
September 1989 Report No. STAN-CS-89-1283

Thesis

"'illlfillflU
PB96-149851

EFFICIENT COMPUTATION ON
SPARSE INTERCONNECTION NETWORKS

by

C. Gregory Plaxton

Pisxxwuc-^
h7:i0 QUALITY I^yl^iso Is

Department of Computer Science

Stanford University

Stanford, California 94305

19970610 104

SECURITY CLASSIF'CATON OF THiS ^AGE

REPORT DOCUMENTATION PAGE
Form Approved
OM8N0 0704-0 It

la REPORT SECURITY CLASSIFICATION

2a SECURITY CLASSIFICATION AUTHORITY

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

STAN-CS-89-1283

6a. NAME OF PERFORMING ORGANIZATION

Computer Science Dept.

6b. OFFICE SYMBOL
(If applicable)

6c. ADDRESS {City, State, and ZIP Code)

Stanford University

8a. NAME OF FUNDING/SPONSORING
ORGANIZATION

DARPA

8b. OFFICE SYMBOL
(If applicable)

8c. ADDRESS (City, State, and ZIP Code)

Arlington, VA

>b RESTRICTS; MARKINGS

3 DISTRIBUTION/AVAILABILITY OF REPQ3T

5. MONITORING ORGANIZATION REPORT NUMBER(S)

7a. NAME OF MONITORING ORGANIZATION

7b. ADDRESS (City, State, and ZIP Code)

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

N00014-88-K-0166

10 SOURCE OF FUNDING NUMBERS

PROGRAM
ELEMENT NO

PROJECT
NO.

TASK
NO

WORK UNIT
ACCESSION NO.

11 TITLE (Include Security Classification)

Efficient Computation on Sparse Interconnection Networks

12. PERSONAL AUTHOR(S)

C. Greg Plaxton
13a. TYPE OF REPORT

Research
13b. TIME COVERED

FROM TO

14 DATE OF REPORT (Year, Month, Day)

89/9/8 ___
15 PAGE COUNT

119

16 SUPPLEMENTARY NOTATION

COSATI CODES

FIELD GROUP SUB-GROUP

18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

9 ABSTRACT (Continue on reverse if necessary and identify by block number)

This thesis presents fast hypercube and shuffle-exchange algorithms for certain load bal-

ancing, selection and sorting problems. Non-trivial lower bounds are established for load

balancing and selection. In addition, efficient network implementations of the parallel prefix

operation and of the elementary Boolean matrix multiplication algorithm are described.

20 DISTRIBUTION / AVAILA8ILITY OF ABSTRACT

□ UNCLASSIFIED/UNLIMITED □ SAME AS RPT Q DTIC USERS

22a NAME OF RESPONSIBLE INDIVIDUAL

21 ABSTRACT SECURITY CLASSIFICATION

22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL

DO Form 1473. JUN 86 Previous editions are obsolete.

S/N 0102-LF-014-6603

SECURITY CLASSIFICATION OF THIS PAGE

EFFICIENT COMPUTATION ON

SPARSE INTERCONNECTION NETWORKS

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

By

Charles Gregory Plaxton

September 1989

© Copyright 1989 by Charles Gregory Plaxton

All Rights Reserved

Abstract

This thesis presents fast hypercube and shuffle-exchange algorithms for certain load bal-

ancing, selection and sorting problems. Non-trivial lower bounds are established for load

balancing and selection. In addition, efficient network implementations of the parallel prefix

operation and of the elementary Boolean matrix multiplication algorithm are described.

in

Acknowledgements

I would like to thank my principal advisor, Ernst Mayr, and the other members of my

reading committee, Bob Floyd, Andrew Goldberg and JeffUllman, for their enormous help

in shaping the contents of this thesis.

While hanging around the Computer Science department, I have managed to familiarize

myself with a number of its remarkable inhabitants, in addition to the surrounding brickwork

and foliage. It's been great, and I hope that we cross paths again!

This work has been primarily supported by a 1967 Science and Engineering Scholarship

from the Natural Sciences and Engineering Research Council of Canada. Additional funding

was provided by a grant from the AT&T Foundation, NSF grant DCR-8351757 and ONR

grant N00014-88-K-0166.

IV

Contents

Abstract iv

Acknowledgements v

1 Introduction 1

1.1 Notation and Terminology 1

1.2 Thesis Organization 4

2 Pipelining 7

2.1 The Prefix Operation 7

2.2 Network Implementations 9

2.2.1 Binary Tree 10

2.2.2 Hypercube 11

2.2.3 Shuffle-Exchange 12

2.2.4 A Useful Variation 15

2.3 Data Distribution 15

2.4 Sorting on the Pipelined Hypercube 16

2.5 Summary 22

3 Boolean Matrix Multiplication 24

3.1 The Basic Algorithm 24

3.2 A Simple Improvement 25

3.3 The Four Russians' Algorithm 28

v

3.3.1 Parallel Four Russians' 28

3.4 Summary 31

4 Load Balancing 32

4.1 Problem Definition: Balance 32

4.1.1 Tight Bounds for the Pipelined Hypercube 33

4.1.2 A Lower Bound for the Hypercube 34

4.1.3 Upper Bounds for the Hypercube 36

4.1.4 Load Balancing on the Shuffle-Exchange 40

4.2 Problem Definition: MultiBalance 40

4.2.1 Upper Bounds for the Hypercube 41

4.2.2 A Lower Bound for the Hypercube 43

4.2.3 Average Case Analysis 44

4.3 Summary 46

5 Upper Bounds for Selection 47

5.1 Problem Definition: Select 47

5.2 An Algorithm Based on Sorting 48

5.3 An Algorithm Based on Load Balancing 53

5.4 An Algorithm Based on Search 55

5.5 Summary 57

6 A Lower Bound for Selection 59

6.1 The Lower Bound Model 60

6.2 A Restricted Lower Bound 60

6.2.1 The Initial Setup 62

6.2.2 Useful Definitions 63

6.2.3 Invariants 64

6.2.4 Resolving Comparison Queries 65

6.2.5 Additional Information 68

vi

6.2.6 Consistency of the Adversary 68

6.2.7 Correctness of the Adversary 70

6.2.8 The Lower Bound 71

6.3 The Network Lower Bound 72

6.3.1 The Hypercube 74

6.3.2 Other Networks 75

6.4 Summary 75

7 Adaptive Sorting Algorithms 77

7.1 Problem Definition: Sort 78

7.2 Sorting on the Hypercube: QuickSort 79

7.2.1 QuickSort on the Pipelined Hypercube 79

7.3 A Faster Hypercube Algorithm: SmoothSort 80

7.3.1 Average Case Analysis 82

7.4 Summary 82

8 Non-Adaptive Sorting Algorithms 84

8.1 A Non-Adaptive Version of SmoothSort 85

8.2 The SquareSort Sorting Circuit 88

8.2.1 Network Implementations of SquareSort 91

8.2.2 An Adaptive Tradeoff for n < p 95

8.2.3 A Non-Adaptive Tradeoff for n > p 96

8.2.4 An Adaptive Tradeoff for p < n < pq 96

8.3 Summary 97

9 Concluding Remarks 99

A Expansion Properties of the Hypercube 101

A.l Asymptotic Analysis 101

Bibliography 106

vii

List of Tables

1.1 Important properties of the hypercube and shuffle-exchange 3

5.1 Best known selection algorithms for the hypercube and shuffle-exchange. . . 57

5.2 Best known selection algorithms for the pipelined hypercube 58

7.1 Previous sorting algorithms for the hypercube and shuffle-exchange 78

7.2 Running times of sorting algorithms for the hypercube 82

8.1 Running times of sorting algorithms for the shuffle-exchange 97

Vlll

List of Figures

1.1 A hypercube of dimension 4 drawn with circular edges 2

1.2 A shuffle-exchange of dimension 4 embedded on a circle 3

2.1 An inorder complete binary tree 10

2.2 Embedding the inorder binary tree in the hypercube 13

2.3 A shuffle-exchange embedding for the high-numbered processors 14

2.4 A shuffle-exchange embedding for the low-numbered processors 15

3.1 The path followed by the atJ's 29

3.2 The path followed by the 6,-j's 30

6.1 Extracting the sets Ui+i and F;+1 from U{ and V{ 65

8.1 A sample run of SquareSort (continued in Figure 8.2) 93

8.2 A sample run of SquareSort (continued from Figure 8.1) 94

IX

Chapter 1

Introduction

A considerable amount of research effort in the field of parallel computation has concentrated

on developing algorithms for idealized machine models. The primary example of this is the

PRAM model of Fortune and Wyllie, which assumes the existence of a shared memory

allowing simultaneous random access by an unbounded number of processors [FW78].

This thesis adds to the growing body of work that addresses the design and analysis

of algorithms for more realistic models of parallel computation. Specifically, all of the al-

gorithms to be described are designed to run on sparse interconnection networks such as

the hypercube and shuffle-exchange. Algorithms for performing operations such as paral-

lel prefix, matrix multiplication, load balancing, selection and sorting will be considered.

The primary motivation for developing fast implementations of these basic operations is to

provide useful primitives for writing higher-level parallel programs.

1.1 Notation and Terminology

A p processor fixed interconnection network may be viewed as an undirected graph, where

vertices correspond to processors and edges correspond to bidirectional1 communication

channels. Each processor has an infinite local memory, and a unique integer ID. There is

no global memory; processors communicate with one another by sending and receiving data

over the channels provided by the network. In order to discuss the time complexity of an

algorithm it is necessary to define exactly what operations can be performed in a single unit

of time, or time step. For establishing asymptotic upper bounds, it is realistic to assume

that:

With respect to the shuffle-exchange, the ability to "unshuffle" data is assumed.

CHAPTER 1. INTRODUCTION

Figure 1.1: A hypercube of dimension 4 drawn with circular edges.

1. Memory is configured in O(logp) bit words.

2. In a single time step, a processor can send and/or receive a single word of data and

perform 0(1) CPU operations on word-sized operands.

Most of the algorithms described in this thesis are designed to run on the hypercube

and shuffle-exchange network families. A dimension d hypercube has 2d processors with IDs

ranging from 0 to 2d — 1. Processor i is adjacent to processor j if and only if the binary

representations of i and j differ in a single bit position. A hypercube of dimension 4 is

depicted in Figure 1.1.

The shuffle-exchange was introduced by Stone [Sto71]. Like the hypercube, a shuffle-

exchange of dimension d has 2d processors with IDs ranging from 0 to 2d~1. Processor

i = (id-i • • -»0)2 is connected to processors Exchange(i), Shuffle(i) and Unshuffle(i), where

Exchange(i) = (id-i • • • *i(*o © 1))2,

Shuffle(i) = (id-2---ioid-ih, and

Unshuffle{i) = (io*d-i • •■»1)2,

0 < i < d. A shuffle-exchange of dimension 4 is depicted in Figure 1.2.

Some important properties of the hypercube and shuffle-exchange network families are

summarized in Table 1.1. Note that the degree of the shuffle-exchange is constant, while

that of the hypercube is unbounded. Furthermore, the optimal VLSI layout area of the

shuffle-exchange is somewhat smaller.

A more powerful model of the hypercube will also be considered, one which does not

adhere to the 1-port restriction on communication imposed above. This is the pipelined

1.1. NO TATION AND TERMINOL OGY

Figure 1.2: A shuffle-exchange of dimension 4 embedded on a circle.

Network Processors Degree Diameter Layout Area
hypercube
shuffle-exchange

P
P

logp
3

logp
2 logp

Q(P
2
)

0(p2/log2p)

Table 1.1: Important properties of the hypercube and shuffle-exchange.

hypercube model of Varman and Doshi [VD88]. The pipelined hypercube remains a realistic

model of computation by providing only a very restrictive form of d-port communication.

Communication on the pipelined hypercube is via word-sized packets, routed according to

the following simple scheme. Address bits are successively corrected in either ascending or

descending (as determined by the sender) order of significance, with no collisions permitted.

A collision occurs when two packets attempt to traverse the same edge in the same direction

at the same time.

In routing a packet, one time step is expended for each bit in the smallest contiguous

block of address bits that contains all of the bits to be corrected. For example, a packet sent

from processor IOIIOIOI2 to processor IOOIOOH2 must pass through dimensions 1, 2, and

5. Assuming that the sending processor elects to have address bits corrected in descend-

ing order of significance, the packet would be routed according to the schedule given by

the following list of (time, processor) pairs: (0,101101012), (1,100101012), (2,100101012),

(3,100101012), (4,100100012), (5, IOOIOOH2). This packet is sent by processor 101101012,

received and sent by processors 100101012 and 10010001, and received by 101100112. Let

the first sender (IOHOIOI2, in this example) be called the originator of the packet, and

let the last receiver (100100112, in this example) be called the acceptor of the packet. The

pipelined hypercube imposes the following pair of restrictions on communication:

4 CHAPTER 1. INTRODUCTION

1. Each processor is allowed to originate and/or accept at most one packet per time step.

2. Each edge can transmit at most one packet in each direction per time step.

The pipelined hypercube model is not realistic in a strict sense, since a single RAM

cannot hope to examine O(logp) packets in 0(1) time. However, it may be a useful model

in practice since the only additional hardware required at each hypercube processor is a

ring of O(logp) trivial coprocessors to handle the packet routing scheme described above.

Viewing this as an enhancement to the O(logp) I/O channel hardware already required by

a hypercube processor, one would expect to suffer only a small constant factor increase in

the VLSI area needed to implement a processor.

Several comments should be made with regard to mathematical notation. First, all

logarithms are to be taken base 2, that is, logo; denotes log2z. Second, it will sometimes

be convenient to make use of the function l0g, defined as

l0g x — max{log x, 1}.

Finally, [a,b) will designate {i \ a < i < b}.

1.2 Thesis Organization

The following is an overview of the main results contained in the thesis.

Chapter 2, which represents joint work with Ernst Mayr, provides pipelined paral-

lel prefix algorithms for the complete binary tree, hypercube and shuffle-exchange. This

primitive is used to develop a pipelined version of the multi-way merge sort of Nassimi

and Sahni [NS82] that runs on the pipelined hypercube. Given p processors and n <

plogp keys to be sorted, the running time of the pipelined hypercube sorting algorithm is

0(log2p/log((plogp)/n)), which improves (asymptotically) upon Batcher's bitonic sort by

a log log p factor in the important case n = p.

It has been shown that the product of two n x n Boolean matrices can be computed

in O(logn) time on a hypercube or shuffle-exchange with 0(n3) processors. Chapter 3

reduces this processor requirement to 0(n3/(log2 nloglogra)) by making use of simulation

techniques and a parallel version of the Four Russians' algorithm. This bound improves

upon a result of Agerwala and Lint by a factor of log n [AL78].

1.2. THESIS ORGANIZATION 5

Maintaining a balanced load is of fundamental importance on any parallel computer,

since a strongly unbalanced load often leads to low processor utilization. Chapter 4 con-

siders two load balancing problems. First, given n tokens arbitrarily distributed over a p

processor network with no more than m tokens at any one processor, how fast can the tokens

be redistributed so that each processor holds the same number? Second, given n tokens

uniformly distributed over a p processor network, and arbitrarily partitioned into g groups,

how fast can the tokens be redistributed so that each processor holds the same number

from each group? Upper bounds on the worst case complexity of these two problems are

obtained from the analysis of practical algorithms for the hypercube, pipelined hypercube

and shuffle-exchange. Matching lower bounds are also provided for certain cases. Average

performance is also considered.

Chapters 5 and 6 are concerned with the problem of selection, that is, determining the

kth largest key out of a given set of n keys. Three different selection algorithms are given

in Chapter 5, each of which represents the best known selection algorithm over some range

of the ratio n/p (p is the number of processors) for one or more of the networks under

consideration. One of the algorithms is based on fast sorting of small sets, one is based on

load balancing, and one is based on a sequential tradeoff between preprocessing and search

time in a partial order. For n > plog2 p, the latter algorithm runs in 0((n/p) loglogp)

time on the hypercube and shuffle exchange. Since the sequential complexity of selection

is linear, one might hope that for n/p sufficiently large the log log p factor in this running

time could be eliminated. However, Chapter 6 proves that the log log p factor cannot be

eliminated. Specifically, a lower bound of Q((n/p)log\ogp + logp) is established for a

large class of networks that includes the complete binary tree, multi-dimensional mesh,

hypercube, butterfly and shuffle-exchange.

Chapters 7 and 8 deal with the problem of sorting a set of n keys with p processors.

Chapter 7 makes use of the load balancing and selection results of Chapters 4 and 5 to

derive fast, practical sorting algorithms for the hypercube, shuffle-exchange and pipelined

hypercube. Chapter 8 considers two approaches to sorting when algorithms are confined to

a class corresponding essentially to sorting circuits.2 For sufficiently large values of the ratio

n/p, all of the sorting algorithms described in these two chapters have a lower asymptotic

complexity than Batcher's bitonic sort [Bat68].

2The term "sorting circuit" will be used in lieu of the more usual "sorting network" in order to avoid
confusion with interconnection networks. For a thorough introduction to the design and analysis of sorting
circuits, see Knuth [Knu73].

CHAPTER 1. INTRODUCTION

Finally, Chapter 9 offers some concluding remarks and open problems for further con-

sideration.

Chapter 2

Pipelining

This chapter combines several previously known techniques to obtain fast implementations

of the so-called parallel prefix operation. Algorithms are given for the complete binary tree

as well as the hypercube and shuffle-exchange. Pipelined schemes for performing k prefix

operations in Q{k + logp) time on p processors are given for the same set of networks.

Pipelined parallel prefix is then used to develop a simplified implementation of the optimal

merging algorithm of Varman and Doshi, which runs on the pipelined hypercube [VD88].

Finally, a pipelined version of the multi-way merge sort of Nassimi and Sahni [NS82], running

on the pipelined hypercube, is described. Given p processors and n < plogp keys to be

sorted, the running time of the pipelined algorithm is O(log2 p/log((plogp)/n)). For the

interesting case n = p this yields a running time of O(dSdb), which is asymptotically

faster than Batcher's bitonic sort [Bat68].

2.1 The Prefix Operation

The prefix operation was introduced independently by Schwartz [Sch80] and by Ladner

and Fischer [LF80]. For other work on parallel prefix, the reader is referred to [Fic83] and

[Rei84].

Let © denote a binary associative operator on some domain X. Given {xo, • • •, £n-i} Q

X, the Prefix operation computes each of the partial sums iji = XQ © • • • © a:,-, 0 < i < n. For

example, assuming that © is addition, n = 5, xo = 5, x\ = 2, X2 = 6, x$ = 4 and X4 = 9,

then the output of Prefix is 1/0 = 5, xj\ = 7, y<i = 13, 2/3 = 17 and y4 = 26.

8 CHAPTER 2. PIPELINING

Given an additional n Boolean values ao,.. ■ ,an-i, the n given a;,- values can be parti-

tioned into contiguous intervals in the following manner: an interval begins at each i such

that a,- = true and extends up to, but not including, the next highest integer j such that

aj = true. The first interval begins at processor 0 regardless of the value of ao, and the last

interval ends at processor n — 1. The segmented Prefix operation executes a prefix operation

over each interval. Extending the example of the preceding paragraph, assume that a2 and

Ü4 are true while ao, a\ and 03 are false. Then the X{ values are partitioned into the

intervals {zo,a:i}, {^2^3} and {2:4} and the output of the segmented Prefix operation is

Vo = 5, 2/1 = 7, y2 = 6, y3 = 10 and yA = 9.

When implementations of the Prefix operation for various networks are given in Sec-

tion 2.2, it will be convenient to assume that there is an identity element for © in X', which

will be denoted 0$. This assumption can be made without loss of generality because if no

such element exists, the set X can be augmented with an identity element 0® by defining

0® © x = x and x © 0$ = x for all x £ X U {O®}. Note that associativity is preserved.

Definition 2.1.1 For all pairs of Boolean values ao,ai and all xo,x-y 6 X, let ©' denote

the binary operator

(ao,xo) ffi' (oi,a;i) = (ao or a\, if ai then Xi else XQ © X\).

The operator ©' will be referred to as the segmented © operator.

Remark 1 The ©' operator has identity 0ffl/ = (false,0e).

Remark 2 The ffi' operator is not commutative, assuming \X\ > 1.

Remark 3 The ffi' operator is associative.

Remark 4 For k > 0,

(a0, xo) ffi' • • • ffi' (ak, Xk) = (a0 or • • • or a*, i,-®-ffi Xk),

where j is the highest index less than or equal to k such that aj = true, or 0 if there is no

such index.

Remark 1 is an immediate consequence of Definition 2.1.1. For Remark 2, let xo,x\ be

distinct elements of X and note that (true,x0) ©' (true,xi) = x\ while (true,^) ©'

2.2. NETWORK IMPLEMENTATIONS 9

(true,xo) = XQ. Remark 3 follows from the observation that for all Boolean values ao, a\, a2

and XQ,X\,X2 6 X

((a0,x0) @' (a1,xi))@'(a2,x2)

— (a0 or oi, if a,\ then x\ else xQ © xi) ffi' (a2, x2)

= (a0 or ai or a2, if a2 then x2 else if ai then xx © £2 else ar0 © £i © x2)

= (a0 or (ai or a2), if {a.\ or a2) then X else x0 © X)

= (ao,xo)®'(ai or a2, X)

= (ao,x0)©'((a1,a;1)©
/(a2,2;2)),

where X denotes the conditional expression: if a2 then x2 else x\@x2. Finally, Remark 4

may be easily established by induction on k.

Remarks 3 and 4 demonstrate that any segmented Prefix operation with operator ©

mapping X X X to X is equivalent to an ordinary Prefix operation with operator ©' mapping

(B x X) x (B X X) to B x ;t, where £ denotes the set of Boolean values {true, false}. The

second component of each output pair is the result of the desired segmented Prefix operation,

and the first component indicates whether or not that processor belongs to an "undefined"

interval; it is false at processor i if and only if a0,... ,a4- are all false. This reduces coding

segmented prefix to coding ordinary prefix.

2.2 Network Implementations

This section presents efficient implementations of the Prefix operation for the complete

binary tree, hypercube and shuffle-exchange families of networks. It will be assumed that

the network consists of p = n processors, and that processor i initially contains the value

X{, 0 < i < p. The computation is considered to be complete when the partial sum

Vi = xo © • • • © Xi has been computed at processor i, 0 < i < p. The complexity of the

algorithms will be stated in terms of time steps, as defined in Section 1.1. Unless otherwise

stated, running times should be assumed to be accurate to within an additive constant. It

will be assumed that the i,'s, as well as all partial sums of the x^s, are word-sized quantities.

In the programs to follow, all interprocessor communication will be specified using the

pair of routines Send and Receive. Send takes two arguments: the first specifies the word of

data to be transmitted, and the second specifies the ID of the destination processor. Receive

is a function with one argument which specifies the ID of the source processor. Once a packet

10 CHAPTER 2. PIPELINING

lööoöl föoTöl [Qloöl föTTöl ITöoöl IToTöl fTToöl riTTöl

Figure 2.1: An inorder complete binary tree.

arrives from the source, the word of data contained in that packet is returned as the value

of the function. In order to comprise a valid source/destination pair, two processors must

be adjacent in the network.

2.2.1 Binary Tree

The first implementation of Prefix that will be considered is the standard two-pass algorithm

for the inorder complete binary tree. Assume that a binary tree of size p = 2d — 1 is given,

with processors numbered inorder from 0 to 2d — 2. An example of such a network is

shown in Figure 2.1, where the processor IDs have been written in binary, and d — 4.

The code for this algorithm assumes that each processor has initialized the variables Root,

Leaf, LeftChild, RightChild and Parent in the following manner. The Boolean variable

Root {Leaf) is true if and only if the processor represents the root (a leaf) of the tree.

The integer variables LeftChild, RightChild and Parent hold the IDs of the neighboring

processors, and are undefined whenever such a neighbor does not exist.

begin Prefix(®, x)

(1) x\, <— if Leaf then 0® else Rece\ve(LeflChild);

(2) XR <— if Leaf then 0© else Rece\\/e(RightChild);

(3) if not Root then Send(a:L © x © XR, Parent);

(4) 2/L <— if Root then 0$ else Receive(Parent);

(5) VR <— VL © XL © x;

(6) if not Leaf then Send(?/L, LeftChild);

(7) if not Leaf then Send(?/R, RightChild);

2.2. NETWORK IMPLEMENTATIONS 11

(8) return(t/R);

end Prefix

As mentioned above, the program makes two passes over the tree. The first pass is

upward, from the leaves to the root, and the second pass is downward. For every processor

p, let T(p) denote the subtree rooted at processor p. Note that the IDs of the processors in

T(p) form a contiguous block of integers. During the upward pass, each processor receives

the sum of its left and right subtrees (xi, and XR), computes the sum over T(p), and passes

the result to its parent. During the downward pass, each processor receives from its parent

the sum J/L over all processors with IDs less than those in T(p), computes the sum over

all processors with IDs less than those in its right subtree (2/R), and sends the appropriate

values to its left and right children (T/L and J/R). The correctness of the program is easily

established by induction on the depth of the tree, and it runs in 4logp time steps.

Note that in any given time step, only two of the levels of the tree are active, implying

that the algorithm can be pipelined level by level. By initiating a new prefix computation

every second time step, it is possible to perform k Prefix operations on the inorder complete

binary tree in 2k + 41ogp time steps.

2.2.2 Hypercube

For the hypercube, the following FFT-like computation executes Prefix in logp time steps:

I jegn l Prefix(ffi, *)

(1) y *- — x;

(2) for i <— 0 to d - 1 do

(3) Sen%, i)

(4) if Myldi = = 0 then

(5) y<— y © Receive(i);

(6) else

(7) temp <— Receive(z);

(8) x <— temp © x;

(9) v*— temp © y;

(10) end if

(11) end for

(12) ret urn(a;);

12 CHAPTER 2. PIPELINING

end Prefix

The variable Myld holds the ID of the processor, and Myld^ denotes the ith bit of the

ID (the least significant bit is bit 0). The source and destination arguments of Send and

Receive specify the bit position in which the two communicating processors differ.

The program runs in logp time steps, and functions in the following manner. In ad-

dition to the partial sums demanded by the Prefix operation, the total sum is computed

at every processor. The local variables x and y accumulate the partial and total sums,

respectively. For a hypercube consisting of a single processor, the computation is trivial.

Given p processors with associated z,- values and where p = 2d, d > 1, the program first

recursively computes partial and total sums for the upper and lower halves of the values

independently, and then exchanges the total sums between halves. This enables the revised

partial sums for the upper half to be computed, as well as the new total sums.

