
June 1993 Report No. STAN-CS-93-1477

Thesis

PB96-149257

Contingency-Tolerant Robot Motion
Planning and Control

by

Wonyun Choi

%'■'■■■:r-'. rxr
-' '■ .i.-.J.-.\.-^oijii) 4

Department of Computer Science

Stanford University

Stanford, California 94305

19970610 103

CONTINGENCY-TOLERANT

ROBOT MOTION

PLANNING AND CONTROL

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF MECHANICAL ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

By

Wonyun Choi

June 1993

© Copyright 1993 by Wonyun Choi

All Rights Reserved

u

Abstract

This dissertation describes a new approach and enabling techniques to build the

navigation system of a mobile robot operating in a partially known environment.

The main layout of this environment is known in advance, but the locations and

shapes of some smaller objects may not be known. Environments of this type include

shop-floors, clean rooms, offices, etc. The problem is to automatically determine how

the robot should move from one position to another without colliding with any of the

objects in the environment.

In order to be both efficient and robust, the navigation system should interweave a

planning component and a reaction component. The planning component should take

advantage of available prior knowledge to produce globally efficient plans. However,

it should be aware that knowledge may be incomplete and generate lesser-committed

plans that leave some freedom of choice at execution time to deal with contingencies.

The reaction component should organize the robot's behavior according to both the

ongoing plan and the sensory inputs.

The main idea underlying the approach proposed in this dissertation is to let the

reaction component share some global knowledge of the robot's environment with the

planning component. Based on this idea, we have developed a new type of navigation

system where the planning component generates a lesser-committed motion plan,

called a channel, represented by a sequence of parallelepipedic cells, and the reaction

component uses artificial potential fields to pull the robot toward its goal within the

channel, while repelling it away from unexpected obstacles.

Various arrangements of unexpected obstacles may be encountered during naviga-

tion. The treatment of these arrangements by the reaction component is organized in

three layers: channel navigation, local replanning, and global replanning. The most

common and simpler cases are processed by the first layer using less complex tech-

niques (tracking an artificial potential field), while less frequent but more complex

cases are handled by the other layers using more complex techniques (local/global

replanning).

This navigation system applies to mobile robots with holonomic, as well as non-

holonomic constraints. Three versions of the system have been implemented. They

have been experimented with simulated robots, a Robotworld system, and the GOFER

mobile robot, respectively. Experimental results are discussed in this report.

VI

Acknowledgements

First, I wish to thank my advisor, Professor Jean-Claude Latombe for his insight-

ful suggestions, encouragement and generous support throughout this research. This

research could never have been accomplished without his energetic guidance. I also

appreciate his endless efforts to create an ideal research atmosphere at the Com-

puter Science Robotics Laboratory. I thank other members of my reading committee,

Professors Mark Cutkosky, Oussama Khatib, and Larry Leifer, for serving on the

committee and for their thorough review.

I am indebted to my principal advisor in Mechanical Engineering Department,

Professor Leifer, for his support during the early years of my stay at Stanford. I am

further indebted to Professor Khatib for his pioneering work on Artificial Potential

Field method and his inspiring suggestions.

I am especially grateful to David Zhu, Mark Yim, Bryant Marks, Jim Slater, Yan

Martini, and Tsai-Yen Li, with whom I worked closely. David Zhu provided codes

for channel generation, and made constructive criticisms of this dissertation. Mark

Yim, Bryant Marks, and Jim Slater spent countless days and nights for designing

and building the mobile robot GOFER. Yan Martini and Tsai-Yen Li built the ex-

perimental setup on Robotworld, and provided codes for controlling the manipulation

robots in Robotworld.

This research has been partially funded by DARPA contract DAAA21-89-C0002

(Army). It also benefited from a grant of Digital Equipment Corporation and a grant

of CIFE (Center for Integrated Facility Engineering).

Finally, I would like to thank all of my family members for their support, devotion,

and patience. It is to my parent that I dedicate this dissertation.

vu

Contents

Abstract v

Acknowledgements vu

1 Introduction 1

1.1 Motivation 2

1.2 Navigation Problem 4

1.3 Approach 5

1.4 Technical Issues 9

1.4.1 Channel Definition and Generation 9

1.4.2 Design of Potential Functions 11

1.4.3 Local Replanning 12

1.4.4 Global Replanning 14

1.4.5 Summary 15

1.5 Example 15

1.6 Implementation 17

1.7 Related Work 18

1.7.1 "Historical" Systems 18

1.7.2 Major Research Issues 20

1.7.3 Dealing with Unexpected Obstacles 21

1.8 Summary of Results and Contributions 22

1.9 Thesis Outline 24

2 Channel Definition and Generation 26

viii

2.1 Configuration Space 26

2.2 Definition of a Channel 29

2.3 Construction of a Channel 30

2.4 Examples 31

3 Navigation in Channel 35

3.1 Channel Potential . . . 36

3.1.1 Intermediate Goals 36

3.1.2 Intermediate-Goal Potential 39

3.1.3 Formal Definition of Potential 39

3.2 Unexpected-Obstacle Potential 42

3.2.1 Principle • • ■ 42

3.2.2 Formal Definition 45

3.3 Computation of Motion Commands 47

3.4 Examples 48

4 Local Replanning 52

4.1 Detection of Local Minima 52

4.2 Escaping a Local Minimum 55

4.3 Local Path Planning 58

4.3.1 Presentation of Local Path Planning Method 59

4.3.2 Local Map Building 61

4.3.3 Computation of Potential 62

4.3.4 Grid Search 67

4.4 Valley-shaped Potential 70

4.4.1 Principle 70

4.4.2 Implementation 71

4.5 Examples 75

5 Global Replanning 77

5.1 Local Replanning Failures 77

5.2 Alternative Channel Generation 80

IX

5.3 Multi-cell Local Replanning 82

5.3.1 Detection of Obstruction 83

5.3.2 Multi-cell Backtracking 85

5.4 Examples 86

6 Computer Simulation and Experiments 88

6.1 Simulated Robot System 89

6.2 Robotworld Experiments 92

6.3 GOFER Experiments 96

6.3.1 Description of GOFER 96

6.3.2 Control of GOFER 98

6.3.3 Experimental Results 100

7 Conclusion 104

7.1 Summary of Contribution 104

7.2 Directions for Future Work 105

A Channel Navigation Examples 107

B GOFER Hardware 113

C GOFER Simulation Results 117

Bibliography 125

x

List of Tables

6.1 Navigation with sensing range errors 91

6.2 Navigation with various conic beam angles of sensor 91

6.3 Navigation with sensing range errors and various conic beam angles . 92

XI

List of Figures

1.1 Mobile robot navigation with incomplete knowledge 5

1.2 Information flow between the planning and reaction components ... 8

1.3 Architecture and techniques of the navigation system 15

1.4 Channel and navigation paths 16

2.1 Robot and workspace Cartesian frames 27

2.2 C-obstacles in 2 and 3 dimensions 28

2.3 Typical example of a workspace and a channel . 33

2.4 More channel examples 34

3.1 Intermediate goals 37

3.2 Channel potential 41

3.3 Detection of obstacles 43

3.4 Unexpected-obstacle potential and total potential 45

3.5 Shifting between intermediate goals in a channel 49

3.6 Navigation in channel 50

3.7 Detection of unexpected obstacles along a path 51

4.1 Typical local minimum 54

4.2 The robot gets trapped in a local minimum 56

4.3 Local minimum in 3-dimensional configuration space 57

4.4 Skeleton constructed by wavefront propagation 64

4.5 Computation of potential in the skeleton by wavefront propagation . 66

4.6 Potential propagation from the skeleton 68

Xll

4.7 Grid potential in a cell 69

4.8 Local path 69

4.9 Vector field induced by the valley potential 71

4.10 Spine of a valley projected on a plane 72

4.11 Effective segment and its shadow points 74

4.12 Escaping a local minimum 75

4.13 Navigation of the robot with two local minima 76

5.1 Local replanning failure due to channel obstruction 78

5.2 Local replanning failure due to locality of replanning 79

5.3 Alternative channel generation 81

5.4 Merging cells in alternative channel 82

5.5 Escaping a local minimum by the multi-cell replanning 87

6.1 Navigation system on NeXT computer 89

6.2 Robotworld setup 93

6.3 Navigation experiment with Robotworld 94

6.4 GOFER 97

6.5 Reduced oscillatory motion 99

6.6 Navigation of GOFER among Unexpected Obstacles 102

6.7 GOFER escaping a local minimum 103

A.l Robot paths with and without unexpected obstacles 108

A.2 Navigation of the robot shown in 2D and 3D 109

A.3 Robot paths in various 3-dimensional perspectives 112

B.l Closeup of hardware modules in GOFER 114

C.l Discrete turning radii and the corresponding indexes 118

C.2 Example 1: Navigation of GOFER with no unexpected obstacles ... 119

C.3 Example 1: Control history, the linear and angular velocity profile . . 120

C.4 Example 2: Navigation of GOFER with unexpected obstacles 121

C.5 Example 2: Control history, the linear and angular velocity profile . . 122

xui

C.6 Example 3: Escaping a local minimum created by unexpected obstacles 123

C.7 Example 3: Control history, the linear and angular velocity profile . . 124

xiv

Chapter 1

Introduction

During the past twenty years many advances have been made in mobile robotics. The

ultimate goal of such robots is to operate autonomously and achieve high-level goals

describing what should be done, rather than how to do it. Various application tasks

have been considered, for example, delivering mail, carrying luggage, guiding people,

surveilling offices, acquiring information. To accomplish such tasks successfully, the

very basic thing that a robot must be able to do is to navigate reliably from one

location to another. Yet, reliable navigation remains a standing problem. This is due

to the fact that real world is full of uncertainties and contingencies that are difficult to

model meaningfully, e.g., motion control is imperfect, sensors are inaccurate and/or

may not work properly, knowledge of the world is incomplete. Such imperfections

yield events that the robot may not handle appropriately or even recognize. It is

definitely not reasonable to expect that a robot can face all sorts of unexpected events

(humans certainly can't). Nevertheless, for virtually any environment, it should be

possible to define a finite set of event types covering all events that may reasonably

occur. In such an environment, a reliable robot is one that behaves appropriately

when these events occur. Notice that these events are "expected" in the sense that

it is known in advance that they may occur. But they are "unexpected" in the sense

that one cannot predict when and/or how they will occur.

