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Abstract 

We consider the following problem that arises in assembly plan- 
ning: given an assembly, identify a subassembly that can be removed 
as a rigid object without disturbing the rest of the assembly. This is 
called the assembly partitioning problem. Polynomial-time solutions 
have been presented when the motions allowed for the separation are 
of certain restricted types. We show that for assemblies of polyhe- 
dra, the partitioning problem for arbitrary sequences of translations is 
NP-complete. The reduction is from 3-SAT. The proof applies equally 
when each part in the assembly is limited to a constant number of 
vertices; when rotations are allowed; when both subassemblies are re- 
quired to be connected; and for assemblies in the plane where each 
part may consist of a number of unconnected polygons. 
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Figure 1:   Examples of assemblies requiring non-straight-line motions for 
disassembly, (a) is a monotone binary assembly while (b) is not. 

Introduction 

This paper addresses a geometric problem in assembly planning. The prob- 
lem is: given an assembly of parts, identify a subassembly that can be 
removed from the assembly. That is, identify a subset of the parts that can 
be moved (as a single rigid object) to infinity without disturbing the other 
parts. This is the assembly partitioning problem. 

The partitioning problem arises in assembly planning. An assembly se- 
quence is a sequence of motions that constructs an assembly from its con- 
stituent parts, and for rigid parts is the reverse of a disassembly sequence. 
In this paper we assume that the assembly sequences are binary and mono- 
tone, i.e. only one group of parts moves at a time, and the motion completely 
separates the moved parts from the rest of the assembly. In other words, 
no parts are placed in intermediate positions. For example, the assembly in 
figure 1(a) can be assembled by a monotone binary assembly sequence, while 
the assembly in figure 1(b) cannot. A monotone binary assembly sequence 
can be found, if one exists for the assembly, by repeated application of an 
assembly partitioning algorithm. 

The vast majority of assemblies in industry are monotone binary, and 
most assembly planning systems make this assumption as well (see for in- 
stance [3]). As a result, the partitioning problem is of great practical impor- 
tance. Previous work has presented polynomial-time partitioning algorithms 
for several useful cases when the separating motions are of certain restricted 
types, such as single translations [1, 11]. 

In this paper we show that when arbitrary translations are allowed to 
separate the two subassemblies, the partitioning problem for polyhedral as- 



semblies is NP-complete. The proof applies equally when each part in the 
assembly is limited to a constant number of vertices and when rotations are 
allowed, as well as to assemblies in the plane where each part may consist 
of many unconnected polygons. The complexity of the partitioning problem 
for assemblies of simple polygons remains open. 

1    Related Work 

Much of the work on geometric separation problems is relevant to assembly 
planning; for an overview see Toussaint [10]. Pollack, Sharir, and Sifrony [9] 
give an efficient algorithm to separate two simple polygons in the plane. 

In non-monotone assembly sequences, parts may assume many interme- 
diate positions during disassembly. Natarajan [7] and Wolter [13] showed 
that assembly sequencing is PSPACE-hard when non-monotone sequences 
are allowed. 

In monotone, non-binary assembly sequences, more than one subassem- 
bly may move independently at the same time. Palmer [8] considered the 
infinitesimal, non-binary partitioning problem: determining whether a fea- 
sible set of simultaneous, infinitesimal motions exists for the parts of an 
assembly. He showed that this problem is NP-complete by a reduction from 
3-SAT. 

Polynomial-time solutions to the binary partitioning problem exist for 
certain types of restricted disassembly motions. Arkin, Connelly, and 
Mitchell [1] give a polynomial-time algorithm for partitioning an assem- 
bly of polygons in the plane with a single infinite translation, and they have 
extended the algorithm to polyhedral assemblies in 3D [6]. Wilson [11, 12] 
solves the 3D partitioning problem in polynomial time when the disassembly 
motions are restricted to either (a) infinitesimal translations or rotations or 
(b) infinite translations. In the infinitesimal case, a subassembly is identified 
that can move an infinitesimal distance, which is only a necessary condition 
on a removal path. 

