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Abstract 

This thesis presents fast hypercube and shuffle-exchange algorithms for certain load bal- 

ancing, selection and sorting problems. Non-trivial lower bounds are established for load 

balancing and selection. In addition, efficient network implementations of the parallel prefix 

operation and of the elementary Boolean matrix multiplication algorithm are described. 
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Chapter 1 

Introduction 

A considerable amount of research effort in the field of parallel computation has concentrated 

on developing algorithms for idealized machine models. The primary example of this is the 

PRAM model of Fortune and Wyllie, which assumes the existence of a shared memory 

allowing simultaneous random access by an unbounded number of processors [FW78]. 

This thesis adds to the growing body of work that addresses the design and analysis 

of algorithms for more realistic models of parallel computation. Specifically, all of the al- 

gorithms to be described are designed to run on sparse interconnection networks such as 

the hypercube and shuffle-exchange. Algorithms for performing operations such as paral- 

lel prefix, matrix multiplication, load balancing, selection and sorting will be considered. 

The primary motivation for developing fast implementations of these basic operations is to 

provide useful primitives for writing higher-level parallel programs. 

1.1     Notation and Terminology 

A p processor fixed interconnection network may be viewed as an undirected graph, where 

vertices correspond to processors and edges correspond to bidirectional1 communication 

channels. Each processor has an infinite local memory, and a unique integer ID. There is 

no global memory; processors communicate with one another by sending and receiving data 

over the channels provided by the network. In order to discuss the time complexity of an 

algorithm it is necessary to define exactly what operations can be performed in a single unit 

of time, or time step. For establishing asymptotic upper bounds, it is realistic to assume 

that: 

With respect to the shuffle-exchange, the ability to "unshuffle" data is assumed. 
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Figure 1.1: A hypercube of dimension 4 drawn with circular edges. 

1. Memory is configured in O(logp) bit words. 

2. In a single time step, a processor can send and/or receive a single word of data and 

perform 0(1) CPU operations on word-sized operands. 

Most of the algorithms described in this thesis are designed to run on the hypercube 

and shuffle-exchange network families. A dimension d hypercube has 2d processors with IDs 

ranging from 0 to 2d — 1. Processor i is adjacent to processor j if and only if the binary 

representations of i and j differ in a single bit position. A hypercube of dimension 4 is 

depicted in Figure 1.1. 

The shuffle-exchange was introduced by Stone [Sto71]. Like the hypercube, a shuffle- 

exchange of dimension d has 2d processors with IDs ranging from 0 to 2d~1. Processor 

i = (id-i • • -»0)2 is connected to processors Exchange(i), Shuffle(i) and Unshuffle(i), where 

Exchange(i)    =    (id-i • • • *i(*o © 1))2, 

Shuffle(i)    =    (id-2---ioid-ih, and 

Unshuffle{i)    =    (io*d-i • •■»1)2, 

0 < i < d. A shuffle-exchange of dimension 4 is depicted in Figure 1.2. 

Some important properties of the hypercube and shuffle-exchange network families are 

summarized in Table 1.1. Note that the degree of the shuffle-exchange is constant, while 

that of the hypercube is unbounded. Furthermore, the optimal VLSI layout area of the 

shuffle-exchange is somewhat smaller. 

A more powerful model of the hypercube will also be considered, one which does not 

adhere to the 1-port restriction on communication imposed above.   This is the pipelined 
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Figure 1.2: A shuffle-exchange of dimension 4 embedded on a circle. 

Network Processors Degree Diameter Layout Area 
hypercube 
shuffle-exchange 

P 
P 

logp 
3 

logp 
2 logp 

Q(P
2
) 

0(p2/log2p) 

Table 1.1: Important properties of the hypercube and shuffle-exchange. 

hypercube model of Varman and Doshi [VD88]. The pipelined hypercube remains a realistic 

model of computation by providing only a very restrictive form of d-port communication. 

Communication on the pipelined hypercube is via word-sized packets, routed according to 

the following simple scheme. Address bits are successively corrected in either ascending or 

descending (as determined by the sender) order of significance, with no collisions permitted. 

A collision occurs when two packets attempt to traverse the same edge in the same direction 

at the same time. 

In routing a packet, one time step is expended for each bit in the smallest contiguous 

block of address bits that contains all of the bits to be corrected. For example, a packet sent 

from processor IOIIOIOI2 to processor IOOIOOH2 must pass through dimensions 1, 2, and 

5. Assuming that the sending processor elects to have address bits corrected in descend- 

ing order of significance, the packet would be routed according to the schedule given by 

the following list of (time, processor) pairs: (0,101101012), (1,100101012), (2,100101012), 

(3,100101012), (4,100100012), (5, IOOIOOH2). This packet is sent by processor 101101012, 

received and sent by processors 100101012 and 10010001, and received by 101100112. Let 

the first sender (IOHOIOI2, in this example) be called the originator of the packet, and 

let the last receiver (100100112, in this example) be called the acceptor of the packet. The 

pipelined hypercube imposes the following pair of restrictions on communication: 
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1. Each processor is allowed to originate and/or accept at most one packet per time step. 

2. Each edge can transmit at most one packet in each direction per time step. 

The pipelined hypercube model is not realistic in a strict sense, since a single RAM 

cannot hope to examine O(logp) packets in 0(1) time. However, it may be a useful model 

in practice since the only additional hardware required at each hypercube processor is a 

ring of O(logp) trivial coprocessors to handle the packet routing scheme described above. 

Viewing this as an enhancement to the O(logp) I/O channel hardware already required by 

a hypercube processor, one would expect to suffer only a small constant factor increase in 

the VLSI area needed to implement a processor. 

Several comments should be made with regard to mathematical notation. First, all 

logarithms are to be taken base 2, that is, logo; denotes log2z. Second, it will sometimes 

be convenient to make use of the function l0g, defined as 

l0g x — max{log x, 1}. 

Finally, [a,b) will designate {i \ a < i < b}. 

1.2    Thesis Organization 

The following is an overview of the main results contained in the thesis. 

Chapter 2, which represents joint work with Ernst Mayr, provides pipelined paral- 

lel prefix algorithms for the complete binary tree, hypercube and shuffle-exchange. This 

primitive is used to develop a pipelined version of the multi-way merge sort of Nassimi 

and Sahni [NS82] that runs on the pipelined hypercube. Given p processors and n < 

plogp keys to be sorted, the running time of the pipelined hypercube sorting algorithm is 

0(log2p/log((plogp)/n)), which improves (asymptotically) upon Batcher's bitonic sort by 

a log log p factor in the important case n = p. 

It has been shown that the product of two n x n Boolean matrices can be computed 

in O(logn) time on a hypercube or shuffle-exchange with 0(n3) processors. Chapter 3 

reduces this processor requirement to 0(n3/(log2 nloglogra)) by making use of simulation 

techniques and a parallel version of the Four Russians' algorithm. This bound improves 

upon a result of Agerwala and Lint by a factor of log n [AL78]. 
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Maintaining a balanced load is of fundamental importance on any parallel computer, 

since a strongly unbalanced load often leads to low processor utilization. Chapter 4 con- 

siders two load balancing problems. First, given n tokens arbitrarily distributed over a p 

processor network with no more than m tokens at any one processor, how fast can the tokens 

be redistributed so that each processor holds the same number? Second, given n tokens 

uniformly distributed over a p processor network, and arbitrarily partitioned into g groups, 

how fast can the tokens be redistributed so that each processor holds the same number 

from each group? Upper bounds on the worst case complexity of these two problems are 

obtained from the analysis of practical algorithms for the hypercube, pipelined hypercube 

and shuffle-exchange. Matching lower bounds are also provided for certain cases. Average 

performance is also considered. 

Chapters 5 and 6 are concerned with the problem of selection, that is, determining the 

kth largest key out of a given set of n keys. Three different selection algorithms are given 

in Chapter 5, each of which represents the best known selection algorithm over some range 

of the ratio n/p (p is the number of processors) for one or more of the networks under 

consideration. One of the algorithms is based on fast sorting of small sets, one is based on 

load balancing, and one is based on a sequential tradeoff between preprocessing and search 

time in a partial order. For n > plog2 p, the latter algorithm runs in 0((n/p) loglogp) 

time on the hypercube and shuffle exchange. Since the sequential complexity of selection 

is linear, one might hope that for n/p sufficiently large the log log p factor in this running 

time could be eliminated. However, Chapter 6 proves that the log log p factor cannot be 

eliminated. Specifically, a lower bound of Q((n/p)log\ogp + logp) is established for a 

large class of networks that includes the complete binary tree, multi-dimensional mesh, 

hypercube, butterfly and shuffle-exchange. 

Chapters 7 and 8 deal with the problem of sorting a set of n keys with p processors. 

Chapter 7 makes use of the load balancing and selection results of Chapters 4 and 5 to 

derive fast, practical sorting algorithms for the hypercube, shuffle-exchange and pipelined 

hypercube. Chapter 8 considers two approaches to sorting when algorithms are confined to 

a class corresponding essentially to sorting circuits.2 For sufficiently large values of the ratio 

n/p, all of the sorting algorithms described in these two chapters have a lower asymptotic 

complexity than Batcher's bitonic sort [Bat68]. 

2The term "sorting circuit" will be used in lieu of the more usual "sorting network" in order to avoid 
confusion with interconnection networks. For a thorough introduction to the design and analysis of sorting 
circuits, see Knuth [Knu73]. 
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Finally, Chapter 9 offers some concluding remarks and open problems for further con- 

sideration. 



Chapter 2 

Pipelining 

This chapter combines several previously known techniques to obtain fast implementations 

of the so-called parallel prefix operation. Algorithms are given for the complete binary tree 

as well as the hypercube and shuffle-exchange. Pipelined schemes for performing k prefix 

operations in Q{k + logp) time on p processors are given for the same set of networks. 

Pipelined parallel prefix is then used to develop a simplified implementation of the optimal 

merging algorithm of Varman and Doshi, which runs on the pipelined hypercube [VD88]. 

Finally, a pipelined version of the multi-way merge sort of Nassimi and Sahni [NS82], running 

on the pipelined hypercube, is described. Given p processors and n < plogp keys to be 

sorted, the running time of the pipelined algorithm is O(log2 p/log((plogp)/n)). For the 

interesting case n = p this yields a running time of O(dSdb), which is asymptotically 

faster than Batcher's bitonic sort [Bat68]. 

2.1     The Prefix Operation 

The prefix operation was introduced independently by Schwartz [Sch80] and by Ladner 

and Fischer [LF80]. For other work on parallel prefix, the reader is referred to [Fic83] and 

[Rei84]. 

Let © denote a binary associative operator on some domain X. Given {xo, • • •, £n-i} Q 

X, the Prefix operation computes each of the partial sums iji = XQ © • • • © a:,-, 0 < i < n. For 

example, assuming that © is addition, n = 5, xo = 5, x\ = 2, X2 = 6, x$ = 4 and X4 = 9, 

then the output of Prefix is 1/0 = 5, xj\ = 7, y<i = 13, 2/3 = 17 and y4 = 26. 
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Given an additional n Boolean values ao,.. ■ ,an-i, the n given a;,- values can be parti- 

tioned into contiguous intervals in the following manner: an interval begins at each i such 

that a,- = true and extends up to, but not including, the next highest integer j such that 

aj = true. The first interval begins at processor 0 regardless of the value of ao, and the last 

interval ends at processor n — 1. The segmented Prefix operation executes a prefix operation 

over each interval. Extending the example of the preceding paragraph, assume that a2 and 

Ü4 are true while ao, a\ and 03 are false. Then the X{ values are partitioned into the 

intervals {zo,a:i}, {^2^3} and {2:4} and the output of the segmented Prefix operation is 

Vo = 5, 2/1 = 7, y2 = 6, y3 = 10 and yA = 9. 

When implementations of the Prefix operation for various networks are given in Sec- 

tion 2.2, it will be convenient to assume that there is an identity element for © in X', which 

will be denoted 0$. This assumption can be made without loss of generality because if no 

such element exists, the set X can be augmented with an identity element 0® by defining 

0® © x = x and x © 0$ = x for all x £ X U {O®}. Note that associativity is preserved. 

Definition 2.1.1 For all pairs of Boolean values ao,ai and all xo,x-y 6 X, let ©' denote 

the binary operator 

(ao,xo) ffi' (oi,a;i) = (ao or a\, if ai then Xi else XQ © X\). 

The operator ©' will be referred to as the segmented © operator. 

Remark 1 The ©' operator has identity 0ffl/ = (false,0e). 

Remark 2 The ffi' operator is not commutative, assuming \X\ > 1. 

Remark 3 The ffi' operator is associative. 

Remark 4 For k > 0, 

(a0, xo) ffi' • • • ffi' (ak, Xk) = (a0 or • • • or a*, i,-®-ffi Xk), 

where j is the highest index less than or equal to k such that aj = true, or 0 if there is no 

such index. 

Remark 1 is an immediate consequence of Definition 2.1.1.   For Remark 2, let xo,x\ be 

distinct elements of X and note that (true,x0) ©' (true,xi)  = x\ while (true,^) ©' 
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(true,xo) = XQ. Remark 3 follows from the observation that for all Boolean values ao, a\, a2 

and XQ,X\,X2 6 X 

((a0,x0) @' (a1,xi))@'(a2,x2) 

—   (a0 or oi, if a,\ then x\ else xQ © xi) ffi' (a2, x2) 

=    (a0 or ai or a2, if a2 then x2 else if ai then xx © £2 else ar0 © £i © x2) 

=    (a0 or (ai or a2), if {a.\ or a2) then X else x0 © X) 

=   (ao,xo)®'(ai or a2, X) 

=    (ao,x0)©'((a1,a;1)©
/(a2,2;2)), 

where X denotes the conditional expression: if a2 then x2 else x\@x2. Finally, Remark 4 

may be easily established by induction on k. 

Remarks 3 and 4 demonstrate that any segmented Prefix operation with operator © 

mapping X X X to X is equivalent to an ordinary Prefix operation with operator ©' mapping 

(B x X) x (B X X) to B x ;t, where £ denotes the set of Boolean values {true, false}. The 

second component of each output pair is the result of the desired segmented Prefix operation, 

and the first component indicates whether or not that processor belongs to an "undefined" 

interval; it is false at processor i if and only if a0,... ,a4- are all false. This reduces coding 

segmented prefix to coding ordinary prefix. 

2.2     Network Implementations 

This section presents efficient implementations of the Prefix operation for the complete 

binary tree, hypercube and shuffle-exchange families of networks. It will be assumed that 

the network consists of p = n processors, and that processor i initially contains the value 

X{, 0 < i < p. The computation is considered to be complete when the partial sum 

Vi = xo © • • • © Xi has been computed at processor i, 0 < i < p. The complexity of the 

algorithms will be stated in terms of time steps, as defined in Section 1.1. Unless otherwise 

stated, running times should be assumed to be accurate to within an additive constant. It 

will be assumed that the i,'s, as well as all partial sums of the x^s, are word-sized quantities. 

In the programs to follow, all interprocessor communication will be specified using the 

pair of routines Send and Receive. Send takes two arguments: the first specifies the word of 

data to be transmitted, and the second specifies the ID of the destination processor. Receive 

is a function with one argument which specifies the ID of the source processor. Once a packet 
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lööoöl     föoTöl     [Qloöl     föTTöl     ITöoöl     IToTöl     fTToöl     riTTöl 

Figure 2.1: An inorder complete binary tree. 

arrives from the source, the word of data contained in that packet is returned as the value 

of the function. In order to comprise a valid source/destination pair, two processors must 

be adjacent in the network. 

2.2.1     Binary Tree 

The first implementation of Prefix that will be considered is the standard two-pass algorithm 

for the inorder complete binary tree. Assume that a binary tree of size p = 2d — 1 is given, 

with processors numbered inorder from 0 to 2d — 2. An example of such a network is 

shown in Figure 2.1, where the processor IDs have been written in binary, and d — 4. 

The code for this algorithm assumes that each processor has initialized the variables Root, 

Leaf, LeftChild, RightChild and Parent in the following manner. The Boolean variable 

Root {Leaf) is true if and only if the processor represents the root (a leaf) of the tree. 

The integer variables LeftChild, RightChild and Parent hold the IDs of the neighboring 

processors, and are undefined whenever such a neighbor does not exist. 

begin Prefix(®, x) 

(1) x\, <— if Leaf then 0® else Rece\ve(LeflChild); 

(2) XR <— if Leaf then 0© else Rece\\/e(RightChild); 

(3) if not Root then Send(a:L © x © XR, Parent); 

(4) 2/L <— if Root then 0$ else Receive(Parent); 

(5) VR <— VL © XL © x; 

(6) if not Leaf then Send(?/L, LeftChild); 

(7) if not Leaf then Send(?/R, RightChild); 
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(8)       return(t/R); 

end Prefix 

As mentioned above, the program makes two passes over the tree. The first pass is 

upward, from the leaves to the root, and the second pass is downward. For every processor 

p, let T(p) denote the subtree rooted at processor p. Note that the IDs of the processors in 

T(p) form a contiguous block of integers. During the upward pass, each processor receives 

the sum of its left and right subtrees (xi, and XR), computes the sum over T(p), and passes 

the result to its parent. During the downward pass, each processor receives from its parent 

the sum J/L over all processors with IDs less than those in T(p), computes the sum over 

all processors with IDs less than those in its right subtree (2/R), and sends the appropriate 

values to its left and right children (T/L and J/R). The correctness of the program is easily 

established by induction on the depth of the tree, and it runs in 4logp time steps. 

Note that in any given time step, only two of the levels of the tree are active, implying 

that the algorithm can be pipelined level by level. By initiating a new prefix computation 

every second time step, it is possible to perform k Prefix operations on the inorder complete 

binary tree in 2k + 41ogp time steps. 

2.2.2    Hypercube 

For the hypercube, the following FFT-like computation executes Prefix in logp time steps: 

I jegn l Prefix(ffi, *) 

(1) y *- — x; 

(2) for i <— 0 to d - 1 do 

(3) Sen%, i) 

(4) if Myldi = = 0 then 

(5) y<— y © Receive(i); 

(6) else 

(7) temp <— Receive(z); 

(8) x <— temp © x; 

(9) v*— temp © y; 

(10) end if 

(11) end for 

(12) ret urn(a;); 
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end Prefix 

The variable Myld holds the ID of the processor, and Myld^ denotes the ith bit of the 

ID (the least significant bit is bit 0). The source and destination arguments of Send and 

Receive specify the bit position in which the two communicating processors differ. 

The program runs in logp time steps, and functions in the following manner. In ad- 

dition to the partial sums demanded by the Prefix operation, the total sum is computed 

at every processor. The local variables x and y accumulate the partial and total sums, 

respectively. For a hypercube consisting of a single processor, the computation is trivial. 

Given p processors with associated z,- values and where p = 2d, d > 1, the program first 

recursively computes partial and total sums for the upper and lower halves of the values 

independently, and then exchanges the total sums between halves. This enables the revised 

partial sums for the upper half to be computed, as well as the new total sums. 

Unfortunately, the above program does not lead to a pipelined implementation of the 

Prefix operation because it uses all of the processors at every time step. One way of achiev- 

ing pipelined speedup is to make use of the dilation 2 inorder complete binary tree embed- 

ding [BCLR86]. Figure 2.2 gives this embedding for the case p = 16, where the "extra" 

processor (with ID p — 1) has been added as an extra level above the root. The edges 

depicted in Figure 2.2 are physical hypercube edges. The left child of a non-leaf processor 

is connected directly to its parent, while the right child is connected to its parent via the 

left child. It is easy to verify that the pipelined algorithm given for the inorder complete 

binary tree in Section 2.2.1 can be modified to run in the same time bound on the dilation 

2 inorder complete binary tree embedding. In particular, note that processor p — 1 is in an 

appropriate location to receive the sum over all of the other processors. To summarize, k 

Prefix operations can be performed in 2k + 41ogp time steps on the hypercube. 

2.2.3    Shuffle-Exchange 

The hypercube code given in the preceding section for performing a single Prefix operation 

can be easily adapted to the shuffle-exchange: 

begin Prefix(®, x) 

(1) y<—x; 

(2) repeat d times 
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Figure 2.2: Embedding the inorder binary tree in the hypercube. 
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(3) Send(2/, Exchange); 

(4) if Myld0 = 0 then 

(5) y *— y © Rece'we(Exchange); 

(6) else 

(7) temp <— Receive(Exchange); 

(8) x *— temp © x; 

(9) y <— temp © y; 

(10) end if 

(11) Send(a;, Unshuffle); 

(12) x <— Rece'ive(Shuffle); 

(13) Send(y, Unshuffle); 

(14) y <— Rece'we(Shuffle); 

(15) end repeat 

(16) return(a;); 

end Prefix 

The above program runs in 3 logp time steps. As in the case of the hypercube, however, 

a different approach is needed in order to obtain a pipelined implementation of the Prefix 

operation. Unfortunately, it is not possible to embed the inorder complete binary tree in 

the shuffle-exchange with constant dilation.   Instead, a pipelined implementation will be 
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Figure 2.3: A shuffle-exchange embedding for the high-numbered processors. 

obtained by making use of the dilation 2 complete binary tree embeddings depicted, for 

the case p = 16, in Figures 2.3 and 2.4. The leaves of the tree in Figure 2.3 are the high- 

numbered processors (those with IDs in the range p/2 to p — 1), numbered inorder. In 

this embedding, the ID of the left child of an internal processor is the shuffle of the ID 

of its parent, and siblings communicate via the exchange connection. The embedding of 

Figure 2.4 is defined in a similar fashion, and has the low-numbered processors (0 to p/2— 1) 

at its leaves. 

These embeddings can be used to obtain a pipelined implementation of k Prefix opera- 

tions as follows. First, the embedding of Figure 2.3 is used to compute the k sets of partial 

sums over the high-numbered processors. This takes 2k + 4logp time steps. Similarly, 

the embedding of Figure 2.4 can be used to perform k prefix sums over the low-numbered 

processors in 2k + 41ogp time steps. At this point, all that remains to be done is to broad- 

cast, in a pipelined fashion, the k total sums over the low-numbered processors to the p/2 

high-numbered processors, and to add these values to the partial sums computed earlier. 

This last phase can be performed in 2k + 21ogp time steps using the embedding of Fig- 

ure 2.4.1 Hence, k Prefix operations can be executed in 6k + 10 log p time steps on the 

shuffle-exchange. 

1 Note that as a side-effect of the prefix sums performed over the low-numbered processors, the desired 
sums are already available at the root. 
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Figure 2.4: A shuffle-exchange embedding for the low-numbered processors. 

2.2.4    A Useful Variation 

Section 2.4 will make use of a variant of the Prefix operation, Prefix', defined as follows. 

Rather than computing ar0 © • • • © a:,- at processor i, 0 < i < p, Prefix' outputs 0® at 

processor 0 and xoffi- • -®a:;_i at processor i, 1 < i < p. This is sometimes more convenient, 

particularly when the operator © is not invertible. Note that all of the implementations of 

Prefix given above may be trivially modified to implement Prefix' within precisely the same 

time bounds. For example, in the complete binary tree program of Section 2.2.1, it suffices 

to change the return value from y& to J/L © XL- 

2.3    Data Distribution 

Consider the binary associative operator © defined over X by x © y = x, for all x, y € X. 

This is sometimes referred to as the Copy operator. Observe that the effect of applying 

Prefix with the Copy operator is to perform a broadcast of a single value from processor 0 to 

all other processors. Of course, there are simpler techniques for broadcasting a single value 

over the processors of any of the networks under consideration. However, combining this 

observation with the results of the previous section immediately implies that k segmented 

broadcasts can be executed in 2k + 41ogp time steps on the tree or hypercube, and in 

6k + 10 log p time steps on the shuffle-exchange. 

In order to fully illustrate the techniques discussed in Section 2.1, the implementation 

of segmented Prefix with the Copy operation will now be studied in greater detail. As stated 
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in Section 2.1, processor i initially holds the Boolean value a; and X{ € X, 0 < i < p. Note 

that under the Copy operation the only relevant x^s are those for which the corresponding 

a, is true . 

Clearly, there is no identity element for the Copy operation in X. To remedy this 

situation, the domain of Copy is extended from X to B x X where every pair with first 

component false, say, is defined to be an identity element. In practice, this corresponds to 

prefixing a single bit bi to each of the a;,'s. Formally, the operator © = Copy becomes 

(b0,x0) © (h,xi) = (b0 or &i, if 60 then x0 else Xi), 

for all bo,bi € B and xo,xi € X. 

In order to reduce segmented Prefix with operator © = Copy to ordinary Prefix with 

operator ©' = Copy', let ©' be defined as follows: 

(a0, (b0, x0)) ®' (ai,(h,xi)) = (a0 or ai: if ax then (6i,a>i) else (b0,x0) © (&i,Zi)). 

