Figure 1. Generalised sequentially rejective 
Bonferroni test 

5. Finally, a global decision is made based on the set 
% = {H(i)} of retained hypotheses. This decision 
will depend on the application. 

Now we will summarise the result given in [5] which 
proves the GSRBT maintains the the global significance 
level a. Consider a single hypothesis where Pr(7?j > a*) 
under the null hypothesis is equal to 1 - a*. It is this 
value an which gives us confidence in our test. Similarly 
the objective of a multiple test procedure is to maintain the 
global level of significance over all the hypotheses. Let / be 
the set of indices of true null hypotheses, then the equivalent 
expression for forming a confidence interval for the GSRBT 
is [5] 

Pr\Si> 
a 

£; 
Viel] >l-a 

\€l c3 
(6) 

This equation is shown to be true in [5] and therefore the 
global level of significance is maintained. 

4. Simulations 

In this section we show results for the classification of 
two classes of first order time-varying autoregressive (TAR) 
signals. The classes are separable only in the time-frequency 
space. The TAR(l) process is defined as: 

where Un is zero mean Gaussian with time dependent vari- 
ance, au (n). The AR parameter a(n) gives a single pole ro- 
tating on the unit circle, i.e., a(n) = -0.99ej2,r-^(n) where 

()_(    #T» + 0.1      0<n<N/2-l 
h[n)~\ -jv^n + 0.7   N/2<n<N-l     (8) 

is the position of the pole on the unit circle for the first signal 
and 

/2(n) 
-7v7^Tn + 0-4    0<n<AT/2-l 
jy^j-n - 0.3     N/2<n<N-l (9) 

Xn = -o(n)Xn_i + Un (7) 

is the pole position for the second signal. These signals were 
chosen because they have the same expected power at each 
time instant and the same frequency content over [0, N -1]. 
The SNR for the following experiments is calculated using 

SNR = 101og10 (E^o1 |x„|2/(<4r + O). where <x2r 

and cr2^ are the variances of the real and imaginary parts of 
additive white Gaussian noise. 

To assess the performance of our method an Operating 
Characteristic (OC) curve was constructed for each class. 
We used 15 realisations from each class to estimate Si (n, jfc) 
and S2(n, k). The constants d were set equal for these ex- 
periments. The OCs are shown in Figure 2. The matched 
filter and frequency spectrum method [7] naturally do not 
perform well for this class of signals. The template used for 
the matched filtering was an ensemble average calculated 
with 15 realisations of signals from each class. Figure 3 
compares the classification performance of the multiple hy- 
potheses method against a non-parametric time-frequency 
method that discriminates between classes using the dis- 
tance between the log of the signal TFD and the log of the 
class TFDs [8]. 

5. Discussion 

There is a number of optimisations which can be in- 
cluded for a particular application. The window length and 
the overlap used to estimate the TFDs in Eq's (2) and (3) can 
be optimised to reflect the degree of non-stationarity in the 
classes. The GSRBT can also be customised to an applica- 
tion. As mentioned in Section 3.1 the weights, ci,...,cp, 
can be used to increase the power of the test and, in addition 
the accepted hypothesis can be combined in any arbitrary 
way to make a global decision. For example if two or more 
hypotheses are mutually exclusive, this information will in- 
fluence the global decision. 

In Section 3.1 we assumed that the test statistics were 
normal, for narrowband signals this is not valid. The normal 
distribution is used to calculate the p values and therefore, is 
crucial to the performance of the test. In [7] it is shown that 
for narrowband signals the discriminant function in Eq (2) is 
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a summation of approximately chi-square random variables. 
This result can be used to improve the performance of the 
algorithm [6]. 

The disadvantages with this method are twofold: firstly 
we assume local stationarity to estimate the TFDs; and sec- 
ondly, we assume that the signals are Gaussian. The method 
presented in [8], is non-parametric and so will be more ap- 
propriate if the Gaussian assumption is not valid. 

Operating Characteristics for TimeAR(1) signals: SNR -1 OdB 
—i 1 1 1  

Probability of correct classification vs. SNR 

- class 1 
class 2 

0.1        0.2        0.3        0.4        0.5        0.6        0.7        0.8        0.9 1 
Probability of misclassification 

Figure 2. OC for classification of the two 
signals: SNR = -lOdB. Comparison of 
matched filter, spectrum, log TFD, and mul- 
tiple hypotheses methods. 

6. Conclusion 

We have presented a new method for the classifica- 
tion of non-stationary Gaussian signals by combining time- 
frequency analysis with multiple hypothesis testing. A time- 
frequency distribution is used to separate classes of signals 
that are inseparable in either the time or the frequency do- 
main alone. The use of a multiple hypotheses test, the gen- 
eralised sequentially rejective Bonferroni test (GSRBT), al- 
lowed the simultaneous treatment of the set of test statistics 
that arise from the time-dependent discriminant function. 
The GSRBT can be customised to a particular application 
to increase the power of the test. 

The performance of this method was evaluated empiri- 
cally by classifying two classes of zero mean non-stationary 
Gaussian signals. It performed favourably when compared 
to the classical methods and another non-parametric time- 
frequency method. This gain in performance is dependent 
on the Gaussian and local stationarity assumptions. 

Figure 3. Probability of correct classifica- 
tion Vs. SNR. Comparison of log TFD and 
multiple hypotheses methods. 
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Abstract A larger class of the systems of al- 
most localized wavepackets is proposed. This class 
contains the Cauchy wavalet system and the coherent 
state system as special cases. The wavepackets systems 
in this class are the eigenfunction systems of a kind 
of linear operators, and they are invariant under the 
time-shift. Moreover, we show that they are 'pseudo- 
orthogonal' over-complete systems in L2. An applica- 
tion of them to the diagonalization problem of the auto- 
correlation functions of stochastic processes via over- 
complete wavepacket systems are also proposed. 

1     Introduction 
Time scale analysis and the time-frequency analysis are 
closely related to two types of wavepacket systems, the 
system of wavelets[l-6] with continuous parameters and 
the other is the system of coherent states[2,7-9], re- 
spectively. Both are over-complete systems of almost 
localized wavepackets. It has been known that these 
systems belong to 'generalized coherent states'[10]. It 
has been shown that the two systems, with special 
wavepackets, can be represented as the eigenfunction 
systems of two respective linear operators [12,11,14]. 
Both eigenfunction systems have 'time-shift invariant' 
property what may be called, where the shift of a pa- 
rameter causus only the shift of the time with the shape 
of the wavepacket unchanged. In this paper, we will 
extend this research into a larger class of the eigen- 
function systems which have these properties. 

define 

Wavepacket     Systems 
Quantum Mechanics 

and 

We will begin by summarizing the mathematical rela- 
tions between these two kinds of wavepacket systems 
and the quantum mechanics. For h(t) £ L2(R) whose 
Fourier transform H(u) satisfies 

CH^fZ^d.   <00, 

hM{t) = \a\-ih{t=±)  . (2) 

Then the set {Ma>*)(*)| a 6 R,6 6 R} is 
a 'pseudo-orthogonal' (NB: not 'orthogonal') over- 
complete wavelet system in £2(R), where for an ar- 
bitraly  f(t) € L2(R), the relation 

iklS* ^(h^J) hl°»(t) = f(t) (3) 

holds[2-5]. In physical context, the above wavelet 
system can be regarded as the system of the gener- 
alized coherent states[10] associated with the affine 
group[15,16], and the parallelism between the wavelets 
and the (usual) coherent states associated with Weyl- 
Heisenberg group has been pointed out [2,17]. We will 
summarize this parallelism. Let g(t) be an element of 
£2(R) such that 

C'g=^I-oo  W)?dt <oo. (4) 

Then, with the definition of the (usual) coherent state 

gl**\t) i e««"«) g(t - q), (5) 

the set {</(,,p)C0l q £ R,9 e R} is an over-complete 
system in £2(R), and, for an arbitrary f(t) 6 L2(R) , 
the 'pseudo-orthogonal' relation 

4 / /*» dq dp (gd'P), f) g(l.P)(t) = f(t) (6) 

holds, which is parallel to (3). As a special case, when 

</(') = 9o(t) ■K   *e (7) 

the above-defined coherent states are just correspond- 
ing to the wavefunctions of the (usual) coherent states 
in quantum mechanics [8,9] in the following sense; Let 
Q and P be the position-coordinate operator and the 
momentum operator, respectively which satisfy the 
commutation relation [Q, P] = il (I: Identity op.), and 
define the operator 

(1) a=j-(Q + iP). (8) 
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Then the above coherent states are the eigenfunctions 
of the operator a in the following sense: 

tj?'\t) =   Q(t\«)a (9) 

a\a)a = a\a)a   with   a = ^{q + ip). (10) 

(NB: This operator a is corresponding to the operator 

7 such that 

in the expression used in signal processing.) 
As is known well, this coherent state in quantum 

mechanics satisfies the relation 

I^d2«   |a)aa(a| = / (11) 

which is mathematically equivalant to a special case of 
the relation (7), and the shift of the (complex) eigen- 
value a can be made by the unitary transformation 

(where     7 = ^(q' + ip')   )• 
(12) 

On the other hand, in the wavelet case, there ex- 
ists 'the analogue in wavelet version' of the above 
eigenvalue-shift relation in terms of the unitary rep- 
resentation of the affine group[16]. If, with an appro- 
priate functions 6 and A, an operator A satisfies the 
ralation 

e-'«pe"B|a)A = eie^^\\(a;s,q))A (13) 

(where B=\{Q,P}), then 

e-i'Bei,PAe-UPefB _ X(A; s, q) (14) 

where \(A;s,q) denotes the operator which is ob- 
tained by substituting the operator A into the func- 
tion X(a;s,q) instead of a. A kind of the non-trivial 
operators which have this property are 

Ak = Q - ikP .-I (4=1,2,3,...), (15) 

and when A = Ak, X(a;s,q) - e~'(a + q) [11]. The 
system of the eigenfunction of the operator Ak is cor- 
resopnding to the Cauchy wavelet system with 

MO = MO = rfjkrr <16> 
(where Gk is a constant). In other words, 

h<£>b\t)= Q(t\a)Ak (17) 

with   Ak\a)Ak=a\a)Ak    (<* = 6 + ai). (18) 

(NB: This operator Ak is corresponding to the operator 
Gk such that 

(S*/)(0 = */(0 + */!oo/(s)ds 

in the expression used in signal processing.) 
The Fourier transform of this eigenfunction is iden- 

tical to the wavefunction of the affine coherent state 
proposed by Paul[12](See also [17,18]). Moreover, 
'the analogue in wavelet version' of the relation (3) 
is obtained by 'translating the relation (3) into the 
quantum-mechanical language' with a = e"s and b = 

e~'q , as 

i/cnftj* l«U *<«! = ' (19) 

The operator Ak satisfies the commutation relation 

[Ak,Al) = 2kP-> = -±(Ak-Al)2> (2°) 
which is more complicated than [a, a'] — I . 

3    A Larger Class of Eigenfunc- 
tion Systems 

The wavelet system and the coherent states system are 
the eigenfunction systems of the operators a and Ak. 
These two operators belong to the class 

{c(Q + iy(P)) I c : real, y(P) : func.of P).     (21) 

With c = -75 and y(P) = P, the operator a re- 
lated to the coherent states is obtained, while the 
operator Ak related to the wavelets is obtained with 
c = 1 and y(P) = -kP~x. Here the constant c is not 
essential because the scalar product does not change 
the eigenfunction system. So we will investigate the 
eigenfunction system of the operators which belongs to 

{Q + iy(P) ; y(P) : func.of P), (22) 

without loss of generality. Define 

AW = Q + iy(P), (23) 

and denote the eigenfunction (in the position represen- 
tation) of this operator by 

with   A^\a)Aw = a\a)A(y). 

(24) 

(25) 

(NB: This operator A^ is corresponding to the oper- 

ator ^(y) such that 

(QMf){t) = tf(t) + i(y(-i£)f)(t) 

in the expression used in signal processing.) 
Then, formally, the eigenfunction ips (0 is the so- 

lution of the equation 
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t$\t) + iy{-ii)^\t) = a$\t). (26) 

(Note that the inverse of the differential operator is the 
integral operator.) Hence, it is shown that the Fourier 

transform of ipa  (t) 

(=  p(p|a)A<v)) 
(27) 

satisfies the relation 

^*^(p) + iy(p)*(*y,(p) = a*S')(p). (28) 

From this, 

i{log^)(p)) = -y(P)-ia. (29) 

Let {pn;n = 0,1,2,3...,M} be the set of 

zeros of ¥« (p) (including ±oo formally when 

limp_±oo Va (p) = 0). Then we obtain the solutions 

¥»\p) = ¥<?&(p) (30) 

A f d»ie-yCP)+^e-""    (p„ < p < p„+1) 
(otherwise) 

with 

^(p) = fy(p)dp 

b = Re a, a = Im a. 

(31) 

(32) 

Here, Cn.a is determined so that the eigenfunction may 
be normalized as 

r;+li*%(p)i 2 _ (33) 

Because the factor e %bp in (30) has no influence on 
this normalization condition, we can choose the con- 
stant Cn,a which does not depend on 6 but only on 
g(-)   and a, as 

Cky?a = <$,li (34) 

Note that there is not always a normalized solution 
with support [pn,Pn+i] for any a, because the function 
may not square-integrable in some interval. However, 
as is easily shown, whether the normalized solution ex- 
ists or not depends only on y(-) and the imaginary part 
a of the eigenvalue a. For example, in the wavelet 
case with y{P) = -kP'1, the function tf^(p) with 
support (—oo,0] can be normalized for a > 0, while 
the function *^„(p) with support [0,oo) can be nor- 
malized for a < 0. In the coherent state case with 
y{P) = P, the function ^«(P) 

witn support (-oo, oo) 
can be always normalizad. It is easily shown that the 

function Vn,a(p) (1 < n < M-l) with a compact sup- 
port \pn,p„+i] can be normalized always unless Y(P) 
contains any singularity on this support. Similarly, it 
is easily shown that there are a_ and a+ (which may 

be ±oo) such that the function $j^(p) with support 
(-oo,Pi] can be normalized for a > a+ and the func- 

tion ^Maip) with support \PM,OO) can be normalized 
for a < a_ unless Y(P) contains any singularity on 
these supports. When the normalization possible, then 
from (30),(33) and (34), 

C&X = e'*(°) (jj;+1 e-2Y(p)+2«Pdp)   * (35) 

with a real-valued function 6(a). 
The solution (30) with the normalization coefficient 

(35) implies that its inverse Fourier tansform sataifies 

4S+..-0) A*-*)- (36) 

This relation shows that the shift of the real part of the 
eigenvalue does not change the shape of the wavapacket 
but causes only the time shift. This property is very 
profitable for signal processing. 

We can also show easily that the wavepacket ip„ai(t) 
has finite variance both in the time domain and the 
frequency domain, which implies the wavepackets are 
almost localized in both domain. 

Another important property of these types of eigen- 
function systems is the pseudo-orthogonality men- 
tioned above when the inverse Fourier transform of the 
function exp(2Y(s/2)) or the inverse Laplace trans- 
form of the function exp(a+s + 2Y(-iv/2)) or that of 
exp(-a„s + 2Y(-s/2)) exists. Define them if exist, as 

(c > a+) 

u_(a) = i r+,0° e-a->e2YWe°ads \   '        2wi Jc—too 
(c> -a_). 

(37) 

(38) 

(39) 

Using these functons and the coefficients in (34), (35), 
define 

w+(a) i »-t-('--'H) 

= ±u+(a-a+)fpJooe->r(p)+*°rdp 

(40) 

(41) 
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«»„ (a) = —■*- 
-a) 

2ACiy) 

= ±u_(a--a)C*-2Y(j,)+2aPdI>- 
(42) 

Then we can show that the pseudo-orthogonal com- 

pleteness relation 

TM
nr  fZ^dadb Z-*m=0 J—oo J—oo (43) 

holds where vn(a) = wn(a) for 1 < n < M, v0(a) = 
wö{a) and vM(a) = w+f(a) (The outline of the proof 
is given in the latter paper of [14]). 

4    An Application 

The eigenfunction systems proposed above can be ap- 
plied to the pseudo-diagonalizations of the autocor- 
relation functions of stochastic processes. In order 
that we regard a stochastic process as a superposi- 
tion of uncorrelated random wavepackets, we must 
know how to diagonalize the auto-correlation function 
by the over-complete waveletpacket system. In the 
case where the over-complete wavepacket system is a 
wavelet system, a systematic method for this problem 
has been proposed[13,14]. This method is based on 
non-commutative operator algebra, and it utilizes the 
fact that the wavelet system is the eigenfunction sys- 
tem of the operator Ak. We can extend this method 
directly to the cases of more general wavepacket sys- 

tems proposed above. 
Let /(a, a*) be a function of a complex variable a 

which is expanded by the operator defined in (23) as 

f(*,c**) = ZmtnCm,na
m<x*n- (44) 

Then, define the operator in 'normal order' and the 
operator in 'antinormal order' (in extended version) by 

tfW{f(a,a*)} = £Cm,„^)tMWm (45) 

and 

A™ {/{<*,<**)} i £Cm,„A<»'>nM<«'>t"I (46) 

respectively. A^ and its adjoint A^ do not commute 
but satisfy the commutation relation 

[A<.»\AM] = 2*!J?\x= (47) 

When a stochastic process {x(t)} with mean 0 and 
finite variance is given, then define the auto-correlation 

function of {x(t)} as 

Then, in a similar manner to the method used in 
[13,14], we can show that the following relation holds. 

R(s,t) = EnIIw^)d^ (Ag\ 

tn(a,b) = Yn(b + ai) 

T;(a)i^_1{^){Ä(a)}}. 

ß'n(a) = ßn(Ima,Rea) . 

ßn{a,b) = 

(50) 

(51) 

(52) 

(53) 

R{hM) = E[x{h)x*{t2))  . (48) 

Using these relation, the auto-correlation function can 
be transformed in the pseudo-orthogonal form (49) by 
the wavepackets of the eigenfunction system. 

5    Conclusion 
A larger class of the time-shift-invariant eigenfunction 
systems of almost localized wavepackets has been pro- 
posed, which contains the Cauchy wavelets and the 
coherent states. The 'pseudo-orthogonality' of these 
function systems has been investigated also. An ap- 
plication of them to the diagonalization of the auto- 
correlations of random signals via wavepackets are also 

proposed. 
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ABSTRACT 

We show that the blind LTI channel estimation problem, 
when the input sequence is independent, but has time-varying 
statistics, mimics that for the i.i.d. case under appropriate 
persistence of excitation conditions. Hence, consistent para- 
metric and non-parametric estimators based on a single re- 
alization are readily obtained. We establish an ergodicity 
theorem for the time-averages of non-stationary continuous 
time processes; we use this to establish blind identifiability 
of the LTI channel of a filtered inhomogeneous point process, 
with multiplicative marks. These results extend to a class 
of time-varying channels as well. The theoretical results are 
corroborated by simulations. 

1    LTI SYSTEMS WITH NON-STATIONARY 
WHITE INPUTS 

Let x(t) be a temporally independent discrete-time (DT) 
sequence whose statistics are time-varying, i.e., its cumulants 
(assuming that they exist) can be written in the form, 

Ckx{t; n,..., Tk-i) :=cum (x(t), x(t + n), ■ ■ ■, x(t + rk-i)) 
=     fkx(t)S(n)---S(Tk^) (1) 

A simple example of such a process is the scaled process, 
x(t) = v(t)s(t), where v(t) is an iid sequence, and s(t) is non- 
random. This model is often used to approximate seismic 
reflectivity sequences, where the variance of the process x(<) 
is known to decay exponentially with time. 

Let h(t) be the impulse response of a linear time-invariant 
(LTI) system, and let 

y(t) = J2 Ä(p)x(< - p);     z(t) = y(t) + w(t) (2) 

where w(t) is assumed to be stationary and independent of 
the signal y(t). If input x(<) satisfies (1), then with r0 = 0, 

fc-i 

C,j!S,(*;ri,...rfc_i) = ^7fcl(p)  JJ h{t + r, - p) .        (3) 
p 1=0 

If x(t) is i.i.d., i/kx(p) is independent of p and (3) reduces 
to the well-known Bartlett-Brillinger-Rosenblatt formula [7]. 
The 7*x(p) = -ykx case has been well-studied [7]. 

Our objectives are: given only the noisy output z(t) in (2), 
we may want to estimate the channel h(t), or the input x(t), 
or some statistics of the input. The continuous-time version 
of this problem has been studied for the k = 2 case in [8], 
under certain restrictive assumptions on h(t). If ykx(p) is 
periodic (e.g., x(t) = u(t)s(t), with u(t) stationary, and s(t) 
periodic), then Cky is also periodic in t, and one can use 
cyclic statistics to estimate the channel. 

Assume as in [3] that the joint cumulants of y(t) and w(t) 
are absolutely summable, and that the appropriate limits 

exist (the assumptions hold under the sufficient conditions 
of bounded jkx(t)'s, and exponentially bounded h(t)'s; in the 
case of the scaled process x(t) = u{t)s(i) considered earlier, 
s(t) should be bounded.). Let 

H(0):= £ h(t); 
T 

Tkx := ÄT5Z
7

**
W 

Under our modeling assumptions, both H(Q) and Tkl are 
well-defined, and are finite valued. Assume for convenience 
that H(0)Tlx = 0; let rk := (n, • • •, r*-,), and 

1    T k~i 

< f(t) > ^ - J2 /(<) :   Mhl{rk) := Y, II *(* + *■) ■ 
t=i i   i=o 

which is the deterministic fc-th order correlation of the im- 
pulse response (IR) h(t). From (3), we obtain 

< Cky(t;zk) >  =    TkxMkh(zk) . 

From [3], we know that the sample estimate 

T   k-i 
Mky,T(rk) f£n*+*) 

«=1   t=0 

r 

t=i      l.i=o ) 
< Mky(t-,Tk) >   :=  Mky(Lk) , 

which is the time-averaged *-th order ensemble moment of 
the random process y(t), 

For k = 2,3 we obtain for the linear model in (2) 

T 

Msyin, r2) =  lim  - V] M3x(t; n, r2) 
t=l 

1      T 

= T
linL T Zm 73*C - P)HP)HP + n)h(p + r2) T-oo T *-*!£—< 

t=l   p 

= Af3h(ri,r2)r3l 

M2y{r) = M2h(T)T2x 

(4) 
(5) 

If the input is persistently exciting in the sense that T2x > 0, 
it follows from (5) that the sample estimate of M2y(r) yields 
M2H{T), the deterministic correlation of IR h(t), from which 
one can obtain a spectrally equivalent estimate of A(<). Sim- 
ilarly if r3i jt 0, the sample estimate of M3y(ri,T2) yields 
Msh(ri,T2), the deterministic bicorrelation of IR h(t), from 
which one can estimate h(t) without making any phase as- 
sumptions; see [13] for some caveats. Several (non-) para- 
metric methods are available to obtain the IR estimates. If 
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the additive noise w(t) in (2) is stationary, has zero-mean 
and zero bispectrum. then 

M3Z,T{T,P) —► M3h(r,p)T3x . 

Once H(z) has been estimated, we can construct a zero- 
forcing equalizer (zfe) to estimate the channel input x(t). 
In the SIMO case, where we have measurements, yi(t) - 
]T hi{p)x(t - p) ,i = 1,-,L, we can estimate Hi{z) = 
Bi{z)/Ai(z) i = 1,.-., L. To estimate x(t), we find FIR filters 
Gi{z) such that jZmlBi{z)Gi{z) = 1. The existence of 
such Gi's is guaranteed by the Bezoutian theorem provided 
the BilzYs are co-prime [6]. This overcomes problems in 
inverting the individual #,(z)'s (e.g., zeros on the unit circle 
sharp band-pass filters, etc.). The input estimate is provided 
by Y\L_ Gi(z)Ai(z)yi{t). Of course, zfe's are not useful in 
the noisy case, where one must use Wiener-type filters. The 
additive non-Gaussian case can be handled under poor SNR 
conditions by first estimating the spectrum of the noise [9, 
10]. We note that some of these ideas have recently been 
used in the context of fractional sampling. 

The fourth-order case is a bit more complicated. It also 
illustrates that although cumulants appear to be the natural 
tools for dealing with stationary processes and LTI systems, 
the convenience is lost when one deals with non-stationary 
processes (similar difficulties are apparent in the treatment 
of fourth-order cyclic cumulants, and with multiplicative 
models, which are intrinsically non-linear). 

A natural way to estimate the time-averaged cumulant is 
to combine the time-averaged moments in the usual manner, 

Ciy(Ti,T2,T3)   =   <Miy(t;n,T2,r3)> 
-[3] < M2y(t; n) >< Miy(t; r2 - r3) > 

=   < Ciy{t;ri,T2,T3) > 
+ [3]    <M2y(t\Tl)M2y(t+T3\T2-T3)> 

-[3] < M2y(t; n) > < M2y(t; T2 - r3) > 

where the [3] denotes the three terms obtained by permuting 
the Ti's. Since < M2y(t; T2-T3) > = < M2y(t + r3; T2-T3) >, 
we obtain 

C4y(rur2,T3)=   <Ciy{t\TUT2,T3)> 
+[3] dcov (M2y(t; n), M2y(t + r3; r2 - r3))     (6) 

where dcov denotes the deterministic covariance, 

dcov (f(t), g{t)) ■= </(0ff(*)>   -   </(<)>< 9(0 >  • 

Eqn (6) expresses the estimate 643, as the sum of the true 
quantity < CtM; n, T2, r3) > and 3 error terms; these error 
terms are small if the deterministic covariance of the second 
moment function is small; the error term can even be zero 
for specific Ti's. Eqn (6) gives a precise quantification of the 
error and what 'slow variations' should be, if the stationary 
assumption is to be invoked in estimating fourth-order cu- 
mulants. From (3) we note that this is a function of both 
the filter h(t), and of the variations fkx(t)- 

For example, let x(t) - u(t)s(t) with u(t) nd, and s(t) = 
1 + acos(2?r/0i)- Let H(f) be band-limited to fc ±B\ then 
the 'error' terms will be non-zero only if mfo € [fc ±}B\, 
m = 1,2. The analysis is readily extended to any periodic 
s(t); a simple conclusion is that if H(f) is low-pass or high- 
pass compared with f„, the fundamental frequency, then the 
error terms vanish. 

Simulations 

The LTI system was chosen to be an AR(2) model with 
parameters [i,0,0.75]; an i.i.d. Laplace sequence, it(n), with 
parameter A = 1 was generated; the input to the LTI sys- 
tem was the non-stationary i.d. sequence, x(n) = s(n)u(n), 

where s(n) is a deterministic amplitude scaling sequence. 
In the first case, s(n) decreased linearly from 2 at n = 1 
to 1 at n = N, where JV = 1024 is the number of sam- 
ples. In the second case, s(n) = 1 + cos(t/10) is periodic 
with a period of 20TT samples. The three panels of Figure 
1 show the estimated autocorrelation sequence for the sta- 
tionary case (s(n) = 1) and for the two non-stationary cases: 
the zero-lag term was normalized to account for scaling dif- 
ferences (Tkx t 1); the Panels show the *™e values-    r 
mean estimate and the error bars estimated from a set ol 
100 Monte Carlo trials. Figure 2 displays the estimates of 
C3(r, 0) for the same set of data. It is clear that the esti- 
mates are unbiased - the curves corresponding to the: true 
value and the mean estimate are virtually indistinguishable 
in the two figures. Correlation- and cumulant-based nor- 
mal equations were used to estimate the AR parameters for 
the three cases. Table 1 shows the mean and standard de- 
viations. In accordance with the theory, good parameter 
estimates are obtained in all three cases. 

2    FILTERED INHOMOGENEOUS POISSON 
PROCESSES 

An interesting extension of the preceding ideas is in estima- 
tion problems connected with the class of marked filtered 
inhomogeneous Poisson processes (IPP's), which are contin- 
uous time processes. The extension is natural since IFF s 
are limiting case of non-stationary Bernoulli processes. 

Let n denote the occurrence times of an IPP with intensity 
rate X(t); let u(i) denote the mark process, which is assumed 
to be iid and independent of the IPP; let 

N(t) 

y(t) = J^h{t,Tn;itn),    to<t<T, (7) 
71=1 

where h is the IR of a causal linear time-varying (LTV) sys- 
tem, and N(t) denotes the number of events over [t0,t]: We 
make the standard assumption that the mark process is nd 
and independent of N(t). 

The second characteristic functional of y(t) in (') is, (lol- 
lowing [12, Sec 5.7]) 

V>(J>)    :=    \n(j)(v) := In E < exp i /   y{°)v (da)) 

= 1    X(r)Eu   exp I]        h(ar, r;u)dv(a) I - 1 dr 

where the expectation is with respect to (wrt) the marks, 
and v(a) is a suitably chosen function. For example, with 

C   0, to < <r < h 

I t = l,.., fc; ifc+i = i- 

we obtain, 

xj!(v)    =    ln£<exp j^2ony(U 

f X(r)Eu < exp i^a,/i( t,,r:u) -1 \  dr 

Differentiating wrt the «i's, and evaluating the derivative at 
the origin, we obtain, 

cnm(y(t1),---,y(tk)) 

-f •/In 

\(r)Eu Y[h(U,r;i dr (8) 
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=E{uk) r \{T) f[h(t,-T) dr (9) 

The   last   equality   follows   from   the   assumption   that 
h{t, Tn;un) = h(t — rn)un, i.e., the marks are multiplica- 
tive and the system is time-invariant; this model has been 
used to study low frequency noise [12, p 217]. 

Notice the similarity between (3) and (9). Here, 

lkl(t) = X(t)E{uk). 

The unmarked process is obtained when u(U) = 1. It is 
interesting to note that the cumulants of all orders of the 
unmarked IPP are all non-zero, and are all identical to one 
another; this also demonstrates that the Poisson process is 
strongly non-Gaussian, and does not easily satisfy Gaussian 
central limit theorems [2]. On the other hand, this also fa- 
cilitates performance analysis. 

Let the time-averaged intensity be denoted by (/0 = 0) 

A:=  lim  ^A(T) 
T—-00 X T-°° T Jo 

dt X{t) 

For the IPP, the earlier assumption H(0)Tix(0) = 0 trans- 
lates to Eu = 0 or H(0) = 0 in practice (the case of a finite 
support \(t), i.e., A = 0, will be discussed elsewhere). The 
condition H(0) = 0 is readily guaranteed, for example, by 
cascading a DC notch filter. 

In the previous section we used the ergodicity results of 
[3] which were derived for discrete-time processes. Here, we 
state the continuous-time counterparts (proofs being omitted 
due to lack of space). 

Theorem 1. Let the processes {j/,(<)}^] have absolutely in- 
tegrable joint cumulants, 

sup|r,cum(2/,0(i),- 
t 

■ ,yiK-X{t + TK-\))\dT < CO, 
/ 

where dr := dn ■ ■ ■ drK-i, j = 1,..., K — 1, and the it's take 
on possibly repeated values in [l,...,Af]. Let To := 0, and 
assume that the limit 

MK(TK) :=   hrn^ 1 J   dt E J f[ y,(t + r.) I 

exists and is finite. Let 

T A'-l 

•v,r(zA-):=^/     ]Jy,(1 + Tt)dt 
Jo     ,_„ 

denote the sample estimate. Then, 

cum(MKo,T(rKo),...,MKmiT(rKJ) = 0(T~m) . 

Further, the estimates are asymptotically normal. D 
As in the case of DT processes, the k = 2,3 cases are 

illustrative (recall the assumption Eu = 0 or #(0) = 0 —► 
Ey(t) = 0): 

M2y(r)—*<M2y{t;r)> 

dt C2y(t; T) —  lim  — 
T-ooT / 

Jo 

= AE{u2} j h(a)h(a + r) da 

M3y(r,p) —► < M3y(t;r,p) > 

= A£{u3}  / h(a)h(a + r)h(a + p) da 

(10) 

(11) 

From the estimated M2y and/or Ms», one can estimate h(t) 
(parametric and/or non-parametric); in practice, one may 
sample the filter output y(t), and use DT algorithms. As in 
the DT case, the fourth-order case is complicated. 

Thus, using the ergodicity theorems for CT processes, 
we have established that the channel h(t) can be estimated 
blindly, i.e., without knowledge of A(i), provided the per- 
sistence of excitation condition, A > 0, holds. As in the 
DT case, additive noise whose joint pdf's are symmetrically 
distributed (e.g., Gaussian, Laplace) can be handled by us- 
ing M3y. The non-Gaussian noise case can be handled as 
mentioned in an earlier section. 

Once the channel h(t) has been estimated, we can use EM- 
type approaches [1] or constrained estimators [11] to over- 
come problems with the MLE. Alternatively, we can equalize 
the channel and estimate x(t); as noted earlier, this is easier 
in the SIMO case. Since the Poisson process is CT, very fine 
sampling is required. 

In the noisy case, we must detect the points; here again, 
the approach of [9, 10] allows us to recover the spectrum of 
the noise. We can now use either LS or ML [12] to estimate 
the parameterized intensity function. 

The non-parametric \(t) problem is generally ill-posed, 
since consistent estimates cannot be obtained from a single 
realization. If A(t) is periodic (e.g., auditory physiology, op- 
tical range-rate finding, shot noise in phase tracking loops, 
radar clutter in scatter communications, etc), then, one can 
use cyclic estimates. The period can be estimated efficiently 
via the FT - a simple generalization of the result in [14]. 
Using the results of Theorem 1 it is easy to show that the 
post-stimulus time (PST) histogram, see, e.g., [5], is a con- 
sistent estimate of X(t): the mean is A(<) and the variance is 
X(t)/K, where K is the number of periods used to construct 
the estimate. 

Simulations 

We can generate an HPP easily since the inter-arrival 
times are independent, stationary and exponentially dis- 
tributed. We can convert this to an IPP by non-linear 
warping of the time-axis. We can also generate inter-arrival 
times of an IPP by generating r.v.'s with the pdf p[u) = 
A(u)/A(T). The last two approaches involve computation of 
the inverse function, A

-1
(ü). An alternative is the Lewis- 

Shedler thinning algorithm [4] which first generates points 
of an 'easy' IPP (i.e., an IPP whose A(u) function is easily 
inverted), with intensity function Xe(t) > X(t), Vi £ [ta,T\\ 
points are then deleted by generating an auxiliary set of 
uniform r.v.'s. We used this approach and generated the 
HPP points with constant intensity A > maxtA(t). Simula- 
tion parameters were: analog filter h(t) = exp(—3<)cos(5t), 
output sampling interval of 0.01s, 500 Laplace-distributed 
marks, 1024 output samples, and 100 trials. An AR(2) 
model, which is appropriate for this h(t), was fitted to the 
output time series; the mean and standard deviations, esti- 
mated over a Monte Carlo run of 100 trials, are shown in 
Table 2 for the three input processes: a stationary process, 
an HPP and an IPP. The TV intensity function for the IPP 
was X(t) = 1 + A(i; 0.2,0.3) + A(t; 0.2, 0.7), where A(<; r, t0) 
denotes a triangular pulse of duration r centered at t = t0. 
The stationary process consisted of 500 equi-spaced samples 
with Gaussian amplitudes. Good parameter estimates were 
obtained in all three cases, as promised by the theoretical 
development. 

3    DISCUSSION 

We used the theory of mixed-time averages in [3] to es- 
tablish the identifiability of DT linear systems driven by 
non-stationary white processes. We extended the theory to 
continuous time processes, and used that to establish blind 
identifiability of CT linear systems driven by a marked in- 
homogeneous Poisson process.  We stress that these results 
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were established under weak persistence of excitation condi- 
tions. As in the case of cyclic statistics, deterministic signals 
in noise, and multiplicative noise models [13], we note that 
moment statistics are easier to manipulate than cumulant 
statistics. The theoretical results were corroborated by sim- 

These results can be extended to a class of self-exciting 
point processes, called non-stationary renewal processes 
(nsrp), where the intensity function is of the form 

/t(t; wi,..., u'N(t)) = -H()r(< _ wN(t)) , 

where r(t) is the recovery function which is assumed to be 
monotonically non-decreasing with values in [0,1]. Here, 
Wi's are the occurrence times and N(t) is the number of 
events in [t0,t), so that wNW is the time of occurrence of 
the last event prior to t. For this model, we are interested 
in estimating both A(i) and r(t) given the filtered output 
y(t). In the case of marked processes the analysis is partic- 
ularly easy if the marks are multiplicative and i.i.d. (tyP^l 
assumptions); the non-zero mean case is easier to handle. 
If the intensity function is periodic, one can exploit cyclic 
statistics as well. Some of these issues and the extension of 
Theorem 1 to nsrp's will be presented in the full paper. 

IPP's mav be useful in modeling impulsive correlated noise 
(bursts). Here, a non-conventional renewal function (de- 
creasing rather than increasing) is required to model the 
fluctuations; e.g., ß(t\Nt) = A(«)[l + f(t - Nt)], The pdf 
of the marks dictate the amplitude distribution of the noise. 
As in the case of DT-LTV models, one could expand X(t) on 
a set of known basis functions (e.g., sines and cosines), and 
then estimate the coefficients. 

The extension to the TV channel is straightforward, pro- 
vided the time-variations can be expressed in terms of known 
basis functions, i.e., the unknown projection coefficients 
themselves are not time-varying. It is interesting to note 
that the theory of time-averaged moments is also useful in 
the input-output analysis of non-linear systems. 
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Table 1. AR(2) system identification with station- 
ary and nonstationary two-sided exponential driving 
sequence. Second and fourth-order statistics results 
are compared. 

True 9nrf-nrHpr   1                4r/l-Ord£T_ 
stationary case 

0 -.0003 (.0301) -.0154 (.1790) 
.75 .7397 (.0205) .7498 (.1490) 

nonstationary case 1 
0 -.0075 (.0423) -.0126 (.2787) 

.75 .7406 (.0302) .7525 (.1598) 
nonstationary case 2 

0 
.75 

-.0036 (.0390) 
.7404 (.0298) 

-.0172 (.0797 
.7338 (.0695) 

Table 2. AR Estimates for filtered IPP 

a(l) a(2) 
Sty -1.8786 (0.1035) 0.8863 (0.0967) 
HPP -1.8719 (0.1068) 0.8801 (0.0996) 
IPP -1.8599 (0.1447) 0.8690 (0.1348) 

C2 - stationary ease 

Figure 1. C2 Estimates 

C3 - stationary case 

Figure 2. C3 Estimates 
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Abstract 

A statistical analysis of the polynomial 
phase signal parameter estimates achieved 
when using the structured auto-regressive ap- 
proach is presented. The estimates are con- 
sistent for high SNR or large number of sam- 
ples, N. An expression for the covariance of the 
estimates is given. Numerical examples con- 
firm that the theoretical covariance apply well 
to empirical data for a wide range of SNR and 
N. The performance of the estimator depends 
on the filter length, n, and the sampling strat- 
egy which may be non-uniform. The optimal 
choice of n for evenly sampled cisoids is given 
as a function of N. The variance is inversely 
proportional to SNR2 for small SNR, and to 
SNR for medium and high SNR. 

1    Introduction 

In a variety of applications, such as radar, 
sonar, geophysics and communication it is of 
great interest to estimate the parameters of 
a non-linear phase function of complex valued 
signals. Such signals can be modeled as 

m 

s(t) = J2bi(t)exp{ja,(t)} (1) 

where ai(t) and bi(t) are real valued continuous 
time functions that model the phase and am- 
plitude, respectively. The signal s(t) is sam- 
pled at time instants {tk)k=o< an(^ the mea- 
surements of the signal are corrupted by noise, 
which in many scenarios can be modeled as ad- 
ditive, white and Gaussian 

y(tk) = s(tk) + e(tk) (2) 

'The work was supported by Ericsson Microwave 
Systems AB and Ericsson Injocom Consultants AB 

where E[e(tk)] = 0, £'[e(^)e(<,)] = 0 and 
E[e(k)e*(<;)] = a2Skj V k,l. A special case of 
non-linear phase is the polynomial phase func- 
tion 

ai(tk) = a0 + a1tk+a2tl + ... + aqtl     (3) 

The polynomial phase function has been 
proven useful in important applications. In 
Doppler radar, for example, radar returns from 
maneuvering targets give rise to a non-linear 
phase that can be modeled by a polynomial. 
Estimates of the polynomial coefficients can 
then be used to determine the target's kine- 
matic parameters (velocity, acceleration etc). 
Considerable attention has been payed to the 
estimation of the parameters of non-linear 
phase signals, see for example [1, 3, 4, 5, 6] 
and the references therein. 

In   [1]   an   approach   based   on   a   struc- 
tured auto-regressive model was proposed and 
proven successful using simulations. The pro- 
posed method estimates the phase and ampli- 
tude parameters of a quite general class of sig- 
nals, including polynomial phase signals, and 
has some interesting properties.    For exam- 
ple, the structured AR model is a model based 
time-frequency representation (TFR), and the 
data is not constrained to be evenly sampled in 
time, as is the case in [3, 4, 5, 6]. On the con- 
trary, it was empirically shown that the vari- 
ance of the estimates can be significantly re- 
duced by using a time-varying sampling period. 
In [1] a numerical study of the performance of 
the structured AR approach showed that the 
bias is negligible and the relative efficiency (the 
variance of the estimates derived by Cramer- 
Rao lower bound) typically attains a value of 
1.5-2.0. No theoretical analysis was, however, 
presented and a number of important ques- 
tions were left unanswered. Here a theoretical 
analysis is presented for the case of a mono- 
component polynomial phase signal with con- 
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stant amplitude: 

(4) 

where 60 >s a positive constant and a(tk) was 
defined in (3). 

2    Structured AR modeling 

Consider a linear projection of {y(<fc-p}p=i 
to y(tfc) 

n 

P=i 

where (cu..., c„)T = 0 denote the AR param- 
eters. It is well known how to calculate the AR 
parameters that minimize the variance of the 
prediction errors when the signal is WSS and 
correlation ergodic. Then, the AR parameters 
carry information on the signal {s(<fe)}fc=0 and 
can be used as a tool to get estimates of the 
signal parameters. The information carried in 
the AR parameters resembles an average over 
time, and is obviously of little value if the sig- 
nal is time-varying. If, however, an ensemble 
of M realizations was available; then the "in- 
stantaneous" 8 at time instant tk, say 9(tk), 
could be calculated from the ensemble, and 
0(<fc) would carry information on the signal at 
time ik. Properties such as the instantaneous 
frequency and spectral density could then eas- 
ily be obtained. The analytical AR filter of 
order n that minimizes the expected prediction 
error variance at time instant tk can be derived 
as a function of the signal parameters. Let tf 0 
denote the true signal parameters. Consider 
the hypothetical case when an infinite number 
of realizations are available. The AR param- 
eters that minimize the prediction error vari- 
ance at time tk, denoted by e{tk \ •&) , satisfy the 
well known projection theorem, i.e. the projec- 
tion error shall be orthogonal to the data used, 

E[e(tk;4)v9(tk-,)] = 0,P=l,.-;n 

where E[.] denotes expectation taken over the 
ensemble. The solution is 

0(tkJ) = -K~Htk^)r (**;0)        (5) 

which defines the mapping from t? to the AR 
parameters. In (5) R(i*; 0) and f (**; 0) denote 
the "structured" covariance matrix and vector, 
respectively, whose elements consist of the an- 
alytical covariance function 

r(tk;d,u,v) = E[y(tk-u)y'(tk-v)]     (6) 

Consider a "structured" analytical AR filter, 
denoted by 6(ik;d) , that is a function of a 
model signal, parameterized by t? . In order to 
derive the structured AR filter, the following 
notation is convenient: 

1=1 

M<o;tf) = i (7) 

x(**-i;*)  =   (*(<*-i;0),-.-.s(<*-»;*))T 

The reason for the normalization of bi(t0\ 0) to 
1 is explained below. 
It is straightforward to show that r(tk;ti) and 
R(tk;d) can be written as 

r{tk\4)   =   x*(tfc_i; *)*(**; 0) 
R(tk;0)   =   i?(tk-1rf)xT(tk-1;d) + o*l 

where I denotes an (n | n) identity matrix and 
V denotes complex conjugate. Formula (5) 
involves an inversion of the (n | n) matrix 
R(ifc;i?) which implies heavy computations. 
This can be avoided by a straightforward use of 
the matrix inversion lemma; (.4 + BCD)~ = 
A-1 - A-lB{DA~lB + C-')-lDA-1. Us- 
ing A = <r2I„, B = x*(*fc_i;tf), C = 1 and 
D = xT(ffr_i;0) and assuming that <r ^ 0 
gives the final formula for the structured AR- 
filter: 

*(**;*)   =   ß(tk\ 0)x'(<*-i; *)*(<*; 0) 
 SNRo  

SNRo    £    ^P- 

At this point the normalization in (7) be- 
comes clear. Consider ß(tk;ti) above. Sup- 
pose x(tk;d\ was not normalized and write 
x{ik;d) = b x(tk;ti), where 6 is some con- 
stant. If the normalization was not introduced 
then the mapping from the duplet (&2,0-2) to 
ß{tk\d) would not be 1:1, which would cause 
the Hessian used in the non-linear search for 
the signal parameters to become singular. 
Note that r(tk;ti,u,v) and hence 0(tk;<9) can 
be calculated for non-uniformly sampled data. 
For the case of a mono-component signal with 
time invariant amplitude ß{ik\ d) simplifies to 

where 

A SNR 
ß(tk;0) = ßo = -l + nSNR 

bl 

(8) 

SNR=^ 
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The structured AR filter 6(tk; d) is used to pre- 
dict y(tk) and the prediction is given by 

y{tk\V) = -0T{ik]O)y{h-i) 

y(tk-i) = (y(tk-i),...,y(tk-n))T 

which implies 

e{tk\0)   =   y(tk)-y(tk;ti) 
=   y{tk) + 0T(h^)y(tk-1) 

The signal parameter estimates are found by 
applying 6(tk;d) to a single realization and 
minimizing the prediction error variance with 
respect to tf : 

tf argminV(t?) (9) 

VW   =   iEk=n\e(tk-J)\2     (10) 

The minimization of (10) is easily implemented 
using e.g. a Gauss-Newton search. The deriva- 
tives of 8{tk; d) with respect to d are straight- 
forward to compute. The search can be imple- 
mented off- or on-line (tracking). 

3    Statistical performance 

In the following it is assumed that the signal 
is described by (3)-(4). All results are given 
without proof due to lack of space. The proofs 
can be found in [2]. 

Result 1 The structured AR signal parame- 
ter estimates are consistent for large number of 
samples or large SNR, i.e. i) -» t?0 as N-> oo 
or SNR-»- oo. 

For asymptotic SNR, the result holds under 
the assumption that the data set consists of at 
least q samples with non zero sampling inter- 
val. For asymptotic N, the result holds un- 
der the assumption that tk increases without 
bound as as N—> oo. 

Result 2 Assume the noise is white and 
Gaussian and that d is close to d0 ■ Then the 
signal parameter estimates are Gaussian with 
covariance matrix 

cov(tf) = E[V"{ti)}-1 cov(V'(tf)) E{V"(d)]-1 

where 

cov(V'(tf))     =     i<rVo2.-. 

N-l min(N-l,*+n) 

...    Y,        Yl       VaZXiVa, 
k=n J=max(n,Je—n) 

A*,, = (1-A>)(SNR11T + I)<$M-... 
/?o2(|/-A:|SNR + l)llT-... 
ßo2\l-k\ I,_* - ... 

A>(l*-ie£_fc + e*_ilL0-... 
ßo   lk-lll-k 

E\yj!(d0)]     =     <r2ßo2   £  VaZ"(SNRllT + I)Va* 
k=n+l 

Va*    = : 
\ t*-**_„,   ...,   t\-tl_n 

and ßo was defined in (8), I denotes the iden- 
tity matrix of order n, I<_* denotes an (n | n) 
matrix with zeros everywhere except on the 
(I — k) :th diagonal which is filled with ones, 1 
denotes an (n | 1) vector filled with ones, !./_* 
denotes an (n | 1) vector with ones on all en- 
tries except on entries 1,..., (l-k) if(l-k) > 0 
orn+(l-k),...,n if (l-k) <0 which are filled 
with zeros, and e/_* denotes an (n | 1) vector 
with zeros on all entries except the (I — k):th 
which equals 1. 

Result 2 holds provided i? is close to tf0 which, 
according to Result 1, will happen either for 
large enough SNR or N. The statistical per- 
formance of the signal parameter estimates de- 
pend on the structured AR filter length. Re- 
sult 2 can be used to derive the optimal filter 
length, n, that minimizes the variance of the 
signal parameter estimates. The following re- 
sult holds for the case of a uniformly sampled 
linear phase signal: 

Result 3 For linear phase signals that are 
uniformly sampled and of medium to high SNR, 
the optimal choice of n is y. 

4    Numerical examples 

In the figures below, dashed curves corre- 
spond to empirical results, solid curves to the- 
oretical (Result 2) and dash-dotted curves cor- 
respond to the Cramer-Rao lower bound. The 
empirical variance was calculated using Monte 
Carlo simulations based on 50 runs for each 
set of variable values. The signal was cho- 
sen to be a quadratic FM signal; a(r*) = 
7r+30irtk-80irtl+7Qirtl. The figures illustrate 
the performance of 02. The corresponding fig- 
ures for äi and 03 show the same behavior and 
are therefore excessive. 
Figures 1-2 illustrate how the variance of the 
structured AR estimates depend on the filter 
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length n (SNR =5dB), and on SNR (n = 15), 
respectively; N = 100, data uniformly sampled 
with tk-tk-i = 0.01; {tktf-J = (0.01,.... 1). 
As seen from Fig 1 the variance of the phase 
parameters rapidly decreases with increasing 
n until an optimal value is reached. The the- 
oretical variance closely follows the empirical 
and, most importantly, successfully predicts 
the optimal choice of n, which for this case 

= 14.   This is of great practical im- IS nopt 
portance since it implies that the theoretical 
variance expression can be used for optimal fil- 
ter design. Result 3 only applies to linear phase 
signals (q = 1) and can therefore not be applied 
to this example of a quadratic FM (q = 3). Ex- 
pressions for the optimal choice of n for q > 1 
is under current investigation. An empirical 
investigation indicates, however, that nopt is 
close to inversely proportional to q. 
Figure 2 illustrates how the variance depends 

Figure 1. Variance vs n 

on SNR. The theoretical variance is inversely 
proportional to SNR2 for low SNR, and in- 
versely proportional to SNR for medium and 
high values of SNR. The theoretical variance 
coincides well with the empirical down to a 
threshold, say SNRj, below which it no longer 
applies. For SNR:s below SNRr the series ex- 
pansion used to derive the theoretical variance 
is not valid. 
The theoretical covariance expression also ap- 
plies very well to small data sets (N ~ 10 - 20, 
SNR=5dB). Illustrations can be found in [2] 
but are not presented here due to lack of space. 
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Figure 2. Variance vs SNR 

5    Concluding remarks 

The theoretical covariance has been com- 
pared to empirical results for a wide scenario 
of N, SNR, filter lengths, and (non-uniform) 
sampling strategies. It has been verified that 
the theoretical expression accurately predicts 
the empirical variance for SNR and N down 
to a threshold. The threshold is, however, low 
and Result 2 can be applied to most scenarios 
of practical interest. 
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Abstract 

This paper compares two algorithms for estimating the 
instantaneous frequency of complex signals: the high- 
order ambiguity function (HAF) and the polynomial 
Wigner-Ville distribution (PWVD). Comparison is made 
by asymptotic first-order error analysis, which is verified 
by simulation. It is shown that when the signal phase is a 
polynomial function of time, the HAF always 
outperforms the PWVD. Two other advantages of the 
HAF over the PWVD are: (a) it has lower computational 
complexity; (b) unlike the PWVD its use is not limited to 
the instantaneous frequency at the middle of the 
observation interval. 

1. Introduction 

Let s[t) be the complex signal 

s(t) = a{t)cxp{j<t{t)},   0</<7\ (1) 

The instantaneous frequency (IF) of this signal is defined 
as 

o,(/) = -n^   0<t<T. (2) 

Estimation of the IF over the interval [0,T] from noise- 
corrupted measurements of s(t) is important in areas 

such as radar, communication and sonar. 
This paper examines two methods for estimating the 

IF. The methods are: 
1. The high-order ambiguity function (HAF). This 

method models the phase function of the signal as an 
A/th-order polynomial 

5(r) = Cexp{;^)},   <*(t) = ][>,/" (3) 

The coefficients of the polynomial are estimated 
successively, starting at the highest order. The IF of the 
signal is obtained by differentiating the estimated phase 
polynomial. The definition of the HAF and the details of 
the algorithm are given in [1]. 
2. The Polynomial Wigner-Ville Distribution (PWVD), 

introduced by Boashash in [2] is defined as 

PW\/D{t,(o) = f K(M)(t,r)e-Jardr , (4) 

where 
I*- *,M,M=nN'+^)] [*v^)] .    (5) 

and T = min{/, T-t}l max{c,}. The IF is estimated as 

cb(t) = arg max[PWVD[t,a>)} (6) 

The parameters {&, A,,c,,c_,} are chosen so as to make 

ci)(t) unbiased. 

This paper compares the two methods from accuracy 
and complexity points of view. Accuracy is evaluated by 
means of analytic derivation of the asymptotic errors, 
which are then verified by simulations. The analytic 
derivation of the asymptotic errors of the HAF has been 
done before [3], but that of the PWVD is new. The 
analysis is limited to the case of constant amplitude 
polynomial phase signals. 

The paper gives the details of the analysis of the two 
algorithms, followed by a selected set of simulation 
results. 

2. Derivation of the error formulas 

In this section, we present the analytic derivation of 
the asymptotic error formula for the PWVD. The details 
of the error formula for the HAF, can be found in [3]. 
The results obtained are asymptotic in respect to the data 

B. Porat acknowledges the support of the Technion's VPR Fund for the Promotion of Research. 
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point number tending to infinity. The derivations do not 
impose any restriction on the SNR. 

2.1.  Preliminaries 

The signal model is 
){n) = z{n) + w(r1), (7) 

where z(n) is a unit-modulus polynomial phase discrete- 

time signal, defined by 
M 

z(«)=exp{M«)},   ^n) = £am«"\ (8) 

and w(n) is a complex circular white Gaussian noise 

with variance a1. We can rewrite (7) as 
y{n) = z{n)[\ + w{n)/z(n)} = z{n)[l + v{n)} , (9) 

where v(w) is probabilistically equivalent to w(n) , that 

is, white and Gaussian, with moments given by 

£J[v(«)]*} = 0,   £ = 1,2,... 

£J[v(»)]*[v»]'}=0,   k*i (10) 

Ei [V(«)]*[V»]*}=*!<T
2
\ k = 0,1,2,... 

The following two formulas will be needed later: 

. mm{k,t)fh\ff\ 

E[W)Y[I+A")]} - s i\a2i      (12) 

The noise, being Gaussian, has bounded moments. Let 
{Xn\ be a sequence of (real or complex) random 

variables, and {an} a sequence of positive real numbers. 

We will use the notation Xn = Om(l) to mean that all the 

moments of ^„are bounded uniformly in n, that is: for 
every positive integer there exists a positive constant 

B(k) such that E\Xn( < B(k) for all n. The notation 

Xn = Om{an) will mean that Xja„ = Om(l). 
Both the HAF and the PWVD algorithms search for the 
maximum point of a discrete Fourier transform (DFT). 
We therefore need a formula expressing the perturbation 
of the maximum point of the DFT as a function of the 

measurement error. Let 0) 0 e [ - n, n ]   and 

){n) = eim*+a(n), (13) 

where   {a(n)\    is     some additive  interference.  Let 

Y(a>) denote the DFT of y(n), also let A{k)(co) denote 

the kth derivative of the DFT of a(n) with respect to <o 

(with k = 0 denoting the DFT itself). Introduce   the 
following assumptions: 
•  Assumption A: a(n) = Om(l); 

.  Assumption B: Aw{a>0) = Om(Nk+05) . 

Under assumptions A and B one can show [3] that 

ä-»0 = i2^-39i{^(1)K)-yo.5^[^(0)K)]*} (14) 

+ Om(N'2) 

where« is the point of local maximum of \Y(a>)\ . 

2. 2.   The error formula for the PWVD 

As mentioned before, the PWVD algorithm include 
maximization of the DFT of the signal (9) after the 
application of the transformation (5). The discrete 
version of the transformation kernel is 

K^{n,m) = f[[y{n+ckm)]K\y\n + c_km)\h-k .      (15) 

Passing the input signal (9) through the above kernel, 
yields the signal 

k'f (n,m) = exp{ßnm IF(n)} [ 1 + a„(m)], (16) 

where an(>ri) is defined by 
in i b fl»=n[i+v(w+cH]' 

[(l+v(n+c_tm))*] "-1 

and IF{ri) is the instantaneous frequency at time n. 

The mean of a„{m) is 

4«nH]-£n[i+v(M+c^)]' L fc-n 

(17) 

[(l+v(n+c_km)) ]     - 

(18) 

For the case m *■ 0, the two terms in the product are 
independent, and the mean can be expressed as 

E{an(m)}^l\E[l+v{n+ckm)]k 

*=° (19) 

£[(l + v(H+C.tlfl))"]   "-1 

By (11) 

K[ 1 + v(n + ct m)\ "k = E[ (l + v(« + c.km))" ] *"' = 1, (20) 

and £[a„(w)] = 1-1 = 0. 
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Next we need to prove that, an[m) meets the 

requirements of assumption A. Each moment of an(m) is 

a finite sum of moments of v(«). Since v(n) is Om(l), 

any finite sum of its moments is bounded. This leads to 
the conclusion that an{m) is also Om{\) and an[m) 

meets the requirements of assumption A. 
We will now prove that an(m) also meets the 

requirements of assumption B. Denote 

M<°) = ian{m)e~ 
then 

(21) 

(22) 
m=l 

We will define an[m) to be 

Notice  that   a„(m)   and   an{m)   are   probablistically 

equivalent. For the case m * £ we have 

E[an{m)an{£)\ = 0 (24) 

(23) 

and 

Hence 

k(>o)| \=E |I/'3#)J [I^/WJ 

=i;i;^™,£[3'-W2'/H]    (25) 
^=1 m=l 

The  sequence   {a„(^), 1< ^ < TV] is  zero  mean   i.i.d. 

k»K)f]= L'4^ j + 0((* + l)»). (26) 

Due to the fact that all moments of an(m) are bounded 

A(r)(ß,o) = Om(Arr+05) and a„(/w) meets assumption B. 

Now that we have proved that an(m)  meets all the 

requirements of (14), we can now apply (14). This yields 
the following error formula 

8a> = 12JV-3aJ A®[a0) -J05N\ A{0)(a>0)\ * 1   + Om(N~2) 

fN ! (27) 
*12Ar33J]T(»-0.5Ar)a(H)l 

The variance of the error is 

£[ffe2]=£- 
N 

l44N-6z\YJ(m-o.5N)an(n) 

N 

^mm-o5N)a;(m) 
m=\ 

(28) 

(30) 

We will use the equality 

£[3{x}3{^}] = 05M[£[*/]-4^]] , (29) 

to get 
r i N   N 

/i[ Sco2\ = HN-t'YsY.i1 -05N)(m-05N) 

E[an{(-K(rn)~a{£)a(m)\ 

Since an(m) is zero mean i.i.d, the cross-terms vanish 

and (30) becomes 
N 

E \Sco2  = 72N-6YJ{m-0.5N)2 

1       J «=i .   (31) 
E[a„(m)an'{m)-an(m)an(mj\ 

In order to get a closed form error formula we need to 

develop    an    estimate    for     E\ aa(m)a„"(m)\      and 

E[H>4 ■ 

(fj [ o+*»+eH)']" [ i+^»+c-M]b~' -1) 
Using (11) and (12), (32) simplifies to 

süfxfb^2 

v/=oV      / 

(33) 

-1. 