Lozano-Perez and Wilson [5] extend Wilson's framework to arbitrary 
disassembly paths. While their algorithm might prove useful in practice, 
they do not show a polynomial time bound. In this paper we show that the 
problem they address is NP-complete. However, when a disassembly path 
is limited to a constant number of translations, their construction allows a 
polynomial-time algorithm for partitioning. 



2    Complexity of Partitioning 

The translational partitioning problem consists of identifying a subassembly 
of a given assembly that can be separated (as a rigid object) from the rest of 
the parts by a sequence of translations. In this section we show that trans- 
lational partitioning for polyhedral assemblies is NP-complete. Section 2.1 
shows that translational partitioning is in NP, while sections 2.2 and 2.3 
show that it is NP-hard. 

Problem 1 (Translational Partitioning) Given a set A of polyhedra in 
space, identify a proper subset S of A such that S can be separated from 
A\S by a collision-free sequence of translations of S. 

2.1 Translational Partitioning is in NP 

A first approach to a partitioning problem is to generate all possible ways 
to divide the assembly A into two subassemblies, then call a path plan- 
ner to decide if any pair of subassemblies can be separated. For any fixed 
dimension d, path planning can be performed in polynomial time [4]. A 
nondeterministic machine can guess the subassembly to remove, then check 
for a removal path in polynomial time. Therefore translational partitioning 
is in NP. 

2.2 Translational Partitioning is NP-hard 

We show that translational partitioning is NP-hard by a reduction from 
3-SAT [2]. The proof consists of a set of instructions that show how to 
construct an assembly of polyhedra that can be partitioned if and only if a 
given formula in 3CNF has a satisfying truth assignment. A 3CNF formula 
is a conjunction of clauses, where each clause is a disjunction of 3 literals 
and each literal is either «,- or ul (i.e. ->«;) for some variable U{. For instance, 
the following formula is in 3CNF form: 

(üT V u2 V u3) A (u2 V üi V v£) A (ui V u2 V v$) (1) 

We construct an assembly consisting of 2v + 2 parts, where v is the 
number of variables in the 3CNF formula. The assembly resembles a lock 
with a key inserted, along with 2v additional parts representing the truth 
assignments to the variables in the formula. To partition the assembly, the 
key must be removed, along with exactly half of the truth assignment parts: 
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Figure 2: Patterns used for parts in figures 

one representing either true or false for each variable. As they are removed, 
the key and truth assignments must pass through a series of gates that 
enforce the clauses of the 3CNF formula. Thus partitioning the assembly is 
equivalent to finding a truth assignment that satisfies all the clauses. 

The proof shows how to construct: 

1. A representation for a truth assignment. 

2. An assignment construct to require that true or false is assigned to 
each variable. 

3. A TEST gate to enforce a value of a variable. 

4. An OR gate to combine TEST gates into the disjunctive clauses in the 
formula. 

5. An AND mechanism for the conjunction of the clauses. 

6. The full assembly combining these elements, that can be partitioned 
if and only if the formula has a satisfying truth assignment. 

The assembly will first be constructed in the plane, where each part may 
consist of any number of unconnected simple polygons constrained to move 
rigidly. This assembly will be transformed in section 2.3 into an equivalent 
assembly of (normal) polyhedra. In the figures that follow, the parts will 
be drawn as shown in figure 2: polygons belonging to the lock are in gray, 
polygons belonging to the key are hashed, and the 2v truth assignment (TA) 
parts are all drawn white with labels. 

Representing Truth Assignments Truth assignments are represented 
as shown in figure 3. Part of the key is used as a reference point. For each 
variable U{ in the 3CNF formula, the truth assignment to w; is represented 
by the presence of one of the TA parts Ui or uj.   Each TA part is 2 units 
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Figure 3: (a) The truth assignment construct and (b) the truth assignment 

wide, while the key reference is 6 units wide. Figure 3b represents the truth 
assignment («1,^2,^3). 