Dropping the inner parentheses and simplifying gives 

(ao,bo,xo) ®'(ai,bi,xi)    =    (ao or a\, 

if a\ then b\ else &o or b\, 

if ai or not &o then x\ else XQ). 

Note that the above formulation allows bit pipelining in the sense described by Blel- 

loch [Ble87]. In other words, as each bit of the two operands is received, the next output 

bit can be computed. This property holds not only for the Copy operator, but also for any 

other single-pass operator, as defined by Blelloch [Ble87]. 

Finally, observe that the data distribution operation defined by Ullman [U1184] is equiv- 

alent to a segmented Prefix operation with the Copy operator. Thus, the techniques outlined 

in Section 2.2 immediately lead to efficient pipelined implementations of this primitive for 

the complete inorder binary tree, hypercube and shuffle-exchange network families. 

2.4    Sorting on the Pipelined Hypercube 

In this section, a simplified implementation of the optimal merging algorithm of Varman 

and Doshi [VD88] will be described, and this will be used to develop a pipelined version of 
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the sorting algorithm of Nassimi and Sahni [NS82] for the pipelined hypercube. A formal 

definition of the Sort operation, along with a discussion of previous sorting results for the 

hypercube and shuffle-exchange, may be found in Chapter 7. 

The added power of the pipelined hypercube will only be used for performing pipelined 

inverse concentration routes. It is interesting to note that the pipelined hypercube is not 

needed in order to perform pipelined concentration routes, nor is it needed to perform the 

pipelined inverse concentration with copy operation of Varman and Doshi. Concentration 

and inverse concentration routes were denned by Nassimi and Sahni [NS82], and it is easy 

to show that k such operations can be performed in k + logp time steps on the pipelined 

hypercube. Furthermore, there is no hope of achieving this asymptotic time bound on the 

1-port hypercube since there is a lower bound of Cl(k log1'2 p) time steps in this case. To 

prove this lower bound, consider a set of k monotone routes for which the source processors 

are exactly those with strictly more O's than l's in their IDs and the destination processors 

are those with more l's than O's. In such a case, £l(kp) packets must pass through the 

0(plog-1'2 p) processors with an equal number of O's and l's (or one more 0 than 1, say, 

if logp is odd), which implies a lower bound of ^(Hog1/2p) time steps for performing k 

monotone routes. Since every monotone route can be decomposed into a concentration route 

followed by an inverse concentration route, and these operations have equal complexity, this 

lower bound applies to the pipelined concentration and inverse concentration operations as 

well. 

A pipelined algorithm for merging two sorted lists X and Y will now be described. Both 

X and Y are of length pk, and the algorithm runs on p processors. The algorithm is similar 

to that proposed by Varman and Doshi [VD88], but is somewhat simpler. The optimal 

merging algorithm of Anderson, Mayr and Warmuth for the EREW PRAM also takes a 

similar approach [AMW88]. For simplicity, it will be assumed that all of the 2pk input keys 

are distinct. For both X and Y, the keys with ranks (numbered from 0) in the range ik 

to (i + 1)& — 1 are initially stored at processor i, 0 < i < p. The two ordered sets of k 

keys located at processor i will be referred to as X,- and Yi, respectively. Let a;,- denote the 

least element of Xj, and let y,- denote the greatest element of Yi, 0 < i < p. Let X' and Y' 

denote the set of all x,'s and 2/,'s, respectively. Let Z denote the sorted list of length 2pk 

that results from merging X and Y. Those elements of Z with ranks in the range 2ik to 

2(i + l)k — 1, denoted Z,, must be routed to processor i by the end of the computation, 

0 < i < p, and must be sorted locally. 
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The approach taken is first to merge X' and Y', and then to use the resulting list to 

guide the merging of X and Y. Let Z' denote the sorted list of length 2p that results from 

merging X' and Y'. Let Zj denote the key with rank j in Z', 0 < j < 2p. Let Zj denote 

the set of k keys associated with ZJ, that is, either Zj = X{ for some a:,- 6 X' and Zj = Xt-, 

or Zj = yi for some yi € Y' and Z'j = Y;. Note that if Zj G X' then the rank of ZJ in Z is 

between j'fc and (j + l)k — 1, inclusive. The exact rank of Zj in Z can be determined by 

computing its rank in the set Yi, where yi is the least element of Y' exceeding Zj. Similarly, 

if ZJ € Y' then the rank of Zj in Z is between jk and (j + l)k — 1, and the exact rank of 

Zj in Z depends upon the set X,-, where X{ is the largest element of X' that is less than ZJ. 

Furthermore, it is easy to check that the set Zj is contained in the union of Z'2j, Z^j+i > the 

set X{ corresponding to the largest x,- that is less than z-ij, and the set Yi corresponding to 

the smallest yi that is greater than 22j+i • These observations lead to the following pipelined 

merging algorithm. 

Algorithm   Merge 

1. Reverse the list Y', that is, route yi to processor p — i — 1, 0 < i < p. This takes logp 

time steps. 

2. Merge X' and Y' by simulating a bitonic merge over 2p processors. Record the data 

movements to facilitate the "unmerge" of Step 3. This takes 2logp time steps. 

3. Route the rank of each key in Z' back to the processor which originally held that key. 

This can be done in 21ogp time steps by following the paths recorded in Step 2 in the 

reverse direction. 

4. Route each set Xi to the processor that held a;,- after Step 2, 0 < i < p. The ID 

of that processor can be computed from the rank received by processor i in Step 3. 

The routing can be performed in 2k + 21ogp time steps using a pipelined inverse 

concentration. Route the Yj's in a similar fashion, for a total cost of Ak + 4logp time 

steps. 

5. Assuming the set X{ was routed to processor ji in the previous step, broadcast X,- to 

all processors with IDs in the range ji + 1 to j,+i, 0 < i < p. This can be done in 

2k + 4logp time steps with a single application of the Prefix' operation, as described 

in Section 2.2. 
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6. Assuming the set Y{ was routed to processor j, in the previous step, broadcast Y{ to 

all processors with IDs in the range j't_i to j,- — 1, 0 < i < p. This can be done with 

a single application of a "backwards" version of Prefix', and takes 2k + 4logp time 

steps. 

7. At this point, processor j contains a copy of Z'2j, Z'2j+1, the largest X,- with X{ < z2j 

and the smallest Y{ with y,- > Z2j+i, 0 < j < p. As observed above, the union of these 

sets contains the desired set Zj, and the keys to be discarded (i.e., those not belonging 

to Zj) can be determined by computing the exact rank of either z2j or Z2j+i- These 

sets can be merged, and the rank computation performed, with 0(k) local operations. 

The definition of a time step allows these local operations to be interleaved with the 

computations of Steps 5 and 6 at no extra cost. 

Note that only Step 4 uses the power of the pipelined model. The total running time of 

Merge is 8k + 17logp time steps. Now consider the case in which 2p processors are available 

to perform the merge, where it is assumed that X,- is initially stored at processor i, Y; is 

initially stored at processor 2p — i — 1, and Zj is to be output at processor j, 0 < i < p, 

0 < j < 2p. In this case, Step 1 is unnecessary, and the cost of each of Steps 2, 3 and 4 is 

halved, while the cost of the remaining steps is unchanged. Thus, the total cost of Merge 

with 2p processors is 6k + 121ogp time steps. Note that for k — ft(logp), this running time 

is within a constant factor of optimal. Furthermore, as observed by Varman and Doshi, 

this optimal merging routine immediately implies an optimal algorithm for sorting when 

the number of keys to be sorted, n, exceeds the number of processors, p, by a factor k that 

is fi(logp). The idea is to sort the set of k keys at each processor locally, and then to merge 

sorted subcubes repeatedly until the entire hypercube has been sorted. At each level, even 

subcubes are sorted in ascending order and odd subcubes are sorted in descending order. 

The running time of this algorithm, which will be referred to as MergeSort, is 

Y,    (ek + l2i) = 6klogp + 0(\og2p). 
0<t<logp 

As mentioned above, this running time is optimal for k = fi(logp). 

A pipelined version of the multi-way merging procedure of Nassimi and Sahni [NS82] 

that runs on the pipelined hypercube will now be described. The input consists of 2l sorted 

lists of length k2m, and the output is a single sorted list of length k2l+m. The merging is 

performed in 0(k + logp) time steps on a hypercube with p — 22l+m processors. Let the zth 
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input list be denoted X1, 0 < i < 2l, and let the set of k elements of X1 with ranks between 

jk and (j + l)k - 1 (inclusive) be denoted X%-, 0 < j < 2m. The set Xj is initially stored at 

processor i2m + j. Let the output list be denoted X. At the end of the merging process, 

the elements of X with ranks between jk and (j + l)k — 1 (inclusive) should be stored at 

processor j, 0 < j < 2l+m. 

It is useful to view the processors of the given hypercube as forming a 2l by 2t+m array, 

where the processor in row i and column j has ID i2l+m + j (row-major order). Note that 

all of the Xj's are stored in row 0. In fact, each processor in row 0 contains exactly one set 

Xh     ■ 
The algorithm makes use of pipelined broadcast and sum operations over entire sub- 

cubes. Formally, a pipelined broadcast operation takes k keys stored at a single processor 

and broadcasts them over the entire subcube. For a pipelined sum operation, processor i 

initially holds k keys a^j, 0 < i < p, 0 < j < k. The output is the k sums X)o<;<pa«j> 

0 < j < k, all of which are output at a single designated processor. Although such oper- 

ations can be performed using Prefix, other implementations exist which are more efficient 

by a constant factor. For example, using the multiple spanning binomial tree (MSBT) 

embedding of Ho and Johnsson [HJ86] it is possible to perform k broadcasts in k + logp 

time steps. Similarly, k sums can be performed in k + logp time steps. Note that although 

these operations are pipelined, they run on the 1-port hypercube and thus do not require 

the additional power of the pipelined hypercube. 

Algorithm   MultiWayMerge 

1. Broadcast Xj to all of the processors in column z'2m +j, 0<i<2l,Q<j< 2m. Each 

of the columns is an independent subcube of dimension /. Thus, the broadcasts can 

be performed in k + / time steps using an MSBT embedding within each column. 

2. Replicate list X' across the ith row, 0 < i < 2l. In other words, route a copy of 

Xj to each column of the ith row that is congruent to j mod 2m. This amounts to 

performing pipelined broadcasts over subcubes of dimension /, which can be done in 

k + I time steps using the MSBT embedding. 

3. Merge the lists X' and X* using the jth block of 2m processors of row i (i.e., columns 

j2m to (j + l)2m - 1), 0 < i,j < 2', i ^ j. This takes 8k + 17m time steps. 
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4. In the jth block of 2m processors of row i, "unmerge" the rank of each element of X' 

in XJ (this is the rank of that key in X' U X* minus its rank in X(), 0 < i,j < 2l, 

i ^ j. In other words, route the rank of each key back to the processor that contained 

the key before Step 3. This is a pipelined inverse concentration, and can be performed 

in k + m time steps. Where i = j, simply label each key with its rank in X1. 

5. Compute the rank of every key in X. The processors of row i are used to perform this 

computation for the elements of the set X1, 0 < i < 2l. For each set Xj, a pipelined 

sum is performed over a subcube of dimension /, adding the ranks computed in Step 4 

and routing the results to the first block of 2m processors in each row. This takes k +1 

time steps using the MSBT embedding. 

6. In row i, route the elements of X, to the correct output column (given by the floor 

of the rank computed in Step 5 divided by k), 0 < i < 2l. This is a pipelined inverse 

concentration in a subcube of dimension / + m, and takes k + I + m time steps. 

7. Each column of the array now contains k keys. Route these keys to the top of the 

column (row 0). In terms of data paths, this is essentially an inverse pipelined broad- 

cast operation over a subcube of dimension /, and it can be performed in k + I time 

steps using the MSBT embedding. 

Only Steps 3, 4 and 6 require the power of the pipelined hypercube. Summing all 

of the costs stated above, the total running time of MultiWayMerge is readily seen to be 

14k + 5/ + 19m time steps. 

Repeated application of MultiWayMerge on successively larger sub cubes leads to a fast 

sorting algorithm for the case n < plogp. The running time of this algorithm, which will 

be referred to as MultiWayMergeSort, will be shown to be O(log2p/\og((plogp)/n))), as 

opposed to 0(log2p/log(p/ra)) for the sorting algorithm of Nassimi and Sahni. For the 

interesting case n = p, the running time of MultiWayMergeSort is O(log2p/loglogp), a 

slight asymptotic improvement over that of Batcher's bitonic sort. It must be emphasized, 

however, that MultiWayMergeSort only runs on the pipelined hypercube. 

A more formal description of the MultiWayMergeSort algorithm will now be given, along 

with an analysis of its time complexity. The algorithm is designed to sort n = k2m keys on 

a hypercube with p = 2I+m processors. It is useful to view the processors as being arranged 

in a 2 by 2m array, where the processor in row i and column j has ID i2m + j (row-major 

order). 
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Algorithm   MultiWayMergeSort 

1. Each column of the array contains k keys. Route all of these to the top of the column 

(row 0). As in Step 7 of Multi Way Merge, this takes k + I time steps. 

2. At every processor in row 0, sort the set of k keys using an efficient sequential sorting 

routine. This takes O(k\ogk) time steps. 

3. Repeatedly call Multi Way Merge. The length of the sorted lists increases by a factor of 

2l after each call. Thus, after \m/l] iterations all of the keys have been sorted. The 

cost of the ith iteration is 14k + 5/ + 19i/ time steps, for a total cost of approximately 

(14A; + 4/ + 12m)m// time steps. 

4. The keys have been sorted, but they are not configured appropriately (i.e., all of the 

keys are in row 0). All of the keys can be routed to the correct output locations using 

k pipelined inverse concentration routes, which takes k + logp time steps. 

Steps 3 and 4 make use of the power of the pipelined hypercube. The total running 

time of MultiWayMergeSort is minimized (to within a constant factor) by setting k = logp, 

and for this choice of k the running time is dominated by the cost of Step 3. Observ- 

ing that / = log(pk/n) and m = logp — / < logp, one finds that for k = logp the al- 

gorithm runs in 4p log2 p/log((p log p)/n) + O(logp) time steps. For the case n = p, k 

can be set to logp/log logp in order to reduce the dominant term in the running time to 

Y log2 pi log log p. 

2.5     Summary 

This chapter has described simple and efficient pipelined implementations for the Prefix 

operation on the complete inorder binary tree, hypercube and shuffle-exchange families of 

networks. Since Ullman's data distribution primitive may be viewed as a special case of 

the Prefix operation, these results immediately yield a pipelined implementation for that 

primitive. A variant of the Prefix operation was used to obtain a simplified implementation 

of Varman and Doshi's optimal merging algorithm for the pipelined model of the hypercube. 

In order to better assess the practical speed of the various algorithms presented in this 

paper, the coefficient on the leading term of the running time has been computed in each 
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case. It is quite possible that one or more of the moderately large coefficients in Section 2.4 

could be improved with only minor modifications to the code. 

It should be mentioned that for permutation routing, an important special case of the 

sorting problem, there is a much simpler 0 (log2 pj log log p) time algorithm for the case 

n = p than MultiWayMergeSort [Pel]. The idea is to route packets in a greedy fashion over 

sets of log log p dimensions at a time. Each set of routings produces a load balancing problem 

in which there may be as many as logp packets at any one processor, and the objective 

is to redistribute the packets so that there is exactly one at each processor. Section 4.1.1 

demonstrates how this redistribution can be performed in O(logp) time on the pipelined 

hypercube by making use of the pipelined prefix, broadcast and concentration operations 

described in this chapter. 



Chapter 3 

Boolean Matrix Multiplication 

This chapter considers processor-efficient, optimal time implementations of the elemen- 

tary Boolean matrix multiplication algorithm for the hypercube and shuffle-exchange. The 

phrase "elementary matrix multiplication algorithm" refers to the standard 0(n3) time 

sequential algorithm for computing the product of two n X n matrices, as opposed to 

asymptotically faster (but in most cases less practical) methods due to Coppersmith and 

Winograd [CW82][CW87], Schönhage [Sch82], and Strassen [Str69][Str86]. 

The problem of implementing general matrix multiplication on the hypercube and 

shuffle-exchange was studied extensively by Dekel, Nassimi and Sahni [DNS81]. For the 

special case of Boolean matrix multiplication, Agerwala and Lint have given a paral- 

lel implementation of the four Russians' algorithm which runs in O(logrc) time using 

O(n3/(lograloglogn)) processors [AL78]. This chapter provides O(logra) time hypercube 

and shuffle-exchange implementations of Boolean matrix multiplication that improve this 

processor bound to 0(n3/(log2 nloglogn)). 

3.1     The Basic Algorithm 

Let n x n Boolean matrices A = (a,j) and B = (6,j) be given. Letting C = (c,j) denote the 

matrix AB, the entries of C are given by the elementary formula 

Cij =    V   aikAbkj, (3.1) 
0<k<n 

24 
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0 5: iij < n- This relationship leads to a simple and well-known O(logra) time matrix 

multiplication algorithm running on a hypercube with n3 processors. Some notation will 

be introduced before describing this algorithm. 

Given a hypercube of dimension d, let every string a of length d over the alphabet 

{0,1,*} correspond to that set of processors for which the ID "matches" a in the natural 

sense. For example, in a hypercube of dimension 4, the string *1*0 corresponds to the 4 

processors 0100, 0110, 1100 and 1110.1 It is often convenient to specify such a d-b'it string 

as a tuple of the form (WQ : «o, ..., wt-\ : at-i), where t and the w^s are nonnegative 

integers, Ylo<i<twi = ^> an(^ a* *s either * or a w;-bit integer. As one might suspect, such 

a tuple is intended to correspond to the string ßo---ßt-i, where /?,- is the w,-bit string 

corresponding to the binary representation of a,- if a,- ^ *, and *Wi otherwise. For example, 

the tuple (3 : 6, 4 : *, 1 : 0) corresponds to the string 110****0. 

The basic O(logn) algorithm for Boolean matrix multiplication on a hypercube with n3 

processors can now be easily described. Let x = log n, and note that each processor has a 3x- 

bit ID. Assume that input bits atJ' and bij are initially stored in processor (x :i,x: j, x : 0). 

After broadcasting over ID bits [0,x) (the rightmost field), a copy of a,j resides in each 

processor in the set (x : i, x : j, *). Hence, it certainly resides in the particular processor 

(a; : i, x : j, x : j), and by broadcasting over bits [x, 2x), a copy of a,j can be sent 

to all processors of the form (x : i, x : *, x : j). Similarly, 6tJ- can be routed to the 

set of processors (x : *, x : j, x : i) in 0(x) time. At this point, note that processor 

(x : i, x : j, x : k) contains a,-* and bkj, 0 < i,j,k < n. Thus, the n3 Boolean AND 

operations of Equation (3.1) can be performed in a single time step. The C;J'S can now be 

computed by simply ORing over ID bits [0,z). This takes 0(x) time and leaves c,j in the 

desired output processor (a; : i, x : j, x : 0). Thus, the entire algorithm runs in 0(log n) 

time, as claimed. Furthermore, it can be easily adapted to run on the shuffle-exchange in 

the same asymptotic time bound. 

3.2    A Simple Improvement 

This section describes simple modifications to the preceding algorithm that reduce the 

processor requirement to O(ra3/log2 n) without affecting the asymptotic time bound. Using 

Note that a string with s occurences of the symbol * corresponds to a subcube of dimension s (hence, 
2s processors). 
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a more complicated scheme, Section 3.3.1 will reduce the processor requirement by a further 

factor of log log n. 

Let x = logra and let y = log log«. For simplicity, assume that y is an integer. The 

algorithm of Section 3.1 will now be modified to run without (more than a constant factor) 

slowdown on a hypercube of dimension 3x—2y. In the modified algorithm, physical processor 

p simulates the subcube (3x — 2y : p, 2y : *) in a hypercube of dimension 3a; running 

the basic algorithm. Recall that the basic algorithm routes a copy of atj to the subcube 

(x : i, x : *, x : j). In the modified algorithm, this computation is simulated as follows. 

1. By broadcasting over dimensions [0,2 — y), a copy of the bit a,j can be sent to each 

processor in the set (x : i, x : j, x — 2y : *). This takes 0{x) time. 

2. From the previous step, processor (a; : i, x : j, x — 2y : j div x2) certainly holds a 

copy of bit a,j. By broadcasting over dimensions [x,2x — 2y), this copy of bit aij can 

be sent to each processor in the set (x : i, x-2y : *, 2y : j mod x2, x — 2y:j div x2). 

This takes O(x) time. 

3. At this point, every processor contains a single entry from the matrix A. This data 

may be viewed as a bit vector of length 1. By repeatedly concatenating the bit vector 

held at each processor with that of its neighbor over dimensions [x — y,x), every 

processor in the set (x : i, x — y : *, y : j mod x, x — 2y : j div x2) ends up with a 

copy of the x entries of A, packed into a single (or, at least, some constant number 

of) O(logn)-bit registers. This takes 0(y) time. 

4. The length of the bit vector at each processor is now x = logn, and as the bit 

vector held at each processor is repeatedly concatenated with that of its neighbor 

over dimensions [x — 2y,x- y), the number of memory words required to represent a 

bit vector doubles at each iteration. Thus, the amount of time required to complete 

each successive iteration also doubles, and the total time is proportional to the length 

in words of the bit vectors after the last iteration. Since there are y iterations, the bit 

vectors reach a length of x words, and the total time required to perform this set of 

concatenations is O(x). 

The preceding algorithm requires that each processor be capable of concatenating two 

O(logn) bit operands in constant time. This could be accomplished by performing an 

appropriate shift (or multiply) operation followed by an OR. The model of computation 
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defined in Section 1.1 is not violated since the operands never exceed O(logn) bits in 

length. 

The end result of applying the above procedure (which runs in O(x) time) is that each 

processor in the subcube S = (x : i, x : *, x — 2y : j div x2) holds the appropriate set 

of x2 bits, namely, atfc for those integers k given by the tuple (x — 2y : j div x2, 2y : *). 

These bits are stored in x words of length x and, assuming that the concatentations have 

been performed in an appropriate manner, a copy of bit an, is stored in bit position r of 

word s at each processor in the set S, where k is the unique integer given by the tuple 

(a; - 2y : j div x2, y : r, y : s). 

It will be convenient to specify certain sets of bit locations using tuple notation. In order 

to avoid confusion between sets of processors and sets of bit locations, square brackets will 

be used to denote bit locations. Let the bit location corresponding to position r of word 

s at processor p be denoted [x — 2y : p, y : r, y : s}. Using this notation, it should be 

apparent that the sequence of operations described above places a copy of a,j in the set of 

"matrix A" bit locations given by [x : i, x : *, x : j], A similar procedure can be used to 

route b{j to the set of "matrix B" bit locations given by [x : *, x : j, x : i\. The n3 AND 

operations of Equation (3.1) can now be performed in x time steps by ANDing together 

the x corresponding pairs of matrix A and matrix B words at each processor. In order to 

compute the Cjj's efficiently, each processor first locally ORs together the log2p bits that it 

contains. This reduces the amount of relevant data to a single bit per processor, and takes 

O(x) time. The remaining OR operations are performed over ID bits [0,;r — 2y] as in the 

basic algorithm. 

Unlike the basic algorithm of Section 3.1, implementing the algorithm described in this 

section on the shuffle-exchange so that it runs in O(log7i) time is not entirely straightfor- 

ward. The problem is that once the data corresponding to array A, say, has been replicated 

to the point that every processor contains 0(log2p) bits, the algorithm cannot afford to 

shuffle the data more than a constant number of bit positions. Hence, the data must be 

aligned2 correctly just as the processors become "saturated". A second requirement is that 

the data corresponding to arrays A and B be aligned in the same way. Finally, the ORing 

will be too expensive unless the shuffle-exchange is aligned in such a way that the ilk field" 

(the bit positions corresponding to k in Equation (3.1)) is a constant number of shuffles away 

from the exchange position. It is not hard to prove that these three requirements cannot 

2The "alignment" of the data corresponds to the net number of shuffle operations that have been applied, 
modulo log p. 
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be simultaneously satisfied if the i, j and k fields each consist of a contiguous set of ID bits. 

One solution to this dilemma is to interleave the embedding of the i, j and k fields among 

the logp ID bits. For example, bit positions [0,3a; - 6y) can be alternately assigned to i, j 

and k (in ascending order of significance), and the bit positions [3a; - 6y,3x - 2y) can be 

alternately assigned to the remaining bits of i and j. Note that it is actually not necessary 

to interleave the entire address space in order to allow the three alignment requirements to 

be simultaneously satisfied. 