Unfortunately, the above program does not lead to a pipelined implementation of the

Prefix operation because it uses all of the processors at every time step. One way of achiev-

ing pipelined speedup is to make use of the dilation 2 inorder complete binary tree embed-

ding [BCLR86]. Figure 2.2 gives this embedding for the case p = 16, where the "extra"

processor (with ID p — 1) has been added as an extra level above the root. The edges

depicted in Figure 2.2 are physical hypercube edges. The left child of a non-leaf processor

is connected directly to its parent, while the right child is connected to its parent via the

left child. It is easy to verify that the pipelined algorithm given for the inorder complete

binary tree in Section 2.2.1 can be modified to run in the same time bound on the dilation

2 inorder complete binary tree embedding. In particular, note that processor p — 1 is in an

appropriate location to receive the sum over all of the other processors. To summarize, k

Prefix operations can be performed in 2k + 41ogp time steps on the hypercube.

2.2.3 Shuffle-Exchange

The hypercube code given in the preceding section for performing a single Prefix operation

can be easily adapted to the shuffle-exchange:

begin Prefix(®, x)

(1) y<—x;

(2) repeat d times

2.2. NETWORK IMPLEMENTATIONS 13

fööoöl fööTöl löToöl löTTöl fiöoöl fiöTöl [Tioöl-

Figure 2.2: Embedding the inorder binary tree in the hypercube.

TTTÖ1

(3) Send(2/, Exchange);

(4) if Myld0 = 0 then

(5) y *— y © Rece'we(Exchange);

(6) else

(7) temp <— Receive(Exchange);

(8) x *— temp © x;

(9) y <— temp © y;

(10) end if

(11) Send(a;, Unshuffle);

(12) x <— Rece'ive(Shuffle);

(13) Send(y, Unshuffle);

(14) y <— Rece'we(Shuffle);

(15) end repeat

(16) return(a;);

end Prefix

The above program runs in 3 logp time steps. As in the case of the hypercube, however,

a different approach is needed in order to obtain a pipelined implementation of the Prefix

operation. Unfortunately, it is not possible to embed the inorder complete binary tree in

the shuffle-exchange with constant dilation. Instead, a pipelined implementation will be

14 CHAPTER 2. PIPELINING

gun

fiöoöi—rrööTi fiöiöi—from HTQQI—mön ITTIöI—mm

Figure 2.3: A shuffle-exchange embedding for the high-numbered processors.

obtained by making use of the dilation 2 complete binary tree embeddings depicted, for

the case p = 16, in Figures 2.3 and 2.4. The leaves of the tree in Figure 2.3 are the high-

numbered processors (those with IDs in the range p/2 to p — 1), numbered inorder. In

this embedding, the ID of the left child of an internal processor is the shuffle of the ID

of its parent, and siblings communicate via the exchange connection. The embedding of

Figure 2.4 is defined in a similar fashion, and has the low-numbered processors (0 to p/2— 1)

at its leaves.

These embeddings can be used to obtain a pipelined implementation of k Prefix opera-

tions as follows. First, the embedding of Figure 2.3 is used to compute the k sets of partial

sums over the high-numbered processors. This takes 2k + 4logp time steps. Similarly,

the embedding of Figure 2.4 can be used to perform k prefix sums over the low-numbered

processors in 2k + 41ogp time steps. At this point, all that remains to be done is to broad-

cast, in a pipelined fashion, the k total sums over the low-numbered processors to the p/2

high-numbered processors, and to add these values to the partial sums computed earlier.

This last phase can be performed in 2k + 21ogp time steps using the embedding of Fig-

ure 2.4.1 Hence, k Prefix operations can be executed in 6k + 10 log p time steps on the

shuffle-exchange.

1 Note that as a side-effect of the prefix sums performed over the low-numbered processors, the desired
sums are already available at the root.

2.3. DATA DISTRIBUTION 15

[ÖÖÖÖ1 IÖ0ÖT1 [ÖÖTÖI IQOTTI IÖIÖÖ1 IÖ1ÖTI föTTÖl lÖlTTl

Figure 2.4: A shuffle-exchange embedding for the low-numbered processors.

2.2.4 A Useful Variation

Section 2.4 will make use of a variant of the Prefix operation, Prefix', defined as follows.

Rather than computing ar0 © • • • © a:,- at processor i, 0 < i < p, Prefix' outputs 0® at

processor 0 and xoffi- • -®a:;_i at processor i, 1 < i < p. This is sometimes more convenient,

particularly when the operator © is not invertible. Note that all of the implementations of

Prefix given above may be trivially modified to implement Prefix' within precisely the same

time bounds. For example, in the complete binary tree program of Section 2.2.1, it suffices

to change the return value from y& to J/L © XL-

2.3 Data Distribution

Consider the binary associative operator © defined over X by x © y = x, for all x, y € X.

This is sometimes referred to as the Copy operator. Observe that the effect of applying

Prefix with the Copy operator is to perform a broadcast of a single value from processor 0 to

all other processors. Of course, there are simpler techniques for broadcasting a single value

over the processors of any of the networks under consideration. However, combining this

observation with the results of the previous section immediately implies that k segmented

broadcasts can be executed in 2k + 41ogp time steps on the tree or hypercube, and in

6k + 10 log p time steps on the shuffle-exchange.

In order to fully illustrate the techniques discussed in Section 2.1, the implementation

of segmented Prefix with the Copy operation will now be studied in greater detail. As stated

16 CHAPTER 2. PIPELINING

in Section 2.1, processor i initially holds the Boolean value a; and X{ € X, 0 < i < p. Note

that under the Copy operation the only relevant x^s are those for which the corresponding

a, is true .

Clearly, there is no identity element for the Copy operation in X. To remedy this

situation, the domain of Copy is extended from X to B x X where every pair with first

component false, say, is defined to be an identity element. In practice, this corresponds to

prefixing a single bit bi to each of the a;,'s. Formally, the operator © = Copy becomes

(b0,x0) © (h,xi) = (b0 or &i, if 60 then x0 else Xi),

for all bo,bi € B and xo,xi € X.

In order to reduce segmented Prefix with operator © = Copy to ordinary Prefix with

operator ©' = Copy', let ©' be defined as follows:

(a0, (b0, x0)) ®' (ai,(h,xi)) = (a0 or ai: if ax then (6i,a>i) else (b0,x0) © (&i,Zi)).

Dropping the inner parentheses and simplifying gives

(ao,bo,xo) ®'(ai,bi,xi) = (ao or a\,

if a\ then b\ else &o or b\,

if ai or not &o then x\ else XQ).

Note that the above formulation allows bit pipelining in the sense described by Blel-

loch [Ble87]. In other words, as each bit of the two operands is received, the next output

bit can be computed. This property holds not only for the Copy operator, but also for any

other single-pass operator, as defined by Blelloch [Ble87].

Finally, observe that the data distribution operation defined by Ullman [U1184] is equiv-

alent to a segmented Prefix operation with the Copy operator. Thus, the techniques outlined

in Section 2.2 immediately lead to efficient pipelined implementations of this primitive for

the complete inorder binary tree, hypercube and shuffle-exchange network families.

2.4 Sorting on the Pipelined Hypercube

In this section, a simplified implementation of the optimal merging algorithm of Varman

and Doshi [VD88] will be described, and this will be used to develop a pipelined version of

2.4. SORTING ON THE PIPELINED HYPERCUBE 17

the sorting algorithm of Nassimi and Sahni [NS82] for the pipelined hypercube. A formal

definition of the Sort operation, along with a discussion of previous sorting results for the

hypercube and shuffle-exchange, may be found in Chapter 7.

The added power of the pipelined hypercube will only be used for performing pipelined

inverse concentration routes. It is interesting to note that the pipelined hypercube is not

needed in order to perform pipelined concentration routes, nor is it needed to perform the

pipelined inverse concentration with copy operation of Varman and Doshi. Concentration

and inverse concentration routes were denned by Nassimi and Sahni [NS82], and it is easy

to show that k such operations can be performed in k + logp time steps on the pipelined

hypercube. Furthermore, there is no hope of achieving this asymptotic time bound on the

1-port hypercube since there is a lower bound of Cl(k log1'2 p) time steps in this case. To

prove this lower bound, consider a set of k monotone routes for which the source processors

are exactly those with strictly more O's than l's in their IDs and the destination processors

are those with more l's than O's. In such a case, £l(kp) packets must pass through the

0(plog-1'2 p) processors with an equal number of O's and l's (or one more 0 than 1, say,

if logp is odd), which implies a lower bound of ^(Hog1/2p) time steps for performing k

monotone routes. Since every monotone route can be decomposed into a concentration route

followed by an inverse concentration route, and these operations have equal complexity, this

lower bound applies to the pipelined concentration and inverse concentration operations as

well.

A pipelined algorithm for merging two sorted lists X and Y will now be described. Both

X and Y are of length pk, and the algorithm runs on p processors. The algorithm is similar

to that proposed by Varman and Doshi [VD88], but is somewhat simpler. The optimal

merging algorithm of Anderson, Mayr and Warmuth for the EREW PRAM also takes a

similar approach [AMW88]. For simplicity, it will be assumed that all of the 2pk input keys

are distinct. For both X and Y, the keys with ranks (numbered from 0) in the range ik

to (i + 1)& — 1 are initially stored at processor i, 0 < i < p. The two ordered sets of k

keys located at processor i will be referred to as X,- and Yi, respectively. Let a;,- denote the

least element of Xj, and let y,- denote the greatest element of Yi, 0 < i < p. Let X' and Y'

denote the set of all x,'s and 2/,'s, respectively. Let Z denote the sorted list of length 2pk

that results from merging X and Y. Those elements of Z with ranks in the range 2ik to

2(i + l)k — 1, denoted Z,, must be routed to processor i by the end of the computation,

0 < i < p, and must be sorted locally.

18 CHAPTER 2. PIPELINING

The approach taken is first to merge X' and Y', and then to use the resulting list to

guide the merging of X and Y. Let Z' denote the sorted list of length 2p that results from

merging X' and Y'. Let Zj denote the key with rank j in Z', 0 < j < 2p. Let Zj denote

the set of k keys associated with ZJ, that is, either Zj = X{ for some a:,- 6 X' and Zj = Xt-,

or Zj = yi for some yi € Y' and Z'j = Y;. Note that if Zj G X' then the rank of ZJ in Z is

between j'fc and (j + l)k — 1, inclusive. The exact rank of Zj in Z can be determined by

computing its rank in the set Yi, where yi is the least element of Y' exceeding Zj. Similarly,

if ZJ € Y' then the rank of Zj in Z is between jk and (j + l)k — 1, and the exact rank of

Zj in Z depends upon the set X,-, where X{ is the largest element of X' that is less than ZJ.

Furthermore, it is easy to check that the set Zj is contained in the union of Z'2j, Z^j+i > the

set X{ corresponding to the largest x,- that is less than z-ij, and the set Yi corresponding to

the smallest yi that is greater than 22j+i • These observations lead to the following pipelined

merging algorithm.

Algorithm Merge

1. Reverse the list Y', that is, route yi to processor p — i — 1, 0 < i < p. This takes logp

time steps.

2. Merge X' and Y' by simulating a bitonic merge over 2p processors. Record the data

movements to facilitate the "unmerge" of Step 3. This takes 2logp time steps.

3. Route the rank of each key in Z' back to the processor which originally held that key.

This can be done in 21ogp time steps by following the paths recorded in Step 2 in the

reverse direction.

4. Route each set Xi to the processor that held a;,- after Step 2, 0 < i < p. The ID

of that processor can be computed from the rank received by processor i in Step 3.

The routing can be performed in 2k + 21ogp time steps using a pipelined inverse

concentration. Route the Yj's in a similar fashion, for a total cost of Ak + 4logp time

steps.

5. Assuming the set X{ was routed to processor ji in the previous step, broadcast X,- to

all processors with IDs in the range ji + 1 to j,+i, 0 < i < p. This can be done in

2k + 4logp time steps with a single application of the Prefix' operation, as described

in Section 2.2.

2.4. SORTING ON THE PIPELINED IIYPERCUBE 19

6. Assuming the set Y{ was routed to processor j, in the previous step, broadcast Y{ to

all processors with IDs in the range j't_i to j,- — 1, 0 < i < p. This can be done with

a single application of a "backwards" version of Prefix', and takes 2k + 4logp time

steps.

7. At this point, processor j contains a copy of Z'2j, Z'2j+1, the largest X,- with X{ < z2j

and the smallest Y{ with y,- > Z2j+i, 0 < j < p. As observed above, the union of these

sets contains the desired set Zj, and the keys to be discarded (i.e., those not belonging

to Zj) can be determined by computing the exact rank of either z2j or Z2j+i- These

sets can be merged, and the rank computation performed, with 0(k) local operations.

The definition of a time step allows these local operations to be interleaved with the

computations of Steps 5 and 6 at no extra cost.

Note that only Step 4 uses the power of the pipelined model. The total running time of

Merge is 8k + 17logp time steps. Now consider the case in which 2p processors are available

to perform the merge, where it is assumed that X,- is initially stored at processor i, Y; is

initially stored at processor 2p — i — 1, and Zj is to be output at processor j, 0 < i < p,

0 < j < 2p. In this case, Step 1 is unnecessary, and the cost of each of Steps 2, 3 and 4 is

halved, while the cost of the remaining steps is unchanged. Thus, the total cost of Merge

with 2p processors is 6k + 121ogp time steps. Note that for k — ft(logp), this running time

is within a constant factor of optimal. Furthermore, as observed by Varman and Doshi,

this optimal merging routine immediately implies an optimal algorithm for sorting when

the number of keys to be sorted, n, exceeds the number of processors, p, by a factor k that

is fi(logp). The idea is to sort the set of k keys at each processor locally, and then to merge

sorted subcubes repeatedly until the entire hypercube has been sorted. At each level, even

subcubes are sorted in ascending order and odd subcubes are sorted in descending order.

The running time of this algorithm, which will be referred to as MergeSort, is

Y, (ek + l2i) = 6klogp + 0(\og2p).
0<t<logp

As mentioned above, this running time is optimal for k = fi(logp).

A pipelined version of the multi-way merging procedure of Nassimi and Sahni [NS82]

that runs on the pipelined hypercube will now be described. The input consists of 2l sorted

lists of length k2m, and the output is a single sorted list of length k2l+m. The merging is

performed in 0(k + logp) time steps on a hypercube with p — 22l+m processors. Let the zth

20 CHAPTER 2. PIPELINING

input list be denoted X1, 0 < i < 2l, and let the set of k elements of X1 with ranks between

jk and (j + l)k - 1 (inclusive) be denoted X%-, 0 < j < 2m. The set Xj is initially stored at

processor i2m + j. Let the output list be denoted X. At the end of the merging process,

the elements of X with ranks between jk and (j + l)k — 1 (inclusive) should be stored at

processor j, 0 < j < 2l+m.

It is useful to view the processors of the given hypercube as forming a 2l by 2t+m array,

where the processor in row i and column j has ID i2l+m + j (row-major order). Note that

all of the Xj's are stored in row 0. In fact, each processor in row 0 contains exactly one set

Xh ■
The algorithm makes use of pipelined broadcast and sum operations over entire sub-

cubes. Formally, a pipelined broadcast operation takes k keys stored at a single processor

and broadcasts them over the entire subcube. For a pipelined sum operation, processor i

initially holds k keys a^j, 0 < i < p, 0 < j < k. The output is the k sums X)o<;<pa«j>

0 < j < k, all of which are output at a single designated processor. Although such oper-

ations can be performed using Prefix, other implementations exist which are more efficient

by a constant factor. For example, using the multiple spanning binomial tree (MSBT)

embedding of Ho and Johnsson [HJ86] it is possible to perform k broadcasts in k + logp

time steps. Similarly, k sums can be performed in k + logp time steps. Note that although

these operations are pipelined, they run on the 1-port hypercube and thus do not require

the additional power of the pipelined hypercube.

Algorithm MultiWayMerge

1. Broadcast Xj to all of the processors in column z'2m +j, 0<i<2l,Q<j< 2m. Each

of the columns is an independent subcube of dimension /. Thus, the broadcasts can

be performed in k + / time steps using an MSBT embedding within each column.

2. Replicate list X' across the ith row, 0 < i < 2l. In other words, route a copy of

Xj to each column of the ith row that is congruent to j mod 2m. This amounts to

performing pipelined broadcasts over subcubes of dimension /, which can be done in

k + I time steps using the MSBT embedding.

3. Merge the lists X' and X* using the jth block of 2m processors of row i (i.e., columns

j2m to (j + l)2m - 1), 0 < i,j < 2', i ^ j. This takes 8k + 17m time steps.

2.4. SORTING ON THE PIPELINED HYPERCUBE 21

4. In the jth block of 2m processors of row i, "unmerge" the rank of each element of X'

in XJ (this is the rank of that key in X' U X* minus its rank in X(), 0 < i,j < 2l,

i ^ j. In other words, route the rank of each key back to the processor that contained

the key before Step 3. This is a pipelined inverse concentration, and can be performed

in k + m time steps. Where i = j, simply label each key with its rank in X1.

5. Compute the rank of every key in X. The processors of row i are used to perform this

computation for the elements of the set X1, 0 < i < 2l. For each set Xj, a pipelined

sum is performed over a subcube of dimension /, adding the ranks computed in Step 4

and routing the results to the first block of 2m processors in each row. This takes k +1

time steps using the MSBT embedding.

6. In row i, route the elements of X, to the correct output column (given by the floor

of the rank computed in Step 5 divided by k), 0 < i < 2l. This is a pipelined inverse

concentration in a subcube of dimension / + m, and takes k + I + m time steps.

7. Each column of the array now contains k keys. Route these keys to the top of the

column (row 0). In terms of data paths, this is essentially an inverse pipelined broad-

cast operation over a subcube of dimension /, and it can be performed in k + I time

steps using the MSBT embedding.

Only Steps 3, 4 and 6 require the power of the pipelined hypercube. Summing all

of the costs stated above, the total running time of MultiWayMerge is readily seen to be

14k + 5/ + 19m time steps.

Repeated application of MultiWayMerge on successively larger sub cubes leads to a fast

sorting algorithm for the case n < plogp. The running time of this algorithm, which will

be referred to as MultiWayMergeSort, will be shown to be O(log2p/\og((plogp)/n))), as

opposed to 0(log2p/log(p/ra)) for the sorting algorithm of Nassimi and Sahni. For the

interesting case n = p, the running time of MultiWayMergeSort is O(log2p/loglogp), a

slight asymptotic improvement over that of Batcher's bitonic sort. It must be emphasized,

however, that MultiWayMergeSort only runs on the pipelined hypercube.

A more formal description of the MultiWayMergeSort algorithm will now be given, along

with an analysis of its time complexity. The algorithm is designed to sort n = k2m keys on

a hypercube with p = 2I+m processors. It is useful to view the processors as being arranged

in a 2 by 2m array, where the processor in row i and column j has ID i2m + j (row-major

order).

22 CHAPTER 2. PIPELINING

Algorithm MultiWayMergeSort

1. Each column of the array contains k keys. Route all of these to the top of the column

(row 0). As in Step 7 of Multi Way Merge, this takes k + I time steps.

2. At every processor in row 0, sort the set of k keys using an efficient sequential sorting

routine. This takes O(k\ogk) time steps.

3. Repeatedly call Multi Way Merge. The length of the sorted lists increases by a factor of

2l after each call. Thus, after \m/l] iterations all of the keys have been sorted. The

cost of the ith iteration is 14k + 5/ + 19i/ time steps, for a total cost of approximately

(14A; + 4/ + 12m)m// time steps.

4. The keys have been sorted, but they are not configured appropriately (i.e., all of the

keys are in row 0). All of the keys can be routed to the correct output locations using

k pipelined inverse concentration routes, which takes k + logp time steps.

Steps 3 and 4 make use of the power of the pipelined hypercube. The total running

time of MultiWayMergeSort is minimized (to within a constant factor) by setting k = logp,

and for this choice of k the running time is dominated by the cost of Step 3. Observ-

ing that / = log(pk/n) and m = logp — / < logp, one finds that for k = logp the al-

gorithm runs in 4p log2 p/log((p log p)/n) + O(logp) time steps. For the case n = p, k

can be set to logp/log logp in order to reduce the dominant term in the running time to

Y log2 pi log log p.

2.5 Summary

This chapter has described simple and efficient pipelined implementations for the Prefix

operation on the complete inorder binary tree, hypercube and shuffle-exchange families of

networks. Since Ullman's data distribution primitive may be viewed as a special case of

the Prefix operation, these results immediately yield a pipelined implementation for that

primitive. A variant of the Prefix operation was used to obtain a simplified implementation

of Varman and Doshi's optimal merging algorithm for the pipelined model of the hypercube.

In order to better assess the practical speed of the various algorithms presented in this

paper, the coefficient on the leading term of the running time has been computed in each

2.5. SUMMARY 23

case. It is quite possible that one or more of the moderately large coefficients in Section 2.4

could be improved with only minor modifications to the code.

It should be mentioned that for permutation routing, an important special case of the

sorting problem, there is a much simpler 0 (log2 pj log log p) time algorithm for the case

n = p than MultiWayMergeSort [Pel]. The idea is to route packets in a greedy fashion over

sets of log log p dimensions at a time. Each set of routings produces a load balancing problem

in which there may be as many as logp packets at any one processor, and the objective

is to redistribute the packets so that there is exactly one at each processor. Section 4.1.1

demonstrates how this redistribution can be performed in O(logp) time on the pipelined

hypercube by making use of the pipelined prefix, broadcast and concentration operations

described in this chapter.

Chapter 3

Boolean Matrix Multiplication

This chapter considers processor-efficient, optimal time implementations of the elemen-

tary Boolean matrix multiplication algorithm for the hypercube and shuffle-exchange. The

phrase "elementary matrix multiplication algorithm" refers to the standard 0(n3) time

sequential algorithm for computing the product of two n X n matrices, as opposed to

asymptotically faster (but in most cases less practical) methods due to Coppersmith and

Winograd [CW82][CW87], Schönhage [Sch82], and Strassen [Str69][Str86].

The problem of implementing general matrix multiplication on the hypercube and

shuffle-exchange was studied extensively by Dekel, Nassimi and Sahni [DNS81]. For the

special case of Boolean matrix multiplication, Agerwala and Lint have given a paral-

lel implementation of the four Russians' algorithm which runs in O(logrc) time using

O(n3/(lograloglogn)) processors [AL78]. This chapter provides O(logra) time hypercube

and shuffle-exchange implementations of Boolean matrix multiplication that improve this

processor bound to 0(n3/(log2 nloglogn)).

3.1 The Basic Algorithm

Let n x n Boolean matrices A = (a,j) and B = (6,j) be given. Letting C = (c,j) denote the

matrix AB, the entries of C are given by the elementary formula

Cij = V aikAbkj, (3.1)
0<k<n

24

3.2. A SIMPLE IMPROVEMENT 25

0 5: iij < n- This relationship leads to a simple and well-known O(logra) time matrix

multiplication algorithm running on a hypercube with n3 processors. Some notation will

be introduced before describing this algorithm.

Given a hypercube of dimension d, let every string a of length d over the alphabet

{0,1,*} correspond to that set of processors for which the ID "matches" a in the natural

sense. For example, in a hypercube of dimension 4, the string *1*0 corresponds to the 4

processors 0100, 0110, 1100 and 1110.1 It is often convenient to specify such a d-b'it string

as a tuple of the form (WQ : «o, ..., wt-\ : at-i), where t and the w^s are nonnegative

integers, Ylo<i<twi = ^> an(^ a* *s either * or a w;-bit integer. As one might suspect, such

a tuple is intended to correspond to the string ßo---ßt-i, where /?,- is the w,-bit string

corresponding to the binary representation of a,- if a,- ^ *, and *Wi otherwise. For example,

the tuple (3 : 6, 4 : *, 1 : 0) corresponds to the string 110****0.

The basic O(logn) algorithm for Boolean matrix multiplication on a hypercube with n3

processors can now be easily described. Let x = log n, and note that each processor has a 3x-

bit ID. Assume that input bits atJ' and bij are initially stored in processor (x :i,x: j, x : 0).

After broadcasting over ID bits [0,x) (the rightmost field), a copy of a,j resides in each

processor in the set (x : i, x : j, *). Hence, it certainly resides in the particular processor

(a; : i, x : j, x : j), and by broadcasting over bits [x, 2x), a copy of a,j can be sent

to all processors of the form (x : i, x : *, x : j). Similarly, 6tJ- can be routed to the

set of processors (x : *, x : j, x : i) in 0(x) time. At this point, note that processor

(x : i, x : j, x : k) contains a,-* and bkj, 0 < i,j,k < n. Thus, the n3 Boolean AND

operations of Equation (3.1) can be performed in a single time step. The C;J'S can now be

computed by simply ORing over ID bits [0,z). This takes 0(x) time and leaves c,j in the

desired output processor (a; : i, x : j, x : 0). Thus, the entire algorithm runs in 0(log n)

time, as claimed. Furthermore, it can be easily adapted to run on the shuffle-exchange in

the same asymptotic time bound.

3.2 A Simple Improvement

This section describes simple modifications to the preceding algorithm that reduce the

processor requirement to O(ra3/log2 n) without affecting the asymptotic time bound. Using

Note that a string with s occurences of the symbol * corresponds to a subcube of dimension s (hence,
2s processors).

26 CHAPTER 3. BOOLEAN MATRIX MULTIPLICATION

a more complicated scheme, Section 3.3.1 will reduce the processor requirement by a further

factor of log log n.

Let x = logra and let y = log log«. For simplicity, assume that y is an integer. The

algorithm of Section 3.1 will now be modified to run without (more than a constant factor)

slowdown on a hypercube of dimension 3x—2y. In the modified algorithm, physical processor

p simulates the subcube (3x — 2y : p, 2y : *) in a hypercube of dimension 3a; running

the basic algorithm. Recall that the basic algorithm routes a copy of atj to the subcube

(x : i, x : *, x : j). In the modified algorithm, this computation is simulated as follows.

1. By broadcasting over dimensions [0,2 — y), a copy of the bit a,j can be sent to each

processor in the set (x : i, x : j, x — 2y : *). This takes 0{x) time.

2. From the previous step, processor (a; : i, x : j, x — 2y : j div x2) certainly holds a

copy of bit a,j. By broadcasting over dimensions [x,2x — 2y), this copy of bit aij can

be sent to each processor in the set (x : i, x-2y : *, 2y : j mod x2, x — 2y:j div x2).

This takes O(x) time.

