
December 1992 Report No. STAN-CS-92-1458

»miiiiii
PB96-150776

On the Complexity of Partitioning an Assembly

by

R.H. Wilson, J.-C. Latombe, T. Lozano-Perez

Department of Computer Science

Stanford University
Stanford, California 94305

w&t.äi: ■'« A-/**;

wmm 025
■> '.';..-.■ rt» '

On the Complexity of Partitioning an
Assembly

Randall H. Wilson Jean-Claude Latombe

Robotics Laboratory
Department of Computer Science

Stanford University
Stanford, CA 94305

Tomas Lozano-Perez
MIT Artificial Intelligence Laboratory

545 Technology Square
Cambridge, MA 02139

Abstract

We consider the following problem that arises in assembly plan-
ning: given an assembly, identify a subassembly that can be removed
as a rigid object without disturbing the rest of the assembly. This is
called the assembly partitioning problem. Polynomial-time solutions
have been presented when the motions allowed for the separation are
of certain restricted types. We show that for assemblies of polyhe-
dra, the partitioning problem for arbitrary sequences of translations is
NP-complete. The reduction is from 3-SAT. The proof applies equally
when each part in the assembly is limited to a constant number of
vertices; when rotations are allowed; when both subassemblies are re-
quired to be connected; and for assemblies in the plane where each
part may consist of a number of unconnected polygons.

II

(a) (b)

Figure 1: Examples of assemblies requiring non-straight-line motions for
disassembly, (a) is a monotone binary assembly while (b) is not.

Introduction

This paper addresses a geometric problem in assembly planning. The prob-
lem is: given an assembly of parts, identify a subassembly that can be
removed from the assembly. That is, identify a subset of the parts that can
be moved (as a single rigid object) to infinity without disturbing the other
parts. This is the assembly partitioning problem.

The partitioning problem arises in assembly planning. An assembly se-
quence is a sequence of motions that constructs an assembly from its con-
stituent parts, and for rigid parts is the reverse of a disassembly sequence.
In this paper we assume that the assembly sequences are binary and mono-
tone, i.e. only one group of parts moves at a time, and the motion completely
separates the moved parts from the rest of the assembly. In other words,
no parts are placed in intermediate positions. For example, the assembly in
figure 1(a) can be assembled by a monotone binary assembly sequence, while
the assembly in figure 1(b) cannot. A monotone binary assembly sequence
can be found, if one exists for the assembly, by repeated application of an
assembly partitioning algorithm.

The vast majority of assemblies in industry are monotone binary, and
most assembly planning systems make this assumption as well (see for in-
stance [3]). As a result, the partitioning problem is of great practical impor-
tance. Previous work has presented polynomial-time partitioning algorithms
for several useful cases when the separating motions are of certain restricted
types, such as single translations [1, 11].

In this paper we show that when arbitrary translations are allowed to
separate the two subassemblies, the partitioning problem for polyhedral as-

semblies is NP-complete. The proof applies equally when each part in the
assembly is limited to a constant number of vertices and when rotations are
allowed, as well as to assemblies in the plane where each part may consist
of many unconnected polygons. The complexity of the partitioning problem
for assemblies of simple polygons remains open.

1 Related Work

Much of the work on geometric separation problems is relevant to assembly
planning; for an overview see Toussaint [10]. Pollack, Sharir, and Sifrony [9]
give an efficient algorithm to separate two simple polygons in the plane.

In non-monotone assembly sequences, parts may assume many interme-
diate positions during disassembly. Natarajan [7] and Wolter [13] showed
that assembly sequencing is PSPACE-hard when non-monotone sequences
are allowed.

In monotone, non-binary assembly sequences, more than one subassem-
bly may move independently at the same time. Palmer [8] considered the
infinitesimal, non-binary partitioning problem: determining whether a fea-
sible set of simultaneous, infinitesimal motions exists for the parts of an
assembly. He showed that this problem is NP-complete by a reduction from
3-SAT.

Polynomial-time solutions to the binary partitioning problem exist for
certain types of restricted disassembly motions. Arkin, Connelly, and
Mitchell [1] give a polynomial-time algorithm for partitioning an assem-
bly of polygons in the plane with a single infinite translation, and they have
extended the algorithm to polyhedral assemblies in 3D [6]. Wilson [11, 12]
solves the 3D partitioning problem in polynomial time when the disassembly
motions are restricted to either (a) infinitesimal translations or rotations or
(b) infinite translations. In the infinitesimal case, a subassembly is identified
that can move an infinitesimal distance, which is only a necessary condition
on a removal path.

Lozano-Perez and Wilson [5] extend Wilson's framework to arbitrary
disassembly paths. While their algorithm might prove useful in practice,
they do not show a polynomial time bound. In this paper we show that the
problem they address is NP-complete. However, when a disassembly path
is limited to a constant number of translations, their construction allows a
polynomial-time algorithm for partitioning.