Following a similar route, we can show that 

4fl»2(")] = 0- 
Inserting (34) and (33) in (30) leads to 

E[Sw2] = 72N~6Eaa.Yj(n-0.5N)2 , 

where 

7IO- 
*=o V ,=0 V   / J \ 1=0 V     / 

For the selection bk=b_k, E . is 

3lL(±(bS2 

^•=nai^ i. 

(34) 

(35) 

-1.      (36) 

(37) 

It is easy to prove that 

450 



fj{n+0.5N)2= — N3+0(N2) (38) 
n=l 

Using (38), we can derive the following estimate of (35), 

E[Sco^N-%,=6N-%,. (39) 

3. Comparison of the two algorithms 

In this section, we compare the variance of the IF 
estimate of both algorithms. The comparison is done 
using the error formulas derived above. We will also 
compare the complexity of the two algorithms. 

In Figure 1, we compare the variance of the IF 
estimates at the middle of the observation interval. We 
can see that the variance of the HAF estimate is 
consistently lower than that of the PWVD estimate. 

In Figure 2, we compare the performance of the 
algorithms at points other than the midpoint of the 
interval. We can see that while the HAF algorithm 
performs quite well for a large part of the observation 
interval, the PWVD estimates degrade quite rapidly as 
we move away from the midpoint of the interval. 

In Table 1, we compare the derived error formula for 
the PWVD to simulation results. We can see that the 
analytic estimates agree quite well with the simulations. 

z 

Noise Variance (SA2) 

Figure 1- The variance of the IF, estimated in the 
middle of the sampling interval, as a function of 
input noise variance. Phase polynomial order = 
4. (a) PWVD (b) HAF (c) CRB. 

The computational complexity of the two algorithms 
is about the same as far as IF estimation is concerned. 
However, the PWVD requires a preliminary step of data 
resampling (interpolation), which increases its 
computational complexity. In addition, the HAF 
algorithm enables, after the polynomial parameters are 
computed, to estimate the IF at any desired point in the 

interval. The PWVD, on the other hand, requires 
repetition of the entire procedure for each new time 
point. 

n/N 

Figure 2- The error variance in the estimation of 
the IF as a function of n/N . a2=0.1; (a) PWVD (b) 
HAF (c) CRB. 

Table 1- Comparison between the estimate of 
the error variance using (39) and simulation 
results, for various values of noise variance and 
for various window sizes. 

N o2=0.1 a2 =0.01 a2 =0.001 

512 8.8612 0.6268 0.0531 

1024 8.7624 0.6400 0.0514 

2048 8.6891 0.5771 0.0589 

Esli mated 8.639! 0 6226 0.0602 
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Abstract 

The aim of this work is the parameter estimation of 
polynomial-phase signals (PPS) embedded in white noise. 
The proposed estimation algorithm is a generalization of 
the method based on the Polynomial-Phase Transform 
(PPT), able to solve an ambiguity problem appearing when 
applying the PPT to PPSs having the same highest order 
phase coefficients. The proposed approach is based on 
the intersection of two (or more) signal subspaces sharing 
only the useful components but not the undesired spuri- 
ous harmonics. Different signal subspace are obtained by 
exploiting a multilag definition of the PPT. 

1. Introduction 

The aim of this work is the parameter estimation of 
multicomponent polynomial-phase signals (MC-PPS) em- 
bedded in additive white noise (AWN). The proposed ap- 
proach is a generalization of the approaches proposed in 
[6], [7] (see also [9], Chapter 12). The case of MC-PPS 
was already analysed in [8] and [10] using the Polynomial- 
Phase Transform, introduced in [7], later called High or- 
der Ambiguity Function (HAF) [9]. The HAF allows the 
parameter estimation of multicomponent polynomial-phase 
signals, thus providing a clear advantage with respect to 
alternative techniques based on the computation of the in- 
stantaneous phase, followed by polynomial fitting [4], not 
able to deal with multicomponent signals. Of course, being 
nonlinear, the HAF suffers from the presence of cross-terms 
when applied to multicomponent signals. In general, as the 
number of samples increases, the effect of the cross terms 

diminishes. However when the signal components share 
the same highest order phase coefficients, the HAF exhibits 
spurious peaks that make the detection and parameter esti- 
mation ambiguous [1]. In such a case even the increase of 
the number of samples does not provide any help to remove 
the ambiguity. Since this situation is common to a number 
of applications where the polynomial-phase modelling can 
be of interest, like Synthetic Aperture Radar (SAR) signal 
processing [11] or communications over channels affected 
by multipath propagation [3], it is important to provide an 
accurate analysis of the ambiguity problem together with a 
possible solution. In this work we propose a solution based 
on an algebraic approach that exploits the redundancy of 
the Multi-Lag HAF (ML-HAF), introduced in [2]. The de- 
grees of freedom related to the choice of the lags present 
in the ML-HAF can be exploited to solve the ambiguity 
problem. In this work we will show how to take advantage 
of these degrees of freedom using an algebraic approach 
based on the projection of the observed signal onto a signal 
subspace obtained as the intersection of signal subspaces 
estimated using different sets of lags. 
The paper is organized as follows. In section 2 we will re- 
view the multilag HAF and the associated ambiguty prob- 
lem. In section 3, we will describe the Signal-Subspace 
Intersection (SSI) method. Section 4 shows some perfor- 
mance obtained by simulation. 

2. The multilag instantaneous high order mo- 
ment and the ambiguity problem 

Given a discrete-time signal s(t), with t = 0,...,T-l, 
its M-th order multi-lag High order Instantaneous Moment 
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(ml-HIM) sM(t;TU...,TM-i) of s(t) is defined by the 
following iterations [2]: 

Si(t) = s(t),s2(t;Ti) = s1(t + T1)s
t

1(t-T1),... 

SAf(t; Ti, .. ., TM-l) = SM-l(t + TM-UTl» • • • ,TM-2) 

■S*M-i(t-TM-i;Ti,...,TM-2)- (0 

We use the acronym ml-HIM as a generalization of the 
HM, introduced in [12]. The PPT [7] or HAF [9] is 
defined as the Fourier Transform of the ml-HIM, with re- 
spect to t, in the particular case in which the lags rfe are 
all equal to each other. When applied to multicomponent 
polynomial-phase signals, the ml-HIM contains both auto- 
terms (the useful terms) and cross-terms. In particular, 

given an input signal: 

s(t) = £ Akle
j2^^«ak—t' '/ml (2) 

fcx=l 

the ml-HIM satisfies the following properties (the proofs 

are given in [3]): 
Prop. 1: The auto-terms are complex sinusoids whose 
frequencies are: fk = 2M-1R*Ll1Tiak,M, for k = 1, 
■■-,K. 
Prop. 2: If the PPS components share the highest order 
polynomial-phase coefficients (ak,i = aj, for I > m and 
m > 1), the ml-HIM contains spurious harmonics, besides 
the useful harmonics given by the auto-terms. In particular, 
if the PPS components share all the phase coefficients from 
the second up to the Af-th order, the ml-HIM contains only 
harmonics, whose frequencies are: 

M-l oM-2 

fk = 2M~l M\  JI n aM + Y, (°*.i ~ °fc2M-s+j,i)- 
t=i «=i 

(3) 
Prop. 3: If the PPS components have the same highest or- 
der phase coefficients (ak>i = at, for k > m and m > 1), 
the only sinusoids present in the ml-HEM, whose frequency 
is proportional to the product of all the lags, have a fre- 

quency fk=2M~i nil:1 nak,M. 
From these properties, it is possible to envisage the parame- 
ter estimation technique. According to Prop. 1, if the input 
signal is a polynomial-phase signal of degree M, its M-th 
order ml-HIM is a sinusoid whose frequency is proportional 
to the highest order phase coefficient of the signal; the es- 
timation of the highest order phase coefficeint can then 

be recast as a conventional frequency estimation problem 
which can be solved using FFT-based methods, as in [7], or 
using signal-subspace projection methods, as anticipated in 
[6]. Once the highest order coefficient has been estimated, 
the degree of the signal polynomial phase can be lowered 
by multiplying the input signal by exp[-j2naMtM /Ml], 
where aM is the estimated coefficient If the estimation is 
correct, the degree decreases and the process can be iterated 
to estimate the lower order coefficients. Indeed, Prop. 2 
reveals the existence of spurious sinusoids, when the input 
signal is composed by PPSs having the same highest or- 
der phase coefficients. However, using Prop. 3 is possible 
to solve the ambiguity problem. In [1] the ambiguity was 
eliminated by multiplying the Fourier transforms (properly 
scaled) of the ml-HIMs corresponding to different sets of 
lags. In this work, we propose an algebraic approach, po- 
tentially able to provide better resolutions than the non- 
parametric FFT-based approach. 

3. The Signal-Subspace Intersection Method 

The freedom in the choice of the lags used for computing 
the ML-HIM can be properly exploited to remove the ambi- 
guity. Let us compute the ML-HIMs sM (t; T[ ,..., rM_ x) 
corresponding to L different sets of lags r^ "s, for I = 
1,2,..., L. We will assume that each pair of sets sat- 
isfies the condition: cl -.llitr1^ = IJJ\]!£?T? 

with i ^ j and where I and J are integer numbers. Ac- 
cording to Prop.3, if the input signal contains K PPSs 
of degree M, the ml-HIMs contain sinusoidal auto-terms 
whose frequencies are related by the following relationship: 
/W = Iflj)/J, having indicated by fj? the frequency of 
the fc-th auto-term, k = 1,...,K, corresponding to the 
i-th set of lags, i = 1,..., L. To compare different ml- 
HIMs, is in general necessary to resample them. More 
specifically, to compare the generic i-th with the j-th ml- 
HIMs, the i-th ml-HIM has to be downsampled by a factor 
J, whereas the j-th ml-HIM has to be downsampled by 
a factor I. After downsampling, according to Prop.3, the 
two ml-HMs share some sinusoids in common: the si- 
nusoids corresponding to the auto-terms. To extract the 
information about the common sinusoids, we can then use 
an algebraic approach based on the estimation of the sig- 
nal subspaces associated to different ml-HIMs and on their 
intersection. The algorithm, denoted Signal-Subspace In- 
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tersection (SSI) algorithm is the following (the algorithm 
is described in the case of two sets of lags, for simplicity, 
but the generalization to L sets is straightforward): 

1. Compute the ml-HMs s$, i=l, 2, for two different 
sets of lags satisfying condition cl, with given values 
of / and J; 

2. If I^J, resample the ml-HMs; 

3. Estimate the covariance matrices CW corresponding 
to the two ml-HMs; 

4. Compute the Singular Value Decomposition (SVD) of 
each covariance matrix: CW = u^D^V^"; 

5. Select the common order d as the greatest value be- 
tween the orders estimated from the singular values of 
each covariance matrix; 

6. Estimate the signal subspaces S® as the spaces 
spanned by the columns of the matrices S^ defined 
as 

S« = [u(l)« ...,u$W] (4) 

where u(fc)(i) denotes the fc-th column of U(i), for 
i = l,2; 

7. Compute the intersection between the subspaces S^> 
and 5<2> (see [5]): 

(a) Compute A = S(1^-S(2); 

(b) Compute the SVD of A: A = Y £ ZH 

(c) Select order: £ is a diagonal matrix whose en- 
tries are the cosines of the principal angles be- 
tween the two subspaces <S(1) and <S(2) [5]. If 
we order the cosines in a decreasing order, the 
dimension d of the intersection subspace can be 
estimated as the index such that the following 
inequalities hold: cos($i) — ... = cos(0d) = 
1 > cos(0d+i); 

(d) Estimate the intersection space as the space 
spanned by the matrix E defined as follows: 
E = SW • [y(l)... y(d)} where y(Jfc) stands for 
the fc-th column of the matrix Y); 

8. Estimate the pseudo-spectrum as the square norm of 
the projection of the steering vector e(w) onto the 
intersection subspace: p(w) = eH(u>) E e(u>) where 

e(w) = (1, eju,..., e^f-V") and Nf is the number 
of samples on the frequency axis. 

4   Performance 

As a comparison term, Fig.s 1 and 2 show the HAF 
and the pseudo-spectrum, obtained using the SSI algo- 
rithm, of a signal composed by the sum of two cubic-phase 
signals having the same amplitude and phase parameters: 

O!,! - 0.125,Oi,2 = 0.25/JV>1)3 - 0.25/AT2,a2)i = 
0.5,02,2 = 0.5/AT, a2,3 = ai>3; the number of samples is 

r(« rW 1440; two sets of lags have been used: r} ' = T^' = 240 
and T[

2)
 = 240, r2

(2) = 120 (so that / = 2 and J = 1). 
In Fig.l we can clearly see three peaks, two of which (the 
lateral ones) are spurious peaks. Conversely, the pseudo- 
spectrum exhibits only one peak. In the presence of noise 
and dealing with finite length sequences, the estimation of 
the order d at step 7c) in the SSI algorithm can be done by 
using a threshold because the cosines of the principal angles 
are random variables themselves. From simulation (using 
1000 Montecarlo runs), we have observed that, in the case 
of the signal analyzed in Fig.l, embedded in white noise 
(SNR=10 dB), the average values of cos(0i) and cos(62) 
are 0.9991 and 0.7862, respectively, and the corresponding 
standard deviations are 5.7e-4 and 5.8e-2. Therefore the 
two random variables are well separable, for SNR=10 dB. 
The performance of the method in the presence of noise 
have been evaluated by computer simulations. In particu- 
lar, Fig.3 shows the standard deviation of the estimate of 
the third order coefficient a3 vs. the input SNR. The input 
signal is the same as the one analyzed in Fig.s 1 and 2, 
plus white noise. From Fig.3, we can see that the variance 
of the HAF-based method does not decrease as the SNR 
increases, due to the ambiguity problem. 

5. Conclusion 

In this paper we have proposed an estimation algorithm 
able to remove the ambiguity related to the HAF when ap- 
plied to multi-component signals having the same highest 
order phase coefficients. The price paid by the proposed 
algorithm, besides the higher computational cost, is that 
the estimation variance is greater than that achievable with 
the HAF, if the ambiguity could be properly removed. The 
higher error is due to errors in the estimate of the covariance 
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matrices, errors which propagate in the estimation of the 
signal subspaces and, as a consequence, on the intersection 

subspace. Further analyses are necessary to optimize the 

SSI algorithm, in terms of size of the covariance matrix, 

number of intersections, all parameters that greatly affect 

the final performance. It is important to outline that the 

intersection idea could be extended to different signal pro- 

cessing problems, whenever is possible to set up different 

experiments where only the useful signals are in common. 
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Figure 1: HAF of the sum of two cubic phase 
signals. 

Figure 2: SSI pseudo-spectrum of the same 
signal as in Fig.1. 
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Abstract 

In this paper we introduce and analyze the so called 
Complex Sign WVD (CS-WVD), defined as the Wigner- 
Vxlle Distribution (WVD) where one of the two signals is 
substituted by its complex sign. The substitution provides 
a consistent simplification for the implementation on ded- 
icated hardware. In particular, the number of multiplica- 
tions is drastically reduced. In spite of the hard nonlin- 
earity used in the CS-WVD, the new transform is still able 
to deal with multi-component chirp signals. In the paper 
we provide a statistical analysis of the introduced transfor- 
mation, in the case of polynomial-phase signals embebbed 
in additive white Gaussian noise. The theoretical analysis 
is compared to simulation results and to the Cramir-Rao 
lower bounds. 

1   Introduction 

Time-frequency distributions (TFD) such as the Wigner- 
Ville Distribution (WVD) are particularly suited for the 
analysis of Linear Frequency Modulation (LFM) signals 
[4], [1]. The WVD is known for its good localization 
properties, but it suffers from high cross-terms. A more 
general family of distributions, namely the Cohen's class 
[3], has been introduced for designing TFDs showing a 
good compromise between resolution and cross-terms [3]. 
Indeed, the members of Cohen's class can all be expressed 
as smoothed versions of the WVD. In this work we will 
concentrate on the WVD, but the proposed approach can 
be directly extended to the general case. One of the incon- 
venients related to the WVD is its higher computational 

cost with respect, for example, to the Short- Time Fourier 
Transform (STFT). In this papa we will introduce the 
Complex Sign-WVD (CS-WVD) aimed to drastically re- 
duce the number of complex multiplications necessary to 
compute the WVD. The use of the complex sign introduces 
a performance loss, but gives rise to a transformation which 
is much easier to implement, especially on dedicated hard- 
ware, because it simplifies the scaling problem and does 
not require any multiplication for computing the transfor- 
mation kernel (the product of the signals). The aim of this 
paper is the statistical analysis of a method for estimating 
the parameters of polynomial-phase signals, based on the 
CS-WVD. In spite of the hard nonlinearity introduced in 
the transformation, the proposed method is still able to deal 
with multicomponent signals, if the number of samples is 
sufficiently high. Indeed we will prove that the CS-WVD 
of LFM signals tends to coincide with the WVD of the 
same signals, as the number of samples increases. The pa- 
per is organized as follows. In Section 2 we will define and 
give some examples of the CS-WVD. We will also show 
the asymptotic properties of the CS-WVD. In Section 3 we 
will give a statistical analysis of the CS-WVD in the pres- 
ence of additive white Gaussian noise (AWGN). Finally, in 
Section 4, we will analyze a parameter estimation method, 
for polynomial-phase signals, based on the CS-WVD. 

2   Complex-Sign Wigner-Ville Distribution 

In this section, we will introduce the CS-WVD and an- 
alyze its asymptotic properties, as the number of samples 
tends to infinity. 
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2.1    Definition and examples 
[q.e.d.] 

The Wigner-Ville Distribution of an infinite length sig- 

nal s(t) is defined as [3]: 
rp 

WVD.{t, f) := lim ± /   s(t + r)s(t - r)e~^rdT 
T-KX>1   J_T 

(1) 
We define the Complex Sign-WVD (CS-WVD) of a signal 

s(t) as: 

i   tT 

CSW,(t,f)~ Um-/    s(t+r)csign{s(t-T))e-j4vfTdT 
T—><x>l   7-T 

(2) 
where the complex sign of a complex variable z is defined 

as: 

.x/2  . 
2 

Examples of application of the CS-WVD to linear fre- 

quency modulation (LFM) signals are shown in Fig.l, for 

a monocomponent signal, and in Fig.2 for two LFM com- 

ponents. We can observe that, in spite of the hard non- 

linearity, the CS-WVD still allows the detection of chirp 

signals, even in the multicomponent case. This capability 

improves as the number of samples increases. Figs. 1 and 

2 have been obtained using a number of samples N = 128. 

csign(z) 
dU- ^lsign{&{z)) + j^sign(<Z(z))    (3) 

and the overbar denotes conjugation. The use of complex- 

sign makes the computation of the kernel multiplication 

free. 
Indeed, we can prove the following theorem: 

Theorem:    Given a LFM signal s(t)   =  Ae3^   = 
Aeji*(a0+ait+a2t

2)^ lts CS-WVD tends to be proportional 

to its WVD, as the number of samples tends to infinity: 

lim CSWs{t,f) -WVDs(t,f)        (4) 
T—oo -----      y/2Air 

Proof. Using the Fourier series expansion of the complex- 

sign of Ae^: 

1       °°     A 

v     n=l 

we can single out the first term, thus obtaining: 

CSWs(t,f) = -^WVDs(t,f)+ 

(5) 

(6) 

+ Km L^l V — f   Ae>m+T)-n4,{t~T)~A*fT)d7 
p™T 2  ^omrJ_T 

We can prove that the second term in (6) is null. In fact, 

for LFM signals all the integral arguments are quadratic- 

phase functions, whose second order coefficient is certainly 

different from zero, for n > 1. Since 

f J — < 
e-Jiv dv = l-j, (7) 

all the integrals give a finite result. Therefore, the limit in 

the second term of (6) is equal to zero. 

Figure 1: CS-WVD of an LFM signal with «n 
0.25 and CL2 = 0.25/JV. 

Figure 2: CS-WVD of the sum of two LFM sig- 
nals having aM = 0.25, a2,i = 0.75, ai>2 = 
0.25/iV, and a2)2 = -0.25/iV. 
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3   Statistical analysis 

A statistical analysis of the CS-WVD of chirp signals, in 
the presence of Additive White Gaussian Noise (AWGN), 
has been carried out computing expected value and vari- 
ance. In particular, referring to its discrete-time version and 
to the case of a limited number of samples, the CS-WVD 
takes this form: 

N 

CSWx(n,f) = ^2x(n+k)csign(x(n-k))e-j^fk (8) 
Jt=i 

where x(n) = s(n) + w(n), s(n) is the useful signal and 
w(n) is AWGN. The moments of the CS-WVD can be 
computed using the cumulant series expansion introduced 
in [5]. Under the hypothesis of Gaussian random vari- 
ables, the expansion is greatly simplified because all the 
cumulants of order higher than two are equal to zero. In 
particular, the expected value of the CS-WVD is: 

N 

E{CSWx(n,/)} = £ s(n + k)R(n~k)e-j47rfk   (9) 
fc=i 

and the second order moment is: 

E{\CSWx(n,f)\2} (10) 

J2 Y,Mn + k)s(n + l)R(n - k)R(n -l) + a2 6(1 -k)+ 
k      I 

+<x6(l + k)s(n + k)S(n - k)R(n - I) 

+a26(l + k)s(n + l)R(n - k)S(n -1) 

+a26(l + k)S(n - k)S(n - l)}e-ji*Hk~V 

where Q(x), R(n) and S(n) are defined as follows: 

5(n) = 57?(e ^+e-fe*-) (11) 

R(n) =    4(1 - 2Q(*M)) + ^(i _ 2Q(äM)X12) 

<*(*)=        */.-oo«-*,/2*-      (i3) 

4   Parameter estimation 

Given a LFM signal embedded in AWGN, we will now 
propose a method for estimating the phase parameters based 
on the CS-WVD. We initially define the transformation: 

Pi2) (<?, h) = 53 CSWX (n, g + hn) (14) 

= J^2x(n + ^)csign(x(n - k))e-jiv<-9+hn) 

n     k 

which provides a mapping from the input signal onto a 
plane whose axes are the signal mean frequency and sweep 
rate. For each chirp we observe a peak in the plane (g, h). 
Therefore detection and parameter estimation are carried 
out together: if a peak exceeds a suitable threshold, we de- 
cide for the presence of a chirp whose parameters are the 
peak's coordinates. The overall mapping was introduced 
in [1]. The method is asymptotically efficient and provides 
a good rejection capability in the presence of multicompo- 
nent signals. Its main disadvantage is the computational 
cost. Once again, this cost can be reduced by resorting to 
the complex-sign. This possibility was already proposed 
in [2], with a transformation called Hibrid-Nonlinear In- 
tegrated Generalized Ambiguity Function (HNL-IGAF). In 
[2] the performance were provided by simulation results; in 
this work we present a theoretical statistical analysis of the 
HNL-IGAF, based on the perturbation method, thus pro- 
viding an analytical expression for the variances of both 
frequency and sweep-rate estimates, valid under the hy- 
pothesis of high SNR. 

Given x(n) = s(n) + w(n), where w(n) is AWGN, denot- 
ing by 8g and 6h the estimation errors of frequency go and 
sweep-rate ho respectively, for high SNR we have [6]: 

BV~CU (15) 6g: 

6h: 

(DC - B2) 

Bu-Dv 
(16) (DC-B2) 

where B *J- &gjg&U , C ^ ^^| - , D ^ dgdh 

-w^ 
v = -4ir2^,2^, knx(n + k)g(x(n - k))e~jA"(-9o+h°n^ 

n     k 

u = -4nY^2kx(n + k)g(x(n - k))e~j/iv(-9o+honK 
n     k 

The variance of the estimates of the two highest order co- 
efficients are shown in Figs.3 and 4, from which we can 
observe the good asymptotic agreement between theoreti- 
cal and simulation results for SNR values above a cer- 
tain threshold (~ lOdB). We can also observe that the 
agreement between theory and simulation increases as the 
number of samples increases. As expected a saturation ef- 
fect exists.   The main price paid for using the complex 

458 



Figure 3: Variance of the estimations vs. SNR 
of the frequency g0 obtained by using HNL- 
IGAF: theoretical analysis (solid line); simu- 
lation (+). 

15 20 25 30 
SNHdB 

Figure 4: Variance of the estimations vs. SNR 
of the sweep-rate ho, obtained by using HNL- 
IGAF: theoretical analysis (solid line); simu- 
lation (+). 

sign is a kind of saturation effect at high SNR. Indeed the 
variance of the estimation decreases more slowly than the 
inverse of SNR, as predicted by the Cramer-Rao Lower 
Bound (CRLB). As regards the dependence on the num- 
ber of samples, the estimate of the m-th order polynomial 
phase coefficient is characterized by a CRLB that decreases 
as the inverse of N2m+1. In our case this behavior if ap- 
proximated only if N is sufficiently high. 
The estimator based on the HNL-IGAF can be proved to 
be consistent In fact, considering an infinite length LFM 
signal, we can prove (see [6] for the analytical details) that 
the expected value of the HNL-IGAF of an LFM embedded 
in AWGN tends to a Dirac pulse, centered on the signals 
parameters, and its variance tends to zero, as the number 
of samples tends to infinity. 

5. Conclusions 

In this work we have proposed and analyzed a nonlinear 
method for analyzing linear frequency modulation signals 
that presents some advantages for implementation on dedi- 
cated hardware, because it strongly reduces the number of 
complex multiplications necessary to compute the Wigner- 
Ville Distribution. The main price paid for the simplifica- 
tion is a performance loss. The method can be extended to 
the more general Cohen's class of time-frequency distribu- 
tions as well as to the high order ambiguity functions. 
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Abstract 
A novel method for the determination of the window 

parameters of adaptive spectrogram is given in this paper. 

It is based on the detecting the maximum value and the 

width of the peak of the Radon transform of the modulus 

of the ambiguity function of the signals1. The proposed 

method effectively reduces the cross-terms and the noise 

of linear frequency modulated signals compared with 

Wigner distribution and the classical fix window 

spectrogram. A possible further extension of the method is 

also given to fit it to larger classes of signals. 

I. Introduction 

Time-frequency distributions (TFDs) is a powerful 

tool for detection and analysis of time-varying signals. 

They have found use in various fields such as radar, sonar, 

speech, biomedicine and geophysics. The classical 

methods such as Fourier transform can't provide a evident 

representation of the relation between the time and 

frequency content of the signals. Various time-frequency 

analysis methods have been proposed. The TFDs of 

Cohen's class is widely studied[l]. The most prominent 

methods among which are the Wigner distribution(WD) 

and the spectrogram (the squared magnitude of short-time 

Fourier transform, STFT). Although these two methods 

looks very different in their behaviors for analysis time- 

varying signals, they can be interpreted in the same point 

1 This work is supported by the Institute of Electronics 

Researching of China ,grant no. J94.01.01-9461122 and 

DJ94.17.10-9571122. 

of view, i.e. we may consider the Wigner distribution as a 

special STFT which use the signal itself as the window 

function[2]. 

The cross-terms among multi-component signal is a 

severe limitation on the use of WD. It is a result when 

using a component of the signal as the window which is 

applied to the other components of the signal. This effect 

can easily be avoided by spectrogram which using only 

one window in any time[2]. But as pointed out in [3], the 

choice of the window dramatically affects the appearance 

of, or the signal concentration in, the spectrogram (or the 

STFT). We must face the tradeoff between time and 

frequency resolution of a preselected window. 

Several authors have proposed to use the Gaussian 

function with variable length and obliquity which best 

matched to signal as the window of STFT[3]-[5]. It was 

shown that this method greatly improved the time- 

frequency concentration of time-varying signals. The 

proposed methods for determining the parameters of the 

window are either computationally expensive or need 

iterative. In this paper, we propose a method for 

determining the parameters of the window by making use 

of the Radon transform of the modulus of the ambiguity 

function(AF) of the signals. A systemic method for 

determining the parameters is given. The experimental 

results show this method greatly improved the time- 

frequency concentration of signals even in low signal to 

noise ratio(SNR) situation. A further extension of the 

method is also given in the fourth section of this paper. 

II.      Adaptive      Window      Parameters 
Determining Procedure 

The classical spectrogram using a fixed low-pass 
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function as the window. It can be considered to be the 
order zero approximate for the time-varying signals since 

it use a constant frequency in the window to represent the 

time-varying frequency content of the signals. So, we 
must face the time-frequency tradeoff in the selection of 

the window length. Also, for some signals, the longer 
window does not means a better frequency resolution, 

since the frequency varying in the window may be large. 
If we allow the frequency content in the window varying 
linearly, i.e. using the linear frequency modulating(LFM) 
window instead of the constant frequency window as the 
basis to represent the signals, we can get a order one 
approximation of the time-varying signals. This certainly 

results a more precise representation of the frequency 

content of the signals. 
The spectrogram of a signal x(t) is defined as: 

Specl (t,(o) = | \x(x )g(t - T ) e-Jax dx f     (l) 

where g(t) is the window of spectrogram (all integral are 
from -oo to oo unless otherwise stated). Here we choose 

the form of g(t) as: 

g(t) = e-a,1-j*'2 (2) 

where the parameter a controls the aspect ratio (or the 
length of the window), the parameter ß controls the 

obliquity direction in the time-frequency plane (or the 
frequency modulating rate). These are the two parameters 
which we try to estimate adaptively for different signals. 
If a =0.5, ß =0, then the WD of g(t) is a circle in the (t, 

CO ) plane, where the unit of t is in second and CO in 
radian/sec/sec. Hence we consider these parameters 
defining a equal resolution window in (t, CO ) plane. 

As stated above, in any segment of the signals, we 
may better represent the signal using the window as 
shown in (2) than using the classical fixed low-pass 
window. But the condition to fulfill this goal is the correct 
estimation of the parameters a and ß . In the following 

part of this section, we try to estimate these parameters 

adaptively from the AF of the signals. The AF of a signal 

x(t) is defined as: 

AFx(y,x) = lx(t + T-)x(t-X-)ejv'dt        (3) 

As shown in [6], the modulus of AF of any LFM 
signal is a line in the AF plane which traverses the origin. 

By calculating the Radon transform of the modulus of AF 
through   the   origin,   the   two   dimensional   function 
AF (v,x)can be projected  into  a one  dimensional 

function P(cp) [6] which is defined as: 

P(cp) = Vl{\AFx(v,T)\}= \\AFx(rsm(p,rcosy)\dr 

(4) 
where  9? represents the Radon transform, r is the radius 
and cp is the angle of the polar coordinate of the AF plane. 

The range of cp is 0 < cp < 7t . 

We first assume the signal under analysis is of the 

same form as g(t) shown in (2), because by changing the 
parameters it can approximate a large classes of signals. It 

is not difficult to shown that the AF of the signal x(t) is : 
4(q2+ß2)T2-8ßvT+v2 

(S) W)-^< 
71 8a 

Its Radon transform can be proved to be: 
27C 

P(cp) = -^======J= 
^/4(a2 + ß2)cos2 cp - 4ß sincp coscp + sin cp 

(6) 
By differentiating  P(cp) respective to 9 , it is also easy 

to find the value of cp max  which makes the maximum 

P(cp ) and satisfies the relation: 

4ß 
tan2cpmax = (7) 

(8) 

l-4(a2+ß2) 
For signals with evident time-varying frequency feature, 
the time duration of the signal must be long, therefor the 
a usually be small compared with ß . So we may 

neglect a in (7). This results an estimation of ß as: 

p .,tancpmax 
P~       2 

So by finding the maximum direction of P(cp ), we can 

estimate the parameter of ß by (8). 

We can farther use the -3dB width of the peak of 
P(cp ) to estimate the parameter a . The physical mean of 

this estimation is based on the observation that the wider 
the peak of P(cp ), the more different the signal from the 

LFM signal, so the shorter the window length should be. 
For a signal without frequency modulation ( ß =0 in (2)), 

it can be shown that: (for a « 0.5, i.e. signal with a 

long duration) 
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a = 
Acp 3dB 

(9) 

where A<p3dB represents the -3dB width of the peak of 

P(9). Although this estimation is achieved without 

frequency modulation and clearly different from the width 

of signal with frequency modulation, the experimental 

results show that it is still a better estimation. 

The above analysis is on the uniform time-frequency 

plane, i. e. the unit of y is in radn/sec and is in second. 

For some practical applications, the uniform coordinate 

71 
may results (p max to —, so a small error in estimation of 

(p max will cause a grate difference in ß . In this case, we 

should use the nonuniform coordinate system in (v,T ) 

plane. Assuming the unit of v is in k radn/sec and T is 

in    second,    the     ß      should    be     estimated    as 

P»*tanq,~». 
2 

III. Experimental Results 

In this section we demonstrate the performance of 

the adaptive spectrogram using the parameters estimated 

by the methods which are stated in section II. 

In the digital implement of the above procedure, the 

AF is calculated from discrete samples. In the calculating 

the Radon transform, the two dimension cubic 

interpolation is used to get the AF value not in the discrete 

grid of the rectangular coordinate system. 

The first example examines the resolution advantage 

of adaptive spectrogram in analyzing two chirp signals 

with same frequency modulating rate. The envelopes of 

the signals are Gaussian functions. The adaptive 

spectrogram with both a and ß estimated by (9) and (8) 

is shown in Fig. 1(a). Fig. 1(b) shows the spectrogram with 

fixed a =0.5 and ß estimated by (8). For comparison, 

Fig. 1(c) and (d) show the WD and fixed window 

spectrogram(a =0.5, ß =0) respectively. Please note the 

sampling rate of WD is two times fast than that of the 

spectrogram. It is evident that the adaptive spectrogram 

have nearly the same auto-component concentration as the 

WD but without its cross-terms.  Compared with the 

classical fixed window spectrogram, the resolution of 

adaptive spectrogram is much higher. 

In Fig.2, we show the same signal as in Fig.l but 

now with additive noise. The signal to noise ratio (SNR) 

is ldB. It is shown that the adaptive spectrogram still 

resolve the two signals clearly and almost without 

distortion, while the signal is totally embedded by noise in 

its WD and the signal is greatly distorted by classical 

spectrogram. The benefit of adaptive spectrogram comes 

from the fact that the window nearly plays the role of 

matched filter to the signals, so the noise effect is greatly 

reduced. 

IV. Further Extension 

One obvious limitation of adaptive spectrogram is 

that it most suits to chirp signals with nearly the same 

frequency modulating rate. A farther extension of this 

method is currently under investigation to make it suit to 

more large classes of signals. For examples, if two chirp 

signals with different frequency modulating rate is under 
analyze, this will results two different peaks in P((p ). In 

this case, we may determine ß by finding the weight 

center of P((p). This oblique direction can provide a 

good tradeoff between different requirements of signals. 

It is also easy to extend the adaptive spectrogram to 

signals with vary frequency modulating rate. We can 

simply repeat use the adaptive spectrogram to each time 

segment of the signals. 

V. Conclusions 

In this paper, we proposed an adaptive spectrogram 

for analysis the time-varying signals. It is based on the 

Radon transform of the modulus of AF of signals to 

determine the window parameters. Adaptive spectrogram 

can yield excellent results over Wigner distribution and 

classical spectrogram, especially in the noise background. 

The conclusion is demonstrated by experimental results. 

Since the adaptive spectrogram can be considered as the 

order one approximation to the time-varying features of 

signals compared with order zero approximation of 

classical fixed window spectrogram and can be used to 
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any time segment of signals, it provides a more precise 

model to time-varying signals. A possible extension of the 

adaptive spectrogram for suit to larger classes of signals is 

also given. 
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Figure 2: The same signal as in Fig. 1 but with addative 

noise, (a) Adaptive spectrogram with both a and ß 

estimated, (b). Adaptive spectrogram with a fixed, 

(c).Wigner distribution, (d). Fixed window spectrogram 
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Figure 1. (a) Adaptive spectrogram with both a and ß 

estimated, (b). Adaptive spectrogram with a fixed. 

(c).Wigner distribution, (d). Fixed window spectrogram 
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Abstract 

By equipping the base stations of a wireless network with 
antenna arrays, it is possible to more fully exploit the spa- 
tial dimension in a wireless communication system. Mul- 
tiple antennas can provide a processing gain to increase 
the base station range and improve coverage. Also, by ex- 
ploiting the spatial selectivity of an antenna array, interfer- 
ence may be reduced which in turn can be traded for in- 
creased capacity of the system. A wide range of wireless 
communication systems may benefit from spatial process- 
ing including high mobility cellular systems, low mobility 
short range systems, wireless local loop applications, satel- 
lite communications and wireless LAN. By employing an ar- 
ray of antennas, it is possible to multiplex channels in the 
spatial dimension just as in the frequency and time dimen- 
sions. This is often referred to as Spatial Division Multi- 
ple Access (SDMA). To increase system capacity, spatially 
selective reception as well as spatially selective transmis- 
sion must be achieved. Herein, we present some different 
approaches and techniques for spatial/temporal processing. 
Critical aspects of SDMA for both high mobility cellular sys- 
tems and low mobility or movable systems will be reviewed 
and the potential benefits examined. 

1. Introduction 

Wireless communications represent an important area of 
research, ultimately leading to the development of new and 
improved services and products. Substantial improvement 
in the capacity of these systems is a key issue as their use 
becomes more wide spread. The dramatic expansion of mo- 
bile communications over the last years has emphasized the 
importance of efficient use of frequency bandwidth. There 
is an increasing demand for capacity in wireless systems 
which traditionally directly translates into a demand for 
more bandwidth which is quite limited. Also, the infrastruc- 

* Björn Öftersten is currently on sabbatical leave from the Royal Institute 
of Technology and is with ArrayComm Inc., San Jose, CA. 

ture investment costs are often a limiting factor when de- 
ploying a new system aimed at wide area coverage. Increas- 
ing the range of current system is therefore also of great in- 
terest. 

There are two critical factors in the design of wide 
area mobile communication systems, coverage and capac- 
ity. These factors have a direct impact on the cost and qual- 
ity of the services since the spectral resources are limited 
and spectral efficiency is necessary. The spatial dimension 
is to a large extent unexplored in wireless systems. Tra- 
ditional telecommunication schemes multiplex channels in 
frequency and/or time. However, the spatial dimension is in 
general used in a very rudimentary fashion by, for example, 
using some frequency channels in certain geographical ar- 
eas (frequency planning) to limit interference. By incorpo- 
rating antenna arrays and efficient spatial-temporal process- 
ing techniques into future systems, both the capacity and the 
range may be increased. With proper processing, it is possi- 
ble to multiplex channels in the spatial dimension just as in 
the frequency and time dimensions. Spatially selective re- 
ception and transmission, can reduce interference in the sys- 
tem significantly allowing frequencies to be reused more of- 
ten and thereby increasing capacity. 

Each user has a unique spatial-temporal signature as seen 
by the base station. By identifying this signature for the 
user-to-base station communication link (up link), the sig- 
nal of interest may be extracted from the noise while sup- 
pressing interference. Furthermore, with knowledge of the 
spatial-temporal signature describing the base station-to- 
user (down link) channel, transmission schemes may be de- 
vised which maximize the power of the signal of interest at 
the user while minimizing co channel interference and sup- 
pressing overall radiated power. This offers substantial ca- 
pacity increases over current wireless system implementa- 
tions. 

In [2, 13, 28, 26, 31, 32], efficient use of the spatial di- 
mension by employing antenna arrays at the base stations of 
wireless communication systems is explored. The up link 
problem has receive substantial attention [2, 26, 19, 20, 24] 
whereas the down link problem more recently has drawn in- 
terest [13,28,32]. Of course, the hardware requirements are 
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more demanding when employing antenna arrays with mul- 
tiple receivers and transmitters, but this permits a sparser in- 
frastructure and will often be more cost effective. In general, 
increasing the range of cellular systems is of great interest 
initially, for example, when deploying the new PCS system 
in the United States. However, demand for increased system 
capacity is expected to follow shortly after adequate cover- 
age is achieved in a successful system installation. 

2. Modeling the Communications Channel 

When attempting to exploit the spatial dimension, an 
additional independent parameter must be used when dis- 
cussing channel models. The channel impulse response is 
now vector valued and will depend on the spatial distribu- 
tion of the multipath propagation as well as the antenna ar- 
ray aperture and configuration. When designing a commu- 
nications system, the channel model is critical. Given a de- 
scription of the channel, efficient processing schemes may 
be devised and system performance can be analyzed. 

There are low rank as well as high rank channel models 
and these concepts have impact on the spatial processing. 
The rank of the channel is also coupled to the concepts of 
narrow band and wide band signals which we use in the tem- 
poral domain. To exemplify this, consider a white noise se- 
quence (which is wide band of course) arriving from broad- 
side at a linear array. This is a spatial channel of rank one 
since the propagation for this case is described by a constant 
vector. However, as soon as the direction of the signal dif- 
fers from broadside, the channel becomes high rank. The 
propagation of a perfect narrow band signal (sinusoid) is of 
course always described by a low rank channel. However, as 
the delay spread of the channel increases to the same order 
as the symbol time of a narrow band communications signal, 
the rank of the channel increases. 

Another critical concept when discussing spatial process- 
ing is that of a parameterized array manifold. The array 
manifold is the collection of all array responses to a single 
point source over the parameter range (for example location) 
of interest. This is only a useful concept if the number of 
parameters and signals is small in relation to the number of 
antennas (for example the direction to the source for a fixed 
frequency) and the array response can be measured or mod- 
eled fairly accurately as a function of the parameters of in- 
terest. For example, near field scattering or mutual coupling 
at the array which is not calibrated or has a nice structure1 is 
very difficult to model. The low rank signal model may still 
be quite useful even when it is not possible to parameterize 
the array response. In these cases, the response of the array 
or spatial-temporal signature characterizes a user. By not- 
ing this fact, the spatial dimension may be used to separate 
signals. 

1 An equi-spaced linear array with identical elements (uniform linear ar- 
ray) has a nice structure. 

Below, we discuss some different channel models and 
also the use of a parameterized model. The concept of an 
array manifold can be modified to incorporate the special 
propagation environment often present in wireless commu- 
nications. First, a simple low rank propagation model in- 
corporating Rayleigh fading and directional information is 
described. This model is valid for narrow band signals and 
high base station antenna placement with little near field 
scattering. Second, a high rank channel model is described 
which is more suited for large time delay spreads and signif- 
icant near field scattering at the array. 

2.1. A Low Rank Channel Model 

In [23, 31] a model of the flat fading due to local scatter- 
ing is developed taking the spatial dimension into account. 
The array response is modeled as a stochastic vector which 
has a parameterized distribution. These parameters provide 
a useful description of the channel. The propagation be- 
tween the mobile and the array is modeled as a superposition 
of a large number of rays originating from local scatterers in 
the vicinity of the mobile. We assume independent scatter- 
ing, an angular distribution of the scatterers which is Gaus- 
sian (as seen from the array), and that the relative time delays 
for different propagation paths are small compared to the in- 
verse of the bandwidth of the communication signal (small 
delay spread). 

Assuming a uniform linear array with element spacing A 
in wavelengths, the signal received at the array may be mod- 
eled as 

x(t) = vs{t)+n(t)                                    (1) 

v £ JV(O,R(0,CT))                                   (2) 

R{6,a) « a(0)a*(0)©B(0,CT)                          (3) 

a(0) = [l,ej27TAsine, ...,eJ'27rA(ro-1)sinT(4) 
{B(6,a)}kl = e-2[TA(*-O]VW0                        (5) 

where, x(t), is a complex valued (m x 1) vector, s(t) is the 
complex envelop of the transmitted signal, n(i) is the addi- 
tive noise, O denotes element-wise multiplication, and v is 
the channel or spatial signature which is a complex, Gaus- 
sian random vector with a distribution function parameter- 
ized by the nominal direction to the mobile, 6, and the an- 
gular spread (standard deviation), a, see Figure 1. 

Equations (1-5) model the Rayleigh fading of the channel 
taking the spatial dimension into account. The vector a(0) 
is often termed the array response vector and represents the 
array output to a point source from direction 8. The angular 
spread, er, is a critical parameter since this is a measure of the 
deviation from the point source or plane wave model. Fre- 
quency selective fading may be incorporated in this model 
by adding time delayed versions of the signal with different 
spatial characteristics. Also, interfering sources on the same 
frequency channel may easily be incorporated to the model. 
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Figure 1. Geometry of the model characteriz- 
ing the local scattering in the vicinity of the 
mobile. 

2.1.1   Propagation Modeling and Data Experiments 

The spatial channel model described above has been vali- 
dated against experimental data collected by Ericsson Ra- 
dio Systems. In the field experiments, a transmitter has been 
placed in urban areas with non line of sight approximately 
lkm from the receiving array which was elevated 30 me- 
ters above the ground [4]. The data has been processed to 
gain insight into propagation effects as well as into the be- 
havior of some receiving algorithms. The standard devia- 
tion, a, of the angular distribution is a critical parameter for 
SDMA systems, [32]. In [23,31] the angular spread is found 
to be between two and six degrees in the experiments when 
the transmitter is placed lkm from the receiving array. In 
Figure 2, the estimated directions and angular spreads along 
with their associated standard deviations are displayed for a 
number of trials at one location. 

The model above is only reasonable for small angular 
spreads. When the spread is large, which is the case in small 
cells (short range) or significant near field scattering at the 
array the spatial signature can not be parameterized by the 
direction. 

Figure 2. Estimated directions and angular 
spreads in degrees with standard deviations 
versus trial number. 

signal separation or channel estimation techniques. A pa- 
per by Tong et.al. [22] in 1991 sparked a great interest 
in the research community for blind channel estimation 
based on oversampled digital communications signals. A 
synchronously symbol sampled signal provides a sufficient 
statistic for detection, however, it does not allow the unique 
identification of the channel from second order statistics. 
Synchronization requires timing recovery and this is often 
achieved through oversampling in relation to the symbol 
rate of the signal. The oversampling may be achieved ei- 
ther in space or time and results in a cyclo-stationary pro- 
cess when viewed as a scalar process. However, if cast in 
an appropriate vector measurement model, the vector valued 
signal is stationary. Under certain identifiability conditions 
[16,18], the channel may be consistently estimated from the 
second order statistics of the vector valued process. 

Below, we will first view the oversampling as spatial, 
thereafter, oversampling in time will be introduced as well. 
By casting this model in an appropriate spatial-temporal 
vector form, the low rank nature of the signals is apparent. 

Assume that a signal s(t) is transmitted from a user, then 
the m element array output, x(t), is given by 

2.2. A High Rank Channel Model 

Below, a model is developed which is appropriate when 
there is a large delay spread among the multipaths and pa- 
rameterization in terms of direction is not possible. This 
model is to some degree common to the so-called blind 

x(t) = 

Xl(t) 
x2(t) 

xm(t) 

h * s{t) + n(t) = hsL(t) + n(t) , 

(6) 
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where n(t) is the noise and 

SL(t)     = 

a(t) 
s(t - 1) 

s(t-(L-l)) 

h   =    [h(l),h(2),...,h(L)] 

(7) 

(8) 

The impulse response of the channel, antenna elements, re- 
ceiver and transmitter filters is modeled by h and will be 
termed simply the channel response. It will be modeled as 
finite with channel length L. If the channel is low rank, it 
may be modeled by a single complex vector (L = 1). How- 
ever, if the propagation time of s(t) across the aperture of the 
array is on the same order as the symbol time of the signal, 
a higher rank channel model must be used. 
Remark 
Note that in cases where a small number of dominant multi- 
path signals with large time-delays are present, the low rank 
channel model is still useful. With appropriate spatial pro- 
cessing, the individual multipaths may be separated. Sev- 
eral options are available for combining the signal in the 
temporal domain [10], pre-detection, post-detection, soft- 
combining etc.. 

A high rank channel model is expected to be appropriate 
in environments with severe multipath and delay spread, for 
example, wireless local area networks with very high data 
rates. 

2.3. Joint Spatial-Temporal Model 

If L < m the signal of interest is not full rank and sub- 
space methods may be used to estimate the column space 
spanned by the channel h and determine the row space 
spanned by signal SL(*), provided that h is rank L. In or- 
der to determine the actual signal, the finite alphabet prop- 
erty must be exploited, for example as in [21]. If L > m, 
the signal is no longer low rank in the spatial domain and 
joint spatial-temporal processing is required. This can be 
achieved by either oversampling or forming a sliding win- 
dow or both. 

Consider oversampling the received signal by a factor P 
and let the symbol time be 1. We have 

x(t + ^-^-) = h*8i(t) + n'(t) ,    i = 1,• • • ,P ■ (9) 

The vector of all the oversampled antenna outputs is given 
by 

x°(t) = 

x(t) 
x(i + i) 

Lx(* + '^) 

= HaL(t) + n°(t),    (10) 

where 

H = 

h1 

h2 

hp 

n°(t) = 

n(t) 
n(« + js) 

(11) 

The channel matrix, H, is (mP x L) and thus, if mP < L 
the signal of interest will be confined to a low rank subspace 
of the joint mP-dimensional spatial and temporal measure- 
ment space. 

Now, introduce a sliding window and form the vector 

x(0 = 

x°(t) 
x°{t - 1) 

x°(i-(M-l)) 

= flsL+M-l(t)+N(t), 

(12) 
where 

H = 

H 

H 
N(t) = 

n°(t) 
n°(t- 1) 

n°(t - (M - 1)) 
(13) 

The channel matrix, H, is (mPM x (L + M - 1)) and has 
special structure due to the sliding window. In [6, 12, 17], 
it is noted that the channel matrix is linearly parameterized 
with respect to the channel coefficients lending itself to a two 
step subspace fitting approach to estimate the channel. Un- 
der appropriate identifiability conditions, [16, 18], the chan- 
nel may be estimated up to a scaling and this in turn may be 
used to estimate the signals. 

The model above is easily extended to multiple signals 
by letting s(t) be a d-vector with the complex amplitudes of 
the d signals and h(fe) is a (m x d) matrix of channel coeffi- 
cients. Since the signal can be viewed as a low rank process 
in this measurement space, subspace based methods may be 
applied to separate the signals from the noise. Furthermore, 
since the span of the channel matrix may be identified, the 
influence of the channel may be remove from the signals. 
In the presence of multiple signals, temporal characteristics 
are require to estimate the individual signal sequences, Sec- 
tion 3.1.2. 

3. Exploiting the Spatial Dimension 

To achieve increased range in a wireless communication 
system, it may be argued that the mobile to base commu- 
nication (up link) is the critical link. It is desirable that the 
mobiles operate at low powers and thus, for acquisition, the 
base stations must be able to detect weak signals of short du- 
ration in a noisy and possibly interfering environment. In 

469 



the down link (base to mobile communication), increased 
range may be achieved by for example increasing the trans- 
mit power. 

To achieve increased system capacity by employing an 
array of antennas at the base stations, the frequency reuse 
distance may be decreased [4, 15] or the frequency channels 
may be reused with in a cell [32] (or a combination thereof). 
In both cases, the interference in the system induced by other 
users is of course increased. In the up link, this is mani- 
fested by the cross-talk problem. Mobiles operating on the 
same channel (frequency/time slot) with dramatically differ- 
ent signal amplitudes caused by, for example, fading are dif- 
ficult to separate. It is difficult to adequately suppress the 
stronger signal when estimating the weaker signal resulting 
in cross-talk. In some sense the down link problem may be 
even more severe, especially in frequency division duplex 
(FDD) systems [32]. The fading caused by local scattering 
around the mobile (or the base station) is observable in the 
up link but unobservable in the down link due to the uncor- 
relatedness of the fading processes at the different frequen- 
cies. The up and down link channels are not reciprocal. The 
down link problem has received limited attention. In [15] a 
method is proposed which does not exploit directional infor- 
mation whereas in [32] a model based approach using this 
information is proposed. 

3.1. Up Link Processing 

When receiving communication signals at an antenna ar- 
ray, the proposed signal processing methods for distinguish- 
ing different messages, can be grouped in two main cat- 
egories; those that exploit array response information and 
those that do not. Assuming the low rank channel model 
with small spread angle described above, it is possible to use 
direction estimation techniques which use array response in- 
formation to separate signals. These methods will be re- 
ferred to as using directional information and include tech- 
niques proposed in e.g. [32, 2, 19]. 

The other class of methods, makes few or no assumptions 
on the array response but rely on other properties for sepa- 
rating the signals. 

3.1.1    Directional Information 

Due to the local scattering, spatial signature represented by 
v does not belong to the array manifold, i.e., 

v T^ a(0),  for any 8 (14) 

This may also be interpreted as the wavefront at the array 
not being planar. This may be interpreted as spatial diver- 
sity, i.e., the correlation between antenna elements decreases 
with distance, this is seen in the structure of the second mo- 
ment of v in (3). The fiat fading becomes less severe at the 
array as the diversity increases, i.e., a increases. Techniques 

that make no use of directional information, e.g., [26] ef- 
ficiently exploit this fact and perform better as the angular 
spread increases. Methods that are based on directional in- 
formation, a(0), for estimating the signals [2, 14] will in 
general deteriorate as the angular spread becomes larger. 
These methods which are related to traditional beamform- 
ing techniques, are derived from a point source model. This 
behavior is not surprising since v will not correspond to an 
array response vector for any 8. 

In [11], the directional error caused by local scattering 
is analyzed and characterized for different estimators which 
make use of array manifold information. The error is in gen- 
eral small and if the goal is to increase the range of a cellu- 
lar system, this model error is not critical, [29]. However, 
the situation is quite different when attempting to host mul- 
tiple mobiles on the same frequency channel. Even a small 
directional error can cause a significant degradation in the 
estimates of the signals. Since the array manifold vector in 
the nominal direction, 8, differs from the spatial signature, 
an error will be made when determining the copy vectors 
using the point source model. Consider the case when two 
signals are present and data is collected during a short pe- 
riod in time so that the users may be considered stationary. 
In a fading environment, the signal strengths of the two sig- 
nals can be quite different. Thus, a small error in suppress- 
ing the stronger signal will cause a significant decrease in 
signal to interference and noise ratio (SINR) of the weaker 
signal. One way of improving the performance in these sit- 
uations is to modify the array manifold model. The estimate 
of the signal subspace may be quite accurate and this infor- 
mation can be used to obtain an improved estimate of the 
spatial signatures. 

We will provide a simple modification to the point source 
model which yields improved estimates of the signal wave- 
forms. For small angular spreads, the spatial signature can 
be approximated as a linear combination of the array mani- 
fold vector and its derivative 

da(0) 
d(9 v~a(öi,ft)=a(0j)+Pid(öO»     d(flj) = 

0=8 
(15) 

This may be viewed as a generalized array manifold, 
a(0j, pi), parameterized by 0» and pt. Assume that estimates 
of 8 and of the signal subspace, ES) have been obtained 
from the data. We may pose the problem of finding the p 
that provides the best fit between the signal subspace and 
the generalized manifold. This is a subspace fitting prob- 
lem where p is a linear parameter in the manifold and can 
thus be solved for in a least squares sense. Let A(0, p) = 
[a(#i ,pi)... a(0d, pa)} where d is the number signals. The 
following minimization problem 

p = argnünTr{A*(e)p)(I-EiE;)A(e,p)}     (16) 

can be solved explicitly to provide and estimate of p. 
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Consider the following example where two signals 50 dB 
and 30 dB (on average) above the spatially and temporally 
white noise are present. An 8 element uniform linear ar- 
ray is used, the nominal directions to the sources are 0° and 
20° and assumed known, in each trial 100 snapshots are col- 
lected, and the signals are copied (estimated) using the so- 
called deterministic weight vectors, 

a(t) = (Ä*Ä)-1Ä*x(i) (17) 

In Figure 3, the average SINR over 500 independent noise 
and channel realizations2 is displayed for the weaker sig- 
nal as a function of the angular spread in degrees. For this 
case, the improvement obtained by using the generalized ar- 
ray manifold can be as much as 10 dB on average, much 
larger improvements may be obtained for certain channel re- 
alizations. The estimator above is quite straight forward, it 
is certainly possible to jointly estimate 9 and p. Alternative 
generalizations of the array manifold are also possible. 
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Figure 3. Signal to interference and noise ra- 
tio for the weakest signal as a function of an- 
gular spread. 

some temporal characteristics of the signal must be used. 
In [2,26], a reference signal is assumed available which may 
be correlated with the array output to achieve signal sepa- 
ration. This reference signal may be a known training se- 
quence, a known code sequence [13], or may be generated 
by feeding back decisions [8]. There are a number of meth- 
ods that make use of the constant modulus property or finite 
alphabet of communication signals to separate them [1,21]. 
In general, these methods are concerned with the low rank 
channel model. 

As seen in the previous section, also in the case of a high 
rank channel, the signal is low rank for an appropriate mea- 
surement model. In [12,18] the channel estimation problem 
for one signal in noise is cast in a subspace framework. Us- 
ing subspace based methods, estimation algorithms are pro- 
posed and evaluated. In [6] the subspace based methods are 
analyzed and performance bounds are derived. Detecting 
the transmitted symbol sequence in the presence of multi- 
ple users is described in [24]. The row space spanned by the 
signals is first identified, this removes the effect of the chan- 
nel (inter symbol interference). The individual transmitted 
signals may be separated by exploiting the finite alphabet 
property. In [21] the detection is achieved by alternatively 
making symbol decisions (from an estimated channel) and 
then estimating the channel (based on a known symbol se- 
quence). A similar concept is described in [20] where initial 
symbol decisions are used to reconstruct a reference signal 
which in turn is used to estimate the channel and so on. 

The problem of blind signal separation in this application 
is difficult although it may be relevant when there is large 
uncertainty surrounding the transmitted signal. In practical 
digital communication systems, known bit sequences are al- 
ways present in some form to identify users and establish 
a communication link. Training sequences may be used to 
obtain an initial estimate of the channel and then a tracking 
mode takes over, updating the channel estimate based on the 
demodulated and possibly remodulated signal. 

3.2. Down Link Processing 

The method described above makes no use of available a 
priori information on the source signals, for example, train- 
ing and preamble sequences in digital communication sys- 
tems are often present. In [7, 25], an approach is formu- 
lated which exploits both temporal and spatial information. 
In [3], it is shown how this method may be integrated with 
the Viterbi algorithm to perform accurate symbol detection 
in mobile communications using the GSM standard. 

3.1.2    Non Directional Information 

When attempting to separate multiple signals or suppress in- 
terference without making use of directional information, 

2The channel realizations are normalized to have norm %/8. 

Consider the simple low rank channel model in (1) which 
may be used to characterize the down link spatial channel 
statistics as well. However, in most current frequency divi- 
sion duplex (FDD) systems the up and down link flat fad- 
ing may be considered independent. If the main objective is 
increased range, this does not pose a major problem. How- 
ever, the unobservable down link channel is one of the main 
obstacles if the intention is to also increase system capacity. 
An array could be employed at the mobile site as well, but 
in many applications this is not considered a feasible solu- 
tion. Another alternative is to attempt to estimate the chan- 
nel by employing feedback [5]. This requires a complete re- 
design of protocols and signaling and is probably only pos- 
sible in environments which vary very slowly in time. This 
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technique may be feasible for movable (rather than mobile) 
systems such as indoor wireless local area networks. 