3. At this point, every processor contains a single entry from the matrix A. This data

may be viewed as a bit vector of length 1. By repeatedly concatenating the bit vector

held at each processor with that of its neighbor over dimensions [x — y,x), every

processor in the set (x : i, x — y : *, y : j mod x, x — 2y : j div x2) ends up with a

copy of the x entries of A, packed into a single (or, at least, some constant number

of) O(logn)-bit registers. This takes 0(y) time.

4. The length of the bit vector at each processor is now x = logn, and as the bit

vector held at each processor is repeatedly concatenated with that of its neighbor

over dimensions [x — 2y,x- y), the number of memory words required to represent a

bit vector doubles at each iteration. Thus, the amount of time required to complete

each successive iteration also doubles, and the total time is proportional to the length

in words of the bit vectors after the last iteration. Since there are y iterations, the bit

vectors reach a length of x words, and the total time required to perform this set of

concatenations is O(x).

The preceding algorithm requires that each processor be capable of concatenating two

O(logn) bit operands in constant time. This could be accomplished by performing an

appropriate shift (or multiply) operation followed by an OR. The model of computation

3.2. A SIMPLE IMPROVEMENT 27

defined in Section 1.1 is not violated since the operands never exceed O(logn) bits in

length.

The end result of applying the above procedure (which runs in O(x) time) is that each

processor in the subcube S = (x : i, x : *, x — 2y : j div x2) holds the appropriate set

of x2 bits, namely, atfc for those integers k given by the tuple (x — 2y : j div x2, 2y : *).

These bits are stored in x words of length x and, assuming that the concatentations have

been performed in an appropriate manner, a copy of bit an, is stored in bit position r of

word s at each processor in the set S, where k is the unique integer given by the tuple

(a; - 2y : j div x2, y : r, y : s).

It will be convenient to specify certain sets of bit locations using tuple notation. In order

to avoid confusion between sets of processors and sets of bit locations, square brackets will

be used to denote bit locations. Let the bit location corresponding to position r of word

s at processor p be denoted [x — 2y : p, y : r, y : s}. Using this notation, it should be

apparent that the sequence of operations described above places a copy of a,j in the set of

"matrix A" bit locations given by [x : i, x : *, x : j], A similar procedure can be used to

route b{j to the set of "matrix B" bit locations given by [x : *, x : j, x : i\. The n3 AND

operations of Equation (3.1) can now be performed in x time steps by ANDing together

the x corresponding pairs of matrix A and matrix B words at each processor. In order to

compute the Cjj's efficiently, each processor first locally ORs together the log2p bits that it

contains. This reduces the amount of relevant data to a single bit per processor, and takes

O(x) time. The remaining OR operations are performed over ID bits [0,;r — 2y] as in the

basic algorithm.

Unlike the basic algorithm of Section 3.1, implementing the algorithm described in this

section on the shuffle-exchange so that it runs in O(log7i) time is not entirely straightfor-

ward. The problem is that once the data corresponding to array A, say, has been replicated

to the point that every processor contains 0(log2p) bits, the algorithm cannot afford to

shuffle the data more than a constant number of bit positions. Hence, the data must be

aligned2 correctly just as the processors become "saturated". A second requirement is that

the data corresponding to arrays A and B be aligned in the same way. Finally, the ORing

will be too expensive unless the shuffle-exchange is aligned in such a way that the ilk field"

(the bit positions corresponding to k in Equation (3.1)) is a constant number of shuffles away

from the exchange position. It is not hard to prove that these three requirements cannot

2The "alignment" of the data corresponds to the net number of shuffle operations that have been applied,
modulo log p.

28 CHAPTER 3. BOOLEAN MATRIX MULTIPLICATION

be simultaneously satisfied if the i, j and k fields each consist of a contiguous set of ID bits.

One solution to this dilemma is to interleave the embedding of the i, j and k fields among

the logp ID bits. For example, bit positions [0,3a; - 6y) can be alternately assigned to i, j

and k (in ascending order of significance), and the bit positions [3a; - 6y,3x - 2y) can be

alternately assigned to the remaining bits of i and j. Note that it is actually not necessary

to interleave the entire address space in order to allow the three alignment requirements to

be simultaneously satisfied.

3.3 The Four Russians' Algorithm

The elementary sequential algorithm for multiplying two n X n Boolean matrices requires

0(n3) bit operations. Arlazarov, Dinic, Kronrod and Faradzev gave a practical algorithm

that reduces this number of bit operations to 0(ra3/logn) [ADKF70]. A detailed descrip-

tion of the so-called Four Russians' algorithm may be found in Aho, Hopcroft and Ull-

man [AHU74]; the following section will assume that the reader is familiar with the Four

Russians' algorithm. Note that under a uniform cost criterion, assuming 0(logn)-bit reg-

isters, the Four Russians' algorithm can be easily modified to run in 0(n3/log2 n) time.

3.3.1 Parallel Four Russians'

The problem of parallelizing the Four Russians' Boolean matrix multiplication algorithm

was considered previously by Agerwala and Lint [AL78], who exhibited an algorithm that

runs in O(logn) time on a network with O(n3/(logrcloglog7i)) processors. Note that the

simple algorithm of Section 3.2 already yields an improvement over the result of Agerwala

and Lint. The purpose of this section is to establish that the Four Russians' approach can

be combined with the techniques of Section 3.2 in order to obtain O(logra) time algorithms

for the hypercube and shuffle-exchange using only

o(2!)
ylog2 raloglogny

processors. The hypercube algorithm will now be presented in detail, followed by an indi-

cation of the modifications necessary to achieve the same asymptotic performance on the

shuffle-exchange.

Let x, y and z denote log n, log log n and log log log n, respectively. In order to simplify

the exposition, y and z will be assumed to be integers and round-off errors will be ignored.

3.3. THE FOUR RUSSIANS'ALGORITHM 29

[a; : i, x : j, x — z : 0]

—► [x : i, x : j, x - 2y - z : *, y - z : 0, z : *, y : 0]

—► [x : i, x — z : j div y, x — 2y : *, y — 2 : 0, 2 : j mod y, y : 0]

—► [x : i, x — 2y : *, x — z : j div y, y — 2 : 0, 2 : j mod ?/, y : 0]

—► [x — y : i div x, x — y : *, x — z : j div y, y — 2 : 0, z : j mod y, y : i mod x]

Figure 3.1: The path followed by the a,-j's.

For example, it will be assumed that n/y is an integer. It is straightforward to verify that

the algorithm can be modified to handle round-off errors.

The task at hand is to multiply two n x n Boolean matrices in O(logn) time on a

hypercube with 0(n3/(x2y)) processors, that is, a hypercube of dimension 3x — 2y — z. As

in Section 3.1, it will be assumed that input bits atJ- and b{j are initially stored at processor

(x : i, x : j, x — 2y — 2 : 0), and that output bit c,j should appear at the same processor,

0 < i,j < n.

As in Section 3.2, each processor will store up to x2 bits of data at some point during

the computation. The bit location corresponding to position r of word s at processor p will

be denoted [x — 2y - 2 : p, y : r, y : s].

As in Sections 3.1 and 3.2, the first phase of the algorithm consists of permuting and

replicating the elements of the two input arrays A and B. Figure 3.1 indicates the four stage

path followed by the a2j's during the first phase. Note that the low order y bits remain 0

until the last stage, implying that there is only one word of relevant data at each processor

during the first three stages. Thus, the first three stages take a total of 0(x) time. The final

stage builds up a;-word bit vectors at each processor, and also takes O(x) time. Figure 3.2

gives the somewhat more complicated seven stage path followed by the 6,_,'s during the first

phase. Once again, one may verify that the total cost of all stages is 0{x).

It remains to show how to compute the C;J'S in O(x) time given that the arrays A and

B are stored in the manner indicated by the last tuples of Figures 3.1 and 3.2, respectively.

At the end of the first phase, the processor given by the tuple (x — y : r, x — y : s, x — z : t)

holds the 2xy array elements a;j and bkj for rx < i < (r + l)x, sx < j < (s + l)x, and

ty < k < (t + l)y. In the second phase of the algorithm, the task of this processor is to

perform the set of AND and OR operations associated with this set of array elements. The

Four Russians' technique is used to perform these operations in O(x) time, as follows. Note

30 CHAPTER 3. BOOLEAN MATRIX MULTIPLICATION

[x : i, x : j, x — z : 0]

—► [x : i, x : j, x - 1y - z : *, y:*,y:Q]

—► [x :i, x — y : j div x, x — y — z : *, y : j mod x, y : 0]

—► [x — y — z : i div xy, y : *, z : i mod y, x — y : j div a:,

x — 2y — z :*, y : (i mod a;?/) div y, y : j mod a;, y : 0]

—► [x — y — z :i div a;?/, z : i mod j/, j/: *, x — y : j div x,

a; — 1y — z : *, y : (i mod xy) div j/, y : j mod x, y : 0]

—s- [x — y — z :i div xy, z : i mod y, x — y : j div x,

x — ?/ — z : *, ?/ : [i mod xy) div y, y : j mod x, y : 0]

—► [x — y — z : *, z : i mod y, x — y : j div x, x — z : i div y, y : j mod x, j/: 0]

—► [x — y : *, x — y : j div x, x — z : z div y, y : j mod x, y — z : 0, z : i mod y]

Figure 3.2: The path followed by the &ij's.

that the fe/y's are stored in y words of x bits apiece. There are 2y = x possible words that

can be obtained by ORing together a subset of these y words. A table T of these x words is

computed, where the /th entry in the table (denoted T(/)) corresponds to the subset given

by the binary representation of /. For example, if y = 4 and 1 = 7 = OIII2, then T(7) is

obtained by ORing together words 0, 1 and 2 (but not word 3). Note that the table T can

be constructed in O(x) time.

The motivation for computing T is that now the x Boolean values given by

V aik A ^i' rx - i < (r + 1)a;'
ty<k<(t+l)y

can be computed in a single table lookup for any fixed value of j, sx < j < (s + l)x.

Namely, one may check that these bits are given by T(u), where u is the y-bit integer

Uy-i • • • uo with uv = a,i(ty+v)- Note that the first phase has already constructed the word u

at the appropriate processor. Thus, O(x) time suffices to perform all of the AND and OR

operations local to any particular processor.

The third phase of the algorithm consists of performing the remaining OR operations and

routing the c,j's to the appropriate output processors. At the beginning of the third phase,

each processor holds x2 relevant bits of information. Unlike the algorithm of Section 3.2, the

bits cannot be ORed together locally in order to immediately reduce the amount of data at

each procesor to a single bit. The reason is that the 2y dimensions being simulated within

3.4. SUMMARY 31

the processors correspond to the i and j fields, rather than to the k field. However, the

amount of data per processor can still be reduced geometrically by ORing across appropriate

physical dimensions in the k field. This takes 0{x) time, and once the data has been reduced

to a single bit per processor, the remainder of the third phase can be easily completed in

0(x) time. Hence, the overall running time of the algorithm is O(x), as claimed.

As in Section 3.2, it is possible to adapt this algorithm to run in 0(x) time on the

shuffle-exchange by appropriately interleaving the embedding of the i, j and k fields among

the logp ID bits. The details are left to the reader.

3.4 Summary

This chapter has presented O(logn) time, O(ra3/(log2 nloglogn)) processor implementa-

tions of the elementary Boolean matrix multiplication algorithm. Interleaving fields of ID

bits leads to efficient performance on the shuffle-exchange; this technique may be more gen-

erally useful. Note that the 0(n3/ log2 n) processor implementation of Section 3.2 pipelines

the standard Boolean matrix multiplication algorithm to the maximum possible extent. To

see this, note that there are 0(n3) bit operations to be performed, and that each processor

can perform at most O(logn) bit operations per time step (the register size), and hence at

most 0(log2n) bit operations in O(logn) time.

While the sequential Four Russians' algorithm saves a factor of log n time, the parallel

version described in this chapter (as well as that of Agerwala and Lint [AL78]) reduces

the processor requirement by only a log log n factor. The reason for this is that a parallel

algorithm that runs in O(logrc) time can only afford to build tables of length O(logn) at

each processor. The tables constructed by the sequential Four Russians' algorithm are of

length n, allowing log n bit computations to be performed by a single table lookup.

The algorithm of Section 3.2 was coded up on an NCUBE/ten parallel computer as a

sample application program within a virtual processing environment [Pla87].

Chapter 4

Load Balancing

Maintaining a balanced load is of fundamental importance on any parallel computer, since a

strongly imbalanced load often leads to low processor utilization. In this chapter, two load

balancing operations will be considered: Balance and MultiBalance. The Balance operation

corresponds to the token distribution problem considered by Peleg and Upfal [PU89] for

certain expander networks. The MultiBalance operation balances several populations of

distinct token types simultaneously.

These load balancing operations form the basis of the selection algorithm given in Sec-

tion 5.3, and of the sorting algorithms presented in Chapter 7.

4.1 Problem Definition: Balance

The first load balancing problem to be considered, Balance, is defined as follows. Let n

tokens be distributed over p processors, with no more than m tokens assigned to any single

processor, \n/p\ < m < n. It will be assumed that n = 0(pc) for some constant c in order

that calculations involving token counts can be performed with a constant number of CPU

operations. The problem is to redistribute the tokens so that each processor has either

[n/p\ or \n/p\ tokens, that is, so that the load is distributed as evenly as possible. Peleg

and Upfal have exhibited tight bounds for this operation on a certain class of expander

networks [PU89]. In many applications, it is not necessary to balance the population of

tokens exactly. If the difference between the maximum number of tokens at any processor

and the minimum number of tokens at any processor is £, it will be said that the tokens

32

4.1. PROBLEM DEFINITION: BALANCE 33

have been balanced with error f. The corresponding operation will be referred to as Balance

with error £.

4.1.1 Tight Bounds for the Pipelined Hypercube

This section describes an algorithm for the Balance operation with minimum error that

runs in O(mlogp) time on the hypercube or shuffle-exchange, and in 0(m + logp) time

on the pipelined hypercube. This algorithm is due to Tom Leighton [Lei]. Assuming that

m exceeds \n/p] by at least some constant factor, there is a trivial ü(m + logp) lower

bound for the pipelined hypercube. The fi(m) term in the lower bound holds since at least

m — \n/p~\ = O(m) time steps are necessary for a processor initially holding m tokens to

send away sufficiently many tokens to reach \n/p], the maximum allowable number in any

balanced configuration. The logp term in the lower bound holds because, as will be proven

rigorously in Section 4.1.2, it is possible to configure the tokens in such a way that no

token is placed within f2(logp) hops of a particular processor. Thus, Leighton's algorithm

provides tight bounds for the pipelined hypercube when m exceeds \n/p] by some constant

factor. Note that if m does not exceed \n/p] by a factor of 2 (say), then load balancing is

probably not necessary anyway.

The 1-port version of Leighton's algorithm will now be described. The algorithm runs

in m phases, and each phase takes care of one token from every processor for which the

supply of tokens has not yet been exhausted. In a phase, the designated tokens are routed

to a contiguous block (with respect to processor ID modulo p) of processors. Each token is

routed in exactly one phase. The first block begins at processor 0 (say), and each subsequent

block begins at the processor following the end of the previous block. In this manner, the

population of tokens gets distributed as evenly as possible.

A single phase of Leighton's algorithm is implemented by performing a prefix sum

over the designated tokens followed by a concentration route as defined by Nassimi and

Sahni [NS82]. The prefix sum gives the offset of each token within the contiguous block of

destination processors. The size of the block is broadcast so that all processors can compute

the start of the next block. All of these operations can be performed in O(logp) time , so

the over-all running time of Leighton's algorithm is O(mlogp). Note that this time bound

is valid for the shuffle-exchange as well as the hypercube.

As indicated above, Leighton's algorithm is best suited for the pipelined hypercube.

34 CHAPTER 4. LOAD BALANCING

The prefix sum and broadcast operations can be pipelined on the hypercube but the con-

centration routes cannot (provably). On the other hand, the pipelined hypercube allows

concentration routes to be pipelined [VD88]. Hence, the Balance operation can be imple-

mented to run in 0(m + logp) time on the pipelined hypercube.

4.1.2 A Lower Bound for the Hypercube

A lower bound for the running time of Balance on the hypercube can be obtained by con-

centrating all of the tokens in a small number of processors and then bounding the time

required to eliminate the excess tokens from this set of processors. In the following, recall

that d = logp denotes the dimension of the given hypercube.

Definition 4.1.1 Let Tr(i) denote the set of (f) processors at Hamming distance r from

processor i, 0 < r < d.

Definition 4.1.2 Let B(i,r) denote the complete Hamming ball of radius r centered at

processor i. More formally, this is the set of processors given by B(i, r) = Uo<Krr'(i).

Note that \B(i,r)\ = Ylo<l<r if)- I* wm ^so ^e necessary to consider "incomplete" Ham-

ming balls, that is, Hamming balls with only a partially filled outer layer.

Definition 4.1.3 Given a positive integer x, let r and y be the unique pair of nonnegative

integers such that x = y + Ylo<l<r-i (j) ? 1 < 2/ ^ (?) • A set of processors B is a Hamming

ball of size x and radius r if there is some processor i and some set of processors S such

that B = B(i,r- 1) U S, S C Tr(i) and l^l = y. Let B(x) denote the set of all Hamming

balls of size x.

Definition 4.1.4 Let a graph G with vertex set V(G) and edge set E(G) be given. For

every U C V(G), the fringe of U with respect to G, F{G, U), is defined as the set

{ueU \ (u,v) € E{G) for some v e V(G) \ U}.

Finally, let the function f(G,x) be defined as

f{G,x)= min \T(G,U)\,
V ' UCV(G) ' V "

where G is a graph and x is an integer, 0 < x < |V(C?)|.

4.1. PROBLEM DEFINITION: BALANCE 35

Lemma 4.1.1 The Balance operation requires 0((n — \n/m\ [n/p])/f(G, \n/rn\)) time.

Proof: The n tokens can be concentrated in a set S of \n/m] processors. Under a

balanced load, S contains at most \n/m] \n/p\ tokens. Hence, at least n — \n/m] \n/p\

tokens must leave the set S. Only processors located at the fringe of S, those in T(G,S),

can send tokens out of S, and these can only transmit one token per time step. Therefore,

the running time of Balance must be at least (n - \n/m\ \n/p])/(f(G, \n/m])). []

Having established Lemma 4.1.1, the desired lower bound can now be obtained by com-

puting f(Hd, \n/rn\), where Hj, denotes the undirected graph corresponding to a hypercube

of dimension d. Intuitively, one might expect that the value of f(Hd, x) is determined by a

Hamming ball configuration. The correctness of this intuition is borne out by the following

theorem due to Harper [Har66]. Note that Frankl and Füredi have given a simpler proof of

the same result [FF81].

Theorem 4.1.1 For every integer x, 0 < x < p, there exists a ball B € B(x) such that

f(Hd,x)=\F(Hd,B)\.U

The following estimate of the "volume-to-surface" ratio of a Hamming ball is proven in

Appendix A.

Lemma 4.1.2 For positive integers d and r = r(d), 0 < r < d/2, let S = (d) and let

V = £o</<r (?)• Then V = 2d(1"1/fc) implies that V/S = ©(fc1/2), 1 < k < d. U

Theorem 4.1.2 The Balance operation requires Q.{kxl2m) time on the hypercube if m =

Q(p1/k(n/p)) and m > 2n/p.

Proof: Note that k > 1 since m < n, and k < logp since m > 2n/p. Theorem 4.1.1 and

Lemma 4.1.2 together imply that

1 < k < logp. Now consider the lower bound given by substituting this equation into the

statement of Lemma 4.1.1. The numerator, n — \n/m] \n/p] is at least n — \p/2] \n/p~\ =

fi(n). The denominator, /(G, [n/m]), reduces to /(tf^p1-1/'5) = 0(fc-1/V_1/fc)- Hence,

Balance requires Q(kll2{n/p)pllk) - ü(kll2m) time on the hypercube. []

36 CHAPTER 4. LOAD BALANCING

4.1.3 Upper Bounds for the Hypercube

Now consider the task of obtaining an efficient implementation of the Balance operation on

the hypercube. Let a sub cube of dimension 1 be given, with a tokens at processor 0 and

b tokens at processor 1. Further assume that each processor knows the number of tokens

that it is holding, that is, the value a (b) is stored in the local memory of processor 0 (1).

In this case, it is easy to see that the Balance operation can be performed over the given

subcube in \a - b\/2 + 0(1) time. This observation motivates the following definition.

Definition 4.1.5 Let a set of n tokens be arbitrarily distributed over the processors of a

p processor hypercube, p > 2. Let the Balance operation be applied to each of the p/2

subcubes of dimension 1 induced by the set of p/2 edges across dimension i. Then the

hypercube has been balanced across dimension i.

Clearly the amount of time required to balance across dimension i is £/2 + 0(1), where

£ is the maximum discrepancy between the number of tokens at a given processor and its

neighbor in dimension i.

Lemma 4.1.3 Let the low and high subcubes with respect to dimension i of a given hy-

percube be balanced with error £. Then after balancing across dimension i, the entire

hypercube is balanced with error £ + 1.

Proof: Initially, each processor in the low subcube contains a number of tokens in the

range [a, a + £] for some integer a. Similarly, each processor in the high subcube contains

a number of tokens in the range [b, b + £] for some integer b. Thus, after balancing across

dimension i every processor contains a number of tokens in the range £&■ , a+ 2
+2^ ,

and
a + b + 2£

2

which completes the proof. []

a + b
+ £<

a + b
+ £+1,

By repeated application of Lemma 4.1.3, one finds that successively balancing across

every dimension of the hypercube yields an implementation of Balance with error log p. The

running time of this algorithm is O(ralogp), since no processor will ever contain more than

m tokens and hence each balancing step requires at most m/2 + 0(1) time. Furthermore,

in the important case m = 0(n/p), it is possible to distribute the tokens so that this

4.1. PROBLEM DEFINITION: BALANCE 37

performance is achieved to within a constant factor. In other words, the worst case running

time of such a balancing algorithm is ©(mlogp) when m = 0(n/p).

The following algorithm improves on this time bound by making a more careful de-

composition of the hypercube. One additional definition is needed in order to present the

algorithm.

Definition 4.1.6 Let the discrepancy across dimension i, denoted Si, represent the abso-

lute value of the difference between the total number of tokens in the high and low subcubes

with respect to dimension i.

The efficiency of the following recursive procedure for Balance with error logp relies upon the

fact (shown below) that there is always some dimension with a small associated discrepancy.

Algorithm Balance

1. Each processor counts how many tokens it has and stores the result. This takes 0(m)

time.

2. Let / denote the dimension of the subcube being balanced (I = d initially). If / = 0,

return.

3. Compute £,-, 0 < i < I. This involves performing / independent sums over the entire

subcube. These sum operations can be pipelined to run in a total of 0(1) time [HJ86].

4. Determine the dimension i* with least associated discrepancy Si*. This takes 0(1)

time.

5. Recursively balance the high and low subcubes with respect to dimension i*, using

Steps 2 to 6.

6. Balance across dimension i*, adjusting the token counts appropriately. The running

time of this step is analyzed below.

In order to establish the correctness of the preceding algorithm, it is necessary to prove

that the output hypercube is balanced with error logp. This follows easily by induction

using Lemma 4.1.3.

To analyze the time complexity, only the cost of Step 6 remains to be determined.

When this step is executed, the (/ - l)-dimensional high and low subcubes with respect to

38 CHAPTER 4. LOAD BALANCING

dimension i* are each balanced with error / - 1. Hence, there are integers a and b such

that each processor in the high sub cube contains a number of tokens that is in the range

[a, a + I — 1], and each processor in the low subcube contains a number of tokens in the

range [b, b + I — 1]. Letting 6 — Si* gives

2'_1(6-(a + Z-l))<«,

and so (6 + / - 1) - a < 821~l + 21-2. Similarly, (a +1 - 1) - b can be bounded by the same

quantity. Therefore, the cost of the balancing step is 0(S2~l + I). It remains to bound the

minimum discrepancy 8. In the following sequence of lemmas, let A denote the sum of the

discrepancies in the given hypercube of dimension d, Ylo<i<d^i-

Lemma 4.1.4 The value of A is maximized by packing all of the tokens into a Hamming

ball B of size \n/m\.

Proof: Given an arbitrary distribution of the tokens, it will be shown that the corre-

sponding value of A is at most that achieved by a particular Hamming ball configuration.

First, transform the processor IDs of the given hypercube by toggling each bit that corre-

sponds to a dimension for which there are more tokens in the low subcube than in the high

subcube. Note that the transformed hypercube yields precisely the same value of A as the

given hypercube. It has the additional property that for every dimension, the high subcube

contains at least as many tokens as the low subcube. Let w(i) denote the number of l's

in the d-bit processor ID i, and let n(i) denote the number of tokens at processor i. Now

observe that A may be expressed as

A = ^2 w(i)n(i) — ^2 (d—w(i))n(i)
0<i<p 0<i<p

= 2 Y^ w(i)n(i) — nd,
0<i<p

where p = 2d. Thus, maximizing A is equivalent to maximizing 5Zo<t<pw(07l(0- This

new sum is clearly maximized by distributing tokens according to the following algorithm:

While there are tokens left to distribute, put m tokens (or the number of tokens remaining,

if less than m) into an empty processor with largest w(i) in the set of empty processors.

The result follows since this algorithm fills a Hamming ball centered at processor 2d — 1. Q

Lemma 4.1.5 Let an instance of Balance be given for which the tokens are packed into

a Hamming ball of size \n/m~\. Then A = 0{mdll2p). Furthermore, if m > 2n/p and

\n/m] = p1_1/fc, then A = Gfmdfe-^V-17*)-

4.1. PROBLEM DEFINITION: BALANCE 39

Proof: Assume the tokens are packed into a Hamming ball B of radius r. The total

discrepancy A is bounded by m times the number of edges between B and Hd \ B. The

number of such edges is maximized when r = [d/2\, so A = 0(md(>d
d,2,)) = 0(mdll2p).

For the sharper bound, Lemma 4.1.2 tells us that the cardinality of the fringe of B is

f(Hd,?-lfk) = Q{k-xl2p1-1lk). The number of edges between B and Hd \ B is d - r =

Q(d) (r is at most [d/2\ since m > 2n/p) times the size of the fringe of B. Hence,

A = 0(mrfA;-1/V"1/fe)5 as claimed. Q

This section will only make use of the 0{mdll2p) bound of Lemma 4.1.5. The more

detailed bound involving k will be needed in the next section in order to analyze a load

balancing algorithm involving multiple token types. The following theorem is an immediate

consequence of the preceding two lemmas.