Assignment Construct The assignment construct is shown in figure 4. 
It ensures that at least one TA part for each variable must be removed with 
the key. One 2-unit square (called an assignment peg) is added to the key for 
each variable; remember that the polygons of the key must move together. A 
guide (part of the lock) forces the key to be removed downward. As the key 
reference is translated out of the guide, it can shift one unit left or right; this 
allows the assignment peg for each variable to bypass either U{ or ui but not 
both. 2 units of vertical space is left between the assignment pegs to allow 
independent horizontal motion when selecting the truth assignment for each 
variable. This guarantees that each variable is given a truth assignment, 
and every truth assignment is possible. 

Note that the assignment construct allows both Ui and «7 to move with 
the key. If the resulting subassembly can be removed from the lock, then 
either truth assignment for u{ satisfies the formula. 

A TEST Gate A TEST gate is shown in figure 5. The key and TA parts 
can pass through the gate if and only if one of the U{ has a specified value. 
The holes for the other Uj,j ^ i allow both Uj and tZJ to pass through. Since 
the key reference is 6 units wide, it cannot pass through any holes but the 
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Figure 4: The assignment construct 

left one. After the key reference passes through the gate, horizontal motion 
allows the assignment pegs to pass through also. The TEST gate shown 
enforces the condition VQ. 

An OR Gate The OR gate for a clause consists of a horizontal wall in 
the lock, with several TEST gates in the wall (figure 6). The key and TA 
parts can pass through the OR gate if and only if they can pass through at 
least one of the TEST gates. The OR gate in figure 6 represents the clause 
(¥IVu2 V u3). 

The AND Mechanism The conjunction of all the clauses is represented 
by placing the OR gates one after another vertically, so that the key must 
pass through each one in turn to be removed. Enough vertical space must 
be left to allow the assignment pegs to move fully through the OR gate for 
one clause before encountering the next. 
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Figure 6: An OR gate 

The Assembly Figure 7 shows the whole assembly constructed for the 
3CNF formula in equation (1) (8 parts consisting of 46 polygons in this 
case). A sealing piece is added to the key, ensuring that no parts may 
be removed without the key. One unit of clearance on each side allows 
horizontal motion during the assignment phase of removal; after that, the 
sealing piece is free of the lock, so it does not restrict horizontal motions of 
the key. 

We claim that this assembly can be partitioned if and only if the 3CNF 
formula has a satisfying truth assignment. Assume that there exists a sat- 
isfying truth assignment r for the formula. Then let 5 be a subassembly 
composed of the key and the TA parts representing r. To satisfy the for- 
mula, r must satisfy at least one of the literals in each clause; for each such 
literal, the corresponding TEST gate can be passed by S. Therefore 5 can 
be moved through each OR gate in turn, and removed. 

On the other hand, assume that the assembly can be partitioned.  No 
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Figure 7: The full assembly 
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Figure 8: A side view of the polyhedral assembly 

parts can be removed without removing the key from the lock. For the 
key to be removed, one TA part for each variable must be removed as well, 
since the guide forces the assignment pegs to collide with «,- or ul for each 
i. The resulting subassembly must then be moved through the OR gates 
representing each of the clauses in turn. If such a subassembly can be 
removed, then the TA parts in it give a satisfying truth assignment for the 
formula. Therefore the assembly can be partitioned if and only if the 3CNF 
formula has a satisfying truth assignment. 

2.3    Polyhedra 

An assembly of (normal) polyhedra can be constructed in the same way as 
above. Note that only two parts (the lock and the key) in the 2D assembly 
have unconnected components; these parts are connected in the polyhedral 
assembly. The polyhedral assembly consists of four layers: 

1. The bottom layer is a single plate added to the lock, covering the 
bottom of the assembly and connecting all pieces of the lock. 

2. The next layer is the same as the 2D assembly of figure 7. 

3. The third layer is a plate connecting all the pieces of the key, but not 
extending horizontally any more than the key reference and assignment 
pegs (thus allowing horizontal freedom). 

