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Abstract 

The goals of this research project were the development of control and estima- 
tion algorithms for nonlinear systems which are computationally feasible with robust 
performance despite numerical and modeling errors. The approach was based on the 
recent generalization of linear worst case (Hoo) controllers to nonlinear systems. The 
construction of nonlinear Hoo controllers depends on the solution of two PDE's of 
Hamilton-Jacobi type. The first is the one associated with the problem of H^ sub- 
optimal control by state feedback that has appeared previously in the work of several 
authors. Numerical methods to compute a Taylor series solution term by term have 
been developed. The second PDE is a new Hamilton-Jacobi equation associated with 
Hoo suboptimal estimation. A hybrid computational method to solve such problems 
has been developed . 

1    Nonlinear Hoo Control by State Feedback 

In this section an algorithm for computing term by term a state feedback Hoo control law for 
a nonlinear system is described. The MATLAB code to impliment this algorithm is avail- 
able from http://scad.utdallas.edu/scad/ in the Nonlinear Systems Toolbox. The function 
"hji.m" impliments the following algorithm. 

Consider a nonlinear system of the form 

x = f{x,u). (1) 

where the input u consists of two subvectors u = [uc; Ud], a control uc and a disturbance Ud- 
The goal is to compute the feedback law for uc that minimizes the maximum over all Ud the 
cost _ 

/    l(x,u) dt. (2) 
Jo 
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See [Kl] for further details. It is assumed that for each x, I is strictly convex in uc, strictly 

concave in u&. 
When it exists a: 

Jacobi-Isaacs PDE 

concave in Ua- 
When it exists and is smooth the optimal cost TT(X) starting at x will satisfy the Hamilton 

Uxf + l   =   0 (3) 

Uxfu + lu   =   0 (4) 

where for each x the evaluation is at the minmax u satisfying (4). 
It is further assumed that /, I have series expansions 

f(x,u)   =   fW(x,u) + fM(x,u) + f®(x,u) + ... + fW(x,u) (5) 

l(x,u)   =   l^x,u) + l^M + l[4](^) + --- + l[d+1]^u) (6) 

where /[%,u), l^{x,u) denote homogeneous polynomials of degree j. The leading terms 
are of the familiar linear-quadratic form 

f[1](x,u)   =   Ax + Bii (7) 

lW(x,u)   =   l(x'Qx + 2x'Su + u'Ru). (8) 

The matrix R is symmetric and invertible but not positive definite because of the assumption 
that I is strictly convex in uc, strictly concave in ud. 

Following Al'brekht [A], it is assumed that the optimal cost TT(X) and feedback K(X) have 
similar power series expansions 

vrOr)   =   KM(x)+^(x)+*[4](x) + --- + *[d+1](x) W 

K(X) = KW (X) + «M (x) + «[3] (x) + ... + «W (x) (10) u   = 
uc 

where the leading terms are 

^(s)   =   lx'Px (11) 

/cW(x)   =   Kx (12) 

Note that the feedback is the optimal one for both the control uc and the disturbance ud. 
These expansions are plugged into the Hamilton-Jacobi-Isaacs equations and terms of 

the same degree are collected. The leading terms in (3) are degree 2 and those in (4) are of 
degree 1, and yield the familiar Riccati equation and state feedback, 

0   =   PA + A'P + Q-(PB + S)R-\B'P + S') (13) 

K   =   -R-^B'P + S') (14) 

The next step is to collect terms in (3) of degree 3 and those in (4) of degree 2, this yields 
a system of linear equations for TT!

3
!, K® involving P, K which are then solved. The process 

is repeated through terms in (3) of degree d + 1 and those in (4) of degree d yielding linear 
equations for 7rtd+1], K^ that depend on the lower degree solutions. 



The call of "hji.m" is of the form 

[ka,fk,py,lk] = hji(fj,n,m,d); 

The input parameters /, I are the dynamics and lagrangian as above. More precisely, they 
are matrices of coefficients of the various monomials in /, I in block lexographic order as 
described in the Read Me First file in the Nonlinear Systems Toolbox. The parameters n, m 
are the dimensions of z, u respectively and d is the degree of the series expansion of /. 