Theorem 4.1.3 For any instance of Balance, the average discrepancy across a dimension,

A/d, is 0{md-ll2p). □

Recall that the cost of the balancing step in algorithm Balance was shown above to be

0(S2~ + I), where S = Si* is the minimum discrepancy. Now the minimum discrepancy

is certainly no larger than the average discrepancy, so S must be 0{ml~ll22l) by Theo-

rem 4.1.3. Hence, the cost of the balancing step is 0(ml~ll2 + I), and the total running

time of algorithm Balance is 0(J2i<i<d ml~ll2 + I) = 0(m log1/2 p + log2 p).

Of course, this algorithm performs balancing with error log p. This should be good

enough for most applications, but if a minimum error (0 if p\n, 1 otherwise) balancing is

desired, some post-processing is needed. Note that the post-processing task can be viewed

as an instance of Balance with m = logp, which can be solved in O(log2p) time using the

1-port version of Leighton's algorithm described in Section 4.1.1.

Theorem 4.1.4 The Balance operation, with minimum error, runs in C^mlog1/2 p+log2 p)

time on the hypercube.

Proof: First apply algorithm Balance described and analyzed earlier in this section to

balance the load with error logp. This takes 0(mlog1/'2p + log2p) time. Compute the

minimum number of tokens, a, at any processor and broadcast this value to all processors.

This takes O(logp) time. Every processor then sets aside a tokens, and the remaining tokens

(of which there are at most logp at any single processor) are balanced using Leighton's

algorithm in O(log2p) time. □

40 CHAPTER 4. LOAD BALANCING

4.1 .4 Load Balancing on the Shuffle-Exchange

As noted in Section 4.1.1, the 1-port version of Leighton's algorithm runs on the shuffle-

exchange. Hence, the Balance operation, with minimum error, runs in O(mlogp) time on

the shuffle-exchange. Now consider the following lower bound.

Theorem 4.1.5 Assuming m > 2n/p, the Balance operation requires Q,(m\0g(n/m)) time

on the shuffle-exchange.

Proof: Using techniques due to Leighton [Lei83], Cypher has proven that the p pro-

cessors of a shuffle-exchange can be partitioned onto c chips in such a way that fewer

than p/2 processors are assigned to any single chip, and the number of pins per chip is

O(p/(cl0g(p/c))) [Cyp89]. The pin count for a particular chip C is determined by the total

number of edges joining a processor assigned to C to a processor assigned to some other

chip. Letting SEd denote the graph corresponding to the shuffle-exchange of dimension d,

Cypher's bound implies (by an averaging argument) that for every integer a;, 0 < x < p/2,

there exists an integer g(x), x < g(x) < p/2, such that

f(SEd,g(x)) = O(x/\0gx).

Now consider the lower bound for Balance obtained by packing the n tokens into a set S

of g(\n/m]) processors with O(|"n/m]/l0g|~n/m]) neighbors. At least n/2 = fi(n) tokens

need to be moved to processors outside of the set S, and each edge leaving S can carry

at most one token per time step. Hence, Balance requires fi(ral0g(rc/m)) time on the

shuffle-exchange if m > 2n/p. []

The upper and lower bounds are tight for 2n/p < m < n1_e, where e denotes an

arbitrarily small positive constant.

4.2 Problem Definition: MultiBalance

In this section, a slightly more complicated load balancing problem than Balance will be

considered. Let n tokens be evenly distributed over p processors, that is, each processor

contains either [n/p\ or [n/p] tokens. Each token has an associated type. There are g > 2

different types of tokens, and nothing is known about the distribution or proportion of the

tokens of any particular type. The set of tokens of a particular type will be called a group,

4.2. PROBLEM DEFINITION: MULTlBALANCE 41

and it will be assumed that the g group types are given by the integers {0,...,g — 1}.

The problem is to execute g Balance (with error £) operations, one over each group of

tokens. This operation will be referred to as MultiBalance (with error £). The motivation

for considering MultiBalance is that it turns out to be useful for sorting, as will be seen in

Chapter 7.

4.2.1 Upper Bounds for the Hypercube

An implementation of MultiBalance that runs in 0 ((n / p)(log glogp)1/2 +g log2 p) time on the

hypercube will now be presented. The following definitions, which build on Definitions 4.1.5

and 4.1.6, are required.

Definition 4.2.1 Given an instance of MultiBalance, the n tokens have been multi-balanced

across dimension i if and only if each group j has been balanced across dimension i, 0 <

3 <9-

Definition 4.2.2 Let Sj denote the discrepancy across dimension i with respect to group

3i 0 < j < 9- Define the multi-discrepancy across dimension i, denoted bf1, as the sum

Z)o<j<3 *i •

Algorithm MultiBalance

1. Each processor partitions its set of tokens into g subsets, one subset corresponding to

each of the g token types. Each of the subsets is counted and the results are stored.

This takes 0(n/p) time.

2. Let / denote the dimension of the subcube being multi-balanced (I — d initially). If

/ = 0, return.

3. Compute Sf1, 0 < i < I. This involves performing / independent sums over the entire

subcube for each of the g groups. Each set of / sum operations can be pipelined to

run in 0(1) time [HJ86], so the total running time is O(gl).

4. Determine the dimension i* with least associated multi-discrepancy 6f£. This takes

0(1) time.

5. Recursively multi-balance the high and low subcubes with respect to dimension i*,

using Steps 2 to 6.

42 CHAPTER 4. LOAD BALANCING

6. Multi-balance across dimension i*, adjusting the token counts appropriately. The

running time of this step is analyzed below.

The correctness of the preceding implementation of MultiBalance with error logp follows

by induction using Lemma 4.1.3. If a minimum error multi-balancing is desired, O(log2 p)

post-processing per group can be performed as described in Section 4.1. The total cost of

post-processing is thus 0(glog2 p) time.

In order to complete the analysis of the running time of algorithm MultiBalance, it is

necessary to consider the cost of Step 6. Let Aj denote the sum of the discrepancies with

respect to group j in the given hypercube of dimension d, J2o<i<d^i- Let AM denote the

sum of the multi-discrepancies J2o<i<d^ — Y^o<j<g Ar

Lemma 4.2.1 For any instance of MultiBalance, AM = 0(dk~xl2n), where k satisfies g =

pVk.

Proof: Let the number of tokens in group j be denoted Xj, 0 < j < g, and consider

the contribution of Aj to AM. Since ^2o<j<g Xj = ra, there is at most one Xj that exceeds

n/2. Suppose that xi > n/2 for some group /. Then A/ = 0((n/p)d}l2p) — 0(d1l2n) by

Theorem 4.1.3. Now k < logp = d (since g > 2), so d1!2 < dk~xl2 and A; = 0(dk~1l2n).

Hence, it may be assumed that Xj < n/2, 0 < j < g. Let kj satisfy Xj/n = p~xlkJ,

Q < j < 9- The tokens of group j can be packed into p1-1/fcJ processors, and by Lemmas 4.1.4

and 4.1.5, Aj = 0((n/p)dk~1/2p1-1^) = 0(dxjk~1/2) = O(d1f2xjlog1/2(n/xj)). Consider

the function f(x) = xlog1/2(n/a;), where x is a real value in the range [l,n/2]. One may

easily verify that f"(x) < 0 in this range. In other words, f(x) is a concave function.

Therefore, the sum ^20<j<g f(xj), subject to the constraint ^2o<j<gxj — n> 1S maximized

when all of the Xj's are equal, that is, when XJ — n/g. Forcing the a?j's to be integers can

only decrease this sum, so AM = 0{d}l2gf{nlg)) = Oid1/2g(n/g) log1'2 g) = 0{dk-xl2n),

as required. []

Lemma 4.2.2 For any instance of MultiBalance, the average multi-discrepancy AMjd

across a dimension is O(n(log<//logp)1/'2).

Proof: Immediate from Lemma 4.2.1, since g = p1^ and k = logp/log^r. []

Theorem 4.2.1 The MultiBalance operation runs in O((n/p)(logglogp)1'2 + glog2p) time

on the hypercube.

4.2. PROBLEM DEFINITION: MULTIBALANCE 43

Proof: By a simple extension of the argument given in Section 4.1, the time required

to perform the multi-balancing step is 0(Sf?2~l + gl). Now 6f{ is certainly no more than

AM/d, and the number of tokens in a subcube of dimension / at depth d — / of the recursion

is 0(n2l~d + g2l(d - I)), where the latter term bounds the cumulative effect of odd parity

in the balancing operations. Thus, Lemma 4.2.2 implies that the total time expended in

Step 6 is

0 I £ 2-l(n2'-d + g2l(d- l))(logg/l)^ + gl) ,
\l<Kd /

which reduces to 0((n/p){\ogg\ogp)ll2 -\-g\og2 p). This dominates the time required by all

other steps of the algorithm, including the post-processing. []

4.2.2 A Lower Bound for the Hypercube

It is easy to see that \{AM — dgp)/p is a lower bound on the running time of MultiBalance,

since AM can only decrease by 2p each time step and it is certainly less than dgp after the

MultiBalance operation has been performed. Hence, exhibiting a particular input instance

with a high value of AM gives a good lower bound on the worst case running time of

MultiBalance. Consider the input instance given by the following construction.

Assume for convenience that g = 2T, 1 < r < d, and let q = [d/r\ -1 or [d/r\, whichever

is odd. Divide the first qr bits of each processor ID into r fields of q contiguous bits. The

ith field determines the ith bit of an r-bit condensed ID according to the following rule,

0 < i < r. If the majority of the q bits in the ith field are 0, then the ith bit of the

condensed ID is 0; otherwise, it is a 1. Note that since q is odd there will always be a strict

majority of either 0's or l's. Furthermore, symmetry implies that exactly 2d~r processors

share any particular condensed ID. In the following lemma, let U denote such a subset of

2d~r processors.

Lemma 4.2.3 The number of hypercube edges from processors in U to processors outside

of U is 0(ry/2|tf|).

Proof: By symmetry, it is sufficient to prove that the number of such edges associated

with the first (say) field is 0(qll2\U\). Also, it may be assumed without loss of generality

that the first bit of the condensed ID associated with U is a 0. Let U' denote the subset

of the processors of U with \q/2] 0 bits and [q/2\ 1 bits in the first field. Lemma A.1.2

implies that \U'\ — Q(q~1^2\U\). It should be clear that only the processors in U' contribute

44 CHAPTER 4. LOAD BALANCING

to the desired edge count, and each of these contributes exactly \q/2\. Thus, the number

of edges leaving U that are associated with the first field is 0(q1^2\U\), as required. □

Theorem 4.2.2 The MultiBalance operation requires il((n/p)(logglogp)1^ — glogp) time

on the hypercube.

Proof: Consider the input configuration obtained by filling each of the processors having

condensed ID i with n/p tokens from the ith group, 0 < i < 2l. Lemma 4.2.3 implies that

each group contributes Q((n/g)(logglogp)1/2) to AM, so AM = 0(n(log5logp)1/2). As

argued above, this fact immediately implies the desired lower bound on the running time

of the MultiBalance operation. []

4.2.3 Average Case Analysis

Given n distinct tokens and p processors, there are

different ways of assigning n/p tokens to each processor, assuming that n is an integer

multiple of p. This section analyzes the average case running time of MultiBalance over all

of these possible input configurations when there are g distinct groups of tokens. The upper

bound to be derived will be interesting for sufficiently small values of g. In the following

discussion, the phrase "with high probability" means with probability 1 - 0(p~c) for an

arbitrary positive constant c.

Let the ith. group contain n, tokens, and consider the expected contribution of group i

to the total running time of this version of MultiBalance, 0 < i < g. Letting p = 2d, there

are Q,) distinct subcubes of dimension d'. Focus attention on one such subcube C, and

let the random variable X denote the number of tokens from group i initially assigned to

some processor in C. Let Yj denote the random variable that is 1 if the jth. token of group

i contributes to X, and 0 otherwise, 0 < j < n;. Letting 9 = l/2rf_d , the expected value

of Yj is 6, and the expected value of X is n,-0. The variance of Yj is bounded above by

the variance of the binomial distribution with probability 9. Thus, the variance of X is at

most ntö(l - 6) < rii9. A standard Chernoff bound implies that with high probability, X is

within O((n{9logp)112) of its expected value. Since there are only p = £!o<d'<d (d,) choices

4.2. PROBLEM DEFINITION: MULTIBALANCE 45

for C, every subcube of dimension d! contains

n,-±o' -/nilogp

2d-d> I y 2d_d' /

group i tokens with high probability, 0 < d! < d. Thus, after balancing the group i tokens

over subcubes of dimension d', every processor contains

group i tokens with high probability. The additive dl bounds the worst case error in the

balancing, as given by Lemma 4.1.3. Note that this is a pessimistic estimate to apply to

the average case behavior of MultiBalance, and could certainly be improved. Continuing

the analysis, the preceding bound implies that the total cost of the j'th multi-balancing

operation performed by algorithm MultiBalance is

0 < j < d, with high probability. Summing over j and interchanging the order of summa-

tion, the cost of all of the multi-balancing operations is

O]T \J(ni/p)\ogp + g\og2p\
\o<i<g J

with high probability since the sum over j is dominated by the j = 0 term. The remaining

sum is maximized by setting ra,- = n/g, 0 < i < g, which leads to a total multi-balancing

cost of
0 [yin/p)9 log p + fir log2 p)

with high probability. Note that the #log2p term matches the cost of post-processing and

other computations performed by MultiBalance.

The preceding analysis can also be applied to the straightforward implementation of

MultiBalance that multi-balances across each of the dimensions in ascending order. Further-

more, this version of MultiBalance can be made to run as efficiently on the shuffle-exchange

as it does on the hypercube. For the shuffle-exchange version, shuffles are not performed by

moving entire sets of n/p tokens, but rather by moving appropriate subsets of the tokens to

make the composition of the set of tokens at each processor (that is, the number belonging

46 CHAPTER 4. LOAD BALANCING

to each group) the same as it would have been if a true shuffle had been performed. The

total cost of simulating the shuffle operations in this manner is easily seen to be on the

same order as that of the multi-balancing operations. This algorithm will be referred to as

the shuffle-exchange version of algorithm MultiBalance. The following theorem summarizes

the two main results of this section.

Theorem 4.2.3 The average running time of algorithm MultiBalance, as well as that of

the shuffle-exchange version of algorithm MultiBalance, is

0 U(n/p)glogp + glog2p) .

4.3 Summary

This chapter has described hypercube and shuffle-exchange algorithms for performing two

load balancing operations: Balance and MultiBalance. For the Balance operation, lower

bounds were derived by considering the particular input configuration obtained by packing

the tokens into a smallest possible set of processors with low expansion. For the hypercube,

an algorithm was given that matches the lower bound to within a multiplicative constant

if m > max{2ra/p,log3'2p} and m = 0(n/p). The lower bound for the shuffle-exchange is

higher because the hypercube has better expansion properties than the shuffle-exchange.

Tight upper and lower bounds were obtained for the shuffle-exchange for m in the range

2n/p < m < n1_e, where e denotes an arbitrarily small positive constant.

Upper and lower bounds were given for the MultiBalance operation on the hypercube.

These bounds are tight for (n/p^logglogp)1/2 = $l(glog2p). A straightforward imple-

mentation of MultiBalance on the shuffle-exchange was also described. Finally, the average

case complexity of the hypercube and shuffle-exchange implementations of MultiBalance was

considered. Not surprisingly, these algorithms behave much better on average than they do

in the worst case.

Chapter 5

Upper Bounds for Selection

This chapter describes three entirely different approaches to the problem of selection on

the hypercube and shuffle-exchange. The first approach is based on the 0((loglogn)2)

algorithm of Cole and Yap for the parallel comparison model [CY85]. The speed of that

algorithm is based upon the fact that small sets of keys can be sorted very quickly. More

formally, n keys can be sorted in constant time with n2 processors on the parallel comparison

model. There exists an analogous result for the hypercube and shuffle-exchange, namely,

that n keys can be sorted in O(logn) time with n2 processors.

The second approach is based on the straightforward EREW PRAM selection algorithm

of Vishkin [Vis83]. The hypercube and shuffle-exchange implementations of this algorithm

make use of the Balance operation described in Section 4.1. An optimal algorithm is obtained

for the pipelined hypercube.

The third approach is not based on any previous parallel algorithm. The source of its

efficiency is a sequential tradeoff between preprocessing and search time in a partial order

due to Borodin et al. [BGLY81]. The lower bound proven in Chapter 6 establishes that,

for a sufficiently large ratio of keys to processors, the running time of this algorithm is

asymptotically optimal on a wide variety of networks.

5.1 Problem Definition: Select

The Select operation is defined as follows. Given n O(logp)-bit keys and an integer k,

0 < k < n, determine the fcth largest key and broadcast it to all processors. It will be

47

48 CHAPTER 5. UPPER BOUNDS FOR SELECTION

assumed that the set of n keys is initially balanced with minimum error, that is, each

processor holds either [n/p\ or \n/p] keys. It will be assumed that n = 0(pc) for some

constant c, so that array indices and key counts can be manipulated with a constant number

of CPU operations. Finally, it will be assumed that the n keys are distinct. The latter

assumption is made without loss of generality, since ties can always be broken consistently

by making use of the following convention.

1. If two keys originating at different processors are equal, the one originating from the

processor with the higher ID is deemed to be larger.

2. If two keys originating at the same processor are equal, the one initially stored at the

higher memory location is deemed to be larger.

This tie-breaking procedure appends [logn] = O(logp) bits to each key, and thus produces

at most a constant factor overhead.

Three selection algorithms will now be presented: SortSelect, BalanceSelect and Search-

Select.

5.2 An Algorithm Based on Sorting

The first selection algorithm to be considered, SortSelect, is based on the existence of a

fast sorting algorithm when the number of processors exceeds the number of keys by a

polynomial factor. If n > p then the algorithm will simulate 0(n) processors, incurring

a slowdown penalty of 0(n/p). Hence, it suffices to provide a selection algorithm with

running time O(logploglogp) for the case n = p in order to establish the more general

bound of 0((n/p) logploglogp).

Algorithm SortSelect is an adaptation of the parallel selection algorithm of Cole and

Yap [CY85]. That algorithm runs in O(loglogp)2 time on Valiant's parallel comparison

model [Val75], and relies upon the fact that p1/2 keys can be sorted in constant time

on p processors to develop an 0 (log log p) time approximation subroutine that achieves

the following degree of accuracy. Given p processors and n < p keys, it returns a key

representing a "lower approximation" to the desired rank j key with rank j\ satisfying

j ~ Wüy^ -jl -J'' (5-1}

5.2. AN ALGORITHM BASED ON SORTING 49

so the approximation improves as p/n increases. Similarly, the approximation subroutine

can be made to return an "upper approximation" with rank ju satisfying

The ratio p/n increases dramatically with each successive application of the approximation

subroutine because only ju - ji keys survive to the next round. When p/n reaches p1?2

or greater, the entire set of remaining candidates can be sorted, and the desired element

found, in constant time.

It will now be shown that the approximation subroutine of Cole and Yap, which runs in

O(loglogp) time in the parallel comparison model, can be implemented to run in O(logp)

time on the hypercube or shuffle-exchange. The algorithm outlined below, NearSelect, com-

putes a lower approximation satisfying Equation (5.1) in O(logp) time. The task of finding

an upper approximation may be handled in an analogous manner. In the following, the

p given "physical" processors are slowed down by a factor of 4096 in order to simulate

P = 4096p "virtual" processors. Physical processor i will simulate the 4096 virtual proces-

sors with IDs in the range [4096z',4096(i +1)). Initially, each of the n = p keys is "live", and

the key located at physical processor i is considered to reside at virtual processor 4096i.

Algorithm NearSelect

1. If n < P1/2, sort the n keys in O(logp) time using MergeSort, return the jth key, and

halt.

2. Note that P and n are both powers of 2, and P > 4096n. If P/n is an even power

of 2, let r equal {P/n)1!2. Otherwise, let r equal (P/2n)1/2. Divide the n keys into s

short sets of size r2. Note that r and s = n/r2 are both powers of 2. The Arth key of

the ith short set is located at virtual processor ir4 + kr2, 0 < k < r2. Sort each of the

short sets independently in O(logr) time using MergeSort. The r4 virtual processors

used to sort the zth short set are those with IDs in the range [ir4, (i + l)r4).

3. Kill off all but those n/r keys that have a rank in their short set that is an integer

multiple of r. For short set i, the r surviving keys are located at virtual processors

ir4 + kr3, 0 < k < r. Let n equal n/r. Let j equal [j/r\. Go to Step 1.

It will now be proven that NearSelect has the required performance, that is, it terminates

in O(logp) time and the rank ji of the key ultimately returned by Step 1 is guaranteed to

50 CHAPTER 5. UPPER BOUNDS FOR SELECTION

satisfy Equation (5.1). The following series of lemmas is very similar to that proven by Cole

and Yap [CY85], though some minor changes have been made in order to accommodate the

hypercube and shuffle-exchange implementations.

Lemma 5.2.1 NearSelect terminates in O(logp) time.

Proof: Let the values of n and r in the ith iteration of the loop be 2a' and 26', i > 0,

respectively. Letting p = 2d, note that P = 2d+w, a0 = d and b0 = 6. Furthermore,

a,-+i = a,- — bi and the algorithm terminates when a; < (d + 12)/2. It is sufficient to prove

that the sequence {bi} increases geometrically, since this would imply that the algorithm

terminates within O(logd) = O(loglogp) iterations. Now observe that

bi +i ^
(d+12)-(ai-bi)-l

> bi +

2
6,-1

> Ha,,
- 12 "

for all bi > 6 and thus for all i > 0. To analyze the total running time of the loop, note that

each iteration runs in O(logr) time so the cost of the last iteration will dominate. Hence,

the total running time of the loop, and of NearSelect is O(logp). []

Observe that algorithm NearSelect has a recursive structure. Let S denote the set of

live keys at the start of some iteration of the loop and let T denote the remaining set of

\S\/r live keys at the end of the iteration. To obtain a lower approximation to the jth key

in S, NearSelect first checks \S\ to see whether or not it is small enough to be sorted in

O(logp) time. If so, sorting is performed and the jth. key is returned. If not, it returns a

lower approximation to the [j'/rjth key in the smaller set T, obtained recursively.

Lemma 5.2.2 Let a particular key belonging to S ("I T have rank k in T and rank k' in S.

Then rk — rs + s < k' < rk.

Proof: Associate with each key in T the r — 1 immediately higher keys in its short set. A

key with rank k in T can be greater than at most the k lowest keys in T plus their associated

sets, in S. Hence, k' < rk. Similarly, a key with rank k in T must be greater than the k

lowest keys in T and at least k — s of their associated sets, in S. Hence, k + (r~l)(k — s) < k'.

D

5.2. AN ALGORITHM BASED ON SORTING 51

Lemma 5.2.3 Let the lower approximation to the jth computed by NearSelect have actual

rank ji in S. Then j — 8n/r < j\ < j.

Proof: This result will be proven by induction on the number of iterations of the loop.

If there is only one iteration, then the entire set S is sorted and ji — j. If there is more

than one iteration, then the induction hypothesis implies that the key returned as the

approximation to the [j/rjth key in T has rank k in T satisfying

[j/r\ -8n'/r' <k< [j/r\,

where n' and r' are the values of n and r used in the next iteration, that is, n' = n/r and

r' is either (P/ra')1/2 or (P/2n')1/2. Applying Lemma 5.2.2 one finds that

r[j/r\ — rs + s — 8rn'/r' < j\ < r\J/r\.

The right inequality implies that ji < j. From the left inequality one may obtain

i • / i 8r(n/r)
31 ~ rlj/rl-rS + S-(P/(2n/r)y/i

> (j - rs) - rs + s - 27/2(n/r)(nr/P)x/2

> j - 2rs - 27/2(n/r)(n/P)1/4

> j - 2n/r - 21/2(n/r)

> j - 8n/r,

as required. []

Corollary 5.2.3.1 The rank of the key returned by NearSelect, j[, is guaranteed to satisfy

Equation (5.1).

Proof: Use the preceding lemma and observe that

Q I / 8n / U

8n/r < /n/o_M/9 < (P/2n)!/2 - 4(p/n)!/2'

for r > (P/2n)x/2 and P = 4096p. 0

Algorithm SortSelect can now be stated. Note that the algorithm will work properly

even if n < p, that is, if only a subset of the processors initially contain a key. Initially,

each of the n keys is "live".

Algorithm SortSelect

52 CHAPTER 5. UPPER BOUNDS FOR SELECTION

1. Count up the number of live keys, n, and broadcast n to all processors. This takes

O(logp) time.

2. Use a prefix sum followed by a concentration route to move the live keys to the n lowest

numbered processors, that is, to processors 0 through n— 1. This takes O(logp) time.

3. Let n' be the least power of 2 that is greater than or equal to n. Put a dummy +oo key

at each processor in the range n through n' — 1. Let n equal n'. This takes constant

time.

4. If n < yfP, sort the n keys in O(logp) time using the MergeSort algorithm of Nassimi

and Sahni [NS82], return the jth key, and halt.

5. Compute a lower approximation to the key of rank j by calling NearSelect. Compute

an upper approximation in an analogous manner. Let these two keys have actual

ranks ji and ju, respectively. This takes O(logp) time.

6. Broadcast the upper and lower approximations to all processors. This takes O(logp)

time.

7. Kill off those keys that are less than the lower approximation or greater than the

upper approximation. This takes constant time. Go to Step 1.

Each iteration of the main loop of algorithm SortSelect takes O(logp) time. A bound

will now be established on the number of iterations.

Lemma 5.2.4 Algorithm SortSelect terminates within O(loglogp) iterations. Hence, Sort-

Select runs in O(log p log log p) time on the hypercube and shuffle-exchange.

Proof: Let n = 2d~a' on the ith iteration of Step 4. Note that ao = 0 and a\ = 1.

Equations (5.1) and (5.2) imply that

d — flt'+i <
3 1

3 1
< -{d - a) - -d,

3
< d — -av.

2

Hence, a,-+i > (|j for i > 0 and the algorithm will terminate within O(\ogd) = O(loglogp)

iterations. []

5.3. AN ALGORITHM BASED ON LOAD BALANCING 53

5.3 An Algorithm Based on Load Balancing

Algorithm SortSelect handled the case n > p by simulating n processors, which incurs a

multiplicative slowdown penalty of 0{n/p). Thus, algorithm SortSelect does not achieve

optimal speedup for any value of the ratio n/p. On the other hand, certain parallel models

of computation admit optimal speedup for selection when n/p is sufficiently large. For the

EREW PRAM, Vishkin has exhibited a straightforward selection algorithm that achieves

optimal speedup for n = fi(plogploglogp). This result has been improved by Cole, who

obtained optimal speedup for n = £l(plogplog* p) [Col86a].