4. The top layer is the same as the bottom layer, enclosing the lock from 
above. 

Figure 8 shows a side view of the polyhedral assembly. It can be partitioned 
only by removing the key, and the only interesting motions are planar ones. 

Let v be the number of variables and / be the length of the 3CNF 
formula in the 3-SAT instance.  Each TEST gate can be constructed with 
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0(v) vertices, and there are 0(f) such gates in the assembly. Hence the 
assembly in figure 8 has complexity 0(vf). It can clearly be constructed in 
polynomial time in v and /. Since an instance of 3-SAT can be reduced to 
an instance of translational partitioning in polynomial time, translational 
partitioning is NP-hard. We now have the following theorem. 

Theorem 1   Translational partitioning is NP-complete. 

In addition, the above assembly can be assembled if and only if it can be 
partitioned. An NP machine could guess all n - 1 partitionings to disassem- 
ble an n-part assembly, then check each in polynomial time, so the problem 
is clearly in NP. 

Corollary 2 Monotone binary assembly sequencing for polyhedra is NP- 
complete. 

3    Variants 

In the above construction, two of the parts have unbounded complexity, i.e. 
a part can have a number of vertices that is polynomial in the size of the 
3CNF formula. In this section we show that the result holds when the parts 
are limited to constant complexity. In addition, we describe several variants 
of the problem to which the construction can be adapted, and identify an 
important open problem for planar assemblies. 

3.1    Parts of Constant Complexity 

An equivalent assembly can be constructed such that each part has constant 
complexity. The basic structures of the key and lock are built of blocks 
such as those shown in figure 9a; each block connects to adjacent ones with 
pins. The key reference and assignment pegs are made of these blocks. A 
surrounding piece holds the key blocks together until the assembly is parti- 
tioned, at which time they can be removed vertically and then disassembled 
(figure 9b). Similarly, the guide and gates of the lock are built of blocks 
(figure 10a), which are placed inside a box and cover (figure 10b). The key 
passes through a hole in the cover. The cover traps the lock blocks until the 
key is removed, after which the cover and lock blocks can be removed and 
disassembled. 

The resulting assembly can be partitioned exactly when the previous 
assembly can be. A polynomial number of parts are required to construct 
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Figure 9: (a) the blocks, and (b) the key constructed with the blocks 

(a) (b) 

Figure 10: (a) the lock structure constructed of blocks, and (b) the box and 
cover enclosing the lock 

it. The parts with the most vertices are the blocks (figure 9a), which can be 
built with 32 vertices each. 

Theorem 3 Translational partitioning for assemblies of polyhedra with at 
most k vertices (for k > 22) is NP-cornplete. 

3.2    Rotations 

The construction can be modified to remove all interesting rotations. The 
sealing piece disallows almost all rotation during the assignment phase of 
the removal. The key reference is changed to be 8 units tall, so that it must 
pass through all gates in a horizontal position. In addition, the section of 
wall connecting TEST gates is made long enough that turning the key and 
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TA parts 180 degrees does not allow passage. The resulting assembly can be 
partitioned by translation and rotation exactly when it can be partitioned 
with translations. 

3.3 Connected Subassemblies 

For polyhedral assemblies A, another version of the partitioning problem 
requires that both the removable subassembly S and A \ S be connected, 
i.e. that the union of each set of parts form a connected set. In practice, this 
is useful constraint for assembly planning. The key and the lock are both 
in contact with all of the TA parts in the polyhedral assembly above, so the 
construction applies to the connected partitioning problem. 

3.4 Planar Assemblies 

In showing the complexity of polyhedral partitioning above, we constructed 
an assembly for a strange planar case. That is, if a single part may consist of 
a number of disconnected polygons in the plane, then assembly partitioning 
in the plane is NP-complete. While this result may prove to be significant 
in its own right, it raises the following question: what is the complexity of 
partitioning for assemblies of simple polygons in the plane? This seems to 
be the most interesting open problem to pursue in the future. 
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