If we are attempting to increase capacity in current FDD 
systems in the down link, the information gained from the 
signal separation techniques in the up link, can not be used 
directly. Since the channels are not reciprocal, reusing an 
optimal weight vector obtained from receive data in the 
transmit mode is not advisable. One should at least attempt 
to transform the weights to the transmit frequency. How- 
ever, this is not a well conditioned problem unless an array 
response model is introduced. When using an array model 
to transform weight vectors, directional information is ex- 
ploited. In [27], the spatial signatures of the users are first es- 
timated using temporal information, then the directions may 
be extracted by applying a parameterized array manifold. It 
should be noted that in [15], a transmit scheme is proposed 
which does not use directional information. The down link 
scheme is based on statistical information estimated in the 
up link to take into account the unobservable fading. How- 
ever, the frequency duplex distance is not compensated for 
causing the system to degrade in the presence of line of sight 
propagation. 

In time division duplex (TDD) systems, the up and down 
link channels can be considered reciprocal if there is limited 
movement between receive and transmit. Up link channel 
information may then be used to achieve spatially selective 
transmission and thus increasing capacity [10]. When the 
channel is high rank, combined spatial-temporal process- 
ing may be applied on the down link to increase capacity. 
The estimated up link channel may be inverted in the sense 
that the signals are appropriately pre-equalized and spatially 
multiplexed at the base station to minimize inter symbol and 
co-channel interference at the users, [9]. 

The efficient use of the spatial dimension in current FDD 
cellular systems with high mobility requires the use of direc- 
tional information. Array response modeling is feasible for 
medium to large size cells with high placement of the base 
station antennas avoiding near field scattering. 

4    Down Link Capacity 

As argued previously, the down link is likely to be the 
limiting factor when increasing the capacity of cellular sys- 
tems. This is mainly due to the independence between the up 
and down link channels when FDD is employed. There are 
two main approaches for increasing capacity with antenna 
arrays. The frequency reuse distance may be decreased or 
multiple mobiles may be allocated to the same cell (or some 
combination of the above). In [32], the down link capac- 
ity problem is studied for FDD systems and a transmission 
scheme is proposed based on channel information estimated 
on the up link. It is shown that when inter cell nulling is not 
employed, multiple mobiles per cell is in general a more ef- 
ficient way of increasing capacity. Also, capacity depends 

Figure 4. Possible configuration of an SDMA 
system. 

to a large degree on the spread angle of the mobiles. In 
[30], a down link system using inter cell nulling and slow 
up link power control is studied. In this case, reduced clus- 
ter size provides the largest capacity increases. Note how- 
ever that this requires power control with good dynamic 
range and direction estimation to users in neighboring cells. 
Also, inter cell nulling may be quite difficult even in a syn- 
chronous TDMA system when propagation delays are sig- 
nificant. However, reducing the frequency reuse distance in 
conjunction with frequency hoping and dynamic channel al- 
location could reduce the requirements on frequency plan- 
ning. 

5   Summary 

Providing adequate coverage and sufficient capacity are 
two challenging problems for wireless communication sys- 
tems. Antenna arrays at the base stations of cellular sys- 
tems can increase range compared to current systems. The 
capacity problem can be significantly mitigated by spatial 
division multiple access (SDMA) techniques. SDMA sup- 
ports multiple connections on a single conventional channel, 
based on spatial reception and transmission schemes and/or 
decreased frequency reuse distance by reducing and reject- 
ing interference. Thus, capacity may be increased over cur- 
rent wireless system implementations. 
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Abstract 

The characteristics of the mobile radio channel vary 
between the features of an AWGN-channel and those of a 
Rayieigh fading channel. 

The so far known trellis codes do not meet the re- 
quirements of both these channels, because they are either 
adapted to the AWGN or the Rayleigh fading channel. 
In this paper1 we present new multiple trellis codes, which 
are well suited for the use in the AWGN-channel and the 
Rayleigh channel and are thus especially suited for the mo- 
bile radio channel. 

A new measure of complexity is introduced which allows 
a fair comparison between multiple trellis codes of different 
dimensionalities. It is based on the number of algebraic 
operations per decoded information bit. 

1. Introduction 

Since their invention in the early 1980ies [1] trellis codes 
have been used exhaustively to gain noise immunity in com- 
munication systems. Trellis codes can be applied in systems 
with high information rates and Rb > 1 information bit per 
channel symbol, whereas the classical binary block and con- 
volutional codes are constrained to rates Rb < 1. 

The basic idea of trellis codes is simple: instead of trans- 
mitting redundant bits as in the case of block and convo- 
lutional codes the size of the transmission alphabet M is 
increased such that M > 2Rh, i.e. there are more symbols 
for transmission as actually needed. 
The redundancy of the increased symbol alphabet is ex- 
ploited in a way that at each time slot tk only a subset of 
all possible symbols is allowed for transmission. The valid 
symbol sequences are created by the actual information bits 

bk,u at time tk and the contents of a finite state machine. The 
state at time slot tk is defined by the values of the previous 
information bits &fc_i,„, • • • ,&*_„,„ attimesifc_,, • • ■ ,tk-n- 
The remaining task is to define some criterion how to select 
the allowed symbol sequences and to find appropriate finite 
state machines. 

For the AWGN-channel the problem was solved by 
G. Ungerböck [1] - [3], who actually invented trellis coded 
modulation (TCM). In [1] - [3] MPSK- and MQAM- 
alphabets are used. The optimization criterion for trellis 
codes in the AWGN-channel is the squared Euclidean dis- 
tance (A2

free) between allowed coded symbol sequences 
since the error performance at high values of the SNR is 
lower bounded by: 

Pb>Q 
*free 

(i) 

where Wo/2 is the two-sided spectral density of the additive 
white Gaussian noise and Q(-) the complementary Gaussian 
distribution function. 
In [4] the idea of trellis codes for the AWGN-channel is 
extended to multiple symbols, i.e. ^-tuples of MPSK- or 
MQAM-symbols are assigned to the trellis branches. 

For the Rayleigh fading channel the TCM-problem was 
solved by D. Divsalar et al. [5],[6]. It turned out that the 
minimum number of distinct symbols (£e//) between any 
two coded symbol sequences has to be maximized for min- 
imizing the error rate: 

Pb> 
1 

ß2 ■ SNRLe" ' 
(2) 

1 This work was sponsored by the Austrian Science Foundation (FWF), 
grant 10294 ÖPY. 

The effective length (Leff) dominates the slope of the bit 
error rate curve as a function of SNR. The parameter ß2 is 
the so called product distance, i.e. the product of all non-zero 
Euclidean branch distances along any two trellis paths. It has 
to be maximized as well. Conventional trellis codes with one 
symbol per trellis branch and trellis codes with more than 
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one symbol per trellis branch (multiple trellis codes), which 
are especially designed for the Rayleigh fading channel, can 
be found in [5]-[10]. 

It can be seen from eqn.(2) that on one hand the minimum 
squared (free) Euclidean distance A2

free is of no primary im- 
portance for the error performance in the Rayleigh fading 
channel and on the other hand the effective length and prod- 
uct distance do not show up in eqn.(l) for the BER of the 
AWGN-channel. Hence the optimum trellis codes for the 
two channels are obtained by different optimization criteri- 
ons. As a consequence trellis codes for the AWGN-channel 
do not perform well in the Rayleigh fading channel and vice 
versa. 

The mobile radio channel - as met in wireless commu- 
nications - has been of growing economic interest in the 
recent years. Any communication system has to cope with 
short and long term time variant channel characteristics. 
The short term fluctuations caused by multipath propaga- 
tion result in deep fades of the signal power. These deep 
fades can be combated against with equalization, interleav- 
ing, and coding techniques. However, there are also long 
term fluctuations in the characteristics of the mobile radio 
channel depending on the actual position of the base and the 
mobile station: in urban areas the signal is affected by mul- 
tipath propagation and thus the fading channel is Rayleigh 
like. In rural areas there are only a few scatterers, hence the 
channel is similar to an AWGN-channel. 
Therefore it is clear that none of the so far known trellis codes 
are suited for the mobile radio channel which requires trellis 
codes optimized for the AWGN-channel and the Rayleigh 
fading channel simultaneously. 

The rest of the paper is organized as follows: In section 2 
we will present new construction principles for trellis codes 
which are well suited for the use in the AWGN-channel and 
the Rayleigh fading channel. Finally, in section 3 a new 
definition of trellis complexity will be given. 

2. Code construction 

Any code that performs well in the AWGN-channel and 
the Rayleigh fading channel will also perform well in the 
mobile radio channel which fluctuates between AWGN and 
Rayleigh characteristics. The optimization criterion for 
our new trellis codes is to maximize the three parameters 
Leff,A

2
free,ß

2 simultaneously. Our results are based on 
three new supports: 

• The construction rule for the MPSK-subset decom- 
position which give optimum trellis codes for fading 
channels presented in [6] have been rearranged. The 
new rules can be interpreted as a non linear labeling 
method of the MPSK-signals, in contrary to the linear 
labeling method presented in [6]. 

The new subset decomposition results in an increased 
free distance Ay-ree and an increased product distance 
ß2 compared to the so far known codes. 

• A completely new mapping of multiple MPSK- 
symbols to trellis branches increases the effective 
length Leff and the free distance A2

ree. The idea 
behind the new method is to optimize the distances be- 
tween emerging and the distances between reemerg- 
ing branches of all trellis states (in the so far known 
codes only the distances between emerging branches 
are optimized). 

• A new bit-to-symbol mapping helps to minimize the 
number of bit errors per error event. Binary infor- 
mation sequences with a small Hamming distance 
correspond to coded symbol sequences with a small 
Euclidean distance and a short effective length. 

• Sometimes this three supports are supplemented with 
a fourth action: instead of doubling the symbol al- 
phabet needed for uncoded transmission as applied 
in all so far known systems (cf. [1]), a fourfold larger 
alphabet is used which allows to increase the effective 
length and minimizes the number of nearest neighbor 
sequences. 

The multiple MPSK trellis codes constructed according to 
these specified rules outperform the so far known codes. In 
the AWGN-channel the average gain of SNR is approx. 1 dB 
at Pb = 10~5, in the Rayleigh fading channel it is approx. 3 
dB. In fig.(l) the simulation results of two trellis codes are 
shown. One has been constructed according to our new 
rules and the other one according to the rules given in [6]. 
In both cases 4D-QPSK symbols (pairs of QPSK-symbols) 
are used for transmission at rate Rb = 1 information bit per 
QPSK-symbol. The number of trellis states equals s = 4. 
The code parameters are: Leff = 4, A2

free = 10, 01 = 32 
for the new code and Leff = 3, A2

free = 6, ß2 = 8 for the 
other code. It can be seen in fig.(l) that our new code clearly 
outperforms the other code: at Pb « 10"5 the coding gain 
equals 2.5 dB in the AWGN-channel and more than 4 dB in 
the Rayleigh fading channel. 
A more detailed description of our new construction rules 
and a complete list of all new codes can be found in [ 11]. 

3. Code complexity 

Complexity is an important aspect of trellis codes. All 
so far given definitions of TCM-complexity consider the 
connectivity of the trellis graph regardless whether the con- 
nections contain parallel transitions or not. Following the 
notation of G. Ungerböck [3] this complexity can be written 
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Figure 1. Simulation results of two 4D-QPSK 
trellis codes with four states in the AWGN- 
channel and the Rayleigh fading channel. 

as: 

K 
s-2n 

(3) 

where s is the number of trellis states, n the number of coded 
bits per transition, and k the number of channel symbols per 
transition. 

In contrast to this definition we propose a more prac- 
tical definition of TCM-complexity which emphasizes the 
computational effort of the decoding process. The newly 
defined trellis complexity KB measures the number of al- 
gebraic operations per decoded information bit. It can be 
written as: 

Kf 
k-M + s-2kH'-(k+l/x) 

k~Rb 
(4) 

where M is the seize of the symbol alphabet, and x the 
number of parallel branches per transition. The derivation 
ofeqn.(4)can be found in [l 1]. It is also shown in [11] that 
the complexity K, eqn.(3), favors trellis codes with large k 
in an unfair way. This is overcome by the new definition of 
KB which shows that the computational effort of the decod- 
ing process grows exponentially with k. 
However, this drawback of trellis codes with high multi- 
plicity is all alleviated by the fact that these codes are well 

suited for efficient parallel implementation in real time sys- 
tems [12]. 
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Abstract: A formula for the power spectral density 
of maximum entropy M-ary (d,k) constrained 
sequences is given. The formula for spectrum is 
derived by using the method of a difference 
equation assigned to a Markov chain generating M- 
sry (d,k) sequences. 

Introduction 

Multi-amplitude (d,k) codes are introduced 
by French and Wolf [4], Earman [3], and 
McLaughlin [7]. One of the applications of these 
codes are electron trapping optical recording 
channels [7]. The M-ary (d,k) code stream {a<")}n€Z 

consists of the symbols from an alphabet 
A={A,,...,A/J of size M The lengths of the 
sequences of consecutive like symbols (phrases) are 
constrained, and must be in the range fd+],k+lj. In 
this letter we consider the power spectral density 
(spectrum) of the M-ary (d,k) codes. The formula for 
spectrum of maximum entropy M-ary (d,k) codes is 
derived. 

The generating a constrained sequence 
{a(")}neZis modeled by reading off the state labels 
during a random walk through a finite directed 
Moore-type graph [2, Chpt 3]. When probabilities 
between states are specified, then a sequence of 
graph states {sW}neZ become a Markov chain, and a 
sequence {a<n>}n€Z is a memoryless function of the 
Markov chain a(">=h(s(">) [1, Chpt. 12]). 

To derive a closed form expression of the 
power spectral density of a memoryless function of 
the Markov chain we use the difference equation 
method described by Vasic in [8] and [9]. This is 
primarily a numericaly efficient algorithm for 
spectrum computation, but the Z)-domain version of 
this method simplifies the algebraic manipulation 
with the expression for the autocorrelation function 
in cases when a graph has some specific structure. 

The Markov Chain Generating M-ary (d,k) 
Sequences 

The transition diagram of the Moore-type 
Markov chain generating M-ary (d,k) sequences is 
shown in Fig. 1. The diagram consist of M identical 
branches modeling the generation of the phrases of 
different symbols Am, l£n<M. The states are drawn 

as a circles and denoted by pairs (m,i), l<m<M, l^i 
<k+l. The label inside the circle denotes the symbol 
generated from this state (Am=h((m,i), for all /'). The 
incoming into the state (m,i) means starting the 
generation of the phrase of length i, of symbols Am. 
The edge labels are of the form pD, where p is the 
transition probability and D is the time delay 
operator. The Markov chain described by the 
transition diagram given in Fig. 1 is stationary and 
ergodic [1, Chpt. 12]. The stationary probabilities of 
states and transition probability between states of 
the Markov chain are given by the following 
theorems. 

Lemma 1: The M-ary (d,k) constrained sequence 
achieves maximal information rate if the phrase 
lengths are i.i.d. random variables with probability 
distribution P^(M-1)M-C\ d+l<i^c+l, wherein C 
is constant satisfying 

ZL¥-°'=1/(M-v- (i) 

Proof: The proof is straigforward generalization of 
the Theorem 1 of Zehavi and Wolf [10]. We can 
also prove this lemma by considering variable 
length graph [6] of M-ary (d,k) constraint. This 
graph contains k+l-d loops, and the labels of loops 
are of the form (M-l)D', d+l<i4c+l (see [6]). 

Remark 1: C is the channel capacity of M-ary (d,k) 
constraint in M-ary unit of information amount. 

Theorem 1: For the Markov chain generating M-ary 
(d,k) constrained sequences of maximal entropy we 
have: 
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a) The   stationary   probability   of   states   are 

Pr{s(«Hm,i)}=frr(l/ML)(Pi+...+Pk+1),      l<m<M, 

l^^c+1, wherein L is average phrase length 
L=(d+l)Pd+I+...+(k+l)Pk+l. 
b) The transition probability to (m,i) from any state 
(1,1), 14<M, l*m is Pr{s("Hm,i)\s("->HI,l)}= 
=(M-1)P,. 

Proof: The proof is given in Appendix A 

Power Spectral Density Formula 

To derive a closed form expression of the 
power spectral density of the stream {a(")}neZ which 
is a memoryless function of the Markov chain 
{s<n>}neZ given by the transition diagram shown in 
Fig. 1 we use the difference equation method 
described by Vasic in [8] and [9]. Let us denote the 
Markov chain state set by S,and one step transition 
probabilities between states u,veS by 
pu\v=Pr{s(n>=u\s<n-»=v}. Let Su be the set of states 
from which Markov chain can pass into state u, let 
pu be stationary probability of state «, and let 
symbol Au be generated from state u i.e. Au=h(u). 
Then the difference equation method is summarized 
in the following theorem. 

Theorem 2 [8], [9]: The autocorrelation func-tion 
rM=E{aOhO+")},jeZ, n>0, of the stream {a^}„eZ> 

a(n)=h(sM) where {s(n>}neZ'\$ a Markov chain can be 
obtained from the following set of difference 
equations 

veS¥ 

(2) 

rw-E4-/. CO 

ve5 

Since the stream {a<n>}neZ is cyclostationary, 
but not wide sense stationary random process, for 
finding its spectrum the Wiener-Kinchine theorem 
cannot be used. The problem is usually avoided by 
considering the phase averaged process {afn+fy„eZ 

[5]. Since the stream {a<n>}neZ is real valued it 
follows that r(-")=r<">, and the spectrum of the 

stream {a(»^}neZ is <P(f)=-r«»+R(D)+R(I>i))t, 
where R(D) is D transform of the r<n>. 

(R(D)=Zn20rC)), and D=exp(j27tf). 
By applying the system of equations (2) 

given by Theorem 2 on the Markov chain 
generating A/-ary (d,k) constrained sequences in Fig. 
1, with stationary and transition probabilities given 
by statements of Theorem 1, we obtain the formula 
for the spectrum. 

Theorem 3: The power spectral density of the M-ary 
(d,k) constrained stream {a<"^}neZ'\% given by 

<*>(/) = 
1        lG(D)|+(M-l)Re{G(£)}-(M-l) 

Isin2(/sO \M-\ + G(D)\2 

where G(D)=^      P} • DJ and x is random variable 

uniformly distributed over [0,1). 

Proof. Proof is given in Appendix B. 

As an illustration in Fig. 2 the spectra of 
signals modulated by maxentrropic M-ary (d,k) 
sequences are shown for different alphabet size M. 
The rectangular pulse shape is assumed. We can 
observe that the content of low frequency spectral 
components increases with the increasing M. 

Conclusion 

By using the difference equation method, we 
have derived the clossed form expression for 
spectrum of M-ary maxentropic (d,k) codes. The 
expression for R(D) is very similar to one for binary 
(d,k) codes, obtained by Zehavi and Wolf [10] and 
Gallopoulos, Heegard and Siegel [5]. Instead of 
1+G(D) in the denominator of the formula for R(D) 
for binary codes we have the term M-J+G(D). 

Appendix A 

Proof of Theorem 1: When a phrase of symbols A, 
is completed, the probability of selecting some other 
amplitude Am (Am*A) is 1/(M-1). So, the labels of 
all edges incoming to the branch m have term 
1/(M-1). In other words Pr{sMe{(m,i)\l+d<i3c+l} 
\s<»->HI,l)}=l/(M-l). When a branch is selected, 
the probability of generating a phrase of the length i 
is Pt,   d+l<i&+l. Obviously P,=0 for J<i<d+J, 
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and for i>k+l. According to Lemma 1, for 
maxentropic  sequences  we  have  P^fM-ljM-0, 

d+13<k+l, so that 

Prf^M^O^-'MU)} = ^ • ^ 

Since  all M branches  are  equiprobable, 
according to the Bayes formula, for stationary 

probabilities ^Prfs^MmJ)}, I<i<&+1, l<m<M, 
we can write (see Fig. 1) 

nM = Pk+i ■ «i 

Äi=l-ai*i + JJ-*i. d + \<i<k 
/r,=l-/r,+1, \<i<d 

By solving the system (A.2) we obtain 

nr(l/ML)Y^*\Pj^ 13&+1, where L is average 

phrase length. QED- 

Appendix B 

For Markov source generating M-dxy (d,k) 
constrained sequences (Fig. 1) the initial conditions 

in difference equation method [8] tatf^^A^, 1 

<i<k+l, l<m<M, wherein ^ are state stationary 
probabilities given by the statement of Theorem 2. 
The autoccorelation function at n=0, r«» is 
r«»=(l/M)-(AI2+...+AM2). 

The D transforms of difference equations 
following from Fig. 1 are 

FmAD) = ^Z-l-D-Wm(D)-tPrDJ-- + 

j-i 

where WJD)= X",, „m F;>1 (D); län^- 

By summing the expression for Fml(D) over 
all m, and after some algebraic manipulation we 
have 

M 

W(D) = JJFmJ{D) = G{D)-W{D) + 
m=] 

1     \-G(D) 
(B.l) 

ML     \-D    ti 

where G(D)^^PrD>. 

Without loss of generalirv- the bipolar, zero 
mean stream can be assumed. For maxentropic case 
all symbols are equiprobable, so we have that 
A,+...+AM=0. Since G(D)*0, from (B.l) we have 
W(D)=0. From this, since W(D)=WJD)+Fml(D), it 
follows FmJ(D)=-WJD). 

From the expression (B.l) for W(D) it 
follows 

w{D) = -iM-iy^~± l~G(D) 
nmyu)      KM     ,  ML   l_D  M_1 + G(£)) 

If D transform of the autocorrelation function is 
written in the form R(D)=A,R,(D)+...+ AJtJD), 
where RJD)=Fnl(D)+...+FmMI(D), then, after 
some manipulation, we obtain 

Am     2D        l-G(D)       Am    1 
R^D)~~ ML(\-Df M-l + G(D)+ Ml-D 

The D transform of whole autocorrelation function 
is 

1        1     2D        \-G(D) 
R(D) = \-D    L(\-D)2 M-l + G(D) 

From the above expression and definition of the 
spectrum, the statement of the Theorem 3 follows 
directly. Q-E.D. 
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Abstract 

In this paper digital system which contains two parts 
is considered. The first part is optical communica- 
tion system with ASK modulation. Optical receiver is 
constructed as heterodyne asynchronous ASK receiver. 
Signal is transmitted in baseband through the second 
part of system (coaxial cable). Probability density func- 
tions for both of hypotheses (H0 and Hi), optimal 
threshold and performance of system are determined for 
proposed system. Optimal threshold is determined on 
condition that error probability is minimal. 

1      Introduction 

Digital system which is investigated in this paper 
has two parts. The first part is optical communica- 
tion system with ASK modulation. Optical receiver 
is constructed as heterodyne asynchronous ASK re- 
ceiver. Signal is transmitted in baseband (for exam- 
ple by means of coaxial cable) through the second part 
of system. System ought to be designed on condition 
that error probability is less than beforhand given value 
( for example 10~7). As optical system could be de- 
signed that error probability is slight enough, estima- 
tor is not strictly behind envelope detector. Signal is 
transmitted in baseband by means of section of coaxial 
cable, and estimation is done at the end of this section. 
Noise components in optical receiver (shot noise, ther- 
mal noise etc.) are approximated by white Gaussian 
noise. Disturbances which are appeared during trans- 
mission by means of coaxial cable can be represented 
as sum of additive white Gaussian noise and crosstalk. 
Crosstalk is modelled as sinusoidal disturbance with 
constant amplitude and uniform distribution of phase. 

Probability density functions for both of hypothe- 
ses [H0 and Hi ), optimal threshold and performance 
of system are determined. Optimal threshold is deter- 
mined on condition that error probability is minimal. 

2    Performance determination 

The first part of system is constructed as optical 
communication system and it contains optical ASK 
transmitter, optical cable, 3 dB coupler ( balanced de- 
tector), two photodiodes, band pass filter and envelope 
detector. The second part of system, in baseband, con- 
tains coaxial cable, low-pass filter, sampler and esti- 
mator. Optical receiver is constructed as heterodyne 
asynchronous ASK receiver. 

In Fig.l i(t) represents crosstalk which is modelled 
as sinusoidal disturbance i{t) = Ai cos(wo*+0i)> where 
6i has uniform distribution of phase p(6i) = 1/2TT, | 
öi |< 7T. L0 lightwave addition to incoming optical sig- 
nal is implemented by using balanced detector. Out- 
coming signals of balanced detector (Xi and X2) illu- 
minate separate photodiodes and generate currents 

ii(t) = R\Xi\2+ni{t) 

i2{t) = R I X2 I2 +n2{t) 

(1) 

(2) 

where ni (*) and n2 (i) are shot noise components with 
power spectral densities Sni(w) = qR \ Xi \ and 
SniH = qR \ X2 |2; R = r/q/{hv is responsivity of 
photodiode; »7 is quantum efficiency and q is charge of 
an electron. Total current is determined as [1] 

i?(| Xi l2 
*l(0-»2(t)     =     H{\Ai\--\*2 

=    2Re{SL*} + n{t) 
Xi I2 +n{t) 

(3) 

Re{} is real part of complex number, and n(t) = 
ni(t) - n2{t) is approximated as a zero-mean white 
Gaussian noise with PSD 

Sn{u>) = qR{\ Xi |2 + I X2 |2) = qR{\ S |2 + I L |2)   (4) 

As incoming optical signal has form 

S = as/¥,eiuoT,      ae{0,l} (5) 
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ASK 
trans nutter 

estimator 

Figl. 

and LO lightwave is 

total current will be 

(6) 

i'i(t) - i2{l)    =    a2Ry/PtPLOcos\{<a0 - u>LO)t) 

=    a2R^P,PLOcos(wiFt) + n{t) (7) 

So, problem is reduced to the classical detection prob- 
lem of a known signal in additive white Gaussian noise 
[2],[3]. As it has been shown in [3], probability density 
function for stochastic variable Y (behind envelope de- 
tector) has Rayleigh distribution when a = 0 

Py(y/Ho)=--~e-^ y>o 

ind Rice an distribution when a = 1 

JV(y//fi) = -V 
. ai+-*' 

■T (yA y>o 

(8) 

(9) 

where a7 = qRPLO and A = 2Ry/PJ:>Lö. 
Disturbances which are appeared during transmis- 

sion by means of coaxial cable can be represented as 
sum of additive zero- mean white Gaussian noise (with 
variance er2) and crosstalk. Crosstalk is modelled as 
sinusoidal disturbance with constant amplitude (Ax) 
and uniform distribution of phase (0j). So, conditional 
probability density function for stochastic variable Z 
(in reception place) for the case of hypothesis //0 can 
be determined as 

iV*o (*/*i. y) = 
<T7\

/2ir 
>.xp(- 

{z -y - AiCosOi)' 
)(10) 

where By has uniform distribution and y has Rayleigh 
distribution and PDF is 

PZ/HA
Z
)=   / /         7== 

J-piJO      <Tl\/lit 

exp(- 
(z-y-Ai cosOi)2 

o_2 / 2*1 

i^exp{-h]d6idy (ii) 

On the same way PDF for stochastic variable Z ( iu 
reception place ) for the case of hypothesis Hi is 

/    -7T ■pi J(l      &2V &K 

(z — y — Ai cos öi)2 

exp( 

1  y 

2a2 ) 

Weip(" 
y2 + A2,T .Ay .__)70(_»)^ldj,    m 

If we set cos öj = % and use Chebyshev quadratures 
expressions, (11) and (12) become 

N 

Pz/H0 (*) = 
1 

cx"2a2^y/2ir E 

i: yexp(- i-^!)Jv (1„ 
N 

1 --  f00 

Pg/H, (*) =■■ -~-^7r= ]L /    ye*P <T"<T2N\/2ir fc^Jo 

,    y     (z-y-Aixk)
2 

2a2 2a\ 
)h{~hdy     (U) 
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where 

,2TI\ 
zfc=cos(^-(2fc-l)),   (A; =1,2 N) (15) 

PDF for hypothesis H0 is given graphically in Fig. 
2. Ai/tr and A\ja-z are parameters. 

PDF for hypothesis Hi is given graphically in Fig. 
3. A/a and A\fai are parameters. System ought to 
be designed on condition that error probability is not 
greater than beforehand given value. Error probability 
dependence on threshold is drawn in Fig.4. Optimal 
threshold is determined. It is 0.65A. Error probabil- 
ity dependence on signal to noise ratio {20log(A/a), in 
dB), for this optimal threshold, is drawn in Fig.5. 

3    Conclusion 

Based on obtained results for the proposed system, 
we can conclude that this system can be applied in 
practice. 
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Abstract 
A new techique for combining the LMS and LMF cost sunc- 
tions is proposed in this contribution. The resulting stochas- 
tic gradient adaptive algorithm uses a time varying mixing 
parameter to optimise a combination of the above cost func- 
tions, taking into consideration the noise statistics. Fur- 
thermore, the behaviour of the proposed algorithm is anal- 
ysed and convergence conditions are established. Simula- 
tion results verify the ability of the algorithm to adapt itself 
to the noise characteristics, illustrate its enhanced perfor- 
mance and support very well the theoretic analysis. The 
continuous adaptation of the mixing parameter adds flex- 
ibility and enables rapid response of the algorithm to non 
stationarities. 

1. Introduction 

Stochastic gradient adaptive algorithms are quite popular 
and have been used in a wide variety of applications includ- 
ing array processing, system identification, channel equal- 
ization, echo and other interference cancellations, mainly 
due to their inherent simplicity. LMS is the mostly known 
such algorithm and its performance has been thoroughly 
investigated in the literature (e.g [4, 5, 7, 12]). Its most 
attractive feature is its amenability to simple implemen- 
tation, while its main drawback is the degradation of its 
performance due to eigenvalue spread. 
The LMS algorithm belongs to a more general family, which 
attempts to optimize (minimize) the following cost function 
[12] 

J = E{e2K(n)}     ZT =1,2,.... (1) 

and is obtained by setting K equal to 1, i.e., J = E{e2(n)}. 
For K — 2, we obtain the second member of the family, i.e., 
J = E{e4(n)}, known as the Least Mean Fourth (LMF) 
algorithm. Walach and Widrow compared the two algo- 
rithms above and found out that under certain conditions 
the LMF outperforms LMS [12]. Furthermore, it is obvious 
that when far from the optimum (i.e., e(n) > 1 ) the LMF 
algorithm exhibits faster convergence. 
The LMS+F algorithm [8] was a first approach towards the 
combination of the advantages of the two algorithms. More 
precisely, LMS+F aimed at exploiting the faster initial con- 
vergence of the LMF algorithm, while retaining the desir- 

able LMS characteristic of low misadjustment and immu- 
nity over the different distributions of noise, when around 
the optimum. 
A mixed criterion algorithm of this type, obtained though 
from a different perspective, was also presented in [3]. The 
proposed algorithm was derived in an attempt to minimise 
the variance of the square error subject to a constraint 
on the mean square error. The constrained minimisation 
method resulted in a weight update formula with a fixed 
preselected mixing parameter. However, no information 
was provided about the optimal value of the mixing param- 
eter or the constraint. The proposed combination appeared 
also in [l], where a constant mixing parameter A was used. 
In this contribution, the A selection criterion of [8] is mod- 
ified, so that the evolution of the A sequence takes into 
account the noise characteristics, enhancing thus the algo- 
rithm's performance. Moreover, the adaptive nature of the 
A„ sequence adds flexibility to our algorithm. 

2. The LMS+F Adaptive Algorithm 

The following type of cost function is proposed 

J = (1 - Xn)E{e2(n)} + XnE{e4(n)}, (2) 

where An is a time varying scalar sequence and a is a scaling 
factor, selected according to the following rule 

An+l = 
A„ + a ,if£{4}>! 
An — asgn{Ce (n)}    , otherwise (3) 

This work was supported by a scholarship from the State 
Scholarship Foundation (I.K.Y) of the Hellenic Republic. 

where sgn is the sign (signum) function, C*(n) = £{e„} — 
3£{en} is the kurtosis (fourth order cumulant) of the as- 
sumed zero mean error signal and a is a scaling factor lying 
in the interval [0,1]. By choosing a = 1.0 no "transient" 
behaviour is exhibited and the algorithm just alternates be- 
tween LMS and LMF. To preserve the unimodal character- 
istic of the mixed cost function, as both of the consisting 
functions are characterised by convexity, An in (2) is con- 
fined to the closed interval [0,1]. 

As it can be seen from the first part of (3), when far from 
the optimum weight vector, i.e., e(n) > 1, An increases, in- 
creasing therefore the convergence speed, but as the weight 
vector Hn approaches its optimum value (H°pt), An ad- 
justs itself according to the noise distribution, enhancing 
therefore the algorithms's performance. The first part of 
the above formula implicitly assumes that the noise vari- 
ance is lower than unity.   If this is not the case, it can be 
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either ignored or automatic gain control or normalisation 
with respect to the input power could be applied to enable 
the use of the above update equation, which significantly 
improves the initial convergence of the LMS+F algorithm 
in non stationary environments [8]. Applying the steepest 
descent gradient search, and using the instantaneous value 
of the gradient instead of the mean, the filter coefficient 
vector update equation for the cost function (2) becomes 

H. n+l Hn + 2n ((1 - Xn)e(n) + 2X„e3(n)) Xn,     (4) 

where 
e(n) = wn — Xn Vn 

and the weight error vector is given by 

Vn = H-n — Hn 

(5) 

(6) 

We can now proceed to analyse the proposed algorithm. 

3. Convergence analysis of the LMS+F 
algorithm 

To facilitate our analysis we introduce the commonly used 
assumption that the various input vectors come from mutu- 
ally independent zero mean gaussian distributed sequences 
[2, 4, 5, 12]. Although this is untrue in many applications, 
since consecutive input vectors share N - 1 entries, it is 
widely accepted to capture the first order behaviour and is 
extensively used in the literature to simplify the analysis 
producing at the same time reliable results [7]. In our case, 
the assumption can be relaxed, in that we only require that 
the input sequence is uncorrelated with the filter weights. 
Other than that, no restriction applies to the nature of the 
input autocorrelation matrix R. 
We also approximate the conditional expectation terms of 
the form E{en\Vn} with the unconditional mean square es- 
timation error. For slow adaptation conditions, the weight 
error vector oscilates around the mean value justifying par- 
tially the above assumption. Furthermore, according to the 
central limit theorem, as the filter length increases, the dis- 
tribution of the error signal gets closer to the gaussian one. 
This assumption is not new and has led to analytic results 
which agreed well with the simulated behaviour of nonlin- 
ear algorithms [2, 6]. 
Finally, the estimation error e„ is assumed to follow a gaus- 
sian distribution. The above assumption is justified, when 
the weight vector Hn varries much slower than the input 
vector Xn; a condition corresponding to the slow adapta- 
tion case. This assumption has produced reliable results 
and was used succesfully in [6, 11]. The approximate va- 
lidity of the above assumptions will be confirmed by the 
simulation results. 

By substracting H°pt from both sides of equation (4) 
using (6) and (5) results in 

V„+i     =    V„ + A« ((1-*„)(«;»-X£V„)) 

+    ^(2Xn(wn-X^Vnf)Xn. (7) 

We wish now to develop a recursive equation for the time 
evolution of the correlation matrix of the weight error vector 

Vn-   Using Kn to denote this correlation matrix at time 
instant n, we have, by definition, 

Kn = E{VnV*}. (8) 

Substituting (7) in (8) we obtain 

EiVn+xVZ+i) = E{VnVZ} 

+ E{n ((1 - Xn)en + 2A„e„) [VnXl + XnVj] } 

+ E [n2 ((1 - An)e„ + 2A„e3
n)

2 XnX%} • (9) 

To obtain the individual terms on the right hand of the 
above equation we take conditional expectations (with re- 
spect to Vn) and then average over all Vn. We thus obtain 

E {en (VnXZ + XnVj) } = - (KnR + RKn) •        (10) 

Adopting a similar approach and applying Price's [10] the- 
orem on the right hand terms of (9), we obtain [9] 

E {el (VnXZ + XnVj) } = -3<x2
n (KnR + RKn) , (11) 

E{enXnxi}=<rlnR + 2RKnR, (12) 

E{enXnx{}= 3<rinR+12a2
enRKnR, (13) 

and 
E{e6

nXnXZ} = 15crinR + 90ainRKnR.       (14) 

Substituting (10), (11), (12), (13) and (14) in (9) we obtain 
the following equation for the error correlation matrix 

Kn+l  =Kn-lt((l- Xn) + 6An«T^n) (KnR + RKn) 

+ S ((1 - An)2<4 + 12A„(1 - Xnyen + 60A2
nc4) R 

+ n2 (2(1 - Xnf + 48A(1 - A„) + 360A2<4) RKnR, (15) 

Due to the form of the above equation, i.e., non linear, an 
exact convergence condition is difficult to find. To fascili- 
tate our analysis we introduce the concept of the distance 

Tn  [11] 

Tn = tr[AK'n] = tr[RKn] = £{(VTt
TXTV)

2}. (16) 

Adopting the approach in [4] we develop the following suf- 
ficient and necessary condition on the step size parameter 
that ensures mean square convergence 

2((l-An)+6An(oi+rn)) 
0<JW      < (I1+I2)(N + 2l3hmaX        '     ^     ' 

where 

A = (1 - A„)2 + 12A„(1 - Xn)(2<r2
w + T„), (18) 

I2 = 60A2 (3<ri + 3^T„ + T2) , (19) 

h = (1 - A„)2 + 24A(1 - A„) + 180A2 (<& + T„)2(20) 

and ~/max stands for the maximum eigenvalue of the input 
correlation matrix R. 
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4. Simulation results 

In this final section we present and analyse the results ob- 
tained from simulations. The algorithm is applied to a sys- 
tem identification problem, where the system to be identi- 
fied is considered non stationary. The optimum filter coeffi- 
cients assume the following initial values HQ*" = [0.2, 0.4, 
0.6, 0.8, 1.0, 1.0, 0.8, 0.6, 0.4, 0.2] and, after that, experi- 
ences random disturbances. The null vector (0) is chosen as 
the initial vector - starting point - Ho, and all the results 
are obtained by averaging over an ensemble of 100 runs. 
The parameter A is initialised to 1, i.e. we start with the 
LMF algorithm. The input is assumed gaussian distributed 
and both noise and input sequences are assumed to be zero 
mean i.i.d with input and noise variance equal to unity and 
0.1 respectively. The System mismatch (E{VnV„}) is se- 
lected as a performance measure. The mean square and 
the mean fourth value of the error are estimated using the 
following formula 

QAUSSIAN DISTRIBUTED NOISE 

E{ek
n}=ßE{ek

n_1} + (l-ß)ek
n, (21) 

where k — 2,4 and the constant ß is a memory controlling 
factor. The larger the value it assumes the "stronger" the 
memory of the system. Alternatively, a finite length moving 
window could be used. 

UNIFORMLY DISTRIBUTED NOISE 

1000        2000        3000        4000        5000        6000        7000        8000 
Sample numb«- (Time index) 

Figure 2: Performance comparison between the LMS (dot- 
ted line), the LMF (dash dot line) and the LMS + F al- 
gorithm (solid line) under gaussian distributed noise condi- 
tions 

LAPLACIAN DISTRIBUTED NOISE 
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1.5 2 
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Figure 3: Performance comparison between the LMS (dot- 
ted line), the LMF (dash-dot line) and the LMS + F al- 
gorithm (solid line) under laplacian distributed noise con- 
ditions 

Figure 1: Performance comparison between the LMS (dot- 
ted line), the LMF (dash dot line) and the LMS + F al- 
gorithm (solid line) under uniformly distributed noise con- 
ditions 

Figures 1,2 and 3 depict the performance behaviour of 
all the algorithms, namely LMS, LMF and LMS+F, un- 
der various noise conditions. The parameters of the above 
algorithms were chosen so as either to match the steady 
state error (misadjustment) or the convergence rate, de- 
pending on the insight in the performance of the mixed 
algorithm they provide. The chosen values are as follows: 
ULMS = 4.5 • 10~4, flLMF = VLMS+F = 1.8 • 10~3 for 
the uniformly distributed noise case (figure 1) and IHMS = 
VLMF = HLMS+F = 1.8-10-3 for the gaussian and laplacian 
distributed noise cases in figures 2 and 3 respectively. The 
random disturbances are assumed to follow a uniform dis- 

tribution with variance a\ = 0.3 in figure 1 and a\ = 0.25 
in figures 2 and 3. 

In figure 1 we see that the LMS+F algorithm behaves 
as the LMF providing fast convergence and low steady state 
error. To achieve the same steady state error with the LMS 
algorithm, we had to significantly decrease the convergence 
factor /i. 

In figures 2 and 3 we observe that the LMS+F adopts 
the initial high tracking speed of the LMF algorithm but, as 
it approaches the optimum, it gradually changes to the LMS 
algorithm (laplacian noise case) or combines both criteria 
(gaussian noise case) to achieve a lower steady state error. 

The adaptability of the LMS+F algorithm to time vary- 
ing noise distributions is shown in figure 4, where its per- 
formance is also compared with that of LMS and LMF. As 
in the previous figures, the LMS+F exploits the fast initial 
convergence of the LMF algorithm and after that adopts the 
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Figure 4: Performance curves of the algorithms under time 
varying noise conditions (LMS: dotted, LMF: dash dot, 
LMS + F: soüd) 

,0J 10"' 10° 10' 10- 10 
Distance from the optimum [ T(n) ] 

Figure 5: Comparison between the theoretically obtained 
upper bound on \i (solid (al = 0.1) and dashed (a2

w - 0.3) 
lines) and and the ones obtained from simulations (stars 
(al = 0.1) and circles {a2

w = 0.3)) (A = S = 1/2). 

performance criterion that exhibits the lower steady state 
error. 

Next, we focus our attention on the theoretically ob- 
tained upper allowable value for the convergence factor, 
which is a function of the parameter A. When A is allowed 
to take any value in the closed interval [0,1] the convergence 
condition is dictated by that of LMF (i.e.,A = 1), since it 
poses more stringent convergence bounds. However, if, for 
any reason, the A„ sequence is constrained to [0,5], where 
6 < 1, then the necessary and sufficient condition is ob- 
tained from equation (17) by setting A equal to 5. This 
latter case is depicted in figure 5, where a comparison be- 
tween the expected (Eq.17) and observed upper bounds is 
presented for two values of noise variance and S equal to 
1/2. It is easily observed that the simulation results are in 
good agreement with the theoretical ones, especially when 
far from the optimum. The observed deviation from the the- 

[2] 

oretic curves near the optimum is justified by noting that 
the theoretical results are obtained using averages, whereas 
in simulations, we deal with the instantaneous values of the 
stochastic variables. It can be also observed that, when far 
from the optimum, the condition on the step size is domi- 
nated by the distance T„ and is almost independent of the 
noise variance. 

5. Conclusions 

In this contribution, a new technique for mixing the LMS 
and LMF cost functions was presented. It differs from what 
was previously suggested in that it is time varying and takes 
into account the noise distribution. The proposed algorithm 
was analysed and conditions regarding the behaviour and 
stability were established. Simulation results verify the im- 
proved performance of the proposed algorithm and support 
well the theoretic results. 
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Abstract 

This paper presents a novel nonlinear filter for nar- 
rowband interference suppression in multiple access 
communication systems, in particular code division 
multiple access spread spectrum. The proposed algo- 
rithm combines a recursive Hidden Markov Model es- 
timator, Kaiman filter and the recursive Expectation 
Maximization algorithm. It is shown that the proposed 
algorithm outperforms current linear and nonlinear fil- 
tering techniques, presented in Rusch and Poor [3]. 

1    Introduction 

Code Division Multiple Access (CDMA), also known 
as Spread Spectrum Multiple Access (SSMA), provides 
a means of separating the signals of multiple users 
transmitting simultaneously and occupying the same 
RF bandwidth. In a Direct Sequence (DS) CDMA sys- 
tem each user has a distinct pseudonoise (PN) code 
(or sequence). The message from each user is modu- 
lated with the corresponding PN code, resulting in a 
transmission bandwidth much greater than the mes- 
sage bandwidth. 

One of many reasons for spreading the spectrum is 
the inherent immunity of the communication system to 
interference. It is well known that system performance 
is greatly enhanced if the receiver employs some means 

*Partially supported by the Australian Telecommunications 
and Electronics Research Board (ATERB), Australian Research 
Council (ARC) and the Co-operative Research Centre for Sensor 
Signal and Information Processing (CSSIP) 

of suppressing narrowband interference prior to signal 
"despreading". Such techniques are possible since they 
exploit the different nature of the received signals. The 
power spectrum of a narrowband interference is highly 
peaked, while the message signals are spread over a 
wide bandwidth. 

Given T observations of the received noisy signal 
computing optimal estimates of the narrowband inter- 
ference and finite-state spread spectrum signal, it is 
necessary to consider all NT realizations of the JV-state 
T-point spread spectrum signal. This is computation- 
ally prohibitive, thus the only feasible estimators are 
suboptimal. 

Nonlinear suboptimal techniques for narrowband in- 
terference suppression in spread spectrum systems are 
presented in [1, 2, 3]. These offer improved perfor- 
mance over the time domain linear methods summa- 
rized in [1]. The narrowband interference is modeled 
as a Gaussian autoregressive process. Assuming known 
parameters, the interference signal is estimated using 
an Approximate Conditional Mean (ACM) filter [4]. 
For the specified assumptions on the observation pro- 
cess in [3], the ACM filter for interference estimation 
turns out to be a Kalman-type recursive filter with non- 
linearities to deal with the finite state spread spectrum 
signal. The nonlinearities take the form of a soft deci- 
sion feedback which seeks to remove the spread spec- 
trum signal from the estimation of the narrowband in- 
terference. For the general case of unknown interfer- 
ence statistics the soft decision feedback was incorpo- 
rated into a LMS adaptive filter [2]. A modification 
and an enhancement to this approach is presented in 
[3], where multiple spread spectrum users are consid- 
ered. The proposed Enhanced Nonlinear Adaptive al- 
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gorithm (ENA) of [3] shows a significant improvement 
over existing linear and nonlinear adaptive filters. 

In this paper, we present a new nonlinear filter and 
parameter estimator for narrowband interference sup- 
pression in spread spectrum systems. We consider a 
slightly more general signal model than [3]: In partic- 
ular, we model the received sampled signal as the sum 
of the spread spectrum signal (modeled as a finite state 
Markov chain), narrowband interference (modeled as a 
Gaussian autoregressive (AR) process) and observation 
noise (modeled as a zero mean white Gaussian process). 

There are at least two reasons that justify model- 
ing the spread spectrum signal as a finite state Markov 
chain: i) Asynchronous multi user transmission and 
ii) Oversampling. Each of these cases induce correla- 
tion in the received spread spectrum signal, and hence 
the first-order Markov chain assumption is more real- 
istic than the iid assumption. In examples where the 
above two reasons do not hold and the spread spectrum 
signal is iid, simulations show that our algorithm still 
performs as well as or better than the EN A/ACM algo- 
rithm in [3]. Moreover, our algorithm has a comparable 
computational cost to the algorithms in [3]. 

Highlights of our HMM-KF algorithm 

Our algorithm cross-couples two optimal filters - a 
Hidden Markov Model (HMM) filters and a Kaiman 
Filter (KF). As described below, together with the re- 
cursive EM algorithm, these coupled filters yield esti- 
mates of the narrowband interference, spread spectrum 
signal and their parameters. We call our algorithm the 
HMM-KF algorithm. 

Methedology: We first explain the motivation 
for our algorithm: If the narrowband interference is 
exactly known at a given time, then the estimation 
task reduces to the problem of extracting the finite- 
state Markov chain (spread spectrum) in additive white 
Gaussian observation noise. The Markov chain can 
be optimally extracted using the well known Hidden 
Markov Model filter. Furthermore, on-line (or adap- 
tive) parameter estimates of the HMM (including tran- 
sition probabilities and noise variances) can be ob- 
tained via the recursive EM algorithm presented in [5]. 

On the other hand, if the spread spectrum sig- 
nal is exactly known at a given time, then the esti- 
mation problem reduces to the problem of extracting 
a Gaussian autoregressive process (narrowband inter- 
fence) embedded in white Gaussian noise. Then opti- 
mal state estimates of the narrowband interference are 
obtained using a Kaiman filter [5]. Furthermore, on- 
line parameter estimates (autoregressive coefficients, 
process and observation variances) can be achieved via 

the recursive EM algorithm [5, 6]. 
Since we do not have an exact knowledge of the nar- 

rowband interference or the spread spectrum signal, we 
propose the following scheme: cross-couple the above 
two recursive EM algorithms, one algorithm for the 
HMM and the other for the noisy AR model. The pro- 
posed algorithm is called the HMM-KF algorithm. It 
is schematically shown in Fig.l. 

2    Problem Formulation 

We now present the signal model in detail and state 
our estimation objectives. 

2.1   A Model for the Received Signal 

We assume a similar spread spectrum and narrow- 
band interference signal model to [2]. In particular, 
assume that the continuous-time received signal y(t) 
consist of the spread spectrum signal s(t) from all N 
users, the narrowband interference i(t) and the white 
Gaussian observation noise n(t). That is: y(t) - 
s(t) + i(t) + n(t). If y{t) is sampled at chip rate of the 
PN sequence, the resulting discrete time observations 
[3] are: 

Vk = Sfc + ik + nk (1) 

where rik is a zero mean white Gaussian process with 
variance <r\ and Sk is a discrete-state iid process. 

The unknown narrowband interference i/, is modeled 
as a Gaussian autoregressive process of known order p, 
which can be written as 

ik = —diik-i dpik-p + ek (2) 

where e^ is white Gaussian noise, independent of Sk 
and n/j, with zero mean and variance ae. 

In [3], the spread spectrum signal sk is the sum of N 
independent and identically distributed (iid), equiprob- 
able, binary random variables. This is so, since the user 
message and the PN sequence are assumed purely ran- 
dom. Furthermore, it is also assumed that each user is 
received at the same (normalized) power and are chip 
synchronous. 

In this paper we assume that the received spread 
spectrum signal s(t) are sampled at a rate higher than 
the chip rate of the PN sequence. This yields samples 
which are correlated in time. Hence, we assume sk is 
a finite-state, discrete-time, homogeneous, first-order 
Markov chain. Consequently, the state sk at time k is 
one of a finite number M of states q = {qi,q2, ■ ■ ■, QM)- 

The transition probability matrix is A = (amn) where 
amn = P(«t+i = qn\st = Qm) and m,n G {1,...,M}. 

Of course amn > 0, ELI 
a<™ = *> for each m" Let 7r 
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denote the initial state probability vector: IT = (7rm), 
7Tm = P(s1 = qm). 

Remark : The number of levels M are equal to N + 1 
when all TV users are received at the same power. If 
each user transmits ±1, then qj = -N + 2(j — 1), j G 
{1,...,7V + 1}. Increasing the sampling rate will yield 
a transition probability matrix A with an increasing 
diagonally dominant elements. Setting the sampling 
rate to the chip rate yields the signal model in [3]. This 
is merely a special case of our signal model with all the 
rows in A identical. 

2.2   Estimation Objectives 

Let <f>0 = [A, q, D, a^, a%) denote the true parameter 
vector that characterizes the narrowband interference 
(AR signal) and the spread spectrum signal (Markov 
chain). 

Given the observations Yk = (j/i,..., yk), our aim is 
twofold: 

1. State Estimation: Compute estimates of the 
narrowband interference ik and and the spread 
spectrum signal sk. 

2. Parameter Estimation: Derive a recur- 
sive   estimator   <f>^    for   (f>0,    where   <j>^     = 

(AW,qW,DW,<rik)Ak)), for k > 1, given the 
observations Yk. 

Why estimate A and q? When the received power levels 
are time-varying and asynchronous data transmission 
is used, A and q may not be known apriori. Indeed, 
A is a complicated function of the number of levels 
M, the transmitted power of each user, sampling rate 
and transmission mode (synchronous or asynchronous). 
Hence the motivation for estimating A and q. 
Remark: We assume that the number of states M of 
the Markov chain is known. Also, for convenience we 
assume that 7rm = 1/M, for m = 1..., M, 

From (1) and (2) it is quite clear that estimating 
optimal (maximum a posteriori MAP) state estimates 
of ik and Sk and computing optimal (maximum like- 
lihood ML) parameter estimates of the signal model 
is computationally infeasible since the computational 
cost is exponential in the data length. In the following 
subsection we present our sub-optimal nonlinear algo- 
rithm for narrowband interference suppression, which 
combines two optimal filters to achieve both state and 
parameter estimation. 

3    HMM-KF Narrowband Interference 
Suppression Algorithm 

In this section we present our HMM-KF algorithm. 
The HMM-KF algorithm cross couples two recursive 

EM algorithms, one algorithm for a HMM and the 
other for a noisy AR model. The algorithm is schemat- 
ically shown in Fig.l: 
1. At time k, the Kaiman filter and recursive EM 
parameter estimator for the narrowband interference 
yield estimates of the state of ik, process noise vari- 
ance <T\, observation noise variance <T£, and the AR 
coefficients d\,..., dp. 
2. The Hidden Markov Model filter and recursive EM 
parameter estimator for the spread spectrum signal 
gives on-line estimates of the state of Sk, transition 
probability matrix A and Markov chain levels q. 

We now present Steps 1 and 2 in more detail. 

3.1   Spread Spectrum Signal Estimator Using Re- 
cursive HMMs 

At time k, we have available the predicted narrow- 
band interference ik\k-i, and variance Pik{k_l of the 

predicted error wk = ik - ik\k-i obtained from the KF 
of Sec. 3.2. Therefore, the HMM to be estimated is: 
HMM Signal Model: 

Vk - ik\k-i = sk + wk + nk (3) 

We assume that the Kaiman predicted error wk is mod- 
eled as a zero mean white Gaussian process with vari- 
ance pikit_1 and is independent of the observation noise 
nk- 

The recursive HMM estimator recursively updates 
the state and parameter estimates of the HMM. The 
recursive HMM parameter vector estimate at k is de- 

noted as: 4L* (A™,qWto>W). 
Given the signal model (3), the state and adaptive 

parameter estimation procedure for the spread spec- 
trum signal Sk is straightforward. Details can be found 
in [7]. 

3.2   Recursive Narrowband Interference Estima- 
tion Using Kaiman Filtering 

The HMM estimator described in Sec. 3.1 yields fil- 
tered state estimates Sk\k of the spread spectrum signal. 
Given the spread spectrum signal estimate Sk\k and the 

associated error variance pJfc|fc of Wk = s* — sk\k, our 
aim now is to compute state and parameter estimates 
of the narrowband interference. The signal model is 
given by: 

Vk - sk\k = ik +wk+nk (4) 

where yk is the observation and ik is the narrowband 
interference signal. wk ~ iV(0,pSfc|J is modeled as a 
zero mean white Gaussian process with variance pSk]k 
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and assumed independent of the observation noise nk ~ 
N{0,<rl) and process noise ek ~ N(0,a2

e). (4) can be 
represented as the following state space model: 

State Space Model: 

J/fc 

xk    =    Fxk-i + Gek 

sk\k    =    Hxk + wk + nk (5) 

where the state vector xk = (ik,ik-\,..-,ifc-p) , 

F = ( -D> n° ), D = (d1>...,dpy, 

G   =    (KW,  H = (10ix,), (6) 

The recursive EM estimator recursively updates the 
narrowband interference autoregressive coefficients, the 
narrowband interference process noise and observation 
noise The recursive EM parameter estimate at k is 

denoted as: *Jg i {D^ ,o-f\^k)). 
Given the signal model of (5), the state and adaptive 

parameter estimation procedure for the narrowband in- 
terference ik is straightforward. Details can be found 

in [7]. 

4    Conclusion 

We have presented a new solution to the problem of 
narrowband interference suppression in CDMA spread 
spectrum communication systems. Nonlinear Hidden 
Markov Model (HMM) signal processing techniques to- 
gether with a Kaiman Filter (KF) was used to derive 
a high-performance algorithm for suppressing the nar- 
rowband interference and to simultaneously yield esti- 
mates of the spread spectrum signal. Computer simu- 
lations show that the proposed algorithm outperforms 
current linear and other nonlinear filtering techniques. 
Although, the algorithm is difficult to analyze theoret- 
ically, simulation studies in [7] have shown satisfactory 
estimates in several cases. 
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Abstract 
A new blind FIR filter receiver is proposed for the detec- 
tion of DS-CDMA signals in unknown Multi-User 
Interference (MUI) and Additive White Gaussian Noise. 
The proposed receiver is motivated by the Wiener signal 
reconstruction theory and it is a very low complexity 
alternative to the Minimum-Output-Energy (MOE) 
receiver [8]. At only a minimal increase of the computa- 
tional cost, the proposed detector outperforms 
significantly the conventional Matched Filter (MF) 
receiver. It also compares favorably to the decorrelating 
detector [2] (with similar near-far resistance), despite 
the fact that the latter utilizes the assumed known MUI 
spreading codes. The novel characteristic of the pro- 
posed receiver is the incorporation of an auxiliary vector 
component that allows statistically optimal, adaptive 
steering of the filter with respect to the incoming DS- 
CDMA signal. 

1. Introduction 

Spreading the spectrum of a signal to make it virtually 
indistinguishable from background noise has served as 
the basic principle that led to the development of spread 
spectrum communication systems. The main motivation 
for the development of such systems emerged from mili- 
tary communication needs to ensure effective suppression 
of intentional interference as well as to increase security 
in signal transmission. Currently, Direct-Sequence Code 
Division Multiple Access (DS-CDMA), a specific form 
of spread spectrum transmission, is receiving consider- 
able interest in response to an ever-increasing demand for 
better utilization of the available resources in mobile 
radio and personal communication environments. 

While the overall capacity of a CDMA system is 
determined by both the forward (base-to-mobile) and the 

This  work  was  supported  in  part by  the  LEQSF  contract 
LEQSF(1995-97)-RD-A-35 

reverse (mobile-to-base) link, most of the recent research 
focused on the reverse connection and dealt with process- 
ing at the base station under the assumption of known 
active user population. Given the unrealizable complex- 
ity and the prohibitive computational requirements that 
the optimal multiuser detector exhibits [1], any proposal 
for a suboptimal reduced complexity receiver is well 
justified. Arguably, the list of such successful proposals 
includes the decorrelating receiver [2], multistage archi- 
tectures [3]-[5], and decision feedback detectors [6]. 

In cellular systems, multiuser detection is 
envisioned at the base station for the simultaneous 
recovery of all signals of the known intracell users. 
While this is the situation in the reverse link, in the for- 
ward link the mobile user faces an even more challenging 
problem, namely the detection of its own signal in the 
presence of unknown multiuser interference and additive 
white Gaussian channel noise. In addition, processing at 
the mobile should meet even tighter complexity, size, 
and weight requirements than the base station. The handy 
matched filter (MF) solution exhibits unacceptable per- 
formance degradation in the presence of one or more 
high-power interferers (the "near-far" problem [1]). 
Therefore, it can only be used with some form of 
stringent and costly power control. Recently two interest- 
ing linear-filter alternatives were proposed in the form of 
a Minimum-Mean-Square-Error (MMSE) filter that 
requires a separate training sequence [7] and a blind 
"minimum energy" linear receiver [8]. If L is the system 
processing gain (as high as 127), then the latter blind 
receiver may require frequent inversion of the LxL sam- 
ple autocorrelation matrix of the received signal. 
Equivalently, the adaptive implementation requires 
steepest descent in the RL space. 

In this paper we reconsider the issues of single- 
user detection in unknown spread-spectrum MUI and 
AWGN from the Wiener signal reconstruction viewpoint 
and we propose a new blind low-complexity receiver for 
the forward link of DS-CDMA communication systems. 
We examine low-complexity alternatives to the work 

0-8186-7576-4/96 $5.00 © 1996 IEEE 
494 



presented in [8] that maximize the Signal - to - Interfer- 
ence - plus - Noise - Ratio (SINR) [10]. The proposed 
receiver is a very low complexity alternative to the MOE 
detector and at only a minimal increase of the computa- 
tional cost outperforms significantly the conventional MF 
detector. It also compares favorably to the decorrelating 
detector (with similar near-far resistance), although the 
latter utilizes the assumed known MUI spreading codes. 