Vishkin's algorithm is based on two ideas. First, if the set S is partitioned into p groups

of size n/p, with a single processor assigned to each group, then the median of each group

can be computed in 0(n/p) time sequentially, and the median of the resulting set of p

medians (which can be obtained by using the fastest known selection algorithm for the case

n = p) is guaranteed to be a constant fraction splitter for the set S. In other words, it is

greater than a constant fraction of the keys in 5, and also less than a constant fraction of

the keys in S (the fraction is |). Hence, by computing the exact rank in S of this median

of medians, a constant fraction of the set S can be discarded from further consideration.

The second idea is that the keys which have not been discarded can be partitioned into p

equal-sized groups in 0{n/p) time. Iterating this process of elimination and redistribution,

one finds that the number of keys remaining decreases geometrically and the complexity of

Vishkin's algorithm is 0(n/p + logpl0g(n/p)), where Cole's parallel merge sort has been

used to make the additive term small [Col86b].

The selection algorithm to be presented in this section, BalanceSelect, represents an

efficient implementation of Vishkin's algorithm for the hypercube and shuffle-exchange net-

works. At any given time, a key that has yet to be discarded by Vishkin's algorithm will

be referred to as a live key. The routine NearSelect (defined in Section 5.2) will be used to

compute a live key that is greater than, and also less than, some constant fraction of all

of the live keys. This allows a constant fraction of the live keys to be discarded. However,

there is no guarantee that any particular fraction of the live keys within a particular pro-

cessor will be eliminated. In the second phase of each stage, Balance is used to redistribute

the set of live keys uniformly over the p processors. A detailed description and analysis of

algorithm BalanceSelect is given below. Initially, all keys are "live".

Algorithm BalanceSelect

54 CHAPTER 5. UPPER BOUNDS FOR SELECTION

1. Let Si denote the set of live keys located at processor i, and let m,- denote the median

of Si. Let S = Uo<t<p«S't and let M = {mo,...,mp-i}. Let 5 = maxo<;<p |5;|. Since

selection can be performed in linear time sequentially, each processor can compute m;

with an 0(|5;|) time local computation. Hence, all of the medians can be computed

in 0(s) time.

2. Run NearSelect over the set M with j = |_p/2j in order to obtain an approximation

to the median of S. Let m denote the key given by this approximation. Note that

a constant fraction of the keys in S must rank lower (higher) than TO. This takes

O(logp) time.

3. Compute the rank f of m in S and broadcast it to all processors. This operation

takes 0(s + logp) time.

4. If j' — j, return m and halt.

5. If j' < j, each processor i removes from Si those keys which are less than m and j is

set to j —~f — 1. If f > j, those keys which are greater than m are removed and j is

left unchanged. This takes 0{s) time.

6. Execute Balance over the remaining set of live keys. This takes O(slogp) time on the

shuffle-exchange, 0(slog1'2p + log2p) time on the hypercube and 0(s + logp) time

on the pipelined hypercube.

7. Determine whether or not any processor contains more than a single live key. This

takes O(logp) time. If so, go to Step 1.

8. There are at most p live keys remaining, with 0 or 1 at each processor. Now use

SortSelect to complete the selection. This takes O(logplog logp) time.

From the above analysis, the running time of each iteration of Steps 1 to 7 is dom-

inated by the call to Balance in Step 6. Since s decreases geometrically from an initial

value that is 0(n/p), the number of iterations required is O(l0g(n/p)). The total run-

ning time of BalanceSelect is thus 0((n/p)logp + logploglogp) for the shuffle-exchange,

0((n/p) log1/2 p + log2 pl0g(n/p)) for the hypercube, and 0 (n/p + log ploglogp) for the

pipelined hypercube. Note that the performance of BalanceSelect on the pipelined hyper-

cube is optimal for n > p log p log log p.

5.4. AN ALGORITHM BASED ON SEARCH 55

The asymptotic complexities of IMearSelect and SortSelect are low, but hide rather large

multiplicative constants. A more practical implementation of BalanceSelect would make use

of BitonicSort to perform these selection operations. For sufficiently large values of the ratio

n/p, this substitution has no effect on the asymptotic complexity of BalanceSelect.

5.4 An Algorithm Based on Search

The third and final selection algorithm to be considered, SearchSelect, obtains efficient

performance by eliminating a constant fraction of the keys at every processor in each iter-

ation. This is not accomplished by redistributing the keys as in algorithm BalanceSelect,

but instead by searching for a more accurate approximation to the desired key. A detailed

description and analysis of this algorithm will now be presented. Initially, all of the keys

are "live".

Algorithm Select

1. Let S{ denote the set of live keys located at processor i, and let m,- denote the median of

S{. Let S = Uo<i<pSi and let M = {m0,..., rnp_i}. Let 5 = max0<;<p \Si\. All of the

medians can be obtained in O(s) time using a linear time sequential method. Having

found the medians, partition the set S, into its upper and lower half. Continue this

partitioning process to depth min{log(n/p),loglogp}, that is, until Si has either been

fully sorted or has been split into log p subsets, each with approximately s/ log p values.

Build a binary tree of partition elements to facilitate searching. The total cost of this

preprocessing is O(smin{log(n/])),loglog;>}). Given an arbitrary value, its rank in

Si can be determined in O(min{log(ra/p),loglogp} + s/logp) time by locating the

correct subset and then looking at every key in that subset. This sequential tradeoff

between preprocessing time and search time is well understood, see [BGLY81] and

[KMR88].

2. Find that m £ M with rank in S closest to j (if there is a tie, break it arbitrarily) and

broadcast it to all processors. The key m can be computed in time 0(s + log2p) as

follows. First, let ra\ = mt- at each processor i. Now sort the set M' = {m'0,... ,m'a}

so that m'- = m^, where m^ has rank i in M. This can be done using bitonic sort

in O(log2 p) time. Next perform a binary search over the set M' to determine m.

56 CHAPTERS. UPPER BOUNDS FOR SELECTION

This requires O(logp) rank computations over 5, each of which may be performed as

follows.

(a) Let m' be that key in M' whose rank in S is currently required by the binary

search. Broadcast TO', along with the ID of the processor that it is stored in, to

all processors. This takes O(logp) time.

(b) At each processor i, compute the rank r,- of TO' in Si. As observed above,

the preprocessing performed in Step 1 allows this operation to be completed

in 0(s/\ogp + min{log(n/p),loglogp}) time.

(c) Sum the r,- values to obtain the rank of TO' in S. This takes O(logp) time.

3. Let j' be the rank of TO in S. If / = j, return TO and halt.

4. At each processor i, kill off those keys in Si that cannot possibly have rank j in S. Let

Vi be the rank of m in Si as computed in Step 2b. Assume that / < j; the case j' > j

is similar. All of the keys in Si with ranks in Si less than or equal to i-,- can certainly

be eliminated. If m > m,-, note that this has eliminated at least half of the keys in

Si. If TO < TO,-, then the keys in Si with ranks greater than or equal to that of TO,- can

also be eliminated, since the rank of m,- in S must be greater than j in order to avoid

contradicting the choice of TO. Once again, and hence in all cases, the number of live

keys in 5,- is reduced by at least a factor of 2. Given the preprocessing performed in

Step 1, this step can be performed in O(s/logp + min{log(n/p),loglogp}) time.

5. Set j to j — A, where A is the total number of keys eliminated in Step 4 because their

rank in S had to be less than j. Note that A can be computed and broadcast to all

processors in O(logp) time. Go to Step 1.

The preceding analysis implies that each iteration of Steps 1 through 5 executes in

0(s min{log(n/p),loglog/>} + log2p) time. Since |5,| is initially n/p and is cut at least in

half every iteration, after l0g(n/p) iterations every 5,- will contain at most one element,

and the next TO computed in Step 2 will have rank j in S. Since 5 decreases geometrically

from an initial value of n/p, the total running time is O((n/p)rnin{log(n/^),loglogp} +

log2p\0g(n/p)) = O((n/p)loglogp + log2pl0g(n/p)).

Note that the (n/p) log log p term in the running time is entirely due to the cost of local

preprocessing, as opposed to communication. The results of this section are summarized

by the following theorem.

5.5. SUMMARY 0 1

Algorithm Running Time Transition Region

MergeSort

SortSelect

SortSelect

SearchSelect

SearchSelect

O(log2p/log(p/n))

0 (log p log log p)

O((n/p)logploglogp)

0 (log2 p log log p)

0((n/p) log logp)

n _ pl-0(l/loglogp)

n = Q(p)

n = O(plogp)

n = O(plog2 p)

Table 5.1: Best known selection algorithms for the hypercube and shuffle-exchange.

Theorem 5.4.1 The SearchSelect algorithm runs on the hypercube and shuffle-exchange

in O((n/p)loglogp + log2 plng(n/p)) time. If the values are given in locally sorted form,

then SearchSelect runs in O(log2p\0g(n/p)) time. □

Note that the complexity of algorithm SearchSelect can be expressed in terms of the cost of

the following primitive operations: sort of n = p keys, broadcast and sum. Thus, it adapts

easily to a variety of networks. To be precise, assume that a particular network is capable

of sorting n = p keys located one per processor in time Ti and can perform broadcasting

and summing operations in time T^. Then the running time of algorithm SearchSelect may

be written as

0((n/p) log log p + (Ti + r2logp)l0g(n/p)), (5.3)

where the first term disappears if the keys are given in locally sorted form.

Consider the performance of algorithm SearchSelect on a number of common network

families. For the butterfly, hypercube and shuffle-exchange, Ti = O(log2p) and T2 =

O(logp), so the second term in Equation (5.3) is log2p\0g(n/p), and for n = Q(plog2p) the

running time of SearchSelect is 0((n/p)loglogp). For the d-dimensional mesh (d constant),

T\ = T2 = ©(p1^), so the first term dominates for n - fi(p1+1/dlog2p/loglogp). Let T3

denote the time required for a given network to perform selection over n = p keys located

one at each processor. If T3logp < Ti (as in the case of the complete binary tree, for

example) then the second term in Equation (5.3) can be reduced to (T2 + T3)logpl0g(n/p)

by implementing each of the log(n/p) binary searches over p medians with logp selection

operations rather than a single sort.

5.5 Summary

CHAPTER 5. UPPER BOUNDS FOR SELECTION

Algorithm Running Time Transition Region

MergeSort

SortSelect

BalanceSelect

BalanceSelect

0(log2p/log(p/n))

0 (log p log log p)

0 (log p log log p)

0(n/p)

n _ pl-0(l/loglogp)

n = e(p)
n = Q(p\ogplog\ogp)

Table 5.2: Best known selection algorithms for the pipelined hypercube.

This chapter has described and analyzed a number of selection algorithms for the hypercube

and shuffle-exchange. Table 5.1 summarizes the running times of the best known selection

algorithms over ascending ranges of the ratio n/p. For n < ^-©(Viogiogp)^ the fastest

known selection method is Nassimi and Sahni's MergeSort algorithm. As the ratio n/p is

increased beyond this point, SortSelect becomes the best known selection algorithm. Finally,

algorithm SearchSelect overtakes SortSelect in the region n = Q(p\ogp). The ranges of n/p

have been further subdivided at n = &(p) and n — Q(plog2 p) in order to isolate the

dominant term in the running time. When the keys are initially locally sorted, the running

time of SearchSelect is reduced to O(log2 p\0g(n/p)), which represents an improvement for

n = oj(plogp).

Table 5.2 summarizes the running times of the best known selection algorithms for the

pipelined hypercube.

Chapter 6

A Lower Bound for Selection

This chapter is concerned with deriving a lower bound on the complexity of the selection

problem for a certain large class of networks. Given a set S of n keys and an integer k,

0 < k < n, the selection problem is to determine a key with rank k in S. If all of the keys

are distinct, there will be a unique key with rank k. The lower bound will apply to the

special case of the selection problem in which all keys are distinct and the key being sought

is the median of 5, that is, k = [n/2\. The only operations allowed on keys are copy and

comparison.

Given that optimal speedup of selection is attainable on the EREW PRAM, for n/p

sufficiently large, one is led to ask whether a similar result can be achieved under a more

realistic model of computation such as the network model defined in Section 1.1. In fact,

networks exist for which optimal speedup of selection is attainable. The sorting result of

Leighton [Lei85] and the token distribution result of Peleg and Upfal [PU89] together imply

that Vishkin's algorithm can be implemented to run in 0(n/p + logploglogp) time on a

certain class of bounded degree expander networks. Given a network corresponding to the

graph G = (V, E), the expansion of any subset U of the vertices (processors) is defined as

|r(C/')|/|(7|, where T(U) denotes the set of vertices in V \U that are adjacent (connected by

a communication channel) to at least one vertex in U'. The expansion of a network is the

minimum over all U C V such that 1 < \U\ < \V\/2 of the expansion of U. An expander

network is a network with expansion ft(l).

The main result of this chapter is an Q((n/p)log\ogp + logp) lower bound for selection

on any network that satisfies a particular low expansion property defined in Section 6.3.

59

60 CHAPTER 6. A LOWER BOUND FOR SELECTION

The class of networks satisfying this property includes all of the common network families

such as the tree, multi-dimensional mesh, hypercube, butterfly and shuffle-exchange. The

lower bound is proven in Sections 6.2 and 6.3. Note that this lower bound disproves a

claim of Aggarwal and Huang stating that optimal speedup is possible for selection on

the hypercube and shuffle-exchange [AH88]. When n/p is sufficiently large (for example,

greater than log2p on the hypercube and shuffle-exchange), the lower bound is tight to

within a multiplicative constant. The matching upper bound is provided by the algorithm

SearchSelect presented in Chapter 5.

6.1 The Lower Bound Model

The lower bound for selection proven in this paper applies under a strictly more powerful

model of network computation than the 1-port model defined in Section 1.1. In particular,

the only restrictions enforced by this model are the following:

1. Each processor can send and/or receive at most one key per time step.

2. The only operations allowed on keys are copy and comparison, and each processor can

perform at most one such operation per time step.

Note that an unlimited amount of computation and communication involving data other

than keys can be performed in each time step. Under this model, it will be proven that

any selection algorithm running on a network satisfying a particular low expansion property

requires Sl((n/p)log\ogp + logp) time steps in the worst case.

The model of network computation defined above will be referred to as the lower bound

model throughout the remainder of this chapter.

6.2 A Restricted Lower Bound

This section provides an Q.((n/p) log logp — logp/ log logp) time lower bound for selection

on a complete network with restricted capability. In order to simplify the exposition, it will

be assumed that n and p are both powers of 2, n > p. Recall that S denotes the set of n

keys, and that there are initially n/p keys located at each of the p processors. The lower

bound established in this section applies under the model of computation defined below.

6.2. A RESTRICTED LOWER BOUND 61

Definition 6.2.1 The restricted lower bound model is equivalent to the lower bound model

defined in Section 6.1, with the following additional restriction. For every R C S, if R is

initially assigned to a set of processors X, then at most |X| comparisons per time step can

involve keys belonging to R.

The motivation for the restricted lower bound model is that networks with poor ex-

pansion properties suffer from a similar, albeit less severe, inability to spread out a con-

centrated set of data in order to apply more processors to it. In particular, if the size of

the neighborhood of a given set of processors X is a\X\ where a — o(l/loglogp), then in

0((n/p) log log p) time not even a constant fraction of the \X\n/p keys initially located in the

set X can have been moved or copied to processors outside of X. Of course, the restricted

lower bound model is, by itself, quite unrealistic. Furthermore, it is unclear whether or

not selection can be performed in O((n/p)\og\ogp) time on this model, even assuming the

complete network. However, the preceding observation indicates that it may be possible to

transfer a lower bound for the complete network operating under the restricted lower bound

model to a realistic network operating under the lower bound model.

The remainder of Section 6.2 is devoted to proving an fi((rc/p)loglogp — logp/log log p)

lower bound on the running time of any algorithm for computing the median on the com-

plete network operating under the restricted lower bound model. The proof makes use of

an adversary argument. At each time step, the algorithm indicates which set of at most p

comparisons it would like to make, and the adversary resolves these comparisons sequen-

tially. Of course, the algorithm must respect the rules of the restricted lower bound model,

and the adversary must resolve comparisons in a manner that is consistent with at least

one total ordering of the keys. Sometimes the adversary will give away the outcome of a

comparison that has not been performed by the algorithm. This is done in order to simplify

the lower bound argument. Note that giving away such additional information can only

help the algorithm.

It is useful to keep in mind that the restricted lower bound model does not limit the

amount of computation or communication involving non-key data that can be performed

in each time step. Hence, it may be assumed that at all times, every processor is aware

of all of the comparison information that has been gathered thus far. In other words,

one may envision a global controller that receives the outcome of every comparison query

made in a given time step, and then performs an unbounded amount of computation in

order to determine the next set of comparison queries. This is essentially Valiant's parallel

62 CHAPTER 6. A LOWER BOUND FOR SELECTION

comparison model [Val75], except for the added restriction imposed by Definition 6.2.1.

The description and analysis of the adversary argument has been divided into a number

of parts. Section 6.2.1 describes the information that the adversary gives away at the out-

set of the computation. Section 6.2.2 provides some useful definitions. Section 6.2.3 states,

without proof, the invariants that will be satisfied by the adversary. Section 6.2.4 gives

the procedure by which the adversary resolves comparison queries made by the algorithm.

Section 6.2.5 completes the construction of the adversary by describing the additional in-

formation given away at certain points during the computation. Section 6.2.6 proves that

the adversary resolves comparison queries in a consistent manner. Sections 6.2.4 to 6.2.6

assume that the invariants of Section 6.2.3 are satisfied. Section 6.2.7 proves that the con-

struction of the adversary actually does ensure that these invariants are satisfied. Finally,

Section 6.2.8 gives a precise statement of the lower bound established by the adversary

argument.

6.2.1 The Initial Setup

Before the computation begins, certain information is given to the algorithm for free. Several

definitions are needed in order to describe this information. Let a block of processors be

defined as a set of processors B such that the \B\n/p keys initially located in the set B have

contiguous ranks in the set of all keys S. Let A denote a positive integer to be denned later

(it turns out that A = 0(logp/loglogp)). It will be convenient to define the concept of a

block at level i, 0 < i < A, which is a block with the following additional properties.

1. All blocks at level i contain the same number of processors, a,-, and they are pairwise

disjoint. Furthermore, so = p.

2. A block at level i contains b{ = 2<l°s^+1'' pairwise disjoint blocks at level i -f- 1,

0 < i < A - 1.

3. The size of the blocks at level i + 1 is such that the union of the blocks at level i + 1

within a given block B at level i contains 7|i?| processors, 0 < i < A — 1, where 7 is a

real constant between 0 and 1 (it turns out that | is an appropriate choice for 7, see

below and the proof of Lemma 6.2.4).

Thus, 5,+i = fSi/bi and

bo-'-bi-x'

6.2. A RESTRICTED LOWER BOUND 63

0 < i < A. Setting 7 to the reciprocal of some power of 2 will ensure that the s,'s are

integer-valued as long as p > c'il for some constant c. Taking logarithms, this requirement

becomes logp > i\ogi + 0(i), which is asymptotically satisfied for certain values of A in the

range 0 (log p/ log log p). Note that every block has a unique level that can be determined

from its size.

The following information is given away by the adversary before the computation begins.

First, the input permutation of the keys is such that the set of all p processors forms a block

at level 0. This implies the existence of a tree of blocks of depth A. The algorithm is given

both the IDs of the processors that make up each of the blocks in this tree as well as the

ordering of the blocks within each level.

6.2.2 Useful Definitions

The adversary argument proceeds in stages consisting of a number of consecutive time steps.

The number of stages is given by the positive integer A defined in the preceding section.

The ith stage begins at time i,- = maxo<j<,L(ra/p)dj\ - j and ends at time i,-+1, where

di = |log(i + 1), 0 < i < A. Note that t0 = 0 and ti+1 > U, 0 < i < A. The following pair

of technical lemmas will be useful for bounding the amount of work that can be performed

in a single stage, and up to a particular stage.

Lemma 6.2.1 There are at most 2\n2p(i+i) iime stePs ^n tne itn stage-

Proof: Observe that whenever i,-+1 — t{ is nonzero, it satisfies the inequality:

'i+i-'i < (ij(»/rii°g(; + 2)j-;-i)-(|i(»/j>)i°g('' + i)j-i)

s 5E3<-/»>ta(1 + 7TT)
<

1
21n2p(i+ 1)'

D

Lemma 6.2.2 The starting time of the ith stage, /,-, is at most \{n/p) log(i +1), 0 < i < A.

Proof: Immediate from the definition of U. []

Like blocks, processors and keys are assigned unique level numbers. The level of a

processor is i if and only if the highest level block that it is contained in is at level i. The

64 CHAPTER 6. A LOWER BOUND FOR SELECTION

level of a key is given by the level of the processor that it is initially contained in. Note

that a processor or key at level i is contained in exactly one block at level j, 0 < j < i.

At any given time during the computation, some subset of the n! possible total orderings

of the keys remain consistent with all of the information that the algorithm has learned.

Consider an arbitrary pair of distinct keys x and y. If x < y in every one of the possible

total orderings, then the outcome of the comparison between x and y is said to be forced.

Definition 6.2.2 Once the outcomes of all n — 1 comparisons involving a particular key

are forced, that key is said to be dead. Keys that are not dead are live.

Before the beginning of each stage, the adversary will give certain information away

(described in Section 6.2.1 for stage 0, and in Section 6.2.5 for subsequent stages). After

that information has been given away, and before the beginning of the ith. stage, 0 < i < A,

let Di and L{ = S \ Di denote the sets of dead and live keys, respectively. Note that the

ranks in S of the keys in Di have all been determined.

Let Ui denote the set of all level i keys in i,-. Let Vi = Li \ U,. It will turn out that

all keys of level less than i are dead by the beginning of stage i, so VJ denotes the set of all

keys in Li with level strictly greater than i.

6.2.3 Invariants

This section states, without proof, certain useful invariants that will be satisfied by the

adversary. Section 6.2.7 proves that the construction of the adversary actually ensures that

these invariants are satisfied.

As mentioned earlier, the adversary gives away certain information at the beginning of

the ith stage, 0 < i < A. After this information has been given away, and before the ith

stage begins, the construction of the adversary will guarantee that the following invariants

hold:

1. There are integers j < [n/2\ and k > \n/2\ such that the set of ranks in S of the

keys in Di is exactly {0,..., j — 1} U {k,..., n — 1}. Thus, the set of ranks in S of the

keys in Li is {j,..., k — 1}.

2. The set Li is a subset of a single block at level i. Thus, every key in Li is of level i or

higher.

6.2. A RESTRICTED L0WER B0 UND 65

n,+1-i

Figure 6.1: Extracting the sets £/j+1 and Vj+i from £/,• and V{.

3. The key being sought, namely the median of S, is also the median of X,-.

4. All pairs of keys in £/,- are incomparable. Furthermore, \Ui\ > (1 - f)(n/p)si/(i + 1).

5. The set Vi is exactly the set of keys in a single block at level i + 1.

6. Every key in £/,• is incomparable to every key in V{.

7. Two or more keys in £, could still be the median of S.

In particular, note that Invariant 7 implies that the algorithm cannot yet have terminated

successfully.

Figure 6.1 indicates how the sets f7t+i and Vi+i are related to Ui and Vi, 0 < i < A - 1.

The set Vi is a block at level i + 1, and hence may be partitioned into sets X and Yj,

0 < j < bi+i, where X represents all of the level i + 1 keys in Vi, and Yj denotes the j'th

block of level i + 2 in Vi. The adversary will be constructed in such a way that t/,-+1 is a

subset of X and V,+i is equal to Y^ for some k, 0 < k < bi+i.

6.2.4 Resolving Comparison Queries

This section gives the procedure by which the adversary resolves comparison queries made

by the algorithm.

Consider a single comparison made by the algorithm, between keys x and y of levels j

and k, respectively. Without loss of generality, assume that j < k. If either x or y is a dead

66 CHAPTER 6. A LOWER BOUND FOR SELECTION

key (this will be referred to as a type A comparison) then the outcome of the comparison is

forced, and the adversary responds accordingly. Similarly, if y does not belong to the same

block at level j as x (type B comparison), the response is forced. Otherwise, y belongs

to the same block at level j as i, and the two cases i < j and i = j will be considered

separately.

If i = j (type C comparison) then x belongs to £/,■ and y belongs to either Ui or V{. The

adversary alternately resolves queries of this type by saying that x is smaller than (larger

than), not only y, but the entire set of remaining live keys. The key x becomes a dead key.

In order to determine how to resolve a comparison query in the case i < j (type D

comparison), the adversary consults a comparison tree that it has been maintaining for the

block at level j containing x. The adversary maintains such a comparison tree for every

block. A comparison tree of the same sort was used by Borodin et al. [BGLY81] to obtain

an easy (though not their strongest) sequential tradeoff between preprocessing time and

search time in a partial order. A comparison tree is a binary tree with tokens placed at

certain nodes. The comparison tree for a block B at level j contains (1 — ~y)(n/p)sj tokens

corresponding to the keys of level j in B, and bj tokens corresponding to the blocks of level

j + 1 in B. When it is important to distinguish between these two types of tokens, they

will be referred to as key tokens and block tokens, respectively. At time 0, the key tokens

are all placed at the root and the block tokens are placed, one per node, on the bj nodes at

depth log&j = flog(j + 1)1-

Note that every key corresponds to a key token in the comparison tree of exactly one

block. Similarly, every block (except those at the highest level, A — 1) corresponds to a

block token in the comparison tree of exactly one block, namely that of its parent.

To resolve the comparison query between keys x and y in the case i < j (type D

comparison), the adversary locates the key token x' corresponding to x in the comparison

tree T associated with the block at level j containing x. The adversary also locates the

token y' corresponding to y in the same comparison tree. If j = k, this will be a key token;

otherwise, it will be the block token corresponding to the unique block of level j + 1 that

contains y. Having located tokens x' and y' in the comparison tree T, the adversary resolves

the comparison between keys x and y as follows. Let x' and y' reside in nodes u and v of

the tree T, respectively, and let w be the least common ancestor of u and v. If w is not

equal to either u or v, then the adversary does not move any tokens.

If w is equal to either aort), the adversary must move at least one token downwards

6.2. A RESTRICTED LOWER BOUND 67

in the tree. If w is equal to both u and v, then x' is moved to the left child of w, and y' is

moved to the right child of w. If w is equal to u but not v, then if v is located in the left

subtree of w, x' is moved to the right child of w. The remaining cases are treated similarly.

The preceding algorithm describes how the adversary manipulates the tokens in each

comparison tree, but does not indicate how comparison queries are resolved. To resolve

queries, the adversary interprets each comparison tree as the partial order given by applying

the following rules:

1. The keys corresponding to two tokens in the same comparison tree are incomparable

if and only if they lie on a single downward path from the root.