3.3    The Four Russians' Algorithm 

The elementary sequential algorithm for multiplying two n X n Boolean matrices requires 

0(n3) bit operations. Arlazarov, Dinic, Kronrod and Faradzev gave a practical algorithm 

that reduces this number of bit operations to 0(ra3/logn) [ADKF70]. A detailed descrip- 

tion of the so-called Four Russians' algorithm may be found in Aho, Hopcroft and Ull- 

man [AHU74]; the following section will assume that the reader is familiar with the Four 

Russians' algorithm. Note that under a uniform cost criterion, assuming 0(logn)-bit reg- 

isters, the Four Russians' algorithm can be easily modified to run in 0(n3/log2 n) time. 

3.3.1    Parallel Four Russians' 

The problem of parallelizing the Four Russians' Boolean matrix multiplication algorithm 

was considered previously by Agerwala and Lint [AL78], who exhibited an algorithm that 

runs in O(logn) time on a network with O(n3/(logrcloglog7i)) processors. Note that the 

simple algorithm of Section 3.2 already yields an improvement over the result of Agerwala 

and Lint. The purpose of this section is to establish that the Four Russians' approach can 

be combined with the techniques of Section 3.2 in order to obtain O(logra) time algorithms 

for the hypercube and shuffle-exchange using only 

o( 2! ) 
ylog2 raloglogny 

processors. The hypercube algorithm will now be presented in detail, followed by an indi- 

cation of the modifications necessary to achieve the same asymptotic performance on the 

shuffle-exchange. 

Let x, y and z denote log n, log log n and log log log n, respectively. In order to simplify 

the exposition, y and z will be assumed to be integers and round-off errors will be ignored. 
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[a; : i, x : j, x — z : 0] 

—► [x : i, x : j, x - 2y - z : *, y - z : 0, z : *, y : 0] 

—► [x : i, x — z : j div y, x — 2y : *, y — 2 : 0, 2 : j mod y, y : 0] 

—► [x : i, x — 2y : *, x — z : j div y, y — 2 : 0, 2 : j mod ?/, y : 0] 

—► [x — y : i div x, x — y : *, x — z : j div y, y — 2 : 0, z : j mod y, y : i mod x] 

Figure 3.1: The path followed by the a,-j's. 

For example, it will be assumed that n/y is an integer. It is straightforward to verify that 

the algorithm can be modified to handle round-off errors. 

The task at hand is to multiply two n x n Boolean matrices in O(logn) time on a 

hypercube with 0(n3/(x2y)) processors, that is, a hypercube of dimension 3x — 2y — z. As 

in Section 3.1, it will be assumed that input bits atJ- and b{j are initially stored at processor 

(x : i, x : j, x — 2y — 2 : 0), and that output bit c,j should appear at the same processor, 

0 < i,j < n. 

As in Section 3.2, each processor will store up to x2 bits of data at some point during 

the computation. The bit location corresponding to position r of word s at processor p will 

be denoted [x — 2y - 2 : p, y : r, y : s]. 

As in Sections 3.1 and 3.2, the first phase of the algorithm consists of permuting and 

replicating the elements of the two input arrays A and B. Figure 3.1 indicates the four stage 

path followed by the a2j's during the first phase. Note that the low order y bits remain 0 

until the last stage, implying that there is only one word of relevant data at each processor 

during the first three stages. Thus, the first three stages take a total of 0(x) time. The final 

stage builds up a;-word bit vectors at each processor, and also takes O(x) time. Figure 3.2 

gives the somewhat more complicated seven stage path followed by the 6,_,'s during the first 

phase. Once again, one may verify that the total cost of all stages is 0{x). 

It remains to show how to compute the C;J'S in O(x) time given that the arrays A and 

B are stored in the manner indicated by the last tuples of Figures 3.1 and 3.2, respectively. 

At the end of the first phase, the processor given by the tuple (x — y : r, x — y : s, x — z : t) 

holds the 2xy array elements a;j and bkj for rx < i < (r + l)x, sx < j < (s + l)x, and 

ty < k < (t + l)y. In the second phase of the algorithm, the task of this processor is to 

perform the set of AND and OR operations associated with this set of array elements. The 

Four Russians' technique is used to perform these operations in O(x) time, as follows. Note 
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[x : i, x : j, x — z : 0] 

—► [x : i, x : j, x - 1y - z : *, y:*,y:Q] 

—► [x :i, x — y : j div x, x — y — z : *, y : j mod x, y : 0] 

—► [x — y — z : i div xy, y : *, z : i mod y, x — y : j div a:, 

x — 2y — z :*, y : (i mod a;?/) div y, y : j mod a;, y : 0] 

—► [x — y — z :i div a;?/, z : i mod j/, j/: *, x — y : j div x, 

a; — 1y — z : *, y : (i mod xy) div j/, y : j mod x, y : 0] 

—s- [x — y — z :i div xy, z : i mod y, x — y : j div x, 

x — ?/ — z : *, ?/ : [i mod xy) div y, y : j mod x, y : 0] 

—► [x — y — z : *, z : i mod y, x — y : j div x, x — z : i div y, y : j mod x, j/: 0] 

—► [x — y : *, x — y : j div x, x — z : z div y, y : j mod x, y — z : 0, z : i mod y] 

Figure 3.2: The path followed by the &ij's. 

that the fe/y's are stored in y words of x bits apiece. There are 2y = x possible words that 

can be obtained by ORing together a subset of these y words. A table T of these x words is 

computed, where the /th entry in the table (denoted T(/)) corresponds to the subset given 

by the binary representation of /. For example, if y = 4 and 1 = 7 = OIII2, then T(7) is 

obtained by ORing together words 0, 1 and 2 (but not word 3). Note that the table T can 

be constructed in O(x) time. 

The motivation for computing T is that now the x Boolean values given by 

V        aik A ^i' rx - i < (r + 1)a;' 
ty<k<(t+l)y 

can be computed in a single table lookup for any fixed value of j, sx < j < (s + l)x. 

Namely, one may check that these bits are given by T(u), where u is the y-bit integer 

Uy-i • • • uo with uv = a,i(ty+v)- Note that the first phase has already constructed the word u 

at the appropriate processor. Thus, O(x) time suffices to perform all of the AND and OR 

operations local to any particular processor. 

The third phase of the algorithm consists of performing the remaining OR operations and 

routing the c,j's to the appropriate output processors. At the beginning of the third phase, 

each processor holds x2 relevant bits of information. Unlike the algorithm of Section 3.2, the 

bits cannot be ORed together locally in order to immediately reduce the amount of data at 

each procesor to a single bit. The reason is that the 2y dimensions being simulated within 



3.4.   SUMMARY 31 

the processors correspond to the i and j fields, rather than to the k field. However, the 

amount of data per processor can still be reduced geometrically by ORing across appropriate 

physical dimensions in the k field. This takes 0{x) time, and once the data has been reduced 

to a single bit per processor, the remainder of the third phase can be easily completed in 

0(x) time. Hence, the overall running time of the algorithm is O(x), as claimed. 

As in Section 3.2, it is possible to adapt this algorithm to run in 0(x) time on the 

shuffle-exchange by appropriately interleaving the embedding of the i, j and k fields among 

the logp ID bits. The details are left to the reader. 

3.4    Summary 

This chapter has presented O(logn) time, O(ra3/(log2 nloglogn)) processor implementa- 

tions of the elementary Boolean matrix multiplication algorithm. Interleaving fields of ID 

bits leads to efficient performance on the shuffle-exchange; this technique may be more gen- 

erally useful. Note that the 0(n3/ log2 n) processor implementation of Section 3.2 pipelines 

the standard Boolean matrix multiplication algorithm to the maximum possible extent. To 

see this, note that there are 0(n3) bit operations to be performed, and that each processor 

can perform at most O(logn) bit operations per time step (the register size), and hence at 

most 0(log2n) bit operations in O(logn) time. 

While the sequential Four Russians' algorithm saves a factor of log n time, the parallel 

version described in this chapter (as well as that of Agerwala and Lint [AL78]) reduces 

the processor requirement by only a log log n factor. The reason for this is that a parallel 

algorithm that runs in O(logrc) time can only afford to build tables of length O(logn) at 

each processor. The tables constructed by the sequential Four Russians' algorithm are of 

length n, allowing log n bit computations to be performed by a single table lookup. 

The algorithm of Section 3.2 was coded up on an NCUBE/ten parallel computer as a 

sample application program within a virtual processing environment [Pla87]. 



Chapter 4 

Load Balancing 

Maintaining a balanced load is of fundamental importance on any parallel computer, since a 

strongly imbalanced load often leads to low processor utilization. In this chapter, two load 

balancing operations will be considered: Balance and MultiBalance. The Balance operation 

corresponds to the token distribution problem considered by Peleg and Upfal [PU89] for 

certain expander networks. The MultiBalance operation balances several populations of 

distinct token types simultaneously. 

These load balancing operations form the basis of the selection algorithm given in Sec- 

tion 5.3, and of the sorting algorithms presented in Chapter 7. 

4.1     Problem Definition: Balance 

The first load balancing problem to be considered, Balance, is defined as follows. Let n 

tokens be distributed over p processors, with no more than m tokens assigned to any single 

processor, \n/p\ < m < n. It will be assumed that n = 0(pc) for some constant c in order 

that calculations involving token counts can be performed with a constant number of CPU 

operations. The problem is to redistribute the tokens so that each processor has either 

[n/p\ or \n/p\ tokens, that is, so that the load is distributed as evenly as possible. Peleg 

and Upfal have exhibited tight bounds for this operation on a certain class of expander 

networks [PU89]. In many applications, it is not necessary to balance the population of 

tokens exactly. If the difference between the maximum number of tokens at any processor 

and the minimum number of tokens at any processor is £, it will be said that the tokens 

32 
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have been balanced with error f. The corresponding operation will be referred to as Balance 

with error £. 

4.1.1    Tight Bounds for the Pipelined Hypercube 

This section describes an algorithm for the Balance operation with minimum error that 

runs in O(mlogp) time on the hypercube or shuffle-exchange, and in 0(m + logp) time 

on the pipelined hypercube. This algorithm is due to Tom Leighton [Lei]. Assuming that 

m exceeds \n/p] by at least some constant factor, there is a trivial ü(m + logp) lower 

bound for the pipelined hypercube. The fi(m) term in the lower bound holds since at least 

m — \n/p~\ = O(m) time steps are necessary for a processor initially holding m tokens to 

send away sufficiently many tokens to reach \n/p], the maximum allowable number in any 

balanced configuration. The logp term in the lower bound holds because, as will be proven 

rigorously in Section 4.1.2, it is possible to configure the tokens in such a way that no 

token is placed within f2(logp) hops of a particular processor. Thus, Leighton's algorithm 

provides tight bounds for the pipelined hypercube when m exceeds \n/p] by some constant 

factor. Note that if m does not exceed \n/p] by a factor of 2 (say), then load balancing is 

probably not necessary anyway. 

The 1-port version of Leighton's algorithm will now be described. The algorithm runs 

in m phases, and each phase takes care of one token from every processor for which the 

supply of tokens has not yet been exhausted. In a phase, the designated tokens are routed 

to a contiguous block (with respect to processor ID modulo p) of processors. Each token is 

routed in exactly one phase. The first block begins at processor 0 (say), and each subsequent 

block begins at the processor following the end of the previous block. In this manner, the 

population of tokens gets distributed as evenly as possible. 

A single phase of Leighton's algorithm is implemented by performing a prefix sum 

over the designated tokens followed by a concentration route as defined by Nassimi and 

Sahni [NS82]. The prefix sum gives the offset of each token within the contiguous block of 

destination processors. The size of the block is broadcast so that all processors can compute 

the start of the next block. All of these operations can be performed in O(logp) time , so 

the over-all running time of Leighton's algorithm is O(mlogp). Note that this time bound 

is valid for the shuffle-exchange as well as the hypercube. 

As indicated above, Leighton's algorithm is best suited for the pipelined hypercube. 
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The prefix sum and broadcast operations can be pipelined on the hypercube but the con- 

centration routes cannot (provably). On the other hand, the pipelined hypercube allows 

concentration routes to be pipelined [VD88]. Hence, the Balance operation can be imple- 

mented to run in 0(m + logp) time on the pipelined hypercube. 

4.1.2    A Lower Bound for the Hypercube 

A lower bound for the running time of Balance on the hypercube can be obtained by con- 

centrating all of the tokens in a small number of processors and then bounding the time 

required to eliminate the excess tokens from this set of processors. In the following, recall 

that d = logp denotes the dimension of the given hypercube. 

Definition 4.1.1 Let Tr(i) denote the set of (f) processors at Hamming distance r from 

processor i, 0 < r < d. 

Definition 4.1.2 Let B(i,r) denote the complete Hamming ball of radius r centered at 

processor i. More formally, this is the set of processors given by B(i, r) = Uo<Krr'(i). 

Note that \B(i,r)\ = Ylo<l<r if)- I* wm ^so ^e necessary to consider "incomplete" Ham- 

ming balls, that is, Hamming balls with only a partially filled outer layer. 

Definition 4.1.3 Given a positive integer x, let r and y be the unique pair of nonnegative 

integers such that x = y + Ylo<l<r-i (j) ? 1 < 2/ ^ (?) • A set of processors B is a Hamming 

ball of size x and radius r if there is some processor i and some set of processors S such 

that B = B(i,r- 1) U S, S C Tr(i) and l^l = y. Let B(x) denote the set of all Hamming 

balls of size x. 

Definition 4.1.4 Let a graph G with vertex set V(G) and edge set E(G) be given. For 

every U C V(G), the fringe of U with respect to G, F{G, U), is defined as the set 

{ueU \ (u,v) € E{G) for some v e V(G) \ U}. 

Finally, let the function f(G,x) be defined as 

f{G,x)=   min   \T(G,U)\, 
V ' UCV(G)  '       V " 

where G is a graph and x is an integer, 0 < x < |V(C?)|. 



4.1.   PROBLEM DEFINITION: BALANCE 35 

Lemma 4.1.1 The Balance operation requires 0((n — \n/m\ [n/p])/f(G, \n/rn\)) time. 

Proof: The n tokens can be concentrated in a set S of \n/m] processors. Under a 

balanced load, S contains at most \n/m] \n/p\ tokens. Hence, at least n — \n/m] \n/p\ 

tokens must leave the set S. Only processors located at the fringe of S, those in T(G,S), 

can send tokens out of S, and these can only transmit one token per time step. Therefore, 

the running time of Balance must be at least (n - \n/m\ \n/p])/(f(G, \n/m])). [] 

Having established Lemma 4.1.1, the desired lower bound can now be obtained by com- 

puting f(Hd, \n/rn\), where Hj, denotes the undirected graph corresponding to a hypercube 

of dimension d. Intuitively, one might expect that the value of f(Hd, x) is determined by a 

Hamming ball configuration. The correctness of this intuition is borne out by the following 

theorem due to Harper [Har66]. Note that Frankl and Füredi have given a simpler proof of 

the same result [FF81]. 

Theorem 4.1.1 For every integer x, 0 < x < p, there exists a ball B € B(x) such that 

f(Hd,x)=\F(Hd,B)\.U 

The following estimate of the "volume-to-surface" ratio of a Hamming ball is proven in 

Appendix A. 

Lemma 4.1.2 For positive integers d and r = r(d), 0 < r < d/2, let S = (d) and let 

V = £o</<r (?)• Then V = 2d(1"1/fc) implies that V/S = ©(fc1/2), 1 < k < d. U 

Theorem 4.1.2 The Balance operation requires Q.{kxl2m) time on the hypercube if m = 

Q(p1/k(n/p)) and m > 2n/p. 

Proof: Note that k > 1 since m < n, and k < logp since m > 2n/p. Theorem 4.1.1 and 

Lemma 4.1.2 together imply that 

1 < k < logp. Now consider the lower bound given by substituting this equation into the 

statement of Lemma 4.1.1. The numerator, n — \n/m] \n/p] is at least n — \p/2] \n/p~\ = 

fi(n). The denominator, /(G, [n/m]), reduces to /(tf^p1-1/'5) = 0(fc-1/V_1/fc)- Hence, 

Balance requires Q(kll2{n/p)pllk) - ü(kll2m) time on the hypercube. [] 
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4.1.3    Upper Bounds for the Hypercube 

Now consider the task of obtaining an efficient implementation of the Balance operation on 

the hypercube. Let a sub cube of dimension 1 be given, with a tokens at processor 0 and 

b tokens at processor 1. Further assume that each processor knows the number of tokens 

that it is holding, that is, the value a (b) is stored in the local memory of processor 0 (1). 

In this case, it is easy to see that the Balance operation can be performed over the given 

subcube in \a - b\/2 + 0(1) time. This observation motivates the following definition. 

Definition 4.1.5 Let a set of n tokens be arbitrarily distributed over the processors of a 

p processor hypercube, p > 2. Let the Balance operation be applied to each of the p/2 

subcubes of dimension 1 induced by the set of p/2 edges across dimension i. Then the 

hypercube has been balanced across dimension i. 

Clearly the amount of time required to balance across dimension i is £/2 + 0(1), where 

£ is the maximum discrepancy between the number of tokens at a given processor and its 

neighbor in dimension i. 

Lemma 4.1.3 Let the low and high subcubes with respect to dimension i of a given hy- 

percube be balanced with error £. Then after balancing across dimension i, the entire 

hypercube is balanced with error £ + 1. 

Proof: Initially, each processor in the low subcube contains a number of tokens in the 

range [a, a + £] for some integer a. Similarly, each processor in the high subcube contains 

a number of tokens in the range [b, b + £] for some integer b. Thus, after balancing across 

dimension i every processor contains a number of tokens in the range £&■ , a+ 2
+2^ , 

and 
a + b + 2£ 

2 

which completes the proof. [] 

a + b 
+ £< 

a + b 
+ £+1, 

By repeated application of Lemma 4.1.3, one finds that successively balancing across 

every dimension of the hypercube yields an implementation of Balance with error log p. The 

running time of this algorithm is O(ralogp), since no processor will ever contain more than 

m tokens and hence each balancing step requires at most m/2 + 0(1) time. Furthermore, 

in the important case m = 0(n/p), it is possible to distribute the tokens so that this 
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performance is achieved to within a constant factor. In other words, the worst case running 

time of such a balancing algorithm is ©(mlogp) when m = 0(n/p). 

The following algorithm improves on this time bound by making a more careful de- 

composition of the hypercube. One additional definition is needed in order to present the 

algorithm. 

Definition 4.1.6 Let the discrepancy across dimension i, denoted Si, represent the abso- 

lute value of the difference between the total number of tokens in the high and low subcubes 

with respect to dimension i. 

The efficiency of the following recursive procedure for Balance with error logp relies upon the 

fact (shown below) that there is always some dimension with a small associated discrepancy. 

Algorithm   Balance 

1. Each processor counts how many tokens it has and stores the result. This takes 0(m) 

time. 

2. Let / denote the dimension of the subcube being balanced (I = d initially). If / = 0, 

return. 

3. Compute £,-, 0 < i < I. This involves performing / independent sums over the entire 

subcube. These sum operations can be pipelined to run in a total of 0(1) time [HJ86]. 

4. Determine the dimension i* with least associated discrepancy Si*.   This takes 0(1) 

time. 

5. Recursively balance the high and low subcubes with respect to dimension i*, using 

Steps 2 to 6. 

6. Balance across dimension i*, adjusting the token counts appropriately. The running 

time of this step is analyzed below. 

In order to establish the correctness of the preceding algorithm, it is necessary to prove 

that the output hypercube is balanced with error logp. This follows easily by induction 

using Lemma 4.1.3. 

To analyze the time complexity, only the cost of Step 6 remains to be determined. 

When this step is executed, the (/ - l)-dimensional high and low subcubes with respect to 
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dimension i* are each balanced with error / - 1. Hence, there are integers a and b such 

that each processor in the high sub cube contains a number of tokens that is in the range 

[a, a + I — 1], and each processor in the low subcube contains a number of tokens in the 

range [b, b + I — 1]. Letting 6 — Si* gives 

2'_1(6-(a + Z-l))<«, 

and so (6 + / - 1) - a < 821~l + 21-2. Similarly, (a +1 - 1) - b can be bounded by the same 

quantity. Therefore, the cost of the balancing step is 0(S2~l + I). It remains to bound the 

minimum discrepancy 8. In the following sequence of lemmas, let A denote the sum of the 

discrepancies in the given hypercube of dimension d, Ylo<i<d^i- 

Lemma 4.1.4 The value of A is maximized by packing all of the tokens into a Hamming 

ball B of size \n/m\. 

Proof: Given an arbitrary distribution of the tokens, it will be shown that the corre- 

sponding value of A is at most that achieved by a particular Hamming ball configuration. 

First, transform the processor IDs of the given hypercube by toggling each bit that corre- 

sponds to a dimension for which there are more tokens in the low subcube than in the high 

subcube. Note that the transformed hypercube yields precisely the same value of A as the 

given hypercube. It has the additional property that for every dimension, the high subcube 

contains at least as many tokens as the low subcube. Let w(i) denote the number of l's 

in the d-bit processor ID i, and let n(i) denote the number of tokens at processor i. Now 

observe that A may be expressed as 

A    =     ^2  w(i)n(i) —   ^2 (d—w(i))n(i) 
0<i<p 0<i<p 

=    2  Y^  w(i)n(i) — nd, 
0<i<p 

where p = 2d. Thus, maximizing A is equivalent to maximizing 5Zo<t<pw(07l(0- This 

new sum is clearly maximized by distributing tokens according to the following algorithm: 

While there are tokens left to distribute, put m tokens (or the number of tokens remaining, 

if less than m) into an empty processor with largest w(i) in the set of empty processors. 

The result follows since this algorithm fills a Hamming ball centered at processor 2d — 1. Q 

Lemma 4.1.5 Let an instance of Balance be given for which the tokens are packed into 

a Hamming ball of size \n/m~\. Then A = 0{mdll2p). Furthermore, if m > 2n/p and 

\n/m] = p1_1/fc, then A = Gfmdfe-^V-17*)- 
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Proof: Assume the tokens are packed into a Hamming ball B of radius r. The total 

discrepancy A is bounded by m times the number of edges between B and Hd \ B. The 

number of such edges is maximized when r = [d/2\, so A = 0(md(>d
d,2,)) = 0(mdll2p). 

For the sharper bound, Lemma 4.1.2 tells us that the cardinality of the fringe of B is 

f(Hd,?-lfk) = Q{k-xl2p1-1lk). The number of edges between B and Hd \ B is d - r = 

Q(d) (r is at most [d/2\ since m > 2n/p) times the size of the fringe of B. Hence, 

A = 0(mrfA;-1/V"1/fe)5 as claimed. Q 

This section will only make use of the 0{mdll2p) bound of Lemma 4.1.5. The more 

detailed bound involving k will be needed in the next section in order to analyze a load 

balancing algorithm involving multiple token types. The following theorem is an immediate 

consequence of the preceding two lemmas. 

Theorem 4.1.3 For any instance of Balance, the average discrepancy across a dimension, 

A/d, is 0{md-ll2p). □ 

Recall that the cost of the balancing step in algorithm Balance was shown above to be 

0(S2~ + I), where S = Si* is the minimum discrepancy. Now the minimum discrepancy 

is certainly no larger than the average discrepancy, so S must be 0{ml~ll22l) by Theo- 

rem 4.1.3. Hence, the cost of the balancing step is 0(ml~ll2 + I), and the total running 

time of algorithm Balance is 0(J2i<i<d ml~ll2 + I) = 0(m log1/2 p + log2 p). 

Of course, this algorithm performs balancing with error log p. This should be good 

enough for most applications, but if a minimum error (0 if p\n, 1 otherwise) balancing is 

desired, some post-processing is needed. Note that the post-processing task can be viewed 

as an instance of Balance with m = logp, which can be solved in O(log2p) time using the 

1-port version of Leighton's algorithm described in Section 4.1.1. 

Theorem 4.1.4 The Balance operation, with minimum error, runs in C^mlog1/2 p+log2 p) 

time on the hypercube. 

Proof: First apply algorithm Balance described and analyzed earlier in this section to 

balance the load with error logp. This takes 0(mlog1/'2p + log2p) time. Compute the 

minimum number of tokens, a, at any processor and broadcast this value to all processors. 

This takes O(logp) time. Every processor then sets aside a tokens, and the remaining tokens 

(of which there are at most logp at any single processor) are balanced using Leighton's 

algorithm in O(log2p) time. □ 
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4.1 .4    Load Balancing on the Shuffle-Exchange 

As noted in Section 4.1.1, the 1-port version of Leighton's algorithm runs on the shuffle- 

exchange. Hence, the Balance operation, with minimum error, runs in O(mlogp) time on 

the shuffle-exchange. Now consider the following lower bound. 