In this dissertation, we consider the case of an office-assistant mobile robot.1

1 Office robots are only used here as a source of inspiration and an illustrative example. Most of

Clearly, such a robot cannot have or maintain complete knowledge of its workspace.

Hence, a major type of events is caused by "unexpected obstacles," that is, obstacles

which are not part of the robot's workspace model. In this dissertation, we focus on

handling this type of events. We address the following question: EXPECTING THE

EXISTENCE OF UNEXPECTED OBSTACLES, HOW CAN THE NAVIGATION SYSTEM OF

A MOBILE ROBOT EFFICIENTLY DEAL WITH THESE OBSTACLES?

1.1 Motivation

The problem of planning and executing motions in an incompletely known envi-

ronment is an important one in robotics. It occurs in various applications such as

transportation tasks in shop-floors, office environments, clean rooms and construction

sites. In all these workspaces, substantial knowledge exists in advance; but it is un-

realistic or too constraining to assume that this knowledge is accurate and complete.

In fact, there exist very few applications where prior knowledge is either complete,

or totally nonexistent. Incomplete knowledge requires the navigation system to com-

bine planning and reactive capabilities. This combination is under active study in

the artificial intelligence community [Fir87, GL87, Kae86], but often at a high level

of task performance. So far, it has made few inroads at the robot motion planning

and control level.

Most existing robot navigation systems fall into either one of two classes:

• Systems of the first class plan a navigation path assuming complete knowledge

and then execute the path. If a significant difference with the planning model

is perceived during execution, they stop the motion and replan a path using

the additional knowledge acquired by the sensors. Most path planners (e.g.,

[BL91, BLP85, LPW79, SS83]) can be used to build navigation systems of this

class.

The drawbacks of these systems are:

our work can be extended to other indoor robots and, to a lesser extent, outdoor robots.

- They produce over-constrained plans that may cause frequent replanning op-

erations.

- They require dedicating significant processing power to check the difference

between the planning model and the real world.

Moreover, uncertainties in sensing and control make it difficult to decide whether

a difference is significant enough to terminate a path and replan a new one.

• Systems of the second class lie at the other extreme. They assume no prior

knowledge. They pilot the robot using only local information provided by

the sensors and/or the workspace model. Examples of such systems include

potential-field-based controllers [Kha86] and boundary-following controllers

[LS86].

Because they use only local information, these systems either lack completeness

(i.e., they may fail even if the goal is reachable), or may often be very inefficient.

Potential-field-based systems, which follow the steepest descent of a potential

field, may get trapped into obstacle concavities. Boundary-following systems,

which track the contours of the obstacles, may explore a large subset of the

workspace at every motion.

These systems lack a planning component to take advantage of the available

prior knowledge and guide the global behavior of the robot.

Neither of these two approaches alone allows a mobile robot to efficiently navigate

in an incompletely known environment. In this thesis we present a new approach

to robot navigation dealing with unexpected obstacles; we describe an implemented

system based on this approach; and we show experimental results obtained with

this system. Our navigation approach yields a hierarchical architecture interweaving

planning and reaction components. We will outline our approach and architecture

into more detail later in this introductory chapter. First, however, we present more

precisely the navigation problem considered in this dissertation.

1.2 Navigation Problem

We address the problem of mobile robot navigation in an incompletely known

workspace. This environment contains two types of obstacles: those which are part of

the robot's model (i.e., the robot knows the geometry and position of these obstacles),

and those which aren't. The former are called known obstacles. The latter are called

unexpected obstacles, though their existence is expected. Known obstacles are known

with sufficient accuracy to allow gross navigation. Over planning/execution cycles

unknown obstacles may become known obstacles through some learning process, but

such a learning process is not studied here.

Typically, known obstacles are large, fixed, or hardly movable. In an office en-

vironment, they include the building walls as well as large pieces of furniture, e.g.,

desks, copying machines. Unexpected obstacles are usually small and easily movable,

e.g., chairs, trash bins. It is not completely ruled out, however, that some unexpected

obstacles are large.

All obstacles, both known and unexpected, are stationary. Later in this report,

we will discuss how one may try to relax this assumption.

The mobile robot is equipped with sensors (e.g., proximity range sensors) that

can detect obstacles located within some limited distance. Hence, these sensors only

provide local information.

The problem for the robot is to reliably and efficiently navigate from one given

location to another. As much as possible, the robot should use its partial knowledge of

the workspace to avoid wandering around. Yet, it should be reactive to the unexpected

obstacles and not collide with them. As much as possible, it must avoid stopping (even

for short amounts of time) when unexpected obstacles bar its route.

Although sensory data are not perfect, we assume that they allow the robot to

locate itself at any time with enough precision to perform the navigation and make the

right decisions. Without this assumption, the robot system would have to plan motion

strategies guaranteeing that enough sensory information will be collected at execution

Figure 1.1: Mobile robot navigation with incomplete knowledge

time to determine the robot's location with sufficient precision. The generation of such

strategies in the absence of unexpected obstacles is explored in [TL92] and [LL92]. It

is not considered here. In other words, collision avoidance and motion efficiency are

our only concerns in this thesis.

Figure 1.1 illustrates the above problem with an example. Known obstacles are

shown black, unexpected ones are displayed in grey. The figure shows an acceptable

navigation path followed by the robot between two given locations, I and G.

1.3 Approach

A navigation system that operates with incomplete knowledge should interweave a

planning component and a reaction component. The planning component should

take advantage of available knowledge to produce globally efficient plans to achieve

specified goals. However, it should be aware that knowledge is incomplete in order to

generate lesser-committed motion plans, i.e., plans that leave some freedom of choice

at execution time. The reaction component should organize the robot's behavior

according to both the ongoing plan and the sensory inputs.

The main idea underlying our approach is to let the reaction component share

some global knowledge of the robot's environment with the planning component.

This knowledge is contained in the lesser-committed plan generated by the planning

component. In more traditional navigation approaches, the planning and reaction

components are organized sequentially in such a way that the global prior knowledge

is exclusively accessed by the planning component for creating motion plans. The

reaction component's only source of information consists of the local information

provided by the sensors. The result is that motion changes caused by this information

are decided independently of any desired global behavior, and therefore may often

be inconsistent with it. In our approach, the reaction component has access to some

global knowledge contained in the lesser-committed plan. This knowledge has been

"compiled" by the planning component in order to make it usable in real time by

the reaction component. The reaction component determines the appropriate robot's

reaction to unexpected obstacles detected by sensors in the context of the compiled

global knowledge. Moreover, this approach frees the planning component from having

to arbitrarily select a specific motion path that unexpected obstacles could rapidly

make obsolete.

But:

• What is a lesser-committed motion plan?

• How can a reaction system make use of it?

Most of this report is aimed at giving precise answers to those two questions. Let

us just say here that a lesser-committed plan is a continuous set of contiguous paths

that are free of collisions with the known obstacles. We call such a set a channel.2

There is no guarantee that a channel does not intersect unexpected obstacles. But, if

2Actually, a channel is the main form of a lesser-committed plan used in our navigation system,
but it is not the only one.

these obstacles are small (as should often be the case), it is likely to contain some paths

that are free of collision with any of them. In other words, the channel leaves some

freedom of choice at execution time, while providing global information about what

is likely to be a suitable direction of motion. Reaction is organized in a channel by

using artificial potential fields that pull the robot toward its goal within the channel,

while repelling it away from the unexpected obstacles. At every instant, the robot

is commanded to move along the negated gradient of the total potential field, as if

it was a particle under the influence of this field [Kha86]. Figure 1.2 is a simplified

diagram of the information flow between the planning and the reaction components.