2 Complexity of Partitioning

The translational partitioning problem consists of identifying a subassembly
of a given assembly that can be separated (as a rigid object) from the rest of
the parts by a sequence of translations. In this section we show that trans-
lational partitioning for polyhedral assemblies is NP-complete. Section 2.1
shows that translational partitioning is in NP, while sections 2.2 and 2.3
show that it is NP-hard.

Problem 1 (Translational Partitioning) Given a set A of polyhedra in
space, identify a proper subset S of A such that S can be separated from
A\S by a collision-free sequence of translations of S.

2.1 Translational Partitioning is in NP

A first approach to a partitioning problem is to generate all possible ways
to divide the assembly A into two subassemblies, then call a path plan-
ner to decide if any pair of subassemblies can be separated. For any fixed
dimension d, path planning can be performed in polynomial time [4]. A
nondeterministic machine can guess the subassembly to remove, then check
for a removal path in polynomial time. Therefore translational partitioning
is in NP.

2.2 Translational Partitioning is NP-hard

We show that translational partitioning is NP-hard by a reduction from
3-SAT [2]. The proof consists of a set of instructions that show how to
construct an assembly of polyhedra that can be partitioned if and only if a
given formula in 3CNF has a satisfying truth assignment. A 3CNF formula
is a conjunction of clauses, where each clause is a disjunction of 3 literals
and each literal is either «,- or ul (i.e. ->«;) for some variable U{. For instance,
the following formula is in 3CNF form:

(üT V u2 V u3) A (u2 V üi V v£) A (ui V u2 V v$) (1)

We construct an assembly consisting of 2v + 2 parts, where v is the
number of variables in the 3CNF formula. The assembly resembles a lock
with a key inserted, along with 2v additional parts representing the truth
assignments to the variables in the formula. To partition the assembly, the
key must be removed, along with exactly half of the truth assignment parts:

lock

ui

key truth assignment

Figure 2: Patterns used for parts in figures

one representing either true or false for each variable. As they are removed,
the key and truth assignments must pass through a series of gates that
enforce the clauses of the 3CNF formula. Thus partitioning the assembly is
equivalent to finding a truth assignment that satisfies all the clauses.

The proof shows how to construct:

1. A representation for a truth assignment.

2. An assignment construct to require that true or false is assigned to
each variable.

3. A TEST gate to enforce a value of a variable.

4. An OR gate to combine TEST gates into the disjunctive clauses in the
formula.

5. An AND mechanism for the conjunction of the clauses.

6. The full assembly combining these elements, that can be partitioned
if and only if the formula has a satisfying truth assignment.

The assembly will first be constructed in the plane, where each part may
consist of any number of unconnected simple polygons constrained to move
rigidly. This assembly will be transformed in section 2.3 into an equivalent
assembly of (normal) polyhedra. In the figures that follow, the parts will
be drawn as shown in figure 2: polygons belonging to the lock are in gray,
polygons belonging to the key are hashed, and the 2v truth assignment (TA)
parts are all drawn white with labels.

Representing Truth Assignments Truth assignments are represented
as shown in figure 3. Part of the key is used as a reference point. For each
variable U{ in the 3CNF formula, the truth assignment to w; is represented
by the presence of one of the TA parts Ui or uj. Each TA part is 2 units

'WSSk ui ui u2 U2 u3 u3

key

(a)

u. U2 U3

key

(b)

Figure 3: (a) The truth assignment construct and (b) the truth assignment

wide, while the key reference is 6 units wide. Figure 3b represents the truth
assignment («1,^2,^3).

Assignment Construct The assignment construct is shown in figure 4.
It ensures that at least one TA part for each variable must be removed with
the key. One 2-unit square (called an assignment peg) is added to the key for
each variable; remember that the polygons of the key must move together. A
guide (part of the lock) forces the key to be removed downward. As the key
reference is translated out of the guide, it can shift one unit left or right; this
allows the assignment peg for each variable to bypass either U{ or ui but not
both. 2 units of vertical space is left between the assignment pegs to allow
independent horizontal motion when selecting the truth assignment for each
variable. This guarantees that each variable is given a truth assignment,
and every truth assignment is possible.

Note that the assignment construct allows both Ui and «7 to move with
the key. If the resulting subassembly can be removed from the lock, then
either truth assignment for u{ satisfies the formula.

A TEST Gate A TEST gate is shown in figure 5. The key and TA parts
can pass through the gate if and only if one of the U{ has a specified value.
The holes for the other Uj,j ^ i allow both Uj and tZJ to pass through. Since
the key reference is 6 units wide, it cannot pass through any holes but the

assignment pegs

guide

key

U2 U2

m

u3 u3

Figure 4: The assignment construct

left one. After the key reference passes through the gate, horizontal motion
allows the assignment pegs to pass through also. The TEST gate shown
enforces the condition VQ.