Theorem 4.1.5 Assuming m > 2n/p, the Balance operation requires Q,(m\0g(n/m)) time 

on the shuffle-exchange. 

Proof: Using techniques due to Leighton [Lei83], Cypher has proven that the p pro- 

cessors of a shuffle-exchange can be partitioned onto c chips in such a way that fewer 

than p/2 processors are assigned to any single chip, and the number of pins per chip is 

O(p/(cl0g(p/c))) [Cyp89]. The pin count for a particular chip C is determined by the total 

number of edges joining a processor assigned to C to a processor assigned to some other 

chip. Letting SEd denote the graph corresponding to the shuffle-exchange of dimension d, 

Cypher's bound implies (by an averaging argument) that for every integer a;, 0 < x < p/2, 

there exists an integer g(x), x < g(x) < p/2, such that 

f(SEd,g(x)) = O(x/\0gx). 

Now consider the lower bound for Balance obtained by packing the n tokens into a set S 

of g(\n/m]) processors with O(|"n/m]/l0g|~n/m]) neighbors. At least n/2 = fi(n) tokens 

need to be moved to processors outside of the set S, and each edge leaving S can carry 

at most one token per time step. Hence, Balance requires fi(ral0g(rc/m)) time on the 

shuffle-exchange if m > 2n/p. [] 

The upper and lower bounds are tight for 2n/p < m < n1_e, where e denotes an 

arbitrarily small positive constant. 

4.2 Problem Definition: MultiBalance 

In this section, a slightly more complicated load balancing problem than Balance will be 

considered. Let n tokens be evenly distributed over p processors, that is, each processor 

contains either [n/p\ or [n/p] tokens. Each token has an associated type. There are g > 2 

different types of tokens, and nothing is known about the distribution or proportion of the 

tokens of any particular type. The set of tokens of a particular type will be called a group, 
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and it will be assumed that the g group types are given by the integers {0,...,g — 1}. 

The problem is to execute g Balance (with error £) operations, one over each group of 

tokens. This operation will be referred to as MultiBalance (with error £). The motivation 

for considering MultiBalance is that it turns out to be useful for sorting, as will be seen in 

Chapter 7. 

4.2.1     Upper Bounds for the Hypercube 

An implementation of MultiBalance that runs in 0 ((n / p)(log glogp)1/2 +g log2 p) time on the 

hypercube will now be presented. The following definitions, which build on Definitions 4.1.5 

and 4.1.6, are required. 

Definition 4.2.1 Given an instance of MultiBalance, the n tokens have been multi-balanced 

across dimension i if and only if each group j has been balanced across dimension i, 0 < 

3 <9- 

Definition 4.2.2 Let Sj denote the discrepancy across dimension i with respect to group 

3i 0 < j < 9-   Define the multi-discrepancy across dimension i, denoted bf1, as the sum 

Z)o<j<3 *i • 

Algorithm   MultiBalance 

1. Each processor partitions its set of tokens into g subsets, one subset corresponding to 

each of the g token types. Each of the subsets is counted and the results are stored. 

This takes 0(n/p) time. 

2. Let / denote the dimension of the subcube being multi-balanced (I — d initially). If 

/ = 0, return. 

3. Compute Sf1, 0 < i < I. This involves performing / independent sums over the entire 

subcube for each of the g groups. Each set of / sum operations can be pipelined to 

run in 0(1) time [HJ86], so the total running time is O(gl). 

4. Determine the dimension i* with least associated multi-discrepancy 6f£. This takes 

0(1) time. 

5. Recursively multi-balance the high and low subcubes with respect to dimension i*, 

using Steps 2 to 6. 
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6. Multi-balance across dimension i*, adjusting the token counts appropriately.   The 

running time of this step is analyzed below. 

The correctness of the preceding implementation of MultiBalance with error logp follows 

by induction using Lemma 4.1.3. If a minimum error multi-balancing is desired, O(log2 p) 

post-processing per group can be performed as described in Section 4.1. The total cost of 

post-processing is thus 0(glog2 p) time. 

In order to complete the analysis of the running time of algorithm MultiBalance, it is 

necessary to consider the cost of Step 6. Let Aj denote the sum of the discrepancies with 

respect to group j in the given hypercube of dimension d, J2o<i<d^i- Let AM denote the 

sum of the multi-discrepancies J2o<i<d^ — Y^o<j<g Ar 

Lemma 4.2.1 For any instance of MultiBalance, AM = 0(dk~xl2n), where k satisfies g = 

pVk. 

Proof: Let the number of tokens in group j be denoted Xj, 0 < j < g, and consider 

the contribution of Aj to AM. Since ^2o<j<g Xj = ra, there is at most one Xj that exceeds 

n/2. Suppose that xi > n/2 for some group /. Then A/ = 0((n/p)d}l2p) — 0(d1l2n) by 

Theorem 4.1.3. Now k < logp = d (since g > 2), so d1!2 < dk~xl2 and A; = 0(dk~1l2n). 

Hence, it may be assumed that Xj < n/2, 0 < j < g. Let kj satisfy Xj/n = p~xlkJ, 

Q < j < 9- The tokens of group j can be packed into p1-1/fcJ processors, and by Lemmas 4.1.4 

and 4.1.5, Aj = 0((n/p)dk~1/2p1-1^) = 0(dxjk~1/2) = O(d1f2xjlog1/2(n/xj)). Consider 

the function f(x) = xlog1/2(n/a;), where x is a real value in the range [l,n/2]. One may 

easily verify that f"(x) < 0 in this range. In other words, f(x) is a concave function. 

Therefore, the sum ^20<j<g f(xj), subject to the constraint ^2o<j<gxj — n> 1S maximized 

when all of the Xj's are equal, that is, when XJ — n/g. Forcing the a?j's to be integers can 

only decrease this sum, so AM = 0{d}l2gf{nlg)) = Oid1/2g(n/g) log1'2 g) = 0{dk-xl2n), 

as required. [] 

Lemma 4.2.2 For any instance of MultiBalance, the average multi-discrepancy AMjd 

across a dimension is O(n(log<//logp)1/'2). 

Proof:    Immediate from Lemma 4.2.1, since g = p1^ and k = logp/log^r. [] 

Theorem 4.2.1 The MultiBalance operation runs in O((n/p)(logglogp)1'2 + glog2p) time 

on the hypercube. 
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Proof: By a simple extension of the argument given in Section 4.1, the time required 

to perform the multi-balancing step is 0(Sf?2~l + gl). Now 6f{ is certainly no more than 

AM/d, and the number of tokens in a subcube of dimension / at depth d — / of the recursion 

is 0(n2l~d + g2l(d - I)), where the latter term bounds the cumulative effect of odd parity 

in the balancing operations. Thus, Lemma 4.2.2 implies that the total time expended in 

Step 6 is 

0 I   £  2-l(n2'-d + g2l(d- l))(logg/l)^ + gl) , 
\l<Kd / 

which reduces to 0((n/p){\ogg\ogp)ll2 -\-g\og2 p). This dominates the time required by all 

other steps of the algorithm, including the post-processing. [] 

4.2.2    A Lower Bound for the Hypercube 

It is easy to see that \{AM — dgp)/p is a lower bound on the running time of MultiBalance, 

since AM can only decrease by 2p each time step and it is certainly less than dgp after the 

MultiBalance operation has been performed. Hence, exhibiting a particular input instance 

with a high value of AM gives a good lower bound on the worst case running time of 

MultiBalance. Consider the input instance given by the following construction. 

Assume for convenience that g = 2T, 1 < r < d, and let q = [d/r\ -1 or [d/r\, whichever 

is odd. Divide the first qr bits of each processor ID into r fields of q contiguous bits. The 

ith field determines the ith bit of an r-bit condensed ID according to the following rule, 

0 < i < r. If the majority of the q bits in the ith field are 0, then the ith bit of the 

condensed ID is 0; otherwise, it is a 1. Note that since q is odd there will always be a strict 

majority of either 0's or l's. Furthermore, symmetry implies that exactly 2d~r processors 

share any particular condensed ID. In the following lemma, let U denote such a subset of 

2d~r processors. 

Lemma 4.2.3 The number of hypercube edges from processors in U to processors outside 

of U is 0(ry/2|tf|). 

Proof: By symmetry, it is sufficient to prove that the number of such edges associated 

with the first (say) field is 0(qll2\U\). Also, it may be assumed without loss of generality 

that the first bit of the condensed ID associated with U is a 0. Let U' denote the subset 

of the processors of U with \q/2] 0 bits and [q/2\ 1 bits in the first field. Lemma A.1.2 

implies that \U'\ — Q(q~1^2\U\). It should be clear that only the processors in U' contribute 
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to the desired edge count, and each of these contributes exactly \q/2\. Thus, the number 

of edges leaving U that are associated with the first field is 0(q1^2\U\), as required. □ 

Theorem 4.2.2 The MultiBalance operation requires il((n/p)(logglogp)1^ — glogp) time 

on the hypercube. 

Proof: Consider the input configuration obtained by filling each of the processors having 

condensed ID i with n/p tokens from the ith group, 0 < i < 2l. Lemma 4.2.3 implies that 

each group contributes Q((n/g)(logglogp)1/2) to AM, so AM = 0(n(log5logp)1/2). As 

argued above, this fact immediately implies the desired lower bound on the running time 

of the MultiBalance operation. [] 

4.2.3    Average Case Analysis 

Given n distinct tokens and p processors, there are 

different ways of assigning n/p tokens to each processor, assuming that n is an integer 

multiple of p. This section analyzes the average case running time of MultiBalance over all 

of these possible input configurations when there are g distinct groups of tokens. The upper 

bound to be derived will be interesting for sufficiently small values of g. In the following 

discussion, the phrase "with high probability" means with probability 1 - 0(p~c) for an 

arbitrary positive constant c. 

Let the ith. group contain n, tokens, and consider the expected contribution of group i 

to the total running time of this version of MultiBalance, 0 < i < g. Letting p = 2d, there 

are Q,) distinct subcubes of dimension d'. Focus attention on one such subcube C, and 

let the random variable X denote the number of tokens from group i initially assigned to 

some processor in C. Let Yj denote the random variable that is 1 if the jth. token of group 

i contributes to X, and 0 otherwise, 0 < j < n;. Letting 9 = l/2rf_d , the expected value 

of Yj is 6, and the expected value of X is n,-0. The variance of Yj is bounded above by 

the variance of the binomial distribution with probability 9. Thus, the variance of X is at 

most ntö(l - 6) < rii9. A standard Chernoff bound implies that with high probability, X is 

within O((n{9logp)112) of its expected value. Since there are only p = £!o<d'<d (d,) choices 
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for C, every subcube of dimension d! contains 

n,-±o' -/nilogp 

2d-d> I y   2d_d'   / 

group i tokens with high probability, 0 < d! < d. Thus, after balancing the group i tokens 

over subcubes of dimension d', every processor contains 

group i tokens with high probability. The additive dl bounds the worst case error in the 

balancing, as given by Lemma 4.1.3. Note that this is a pessimistic estimate to apply to 

the average case behavior of MultiBalance, and could certainly be improved. Continuing 

the analysis, the preceding bound implies that the total cost of the j'th multi-balancing 

operation performed by algorithm MultiBalance is 

0 < j < d, with high probability. Summing over j and interchanging the order of summa- 

tion, the cost of all of the multi-balancing operations is 

O      ]T   \J(ni/p)\ogp + g\og2p\ 
\o<i<g J 

with high probability since the sum over j is dominated by the j = 0 term. The remaining 

sum is maximized by setting ra,- = n/g, 0 < i < g, which leads to a total multi-balancing 

cost of 
0 [yin/p)9 log p + fir log2 p) 

with high probability. Note that the #log2p term matches the cost of post-processing and 

other computations performed by MultiBalance. 

The preceding analysis can also be applied to the straightforward implementation of 

MultiBalance that multi-balances across each of the dimensions in ascending order. Further- 

more, this version of MultiBalance can be made to run as efficiently on the shuffle-exchange 

as it does on the hypercube. For the shuffle-exchange version, shuffles are not performed by 

moving entire sets of n/p tokens, but rather by moving appropriate subsets of the tokens to 

make the composition of the set of tokens at each processor (that is, the number belonging 
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to each group) the same as it would have been if a true shuffle had been performed. The 

total cost of simulating the shuffle operations in this manner is easily seen to be on the 

same order as that of the multi-balancing operations. This algorithm will be referred to as 

the shuffle-exchange version of algorithm MultiBalance. The following theorem summarizes 

the two main results of this section. 

Theorem 4.2.3 The average running time of algorithm MultiBalance, as well as that of 

the shuffle-exchange version of algorithm MultiBalance, is 

0 U(n/p)glogp + glog2p) . 

4.3    Summary 

This chapter has described hypercube and shuffle-exchange algorithms for performing two 

load balancing operations: Balance and MultiBalance. For the Balance operation, lower 

bounds were derived by considering the particular input configuration obtained by packing 

the tokens into a smallest possible set of processors with low expansion. For the hypercube, 

an algorithm was given that matches the lower bound to within a multiplicative constant 

if m > max{2ra/p,log3'2p} and m = 0(n/p). The lower bound for the shuffle-exchange is 

higher because the hypercube has better expansion properties than the shuffle-exchange. 

Tight upper and lower bounds were obtained for the shuffle-exchange for m in the range 

2n/p < m < n1_e, where e denotes an arbitrarily small positive constant. 

Upper and lower bounds were given for the MultiBalance operation on the hypercube. 

These bounds are tight for (n/p^logglogp)1/2 = $l(glog2p). A straightforward imple- 

mentation of MultiBalance on the shuffle-exchange was also described. Finally, the average 

case complexity of the hypercube and shuffle-exchange implementations of MultiBalance was 

considered. Not surprisingly, these algorithms behave much better on average than they do 

in the worst case. 



Chapter 5 

Upper Bounds for Selection 

This chapter describes three entirely different approaches to the problem of selection on 

the hypercube and shuffle-exchange. The first approach is based on the 0((loglogn)2) 

algorithm of Cole and Yap for the parallel comparison model [CY85]. The speed of that 

algorithm is based upon the fact that small sets of keys can be sorted very quickly. More 

formally, n keys can be sorted in constant time with n2 processors on the parallel comparison 

model. There exists an analogous result for the hypercube and shuffle-exchange, namely, 

that n keys can be sorted in O(logn) time with n2 processors. 

The second approach is based on the straightforward EREW PRAM selection algorithm 

of Vishkin [Vis83]. The hypercube and shuffle-exchange implementations of this algorithm 

make use of the Balance operation described in Section 4.1. An optimal algorithm is obtained 

for the pipelined hypercube. 

The third approach is not based on any previous parallel algorithm. The source of its 

efficiency is a sequential tradeoff between preprocessing and search time in a partial order 

due to Borodin et al. [BGLY81]. The lower bound proven in Chapter 6 establishes that, 

for a sufficiently large ratio of keys to processors, the running time of this algorithm is 

asymptotically optimal on a wide variety of networks. 

5.1     Problem Definition: Select 

The Select operation is defined as follows.   Given n O(logp)-bit keys and an integer k, 

0 < k < n, determine the fcth largest key and broadcast it to all processors.   It will be 

47 
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assumed that the set of n keys is initially balanced with minimum error, that is, each 

processor holds either [n/p\ or \n/p] keys. It will be assumed that n = 0(pc) for some 

constant c, so that array indices and key counts can be manipulated with a constant number 

of CPU operations. Finally, it will be assumed that the n keys are distinct. The latter 

assumption is made without loss of generality, since ties can always be broken consistently 

by making use of the following convention. 

1. If two keys originating at different processors are equal, the one originating from the 

processor with the higher ID is deemed to be larger. 

2. If two keys originating at the same processor are equal, the one initially stored at the 

higher memory location is deemed to be larger. 

This tie-breaking procedure appends [logn] = O(logp) bits to each key, and thus produces 

at most a constant factor overhead. 

Three selection algorithms will now be presented: SortSelect, BalanceSelect and Search- 

Select. 

5.2    An Algorithm Based on Sorting 

The first selection algorithm to be considered, SortSelect, is based on the existence of a 

fast sorting algorithm when the number of processors exceeds the number of keys by a 

polynomial factor. If n > p then the algorithm will simulate 0(n) processors, incurring 

a slowdown penalty of 0(n/p). Hence, it suffices to provide a selection algorithm with 

running time O(logploglogp) for the case n = p in order to establish the more general 

bound of 0((n/p) logploglogp). 

Algorithm SortSelect is an adaptation of the parallel selection algorithm of Cole and 

Yap [CY85]. That algorithm runs in O(loglogp)2 time on Valiant's parallel comparison 

model [Val75], and relies upon the fact that p1/2 keys can be sorted in constant time 

on p processors to develop an 0 (log log p) time approximation subroutine that achieves 

the following degree of accuracy. Given p processors and n < p keys, it returns a key 

representing a "lower approximation" to the desired rank j key with rank j\ satisfying 

j ~ Wüy^ -jl -J'' (5-1} 
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so the approximation improves as p/n increases. Similarly, the approximation subroutine 

can be made to return an "upper approximation" with rank ju satisfying 

The ratio p/n increases dramatically with each successive application of the approximation 

subroutine because only ju - ji keys survive to the next round. When p/n reaches p1?2 

or greater, the entire set of remaining candidates can be sorted, and the desired element 

found, in constant time. 

It will now be shown that the approximation subroutine of Cole and Yap, which runs in 

O(loglogp) time in the parallel comparison model, can be implemented to run in O(logp) 

time on the hypercube or shuffle-exchange. The algorithm outlined below, NearSelect, com- 

putes a lower approximation satisfying Equation (5.1) in O(logp) time. The task of finding 

an upper approximation may be handled in an analogous manner. In the following, the 

p given "physical" processors are slowed down by a factor of 4096 in order to simulate 

P = 4096p "virtual" processors. Physical processor i will simulate the 4096 virtual proces- 

sors with IDs in the range [4096z',4096(i +1)). Initially, each of the n = p keys is "live", and 

the key located at physical processor i is considered to reside at virtual processor 4096i. 

Algorithm   NearSelect 

1. If n < P1/2, sort the n keys in O(logp) time using MergeSort, return the jth key, and 

halt. 

2. Note that P and n are both powers of 2, and P > 4096n. If P/n is an even power 

of 2, let r equal {P/n)1!2. Otherwise, let r equal (P/2n)1/2. Divide the n keys into s 

short sets of size r2. Note that r and s = n/r2 are both powers of 2. The Arth key of 

the ith short set is located at virtual processor ir4 + kr2, 0 < k < r2. Sort each of the 

short sets independently in O(logr) time using MergeSort. The r4 virtual processors 

used to sort the zth short set are those with IDs in the range [ir4, (i + l)r4). 

3. Kill off all but those n/r keys that have a rank in their short set that is an integer 

multiple of r. For short set i, the r surviving keys are located at virtual processors 

ir4 + kr3, 0 < k < r. Let n equal n/r. Let j equal [j/r\. Go to Step 1. 

It will now be proven that NearSelect has the required performance, that is, it terminates 

in O(logp) time and the rank ji of the key ultimately returned by Step 1 is guaranteed to 
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satisfy Equation (5.1). The following series of lemmas is very similar to that proven by Cole 

and Yap [CY85], though some minor changes have been made in order to accommodate the 

hypercube and shuffle-exchange implementations. 

Lemma 5.2.1 NearSelect terminates in O(logp) time. 

Proof: Let the values of n and r in the ith iteration of the loop be 2a' and 26', i > 0, 

respectively. Letting p = 2d, note that P = 2d+w, a0 = d and b0 = 6. Furthermore, 

a,-+i = a,- — bi and the algorithm terminates when a; < (d + 12)/2. It is sufficient to prove 

that the sequence {bi} increases geometrically, since this would imply that the algorithm 

terminates within O(logd) = O(loglogp) iterations. Now observe that 

bi +i    ^ 
(d+12)-(ai-bi)-l 

>    bi + 

2 
6,-1 

> Ha,, 
-    12 " 

for all bi > 6 and thus for all i > 0. To analyze the total running time of the loop, note that 

each iteration runs in O(logr) time so the cost of the last iteration will dominate. Hence, 

the total running time of the loop, and of NearSelect is O(logp). [] 

Observe that algorithm NearSelect has a recursive structure. Let S denote the set of 

live keys at the start of some iteration of the loop and let T denote the remaining set of 

\S\/r live keys at the end of the iteration. To obtain a lower approximation to the jth key 

in S, NearSelect first checks \S\ to see whether or not it is small enough to be sorted in 

O(logp) time. If so, sorting is performed and the jth. key is returned. If not, it returns a 

lower approximation to the [j'/rjth key in the smaller set T, obtained recursively. 

Lemma 5.2.2 Let a particular key belonging to S ("I T have rank k in T and rank k' in S. 

Then rk — rs + s < k' < rk. 

Proof: Associate with each key in T the r — 1 immediately higher keys in its short set. A 

key with rank k in T can be greater than at most the k lowest keys in T plus their associated 

sets, in S. Hence, k' < rk. Similarly, a key with rank k in T must be greater than the k 

lowest keys in T and at least k — s of their associated sets, in S. Hence, k + (r~l)(k — s) < k'. 

D 
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Lemma 5.2.3 Let the lower approximation to the jth computed by NearSelect have actual 

rank ji in S. Then j — 8n/r < j\ < j. 

Proof: This result will be proven by induction on the number of iterations of the loop. 

If there is only one iteration, then the entire set S is sorted and ji — j. If there is more 

than one iteration, then the induction hypothesis implies that the key returned as the 

approximation to the [j/rjth key in T has rank k in T satisfying 

[j/r\ -8n'/r' <k< [j/r\, 

where n' and r' are the values of n and r used in the next iteration, that is, n' = n/r and 

r' is either (P/ra')1/2 or (P/2n')1/2. Applying Lemma 5.2.2 one finds that 

r[j/r\ — rs + s — 8rn'/r' < j\ < r\J/r\. 

The right inequality implies that ji < j. From the left inequality one may obtain 

i • /  i 8r(n/r) 
31    ~    rlj/rl-rS + S-(P/(2n/r)y/i 

> (j - rs) - rs + s - 27/2(n/r)(nr/P)x/2 

> j - 2rs - 27/2(n/r)(n/P)1/4 

> j - 2n/r - 21/2(n/r) 

> j - 8n/r, 

as required. [] 

Corollary 5.2.3.1 The rank of the key returned by NearSelect, j[, is guaranteed to satisfy 

Equation (5.1). 

Proof:    Use the preceding lemma and observe that 

Q      I      / 8n / U 

8n/r <   /n/o_M/9   < (P/2n)!/2 - 4(p/n)!/2' 

for r > (P/2n)x/2 and P = 4096p. 0 

Algorithm SortSelect can now be stated. Note that the algorithm will work properly 

even if n < p, that is, if only a subset of the processors initially contain a key. Initially, 

each of the n keys is "live". 

Algorithm   SortSelect 
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1. Count up the number of live keys, n, and broadcast n to all processors. This takes 

O(logp) time. 

2. Use a prefix sum followed by a concentration route to move the live keys to the n lowest 

numbered processors, that is, to processors 0 through n— 1. This takes O(logp) time. 

3. Let n' be the least power of 2 that is greater than or equal to n. Put a dummy +oo key 

at each processor in the range n through n' — 1. Let n equal n'. This takes constant 

time. 

4. If n < yfP, sort the n keys in O(logp) time using the MergeSort algorithm of Nassimi 

and Sahni [NS82], return the jth key, and halt. 

5. Compute a lower approximation to the key of rank j by calling NearSelect. Compute 

an upper approximation in an analogous manner. Let these two keys have actual 

ranks ji and ju, respectively. This takes O(logp) time. 

6. Broadcast the upper and lower approximations to all processors. This takes O(logp) 

time. 

7. Kill off those keys that are less than the lower approximation or greater than the 

upper approximation. This takes constant time. Go to Step 1. 

Each iteration of the main loop of algorithm SortSelect takes O(logp) time.  A bound 

will now be established on the number of iterations. 

Lemma 5.2.4 Algorithm SortSelect terminates within O(loglogp) iterations. Hence, Sort- 

Select runs in O(log p log log p) time on the hypercube and shuffle-exchange. 

Proof:     Let n = 2d~a' on the ith iteration of Step 4.   Note that ao = 0 and a\ = 1. 

Equations (5.1) and (5.2) imply that 

d — flt'+i    < 
3 1 

3 1 
< -{d - a) - -d, 

3 
< d — -av. 