2. System Modeling 

Although the results that follow are directly applicable to 
the asynchronous case, for the sake of brevity and clarity 
of presentation we choose to present our work in the con- 
text of synchronous CDMA. We consider a CDMA sys- 
tem where K users transmit synchronously over an 
AWGN channel. The continuous-time received signal is 
modeled as follows: 

r(t)-EE^bk(i)Sk(t-iT) + n(t), 
i k=0 

proposed scheme, we opt to present a theorem that 
identifies a Wiener reconstruction filter with an inherent 
MUI cancellation property. 

Let {S0,G1; ••• ,GL_i) be a set of orthonormal 
vectors in RL (an orthonormal basis of RL that includes 
S0). For some arbitrary scalar k*0 and VGj we define 

Gi*=Gi+kS0, i = l, ■••,L-1 . (4) 

Theorem 1 [10]: Let S0 and G*x,G2* • ■ • ,GL_I 

defined by (4) for some k^O be vectors in the RL space 
used as input data sequences for the Wiener reconstruc- 
tion of the received signal vector r in (2) with 
corresponding tap-weights w0, v/h •• ■ ,wL_i. Then, 
(i) the optimal weighting coefficient w0 is 

L-l 

w0 = En{<r,S0-kXGi>} , and (5) 
i=l 

(ii) for any instance of the received signal r the filter 

(1)       <r,S0-k£Gj> cancels completely all MUI vectors I 

where for the k-th user Ek is the received energy, 
bk(i) e{-l,l} is the i-th information bit, and sk(t) is the 
signature (spreading code). T is the symbol (bit) period 
and n(t) is the channel AWGN. The signature of every 
user is composed of L spreading chips and it is of the 

form  sk(t)=2ck(j)PT[t-(j-l)Tc],    
where  L  is  ^  so 

called system processing gain, 
Ck(j) £{-1,1}. j=l. " " >L are the assigned signature 
bits for the k-th user, and PT(t) is the spreading pulse 
with duration TC=T/L. Without loss of generality the sig- 
natures are assumed to be normalized. Since we consider 
synchronous transmission we concentrate on a single 
information bit interval of length T. The RL discrete- 
time version of (1) is 

K-l 

r= £VEkbkSk+n . (2) 

k=0 

The random vector n is assumed to be WG with auto- 
correlation matrix E{nTn}=a2lLxL- Assuming that the 
user of interest is user o, it is convenient to define the 

K-l 

multiuser interference (MUI) term 1= £ vEkbkSk. This 
k=l 

allows us to write (2) as follows: 

r=Vl^b0S0+I + n. 

3. Blind Low-Complexity Detectors 

(3) 

In this section we use the theory of Wiener signal- 
reconstruction filters to derive simple linear receivers that 
maximize the output SINR. Before we proceed with the 

i=l 
within   the   interference   subspace    V}     spanned   by 
{G,V--,C£_,}.ö 

Part (ii) of Theorem 1 motivates the proposal for a 
detector of the form 

60 = sgn(w0) (6) 

The following proposition places the conventional MF 
and the decorrelating receiver in the Wiener filter con- 
text. 

Proposition 1: (i) The matched filter (MF) receiver 
<r, S0> is the result of optimal single-tap Wiener recon- 
struction of the received signal vector r with input data 
sequence S0. (ii) In a /iT-user CDMA environment, the 
decorrelating receiver is the result of optimal K— tap 
Wiener reconstruction of the received signal vector r 
with input data sequences the user spreading codes 
S0,S], • ■ • ,SK_i, that are all assumed known. D 

Remarks: 1) Perfect interference cancellation for 
any arbitrary parameter k^O is guaranteed only for 
interference vectors I on the Vj hyper-plane. Cancella- 
tion of interferers I not on V/ requires tuning of the 
parameter k*0. 2) The size (length) L of the adaptive 
Wiener reconstruction implementation may render the 
proposed detector unrealizable for a mobile user. There- 
fore, careful consideration of lower size Wiener recon- 
struction filters appears well motivated. 3) A result simi- 
lar to part (ii) of Proposition 1 was given in [9] and the 
statistically equivalent context of Least Squares. 

Following our notation, let G be an arbitrary nor- 
malized vector in RL orthogonal to the spreading code of 
the user of interest S0. In other words 
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<G,So>=0   and   <G,G>=1. (7) 

The following result is a direct corollary to Theorem 1: 

Corollary 1: Let S0 and G be as in (7) and let k be 
a non-zero scalar. Consider the 2-tap Wiener reconstruc- 
tion filter with input data sequences S0 and G+kS0, and 
corresponding tap-weights w0 and wj. Then, 
(i) the MS optimal value of w„ is 

w0=E„{<r,S0-kG>} , and (8) 

(ii) the linear filter S0-kG cancels all MUI vectors I in 
the direction of G+kS0.D 

Again, the proposed decision statistic is the tap- 
weight w0 itself and the detector is 60=sgn(w0) as in (6). 
Sample average can be used in place of the expectation 
with respect to n in (8) assuming that multiple samples 
of r are available. Therefore, for notational simplicity we 
can drop the expectation from (8) without any loss of 
generality. With input r given by (3), the output of the 
filter in (8) is 

<r, S0 - kG>=Vi^ b0+<I, S0> - k<I, G>+ 

+ <n,S0-kG> (9) 

Then for fixed auxiliary vector G the average variance of 
the output (the expectation is taken with respect to both 
b0,1, and n) is 

E {<r,S0-kG>2} =E0+E{[<I,S0>-k<I,G>]2} + 

•2w2 + (l + k2)CT (10) 

While the MUI cancellation property of the receiver 
described in part (ii) of Corollary 1 is unsatisfactory, (9) 
shows that we can still succeed in canceling effective 
MUI if we choose the auxiliary vector G to be the aver- 
age (normalized) projection of r onto the subspace 
orthogonal to S0 and we use A: as a steering parameter 
that places the filter S0-kG orthogonally to the interfer- 
ence vector I. Moreover, (10) shows that classical blind 
minimum variance optimization of the filter S0-kG 
(which is distortionless in the direction of interest S0) 
leads in fact to a maximum Signal to Interference plus 
Noise Ratio (SINR) receiver. The following proposition 
optimizes the filter with respect to the scalar *. The aux- 
iliary vector G is defined immediately after. 

Proposition 2: If S0 is the spreading code of the 
user of interest and G is some auxiliary vector with reali- 
zations constrained by (7), then the value of the steering 
scalar k that minimizes the variance expression 
E{<r,S0-kG>2} (maximizes the average output SINR) 
is 

kMVDR=E{<r,S0><r,G>}/E{<i\G>2} . °    (11) 

The auxiliary vector G with realizations con- 
strained by (7) is -within a sign ambiguity- the average 
normalized projection of the received signal vector r onto 
the subspace orthogonal to the spreading code S0. The 
sign of this projection can be either sgn(<r,S0>) or 
-sgn(<r, S0>). Therefore, without loss of generality, if we 
write 

r|S=jgn(<r,S0>) V 
r-<r,S0>S0 

Mrll2-<r,S0>
2 

then 

G=E{rls}/IIE{rls}l 

(12) 

(13) 

The proposed receiver is completely defined by 
equations (6), (8), (11), (12), and (13). In the next section 
we present some numerical results and comparisons that 
support our theoretical arguments. 

4. Numerical Results and Simulations 

We examine a scenario of four users each equipped with 
a signature of length L=15 and signature cross correla- 
tion matrix given by 

Rs = 
1 

^17 

15 11 11 11 
11 15 7 7 
11 7 15 7 
11 7 7 15 

(14) 

We compare the Bit Error Rate (BER) performance of 
the input-driven auxiliary-vector receiver with the con- 
ventional matched filter, the MOE, and the decorrelating 
receiver for synchronous CDMA transmission over an 
AWGN channel. The results are shown in Fig. 1 and Fig. 
2. Near-far resistance comparisons are shown in Fig. 3. 

Fig. 1: Bit error rate as a function of the SNR of the user 
of interest in the presence of weak interferers (SNR]=2, 
SNR2=3, SNR3=4). 
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Fig. 2: Bit error rate as a function of the SNR of the user 
of interest in the presence of strong interfere« (SNRi=8, 
SNR2=9, SNR^IO). 
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Fig. 3: Bit error rate as a function of the Near-Far 
coefficient (SNR,=1, SNRi=8xATFC, SNR2=9xWC, 
SNR3=10xNFC). 

V. Conclusions 

We reconsidered the concept of multiuser detection for 
DS/CDMA communication systems from the point of 
view of Wiener signal reconstruction filters. We 
identified both the decorrelating detector and the signa- 
ture matched filter receiver as a direct special case of 
Wiener signal reconstruction. Generalizing this result we 
proposed an L-tap Wiener adaptive receiver with a 
powerful inherent MUI canceling property. However, the 
size of the filter (L taps where L is the system processing 
gain) appears prohibitive and may restrict severely the 
practicality of this approach. In view of these observa- 
tions the natural, low complexity outcome of this line of 
work is a linear, scalar parameterized, auxiliary-vector 
receiver. The conceptual and computational simplicity of 
this receiver promises some immediate practical utility. 
The optimization can be carried out easily in a variety of 
different ways. In this work we chose to develop a blind 
(unsupervised) solution that maximizes the output 
Signal-to-Interference-plus-Noise Ratio (SINR). In 
future work we will consider optimization in the 
minimum probability of error sense (non-least-squares 
supervised learning [11]). 

The newly proposed blind auxiliary-vector receiver 
compares favorably, both complexity-wise and 
performance-wise, to the decorrelating detector [2], 
although the latter utilizes the assumed known signatures 
of the interferers. This is because the blind maximum 
SINR criterion, in contrast to the "decorrelating" cri- 
terion, strives to achieve the perfect balance between 
MUI and channel noise suppression. The optimal near-far 
resistance of the decorrelator appears closely matched by 
the auxiliary-vector receiver over a wide range of realis- 
tic near-far ratios. 

In view of these results, the linear, blind, 
auxiliary-vector filter becomes a candidate for the 
receiver of choice for the forward link of mobile cellular 
DS-CDMA communication systems. On the other hand, a 
bank of blindly optimized auxiliary-vector filters may be 
deployed as the reverse-link, base-station receiver. 
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Abstract 

In this work, we analyze the performance of linear 
minimum mean squared error (LMMSE) estimate-based 
multiuser detector for CDMA communication systems. Re- 
markable consistency is achieved through numerical eval- 
uation of our analytical results and computer simulations. 
We also compare the performance of the LMMSE detector 
[1] and the adaptive bootstrap multiuser detector [2], Our 
analyses and simulations show that even though these two 
detectors were proposed based on different optimization 
criteria, they exhibit approximately equal performance in 
multiuser CDMA communication applications. 

1. Introduction 

Multiuser separation and interference suppression is an 
active research topic in CDMA communications area. Var- 
ious detectors have been proposed to balance the computa- 
tional simplicity and reliable detection performance [1 — 6]. 
Most of the proposed detectors treat the multiuser signal 
vector as a deterministic vector, and work only on the con- 
d/riona/probability density function (PDF) of the data given 
the multiuser signal vector. We notice that the information 
bit of multiuser is actually a random vector with known 
statistics. Therefore, by incorporating prior knowledge (in 
a statistical sense) of the multiuser signal vector, one can 
always improve the overall detection performance [6]. The 
availability of the prior knowledge depends on the specific 
communication systems. If we constrain our detector to be 
in the linear class, we can find, as proposed in [1] and not 
accurately termed as minimum mean squared error (MMSE) 
detector, the sub-optimal linear MMSE (LMMSE) detector. 
In this paper, we further analyze the performance of the 
LMMSE detector in detail; verify our results through nu- 

*This work was supported in part by the Office of Sponsored Research, 
NJIT, and Rome Air Force Lab under contract F30602-94-C-0135. 

merical evaluation and computer simulations. Comparative 
study of performances of the linear class of decorrelating de- 
tector, LMMSE detector, and adaptive bootstrap multiuser 
detector is also provided in this work. 

2. Problem Formulation 

Due to the multiple access (MA) scheme used in CDMA 
systems, the data r(i) available at the receiver is actually a 
mixture of multiuser data embedded in additive noise. That 
is, 

K 
rW = S £\/aib(ÖM0*k(*-«r-7*) + n(*), (1) 

i     fc=l 

where ak(i), bk(i), sk(t), and rk are the bit energy, 
information bit, signature waveform, and the transmission 
delay of the fcth user in the ith bit symbol interval (of 
duration T), respectively. n(t) is a white Gaussian process, 
with two-sided power spectral density of a2. 
In this work, we consider the case when rk = 0 (k = 
1,..., K), which corresponds to the synchronous chan- 
nel. The synchronous channel model is valid for down-link 
channel (from base station to mobiles). Note that once the 
channel is synchronized, all the information bits of the mul- 
tiusers in the ith symbol interval are completely contained 
in the data r(t) within the «th symbol interval. Therefore, 
we can concentrate on solving multiuser separation problem 
within a specific symbol interval, say i = 0 th, without lose 
of generality. After ignoring index i, we rewrite data in (1) 
into a matrix form, 

r(t) = ST(t)-A-b + n(t),        0<t<T.     (2) 

withSr(/)=[ si{t)s2(i) ■■■sK(t) ]; 
A = diag {yJT, yßi, ■■■, y/ä^} 
andh = [ b\ b2 • • ■ bK ]T . 

At the receiver end, we first filter data r(t) with a bank 
of matched filters, whose impulse responses are given by 

0-8186-7576-4/96 $5.00 © 1996 IEEE 
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hk(t) = sk(T -t), (k = 1, 2, ..., K). We then stack 
the outputs of the bank of matched filters, sampled at t = T, 
into a vector and get the following matrix notation, 

x = P • A • b + n, (3) 

where x = [ Xl(T) x2(T) ■■■xK(T)]T, with 
Xk(T) = r(t) * hk(t) \t=T being the fcth matched filter 
outputsampled attimeinstanU = T; and n ~ A/"(0, a1 P) 
being the colored Gaussian noise due to the matched filter- 
ing. Note that matrix P in (3) is the correlation matrix of the 
signature waveforms. P is symmetric and positive definite 
and its elements are given by, 

P[iJ]= /    Si(t)Sj{t)dt = Pi, 
Jo 

1 = 1,2,..., tf; 
j = l,2,...,K. 

In practice, due to the finite bandwidth constraint and large 
number of users, the signature waveforms are not idealy 
orthonormal. Therefore the matrix P will not be an identity 
matrix in general. The non-diagonal nature of the P matrix 
will cause the interference between multiusers. In order 
to remove the multiple access interference (MAI), various 
detectors have been proposed [1-6]. One major effort of 
proposing various detectors is trying to balance the compu- 
tational simplicity and reliable detection performance. 

3. Linear Class of Multiuser Detectors and 
Their Performances 

In this work, a comparative performance study of vari- 
ous linear multiuser detectors is conducted, with emphasis 
on LMMSE detector and the adaptive bootstrap multiuser 
detector. 

3.1. Simple Decorrelating Detector 

The simple decorrelating detector [4] is originated by 
finding a linear conditional maximum likelihood estimate 
(MLE) of the signal vector 6 = A • b from the conditional 
PDF p(x|0) obtained from (3). It then detects the multiuser 
information bit b by directly making decision on the linear 
conditional MLE 0 = P"1  x, 

ß = sign{z} = sign{P-1 • x} . (4) 

This detector has the advantage of structural simplicity. It 
is also near-far resistant. But a potential problem associated 
with this detector is that noise is enhanced by the P"1 

inverse filtering. We have shown in [6] that this detector 
has its limited performance with an error probability of the 
fcthuser, 

Pe(k) = Q 
ak(l Pl?-k

lPk) 

Note matm(5), the matrixPjt isa(K-l) x (K-1) matrix, 
constructed from P matrix after removing the contribution 
of the fcth user, p^ is the fcth column of matrix Pfc. The 
inequality 0 < (1 - Pl?kPk) < l d™ys nolds- ^ 
the equality holds if and only if P is a diagonal matrix. 
This corresponds to the case of using a sets of perfect 
orthonormal signature waveforms. Hence, the performance 
of the decorrelating detector in (4) is always worse than the 
BPSK limit, as shown in the inequality in (5). The near-far 
resistance of the decorrelating detector can be easily seen 
from its Pe(k) expression in (5), since Pe(k) is invariant to 

Afc = diag{v/äl, •••, ^/ak-i, y/a-k+i, ■••, i/öT}- 
We further notice the following fact that the above 

decorrelating detector is also a linear estimate based detec- 
tor. Part of its limited performance is due to the fact that 
linear estimate 6 = P_1 x is based on the conditionalVDV 
p(x|0). Therefore, we can expect to further improve its 
detection performance and maintain its linear feature, by 
incorporating the joint statistics of both 6 and x into the 
estimate as demonstrated in the following linear minimum 
mean squared error (LMMSE) estimate-based detector. 

3.2.    Linear    Minimum    Mean    Squared    Er- 
ror (LMMSE) Detector 

It is well known that among the linear class of estimates, 
LMMSE estimate exhibits the minimum mean squared 
estimation error. Therefore we can improve the detec- 
tion performance of the above linear decorrelating detector 
by deriving a LMMSE estimate-based multiuser detector. 
Specifically, let us rewrite formula (3) as, 

x = PAb + n=P0 + n. (6) 

We assume that all the components of the random multiuser 
information bit b are independent and identically distributed 
(i.i.d.) with zero mean and unit variance. Even further, 
the random vector 6 and noise vector n are statistically 
independent. For most communication applications, these 
assumptions are reasonable ones. We then define a new 
random vector as follows, 

e Ab A       0 ' b ' 
X X PA   I n 

The expectation and (»variance matrix of the above newly 
defined vector y can be found as, 

cov(y) = 
A2 

PA2 

£(y) = o, 

A2P 
PA2P + (T2P 

T,ee 
Ex0 

Eflx 
Lxx 
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Given x, E(y),  and cov(y), the LMMSE estimate of 0 
can then be derived from the following [7,8], 

&LMMSE    = E{9) + Eöx Exx (* - E(x)) 

= (P + a2A-2y1.x. (V) 

W 

Ihe LMMSE estimate-based multiuser detector makes its 
decision based on the decision rule. 

ß = sign ( &LMMSE J • (8) 

Note that the diagonal matrix a2A~2 = 
diag { a2la\, a2/a2, • • •, a2/aK } involved in W of for- 
mula (7) is actually the inverse SNR matrix. When the 
interferences of other users are very small compared to 
the noise level, W reduces into a diagonal matrix, or 
W = (P + a2 A'2 )-* « (I + a'2 A-2)"1. In this case, 
LMMSE detector has the same performance as that of the 
single user detector, which is the BPSK limit, When the 
interference levels are very large compared to the noise 
level, thenW = (P + <r2 A"2)"1 « P1, LMMSE detec- 
tor's performance is compariable to that of the decorrelating 
detector. Therefore, the overall performance of LMMSE 
detector is better than that of the decorrelating detector. 
Even further, we calculate the probability of error of the fcth 
user based on the following observation. We arrange the 
order of all the users such that BT = [ $k 0j ]. We 
then decompose the above derived 6LMMSE as follows, 

''LMMSE = Wx= (P + <T
2
A-VX, 

= (P + <r2A-2)-1.(PAb + n), 

= 0-o-2WA-1b + Wn, 

= 0 + e, 

(9) 

where the estimation error, e = -<r2WA_1b + Wn, 
contains both bias and noise components. We will notice 
later, the improved performance of the LMMSE detector 
is achieved by trading in a little bias for less noise vari- 
ance, which finally results in less overall mean squared 
error (MSE). 
For a given information bit b, LMMSE detector of (8) 
makes an errorous decision on the fcth user's information 
bit bk whenever, 

OR 

e* < —v/5* ,    when bk = +1, 

e* > +y/äk,    when bk = -1. 

Therefore, the probability of error for the ifeth user can be 
expressed as, 

hk 

Pe(k)=Pe(k\hc).P(bk), 

= j {P(ek > +V^k\h = -1, bfc)+ 

P(ek<-y/ai;\bk = +l,bk) }-P(bk) 

J V^+Rk(bk = +l,bk)Y\ 

(10) 
whereÄjfcOiz-e^wifA^b; a\ = a2 w£ P wfc ; and 
Wj is the fcth row of W matrix. 
We also verified the followingfacts that under various inter- 
ference conditions, the above error probability expression 
will reduce either into the single user BPSK limit or into 
that of the decorrelating detector as follows, 

Q 

K 
Pe(*)=- 

Q 

\/äk\ 
small interferences 

, strong interferences 

For the case of two users (K = 2), the error probability 
expression in (10) can be simplified as. 

with 

RJ-\ _n = 0-2  (l + o-2/a2) /y/a~j- p/^/ä^ 
'      ' (l + <T2/a1)(l + <rya2)-p

2' 

a y/((l + <r2/a2) - P2)2 + p2 (1 - p2) 
ai     a       (l + (T2/al)(l + aya2)-p2        ' 

We can also easily verify the following limit results, 

Urn Pe(l) = Q (& ) ,       BPSK limit 
3<i V °   J 

(11) 

ton Pe(l) = Q ( Va'(*    p) j , decorrelating detector 
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4. Examples and Implementation Issues 

Numerical examples and computer simulation results 
further confirm our above derivations. Note that implemen- 
tation of the LMMSE detector needs knowledge of matrix 
P and SNR matrix, but the adaptive bootstrap multiuser 
detector developed by BarNess et. al. [2] can achieve the 
same performance as that of the LMMSE detector with- 
out these knowledge. In Figure l(a)(b)(c), we show the 
performance comparison of the decorrelating detector, the 
LMMSE detector, and the adaptive bootstrap multiuser de- 
tector. We also plot the BPSK limit as a reference lower 
bound on the performance. It can be seen that there is an 
equivalence between the LMMSE detector and the adaptive 
bootstrap multiuser detector. The improved performances of 
the LMMSE and the adaptive bootstrap multiuser detectors 
are obtained by trading a little bias for less noise variance, 
which finally results in an overall less mean squared er- 
ror (MSE). And the adaptive bootstrap multiuser detector 
provides a practical implementation of the LMMSEdetector 
for CDMA communication applications. 
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Figure 1: Performance of the LMMSE detector and the 
adaptive bootstrap detector in multi-user CDMA system. 
Also shown in figure are the results of the decorrelating 
detector and the BPSK limit. Parameters used: SNR\ = 
SdB,K = 3,M= 1000000 independent trials. 
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ABSTRACT 
We previously presented [1] a blind 2D RAKE receiver for 
CDMA that cancels strong multi-user access interference 
(MAI) and optimally combines multipath. After passing 
the output of each antenna through a matched filter based 
on the spreading waveform of the desired user, one esti- 
mates the signal plus interference spatio-frequency correla- 
tion matrix during that portion of the bit interval where 
the fingers of the RAKE occur, and the interference alone 
spatio-frequency correlation matrix during that portion of 
the bit interval away from the fingers. A reduced com- 
plexity scheme that outperforms the previous algorithm in 
a MAI dominant environment is presented based on a data 
adaptive transformation to a beamspace of dimension equal 
to the effective number of spatial degrees of freedom taken 
up by the desired user's multipath. 

1.    INTRODUCTION 
In [1] we presented a blind space-time processing scheme 
for a Direct Sequence Spread Spectrum based CDMA 
PCS/cellular communications system that cancels co- 
channel interference while simultaneously combining mul- 
tipath in an optimal "RAKE-like" fashion. After passing 
the output of each antenna through a matched filter based 
on the spreading waveform of the desired user, one esti- 
mates the_ signal plus interference spatio-temporal correla- 
tion matrix during that portion of the bit interval where 
the fingers of the RAKE occur, and the interference alone 
spatio-temporal correlation matrix during that portion of 
the bit interval away from the fingers. It was shown that 
the weight vector yielding the optimum signal to interfer- 
ence plus noise ratio for bit decisions is the "largest" gen- 
eralized eigenvector of the resulting matrix pencil. 

Taking a cue from either the IS-95 standard or the coarse 
acquisition code embedded in the GPS signal, suppose the 
chip duration is 1 microsecond. Experimental measure- 
ments in an urban cellular environment reveal that the 
worst case time delay spread, rmoi, due to multipath is 
on the order of 10 microseconds [2]. Sampling two times 
per chip, the resulting space-time correlation matrix would 
be of dimension 20AT x 20N, where N is the number of 
antennas: 120 x 120 in the case of N = 6 antennas. The 
large dimensionality of the spatio-temporal correlation ma- 
trix pencil prompted an investigation into a frequency do- 
main implementation of a RAKE receiver in [1]. 

The primary advantage of a frequency domain imple- 
mentation of a RAKE receiver is that we can select only 

fThis research was supported by the Air Force Office of Sci- 
entific Research under grant no. F49620-95-1-0367, the National 
Science Foundation under under grant no. MIPS-9320890, and 
the Army Research Office's Focused Research Initiative under 
grant number DAAHO4-95-1-0246. 

frequency values within the mainlobe of the spectrum of 
the autocorrelation function of the spreading waveform and 
the number of such values required for "good" performance 
can be substantially less than the number of time samples 
recorded during the multipath time delay spread. The re- 
sult is that the spatio-frequency correlation matrix is of 
significantly smaller dimension than the space-time correla- 
tion matrix with no degradation in performance. Another 
possible advantage is that the frequency domain implemen- 
tation may allow for a lower sampling rate than space-time 
processing since we can allow aliasing in the sidelobes of 
the autocorrelation function of the spreading waveform as 
no frequency samples from there are used. 

Extensive simulations have revealed that taking roughly 
10 frequency samples equi-spaced between minus half the 
chip rate to plus half the chip rate provides "good" perfor- 
mance. Thus, the spatio-frequency correlation matrices are 
roughly of dimension 10AT x ION regardless of the value of 
Tmax: 60x60 in the case of N = 6 antennas. The motivation 
for this paper is twofold. First, the dimension of the spatio- 
frequency snapshot is quite large for a reasonable number 
of antennas. Second, a spatial null is required to cancel 
each strong MAI since each MAI is a broadband interferer. 
Thus, the number of MAI's that can be canceled is limited 
by the number of antennas, N, and not the dimension of the 
spatio-frequency snapshot vectors, ION. This paper theo- 
retically analyzes a reduced complexity scheme, originally 
proposed in [3], based on a data adaptive transformation 
to a beamspace of dimension equal to the effective number 
of spatial degrees of freedom taken up by the desired user's 
multipath. Low dimension spatio-frequency correlation ma- 
trices are formed in the reduced dimension beamspace. We 
begin the development with the space-time data model. 

2.    SPACE-TIME DATA MODEL 

The N x 1 array snapshot vector x(n) containing the out- 
puts of each of the N antennas comprising the array at 
discrete time n is modeled as 

K Nh-\ 

*(0    =    J2pkYl *i*i)D{n)c(t - nTb - rk) 
*=1 n=0 

J    Nb-\ 

+ J2 !Z <8i)°>Di(n)ci{t - nTb) + nw(t\l) 

where a(0) is the spatial response of the array. For the sake 
of notational simplicity, we here assume that the spatial re- 
sponse vector depends on a single directional parameter, 0, 
the direction of arrival (DOA) of a given source. However, 
no model is assumed for a(0) in the algorithm to be pre- 
sented; the algorithm works for any array geometry. 1/Tb is 
the symbol rate. K is the number of different paths the Sig- 
nal of Interest (SOI) arrives from, 0j? denotes the directions 
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associated with the fc-th path, and rk is the corresponding 
relative delay of the fc-th path. pk is the complex amplitude 
of the fc-th multipath arrival for the SOI at the reference ele- 
ment. D(n) and Di(n) are the digital information sequences 
for the SOI and MAI sources, respectively. J broadband in- 
terferers (MAI) impinge upon the array. <r, is the complex 
amplitude of the »'-th interferer at the reference element of 
the array. c(t) and Ci(t) are the spreading waveforms for 
the SOI and »'-th MAI, respectively. The vector n«,(t) con- 
tains white noise. Nt, is the number of bits over which all 
parameters characterizing the model in (1) are assumed to 
be constant. Ni, might be quite small in cases of rapidly 
evolving dynamics. 

The spreading waveform for the i-th MAI is modeled as 

Nc-l 

d(t) = ^2 di(m)pc{t - mTc) (2) 
m=0 

where 1/TC is the chip rate, d;(n) is a pseudo-noise (PN) 
sequence 1, pc(t) is the chip waveform assumed common to 
all sources, Nc is the number of chips per bit common to 
all MAI's. The spreading waveform for the desired source, 
c(t), is defined similarly but with a different PN sequence. 

The received signal at each antenna is sampled at a rate 
/» = Lc/Tc, where Lc is the number of samples per chip. 
The sampled output of each antenna is passed through a 
filter with impulse response h[n] = c[-n], where c[n] - 
c(nTc/Lc). Let XF(M) denote the AT x NCLC matrix whose 
j-th. row contains N, = NCLC samples of the output of the 
j-th antenna after the matched filter for the n-th (i.e., one) 
bit period. Given the model for x(t) in (1), XF may be 
expressed as 

Xf(n) = D(n)AT + A/EjB(n)P + N(n) (3) 

A is an N x K matrix whose K columns are are &(0k), 
k = \,-,K. T is the K x N, (recall Na = NCLC) matrix 
given by 

/ 

T = 

:(-n) 
Tec 

- (fc"0 :((^.-i)^-n)  \ 
:((AV1)£-T2) 

\ rcc (-TK)    rcc (£-■>•*•) •      rcc((Ns-l)%-TK)   ) 

where rCc{j) is the autocorrelation function for the SOI's 
spreading waveform, c(t). In the case where the chip wave- 
form, Pc{t), is rectangular and the processing gain is large, 
TCC{T) has the following triangular shape: 

C(r) 
_ f  1-M    if    \t\<Tc 

~ \ 0       °     if    \t\ > Tc 
(5) 

£j is a J x J diagonal matrix containing the amplitudes 
(at the reference element), at, i = 1,..., J, for each of the 
MAI's. B(n) is a J X J diagonal matrix containing the bit 
values for the J MAI's. The columns of the N x J matrix 
Aj are a(0;)> • = h • • •.J- P is the J x AT, matrix 

P = 

ci[n] * h[n] 

cj[n]*h[n] 

(6) 

where c,[n] = Ci(nTc/Lc). where * is the linear convolution 
operator truncated at N, samples. N(n) is the noise contri- 
bution; the rows of N(n) are independent Gaussian process 
but the individual components of each row are correlated 
because of the matched filtering operation. 

'Without loss of generality, real-valued spreading waveforms 
have been assumed for notational simplicity. 

3.    SPACE-FREQUENCY DATA MODEL 

Define the N3 x N«, selection matrix I\ as 

(0(i_i)xN„ 

I AT» X AT» i=l,...,N.-Nv,       (7) 

where 
Nw = 

Lic^max 
(8) 

where Tmax is the worst case time delay spread due to multi- 
path. Without loss of generality, we have chosen rmax such 
that 

Nm = 
Tmax 

(9) 

is an integer. The important thing is that Tmax be an upper 
bound on the experimentally measured worst case multi- 
path time delay. If pc(t) is one microsecond in duration, a 
reasonable number for Nm is 10 in an urban cellular envi- 
ronment. 

Define the »"-th spatio-frequency snapshot for the n-th bit 

38 y'i)(r.) = vec(XF(n)r(')W) (10) 

The Nw x L matrix W is composed of L < Nw columns of 
the Nw point DFT matrix; the £-th column of W has the 
form 

w* -[,. -j2ir-! ^iiife-r 
(ii) 

Note that the analog frequency separation between adjacent 
spectral lines is 

*/=—- = TT 
Tmax 

i_ 
N„ 

1_ 
Tc 

(12) 

Finally, vec(-) is the operator that maps anJVxL matrix to 
an NL x 1 vector by concatenating its columns. Summariz- 
ing the steps implied by (10), the procedure is to compute 
L spectral lines of the rows of Xf(n) over Nw = NmLc 
samples starting at the i-th column, and then stack the 
resulting L N x 1 vectors in an NL x 1 vector. 

Let's examine the structure of the NL x 1 spatio- 
frequency snapshot vector formed by substituting the form 
of Xf(n) in (3) into (10). Assuming the processing gain, 
i.e., the number of chips per bit, Nc, to be large, and that we 
have approximate bit synchronization for the desired user, 
the term corresponding to the SOI is only nonzero during 
the first Nm chips associated with index t = 1. Assume 
rcc(r) to have the triangular shaped described by (5) cor- 
responding to a rectangular chip waveform. In this case, 
each row of T is simply a sampled version of a time-delayed 
replica of (5), delayed by n where i is the row index. Using 
simple properties of the Fourier Transform it follows that 

y,(n) = vec (D(n)ATr(0W) = £>(n)vec(A$F)     (13) 

where F is an L x L diagonal matrix: the f-th diagonal 
entry of F is of the form 

T(l) = >rin(£) 
(14) 

The l-th column of the J x L matrix * is of the form 

-jtirt r 
r' -J2JT<    T1 -J2irt-T' J 'mil  ,e "■maxI.-.ie ' 

It is instructive to examine the asymptotic structure of 
the LN x LN spatio-frequency correlation matrix of y»("): 
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Ks = E[y>(n)y,fl(n)]. Since the only time varying quantity 
is D{n), it follows that 

Ks = fftdd",    where: d = (F ® AEs)vec($)       (16) 

where o\ = E[D2(n)], Es is a K x K diagonal matrix 
containing the complex amplitudes of the K multipaths for 
the SOI. The result in (16) was obtained by invoking the 
property vec(ADB) = (BT ® A)vec(D). Note that Ks is 
a rank one matrix. 

The energy contribution of the MAI's to a given bit pe- 
riod is approximately evenly spread across the entire bit 
period. Define 

y(p(n) = vec (A/E,B(n)Pr(,)W) (17) 

It can be shown that the MAI spatio-frequency correlation 
matrix K/ = £[yj0(n)y^)H(n)] may be expressed as 

to the solution to the Minimum Variance Distortionless Re- 
sponse (MVDR) problem 

min  W
H

K/+JVW 
w 

subject to: wHd = 1 (22) 
where d is the NL x 1 vector defined in (16). 

The "largest" generalized eigenvector of the pencil 
{Ks+j+jv,Kj+Ar} is the solution to the unconstrained op- 
timization problem 

max ü^*g±I±^ „ max W"(K'+" + <*M')w   (23) 

where we have invoked the fact that Ks is rank one.   It 
follows that 

K/    =    £[vec(A/E/B(n)Pr(i)W)vecH(A/E/B(n)Pr(,)W)] 

=    Rf ® A/E?Af (18) 

where we have exploited the following four properties: (i) 
vec(ADB) = (BT ® A)vec(D), (ii) (A ® B)(C ® D) = 
(AC) ® (BD), and (iii) E{B(n)BH'(«)} = <,llJxJ (the 
data from different sources are assumed to be uncorre- 
lated,) and (iv) E[di(m)dj(i)] = 8ijSmt, the chip values 
comprising each PN sequence are modeled as independent 
and identically distributed. RF — WTY/W*, where 
Yj is a Toeplitz-symmetric matrix whose first column is 
rlc(mTc/Lc), m - 0,..., Nw - 1. Note that RF is full rank 
and Aj is rank J. It follows that K/ is rank LJ. 

Regarding the noise contribution, a similar development 
reveals that the spatio-frequency correlation matrix for 
y$(r») = vec (N(n)r(,)W) has the asymptotic form 

KN = * ® lN (19) 

where * is is an L x L matrix. * may be expressed as 
* = WTT^W*, where tN is a Toeplitz-symmetric ma- 
trix whose first column is rcc(mTc/Lc), m = 0,..., Nw - 1. 

4.    BLIND ADAPTIVE 2D RAKE RECEIVER 

The signal plus interference plus noise spatio-frequency cor- 
relation matrix is estimated as 

if 1,-1 

Ks+I+N = ±<TyV(n)yW»(n) (20) 

max 

Observe that only spatio-frequency snapshot is extracted 
from each bit in forming KS+I+N. The interference plus 
noise spatio-frequency correlation matrix is estimated as 

KJ+JV = 
1 

Nb(N,-l) 

Nb-l N,-Nw 

,(•>/ y™W>"(n)      (21) 

In the development below we show that the optimum set 
of spatio-frequency weights for weighting and summing the 
frequency samples computed in the vicinity of the fingers 
of the RAKE is the "largest" generalized eigenvector of the 
matrix pencil {KS+;+W,K;+JV}. 

We here show that the asymptotic spatio-frequency 
weight vector w obtained as the "largest" generalized eigen- 
vector of the matrix pencil {KS+J+N,K/+JV} corresponds 

f,  , wVddgw) .    wHK/+Arw 
\1+^i^v^/=mv;n^^dd^   w 

which is equivalent to the constrained minimization prob- 
lem in (22). The "inversion" of the maximization problem 
resulting in the equivalent minimization problem is possible 
since K/+jv is a positive-definite matrix. 

We now prove each sub-vector of the optimum weight 
vector corresponding to a particular frequency bin is or- 
thogonal to each column of A/. Equation (18) reveals that 
the spatio-frequency correlation matrix of the MAI is a Kro- 
necker product of the L x L matrix KF with the N x N ma- 
trix A/E7A/ . Let EF be an L x L matrix whose columns 
are the eigenvectors of RF ■ Since RF is a full rank Hermi- 
tian matrix, it follows that E£EF = EFEJ? = Ix,. How- 
ever, A/E/A" is only rank J. Let Let Es be an N x J 
matrix whose columns are the eigenvectors of A/EjA" as- 
sociated with the J nonzero eigenvalues. From signal sub- 
space theory, it follows that Es = A/T where T is a J x J 
full rank matrix. It was noted previously that K j is of rank 
LJ. Let Ej be an LN x LJ matrix whose columns are the 
eigenvectors of K/ associated with the LJ nonzero eigen- 
values. It follows from the theory of Kronecker products, 
that E/ = EF ® Es. 

Post-multiplying E/ by a full rank LJ x LJ matrix yields 
a matrix whose range space is the same as that of E/. Post- 
multiplying E/ by the full rank matrix Ef ® T-1 yields 

G/    =    E/(E£®T-
1
) = (EF®ES)(EF"®T-

1
X25) 

=    EFE£ ®EsT-1 = It®A/ (26) 

where we have used the Kronecker product property (A ® 
BHC®D) = (AC)®(BDk V 

The projection operator P/ onto the range space of K/ 
may be expressed as 

P/ = E/B? = G/(GfG/)-
1Gf = I, (27) 

where P^ is the projection operator (N x N) into the 
subspace generated by the columns of A/. 

The optimum weight vector is given by the Wiener so- 
lution as w°»" = KT^d. When the power of the MAI's 
is much stronger than than the receiver generated noise, 
the optimum weight vector is well approximated by wopt ss 
d - P/d. Substituting the expression for Pj in (27) in 
d — P/d yields the following asymptotic expression for the 
optimum weight vector: 

di -PAidi 

di-P^/d, 
(28) 
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where d< is the i-th N xl sub-vector of the NL x 1 vector 
d defined in (16). It follows that the i-th N x 1 sub-vector 
of w0*" is orthogonal to each column of Aj, i.e., the array 
pattern obtain at each frequency bin exhibits a spatial null 
in the direction of each and every MAI. 

5.    BLIND SPATIAL PRE-PROCESSING 

The spatio-frequency MVDR processor should accomplish 
two tasks: (i) it should null the MAI's and (ii) it should op- 
timally combine the fingers corresponding to the different 
paths of the SOI. The optimum weight vector is the largest 
"generalized" eigenvector of an NL x NL spatio-frequency 
correlation matrix pencil. This large dimensionality trans- 
lates into a corresponding large computational burden, de- 
tracting from the real-time applicability of the scheme and 
slowing up the time to convergence as well. 

We here restrict our attention to a scenario where the 
MAI's are the primary source of interference. Since cancel- 
ing each broadband MAI consumes L degrees of freedom 
- so that J spatial nulls are formed towards the MAI's at 
each of the L frequency bins - the interference rejection ca- 
pability of the algorithm is not diminished if it is divided 
into two stages: spatial-only pre-processing with N degrees 
of freedom to cancel the MAI's followed by blind MVDR 
spatio-frequency in the reduced dimension beamspace. 

In this scheme, we first transform to a p < N dimen- 
sional beamspace using the p "largest" generalized eigen- 
vectors of the N x N spatial correlation matrix pencil 
{Rs+i+N, RJ+W}- Here p is the number of dominant mul- 
tipath for the SOI that are resolvable in space. RS+/+N 
is formed from snapshots measured in the vicinity of the 
"fingers," while RJ+N is formed from snapshots measured 
away from the "fingers." 

6.    SIMULATION 

A simulations was conducted employing a six element 
uniformly-spaced linear array with half-wavelength spacing. 
Both the desired source and the interferer were DS-CDMA 
signals with different Gold codes and 127 chips per bit; the 
duration of a chip was one microsecond. The modulation 
overlay was BPSK. A simple two-ray multipath model was 
used for the desired source wherein the direct path arrived 
at an elevation angle of 0° relative to broadside with an 
SNR of 10 dB per element. The second ray arrived at an 
angle of 10° with a relative delay of 2 chips and an SNR 6 
dB below that of the direct path and phase shifted by 45° 
at the array center. The interferer was modeled as arriving 
at a single discrete angle, 30° elevation, with an SNR of 30 
dB per element. There were two samples per chip. 

The beam pattern obtained with the weight vectors of the 
first stage computed as the " two largest"^ generalized eigen- 
vectors of the matrix pencil {RS+/+W,RJ+N} are plotted 
in Figure 1. Both patterns are observed to peak near the re- 
spective angular directions of the multipath arrivals for the 
desired user, and have a deep null in the direction of the 
interferer. The two "largest" generalized eigenvectors were 
employed to transform to a 2-dimensional beamspace. Ap- 
plying the spatio-frequency processing scheme to the out- 
puts of the p = 2 respective beams yields the signal con- 
stellation plotted in Figure 2. 

Comparing the computational load of this two-stage pro- 
cedure with spatio-frequency processing in the original el- 
ement space, the latter requires the computation of the 
"largest" generalized eigenvector of a 60 x 60 matrix pen- 
cil. In contrast, the former requires computation of the two 
"largest" generalized eigenvectors of a 6 x 6 spatial matrix 
pencil followed by the computation of the "largest" gener- 
alized eigenvector of a 20 x 20 spatio-frequency correlation 

matrix pencil in beamspace. Moreover, relative to perfor- 
mance, the two-stage procedure offers faster convergence as 
there are many more spatial snapshots per bit for forming 
RS+J+AT and R/+N than spatio-frequency snapshots per bit 
for forming Ks+/+N and Kj+jv. Coupled with the fact that 
Rs+7+JV and R/+w, as well asKs+i+N and K.I+N, are of 
much smaller dimension than KS+I+N and KJ+W, there is 
a substantial decrease in the error of the estimate of the op- 
timum space- frequency weight vector in beamspace relative 
to that in element space. 
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Abstract 

The use of array antennas in the radio nodes of a wireless 
network will increase the capacity since by appropriate null 
placement, the cochannel interference can be suppressed 
and the channel reuse will be enhanced. A radio network 
with arbitrary topology and array antennas in the nodes is 
considered in this paper. Each radio node may act either 
as a receiver or as a transmitter and can place a number of 
nulls in its radiation pattern. A collection of links may share 
the same channel if the interfering transmitters within the 
range of each receiver are cancelled out by null placement 
either at the receiver or at the transmitter side. The fol- 
lowing problem is considered. Given a collection of links, 
identify a null placement configuration such that the links 
share the same channel without interference. It is shown that 
such a null placement configuration can be found by solv- 
ing a maximum flow problem in an appropriately defined 
capacitated network. 

1. Introduction 

Array antennas with linear combining of the element out- 
puts have been studied extensively over the past decades. 
By controlling the weights in the linear combination of 
the element outputs, the radiation pattern of the antenna 
can be designed to have certain desirable characteristics 
like a high gain narrow beam in the direction of the in- 
tended communicator and nulls in the directions of jam- 
mers/interceptors. Efficient signal processing algorithms 
for direction of arrival estimation, adaptive beam and null 
steering and multiple source-location estimation have been 
proposed [11, 10, 1, 2]. Most of the existing work on the 
subject is for the case of a single node employing an array 
antenna which communicates with another transceiver in the 
presence of multiple interferers. 

It is apparent that the capability of an array antenna to 
shape its radiation pattern can be utilized in a wireless net- 
working environment with multiple interacting radio links. 
The beamforming capabilities of an array antenna can be 
used both in the receiver and the transmitter end of a wire- 
less link to improve the quality. The receiver antenna places 
the main lobe towards the direction of its transmitter in or- 
der to increase the link gain, while the reception nulls are 
placed towards the directions of interfering transmitters in 
order to reduce interference. Similarly the transmitter places 
its main lobe towards the direction of its receiver while the 
nulls should be placed such that the receivers of other links 
with high interference levels are not affected. In this way 
the signal to interference ratio of cochannel links can be 
enhanced and a large number of cochannel connections can 
be accommodated in each channel. Techniques that utilize 
the beamforming capabilities of array antennas to increase 
the capacity of wireless networks are currently under inves- 
tigation by several researchers and they are termed Spatial 
Division Multiple Access (SDMA). In this paper we con- 
sider the problem of increasing network capacity by using 
the null placement capability of array antennas, to facilitate 
the coexistence of large numbers of cochannel links. 

2   Radio Network Model 

Consider N radio nodes with one transceiver per node. 
The antenna of node v has ev elements. Neighboring trans- 
missions using the same channel interfere unless the trans- 
mitters and receivers place the nulls of their radiation pat- 
terns appropriately. We assume that the transmission of 
node v interferes the reception of node w from node k if w 
is in the neighborhood of v, and neither v nor w place a null 
in the direction from v to w. The proximity among the nodes 
and its impact to the signal and interference levels among 
them is captured by the connectivity graph G = (X, E) 
where X is the set of radio nodes and edge (t>, w) belongs 
to E if and only if nodes v, w are within range one from 
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the other. Hence edge (v, w) implies both that the nodes 
can talk among themselves as well as that they interfere one 
another. A communication link between nodes v and w can 
be established only if (v, w) belongs to E. Furthermore 
the reception at some node v from some node w is inter- 
fered by the cochannel transmission of some other node u, 
if (u, v) belongs to E and neither v nor u place a reception 
or transmission null respectively towards each other. 

In multihop radio networks, the same channel is reused by 
multiple communication links in order to increase the traffic 
capacity. Assume that the nodes employ omnidirectional 
antennas. Then a set of links S = {{V],WI),...,(VM,WM)} 

can use the same channel if and only if the receiver wi 
of each link i is within the transmission range of its own 
transmitter Vi and out of range of any other transmitter in 
the set S. That is, (vuWi) G E for i = 1,...,M and 
(vj,Wi) $ E for all i,j = 1.....M, i £ j. For increasing 
network capacity, it is desirable to have sets of cochannel 
links with large cardinality. The larger the cochannel sets 
are, the larger the number of simultaneous transmissions 
that can be accommodated with a fixed number of channels. 
The problem of link scheduling to alleviate interference and 
increase the capacity of packet radio networks was studied 
extensively in the past [5, 3,4, 9, 6, 8]. 

If the nodes possess array antennas, then the neighboring 
links can share the same channel since cochannel interfer- 
ence can be alleviated by null placement. Therefore, larger 
sets of links can share the same channel and the network 
capacity may increase. 

3   Null Placement 

Node v has an array with ev - 1 elements and therefore 
can place ev - 1 nulls, either when it acts as a receiver or as 
a transmitter. Since a node v can interfere or be interfered 
by other nodes which are within its transmission range, the 
nulls are placed towards those directions. Let's denote by 
N(v) the set of nodes w which are within range of node 
v, that is (v, w) G E. Node v places nulls towards the 
directions of at most ev - 1 nodes of those in N(v). The 
null placement of node v is described by the set U(v) of the 
nodes which are nulled. 

Consider a set of links S = {{VUW\),...,(VM,WM)} 

where the nodes Vi act as transmitters and the nodes Wi 
act as receivers. Let V = {vi : i = 1, ...,M} and W = 
{wi : i = 1,..., M} be the sets of transmitters and receivers 
respectively. The links in S may constitute a cochannel set 
if and only if for any two nodes Vi G V, Wj G W,i ^ j 
which are within the transmission range one of the other 
{(vi,Wj) G E), either V{ or Wj place a null towards the 
other. The beam pattern for the set of links U is specified 
by the collection U = {U(v),v eVö W}, that is called 
null placement configuration in the following. Hence, a set 

of links is an eligible cochannel set under a null placement 
configuration U if and only if 

A. Nodes Vi, Wi have their main beams directed towards 
each other, therefore Vi £ U(wi), Wi & Ufa). 

B. When fa,Wj) belongs to E, i ^ j, then either Wj G 
U{vi) oivi G U{wj). (Interference cancelation) 

In determining cochannel sets with large cardinality, the 
next problem becomes of interest: 

P: Given a set of links S and array antennas with a certain 
number of elements at each node, find a null place- 
ment configuration under which the set of links S is 
an eligible cochannel set. 

Let's partition the collection of sets U representing the 
null placement configuration for the set of links S, in two 
subcollections Uv and Uw; Uv = {Ufa) :» = 1,.... M}, is 
the null placement of the transmitters and Uw = {U(wi) : 
i = 1,..., M}, is the null placement of the receivers. Note 
that for a specific null placement configuration Uv in the 
transmitters, it is simple to determine whether there is a 
receiver null placement configuration Uw such that S is 
an eligible cochannel set for the configuration U = Uv U 
Uw. It is enough that for every node wit the number of 
transmitters Vj, i # j which are within range of Wi and have 
not placed a null towards the direction of Wi is less than or 
equal to eWi - 1. In this case the receiver Wi may cancel 
the interfering nodes by placing its own nulls towards their 
directions. Hence problem P can be rephrased as follows: 

PI: Find a transmitter null placement configuration Uv 

such that for each receiver Wi G W, the number of 
transmitters in V still interfering Wi after the null 
placement Uv is less than or equal to eWi - 1. 

In the following we show that a feasible null placement 
configuration can be obtained by the solution of a maxflow 
problem. 

Consider a directed bipartite graph GB with sets of nodes 
V and W and set of edges EB that consists of all the edges 
of G connecting nodes between V and W with an imposed 
direction from V to W. The edges (vi,Wi),i = 1....M 
are excluded from EB- Construct a flow network GF by 
augmenting GB as follows. Augment the set of nodes V U 
W by two additional nodes s (source) and d (destination). 
Augment the set of links by |V| links directed from s to 
each one of the nodes in V and \W\ links directed from 
each node in W to d. Define a capacity function on the set 
of links as follows. Each link in EB has capacity equal to 
one. A link from s to node Vi G V has capacity CaVi equal 
to (d(vi) - eVi + 1)+, where d(vi) is the number of links 
emanating from node vi in the graph GB, and a link from a 
node wi G W to d has capacity e«,; - 1. 
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The null placement problem PI is equivalent to an integer 
maximum flow problem in GF as it is argued in the follow- 
ing. Consider feasible integer flow vectors in GF, that is 
nonnegative integer vectors /, with one component /„ for 
each link (v, w), which satisfy the link capacity constraints 
and the flow conservation equations. The flow transfer of 
a flow vector is the sum of the flows of all links emanating 
from node s. The maxflow problem is to identify the flow 
vector with the maximum flow transfer. For more details 
on the maxflow problem, the reader is referred to [7]. The 
problem PI and the maxflow problem in Gp are equivalent 
in the following sense. 

There is a null placement configuration for which S is 
feasible cochannel set if and only if the maximum flow trans- 
fer in GF is equal to J2v.eV CSVi. 

This claim is justified in the following. Consider a flow 
vector f° that achieves the maximum flow transfer. For that 
flow vector, the flow through each link (s,Vi) will be equal 
to its capacity, f°v. = CSVi.   Note that the flow of each 
link in EB will be equal to 1 or 0 and because of the flow 
conservation equation for vit exactly f°v. links emanating 
from node v{ will have flow equal to 1 and the rest equal to 0. 
That is, exactly (d(vi) - eVi + 1)+ links emanating from vt 

have flow equal to 1. For each node w, there is a number of 
links with capacity equal to 1 terminating in Wi and only one 
link with capacity eWi - 1 originating from Wi to d. Because 
of the flow conservation equations in node w» at most eWi -1 
links with flow equal to 1 may terminate in Wi from some 
node in V. Consider a null placement configuration where 
each transmitter Vj sets the nulls towards the directions of the 
links that carry zero flow and each receiver Wi sets the nulls 
towards the directions of the links carrying flow equal to 1. 
This null placement is feasible since each node Vj (u>,) needs 
to place only up to eVj - 1 (eWi - 1) nulls. Furthermore for 
each interfering pair (vj,Wi) £ EB, j # i, the interference 
is cancelled either by a null from Vj if FVjWi = 0 or by a 
null from wt if FVjW. = 1. Hence it is shown that given a 
feasible flow vector with flow transfer equal to J2V ■ e v C*«3- > 
a null placement configuration U for which S is an eligible 
cochannel set can be obtained. It can be argued similarly 
that if there exist a null placement configuration for which S 
is a feasible cochannel set, then the maximum flow transfer 
inGFisequaltoX^.£V,Cst,.. 

towards each direction; adaptive null placement without the 
knowledge of the interferers directions; consideration of the 
effect of the signaling schemes on the beamforming. Most 
of these problems have already been considered for a single 
receiver and it remains to be addressed in a network context. 
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4   Discussion 

A model for a radio network with array antennas was 
considered and it was shown how the radiation nulls should 
be placed such that a certain collection of links to constitute 
an eligible (interference free) cochannel set. 

There are several directions for further investigation, in- 
cluding: more accurate modeling of the interference using 
path losses and exact values of the antenna radiation gain 
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Abstract 

A multiple antenna diversity scheme is investigated for 
digital wireless communications. Antenna observations are 
immediately quantized and sent to a fusion center to de- 
cide which symbol was transmitted. The optimum reception 
schemeisdescribedforthecasewherefrequencyshiftkeying 
is employed and where slow Rayleighfading and Gaussian 
additive noise are present. Two cases are studied. In the 
first case an accurate estimate of the signal-to-noise ratio 
is available at each receiver. In the second case estimates 
are not available. Results indicate that two or three bit 
quantizations may be most appropriate. 

1   Introduction 

There is significant interest in using wireless commu- 
nication systems in environments where severe multipath 
fading is present, which can limit system performance [1]. 
To mitigate the effects of multipath fading, diversity tech- 
niques using multiple antennas have been proposed [2, 3] 
and it has been found that the performance improvements 
obtained by using these schemes can be significant. There 
appears to be a trend towards increasing the portion of wire- 
less receivers that are implemented using digital technology 
in many applications. Recent improvements in electronic 
technology indicate that all-digital receivers are becoming 
practical at many frequencies of interest and further im- 
provements in the speed of analog-to-digital converters are 
expected to continue this trend. These facts indicate that 
multiple antenna diversity schemes that combine quantized 
samples should be considered. 

Consider a multipath fading environment where non- 
coherent binary frequency shift keying (FSK) is to be em- 
ployed *. Assume that N receivers, each with an associated 

•This material is based upon woik supported by the National Science 
Foundation under Grant No. MIP-9211298 

xThe analysis given here is applicable to spread spectrum signaling as 
described in [4]. 

antenna, are to be employed to achieve a diversity gain. A 
nonselective fading channel is considered where the fading 
is assumed to be slow enough so that it can be assumed 
constant over several bit periods. In our explicit examples, 
Rayleigh fading is assumed. The observations at each re- 
ceiver are assumed to include additive zero-mean Gaussian 
noise. 

Each of the receivers will generate a multiple bit deci- 
sion and a single final decision will be made by fusing the 
decisions from the individual receivers. Assume that syn- 
chronization between the individual receiver decisions has 
been achieved, so that each set of receiver decisions corre- 
spond to the same transmitted digit. We consider two cases. 
One case where an accurate estimate of the signal-to-noise 
ratio is available for the observations made at each receiver 
and a second case where no such estimate is available. 

2   Optimum Combining 

The optimum scheme (minimum probability of error) 
for fusing the decisions from the individual receivers is to 
form the likelihood ratio for the set of individual receiver 
decisions [5] and to compare this to a threshold. Denote the 
decision at the jth receiver by Uj which can take on any 
of the values 1,..., Mj. Then the optimum final decision 
U0 is to decide for a "1" sent (U0 = 1) if (ones and zeros 
equally likely 2) 

(i) 

where 
,   (ProbVUj = k 11 sent )\ n. 

^ = ln(p^U = fc|0sent)j' (2) 

UJ is the observed value of the random variable Uj, and 
I(UJ = Jfc) is an indicator function which is unity if u,- = k 

2The extension to cases where ones and zeros were not equally likely 
is straightforward. The zero on the left hand side of (1) becomes 
In (Prob{0 sent)/Prc*(l sent)). 
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and zero otherwise. If the left hand side of (1) is less than 
zero, then the final decision decides a "0" was sent. Note 
that we can decide "0" or "1" for the event where the left 
hand side of (1) equals zero without affecting performance. 
The form of the fusion rule given in (1) is valid in either of 
the two cases we consider. The calculations of Prob(Uj = 
k\l sent) and Prob(Uj = *|0 sent) are different in each 
case, since these calculations depend on the schemes used by 
the individual receivers to generate their multibit decisions. 

One special case of interest is that where receiver signal- 
to-noise ratio (SNR) estimates are available, and where the 
sensor SNRs change so slowly that the estimates can be sent 
to the fusion center with infinite precision. Since the update 
rates necessary are so slow this communication is ignored. 
This case was considered in [6] for individual receivers that 
make binary decisions. In this special case the weights are 
given by 

W>'h ~ m \PrdbiUj = *|7i)0sent))' (3) 

where 7,- is the SNR estimate at receiver j. 

3   Optimum Receiver Quantizers 

Each of the individual receivers consists of two bandpass 
matched filters, each matched to a sinusoid (over the bit 
period) with a different frequency. A sinusoid with one of 
these frequencies corresponds to a "1" being sent, while a 
sinusoid with the other frequency corresponds to a "0" being 
sent The outputs of the matched filters are sampled at the 
end of the bit interval and then envelope detected to produce 
the random variables ify (large for "0" sent) and Äy (large 
for "1" sent) at the jth individual receiver. The relative 
sizes of ROJ and JRy determine the likelihood of that a "1" 
or "0" was sent. Thus an important quantity is the observed 
value of the random variable Vj = Äy - £<y which has 
probability density function (pdf) fvj(vj \l sent) given the 
symbol / = 0 or I = 1 was sent. 