However, various situations may be encountered. For instance, though most un-

known obstacles are likely to be small and scattered, a number of small obstacles

may have been gathered together. Big unexpected obstacles are not impossible, ei-

ther. This may seriously complicate reactive motion in a channel, for example by

creating local minima of the artificial potential field. Without global knowledge of

the unexpected obstacles, such a contingency cannot be fully eliminated. Thus, lo-

cal replanning may be needed to generate refined lesser-committed plans within the

current channel.3 It cannot be excluded either that unexpected obstacles completely

obstruct a channel (for example, such an obstacle may be a big piece of furniture

temporarily pushed across a corridor). Then it may become necessary to re-plan a

new channel

Obviously, all situations are not equally likely. In a typical office environment,

unexpected obstacles are usually small and sparsely scattered around. Less often,

but still quite frequently, some are gathered together (e.g., chairs). More rarely, big

unexpected obstacles obstruct passageways. Although the navigation system should

handle all these situations, it should not waste time hypothesizing that the worst

situation occurs at every instant. Thus:

• How should computation be organized so that the most common situations are

handled as quickly as possible?

3We will see that, in our navigation system, these refined plans are not constructed as channels,
though they could be.

c TASK
)

<success, failure> <start, goal>

LU

<
X
Ü

planning component)

Channel Generation

<request
for

channel>

o
rH
Ö
V

reaction component)

Navigation Function
■H

MAP

<sensing feedback> ^^-^" **-**>j<motion command>

(RoboP)

<local sensing>

A
0)
en

o

(0
-H
4J
M
(0 a v

<motion>

WORLD

Figure 1.2: Information flow between the planning and reaction components

Another large part of this thesis is devoted to answering this question (including

the problem of recognizing situations). Our approach here is to organize both planning

and reaction into a hierarchy of modules interweaving their execution. The highest

layer treats the most common situations efficiently Alone, it could also recover

from any contingency whose occurrence is expected, but not always efficiently. The

lower layers provide more efficient treatment of the less common contingencies. This

architecture provides opportunities for incremental performance improvements.

A navigation system based on the above approach can be made complete under

the assumptions that knowledge of known obstacles is accurate, all obstacles are

stationary and sensing is perfect. Completeness means that, if it is possible to attain

the goal, the robot will ultimately find a path; otherwise it will report failure. Of

course, completeness also depends on the particular techniques embedded in this

architecture.

1.4 Technical Issues

The above approach raises a variety of technical issues. This section briefly analyzes

these issues. The following chapters will address them in detail.

1.4.1 Channel Definition and Generation

In an partially known environment, a path defining the continuous sequence of posi-

tions and orientations of the robot is an overly constrained motion plan to go from

one location to another. Indeed, there usually exist many different paths connecting

the two locations which avoid collision with the known obstacles. Some of these paths

may lead the robot toward unexpected obstacles. Others may not. But, at planning

time, there is no way to know which paths are good and which ones are not. Rather

than generating a single path, we propose that the planner constructs a channel, i.e.,

a set of contiguous paths connecting the initial and goal locations without collision

with the known obstacles.

However, the definition of a channel as a set of contiguous paths is not sufficient

to characterize a satisfactory channel. Indeed, this loose definition and the least-

commitment arguments aimed at giving maximal freedom of choice to the reaction

component would simply lead to considering the whole free space (the set of robot

configurations not colliding with any known obstacle) as a channel. But, in general,

this set has a complex geometry and topology, and it would not be easy for the

reaction component to exploit it in real time. Arbitrarily simplifying the geometry of

a channel is not the answer either.

We have identified three criteria to guide the choice of the general geometry of a

channel:

1. This geometry should yield efficient channel generation (i.e., global planning).

2. It should yield large channels leaving significant freedom to the reaction

component.4

3. It should allow fast computation of motion commands by the reaction compo-

nent.

These criteria led us to define a channel as a sequence of adjacent parallelepipedic

cells in the robot's configuration space.5 As we will see, artificial potential fields can

easily be defined and computed in a channel having such geometry. Moreover, in a

low-dimensional configuration space (which is the case for a mobile robot), such a

channel can be efficiently generated by an approximate cell decomposition planning

method [Lat91]. Actually, when it is used to plan a path, such a method first produces

a channel and then extracts a path from this channel. In contrast, other planning

approaches, such as roadmap and potential-field planning approaches [Lat91], directly

generate a single path. Using them here would require us to add a postprocessing step

transforming the generated path into a channel. An exact cell decomposition method

4Because we do not require a channel to leave maximal freedom to the reaction component, we
call it a "lesser-committed plan", rather than a least-committed plan.

5We recall that the configuration of a robot is a list parameters representing the position and
orientation of the robot. In the case of a non-circular robot, it consists of three parameters (two for
the robot's position, one for its orientation). Then the configuration space is three-dimensional. See
Chapter 2 for more detail.

10

would in general produce larger channels than approximate cell decomposition. But

the more complex geometry of these channels would conflict with the third criterion

above. On the other hand, the loss of free space resulting from the approximate

decomposition is not dramatic for gross navigation and is acceptable as long as the

robot is not required to make contact (e.g., docking) with obstacles. Furthermore,

unlike exact cell decomposition, approximate cell decomposition allows us to easily

take some uncertainty in robot control into account, e.g., by imposing a minimal-size

requirement on both the cells and the intersection of any two consecutive cells. This

is a major practical advantage in order to run experiments with real robots.

1.4.2 Design of Potential Functions

A channel defines a continuous set of paths. The actual path followed by the robot

is selected by the reaction component. This component computes an artificial po-

tential field over the channel and makes the robot track the negated gradient of this

potential. The artificial potential must depend on the specific shape of the planned

channel in order to produce motion commands that are consistent with the global

plan represented by this channel. It must also depend on the sensed unexpected

obstacles to provide needed reaction to these obstacles. The artificial potential and

its gradient are computed on-line while the robot is moving. At every instant, the

gradient determines the instantaneous evolution of the specific path followed by the

robot.

The potential field must achieve three functions:

1. Drive the robot toward the goal.

2. Keep the robot within the channel.

3. Avoid collision with unexpected obstacles.

Furthermore, as much as possible, the potential field should have no local minima

where the robot could get stuck.

11

These considerations led us to define the potential function as a weighed sum of

three elementary potentials:

• An intermediate-goal potential attracts the robot through intermediate goal con-

figurations chosen along the channel. It is intended to make the robot progress

toward the goal.

• A channel-wall potential repels the robot away from the boundary of the channel.

To prevent the robot from moving out of the channel, the magnitude of this

potential increases to infinity as the distance to the boundary tends to zero.

To facilitate navigation in the channel, this potential vanishes beyond some

distance of the boundary. This distance is selected in each cell of the channel

according to the size of this cell.

• An unexpected-obstacle potential repels the robot away from the sensed un-

expected obstacles. Its magnitude increases toward infinity when the sensed

distance to an unexpected obstacles tends toward zero. It vanishes when the

distance to unexpected obstacles is large enough.

The intermediate-goal potential and the channel-wall potential are designed such

that their combination, the channel potential, is free of local minima. Thus, when

there are no unexpected obstacles lying in a channel, the robot navigates through the

channel without a hitch. In the presence of non-expected obstacles, the addition of

the unexpected-obstacle potential does no longer guarantee that this is true.

1.4.3 Local Replanning

Sensing unexpected obstacles causes a repulsive component (the unexpected-obstacle

potential) to be added to the potential function. The purpose of adding this repulsive

component is to make the robot navigate around these obstacles. However, as men-

tioned above, it may result in a total potential function that has local minima, and

there seems to be no ways to prevent this from happening. Fortunately, as long as the

unexpected obstacles are small and sparsely scattered, the attraction wells of these

12

minima (if any) are small, so that it is rather unlikely that the robot gets trapped

into any one of them.

Nevertheless, it would not be reasonable to completely disregard local minima.

First, even if the attraction domain of a local minimum is small, the robot may

nevertheless enter it. Second, several small unexpected obstacles close to each other

(e.g., two chairs) or a large one may form a trap and produce a local minimum with

a larger attraction basin. One way to deal with such a minimum is to replan a

completely new channel connecting the robot's current location to the goal using the

detected unexpected obstacles as additional world knowledge. This could be done

using the previous planner, but would often be too time-consuming. An alternative

is to take advantage of the existing channel and to locally refine it into a smaller one

not containing the detected unexpected obstacles, if one such refined channel exists.

This approach, however, has two main drawbacks:

• It heavily relies on sensing being accurate. Noise in sensing and thereby imper-

fect models may result in an incorrect refined channel. This becomes especially

critical in cluttered areas of the workspace.

• Channel refinement tends to yield narrow channels. In such channels, potential-

field-based navigation is difficult, because the channel-wall repulsive potential

is permanently active causing the robot to oscillate about its main route.

Instead, we propose to use a fast potential-field planning method (namely, the

method described in [BL91]) to generate a local path in the channel among the un-

expected obstacles. This path is constructed in the cell (exceptionally, in two con-

secutive cells) of the channel where the robot is currently located and connects the

current location of the robot to the next cell (hence, the term "local path"). Because

planning is restricted to a small area, it can be made extremely fast. The generated

local path, however, may be too committed a plan. We soften this commitment by

transforming the path into a valley-shaped potential that is added to the previous

potentials. Intuitively, this potential is shaped like the valley of a river that would

follow the path. Hence, it does not constrain the robot to exactly follow the generated

local path.