The first output parameter is ka = K and the third output parameter is py = -K as 
described above. More precisely they are matrices of their coefficients in block lexographic 
order. The other output parameters are the matrices of the coefficients of the closed loop 
dynamics fk(x) = f(x, K{X)) and the closed loop lagrangian lk(x) = l(x, K(X)) 

The routine "hji.m" differs from "hjb.m" by calling "care.m" instead of "lqr2.m" to solve 
the Riccati equation. The routine "care.m" can handle indefinte Q and R while "lqr2.m" 
requires that Q be nonnegative definite and R be positive definite.' The current release of the 
MATLAB Control Toolbox contains "lqr2.m" and the next release will contain "care.m". 

Both "hji.m" and "hjb.m" can solve the Hamilton-Jacobi PDE for dynamics and la- 
grangians that depend on static or dynamic parameters. Such problems arise in designing 
servos [K2] and model matching controllers [K3]. Certain restrictions apply. See the com- 
ments in the m-files. 

2    Hybrid Nonlinear Estimation 

A hybrid algorithm for a nonlinear state observer that utilizes two levels of computation 
has been developed [KrD]. On the higher level one approximately computes a negative log 
liklihood function Q(x,t) for the currnt state given the past obseravtions and initial state 
liklihood. The most likely estimate of x(t) is x(t) = &vgmmQ(x,t) At the lower level, we 
initiate local observers that resemble extended Kaiman filters at the local minima of Q(x, t). 
These are computed on a much faster time scale. One also computes how well they explain 
the observations, and takes as the estimate, the one that best explains the observations to 
date. This algorithm can be suitably modified to calculate nonlinear Hoo estimators [Kl]. 

Since the computation of the Q function is expensive, it is done on a relatively coarse 
spatial and temporal grid. Hence the minimum of Q converges slowly to the true state and is 
never very accurate due to the coarseness of the grid. The local observers are computationally 
inexpensive especially since the filter gains are derived from Q rather than solutions of 
Riccati equations. Moreover when initialized close to the true value, they converge quickly 
and accurately. However if they are initialized far from the true value, they don't always 
converge to it. The coarse information in Q allows one to initialize the local observers 
properly. 

Mortensen [M] and Hijab [H] introduced the concept of minimum energy estimation. 
Given an initial state estimate x°, an observation history {y(s) : 0 < s < t) and an endpoint 
x one seeks the minimum "energy" triple x°, w(s), v(s) satisfying 

x(s)   =   f(x(s)) + w(s) (15) 

y(s)   =   h{x{s)) + v{s) (16) 



x(0) 
x(t) 

X 

X. 

The "energy" of the triple x°, w(s), v(s) is defined as 

1 
-I 2 Jo 

,-a(t~s) w(s) 
v(s) 

at 

ds + X° X 

(17) 

(18) 

(19) 

Increasing the forgetting factor a decreases the importance of the initial state estimate 
and earlier observations and increases the importance of the later observations. The value 
Q(x,t) is a measure of the likelihood that x(t) = x given the initial state estimate and the 
observations to date. The smaller Q(x,t) is, the more likely x(t) = x. Let Q(x,t) denote 
the infimum of (19) over all triples satisfying (15-18), then the minimum energy estimate is 

x(t) = argminQ(:r, t). (20) 

It is not hard to see that Q is a solution in the viscosity sense of the Hamilton Jacobi Bellman 
(HJB) PDE 

(21) aQ + Qt + Qxf + \QXQ!X - \\y - h\2 = 0. 