2 

Hence, a,-+i > (|j  for i > 0 and the algorithm will terminate within O(\ogd) = O(loglogp) 

iterations. [] 
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5.3    An Algorithm Based on Load Balancing 

Algorithm SortSelect handled the case n > p by simulating n processors, which incurs a 

multiplicative slowdown penalty of 0{n/p). Thus, algorithm SortSelect does not achieve 

optimal speedup for any value of the ratio n/p. On the other hand, certain parallel models 

of computation admit optimal speedup for selection when n/p is sufficiently large. For the 

EREW PRAM, Vishkin has exhibited a straightforward selection algorithm that achieves 

optimal speedup for n = fi(plogploglogp). This result has been improved by Cole, who 

obtained optimal speedup for n = £l(plogplog* p) [Col86a]. 

Vishkin's algorithm is based on two ideas. First, if the set S is partitioned into p groups 

of size n/p, with a single processor assigned to each group, then the median of each group 

can be computed in 0(n/p) time sequentially, and the median of the resulting set of p 

medians (which can be obtained by using the fastest known selection algorithm for the case 

n = p) is guaranteed to be a constant fraction splitter for the set S. In other words, it is 

greater than a constant fraction of the keys in 5, and also less than a constant fraction of 

the keys in S (the fraction is |). Hence, by computing the exact rank in S of this median 

of medians, a constant fraction of the set S can be discarded from further consideration. 

The second idea is that the keys which have not been discarded can be partitioned into p 

equal-sized groups in 0{n/p) time. Iterating this process of elimination and redistribution, 

one finds that the number of keys remaining decreases geometrically and the complexity of 

Vishkin's algorithm is 0(n/p + logpl0g(n/p)), where Cole's parallel merge sort has been 

used to make the additive term small [Col86b]. 

The selection algorithm to be presented in this section, BalanceSelect, represents an 

efficient implementation of Vishkin's algorithm for the hypercube and shuffle-exchange net- 

works. At any given time, a key that has yet to be discarded by Vishkin's algorithm will 

be referred to as a live key. The routine NearSelect (defined in Section 5.2) will be used to 

compute a live key that is greater than, and also less than, some constant fraction of all 

of the live keys. This allows a constant fraction of the live keys to be discarded. However, 

there is no guarantee that any particular fraction of the live keys within a particular pro- 

cessor will be eliminated. In the second phase of each stage, Balance is used to redistribute 

the set of live keys uniformly over the p processors. A detailed description and analysis of 

algorithm BalanceSelect is given below. Initially, all keys are "live". 

Algorithm   BalanceSelect 
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1. Let Si denote the set of live keys located at processor i, and let m,- denote the median 

of Si. Let S = Uo<t<p«S't and let M = {mo,...,mp-i}. Let 5 = maxo<;<p |5;|. Since 

selection can be performed in linear time sequentially, each processor can compute m; 

with an 0(|5;|) time local computation. Hence, all of the medians can be computed 

in 0(s) time. 

2. Run NearSelect over the set M with j = |_p/2j in order to obtain an approximation 

to the median of S. Let m denote the key given by this approximation. Note that 

a constant fraction of the keys in S must rank lower (higher) than TO. This takes 

O(logp) time. 

3. Compute the rank f of m in S and broadcast it to all processors. This operation 

takes 0(s + logp) time. 

4. If j' — j, return m and halt. 

5. If j' < j, each processor i removes from Si those keys which are less than m and j is 

set to j —~f — 1. If f > j, those keys which are greater than m are removed and j is 

left unchanged. This takes 0{s) time. 

6. Execute Balance over the remaining set of live keys. This takes O(slogp) time on the 

shuffle-exchange, 0(slog1'2p + log2p) time on the hypercube and 0(s + logp) time 

on the pipelined hypercube. 

7. Determine whether or not any processor contains more than a single live key. This 

takes O(logp) time. If so, go to Step 1. 

8. There are at most p live keys remaining, with 0 or 1 at each processor. Now use 

SortSelect to complete the selection. This takes O(logplog logp) time. 

From the above analysis, the running time of each iteration of Steps 1 to 7 is dom- 

inated by the call to Balance in Step 6. Since s decreases geometrically from an initial 

value that is 0(n/p), the number of iterations required is O(l0g(n/p)). The total run- 

ning time of BalanceSelect is thus 0((n/p)logp + logploglogp) for the shuffle-exchange, 

0((n/p) log1/2 p + log2 pl0g(n/p)) for the hypercube, and 0 (n/p + log ploglogp) for the 

pipelined hypercube. Note that the performance of BalanceSelect on the pipelined hyper- 

cube is optimal for n > p log p log log p. 
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The asymptotic complexities of IMearSelect and SortSelect are low, but hide rather large 

multiplicative constants. A more practical implementation of BalanceSelect would make use 

of BitonicSort to perform these selection operations. For sufficiently large values of the ratio 

n/p, this substitution has no effect on the asymptotic complexity of BalanceSelect. 

5.4    An Algorithm Based on Search 

The third and final selection algorithm to be considered, SearchSelect, obtains efficient 

performance by eliminating a constant fraction of the keys at every processor in each iter- 

ation. This is not accomplished by redistributing the keys as in algorithm BalanceSelect, 

but instead by searching for a more accurate approximation to the desired key. A detailed 

description and analysis of this algorithm will now be presented. Initially, all of the keys 

are "live". 

Algorithm  Select 

1. Let S{ denote the set of live keys located at processor i, and let m,- denote the median of 

S{. Let S = Uo<i<pSi and let M = {m0,..., rnp_i}. Let 5 = max0<;<p \Si\. All of the 

medians can be obtained in O(s) time using a linear time sequential method. Having 

found the medians, partition the set S, into its upper and lower half. Continue this 

partitioning process to depth min{log(n/p),loglogp}, that is, until Si has either been 

fully sorted or has been split into log p subsets, each with approximately s/ log p values. 

Build a binary tree of partition elements to facilitate searching. The total cost of this 

preprocessing is O(smin{log(n/])),loglog;>}). Given an arbitrary value, its rank in 

Si can be determined in O(min{log(ra/p),loglogp} + s/logp) time by locating the 

correct subset and then looking at every key in that subset. This sequential tradeoff 

between preprocessing time and search time is well understood, see [BGLY81] and 

[KMR88]. 

2. Find that m £ M with rank in S closest to j (if there is a tie, break it arbitrarily) and 

broadcast it to all processors. The key m can be computed in time 0(s + log2p) as 

follows. First, let ra\ = mt- at each processor i. Now sort the set M' = {m'0,... ,m'a} 

so that m'- = m^, where m^ has rank i in M. This can be done using bitonic sort 

in O(log2 p) time.   Next perform a binary search over the set M' to determine m. 
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This requires O(logp) rank computations over 5, each of which may be performed as 

follows. 

(a) Let m' be that key in M' whose rank in S is currently required by the binary 

search. Broadcast TO', along with the ID of the processor that it is stored in, to 

all processors. This takes O(logp) time. 

(b) At each processor i, compute the rank r,- of TO' in Si. As observed above, 

the preprocessing performed in Step 1 allows this operation to be completed 

in 0(s/\ogp + min{log(n/p),loglogp}) time. 

(c) Sum the r,- values to obtain the rank of TO' in S. This takes O(logp) time. 

3. Let j' be the rank of TO in S. If / = j, return TO and halt. 

4. At each processor i, kill off those keys in Si that cannot possibly have rank j in S. Let 

Vi be the rank of m in Si as computed in Step 2b. Assume that / < j; the case j' > j 

is similar. All of the keys in Si with ranks in Si less than or equal to i-,- can certainly 

be eliminated. If m > m,-, note that this has eliminated at least half of the keys in 

Si. If TO < TO,-, then the keys in Si with ranks greater than or equal to that of TO,- can 

also be eliminated, since the rank of m,- in S must be greater than j in order to avoid 

contradicting the choice of TO. Once again, and hence in all cases, the number of live 

keys in 5,- is reduced by at least a factor of 2. Given the preprocessing performed in 

Step 1, this step can be performed in O(s/logp + min{log(n/p),loglogp}) time. 

5. Set j to j — A, where A is the total number of keys eliminated in Step 4 because their 

rank in S had to be less than j. Note that A can be computed and broadcast to all 

processors in O(logp) time. Go to Step 1. 

The preceding analysis implies that each iteration of Steps 1 through 5 executes in 

0(s min{log(n/p),loglog/>} + log2p) time. Since |5,| is initially n/p and is cut at least in 

half every iteration, after l0g(n/p) iterations every 5,- will contain at most one element, 

and the next TO computed in Step 2 will have rank j in S. Since 5 decreases geometrically 

from an initial value of n/p, the total running time is O((n/p)rnin{log(n/^),loglogp} + 

log2p\0g(n/p)) = O((n/p)loglogp + log2pl0g(n/p)). 

Note that the (n/p) log log p term in the running time is entirely due to the cost of local 

preprocessing, as opposed to communication. The results of this section are summarized 

by the following theorem. 
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Algorithm Running Time Transition Region 

MergeSort 

SortSelect 

SortSelect 

SearchSelect 

SearchSelect 

O(log2p/log(p/n)) 

0 (log p log log p) 

O((n/p)logploglogp) 

0 (log2 p log log p) 

0((n/p) log logp) 

n _ pl-0(l/loglogp) 

n = Q(p) 

n = O(plogp) 

n = O(plog2 p) 

Table 5.1: Best known selection algorithms for the hypercube and shuffle-exchange. 

Theorem 5.4.1 The SearchSelect algorithm runs on the hypercube and shuffle-exchange 

in O((n/p)loglogp + log2 plng(n/p)) time. If the values are given in locally sorted form, 

then SearchSelect runs in O(log2p\0g(n/p)) time. □ 

Note that the complexity of algorithm SearchSelect can be expressed in terms of the cost of 

the following primitive operations: sort of n = p keys, broadcast and sum. Thus, it adapts 

easily to a variety of networks. To be precise, assume that a particular network is capable 

of sorting n = p keys located one per processor in time Ti and can perform broadcasting 

and summing operations in time T^. Then the running time of algorithm SearchSelect may 

be written as 

0((n/p) log log p + (Ti + r2logp)l0g(n/p)), (5.3) 

where the first term disappears if the keys are given in locally sorted form. 

Consider the performance of algorithm SearchSelect on a number of common network 

families. For the butterfly, hypercube and shuffle-exchange, Ti = O(log2p) and T2 = 

O(logp), so the second term in Equation (5.3) is log2p\0g(n/p), and for n = Q(plog2p) the 

running time of SearchSelect is 0((n/p)loglogp). For the d-dimensional mesh (d constant), 

T\ = T2 = ©(p1^), so the first term dominates for n - fi(p1+1/dlog2p/loglogp). Let T3 

denote the time required for a given network to perform selection over n = p keys located 

one at each processor. If T3logp < Ti (as in the case of the complete binary tree, for 

example) then the second term in Equation (5.3) can be reduced to (T2 + T3)logpl0g(n/p) 

by implementing each of the log(n/p) binary searches over p medians with logp selection 

operations rather than a single sort. 

5.5     Summary 
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Algorithm Running Time Transition Region 

MergeSort 

SortSelect 

BalanceSelect 

BalanceSelect 

0(log2p/log(p/n)) 

0 (log p log log p) 

0 (log p log log p) 

0(n/p) 

n _ pl-0(l/loglogp) 

n = e(p) 
n = Q(p\ogplog\ogp) 

Table 5.2: Best known selection algorithms for the pipelined hypercube. 

This chapter has described and analyzed a number of selection algorithms for the hypercube 

and shuffle-exchange. Table 5.1 summarizes the running times of the best known selection 

algorithms over ascending ranges of the ratio n/p. For n < ^-©(Viogiogp)^ the fastest 

known selection method is Nassimi and Sahni's MergeSort algorithm. As the ratio n/p is 

increased beyond this point, SortSelect becomes the best known selection algorithm. Finally, 

algorithm SearchSelect overtakes SortSelect in the region n = Q(p\ogp). The ranges of n/p 

have been further subdivided at n = &(p) and n — Q(plog2 p) in order to isolate the 

dominant term in the running time. When the keys are initially locally sorted, the running 

time of SearchSelect is reduced to O(log2 p\0g(n/p)), which represents an improvement for 

n = oj(plogp). 

Table 5.2 summarizes the running times of the best known selection algorithms for the 

pipelined hypercube. 



Chapter 6 

A Lower Bound for Selection 

This chapter is concerned with deriving a lower bound on the complexity of the selection 

problem for a certain large class of networks. Given a set S of n keys and an integer k, 

0 < k < n, the selection problem is to determine a key with rank k in S. If all of the keys 

are distinct, there will be a unique key with rank k. The lower bound will apply to the 

special case of the selection problem in which all keys are distinct and the key being sought 

is the median of 5, that is, k = [n/2\. The only operations allowed on keys are copy and 

comparison. 

Given that optimal speedup of selection is attainable on the EREW PRAM, for n/p 

sufficiently large, one is led to ask whether a similar result can be achieved under a more 

realistic model of computation such as the network model defined in Section 1.1. In fact, 

networks exist for which optimal speedup of selection is attainable. The sorting result of 

Leighton [Lei85] and the token distribution result of Peleg and Upfal [PU89] together imply 

that Vishkin's algorithm can be implemented to run in 0(n/p + logploglogp) time on a 

certain class of bounded degree expander networks. Given a network corresponding to the 

graph G = (V, E), the expansion of any subset U of the vertices (processors) is defined as 

|r(C/')|/|(7|, where T(U) denotes the set of vertices in V \U that are adjacent (connected by 

a communication channel) to at least one vertex in U'. The expansion of a network is the 

minimum over all U C V such that 1 < \U\ < \V\/2 of the expansion of U. An expander 

network is a network with expansion ft(l). 

The main result of this chapter is an Q((n/p)log\ogp + logp) lower bound for selection 

on any network that satisfies a particular low expansion property defined in Section 6.3. 

59 
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The class of networks satisfying this property includes all of the common network families 

such as the tree, multi-dimensional mesh, hypercube, butterfly and shuffle-exchange. The 

lower bound is proven in Sections 6.2 and 6.3. Note that this lower bound disproves a 

claim of Aggarwal and Huang stating that optimal speedup is possible for selection on 

the hypercube and shuffle-exchange [AH88]. When n/p is sufficiently large (for example, 

greater than log2p on the hypercube and shuffle-exchange), the lower bound is tight to 

within a multiplicative constant. The matching upper bound is provided by the algorithm 

SearchSelect presented in Chapter 5. 

6.1 The Lower Bound Model 

The lower bound for selection proven in this paper applies under a strictly more powerful 

model of network computation than the 1-port model defined in Section 1.1. In particular, 

the only restrictions enforced by this model are the following: 

1. Each processor can send and/or receive at most one key per time step. 

2. The only operations allowed on keys are copy and comparison, and each processor can 

perform at most one such operation per time step. 

Note that an unlimited amount of computation and communication involving data other 

than keys can be performed in each time step. Under this model, it will be proven that 

any selection algorithm running on a network satisfying a particular low expansion property 

requires Sl((n/p)log\ogp + logp) time steps in the worst case. 

The model of network computation defined above will be referred to as the lower bound 

model throughout the remainder of this chapter. 

6.2 A Restricted Lower Bound 

This section provides an Q.((n/p) log logp — logp/ log logp) time lower bound for selection 

on a complete network with restricted capability. In order to simplify the exposition, it will 

be assumed that n and p are both powers of 2, n > p. Recall that S denotes the set of n 

keys, and that there are initially n/p keys located at each of the p processors. The lower 

bound established in this section applies under the model of computation defined below. 
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Definition 6.2.1 The restricted lower bound model is equivalent to the lower bound model 

defined in Section 6.1, with the following additional restriction. For every R C S, if R is 

initially assigned to a set of processors X, then at most |X| comparisons per time step can 

involve keys belonging to R. 

The motivation for the restricted lower bound model is that networks with poor ex- 

pansion properties suffer from a similar, albeit less severe, inability to spread out a con- 

centrated set of data in order to apply more processors to it. In particular, if the size of 

the neighborhood of a given set of processors X is a\X\ where a — o(l/loglogp), then in 

0((n/p) log log p) time not even a constant fraction of the \X\n/p keys initially located in the 

set X can have been moved or copied to processors outside of X. Of course, the restricted 

lower bound model is, by itself, quite unrealistic. Furthermore, it is unclear whether or 

not selection can be performed in O((n/p)\og\ogp) time on this model, even assuming the 

complete network. However, the preceding observation indicates that it may be possible to 

transfer a lower bound for the complete network operating under the restricted lower bound 

model to a realistic network operating under the lower bound model. 

The remainder of Section 6.2 is devoted to proving an fi((rc/p)loglogp — logp/log log p) 

lower bound on the running time of any algorithm for computing the median on the com- 

plete network operating under the restricted lower bound model. The proof makes use of 

an adversary argument. At each time step, the algorithm indicates which set of at most p 

comparisons it would like to make, and the adversary resolves these comparisons sequen- 

tially. Of course, the algorithm must respect the rules of the restricted lower bound model, 

and the adversary must resolve comparisons in a manner that is consistent with at least 

one total ordering of the keys. Sometimes the adversary will give away the outcome of a 

comparison that has not been performed by the algorithm. This is done in order to simplify 

the lower bound argument. Note that giving away such additional information can only 

help the algorithm. 

It is useful to keep in mind that the restricted lower bound model does not limit the 

amount of computation or communication involving non-key data that can be performed 

in each time step. Hence, it may be assumed that at all times, every processor is aware 

of all of the comparison information that has been gathered thus far. In other words, 

one may envision a global controller that receives the outcome of every comparison query 

made in a given time step, and then performs an unbounded amount of computation in 

order to determine the next set of comparison queries. This is essentially Valiant's parallel 
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comparison model [Val75], except for the added restriction imposed by Definition 6.2.1. 

The description and analysis of the adversary argument has been divided into a number 

of parts. Section 6.2.1 describes the information that the adversary gives away at the out- 

set of the computation. Section 6.2.2 provides some useful definitions. Section 6.2.3 states, 

without proof, the invariants that will be satisfied by the adversary. Section 6.2.4 gives 

the procedure by which the adversary resolves comparison queries made by the algorithm. 

Section 6.2.5 completes the construction of the adversary by describing the additional in- 

formation given away at certain points during the computation. Section 6.2.6 proves that 

the adversary resolves comparison queries in a consistent manner. Sections 6.2.4 to 6.2.6 

assume that the invariants of Section 6.2.3 are satisfied. Section 6.2.7 proves that the con- 

struction of the adversary actually does ensure that these invariants are satisfied. Finally, 

Section 6.2.8 gives a precise statement of the lower bound established by the adversary 

argument. 

6.2.1    The Initial Setup 

Before the computation begins, certain information is given to the algorithm for free. Several 

definitions are needed in order to describe this information. Let a block of processors be 

defined as a set of processors B such that the \B\n/p keys initially located in the set B have 

contiguous ranks in the set of all keys S. Let A denote a positive integer to be denned later 

(it turns out that A = 0(logp/loglogp)). It will be convenient to define the concept of a 

block at level i, 0 < i < A, which is a block with the following additional properties. 

1. All blocks at level i contain the same number of processors, a,-, and they are pairwise 

disjoint. Furthermore, so = p. 

2. A block at level i contains b{ = 2<l°s^+1'' pairwise disjoint blocks at level i -f- 1, 

0 < i < A - 1. 

3. The size of the blocks at level i + 1 is such that the union of the blocks at level i + 1 

within a given block B at level i contains 7|i?| processors, 0 < i < A — 1, where 7 is a 

real constant between 0 and 1 (it turns out that | is an appropriate choice for 7, see 

below and the proof of Lemma 6.2.4). 

Thus, 5,+i = fSi/bi and 

bo-'-bi-x' 
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0 < i < A. Setting 7 to the reciprocal of some power of 2 will ensure that the s,'s are 

integer-valued as long as p > c'il for some constant c. Taking logarithms, this requirement 

becomes logp > i\ogi + 0(i), which is asymptotically satisfied for certain values of A in the 

range 0 (log p/ log log p). Note that every block has a unique level that can be determined 

from its size. 

The following information is given away by the adversary before the computation begins. 

First, the input permutation of the keys is such that the set of all p processors forms a block 

at level 0. This implies the existence of a tree of blocks of depth A. The algorithm is given 

both the IDs of the processors that make up each of the blocks in this tree as well as the 

ordering of the blocks within each level. 

6.2.2    Useful Definitions 

The adversary argument proceeds in stages consisting of a number of consecutive time steps. 

The number of stages is given by the positive integer A defined in the preceding section. 

The ith stage begins at time i,- = maxo<j<,L(ra/p)dj\ - j and ends at time i,-+1, where 

di = |log(i + 1), 0 < i < A. Note that t0 = 0 and ti+1 > U, 0 < i < A. The following pair 

of technical lemmas will be useful for bounding the amount of work that can be performed 

in a single stage, and up to a particular stage. 

Lemma 6.2.1 There are at most 2\n2p(i+i) iime stePs ^n tne itn stage- 

Proof:    Observe that whenever i,-+1 — t{ is nonzero, it satisfies the inequality: 

'i+i-'i < (ij(»/rii°g(; + 2)j-;-i)-(|i(»/j>)i°g('' + i)j-i) 

s  5E3<-/»>ta(1 + 7TT) 
< 

1 
21n2p(i+ 1)' 

D 

Lemma 6.2.2 The starting time of the ith stage, /,-, is at most \{n/p) log(i +1), 0 < i < A. 

Proof:    Immediate from the definition of U. [] 

Like blocks, processors and keys are assigned unique level numbers.   The level of a 

processor is i if and only if the highest level block that it is contained in is at level i. The 
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level of a key is given by the level of the processor that it is initially contained in. Note 

that a processor or key at level i is contained in exactly one block at level j, 0 < j < i. 

At any given time during the computation, some subset of the n! possible total orderings 

of the keys remain consistent with all of the information that the algorithm has learned. 

Consider an arbitrary pair of distinct keys x and y. If x < y in every one of the possible 

total orderings, then the outcome of the comparison between x and y is said to be forced. 

Definition 6.2.2 Once the outcomes of all n — 1 comparisons involving a particular key 

are forced, that key is said to be dead. Keys that are not dead are live. 

Before the beginning of each stage, the adversary will give certain information away 

(described in Section 6.2.1 for stage 0, and in Section 6.2.5 for subsequent stages). After 

that information has been given away, and before the beginning of the ith. stage, 0 < i < A, 

let Di and L{ = S \ Di denote the sets of dead and live keys, respectively. Note that the 

ranks in S of the keys in Di have all been determined. 

Let Ui denote the set of all level i keys in i,-. Let Vi = Li \ U,. It will turn out that 

all keys of level less than i are dead by the beginning of stage i, so VJ denotes the set of all 

keys in Li with level strictly greater than i. 

6.2.3     Invariants 

This section states, without proof, certain useful invariants that will be satisfied by the 

adversary. Section 6.2.7 proves that the construction of the adversary actually ensures that 

these invariants are satisfied. 

As mentioned earlier, the adversary gives away certain information at the beginning of 

the ith stage, 0 < i < A. After this information has been given away, and before the ith 

stage begins, the construction of the adversary will guarantee that the following invariants 

hold: 

1. There are integers j < [n/2\ and k > \n/2\ such that the set of ranks in S of the 

keys in Di is exactly {0,..., j — 1} U {k,..., n — 1}. Thus, the set of ranks in S of the 

keys in Li is {j,..., k — 1}. 

2. The set Li is a subset of a single block at level i. Thus, every key in Li is of level i or 

higher. 
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n,+1-i 

Figure 6.1: Extracting the sets £/j+1 and Vj+i from £/,• and V{. 

3. The key being sought, namely the median of S, is also the median of X,-. 

4. All pairs of keys in £/,- are incomparable. Furthermore, \Ui\ > (1 - f)(n/p)si/(i + 1). 

5. The set Vi is exactly the set of keys in a single block at level i + 1. 

6. Every key in £/,• is incomparable to every key in V{. 

7. Two or more keys in £, could still be the median of S. 

In particular, note that Invariant 7 implies that the algorithm cannot yet have terminated 

successfully. 

Figure 6.1 indicates how the sets f7t+i and Vi+i are related to Ui and Vi, 0 < i < A - 1. 

The set Vi is a block at level i + 1, and hence may be partitioned into sets X and Yj, 

0 < j < bi+i, where X represents all of the level i + 1 keys in Vi, and Yj denotes the j'th 

block of level i + 2 in Vi. The adversary will be constructed in such a way that t/,-+1 is a 

subset of X and V,+i is equal to Y^ for some k, 0 < k < bi+i. 

6.2.4    Resolving Comparison Queries 

This section gives the procedure by which the adversary resolves comparison queries made 

by the algorithm. 

Consider a single comparison made by the algorithm, between keys x and y of levels j 

and k, respectively. Without loss of generality, assume that j < k. If either x or y is a dead 
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key (this will be referred to as a type A comparison) then the outcome of the comparison is 

forced, and the adversary responds accordingly. Similarly, if y does not belong to the same 

block at level j as x (type B comparison), the response is forced. Otherwise, y belongs 

to the same block at level j as i, and the two cases i < j and i = j will be considered 

separately. 