2. If two tokens in the same comparison tree do not lie on a single downward path from

the root, then the key corresponding to the token lying to the "left" (that is, the token

residing in the left subtree of the least common ancestor) is deemed to be the smaller

key.

Note that the preceding rules apply to block tokens as well, where the key corresponding

to the block token is actually the entire set of keys in the corresponding block. This is

appropriate since the set of keys in any block have contiguous ranks in S, and hence they

all compare in the same way to any key outside of the block (that is, if B is a block and

keys ar, y and z are chosen such that x,y £ B and z £ B, then x < z if and only if y < z).

At the beginning of the ith stage, consider the set of comparison trees corresponding

to the unique block at level i given by Invariant 2 and all of the blocks that it contains.

At any time during the ith stage, the inequalities between live keys to which the adversary

has committed itself are exactly those encoded by this set of comparison trees. Note that

the initial configuration of the tokens in the comparison trees encodes precisely the infor-

mation given away by the adversary at the beginning of the computation, as described in

Section 6.2.1. Furthermore, one may check that the token movements (if any) performed

in processing a particular comparison query are always sufficient to resolve the query. In

Section 6.2.6, it will be proven that this method of resolving queries can never lead to an

inconsistent response by the adversary.

68 CHAPTER 6. A LOWER BOUND FOR SELECTION

6.2.5 Additional Information

This section completes the construction of the adversary by describing the additional infor-

mation given away before the beginning of each stage.

After stage i and before stage z' + l, let T denote the comparison tree associated with the

block Vi given by Invariant 5. The adversary counts the number of key tokens residing on

each of the 6; paths of length [log(z + 1)] descending from the root of T. Letting q denote

the path containing the most key tokens, the adversary kills off certain keys in such a way

that Ui+i becomes the set of key tokens on the path q, and Vi+\ becomes the block of keys

at level i + 2 corresponding to the path q.

Before the beginning of stage i + 1, the remaining live keys in X = S \ £t"+i (recall that

Li+i = Ui+i U V{+i) are killed off in such a way that the median of S is also the median

of Li+\. Every key that is killed off will either be said to be smaller than every key in

Z,-+i, or it will be said to be larger than every key in -Lj+i. An arbitrary consistent order

is maintained among the dead keys. Each key in X of level greater than or equal to i + 1

corresponds to a key or block token in the tree T that does not reside on the path q. If the

token resides to the left (right) of the path q, then the corresponding key is forced to be

smaller (larger) than every key in £»+i, in order to ensure consistency. On the other hand,

the live level i keys of X remain incomparable to every key in £,-+i. Hence, in killing off

each of these keys, the adversary has the freedom to decide whether to make it smaller or

larger than every key in £,-+i. In Section 6.2.7, it will be proven that X contains sufficiently

many live level i keys to force the median of S to be the median of Z,-+1.

6.2.6 Consistency of the Adversary

This section proves that the adversary resolves comparison queries in a manner that is

consistent with at least one total ordering of the keys.

Section 6.2.4 gave the adversary's procedure for resolving comparison queries, partition-

ing the queries into types A, B, C and D. For type A and B comparisons, consistency is

immediate.

At any given time during the z'th stage, let Iff1 denote the set of keys in U{ that are

known to the algorithm to be less than every key in Vi, and let Uf1 denote the set of keys

in U{ that are known to be greater than every key in VJ.

6.2. A RESTRICTED LOWER BOUND 69

Now consider the type C comparisons. As argued in Section 6.2.4, the live keys in Ui

remain incomparable to one another and to Vi throughout the ith stage. Therefore, at all

times during the ith stage, any live key in Ui could be the minimum (maximum) key among

all of the remaining live keys. Hence, the adversary can consistently kill off any key in

U{ and assign it to either Uf or Uf1. A similar argument can be used to prove that the

comparison information given away by the adversary at the beginning of each stage (this

information was described in Section 6.2.5) does not lead to an inconsistency.

The consistency of the procedure for resolving type D comparison queries follows imme-

diately from the following lemma.

Lemma 6.2.3 Moving a token downward in a comparison tree can never result in an

inconsistent response by the adversary.

Proof: Assume the lemma is false, and consider the first downward movement of a token

that results in an inconsistent response by the adversary. Assume the token was moved

downward in comparison tree T corresponding to block B at level i. First note that while

a token movement in T can affect the partial order represented by T, it cannot affect the

partial order represented by any other comparison tree. This "decoupling" of the partial

orders represented by the various comparison trees follows from the use of block tokens to

represent all of the keys in block B with level strictly greater than i. Since all of the keys

within a block B' at level i + 1 are treated as a single key in tree T, no comparison that is

resolved within T can provide any ordering information regarding keys within block B'. By

a similar argument, a token movement in tree T gives no information about keys at levels

strictly less than i.

Thus, the inconsistency must arise within the partial order represented by comparison

tree T alone. This is impossible since moving a token downward in a comparison tree can

only augment the partial order that it represents, and a total order over the tokens in T

that is consistent with this partial order is trivial to construct (by an inorder traversal of

the tree, for example). []

The preceding discussion establishes that, up to any particular point in the computation,

the behavior of the adversary is consistent with at least one total ordering of the keys.

CHAPTER 6. A LOWER BOUND FOR SELECTION

6.2.7 Correctness of the Adversary

Sections 6.2.4 to 6.2.6 assume that the invariants of Section 6.2.3 are satisfied. This section

proves that the construction of the adversary actually does ensure that these invariants are

satisfied.

The proof is by induction on the number of stages. It is easy to check that all of the

invariants are satisfied at the beginning of stage 0, with LQ being S, UQ being the set of

(1 — ■y)n level 0 keys, and VQ — S \ UQ being the set of keys in the lone block at level 1 (note

that bo = 2^og1^ = 1). The induction hypothesis is that the invariants hold at the beginning

of the ith stage, 0 < i < A — 1. It remains to be proven that the invariants hold at the

beginning of stage i + 1. Of these, only Invariants 3 and 4 do not follow immediately from

the construction of the adversary. The task of establishing this remaining pair of invariants

will now be addressed.

The set of keys Ui is initially contained in a set of at most (1 — *y)si processors (recall

that all the keys in Ui are of level i), so Definition 6.2.1 and Lemma 6.2.1 imply that only

jj^(ra/p)(l — l)si/(i + 1) comparisons made during the ith stage can involve keys from

£/,-. Now each such comparison (even if it involves two keys from Ui) kills off only one

key in Ui, and leaves the remaining live keys in Ui incomparable to one another and to

V{. By Invariant 4 (which holds at the beginning of stage i by the induction hypothesis),

the preceding comparison bound implies that only a fraction j^ of the keys in Ui could

have been killed off during the ith stage. Recall that the adversary kills off keys in Ui by

alternately assigning them to Up and Uf. Hence, at the end of stage i, the algorithm could

at best have determined that 4-^-2 |#i| of the keys in Ui belong to Uf1, and that a similar

number belong to Uf1. At least (l — y^) I Ui | of the keys in Ui are still incomparable to one

another and to Vi. Using the inequality of Invariant 4, and the fact that \Vi\ = (n/p)si+i =

■y(n/p)si/bi, one finds that the ratio |^|/|Vi| is at least (1 - J)/J. Now consider the proof

of the following lemma.

Lemma 6.2.4 For sufficiently small choices of 7, any of the keys in Vi could still be the

median of Li at the end of stage i.

Proof: The median of S is also the median of i,- by Invariant 3 (which holds at the

beginning of stage i by the induction hypothesis). Hence, it is sufficient to prove that the

size of the set of keys known to reside in Uf (Uf1) plus the size of the set Vi is less than

\Li\/2. Using the inequalities \U^\ < jj^l^l and |{7,-|/|Vi| > (1 - 7V7 proven above, this

6.2. A RESTRICTED LOWER BOUND 71

sum can be bounded by JÜJ%|£J| + l\Li\ at the end of the ith stage. Thus, the lemma holds

f°r T < 4In2-1 ~ 0-218. As mentioned earlier, it is convenient to set 7 to the reciprocal of

a power of 2; §• is an appropriate choice. []

Lemma 6.2.4 proves that the adversary can kill off keys at the beginning of stage i + 1

in such a way that the median of S is also the median of Li, as required in Section 6.2.5.

Thus, Invariant 3 holds at the beginning of stage i + 1.

It remains to prove Invariant 4. The construction of the adversary ensures that the keys

of Ui+i are incomparable at the beginning of stage i + 1, but the lower bound on |C,-+i|

requires proof. Let T denote the comparison tree from which the adversary extracts the set

Ui+\. The number of key tokens in this tree is equal to (1 - 7)(n/p)s,-+i, and these tokens

reside initially in a set of (1 — 7)s,+i processors. Let A denote the average depth of the key

tokens in T. Observe that every comparison made by the algorithm increments the depth

of at most two tokens. Hence, Definition 6.2.1 and Lemma 6.2.2 imply that A < |log(i + 2)

at time ti+i. Let P denote the set of 6t+1 paths in T from the root to the initial position

of each of the 6,-+1 block tokens in T, that is, all paths of depth flog(z + 2)]. Let a.j denote

the number of key tokens at depth j in T at time U+i. By a simple averaging argument,

some path in P must contain at least

0<j<flog(i+2)l

key tokens. This sum is minimized by moving the tokens downward in a uniform fashion.

Hence, the bound on A implies that some path q in P contains at least a fraction 2~los(«+2) =

j-^ of the key tokens. Therefore |J7,-+i| > (1 - 7)(n/p)st-+1/(i + 2), and Invariant 4 holds.

Thus, the construction of the adversary ensures that Invariants 1 to 7 all hold at the

beginning of stage z'+l,0<i<A-l, and the proof by induction is complete.

6.2.8 The Lower Bound

The following theorem summarizes the main result of Section 6.2.

Theorem 6.2.1 Any selection algorithm for the complete network running under the re-

stricted lower bound model requires —j^-(n/p)loglogp - O(logp/loglogp) time steps.

Proof: This bound follows from Invariant 7 and the definition of U, with i = A - 1 =

©(log pi log log p). □

72 CHAPTER 6. A LOWER BOUND FOR SELECTION

The next section proves that the argument used to establish this lower bound can be

adapted to a large class of realistic networks running under the lower bound model. Note

that for n/p = O(logp/(loglogp)2), Theorem 6.2.1 does not provide any useful information;

alternative lower bound arguments need to be applied. If every processor is required to

receive a copy of the median, then a trivial fi(log p) lower bound holds, even for the complete

network running under the lower bound model. If this requirement is not made, the task of

proving an fi(logp) lower bound for such a powerful network may not be entirely trivial. For

the complete network running under the restricted lower bound model, it is easy to prove

an D(logp) lower bound for computing the maximum (and hence for selection). However,

this result is not particularly useful since the proof does not carry over to realistic networks

running under the lower bound model. In any event, such considerations may be avoided

in the special case of fi(logp) diameter networks, since a simple fooling argument implies

that at least fd/2] time steps are necessary for any selection algorithm running (under the

lower bound model) on a network with diameter d. Note that all bounded degree networks,

and all of the networks considered in Section 6.3, have fi(logp) diameter.

6.3 The Network Lower Bound

The purpose of this section is to prove an Q.((n/p)log\ogp + logp) time lower bound for

selection on certain realistic networks. The lower bound will apply under the powerful lower

bound model defined in Section 6.1, and will be obtained by making suitable modifications

to the proof of Theorem 6.2.1. Consider the following definition.

Definition 6.3.1 Let J\f(a,ß) denote the class of all network families T for which, given

any p processor network in J7, it is possible to construct all of the blocks (as defined in

Section 6.2.1) at levels less than ß in such a way that every block has expansion at most a,

where a and ß may depend on p.

A careful examination of the proof of Theorem 6.2.1 reveals that there are only two

points at which the definition of the restricted lower bound model is invoked; the rest of the

proof applies to the unrestricted lower bound model. The first use of Definition 6.2.1 is in

the proof of Lemma 6.2.4, and the second use leads to the existence of a suitable set E/,+i

in the induction step. In both cases, Definition 6.2.1 provides an upper bound of (1 — 7)3;

on the number of comparisons per time step involving the set of level i keys of a particular

block at level i.

6.3. THE NETWORK LOWER BOUND 73

Theorem 6.3.1 Let T be a network family belonging to the class jV(o(l/loglogp),/3).

Then any selection algorithm for T has a running time of at least \(n/p)logß - ß under

the lower bound model.

Proof: In the following argument, let X denote a generic block at level i, 0 < i < ß - 1.

Let Y denote the union of the blocks at level i + l'm X, and let Z = X \ Y. Let Y' and Z'

denote the sets of keys initially residing in Y and Z, respectively. By the remarks preceding

the statement of the theorem, it is sufficient to prove that the adversary construction of

Section 6.2 can be revised in such a way that the two applications of Definition 6.2.1 can

be avoided.

The construction of the adversary will be augmented in the following manner. Let T

denote the comparison tree associated with block X. At any given time step, each of the

\Z'\ key tokens in T is said to be either bad or good. A good key token is one for which no

copy of the corresponding key has ever left the set of processors Z. Thus, all key tokens are

initially good, and bad key tokens never become good again. How many good key tokens

in tree T can become bad in a single time step? There are only two ways for a good key

token to become bad. One way is for a copy of the corresponding key to be transmitted

to a processor outside of X. Since block X has expansion o(l/loglogp), the number of

good key tokens that can become bad in this manner is o(|X|/loglogp) per time step.

The other way for a key token to become bad is for a copy of the corresponding key to be

transmitted to a processor in Y. Since Y is the union of a number of disjoint sets with

expansion o(l/loglogp), the number of these events is o(|y|/loglogp) per time step. By

construction, \Z\ is a constant fraction of \X\, so the total number of key tokens that can

become bad in a single time step is o(|Z|/loglogp). Now the lower bound argument only

runs for 0((ra/p)loglogp) time steps, during which time the number of bad tokens that can

be generated is o(\Z\n/p) = o(|Z'|). In other words, the number of good key tokens in T is

(1 — o(l))|Z'| at all times in the range of interest.

The final modification to the adversary construction of Section 6.2 is as follows. In the

induction step, the adversary now extracts the set f/t-+1 from the set of good key tokens

only. In a single time step, at most \Z\ comparisons can be made involving keys in the

subset of Z' corresponding to the good key tokens in T, since processors outside of Z do

not have copies of any of these keys. Thus, the argument of Section 6.2 goes through with

the inequality of Invariant 4 weakened by a factor of 1 - o(l), the fraction of all key tokens

that are guaranteed to be good. Now consider the proof of Lemma 6.2.4. At the beginning

CHAPTER 6. A LOWER BOUND FOR SELECTION

of the ith stage, all of the key tokens corresponding to Ui are good, and they reside in a

set of \Z\ processors. Using an expansion argument as above, Lemma 6.2.1 implies that at

most a o(l) fraction of the key tokens corresponding to £/,• can become bad during the ith

stage. This minor effect is of no consequence since 7 has already been set to a value that is

bounded away from its maximum acceptable value. A similar comment applies to the effect

of the weakened inequality in Invariant 4. []

Corollary 6.3.1.1 Let T be an fl(logp) diameter network family belonging to the class

7V(o(l/loglogp),0(/3)). Then any selection algorithm for T has a running time of at least

|(n/p)log/3 + fi(logp) under the lower bound model.

Proof: This bound follows immediately from Theorem 6.3.1 and the additional observation

that any selection algorithm for a network of diameter d has a running time of at least [d[2\

under the lower bound model. Q

6.3.1 The Hypercube

Throughout this section, the quantity e will be used to denote an arbitrarily small positive

constant. A decomposition of the hypercube will now be defined that proves the hypercube

network family belongs to A/r(o(l/loglogp), 0(log1/3-£p)). Given a hypercube with p = 2d

processors, let q = [ds\ or [ds\ — 1, whichever is odd. The exponent S is a parameter

between 0 and 1 to be determined later. Let r = [d/q\, and divide the first qr bits of each

processor ID into r fields of q contiguous bits. The ith field determines the ith bit of an

r-bit condensed id according to the following rule, 0 < i < r. If the majority of the q bits

in the ith field are 0, then the ith bit of the condensed ID is 0; otherwise, it is a 1. Note

that since q is odd there will always be a strict majority of either 0's or l's. By symmetry,

2d~l processors will belong to any condensed subcube of dimension r — I obtained by fixing

the values of / bits in the condensed ID, 0 < I < r.

Lemma 6.3.1 The expansion of a condensed subcube of dimension / is 0{lq~xl2).

Proof: Let U denote the set of processors belonging to a particular condensed subcube of

dimension /. By symmetry, it will suffice to consider the condensed subcube corresponding

to the condensed ID with first I bits fixed to 0, and with the remaining r — I unspecified.

Let V denote the set of processors in T(U)\U that are adjacent to some processor in V

across some dimension in field 0. It is sufficient to prove that iVj/jf/'l = 0(q~1^2). But

6.4. SUMMARY 10

this ratio is readily seen to be precisely (/„.')/2) over 29 1, which is 0(q 1/'2) by Stirling's

approximation. []

Since I < r,q = Q(ds) and r = 0(d1-Ä), Lemma 6.3.1 implies that the expansion of every

condensed subcube is 0(rq~ll2) = 0(d1-35/2). If S is chosen to be any constant strictly

between 2/3 and 1, then the expansion of every condensed subcube will be O(log-€p) =

o(l/loglogp). Furthermore, it should be clear that the condensed subcube structure can be

used to construct the tree of blocks required by the lower bound argument of Section 6.2,

at least to a certain depth, since the size of every block is a power of 2. All that remains is

to determine the maximum possible value of ß as a function of p. The relevant inequality is

cßß\ < T for some constant c, which is satisfied for ß = Q{dl-S~tl2). Setting 6 = 2/3 + e/2

gives ß = d1'3-6, as claimed above. Slightly finer calculations allow this e to be replaced by

o(l). Hence, Corollary 6.3.1.1 implies the following result.

Theorem 6.3.2 Any selection algorithm for the hypercube has a running time of at least
1 ~°^11 (n/p) log log p + fi(logp) under the lower bound model.

6.3.2 Other Networks

The above decomposition also works for the shuffle-exchange, since it is easy to prove that

Lemma 6.3.1 remains valid. Hence, the lower bound of Theorem 6.3.2 applies to the shuffle-

exchange. Similar comments apply for the butterfly network.

Low flux networks such as the tree and multi-dimensional mesh can be easily decomposed

into a large number of equal-sized components with very poor expansion. In such cases,

ß can be increased so that the lower bound of Theorem 6.3.2 applies with an improved

multiplicative constant of ~°^ '.

6.4 Summary

The lower bounds for network selection discussed in this chapter significantly improve on

previously known results when the number of keys at each processor, n/p, is sufficiently

large [GK84]. In proving lower bounds, it was assumed that n and p are powers of 2, and

that every processor begins with exactly n/p keys. The proofs can easily be extended to

handle arbitrary values of n and p (losing at most a constant factor), and arbitrary initial

distributions of the keys. Theorem 6.3.1 was proven for network families T belonging to

76 CHAPTER 6. A LOWER BOUND FOR SELECTION ■

J\f(a,ß) with a = o(l/loglogp); for a = ft(l/loglogp) an obvious tradeoff occurs. It is

likely that the multiplicative constants appearing in the lower bounds could be improved.

Finally, it should be emphasized that this work deals with the worst case complexity of

selection. Under an average case analysis, and for sufficiently high values of the ratio n/p,

optimal speedup of selection is attainable on essentially any network.

Chapter 7

Adaptive Sorting Algorithms

This chapter deals with the problem of sorting n keys initially distributed uniformly over

a hypercube with p processors, n > p. The well-known sequential lower bound for sorting

implies an Q.((nlogn)/p) bound on the running time of any parallel sorting algorithm. For

the case n =■ p, the best known sorting algorithm for the hypercube is Batcher's bitonic

sort, which runs in O(log2p) time [Bat68]. For n ^ p, a number of other algorithms have

been proposed. The running time and range of applicability of each of these algorithms

is summarized in Table 7.1. Note that BitonicSort refers to the straightforward split-and-

merge generalization of bitonic sort, due to Baudet and Stevenson [BS78]. Also, it should

be emphasized that attention has been restricted to deterministic, worst case complexity

algorithms running on the hypercube. For examples of results based on other assumptions,

the reader is referred to [RV87], [VD88] and [Wag86].

One may verify that BitonicSort provides optimal speedup over sequential sorting only if

p = 0(2vlogn). Two recent algorithms, which will be referred to as CubeSort (Cypher and

Sanz, [CS88]) and ColumnSort (Aggarwal and Huang, [AH88]), have improved this result

significantly. Both of these algorithms are optimal if n exceeds p by a polynomial factor,

that is, if n = p1+i for any constant e > 0. ColumnSort is based on Leighton's technique

for sorting n values by performing a constant number of smaller sorts [Lei85]. Note that

Table 7.1 does not indicate the running time of ColumnSort when e is allowed to vary. This

algorithm is not competitive for e = o(l) since the hidden constant in the running time is

proportional to (1 + l/e)a with a = 2/(log 3 - 1) « 3.419, as opposed to a = 1 for CubeSort.

Of course, it may be possible to obtain an algorithm based on Leighton's column sorting

technique that achieves a smaller value of a.

77

78 CHAPTER 7. ADAPTIVE SORTING ALGORITHMS

Algorithm Running Time Range

BitonicSort [Bat68][BS78] O((n/p)log2p) n = fi(p)

MergeSort [NS82] 0(log2p/logO/n)) n = 0(p)

ColumnSort [AH88] 0((n log n)/p) n = ft(p1+e), € > 0

CubeSort [CS88] 0{(n/p) log2 pi log(n/p)) n = ft(plog(fc)p)

Table 7.1: Previous sorting algorithms for the hypercube and shuffle-exchange.

The main result of this chapter is a new sorting algorithm for the hypercube, SmoothSort,

that runs asymptotically faster (in the worst case) than any previously known algorithm over

a wide range of the ratio n/p. A simpler variant of this algorithm, which will be referred to

as QuickSort, will also be presented. The running time of QuickSort is slightly greater than

that of SmoothSort. The following example illustrates the nature of the results. For n =

plog2 p, the sequential lower bound implies a lower bound of ft(log3p), the running time of

BitonicSort is O(log4p), the running time of CubeSort is O(log4p/loglogp), the running time

of QuickSort is O(log7'2p) and the running time of SmoothSort is 0(log7/2p(loglogp)-1/2).

ColumnSort is not competitive in this range, and has a running time of about O(log6,419p).

Both QuickSort and SmoothSort make use of certain load balancing and selection al-

gorithms given in Chapters 4 and 5, and these algorithms do not correspond to sorting

circuits. In other words, they are not based solely on oblivious routing and compare-

interchange operations. Such algorithms will be referred to as adaptive sorting algorithms.

Chapter 8 describes two non-adaptive sorting algorithms that run on the hypercube and

shuffle-exchange, including a slower version of SmoothSort.

7.1 Problem Definition: Sort

The Sort operation is defined as follows. Given n 0(logp)-bit keys distributed uniformly

over p processors (that is, each processors holds at most \n/p] keys), rearrange the n keys

so that every key in processor i is less than or equal to every key in processor j whenever

0 < i < j < p. In addition, the n keys should remain uniformly distributed and the set of

keys within any particular processor should be sorted. As for the Select operation defined

in Chapter 5, it will be assumed that n — 0(pc) for some constant c, and that the n keys

are distinct.

7.2. SORTING ON THE HYPERCUBE: QUICKSORT

7.2 Sorting on the Hypercube: QuickSort

The following algorithm is based on the well-known quicksorting paradigm of Hoare [Hoa62].

It makes use of algorithms Balance and SearchSelect from Sections 4.1.3 and 5.4, respectively.

Algorithm QuickSort

1. If the dimension of the hypercube being sorted is 0, locally sort the 0(n/p) keys located

at each processor, and return. If performed, this operation takes 0{(n/p)\og{n/p))

time.

2. Let S denote the set of n keys. Call SearchSelect to find the value with rank [n/2] in

S. Let this value be m. Using algorithm SearchSelect, this takes O((n/p)log\ogp +

log2pl0g(n/p)) time.

3. Route all keys that are strictly less than m to the low subcube. Route all keys that are

greater than or equal to m to the high subcube. To do this each processor splits the

sorted list that it currently holds into two sorted sublists and sends the appropriate

sublist to its neighbor in the highest dimension. This takes 0(n/p) time.

4. At this point, each processor contains between 0 and 2n/p keys. Call Balance to

smooth out the load, that is, to redistribute the keys so that each processor holds a

list of length [n/p\ or [n/p]. This takes 0((n/p) log1/2 p + log2 p) time.

5. Sort the low and high subcubes recursively.

The correctness of the preceding QuickSort algorithm should be obvious. The overall

time complexity of QuickSort is readily seen to be

0((n/p) log3/2 p + log3 p l0g(n/p)).

7.2.1 QuickSort on the Pipelined Hypercube

As discussed in Section 2.4, the existence of optimal merging algorithms for the pipelined

hypercube leads to an optimal bottom-up sorting algorithm for n > plogp. The top-down

quicksorting paradigm leads to an alternative optimal sorting algorithm for the pipelined

hypercube for n > p log p log log p. For a fast implementation of QuickSort running on

the pipelined hypercube, the following pair of changes should be made to the algorithm

80 CHAPTER 7. ADAPTIVE SORTING ALGORITHMS

stated above. First, the call to SearchSelect in Step 2 should be replaced by a call to the

pipelined hypercube implementation of BalanceSelect(see Section 5.3). Second, Leighton's

pipelined hypercube algorithm for Balance (see Section 4.1.1) should be used in Step 4. One

may easily verify that the running time of this pipelined hypercube version of QuickSort is

0((n/p) logp + log2 p log logp).

7.3 A Faster Hypercube Algorithm: SmoothSort

The SmoothSort sorting algorithm, which is also designed to run on the hypercube, will now

be described. It makes use of the MultiBalance operation presented in Section 4.2.

Algorithm SmoothSort

1. Locally sort the 0{n/p) keys located at each processor. This takes 0((n/p)log(n/p))

time. If p = 1 then return.

2. Determine the 2l keys with ranks ^ , 0 < i < 2l, and broadcast them to all proces-

sors. These will be called splitter keys. An appropriate choice for the parameter / will

be specified later. For now, it will only be assumed that 2l < n/p. These selections

can each be performed in O(log2pl0g(n/p)) time as described in Section 5.4, since

the keys have been sorted locally. Each broadcast takes O(logp) time. Thus, the

total time required for this step is O(2llog2 p\0g(n/p)). Each processor now contains

a sorted list of n/p keys and a sorted list of 2l splitter keys.