For #oo estimation the PDE is slightly different, [Kl], 

Qt + Qxf + ir-iQxQ'x 
l 

2T"2 \\y-4 + \\k U     = 0 (22) 

Following Kushner and Dupuis [KD], we compute Q not by approximately solving the HJB 
PDE but rather by solving an approximating nonlinear program. Let r, k be relatively 
coarse spatial and temporal steps. Choose a subdomain of Rn where the state is known to 
be and consider the rectangular lattice of points in the subdomain with spacing r. Following 
the dynamic program approach (in forward time), we define the approximate solution Q(x, t) 
of (21) at lattice points x and time steps t by 

Q(x,t + k)   =ini{(l-ak)Q(z,t) (23) 

+ 

+ 

x — z 
k 

yit) 

f(x,t + k) + f{z,t) 

h(x,t) + h{z,t) 

k 
2 

Q(x,0)      = x-x° (24) 

where the infimum is over z in the whole lattice in the subdomain or some subset such as 
the 2n nearest neighbors of x. 

Notice that the computation of Q must be done in real time because of the presence of 
y(t). The complexity of the computation is inversly proportional to the spatial step r to the 
power of the state dimension n. Hence there is a tradeoff between accuracy (small r) and 
computational ease (large r). Of course similar difficulties arise in all nonlinear estimation 



algorithms, for example, nonlinear filtering requires solving the Zakai stochastic PDE in real 
time. 

The extended Kaiman Filtering is an alternative approach which can be very accurate 
when it converges. However it may fail to converge if the problem is highly nonlinear. If we 
assume that the w, v in (15,16) are independent standard white Gaussian noises and the 
initial state estimate is an independent Gaussian random vector with mean x° and covariance 
P° then the extended Kaiman Filter (EKF) takes the form 

k   =   f(x,t) + Ph'x(x,t)(y-H^t)) (25) 
P   =   fx(x,t)P + Pfx{x,t)' + I 

-Ptix(x,t)hx(x,t)P (26) 

x(0)   =   x° (27) 

P(0)   =   P° (28) 

An example of a highly nonlinear problem where an EKF may fail to converge is 

x   =   x(l-x2) (29) 

y   =   x2 + ex. (30) 

If e = 0 the states x, -x are indistinguishable but for nonzero e the system is observable. 
The dynamics has stable equilibria at x = ±1 and an unstable equilibrium at x = 0. If 
e > 0, the system is initialized near -1 and the EKF is initialized near 1, the EKF will fail 
to converge to the true value [KrD]. 

Suppose Q(x,t) is a smooth solution to HJB PDE (21), x(t) is a relative minimum of 
Q(x,t) and q(t) = Q(x(t),t) then 

o = ^mu) (3D 
0   =   Qxx(x(t),t)x(t) + Qxt(x(t),t). (32) 

If one partially differentiates (21) with respect to x and evaluates at x (t), t one obtains 

0   =   Qtx(x(t),t) + Qxx(x(t),t)f 

+h'x(x(t),t)(y-H£(t),t)- (33) 

From the last two equations one obtains 

x   =   f(x,t)+Q£(x,t)tix(x,t)(y-h{x,t)) (34) 

and evaluating (21) at x(t), t yields 

q   =   -aq + ±\y-h{x,t)\. (35) 

These are the equations of a local observer based on Q. Notice the similarity of (34) to (25) 
of an EKF. 



The hybid approach is as follows. 
1) Compute Q(x, t) by a nonlinear programming approximation (23) on a coarse spatial and 
temporal grid, 
2) At each relative minimum of Q(x,t), initialize a local observer x(t), q(t) 
3) Let the various local observers x(t),q(t) evolve according to (34, 35) on a fast time scale, 
4) Eliminate redundant local observers when they come close together, 
5) Choose as the current estimate, the x(t) of the local observer with smallest q(t). 

While this algorithm can result in a large number of local observers, the computational 
burden associated with each one is quite small, less than an EKF. Each local observer 
invloves integrating n+1 differential equations instead of (n2 + 3n)/2 for an EKF. The total 
computational burden associated with computing Q(x,t) on a coarse spatial and temporal 
grid and computing many local observers on a fine temporal scale is considerably lighter 
than computing Q(x, t) on a fine spatial and temporal grid. Moreover the accuracy of the 
solution of the HJB PDE (21) is limited by the fineness of the spatial grid while machine 
precision is the limit on the spatial accuracy of a local observer. In [KrD] this observer is 
applied to a pair of examples. 
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