13

Above, we did not mention one important issue: How are local minima detected?

Typically, a robot never exactly attains a local minimum. Because of discretized con-

trol, it tends to loop around it. Local minima can thus be detected when the gradient

of the potential field abruptly changes direction. This may be too conservative a test,

but local replanning is so fast that it is preferable to detect some wrong local minima

than to let the robot waste time at any actual minimum.

1.4.4 Global Replanning

To get a reliable navigation system, big unexpected obstacles that completely obstruct

a channel cannot be totally excluded. Such obstacles result in a local minima that

the robot cannot miss, nor escape by staying in the channel. However, when such a

local minimum is attained, only a subset of the corresponding obstacle has usually

been sensed. Hence, there is no way for the robot to immediately recognize that the

channel is fully obstructed.

The robot escapes such a minimum as any other local minimum. It then naturally

falls into a second minimum that it tries to escape again, and so on, until enough

sensory information has been accumulated that local replanning fails to find a path.

Then, the navigation system calls back the original planner to construct a new channel

connecting the current robot location to the goal one with the detected unexpected

obstacles added to the world model. If no new channel can be found, the navigation

system reports global failure.

The number of local minima successively encountered before a new channel is

generated depends on the size of the channel cell and the obstructing obstacle, and

on the robot's sensors. The more local the sensors, the longer it takes to recognize

obstruction. In environments where channel obstruction is frequent, it could be more

efficient to skip local replanning and, instead, directly call back the channel planner

whenever a local minimum is encountered.

14

ARCHITECTURE TECHNIQUE

f Channel Planning J

(Navigation in Channel)

f Local Replanning)

f Global Replanning j

Approximate Cell Decomposition

Potential Field Tracking

Grid Potential Planning

Figure 1.3: Architecture and techniques of the navigation system

1.4.5 Summary

Figure 1.3 shows the architecture of the proposed navigation system. In addition to

the main planner, it has three layers, channel navigation, local replanning, and global

replanning. Each layer handles the navigation problem at a different complexity.

The most common and simpler cases (navigation in channel) are processed by the

less complex technique (tracking an artificial potential field), while less frequent but

more complex cases (escaping local minima) are handled by more complex techniques

(local/global replanning).

1.5 Example

Figure 1.4 shows several paths of a robot generated by our navigation system.

(a) shows a typical workspace with known obstacles (shown black), and the initial

and goal configurations of the robot (I and G).

(b) shows a 3-dimensional channel, where the vertical dimension represents the

15

T

]

(b)

1
*Tt IE

I
(d)

jd$f89$$fa 1
^ß^ «a»

l|
1

(e) (0

Figure 1.4: Channel and navigation paths

16

robot's orientation. In this simple channel, every parallelepipedic cell extends over

the interval [0,27r], allowing the robot to take any orientation.

(c) shows the projection of the channel in the 2-dimensional workspace. When

the center of the robot lies in this channel, the robot collides with none of the known

obstacles, whatever its orientation.

(d) shows the path of the robot when it navigates in the channel with no unex-

pected obstacles.

(e) shows the path of the robot when it navigates in the channel with unexpected

obstacles (shown grey) not causing any local minimum.

(f) shows the path of the robot when it navigates in the channel with unexpected

obstacles causing local minima, which are escaped by local replanning.

1.6 Implementation

Our navigation system has been tested and verified on a computer-simulated robot

and two real robot systems, Robotworld and GOFER.

A computer simulation system was developed on NeXT computer using C and

LISP programming languages. It has a graphical user interface, and was used mainly

for the algorithm development/verification and for studying the sensitivity of the

system to various parameters and setting the values of these parameters.

Robotworld was used to test the navigation system for a robot that can translate

and rotate simultaneously, without constraint, on its planar workspace. Robotworld

consists of several manipulation robots. These robots, supported by electric magnets

and air-cushion, translate under a planar ceiling. Combined with its gripper, each

manipulation robot can provide three-degree-of-freedom motions (translation and ro-

tation) in the plane for an object it manipulates.6 One of the robots holds an object

with its gripper and moves it in a planar workspace crowded with obstacles. Both

6In fact, the gripper can also provide an additional degree of freedom (vertical motion), but we
do not use it for navigation experiments.

17

planning and reaction component of the navigation system runs on a remote host com-

puter, and the motion commands for the robot are sent to the Robotworld's controller

via a serial line interface. The description of both known and unknown obstacles is

specified to the host computer, but only the information about known obstacles is

provided to the planning component for the generation of the channel. The informa-

tion about unknown obstacles is not directly accessible to the reaction component;

but it is provided during navigation through computer-simulated proximity sensors

running simultaneously on the host computer.

GOFER was used to demonstrate the navigation system in a real office-like en-

vironment. GOFER is a mobile robot developed in the Computer Science Robotics

Laboratory of Stanford University. It consists of a three-wheeled two-degrees-of-

freedom mobile base, a ring of infra-red proximity sensors, a laser-camera ranging

system, touch sensors and on-board computer. Like a car, GOFER is subject to

non-holonomic constraints restricting its linear velocity to the direction its wheels are

aligned with. Unlike a car, however, GOFER can turn with arbitrary turning-radii

(including zero). These kinematic constraints are taken into account by the reac-

tion component (but not by the planning component) to generate of smooth motion

commands. The planning component of the navigation system runs on an off-board

computer and the reaction component runs on the on-board computer. The descrip-

tion of the planned channel is sent to the GOFER's on-board computer through a

radio modem. For the experiments, we used infra-red proximity sensors to detect

obstacles.

1.7 Related Work

1.7.1 "Historical" Systems

Research on mobile robots began in the late sixties with the Stanford Research Insti-

tute's pioneering work. Two versions of SHAKEY were built in 1968 and 1971, and

they were used as a tool for research in planning and learning [Nil69].

18

In the late seventies, Moravec started his work on mobile robots with the Stanford

Cart [Mor77]. The Cart was a minimal computer-controlled mobile platform. It used

stereo-vision to locate objects and deduce its own motion. In the early eighties,

the Stanford Mobile Robot, also known as MOBI, was used as a testbed for world

modeling and navigation with stereo-vision [KTB89]. Since the late eighties, a series

of mobile robots called GOFER have been developed for indoor automation [CCL+90].

Their main goal is to navigate in an office environment and perform tasks such as

delivering small objects, guiding/following people and surveilling offices.

Other historical mobile robot projects were developed at various organizations.

The HILARE project started in the late seventies at LAAS (Toulouse) [Gir79].

The project goal was to perform general research in robot perception and planning.

Moravec continued his work at Carnegie-Mellon University with a more capable mo-

bile robot, the CMU Rover [Mor83]. Since 1985, the MIT Mobile Robot group has

advocated a radically different architecture for autonomous mobile robots [Bro86].

They build a reactive architecture, called "Subsumption architecture", by stacking

up layers of primitive goal-achieving behaviors formed from precompiled sensor to

actuator transformations. This new approach has been implemented on a group of

MIT robots, called MOBOTs, such as Allen, Hebert, Tom and Jerry [FB88].

Some mobile robot projects explicitly focused on navigation in outdoor environ-

ments. A series of outdoor robots, including NAVLAB, were developed at Carnegie-

Mellon University. NAVLAB was built based on a commercial van chassis, with

hydraulic drive and electric steering, and was used as a testbed for integrating per-

ception and navigation capabilities [THTS88]. The Mars Rover project at Jet Propul-

sion Laboratory aimed at developing the capabilities in machine intelligence systems

required for a semi-autonomous vehicle to be used in remote planetary exploration

[0'H73, Tho77, Ran86]. There are many other projects dealing with autonomous

mobile robots, and additional references can be found in [SE87, CT90].

19

1.7.2 Major Research Issues

In spite of the diversity of the configurations and objectives of the mobile robots in

these projects, all autonomous mobile robots must perform certain common functions.

For very simple tasks, motion control and position localization functions are sufficient.

Robots performing sophisticated tasks must also be able to perceive their surrounding

environment, match sensing data with an internal world model, and build maps. To

perform successfully in the real world, they must also deal with uncertainties in

sensing and control. The various mobile robot projects contributed in identifying key

navigation problems, and in producing approaches to solve such basic problems as

localization, world-modeling/map-building, and dealing with uncertainties.

The localization problem is to determine the robot's position in some reference

coordinate frame. For example, this may be necessary to determine the remaining dis-

tance to the goal or to construct a map of an incompletely known environment. Com-

mon techniques include using reference beacons [CL85], inertial navigation systems

[Tho77], dead reckoning [Nil69], landmark recognition [Har85], and map matching

[LK85].

World-modeling/map-building aims at constructing and maintaining a spatial de-

scription of the robot's environment (or updating a priori knowledge) using sensory

data. For example, path planning involves the use of a map. The level of detail repre-

sented in a map is constrained not only by the available sensing accuracy, but also by

considerations of cost such as storage requirements and processing complexity. Ex-

isting techniques use stochastic representations [SSC88], hierarchical representations

[Elf85], symbolic representations [KTB87] and combinations of these [Gir84].