An OR Gate The OR gate for a clause consists of a horizontal wall in
the lock, with several TEST gates in the wall (figure 6). The key and TA
parts can pass through the OR gate if and only if they can pass through at
least one of the TEST gates. The OR gate in figure 6 represents the clause
(¥IVu2 V u3).

The AND Mechanism The conjunction of all the clauses is represented
by placing the OR gates one after another vertically, so that the key must
pass through each one in turn to be removed. Enough vertical space must
be left to allow the assignment pegs to move fully through the OR gate for
one clause before encountering the next.

U2 u2 U3 u3

Figure 5: A TEST gate

mm n ü I

*/

D D D

mm

/

Figure 6: An OR gate

The Assembly Figure 7 shows the whole assembly constructed for the
3CNF formula in equation (1) (8 parts consisting of 46 polygons in this
case). A sealing piece is added to the key, ensuring that no parts may
be removed without the key. One unit of clearance on each side allows
horizontal motion during the assignment phase of removal; after that, the
sealing piece is free of the lock, so it does not restrict horizontal motions of
the key.

We claim that this assembly can be partitioned if and only if the 3CNF
formula has a satisfying truth assignment. Assume that there exists a sat-
isfying truth assignment r for the formula. Then let 5 be a subassembly
composed of the key and the TA parts representing r. To satisfy the for-
mula, r must satisfy at least one of the literals in each clause; for each such
literal, the corresponding TEST gate can be passed by S. Therefore 5 can
be moved through each OR gate in turn, and removed.

On the other hand, assume that the assembly can be partitioned. No

ul

fmzm mmm

t':':':':*:'J Eo!-' Pi-i?^! E^'■:■■•■■■■■■:•>>■ öS J ft";!;!:!-:' p-n

hi

1 m H m mmmm

ul

in ii güni iii m

I / II sealing piece

Figure 7: The full assembly

'wtmmmmmmßmmMm

7 assignment
lock key OR gates TA parts pegs

Figure 8: A side view of the polyhedral assembly

parts can be removed without removing the key from the lock. For the
key to be removed, one TA part for each variable must be removed as well,
since the guide forces the assignment pegs to collide with «,- or ul for each
i. The resulting subassembly must then be moved through the OR gates
representing each of the clauses in turn. If such a subassembly can be
removed, then the TA parts in it give a satisfying truth assignment for the
formula. Therefore the assembly can be partitioned if and only if the 3CNF
formula has a satisfying truth assignment.

2.3 Polyhedra

An assembly of (normal) polyhedra can be constructed in the same way as
above. Note that only two parts (the lock and the key) in the 2D assembly
have unconnected components; these parts are connected in the polyhedral
assembly. The polyhedral assembly consists of four layers:

1. The bottom layer is a single plate added to the lock, covering the
bottom of the assembly and connecting all pieces of the lock.

2. The next layer is the same as the 2D assembly of figure 7.

3. The third layer is a plate connecting all the pieces of the key, but not
extending horizontally any more than the key reference and assignment
pegs (thus allowing horizontal freedom).

4. The top layer is the same as the bottom layer, enclosing the lock from
above.

Figure 8 shows a side view of the polyhedral assembly. It can be partitioned
only by removing the key, and the only interesting motions are planar ones.

Let v be the number of variables and / be the length of the 3CNF
formula in the 3-SAT instance. Each TEST gate can be constructed with

10

0(v) vertices, and there are 0(f) such gates in the assembly. Hence the
assembly in figure 8 has complexity 0(vf). It can clearly be constructed in
polynomial time in v and /. Since an instance of 3-SAT can be reduced to
an instance of translational partitioning in polynomial time, translational
partitioning is NP-hard. We now have the following theorem.

Theorem 1 Translational partitioning is NP-complete.

In addition, the above assembly can be assembled if and only if it can be
partitioned. An NP machine could guess all n - 1 partitionings to disassem-
ble an n-part assembly, then check each in polynomial time, so the problem
is clearly in NP.

Corollary 2 Monotone binary assembly sequencing for polyhedra is NP-
complete.

3 Variants

In the above construction, two of the parts have unbounded complexity, i.e.
a part can have a number of vertices that is polynomial in the size of the
3CNF formula. In this section we show that the result holds when the parts
are limited to constant complexity. In addition, we describe several variants
of the problem to which the construction can be adapted, and identify an
important open problem for planar assemblies.