First consider the case where no estimates of the receiver 
SNRs are available. The best decision scheme at the jth 

individual receiver should perform a quantization of the 
likelihood ratio of the receiver observations [7]. Thus the 
jth individual receiver should decide Uj = k if VJ e Ajtu 
where 

f ,   /Abfall sent )\ 1 

and 
(4) 

In (5), yViir,. (VJ IT,- , / sent) denotes the conditional pdf of 
Vj which is (for unit variance noise) [8] 

fvi (VJ |0 sent, 7j,) = / r exp (- —) 
Jr=max(0,-vj) \     *■ J 

exp(-7j)Io (rv^77) (r + VJ)exp (-t+^iL\dr   (6) 

and under the appropriate symmetry conditions 

fVi{vj\l sent )7i) = /Vi(-Wj|0sent ,7i) (7) 

111 (5) fcjfrj)is the Pdf of the signal-to-noise ratio at the 
jth receiver. For example, assuming Rayleigh fading gives 
a specific form for fr. (7j-) which is 

^) = ^exp(-£)u(7i) (8) 

where /*,- is the average signal-to-noise ratio at the jth re- 
ceiver and u(x) = 1 for x > 0 and is zero otherwise. Using 
the regions in (4) allows us to compute the required proba- 
bilities needed to calculate (1) as 

Prab(Uj = k \l sent) = / fv. (Vj \l sent )dvj, (9) 

I = 0,1. 
Now assume that an estimate of the signal-to-noise ratio 

of the observations at each receiver is available, which we 
take to be equal to the true SNR jj. In this case, the deci- 
sions from the jth individual receiver should be based on Vj 
and ij. The best decision scheme at the jth individual re- 
ceiver should perform a quantization of the likelihood ratio 
of (Vjf'Yj). Thus, the jih receiver should decide Uj = k if 
(vj,7j)€Ae

jtk where Ae
j<k = 

(10) 

/vri,rJ("j,7j|lsent)    =    fVj(vj\l sent ,7j) 
/vi.r^Vj.TilOsent) /Vi(tv|0sent)7.,) 

and the required probabilities needed to calculate (1) are 
computed as 

with 

nu 

Abfall sent) _ /T7=oA^iri(»il1«nt.7j)^-(7j)«fTj 
A^IOsent)       f7°°=0 fVi(vi\0 sent,7j) fir.{7j)dyj L ("i.7i)€A;fc 

Prob(Uj = k\l sent) = 

fri(rti)fvi{vj\tsent,1j)dvjd1j I = 0,1. (12) 
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4   Optimum Thresholds 

For a given set of thresholds t,-,*, j = l,...,N,k = 
l,...,Mj and fading statistics, the reception scheme is 
now well defined. The receiver thresholds are chosen to 
minimize the probability of error which is 

Pe = Prob(0 sent )Prob( error |0 sent) 
+Prob(l sent )Prob( error |1 sent) (13) 

where 

Ml «H 

Prob( error |0 sent) = ^ • • • 53 
Ul=l Ulf=l 

Prob(Uo = l|Z7i = ui,..., UN = uN) 
Prob(Ui - «i |0 sent) • • • Prob(UN - ti*r|0 sent),   (14) 

Prob{U0 = l\Ui=ttu...,UN = iiN)is specified by the 
fusion rule in (1). The quantities like Prcb(U\ = r*i |0 sent) 
in (14) can be calculated using (12). An expression similar 
to (14) exists for Prob( error |1 sent) as given by 

Prob( error 11 sent ) = 
Mi M,t 
J^... ]T Prob(Uo = l\Ui = uu...,UN = iitf) 
«1=1       u*r=l 

Prob(Ui = ui |1 sent )•• • Prob(UN - uu\\ sent). (15) 

We have searched for the thresholds which minimize 
P« in (13) by using a numerical gradient descent based 
technique. While it is difficult to guarantee that an absolute 
minimum has been found, this technique is relatively simple 
to apply and solutions which give good performance can be 
obtained easily provided only a small number of individual 
receivers and quantization levels are involved. As a specific 
example, consider a case with two individual receivers with 
m = H2 = 10 dbSNR, and unit variance noise. To simplify 
matters assume even symmetric receiver thresholds [8]. To 
further simplify matters, consider the case where the set of 
thresholds at each receiver are constrained to be identical. 
Table 1 gives the best schemes we found for cases with 
receiver SNR estimates available and M\ = Mz = 2,4,6. 
The results in Table 1 are for the case where the receiver 
SNR estimates must be encoded in the same bits as the 
receiver decisions are encoded. If the SNR of the receiver 
observations is changing very slowly then one might assume 
these estimates can be sent to the fusion center without any 
overhead. This is the case considered in [6]. 

The other possibility is where SNR estimates are not 
available. Table 2 gives the best schemes we found 
for cases with no receiver SNR estimates available and 
Mi = M2 = 2,4,6. These results give an indication of 
the performance that can be obtained. The results in both 

Mi = Mz Pe *iA ';.* *ifl tj,A 

2 0.0833 
4 0.0251 2.40 
6 0.0202 1.02 3.70 

Table 1. Best solutions (SNR estimate avail- 
able) with SNR = 10 dB. Other receiver 
assumed identical (tjfi = 0 and t^m/i = 
oo for j  =  1,2).    Rest of thresholds at 
-*J,li —*i,2. -<J,3i -ij.Mj/2-l- 

Mi = M2 Pe **i *** *;,3 <;-,4 

2 0.0833 
4 0.0305 1.47 
6 0.0245 0.87 2.00 

Table 2. Best solutions (no SNR estimate) with 
SNR = 10 dB. Other receiver assumed Identi- 
cal (tjfi = 0 and tjlMi = oo for j = 1,2). Rest of 
thresholds at -tj,\,-tj,z, -*j,3, -tj.^/2-i- 

Table 1 and Table 2 indicate that there is a distinguishable 
improvement in performance when using two-bit decisions 
over the performance that can be obtained when using single 
bit decisions. For increases beyond two bits the performance 
gains occur more gradually (results for Afi = Mi > 6, not 
shown in Table 1 and Table 2, show even more gradually 
improvement). This suggests that two or three bit deci- 
sions may be adequate in many cases. Similar results have 
been obtained at other signal-to-noise ratios. These results 
are consistent for those obtained other quantized reception 
problems, [9] which are sometimes called distributed detec- 
tion problems. 

5   Discussion 

It is not surprising that, typically, cases with SNR esti- 
mates yield better performance then cases withoutestimates. 
The best centralized scheme (no quantization) without SNR 
estimates is a noncoherent detection scheme which has re- 
ceived significant attention. If the average SNRs are identi- 
cal at each individual receiver then the optimum centralized 
scheme is square-law combining. Even if the average SNRs 
are identical at each individual receiver then the optimum 
centralized scheme for the case where the SNR estimates are 
available is not square-law combining. The optimum cen- 
tralized scheme is discussed in [10]. This is a case which is 
intermediate to that of pure coherent and pure noncoherent 
detection. It is useful to note that the performance of this 
scheme is bounded by the performance of the coherent and 
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noncoherent schemes, since it appears difficult to develop 
an analytical expression for this performance. Note that the 
performance of the optimum centralized scheme allows us 
to compute the performance of the distributed scheme as M\ 
and M2 approach oo. 

The binary receiver decision case is quite interesting, 
since in this case the performance for the cases given in 
Table 1 and Table 2 are exactly the same. This is reasonable 
since the best receiver thresholds, even without the symme- 
try or identical receiver threshold assumption, are at zero. 
In the non-binary cases with SNR estimates available at the 
receivers, the thresholds used at the individual receivers are 
essentially chosen to be different for each different SNR. In 
the binary case this does not occur, the best thresholds are 
always zero. Thus the SNR estimate is not actually used. In 
fact it is easy to show that in either case probability of error 
is exactly equal to that for the single individual receiver case 
with unknown SNR with an average value p. = m = p2 
which is P, = P, = 1/(2 + p). This means that using 
the SNR estimate does not improve performance and that 
using two rather than one individual receiver also does not 
improve performance. 

Now consider a case with N individual receivers. In 
these cases the best fusion rule reduces to a majority rule 
which will randomly choose Do = 0 or üb = 1 if the half 
the receivers decide a zero was sent and half decide a one 
was sent (under the constraint of like sensors). The overall 
error probability with N individual receivers is 

"•=(ifi-¥)(;h'-^ 
+  E   (k ) fa - p-)"-k 

k=\N/2\+l V ' 
(16) 

For N = 1 or N = 2 we see that P. = P.. In fact if N 
is any odd integer, (16) shows that there is no improvement 
due to increasing N by one. The problem is the random 
decision which is made if the half the receivers decide a 
zero was sent and half decide a one was sent. For N > 2 
we generally find P, < P,. 

For the special case where the receiver SNRs are chang- 
ing slowly, so that exact SNR estimates can be sent to 
the fusion center without overhead, the results are differ- 
ent The performance in this case must be as good or 
better than the other two cases we consider. In this case 
the fusion center can combine the receiver decisions based 
on the true SNR of the observations used to make each 
decision. For the case of two individual receivers it is 
easy to show that the receiver decision with the highest 
SNR will determine the final decision. Due to this the 
performance is equivalent to that for selection diversity 
which is P, = 1/(2 + 2p + p2/2) < 1/(2 + p) since 
2 + 2p + p2/2 > 2 + p.  Thus in this case there is an 

improvement over the single individual receiver case. 
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Abstract 

Multiuser detection techniques provide attractive 
performance characteristics for CDMA systems. A re- 
cently proposed blind adaptive multiuser detector pro- 
vides near-far resistance without requiring any more in- 
formation than a conventional detector. In this paper, 
an optimum and two suboptimum multi-element blind 
adaptive receivers are proposed. These receivers exploit 
the spatial distribution of the users in a multiple access 
environment. The steady state performance of these 
detectors is analyzed and their complexity and the level 
of information required by each of them is compared. 

1    Introduction 

A major limiting factor in the performance of the 
conventional (matched filter) receiver for CDMA sys- 
tems is the near-far problem, where a strong interferer 
may prevent the reliable detection of the desired user. 
Multiuser detection techniques provide alternatives to 
the conventional detector, by exploiting various lev- 
els of knowledge about the interfering signals to effect 
near-far resistance [4]. 

The optimum multiuser detector attains the perfor- 
mance of a single-user detector by assuming the knowl- 
edge of the signature waveform, the timing and the 
received amplitude of each of the users. This non- 
linear detector has superior performance to the con- 
ventional detector, but is exponentially complex in the 
number of users. Several suboptimum multiuser detec- 
tors have been proposed which require less knowledge 
of the interfering signals and/or have lower complexity, 
but maintain near-far resistance. An example is the 
decorrelating detector, which performs a linear trans- 
formation on the outputs of the matched filter, can- 

*This work was supported in part by the National Science 
Foundation under Grant MIP-9202081. 

celling out the effect of multiple access interference on 
each user . When the interfering users are weak com- 
pared to background noise level, the performance of the 
decorrelating detector may become worse than a con- 
ventional detector. Linear MMSE detectors solve this 
problem by incorporating the knowledge of the users' 
energies [2]. These detectors perform like a decorrela- 
tor in the presence of strong multiple access interfer- 
ence, and like a conventional detector, when the back- 
ground noise dominates. The chief advantage of the 
MMSE detector, however, is in its ability to be easily 
implemented in an adaptive fashion. This eliminates 
the need for the knowledge of the signature waveforms 
of the interfering users. A training sequence has to be 
retransmitted, every time there is a severe change in 
the received signal, which can become cumbersome in 
rapidly changing environments. 

A blind adaptive multiuser detector has been pro- 
posed, which overcomes this problem [l].This receiver, 
which only requires the knowledge of the signature se- 
quence of the desired user and its timing (same as the 
conventional detector), uses as cost function, the out- 
put energy of the receiver. The receiving filter is de- 
rived by minimizing the output energy, subject to con- 
stant response to the signature waveform of the desired 
user. This detector, which is similar to the generalized 
sidelobe canceller in array processing, consists of two 
orthogonal branches, where the filter in one branch is 
the desired user's signature sequence, while the other 
filter is adapted to minimize multiple access interfer- 
ence. It can be shown that the mean-square-error and 
the output energy differ by a constant, and therefore it 
is possible to achieve the MMSE detector performance, 
e.g near-far resistance, without requiring a training se- 
quence. 

In order to reduce interference further, we present 
a multi-element blind adaptive multiuser detector. An 
optimum multi-element detector, along with two sub- 
optimum detectors are derived, analyzed and com- 
pared.  Specifically, the interaction of the spatial and 
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Figure 1. Optimum multi-element receiver 

temporal processing stages of the multi-element blind 
receiver are discussed. A blind adaptive multi-element 
CDMA receiver which uses a conventional detector as 
the temporal processing stage was presented in [3]. 
Part of the work presented here is a combination of 
that blind array with the blind adaptive detector in [1]. 

2. Signal Model 

Let K users transmit simultaneously over a pass- 
band channel. These transmissions are received by an 
array of M antennas. The propagation delay between 
antenna elements is assumed to be small relative to the 
inverse of the transmission bandwidth, i.e. the received 
signals at the M baseband array outputs are identical 
to within a complex constant. The vector of received 
signals is then given by 

K 
x(*) = 2^>akekbkSk(t) + crn(t), (1) 

fc=i 

where x(i) = [a*(*)■•• xM(t)]T, ak = [alk ■ ■ ■ aMk]T is 
the array response vector for user k, e| is the energy, 
sk(t) is the normalized signature waveform over sym- 
bol interval T, and n(i) is the vector of the additive 
white Gaussian noise. The {sk(t)} are real, linearly 
independent with chip rate Tc = T/N. Using vector 
representation for signature waveforms, we can rewrite 
the received signal as an M x N matrix: 

X = 

j-H 

CM   J 

K 

2_^SLkekbksl + crN. (2) 
k=i 

3    Optimum multi-element receiver 

Figure 1 shows the block diagram of an optimum 
multi-element blind adaptive receiver. This can be 
thought of as the the natural extension of the single- 
element blind adaptive multiuser detector[1]. The re- 
ceived signal at each antenna can be written as : 

K K 
xm = 22,a*rnkekbksk+(jrim = ^2ekbksmk+anm, (3) 

where a*mk, is assumed to be known. The output of the 
mth linear filter is : 

K 

Vm = 2^ ekh < smk, vm > +CT < nm, vm > .     (4) 

For convenience, we assume the desired user to be 
k=l. As mentioned before, each linear filter consists 
of two orthogonal branches vm = smi+hm, where 
< smi,hm >= 0. Orthogonality of the two filters en- 
sures that no component of desired user is passed 
through the adaptive branch, thereby avoiding the can- 
cellation of the desired signal at the output of the de- 
tector. Combining the outputs of the filters results in 

K M M 

y = ^2ekbk(Y^ <smk,vm >) + (r^2 <nTO,vm > 
k=l m=l m=l 

(5) 
To adapt this receiver to detect the desired user in a 
blind fashion, the linear filters are chosen to minimize 
the output energy, while maintaining the response of 
the receiver to the desired user at a constant level. The 
optimization problem can be formulated as : 

M 

min    E[yy*] subject to     V"<sml,vm>=l 
vlj'")vJVf "      • 

m=l 

where 
(6) 

M 

m,m'=\ 

(7) 

fc=i *=i 

**"m,m'     —     SmE  Sm/ + a SmtTniIpf, 

Sm     =     [Sml>"-,Smjf], 

E   =   diag(e1,--.,ejf). (8) 

Arranging Rm<ml  for all m,m'   =   1,---,M into a 
MN x MN matrix E = {Rro,m'}, and forming v = 

[
V
IV-->

V
M]

T
  

and 5i   =   [SL>---,
S

MI]
T

,   
we can 

rewrite the optimization problem as : 

minv-^gv subject to   vHsi = 1 (9) 

The solution to this problem is known to be 

a_1si Y = ^Pü (10) 

4    Suboptimum multi-element receiver 

The  block  diagram  of the  suboptimum   multi- 
element blind adaptive multiuser detector is shown in 
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Using Eq. 12, the output energy can be written as : 

Figure 2. Suboptimum multi-element receiver 

Figure 2. The first stage of this receiver is a beam- 
former, where the received signals at each antenna 
are weighted and combined. The beamformer out- 
put is sent through an adaptive linear filter. Consider 
w = [ti>i • • • wM]T to be the weight vector, then the 
output of the beamformer is given by : 

vH = w"X = £(w* ak)ekbks
T

k + <x(w" N)     (11) 
k=l 

If v is the impulse response of the linear filter, the 
output of this receiver can be written as: 

K 
y = w"Xv = ^{wHak)ekbk < ak, v > +<r(wHNv) 

(12) 
The beamformer in the first stage translates the multi- 
dimensional problem into a single dimension problem, 
the only difference is that the output of the receiver 
is now a function of both v and w, so a performance 
improvement due to added spatial discrimination is ex- 
pected. We call this receiver suboptimum, mainly be- 
cause the total number of adaptive filter taps isM + N, 
compared to MN taps for the optimum receiver. It 
has reduced complexity , but inferior performance to 
the optimum receiver. 

4.1    Known array response vector 

In this section, we assume that the suboptimum re- 
ceiver knows the array response vector of the desired 
user, and develop the adaptation rule for the beam- 
former weights, as well as the taps of linear filter. The 
cost function to optimize is the output energy of the 
receiver. To detect the desired user, w and v are var- 
ied to minimize the output energy, subject to the con- 
straints of having constant spatial gain in the direction 
of the desired user, and constant temporal gain for the 
signature waveform of the desired user. In other words, 

min E [yy*]   subject to    < si, v > =    1 

K 

E[yy*} =Y^e\<w,sk >2 Iw^mfWw^w < v,v > 

(14) 
The solution to the optimization problem is : 

v = 
sf RJ1si' 

w = 
afRJ1ai' 

(15) 

where 

Rs = SAt„ST + o-2(wHw)Ijv, 

Ra = AS„AT + (72 <v,v>IM, 

S = [si,---,s/c,] 

A = [ai,---,ajc], 
Aw = diag(|wHai|V",|wHa*|2), 

S„ = diag(<v,Sl>V--,<v,sfc>
2).   (16) 

Since E [yy*] is a function of both w and v the solu- 
tions for w and v are not independent, making it very 
difficult to analyze the system. 

4.2   Unknown array response vector 

In this part we consider a situation, where no infor- 
mation about the array response vector of the user of 
interest is available. This is mostly the case in practice, 
where incoherent modulation and multipath propaga- 
tion make it impossible to have a correct estimate of 
the array response vector at the receiver. The proposed 
receiver uses the knowledge of the signature sequence 
of the desired user to blindly adapt the beamformer 
weights, so that the desired user is passed, while the 
energy of the interfering signals is minimized at the 
output of the beamformer. The output energy of the 
beamformer is used as the cost function; the beam- 
former weights are chosen, so that this energy is min- 
imized. A constraint must be used, so that the triv- 
ial solution is avoided. As explained before, the lin- 
ear filter maintains a constant response to the desired 
user, while it adapts itself to minimize the interfer- 
ence. Thus, we can use for the constraint, a constant 
energy at the output of the receiver in Figure 2. So 
the optimization rule for the beamformer weights can 
be written as follows : 

min£[rHr]        subject to  E[yy*] = 1,        (17) 

where, 

wff
ai    =    1.   (13) 

E[rHr]    =    wHRw, 

R   =    AE2AH+AT<72IM) 

E[yy*]    =    w"Raw. (18) 
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User 1 2 3 4 
Pik 1 3/7 -1/7 -3/7 

AOA 0° 5° -25° 55° 
SNR(dB) 10 14 20 14 

N=7, K=4 , M=2 

Table 1. Angle of arrivals and SNRs 

Receiver 
M = l M = 2 

Conv Blind Opt Sub 
ai - 

SNIR(dB) -13.7   6.7 12.1 11 8 

Table 2. SNIRs for various receivers 

The solution to this problem is given by the generalized 
eigenvector corresponding to the minimum eigenvalue 
of the matrix pencil (R,Ra). The optimization rule 
for the linear filter is same as previous case. Because 
of stronger constraint used for the beamformer, the 
first receiver has better performance, but the advan- 
tage of the second one is that it does not require any 
more knowledge than the conventional detector and the 
single-element blind detector. 

5    Performance analysis 

-100     -80      -60      -40      -20 0 20        40        60 80  100 
Angle of arrival of the users 

Figure 3. Beampatterns of the suboptimum 
receivers 

input. The interplay between interference rejection by 
temporal and spatial processing is under investigation. 

6    Conclusion 

In this section, we analyze and compare the steady 
state performance of the proposed detectors with the 
single-element blind detector and the conventional de- 
tector. As the performance measure, we use the signal 
to interference plus noise ratio. We also compare the 
beampatterns of the two suboptimum detectors, which 
employ a beamformer as their first stage. We consider 
a system with K = 4 users, processing gain of N = 7 
and M = 2 antennas. 

Figure 3 shows the spatial distribution of the four 
users, along with the beampatterns corresponding to 
the two suboptimum beamformers discussed in the pre- 
vious section. Table 1 lists the angle of arrivals, the 
crosscorrelations with user 1 and SNRs for the desired 
user and the interfering users. 

It can be seen that adding an antenna improves the 
signal to interference ratio of the receiver. The spatial 
gain depends on the algorithm used. An interesting 
fact about the suboptimum multi-element detectors is 
the way the spatial and temporal processing stages in- 
teract. We can see that although the detector with no 
knowledge of a! puts a stronger null in the direction of 
the strongest interferer, the overall performance of the 
other detector is better. This is because the level of 
interference rejection of the linear temporal filter is a 
nonlinear function of the strength of interference at its 

The steady state performances of three multi- 
element blind adaptive receivers were studied. It can 
be seen that all these receivers can take advantage of 
the spatial distribution of the users to reduce the level 
of interference. More study needs to be done to investi- 
gate the robustness of these receivers, when there is no 
spatial discrimination between the users. Future work 
will also include the analysis of the adaptive algorithm 
for these receivers, and the study of their performance 
in an asynchronous multipath environment. 
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Abstract 

An upper bound is derived for the probability of error in 
an asynchronous binary direct-sequence spread-spectrum 
multiple-access communications system operating over 
frequency selective Rayleigh fading channels. A coherent 
RAKE receiver with predetection selective diversity 
combining is considered. The performance of a multipath- 
combinig receiver is determined for the case of multiple 
interfering transmitters. Furthermore, the performance of 
the system is determined in terms of parameters of the 
signature sequences. These parameters can be used as 
guides in selecting sequences for the system. The bounds 
agree with the exponential portion of a normal distribution 
in which the interfering interference components subtract 
from the signal amplitude. The results obtained are 
verified by simulation. 

I. Introduction 

In this paper, we consider the performance analysis of the 
multipath-combinig receiver also called RAKE receiver. 
The analysis applies to systems that use binary phase- 
shift-keyed (BPSK) modulation. We consider a multipath- 
combinig receiver and determine the performance of the 
system for the case of multiple interfering transmitters that 
use different PN sequences but having a small factor of 
correlation. 

The system designer use to assume that the limiting 
corrupting signal has a Gaussian distribution. This 
assumption can no longer be justified, and the interference 
in multiple-access schemes will not show a Gaussian 
characteristics. Although a small thermal noise power will 
be present, it is necessary to consider the joint effect of 
the Gaussian-distributed thermal noise and the non- 
Gaussian distributed interference. 
The analysis will be based on the well known Chernoff 
bound.   This   analysis   requires   only   the   evaluation 

or bounding of the moment-generating function of the 
additive interference. The bound is expressed in terms of a 
parameter that is the unique solution of an equation 
containing the derivative of the moment generating 
function of the interference. The bound is tight for high 
SNRs, which is the region of interest in most mobile 
communications systems. 

II. A System and Channel Model 

The system of communications proposed for this study is 
shown in figure (1). 

1 pi« |       I**™"" r 
2(t) 

| «jj. | 1*»™* |  
--■-^ 

fiterRAKE1 

• '' 
IwnMaf   |                dwwfci  L    _    -  • 
|    PNn   1             1         1 

Um(t) 

FK31. CommunfcaUon» lyitam wflh HWri iJmu«an«H«Iy idlv« UMTS 

This work has been partially supported by the Spanish Research Council 
(CYCIT) under grant TIC95-1022-C05-01 

The k-th transmitted signal for a binary DS CDMA 
system with BPSK modulation and arbitrary chip 
waveform can be expressed as 
sk(t) = V2Pk2bk(i)iKt)uk(t-iT) (1) 

where Pk is the power in each K-th transmitted signal, 
uk(t) is the signature waveform and bk(i) the i-th symbol of 
the k-th user. An equal power assumption ,Pk, is made for 
convenience in the analysis. We assume that there are N 
code chips in each data symbol (T=NTC) and the period of 
the signature sequence (uk(t)) is N. The received signal 
from a typical transmitter consists of a random number of 
paths of the transmitted signal. The delay, amplitude, and 
phase associated with each path are also random. 

rk(t)=   I  an(t)exp(j<I>n(t))sk[t-Tn(t)] + z(t) (2) 
n = l 

In (2) the random variable L represents the number of 
paths of the k-th user. The random variables  a„(t), t„(t), 
<I>n(t), represent the amplitude, delay, and phase associated 
with the nth path of a signal from transmitter k. We 
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consider the delay T„(t) as an integer of Tc. The term zk(t) 
represents the additive white Gaussian noise (AWGN) 
with complex spectral density No Watt/Hz. 

We consider the fact that in a real communication 
system the links from each of the K active transmitters to 
the listening receiver are mutually independents. The 
random variables variables a„(t), xn(t), <J>n(t), and the 
data symbols, are assumed to form a set of mutually 
independent random variables. Also, each phase 5>n(t) is 
assumed to be uniformly distributed on the interval [0,2JI). 

We model the arrival of signal paths at receiver, T„(t), by 
a nonhomogeneous Poisson process with the arrival rate 
Pd(x). The amplitudes of the signal paths, an(t), exhibit a 
Rayleigh distribution. The structure of the receiver is 
shown in figure (2). 

r(t) 

c,uk(t) 

Uk(t) 

fig 2. Rake Structure 

It employs a single tap delay line trough which is passed 
the received signal rk(t). The signal at each tap is 
correlated with (cn

k)*(t)uk*(t), n = 1, 2, ..., L, where uk(t) is 

the PN sequence of the k-th desired user, c
k = ock expl j<l>k) 

the impulse response of the channel associated to the 
desired user and (*) denotes complex conjugate. 

III. Evaluation of Error Probability Bound 

We shall now evaluate the performance of the RAKE 
receiver with simultaneous active users under the 
condition that the fading is sufficiently slow to allow us to 
estimate cn

k(t) perfectly (without noise). Thus the decision 
variables may be expressed in the form 

U   (i) = 9?e I   (ck)*Jr(t)u*(t-qTc)dt 
k q = l    «J     T       k 

(3) 

Stationarity  of the  amplitudes     paths   of arrivals   is 
assumed. The received signal can be expressed as follows 

L 
r(t) = Ib. (i) £  cku. (t-nTc-iT)+ 

Nf 

kw -,"n"kv 

n = 1 

nf I   lb f(i)I c
n u ,(t-pTc-iT)+z(t) (4) 

nf=l i    nf     p=l   P    nf 

nf*k 

where unf(t) are the PN sequences and bnf(i) the symbols 
of the Nf users that share the same transmission band. Eq 
(3) can be expressed as: 

L 
U   =9?eS 

k q=l 
b
kjuk(t-qTc)u*(t-qTc)dt + 

*°   nfll    M^^^-^nS^-^^-^dt 
nf=k,q*n 

+ 9?e I ak exp(-ja>k)J z(t)u*(t-qTc)dt (5) 
q=l  1 q T        k 

When the signals are antipodal, a single decision variable 
suffices. Then, if consider the maximum cross-correlation 
value between the set of signature waveforms, Eq (5) can 
be simplifies to the following: 

U   = <Ke| 
k k q=l    q nf=l    n=lq=l   q   n q=l   q   q 

nf=k,q*n . 

-j*k jfnf i(*nf-«kl 
with:Nk = e    q Jz(t)u*(,_ Tc) and e  q'n = e    n     q b 

q T        k       4 nf 

r = " 
2(m + l)/2 + 1    K(t-mTc)uq(t-pTc)dt 

^uk(t)uk(t)dt 

k = q, p * m 

where E = I u, (t)u, (t)dt is the energy of the k-th signature 
T k      k 

waveform and the normalized cross-correlation bound 
holds for m-length Gold sequences. The interference will 
be modeled as follows: 

NfL' 
TI = -yE  £ ^ cosG. (7) 

being ^ a random variable that results from the product of 
two independent Rayleigh distributed random variables, 
8; is assumed to be uniformly distributed in the interval 
[0,27t) and L'=L(L-1). We define the total interference z 
as z = T| + n, that is, the multi-user interference plus de 
thermal noise term. As far as z is the sum of two 
independent, zero-mean random variables, the Chernoff 
bound applies: 

Pr(z>x)<exp~     E[expXn]E[exp^.Ti]    for all X > 0 (8) 
after some manipulations (8) becomes: 

Pr(z > x) < exp       exp 
-4xV NfL' NfL'   /      \ 

n   n iota 
i=l    \    i' 

for all X > 0       (9) 

Equation (10) can be simplified by using exponential 
upper bounds to the order zero modified Bessel function 

Pr(z > x) < exp_Xx exp2      n exp i=1    ' for all X > 0       (10) 
The optimal value of X which minimizes the right side of 
(10) is obtained by setting the derivative of the expression 
with respect to X to zero: 

Pr(z> xjSexp- 

L'   ,       L'Nf 
EZaf-Ey XL 

(ID 
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where CT
2 = E No X a? ■We define "ft as: 
n i = i ' 

L'    „        L'Nf 
ESO?-EV  it 
i=l  ' i=l 

1u = 
(12) 

The final step in this derivation is to average the 
conditional error probability given in (11) over the fading 
channel statistics. Thus we evaluate the integral: 

Pe=/Pr(YbX(Yb)dYb (13> 

It is difficult to find the distribution function of (12), and 
with the resultant expression is not possible to obtain a 
closed expression of (13). Thus we consider the average 

of    a2     instead    the    exact    expression.    Defining 

E[a„] = 2o2,the expression (12) reduces to: 

2NoO-2L 

(14) 

It can be shown that: 

„ 2fl2n 

V 
V-l 

- 1 
J     W \l 2\L2M„C j=0 
C(L-I)!(2M-I)!(O J        2    ^ 

y+2 

L-l 
V   ^-H 

l(j + 2M)l «-2M 

with M= L'Nf and ß ■■ when the variance of the 
2yu 

amplitudes of the paths of arrival belonging to different 

users are equal. We can define Q. as: 

-^r (15) a 
I 2NOL'CT' 

Then, the error probability (13) results in 

«A'SW*^ -(^-W)! X 
(-0' 

Aa2Q. 

j=o k=0 L-l-j-k 
VM 1+- 

L-l-j-k 

where the terms in this series correponding to k=L'-j+l, L'-j+3, 
L'-j+5,... are understood to be zero. 

l 
A = - slL'M Nf 

Bj 

i       \1 \f   2\1LM nL    2L a(L-i)(2L'Nf)\{o j      2   r 

\J      J P " 

IV. Numerical Results 

The format of the signal has the following parameters: 
bandwidth W = (lOOnsec)1 = 10 Mhz ; spread factor TW = 
127 ; transmission rate, 1/T = 78.7 Kbits/sec. A maximum of 
71 chips delay spread has been considered and thus the 

intersimbolic interference will be negligible. The 
transmission scheme of figure (1), in which up to 6 
pseudorandom sequences of maximum period 
theoretically mutually orthogonal, have been simulated, 
corresponding to five possible interfering users. Each 
user's sequence is multiplied by the symbol to be 
transmitted (BPSK modulated). Once the signals are 
modulated, they go through a selective frequency time 
variant channel. A different channel has been considered 
for each user. Value L' is computed as L(L-l) where L is 
taken as the mean of the paths generated at each impulse 
responses of the different users and it results a value of 15 
paths. Considering that the variance of the arriving paths 
has been assumed to be the same for each channel 

EL
2

 1 = O.I2, the results from figure (3) are obtained when 

only one interfering user is present. Figures (4) and (5) 
show the probability of error and its upper bound for three 
and five interfering users respectively and finally, figures 
(6) and (7) show only the upper bound for one, three and 
five interfering users for different signal to noise ratios. 

V. Conclusions 

Several interesting facts are obtained from the near-far 
effect in an optimum receiver under multipath operation 
conditions. These include the effect of the increase in the 
factor Y and the number of interfering users on the BER, 
and, on the other hand, the limitation of the system 
capacity as function of the number users. 

It is important to observe that small increases in the 
factor Y can affect the BER in the event of multiple users 
access. In figure (8) for one interfering user, it can be 
observed than an increase of y can affect considerably the 
BER of the system. It should be taken into account that for 
the optimum detection, it is in a certain way desirable for 
the multipath problem, as the receiver, adapted to the 
channel of the mobile of interested, enhance the 
appropriate paths and discriminate the paths arriving from 
other PN sequences (diversity). 
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fig 5. Probability of error with five interfering users 
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fig 7. Probability of error with 1,3 and 5 interfering users 
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ABSTRACT 

The decorrelating and minimum mean squared error data 
detectors for direct sequence code division multiple access 
(DS-CDMA) communications systems are known to exhi- 
bit low vulnerability to the near-far problem. Nevertheless, 
the performance of these algorithms is highly sensitive to 
accurate knowledge of the user propagation delays as well 
as inter-symbol and/or inter-chip interference such as that 
produced by frequency-selective fading channels. In this 
paper, a new sub-optimum symbol-by-symbol detector is 
presented which is robust in the presence of these two ef- 
fects. 

1.  INTRODUCTION 

Direct-sequence code division multiple access (DS-CDMA) 
communications systems have recently received increased 
attention as a promising candidate for emerging mobile 
digital radio networks. For this reason, much work has 
been reported on the problem of multi-user detection in 
DS-CDMA. For asynchronous systems, the standard matc- 
hed filter-bank detector is known to fail for users of widely 
disparate power (the so-called "near-far problem"). More- 
over, the unrealistically high computational complexity of 
the optimum (i.e., minimum probability of error) detector 
[1] has motivated research on sub-optimum multi-user de- 
tectors [2]-[3]. 

Such systems rely on exact knowledge of additional pa- 
rameters such as carrier phase, signal strength, and pro- 
pagation delay for each user. However, such receivers can 
exhibit high sensitivity to errors in estimates of these para- 
meters, especially propagation delay, as was shown to be the 
case for the decorrelating detector in [4]. Similar problems 
would be observed for frequency-selective fading channels. 
This issue has been addressed in [5] where a detection sc- 
heme relying on a multipath ray model was proposed. The 
technique requires estimation of the propagation delays of 
the individual rays of each user, and data detection is subse- 
quently performed by forming a linear combination of sym- 
bol estimates associated with each ray. 

This paper presents a simple, direct approach to ro- 
bust data detection in the presence of uncertain propaga- 
tion delay estimates and/or frequency selective fading. The 
technique is based on a generalization of a maximum sig- 
nal to interference plus noise ratio (MSINR) symbol-by- 
symbol detector (the generalization to a block approach is 
straightforward). The multipath/propagation time uncer- 
tainty is taken into account by a simple statistical model. 
The resulting detectors are shown to be near-far resistant 

This work has been supported in part by EEC Contract 
HCM/CHRXCT-930405, PRONTIC/CICYT TIC95-1022-C05- 
01 and CIRIT/Generalitat de Catalunya GRQ93-3021. 

and insensitive to "small" errors in propagation delay esti- 
mation «nd/or frequency selective multipath channels with 
"small" delay spread. The technique may also be useful in 
cases where accurate timing estimates are available but can 
be updated with relatively low frequency. In this case, the 
receiver is robust is the presence of small changes in timing 
which take place over the propagation time up-date inter- 
val. As with other sub-optimum approaches computational 
complexity is linear in the number of users. 

2.  PROBLEM FORMULATION 

Consider a K user asynchronous DS-CDMA system nomi- 
nally operating over a channel with additive white Gaus- 
sian noise (AWGN). Binary Phase Shift Keying (BPSK) 
modulation is used. Using the notation of [4, 5], the sym- 
bol interval will be denoted as T and the chip interval as 
Tc = T/N, where N is the number of chips per symbol. 
The fcth user's code waveform is of unit amplitude and is 
denoted by bk(t). It can be expressed as a pulse amplitude 
modulation of {ck (n)}^ >the pseudo-noise (PN) sequence 
associated with the fcth user: 

JV-l 

bk(t)=^2ck(n)p(t-nTc) (1) 
n=0 

where p(t) is a pulse whose duration, in general, exceeds 
the chip interval, Tc. The data sequence for the fcth user, 
dk{m) € {-1,+1}, is pulse amplitude modulated by a sin- 
gle period of the corresponding code waveform resulting in 
a baseband signal written as: 

Sk(t)=   J2   dk(m)bk(t-mT). (2) 

The transmitted signal is the product of the baseband signal 
and the carrier: v'27fc cos (uct + 0'k) where wC) 7*, and 6'k 

respectively denote carrier frequency, feth user power and 
carrier phase. 

In general, the channel associated with the fcth user can 
be modeled as a linear time-varying system hk (t, T) which 
denotes the channel response at time t to an impulse applied 
r seconds in the past. The received signal is: 

r'(t)     =     n'(t)+ (3) 

£ Re   lyfa I" hrtrtsuit-T^^-^^drX 
*=i ^ J-°° ' 

where n'(t) is AWGN of two-sided power spectral density 
level, N0/2. The equivalent complex baseband representa- 
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tion of the signal is given as: 

K 

r{t) 
/CO 

fc*(*,T)a*(*-T)^(—er+*i)dT 

(4) 
If the channel is modeled as a simple constant delay (pos- 
sibly not precisely known) then its impulse response can be 
written as hk(t,r) = S(t — T>) where it will be assumed that 
Tk € [-T/2,T/2). In this case the received signal is: 

r(t) = n(t) + £] ^/2^eje"Sk(t - Tk) (5) 
fc=i 

where 8k = -ucTk + d'k. It is this model that will be used 
throughout the paper. 

Next define the received signal vector as r(m) £ CQN 

as the sum of a signal vector s(m) and noise vector n(m): 

«r(mT+^),.,r([m + l]T-^) r(m) = 

=    s(m) + n(m) (6) 

where (-)r denotes transpose. It is not difficult to verify 
that the signal vector can be expressed as: 

K       1 

s(m)=j]T J2bk(n+iT)dk(m+i)     (7) 
fc=i »=-i 

J = [OQN,IQN,OQN] € nQNxSQN (8) 

[bfc (n + iT)]n = V2bk ([n - \]T/QN -[i + 1]T - rfc)(9) 
n £ {1,2,---,3QN},i€ {-1,0,1} 

where the subscripts on the square zero and identity matri- 
ces in (8) denote the dimension of these matrices, and [•]„ 
denotes the nth element of a vector. The above expression 
can be written more compactly in matrix form: 

s(m)    =    J ^ B (r + iT) d (m -H) (10) 

B(r-HT)    =    [Mn+iTV-^burCnc-HT)] 

d (m + i)= [y/jle^d! (TO + i), ■ ■ ■, ^j^ej6KdK(m + i)]7 

r    =    [n,---,TK],        T = T[1,...,1] 

K elements 

The correlation matrix of the received vector is: 

R    =    E [r(TO)rH(m)] 
l 

=     J2 JB(T + iT)rBH(T + iT)JH + <72I   (11) 

T    =    JS[d(n» + »)dH(n» + 0] (12) 

where E[] is the expectation operator. It is assumed that 
each user's symbols are uncorrelated with those of other 
users (implying that T is diagonal with diagonal elements 
equal to user powers). 

Let us define the signal-to-interference-and-noise-ratio 
(SINR) and the mean-squared-error (MSB) as: 

SINR(w*) 

MSE(wfc) 

wfR5tWifc 
wfRK+»]fc

w* 

ß[|d*(m)-wfr(m)|a] 

(13) 

The "signal" correlation matrix RSk is defined as the cor- 
relation matrix of the signal vector in the presence only of 
the TOth symbol of the kth user: 

RSfc =7*JM0)bf (0)JH (14) 

where it is noted that, without loss of generality, the asso- 
ciated propagation delay is set to zero: rk = 0. Conversely, 
the interference-plus-noise correlation matrix R[i+n] is de- 
fined as the correlation matrix of the received vector in the 
presence only of the noise, the remaining K - 1 users and 
the (m - l)th and (m + l)th symbols of the fcth user: 

R[t+n]fc — R — R, ■ak- (15) 

Consider now the maximum SINR (MSINR) symbol-by- 
symbol receiver for user k. It is well known that this pro- 
blem can be solved using generalized eigenanalysis. The 
general solution of the MSINR receiver can then be written 
as: 

w°* (MsiNR)    =    arg    max    SINR(wfc)       (16) 

=      Oi&max [Rsj., R[j+„]fcJ 

where emax denotes the generalized eigenvector associated 
with the maximum eigenvalue of the above matrix pencil, 
and a is an arbitrary (non-zero) constant. We can also 
consider a minimum mean squared error (MMSE) symbol- 
by-symbol receiver for user k similar to [6]: 

W
°*(MMSE)    =    arg    min     MSE(wk) (17) 

=    /3R"1?,        Pk=E[r(m)dt(m)] 

where ß is a constant. In the particular case of a rank-one 
matrix RSk, it is well known v0k(MSINR) = ^ok(MMSE). 

It is also well known that if the noise power a2 is very low 
compared to powers of the interferering users, the MMSE 
receiver acts as a decorrelator completely nulling the effect 
of the interferering users. That is to say, the magnitude 
of receiver output for the fcth user will be approximately 
zero for each of the interfering users at the times for which 
the output provides an estimate for the fcth user's symbols. 
However, under these low noise conditions, it has recently 
been shown that inaccurate timing estimates for the users 
can drastically reduce performance resulting in high receiver 
sensitivity to near-far effects [4]. The problem addressed in 
this paper is the design of near-far resistant receivers that 
are robust in the presence of such timing errors. 

3.   EFFECT OF TIMING ERRORS 

In practice, since r is not directly available, estimates of the 
propagation delays, f = [fi, • • •, TK]

T
, are used in the design 
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of the receivers. In this section, the effects of timing error 
on output SINR and MSB as denned in (13) are quantified. 

It will be assumed that the timing estimates, fk, can be 
expressed as a sum of the true propagation delay, n, and a 
zero mean Gaussian random variable, ek of variance <r€k. 

Tk=Tk + ek,        Ee[ek} = 0,    Ee[ekev] :al6(k-k') 
(18) 

where Ee is the expectation over the K propagation delay 
errors. The above model also accounts for the multipath ef- 
fects appearing in frequency selective fading channels (with 
small delay-spread). Then, in presence of timing errors, a 
corresponding average output SINR can be defined as: 

SINR(wfc) 
wfR[j+n]),Wfc 

(19) 

RSk      =      Et[RSk] R[i+n]fc = £e[R[i+n]J(20) 

Similarly, a corresponding average MSE can be denned as: 

MSE(wfc) = EeE [\dh(m) - wf r(m)|2 (21) 

We propose the definitions (19) and (21) as measures of 
performance in presence of timing uncertainty. 

4.  ROBUST DETECTOR 

In the absence of timing errors, the decorrelating detec- 
tor (and the MMSE detector as a1 -> 0) completely null 
out the influence of all interfering signature waveforms at 
their specified timings (as defined by their propagation de- 
lays). In the presence of timing errors, such nulling is not 
guaranteed. Even for small errors the reduction in perfor- 
mance as measured by decrease in average SINR (19) or by 
increase in average MMSE (21) can be very significant, es- 
pecially for high near-far scenarios. The effect of the timing 
errors as seen by averaging over the propagation delays cor- 
responds to a sort of temporal smearing of each of the K 
user's signals. A detector which is designed to be robust in 
the presence of timing errors should take this smearing ef- 
fect into account in order to create broad temporal nulls for 
the interfering users. To this end, we can define the robust 
MSINR and robust MMSE receivers as: 

Wr* (MSINR) 

Wrfc (MMSE) 

arg    max    SINR(w&) 
WfceC«N 

6m« [R-Sfc >■""[»+"]», J 

arg    min    MSE(wfc) 
WfceC«N 

-i_ 

(22) 

(23) 

=    ßR 'pa,       pk = E€E[r(m)dk(m)] 

Due to the expectation over the fcth propagation delay er- 
ror, ek, the "signal" correlation matrix, RSfc, has lost the 
rank-one property and, therefore, the two solutions are not 
equal in this case: wr(i ^MSINR) i1 wrfc (MMSE)- 

Finally, transformation to the Fourier domain, where 
a time-shift corresponds to a linear phase, will aid in for- 
mulation of simple closed form expressions for the average 
correlation matrices (20). In particular, we define a Discrete 

Fourier Transform (DFT) matrix as: 

J**sifr? 

F = 
^/ZQN 

,„_M-1 

-i**wrr 
;■., M(3QN-1) 

-J2*      s&R  1    e 

M    =    (3QN -l)/2. 

Now, resorting to the time-shift property, the DFT of the 
users' code waveforms can be writen as: 

A(r + e)    =    FB(r-re) = A(r)©V(e) 

A(r)    =    A(O)0V(r) (24) 

where © denotes the element-wise Schur product, and the 
linear-phase matrix V(x) and vector v (x) are defined res- 
pectively as: 

V(x) = [v(*i),v(a;a),...,v(a:jc)] (25) 
/   \  _   r -j1*Mx/3T     -j2n(M-l)x/3T     __   J2*Mx/3T-\H 

v (x) — [e , e )''  jc j 

The unitary property of F and the linearity of the expecta- 
tion operator imply: 

R=JFH[(A (r) TAH (r))© S©Q (<£.„)]MH + ^ 

l 

S = ^v(iT)v*(tT) (26) 

R3, = lk3FH [(a* (0) af (0)) 0 Q (<7£
2_)] FJ*   (27) 

»[!+»]»   =  IS"»«» (28) 

where as in [7]: 

[QK~)t.= [*. [v(e)v-(e)]]pre-^.W-»2 

The problem of the exact propagation delays appearing in 
the parameterized computation of R in (26) can be ad- 
dressed by simply using the estimated delays, fk, in the 
arguments of the V(-) and v(-) in the computation of A (T) 

using (24) and (25). 
Thus, in summary, the new robust MSINR receiver filter 

is formed by using (27) and (28) with estimated propagation 
delays in (22). The robust receiver (22) offers, as verified 
in the next section, the following compromise with respect 
to the optimum receiver defined in (16): 

SINR(w0J > SINR(wrfc) a SINR(wrJ » SINR(w0J 

5.  RESULTS 

In this section, results of computer simulations of the per- 
formance of the new technique (22) and comparison with 
that of the ordinary MMSE/MSINR receiver (17) are pre- 
sented. Consider a K = 3 user with Q = 2 samples per 
chip and N = 31 chips per symbol. Nyquist pulses with 
roll-off 0.5 are used, and, for convenience T = 1. The perfor- 
mance of receiver's for user k = 1 are consider with n = 0, 
r2 = T/3, and T3 = -T/3 and user powers 71 = 1, 72 = 50, 
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and 73 = 50. To gain insight into the effect of the new- 
procedure, consider Fig. 1, the output of the conventional 
receiver (designed for the above scenario) for user one when 
only one symbol of user two is present at its input. The re- 
ceiver succeeds in placing two sharp null at times t = 0 and 
t = T over the interfering user. Now, consider the same 
experiment but with the robust receiver of (22) as shown 
in Fig. 2. This time two broad temporal nulls are placed at 
times t = 0 and t = T. These broad nulls are what provides 
the robustness to timing uncertainty. 

Next, for the above user powers and noise power a3 = 
0.1, Fig. 3 shows the output SINR as defined in (19) for 
the ordinary receiver (assumed timing error variance zero) 
and the robust receiver (assumed timing error variance, 
a'ema* — 0.003) as the true timing error variance is va- 
ried. The curves indicate that, even for relatively low near- 
far and low timing error variance, the conventional recei- 
ver is highly sensitive to uncertainty in the propagation 
delays while the robust receiver offers nearly constant per- 
formance with timing error variance. Lastly, Fig. 4 shows 
performance for the conventional and robust receivers as a 
function of the ratio of interferer power, 72 =73, to desired 
user power, 71. The true timing error variance as well as 
that used in the design of the the robust receiver are again 
set to (r£max = 0.003. The conventional receiver is far more 
sensitive to interferer power than the robust technique. 

6. CONCLUSIONS 

A new method for the design of multi-user detectors which 
are robust in the presence of propagation time estima- 
tion errors and/or frequency selective multipath (with delay 
spread on the order of a few chips) has been presented. The 
new detector is near-far resistant and offers greatly impro- 
ved performance over the conventional detector for a variety 
of scenarios. The technique is also useful for robust detec- 
tion in cases where highly accurate timing estimates are 
available but can only be updated relatively infrequently. 
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Figure 1: Conventional receiver one output vs. time 

Figure 2: Robust receiver one output vs. time 
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Abstract 

The use of adaptive arrays in a multi-rate multi-media 
CDMA network is analyzed, and simulation results are pro- 
vided for a candidate two-rate system. Our proposed ap- 
proach uses reference signal-based adaptation (LMS) for 
antenna weight control. Simulation results show adaptive 
arrays can significantly enhance the multi-media services 
that can be provided by a CDMA network. In addition, pre- 
liminary simulation results for RLS and LMS weight control 
algorithms are presented. 

1. Introduction 

Due to the growing user demands for wireless communi- 
cation services, there has been much interest in finding alter- 
native methods of increasing capacities of wireless systems 
beyond that achievable by today's systems. One emerg- 
ing concept that has been receiving much attention is Space 
Division Multiple Access (SDMA). In SDMA, performance 
improvements are realized by exploiting the spatial distribu- 
tion of users through spatial filtering provided by the use of 
antenna arrays at the base station. The application of SDMA 
techniques to wireless CDMA systems has been investi- 
gated in [3, 5,7, 8], and these studies show that significant 
increases in cellular system capacities are realizable using 
antenna arrays. These papers, however, focus on cellular 
systems supporting a single user type, typically considered 
to be voice. 

Future wireless systems, such as PCS, will be required 
to handle multi-media traffic types - voice, data, and video 
- which can have different data rates, as well as, differ- 
ent quality of service (BER) requirements. The flexibil- 
ity of CDMA in accommodating multi-rate users makes it 
a promising technique for future wireless communication 
networks. But, as is the case for any conventional CDMA 
system, capacity is limited by practical considerations, avail- 
able signal power and system bandwidth. In multi-media 
networks the capacity determines the quantity and diversity 

of traffic that can be supported by the network. In order 
to make multi-media system economically viable for large- 
scale implementations, methods of increasing capacities are 
needed. Therefore, in this paper we analyze the implemen- 
tation of adaptive arrays in a multi-rate multi-media CDMA 
network and show their benefits in enhancing the multi- 
media services that can be provided by the network. 

In addition, a critical issue associated with the implemen- 
tation of adaptive arrays is the method for antenna weight 
control. Our proposed approach uses reference signal-based 
adaptation (LMS) for antenna weight control, as opposed to 
the "code filtering" approach introduced in [7,4]. In this pa- 
per, we will take a preliminary look at the reference signal 
weight control algorithms, LMS and RLS, for the multi- 
media CDMA network. 

In section 2, our system model is described. In section 
3, the BER analysis for a multi-rate CDMA system with 
array processing is presented along with numerical results. 
In section 4, we present simulation results for LMS and RLS 
antenna weight control algorithms. And finally in section 5, 
we conclude with some final remarks. 

2. System Model 

In this analysis, we consider a single-cell fixed chip-rate 
multi-media CDMA system which provides service to S dif- 
ferent user types with data rates given by (Ri, Ri,..., Rs) • 
For simplicity, the kth type-i user will be denoted as user 
(ijc). Since the system has a fixed chip-rate for all users, 
each user will have a processing gain dependent on its data 
rate, Nt = Rc/Ri, where Rc is the common chip rate. 

The base station consists of a uniformly spaced linear 
array of M omnidirectional antenna elements. The antenna 
spacing is assumed to be half-wavelength, and time delays 
due to propagation across the array are modeled as phase 
shifts {i.e. narrowband array assumption). Figure 1 shows a 
block diagram of the base station receiver. The generation of 
the reference signal through the feedback loop was originally 
proposed by Compton [1], and will be discussed more in 
section 4. 
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For this analysis, we will be interested in only the re- 
verse link (mobile to base station) performance. We assume 
there exist direct paths between the mobiles and the base 
station. Multipath is not considered, but will be addressed 
in a future paper. The reverse link modulation is BPSK with 
coherent demodulation. All type i users are assumed power 
controlled, such that the average received signal power at 
each antenna element is Pt. A residual power control error 
for each user is included, and is modeled as a zero-mean 
log-normal random variable with variance adB- The com- 

>r$z£- 

7i~W 

Figure 1. 
user 

Base station receiver for desired 

plex representation of the received signal for user (i,k) is 
given as: 

xi>k(t) = V^W'^x^tt - 7i,k)ci>k(t - TuJeK"*-*-»)^ 

where 10E,fc/20 is the term representing the residual power 
control error, OJC is the common carrier frequency, ntk is 
the time delay with respect to the reference antenna ele- 
ment. We assume without loss of generality that riik is a 
random variable uniformly distributed over [0, % = i/Ri). 
&i,k = <t>itk + ntku}c is the phase shift with respect to the 
reference antenna element, and is modeled as a random 
variable uniformly distributed over [0,2ir). Xi is a binary 
random variable representing the activity of the type i user, 
Pr[Xi = 1] = "»• h,k(t) represents the data waveform 
consisting of an i.i.d. sequence of rectangular pulses of 
amplitude ±1 with duration Ti. ci}k(t) represents the code 
waveform consisting of a sequence of rectangular pulses of 
amplitude ±1 with duration Tc. And aj k is the antenna 
response vector given by: 

a,]fc = [l,e-^.<se-2^, -(M-l)jtitk-iT 

li,k 
2dit 

sinßa 

where ßi>k is the angular location of user (i,k) with respect 
to the broadside of the base station antenna array. 

The total received signal at the antenna array is: 

S    K, 
xW = ££*<.*(*)+n(o 

where Ki is the number of type i users in the cell, and n(f) 
is a complex gaussian process with 

E[n*(t)nT(r)] = cj2I6(t-T) 

3. Multi-rate CDMA BER Performance 

3.1. BER Analysis 

In this section we present our analytical approach for 
evaluating the average BER for user type-s. The combin- 
ing of individual antenna element responses is optimal in 
the sense that it minimizes the squared error between the 
antenna array output and a given reference signal. To con- 
duct our analysis, we consider an arbitrary scenario which 
consists of (Ki, K2,..., Ks) users whose angular locations 
are given by ß = (/}M, ßlfl,..., ßs,Ks)- In addition, the 
instantaneous residual power control errors for each user is 
given by £ = (eli2,.. .,SS,KS)> 

where ei,* is the instanta- 
neous residual power control error for user (i,k). 

Our desired user is assumed to be (s,p) for which the 
optimal antenna weights are given by the Wiener solution: 

wsJß,e) = i?-ja.:ip = (Wle^,..., WMe?+») 

R™ = E[x*(t)xT(t)] = £ £2Pi10«'*/Vlfca& + ^2I 
i=l k=l 

The output of the adaptive array for our desired user is: 

y.,P(t)   =   Re«px(t)] 
S     Ki 

Y, E v^Päo£1'k/20*bi)k(t - ^,k)ciik(t - TU) 
i=l  k=l 

M 

]T wmcos(o;ct - 0iik - (m - l)7ijk + i/,m) + n'(t) 
m=l 

where n'(t) — i?e[w;^pn(f)] is a zero-mean gaussian ran- 
dom variable with variance 2T

2
||WZSIP||

2
. 

The array output is processed by a correlation receiver 
for the user desired user. Assuming rSiP = 8StP = 0, the 
output of the correlation receiver is given by: 

zs,p(t) = / yS)p(t)cSiP(t)coswctdt 

Using gaussian approximations for the other user inter- 
ference, and using the results developed in [6], we compute 
the desired users SINR and BER for the given scenario (/?, e) 
as — 

E[zs,p(nTs)\ß,e) 
SINRs,p(ß,e) 

t=i fc=i ^Var[zSiP(nTs)\ß,i 
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BERs,p(ß,e) = Q(SINR(i,e)) 

And we can now obtain an average BER for the type s user 
by 

BERS = [ [BERs,p(ß,£)f(ß)f(£.)dßdz 

3.2. Numerical Results 

The complexities associated with analyzing adaptive ar- 
rays does not permit a closed for expression for BER, there- 
fore in the this subsection we Monte Carlo simulations to 
evaluate average BER performance of a candidate two-rate 
CDMA system. 

We consider a CDMA system providing service to two 
users types with data rates Ri = 9600 bps and R2 = 19200 
bps, and associated processing gains JVi = 128 and N2 = 
64. We assume a single 120° cell sector with 1,3, 5, and 7 
antenna elements. The variance of the residual power con- 
trol error is fixed at .1 dB. The number of type 1 users, K\, 
is fixed at 60, while the number of type 2 users, K2, is varied 
from 5 to 25. The users are assumed uniformly distributed 
over the cell sector. The average BER for both user types is 

10" 

~<jser-type-1- 

M=1 

M=3 

15 
Number of type 2 users 

Figure 2. Average BER for user type 1 and 2 
.(I) -TP.(2), with EJfVNo = E£VN0 = 0 dB 

average BER for both users as we go from 1 to 7 antenna 
elements at the base station. With one antenna performance 
is unacceptable, while with five and seven antenna elements 
we are able to maintain BER < 10~2 for all users. Also, 
note that each user experiences a graceful degradation in 
BER as we increase the number of type 2 users. 
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Figure 3. Average BER for user type 1 and 2 
■-.(1) (2), with EJJVNo = 0 dB and E£7N0 = 3 dB 

Next, we consider the case when E[
1)/N0 is kept at 0 

dB, and Ef)/No is increased to 3 dB. This corresponds to 
P2 = 4Pi. Figure 3 shows BER performance under this 
condition. Here, user type 1 BER performance has de- 
graded slightly, and degrades more rapidly with the addition 
of type 2 users. However, user type 2 realizes over an order 
of magnitude improvement in average BER. So, multiple 
users with different qualities of service can be supported by 
appropriately adjusting user signal powers. If we increase 
the bit energies for both users, while maintaining the same 
ratio in their powers, we can realize still further improve- 
ments in BER performance. As we see, antenna arrays offer 
another "resource", in addition to user signal power and 
system bandwidth, which can be used to overcome limita- 
tions in capacities, and improve the multi-media services of 
CDMA networks. 

analyzed under various power control approaches. 
First, we consider the case of equal received bit energy- 

to-noise at the antenna elements, Eb/No for both users. 
Figure 2 shows the average BER for user type 1 and 2 for 

E{
b
2)/No = 0 dB. This corresponds to P2 = ^ Ell,/No 

2Pi. Also, both users are assumed to have an activity factor 
of 1. From these results we clearly see the improvements in 

4. Antenna Weight Control Algorithm 

In the previous section we evaluated the performance 
gains of a multi-rate CDMA network when adaptive arrays 
are implemented at the base station. These performance 
gains were based on optimal combining of antenna responses 
assuming optimal antenna weights, and thus represent an 
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upper bound on that achievable in practice. The degree to 
which we approach this upper bound is dependent on the 
performance of weight control algorithms. In this paper, 
we propose an LMS array approach, whereby we assume 
a given reference signal and use the well-known LMS and 
RLS algorithms to generate the antenna weights recursively. 

A method for generating a suitable reference signal for 
spread spectrum signals was introduced by Compton [2,1]. 
This method is based on the premise that the combination of 
despreading, filtering, and «spreading, which occurs in the 
feedback loop shown in Figure 1, provides a reference signal 
consisting of the desired user's signal, and an interference 
component which is uncorrelated with the received signal at 
the antenna elements. 

For this simulation, we assume the feedback loop op- 
erates ideally, and use a reference signal consisting of a 
normalized version of the desired user's signal plus an in- 
terference component. The interference component is mod- 
eled as a zero-mean complex gaussian random variable with 
variance ar, and uncorrelated with the received signal at the 
antenna elements. Also, for this simulation, we assume both 
user types have an activity factor of one. In future work, we 
will extend this to the case of user types, such as voice, with 
activity factors less than one. 