If i = j (type C comparison) then x belongs to £/,■ and y belongs to either Ui or V{. The 

adversary alternately resolves queries of this type by saying that x is smaller than (larger 

than), not only y, but the entire set of remaining live keys. The key x becomes a dead key. 

In order to determine how to resolve a comparison query in the case i < j (type D 

comparison), the adversary consults a comparison tree that it has been maintaining for the 

block at level j containing x. The adversary maintains such a comparison tree for every 

block. A comparison tree of the same sort was used by Borodin et al. [BGLY81] to obtain 

an easy (though not their strongest) sequential tradeoff between preprocessing time and 

search time in a partial order. A comparison tree is a binary tree with tokens placed at 

certain nodes. The comparison tree for a block B at level j contains (1 — ~y)(n/p)sj tokens 

corresponding to the keys of level j in B, and bj tokens corresponding to the blocks of level 

j + 1 in B. When it is important to distinguish between these two types of tokens, they 

will be referred to as key tokens and block tokens, respectively. At time 0, the key tokens 

are all placed at the root and the block tokens are placed, one per node, on the bj nodes at 

depth log&j = flog(j + 1)1- 

Note that every key corresponds to a key token in the comparison tree of exactly one 

block. Similarly, every block (except those at the highest level, A — 1) corresponds to a 

block token in the comparison tree of exactly one block, namely that of its parent. 

To resolve the comparison query between keys x and y in the case i < j (type D 

comparison), the adversary locates the key token x' corresponding to x in the comparison 

tree T associated with the block at level j containing x. The adversary also locates the 

token y' corresponding to y in the same comparison tree. If j = k, this will be a key token; 

otherwise, it will be the block token corresponding to the unique block of level j + 1 that 

contains y. Having located tokens x' and y' in the comparison tree T, the adversary resolves 

the comparison between keys x and y as follows. Let x' and y' reside in nodes u and v of 

the tree T, respectively, and let w be the least common ancestor of u and v. If w is not 

equal to either u or v, then the adversary does not move any tokens. 

If w is equal to either aort), the adversary must move at least one token downwards 
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in the tree. If w is equal to both u and v, then x' is moved to the left child of w, and y' is 

moved to the right child of w. If w is equal to u but not v, then if v is located in the left 

subtree of w, x' is moved to the right child of w. The remaining cases are treated similarly. 

The preceding algorithm describes how the adversary manipulates the tokens in each 

comparison tree, but does not indicate how comparison queries are resolved. To resolve 

queries, the adversary interprets each comparison tree as the partial order given by applying 

the following rules: 

1. The keys corresponding to two tokens in the same comparison tree are incomparable 

if and only if they lie on a single downward path from the root. 

2. If two tokens in the same comparison tree do not lie on a single downward path from 

the root, then the key corresponding to the token lying to the "left" (that is, the token 

residing in the left subtree of the least common ancestor) is deemed to be the smaller 

key. 

Note that the preceding rules apply to block tokens as well, where the key corresponding 

to the block token is actually the entire set of keys in the corresponding block. This is 

appropriate since the set of keys in any block have contiguous ranks in S, and hence they 

all compare in the same way to any key outside of the block (that is, if B is a block and 

keys ar, y and z are chosen such that x,y £ B and z £ B, then x < z if and only if y < z). 

At the beginning of the ith stage, consider the set of comparison trees corresponding 

to the unique block at level i given by Invariant 2 and all of the blocks that it contains. 

At any time during the ith stage, the inequalities between live keys to which the adversary 

has committed itself are exactly those encoded by this set of comparison trees. Note that 

the initial configuration of the tokens in the comparison trees encodes precisely the infor- 

mation given away by the adversary at the beginning of the computation, as described in 

Section 6.2.1. Furthermore, one may check that the token movements (if any) performed 

in processing a particular comparison query are always sufficient to resolve the query. In 

Section 6.2.6, it will be proven that this method of resolving queries can never lead to an 

inconsistent response by the adversary. 
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6.2.5    Additional Information 

This section completes the construction of the adversary by describing the additional infor- 

mation given away before the beginning of each stage. 

After stage i and before stage z' + l, let T denote the comparison tree associated with the 

block Vi given by Invariant 5. The adversary counts the number of key tokens residing on 

each of the 6; paths of length [log(z + 1)] descending from the root of T. Letting q denote 

the path containing the most key tokens, the adversary kills off certain keys in such a way 

that Ui+i becomes the set of key tokens on the path q, and Vi+\ becomes the block of keys 

at level i + 2 corresponding to the path q. 

Before the beginning of stage i + 1, the remaining live keys in X = S \ £t"+i (recall that 

Li+i = Ui+i U V{+i) are killed off in such a way that the median of S is also the median 

of Li+\. Every key that is killed off will either be said to be smaller than every key in 

Z,-+i, or it will be said to be larger than every key in -Lj+i. An arbitrary consistent order 

is maintained among the dead keys. Each key in X of level greater than or equal to i + 1 

corresponds to a key or block token in the tree T that does not reside on the path q. If the 

token resides to the left (right) of the path q, then the corresponding key is forced to be 

smaller (larger) than every key in £»+i, in order to ensure consistency. On the other hand, 

the live level i keys of X remain incomparable to every key in £,-+i. Hence, in killing off 

each of these keys, the adversary has the freedom to decide whether to make it smaller or 

larger than every key in £,-+i. In Section 6.2.7, it will be proven that X contains sufficiently 

many live level i keys to force the median of S to be the median of Z,-+1. 

6.2.6    Consistency of the Adversary 

This section proves that the adversary resolves comparison queries in a manner that is 

consistent with at least one total ordering of the keys. 

Section 6.2.4 gave the adversary's procedure for resolving comparison queries, partition- 

ing the queries into types A, B, C and D. For type A and B comparisons, consistency is 

immediate. 

At any given time during the z'th stage, let Iff1 denote the set of keys in U{ that are 

known to the algorithm to be less than every key in Vi, and let Uf1 denote the set of keys 

in U{ that are known to be greater than every key in VJ. 
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Now consider the type C comparisons. As argued in Section 6.2.4, the live keys in Ui 

remain incomparable to one another and to Vi throughout the ith stage. Therefore, at all 

times during the ith stage, any live key in Ui could be the minimum (maximum) key among 

all of the remaining live keys. Hence, the adversary can consistently kill off any key in 

U{ and assign it to either Uf or Uf1. A similar argument can be used to prove that the 

comparison information given away by the adversary at the beginning of each stage (this 

information was described in Section 6.2.5) does not lead to an inconsistency. 

The consistency of the procedure for resolving type D comparison queries follows imme- 

diately from the following lemma. 

Lemma 6.2.3 Moving a token downward in a comparison tree can never result in an 

inconsistent response by the adversary. 

Proof: Assume the lemma is false, and consider the first downward movement of a token 

that results in an inconsistent response by the adversary. Assume the token was moved 

downward in comparison tree T corresponding to block B at level i. First note that while 

a token movement in T can affect the partial order represented by T, it cannot affect the 

partial order represented by any other comparison tree. This "decoupling" of the partial 

orders represented by the various comparison trees follows from the use of block tokens to 

represent all of the keys in block B with level strictly greater than i. Since all of the keys 

within a block B' at level i + 1 are treated as a single key in tree T, no comparison that is 

resolved within T can provide any ordering information regarding keys within block B'. By 

a similar argument, a token movement in tree T gives no information about keys at levels 

strictly less than i. 

Thus, the inconsistency must arise within the partial order represented by comparison 

tree T alone. This is impossible since moving a token downward in a comparison tree can 

only augment the partial order that it represents, and a total order over the tokens in T 

that is consistent with this partial order is trivial to construct (by an inorder traversal of 

the tree, for example). [] 

The preceding discussion establishes that, up to any particular point in the computation, 

the behavior of the adversary is consistent with at least one total ordering of the keys. 
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6.2.7    Correctness of the Adversary 

Sections 6.2.4 to 6.2.6 assume that the invariants of Section 6.2.3 are satisfied. This section 

proves that the construction of the adversary actually does ensure that these invariants are 

satisfied. 

The proof is by induction on the number of stages. It is easy to check that all of the 

invariants are satisfied at the beginning of stage 0, with LQ being S, UQ being the set of 

(1 — ■y)n level 0 keys, and VQ — S \ UQ being the set of keys in the lone block at level 1 (note 

that bo = 2^og1^ = 1). The induction hypothesis is that the invariants hold at the beginning 

of the ith stage, 0 < i < A — 1. It remains to be proven that the invariants hold at the 

beginning of stage i + 1. Of these, only Invariants 3 and 4 do not follow immediately from 

the construction of the adversary. The task of establishing this remaining pair of invariants 

will now be addressed. 

The set of keys Ui is initially contained in a set of at most (1 — *y)si processors (recall 

that all the keys in Ui are of level i), so Definition 6.2.1 and Lemma 6.2.1 imply that only 

jj^(ra/p)(l — l)si/(i + 1) comparisons made during the ith stage can involve keys from 

£/,-. Now each such comparison (even if it involves two keys from Ui) kills off only one 

key in Ui, and leaves the remaining live keys in Ui incomparable to one another and to 

V{. By Invariant 4 (which holds at the beginning of stage i by the induction hypothesis), 

the preceding comparison bound implies that only a fraction j^ of the keys in Ui could 

have been killed off during the ith stage. Recall that the adversary kills off keys in Ui by 

alternately assigning them to Up and Uf. Hence, at the end of stage i, the algorithm could 

at best have determined that 4-^-2 |#i| of the keys in Ui belong to Uf1, and that a similar 

number belong to Uf1. At least (l — y^) I Ui | of the keys in Ui are still incomparable to one 

another and to Vi. Using the inequality of Invariant 4, and the fact that \Vi\ = (n/p)si+i = 

■y(n/p)si/bi, one finds that the ratio |^|/|Vi| is at least (1 - J)/J. Now consider the proof 

of the following lemma. 

Lemma 6.2.4 For sufficiently small choices of 7, any of the keys in Vi could still be the 

median of Li at the end of stage i. 

Proof: The median of S is also the median of i,- by Invariant 3 (which holds at the 

beginning of stage i by the induction hypothesis). Hence, it is sufficient to prove that the 

size of the set of keys known to reside in Uf (Uf1) plus the size of the set Vi is less than 

\Li\/2. Using the inequalities \U^\ < jj^l^l and |{7,-|/|Vi| > (1 - 7V7 proven above, this 
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sum can be bounded by JÜJ%|£J| + l\Li\ at the end of the ith stage. Thus, the lemma holds 

f°r T < 4In2-1 ~ 0-218. As mentioned earlier, it is convenient to set 7 to the reciprocal of 

a power of 2; §• is an appropriate choice. [] 

Lemma 6.2.4 proves that the adversary can kill off keys at the beginning of stage i + 1 

in such a way that the median of S is also the median of Li, as required in Section 6.2.5. 

Thus, Invariant 3 holds at the beginning of stage i + 1. 

It remains to prove Invariant 4. The construction of the adversary ensures that the keys 

of Ui+i are incomparable at the beginning of stage i + 1, but the lower bound on |C,-+i| 

requires proof. Let T denote the comparison tree from which the adversary extracts the set 

Ui+\. The number of key tokens in this tree is equal to (1 - 7)(n/p)s,-+i, and these tokens 

reside initially in a set of (1 — 7)s,+i processors. Let A denote the average depth of the key 

tokens in T. Observe that every comparison made by the algorithm increments the depth 

of at most two tokens. Hence, Definition 6.2.1 and Lemma 6.2.2 imply that A < |log(i + 2) 

at time ti+i. Let P denote the set of 6t+1 paths in T from the root to the initial position 

of each of the 6,-+1 block tokens in T, that is, all paths of depth flog(z + 2)]. Let a.j denote 

the number of key tokens at depth j in T at time U+i. By a simple averaging argument, 

some path in P must contain at least 

0<j<flog(i+2)l 

key tokens. This sum is minimized by moving the tokens downward in a uniform fashion. 

Hence, the bound on A implies that some path q in P contains at least a fraction 2~los(«+2) = 

j-^ of the key tokens. Therefore |J7,-+i| > (1 - 7)(n/p)st-+1/(i + 2), and Invariant 4 holds. 

Thus, the construction of the adversary ensures that Invariants 1 to 7 all hold at the 

beginning of stage z'+l,0<i<A-l, and the proof by induction is complete. 

6.2.8    The Lower Bound 

The following theorem summarizes the main result of Section 6.2. 

Theorem 6.2.1 Any selection algorithm for the complete network running under the re- 

stricted lower bound model requires —j^-(n/p)loglogp - O(logp/loglogp) time steps. 

Proof: This bound follows from Invariant 7 and the definition of U, with i = A - 1 = 

©(log pi log log p). □ 
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The next section proves that the argument used to establish this lower bound can be 

adapted to a large class of realistic networks running under the lower bound model. Note 

that for n/p = O(logp/(loglogp)2), Theorem 6.2.1 does not provide any useful information; 

alternative lower bound arguments need to be applied. If every processor is required to 

receive a copy of the median, then a trivial fi(log p) lower bound holds, even for the complete 

network running under the lower bound model. If this requirement is not made, the task of 

proving an fi(logp) lower bound for such a powerful network may not be entirely trivial. For 

the complete network running under the restricted lower bound model, it is easy to prove 

an D(logp) lower bound for computing the maximum (and hence for selection). However, 

this result is not particularly useful since the proof does not carry over to realistic networks 

running under the lower bound model. In any event, such considerations may be avoided 

in the special case of fi(logp) diameter networks, since a simple fooling argument implies 

that at least fd/2] time steps are necessary for any selection algorithm running (under the 

lower bound model) on a network with diameter d. Note that all bounded degree networks, 

and all of the networks considered in Section 6.3, have fi(logp) diameter. 

6.3    The Network Lower Bound 

The purpose of this section is to prove an Q.((n/p)log\ogp + logp) time lower bound for 

selection on certain realistic networks. The lower bound will apply under the powerful lower 

bound model defined in Section 6.1, and will be obtained by making suitable modifications 

to the proof of Theorem 6.2.1. Consider the following definition. 

Definition 6.3.1 Let J\f(a,ß) denote the class of all network families T for which, given 

any p processor network in J7, it is possible to construct all of the blocks (as defined in 

Section 6.2.1) at levels less than ß in such a way that every block has expansion at most a, 

where a and ß may depend on p. 

A careful examination of the proof of Theorem 6.2.1 reveals that there are only two 

points at which the definition of the restricted lower bound model is invoked; the rest of the 

proof applies to the unrestricted lower bound model. The first use of Definition 6.2.1 is in 

the proof of Lemma 6.2.4, and the second use leads to the existence of a suitable set E/,+i 

in the induction step. In both cases, Definition 6.2.1 provides an upper bound of (1 — 7)3; 

on the number of comparisons per time step involving the set of level i keys of a particular 

block at level i. 
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Theorem 6.3.1 Let T be a network family belonging to the class jV(o(l/loglogp),/3). 

Then any selection algorithm for T has a running time of at least \(n/p)logß - ß under 

the lower bound model. 

Proof: In the following argument, let X denote a generic block at level i, 0 < i < ß - 1. 

Let Y denote the union of the blocks at level i + l'm X, and let Z = X \ Y. Let Y' and Z' 

denote the sets of keys initially residing in Y and Z, respectively. By the remarks preceding 

the statement of the theorem, it is sufficient to prove that the adversary construction of 

Section 6.2 can be revised in such a way that the two applications of Definition 6.2.1 can 

be avoided. 

The construction of the adversary will be augmented in the following manner. Let T 

denote the comparison tree associated with block X. At any given time step, each of the 

\Z'\ key tokens in T is said to be either bad or good. A good key token is one for which no 

copy of the corresponding key has ever left the set of processors Z. Thus, all key tokens are 

initially good, and bad key tokens never become good again. How many good key tokens 

in tree T can become bad in a single time step? There are only two ways for a good key 

token to become bad. One way is for a copy of the corresponding key to be transmitted 

to a processor outside of X. Since block X has expansion o(l/loglogp), the number of 

good key tokens that can become bad in this manner is o(|X|/loglogp) per time step. 

The other way for a key token to become bad is for a copy of the corresponding key to be 

transmitted to a processor in Y. Since Y is the union of a number of disjoint sets with 

expansion o(l/loglogp), the number of these events is o(|y|/loglogp) per time step. By 

construction, \Z\ is a constant fraction of \X\, so the total number of key tokens that can 

become bad in a single time step is o(|Z|/loglogp). Now the lower bound argument only 

runs for 0((ra/p)loglogp) time steps, during which time the number of bad tokens that can 

be generated is o(\Z\n/p) = o(|Z'|). In other words, the number of good key tokens in T is 

(1 — o(l))|Z'| at all times in the range of interest. 

The final modification to the adversary construction of Section 6.2 is as follows. In the 

induction step, the adversary now extracts the set f/t-+1 from the set of good key tokens 

only. In a single time step, at most \Z\ comparisons can be made involving keys in the 

subset of Z' corresponding to the good key tokens in T, since processors outside of Z do 

not have copies of any of these keys. Thus, the argument of Section 6.2 goes through with 

the inequality of Invariant 4 weakened by a factor of 1 - o(l), the fraction of all key tokens 

that are guaranteed to be good. Now consider the proof of Lemma 6.2.4. At the beginning 
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of the ith stage, all of the key tokens corresponding to Ui are good, and they reside in a 

set of \Z\ processors. Using an expansion argument as above, Lemma 6.2.1 implies that at 

most a o(l) fraction of the key tokens corresponding to £/,• can become bad during the ith 

stage. This minor effect is of no consequence since 7 has already been set to a value that is 

bounded away from its maximum acceptable value. A similar comment applies to the effect 

of the weakened inequality in Invariant 4. [] 

Corollary 6.3.1.1 Let T be an fl(logp) diameter network family belonging to the class 

7V(o(l/loglogp),0(/3)). Then any selection algorithm for T has a running time of at least 

|(n/p)log/3 + fi(logp) under the lower bound model. 

Proof: This bound follows immediately from Theorem 6.3.1 and the additional observation 

that any selection algorithm for a network of diameter d has a running time of at least [d[2\ 

under the lower bound model. Q 

6.3.1     The Hypercube 

Throughout this section, the quantity e will be used to denote an arbitrarily small positive 

constant. A decomposition of the hypercube will now be defined that proves the hypercube 

network family belongs to A/r(o(l/loglogp), 0(log1/3-£p)). Given a hypercube with p = 2d 

processors, let q = [ds\ or [ds\ — 1, whichever is odd. The exponent S is a parameter 

between 0 and 1 to be determined later. Let r = [d/q\, and divide the first qr bits of each 

processor ID into r fields of q contiguous bits. The ith field determines the ith bit of an 

r-bit condensed id according to the following rule, 0 < i < r. If the majority of the q bits 

in the ith field are 0, then the ith bit of the condensed ID is 0; otherwise, it is a 1. Note 

that since q is odd there will always be a strict majority of either 0's or l's. By symmetry, 

2d~l processors will belong to any condensed subcube of dimension r — I obtained by fixing 

the values of / bits in the condensed ID, 0 < I < r. 

Lemma 6.3.1 The expansion of a condensed subcube of dimension / is 0{lq~xl2). 

Proof: Let U denote the set of processors belonging to a particular condensed subcube of 

dimension /. By symmetry, it will suffice to consider the condensed subcube corresponding 

to the condensed ID with first I bits fixed to 0, and with the remaining r — I unspecified. 

Let V denote the set of processors in T(U)\U that are adjacent to some processor in V 

across some dimension in field 0.  It is sufficient to prove that iVj/jf/'l = 0(q~1^2).   But 
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this ratio is readily seen to be precisely (/„.')/2) over 29 1, which is 0(q 1/'2) by Stirling's 

approximation. [] 

Since I < r,q = Q(ds) and r = 0(d1-Ä), Lemma 6.3.1 implies that the expansion of every 

condensed subcube is 0(rq~ll2) = 0(d1-35/2). If S is chosen to be any constant strictly 

between 2/3 and 1, then the expansion of every condensed subcube will be O(log-€p) = 

o(l/loglogp). Furthermore, it should be clear that the condensed subcube structure can be 

used to construct the tree of blocks required by the lower bound argument of Section 6.2, 

at least to a certain depth, since the size of every block is a power of 2. All that remains is 

to determine the maximum possible value of ß as a function of p. The relevant inequality is 

cßß\ < T for some constant c, which is satisfied for ß = Q{dl-S~tl2). Setting 6 = 2/3 + e/2 

gives ß = d1'3-6, as claimed above. Slightly finer calculations allow this e to be replaced by 

o(l). Hence, Corollary 6.3.1.1 implies the following result. 

Theorem 6.3.2 Any selection algorithm for the hypercube has a running time of at least 
1 ~°^11 (n/p) log log p + fi(logp) under the lower bound model. 

6.3.2     Other Networks 

The above decomposition also works for the shuffle-exchange, since it is easy to prove that 

Lemma 6.3.1 remains valid. Hence, the lower bound of Theorem 6.3.2 applies to the shuffle- 

exchange. Similar comments apply for the butterfly network. 

Low flux networks such as the tree and multi-dimensional mesh can be easily decomposed 

into a large number of equal-sized components with very poor expansion. In such cases, 

ß can be increased so that the lower bound of Theorem 6.3.2 applies with an improved 

multiplicative constant of   ~°^ '. 

6.4    Summary 

The lower bounds for network selection discussed in this chapter significantly improve on 

previously known results when the number of keys at each processor, n/p, is sufficiently 

large [GK84]. In proving lower bounds, it was assumed that n and p are powers of 2, and 

that every processor begins with exactly n/p keys. The proofs can easily be extended to 

handle arbitrary values of n and p (losing at most a constant factor), and arbitrary initial 

distributions of the keys.  Theorem 6.3.1 was proven for network families T belonging to 
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J\f(a,ß) with a = o(l/loglogp); for a = ft(l/loglogp) an obvious tradeoff occurs. It is 

likely that the multiplicative constants appearing in the lower bounds could be improved. 

Finally, it should be emphasized that this work deals with the worst case complexity of 

selection. Under an average case analysis, and for sufficiently high values of the ratio n/p, 

optimal speedup of selection is attainable on essentially any network. 



Chapter 7 

Adaptive Sorting Algorithms 

This chapter deals with the problem of sorting n keys initially distributed uniformly over 

a hypercube with p processors, n > p. The well-known sequential lower bound for sorting 

implies an Q.((nlogn)/p) bound on the running time of any parallel sorting algorithm. For 

the case n =■ p, the best known sorting algorithm for the hypercube is Batcher's bitonic 

sort, which runs in O(log2p) time [Bat68]. For n ^ p, a number of other algorithms have 

been proposed. The running time and range of applicability of each of these algorithms 

is summarized in Table 7.1. Note that BitonicSort refers to the straightforward split-and- 

merge generalization of bitonic sort, due to Baudet and Stevenson [BS78]. Also, it should 

be emphasized that attention has been restricted to deterministic, worst case complexity 

algorithms running on the hypercube. For examples of results based on other assumptions, 

the reader is referred to [RV87], [VD88] and [Wag86]. 

One may verify that BitonicSort provides optimal speedup over sequential sorting only if 

p = 0(2vlogn). Two recent algorithms, which will be referred to as CubeSort (Cypher and 

Sanz, [CS88]) and ColumnSort (Aggarwal and Huang, [AH88]), have improved this result 

significantly. Both of these algorithms are optimal if n exceeds p by a polynomial factor, 

that is, if n = p1+i for any constant e > 0. ColumnSort is based on Leighton's technique 

for sorting n values by performing a constant number of smaller sorts [Lei85]. Note that 

Table 7.1 does not indicate the running time of ColumnSort when e is allowed to vary. This 

algorithm is not competitive for e = o(l) since the hidden constant in the running time is 

proportional to (1 + l/e)a with a = 2/(log 3 - 1) « 3.419, as opposed to a = 1 for CubeSort. 

Of course, it may be possible to obtain an algorithm based on Leighton's column sorting 

technique that achieves a smaller value of a. 
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Algorithm Running Time Range 

BitonicSort [Bat68][BS78] O((n/p)log2p) n = fi(p) 

MergeSort [NS82] 0(log2p/logO/n)) n = 0(p) 

ColumnSort [AH88] 0((n log n)/p) n = ft(p1+e), € > 0 

CubeSort [CS88] 0{(n/p) log2 pi log(n/p)) n = ft(plog(fc)p) 

Table 7.1: Previous sorting algorithms for the hypercube and shuffle-exchange. 