3. The 2l splitter keys naturally partition the n keys into 2l groups. The ith group

consists of those keys with ranks between '$■ and ''"ti — 1 inclusive, 0 < i < 2l.

At each processor, label each of the n/p local keys with the appropriate /-bit group

number. Since the list of keys and the list of splitter keys are sorted, this takes

0(2' + n/p) = 0{n/p) time.

4. Call MultiBalance to smooth out each of the 2l groups of tokens. Now g = 2l, so this

takes 0{{n/p)(l\ogpf I2 + 2llog2p) time.

5. Loop over the high order / dimensions, routing each group to the appropriate subcube.

This takes 0{ln/p) time.

7.3. A FASTER HYPERCUBE ALGORITHM: SMOOTHSORT 81

6. Call Balance to smooth out the load in each of the 21 subcubes. The error in these

subcubes is at most 2l, so this takes 0(2l log1/2 p + log2 p) time. Note that if n/p is a

power of 2 then there is no error, and this step can be omitted.

7. Sort the 2' subcubes recursively.

It remains to determine the value of / that minimizes the total running time of Smooth-

Sort subject to the constraints / > 1, 2l < n/p and / < log p. From the analysis accompa-

nying the description of the algorithm, it may be seen that the cost of the top level of the

recursion (that is, excluding the recursive calls) is dominated by an expression of the form

O (2llog2pl0g(n/p) + {n/p){l\ogpfl2) ,

for all valid choices of I. The running time of SmoothSort is minimized (to within a constant

factor) by increasing / to the point where the cost of performing the selections balances

the cost of the MultiBalance operation. This leads to setting / = \0g(n/(pq)), where q =

log3/2 p log log p. Substituting this choice of / into the above expression, one finds that the

cost of a given level of the recursion is a function of p and n/p. The value of n/p does not

vary with the depth of the recursion, while p is halved at each level. If n < pq, then / is

forced to 1 and the running time of SmoothSort is the same as that of QuickSort. If n > pq,

then 2l = Q(n/(pq)) and the depth of the recursion is Q((\ogp)/l). Furthermore, the cost

of any level is at most that of the top level, so the total running time of SmoothSort is

0 ((n/p)losVi0gW(^))+log3pl0s(n/p)) •
Note that the deviation from optimality (that is, from the time required by the sequential

lower bound) for n > pq is given by the square root factor. Previously, the best known

algorithm for this range was CubeSort, which deviates from the lower bound by a factor of

logp/\og(n/p).

The MultiBalance algorithm of Section 4.2.1 is inappropriate for the shuffle-exchange

because it does not access the dimensions predominantly in ascending/descending order.

The shuffle-exchange version of MultiBalance described at the end of Section 4.2.3 has a

worst case running time of 0((n/p) \ogp + glog2p). This leads to a worst case running time

of

0((n/p) log2 p/ l0g(n/p) + log3 p \0g{n/p))

for the shuffle-exchange implementation of SmoothSort.

82 CHAPTER 7. ADAPTIVE SORTING ALGORITHMS

Algorithm Running Time Transition Region

MergeSort

BitonicSort

hybrid

SmoothSort

O(log2p/log(p/n))

0((n/p) log2 p)

O((n/p)2/3logV0gi/3(n/p))

0((n/p) log3/2 p/W2{nl{pq))

n = Q(p)

n = Q{p)

n = Q(pq)

Table 7.2: Running times of sorting algorithms for the hypercube.

7.3.1 Average Case Analysis

Theorem 4.2.3 shows that the hypercube and shuffle-exchange implementations of Multi-

Balance perform much better on average than in the worst case. When n/p exceeds a

sufficiently large polylogarithmic factor, one may verify that the non-optimality of algo-

rithm SmoothSort is entirely due to the cost of performing the MultiBalance operations. In

fact, the following result holds.

Theorem 7.3.1 The average running time of both the hypercube and shuffle-exchange

implementations of SmoothSort is

0((n/p) log p + log3 p\0g(n/p)),

which is optimal for n > p log2 p log log p.

The same theorem can be proven for QuickSort.

7.4 Summary

Table 7.2 summarizes the running times of the best known deterministic sorting algorithms

for the hypercube over ascending ranges of the ratio n/p. MergeSort is listed first because

it is the best known sorting method (in the sense of worst case asymptotic complexity)

when n <C p- The last column indicates that MergeSort remains the best known algorithm

up to n = Q(p), at which point BitonicSort has the same complexity. The "hybrid" entry

refers to an algorithm to be defined and analyzed in Section 8.2.4. For n = Cl(pq), where

q = log3'2 p log log p, SmoothSort is the best known sorting algorithm and its complexity is

given by the last entry in the table. Of course, when n exceeds p by a polynomial factor,

CubeSort and ColumnSort also exhibit optimal complexity. Two more algorithms with this

property will be described in Chapter 8.

7.4. . SUMMARY 83

The running times stated in Table 7.2 for the hybrid algorithm and SmoothSort do not

apply to the shuffle-exchange. The running times of the fastest known sorting algorithms

for the shuffle-exchange are summarized in Table 8.1 of Section 8.3.

In contrast with such non-adaptive sorting algorithms as BitonicSort and CubeSort, the

average case complexity of SmoothSort is not equal to its worst case complexity. In fact,

the average case complexity of SmoothSort is optimal for n > p log2 p log log p. This state-

ment applies to the shuffle-exchange implementation of SmoothSort as well. By simultane-

ously guaranteeing good worst case performance, SmoothSort avoids the potential pitfalls

of a simpler scheme such as HyperQuickSort [Wag86]. For solving the related problem of

permutation routing, SmoothSort is even more practical because the cost of performing se-

lections goes away. On the shuffle-exchange, SmoothSort performs permutation routing in

O((n/p)\og2p/l0g(n/p)) time. The constant hidden by the O-notation is small and, unlike

CubeSort, this bound holds for all n > p.

Chapter 8

Non-Adaptive Sorting Algorithms

This chapter deals with non-adaptive sorting algorithms, that is, algorithms based solely

on oblivious routing and compare-interchange operations.1 There are several important

reasons for considering this restricted class of algorithms.

1. Fast hardware can be used to implement the small number of operations required by

non-adaptive algorithms.

2. Non-adaptive algorithms tend to perform very little local computation, and hence are

likely to run quickly on computers for which the cost of communication is low relative

to the cost of local computation.

3. Because non-adaptive algorithms are based on a small number of simple operations,

they are more likely to run efficiently on a wide variety of parallel models.

4. In the case n = p, non-adaptive algorithms correspond to sorting circuits. It would be

interesting to determine whether or not there exists a o(log2 n) depth sorting circuit

that can be simulated in o(log2 n) time by a non-adaptive sorting algorithm running

on the hypercube or shuffle-exchange.

With respect to the last point, it should be mentioned that Ajtai, Komlös and Szemeredi

have developed an optimal O(logn) depth sorting circuit [AKS83]. Unfortunately, the O-

notation hides an impractically large constant factor. Furthermore, no efficient simulation

of the AKS sorting circuit has been found for the hypercube, shuffle-exchange or any other

common network family.

'For n > p, compare-interchange is generalized to merge-and-split type operations.

84

8.1. A NON-ADAPTIVE VERSION OF SMOOTHSORT

This chapter describes a non-adaptive version of SmoothSort that runs on the shuffle-

exchange and exhibits the same asymptotic performance as CubeSort for n/p sufficiently

large. A sorting circuit based on recursive merging, called SquareSort, is also presented.

SquareSort performs a large merging task by decomposing it into a number of smaller ones,

and can be efficiently implemented on the hypercube and shuffle-exchange. The decom-

position technique is similar to that considered by Van Voorhis, but obtains a more rapid

decrease in the size of the subsorts [Van71]. Finally, three hybrid algorithms based on

tradeoffs between SquareSort and other sorting algorithms are defined and analyzed.

8.1 A Non-Adaptive Version of SmoothSort

This section describes a non-adaptive implementation of SmoothSort that runs on the shuffle-

exchange as well as the hypercube. It is interesting to note that this algorithm performs

no explicit selections. The algorithm is described below in terms of the hypercube, but can

easily be adapted to run in the same asymptotic time bound on the shuffle-exchange. Let

d denote the dimension of the hypercube being sorted.

Algorithm SmoothSort

1. Locally sort the 0{n/p) keys located at each processor. This takes O((n/p)log(n/p))

time. If d = 0 then return.

2. For i = 0 to d— 1, merge pairs of lists across dimension i. Each of the resulting merged

lists is of length 2n/p. Partition each such list into two sublists of length n/p, one

consisting of the even-ranked keys, and the other consisting of the odd-ranked keys.

Send the sorted lists of even-ranked keys to the low subcube, and the odd-ranked keys

to the high subcube. This set of merge-unshuffle-split operations takes 0((n/p)d)

time.

3. For i = 0 to d — 1, merge pairs of lists across dimension i. Partition each of the

resulting merged lists into two sublists of length n/p, one consisting of the lowest n/p

keys, and the other consisting of the highest n/p keys. Send the low list to the low

subcube, and the high list to the high subcube. This set of merge-and-split operations

takes 0((n/p)d) time.

4. Let d' be as given by Equation (8.1) below. If d' > 1, then sort subcubes of dimension

d' recursively using Steps 2 to 6.

86 CHAPTER 8. NON-ADAPTIVE SORTING ALGORITHMS

5. Let L{ denote the sorted list of length (n/p)2d located in the ith (low-order) subcube

of dimension d', 0 < i < 2d~d . Merge Lij with X2J+1 by reversing £2.7+1 and then

performing a bitonic merge, 0 < j < 2d~d'~1. This takes 0((n/p)d') time.

6. Merge L2J+1 with L2J+2, 0 < j < 2d~d'~1 — l. This can be done as in the previous step,

except that it is necessary to perform a monotone route first in order to move each

pair of lists to be merged into a single subcube of dimension 2d +1. The monotone

route that sends the data at processor i to processor i + 2d mod p, 0 < i < p, is

appropriate. The inverse monotone route must be applied after the merging has been

performed. This takes 0((n/p)d) time. Note that the time bound depends on d, and

not d', due to the monotone routes. A useful trick described at the end of this section

shows that the monotone route operations can be avoided, reducing the complexity

of this step to 0((n/p)d') time.

As Smooth Sort is based on compare-interchange operations, it is sufficient to consider its

performance on inputs consisting entirely of O's and l's. This fact is known as the zero-one

principle [Knu73]. Accordingly, assume that the input consists of k O's and n — k l's for

some arbitrary integer fc, 0 < k < n. Note that the effect of the ith merge-unshuffle-split

operation of Step 2 is to balance the number of O's (and l's) between neighboring processors

across dimension i. Hence, Lemma 4.1.3 implies that there exists a nonnegative integer a

such that, after Step 2 has been completed, every processor contains a number of O's in the

range [a, a + d]. Furthermore, the inductive proof of Lemma 4.1.3 can easily be augmented

to show that if some processor does contain d more O's than another, then processor 0 is

the unique processor with a + d O's, and processor 2d — 1 is the unique processor with a O's.

It is useful to think of the n keys as being arranged in a (n/p) x p array, where the

ith largest key in processor j resides in row i and column j, 0 < i < n/p, 0 < j < p.

Intuitively, Step 2 is attempting to arrange the keys in row-major order. On the other

hand, the goal of Step 3, and of the sort as a whole, is to arrange the keys in column-major

order. Some additional notation is needed in order to measure the actual progress made

by these steps. Let Ro(i, j) = pi + j denote the estimated rank of the key in row i and

column j just after Step 2, and let Ri(i,j) = pj + i denote the estimated rank of the key

in the same location just after Step 3. Let ho denote the maximum value of Ro(i,j) over

all 0 keys, and let /o denote the minimum value of Ro(i,j) over all 1 keys. Let hi and l\ be

defined in a similar manner. Then the discussion of the preceding paragraph implies that

ho — IQ < p(a + d) — \p{a + 1) + p - 1] = pd — 2p + 1. Furthermore, it is straightforward to

8.1. A NON-ADAPTIVE VERSION OF SMOOTHSORT 87

prove that h\ < ho and h > IQ.

Hence, h\ —/i + l < pd-2p+2. This bound implies that after Step 3, every key is within

\{pd- 2p + 2)/(n/p)] columns (processors) of the correct output column. The sort can now

be completed by recursively sorting each of the 2d~d' (low-order) subcubes of dimension d',

where

d' = log
p(pd-2p + 2)

(8.1)
n

and then merging even and odd pairs of subcubes of dimension d' as in Steps 5 and 6.

The order of these two merging steps is interchangeable. In order to check that they

actually complete the sort, it suffices to prove that odd-even transposition sort (see [Knu73])

terminates in two steps when the input is such that every key is at most one move away

from its final position. This fact is easy to prove, and that it is sufficient follows from the

split-and-merge technique of Baudet and Stevenson [BS78].

It follows from Equation (8.1) that the depth of the recursion is O(\ogp/\og(n/(plogp))).

Since the cost of every level (excluding recursive calls) of the recursion is bounded by that

of the top level, the total running time of the non-adaptive version of SmoothSort on the

hypercube or shuffle-exchange is

0 ((n/p)log2p \
\\og(n/(plogp))J '

This result matches the asymptotic performance of CubeSort for n > p\og1+(L p, where e

denotes an arbitrarily small positive constant. More importantly, the multiplicative constant

hidden by the O-notation is very small, particularly for the hypercube implementation. For

both the hypercube and shuffle-exchange, the constant associated with CubeSort is almost

an order of magnitude higher.

There are a number of tricks that can be used to speed up the implementation of

SmoothSort slightly. In Step 2, the communication cost can be reduced by performing an

unshuffle-merge, that is, by sending every second key to the neighboring processor. This

has the effect of increasing the balancing error from d to 2d, but this adverse effect is

insignificant if n/p is large. Step 3 may run faster if it is implemented as a transpose

(no merging) followed by a local sort. Finally, the monotone routes in Step 6 can be

eliminated by mapping columns (of the array defined above) to processors in a different

manner. Specifically, the ith largest group of n/p keys should be sorted to the processor

with ID equal to the ith. binary Gray code, rather than to processor i? After sorting to

See any introductory text on switching theory for a definition of binary Gray codes. Gray codes are a

CHAPTER 8. NON-ADAPTIVE SORTING ALGORITHMS

this configuration, the keys can be routed to the usual sorted configuration in (n/p)logp

steps. The details of this Gray coded scheme are left to the reader. It should be mentioned

that the same trick can be used to halve the depth of the shuffle-exchange implementation

of the balanced sorting network of Dowd et al. [DPSR83].

8.2 The SquareSort Sorting Circuit

This section presents a sorting circuit based on recursive merging called SquareSort. Like

BitonicSort, the depth of this sorting circuit is ©(log2 n). On the other hand, SquareSort

leads to improved tradeoffs for sorting on the hypercube and shuffle-exchange for n > p.

As SquareSort is based on compare-interchange operations, the zero-one principle implies

that it is sufficient to consider its performance on inputs consisting entirely of O's and l's.

The SquareSort algorithm relies on the following merging technique, called SquareMerge.

Consider a rectangular array A of O's and l's with 2a rows and 2b columns, where a and b

are nonnegative integers, and in which the rows and columns have already been sorted in

ascending order. Note that the boundary between the O's and the l's in array A forms a

staircase. The elements of A may either be viewed as being organized in 2° sorted lists of

length 2b, or in 2b sorted lists of length 2a. The goal is to produce a single sorted list of

length 2a+b. The depth of the SquareMerge sorting circuit that performs this merging task

will be denoted M(a,b). For convenience, the merging task itself will also be referred to as

M(a,b). Note that for all nonnegative integers a and b, M(a,b) = M(b,a) and M(a,0) = 0.

Furthermore, the problem M(a, 1) will be solved by a bitonic merge, so M(a, 1) = a + 1,

a > 1. The most interesting case remains to be considered, namely, when a and b are both

greater than 1. Assume without loss of generality that a > b. In this case, the construction

of the SquareMerge circuit will satisfy

M(a, b) = M{ [a/2\ ,b) + M([a/2], b) + 2M(fa/2] +b,l). (8.2)

The following procedure for performing the merging problem M(a,b) will establish the

validity of Equation (8.2). First, partition the rows of array A into 2'a'2' groups, placing

row i into group i mod 2^2\ 0 < i < 2a. All of the groups can be sorted in parallel in

depth M([a/2\,b). The resulting 2^/2^ sorted groups of size 2^2i+b must now be merged

in depth M(\a/2],b) + 2M(|"a/2] + 6,1). Consider the following lemma.

commonly used construct for obtaining efficient hypercube embeddings; see [Joh87], for example.

8.2. THE SQUARESORT SORTING CIRCUIT 89

Lemma 8.2.1 Let integers i and j satisfy 0 < i < j < 2^a/2l. Then group i contains fewer

l's than group j. Furthermore, group 0 contains at most 2b fewer l's than group 2^al2^ - 1.

Proof: This follows easily from the existence of the staircase boundary between the O's

and the l's in array A. Q

Arrange the 2^aW sorted groups in an array A' with 2l"a/2l rows and 2La/2J+f> columns.

The ith row consists of group i, arranged in ascending order. The preceding lemma implies

that the columns are also sorted in ascending order, so the remaining problem can be solved

as an M(\a/2], [a/2j +6). However, there is additional structure to the remaining problem

that permits it to be solved more rapidly. Namely, Lemma 8.2.1 implies that at most 2b

columns are dirty (a column is dirty if it contains both O's and l's), and that the dirty

columns are contiguous. Thus, the groups can be merged as in Steps 4 to 7 of algorithm

SquareMerge, stated below. The input to SquareMerge is a 2a x 26 array A of O's and l's,

where the rows and columns have already been sorted ascending and a > b. The code for

a < b is similar.

Algorithm SquareMerge

1. Partition the rows of array A into 2^/2l groups, placing row i into group i mod 2^a/2l,

0 < i < 2a. Each group forms a subarray with 2La/2J rows and 2b columns.

2. Sort all of the groups in parallel. Each subproblem is an M([a/2\,b).

3. Arrange the 2^/2l sorted groups in an array A' with 2^2^ rows and 2L°/2J+6 columns.

The ith row consists of group i, arranged in ascending order.

4. Partition the 2f°/2l x2La/2J+6 array A' into 2^2i subarrays A'{, where the ith 2l"a/2l x2fc

subarray consists of the columns i2b through (i + 1)26 - 1 of A', 0 < i < 2La/2J.

5. Sort all of the 2'-a/2-' subarrays in parallel. Each subproblem is an M(fa/2],6).

6. Merge A'2i with A'2i+1, 0 < i < 2L°/2-l~1. Each of these subproblems is an M(\a/2] +

6,1).

7. Merge A'2i+1 with A'2i+2, 0 < i < 2l-a/2-l-1 - 1. Each of these subproblems is an

M(\a/2] +6,1).

90 CHAPTER 8. NON-ADAPTIVE SORTING ALGORITHMS

The fact that the last two merge operations actually complete the sort follows by the

same argument as was applied in Section 8.1. Thus, Equation (8.2) holds.

The recurrence of Equation (8.2) (with base cases as stated above) will now be used to

obtain an upper bound on M(a,b). Assuming without loss of generality that a > b, an easy

induction proves that M(a,b) < M(a,a). Two applications of Equation (8.2) then lead to

M(a,a) < 4M([a/2], [a/2]) + 0(a).

Making use of the fact that \\x/y]/z] = \xjyz\ for all positive integers x, y and z, the

recurrence can be unwound further to obtain

M(a, a) < 22kM(\a/2k], [a/2k]) + 0(2ka), (8.3)

for all nonnegative integers k. Setting k = log a, one finds that M(a,a) = 0(a2). Hence,

M(a,b) = 0(a2).

The SquareSort sorting circuit can now be defined in terms of SquareMerge. In the

following algorithm, assume that SquareSort is sorting 2a keys for some nonnegative integer

a, and let S(x) denote the depth of the SquareSort sorting circuit on 2X keys.

Algorithm SquareSort

1. If a < 3 then sort the keys using BitonicSort and return.

2. Arrange the 2a keys in a 2La/2J x 2fa/2l array A.

3. Sort each of the rows of A recursively in parallel. This uses depth S([a/2\).

4. Sort each of the columns of A recursively in parallel. This uses depth 5(|"a/2"|).

5. Apply SquareMerge to the array A. This uses depth M(_a/2\, [a/2]), which is 0(a2)

by the preceding analysis.

Thus, an upper bound on the depth of the SquareSort sorting circuit is given by the

solution to the recurrence

S(a) < S([a/2j) + 5(1 a/2]) + 0(a2), (8.4)

with 5(1) equal to a constant. Unwinding this recurrence, one finds that S(a) = 0(a2), as

promised. Of course, this result is not very interesting in view of the fact that BitonicSort

8.2. THE SQUARESORT SORTING CIRCUIT 91

achieves the same bound with a much simpler construction and a smaller multiplicative

constant. The significance of SquareSort is that, like CubeSort, it gives a method for ex-

pressing a single large sort in terms of a number of smaller ones. Both techniques have

the same (within a constant factor) efficiency in this regard, except that CubeSort places a

lower bound on the size of the smaller sorts. Thus, in certain cases, SquareSort leads to a

tradeoff while CubeSort does not. The main utility for expressing a large sort in terms of

smaller ones is as follows. If some other sorting method can be used to speed up the small

sorts, then SquareSort can be easily modified to reduce the running time of the large sort

accordingly.

Formally, suppose that sets of keys of size 26, where 2b < 2a, can be sorted in depth T

by some circuit X. Using Equation (8.3) with k = log a — logo + 0(1) gives

Af(fa/21, L«/2J) = o(^+pi

= 0

b2 b

'a?Ts

62

since T = Q(b). Thus, using circuit X to sort sets of size 26, the depth of the SquareSort

sorting circuit satisfies the recurrence

S(a) < S([a/2\) + 5([a/2]) + 0 (^-Y (8.5)

with 5(1) equal to a constant. Three applications of this technique are given in Sec-

tions 8.2.2, 8.2.3 and 8.2.4. First, however, it must be shown that the SquareSort sorting

circuit can be efficiently implemented on the hypercube and shuffle-exchange, that is, with

a running time that is proportional to its depth. This is the subject of the following section.

8.2.1 Network Implementations of SquareSort

It is relatively easy to obtain an efficient implementation of SquareSort on the hypercube.

Only the case n = p (one key per processor) needs to be considered explicitly; Sections 8.2.2,

8.2.3 and 8.2.4 give tradeoffs with other sorting algorithms for n ^ p. In the case n = p,

there are p keys in the array A defined by the top-level call to algorithm SquareSort.

Now consider the effect of embedding the array A in the hypercube in row-major order.

Given this embedding, it is straightforward to prove that every array encountered during the

execution of SquareSort satisfies the property that its row and column indices are encoded

92 CHAPTER 8. NON-ADAPTIVE SORTING ALGORITHMS

by two disjoint, contiguous sets of ID bits. Note that in algorithm SquareMerge, only Steps 6

and 7 involve any key comparisons and/or movement of data. The other steps consist of

recursive calls and trivial computations to set up the recursive calls (to calculate which sets

of ID bits define the row and column indices of the array to be sorted by the recursive call).

Step 6 involves merging pairs of equal-length sorted lists. Each list resides in a subcube

of dimension 2l"a/2l, and each pair of lists resides in a single subcube of the next higher

dimension. Thus, the merging operation can be implemented by reversing one of the lists

and then performing a bitonic merge, all of which can be done in 0(a) time.

Step 7 is slightly trickier to implement. Once again, the task is to merge pairs of equal-

length sorted lists where each list resides in a subcube. The difficulty is that the pairs of

lists to be merged are not necessarily located in adjacent sub cubes. One solution to this

problem is to perform a monotone route that shifts the location of each key in array A'

by 2Ta/2l, the length of a sorted list. The pairs of lists can then be merged as in Step 6,

and the merged lists routed back to the appropriate position by a second monotone route.

The time required to perform each monotone route is proportional to the dimension of the

subcube containing A'. Thus, the total time required to perform Step 7 is also 0(a).

The preceding discussion implies that the total running time of SquareMerge, excluding

the cost of recursive calls, is 0(a). Hence, the analysis of Section 8.2 goes through unchanged

and the upper bound of Equation (8.2) also applies to the running time of the hypercube

implementation of SquareMerge. Given subroutine SquareMerge, algorithm SquareSort is

straightforward to implement efficiently on the hypercube. Therefore, the circuit depth

bounds of Equations (8.4) and (8.5) carry over to running time bounds for the hypercube

implementation of SquareSort.

Figures 8.1 and 8.2 apply the SquareSort sorting technique to a random permutation of

the 26 integers [0,64). The example is not entirely faithful to the SquareSort program stated

in Section 8.2, since a = 6 and the array A was chosen to be 4 X 16 rather than 8x8. The bit

sequences labelling the rows and columns of each of the 4 X 16 arrays in Figures 8.1 and 8.2

indicate how the array is mapped to the hypercube processors. For instance, the columns

of the first array are labelled 63626160 and the rows are labelled 6564, which means that the

key in row i = (hio)2 and column j = (jzJ2J\jo)2 is located at processor (hioJ3J2Jijo)2-

The asymptotic performance of SquareSort on the hypercube can be duplicated on the

shuffle-exchange, but not simply by a naive translation of the hypercube implementation.

There are two problems that must be avoided in order to ensure that the bitonic merge,

8.2. THE SQUARESORT SORTING CIRCUIT 93

656. '504

6564

6S6, 5«4

6.,6. 5 «4

6564

6362616 0

18 27 09 16 61 43 24 39 33 38 00 34 30 06 04 20

31 47 28 49 32 44 63 15 05 13 36 22 56 48 10 46

51 19 59 57 07 08 26 23 62 01 21 02 45 29 42 37

17 60 35 12 25 41 58 14 54 52 40 03 11 53 50 55

63626160

Step 3 of SquareSort

00 04 06 09 16 18 20 24 27 30 33 34 38 39 43 61

05 10 13 15 22 28 31 32 36 44 46 47 48 49 56 63

01 02 07 08 19 21 23 26 29 37 42 45 51 57 59 62

03 11 12 14 17 25 35 40 41 50 52 53 54 55 58 60

63626160

Step 4 of SquareSort

00 02 06 08 16 18 20 24 27 30 33 34 38 39 43 60

01 04 07 09 17 21 23 26 29 37 42 47 48 49 56 61

03 10 12 14 19 25 31 32 36 44 46 45 51 55 58 62

05 11 13 15 22 28 35 40 41 50 52 53 54 57 59 63

61606362

Step 1 of SquareMerge

00 16 27 38 02 18 30 39 06 20 33 43 08 24 34 60

61 01 17 29 48 04 21 37 49 07 23 42 56 09 26 45

03 19 36 51 10 25 44 55 12 31 46 58 14 32 47 62

05 22 41 54 11 28 50 57 13 35 52 59 15 40 53 63

61606362

Step 2 of SquareMerge

00 01 03 05 02 04 10 11 06 07 12 13 08 09 14 15

16 17 19 22 18 21 25 28 20 23 31 33 24 26 32 34

27 29 36 38 30 37 39 44 35 42 43 46 40 45 47 53

41 48 51 54 49 50 55 57 52 56 58 59 60 61 62 63

Figure 8.1: A sample run of SquareSort (continued in Figure 8.2).