0.9 
LMS step-size - .0001 

RLS forgetting factor -1 • 
0.8 • 
0.7 • 

«0.6 . 

to, 
t0.4 

\ LMS 
■ 

0.3 - 
0.2 - 
0.1 |»   \^ 

i                 '     '       -—r         »..— * 

- 

50 100 150 
iterations 

200 

Figure 4. Convergence of RLS and LMS algo- 
rithms for user type 2 

Figures 4 shows the results of antenna weight conver- 
gence for the LMS and RLS algorithms for user type 2 given 
K\ = 60 and #2 = 20. Similar results we observed for user 
type 1. The performance metric plotted is the norm-squared 
of the difference between the algorithm-computed antenna 
weights and the optimal antenna weights. Results shown are 
averaged over 100 independent trials. From the results, we 

observe that both algorithms converge to the optimal antenna 
weights. RLS converges within 10 data bits, whereas LMS 
requires on the order of 100 data bits. In addition, the results 
shown are for a reference signal with ar = 0 (ideal case), .1, 
and 1. Note, however, this had no effect on either algorithms 
performance. All cases are indistinguishable from the plots. 
This is expected, so long as the interference component of 
the reference signal is uncorrelated with the received signal 
at the antenna elements. 

5. Conclusion 

In this paper, we have shown that implementation of 
adaptive arrays are a promising technique for enhancing 
the multi-media services of a CDMA network. These en- 
hancements include increased system capacities, as well as, 
improved robustness in handling multiple users with differ- 
ent quality-of-service requirements. Future work will focus 
on: (1) extending the BER analysis and weight control sim- 
ulations to include multipath fading (IS-95), (2) further ex- 
amination of the reference signal generation for a multi-rate 
CDMA environment, and (3) extending the weight control 
simulations to include users with non-unity activity factors. 
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JOINT ESTIMATION STRATEGY WITH APPLICATION TO 
EIGENSTRUCTURE METHODS 
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ABSTRACT 

Numerous authors have attempted to improve the per- 
formance of eigenstructure methods, but all these ap- 
proaches do not employ the additive information aris- 
ing when several direction of arrival (DOA) estimation 
algorithms (referred to as underlying estimators) are 
used simultaneously. In this paper, we show that in- 
volving this information, one can achieve much better 
DOA estimation performance than that of each under- 
lying estimator used separately. We introduce a Joint 
Estimation Strategy (JES) which represents a simple 
and effective way of extracting and combining such in- 
formation. This strategy is then applied to the set 
of eigenstructure underlying DOA estimators includ- 
ing the MUSIC and Generalized Min-Norm (GMN) es- 
timators. 

1. INTRODUCTION 

Eigenstructure techniques have proven to be an excel- 
lent tool for estimating DOA's of multiple narrowband 
sources in passive sensor arrays [1], [2]. At high sig- 
nal to noise ratios (SNR's) and with a large number of 
snapshots, the eigenstructure techniques provide excel- 
lent estimation performance because the error variance 
is comparable to the Cramer-Rao bound (CRB). How- 
ever, their performances become severely degraded at 
low SNR and when the number of data snapshots is 
small. The problem of improvement the performances 
of eigenstructure techniques has recently attracted sig- 
nificant attention. However, all known approaches to 
this problem do not employ additive information, aris- 
ing when several underlying DOA estimation methods 
are used simultaneously. In this paper, we demon- 
strate that taking this information into account, one 
can achieve much better DOA estimation performance 
as compared to the conventional case, when each under- 
lying estimator is used separately. We propose a Joint 
Estimation Strategy (JES) which represents a simple 

This work was supported by the Alexander von Humboldt 
Foundation and the SASPARC Project of INTAS. 

and effective way of extracting and combining such in- 
formation. This strategy is then applied to the set of 
eigenstructure underlying DOA estimators, namely, to 
the MUSIC estimator [1] and the family of GMN tech- 
niques [3], [4]. 

2. JOINT ESTIMATION STRATEGY 

The central idea of JES is resampling. Several statis- 
tical resampling schemes are available, including the 
bootstrap scheme based on the resampling of initial 
data. In contrary to the bootstrap, our strategy can 
be interpreted as a resampling of spatial spectrum. 

In order to explain the key idea of JES, let us con- 
sider a trial including the estimation of the covariance 
matrix using M data snapshots. The instantaneous 
performance of any estimation algorithm achieved in 
this single trial (without any statistical averaging) is 
hereafter referred to as a local behavior of this algo- 
rithm. Due to the fact that the underlying estimators 
are functionals of the sample covariance matrix (i.e., 
are different random functions of steering angle), their 
local behavior is different in each estimation trial. For 
example, considering two underlying estimators with 
comparable performance and increasing number of tri- 
als tested, one can always find some trials where the 
first estimator resolves the sources while the second es- 
timator does not. In turn, some other trials always ex- 
ist, which demonstrate the reverse local behavior where 
the first estimator does not resolve the sources while the 
second estimator does. This illustrates the intuitively 
clear fact that the probability of source resolution at 
least by one estimator among the simultaneously used 
estimators is always higher than that by each underly- 
ing estimator exploited separately. Evidently, for the 
extraction of the useful information arising when sev- 
eral estimators are used simultaneously, one should test 
the local behavior of each DOA estimator among the 
full set of underlying estimators and then to sort these 
estimators into two groups: the group of "successful" 
estimators resolving the sources in this concrete trial 
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and the group of "unsuccessful" .estimators which can- 
not resolve them. Then, only "successful" estimators 
should be used in such a way that allows to combine 

the results from each of them. 
Let us consider the set of k underlying estimators 

with spectral functions /;(0), i = 1,2,..., k of angle 
9, which are calculated in parallel using the same data 
snapshots. Assume also that preliminary approximate 
estimates q and 0 of the number of sources q and the 
angular sectors of source localization 0 are available. 
Then, testing the following hypothesis for each under- 
lying estimator leads to the appropriate grouping of the 

"successful" DO A estimators: 
H: The function fi(9) has more than q-1 separate 

spectral peaks localized in 0. n 

Now, we are ready to formulate JES. It includes the 

following steps: 

• Estimate the number of sources q using one of the 
existing signal detection techniques [5]. 

• Estimate the angular sectors of source localiza- 
tion 0. One of the possible ways of estimating 0 
using conventional beamformer is [3]: 

0 = [d™** - ad* left omax + a^'H 

U[t?2iax - adf\ d amax qright-i 

■ vj[d™*-ad{f\rp + a ?;ight] (1) 

where tf["ax, / = 1, 2,... ,p are the coordinates of 
the significant peaks of the conventional beam- 
former output, p is the total number of signifi- 
cant peaks, tf;'ight and ^eft are the right and left 
boundaries of each subinterval of estimated an- 
gular sectors 0, and a is a positive coefficient 
close to 1. If the Z-th peak has both right and left 
-3 dB decrease levels then tffght and t?|eft can 
be chosen as angular distances between the max- 
imum of the Z-th peak and the point of its -3 
dB decrease, respectively. If the Z-th peak has 
no right or left -3 dB decrease levels then i?"g 

and i)\en can be chosen as the angular distances 
between the maximum of the Z-th peak and the 
corresponding right or left closest point in which 
the beamformer output transforms from the de- 
creasing to increasing function. 

• Test the hypothesis 7i for each DOA estimator 
from the total number of underlying estimators. 

• If the hypothesis H is valid for m > 0 estimators 
/,:(#), i - 1,2, ...,m from the total number of 

k estimators fi(0), i = 1,2, ...,k, then estimate 
the Z-th DOA 6, as: 

1    m 

to (2) 
»=i 

where 6\ ■(0 < #> < • • • < 6-' is the ordered set 

of angles, corresponding to the q main maxima of 

the function /;(#). 

If the hypothesis % is wrong for all DOA estima- 
tors from the total number of underlying estima- 
tors, then estimate the Z-th DOA 0j as: 

■El to (3) 

a(0 where 6^> < 0^ < • • ■ < of is the ordered set 
of angles, corresponding to the q main maxima of 
the function /,-(0). □ 

Equation (2) corresponds to the so-called censored av- 
eraging, using only "successful" estimators. In turn, (3) 
corresponds to the case when all estimators are "unsuc- 
cessful" and we have no reasons to prefer one estimator 

to another. 
The presented strategy is a universal approach be- 

cause it can be applied to any possible set of underly- 
ing estimators having angular spectral functions. One 
can involve into JES the root versions of estimators, 
too, using an appropriate transformation to the smooth 
spectral-type function [3]. This strategy allows to han- 
dle coherent source scenarios because it enables any 
preprocessing within each underlying estimator: for ex- 
ample, the well known spatial smoothing technique can 
be used. Moreover, one can choose the underlying es- 
timators performing well in coherent source environ- 

ments. 

3. APPLICATION OF JES TO 
EIGENSTRUCTURE DOA ESTIMATORS 

This section describes the underlying eigenstructure 
DOA estimators which can be successfully exploited 

in JES. 
The i-th snapshot of the n x 1 complex vector of 

n-element array outputs is given by 

r(i) = As(i) +n(i) (4) 

where A = [a(di),..., a(6q)} is the n x q matrix of the 
source wavefront vectors, a(0) is the n x 1 wavefront 
vector corresponding to the direction 6, s(i) is the q x 1 
vector of random source waveforms, and n(i) is the 
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n x 1 vector of sensor noise. The nxn spatial covariance 
matrix of array outputs can be expressed as [1], [2]: 

R = E[r(i)rH(i)] = ASAH + a21 (5) 

where S is the q x q covariance matrix of signal wave- 
forms, I is the nxn identity matrix, E[] and H denote 
the expectation operator and the Hermitian transpose, 
respectively. The sample covariance matrix is given by 

1    M 

(6) 
i=i 

The eigendecomposition of the matrix (6) can be ex- 
pressed as 

R- ^ÄjMjttf (7) 
»=i 

where As- (Ä\ > Ä2 > ■ • • > Än) and v., are the i-th 
sample eigenvalue and i-th corresponding sample eigen- 
vector, respectively. The popular MUSIC technique [1] 
estimates the DOA's as locations of q highest peaks of 
spectral function 

/MUSIC(0)= [aH(6)ÜNÜ%a(8)]~l (8) 

where UN = [«y+i,M?-+2,■■ -,ün]is the nx(n — q) ma- 
trix constructed with the noise-subspace eigenvectors. 

The GMN method [3], [4] represents the straight- 
forward extension of the popular Kumaresan-Tufts MN 
technique [2] and estimates the DOA's as locations of 
q highest peaks of spectral function 

/GMN(^) — aH{6)x (9) 

where the n x 1 vector Wi is obtained by solving the 
following conditional minimization problem: 

Wi 

IT 

ZJaWi   = 0, w?ei (10) 

Here Üs = [«I,M2,..., M9-], and e, is the vector with 
all zero elements except for the i-th one that is equal 
to 1. For i = 1 the GMN estimator coincides with the 
conventional MN estimator [2], i.e., /QMNW 

= /MN(#)- 
The solution of (10) can be written as [3] 

/GMN(^) — 
.~-H 

aM{e)UNUNei (11) 

~H 
where the constant [ef Ü^ÜNet]

2 is ignored in the 
numerator of (11).   Eqn.   (11) describes the family of 

GMN estimators, /aU,(0),   »' = 1,2, 
Below, in simulations, we apply JES to the set of n+ 

1 eigenstructure underlying DOA estimators, namely, 

to the MUSIC estimator (8) and n GMN estimators 
(11). The application of JES to these eigenstructure 
estimators only insignificantly increases the computa- 
tional burden as compared with the MUSIC algorithm. 
For reduction the computational cost, the relationship 
between the MUSIC and GMN functions [3] as well as 
the fast algorithms [6], [7] can be employed. 

4. SIMULATION RESULTS 

In our simulations, we assume a uniform linear array 
of eight omnidirectional sensors with half-wavelength 
spacing, and two uncorrelated narrowband sources with 
equal power. A total of 100 statistically independent 
trials are used to obtain each simulated point of SNR. 
The number of snapshots taken in each trial is M = 
100. Three scenarios with different source DOA sepa- 
rations are considered: 1). 9\ = O°,02 = 2°, 2). 6\ = 
O°,02 = 4°, and 3). 0X = 0°,6»2 = 8°. Figures 1-3 show 
the experimental comparison of the JES-based, MU- 
SIC and MN algorithms in terms of resolution prob- 
ability for the scenarios 1-3, respectively. Figures 4-6 
show the experimental DOA estimation RMS errors of 
these algorithms compared with CRB for the scenarios 
1-3, respectively. It follows from simulations that the 
JES-based algorithm noticeably outperforms the MU- 
SIC and MN (underlying) algorithms both in terms of 
resolution probability and RMS error. 
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Figure 1: Experimental probabilities of source resolu- 
tion versus SNR for the first scenario. 

Figure 4: Experimental RMS error of DOA estimation 
versus SNR for the first scenario. 
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Figure 2: Experimental probabilities of source resolu- 
tion versus SNR for the second scenario. 

Figure 5: Experimental RMS error of DOA estimation 
versus SNR for the second scenario. 
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Figure 3: Experimental probabilities of source resolu- 
tion versus SNR for the third scenario. 

Figure 6: Experimental RMS error of DOA estimation 
versus SNR for the third scenario. 
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ABSTRACT 

We describe new methods on the modeling of the ampli- 
tude statistics of airborne radar clutter by means of alpha- 
stable distributions. We develop target angle and Doppler, 
maximum likelihood-based estimation techniques from radar 
measurements retrieved in the presence of impulsive noise 
modeled as a multivariate isotropic alpha-stable random 
process. We derive the Cramer-Rao bounds for the ad- 
ditive Cauchy interference scenario to assess the best-case 
estimation accuracy which can be achieved. The results 
are of great importance in the study of space-time adaptive 
processing (STAP) for airborne pulse Doppler radar arrays 
operating in impulsive interference environments. 

1.   INTRODUCTION 

Future advanced airborne radar systems must be able to 
detect, identify, and estimate the parameters of a target 
in severe interference backgrounds. As a result, the prob- 
lem of clutter and jamming suppression has been the fo- 
cus of considerable research in the radar engineering com- 
munity. It is recognized that effective clutter suppression 
can be achieved only on the basis of appropriate statis- 
tical modeling. Recently, experimental results have been 
reported where clutter returns are impulsive in nature. In 
addition, a statistical model of impulsive interference has 
been proposed, which is based on the theory of symmetric 
alpha-stable (SaS) random processes [1]. The model is of a 
statistical-physical nature and has been shown to arise un- 
der very general assumptions and to describe a broad class 
of impulsive interference. 

Until recently much of the work reported for radar sys- 
tems has concentrated mostly on target detection [2]. In 
this paper, we address the target parameter estimation prob- 
lem through the use of radar array sensor data retrieved in 
the presence of impulsive interference. In particular, we de- 
rive Cramer-Rao bounds on angle and Doppler estimator 
accuracy for the case of additive sub-Gaussian noise. Ini- 
tially, we consider the case of additive multivariate Cauchy 

noise, assuming knowledge of the underlying matrix of the 
distribution. The results obtained here can be viewed as 
generalizations of the work done in [3] to the 2-D frequency 
estimation problem in impulsive interference backgrounds. 
In Section 2, we present some necessary preliminaries on 
a-stable processes. In Section 3, we define the space-time 
adaptive processing (STAP) problem for airborne radar and 
we form the maximum likelihood function. In Section 4, we 
present the Cramer-Rao analysis and derive bounds on the 
variances of the spatial and temporal frequency estimates. 
Finally, in Section 5, we give some examples on the joint 
target angle and Doppler estimation performance. 

2.   SYMMETRIC ALPHA-STABLE 
DISTRIBUTIONS 

In this section, we introduce the statistical model that will 
be used to describe the additive noise. The model is based 
on the class of Complex Isotropic SaS distributions which 
are well suited for describing signals that are impulsive in 
nature. 

The symmetric a-stable (SaS) distribution is best de- 
fined by its characteristic function 

V?(w) = exp(jSu) - y\ui\a) (1) 

The work of the second and third authors was supported by 
the Office of Naval Research under Contract N00014-92-J-1034. 

where a is the characteristic exponent restricted to the val- 
ues 0 < a < 2, 5(—oo < 8 < oo) is the location parameter, 
and 7 is the dispersion of the distribution. The dispersion 
plays a role analogous to the role that the variance plays 
for second-order processes. The characteristic exponent a 
is the most important parameter of the SaS distribution 
and it determines the shape of the distribution: the smaller 
the characteristic exponent a is, the heavier the tails of the 
SaS density. 

SaS densities obey two important properties which fur- 
ther justify their role in data modeling: the stability prop- 
erty and the generalized central limit theorem. Unfortu- 
nately, no closed form expressions exist for the generell SaS 
probability density functions (pdf) except for the Cauchy 
and the Gaussian case. However, power series expansions 
can be derived for the general pdf's [1], Here, we are in- 
terested in the family of complex isotropic SaS random 
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variables. A complex SaS random variable X = Xi + jX2 

is isotropicif and only if the bivariate distribution (X\,X2) 
has uniform spectral measure. In this case, the character- 
istic function of X can be written as 

V»(w) = «qp(i»[wX']) = exp(-7MQ). (2) 

An important difference between the Gaussian and the 
other distributions of the SaS family is that only moments 
of order less than a exist for the non-Gaussian family mem- 
bers. If X follows the isotropic stable distribution with 
dispersion 7, the so called fractional lower order moments 
(FLOM) are given by 

E\X\P = C2(p,a)y    for 0 < p < a, 

where 

Chip, a) 
2P+lr(E±2)r(_£) 

«r(-f) 

(3) 

(4) 

3.   STAP PROBLEM FORMULATION AND 
MAXIMUM LIKELIHOOD FUNCTION 

Space-time adaptive processing (STAP) refers to multidi- 
mensional adaptive algorithms that simultaneously combine 
the signals from the elements of an array antenna and the 
multiple pulses of a coherent radar waveform, to suppress 
interference and provide target detection [4, 2, 5]. 

Consider a uniformly spaced linear array radar antenna 
consisting of N elements, which transmits a coherent burst 
of M pulses at a constant pulse repetition frequency (PRF) 
fr and over a certain range of directions of interest. The 
pulses repetition interval is Tr. A space-time snapshot 
refers to the MN x 1 vector of samples corresponding to 
a single range gate. Given a single snapshot containing 
target at angle <j> and Doppler frequency /, the space-time 
snapshot can be written as [4] 

x = ßv(<t>,f) + n (5) 

where ß is the target's complex amplitude given by 

ß = x + jy. (6) 

The vector v is an NM x 1 vector called the space-time 
steering vector. It may be expressed as 

v(<£,/) = b(/)®a(</>) (7) 

where a(<£) is the N x 1 spatial steering sector containing the 
interelement phase shifts for a target at <j>, and b(f) is the 
M x 1 temporal steering vector that contains the interpulse 
phase shifts for a target with Doppler /. It is assumed that 
the functional form of v(<j>, f) is known. In addition, we can 
write 

Vi(4>,f) = bfii)(f)-ag{t)W (8) 

where «;(<£, /) is the i-th element of the space-time steering 

vector v(V, /), 1 < /(*) < M> and X ^ si}) < N- 
The snapshot also contains a noise component n. Here, 

the noise includes clutter, jamming, thermal noise, and any 
other undesired signals. As a first approximation to the 
problem, we assume that the noise present at the array is 

statistically independent both along the array sensors and 
along time, and is modeled as a complex isotropic Cauchy 
process with marginal pdf given by 

X,(r) 
27r(r2 + 7

2)3/2 ' 
(9) 

Under the independence assumption it follows from (5) and 
(7) that the joint density function for the case of a single 
snapshot is given by [3] 

MN MN 

/(") = XI /("•) = (a^n^ + k.-^.l2)3'2' 
(10) 

In the following, it will be convenient to work with the 
normalized spatial and temporal frequency variables: 

tp = ——sm<f>   ,   ui = 2irfTr- 
Ao 

(11) 

The estimation problem involves four real valued parame- 
ters. We arrange them to form a 4 x 1 parameter vector 

© = [01    02    03    04] = [ip   w    x   y]. (12) 

Then, given a single snapshot x, the likelihood function 
L(0), ignoring the constant terms, is given by 

NM 

L(0) = -|X;iog(72 + l^-/3«.-(^«)|2)- (13) 

4.   CRAMER-RAO BOUND ANALYSIS 

The Cramer-Rao bound for the error variance of an unbi- 
ased estimator 0 satisfies 

c0-J(0)>o (14) 

where C^ is the covariance matrix of 0 and > 0 is inter- 
preted as'meaning that the matrix is semidefinite positive. 
The matrix J(0) is the Fisher information matrix given by 

J(0) = E{[dL(G)/d&}[dL(Q)/d&f}. (15) 

First, we calculate the derivatives of the log-likelihood 
function given in (13) with respect to the components of 0. 
We have that 

dL :3£ 72 + I«.'I2 

where d? = dai /dtp,    i = 1, • • •, N. In addition 

-32^ 72 + M2 
dL 

where dbi=dbi/du>,    i = 1, • • •, M. Additionally, 

dL 
dx 

MN 

= 3£ 
^K(.)b*/(.)"-> 

72+l"i|2 

(16) 

(17) 

(18) 
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and 
MN 

^Kt.)6/«)"'} 
dy Z^i 

>=i 
72 + I".' 

(19) 

By performing the second derivatives and expectations 
in a similar way, the Fisher information matrix J(0) is 
derived to be 

J(0) 
3 

" 572' 

M\ß\2 || d0 

\ß?P 
yMSa 

xMSn 

\ß?P 
N\ß\2 II db 

yN8b 

xNSb 

yMSa 

yNSb 

MN 
0 

xMSa 

xN5b 

0 
MN 

where 

and d„ = [d? • ■ • dl], db = [d\  ■■■ db
n]. Since target angle 

and Doppler are the two parameters of primary interest, 
we shall focus on the upper left 2x2 block of the Fisher 
information matrix J2X2. The inverse of matrix J2X2 is ob- 
tained by applying the partitioned matrix inversion lemma. 
The result is 

J2x2(0)-^-3|/3|2. 

SaSb — p 

Azimut (d«gr«a) 

&a&b ~ P 
M(||da||2-^) .(20) 

Figure 1: MLG (top) and MLC (bottom) angle-Doppler 
spectra (N = 5, M = 4, </> = -10°, fTr = 0.1). Additive 
Gaussian noise (a = 2, 7 = 20, GSNR = 4 dB). 

-^Sl)(N db "MM
-

 (<Wt- where £ = (M || da 

p) .  The Cramer-Rao bounds of the resulting spatial and In this case, it follows from (21) and (22) that 
temporal frequency estimates are obtained from (20) as 

and 

CRB{xl>) 

CRB{w) 

7 

\ß\2 

5N(\\ db ||2 -SUM) 

3£ 

20 

5M(|| da ||2 -Sl/N) 

3£ 
Finally, by using (11), we get 

A2, 

and 

CRBW = CRBW.^-^ 

CRB(f) = CRB(w) 

(21) 

(22) 

(23) 

CRB(tf>)     |^|2 • M2N2(N2 _ ^ 

and 

CRB(w) 
20 

\ß\2    M2N2(M2-1)' 

(26) 

(27) 

5.  SIMULATION RESULTS 

(2;rTr)
2 ^ 

A useful insight on the CRB can be gained if we consider 
the case of linear array whose sensors are spaced a half- 
wavelength apart, and a waveform with an uniform pulse 
repetition interval. The spatial and temporal steering vec- 
tors for such system are: 

In this simulation experiment, we test the robustness of 
the maximum likelihood estimator based on the Cauchy 
assumption (MLC). We assume a linear array with N = 5 
elements that transmits a coherent burst of M = 4 pulses. 
We considered a single target located at <j> = 10° and having 
Doppler such that f% = U>/2TT = 0.1. Since the alpha- 
stable family determines processes with infinite variance for 
a < 2, we define an alternative signal-to-noise ratio (SNR). 
Namely, we define the Generalized-SNR (GSNR) to be the 
ratio of the signal power over the noise dispersion 7: 

aO) = 
-j1> 

-j(N-l)^ 

b(c) 

-}(M-l)w 

GSNR = Wlog (?) (28) 

(25) In Figures 1 and 2 we plot isosurfaces of space-time spec- 
tral estimates (likelihood functions) for the maximum like- 
lihood estimator based on the Gaussian assumption (MLG) 
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Figure 2: MLG (top) and MLC (bottom) angle-Doppler 
spectra (N = 5, M = 4, <j> = -10°, /Tr = 0.1). Additive 
stable noise (o = 1.5, 7 = 20, GSNR = 4 dB). 

[2] and for the maximum likelihood estimator based on 
the Cauchy assumption (MLC).The likelihood functions are 
formed by using 50 space-time snapshots. In Figure 1, since 
the additive noise to the sensors is Gaussian (a = 2), the 
MLG likelihood function is based on the correct assump- 
tion about the noise distribution. On the other hand, in 
Figure 2, the additive noise to the sensors is a-stable with 
a = 1.5 and neither the MLG nor the MLC likelihood func- 
tions rely on the correct assumption about the noise distri- 
bution. As we can see from the figures, the MLC likelihood 
function, based on the Cauchy assumption, attains its max- 
imum value very close to the true angle and Doppler values 
in both cases of additive stable noise. On the other hand, 
the MLG likelihood function, based on the Gaussian as- 
sumption, cannot localize the target accurately when the 
actual data distribution deviates from the Gaussian case. 

The observed robustness of the MLC method is quanti- 
fied in Figure 3 which shows the resulting mean-square error 
curve on the estimated Doppler as function of the charac- 
teristic exponent a of the additive noise. The results are 
based on 300 Monte Carlo runs. As we can clearly see, the 
Cauchy beamformer is practically insensitive to the changes 
of a. On the other hand, the MLG algorithm exhibits very 
large mean-square estimation error for non-Gaussian noise 
environments. 

t 11 1.2 1.3        1.4 1.5        1.6 1.7 1.8 1.9 2 
CHARACTERISTIC EXPONENT 

Figure 3:  MSE of the estimated Doppler as a function of 
the characteristic exponent a. 

6.  CONCLUSIONS 

We considered the problem of target angle and Doppler 
estimation with an airborne radar employing space-time 
adaptive processing. We derived Cramer-Rao bounds on 
angle and Doppler estimator accuracy for the case of ad- 
ditive multivariate Cauchy interference of known diagonal 
underlying matrix. The bounds are functions of a gener- 
alized SNR function, similarly to the Gaussian case where 
the bounds are functions of the SNR. As shown in (21) and 
(22), target angle accuracy is a function of Doppler fre- 
quency and vice-versa. In addition, we introduced a new 
joint spatial- and Doppler- frequency estimation technique 
based on the maximum likelihood Cauchy function (MLC) 
and we showed that the Cauchy estimator gives better re- 
sults in a wide range of impulsive noise (clutter, jamming, 
thermal) environments. 
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Abstract 

Most existing array processing techniques for estimat- 
ing the directions of arrival or signal copy rely heavily on 
the plane-wave assumption of far-field sources. When the 
sources are located relatively close to the array, these tech- 
niques may no longer perform satisfactorily. In this pa- 
per, we present an asymptotic performance analysis of a re- 
cently proposed ESPRlT-like method for passive localiza- 
tion of near-field sources. The algorithm, based on fourth- 
order cumulants, is formulated for observations collected 
from a single uniformly spaced linear array. We examine 
the least-squares version of the algorithm and derive the ex- 
pressions for the asymptotic variances of the estimated di- 
rections of arrival and estimated ranges of the sources. 

presented. Recently, Challa and Shamsunder [1] devel- 
oped a Total Least Squares ESPRIT-like algorithm, based 
on fourth-order cumulants, for estimating the azimuth and 
range of near-field sources impinging on a uniformly spaced 
linear array. 

In this paper, we derive asymptotic expressions for the 
variances of estimates of the azimuth and range parameters 
using the higher-order ESPRIT-like algorithm of Challa and 
Shamsunder [1]. While Challa and Shamsunder formulated 
a total least squares algorithm, we give expressions based 
on a least squares version of the algorithm. However, it has 
been shown by Rao and Hari [2] that the asymptotic vari- 
ances for these two versions are the same. Some of the ex- 
pressions derived in this paper are based on the work pre- 
sented in [4]. 

1   Introduction 
2   Problem Formulation 

Most array processing methods which estimate the di- 
rections of arrival of sources make the assumption that the 
sources are located relatively far from the array, so that 
the waves emitted by the sources can be considered plane 
waves. However, when a source is located close to the array 
{i.e., near-field), the plane wave assumption may no longer 
be valid and the wavefront must be characterized by both the 
azimuth and range. Methods based on the far-field assump- 
tion are not applicable to this situation. The near-field sit- 
uation can occur, for example, in sonar, electronic surveil- 
lance, and seismic exploration. 

In narrowband array processing, several variants of the 
ESPRIT algorithm using higher-order statistics have been 

1 This work was supported by the Office of Naval Research under con- 
tract No. N00014-95-1-0912. 

We use the narrowband model for array processing of 
near-field sources [1]. The output of the mth sensor of the 
uniformly spaced linear array is given by 

N 

Xm(t) = J2 *(ty (ü"m+*'-m3)+MO.    (i) 
«=i 

form = -Nx + 1, ...,0,1,...,NX (i.e., there are 2NX sen- 
sors). The array is shown in Figure 1. In matrix form, Equa- 
tion (1) can be written as 

x(t) = Bs(t) + n(t) 

where the (m, n) element of B is given by 

■MJmn  — c 

(2) 

(3) 

0-8186-7576-4/96 $5.00 © 1996 IEEE 
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• •••   • • 
-N + 1 -2-1 0   \1 2 

Figure 1. The uniformly spaced linear array 
con guration 

The parameters wn and <j>n are functions of the azimuth 0„ 
and range r„ of the nth source: 

A A2 

w„ = -2TT— sin 0„   and   <j>n = T— COS
2
 0„       (4) 

L LiTn 

where L is the wavelength of the source wavefronts and A is 
the separation between adjacent sensors. The goal is to esti- 
mate the parameters {0i,.... 0,1, ri,..., rd} given the array 
datax(*)forO<t < N,. 

2.1    ESPRIT-like Algorithm 

can compute the cumulant matrices C2, C3 and C4, as ex- 
plained in [1]. Combining these matrices, one can form 

C = 
C4    C2 

1    C3 
cf   C*   C! 
cf   c ÄC4,Ä" 

where 

AH = [ AH    $HAH    SlHA.H 

The eigenvectors 

E, = [ ei    • • •    eN ] 
Ej; 

Ey 
E, 

(7) 

(8) 

(9) 

corresponding to the N nonzero eigenvalues of C can be 
shown to yield 

E„ : Es*     and     E* =EXT 

where 

* = TST-1     and     T = TOT-1 

(10) 

(11) 

for some invertible matrix T. Hence the eigenvalues of $ 
and T allow one to compute the azimuth and range param- 
eters. Furthermore, * and T can be computed, in a least 
squares sense, using 

* = E#E„     and     T = E#E ■>x ^y <x *^Z' (12) 

respectively, where # denotes the pseudo-inverse of a ma- 
trix. 

3   Asymptotic Performance Analysis 

In this section, we summarize the higher-order ESPRIT- 
like algorithm proposed in [1]. Assuming that the source 
signals are zero-mean, non-Gaussian, statistically indepen- 
dent, and stationary, one can show that the matrix whose 
(m, n) element is 

Ci(m, n) 

k    cum{x^(t), xm+1(t), x*n+1(t), *n(*)} 
N 

= X)C4s- J2<f>i(m-n) 

i=l 

for 0 < m, n < Nx - 1 is given by 

Ci = AC4sA
H 

(5) 

(6) 

which has dimensions Nx x Nx. The kurtosis of the ilh 

source is c4si.  Similarly, using different sensor lags, one 

In this section, we derive the asymptotic variances of the 
estimated azimuth and range parameters for the higher-order 
ESPRIT-like algorithm of the previous section. The analy- 
sis is similar to that given in [4], where only the estimated 
azimuth parameter is analyzed. 

Azimuth 

For azimuth estimation, the quantity of interest is 0i (as- 
sumed to be given in degrees), which is related to A,- by 

A- = e;4,r£sin(^-). (13) 

The separation between adjacent sensors is A and the wave- 
length of the impinging wavefronts is L. Using a first-order 
Taylor series expansion, we have 

69i 
SXi 

;4*£(co8(fj*))A,- 
(14) 
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Skipping some algebraic steps, we get 

E{66i • SO,} 

:)2(E{|a,f}. = u 
real{E{(a,-)2}(A?)2}). (15) 

Range 

For range estimation, the quantity of interest is rt-, which 
is related to 7J- by 

7l.=e
y2x^C08(^). (16) 

Using a first-order Taylor series expansion, we have 

Sri ^• + £sm(?^M^Ä 
-j2rf A2 

V180/'» 

(17) 

After some algebra, the variance of the estimated range pa- 
rameter is 

E{6ri -Sri} 

2(27r^cos2(f^))2 

•[E{|S7i|
2}-real{(T*)2E{(*7!.)2} 

•real{27*AiE{a^TJ - 27*X*E{SXiS7i}} 

~(2tsin(i£))2real{3(An2E{(<5Ai)2} 

+A?E{(a*)2}-2E{|a!|
2}] (18) 

where the quantities E{\67i |2}, E{SX^67i}, E{(<57i)
2}, and 

E{<5A;<57i}, which are the covariances of eigenvalues, are 
derived next. 

3.1     Covariance of Eigenvalues 

In LS-ESPRIT, we compute two matrices * and T us- 
ing Equation (12) and then perform an eigendecomposition 
to get their associated eigenvalues. Let Aj be an eigenvalue 
of T, v,- be the corresponding eigenvector, and qt be the cor- 
responding left eigenvector, such that 

Tvj    =    A,Vj 

qtT    =    Aiq,. (19) 

Furthermore, the left and right eigenvectors can be chosen 
to be orthonormal, so that 

Under most circumstances, the matrix T has to be estimated 
using finite data. An error SIC = Y-Yinestimating Twill 
cause an error SX{ = A,—A,-. As a first-order approximation, 
the error <5A can be shown to be 

S\i = q^Tvj. (21) 

Wi = [ Im   om   om ] , (26) 

w3 = [ 0m    0m   Im ] . (27) 

SES=ES-ES. (28) 

A,- = q,Yv,. (20) 

It follows from Equation (10) that we have the first-order ap- 
proximations 

(Ex + SEx)(r + 6T)&Ez + SEz, (22) 

Ex6? at 6EZ - 6EXT, (23) 

and 
6? « Ef6Ez - E*6Exr. (24) 

Using (24) in (21) and noting that |A,-|2 = 1, we get 

6Xi    =    q,-Ejf(«E,v,--«E,*v,-) 

=    -Afq,.E#(Wi-AjW3)«Efv,-,     (25) 

where 

and 

The matrix Es is defined in (9), Im is the m x m identity 
matrix and 0m is the m x m zero matrix. 

Similarly, let p, and b,- be the left and right eigenvectors 
of the matrix *, respectively, and 7j be the corresponding 
eigenvalue, so that 

7i=p,.*bi. (29) 

The error 67i is then given by 

67i = Pj-E#(W2 - 7iW1)6Etbi, (30) 

where Wi is defined in (26) and W2 is 

W2 = [ 0m    Im    0m ] . (31) 

The variance of A; is thus, to the first-order, 

Eil^l2} 
d      d 

=    q,.E#(W3 - A.-W0E £ v*.*<h 
g=lh=l 

E{6sg6s%}] • (W3 - A,-W1)
ir(qiE#)H

I (32) 

where Ssg is the firtft column of the matrix 6ES andv8|5 is the 
gth element of the vector Vj. The quantities Ssu and Vj^ are 
similarly defined. 
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Following the above steps in an analogous manner, we 
can also derive the following first-order expressions. 

E{(a<)2} 
d      d 

=   qiE#(W3 - A4W0E J2 Vi<°Vi>h 

g=lh=l 

E{8sg6sl}](W3 - XiW1)
T(qiE*)T,   (33) 

E{«M7n 
d      d 

3=1 h=l 

E{8sg6s»}](W2 - jiWyf (PiE*)H>   (34) 

E{|*7il2} 

=   PiE#(W2 - 7*Wi)E £ MJih 

A      d 

g=lh=l 

E{6sg6s%}](W2 - 7.-Wi)H(piE#)irl   (35) 

E{(«7,-)2} 
d      d 

=   p,-E*(W2 - 7.-Wi)E 2 6* A* 
S=l A=l 

E{«sy*sn](W2 - 7,W1)
T(PiEf)T,   (36) 

E{*Ai«7,-} 
d     d 

=    q,-E#(W3-AiWi)E5><Afc 
j=ih=i 

E{^sI}](W2 - 7.-Wi)T(PiE#)T.   (37) 

These equations depend on the covariances of the eigen- 
vectors, E{6sg8s%} and E{8sgSsl}, of the sample cumu- 
lant matrix C. In the following sections we derive these co- 
variances. 

3.2    Covariance of Eigenvectors 

By using the first-order Taylor series expansion of eigen- 
vectors of a matrix [3], we can show that the covariance ma- 
trix of the signal eigenvectors sg and sh is, to the first-order, 

E{6Sg6S*} 
3NX 3NX 3NX   3NX  3NX  3NX 

I#g    n^h   a1 = l «2 = 1 6l = l i2 = l 
1 = 1    n=l 

'nM'hto -E{(C - C)aia2(C - C)Jl4J 

SJS^ 

(a3 - oti)(ah - a„) 
(38) 

where a,- is an eigenvalue of the matrix C and ss><Xi is the 
ajh element of sg, which is an eigenvector of C. The nota- 
tion (-)mn refers to the (m, n) element of a matrix. We note 
that this expression is greatly simplified when the signals are 
Gaussian, as is assumed in [2]. 

Furthermore, the unconjugated covariance of the sample 
eigenvectors sg and h is, to the first-order, 

E{8sg6sl} 
3NX 3NX  3NX   3NX   3NX   3NX 

= EEEEEE^,. 
I/g    n^k   Oi=l 02 = 1 i>l = l 62 = 1 
1=1    » = 1 

8*nibl8hM-E{(C-C)aia,(C-C)hlb,} 

s's" . (39) 
(ctg - ai)(ah - an) 

The asymptotic covariance of sample fourth-order cumu- 
lants, denoted by E{(C - C)aiaa(C - C)*bih2} and by 

E{(C - C)aifl2(C - C)MJ are derived in [5]. 

4   Conclusion 

In this paper we derived expressions for the asymptotic 
variances of azimuth and range estimates for the higher- 
order ESPRIT-like algorithm proposed by Challa and Sham- 
sunder. The formulas derived can be used to evaluate the 
performance of the algorithm. 
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Abstract 

This paper considers the problem of maximum 
likelihood (ML) estimation for reduced-rank linear 
regression equations with noise of arbitrary covari- 
ance. An explicit expression for the ML estimate 
of the regression matrix is derived. A generalized 
likelihood ratio (GLRT) test is also proposed, for 
estimating the rank of the regression matrix. Com- 
puter simulations and numerical examples indicate 
the superiority of the proposed estimator, as com- 
pared to a traditional least-squares approch that 
does not exploit the reduced rank property in an 
optimal way. 

1    Introduction and Preliminaries 

The focus of the present paper is on multivariate 
linear regression models of the following form: 

y(t) = <f>x(t) + e(t),     « = 1,2, (1) 

where y(t) G Rmxl denotes the noise- 
obscured output (or explained) variables; x(t) G 
G Rpxl is the vector of input (or explanatory) 
variables; e(t) G Rmxl denotes the equation noise; 
and <f> G RmXp is the matrix of regression coeffi- 
cients, or the parameter matrix for short. The fol- 
lowing assumptions on (1) are considered to hold 
throughout the paper: 

'This work was supported in paxt by the Swedish Re- 
search Council for Engineering Sciences (TFR). 

Al The noise is temporally white, i.e. 

E[e(t)eT(s)] = 0 fortes (2) 

and normally distributed with zero mean and 
unknown covariance matrix, 

Q = E[e(t)eT(t)};     \Q\ ± 0 (3) 

(Hereafter, E stands for statistical expecta- 
tion, and I • I denotes the determinant func- 
tion). 

A2 The explanatory variables x(t) are determin- 
istic signals, which are such that 

1   N 

)im M E^W^W = ***; \R™\ * ° (4) N-HX1 N 
t=i 

JV 

lim  ~Yx(t)eT(t) = 0 
N->oo N (5) 

t=i 

(the second equality above holds with proba- 
bility one). 

A3 The regression matrix (f> may be rank defi- 
cient, 

rank{4>) = n;      n <n = min(p, m)      (6) 

but n is unknown (<j) itself is also unknown, of 
course). 

The equation (1), along with the previous assump- 
tions, define a rank-reduced multivariate linear re- 
gression model with quasi-stationary deterministic 
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inputs and random white normal noise of arbitrary 
covariance. The practical significance of reduced- 
rank regression modelling is discussed, for exam- 
ple, in [1, 3]. For instance, in large econometric 
models, several (noise-free) equations may be lin- 
early related to one another, which renders <p rank 
deficient. An essentially equivalent situation ap- 
pears when only a low-dimensional linear trans- 
formation of the explanatory variables suffices to 
describe the model outputs. Rank-reduced regres- 
sion methods for certain signal processing prob- 
lems are also discussed in e.g. [4, 7]. However, the 
studied problems in the latter contributions are 
somewhat different (the regressor <f> is not explic- 
itly modeled as rank-deficient) and the proposed 
methods are more or less ad-hoc from a statistical 
point of view. Another application of the reduced- 
rank regression occurs in state-space modelling of 
linear dynamic systems [2]. More exactly, it was 
shown in [2] that the estimation of the observ- 
ability matrix (and then of the state-space equa- 
tion parameters) associated with a linear system, 
by using subspace-based methods, is basically a 
reduced-rank linear regression problem as defined 
herein. The latter problem is also closely related 
to canonical correlation and factor analysis, and 
as such it is relevant to array signal processing 
applications. In fact, the estimation of the rank 
of a cross-covariance matrix from its sample ver- 
sion can be formulated as a reduced-rank linear 
regression problem. Note that the former estima- 
tion problem occurs in several signal processing 
and time series applications, including number of 
sources detection in sensor array signal processing 
(see e.g. [8]). 

The distinctive feature of the above model is the 
reduced rank of 0. If n = rank(4>) were equal to n, 
then the equation (1) would be a standard linear 
regression, the parameter estimation of which is 
well documented in the literature (see, e.g., [1, 3, 
5]). When n < n (as stated in A3), the estimation 
of the parameters in (1) is a more complicated 
problem which has not received enough attention 
in the literature. 

2    Main Results 

Let the available observations be 

{y(l), x(l),...,y(iV), x(N)},    N>m + p. 

Under assumption Al, the negative log-likelihood 
function of the observed data is given by (to within 
a constant) 

L ~ f (in \Q\ + tr JQ"
1
^ J) &/(*) " Mt)] 

x[y(t)-c/>x(t)}TV\   , 

where tr(-) is the trace operator. In view of A3, the 
ML estimates of 0 and Q are obtained by solving 
the following problem, 

min L(Q,<j>) 
Q;<t> 

under the constraint rank(<£) = n. The con- 
strained optimization problem above can be trans- 
formed into an unconstrained one by parameter- 
izing (j) as 

<j> = ABT (7) 

where both A G Rmxn and B e Rpxn are full 
rank matrices, 

rank(A) = rank(B) = n 

The factorization in (7), of course, is not unique. 
This fact complicates the analysis that follows to a 
certain degree, but the difficulties induced by the 
non-uniqueness of the parameterization of <f> can 
be overcome. 

Introduce the sample covariance matrix 

1   N 

N 
(8) 

t=i 

and similarly for the sample covariances RyX and 
Ryy. Assuming n to be known, the exact ML 
estimate of 4>, obtained by explicitly minimizing 
L(Q,4>), is given by 

4>ML = RyxRXx    ££   Rxx      > (9) 

543 



where the columns of the p x n-matrix S are the 
n principal eigenvectors of the matrix W, given as 

W    =    R~X'      RyXRyy   RyXR~x' . (W) 

The noise covariance estimate is obtained by in- 
serting <f> into the expression 

1    N T 
Q = M E [»(*) - Mt)} \y(t) - Mt)] 

t=i 

For a proof see [6], where also the asymptotic 
properties of the ML estimate are derived. Note 
that the eigenvalues of W are the so-called canon- 
ical correlations, and the linearly transformed ex- 
planatory variables SFxft) are the canonical vari- 
ates [1, 3]. 

In the more interesting case where n is not 
known, a generalized likelihood-ratio test (GLRT) 
can be performed. Let n be a candidate rank of 
<f> to be evaluated. The proposed procedure is for- 
mulated as testing 

Ho :n n 

against the opposing hypothesis that n = n, where 
n = min{m,p} is the maximum possible rank of 
<f>. The GLRT statistic for this test is given by 

Cn = -y   £   ln(l-A,) , 
k=n+l 

where A* denote the eigenvalues of W in non- 
increasing order. Under the null hypothesis HQ, 

the GLRT variable 2 ^ is shown to have an asymp- 
totic chi-squared distribution with (m — n)(p — ra) 
degrees of freedom, 

2^d^X2[{m-n)(p-n)} . 

The proposed procedure is now to test HQ for in- 
creasing values of n (starting at h = 1 or any a pri- 
ori known lower bound) until the hypothesis is ac- 
cepted. For each n, £n is compared to a threshold 
obtained from the tail area of the asymptotic dis- 
tribution, and Ho is rejected whenever the statistic 
exeeds the threshold. 

3    Numerical Examples 

The full version of this paper also presents a nu- 
merically reliable implementation of the ML-based 
detection/estimation scheme. Assuming N » 
(m+p), as would typically be the case, the bulk of 
the implementation is the same QR-factorization 
used for solving the ordinary LS-problem. Thus, 
the only significant complexity increase of the ex- 
act ML method is due to the need for determining 
n. 

In the computer simulations presented below, 
an arbitrarily selected <f> of dimensions m = 
10, p = 20 and of rank n = 5 is used. The re- 
gression matrix is scaled such that ||0||j? = 1, and 
then fixed throughout the simulation study. The 
exact ML estimate is compared to the ordinary LS 
estimate, as well as the same estimate truncated 
to rank n, using the singular value decomposition. 
The signal x(t) and the noise e(t) are both gen- 
erated as zero-mean white Gaussian random pro- 
cesses. The covariance matrix of the signal is fixed 
at Rxx = I, whereas the noise covariance matrix 
is given by 

{<?}** = <72(-0.9)lfe-'l, 

which is reminiscent of a first order spatial AR- 
process with a pole at -0.9. In Figure 1, the total 
MSE is displayed versus the SNR. The estimates 
are calculated using a batch of N = 100 samples. 
Note that the MSE of the MLE follows the the- 
oretical curve at high SNR values, and also that 
the LS-based methods perform notably worse in 
this scenario. The probability of correctly deter- 
mining the rank of the regressor is displayed in 
Figure 2. A confidence level of 0.05 (according to 
the asymptotic distribution of the GLRT variable) 
is selected in the detection procedure. The SNR is 
here fixed at 10 dB and the number of samples is 
varied. About N = 300 samples are required for 
determining the correct rank of <f> with high proba- 
bility in this case. This might seem a large figure, 
but recall that the number of estimated param- 
eters in the unconstrained 0 is 200. Notice also 
that the probability of detection appears to settle 
at 95% for large N, as predicted by the theory. 
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Figure 1. Theoretical (solid curve) and empir- 
ical total mean square error versus signal-to- 
noise ratio. MLE ('x'), LS ('+') and Modi- 
fied LS ('o'). 

4    Conclusions 

The exact ML estimator for a linear regression 
problem, where the regression matrix is known to 
be rank-deficient, is derived. An explicit expres- 
sion for the estimator is found, employing a trun- 
cated canonical correlation decomposition. The 
computational complexity is similar to that of the 
ordinary least-squares (LS) estimator. However, 
the proposed technique takes into account the re- 
duced rank in an optimal way, which can yield 
a significant performance improvement in difficult 
situations. A GLR test is proposed for determin- 
ing the rank of the regressor. The asymptotic 
distribution of the parameter estimates are pre- 
sented in the full version of this paper. The com- 
puter simulations indicate that the derived asymp- 
totic results are useful in predicting the behavior 
in samples of practical lengths. 

ü °-8 

■"Ü 0.7 

o 
U 0.6 

Number of samples 

Figure 2. Empirical probability of correct rank 
determination versus the number of samples. 
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Abstract 

Adaptive beamforming can be used as a method for esti- 
mating an unknown waveform from a source impinging on 
an array of sensors. When the direction-of arrival (DOA) 
of the incoming signal is known, the minimum variance dis- 
tortionless response (MVDR) beamformerprovides a distor- 
tionless version of the signal while suppressing noise and 
interference. However, if there is a mismatch between the 
look direction of the beamformer and the actual DOA of 
the signal, there can be significant degradation in perfor- 
mance. In this paper, we use a Bayesian approach with the 
MVDR criterion to derive an adaptive beamformer which 
has nearly optimal performance under good conditions, and 
is robust to uncertainty in DOA under poor conditions. 

1    Introduction 

Adaptive beamforming can be used as a method for esti- 
mating an unknown waveform from a source impinging on 
an array of sensors. When the direction-of-arrival (DOA) 
of the incoming signal is known, the minimum variance 
distortionless response (MVDR) beamformer [1] provides a 
distortionless version of the signal while suppressing noise 
and interference. However, if the source DOA is not known 
exactly, or if the source or array is moving, the mismatch 
between the actual DOA of the signal and the look direction 
of the beamformer can cause a significant degradation in 
performance [2]. 

Numerous methods have been proposed to overcome this 
sensitivity to pointing errors. These can generally be sep- 
arated into two categories, "robust" adaptive beamformers, 
and "responsive" adaptive beamformers. Robust beam- 
formers reduce sensitivity by widening and flattening the 
main beam around the presumed DOA. Some commonly 
used techniques are to impose point, derivative, or quadratic 
constraints on the beamformer output. Robust techniques 

generally work well under a wide range of scenarios, but sac- 
rifice some performance with respect to the optimal beam- 
former informed of the true DOA. 

Responsive beamformers attempt to "respond" to the cur- 
rent environment by learning or estimating the signal DOA 
from the observations, then using this information as if it 
were known exactly. Techniques of this type include esti- 
mating the DOA directly using maximum likelihood (ML) 
or some other estimation procedure, and learning the DOA 
indirectly by estimating the signal subspace. Under condi- 
tions where good DOA estimates can be obtained, i.e. for 
high signal-to-noise ratio (SNR) and a slowly fluctuating 
DOA, the responsive techniques have nearly the same per- 
formance as the beamformer informed of the true DOA. 
However, responsive techniques can have very poor perfor- 
mance under less favorable conditions. 

In this paper, we use a B ayesian approach with the MVDR 
criterion to derive an adaptive beamformer which tends to 
be "responsive" under good conditions and "robust" under 
poor conditions. 

2   Problem Formulation 

We consider the problem of recovering, or estimating, 
the waveform of a narrowband planewave signal incident 
on an array of M sensors from DOA 6. The Mxl vector 
of received signals consists of a desired signal component 
and an additive noise component and has the form 

x(t) = a(0)*(t)+n(<), (1) 

where s(t) is the desired signal, n(t) is the M x 1 vector of 
additive noise, and a(0) is the M x 1 "array response" or 
"steering vector" in the direction 0. 

The beamformer applies a set of complex weights w to 
the received signals and sums to form the beamformer output 

y(t) = wHx(t). (2) 
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When the DOA Ö is known, the weights for the MVDR 
beamformer are chosen to minimize the output power of 
the beamformer, E Uy(t)|2}, while maintaining a distor- 
tionless response in the direction of the desired signal. The 
weights are found from the solution to 

minw^Rxw   subject to  a(0)Hw = 1,       (3) 
w 

where Rx is the data correlation matrix 

Rx = E{x(t)x(t)H). (4) 

The MVDR weight vector has the form 

Rx'a(ö) 
w = 

aWRxV*)' 
(5) 

When 6 is not known exactly, sensitivity to pointing er- 
rors can be reduced by imposing constraints on the shape of 
the main beam to widen and flatten it. One possibility is to 
impose constraints on the beamformer output at K values 
of 6 near the presumed DOA. The weights are found from 

minw^Rxw   subject to   CHw = c, (6) 
w 

where C is the M x K matrix of steering vectors for the 
constrained DOAs 

C = [a(0i) •••a(0jr)], (V) 

and c is the K x 1 vector of constraints. For a distortionless 
response to all the constrained DOAs, c is a vector of ones. 
The constrained weight vector has the form 

wsRj'C^R^C)"1«:. (8) 

Additional constraints can improve robustness to pointing 
errors, but hamper noise cancellation because they reduce 
adaptive degrees of freedom. 

Alternatively, the unknown DOA 6 can be estimated 
from L snapshots of the received data vector taken at times 
tl,...,tL, 

xL = W*i)T   ••• x(tL)T- (9) 

The weight vector then has the same form as (5) with 6 
replaced by 0{xi), 

w = 
R^a(g(xL)) 

a(ö(xL))«Rx
1a(Ö(xL))' 

(10) 

This technique works well when the observed data is 
sufficient to yield good estimates of the DOA but can result 
in significant mismatch when the estimates are poor. 

In practice, the data correlation matrix Rx is rarely 
known, and the beamformers weights in (5), (8), and (10) 

are implemented by substituting an estimate of Rx such as 
the sample correlation matrix obtained from N snapshots of 
the data 

The number of snapshots, N, used in estimating R and the 
number of snapshots, L, used in estimating 0 need not be 
the same. Both are chosen to tune the performance of the 
processor for the situation at hand. As a rule, both are set 
large enough so that good estimates of the desired quantity 
can be obtained, but small enough so that the estimates can 
follow temporal fluctuations. 

3   Beamformer 

We will use a Bayesian approach with the MVDR cri- 
terion to derive an adaptive beamformer which tends to 
be "responsive" under good conditions and "robust" under 
poor conditions. It is assumed that 0 is a random parameter 
with a priori probability density function (pdf) q(6), which 
reflects the level of uncertainty in the source DOA. The 
Bayesian approach has been used for detecting signals un- 
der directional uncertainty in [3], with averaging over the 
a priori pdf g(0). The resulting detector was was robust, 
but required numerical integration over the a priori pdf. In 
order to obtain a simpler and more responsive beamformer, 
we will use an technique similar to that in [4]. Where av- 
eraging is needed, we will use the a posteriori pdf p(0\xL) 
given L snapshots of the data vector. Furthermore, we will 
assume that q(9) is defined only on a discrete set of P points, 
0 = {0i ■■■Op), in the a priori parameter space. 

The objective is still to minimize the output power, but 
now the constraint is for a distortionless response on the 
average, i.e., 

sfl™ — minw^Rxw   subject to  srw 
w 

1,        (12) 

where ä is an average, or composite, steering vector aver- 
aged over p(0\xL) 

ä = J3a(0,-)p(0.-|x£) = Ap, (13) 
«=i 

where A is the M x P matrix of steering vectors 

A = [a(0i) •••a(0p)]) (14) 

and the ith element of p is p(0* \xL). 
This results in beamformer weights of the form 

w = 
R_1Ap 

pTAffR-»Ap 
(15) 
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where R has been substituted for Rx. A similar beamformer 
was derived in in [5] under different considerations. In [5], 
the vector p is not related to the a posteriori pdf, but is 
determined from a complicated optimization rule. 

If we assume that the source and noise waveforms are 
sample functions of uncorrelated, zero-mean, stationary 
Gaussian random processes with variance a2,, and (»vari- 
ance (T*I, respectively, then p(x£|0<) is a complex, zero- 
mean, Gaussian density with covariance 

Rx(0,) = ^a(0.>(ÖO" + ^I- (16) 

Applying Bayes rule, p(0; \xL) has the form: 

p(0,-|X)=_p 
g(fr)exp{/?£a(ft)"R£a(flt-)} 

EL, 9(ö*) exp {ßL^e^R^e,)} 
(17) 

where Rx is the sample correlation matrix of X£ and ß is a 
monotonically increasing function of SNR (y = ^f-): 

ß = oid + My)' 
(18) 

The SNR is not usually known, but ß can be viewed as a 
variable which may be adjusted to tune the responsiveness 
of beamformer to the source SNR, just as N and L can be 
chosen to tune temporal responsiveness. The beamformer 
is updated in two steps. First the a posteriori pdf is found 
from (17), then the weights are calculated from (15). 

The beamformer uses the same amount of observed data 
as was used in estimating 0 in (10), and similar a priori in- 
formation in determining the a priori pdf q(0) as was needed 
in defining the point constraints in (8). In this beamformer, 
increasing number of DOAs in 0 does not reduce adap- 
tive degrees of freedom, because they are averaged to form 
a composite steering vector. Adding points increases the 
computational complexity, and the number of points is cho- 
sen to cover the a priori parameter space sufficiently densely 
while keeping the computational requirements low. 

4   Performance Example 

We now consider a simple example to illustrate the per- 
formance of the proposed "a posteriori" beamformer as 
compared to the the MVDR beamformer informed of the 
source DOA, a "responsive" beamformer which uses the 
maximum likelihood estimate (MLE) of the DOA, and a 
"robust" beamformer which uses a set of point constraints 
over the a priori interval. The array is a uniform linear 
array (ULA) with half-wavelength spacing and M = 8 el- 
ements. The a priori uncertainty in the DOA is over the 
region « = sin(0) 6 [-0.3,0.3]. For an 8-element array, 
this interval is slightly larger than the width of the main- 
lobe in the ideal beampattem. The set 0 is composed of 

P = 13 evenly spaced points on the interval [-0.3,0.3]. 
For the constrained beamformer, we must use less than 8 
constraints. Five distortionless constraints were used at the 
points {-0.3, -0.15,0,0.15,0.3}. The source DOA was 
chosen to be u, = 0.223, which does not coincide exactly 
with any of the constraint points or any of the points in 0. 

In Figures 1-4, typical performance is illustrated for a 
high SNR (0 dB) and low SNR (-20 dB) case, respectively. 
Figures 1 and 3 show the a posteriori pdf and typical beam- 
patterns for a single trial in the two cases, and Figures 2 and 
4 show a histogram of array gain for the different beam- 
formers obtained from 500 trials. In the high SNR case, the 
a posteriori pdf is sharply peaked near the true DOA and 
the Bayesian beamformer, as well as the informed and MLE 
beamformers have nearly the same beampatterns, providing 
high gain to the source, and relatively low gain elsewhere. 
The array gain is relatively stable over all trials and close to 
the optimal value of M = 8 (9 dB). The constrained beam- 
former, in attempting to provide good gain over the entire a 
priori interval, does not suppress noise as well as the other 
beamformers, and has a lower array gain, close to 0 dB. 

At low SNR, the a posteriori pdf is nearly equal to the a 
priori pdf, with some small peaks. The MLE of the DOA 
attempts to find the most likely estimate, but is not always 
accurate, resulting in a beamformer which does not always 
point at the desired signal. The histogram of array gain 
values for the MLE beamformer shows that the MLE is 
accurate enough to provide optimal performance only about 
half of the time, and can be so inaccurate as to reduce array 
gain as low as -25 dB. The constrained beamformer still 
provides good gain over the entire a priori region and a 
stable array gain of about 0 dB. Our Bayesian beamformer is 
now more robust, providing reasonable gain over the entire 
a priori interval, with increased gain at local maxima in the 
a posteriori pdf. The array gain is stable near a value which 
is less than optimal, but still better than the constrained 
processor. 
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of adaptive beamformers for SNR s 0 dB. A 
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Abstract 

Maximum-entropy positive-definite completion for 
partially-specified Toeplitz covariance matrices is devel- 
oped for DOA estimation in partially-augmentable antenna 
arrays (those that have an incomplete set of covariance 
lags). 