3.1 Parts of Constant Complexity

An equivalent assembly can be constructed such that each part has constant
complexity. The basic structures of the key and lock are built of blocks
such as those shown in figure 9a; each block connects to adjacent ones with
pins. The key reference and assignment pegs are made of these blocks. A
surrounding piece holds the key blocks together until the assembly is parti-
tioned, at which time they can be removed vertically and then disassembled
(figure 9b). Similarly, the guide and gates of the lock are built of blocks
(figure 10a), which are placed inside a box and cover (figure 10b). The key
passes through a hole in the cover. The cover traps the lock blocks until the
key is removed, after which the cover and lock blocks can be removed and
disassembled.

The resulting assembly can be partitioned exactly when the previous
assembly can be. A polynomial number of parts are required to construct

11

<o

(a) (b)

Figure 9: (a) the blocks, and (b) the key constructed with the blocks

(a) (b)

Figure 10: (a) the lock structure constructed of blocks, and (b) the box and
cover enclosing the lock

it. The parts with the most vertices are the blocks (figure 9a), which can be
built with 32 vertices each.

Theorem 3 Translational partitioning for assemblies of polyhedra with at
most k vertices (for k > 22) is NP-cornplete.

3.2 Rotations

The construction can be modified to remove all interesting rotations. The
sealing piece disallows almost all rotation during the assignment phase of
the removal. The key reference is changed to be 8 units tall, so that it must
pass through all gates in a horizontal position. In addition, the section of
wall connecting TEST gates is made long enough that turning the key and

12

TA parts 180 degrees does not allow passage. The resulting assembly can be
partitioned by translation and rotation exactly when it can be partitioned
with translations.

3.3 Connected Subassemblies

For polyhedral assemblies A, another version of the partitioning problem
requires that both the removable subassembly S and A \ S be connected,
i.e. that the union of each set of parts form a connected set. In practice, this
is useful constraint for assembly planning. The key and the lock are both
in contact with all of the TA parts in the polyhedral assembly above, so the
construction applies to the connected partitioning problem.

3.4 Planar Assemblies

In showing the complexity of polyhedral partitioning above, we constructed
an assembly for a strange planar case. That is, if a single part may consist of
a number of disconnected polygons in the plane, then assembly partitioning
in the plane is NP-complete. While this result may prove to be significant
in its own right, it raises the following question: what is the complexity of
partitioning for assemblies of simple polygons in the plane? This seems to
be the most interesting open problem to pursue in the future.

Acknowledgments

The authors thank Dan Halperin and Lydia Kavraki for comments on an
earlier draft. The first author was supported by a grant from the Stanford
Integrated Manufacturing Association. The second author was partially
supported by a grant from DARPA under ONR contract N00014-92-J-1809.
The third author was partially supported by a grant from DARPA under
ONR contract N00014-91-J-4038.

References

[1] E. M. Arkin, R. Connelly, and J. S. B. Mitchell. On monotone paths
among obstacles, with applications to planning assemblies. In Proc. of
the 5th ACMSymp. on Computational Geometry, pages 334-343, 1989.

[2] M. R. Garey and D.S. Johnson. Computers and Intractability. W. H.
Freeman, New York, 1979.

13

[3] L. S. Hörnern de Mello and S. Lee, editors. Computer-Aided Mechanical
Assembly Planning. Kluwer Academic Publishers, Boston, 1991.

[4] J.-C. Latombe. Robot Motion Planning. Klawer Academic Publishers,
Boston, 1991.

[5] T. Lozano-Perez and R. H. Wilson. Assembly sequencing for arbitrary
motions. Manuscript submitted to 1993 IEEE Intl. Conf. on Robotics
and Automation, September 1992.

[6] J. S. B. Mitchell. Personal communication, December 1990.

[7] B. K. Natarajan. On planning assemblies. In Proc. of the fth ACM
Symp. on Computational Geometry, pages 299-308, 1988.

[8] R. S. Palmer. Computational Complexity of Motion and Stability of
Polygons. PhD thesis, Cornell Univ., 1989.

[9] R. Pollack, M. Sharir, and S. Sifrony. Separating two simple polygons
by a sequence of translations. Discrete and Computational Geometry,
3:123-136, 1988.

[10] G. T. Toussaint. Movable separability of sets. In G. T. Toussaint,
editor, Computational Geometry. Elsevier, North Holland, 1985.

[11] R. H. Wilson. On Geometric Assembly Planning. PhD thesis, Stanford
Univ., March 1992. Stanford Technical Report STAN-CS-92-1416.

[12] R. H. Wilson and J.-C. Latombe. On the qualitative structure of a
mechanical assembly. In Proc. of the National Conf. on Artificial In-
telligence, pages 697-702, 1992.

[13] J. D. Wolter. On the Automatic Generation of Plans for Mechanical
Assembly. PhD thesis, The Univ. of Michigan, 1988.

14