Uncertainty in mobile robot navigation exists in sensing, control, and prior knowl-

edge. Dealing with it is closely coupled with localization and map-building. Many

techniques including Kaiman filtering [May79] and multi-sensor integration (sensory

data fusion) [DW87] are used to reduce uncertainty [AF89, Cro89]. [LL92] presents a

guaranteed navigation strategy under both sensing and control uncertainties. [TL92]

describes navigation strategies to reduce sensing uncertainties.

20

Besides the above basic problems, mobile robot navigation involves other prob-

lems such as kinematics, motion control and trajectory generation. However, these

problems tend to be tightly coupled with the specific configuration of a robot, and

they are beyond the scope of our concern.

1.7.3 Dealing with Unexpected Obstacles

Approaches to robot navigation with no prior knowledge have been proposed by

Khatib [Kha86] and Lumelsky [LS86]. The only available information assumed by

these approaches is the robot's own configuration at any given moment, the goal

configuration and the obstacles detected by the robot's sensors.

The potential field method proposed by Khatib places an artificial repulsive po-

tential field around the obstacles and an attractive potential field at the goal. The

motion along the steepest descent of the total potential field takes the robot towards

the goal while avoiding obstacles. This method has been demonstrated to work well

in practice when the environment is not densely occupied by obstacles. However,

the total potential may have local minima, and the robot may get trapped at one

of them. This shortcoming comes from the fact that the method relies only on local

information about obstacles.

The boundary-following method proposed by Lumelsky uses three basic types of

movements of the robot: move towards the goal on a straight line; move along the

obstacle boundary in a predetermined direction (e.g., left or right); stop at the goal.

Under this method, the robot moves towards its goal until the path is blocked by

an obstacle, and then it moves around the obstacle boundary until the path towards

the goal is clear. The method keeps track of when and where the robot starts to

follow/leave the boundaries of obstacles, and uses the information in order to prevent

infinite loops around the obstacles. Unlike the potential field method, this method

is guaranteed to converge toward the goal. However, the path traveled by the robot

tends to be far from optimal because the robot may have to explore large subsets of

the obstacle boundaries on its way to the goal.

21

Numerous attempts have been made to improve the performance of these two

basic approaches [Ark87, Kro84, KV89, Sla90]. Yet, they showed only marginal suc-

cesses in gross navigation. Successful gross navigation requires not only knowledge of

the robot's local surroundings, but also knowledge about places that are beyond the

robot's local surroundings. The two levels of knowledge (i.e., local and global knowl-

edge) lead to a natural division of the navigation system into two smaller interacting

components: global planning and local reaction.

An approach combining a planning and a reaction component has previously been

proposed by Krogh and Thorpe [KT86]. In this approach, a sequence of critical points

along a globally desirable path are first computed. Potential fields are then used for

local feedback to drive the robot along a collision-free path using the critical points

as subgoals. At execution time, the navigation system has no model (similar to our

channel) of the expected free space. Hence, it does not use a potential depending on

this knowledge. As a result, it may run into trouble when critical points are occupied

or hidden by unexpected obstacles. Accidental arrangements of unexpected obstacles

can also take the robot far away from the desirable path.

The channel navigation technique described in this dissertation is an extension of

this approach. The multi-layered architecture of our navigation system is similar to

the subsumption architecture in a sense that each layer deals the event at a different

level of competence. The difference is that the layers in our system architecture make

use of the global information as well as the local information of the robot's workspace,

and thus ensure better global behavior.

1.8 Summary of Results and Contributions

This thesis investigates mobile robot navigation in a stationary indoor environment

in the presence of unexpected obstacles. It proposes the design of a new navigation

system that interweaves planning and reaction components. This system has been

implemented. Experimentation has been conducted successfully with simulated and

real robots.

22

Our results bring two levels of contribution: (1) the system architecture itself and

(2) the planning/reaction techniques embedded in this architecture.

The proposed architecture interweaves planning and reaction. In itself, this idea

is not new. It has previously been developed in the artificial intelligence community,

but for high levels of reasoning in task performance. It has not yet been thoroughly

investigated at the robot navigation level, where geometry plays a key role. Our

combination of planning and reaction is based on two new key ideas:

• The reaction component must have some global knowledge of the robot's

workspace in order to react appropriately to unexpected obstacle events. This

knowledge can be provided in the form of a lesser-committed motion plan gener-

ated by a planning component aware that unexpected obstacles may be present

in the workspace. In our system, lesser-committed plans take two forms: chan-

nels made up of adjacent parallelepipedic cells and valley-shaped potentials.

• Multiple layers of treatment deal with classes of events according to their ex-

pected frequency. The top layer can treat alone all the events that the lower

levels are intended for. The lower levels only provide more efficient treatment.

This architecture makes it possible to introduce a reliable function (treatment

of unexpected obstacles in our case) by building the top layer. This function

can then be made more efficient by adding new layers. Our system consists of

three layers: channel planning, local replanning and global replanning.

At the technical level, our work brings the following contributions:

• It introduces the concept of a channel as a lesser-commitment motion plan, and

instantiates this concept as a sequence of parallelepipedic cells that can easily

be generated using an approximate cell decomposition planning method.

• It defines potential field functions computed on-line to navigate in a channel to-

ward the goal and simultaneously react to unexpected obstacles. The potential

is guaranteed to be local-minima free when there are no unexpected obstacles.

23

• It presents a new way to escape local minima on-line by replanning a local path

and integrating it in the current potential field function using the notion of a

valley-shaped potential. This technique is general and can be used in other

potential-field-based navigation systems.

These contributions are supported by experiments with the implemented naviga-

tion system.

1.9 Thesis Outline

The rest of this thesis is organized as follows:

Chapter 2 describes the internal structure of a channel and its generation from

the given geometric model of the robot environment.

Chapter 3 defines a local-minima-free potential field in the channel, when there is

no unexpected obstacle. It extends this potential field to the case with unexpected

obstacles. It shows how this potential is used to compute the motion commands

during navigation.

In Chapters 4 and 5 we discuss local replanning and global replanning. Chapter

4 addresses the problem of recognizing local minima and proposes a local planning

technique to escape them within a cell of the channel. Chapter 5 extends this tech-

nique to multiple cells to deal with the case where local replanning fails to find an

escape route within a single cell. It also presents a global replanning method to deal

with the case where a channel is completely obstructed by unexpected obstacles.

In Chapter 6 we present the experiments done with our navigation system. This

chapter describes three implementations: computer simulation, Robotworld, and

GOFER. It discusses, based on the results with the simulated robot system, the

sensitivity of the navigation system to sensing uncertainties. Also, in the case of the

mobile robot GOFER, it discusses the impact of nonholonomic kinematic constraints

on the navigation system.

Chapter 7 summarizes our work, comments on the limitations of the approach

24

and techniques presented in this dissertation, proposes a number of extensions to the

current work, and provides a guide/suggestion for future research.

Appendices consists of three parts. Appendix A shows two additional examples

of navigation in channel, which is described in Chapter 3. Appendix B describes

GOFER's hardware in detail. Appendix C shows three simulation results of GOFER

navigation in the presence of no unexpected obstacles, unexpected obstacles with no

local minima, and unexpected obstacles with a local minimum, respectively.

25

Chapter 2

Channel Definition and

Generation

The planning component of our navigation system generates a channel, i.e., a set

of contiguous paths, using the global information of known obstacles. A channel

provides guidance for the robot from the initial to the goal configuration, while leaving

significant freedom of choice to the reaction component to deal with unexpected

obstacles, and allowing the fast computation of motion commands. In this chapter

we instantiate this concept into a specific representation and we present a method for

computing it.

2.1 Configuration Space

Let us denote the robot by A and the workspace by W. We attach a Cartesian frame

TA to A and a Cartesian frame Fw to W. See Figure 2.1. A configuration q of

A is a specification of the position and orientation of TA with respect to JVv- The

configuration space of A, denoted by C, is the set of all the possible configurations

of A. The subset of W occupied by A at configuration q is denoted by .4(g).

Throughout this report, we model the robot as a two-dimensional object moving

in a planar workspace W isomorphic to R2. This corresponds to projecting both the

26

Figure 2.1: Robot and workspace Cartesian frames

real robot and the obstacles into the horizontal ground. Therefore, C is isomorphic to

either R2 (if A can only translate or if it is a disc) or R2 x S1, where Sl is the unit

circle (if A can both translate and rotate). However, since the concepts underlying

our approach are more general,1 we keep our presentation as independent as possible

from these assumptions. In general, C is a manifold of some dimension m.

In addition to A, W contains known stationary obstacles denoted by Bi,i =

1,..., n. Each obstacle 23,- maps into C to the subset CBi of configurations where A

intersects B{. This subset is defined by [LP83, Lat91]:

CBi = {q 6 C | A(q) n B{ # 0}.

It is called a C-obstacle. Figure 2.2 shows C-obstacles corresponding to a rectangular

obstacle Bi and a triangular robot A. In (a), A has a fixed orientation, and the C-

obstacle is a polygon in the robot's 2-dimensional configuration space. In (b), the

orientation 6 of A can vary in [0,27r], and the C-obstacle is a volume bounded by

patches of ruled surfaces in the robot's 3-dimensional configuration space.