The main result of this chapter is a new sorting algorithm for the hypercube, SmoothSort, 

that runs asymptotically faster (in the worst case) than any previously known algorithm over 

a wide range of the ratio n/p. A simpler variant of this algorithm, which will be referred to 

as QuickSort, will also be presented. The running time of QuickSort is slightly greater than 

that of SmoothSort. The following example illustrates the nature of the results. For n = 

plog2 p, the sequential lower bound implies a lower bound of ft(log3p), the running time of 

BitonicSort is O(log4p), the running time of CubeSort is O(log4p/loglogp), the running time 

of QuickSort is O(log7'2p) and the running time of SmoothSort is 0(log7/2p(loglogp)-1/2). 

ColumnSort is not competitive in this range, and has a running time of about O(log6,419p). 

Both QuickSort and SmoothSort make use of certain load balancing and selection al- 

gorithms given in Chapters 4 and 5, and these algorithms do not correspond to sorting 

circuits. In other words, they are not based solely on oblivious routing and compare- 

interchange operations. Such algorithms will be referred to as adaptive sorting algorithms. 

Chapter 8 describes two non-adaptive sorting algorithms that run on the hypercube and 

shuffle-exchange, including a slower version of SmoothSort. 

7.1     Problem Definition: Sort 

The Sort operation is defined as follows. Given n 0(logp)-bit keys distributed uniformly 

over p processors (that is, each processors holds at most \n/p] keys), rearrange the n keys 

so that every key in processor i is less than or equal to every key in processor j whenever 

0 < i < j < p. In addition, the n keys should remain uniformly distributed and the set of 

keys within any particular processor should be sorted. As for the Select operation defined 

in Chapter 5, it will be assumed that n — 0(pc) for some constant c, and that the n keys 

are distinct. 
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7.2     Sorting on the Hypercube: QuickSort 

The following algorithm is based on the well-known quicksorting paradigm of Hoare [Hoa62]. 

It makes use of algorithms Balance and SearchSelect from Sections 4.1.3 and 5.4, respectively. 

Algorithm   QuickSort 

1. If the dimension of the hypercube being sorted is 0, locally sort the 0(n/p) keys located 

at each processor, and return. If performed, this operation takes 0{(n/p)\og{n/p)) 

time. 

2. Let S denote the set of n keys. Call SearchSelect to find the value with rank [n/2] in 

S. Let this value be m. Using algorithm SearchSelect, this takes O((n/p)log\ogp + 

log2pl0g(n/p)) time. 

3. Route all keys that are strictly less than m to the low subcube. Route all keys that are 

greater than or equal to m to the high subcube. To do this each processor splits the 

sorted list that it currently holds into two sorted sublists and sends the appropriate 

sublist to its neighbor in the highest dimension. This takes 0(n/p) time. 

4. At this point, each processor contains between 0 and 2n/p keys. Call Balance to 

smooth out the load, that is, to redistribute the keys so that each processor holds a 

list of length [n/p\ or [n/p]. This takes 0((n/p) log1/2 p + log2 p) time. 

5. Sort the low and high subcubes recursively. 

The correctness of the preceding QuickSort algorithm should be obvious.  The overall 

time complexity of QuickSort is readily seen to be 

0((n/p) log3/2 p + log3 p l0g(n/p)). 

7.2.1    QuickSort on the Pipelined Hypercube 

As discussed in Section 2.4, the existence of optimal merging algorithms for the pipelined 

hypercube leads to an optimal bottom-up sorting algorithm for n > plogp. The top-down 

quicksorting paradigm leads to an alternative optimal sorting algorithm for the pipelined 

hypercube for n > p log p log log p. For a fast implementation of QuickSort running on 

the pipelined hypercube, the following pair of changes should be made to the algorithm 
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stated above. First, the call to SearchSelect in Step 2 should be replaced by a call to the 

pipelined hypercube implementation of BalanceSelect(see Section 5.3). Second, Leighton's 

pipelined hypercube algorithm for Balance (see Section 4.1.1) should be used in Step 4. One 

may easily verify that the running time of this pipelined hypercube version of QuickSort is 

0((n/p) logp + log2 p log logp). 

7.3    A Faster Hypercube Algorithm: SmoothSort 

The SmoothSort sorting algorithm, which is also designed to run on the hypercube, will now 

be described. It makes use of the MultiBalance operation presented in Section 4.2. 

Algorithm   SmoothSort 

1. Locally sort the 0{n/p) keys located at each processor. This takes 0((n/p)log(n/p)) 

time. If p = 1 then return. 

2. Determine the 2l keys with ranks ^ , 0 < i < 2l, and broadcast them to all proces- 

sors. These will be called splitter keys. An appropriate choice for the parameter / will 

be specified later. For now, it will only be assumed that 2l < n/p. These selections 

can each be performed in O(log2pl0g(n/p)) time as described in Section 5.4, since 

the keys have been sorted locally. Each broadcast takes O(logp) time. Thus, the 

total time required for this step is O(2llog2 p\0g(n/p)). Each processor now contains 

a sorted list of n/p keys and a sorted list of 2l splitter keys. 

3. The 2l splitter keys naturally partition the n keys into 2l groups. The ith group 

consists of those keys with ranks between '$■ and ''"ti — 1 inclusive, 0 < i < 2l. 

At each processor, label each of the n/p local keys with the appropriate /-bit group 

number. Since the list of keys and the list of splitter keys are sorted, this takes 

0(2' + n/p) = 0{n/p) time. 

4. Call MultiBalance to smooth out each of the 2l groups of tokens. Now g = 2l, so this 

takes 0{{n/p)(l\ogpf I2 + 2llog2p) time. 

5. Loop over the high order / dimensions, routing each group to the appropriate subcube. 

This takes 0{ln/p) time. 
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6. Call Balance to smooth out the load in each of the 21 subcubes. The error in these 

subcubes is at most 2l, so this takes 0(2l log1/2 p + log2 p) time. Note that if n/p is a 

power of 2 then there is no error, and this step can be omitted. 

7. Sort the 2' subcubes recursively. 

It remains to determine the value of / that minimizes the total running time of Smooth- 

Sort subject to the constraints / > 1, 2l < n/p and / < log p. From the analysis accompa- 

nying the description of the algorithm, it may be seen that the cost of the top level of the 

recursion (that is, excluding the recursive calls) is dominated by an expression of the form 

O (2llog2pl0g(n/p) + {n/p){l\ogpfl2) , 

for all valid choices of I. The running time of SmoothSort is minimized (to within a constant 

factor) by increasing / to the point where the cost of performing the selections balances 

the cost of the MultiBalance operation. This leads to setting / = \0g(n/(pq)), where q = 

log3/2 p log log p. Substituting this choice of / into the above expression, one finds that the 

cost of a given level of the recursion is a function of p and n/p. The value of n/p does not 

vary with the depth of the recursion, while p is halved at each level. If n < pq, then / is 

forced to 1 and the running time of SmoothSort is the same as that of QuickSort. If n > pq, 

then 2l = Q(n/(pq)) and the depth of the recursion is Q((\ogp)/l). Furthermore, the cost 

of any level is at most that of the top level, so the total running time of SmoothSort is 

0 ((n/p)losVi0gW(^))+log3pl0s(n/p)) • 
Note that the deviation from optimality (that is, from the time required by the sequential 

lower bound) for n > pq is given by the square root factor. Previously, the best known 

algorithm for this range was CubeSort, which deviates from the lower bound by a factor of 

logp/\og(n/p). 

The MultiBalance algorithm of Section 4.2.1 is inappropriate for the shuffle-exchange 

because it does not access the dimensions predominantly in ascending/descending order. 

The shuffle-exchange version of MultiBalance described at the end of Section 4.2.3 has a 

worst case running time of 0((n/p) \ogp + glog2p). This leads to a worst case running time 

of 

0((n/p) log2 p/ l0g(n/p) + log3 p \0g{n/p)) 

for the shuffle-exchange implementation of SmoothSort. 
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Algorithm Running Time Transition Region 

MergeSort 

BitonicSort 

hybrid 

SmoothSort 

O(log2p/log(p/n)) 

0((n/p) log2 p) 

O((n/p)2/3logV0gi/3(n/p)) 

0((n/p) log3/2 p/W2{nl{pq)) 

n = Q(p) 

n = Q{p) 

n = Q(pq) 

Table 7.2: Running times of sorting algorithms for the hypercube. 

7.3.1    Average Case Analysis 

Theorem 4.2.3 shows that the hypercube and shuffle-exchange implementations of Multi- 

Balance perform much better on average than in the worst case. When n/p exceeds a 

sufficiently large polylogarithmic factor, one may verify that the non-optimality of algo- 

rithm SmoothSort is entirely due to the cost of performing the MultiBalance operations. In 

fact, the following result holds. 

Theorem 7.3.1 The average running time of both the hypercube and shuffle-exchange 

implementations of SmoothSort is 

0((n/p) log p + log3 p\0g(n/p)), 

which is optimal for n > p log2 p log log p. 

The same theorem can be proven for QuickSort. 

7.4    Summary 

Table 7.2 summarizes the running times of the best known deterministic sorting algorithms 

for the hypercube over ascending ranges of the ratio n/p. MergeSort is listed first because 

it is the best known sorting method (in the sense of worst case asymptotic complexity) 

when n <C p- The last column indicates that MergeSort remains the best known algorithm 

up to n = Q(p), at which point BitonicSort has the same complexity. The "hybrid" entry 

refers to an algorithm to be defined and analyzed in Section 8.2.4. For n = Cl(pq), where 

q = log3'2 p log log p, SmoothSort is the best known sorting algorithm and its complexity is 

given by the last entry in the table. Of course, when n exceeds p by a polynomial factor, 

CubeSort and ColumnSort also exhibit optimal complexity. Two more algorithms with this 

property will be described in Chapter 8. 
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The running times stated in Table 7.2 for the hybrid algorithm and SmoothSort do not 

apply to the shuffle-exchange. The running times of the fastest known sorting algorithms 

for the shuffle-exchange are summarized in Table 8.1 of Section 8.3. 

In contrast with such non-adaptive sorting algorithms as BitonicSort and CubeSort, the 

average case complexity of SmoothSort is not equal to its worst case complexity. In fact, 

the average case complexity of SmoothSort is optimal for n > p log2 p log log p. This state- 

ment applies to the shuffle-exchange implementation of SmoothSort as well. By simultane- 

ously guaranteeing good worst case performance, SmoothSort avoids the potential pitfalls 

of a simpler scheme such as HyperQuickSort [Wag86]. For solving the related problem of 

permutation routing, SmoothSort is even more practical because the cost of performing se- 

lections goes away. On the shuffle-exchange, SmoothSort performs permutation routing in 

O((n/p)\og2p/l0g(n/p)) time. The constant hidden by the O-notation is small and, unlike 

CubeSort, this bound holds for all n > p. 



Chapter 8 

Non-Adaptive Sorting Algorithms 

This chapter deals with non-adaptive sorting algorithms, that is, algorithms based solely 

on oblivious routing and compare-interchange operations.1 There are several important 

reasons for considering this restricted class of algorithms. 

1. Fast hardware can be used to implement the small number of operations required by 

non-adaptive algorithms. 

2. Non-adaptive algorithms tend to perform very little local computation, and hence are 

likely to run quickly on computers for which the cost of communication is low relative 

to the cost of local computation. 

3. Because non-adaptive algorithms are based on a small number of simple operations, 

they are more likely to run efficiently on a wide variety of parallel models. 

4. In the case n = p, non-adaptive algorithms correspond to sorting circuits. It would be 

interesting to determine whether or not there exists a o(log2 n) depth sorting circuit 

that can be simulated in o(log2 n) time by a non-adaptive sorting algorithm running 

on the hypercube or shuffle-exchange. 

With respect to the last point, it should be mentioned that Ajtai, Komlös and Szemeredi 

have developed an optimal O(logn) depth sorting circuit [AKS83]. Unfortunately, the O- 

notation hides an impractically large constant factor. Furthermore, no efficient simulation 

of the AKS sorting circuit has been found for the hypercube, shuffle-exchange or any other 

common network family. 

'For n > p, compare-interchange is generalized to merge-and-split type operations. 
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This chapter describes a non-adaptive version of SmoothSort that runs on the shuffle- 

exchange and exhibits the same asymptotic performance as CubeSort for n/p sufficiently 

large. A sorting circuit based on recursive merging, called SquareSort, is also presented. 

SquareSort performs a large merging task by decomposing it into a number of smaller ones, 

and can be efficiently implemented on the hypercube and shuffle-exchange. The decom- 

position technique is similar to that considered by Van Voorhis, but obtains a more rapid 

decrease in the size of the subsorts [Van71]. Finally, three hybrid algorithms based on 

tradeoffs between SquareSort and other sorting algorithms are defined and analyzed. 

8.1    A Non-Adaptive Version of SmoothSort 

This section describes a non-adaptive implementation of SmoothSort that runs on the shuffle- 

exchange as well as the hypercube. It is interesting to note that this algorithm performs 

no explicit selections. The algorithm is described below in terms of the hypercube, but can 

easily be adapted to run in the same asymptotic time bound on the shuffle-exchange. Let 

d denote the dimension of the hypercube being sorted. 

Algorithm   SmoothSort 

1. Locally sort the 0{n/p) keys located at each processor. This takes O((n/p)log(n/p)) 

time. If d = 0 then return. 

2. For i = 0 to d— 1, merge pairs of lists across dimension i. Each of the resulting merged 

lists is of length 2n/p. Partition each such list into two sublists of length n/p, one 

consisting of the even-ranked keys, and the other consisting of the odd-ranked keys. 

Send the sorted lists of even-ranked keys to the low subcube, and the odd-ranked keys 

to the high subcube. This set of merge-unshuffle-split operations takes 0((n/p)d) 

time. 

3. For i = 0 to d — 1, merge pairs of lists across dimension i. Partition each of the 

resulting merged lists into two sublists of length n/p, one consisting of the lowest n/p 

keys, and the other consisting of the highest n/p keys. Send the low list to the low 

subcube, and the high list to the high subcube. This set of merge-and-split operations 

takes 0((n/p)d) time. 

4. Let d' be as given by Equation (8.1) below. If d' > 1, then sort subcubes of dimension 

d' recursively using Steps 2 to 6. 
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5. Let L{ denote the sorted list of length (n/p)2d located in the ith (low-order) subcube 

of dimension d', 0 < i < 2d~d . Merge Lij with X2J+1 by reversing £2.7+1 and then 

performing a bitonic merge, 0 < j < 2d~d'~1. This takes 0((n/p)d') time. 

6. Merge L2J+1 with L2J+2, 0 < j < 2d~d'~1 — l. This can be done as in the previous step, 

except that it is necessary to perform a monotone route first in order to move each 

pair of lists to be merged into a single subcube of dimension 2d +1. The monotone 

route that sends the data at processor i to processor i + 2d mod p, 0 < i < p, is 

appropriate. The inverse monotone route must be applied after the merging has been 

performed. This takes 0((n/p)d) time. Note that the time bound depends on d, and 

not d', due to the monotone routes. A useful trick described at the end of this section 

shows that the monotone route operations can be avoided, reducing the complexity 

of this step to 0((n/p)d') time. 

As Smooth Sort is based on compare-interchange operations, it is sufficient to consider its 

performance on inputs consisting entirely of O's and l's. This fact is known as the zero-one 

principle [Knu73]. Accordingly, assume that the input consists of k O's and n — k l's for 

some arbitrary integer fc, 0 < k < n. Note that the effect of the ith merge-unshuffle-split 

operation of Step 2 is to balance the number of O's (and l's) between neighboring processors 

across dimension i. Hence, Lemma 4.1.3 implies that there exists a nonnegative integer a 

such that, after Step 2 has been completed, every processor contains a number of O's in the 

range [a, a + d]. Furthermore, the inductive proof of Lemma 4.1.3 can easily be augmented 

to show that if some processor does contain d more O's than another, then processor 0 is 

the unique processor with a + d O's, and processor 2d — 1 is the unique processor with a O's. 

It is useful to think of the n keys as being arranged in a (n/p) x p array, where the 

ith largest key in processor j resides in row i and column j, 0 < i < n/p, 0 < j < p. 

Intuitively, Step 2 is attempting to arrange the keys in row-major order. On the other 

hand, the goal of Step 3, and of the sort as a whole, is to arrange the keys in column-major 

order. Some additional notation is needed in order to measure the actual progress made 

by these steps. Let Ro(i, j) = pi + j denote the estimated rank of the key in row i and 

column j just after Step 2, and let Ri(i,j) = pj + i denote the estimated rank of the key 

in the same location just after Step 3. Let ho denote the maximum value of Ro(i,j) over 

all 0 keys, and let /o denote the minimum value of Ro(i,j) over all 1 keys. Let hi and l\ be 

defined in a similar manner. Then the discussion of the preceding paragraph implies that 

ho — IQ < p(a + d) — \p{a + 1) + p - 1] = pd — 2p + 1. Furthermore, it is straightforward to 
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prove that h\ < ho and h > IQ. 

Hence, h\ —/i + l < pd-2p+2. This bound implies that after Step 3, every key is within 

\{pd- 2p + 2)/(n/p)] columns (processors) of the correct output column. The sort can now 

be completed by recursively sorting each of the 2d~d' (low-order) subcubes of dimension d', 

where 

d' = log 
p(pd-2p + 2) 

(8.1) 
n 

and then merging even and odd pairs of subcubes of dimension d' as in Steps 5 and 6. 

The order of these two merging steps is interchangeable. In order to check that they 

actually complete the sort, it suffices to prove that odd-even transposition sort (see [Knu73]) 

terminates in two steps when the input is such that every key is at most one move away 

from its final position. This fact is easy to prove, and that it is sufficient follows from the 

split-and-merge technique of Baudet and Stevenson [BS78]. 

It follows from Equation (8.1) that the depth of the recursion is O(\ogp/\og(n/(plogp))). 

Since the cost of every level (excluding recursive calls) of the recursion is bounded by that 

of the top level, the total running time of the non-adaptive version of SmoothSort on the 

hypercube or shuffle-exchange is 

0 (   (n/p)log2p   \ 
\\og(n/(plogp))J ' 

This result matches the asymptotic performance of CubeSort for n > p\og1+(L p, where e 

denotes an arbitrarily small positive constant. More importantly, the multiplicative constant 

hidden by the O-notation is very small, particularly for the hypercube implementation. For 

both the hypercube and shuffle-exchange, the constant associated with CubeSort is almost 

an order of magnitude higher. 

There are a number of tricks that can be used to speed up the implementation of 

SmoothSort slightly. In Step 2, the communication cost can be reduced by performing an 

unshuffle-merge, that is, by sending every second key to the neighboring processor. This 

has the effect of increasing the balancing error from d to 2d, but this adverse effect is 

insignificant if n/p is large. Step 3 may run faster if it is implemented as a transpose 

(no merging) followed by a local sort. Finally, the monotone routes in Step 6 can be 

eliminated by mapping columns (of the array defined above) to processors in a different 

manner. Specifically, the ith largest group of n/p keys should be sorted to the processor 

with ID equal to the ith. binary Gray code, rather than to processor i?  After sorting to 

See any introductory text on switching theory for a definition of binary Gray codes.  Gray codes are a 
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this configuration, the keys can be routed to the usual sorted configuration in (n/p)logp 

steps. The details of this Gray coded scheme are left to the reader. It should be mentioned 

that the same trick can be used to halve the depth of the shuffle-exchange implementation 

of the balanced sorting network of Dowd et al. [DPSR83]. 

8.2    The SquareSort Sorting Circuit 

This section presents a sorting circuit based on recursive merging called SquareSort. Like 

BitonicSort, the depth of this sorting circuit is ©(log2 n). On the other hand, SquareSort 

leads to improved tradeoffs for sorting on the hypercube and shuffle-exchange for n > p. 

As SquareSort is based on compare-interchange operations, the zero-one principle implies 

that it is sufficient to consider its performance on inputs consisting entirely of O's and l's. 

The SquareSort algorithm relies on the following merging technique, called SquareMerge. 

Consider a rectangular array A of O's and l's with 2a rows and 2b columns, where a and b 

are nonnegative integers, and in which the rows and columns have already been sorted in 

ascending order. Note that the boundary between the O's and the l's in array A forms a 

staircase. The elements of A may either be viewed as being organized in 2° sorted lists of 

length 2b, or in 2b sorted lists of length 2a. The goal is to produce a single sorted list of 

length 2a+b. The depth of the SquareMerge sorting circuit that performs this merging task 

will be denoted M(a,b). For convenience, the merging task itself will also be referred to as 

M(a,b). Note that for all nonnegative integers a and b, M(a,b) = M(b,a) and M(a,0) = 0. 

Furthermore, the problem M(a, 1) will be solved by a bitonic merge, so M(a, 1) = a + 1, 

a > 1. The most interesting case remains to be considered, namely, when a and b are both 

greater than 1. Assume without loss of generality that a > b. In this case, the construction 

of the SquareMerge circuit will satisfy 

M(a, b) = M{ [a/2\ ,b) + M( [a/2], b) + 2M( fa/2] +b,l). (8.2) 

The following procedure for performing the merging problem M(a,b) will establish the 

validity of Equation (8.2). First, partition the rows of array A into 2'a'2' groups, placing 

row i into group i mod 2^2\ 0 < i < 2a. All of the groups can be sorted in parallel in 

depth M([a/2\,b). The resulting 2^/2^ sorted groups of size 2^2i+b must now be merged 

in depth M(\a/2],b) + 2M(|"a/2] + 6,1). Consider the following lemma. 

commonly used construct for obtaining efficient hypercube embeddings; see [Joh87], for example. 
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Lemma 8.2.1 Let integers i and j satisfy 0 < i < j < 2^a/2l. Then group i contains fewer 

l's than group j. Furthermore, group 0 contains at most 2b fewer l's than group 2^al2^ - 1. 

Proof:    This follows easily from the existence of the staircase boundary between the O's 

and the l's in array A. Q 

Arrange the 2^aW sorted groups in an array A' with 2l"a/2l rows and 2La/2J+f> columns. 

The ith row consists of group i, arranged in ascending order. The preceding lemma implies 

that the columns are also sorted in ascending order, so the remaining problem can be solved 

as an M(\a/2], [a/2j +6). However, there is additional structure to the remaining problem 

that permits it to be solved more rapidly. Namely, Lemma 8.2.1 implies that at most 2b 

columns are dirty (a column is dirty if it contains both O's and l's), and that the dirty 

columns are contiguous. Thus, the groups can be merged as in Steps 4 to 7 of algorithm 

SquareMerge, stated below. The input to SquareMerge is a 2a x 26 array A of O's and l's, 

where the rows and columns have already been sorted ascending and a > b. The code for 

a < b is similar. 

Algorithm   SquareMerge 

1. Partition the rows of array A into 2^/2l groups, placing row i into group i mod 2^a/2l, 

0 < i < 2a. Each group forms a subarray with 2La/2J rows and 2b columns. 

2. Sort all of the groups in parallel. Each subproblem is an M([a/2\,b). 

3. Arrange the 2^/2l sorted groups in an array A' with 2^2^ rows and 2L°/2J+6 columns. 

The ith row consists of group i, arranged in ascending order. 

4. Partition the 2f°/2l x2La/2J+6 array A' into 2^2i subarrays A'{, where the ith 2l"a/2l x2fc 

subarray consists of the columns i2b through (i + 1)26 - 1 of A', 0 < i < 2La/2J. 

5. Sort all of the 2'-a/2-' subarrays in parallel. Each subproblem is an M(fa/2],6). 

6. Merge A'2i with A'2i+1, 0 < i < 2L°/2-l~1. Each of these subproblems is an M(\a/2] + 

6,1). 

7. Merge A'2i+1 with A'2i+2, 0 < i < 2l-a/2-l-1 - 1.   Each of these subproblems is an 

M(\a/2] +6,1). 
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The fact that the last two merge operations actually complete the sort follows by the 

same argument as was applied in Section 8.1. Thus, Equation (8.2) holds. 

The recurrence of Equation (8.2) (with base cases as stated above) will now be used to 

obtain an upper bound on M(a,b). Assuming without loss of generality that a > b, an easy 

induction proves that M(a,b) < M(a,a). Two applications of Equation (8.2) then lead to 

M(a,a) < 4M([a/2], [a/2]) + 0(a). 

Making use of the fact that \\x/y]/z] = \xjyz\ for all positive integers x, y and z, the 

recurrence can be unwound further to obtain 

M(a, a) < 22kM(\a/2k], [a/2k]) + 0(2ka), (8.3) 

for all nonnegative integers k. Setting k = log a, one finds that M(a,a) = 0(a2). Hence, 

M(a,b) = 0(a2). 