1. Introduction 

This paper considers the problem of DOA (direction-of- 
arrival) estimation for multiple uncorrelated plane waves 
incident upon partially-augmentable antenna arrays. This 
type of array has an incomplete set of covariance lags [6]. 
Specifically, consider a nonuniform linear array (NLA) ge- 
ometry specified by the sensor positions dt (i = l,...,M) 
and set d\ = 0 for convenience. Let the unit spacing d be 
the greatest common divisor of the difference set 

V = {di-dj | i, j = 1,..., M; i > j}. (1) 

Denote the maximum inter-element distance (array aperture) 
by d(Ma -1). Fully-augmentable arrays have the property 
that all intermediate integral distances are realised; ie. given 
the sequence of natural numbers K = 1,..., Ma — \, we 
have Kd e V. On the other hand, partially-augmentable ar- 
rays have some nonzero number (G) of missed lags ("gaps"). 
It is clear that a partially-augmentable array gives rise to an 
incomplete augmented covariance Toeplitz matrix T, since 
some lags are missing. Thus both the spatial covariance 
matrix estimation problem and the spatial spectrum estima- 
tion problem must be formulated as p.d. (positive definite) 
Toeplitz completion problems. 

The latter problem is investigated in this paper for two 
cases; firstly in the case where the available covariance lags 
are supposed to be precisely known (deterministic com- 
pletion).   Here we define the unique maximum-entropy 

•This study was partly supported by the INTAS SASPARC grant. 

p.d. Toeplitz completion and discuss its DOA-estimation 
performance under the condition that the number of uncor- 
related plane waves (m) exceeds the number of antenna 
elements (M). 

Secondly, we shall investigate the case where we as- 
sume we have sufficient statistics for the DOA estimates 
in the form of the direct data covariance (DDC) matrix R, 
obtained by sample averaging on a set of TV independent 
vectors ("snapshots") originating from a complex Gaussian 
distribution CAf(M, 0, R). 

Our benchmark will be the limiting accuracy provided 
by the Cramer-Rao bound. 

2. Deterministic Matrix Completion 

Consider the covariance matrix R of an M-element 
sparse array with assumed Gaussian processes observed as 
a combination of m uncorrelated plane waves with DOA's 
9 = [0i,..., em]T, powers P = diag[pi,..., pm] and white 
noise of power a: 

R = BPBH + af M (2) 

where the signal manifold matrix B = [B(0i)t..., B(6m)], 

B(ßi) l,exp(z'27T— sin0;),. ., exp (ilir—— sin0,-J 

(3) 
is the so-called steering vector, and A is the wavelength of 
incident radiation. 

Let the set of presented covariance lags tK be S, where 
tK = Rij, K — (di — d.j )/d, i,j = 1,..., M and let the 
set of missing lags be S (in the language of matrix comple- 
tion theory, these are the specified and unspecified values 
respectively). Fortunately the deterministic augmented co- 
variance matrix T = Toep[*K] has at least one p.d. Toeplitz 
completion (TULA which is the covariance matrix of the cor- 
responding uniform linear array) and hence the feasibility 
of the covariance matrix estimation problem is guaranteed. 
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Let the set of all possible p.d. Toeplitz completions T be 
introduced as follows: 

T = {z: T(z) = T+Y^ (**E+ + <E-) > °}   <4> 
KgS 

where 

E+ = 

0   1 
0   1 

0 E- 

0 
1    0 

1    0 

1     0 

It can be shown [2] that the function 

logdetT-^z)       zeT 
oo otherwise *(*) = 

(5) 

(6) 

is strictly convex on the feasible set, and so has a unique 
minimiser which we denote by z*ME: 

z*ME := arg min ^(z) = argmaxdetT(z).       (7) 

We refer to z*ME as the analytic centre of the linear matrix 
inequality T(z) > 0. For Gaussian distributions, we may 
evidently treat the analytic centre as a maximum-entropy 
completion. 

A recently-developed convex programming approach [2] 
can be directly applied to find z*ME. The Ellipsoid Algorithm 
is first applied to find an arbitrary feasible point z£ such that 
T(z%) > °-If such a feasible point is found, any convergent 
minimiser of <f>(z) should find the analytic centre. Nesterov 
and Nemirovskii's [5] version of Newton's method has been 
implemented here to find the optimum solution. 

Thus the unique maximum-entropy p .d. Toeplitz comple- 
tion may now be found for the partially specified covariance 
matrix T induced by the partially-augmentable array. Since 
the ME completion T{z*ME) does not coincide with the true 
Ma-variate covariance matrix R, a further step is proposed 
to truncate the signal subspace dimension. 

The ME-optimum completion may be treated as an initial 
estimate to the solution TmME of the following optimisation 
problem: 

Find inf II T(z*ME) -Tm\\P subject to Tm G C := d n C2 
(8) 

where 
d = {Tm G nM- : Tm is Toeplitz and p. d.} 

C2 = {Tm G nM« : {Tm-Xminl) is of rank m}, 

and where W is the space ofpxp Hermitian matrices, 
and Xmin is the minimum eigenvalue of Tm, of multiplicity 
(Ma-m). Convergent alternating projection methods de- 
scribed in [3] are used to find the (at least local) extremum 
for this problem. 

(9) 

3. Stochastic Matrix Completion 

When the direct augmentation approach [1] is used to 
obtain the specified lags iK via the stochastic DDC matrix 
R, the feasibility condition is no longer guaranteed to hold. 
In our terms, the feasibility condition deals with conditions 
under which a p.d. Toeplitz matrix completion exists for the 
given iK, /c G <S. 

Unfortunately, the necessary and sufficient feasibility 
conditions for the general p.d. Toeplitz completion problem 
have not yet been found [4]. One of the obvious neces- 
sary conditions is that every specified principal sub-matrix 
should be positive definite. Denoting the greatest specified 
sub-matrix of f by fNnsa, this necessary but obviously not 
sufficient condition is 

TN^ > 0. (10) 

Thus the success of the Ellipsoid Algorithm can be treated 
as our only feasibility condition. When the condition at 
Eqn. (10) is not satisfied, or the Ellipsoid Algorithm fails 
to find a feasible point, we need to modify the initial set of 
specified and unspecified sample covariance lags in order 
to achieve feasibility with the minimum possible deflection 
from the initial set of (maximum likelihood) estimates iK G 
S. Let 

(11) 
then the minimum deflective feasible point search is 

Find min^T] \zK subject to    f(z) > 0.      (12) 

Procedures elaborated in [2] provide a straight-forward ap- 
proach to finding the unique optimum solution for this prob- 
lem. 

One such procedure uses the Ellipsoid Algorithm to find 
the optimal feasible point f{z°Q

pt). Another approach adopts 
the penalty function method, which admits simultaneous 
completion and deflection: / 

Find    min$(z) = log dei f-\zK) + p ^ |zK|
2 (13) 

K.es K€5 

subject to    f(z) > 0, (14) 

Ma-1 

with f(z) = f0+ £ (zKEl+z*KEl).       (15) 
K=l 

Evidently, as n —>■ oo we expect the optimum solution of this 
problem to coincide with the previous approach. Since both 
the entropy and the deflection norms relate to the DOA es- 
timation accuracy, an appropriate trade-off between the two 
which optimises the DOA estimation accuracy is desired. 
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4. Simulation Results 

To demonstrate the efficiency of the proposed ME com- 
pletion approach, we consider a sparse array with M = 5 
elements. The sensors are at positions d = {0,1,4,9,11}, 
measured by half-wavelengths. The single missed covari- 
ance lag is t(,. We start with the deterministic matrix com- 
pletion problem, where the exact values of the specified 
covariance lags were calculated. We have m = 8 sources 
having a common SNR ratio of 20 dB with respect to white 
noise, ie. pi = 100; a = 1 in Eqn. (2). The sources are uni- 
formly separated in spatial frequency (w = TrsinO) and the 
inter-source separation is Aw = 0.08 for the first scenario 
(Fig. 1) and Aw = 0.12 for the second scenario (Fig. 2). 

The dotted line in Fig. 1 demonstrates the behaviour of 
the ME spectrum obtained when the 12-variate spatial co- 
variance matrix TME is restored via the ME-completion 
algorithm. For comparison, the dashed line shows the ME 
spectrum obtained for the corresponding 12-element uni- 
form linear array exact covariance matrix TULA ■ Also illus- 
trated are the DOA's estimated by root-MUSIC applied to 
the ME-completed covariance matrix TME ■ Fig. 2 compares 
the behaviour of the ME spectra and root-MUSIC DOA esti- 
mates for the ME-completion algorithm with the associated 
ULA spectra for the case Aw = 0.12. 

These results demonstrate that the ME spectra obtained 
via the ME-completion algorithm for sparse arrays practi- 
cally coincide with the corresponding ULA ME spectrum. 
In this sense the "maximum entropy" properties of the ULA 
are fully restored by the ME-completion approach applied 
to the sparse array. 

Meanwhile, for both scenario, the ME spectral maxima 
do not correspond to the true DOA's and even the number 
of main peaks is erroneous. Nevertheless for the greater 
spatial separation, the root-MUSIC DOA estimates calcu- 
lated for TME locate the true DOA's with negligible errors. 
For the smaller separation, the root-MUSIC DOA estimates 
are essentially erroneous. This once again demonstrates 
that the maximum entropy criterion is inconsistent with the 
harmonic analysis criterion, especially for severe "super- 
resolution" conditions. 

To verify this, Fig. 3 illustrates the behaviour of the 
Cramer-Rao bound for DOA estimation accuracy as a func- 
tion of spatial frequency separation Aw; for the same 8- 
source scenario with N = 1000 snapshots. The maximum 
RMSE from the eight sources is depicted by the dotted line. 
Note that a separation of (Aw = 0.08) is far beyond the 
realistic resolution capabilities of the antenna examined. 
However in the area where the accuracy limit is reasonable 
(Aw > 0.15), ME-completion applied to the deterministic 
matrix provides practically unbiased DOA estimates via the 
MUSIC / root-MUSIC approach. Thus our approach for 
situations in this region provides asymptotically-unbiased 

estimations and we may now analyse the mean and RMSE 
of the stochastic errors for the finite sample size N. 

The solid and dashed lines in Fig. 3 illustrate the max- 
imum sample DOA RMSE and bias respectively for the 
eight sources as a function of the inter-source spatial sep- 
aration. In each of the 1000 trials, the MUSIC algorithm 
was applied to the p.d. finite signal subspace Toeplitz matrix 
TmME, which is obtained via the ME completion algorithm 
with an initially modified data set (Eqns. (11) and (12)). 

These results clearly define the pre-asymptotic domain 
in this case as Aw < 0.16, where the false peaks of the 
MUSIC sample pseudo spectra often give rise to completely 
erroneous DOA estimates. Following [1], we define "ab- 
normal" DOA estimates as those estimates w,- lying outside 
the range [w,- - ^f-, wf + $jp]. For this simulation, a 
total of 627 abnormal trials were rejected (in the process 
of ensuring that 1000 normal trials were finally obtained) 
for Aw = 0.15; while there were 29 abnormal trials for 
Aw = 0.16. In the asymptotic domain Aw > 0.16 (where 
the number of abnormal estimates vanishes), DOA estima- 
tion accuracy is reasonably close to the Cramer-Rao bound, 
similarly to fully-augmentable antenna arrays [1], although 
the bias here remains nonzero. 

It is interesting to note that in this simulation, the nec- 
essary condition fjv„» > 0 was a^e t0 detect between 0% 
and 60% of all the initial unfeasible sets of covariance lag 
estimates, depending on source separation. 

In some simulations, minimum-deflection completion 
(Eqns. (11) - (12)) is significantly improved by the penalty 
method (Eqns. (13) - (15)). For example, for m = 6 sources 
separated by Aw = 0.19 and a penalty value /* = 10~5,the 
maximum RMSE and maximum bias are reduced from 0.011 
to 0.005 and 0.034 to 0.021 respectively. 

5. Summary 

The above convex programming technique provides 
a unique solution to the problem of maximum-entropy 
p.d. Toeplitz completion (spectral estimation) for the in- 
complete Toeplitz augmented covariance matrix that meets 
the feasibility condition. When the Ellipsoid Algorithm fails 
to find an arbitrary feasible point for stochastic covariance 
lag estimates, the modification approach is proposed. 

It has been shown that the deterministic ME spectra ob- 
tained by this technique are practically identical to the ULA 
ME spectra for all situations examined. However, this sim- 
ilarity does not necessarily imply that the corresponding 
root-MUSIC DOA estimates are true. 

For situations when the number of abnormal estimates 
vanishes, the actual DOA estimation accuracy obtained by 
this new approach is demonstrated to be reasonably close to 
the Cramer-Rao limit. 
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Exact Lags, d=[0,1,4,9,11], (0=1. R=°. Nmax=5),m=8, sep=0.08, SNR=20dB 
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Figure 1. Deterministic completion, Aw=0.08. 
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Figure 2. Deterministic completion, Aw=0.12. 
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Abstract 

A tree structured Expectation Maximization (EM) 
algorithm is proposed and applied to the wide-band an- 
gle of arrival estimation. It may be seen as a gen- 
eralization on EM using the ideas of Cascade EM al- 
gorithm and Space Alternating Generalized EM algo- 
rithm. Also, for passive data acquisition, robust and 
efficient alternatives for the estimation of the source 
signals are investigated. 

1. Introduction 

In many data acquisition systems, reception data 
acquired by an array of sensors are processed to ob- 
tain information about the source locations. When 
the sources are located relatively far away from the 
sensors, only the direction of arrivals of the acquired 
source signals can be reliably obtained. Although the 
Maximum likelihood (ML) estimation provides more 
accurate estimates for the direction of arrivals, due to 
the higher computational cost of obtaining the ML esti- 
mates, it has not found much use in practice. However, 
by exploiting the superposition property of the data 
acquisition system, the complexity of the ML estima- 
tion can be greatly reduced by using the Expectation 
Maximization (EM) algorithm [1, 2, 5]. In EM for- 
malism, the observation, incomplete data is obtained 
via a many-to-one mapping from the complete data 
space that includes signals which we would obtain as 
the sensor outputs if we were able to observe the effect 
of each source separately. The EM algorithm iterates 
between estimating the log-likelihood of the complete 
data using the incomplete data and the current param- 
eter estimates (E-step) and maximizing the estimated 
log-likelihood function to obtain the updated parame- 
ter estimates (M-step).   Under mild regularity condi- 

tions, the iterations of the EM algorithm converges to 
a stationary point of the observed log-likelihood func- 
tion, where at each iteration the likelihood of the es- 
timated parameters is increased [11]. In this study, a 
tree structured hierarchy is used for the description of 
relation between the complete data space and the ob- 
servations. Within this hierarchy it is possible to com- 
bine in one algorithm the ideas of the Cascade EM and 
Space Alternating Generalized EM algorithms [3, 7]. 
For the estimation of unknown signals arriving from 
different directions to a passive array, alternative regu- 
larized estimation schemes to the common least squares 
solution are investigated. For this purpose two differ- 
ent methods are used. The first one is an adaptive 
Tikhonov type regularized least-squares (RLS) estima- 
tion method, which is computationally intensive and 
the second one is an averaged least-squares estimation 
(LSSET) method over a set of angles in a neighbor- 
hood of the nominal angles. It has been demonstrated 
that when RLS or LSSET methods are used in the es- 
timation of the received signals, the EM algorithm has 
better convergence behavior. 

2. Signal Model 

For the case of M sources with direction of arrivals 
0/> 1 < ' < M, the measured signal at the i'th sensor 
of an array with P sensors is 

M 

yi{t) = Y,ai(t> Oi) * siii ~ Ti{6i)) + «,-(*) 

1 < * < P ,     t=0,T,2T,...,(N-l)T        (1) 

where si(t) is the wide-band signal of the /'th source, 
Ui(t) is the 0 mean spatially and temporally white 
Gaussian noise at the i'th sensor, r,(0) is the time delay 
of the source signal from the direction 9 as it propa- 
gates to the i'th sensor relative to the phase center of 
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the array, ai(t,6) is the time domain function for the 
gain of the rth sensor which is dependent on frequency 
and the direction of arrival, 9. The frequency domain 
representation of (1) is, 

M 

l<i<P,     0<k<F        (2) 
1=1 

where F is the DFT size which is chosen sufficiently 
large and Yj(fc), Ai(k,9), S,(k) ve Ui(k) are the trans- 
forms of yi(t), a.i(t,9), s,(t) and Ui(t) respectively. Let 
the following definitions be made (' is the transpose 
operator) 

b(M)   =   [Al(k,e)e-^^T-^X ■■■ 

AP{k,e)e-^^]' 

=  [bl(k,9)---bP(k,e)}' 

B(Jfe,0)    =    [b(Mi) "•*>(*. M] 

S(jfc)    =    [Sl(k)---SM(k)}' 

Y(fc)    =    \Y1(k)---YP(k)]' 

Using these definitions (2) becomes 

Y(fc) = B(Jb,0)S(fc) + U(Jfe)     0<k<F     (3) 

This final compact form of the measurement relation, 
which is the same as the signal model of the Cramer- 
Rao Lower Bound formula in [8], will be used in our 
derivations. 

3. Wide-Band EM Algorithm 

Since, the measurement noise is modeled as nor- 
mally distributed additive noise, the probability den- 
sity of the observations are Gaussian. Hence, the log- 
likelihood function of the observations has the following 
familiar form 0 is the conjugate transpose operator), 

F-l 

C(&, S; Y) = - £ [Y(fc) - B(*. 0)S(fc)]t 

k=0 

[Y(*)-B(*,0)S(*)]        (4) 

In order to find the ML estimate, likelihood function 
of the observations should be maximized with respect 
to © and S(ifc). However, the direct maximization of 
this function is not only computationally demanding 
but also due to the local maxima structure of the like- 
lihood function it is not guaranteed to converge to the 
global maxima. The Expectation Maximization (EM) 
method of obtaining the ML estimate overcomes this 

difficulty by an iterative search in much lower dimen- 
sional parameter spaces [1]. The EM method requires 
the identification of so called complete data space. In 
our application the commonly used complete data is 
X/(fc) = [Xu{k)---Xpi(k)]' which is the signal that 
would be observed at the sensors if we were able to see 
the effect of /'th source only. Then the many-to-one 
mapping for all sources from the complete data space 
to the incomplete data space can be written as 

M 

Y(fe) = 5^X,(ib) 0<A<F (5) 
(=i 

The mean of the complete data X;(k) is h{k,6{)S\(k) 
and it is normally distributed. The log-likelihood func- 
tion of the complete data is 

F-l   M 

cc(e,s;x) = - £ £Hx'W -b(fc'*)5'(*)H2   (6) 
k=0 1=1 

Here, the observed signal is decomposed to M con- 
stituents. Therefore to estimate 9\ and Si(k), only 
X/(fc) is used besides the observation. At the n'th it- 
eration of the EM algorithm expectation step condi- 
tionally estimates the likelihood of the complete data 
£C(0,S | 0n,Sn). Maximization step then finds the 
maximizer of the estimated likelihood and assigns to 
9?+1. To find b(k,9i)Si(k) it is sufficient to know 
X;(fc), therefore in expectation step Xt(k) is estimated. 
It can be shown that, ([6], p. 164), 

Xf(k) = E{Xl(k)\9f,Sr(k),Y(k)} 

= b(k,9?)S?(k)+jj[Y(k)-B(k,en)Sn(k))) 

0<k<F (7) 

In maximization step complete data likelihood which 
is formed by using X"(k) is maximized with respect to 
9i and Si(fc). The 9t update is found as 

#™+1 = arg max 

C    F-l M 
maxi - E E IIX"W - h(k> 0)5'(*)HS 

, s'    l    jfe=o ;=i 
(8) 

where there is two maximization problems inside one 
another. If Si(k) is unknown they must be simultane- 
ously solved. For a given 9 value, the solution of the 
inner maximization is 

S,(k)   =    [b(k,9)b\k,9)y 

bt(M)x,(t) 
-      ||b(M)||2 

lbt(fc,0)X,(*) 

(9) 
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Inserting this expression into (8) and solving for the 
outer maximization 0\l+1 is found. For that maximiza- 
tion linear search may be used. Finally, at the n'th 
iteration of the EM algorithm the update formulas are 
as follows, 

F-l 
gn + 1 

C'l + 1 (k) 

arg max \J 
fc=o 

bHk,e)xl
n(k)x,r(k)b(k,e) 
\\b(k,e)f 

bHk,0?+1)X?(k) 
l|b(fc,^+1)||2 

(10) 

(11) 

If Si(k) is known, as in active array applications, (8) is 
simply reduced to one maximization problem and there 
remains no need for (11). If (10) and (11) are run 
together, i.e., in the case of unknown source signals, 
0" ' ' i«+i should be close to true direction values for Sr

t 
m + l 

to converge to true signal waveforms. 
After (10), 0"+1 is available. If it is inserted into 

(3). S"+1(fe) can be solved for by using a number of al- 
ternatives. For instance the least squares (LS) solution 
is as follows, 

S(k)    =    argmin\\Y(k)-B(k,&)S(k)\\2 

=    [Bt(A, 0)B(*. S^-'B^k, 0)Y(Jb) (12) 

Regularization may be applied on the LS solution 
which is called regularized least squares, RLS, 

S(k) = [Bt(fc, 0)B(*, 0) + ^I]_1Bt()t, 0)Y(Jb)   (13) 

It is important to chose // in the regularization and it 
can be chosen optimally [4, 9]. Another alternative in 
source signal estimation may be the following which 
will be referred to as LSSET solution, where K, is a set 
of angles in a neighborhood of 0, 

S(k) = arg min / ||Y(fc) - B(Jb, &)S(k)\\2d®   (14) 
S{k)Jic 

EM algorithm starts with n = 0 at which time 0° is 
available obtained by using a rough estimation. To find 
X°(fc) in (7), Sf is needed and it is estimated by one 
of the methods mentioned above. EM shows mono- 
tonic increase of the likelihood and its convergence is- 
sues have been investigated [1, 11]. 

4. Tree-Structured EM 

In this section we will use a different mapping from 
the complete data to the incomplete data which is 

structured as a binary tree as shown in Figure 1. 
Y,-j(fc) is the intermediate incomplete data between 
the observation Y(fc) and the complete data X,(fc)'s. 
In this setting EM algorithm is run for two sources at 
a time using the intermediate data at the joint node 
of two leaves. This provides an update for the corre- 
sponding DOA and source signals. The value of the 
intermediate data is found by using, in (3), the origi- 
nal observation Y(k) and the current source signal es- 
timates other than the ones which are to be updated 
by the current run. For instance, to run EM algorithm 
for Xx(&) and X2(&) we form the required incomplete 
data as 

Y2li(*) = Yi,i(Jb)-B(ArI 
»3 

04 
s3(fc) 
s4(*) 

(15) 

where Yu(fc) is found by using Y(fc) and the cur- 
rent estimates for the last there source signals in (3). 
Y2,2(fc) may be found similarly and EM algorithm is 
run for that branch too. This may be repeated a num- 
ber of times and then by using the updates obtained 
for the first 4 source signals and DOA's, branch of 
Yli2(fc) may be processed.   The idea of putting inter- 

Y,,2 
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-x. 

- x5 

    Y 

*M 

Y2.2 
A3 

Y..l 

idex 
Yi.j 

1   I—   i 

x2 

Y2, 
level *1 

Figure 1. An example for the tree structure. 

mediate data mappings between Y(k) and X;(Ar)'s can 
be associated with that of the Cascade EM, CEM, al- 
gorithm but here there is more than one intermediate 
data space. Due to the limited space, the generalization 
of CEM to multiple levels is not presented here. The 
tree structure may also be associated with Space Al- 
ternating Generalized EM algorithm in the sense that 
not all of the parameters are updated at a time. Also 
EM is run on a more noisy data reducing the informa- 
tion content of intermediate observations and this is 
reported to speed the convergence [3]. 

5. Simulations and Conclusions 

Observation signals are obtained by simulation of a 
linear array of sensors. The number of signals are as- 
sumed to be known since there are studies in detection 
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[10]. The source signals are taken as coherent pulse 
modulated chirp signals with bandwidth comparable 
to the center frequency. Noise is assumed to be in- 
dependent identical Gaussian distributed.     First the 

DOA estimation error 

0.012 ■ 

0.01 - 

- 0.008 
. 

g 

| 0.006 ■ 

a LSSET 
< 
o 
0 0.004 

A 

LS 
EM • 

RLS 

—r ;  -, .— 
10 12 14 16 18 20 

iteration number 

Figure 2. Averaged traces of DOA error norms. 
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 : 

Figure 3. DOA error variances. 

signal estimation alternatives are inserted in the EM al- 
gorithm and their relative performances are compared. 
EM algorithm is run for two sources impinging from 35° 
and -50° at an SNR level of OdB. The averaged traces 
of error norm of DOA estimation, which describes the 
convergence behaviours, can be seen in Figure 2 where 
EM, LS, RLS, LSSET refers to (11), (12), (13), (14) re- 
spectively. The DOA error variance together with the 
CRLB for each alternative is plotted in Figure 3. For 
LSSET, K- consists of 5 angles in a 1° neighborhood of 
the current DOA. This figures out to be computation- 

ally less complex than RLS. 
To compare the tree-structured EM algorithm with 

the original EM algorithm four sources from directions 
0 = [35° - 50° - 20° 50°]' are used at SNR=10dB. 
Initial DOA's are given as ©0 = [33° -48° -18° 48°]'. 

The DOA error norms for iterations of original EM and 
tree-structured EM algorithms are shown in the next 
table. The original EM algorithm, could not converge 
to true DOA values. Furthermore, it diverges from the 
initial angle values. But within the same number of 
total iterations the tree-structured EM converges with 
much lower DOA error to 0 = [35.3 -50.0 -20.0 50.7]'. 

iteration no. —► 10 20 50 100 

EM (10-a) 5.3 5.5 5.5 5.5 
Tree-EM (lO"4) 6.3 6.1 4.6 2.2 

By this study, an improvement on EM algorithm is 
realized not only by using robust signal estimation 
schemes but also by changing the data mapping of the 

original algorithm. 
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Abstract 

Traditionally, high resolution spectral Direction Of 
Arrival (DOA) estimation has been associated with 
algorithms rather than with a processing scheme or 
architecture. Motivated by a previous work on feasible 
implementations of the Estimate and Maximize algorithm 
[1], the authors show that classical bank filter approach 
[see 2 and its references] can get similar, even better, 
performance than the most sophisticated algorithms, in 
terms of performance versus complexity. In fact, the 
practicality and robustness required for DOA trackers, both 
in radar and in the mobile communication scenarios to 
alleviate data fusion and hand-over respectively, makes 
evident the use of filter-bank or scanning beams for DOA 
tracking at the expense of resolution. The herein reported 
tracker enhances complexity and robustness of these 
schemes, achieving high resolution from the EM 
architecture. The result is a low complexity tracker with 
robustness against coherent sources and a resolution close 
to Singular Value Decomposition (SVD) based methods. 

1. Introduction 

Motivated by a previous work on feasible 
implementations of the Estimate and Maximize algorithm 
[1], the authors show that classical bank filter approach [2] 
can get similar, even better, performance than the most 
sophisticated trackers in terms of performance versus 
complexity. The present summary is organized as follows: 
Section 2 goes over the scanning beam procedures for 
DOA estimation and brings in the modifications of interest 
in this work. Next, Section 3 brings out the EM-based 
architecture in order for Section 4 to propose a multiple 
source tracker that uses this architecture together with the 
beamforming scanning approach briefly described in the 
previous section. The result is a DOA tracker architecture 
and algorithm whose robustness and performance is 
associated to the intrinsic clarity and simplicity of the 
processing scheme and the DOA algorithms used inside. 

* 'Ulis work has been supported by M0NTIC7(JlC"YT: T1Ü-Ö5-1ÖÜ- 
C05-01 and CIRIT/GENBRALITAT de Cat. GRQ 93-3021 

II. Scanning beam procedures for Doa 
estimation 

In face of DOA detectors, usually based on SVD of the 
data matrix or its covariance, the oldest approach, referred 
to as the bank filter approach, uses a dedicated beam to 
explore all the scenario looking for the steering directions 
where a local maximum of received power is produced. As 
it can be viewed in Figure 1, the DOA estimator is 
implemented by a steerable beam a (s(j(0) denotes the 
steering vector, focused on angle 6, to which the beam is 
steered) which, followed by a power device (envelope 
detector plus integration) produces the power density $ 
(power/solid angle) for every search direction s^ (the 
spatial bandwidth BN is the noise bandwidth [2]). Finally, 
the DOA estimate will be the maximum of the spatial 
power density. 

i 
i 
CM 

■2  « 

2 § 
C/3  X> 

Power 
detec. VBN ~5(^T 

sd(G) 

Figure 1. 

sourde 
signal 

Scanning beam scheme for DOA 
estimation 

From the simplicity of the scheme depicted in figure 1, 
it can be concluded that complexity and robustness of these 
procedures are their main features. It is in terms of 
resolution when the main criticism appears. Any DOA 
estimation procedure using a beamvector to measure power 
density has to face the uncertainty principle being the 
product of the aperture size in wavelenghts by the 
beamvector bandwidth bounded. An example is the classic 
phased-array scanning procedure. 

The phased-array scanning (1) can be formulated as a 
beamformer a with 0 dB gain in the steered direction s^ 
and minimizing the response to the non-directional noise 
(with identity covariance matrix) 
aHsd = l   (La) aHsd = l .(la) 

aH a\ min (Lb) aHRa\ min (2.b) 

0-8186-7576-4/96 $5.00 © 1996 IEEE 
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The phased-array response is distorted whenever non- 
uniform spatial noise or source distributions are to deal 
with. To alleviate in part the resulting leakage problem the 
so-called Capon's beamformer is designed in a data 
dependent fashion. The Capon's beamformer adapts to the 
spectral content of the input process at each DOA of 
interest. For each scan direction, it reduces the interference 
contributions to noise level. Its basic formulation is 
shown in (2), where R is the data correlation matrix 
measured from the snapshot vector x. 

Nevertheless, the case of interest of the hereafter tracker 
is that both approaches, i.e. the data independent or phased 
array and the data-dependent or Capon's beamvector, are 
suitable for introducing additional constrains. Specifically, 
the modification we are interested in is when a given 
direction s0 has to be nulled out in order to reduce leakage 
in any s<$ due to the potential presence of an interference 
source at s0. The resulting beamvector comes from the 
following formulation in (3) and (4) 
aH (sd *0) = (1 0)   (3a)      aH (sd s0) = (1 0)   (4a) 

aHa\min (3b) %HRa\ mm (4b) 

where (3) and (4) depart from the phased-array and the 
Capon's beamformer philosophy respectively. The 
corresponding beamvectors are easily derived by means of 
the Lagrange multipliers. For its simplicity, we pay 
special attention to the beamvector that is derived from (3) 
and formulated in (5). 
a=A [A^AY1 (1;0) = A# (1;0) (5) 

where A = [sd s0] and # stands for the pseudo-inverse. 
This minimum norm beamvector leads to minimum loss of 
desired signal response if the coefficients ai are achieved by 
attenuation and to smallest sensitivity to errors in 
construction. Additionally, its design is completely data 
free. It is also interesting to note that if the steered direction 
sd is the same as the desired source direction, the 
beamvector formulated in (5) offers the Deterministic 
Maximum Likelihood estimate of the signal waveform & 
coming from that source. 

e = A#(l;0)x (6) 

We recall the importance of the noise bandwidth (BN) 
normalization in order to get a reliable DOA estimate from 
the spatial power density $ in (3)instead of directly using 
the spatial power. 
<P = aHRa/BN (7) 

To be more specific, spatial bandwidth may introduce 
substantial power leakage from sources or directional noise 
impinging on the aperture from other directions than the 
desired one. 

It is important to remark the robustness and low 
complexity of both procedures associated with the 
principle of the beamvector scanning. The only problem 
they face is spatial frequency leakage or resolution loss for 
the multiple source case. 

Next, we will propose to use either (3) or (4) in a EM 
based architecture to provide a high resolution tracker yet 
preserving the low complexity and robustness previously 
mentioned. 

3. The EM-based architecture 

After a detailed exam of the EM algorithm [1] both in 
the deterministic and the stochastic approach, the Estimate 
step can be viewed as a blocking step where the 
multiparameter estimation problem is reduced to a single 
parameter estimation. Being more specific, the steps 
Estimate and Maximize, when implemented in a signal 
processing architecture for DOA estimation, can be 
renamed as blocking and single source estimation 
respectively. In other words, given the original data 
snapshot xn containing NS sources, the blocking step 
produces NS snapshots xn;k (k=l,NS) such that a single 
source is relevant in every snapshot or, at least, the other 
sources are highly attenuated with respect to this source. 

In consequence, the blocking step could be 
implemented as NS matrices Bk (k=l,NS) that produces 
from xn the single source snapshot 

xn,k = Bkxn        (k=l,NS) (8) 

As the blocking step requires the source DOA's, it is 
necessary to feed the DOA's obtained in the second stage 
back to the first or blocking stage. This is the other main 
feature of the EM and EM-based algorithms. As the reader 
can observe in figure 2, the maximum at the output of 
each branch governs the nulls of the other branches (i.e. 
cross-feedback). This fact prevents two or more branches 
from collapsing into the same angle estimation. 

$$ln) 

$(0NS,n) 

Blocking Single source 
DOA etimation 

Figure 2. The EM-based architecture with the 
blocking stage followed by single source DOA 

detectors 

The resulting architecture, depicted in the figure 2, can 
be found in detail in [3], where the links with the 
deterministic and stochastic EM algorithm are presented in 
full. The purpose of this work is to use this architecture 
together with the beamforming scanning approach briefly 
described in the previous section. 

From now on, the presentation will be reduced to the 
two source case for a linear array. As the reader may 
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conclude there is no formal difficulties to extend the 
application to the case of planar arrays or to the case of 
multiple sources. Nevertheless, in a radio communication 
scenario, the probability of more than two users 
demanding Space Diversity Multiple Access (SDMA) is 
very low being, in consequence, the case of two active 
sources the closest to real scenarios. 

/ K 
A 

1 n-M 
al,n-M l,n-M 

max 

la 
2,n-M 

max 
i   4,n-ivi i 

K 
A  w 

e2,n-M \ 

Figure 3. A DOA tracker with beamformer 
scanning procedures in an EM-based 

architecture. 

Finally, and going back to the architecture of figure 2, 
it should be mentioned that both steps can be implemented 
as a single one when the procedures shown in (3) and (4) 
are used. These procedures allow the packing of both steps 
in a single one; since, being single source estimates, they 
include the blocking of DOAs a priori selected. This 
proposed architecture is the one depicted in figure 3. 

Next section will explain how a two source DOA 
detector/tracker based in this architecture works. 

IV. The proposed multiple source 
tracker. 

IV.l. A DOA tracker architecture and algorithm 

In the EM-based architecture that is depicted in figure 
A A 

3, two source DOA's are produced: 8ijn-M and Ö2,n-M- 
Initially, the data correlation matrix Rn, which is required 
to compute the spatial power density <I>i, is initalized with 
a number of snapshots equal to ten times the number of 
sensors and afterwards this matrix is updated during M 
snaphots following the rule: 

Rn.M+k = ßRn-M + (1-ß) VM+* 
xn-M+k <9> 

being M equal to l/1-ß. This interval M is the number of 
samples between successive updates of the DOAs provided 
by the system. Its choice is a trade-off between radial 
source velocity and scanning time. 

To make the system robust to bad initializations in 
whatever kind of scenario (i.e. very different power sources 
and even presenting strong correlation), initially, just one 
branch sets out to work. Once, this branch has detected one 
source DOA this DOA can then drive the null of the 
second branch. In this way, both branches cannot collapse 
into the same source DOA. If both DOA's are far enough, 
both branches in figure 3 can then begin to scan parallelly. 
Next, the procedure to update each angle estimate is 

described. 
During the mentioned M snapshots and in the case of 

the data independent design (see 3), the beamformers are 
obtained as it is shown in (10) for the beamforemer 
labelled 1 in figure 3 and in the same manner for the 
beamformer 2 

afnlH(B) s^nihd 0) (10) 
H       . aln awmin 

Note that for the beamformer labelled 1, the second 
A 

branch drives its null at 62,11 and in the same manner for 
the beamformer 2 

Once the beamformers have been designed, they scan 
on s as: 

*lM.'*HJ\'ln (11) 
'In <*ln 

where the spatial bandwidth BN has been approximated by 
the norm of the beamvector ain [3]; the new estimate will 
be the DOA that maximizes the estimated spatial power 
density 

e1>n = max 4>in(6) (12) 

We remark that, in order to save in time and 
computational burden the DOA's that are scanned on s 

A 
can be close to the previous 9i)n_M . However, the 
system is no more a detector but just a tracker. 

Note that simultaneously to the acquisition period M, 
the architecture may iterate over (10)-(12) in the same 
fashion as it was in the original EM algorithm. It should 
be pointed out that the number of iterations, to be useful, 
requires a high precision scanning through s and at the end 
may face the upper bound in resolving two close sources 
from a M interval data correlation estimate. At least two 
iterations will be necessary in any case. 

IV.2. Tracking subsystem 

The concept of a global tracker includes not only the 
DOA detection scheme, but also the parameter filtering 
which enables to cope with eventual fadings of bounded 
time duration, as it may occur in crossing radial 
trajectories of two targets. This additional processing uses 
to contain two additional stages of time-trackers of each 
parameter and data fusion or, in some cases, image 
processing of the two image produced by parameter values 
versus time. 

Most of the cases, the DOA detection scheme (we just 
described an alternative in the previous section) does not 
take profit from the powerful processing that follows in 
forming the global tracker system. We comment on it to 
state that the blocking plus estimation scheme described 
can take a great advantage of the tracker subsystem. We 
will refer hereafter as parameter tracking, since most of the 
success of the DOA estimation is based on adequate 
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uauon. me siaic liiui. 

fl M l\ Öie n 

''" Alien 
+ w, (13) 

nulling or inhibition of the non-steered sources. 
Once the detected angle has stabilised at each of the 

branches, an elevation tracker is used in the scheme of 
figure 3 (insertion point K). In this way, the performance 
of the system may improve since tracking and prediction 
of "next" location is of capital importance in inhibition or 
blocking. 

This work has employed the most basic parameter 
tracker that can be used: a Kaiman filter tracking radial 

position 9ie,n-M and vie,n-M velocity. A complete 
description can be found in [4]. Next, we just comment 
some specific aspects on the state equation and the 
measurement equation. The state model is 

fy'e n+M 
A 

.  vie n+M J 
where  wn  is  the uncertainty  (associated to  the 
maneuverability of the sources) with covariance matrix Q. 
The measurement model is (14) 

6in= Oien +v„ (W 
where fy n is the estimate produced after the detection and 
vn is the noise in the observation of the elevation angle. 
This noise, of covariance Cyn, is due to air-interface, down 
conversion mismatching, noise and DOA detection errors. 

Both covariance Q and cv have to be matched to the 
specific application. In our work we have set Q to diagonal 
( 10-4 10"7 ) for a mobile communication scenario. We 
have commented before that, simultaneously to the 
acquisition period M, the architecture of figure 2 may 
iterate over (10)-(12). During these L iterations, each of 
the detectors adjust their DOA estimates until each one 
stabilizes. The, the Kaiman sub-system filters the noise 

A 

out of these estimates and produces Q[e n ■ Therefore, in 
order to set the measurement covariance cvn. it can be 

estimated as cj^ in (15), that is, the error power between 
A 

the angle predicted by Kaiman 0,e n and the angle detected 
A 
din overLrealizations 

ckXi     = (1-1/L)    cj„ + 1/L | % „ - %ie n  \> 

and an initial angle estimate of 20° has been considerec 

k=l...L 

V. Simulations and Conclusions 

(15) 

In order to validate the proposed DOA 
detection/tracking technique two simulations have been 
conducted. Figure 4 and 5 show the case of two moving 
sources tracked by the system of figure 3, where the 
beamformers ai are simple phased-arrays that follow the 
design rule of (10) and where the Kaiman sub-system is 
incorporated. First, figure 4 shows the performance of the 
system in a scenario of two sources received with very 
different powers: 15 and 5 dB respectively. The uniform 
linear array consists of 8 sensors and each scan is carried 
out after 30 snaphsots. Radial velocity is 0.017snapshot 

Figure 4. Two sources of [15 5] dB. Tracking by 
an 8 sensor array. Each scan consists of 30 

snaphots. 
Next, figure 5 is carried out in the same scenario but 

with fully coherent sources. 

scans 

Figure 5. Two fully coherent sources of [15 5] 
dB. Tracking by an 8 sensor array. Each scan 

consists of 30 snaphots. 
The proposed technique offers a good trade-off between 

performance against complexity and cost. Its robustness is 
associated to the intrinsic clarity and simplicity of the 
processing scheme and the DOA algorithm used inside. 

Future work will consider the impact of the deviation 
in element locations, mutual coupling an quantization 
effects in using digitally controlled attenuators and shifters. 
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Abstract 

In several adaptive array application areas the 
Gaussian distribution has not proven to be an accu- 
rate model of the measured data. Nevertheless, Gaus- 
sian based processors have demonstrated robust perfor- 
mance in spite of this statistical mismatch. A need 
therefore exists for the consideration of (i) problem 
reformulation and (ii) performance analysis in non- 
Gaussian environments. The theory of complex multi- 
variate elliptically contoured (MEG) distributions pro- 
vides an attractive theoretic framework for these con- 
siderations especially in the adaptive array setting. We 
replace the Gaussian data assumption with one of MEC 
distributed and reexamine the optimality and perfor- 
mance of widely used adaptive detection and beamform- 
ing structures. 

I. Introduction 

IN several radar/sonar and other array application 
areas the Gaussian distribution is an inadequate 

model for measured data (see [5] and its bibliogra- 
phy). Thus, extending classical array processing to 
non-Gaussian distributions has been a longstanding 
desire of the array community. In addition the ob- 
served robustness of Gaussian based processors in some 
non-Gaussian environments motivates the need for sta- 
tistical performance analyses of these processors which 
address in a relatively general sense a plurality of pos- 
sible non-Gaussian distributions. Such analyses are of 
special interest in adaptive array scenarios which of- 
ten involve estimation of the data covariance via the 
sample covariance matrix (SCM). The theory of com- 
plex multivariate elliptically contoured (MEC) distri- 
butions provides one such vehicle to perform such anal- 
yses. MEC distributions represent a fairly attractive 
set of data models for the adaptive array scenario for 
several reasons: (1) similar models have had success 
historically and contemporarily speaking under the 
guise of spherically invariant random vectors (SIRVs or 
processes SIRPs) and Gaussian mixtures [5], (2) MECs 
provide a theoretic framework which (i) allows one to 

address a plurality of non-Gaussian distributions si- 
multaneously, and (ii) provides for optimal estimation 
of the (typically unknown) data covariance, (3) MECs 
often allow for tractable performance analyses in the 
presence of the SCM, which has historically been a 
limiting factor when deviating from the Gaussian as- 
sumption. 

In this paper we replace the classic assumption of 
data normality with one of MEC distributed data and 
reexamine important Gaussian based results of adap- 
tive array detection and signal estimation. In partic- 
ular, Kelly's generalized likelihood ratio test (GLRT) 
[1] and Robey's adaptive matched filter (AMF) [2] are 
shown to be detection structures which arise not neces- 
sarily from Gaussianity per se, but rather as by prod- 
ucts of the elliptical symmetry which the Gaussian 
happens to possess. Indeed, it is shown that a large 
class of MEC distributions lead to the same detec- 
tion structures. The probability of false alarm (PFA) 
and constant false alarm rate (CFAR) loss relative to 
the complex Gaussian of known covariance are shown 
invariant over the MEC class. Concerning adaptive 
beamforming, exact statistical analyses of the sample 
covariance based (SCB) linearly constrained minimum 
variance (LCMV) beamformer and its SCB general- 
ized sidelobe cancellor (GSC) implementation, which 
include pdfs for their weightings, beam responses, and 
beamformer outputs are given. All results suggest sig- 
nificant robustness implications to adaptive array pro- 
cessing in non-Gaussian environments. 

II. Array Processing 
In array processing the multisensor array data is of- 
ten modeled by the following vector observation (all 
vectors are complex) 

'(JVxl) G(NxE)s(Exl) +n(7Vxl) = Z^giSi + »•    (1) 
t=l 

The dimensions of the corresponding matrices are in- 
dicated in subscript, x is the received array data 
with covariance R, containing the desired signal vector 
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8= [Si,Si,..., SE]
T
 {T denotes matrix transpose and 

H the conjugate transpose), n is additive noise. The 
columns of the matrix G = [gi|g2| ■ • ■ \%E] model the 
system transfer functions, also known as the steering 
vector(s). It is assumed that G is full column rank and 
known exactly. 

In this paper we consider the problems of adaptive 
array detection/estimation and adaptive beamforming 
in the specific class of MEC non-Gaussian environ- 

ments. 

III. MEC Distributed Data 

Consider the N x (L + 1) data matrix X0 = 
[xi|x2|---|x/,|x] = [X|x] which has as its first L 
columns training data and its last column the pri- 
mary array snapshot under interrogation. Tradition- 
ally the columns of X0 are assumed independent Gaus- 
sian; however, the Gaussian distribution is one member 
of a broad class of distributions known as elliptically 
contoured (EC) distributions, which likewise often al- 
low for tractable analysis. Multivariate EC distribu- 
tions extend classical Gaussian based sampling the- 
ory of multivariate statistical analysis to the case of 
observations which are dependent and/or drawn from 
nonnormal populations [10], [11]. Note the following 
definitions: 

Definition 1: If a complex random vector hWxi has 
a characteristic function (c.f.) of the form 

E{eiRe(t0"h)} = exp[jRe(tf m)] • <^(t^Rt0)       (2) 

where E{} is the expectation, m is N x 1, R is N x N 
positive semi-definite (> 0), Re(-) and Im(-) denote 
real and imaginary parts, we say that h is complex EC 
distributed with parameters m,R, <f>, and we denote 
this by 

h~C£CN(m,R,<A). (3) 

If the density function of h exists (is nondegenerate) 
then it necessarily has the form 

IRl-^Kh-m^R-Hh-m)] (4) 

where | • | denotes the matrix determinant. 
Definition 2: A multivariate EC (MEC) distribution 

generalizes the vector EC to the case of a matrix, and is 
similarly defined. An JV x L matrix H = [hi |h21 • • • \hL] 
whose c.f. has the form 

E (exp{jRe[tr(T?H)]}) = exp (jIte[tr(T?M)])    (5) 

x 0(t?Riti +1"R2t2 + ■ • • + t£RitL)   (6) 

where   tr(-)    denotes   the   matrix   trace,    T0     = 
[ti|t2| • • • |ti] is N x L, and Ri > 0 for i = 1,2,... ,L, 

is said to be complex MEC and we write 

H~CA<£CJVXL(M;RI,R2,...,RL;<£)- (?) 

If the density of H exists, then it has the form 

L 

niRr1 

.i=l 

Xff jSrR-^hi-miXhi-m;)" 
L «=i 

Definition 3: When M = [m|m| • • • |m], and Ri = 
R2 = • • • = RL = R in definition 2, then, say H, is 
said to be complex Louiville EC (LEC) distributed and 
we write 

H~CC£CNxL(ra,Ii,<t>). (8) 

The functional form of <p(-) uniquely determines 
g{-) and distinguishes one type of EC/MEC distribu- 
tion from another. For example, if <f>(u) = e then 
g[u) oc e_u and H, for example, is a complex Gaus- 
sian data matrix with columns independent identically 
distributed as CA/"(0,R). 

IV. Adaptive Array Detection 
In adaptive array detection, signal presence is sought 
in the single vector snapshot x called the primary data 
vector. One of the two following hypotheses is true: 

Ho : x = n, or Hi : x = Gs + n;    (9) 

either the primary data vector is simply noise only (un- 
der the null hypothesis H0), or it contains a target sig- 
nal plus noise (under hypothesis Hi). It is assumed 
that s and R are unknown and that a secondary data 
set (or training set) X = [xi|---|xt] is available to 
help compensate for ignorance of these nuisance pa- 
rameters. The target free snapshots Xj are zero mean 
and share the same covariance as the primary data 
vector, i.e. cov(xi) = R for i = 1,. ..,L. The deci- 
sion about signal presence is based on the totality of 
the data summarized by the N x (L + 1) data matrix 
Xo = [X|x]. 

A. The GLRT and AMF Detectors 

Under both hypotheses and throughout the remainder 
of this paper we assume that L > N and that the data 
matrix X0 is MEC distributed with a density of the 
form 

9Hi = \R\-(L+1)g[ trR-^Xo - Mi)(X0 - Mi)H } (10) 

i = 0,1, where under the corresponding hypotheses we 
have 

H0 : Mo = OjvxfL+i).    Hi : Mi = [0NXL\ GS ]. (11) 
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(Note that this data model includes the complex Gaus- 
sian considered by Kelly [1] when we choose 5(7-) = 
e~rn~N(L+1\) Assuming this data distribution, we 
follow two theoretic/heuristic approaches to the adap- 
tive array detection problem; namely, (i) that outlined 
by the GLRT procedure, and (ii) the heuristic AMF 
approach. 

B. Key Results on Detection 

• (1) Taking the same GLRT approach as Kelly [1] 
we find that the resulting GLRT decision statistic 
is mathematically unchanged under this class of 
complex MEC distributions. 

• (2) Following the heuristic AMF approach [2] like- 
wise leads to the same detection structure one 
would obtain under the data Gaussianity assump- 
tion. 

. (3) For both the GLRT and AMF the PFA in in- 
variant over the complex MEC class, i.e. it does 
not depend on g(-). Hence, the CFAR loss relative 
to the Gaussian is the same. 

• (4) For both detectors the PD is dependent on the 
functional form of the density given by <?(•). 

• (5) The SCB LCMV beamformer remains the 
maximum-likelihood (ML) estimate of the signal 
parameters s. (See [6], [8]). 

V. Adaptive Beamforming 
A. Clairvoyant Beamformer Weightings 

If R is known exactly, then under the Gaussian as- 
sumption the signal estimates and beamformer outputs 
are respectively of the form 

s = WHx and y = wwx (12) 

[9]. The specific weightings performing the linear 
transformations on the data x for the clairvoyant (R 
known ) array processors considered in this paper are 
summarized by 

Clairvoyant Weightings 

ML 
LCMV 

GSC 

WML = R-1G(GHR-1G)-1 

WLCMV = Wjvfif (also MVDR) 
w9sc = WGscf 
WGsc = [IN - GxSlGsc) G(G"G)"1 

"c7sc = (Gf RGx^G^R. 

B. SCB Beamformer Weightings 

Typically R is an unknown parameter which must be 

estimated from a secondary data set. The common 
heuristic procedure is simply to replace R with the 
SCM, which we denote by R. This method leads to 
the following SCB processors: 

SCB Weightings 

ML: 
LCMV: 

GSC: 

WML = Rr^GtG^R^G)-1 

WiCMV^WMif (also MVDR) 
wj« = Woscf 

WGSC = [liv - G±nGsc] G(G^G)-1 

nG5C = (GjRG±)-1G^R. 

The hat " " accent is used to denote the SCM as 
well as the dependence of the weightings and other 
quantities on the SCM via the above heuristic proce- 
dure. Although originally a heuristic procedure, we 
show that these SCB beamformers are optimal in the 
ML sense under the MEC distributed assumption for 
X0 given by eq(10) when maximizing over both pa- 
rameters s and R [6]. 

C. Key Results on Beamforming 

C.l SCB Weightings 

The key result is a unified stochastic representation of 
the SCB weightings. All of these weightings can be 
written equal in distribution to their clairvoyant coun- 
terparts plus a stochastic term: 

W    =    W-ATB or 

w     =    w - CTd 
(13) 

PT(T~o) = k ■ IN-E + To T0 

~(L+E) 

where A, B, C and d are deterministic matrices/vector 
and T is an (N - E) x E random matrix with pdf 

(14) 

a standardized complex multivariate J-distribution. k 
is the normalizing constant of the pdf. This stochastic 
representation is completely independent of the func- 
tional form of g (or </>), and is used to derive exact 
means, covariances, and pdfs for the beam responses, 
beamformer outputs, and signal estimates which result 
from these SCB weightings [7], [8]. 

C.2 SCB Beam Responses 

All SCB beam responses h{6,u)   =   W^d^u»)  or 
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b(6,w) = wHd9(w), can also be written equal in dis- 
tribution to their clairvoyant counterparts plus a noise 
term: 

b(0,w)    =   WÄd»(«) - Ao t 

b(6, u)    =   wHdeM-ß0x* 
(15) 

where A0 and B0 are deterministic and t (E x 1) and t 
are random with pdfs that are special cases of eq(14). 
This representation is likewise invariant over the class 
of complex MECs considered. 

C.3 Beamformer Outputs 

The SCB signal estimates s = WHx and SCB beam- 
former outputs y = wHx respectively can be written 
equal in distribution to: 

S     i     S + Kzg/yß 
y     £     {HS + KxZg/yß 

(16) 

where K and K are deterministic quantities, zg (E x 1) 
and Zg are complex spherically symmetric noise terms 
whose pdfs depend on the functional form of g{-), 
and ß is complex beta distributed with parameters 
L-N + E + landN-E which is independent of 
both Zg and Zg [8]. 
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Abstract 
We present a new class of discrete chaotic systems (i.e. 

chaotic maps) that can effectively encrypt information. 
The nonlinearity of these systems is achieved by 
designing proper piecewise linear functions and by 
using modulo operations. The chaotic maps are used as 
pseudo-noise generators and as the synchronization 
mechanism of a secure spread-spectrum communication 
system design. The potential for automatic 
synchronization, the lack of periodicity and the 
extremely large parameter spaces that our chaotic maps 
exhibit offer great advantages over the traditional 
Linear Feedback Shifi Registers pseudo-noise 
generators for spread spectrum system design. 

1 Introduction 

The paper presents encryption algorithms that operate by 
restricting the system's parameters in ranges that guarantee 
geometric convergence of all the variables of the receiving 
system to those of the transmitting one under the influence 
of a common transmitted variable (called the drive signal). 
This process has only few features in common with the 
chaotic synchronization process [1,2,5,6,9,10] studied 
extensively for flows (i.e. systems of differential 
equations). The similarity is the utilization of one (or more) 
variable(s), constituting the drive signal, which is used in 
order to entrain the receiver's system to the transmitter. 
However, the design of the presented discrete chaotic 
systems is completely different. 

The improvements we introduce over previous related 
work [1,3,6,11] are threefold: 

1. We present a methodology based on general piecewise 
linear functions that exhibit chaotic dynamics. These 
functions are easily implementable with the available 
electronic technology [4]. They exploit the modulo 
operator in order to achieve both bounded chaotic 
evolution and extreme sensitivity on the initial conditions. 
Due to the modulo operation both the range of parameter 
space over which the evolution is chaotic and the 
sensitivity of the system to parameter variations are 
dramatically increased. The consequence is an immense 
parameter space even for small encryption systems. 
2. We present a general form for our chaotic enciphering 

systems and we establish systematically a set of 
convergence conditions on the variables of these systems. 

3. Although the presented chaotic systems offer very 
strong encryption security and the possibility to encrypt 
bulk data (e.g. video data), at fast real-time rates, they are 
very sensitive to transmission noise. We combine the 
scheme presented in [11] with our chaotic enciphering 
systems and obtain the design of a secure spread spectrum 
communication system that can operate reliably even in the 

presence of a strongly noisy background. The designed 
robust communication systems offer high security, 
automatic and robust synchronization between the 
transmitting and receiving spreading sequences and 
tolerance to intense noise levels. In contrast to the 
traditional spread spectrum techniques, the security of the 
system arises mainly from the inability to synchronize 
without the possesion of the encryption key and secondly 
from the spreading of the spectrum. The chaotic 
enciphering systems can be implemented efficiently by 
exploring the parallelism of the computational operations 
with dedicated array hardware [13]. 

The paper proceeds by presenting the chaotic 
encryption/decryption method in Section 2. Section 3 deals 
with the transmission of digital information over channels 
with strong noise background. Section 4 discusses the 
complexity of the encryption method, while in section 5 the 
conclusions are presented along with directions for future 
work. 

2 The Chaotic Enciphering System 

The transmitter encodes the information by implementing 
the following system of difference equations: 

xl(n+l) = f](xl(n)) + zs(n) 
K 

x2 (n + 1) = f2 (*3 ("))+£ a2kxk (") + c2*2 (") sin(rf2*3 («)) 
*=i 

A: 
xi(n + l) = fi(xl+](n)) + ai2x2(n) +    Y,aikxk(") 0) 

k=i,k*2 

+ c,;xi+] (n) sm(djXM («)),   i = 3,...,K-\ 

xK(n+]) = a KK*/; («) +a K2x2 (") + CKX2 (") sin(dKx2 (n)) 

where aljy c„ d, , i=2,....K,j = \,...,K are constants, s(n) is 

the information signal and x2(n) the drive signal, i.e. the 
signal which is transmitted in order to force the 
synchronization. 

The values of these parameters together with the values of 
the parameters of the functions fh i = \,...,K-\ form the 
encryption key. The equation for x\(n) adds the signal 
s(n) to the chaotically evolving variable xj(n). 
It is important to stress beforehand that in contrast to the 

traditional encryption methods the information signal is not 
transmitted in an encrypted form; rather it is reconstructed 
by the variables of the proper chaotic system at the 
receiver. The above statement formally means that we 
cannot express the encoded information C as a function of 
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the encryption key K and the information I, i.e. 
C = F(K,I). Given an information vector I and an 
encryption key K, the ciphertext C can take an infinity of 
possible values (due to the non-periodicity of the chaotic 
motion). 

The parameters of the piecewise-linear functions /, are 
evaluated modulo Rt i.e. xj(n) = xj(n) (mod Rj) + Lh 

where /?, = Ut -1, and [/,/,£/;] is the domain of definition 
of the function /). The effect of this rule is to limit the 
evolution of each function within its domain. The detailed 
expressions of the piecewise linear canonical form and the 
analysis of the chaotic dynamics of the system (1) is 
presented in [12,13]. 

The receiver extracts the information (information 
reconstruction) by implementing the following system 
which is very similar to (1): 

x'K(n + 1) = aICKx'l:(n) + aK1x1(n) + c^x2(n)sm(dKx'2(n)) 

x'(n + 1) = MxU,(n)) + aax'2(n) +    X"*XK") 

■+c,x;+1(»)sin(</jjr;+,(n)),    i = '^-\,...^ (2) 
(jrj(/i + 1) - /2(*;(n)) - i>2Jx;(«) - c,x;(n)sin(rf2x;(/j))) 

x[(n) = — 

r(n) = (jE,'(n + l)-/,(*,'(«)))/£ 

where x'2(n) = x2(n) (since x2(n) is the transmitted 

signal that also functions as the drive [6] signal) and r(ri) 
is the recovered information signal. 

Convergence Conditions We prove that the information 
signal can be perfectly recovered, when a set of 
convergence conditions on the parameters is satisfied. Let 
x'2(n) = x2(n) be the common drive signal. We subtract 
the equations for the Kth variable (xK and x'K) of the 
systems (1) and (2) to get: 
AxK(n +1) = (a KK + cK sm(dKx2(n)))■ &xK(n). Clearly, 
a sufficient condition for x'K -*■ xK is:    (|a %x M CKI) < 1 • 

Similarly, the conditions (|amm|+|cj)<l for 
m=K-l,K-2,...,3 can be imposed as sufficient 
conditions for the convergence of variables 
xK-\,xK_2,...,x3 respectively. Finally, by the equations 
for the drive variable x2(ri) of both systems (1) and (2) we 
find: x[(n) -> xx(n), n -> <x>. Now, it is straightforward 
to conclude that r(n)-±s(n). Thus, the information is 
reconstructed at the receiver. 