The C-obstacle region is CB = U"=i CBi. The complement to the C-obstacle region

JFor example, the same approach could be extended to a six-degree-of-freedom free-flying plat-
form or to an articulated manipulator arm.

27

(a)

(b)

Figure 2.2: C-obstacles in 2 and 3 dimensions

28

in C is called the free space and is denoted by Cfree:

Cfree = C\CB.

A path of the robot A from the initial configuration qinit to the goal configuration

qgoal is a continuous map r : [0,1] ->• C, with r(0) = qinit and r(l) = qgoal. A

collision-free path is any continuous map T : [0,1] —»• Cfree.

We will introduce unexpected obstacles later.

2.2 Definition of a Channel

We parametrize a configuration q € C by a list of m generalized coordinates

(9n---)9m) m a Cartesian space, where m is the dimension of the configuration

space manifold. We assume, without practical loss of generality, that the range of

possible values for the q/s are closed intervals [q?in, q™ax\. Hence, we represent C as

a closed rectangloid:

[Ql >9l J X ••• X [Qm ,Qm JCK .

For our mobile robot example, if C = R2, we take q = (x,y), with x and y

being the coordinates of the origin 04 of TA with respect to Tyy. If C = R2 x S1,

we take q = (x,y,6), with a: and ?/ defined in the same fashion, and 9 e [0,27r]

being the angle (modulo 27r) between the a;-axes of ^>v and TA- We represent C as

^mtn^mox] x ^min^maxj x [Q, 27r] with the faces 9 = 0 and e = 27T made identical.

We formally define a channel as a sequence (KI,...,KP), p > 1, of rectangloids,

called cells, such that:

1. qinit e «i and qgoal G KP - i.e., the channel connects the initial configuration to

the goal configuration;

2. Vi G [l,/?],int(Ki) C C/ree - i-e-, the interior of every cell is contained in C/ree;

29

3. Vi,i € [l,p],» 7^ i,«#(«,-) n t'nt(«,-) = 0 - i.e., no two cells overlap;

4. Vf € [l,p-l],K,-nKi+i is an (m-l)-dimensionalrectangloid-i.e., two successive

cells in the sequence are adjacent by sharing a portion of their boundary having

non-zero measure in Rm_1.

The (m- l)-dimensional rectangloid K,-_I PIK,- (resp., «,- H/q+i) is called the access

gate (resp., the exit gate) of «,-,-with the convention that KQ = KP+\ = 0.

When C = R2 x «S1, a spurious effect of the Cartesian representation of the

configuration space is to introduce an artificial boundary for the cells at 6 = 0 and

8 = 2it. We remove this artificial boundary by considering two regions of the following

forms:

[xmin,xmax] x [ymin,ymax] x [O,0i]

and

[xmin,xmax] x [ymin,ymax] x [02,2TT],

as a single cell, although it is represented as two rectangloids.

If C = R2, the boundary #«,■ of a cell K,- simply consists of the four edges of the

cell. If C = R2 x [0,27r], d«, consists of the six faces of the corresponding rectangloid,

if Ki does not range over all the orientations in [0,27r]. Otherwise, it only consists of

the four faces perpendicular to the x and y axes. The boundary dll of the channel

II = (KI, ..., KP) is defined as:

p p-i
an = U dKi - (j K{ n K.-+1

i=i t=i

2.3 Construction of a Channel

A channel is constructed by iteratively partitioning the Cartesian representation of the

configuration space C into non-overlapping rectangloid cells parallel to the coordinate

axes. At each iteration, every cell is labelled as empty, full, or mixed, depending

on whether it has no intersection with the C-obstacle region CB, it is completely

30

contained in CB, or only partially contained in CB.

The connectivity graph representing the adjacency relation among the empty and

mixed cells is constructed and searched for a sequence of cells, («i,..., KP), p > 1, such

that qinit € «i, qgoai € «p, and Vi € [l,p - l],/q and Ki+X are adjacent. If a sequence

containing only empty cells is found, it is the generated channel. If a sequence is

found, but contains mixed cells, those cells are decomposed into smaller cells, and the

connectivity graph is updated and searched again. This iterative process is bounded

by setting a minimal size on the mixed cells. This size may also be used to take

uncertainty in robot control into account.

The actual decomposition and search techniques used in our navigation system

to generate channels are described in [Zhu92]. They are resolution-complete, i.e.: if

a channel exists, the planner is guaranteed to return one in a finite amount of time,

provided that the minimal size of a mixed cell is set sufficiently small; if no channel

exists or the minimal size of a mixed cell is too big, the planner returns failure in

a finite amount of time. During channel generation, most of the computation time

is spent in decomposing the configuration space and labelling the cells. However, if

the model of the environment is not changed often, most of the decomposition and

labelling work can be saved for future use, so that channel generation rapidly reduces

to searching a preexisting connectivity graph.

2.4 Examples

Figure 2.3 shows an example of the robot's workspace and its corresponding channel,

(a) shows a robot's workspace with known obstacles and the initial and goal configu-

rations of the robot, (b) shows the 2-dimensional projection of the channels into the

workspace plane. This projection is an incomplete, but much more readable repre-

sentation of the complete 3-dimensional channel shown in (c). We will exclusively use

this representation in the rest of this report, unless the complete perspective view is

absolutely needed.

Figure 2.4 shows two more examples. Note that both the channels in Figure 2.3

31

(c) and 2.4 (f) contain cells whose ranges along the 0-axis is a subset of [0,2ic].

32

(a) ■
" —

■
(b)

(c)

Figure 2.3: Typical example of a workspace and a channel

33

T

]
(b)

(d)

M
(e)

(c) (0

Figure 2.4: More channel examples

34

Chapter 3

Navigation in Channel

Given a channel, the reaction component generates motion commands for the robot

by defining an artificial potential field U over the channel and tracking its negated

gradient — VU. U should have a global minimum at the goal configuration qgoai- It

should grow towards infinity when the distance between the robot and an unexpected

obstacle (if any) tends towards 0, in order to avoid collisions. It should also grow

to infinity when the robot's configuration tends towards the channel's boundary, in

order to keep the robot within the channel. We would also very much like U to have

no local minima. However, since the values of this function depends on sensory data

triggered by unexpected obstacles, there seems to be no way to guarantee this last

property.1

The potential U is constructed at every configuration q as the sum of two func-

tions:

V(q) = Vc(q) + Vs(q)

where Uc(<jr) is a function of both the robot's current configuration and the geometry

of the channel. Us(q) is a function of the current configuration relative to unexpected

obstacles detected by sensors. Uc is called the channel potential. Us is called the

1Both analytical and numerical techniques have been developed for computing local-minima-free
potentials [RK90, BL91]. But these techniques assume complete prior knowledge of the obstacles;
hence, they are not applicable here.

35

unexpected-obstacle potential. Uc is free of local minima. Since both Uc(g)

and Vs(q) depend on the robot's configuration q, it is very important to have accu-

rate estimates of q (i.e., localization) throughout the navigation. The localization is

typically obtained by dead reckoning and/or environment sensing.

3.1 Channel Potential

One simple way to construct Uc is to add an attractive potential pulling the robot

toward its goal and a repulsive potential pushing it away from the channel's boundary.

However, because a channel is usually a non-convex region, this simple construction

could result in a function Uc with local minima. This is not acceptable, since the

robot could get stuck at one of them even in the absence of unexpected obstacles.

The local-minima-free potentials proposed in [RK90, BL91] can be applied to this

non-convex channel, but their computation is too complex to be done in real time

because they are based on global information. To overcome this problem, we patch

together several potential functions. Each such function is defined in a rectangloid

for an intermediate goal selected in the channel and has only one minimum at this

intermediate goal. The definition domain of the various potential functions overlap so

that the robot can shift from one function to the next before it attains an intermediate

goal (hence, avoiding the corresponding minimum).

3.1.1 Intermediate Goals

We construct a sequence of intermediate goal configurations in the channel, the last

one being qgoal. Then we define Uc piecewisely so that the robot A is successively

attracted by each intermediate goal configuration. The issues are:

1. How to choose the intermediate goal configurations?

2. When to shift from one intermediate goal to the next?

A possible sequence of intermediate goal is (qlt..., qp), where q{ is the midpoint

of Ki D Ki+U for * = l,...,p- 1, and qp = qgoal. Then, in each cell nh we can

36

Cki+l (Access region) ßi+i

-f ^ Ki+l

Ki

QCI m+il
J'J •ÜföS^tyififafiföw.

??, A
Oii+2

I

ßi (Exit region)

<fo

^i+2

(a) Intermediate goals in access and exit regions

Ki

tf+i «S-i

mm 9i+i

•
9i+2

^i+2

NX Attraction by Qi ^A Attraction by Qi+1

Attraction by Qi+l %S<%\ Attraction by Qi+l

[,' '] Attraction by Qi+2

(b) Goal shifting between regions

Figure 3.1: Intermediate goals

37

define the potential U£, (i = 1,..., j>) as the sum of an attractive potential pulling A

toward q{ and a repulsive potential pushing it away from the boundary of the channel

restricted to the cell, i.e., öK; D 911. When A traverses K{ n K,+I, the attractive goal

is switched to qi+1. When the last cell, KP, is entered, qgoal becomes the goal.