94 CHAPTER 8. NON-ADAPTIVE SORTING ALGORITHMS

6564

hbo

Mo

616(i"o

6160

bibQb3b 2 ,-

00 01 03 05 02 04 10 11 06 07 12 13 08 09 14 15

16 17 19 22 18 21 25 28 20 23 31 33 24 26 32 34

27 29 36 38 30 37 39 44 35 42 43 46 40 45 47 53

41 48 51 54 49 50 55 57 52 56 58 59 60 61 62 63

65646362

Steps 3 and 4 of SquareMerge

00 01 03 05 16 17 19 22 27 29 36 38 41 48 51 54

02 04 10 11 18 21 25 28 30 37 39 44 49 50 55 57

06 07 12 13 30 23 31 33 35 42 43 46 52 56 58 59

08 09 14 15 24 26 32 34 40 45 47 53 60 61 62 63

65646362

Step 5 of SquareMerge

00 04 08 12 16 20 24 31 27 36 40 45 41 51 56 60

01 05 09 13 17 21 25 32 29 37 42 46 48 52 57 61

02 06 10 14 18 22 26 33 30 38 43 47 49 54 58 62

03 07 11 15 19 23 28 34 35 39 44 53 50 55 59 63

65646362

Step 6 of SquareMerge

00 04 08 12 16 20 24 31 27 36 40 44 48 52 56 60

01 05 09 13 17 21 25 32 29 37 41 45 49 53 57 61

02 06 10 14 18 22 26 33 30 38 42 46 50 54 58 62

03 07 11 15 19 23 28 34 35 39 43 47 51 55 59 63

65646362

Step 7 of SquareMerge

00 04 08 12 16 20 24 28 32 36 40 44 48 52 56 60

01 05 09 13 17 21 25 29 33 37 41 45 49 53 57 61

02 06 10 14 18 22 26 30 34 38 42 46 50 54 58 62

03 07 11 15 19 23 27 31 35 39 43 47 51 55 59 63

Figure 8.2: A sample run of SquareSort (continued from Figure 8.1).

8.2. THE SQUARESORT SORTING CIRCUIT 95

list reversal and monotone route operations, which are performed over sub-cubes, can be

executed in time proportional to the dimension of the subcube (as opposed to the dimension

of the entire shuffle-exchange, for instance). Recall that the subcubes of interest correspond

to the arrays denned by SquareSort and SquareMerge, and that the row and column indices

are given by two disjoint, contiguous sets of address bits. The first problem is that the row

and column address bits can be far apart, forcing a pass over the corresponding dimensions

to include a long sequences of shuffle or unshuffle operations. The second problem is that

even if the row and column address bits form a single contiguous block, this block may be

far from the exchange (bit 0) position.

Both of these problems may be solved by permuting the data before each recursive

call to SquareMerge in order to bring the row and column bits together. Note that such a

permutation is not always necessary. Specifically, the array associated with the recursive

call in Step 5 of algorithm SquareMerge is already mapped to an appropriate subcube, while

the one associated with Step 5 is not (for the case a < b, the situation is reversed). Where

it is needed, the appropriate permutation can be performed efficiently using the self-routing

Benes network of Nassimi and Sahni [NS81]. Of course, the inverse permutation must be

applied once the recursive call to SquareMerge completes execution.

8.2.2 An Adaptive Tradeoff for n <p

Consider the problem of sorting n keys with p processors, where n < p. For this range,

the MergeSort algorithm of Nassimi and Sahni runs in 0(\og2 p/log(p/n)) time. MergeSort

reduces to a particularly simple algorithm when p > n2. The purpose of this section

is to demonstrate that the same performance is achieved by a hybrid algorithm based

on SquareSort and the simple version of MergeSort for p > n2. The hybrid algorithm is

SquareSort except that MergeSort is applied to perform sorts that are sufficiently small

to allow a quadratic number of processors to be applied. This is an adaptive tradeoff,

since MergeSort does not correspond to a sorting circuit. The running time of the hybrid

algorithm on a hypercube or shuffle-exchange of dimension a is given by Equation (8.5)

with b = T = l0g(p/n). Solving this recurrence, and setting a = logp, leads to a running

time of O(log2p/l0g(p/n)) for n < p, as claimed.

96 CHAPTER 8. NON-ADAPTIVE SORTING ALGORITHMS

8.2.3 A Non-Adaptive Tradeoff for n > p

The non-adaptive CubeSort algorithm of Cypher and Sanz runs in O((n/p)log2 p/log(n/p))

time on the hypercube or shuffle-exchange assuming that n > plog(k> p for some constant

k [CS88]. The constant hidden by the O-notation is exponential in k and is moderate even

for k = 1. The non-adaptive version of SmoothSort presented in Section 8.1 has the same

time complexity for n > plog1+e p. However, SmoothSort has a very small multiplicative

constant (particularly on the hypercube), and appears to be a truly practical algorithm for

certain realistic values of n and p.

The purpose of this section is to prove that a hybrid algorithm based on SquareSort

and the non-adaptive version of SmoothSort (CubeSort could also be used here, at the

expense of a constant factor) runs in 0((n/p)log2 p/log(n/p)) time on the hypercube or

shuffle-exchange over the entire range n > p. The hybrid algorithm is SquareSort with the

exception that SmoothSort is applied to sorts over subcubes consisting of fewer than n/p

processors. The analysis of the hybrid algorithm is very similar to that of the previous

section. Namely, the running time of the hybrid algorithm is given by the recurrence of

Equation (8.5) with a — logp and b = T = l0g(n/p), which leads to O(log2p/l0g(n/p)) for

n> p. Note that the hybrid algorithm is non-adaptive.

8.2.4 An Adaptive Tradeoff for p < n < pq

This section analyzes the performance of a hybrid sorting algorithm for the hypercube based

on SquareSort and QuickSort. The range of applicability of the algorithm is p < n < pq,

where q = log3'2 p log log p. The hybrid algorithm is SquareSort, except that QuickSort

is applied to every sorting subproblem involving n' keys in a subcube of p' processors

where n' = Q(p' log3/2 p' log logp'). Using the fact that n' = (n/p)p', this condition implies

log3/,2p' = O((n/p)/\og(n/p)). The cost of running QuickSort on a problem of this size is

0 (log3 p' log logp') = O((n/p)2/log(n/p)). Thus, the running time of the hybrid algorithm

is given by the recurrence of Equation (8.5) with

a = logp,

63/2 = Q((n/p)/log(n/p)), and

T = o((n/p)2/log(n/p)).

8.3. SUMMARY

Algorithm Running Time Transition Region

MergeSort

BitonicSort

hybrid

0{\og2p/log(p/n))

O((n/p)\og2p)

O((n/p)log2p/\0g(n/p))

n = ©0)
n = 0(p)

Table 8.1: Running times of sorting algorithms for the shuffle-exchange.

Solving this recurrence, one finds that the running time of the hybrid algorithm is

0(log2K«/p)2/3log1/3(n/p)),

as claimed in Table 7.2.

Two points concerning this hybrid algorithm should be emphasized. First, the algorithm

does not run (with the stated complexity) on the shuffle-exchange, since it makes use of

QuickSort. Second, replacing QuickSort with SmoothSort does not yield any improvement.

8.3 Summary

This chapter described two non-adaptive sorting methods and a number of hybrid algo-

rithms. With the exception of the adaptive tradeoff considered in Section 8.2.4, all of

the results discussed in this chapter apply to the shuffle-exchange as well as the hyper-

cube. Table 8.1 summarizes the running times of the best known sorting algorithms for the

shuffle-exchange over ascending ranges of the ratio n/p. For n < p, the bounds are the same

as for the hypercube (see Table 7.2). For n = u(p), the hybrid algorithm of Section 8.2.3

provides the best known bound. Note that for n — Q,(p\og^ p), where k is a fixed positive

integer, the running time of the hybrid algorithm is matched (to within a constant factor)

by CubeSort. Furthermore, it is matched by the non-adaptive version of SmoothSort for

n = fi(plog1+ep), and by ColumnSort for n = Q(p1+e), where in each case e denotes an

arbitrarily small positive constant.

The non-adaptive version of SmoothSort does not perform any explicit selections and

appears to be the most practical sorting method for sufficiently large values of n (say, 104

or more), and where n exceeds p by a significant polynomial factor (e.g., n = p2).

Roughly speaking, the construction of the SquareSort sorting circuit is based on a tech-

nique for expressing a single large sort in terms of a number of smaller sorts. If the size

of the smaller sorts is sufficiently large, CubeSort performs such a decomposition with the

98 CHAPTER 8. NON-ADAPTIVE SORTING ALGORITHMS

same asymptotic efficiency, although the multiplicative constant associated with CubeSort

is almost an order of magnitude higher.

Chapter 9

Concluding Remarks

The preceding chapters have primarily considered algorithms for load balancing, selection

and sorting on the hypercube and shuffle-exchange. While some progress has been made

in these areas, many open problems remain. Several open problems which correspond to

natural extensions of the work described in this thesis will now be considered.

Section 4.1 presented upper and lower bounds for the Balance operation running on the

hypercube. The bounds are not tight in the case where the average number of tokens per

processor is less than a constant fraction of the maximum number of tokens at any processor,

and it seems likely that the upper bound could be improved in this case. One might also

attempt to match the current performance of Balance with a hypercube algorithm that

restricts all processors to communicate along the same dimension at any given time.

It would be interesting to try to prove a u>(log n) lower bound for the problem of sorting

n keys on a hypercube or shuffle-exchange with n processors, at least for some restricted

class of algorithms. For example, one might consider non-adaptive algorithms or, being less

restrictive, arbitrary algorithms with the sole restriction that keys cannot be duplicated.

Note that even for the simpler problem of selection, there is no known o(log2 n) hypercube

algorithm which does not duplicate keys. With respect to proving a lower bound, the

techniques of Chapter 6 may provide a useful starting point.

All of the sorting algorithms described in this thesis have the property that the progress

achieved by the algorithm at any given time is relatively easy to characterize. For example,

the partial progress of SmoothSort is given by the least integer k such that every key has

been routed to the correct low-order subcube of dimension k. On the other hand, the partial

99

100 CHAPTER 9. CONCLUDING REMARKS

progress of the O(logn) depth AKS sorting circuit is more complicated to characterize; in

particular, it only guarantees progress with respect to most of the keys, as opposed to all

of them (except at the end, of course). Thus, it may be worthwhile to investigate sorting

algorithms which do not operate by partitioning the sorting task into disjoint subproblems,

but instead perform successively refined approximate sorts over the entire set of keys.

Appendix A

Expansion Properties of the

Hypercube

The calculations in this appendix analyze the volume-to-surface ratio of a Hamming ball

of radius r = r(d) lying in a hypercube of dimension d. Theorem A. 1.1, which is used in

Section 4.1.2, characterizes the asymptotic behavior of this ratio for r in the range 0 to d/2.

The results could easily be extended to handle higher values of r (that is, d/2 < r < d) by

taking advantage of symmetry.

A.l Asymptotic Analysis

Definition A.l.l Let Rd,T denote Eo</<r (/)/(?)•

Lemma A.l.l Let d and r be positive integers, 1 < r < d. Then Rd,r > Rd,r-\-

Proof: Observe that Rj,$ = 1 and for 1 < r < d

> Z^7TTimfeö/(/-i)
r d-l+1

mm
d - r + 1 i<l<r I

= 1.

101

102 APPENDIX A. EXPANSION PROPERTIES OF THE HYPERCUBE

D

Lemma A.1.2 For positive integers d and r, r < d/2,

Rd,r = © z + ir

where r = d/2 — \fdz.

Proof: ■ The following three cases will be considered separately: z = £l(d) and z < d/4;

z = o(d) and z > 1; 0 < z < 1.

Case 1: z = Q,(d) and z < d/4. Exercise (9.42) of Graham, Knuth and Patash-

nik [GKP89] establishes that Rd,r = 0(1) in this range.

Case 2: z = o(d) and z > 1. It is sufficient to prove that Rd>T — 0 (%/dJz) since

z = fi(l). For the lower bound, consider the inequality

s , >- 0<Kr ,r — ^Jdfl

and observe that for sufficiently large values of d

>
[Jdß\

[y/dJH\

>

>

^d-r+ [y/SJz\j

'd/2-y/dz- yßjz
^d/2 + \[dz + y/djz\

'dl2-2^d~z\JJrz

d/2 + 2\/dz)

> 1
fdfz

which converges to e 8 = 17(1). Hence, Rd,r — £l(y/d/z).

For the upper bound, note that

(d \ /fd)
J-l,

<
I ~d-r + V

A.l. ASYMPTOTIC ANALYSIS 103

for 1 < / < r. Hence, the sum Ylo<l<r (/) IS dominated by the infinite geometric progression

with initial value (J and ratio r/(d- r + 1) between successive terms. Thus,

d-r + 1
Rd,T < d-2r + l

= o{Jdfz\

Case 3: 0 < z < 1. It is sufficient to prove that R^r = 0 [Vd\ since z = 0(1). A

lower bound on Rd,r can be obtained as follows:

E{). E (?)
0</<r W r-[Vd\<l<r\/

> [Vd\

Furthermore, for sufficiently large values of d

d \ ltd

d

K

,T -pzjJ/W * (rf_r+[Wj)
L^J

>

>

'd/2-2y/dY/S

d/2 + 2^/d)

8 \^
l~7d) '

which converges to e 8 = fi(l). Hence, Äd)J. = fi(-\/d).

For the upper bound, Stirling's approximation can be used to show that Rdt\d/2\ =

Q(Vd). It follows from Lemma A. 1.1 that Rd>T = 0(y/d). □

Theorem A.1.1 Let d be a given integer and let r = r(d) be an integer between 0 and

d/2. If £o</<r (?) = 2dW<) then Rd,r = 0(Vfe).

Proof: The following four cases will be considered separately: r — d/2 — Q(d) and r > 0;

r = d/2- o(d) and r<d/2- d2l3- d/2 - d2>3 < r < d/2 - Vd; d/2 - Vd < r < d/2.

Case 1: r = d/2 - 9,(d) and r > 0. In this range, Rd,r — ©(1) by Lemma A.1.2, and

k = 0(1) by Exercise (9.42) of [GKP89]. Hence, Rd<r = Q(Vk).

Case 2: r = d/2 - o(d) and r < d/2 - d2'3. Let r = d/2 - d^2+6, hence £ =

1/2- w(l/log</) and <5 > 1/6. As in the preceding case, Rd,r — Q(dll2~6) by Lemma A.1.2.

104 APPENDIX A. EXPANSION PROPERTIES OF THE HYPERCUBE

The logarithmic form of Stirling's approximation implies that In ra! = rain ra — n + 0(ln ra).

Hence,

lnj j = dlnd-rliLr-(d-r)ln(d-r) + 0(\nd)

= dlnd- (d/2 - d6+ll2)hv(d/2 - ds+x>2)

-(d/2 + ds+ll2) ln(d/2 + ds+x'2) + 0(ln d)

= d\n2 - (d/2 - ds+1^2)\n(l - 2ds~^2)

-(d/2 + d5+1'2) ln(l + 2d6-1'2) + 0(ln d).

The following pair of inequalities may be easily derived from the Taylor's series expansion

ofln(l + z):

x — x2/2 < ln(l + x) < x, x > 0, and

-x - x2 < ln(l -x) <-x- x2/2, 0<x<-.

These inequalities imply that for sufficiently large values of d,

InW > dln2-(d/2-ds+1'2)(-2ds-V2-2d2S-1)

-(d/2 + ds+1/2)(2ds~^2) + 0(ln d)

= din2 - 3d25 - 2d3S~^2 + 0(ln d)

> dln2-5d2S + 0(lnd),

and

ln(d) < dln2 - (d/2 - ds+1/2)(-2ds-V2 - Ad28-1)

-(d/2 + d6+1^2)(2d5-^2 - 2d25-1) + 0(lnd)

= d\n2-d2S -2d36-1'2 + 0(lnd)

< d\n2-d2S + 0(\nd).

Thus, Eo</<r (/) = Rd,rO = 2d-&^26^ where the 0(lnd) term has been absorbed into the

Q(d2S) term (using the fact that S > 1/6). Hence, k = Q(d1~2S) and Rd,r = Q(Vk).

Case 3: d/2 - d2^ < r < d/2 - Vd. Let r = d/2- dll2+s, 0 < S < 1/6. In this case,

Rd,r = Q(d1'2-6) by Lemma A.1.2. Equation (9.98) of [GKP89] implies that

A.l. ASYMPTOTIC ANALYSIS 105

so multiplying by Rdtr gives

oEÖ=ege--)=9(2--W),
for k = dln2/(6lnd + 2d2S). Observe that k = ©(d1"25) since d2S = Ü(Slnd), 6>Q. Hence

Rd,r = Q(Vk).

Case 4: d/2 - Vd < r < d/2. In this case, Ädir = Q(Vd) by Lemma A.1.2. Together

with Equation (9.98) of [GKP89], this implies that £o<Kr (f) = 0(2d). Hence, fc = 0(d)

and RdtT = Q(Vk). Q

Bibliography

[ADKF70] V. L. Arlazarov, E. A. Dinic, M. A. Kronrod, and I. A. Faradzev. On economical

construction of the transitive closure of a directed graph. Soviet Math. Dokl,

11:1209-1210, 1970.

[AH88] A. Aggarwal and M.-D. A. Huang. Network complexity of sorting and graph

problems and simulating CRCW PRAMs by interconnection networks. In J. H.

Reif, editor, Lecture Notes in Computer Science: VLSI Algorithms and Archi-

tectures (AWOC 88), vol. 319, pages 339-350. Springer-Verlag, 1988.

[AHU74] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of

Computer Algorithms. Addison-Wesley, Reading, MA, 1974.

[AKS83] M. Ajtai, J. Komlös, and E. Szemeredi. An O(nlogn) sorting network. Combi-

natorica, 3:1-19, 1983.

[AL78] T. Agerwala and B. Lint. Communication in parallel algorithms for Boolean ma-

trix multiplication. In Proceedings of the 1978 IEEE International Conference

on Parallel Processing, pages 146-153, 1978.

[AMW88] R. J. Anderson, E. W. Mayr, and M. K. Warmuth. Parallel approximation al-

gorithms for bin packing. Technical Report STAN-CS-88-1200, Stanford Uni-

versity, Department of Computer Science, March 1988.

[Bat68] K. E. Batcher. Sorting networks and their applications. In Proceedings of the

AFIPS Spring Joint Computer Conference, vol. 32, pages 307-314, 1968.

[BCLR86] S. N. Bhatt, F. R. K. Chung, F. T. Leighton, and A. L. Rosenberg. Optimal sim-

ulations of tree machines. In Proceedings of the 27th Annual IEEE Symposium

on Foundations of Computer Science, pages 274-282, 1986.

106

BIBLIOGRAPHY 101

[BGLY81] A. Borodin, L. J. Guibas, N. A. Lynch, and A. C. Yao. Efficient searching using

partial ordering. Information Processing Letters, 12:71-75, 1981.

[Ble87] G. E. Blelloch. Scans as primitive parallel operations. In Proceedings of the 1987

IEEE International Conference on Parallel Processing, pages 355-362, 1987.

[BS78] G. Baudet and D. Stevenson. Optimal sorting algorithms for parallel computers.

IEEE Transactions on Computers, C-27:84-87, 1978.

[Col86a] R. Cole. An optimal selection algorithm. Technical Report #209, Ultracom-

puter Research Laboratory, March 1986.

[Col86b] R. Cole. Parallel merge sort. In Proceedings of the 27th Annual IEEE Sympo-

sium on Foundations of Computer Science, pages 511-516, 1986.

[CS88] R. E. Cypher and J. L. C. Sanz. Cubesort: An optimal sorting algorithm for

feasible parallel computers. In J. H. Reif, editor, Lecture Notes in Computer

Science: VLSI Algorithms and Architectures (AWOC 88), vol. 319, pages 456-

464. Springer-Verlag, 1988.

[CW82] D. Coppersmith and S. Winograd. On the asymptotic complexity of matrix

multiplication. SIAM J. Comput., 11:472-492, 1982.

[CW87] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic pro-

gressions. In Proceedings of the 19th Annual ACM Symposium on Theory of

Computing, pages 1-6, 1987.

[CY85] R. Cole and C. K. Yap. A parallel median algorithm. Info. Proc. Letters,

20:137-139, 1985.

[Cyp89] R. E. Cypher. Theoretical aspects of VLSI pin limitations. Technical Report 89-

02-01, Department of Computer Science, University of Washington, February

1989.

[DNS81] E. Dekel, D. Nassimi, and S. Sahni. Parallel matrix and graph algorithms.

SIAM J. Comput., 10:657-675, 1981.

[DPSR83] M. Dowd, Y. Perl, M. Saks, and L. Rudolph. The balanced sorting network.

Technical Report DCS-TR-127, Department of Computer Science, Rutgers Uni-

versity, June 1983.

108 BIBLIOGRAPHY

[FF81] P. Frankl and Z. Füredi. A short proof for a theorem of Harper about Hamming

spheres. Discrete Mathematics, 34:311-313, 1981.

[Fic83] F. Fich. New bounds for parallel prefix circuits. In Proceedings of the 15th

Annual ACM Symposium on Theory of Computing, pages 100-109, 1983.

[FW78] S. Fortune and J. Wyllie. Parallelism in random access machines. In Proceedings

of the 10th ACM Symposium on Theory of Computing, pages 114-118, 1978.

[GK84] A. Gottlieb and C. P. Kruskal. Complexity results for permuting data and other

computations on parallel processors. JACM, 31:193-209, 1984.

[GKP89] R. L. Graham, D. E. Knuth, and 0. Patashnik. Concrete Mathematics.

Addison-Wesley, Reading, MA, 1989.

[Har66] L. Harper. Optimal numberings and isoperimetric problems on graphs. J. Com-

binatorial Theory, 1:385-393, 1966.

[HJ86] C.-T. Ho and S. L. Johnsson. Distributed routing algorithms for broadcasting

and personalized communication in hypercubes. In Proceedings of the 1986

IEEE International Conference on Parallel Processing, pages 640-648, 1986.

[Hoa62] C. A. R. Hoare. Quicksort. Computer J., 5:10-15, 1962.

[Joh87] S. L. Johnsson. Communication efficient basic linear algebra computations on

hypercube architectures. J. Parallel and Distributed Computing, 4:133-172,

1987.

[KMR88] R. M. Karp, R. Motwani, and P. Raghavan. Deferred data structuring. SIAM

J. Comput., 17:883-902, 1988.

[Knu73] D. E. Knuth. The Art of Computer Programming, volume 3. Addison-Wesley,

Reading, MA, 1973.

[Lei] F. T. Leighton. Personal communication.

[Lei83] F. T. Leighton. Complexity Issues in VLSI: Optimal Layouts for the Shuffle-

Exchange Graph and Other Networks. MIT Press, Cambridge, MA, 1983.

[Lei85] F. T. Leighton. Tight bounds on the complexity of parallel sorting. IEEE

Transactions on Computers, C-34:344-354, 1985.

BIBLIOGRAPHY 109

[LF80] R. E. Ladner and M. J. Fischer. Parallel prefix computation. JACM, 27:831-

838, 1980.

[NS81] D. Nassimi and S. Salmi. A self-routing Benes network and parallel permutation

algorithms. IEEE Transactions on Computers, 030:332-340, 1981.

[NS82] D. Nassimi and S. Sahni. Parallel permutation and sorting algorithms and a

new generalized connection network. JACM, 29:642-667, 1982.

[Pel] D. Peleg. Personal communication.

[Pla87] C. G. Plaxton. Virtual processing on the hypercube. Ph.D. Programming

Project, Stanford University, October 1987.

[PU89] D. Peleg and E. Upfal. The token distribution problem. SIAM J. Comput,

18:229-243, 1989.

[Rei84] J. H. Reif. Probabilistic parallel prefix computation. In Proceedings of the 1984

IEEE International Conference on Parallel Processing, pages 291-298, 1984.

[RV87] J. H. Reif and L. G. Valiant. A logarithmic time sort for linear size networks.

JACM, 34:60-76, 1987.

[Sch80] J. T. Schwartz. Ultracomputers. ACM Transactions on Programming Lan-

guages and Systems, 2:484-521, 1980.

[Sch82] A. Schönhage. Partial and total matrix multiplication. SIAM J. Comput.,

10:434-456, 1982.

[Sto71] H. S. Stone. Parallel processing with the perfect shuffle. IEEE Transactions on

Computers, C-20:153-161, 1971.

[Str69] V. Strassen. Gaussian elimination is not optimal. Numerische Mathematik,

13:354-356, 1969.

[Str86] V. Strassen. The asymptotic spectrum of tensors and the exponent of matrix

multiplication. In Proceedings of the 27th Annual IEEE Symposium on Foun-

dations of Computer Science, pages 49-54, 1986.

[U1184] J. D. Ullman. Computational Aspects of VLSI. Computer Science Press,

Rockville, MD, 1984.

110 BIBLIOGRAPHY

[Val75] L. G. Valiant. Parallelism in comparison problems. SIAM J. Comput., 4:348-

355, 1975.

[Van71] D. C. Van Voorhis. Large [g,d] sorting networks. Technical Report STAN-CS-

71-239, Stanford University, Department of Computer Science, August 1971.

[VD88] P. Varman and K. Doshi. Sorting with linear speedup on a pipelined hyper-

cube. Technical Report TR-8802, Rice University, Department of Electrical

and Computer Engineering, February 1988.

[Vis83] U. Vishkin. An optimal parallel algorithm for selection. Technical Report 106,

Courant Institute of Mathematical Sciences, Department of Computer Science,

December 1983.

[Wag86] B. Wagar. Hyperquicksort: A fast sorting algorithm for hypercubes. In Pro-

ceedings of the Second Conference on Hypercube Multiprocessors, pages 292-299,

1986.