Multiple time-lags The recurrent dependence can be 
easily extended to M>1 time lags. By taking (again) the 
differences between (1) and (2) we derive the recurrence 

Axi(n + l)=^aiimAxi(n-m),   i = 3,...,K (3) 

This recurrence is stable if and only if all the roots 
p,-, j = 0,... M - 1      of     its     characteristic     equation 

p'H-1_Ya,Vmp"-'"=0,  have  modulus  less  than  unity. 

Practically, we design stable (i.e. able to synchronize) 
systems by selecting M values p,, i = 0,...,Af-l, such that 
|p,|<l. Then we determine the coefficients of the 
characteristic  polynomial   with   roots   p(-, i' = 0,...,M-l. 

These coefficients yield the appropriate values for the 
parameters aikm, m = 0,...,A/-l. 

3 Noise Tolerance 

The presented chaotic encryption systems offer great 
security levels (encryption complexity is discussed m 
Section 4). They are, however, very sensitive to distortion 
by transmission noise. Some schemes for noise robust 
chaotic modulation have been proposed; notably by a 
method presented in [11]. These schemes allow reliable 
transmission of information over channels that exhibit large 
noise levels (even with negative Signal to Noise Ratio). 
However, they require accurate synchronization between 
the spreading sequences and, in case synchronization is 
lost (even temporarily), the communication fails. We apply 
the presented chaotic enciphering maps - of the type of 
equation (1) - in order to automatically keep mtact the 
synchronization between the chaotic spreading sequences 
of the receiver and the transmitter. Moreover, the presented 
design requires the possession of the encryption key for the 
message retrieval. The extremely large parameter spaces 
that discrete chaotic enciphering systems exhibit also 
guarantees high level of security. 

The proposed method operates as follows. The transmitter 
and the receiver implement the chaotic encryption systems 
(1) and (2) respectively. The variable x2(n) is used as the 
drive signal which synchronizes the receiving system. The 
spreading of the information signal for noise tolerance is 
achieved by using any of the chaotically evolving variables, 
e.g. xt(n). The two systems (labeled by Sj and S2 in 
Figure 1) can synchronize and thus generate the same 
chaotic sequence *,(«) (i.e x,'(«)-> *,(«) where x[(ri) 
is the reconstructed signal xx (ri) at the receiver). 

We should note here that the synchronization information 
(i.e. the drive signal) is transmitted reliably as the 
information signal itself. In order to achieve this objective 
we use multiple (instead of one) chaotic time-series 
generators for information spreading. These generators are 
controlled by the main chaotic systems that are capable of 
achieving synchronization (i.e. S\ and S2). Figure 1 
illustrates the cluster of K systems used for chaotic 
spreading (spreading systems) and the main chaotic 
systems (synchronizing or entraining systems). The design 
operates as follows: 

Each sample xx (n) is fed into each of the K spreading 
chaotic time series generators. These generators in turn 
produce K ■ Nw samples (the parameter Nw controls the 
window size of the evolution of the spreading systems after 
the resetting with the value xx(n) from the entraining 
system). The generator n, n = 0,...,K-\, provides to the 
vector w the values: 

w(nNw+j),   j = 0,...,Nw-\, 
where   w(nNw) = X](n),  for each   n. These values (i.e. 

w(nNw + j), j = 1,..., N w -1) are generated by the evolution 
of the «th chaotic system initialized to xx (n). We refer to 
these generators as the spreading systems. 

We use many spreading systems instead of one since the 
exponential divergence of nearby trajectories that the 
chaotic systems exhibit prevents the use of large parameter 
Nw (since the very small differences between the 
entraining systems are enlarged in a few iterations). 
Moreover,   in   order  to  keep   intact  the   pseudo-noise 
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properties of the spreading sequence we require for the 
evolution of the spreading systems (in addition to the 
entraining) to be chaotic. 

Following the approach of [11] each bit s{k) e {-1,+1} is 
encoded by using Ns elements of the spreading chaotic 
time series w(n), n = (k - l)Ns + 1,..., kNs . The parameter 
Ns, called the spreading parameter, controls the spreading 
of the information over the transmitted signal. When the 
transmitted bit is s(k) = +\ we transmit unaltered the Ns 

values, i.e. w'(n) = w(n), n = (k- \)NS +1, ...,kNs, 
while if s(k)--\ we transmit w'(n) = -H<«), 

n = (k-l)Ns + l,...,kNs, i.e. the negatives of the 
computed values. The drive signal x2 is converted to a bit 
stream x2A and it is transmitted with the same method. The 
receiver accumulates the reconstructed synchronization bit 
stream x'u in order to build the reconstructed drive signal 
x2. These conversions can be accomplished easily with the 
use of UARTs (Universal Asynchronous Receiver 
Transmitter) chips. 

In order to proceed with an analysis of the tolerance to 
noise of this transmission scheme we denote the TV- 
dimensional vectors w and N  as: 

w(k) = [w((k - l)Ns +1),..., w(kNs)], 

Nv(*) = [v((*-IVV, + l),...,v(W,)] 
where v(i')  denotes the noise component added to the 

value w(i). 
Since noise affects the quality of synchronization, the 

reconstructed signal wr can be expressed as: 
wr=w + Aw, where Aw is the deviation from the 
synchronization state. The correlation sum s„(k) can be 
expanded by introducing the inner products: 

kNs 

SN(k)=      2>'00 -wr(ij) = 
n=(k-l)N,+l 

kNs 

=       J(j(i)-«(«) + ^(B))-W/i) + Aii<B))     (4) 
n={k-\)N,+\ 

= S(k)(w(k), w(*)) + (Nv (k), w(jfc)) 

+ s(k)(yv(k), Aw(*)) + (Nv (A), Aw(k)) 

As the spreading parameter increases, the probability that 
the noise vector Nv(i) has strong components in the 
direction of w(k) reduces rapidly. Thus 
|(Nv(A),w(A))|«(w(*),w(*))     for large     spreading 

parameter. On the other hand, the inner product 

(Nv(i),w(*)), for large Signal to Noise Ratio (SNR), 

takes much smaller values than <w(k),w(k)>, but for 
small SNR it is necessary to use large spreading parameters 
in order to obtain reliable transmission. The terms 

(Nv(k),Aw(k)), (v/(k),A\v(k)} obey similar rules, since 

both Nv(k) and Aw(£) are random vectors. These 
theroretical conclusions are supported by the simulation 
results of Figure 2. 

Therefore the correlation sum 5,V(A) in (4), for 
sufficiently large spreading parameter, can be approximated 
by: 

SN(k)*s(k)(w(k)Mk)) 
Since (w(k),v/(k))>0, the sign of SN(k)  determines 

the transmitted information bit. 

entraining   systerp 

♦ K-l 

I I 
spreading systems 

-<J> 
W = [W]W2] 

'   w,x2,w2s 

v J, 

,    .     w = w + N., 

entraining system      I,    •       I 
s,  rHi ■    ' 

U^ 
=KjA 

I I 
spreading systems 

Figure 1       The architecture of the extended   secure 
communication system 
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3   15 

Signal to Noise Ratio (dB) 
Figure 2   The probability of transmission error (vertical 
axis) as a function of the Signal to Noise Ratio (horizontal 
axis, dB units) for some values of the spreading parameter. 
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4 Complexity of the Enciphering Systems 

We have already presented the detailed analysis of the 
fifth-order chaotic system in [13]. Therein we prove that 
the  size  of the  parameter  space  is  of the   order 
Ks ■ 10327 where Ks is a large constant. By increasing 
the complexity of the piecewise linear functions, we can 
increase even further this huge number at the cost of 
more complex implementation. Generally, for a [KM] 
chaotic enciphering system (i.e. K variables and M 
lags), the parameter space size grows approximately 
with an expression, derived analytically in [13]: 

O Rnv 
rtc ' -y )=f

vA£yA/V 

where ^,5^, are the average range and sensitivity of 
parameters,   Nf   is the number of piecewise  linear 
functions,   Nbi   the  number  of breakpoints  of the 
piecewise  linear  function   ft,   Dj,   the  domain  of References 
definition of ft, and A£,,A/; are the sensitivities over 
the breakpoint position and breakpoint value 
respectively. Some typical values for these parameters 
are: 

AEj * &ft * 10^,5^ * 33-10-*,^ - 2 
Nb: =20,Nf=K-\ = 4,M = 3,Dfi =100 

With the above values the parameter space size 
becomes of the order 0( 1.1 • 10250)! 

It is straightforward to conclude that the parameter space 
size grows doubly exponentially both with the order [K,M] 
of the chaotic system and exponentially with the 
complexity of the piecewise linear functions (note that the 
exponentation with Nb, is multiplied Nj times). 

This double exponential complexity should be contrasted 
with the exponential ones for the more common encryption 
algorithms in use. Specifically, 256 operations required to 
break the DES (Data Encryption Standard) algorithm and 
2m operations for the newer IDEA block cipher system 
[8]. 

The Chaotic Enciphering Systems can be implemented 
easily with simple hardware (e.g. current mode techniques 
[4]). The computational complexity of the presented coding 
algorithms is limited to a few additions and multiplications. 
Specifically, in order to evaluate a piecewise linear function 
we have to evaluate only «+1 multiplications and 2-n + 2 
additions (where n is the number of breakpoints of these 
functions). Furthermore, with the exploitation of parallel 
hardware, log2«+ 2 levels of gate delays are sufficient. 
Thus besides the flexibility, scalability (with the arbitrary 
choice of breakpoints, domains and ranges) and simplicity 
that the piecewise-linear design offers, it also allows faster 
enciphering/deciphering rates compared with the selection 
of more complex alternatives (e.g. DES [7], IDEA [8]). 

and are amenable for parallel systolic array 
implementation. These chaotic systems exhibit an immense 
sensitivity to the parameter configuration. This makes them 
ideal for application to secure communication systems over 
reliable computer digital networks. In addition we have 
presented secure transmission schemes (also based on 
chaotic difference systems) that are capable of transmitting 
reliably digital information over channels with very low 
(even negative) Signal to Noise Ratio. 

Although the presented cryptosystems provide an 
effective method for data encryption, they are inefficient 
for solving the problem of key management. In contrast, 
public key cryptosystems, such as RSA [7], support an 
effective scheme for key management. This suggests the 
use of a hybrid approach exploiting the best of both 
cryptosystems as the basis for the practical design of a 
secure communication system. For example, the RSA 
algorithm may be used for authentication, and the chaotic 
difference systems for the bulk encryption at very fast rates. 
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Abstract 

The Propagator method (PM), as well as SWEDE (sub- 
space method without eigendecomposition) [5] and BEWE 
(bearing estimation without eigendecomposition) [4], [8], 
belong to a class of subspace-based methods for direction- 
of-arrival (DOA) estimation which do not require the eigen- 
decomposition of the sample covariance matrix of the re- 
ceived signals and which only use linear operations on the 
covariance matrix of the received data. These methods can 
therefore be implemented with a reduced complexity com- 
pared to MUSIC. In [1], [2], a method was proposed for 
estimating the power of sensor noise and the DO A using the 
PM. The goal of the present paper is to statistically analyse 
these noise power and DO A estimates. 

1   Introduction 

Most of the subspace-based methods for DOA estima- 
tion require the eigendecomposition of the sample covari- 
ance matrix or the singular value decomposition of the data 
matrix to estimate the signal and/or noise subspaces. Unfor- 
tunately, in applications like high resolution passive sonar 
systems where the number of sensors is large, the use of 
such methods is unattractive owing to their intensive com- 
putational implementation. The PM as well as SWEDE and 
BEWE, belong to a class of subspace-based methods for 
DOA estimation which do not need any eigendecomposition 
and which only use linear operations on the covariance ma- 
trix of the sensor outputs. These methods then have a clear 
potential for real-time applications. The PM uses a linear 
operator referred to as the "Propagator" which only depends 
on the steering vectors and which can be easily extracted 
from the data by a least square process. A non-asymptotical 
(i.e. finite amount of snapshots) performance analysis of 
the PM has been reported in [3]. It was found that the PM 
performs like MUSIC at high and moderate SNR. In [1], 
[2], a joint estimation of the noise power and the Propagator 
from the data was proposed. The goal of the present paper 

is to analyse the asymptotical (large number of snapshots) 
performance of the PM for estimating the noise power and 
the DO As. In section 2 the PM proposed in [1], [2] for the 
joint estimation of the noise power and the DO As is briefly 
recalled. Section 3 is devoted to the asymptotical statistical 
analysis of the PM and expressions for the variance of the 
noise power and DOA estimates are established. Section 4 
provides numerical examples exhibiting a comparison of the 
performance of the PM with BEWE, SWEDE and MUSIC. 
Section 5 concludes the paper. 

2   The Propagator Method 

Consider an array of M sensors on which K incident nar- 
rowband point sources impinge (M > K). The observation 
vector x of the sensor outputs, can be written: 

a; = As + n (1) 

where x e CM x 1 is the noisy data vector, s eCKxl 

is the vector of the signal amplitudes, n 6 CM x * is an 
additive noise, and A = [a(0x),..., a(0K)] e CM x K is 
the matrix of the steering vectors a(0.) e CM x l and #,-, 
i = 1,..., K is the direction of arrival of source i, mesured 
relative to the normal of the array. Under the assumption that 
the noise is spatially and temporally white, the covariance 
matrix of x is given by 

R = E[xxH] = ASAH + <T
2
IM (2) 

where S = E[ssH] is the signal covariance matrix of 
dimension K x K assumed to be nonsingular. 

The definition of the Propagator relies on the partition of 
the steering matrix according to 

iff [A?    Af] (3) 

Under the assumption that Ax is nonsingular, the Propa- 
gator is the unique linear operator P £ CK x (M~K\equiv- 
alently defined by: 

>H P"A1 =A2,   or   A H P 
-I = AHQ 0      (4) 
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It follows that matrix Q spans the nullspace of AH. This 
matrix can be estimated from the sample covariance matrix: 

,     N 

iu-ijx*)^) (5) 
t=i 

where N is the number of snapshots. In [1], [2], a method 
was proposed for estimating both the noise power a2 and the 
Propagator P from the sample covariance matrix (5). This 
relies on the following. Consider the modified covariance 
matrix 

R-8IM = [G(8),H(8)] (6) 

where 8 is positive and G(8) and H{8) are matrices of 
dimension M x K and M x (M - K), respectively. The 
following proposition has been proved in [1]. 

Proposition: Assuming that the (M - K) x K matrix 
A2 in (3) is of rank K, (P = P, 8 = a2) is the unique 
solution of 

G{8) = H(8)P 

if, and only if, M- K > K. 

Consider now the following partition 

(7) 

K M - K 

Gi Hi 
G2 H2 J 

According to (2), matrices G2 and H2 satisfy: 

G2 = A2SA? 
H2 = A2SA? + <T

2
IM-K 

It can easily be seen that 
2     tr{H2n} 

a  ~    tr{H} 

(8) 

(9) 

(10) 

where II = IM-K - G2G\ = IM-K - A2A\ and 
where tr{.} denotes the trace operator and (.)t istheMoore- 
Penrose pseudo-inverse. Then, a possible estimate of a2 can 
be obtained by (see also [2]) 

&2 = 
tr{H2n} 

tr{n} 
(11) 

where H2 and ft are estimates of H2 and II, respec- 
tively, and where 

N N 

**2 = ^YJX2{t)x»{t),      G2 = 1 J2x2(t)x» (t) 
t=l t=l 

(12) 
K M - K 

where    xH =   [xf     xf ] 

3   Statistical Analysis 

According to the central limit theorem, it can be checked 

that R - R = O (^=) which means that VN{R - R) 
is bounded in probability when N -> oo. It then follows 
from (5) and (12) that H2 - H2 = 0 (^-) and that 

G2-G2-0 (-j-) ■ With a first order expansion of H2 

and G2 we easily derive [9] that the estimator (11) provides a 
consistent estimate a2 of a2. Similarly, a consistent estimate 
P of P can be obtained from R - a1 IM according to (7) 
as 

P = G*H (13) 

We now derive large sample variance expressions for the 
noise power estimate (11) and the DOA estimates which 
minimize 

f(e) = aff(0)nsa(0) 

it. 

(14) 

where II ö = QQ  is the orthogonal projector onto the 
noise subspace. 

Theorem 1: The large sample (for N » 1) variance 
of fr2 (11), is given by 

E [(a2 - a2)2} - 

Proof: See the Appendix. 

N{M- 2K) 
(15) 

Now from a first-order approximation of the first deriva- 
tive f'(0i) of f{0) around the DOA estimates 0,-, and after 
a first order expansion of II ^ it can be shown that 

H        "l — 
Re{dfnqa,} 

dfliQdi 
(16) 

,       H       ^      1  -XH       , da(0i) 
where n« ~ Q(QHQ)~1Q  , d{ = -±-+, 

ai = a(0{) and where 

Q 
P 
0 

P = {GHG)-1GH[H-GP]  (17) 

In expressions (17), Q and P are the estimation error 
matrices of Q and P, respectively. We now state and prove 
the following result. 

Theorem 2: Let {0,} be the DO As estimated by the PM. 
The asymptotical variance (for N ->■ oo) of 0t- is given by 

E{(0i-0i)2} = 
2JV7i 

(S-% + a2(S-\AHA)-1S-1)ii 

(18) 
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where (.),-,- denotes the i-element in the diagonal of the 
bracketed matrix and 7J = cffnQe£,. Note that this expres- 
sion is identical to that obtained for MUSIC [6]. 

Proof: See the Appendix. 

4 Simulations 

In this section we present some numerical examples to 
lend support to the theoretical results here obtained. In 
all the examples, we consider two uncorrelated sources of 
equal power impinging on a uniform linear array of equisp- 
aced sensors. 
Example 1: In this example we illustrate the performance of 
the proposed method for estimating the noise power. Con- 
sider #i = 0° and 02 = 20". First, the number of sensors M 
varies from 5 to 40 with SNR=0 dB. Next, the SNR varies 
from -2 to 12 dB with M = 20. In all the cases TV = 400 
snapshots were used for each of the 100 independent tri- 
als. Figure 1 displays the empirical root mean square errors 
(RMSE) and the theoretical standard deviations calculated 
using expressions (11) and (15), respectively. In the same 
figure, the performance of the proposed noise power esti- 
mator is compared with another 'linear method' (LM) and 
a so-called 'eigenvalue method' (EM) proposed and statis- 
tically analysed in [7]. It can be seen that the RMSE of 
the proposed noise power estimator and that of the EM are 
comparable for large values of M. Note that, unlike the 
proposed method, the variance of the LM does not decrease 
as M increases. 
Example 2: We compare in this example the performance of 
the PM with SWEDE (G), BEWE and MUSIC for estimat- 
ing the DOAs: 0X = 5° and 62 = 15° from 50 snapshots. 
First, the number of sensors M varies from 10 to 45 with 
SNR=0 dB and then, the SNR varies from -4 to 10 dB with 
M = 20. In both cases the empirical RMSE is based on 
200 independent trials. The empirical RMSE and the theo- 
retical st. dev. of the estimates of the source 6\ = 5° are 
exhibited in Figure 2. This figure verifies our theoretical 
result, i.e., for a spatially and temporally white noise model, 
the PM variance is equal to that of MUSIC. Consequently, 
this version of the PM performs better than SWEDE (G) and 
BEWE. 

5 Concluding remarks 

The purpose of this work was to statistically analyse the 
performance of the PM for DOA estimation when the noise 
power is estimated and removed from the sample covariance 
matrix of the sensor outputs according to the method pro- 
posed in [1], [2]. It has been shown that this version of the 
PM asymptotically performs like MUSIC in spatially white 

noise scenarios. While the eigendecomposition of a M x M 
matrix requires 0(M3) operations, the implementation of 
the PM is of order 0(M2) which is more interesting from 
the computational point of view. 

Appendix 

Proof of theorem 1. First-order approximations for H2 n 
and II which appear in (11) and the use of IIG2 = 0, allow 
us to write 

*» = *{=±p} (A.» 
where 

a = ü{H2n - H2G\
H
G"TI - H2TIG2G\}, 

ß = ti{G\HG2 II+ TIG2G\},   and   r; = tr{II} 
(A.2) 

By noting that H2TL = <r2n and G| II = UG\
H
 = 0 

and by substituting (12) into (A.2) it can easily be verified 
that ß = 0 and 

ify^OMaW,      M 
t=\ 

0     0 
o  n 

After a straightforward derivation we obtain 

E[(cr2 - a2)2} = E 
a" 

IV 

(A3) 

(A.4) 

Using the formula for the expectation of four random 
matrices proposed in [10], we obtain: 

E[a2] = tr{MR}2 + -^tt{(MR)2} (A.5) 

It follows from expressions (A.3), (8), and (9) that 

Finally, note that tr{n} = (M - K) - tr{A2A\). 

Under the assumptions that A2A\ has full rank, equal to 
K, and that M - K > K, it can easily be shown that 

A2A\ has M - IK eigenvalues which are equal to 0 and 
that the K remaining eigenvalues are equal to 1. Hence 
tr{II} = M-2Ä". 

Proof of theorem 2. Note from (16) that 

E[0i - 6i)2] 
_g[(Re{p})2] 

It 
(A.7) 

i# 
where p = —afP   ai|t- with oi|t- being the i-column 

of Ai and a, = QTrf,. Then, it follows from (5) and (6) 
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Figure 1. Empirical RMSE and theoretical st. dev. of the 
noise power estimates versus (a) Number of sensors, (b) 
SNR. The proposed method (*)-{- -), the LM (x)-(-.). *"* 
the EM (oM-), (empirical RMSE)-(theoretical st. dev.). 

10" 

UJ10" 

15 20 25 30 35 
(a) Number of sensors (M) 

i~""■-•::.1-- 

 A ■ --.3--. 

2 4 
(b) SNR [dB] 

Figure 2. Empirical RMSE and theoretical st. dev. of the 
estimate of 6\ = 5° versus (a) Number of sensors, (b) 
SNR. The PM (*)-(-), SWEDE (G) (x)-(-.), BEWE (+)-(- -), and 
MUSIC (o)-(-), (empirical RMSE)-(theoretical st. dev.). 

that G=jf ET=i *(0*f (0. B = jf E?=i *(0*f (0 
and p becomes 

P4E^W
ä
^      

(A-8) 
t=i 

where matrix M = G{GHG)-1aliiaf\soi dimension 
M x (M - #)• By inserting (A.8) in (A.7), using once 
again the result of [10] and checking that QM R = 0, 
MQHR = 0, we find 

£[(!,. - Oif] = ^-2 [tr{MQHflQM*fl>]    (A.9) 

It can easily be verified that 

ü{MQHRQMHR} = <TH [A-
1
 +<T25-1(AHA)-15- 

(A.10) 
Hence (18). 
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Abstract 
In the performance evaluation of sources localisation 

methods, resolution is not the only criterion. 
Degradations may occur, due to parasite peaks in the 
spectrum, -which may be connected to high sidelobes in 
the beam pattern or to ambiguities themselves. The aim 
of this paper is to study the presence of ambiguities in an 
array of given planar geometry. The ambiguity problem 
for an arbitrary array is examined and ambiguous 
situations are identified. We propose a general 
framework for the analysis and so we obtain a 
generalisation of results given in recent publications [2], 
[3] for rank one and two ambiguities. For rank k>3 
ambiguities, results focus on linear arrays, for which we 
derive original and synthetic results. Some interesting 
results are driven for non uniform linear arrays, 
including sparse linear arrays [4]. 

1. Introduction 

In the performance evaluation of sources localisation 
methods, resolution is not the only criterion. 
Degradations may occur, due to parasite peaks in the 
spectrum, which may be connected to high sidelobes in 
the beam pattern (sometime referred as quasi- 
ambiguities) or to ambiguities themselves. These 
ambiguities arise when the array manifold intersects itself 
or when a manifold vector can be written as a linear 
combination of two or more manifold vectors [1]. The 
aim of this paper is to study the presence of ambiguities 
in array geometry. 

The ambiguity problem for an arbitrary array will be 
examined and ambiguous situations will be identified. We 
propose a general framework for the analysis and so we 
obtain a generalisation of results given in recent 
publications [2], [3]. 

In section 2 notations and definitions of ambiguity are 
introduced. In section 3 a study of rank one ambiguous 

arrays is presented. Section 4 depicts the main results 
obtained for rank two ambiguous arrays. This study is 
made for arrays of arbitrary geometry. In section 5, the 
study is restricted to linear arrays for rank three 
ambiguities. In section 6 we derive original and synthetic 
results for rank k>3 ambiguities restricted to linear 
arrays. Some interesting conclusion may be driven for 
non uniform linear arrays, including sparse linear arrays 
[4]. Section 7 includes some conclusions. 

2. Problem formulation and definitions 

Consider an array with M sensors receiving N 
narrowband signals impinging on the array from N 
different locations 9 ,...,6^. Note 

A{el,...,6N) = [a{ex),...,«(%)],    the    matrix    with 
columns the sources steering vectors called also the array 
manifold vectors. 

The simultaneous localisation of N sources is only 
possible if the array manifold vectors ä(&i),...,ä(0N) 
are linearly independent. 
An array is said rank k ambiguous for a set of k+\ 
directions of arrival ^,...,6^+! if matrix A is singular 

but rank k. This can be written: 

3a,*0,...,ai+, *0 sothat alä(0l)+...+ak+]ä(0k+l) = Ö 

{ah...,ak+i)eCk+1 (1) 

3. Rank one ambiguities (for general arrays) 

This case occurs when one array manifold vector 
ä(öj) can be written as a complex scalar multiple of 

another manifold vector a(#2) where 0\*02. 

3{ax*0,a2*0)eC2, sothata1ä(^) + a2ä(ö2) = ö 

(2) 
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In such case, the array cannot make the difference 
between two waves with bearings 0\ or 02. 
The wavefronts are supposed straight-line and on the 
same plane as the sensors. k\ awik2 being the 
ambiguous wave vectors for the array under 
consideration, the phase delay of signal n from sensor m 
to sensor one is : 

Pmn ~*n-rm 

th where fm denotes the position of the m sensor in half 
wavelength. Equation (2) is then equivalent to the 
condition : 

ar^**1 + a2€^ = 0 <=> 3nm, <pmX = (pm2 +2nmK 
foxm = \,...,M 

(4) 

The ambiguity condition can be written : 

3Pm, integer {kx-k2)rm=2pmx (5) 

with 1*1 = 2 njk where X stands for the wavelength. It 

can be given the following geometrical interpretation : 

"A 
^> 
/> V2 

ZL 
■> 

Fig. 1 : Stars represent some possible sensor positions 
for a rank one ambiguous array. The horizontal axis is 
defined by the vectors ftj andk2. 

The consequence is that, for arrays of arbitrary 
geometry, rank 1 ambiguities can arise if all of its sensors 
are located on a set of parallel lines separated by a 
distance / > A/2. In the case of a linear array this result 
refunds the classical Shannon condition. In the general 
case, it establishes conditions for ambiguity and then can 
give the ambiguous directions [5]. 

4. Rank two ambiguities (For general planar 
arrays) 

This situation occurs when the array manifold line 
intersects a plane in more than two points. In such case, 

one manifold vector can be written as a linear 
combination of two others manifold vectors, which may 
be written: 

3{a\,a2,a3)eC3 axa{0x) + a2a(02) + a3a(03) = 0 

(«1=1) (6) 

(3) with   S(0„) = ,-w„ and   <pmn=kn.fm. 

Sensor 1 is taken as a reference i\ = 0. Therefore for 

sensor 1, <pn = <pl2 = <P\3=°- 
The ambiguity condition (6) can thus be written: 

1 + a2 + a-$ = 0 (7) 

This relation can be interpreted geometrically in the 
complex plan as a triangle which sides are the vectors 
associated with the complex numbers 1, a2, «3. 

Fig. 2 : Interpretation of (7) in the complex plan. 

For sensor m ambiguity condition (6) becomes: 

In the complex plan the product by ei<p is a rotation. 
Thus the sides 7,a2>«3 turn respectively from angles 
<pm\,<pm2,<pm3 and must reconstitute a triangle 
according to relation (8). The length of the sides of the 
triangle must be the same, therefore the triangles are 
deducted one from an other by an isometry. This isometry 
is a rotation or a rotation + a symmetry. Thus the 
triangles corresponding to the different values of m 
belong to two sub-families : the rotation family and the 
rotation + symmetry family. 

The following results can then be derived [5] : 

1) Any rank two ambiguous array may be 

splitten in two subarrays al{d) and a2(d), where a (d) 

and a2 (9) are rank one ambiguous, for three directions 

0l,02 and<% i.e.: a(0l)=Si{d2)=a'{&3). 
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2) As a consequence, the sensors for each 
subarray are located at the nodes of a two dimensional 
lattice for arbitrary 0U02 andö3. The figure 3 illustrate 
one of these lattices. 

Fig. 3 : Stars represent some possible sensor positions 
for ambiguous subarrays (for directions 01,02 andö3). 

3) The second lattice corresponding to the 
second subarray is related by an arbitrary translation. 
This is a simpler demonstration and a generalisation of 
the theorem 1 given by Lo and Marple in reference [2]. 

5. Rank three ambiguities (For linear arrays) 

By generalisation of the previous results, we infer that 
the sensors of a linear array can be splitten in three 
subarrays. In each subarray sensors are on a grid of 
spacing denoted a. The three grids are translated one 
from each other. For the first grid : 

fm=aNm* (9) 

where v is the unitary vector of the linear array. 
-    1u 

Let us denote * = —u. If a is the greater common 
X 

divisor of the inter sensor distances in a subarray, the 
ambiguity condition can be written [5]: 

3ntj integer, so that vfo - «,) = «,, -       (10) 
a 

Thus, all the sets of vectors «,,...,M4 which can be 
projected on the grid of step kja are ambiguous. By 
arbitrary translation of this grid, an infinity of ambiguous 
direction sets can be obtained. 

/TTH4 V3    / 
Ü2          j   \ 

rim01 
A -J* 

\-\     \ 
Xla 

1 * 

v *> 

Fig. 4 : Rank three ambiguity for a linear array. 

We refund here the notion of ambiguous generator set 
introduced by Proukakis and Manikas [3]. Their 
ambiguous generator set is the set of parallel lines 
crossing axis defined by v in the point A : (1,0). 

It appears clearly on this figure that the condition for 
no rank three ambiguities is : 3(A/a) > 2. 

Example of Proukakis and Manikas [3] 

-2.3 -1.1 1.1 2.3 
Fig 5 : Sensor positions on the array are in half 
wavelength. 

In their example, three sources are located in : 0°, 
55.582° and 82.505°. The considered array is a sparse 
linear array. 

Two parasite peaks appear in the spectrum of MUSIC 
located in 107.719° and 137.657°. Because the array is 
ambiguous the MUSIC algorithm has provided five 
directions rather than three. 

Fig. 6 : MUSIC spectrum obtained in Proukakis 
example. 

This phenomena was not clearly explained. Application 
of the proposed study allows us to predict these 
ambiguous directions of arrival. By application of results 
of section 4, it is easy to see that this ambiguity is not a 
rank two ambiguity. Three subarrays can be find which 
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permit us to determine the ambiguous directions of 
arrival. The figure 7 depicts the splitting into subarrays 
which explain figure 6. 

-2.3 -1.1 1.1 

<- 
a = 4.6 

2.3 

-2.3 
1   Subarray 2.3 

-1.1 
2    Subarray 

3   Subarray j j 

Fig. 7 : Splitting into subarrays. 

In this example we take a = 4.6, which is the array 
X      1 

aperture in half wavelength. Therefore — = ——. The 
a     1.5 

second (respectively the third) subarray corresponds to 
the unique sensor number two (res. number three). The 
ambiguous directions can all be predicted with the 
following construction : 

107.719° 
82.505° 

137.657° 

Fig. 8 : Graphic determination of the two rank three 
ambiguous directions for the linear array of Proukakis 
example. 

There are two rank three ambiguity. The predicted 
directions of arrivals are exactly those obtained in the 
MUSIC spectrum. 

6. Ambiguities of linear arrays (any rank) 

By generalisation of the rank two case, we infer the 
following result : a rank k ambiguous general array can 
be splitten into k rank one ambiguous subarrays, for 
(jt + l) simultaneous directions. We will now focus on 

linear arrays for which we can obtain a general result. 
A linear array is rank k ambiguous if it can be 

decomposed in k subarrays (which may be reduced to one 
sensor) with spacing a>kA/2. The corresponding sets of 

ambiguous directions «i,H2,—,"jt+l may be obtained by 

the following geometrical construction (given here for 
k = 4). 

Antenna axis 

Fig. 9 : Determination of the ambiguous directions of 
arrival for a linear array. 

The projections of vectors M, on the antenna direction 
must be on a grid with spacing A/a. Every translated grid 

provides also ambiguous directions. 

7. Conclusion 

We propose a general framework to study ambiguities 
for general arrays and give some properties of ambiguous 
array geometry. This study generalises results previously 
obtained in the literature. 
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Abstract 

The problem of estimating or tracking the time-varying 
principal components of a data covariance is considered. 
We assert that the incorporation of some notion of sub- 
space motion or dynamics will make possible the applica- 
tion of subspace-based direction-finding or beamforming 
algorithms in scenarios which otherwise would be consid- 
ered data-starved. An ordinary differential equation for 
simple uniform motion in the space of projection matrices 
is developed. This dynamical model is then used along 
with the artificial assumption of subspace sphericalization 
in a Gaussian data model, from which the cost function for 
maximum-likelihood estimation of subspace motion 
parameters is derived. Approaches to computing these 
subspace parameters in the one-dimensional case are pro- 
posed. 

1. Introduction 

For many array processing problems of interest, in 
both military applications and in commercial applications 
such as wireless mobile communications, one wishes to 
perform subspace-based high-resolution direction-finding 
and beamforming in an time-varying environment. Much 
has been reported in the past years in the subspace track- 
ing problem, that of adaptively determining the principal 
components or subspace of a data covariance which is 
evolving in time. The state-of-the-art up to 1991 is 
described in an excellent survey paper by Comon and 
Golub [1], and several other promising algorithms have 
been proposed since then, e.g. [2-4]. 

In all of the algorithms reported in the literature, 
only the simplest of models is used to describe the motion 
or rotation of the subspace under consideration. This 
model is in some sense lst-order Markov, by which we 
mean that one's best estimate of the subspace several time 
units into the future is simply the current value of the 

subspace. In these algorithms, one does not take into 
account any predictive value that the observed motion of 
the estimated subspace may have over time. 

This lack of a predictive dynamic model for the sub- 
space comes primarily from the fact that a subspace cannot 
easily be equated with a vector quantity moving about in a 
finite-dimensional vector space, described by a conven- 
tional state-space model. If this were the case, then a 
straightforward application of Kaiman filtering would be 
an obvious approach to the problem. What we seek is a 
model which naturally describes the evolution of a M- 
dimensional subspace of €N, which is not an element of a 
Euclidean space. Given such a model, we could then con- 
sider how to use the predictive capability of such a model 
in a subspace tracker. 

Our study of the subspace tracking problem involves 
two parts: a dynamical model for time-varying subspaces, 
and a data model which relates the observations to the 
desired underlying parameters. These topics are addressed 
in Sections 2 and 3, respectively. The general estimation 
problem posed at the end of Section 3 remains open. A 
special case in which the dimension of the subspace is 1 is 
of interest and is treated in Section 4. Results and conclu- 
sions follow. 

2. Dynamical Model for Subspaces 

Consider XNM to be the space of M-dimensional 
subspaces of <CN. X e XNM is a subspace in C^ uniquely 
specified by P, an N x N projection matrix of rank M. P 
has the two properties that it is Hermitian (P = PH) and 
idempotent (P2 = P). The set of all N x N rank-Af projec- 
tion matrices form a connected manifold which is denoted 

We seek a natural dynamical description on XNM, 
or equivalently on the set of coordinate descriptions PNtM. 
Subspace X can be thought of as an M-dimensional com- 
plex plane extending to infinity in all directions and con- 
taining the origin, hence its motion is basically rotational. 
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In order to describe its motion, we borrow ideas from the 
rigid body dynamics of objects undergoing rotations with 
respect to the origin of some coordinate system (such as an 
airplane), and extend them to higher dimensions and com- 
plex spaces. 

Consider a rigid body with the origin of its coordi- 
nate system fixed, rotating freely about this origin. At any 
time t, the orientation of this body is described by a uni- 
tary Q(0, sometimes called a rotation matrix. If x is the 
coordinate vector for some point on the body in its nomi- 
nal orientation, then y(0 = Q(t)\ gives the coordinate vec- 
tor for this same point in the rotated body. 

A natural differential equation for time-varying rota- 
tions is 

0(0 = Q(0A(0 (2.1) 

where A(0 is a skew-symmetric matrix. To see that this is 
the case, note that 

Q(0QT(0 = I 

and hence 

0(0QT(0 + Q(0Q (0 = 0 • 

Defining 

(2.2) 

(2.3) 

(2.4) A(») = -Q (0Q(0 

(2.1) follows immediately, and furthermore from (2.3) we 
have that 

A1^) = -A(r) (2.5) 

In the special case where A is a constant skew- 
symmetric matrix, we have the closed-form solution to 
(2.1) as 

„Ar Q(0 = Q(0K (2.6) 

In higher-dimensional complex spaces CN, an anal- 
ogous result holds. We can write 

Q(0 = Q(0A(0 (2-7) 

where A is skew-Hermitian (AH = - A) and given by 

A(0 = -Q (00(0   • (2.8) 

Skew-Hermitian matrices have the property that the eigen- 
values are purely imaginary, and eigenvectors correspond- 
ing to different eigenvalues are orthogonal. If A is held 
constant, then the closed-form solution to (2.7) is 

Q(0 = Q(0)eA'   • (2.9) 

This dynamical model for time-varying rotations 
Q(0 is not our objective here, although it will be relevant. 

Rather, we seek a description of the motion of a point in 
XN<M, which perhaps can be visualized as a "rigid body" 
consisting of an infinite sheet fixed at the origin and rotat- 
ing under the influence of various torques and forces. We 
choose the projection matrix P as a unique coordinate 
description for a point in XNM and thus consider the flow 

on PNM- 

The use of dynamical models for P(0 was intro- 
duced by Dowling and DeGroat in [5]. There a differen- 
tial equation for P(f) was proposed, not for the purpose of 
developing a subspace tracker, but rather for establishing 
the convergence properties of a previously developed algo- 
rithm [2]. The proposed ODE was a Riccati equation of 
the form 

P(0 = P(0R + RP(0 - 2P(0RP(0 (2.10) 

where R is a positive definite Hermitian matrix. The 
global attractor for this ODE is the projection operator for 
the true signal subspace of R. 

We propose here a simpler ODE for P(0 which 
describes something akin to "uniform motion" on PM,N- It 
is 

P(0 = P(0A(0 - A(0P(0 (2.11) 

for skew-Hermitian A(f). To see that (2.11) generates a 
flow on PM,N< note that the two defining properties of pro- 
jection matrices require that 

P (0 = P(0 

and 

(2.12) 

(2.13) P(0P(0 + P(0P(0 = P(0 

both of which are satisfied by (2.11) provided that A is 
skew-Hermitian. Furthermore, since P(0 is continuous for 
bounded A, it cannot change rank at any time t. 

If A is held constant, the solution to (2.11) is 

P(0 = QH(0P(0)Q(0 (2-14) 

where 

0(0 = e -   „A» (2.15) 

by the previous arguments of this section. We take (2.11) 
to be the simplest non-trivial model for uniform motion in 
the space PN,M> 

and consider the flow to be somewhat 
analogous to constant velocity motion along a straight line 
for points in a Euclidean space. With this analogy in 
mind, we now consider the problem of estimating the 
parameters of this uniform motion, given observations 
from a particular stochastic model. 
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3. Data Model 

The usual model often considered in the application 
of subspace-based algorithms such as MUSIC or ESPRIT, 
is one in which the data vector x e C^ is complex Gaus- 
sian with mean 0 and covariance R. The shorthand nota- 
tion for this is 

x - CN(0,R) (3.1) 

The eigenvalues of R can be split into two classes, with 
the eigenvectors of R corresponding to the larger eigenval- 
ues spanning the signal subspace, and the eigenvectors 
corresponding to the smaller eigenvalues spanning the 
noise subspace. The maximum-likelihood estimates of 
these two subspaces are found by principal component 
analysis: form a sample covariance matrix from the data 
vectors, and compute an eigendecomposition to determine 
the signal and noise subspaces. 

It is interesting to note that the eigenvalues of R are 
nuisance parameters if all that is desired are the two sub- 
spaces. Furthermore, the ML estimates of the subspaces 
do not change if one introduces an artificial constraint that 
all of the signal subspace eigenvalues are equal (a^) and 
that all of the noise subspace eigenvalues are equal (aj;), 
with (^ >c^. DeGroat and Dowling [2,5] refer to this 
assumption as subspace sphericalization, and several com- 
putational advantages follow from it. Under this model 
the covariance R is given by 

R = <^PS + afo (3.2) 

where P,, and P„ are projection matrices for the signal and 
noise subspaces, respectively, and 

P„ =1 - (3.3) 

For time-varying subspaces, we propose the follow- 
ing data model which incorporates the simple dynamic 
model of Section 2 and subspace sphericalization. Let 

x(k) ~ CN(0,R(*))   k = 1 • • • K (3.4) 

where 

R(*) = a*Ps(kT) + c?nPn(kT)   . (3.5) 

Ps(t) is evolving in time according to the differential equa- 
tion 

P(r) = P(r)A - AP(0 (3.6) 

with A held constant.  From the results of the previous 
section we have 

_   „-AWn    AW Ps(kT) = e-Ak'P0e' (3.7) 

The problem of tracking Ps(t) reduces, under this model, 
to that of estimating P0 and A (or Q = eAT). 

data is 
The probability density function for the observed 

A = n^^^Ve-*"''«   (3.8) 

where 

R-'(*) = a?Ps(kT) + a?Pn{kT)   . (3.9) 

Straightforward manipulation of (3.8-3.9) reveals that the 
ML estimates of the parameters P0 and A are not functions 
of a; and a;;, and that they are found via maximization of 
the cost function 

J = XxH(it)e-A*rP0e
A*7'x(it) (3.10) 

The interpretation of (3.10) is intuitive: we seek a set of 
rotations eAkT, which, when applied in sequence to the 
data vectors x(k), would move them as closely as possible 
back to a single M-dimensional subspace described by P0. 

At the time of this writing we do not have a general 
closed form solution for the maximization of J, and con- 
sider it to be an open research problem. 

4. The One-Dimensional Case 

The special case M = 1 deserves special attention. 
When M = \, each data vector x(jfc) can support a crude 
estimate of P(k), independent of the other data, and these 
estimates can be used in various ad hoc ways to approxi- 
mate the matrix Q = eAT which relates them all. 

For the sake of argument, let us suppose that each 
data vector x(k) lies in the range of the one-dimensional 
projection P(k). Define the normalized observation 

u(jt) = x(Jk)/lx(jt)l 

and then 

P(k) = u(*)uH(jt)   . 

From (2.14) we have the recurrence relation 

P(*) = QHP(*-1)Q   . 

(4.1) 

(4.2) 

(4.3) 

Note that (4.3) is not equivalent to the statement 
u(k) = QHu(& - 1), since we only know that u(Jfc) lies in 
the range of P(k). However, we can say that 

u(k)d(k) = QHu(*-l) (4.4) 

where d(k) is an unknown complex scalar of the form 

d(k) = e*'   . (4.5) 
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One promising approach to the estimation of the Q, 
which can be interpreted as the small rotation applied to 
the subspace of interest at each time step, is to find param- 
eters d(k) and Q which make (4.4) approximately true for 
k = 2- -K. Define 

Likewise, when Q is fixed, let 

B = QHB (4.18) 

A = [u(2)l — lu(tf)] 

and 

B = [u(l)l---lu(tf-l)]   . 

Then in matrix form (4.4) becomes 

AD = QHB 

where 

D = diag(d(l)---d(K))   . 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

Given sufficient data, (4.8) will not be exactly true, 
but we can make it approximately true by defining an 
appropriate cost function and minimizing it with respect to 
the unknown parameters D and Q. The squared-error cost 
function is 

H = fr(AD-QHB)(AD-QHB)H   .      (4.10) 

There are closed-form solutions for the two problems of 
minimizing H w.r.t Q holding D fixed, and vice versa. 

Fix Din (4.10), and let 

Ä = AD   . (4.1D 

The cost function becomes 

H = rr(B-QÄ)(B-QÄ)H   . (4.12) 

Expanding, we have 

H = rr(BBH - QABH - BÄHQH + ÄÄ")  (4.13) 

and thus H is minimized when we maximize 

H' = Re{frQABH}   . (4.14) 

Let the singular value decomposition (SVD) of ABH be 
given by 

ABH = UIVH   . (4.15) 

Then 

H' = Re{rrQUZVw}   . (4.16) 

H' is upper-bounded by trL and this bound can be met 
with equality when 

Q = VUH   . (4.17) 

This gives a constructive method for finding the optimal Q 
when D is fixed. 

and solve for D using least-squares. This leads to K 
decoupled problems because of the diagonal constraint on 
D. Define a* and bk to be the kth column of A and B, 
respectively. Then the least-squares solution for dk is 
given by dk = e~jB* where 

Qk = arg(^bk)   . (4.19) 

5. Conclusion 

We have proposed the use of a dynamic predictive 
model for subspaces for application in the subspace track- 
ing problem. A model for simple uniform motion in the 
space of projection matrices has been developed. This 
model, combined with a complex Gaussian data model, 
leads to a maximum-likelihood estimation problem where 
the parameters of interest are the subspace motion parame- 
ters. 

Successful incorporation of subspace dynamics into 
the tracking problem will extend the range of useful appli- 
cations of subspace methods in high-resolution direction- 
finding and beamforming. The work described in this 
paper represents a preliminary investigation of this poten- 
tially important problem. 
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Abstract 

We consider the problem of estimating the parameters of 
an unknown multi-input multi-output linear system, and the 
related problem of deconvolving and recovering its inputs, 
using only observations of the system outputs. We derive 
simple closed-form asymptotic expressions for the Cramer- 
Rao lower bound (CRLB) for the system parameters, as 
well as lower bounds on the signal reconstruction perfor- 
mance. These show that the identification/deconvolution 
performance depend on the accuracy with which the scale 
and the location parameters of the input probability den- 
sity functions can be identified from observation of the in- 
put signals. It is also shown that the CRLB possesses a 
block diagonal structure, indicating that the general multi- 
channel deconvolution problem is decoupled into two inde- 
pendent simpler sub-problems: The signal separation prob- 
lem where the unknown system is deconvolved to a diagonal 
one, and the remaining independent single-channel decon- 
volution problems associated with the equalization of each 
of its diagonal elements. 

1    Introduction 

In many applications, observations are made on the out- 
puts of an unknown multi-input multi-output (MMO) lin- 
ear system, from which it is necessary to identify the system 
and recover its inputs. A classical example is the problem 
of separating several speakers using multiple microphone 
measurements. The unknown system in this case represents 
the acoustic media which couples the speakers to the mi- 
crophones, including all of its multipath and reverberation 
effects. Another example, receiving growing attention re- 
cently, is the problem associated with the recovery of data 

'This work was supported by the Office of Naval Research under con- 
tract no. N00014-95-1-0912, and by the University of California MICRO 
program and Applied Signal Technology, Inc. 

communication signals that share the same frequency band. 
Multiple receivers are typically used to decouple and recon- 
struct the original transmitted information from its super- 
imposed and distorted observations. Here, the system to 
be identified and deconvolved is the MIMO communication 
channel which links the information sources to the receivers. 
Similar problems can be found in diverse fields of engi- 
neering and applied science including radar/sonar array pro- 
cessing, seismic exploration, radio astronomy, economet- 
rics, and more. 

2   Problem Formulation 

We consider the two closely related problems of multi- 
channel system identification and deconvolution, in which 
we observe the outputs yx (t),..., yN (t) of an unknown N x 
N stable linear time invariant (LIT) system H, whose (un- 
observed) inputs are si(t),..., sN(t) and whose frequency 
response is: 

W(w)    = 
Hn(u) HiN{u>) 

-ff/vi(w)    ...    HNN(U) 

(1) 

Thus, the entry Hti(u) of H{u) denotes the frequency re- 
sponse of the SISO system that couples input SJ (t) to output 

Based on observation of yi(t),...,yN(t) we want to 
identify %, and/or deconvolve and recover its inputs us- 
ing an N x N reconstruction system Q, whose inputs are 
2/i (t), ■■■, VN(t) and whose outputs are ?i(t),.. .,sN(t). 

Let A denote the combined system relating the re- 
constructed signals ?i(t),. ..,sN(t) to the input signals 
si(t),...,SN(t). Then, 

A(u)   =   0(w)W(w) (2) 

where A(u>) and £(w) are the frequency responses of the 
systems A and Q, respectively, and 7i(u) is given by (1). 
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Assuming that H is an invertible system, we want to set 

g(w)   =   W(w)_1 Vw (3) 

which according to (2) implies that A is a unity transforma- 
tion, in which case $(<) = s,-(<) and the inputs are exactly 
recovered. 

The following two assumptions will be used throughout: 

Assumption I The input signals are sample functions (re- 
alizations) from mutually independent stochastic pro- 
cesses. 

Assumption II Each of the input signals constitute a se- 
quence of independent and identically distributed 
(i.i.d.) random variables. 

Assumptions I and II are sufficient (although in some spe- 
cial cases not necessary) for the identification of 7i and the 
recovery of its inputs. In the following sections, we study 
how accurately these two tasks can be performed. 

3   The Cramer-Rao Lower Bound 

Derivation of the exact Cramer-Rao lower bound 
(CRLB) for the problem at hand is generally intractable. We 
will develop therefore the asymptotic bound only, in which 
case the "end effects" can be ignored. A similar approach 
was used in e.g. [2] [5] [8] [10] [11] for various SISO iden- 
tification/deconvolution problems. Furthermore, in order to 
simplify the analysis and to gain several important insights, 
we first compute the CRLB with respect to the components 
of the combined system A, as if they are free adjustable pa- 
rameters. We then use the relation in (2) to derive the bound 
with respect to the components of H. As we shall see in Sec- 
tion 4, the accuracy in which the system A can be identified 
is by itself an important issue, as it governs the deconvolu- 
tion performance. 

3.1    The CRLB for A 

Let quantities with over-bar denote the true parameter 
values. Thus, it stands for the system that actually gen- 
erated yi(t),..., j/jv(t). We set Q to be the inverse of U. 
Therefore, we shall compute the CRLB for the system A 
whose true value, A, is the N x N unity system. 

Suppose that T observations of the signals 
si (<),..., sN(t) are available. Then, the log-likelihood of 
the observed data is asymptotically given by: 

log[|det{A}|] + £>g[7>Sl(«i(*))] 

+ ,..., + f>g[7>s„(M0)] (4) 

where A is an NT x NT blockmatrix whose i, j block is the 
T x T Toeplitz matrix containing the unit sample response 
coefficients of Aijt i>i(t),..., vN(t) are the outputs of the 
N x N system whose frequency response is -4(w)_1 and 
whose inputs are si(t),..., sN(t), aadVSi(x) stands for the 
pdf of st (t) which is assumed to be strictly positive and dif- 
ferentiable, for all x. 

Time Domain Parameterization 
Suppose that the unknown parameters are the unit sam- 

ple response coefficients a^r), for i, j e {1, • • •, N} and 
T G {0, ±1,..., ±K}. The non-negative integer K is as- 
sumed to be much smaller than T, so that the total number 
of unknowns is small compared to the data block size. 

Define the log-likelihoodgradient% (r) as the derivative 
of (4) with respect to ay (r) at A = A, where ay (r) is the 
unit sample response of Ay. Then, 

4(r)    =    -T{6(r) + RZiSi(r)) (5) 

*y(r)    =    -TRZilj(r)     i#j (6) 

where <5( •) denotes the Kronecker delta function, and 

(7) z,t) =  VsMW 

R^(r)    =    if>(*)«i(<-r) (8) 
<=i 

Thus, the non-zero elements of the Fisher Information 
matrix (FTM) are given by: 

£{4i(riKü(T-2)}    =   T [ cam{zi, «<,«<,«<} 6(n) 6(r2) 

+       £j«(ri-7s)   +   S(T1 + T2)} 

(9) 

T^tMctSfr-i*)      (10) 
Varjs,} 

(11) 

E{tij{nYii{^)} 

where cum{  } denotes the joint cumulant of the random 
variables in the brackets, and 

d   =   Wia{zi}\ar{si} (12) 

<=i 

which is known as Fisher's information for the location pa- 
rameter (FTL). 

All other elements of the FIM are zero, indicating lack of 
statistical correlation between the estimates of the diagonal 
and the off-diagonal elements of A. Furthermore, the esti- 
mates of an (T) are uncorrelated with the estimates of äjj (r) 
for i ^ j. Therefore, at least asymptotically, the general 
N x N identification/deconvolution problem can be decou- 
pled into two independent simpler sub-problems: The sig- 
nal separation problem associated with the identification of 
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the äij(r)s with i ^ j, and the remaining N independent 
single-channel problems in which the ä,-,(r)s are specified. 
Furthermore, the N x N signal separation problem further 
decouples into (*%) independent pairwise separation prob- 
lems. 

The CRLB on the error variance of any unbiased estimate 
aij (r) of äij (r) is given by the inverse of the FTM, 

w   r~ / M    ^     l Var{s,} Var{aij(r)}   >    - 
T Var{Sj} bCj-1 (13) 

where for i = j and r = 0, the term ri< , should be re- 
1 - 

placed by ■§-, with 5,- being the Fisher information for the 
scale parameter (FIS), 

Si   =   cma{zi,zi,si,si} + £,- + ! (14) 

The simple structure of the bound in (13), indicates that 
essentially, it is the FTL's (or FIS's) that govern the estima- 
tion accuracy of ai;- (r). Thus, the identification of the com- 
bined system A, is strongly related to the basic problem of 
estimating the scale and location parameters of the input dis- 
tributions based on direct observation of the input signals. In 
fact, if Var{s,(t)} = 1 and £, » 1 i e {1,..., N}, then 
for all combinations of i, j and r except i = j,r = 0, the 
RHS of (13) coincides with the CRLB for the estimation of 
the location parameter of Vst (x) given T independent real- 
izations. Similarly, for i = j and r = 0, the RHS of (13) 
coincides with the CRLB for the estimation of the scale pa- 
rameter of VsXx). 

Due to the block diagonal nature of the FTM, the RHS of 
(13) with i = j is the CRLB for estimating ä,i(r) given 
that all the other components of the system A are known a- 
priori. Therefore, it coincides with the result of [2], where 
the CRLB for the identification of a SISO system from ob- 
servation of its output was derived. 

Similarly, the RHS of (13) with i ^ j coincides with the 
CRLB for estimating äy- (r) given that all the other compo- 
nents of A except to ö,,(r) are known a-priori. Thus, lack 
of precise knowledge of the ä,-,-(r)'s do not affect the esti- 
mation of the ä,j(r)'s with i ^ j, and vice-versa. 

Frequency Domain Parameterization 
Next consider the frequency domain formulation in 

which the unknown parameters are set to be Ay (u>) = 
Er aij (r) e~^UT at the DFT frequencies 

w e {lirBk ;   k 0,1,...,--!}, 

where we assume that -g is an integer and that 1 > B > 
y. As before, the overall number of unknown parameters is 
small compared to the data block size. 

By analogy to the time domain formulation, one can 
show that the CRLB is given by: 

VarM,»}   > 1   Var{g,}  Cj 
BT Var{Sj} dCj - 1 (15) 

where for i = j and u = 0, ±ir, the term j^n should be 
replaced by c~+i- 

Observe that (15) is identical, up to the factor of -g, to 
the CRLB for the time domain parameterization given in 
(13). Therefore, the time and frequency domain parameteri- 
zations are essentially equivalent. However, due to the win- 
dowing operation used in the frequency domain parameter- 
ization, the data block is effectively smaller in that case (by 
a factor of ^). 

Note also that if «i(<),..., SJV(<) are jointly Gaussian, 
then d = 1 and the RHS of (15) is infinite indicating 
that the problem can not be solved in this case. The rea- 
son being that in the Gaussian case all the available infor- 
mation about the unknown system is contained in the first 
and second-order statistics of the observed signals. These 
statistics are "blind" to unitary transformations on the data 
signals. Therefore, the system may only be identified up to 
an arbitrary unitary transformation. 

Furthermore, consider for simplicity the case N = 2 and 
suppose that one of the inputs, say si(t), is non-Gaussian. 
Then, the performance is the worst when the other signal 
s2(t) is Gaussian. The variances of Au(u) and A2i(u) 
are the highest in this case, and the variance of -A22(w) 
is infinite in accordance with the well known fact that a 
SISO system driven by a Gaussian process can not be iden- 
tified/deconvolved. To verify this note that £2 > 1 with 
equality if and only if s2(t) is Gaussian (see e.g. [2] [10] 
[11]), and the RHS of (15) is always a monotone decreasing 
function of C2. 

3.2    The CRLB for H 

Recall that we were originally interested in the CRLB 
with respect to the components of Ü. Since Ü and Ä are 
related through the linear transformation Q, we can trans- 
late the results above to a bound on the components of H. 
With the frequency domain parameterization we obtain sim- 
ple closed form expressions. Using the relation in (2), which 
holds approximately for theJ)FT frequencies, the asymp- 
totic CRLB on the estimate Htj(u) of Hij(u) is: 

(16) 

where for k = j and u = 0, ±ir the term -^ should be 
1 J 

replaced by J-XJ. 
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4   Signal Reconstruction 

In the previous section we addressed the system identifi- 
cation problem, and examined how accurately the systems 
A and U can be identified. Next we consider the signal de- 
convolution issue, and determine how precisely the inputs 
can be recovered. 

A common measure of signal reconstruction is the 
interference-to-signal power ratio at each of the reconstruc- 
tion filter outputs. Invoking (15) and the model assump- 
tions, it is not difficult to verify that the interference-to- 
signal at the ith output terminal is bounded by: 

(I/S),-   > 
N-l  1 
BT   d 

(17) 

Note that the expression in (17) does not depend on the 
pre-processing interference-to-signal ratios nor on the un- 
known system Ü. It only depends on the basic amount of in- 
formation contained in the input signals with respect to their 
location parameters. 

Another useful measure of signal reconstruction is the 
mean square restoration error (MSE), defined as: 

MSEi    -   E{[Si(t) - Si(t)}2} (18) 

Once again, invoking the results of the previous section, it 
can be shown that MSEi is bounded by: 

MSEi    >    — 
N  Var{s,(t)} 

Ci 
(19) 

Finally, we note that the bounds in (17) and (19) hold 
also for the case where the system H has more outputs than 
inputs. In such a case, one may use several different sets 
of N outputs of the system H to generate different sets of 
reconstructed signals. Then, average over the different re- 
constructed signal sets, in an attempt to improve the perfor- 
mance. However, the set of averaged reconstructed signals 
is related to the input signal through some equivalent N x N 
system, that has the same true value A. Thus, the recon- 
struction performance remain intact. 

Of course, if additive noises are present, then the above 
procedure will indeed improve performance as the noise 
contributions will be averaged out. However, for low level 
of noise, this improvement is expected to be small. We 
therefore conclude that for sufficiently high SNR, there is 
not much point in trying to increase the number of available 
data sensors beyond the minimum required. 
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