The problem with this definition is that the attractive potential has a minimum

at each intermediate goal q{. Therefore, in the vicinity of each q0 A is mainly under

the influence of the repulsive potential, if any, and, at best, lacks any goal-oriented

behavior. This is likely to increase the risks of spurious stable equilibrium states near

the intermediate goals. A solution to this drawback is to make A abandon every

intermediate goal before it is attained and shift to the next, so that the attractive

force never vanishes. This led us to retain a slightly different definition for Uc, which

we present below.

Let us consider a cell K*. We denote by at- (resp., ft) the region obtained by

sweeping the access gate (resp., the exit gate) of Kj perpendicularly to itself inside K,-.

Both a,- and ft may be identical to «,-. In the first cell of the channel, we only sweep

its exit gate (ft). In the last cell, we only sweep its access gate (ap). Figure 3.1 (a)

illustrates the construction of the a,'s and the ft's in a 2-dimensional channel.

For every cell «*, we define the midpoints of a,- and ft as two additional interme-

diate goal configurations, which we respectively denote by qf and qe
{ ? The sequence

of intermediate goals is:

(9ii 9n 92> Vh «2> -■> Qep-n 9p-l. <&> Qgoal)-

These intermediate goals are also shown in Figure 3.1 (a). For some cells, it is possible

that q? and qf coincide. If two intermediate goals coincide, they are treated as a single

one.

2Using the midpoints as intermediate goals may result in an inefficient path when the neighboring
cells in the channel have "big" differences in their shapes and sizes. In the actual implementation,
we take a point on the line segment connecting the midpoints of the access (resp., exit) region and
the midpoints of K,_I n K,- (resp., «,- fl K,+I). The exact location depends on the relative size of the
neighboring cells.

38

3.1.2 Intermediate-Goal Potential

We construct Uc in a piecewise fashion over overlapping rectangloid regions. Each

such region is either an access rectangloid, i.e., a,, an exit rectangloid, i.e., /?,-,

or a regular rectangloid, i.e., the complement of a,- U ßi in a cell /c;, with i €

[l,p]. For every i ^ p, the goal configuration in the access rectangloid a,- is gf; the

goal configuration in the regular rectangloid is q{; the goal configuration in the exit

rectangloid ßi is qr"+1. When i = p, the goal configuration is qgoal over all the cell KP.

Uc is defined over each rectangloid as the sum of two terms, an attractive term

Uf, which pulls the robot toward the goal configuration qg of the rectangloid, and a

repulsive term U£, which pushes the robot away from the boundary of the channel.

JJ9
C shifts its goal from one intermediate goal to the next whenever A's configuration

enters a new (regular, access or exit) rectangloid. This is illustrated in Figure 3.1

(b). If A's configuration is in «,-, i € [1,2? - 1], and not in at- U ßi, the current goal is

q{. As soon as it enters /?,-, the current goal becomes qr°+1. When it enters K,+I (i.e.,

a,+i), the current goal becomes <j»?+1, if i + 1 ^ p- Finally, if it enters the goal cell,

the current goal becomes qgoa\. If ^4's configuration is in a,- fl/?t- (^ 0), /?,- has a higher

priority and the current goal is g"+1. If p = 1, there is no intermediate goal and qgoal

is immediately taken as the goal to attain.

Shifting from one intermediate goal to the next as explained above results in a

discontinuity of the attractive force. Such discontinuity can be smoothed at the servo

level. Another technique would consist of shifting continuously from an intermediate

goal to the next, by making the goal vary along the line segment connecting them.

3.1.3 Formal Definition of Potential

The potentials Uf and U* can be formally defined in several ways. Our definitions

are directly inspired from those given in [Kha86]. We take:

U?(g) = \Kgfcq)

39

and

\ 0 if pb(q) > po-

where

- Kg and Kb are scaling factors,

- pg(q) is the distance between q and the current goal qg,

- pb(q) is the distance from q to the boundary of the channel,

- p0 is the distance of influence of the channel boundary.

In our implementation, we only consider the two cases where C = R2 and C =

R2 x S1. In the first case, the distances pg and pb are simply the Euclidean distances

from q = (x, y) to qg = (xg, yg), and from q = (x, y) to 911 (the boundary of II). In the

second case, we compute the distance between qx = (an,yi,0i) and q2 = (^2,2/2,^2)

as:

d(q1,q2) = [fa - x2f + fa - y2f + r2 l2(6u 92j\ *

where r is a scaling factor that we take equal to the maximal distance between the

origin of the frame TA attached to A and the boundary of A. If the cell ranges over

all orientations in [0,2?r], we take:

l(9u62) = mind*! - 02|,27r - ft - B2\).

If it ranges over a subset of [0,27r], we compute l(6i,62) as the length of the arc

connecting the orientation 6\ to the orientation 62 and contained in the angular range

of the cell. We take:

pg(q) = d(q,qg)

and

Pb(q)= min d(q,qb).
qb€dU

40

Kl

J^.
ai;;

Ki-i

ti+1

"" '^__Ä-li

(a) Regions in a cell (b) Attractive potential Uf

(c) Repulsive potential TJb
c (d) Channel potential Uc = Uf + U

Figure 3.2: Channel potential

41

Figure 3.2 shows the channel potential constructed using these definition in a 2-

dimensional cell. Figure (a) shows the cell, its access (light gray) and exit (dark gray)

regions, and the intermediate goals, (b) shows the equipotential contours of the goal

potential in the cell. The arrows represent the negative gradients of the goal potential

and, in each region, they point to the corresponding intermediate goal, (c) shows the

equipotential contours of the wall potential. The distance of influence in the access

(resp., exit) region is a fraction of the size of the access (resp., exit) gate in order to

to prevent the creation of local minima of the channel potential. The wall potential

vanishes near the center of these gates as well as in the central area of the cell, (d)

shows the resulting channel potential.3

3.2 Unexpected-Obstacle Potential

3.2.1 Principle

We now define the potential induced by unexpected obstacles. We assume that these

unexpected obstacles are detected by N proximity range sensors mounted on the

robot. We denote these sensors by Si, ...,SN. Typically, these proximity sensors are

infra-red emitter/receiver pairs or sonars fixed on the boundary of the robot (see

Figure 3.3 (a)).

At every instant, each sensor Sk, k = 1, ...,N, measures the distance dk from the

point ak in .4's boundary, where Sk is located (see Figure 3.3 (b)) to an obstacle along

a ray Lk fixed with respect to A. (By convention, when Sk detects no obstacle, dk

becomes infinity.) This "perfect sensing" assumption may not be verified for a single

measurement. However, the effect of a sensing error on the behavior of the robot is

very brief, since another measurement will be repeated shortly after. Nevertheless,

the impact of imperfect sensing on the performance of the navigation system will be

discussed later in Chapter 6.

3The program used to draw the equipotential contours do not produce contours correctly near
the boundary of two regions where values of the potential are discontinuous. The apparent local
minima shown in Figures 3.2 (d), 3.4 (b), and 4.1 (b) are falsely generated due to this defect of the
plotting program.

42

(a)

di

(b)

Figure 3.3: Detection of obstacles

43

Let Pk denote the point of W located at distance dk of the boundary of A(q)

along Lk. If Pk & U?=i &i (the region of the known obstacles), this point is called

the contingency detected by Sk. At each instant, the contingencies are treated as

independent point obstacles which create circular repulsive potential around them

pushing the robot away from the unexpected obstacles. In order to be more consis-

tent with the rest of the navigation system, we should rather test that the C-obstacle

corresponding to a point obstacle Pk intersects the channel, before calling it a contin-

gency; otherwise, the robot motion may be unnecessarily affected without reducing its

chance of success. This additional test can be relatively time-consuming, especially

if there are many Pks. We chose not to make this test.

We use proximity sensors as the source of information about unexpected obstacles.

However, we could use other ranging devices instead. For example, a typical laser-

camera range-finder projects a plane of light from the laser either through a cylindrical

lens or by panning the laser beam around the robot, and the camera captures the

light reflected by the obstacles' boundary. The range information on the detected

obstacles' boundary is obtained through triangulation. Such a range-finder provides

more complete and accurate information about the outlines of detected obstacles and

thus would enhance the robustness of the navigation system. However, treating the

detected obstacles as non-point geometric objects such as line segments or curved

lines would require more processing time. As a compromise, a limited number of

light-rays can be used to select point obstacles from the outlines of the detected

obstacles. Then, the sensor model used in our navigation system can be applied as

well.

We will see in the next chapter that the robot keeps track of the detected un-

expected obstacles in a local model of the workspace associated with the channel.

However, this model is not exploited here; only the current sensory data are used at

each instant. This choice makes the computation of the potential not only faster, but

also valid when there are moving unexpected obstacles. On the other hand, it may

produce additional zero-force configurations (i.e., local minima).