The SquareSort sorting circuit can now be defined in terms of SquareMerge. In the 

following algorithm, assume that SquareSort is sorting 2a keys for some nonnegative integer 

a, and let S(x) denote the depth of the SquareSort sorting circuit on 2X keys. 

Algorithm  SquareSort 

1. If a < 3 then sort the keys using BitonicSort and return. 

2. Arrange the 2a keys in a 2La/2J x 2fa/2l array A. 

3. Sort each of the rows of A recursively in parallel. This uses depth S([a/2\). 

4. Sort each of the columns of A recursively in parallel. This uses depth 5(|"a/2"|). 

5. Apply SquareMerge to the array A. This uses depth M(\_a/2\, [a/2]), which is 0(a2) 

by the preceding analysis. 

Thus, an upper bound on the depth of the SquareSort sorting circuit is given by the 

solution to the recurrence 

S(a) < S([a/2j) + 5(1 a/2]) + 0(a2), (8.4) 

with 5(1) equal to a constant. Unwinding this recurrence, one finds that S(a) = 0(a2), as 

promised. Of course, this result is not very interesting in view of the fact that BitonicSort 
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achieves the same bound with a much simpler construction and a smaller multiplicative 

constant. The significance of SquareSort is that, like CubeSort, it gives a method for ex- 

pressing a single large sort in terms of a number of smaller ones. Both techniques have 

the same (within a constant factor) efficiency in this regard, except that CubeSort places a 

lower bound on the size of the smaller sorts. Thus, in certain cases, SquareSort leads to a 

tradeoff while CubeSort does not. The main utility for expressing a large sort in terms of 

smaller ones is as follows. If some other sorting method can be used to speed up the small 

sorts, then SquareSort can be easily modified to reduce the running time of the large sort 

accordingly. 

Formally, suppose that sets of keys of size 26, where 2b < 2a, can be sorted in depth T 

by some circuit X. Using Equation (8.3) with k = log a — logo + 0(1) gives 

Af( fa/21, L«/2J)    =   o(^+pi 

=   0 

b2        b 

'a?Ts 

62 

since T = Q(b). Thus, using circuit X to sort sets of size 26, the depth of the SquareSort 

sorting circuit satisfies the recurrence 

S(a) < S( [a/2\) + 5( [a/2]) + 0 (^-Y (8.5) 

with 5(1) equal to a constant. Three applications of this technique are given in Sec- 

tions 8.2.2, 8.2.3 and 8.2.4. First, however, it must be shown that the SquareSort sorting 

circuit can be efficiently implemented on the hypercube and shuffle-exchange, that is, with 

a running time that is proportional to its depth. This is the subject of the following section. 

8.2.1     Network Implementations of SquareSort 

It is relatively easy to obtain an efficient implementation of SquareSort on the hypercube. 

Only the case n = p (one key per processor) needs to be considered explicitly; Sections 8.2.2, 

8.2.3 and 8.2.4 give tradeoffs with other sorting algorithms for n ^ p. In the case n = p, 

there are p keys in the array A defined by the top-level call to algorithm SquareSort. 

Now consider the effect of embedding the array A in the hypercube in row-major order. 

Given this embedding, it is straightforward to prove that every array encountered during the 

execution of SquareSort satisfies the property that its row and column indices are encoded 
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by two disjoint, contiguous sets of ID bits. Note that in algorithm SquareMerge, only Steps 6 

and 7 involve any key comparisons and/or movement of data. The other steps consist of 

recursive calls and trivial computations to set up the recursive calls (to calculate which sets 

of ID bits define the row and column indices of the array to be sorted by the recursive call). 

Step 6 involves merging pairs of equal-length sorted lists. Each list resides in a subcube 

of dimension 2l"a/2l, and each pair of lists resides in a single subcube of the next higher 

dimension. Thus, the merging operation can be implemented by reversing one of the lists 

and then performing a bitonic merge, all of which can be done in 0(a) time. 

Step 7 is slightly trickier to implement. Once again, the task is to merge pairs of equal- 

length sorted lists where each list resides in a subcube. The difficulty is that the pairs of 

lists to be merged are not necessarily located in adjacent sub cubes. One solution to this 

problem is to perform a monotone route that shifts the location of each key in array A' 

by 2Ta/2l, the length of a sorted list. The pairs of lists can then be merged as in Step 6, 

and the merged lists routed back to the appropriate position by a second monotone route. 

The time required to perform each monotone route is proportional to the dimension of the 

subcube containing A'. Thus, the total time required to perform Step 7 is also 0(a). 

The preceding discussion implies that the total running time of SquareMerge, excluding 

the cost of recursive calls, is 0(a). Hence, the analysis of Section 8.2 goes through unchanged 

and the upper bound of Equation (8.2) also applies to the running time of the hypercube 

implementation of SquareMerge. Given subroutine SquareMerge, algorithm SquareSort is 

straightforward to implement efficiently on the hypercube. Therefore, the circuit depth 

bounds of Equations (8.4) and (8.5) carry over to running time bounds for the hypercube 

implementation of SquareSort. 

Figures 8.1 and 8.2 apply the SquareSort sorting technique to a random permutation of 

the 26 integers [0,64). The example is not entirely faithful to the SquareSort program stated 

in Section 8.2, since a = 6 and the array A was chosen to be 4 X 16 rather than 8x8. The bit 

sequences labelling the rows and columns of each of the 4 X 16 arrays in Figures 8.1 and 8.2 

indicate how the array is mapped to the hypercube processors. For instance, the columns 

of the first array are labelled 63626160 and the rows are labelled 6564, which means that the 

key in row i = (hio)2 and column j = (jzJ2J\jo)2 is located at processor (hioJ3J2Jijo)2- 

The asymptotic performance of SquareSort on the hypercube can be duplicated on the 

shuffle-exchange, but not simply by a naive translation of the hypercube implementation. 

There are two problems that must be avoided in order to ensure that the bitonic merge, 
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656. '504 

6564 

6S6, 5«4 

6.,6. 5 «4 

6564 

6362616 0 

18 27 09 16 61 43 24 39 33 38 00 34 30 06 04 20 

31 47 28 49 32 44 63 15 05 13 36 22 56 48 10 46 

51 19 59 57 07 08 26 23 62 01 21 02 45 29 42 37 

17 60 35 12 25 41 58 14 54 52 40 03 11 53 50 55 

63626160 

Step 3 of SquareSort 

00 04 06 09 16 18 20 24 27 30 33 34 38 39 43 61 

05 10 13 15 22 28 31 32 36 44 46 47 48 49 56 63 

01 02 07 08 19 21 23 26 29 37 42 45 51 57 59 62 

03 11 12 14 17 25 35 40 41 50 52 53 54 55 58 60 

63626160 

Step 4 of SquareSort 

00 02 06 08 16 18 20 24 27 30 33 34 38 39 43 60 

01 04 07 09 17 21 23 26 29 37 42 47 48 49 56 61 

03 10 12 14 19 25 31 32 36 44 46 45 51 55 58 62 

05 11 13 15 22 28 35 40 41 50 52 53 54 57 59 63 

61606362 

Step 1 of SquareMerge 

00 16 27 38 02 18 30 39 06 20 33 43 08 24 34 60 

61 01 17 29 48 04 21 37 49 07 23 42 56 09 26 45 

03 19 36 51 10 25 44 55 12 31 46 58 14 32 47 62 

05 22 41 54 11 28 50 57 13 35 52 59 15 40 53 63 

61606362 

Step 2 of SquareMerge 

00 01 03 05 02 04 10 11 06 07 12 13 08 09 14 15 

16 17 19 22 18 21 25 28 20 23 31 33 24 26 32 34 

27 29 36 38 30 37 39 44 35 42 43 46 40 45 47 53 

41 48 51 54 49 50 55 57 52 56 58 59 60 61 62 63 

Figure 8.1: A sample run of SquareSort (continued in Figure 8.2). 
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6564 

hbo 

Mo 

616( i"o 

6160 

bibQb3b 2 ,- 

00 01 03 05 02 04 10 11 06 07 12 13 08 09 14 15 

16 17 19 22 18 21 25 28 20 23 31 33 24 26 32 34 

27 29 36 38 30 37 39 44 35 42 43 46 40 45 47 53 

41 48 51 54 49 50 55 57 52 56 58 59 60 61 62 63 

65646362 

Steps 3 and 4 of SquareMerge 

00 01 03 05 16 17 19 22 27 29 36 38 41 48 51 54 

02 04 10 11 18 21 25 28 30 37 39 44 49 50 55 57 

06 07 12 13 30 23 31 33 35 42 43 46 52 56 58 59 

08 09 14 15 24 26 32 34 40 45 47 53 60 61 62 63 

65646362 

Step 5 of SquareMerge 

00 04 08 12 16 20 24 31 27 36 40 45 41 51 56 60 

01 05 09 13 17 21 25 32 29 37 42 46 48 52 57 61 

02 06 10 14 18 22 26 33 30 38 43 47 49 54 58 62 

03 07 11 15 19 23 28 34 35 39 44 53 50 55 59 63 

65646362 

Step 6 of SquareMerge 

00 04 08 12 16 20 24 31 27 36 40 44 48 52 56 60 

01 05 09 13 17 21 25 32 29 37 41 45 49 53 57 61 

02 06 10 14 18 22 26 33 30 38 42 46 50 54 58 62 

03 07 11 15 19 23 28 34 35 39 43 47 51 55 59 63 

65646362 

Step 7 of SquareMerge 

00 04 08 12 16 20 24 28 32 36 40 44 48 52 56 60 

01 05 09 13 17 21 25 29 33 37 41 45 49 53 57 61 

02 06 10 14 18 22 26 30 34 38 42 46 50 54 58 62 

03 07 11 15 19 23 27 31 35 39 43 47 51 55 59 63 

Figure 8.2: A sample run of SquareSort (continued from Figure 8.1). 
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list reversal and monotone route operations, which are performed over sub-cubes, can be 

executed in time proportional to the dimension of the subcube (as opposed to the dimension 

of the entire shuffle-exchange, for instance). Recall that the subcubes of interest correspond 

to the arrays denned by SquareSort and SquareMerge, and that the row and column indices 

are given by two disjoint, contiguous sets of address bits. The first problem is that the row 

and column address bits can be far apart, forcing a pass over the corresponding dimensions 

to include a long sequences of shuffle or unshuffle operations. The second problem is that 

even if the row and column address bits form a single contiguous block, this block may be 

far from the exchange (bit 0) position. 

Both of these problems may be solved by permuting the data before each recursive 

call to SquareMerge in order to bring the row and column bits together. Note that such a 

permutation is not always necessary. Specifically, the array associated with the recursive 

call in Step 5 of algorithm SquareMerge is already mapped to an appropriate subcube, while 

the one associated with Step 5 is not (for the case a < b, the situation is reversed). Where 

it is needed, the appropriate permutation can be performed efficiently using the self-routing 

Benes network of Nassimi and Sahni [NS81]. Of course, the inverse permutation must be 

applied once the recursive call to SquareMerge completes execution. 

8.2.2    An Adaptive Tradeoff for n <p 

Consider the problem of sorting n keys with p processors, where n < p. For this range, 

the MergeSort algorithm of Nassimi and Sahni runs in 0(\og2 p/log(p/n)) time. MergeSort 

reduces to a particularly simple algorithm when p > n2. The purpose of this section 

is to demonstrate that the same performance is achieved by a hybrid algorithm based 

on SquareSort and the simple version of MergeSort for p > n2. The hybrid algorithm is 

SquareSort except that MergeSort is applied to perform sorts that are sufficiently small 

to allow a quadratic number of processors to be applied. This is an adaptive tradeoff, 

since MergeSort does not correspond to a sorting circuit. The running time of the hybrid 

algorithm on a hypercube or shuffle-exchange of dimension a is given by Equation (8.5) 

with b = T = l0g(p/n). Solving this recurrence, and setting a = logp, leads to a running 

time of O(log2p/l0g(p/n)) for n < p, as claimed. 
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8.2.3    A Non-Adaptive Tradeoff for n > p 

The non-adaptive CubeSort algorithm of Cypher and Sanz runs in O((n/p)log2 p/log(n/p)) 

time on the hypercube or shuffle-exchange assuming that n > plog(k> p for some constant 

k [CS88]. The constant hidden by the O-notation is exponential in k and is moderate even 

for k = 1. The non-adaptive version of SmoothSort presented in Section 8.1 has the same 

time complexity for n > plog1+e p. However, SmoothSort has a very small multiplicative 

constant (particularly on the hypercube), and appears to be a truly practical algorithm for 

certain realistic values of n and p. 

The purpose of this section is to prove that a hybrid algorithm based on SquareSort 

and the non-adaptive version of SmoothSort (CubeSort could also be used here, at the 

expense of a constant factor) runs in 0((n/p)log2 p/log(n/p)) time on the hypercube or 

shuffle-exchange over the entire range n > p. The hybrid algorithm is SquareSort with the 

exception that SmoothSort is applied to sorts over subcubes consisting of fewer than n/p 

processors. The analysis of the hybrid algorithm is very similar to that of the previous 

section. Namely, the running time of the hybrid algorithm is given by the recurrence of 

Equation (8.5) with a — logp and b = T = l0g(n/p), which leads to O(log2p/l0g(n/p)) for 

n> p. Note that the hybrid algorithm is non-adaptive. 

8.2.4    An Adaptive Tradeoff for p < n < pq 

This section analyzes the performance of a hybrid sorting algorithm for the hypercube based 

on SquareSort and QuickSort. The range of applicability of the algorithm is p < n < pq, 

where q = log3'2 p log log p. The hybrid algorithm is SquareSort, except that QuickSort 

is applied to every sorting subproblem involving n' keys in a subcube of p' processors 

where n' = Q(p' log3/2 p' log logp'). Using the fact that n' = (n/p)p', this condition implies 

log3/,2p' = O((n/p)/\og(n/p)). The cost of running QuickSort on a problem of this size is 

0 (log3 p' log logp') = O((n/p)2/log(n/p)). Thus, the running time of the hybrid algorithm 

is given by the recurrence of Equation (8.5) with 

a    =   logp, 

63/2    =   Q((n/p)/log(n/p)), and 

T    =    o((n/p)2/log(n/p)). 
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Algorithm Running Time Transition Region 

MergeSort 

BitonicSort 

hybrid 

0{\og2p/log(p/n)) 

O((n/p)\og2p) 

O((n/p)log2p/\0g(n/p)) 

n = ©0) 
n = 0(p) 

Table 8.1: Running times of sorting algorithms for the shuffle-exchange. 

Solving this recurrence, one finds that the running time of the hybrid algorithm is 

0(log2K«/p)2/3log1/3(n/p)), 

as claimed in Table 7.2. 

Two points concerning this hybrid algorithm should be emphasized. First, the algorithm 

does not run (with the stated complexity) on the shuffle-exchange, since it makes use of 

QuickSort. Second, replacing QuickSort with SmoothSort does not yield any improvement. 

8.3    Summary 

This chapter described two non-adaptive sorting methods and a number of hybrid algo- 

rithms. With the exception of the adaptive tradeoff considered in Section 8.2.4, all of 

the results discussed in this chapter apply to the shuffle-exchange as well as the hyper- 

cube. Table 8.1 summarizes the running times of the best known sorting algorithms for the 

shuffle-exchange over ascending ranges of the ratio n/p. For n < p, the bounds are the same 

as for the hypercube (see Table 7.2). For n = u(p), the hybrid algorithm of Section 8.2.3 

provides the best known bound. Note that for n — Q,(p\og^ p), where k is a fixed positive 

integer, the running time of the hybrid algorithm is matched (to within a constant factor) 

by CubeSort. Furthermore, it is matched by the non-adaptive version of SmoothSort for 

n = fi(plog1+ep), and by ColumnSort for n = Q(p1+e), where in each case e denotes an 

arbitrarily small positive constant. 

The non-adaptive version of SmoothSort does not perform any explicit selections and 

appears to be the most practical sorting method for sufficiently large values of n (say, 104 

or more), and where n exceeds p by a significant polynomial factor (e.g., n = p2). 

Roughly speaking, the construction of the SquareSort sorting circuit is based on a tech- 

nique for expressing a single large sort in terms of a number of smaller sorts. If the size 

of the smaller sorts is sufficiently large, CubeSort performs such a decomposition with the 
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same asymptotic efficiency, although the multiplicative constant associated with CubeSort 

is almost an order of magnitude higher. 



Chapter 9 

Concluding Remarks 

The preceding chapters have primarily considered algorithms for load balancing, selection 

and sorting on the hypercube and shuffle-exchange. While some progress has been made 

in these areas, many open problems remain. Several open problems which correspond to 

natural extensions of the work described in this thesis will now be considered. 

Section 4.1 presented upper and lower bounds for the Balance operation running on the 

hypercube. The bounds are not tight in the case where the average number of tokens per 

processor is less than a constant fraction of the maximum number of tokens at any processor, 

and it seems likely that the upper bound could be improved in this case. One might also 

attempt to match the current performance of Balance with a hypercube algorithm that 

restricts all processors to communicate along the same dimension at any given time. 

It would be interesting to try to prove a u>(log n) lower bound for the problem of sorting 

n keys on a hypercube or shuffle-exchange with n processors, at least for some restricted 

class of algorithms. For example, one might consider non-adaptive algorithms or, being less 

restrictive, arbitrary algorithms with the sole restriction that keys cannot be duplicated. 

Note that even for the simpler problem of selection, there is no known o(log2 n) hypercube 

algorithm which does not duplicate keys. With respect to proving a lower bound, the 

techniques of Chapter 6 may provide a useful starting point. 

All of the sorting algorithms described in this thesis have the property that the progress 

achieved by the algorithm at any given time is relatively easy to characterize. For example, 

the partial progress of SmoothSort is given by the least integer k such that every key has 

been routed to the correct low-order subcube of dimension k. On the other hand, the partial 

99 
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progress of the O(logn) depth AKS sorting circuit is more complicated to characterize; in 

particular, it only guarantees progress with respect to most of the keys, as opposed to all 

of them (except at the end, of course). Thus, it may be worthwhile to investigate sorting 

algorithms which do not operate by partitioning the sorting task into disjoint subproblems, 

but instead perform successively refined approximate sorts over the entire set of keys. 



Appendix A 

Expansion Properties of the 

Hypercube 

The calculations in this appendix analyze the volume-to-surface ratio of a Hamming ball 

of radius r = r(d) lying in a hypercube of dimension d. Theorem A. 1.1, which is used in 

Section 4.1.2, characterizes the asymptotic behavior of this ratio for r in the range 0 to d/2. 

The results could easily be extended to handle higher values of r (that is, d/2 < r < d) by 

taking advantage of symmetry. 

A.l     Asymptotic Analysis 

Definition A.l.l Let Rd,T denote Eo</<r (/)/(?)• 

Lemma A.l.l Let d and r be positive integers, 1 < r < d. Then Rd,r > Rd,r-\- 

Proof:    Observe that Rj,$ = 1 and for 1 < r < d 

>   Z^7TTimfeö/(/-i) 
r d-l+1 

mm 
d - r + 1  i<l<r        I 

=    1. 

101 
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D 

Lemma A.1.2 For positive integers d and r, r < d/2, 

Rd,r = © z + ir 

where r = d/2 — \fdz. 

Proof: ■ The following three cases will be considered separately: z = £l(d) and z < d/4; 

z = o(d) and z > 1; 0 < z < 1. 

Case 1:   z = Q,(d) and z < d/4.   Exercise (9.42) of Graham, Knuth and Patash- 

nik [GKP89] establishes that Rd,r = 0(1) in this range. 

Case 2:  z = o(d) and z > 1.   It is sufficient to prove that Rd>T — 0 (%/dJz) since 

z = fi(l). For the lower bound, consider the inequality 

s , >- 0<Kr ,r — ^Jdfl 

and observe that for sufficiently large values of d 

> 
[Jdß\ 

[y/dJH\ 

> 

> 

^d-r+ [y/SJz\j 

'd/2-y/dz- yßjz 
^d/2 + \[dz + y/djz\ 

'dl2-2^d~z\JJrz 

d/2 + 2\/dz) 

>       1 
fdfz 

which converges to e 8 = 17(1). Hence, Rd,r — £l(y/d/z). 

For the upper bound, note that 

(   d  \   /fd) 
J-l, 

< 
I     ~d-r + V 
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for 1 < / < r. Hence, the sum Ylo<l<r (/) IS dominated by the infinite geometric progression 

with initial value (J and ratio r/(d- r + 1) between successive terms. Thus, 

d-r + 1 
Rd,T     < d-2r + l 

=   o{Jdfz\ 

Case 3: 0 < z < 1.  It is sufficient to prove that R^r = 0 [Vd\ since z = 0(1).  A 

lower bound on Rd,r can be obtained as follows: 

E{).    E   (?) 
0</<r W r-[Vd\<l<r\/ 

>      [Vd\ 

Furthermore, for sufficiently large values of d 

d     \   ltd 

d 

K 

,T -pzjJ/W   *   (rf_r+[Wj) 
L^J 

> 

> 

'd/2-2y/dY/S 

d/2 + 2^/d) 

8 \^ 
l~7d)      ' 

which converges to e 8 = fi(l). Hence, Äd)J. = fi(-\/d). 

For the upper bound, Stirling's approximation can be used to show that Rdt\d/2\  = 

Q(Vd). It follows from Lemma A. 1.1 that Rd>T = 0(y/d). □ 

Theorem A.1.1 Let d be a given integer and let r = r(d) be an integer between 0 and 

d/2. If £o</<r (?) = 2dW<) then Rd,r = 0(Vfe). 

Proof:    The following four cases will be considered separately: r — d/2 — Q(d) and r > 0; 

r = d/2- o(d) and r<d/2- d2l3- d/2 - d2>3 < r < d/2 - Vd; d/2 - Vd < r < d/2. 

Case 1: r = d/2 - 9,(d) and r > 0. In this range, Rd,r — ©(1) by Lemma A.1.2, and 

k = 0(1) by Exercise (9.42) of [GKP89]. Hence, Rd<r = Q(Vk). 

Case 2:   r = d/2 - o(d) and r <  d/2 - d2'3.    Let r = d/2 - d^2+6, hence £ = 

1/2- w(l/log</) and <5 > 1/6. As in the preceding case, Rd,r — Q(dll2~6) by Lemma A.1.2. 
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The logarithmic form of Stirling's approximation implies that In ra! = rain ra — n + 0(ln ra). 

Hence, 

lnj    j    =   dlnd-rliLr-(d-r)ln(d-r) + 0(\nd) 

=   dlnd- (d/2 - d6+ll2)hv(d/2 - ds+x>2) 

-(d/2 + ds+ll2) ln(d/2 + ds+x'2) + 0(ln d) 

=   d\n2 - (d/2 - ds+1^2)\n(l - 2ds~^2) 

-(d/2 + d5+1'2) ln(l + 2d6-1'2) + 0(ln d). 

The following pair of inequalities may be easily derived from the Taylor's series expansion 

ofln(l + z): 

x — x2/2 < ln(l + x) < x, x > 0, and 

-x - x2 < ln(l -x) <-x- x2/2, 0<x<-. 

These inequalities imply that for sufficiently large values of d, 

InW    >    dln2-(d/2-ds+1'2)(-2ds-V2-2d2S-1) 

-(d/2 + ds+1/2)(2ds~^2) + 0(ln d) 

=   din2 - 3d25 - 2d3S~^2 + 0(ln d) 

>   dln2-5d2S + 0(lnd), 

and 

ln(d)    <    dln2 - (d/2 - ds+1/2)(-2ds-V2 - Ad28-1) 

-(d/2 + d6+1^2)(2d5-^2 - 2d25-1) + 0(lnd) 

=   d\n2-d2S -2d36-1'2 + 0(lnd) 

<   d\n2-d2S + 0(\nd). 

Thus, Eo</<r (/) = Rd,rO = 2d-&^26^ where the 0(lnd) term has been absorbed into the 

Q(d2S) term (using the fact that S > 1/6). Hence, k = Q(d1~2S) and Rd,r = Q(Vk). 

Case 3: d/2 - d2^ < r < d/2 - Vd. Let r = d/2- dll2+s, 0 < S < 1/6. In this case, 

Rd,r = Q(d1'2-6) by Lemma A.1.2. Equation (9.98) of [GKP89] implies that 
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so multiplying by Rdtr gives 

oEÖ=ege--)=9(2--W), 
for k = dln2/(6lnd + 2d2S). Observe that k = ©(d1"25) since d2S = Ü(Slnd), 6>Q. Hence 

Rd,r = Q(Vk). 

Case 4: d/2 - Vd < r < d/2. In this case, Ädir = Q(Vd) by Lemma A.1.2. Together 

with Equation (9.98) of [GKP89], this implies that £o<Kr (f) = 0(2d). Hence, fc = 0(d) 

and RdtT = Q(Vk). Q 
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