44

(a) Unexpected-obstacle potential Us (b) Total potential U = Uc + Us

Figure 3.4: Unexpected-obstacle potential and total potential

3.2.2 Formal Definition

The unexpected-obstacle potential is constructed in two steps. First, a potential

function Vfc, called contingency potential, is denned over the workspace for every

contingency point Pk detected by the sensors. This definition, given below, is very

similar to the definition of the channel potential, but in a different space. In the

second step, the various contingency potentials are combined into a function defined

over the configuration space. This function is the unexpected-obstacle potential Us.

- If Pk e ULi B» pk is not a contingency. Then, Vk(x, y) = 0 for all (x, y) € R2.

- Otherwise:

Vl(i,!/) = ^^kv)-t/ *»fcv)s/4.
if pk{x, y) > P'Q.

where

- Ks is a scaling factor,

- pk{x, y) is the Euclidean distance (in R2) between the point (x, y) and Pfc,

- p'0 is the distance of influence of an unexpected obstacle.

This potential induces a force field Gk = -VVfc over the workspace, which only

applies to the point ak. The force Gk applied at ak is converted to a generalized force

45

Fk as follows:

- IfC = R2, Fk = Gk.

- If C = R2 x S1, Fk is a vector with three components. The first two components

axe those of Gk. The third one is the outer product4 O^k x Gk-

One can easily verify that Ffc(q) = -VUjt(q), where Ufc(q) = V^a^q)) [Lat91].

Therefore, U,(g) is defined as:

U5(g) = EUfc(9) = f;Vfc(afc(q)).

Figure 3.4 shows the unexpected-obstacle potential for a point robot. Figure (a)

shows the equipotential contours around three detected point obstacles. To simplify

the illustration, we use a point robot, but, as mentioned above, this construction

extends to a non-point robot in 2 and 3 dimensions, (b) shows the total potential

that is obtained by by adding the channel potential of Figure 3.2 and the unexpected-

obstacle potential of (a). It also shows a path following the negative gradient of the

total potential, thus illustrating the navigation of the robot in the presence of the

detected point obstacles.

The distance of influence p0 (channel boundary) (p0) and p'0 (unexpected obstacle)

vary through the channel, but are constant over each cell (except, possibly the last

cell). They increase with the size of the cell and the size of the exit gate. In the last

cell, they are taken small enough so that U* and U, become zero at qgoal in order

for the robot to reach qgoal even if an unexpected obstacle lies close to the robot at

its goal configuration. In fact, in the last cell, they can be gradually reduced as the

robot gets closer to qgoat.

4In order for the outer product to be non-zero, the line supporting Lk should not pass through
OA- This suggests that on non-circular mobile robots, range sensors should not be distributed along

a ring.

46

3.3 Computation of Motion Commands

The general dynamic equation of A in configuration space is:5

Aq + H(q,q)-Fn m

where q and q are the generalized velocity and acceleration of the robot, A is the

kinetic energy matrix, ß(q, q) is the centrifugal andCoriolis generalized forces, and

Fm is the generalized force applied by the actuators. The negative gradient of the

potential U can be used as an external force acting on A to prescribe its behavior

such that A is treated as a unit-mass particle moving under the influence of U. Thus,

the motion command Fm can be computed as [Kha86]:

Fm = A{-VV(q)]+fi(q,q).

Such a motion command compensates the dynamic effects while it achieves the

desired behavior of A specified by U. In practice, however, the speed of a mobile

robot is relatively slow, and therefore, the dynamic effects of the robot motion can be

ignored. Specifying the desired acceleration to the (kinematic) controller of the robot

is usually sufficient. For instance, GOFER is built on a mobile base with a built-in

PID controller. It provides a position control mode and a speed control mode. In

a position control mode, we can specify a desired position (and orientation), and

assign arbitrary values (within limited ranges) for the velocity and acceleration. In

a speed control mode, which is the control mode used for our navigation system, a

desired velocity of the robot is specified. The motion command for such a robot can

be computed directly from U as:

fe=^[-VU(q)]

where Km is a scaling gain. Km is selected such that the maximal speed of the robot

5When the robot is a wheeled vehicle moving on a plane, there exist frictions between the wheels
and the plane. Then, the equation of motion is Aq + fi(q, q) - Ffric - Fm = 0 where F/ric is the
generalized friction force.

47

does not exceed some prespecified value. The desired acceleration is also specified

not to exceed the actuator limit.

Using the control scheme described in [Kha86], we introduce a damping term

proportional to the velocity in the control of the robot. The damping term makes

the robot decelerate when it gets close to an intermediate goal. This happens only at

the final goal and at places where the channel is narrow and/or winding. Practically,

experimentations show that, except for short acceleration and deceleration segments,

the robot navigates at the selected maximal speed.

3.4 Examples

Figure 3.5 shows both the intermediate goals in the channel of Figure 2.3 (b) and

the configurations where goal shifting occurs. In (a), the transparent robots placed at

the intermediate goals in a 2-dimensional channel show the corresponding goal config-

urations; the initial and goal configurations are shown with the gray robots. Figures

(b) through (i) show various configurations of the robot (gray) and the corresponding

intermediate goal configurations (transparent).

Figure 3.6 (a) shows a path followed by the robot in the channel when there are

no unexpected obstacles. Figure 3.6 (b) shows a path followed by the robot in the

presence of unexpected obstacles (shown grey). In this example, 16 proximity-sensors

were used to detect obstacles. Figure 3.7 illustrates the detection of unexpected

obstacles along the path. In (b) and (d), the proximity sensors also detect known

obstacles. The corresponding detected points are not contingencies, and, thus, should

not contribute to the unexpected-obstacle potential. In practice, however, sensing

is not perfect, and it is difficult (and time-consuming) to distinguish between the

detected points from known obstacles and unexpected obstacles. Therefore, we relax

the definition of contingencies to include the detected points from known obstacles as

well as unexpected obstacles. This changes the robot's path slightly, specially where

the channel is narrow. But, the success of the navigation system is not affected as

shown in this example. The robot encounters no local minimum and navigates all the

48

I t&fffe
GS C BBBf

GÜI
8D gfTHfH

(a)

CÜ

(b)

<$ PI

1«

(e)

> SD ~¥

rs

(c)

SD
D

(g) 00 (i)

Figure 3.5: Shifting between intermediate goals in a channel

49

(a) No unexpected obstacle (b) With unexpected obstacles

Figure 3.6: Navigation in channel

way through the channel. Due to the damping term in the goal cell, the robot slows

down near the goal configuration until it stops at the goal.

More examples in different environments are shown in Appendix A.

50

(e) (f)

Figure 3.7: Detection of unexpected obstacles along a path

51

Chapter 4

Local Replanning

As long as the unexpected obstacles are small relative to the robot and sparsely

scattered through the workspace, the potential fields defined in the previous chapter

allow the robot to satisfactorily navigate in a channel. However, there may be local

minima where the robot may get trapped. In particular, if there are big unexpected

obstacles or unfortunate arrangements of small unexpected obstacles, local minima

may have large attractive basins of attraction; the chances that the robot enters one

of these basins increase.

Therefore, local minima should not be overlooked, and we must equip the nav-

igation system with a procedure to escape them. Ideally, we would like the robot

to avoid local minima by detecting them early enough, using the channel geometry

information and the sensory data. However, it is not possible in general to recog-

nize local minima until the robot has attained them. In this chapter we describe a

procedure for detecting local minima and a method for escaping them.

4.1 Detection of Local Minima

We distinguish between two types of local minima in the potential field when there

exist unexpected obstacles:

52

- A local minimum may appear in the neighborhood of the goal configuration, if

this configuration is within the distance of influence of the unexpected-obstacle

potential. In this case, the goal configuration is no longer a minimum of the

potential. As mentioned in Section 3.2.2, such a local minimum can be avoided

by selecting the distance of influence smaller than the distance between the goal

configuration and the unexpected obstacles. In fact, the distance of influence

of unexpected obstacles can be reduced toward 0 as the robot gets closer to the

goal.

- A more common type of local minimum corresponds to a conflict between the

channel and unexpected-obstacle potentials. It typically occurs in concavities

made by arrangements of unexpected obstacles and the channel boundary. Fig-

ure 4.1 illustrates such a minimum: (a) shows a channel with three unexpected

obstacles in the first cell; (b) shows the equipotential contours of the total poten-

tial, i.e., the combination of the channel potential and the unexpected-obstacle

potential.1 This second type of local minimum is far more difficult to deal with

than the first type; it is the only type of local minimum that we will consider

in this chapter.

In general, there is no simple way of detecting a local minimum in advance. Then,

in theory, we can determine that the robot is trapped in a local minimum when the

gradient of the potential vanishes. At best, we can provide methods for allowing the

robot to escape the local minimum.

Mathematically, detecting a local minimum of the potential is a simple procedure.

In practice, however, due to the discrete nature of robot's control and sensing, it

is impossible for the robot to exactly land on a local minimum. Instead, the robot

usually oscillates around the local minimum. Also, there are local minima whose

attractive wells are so small that the robot may get away from them without any

further help other than its own momentum. Local minima that cause a problem are

1The actual potential computed during navigation, however, would be slightly different, because,
in Figure 4.1, the unexpected-obstacle potential was computed assuming complete knowledge of the
unexpected obstacles.

53

I

J
(a) (b)

Figure 4.1: Typical local minimum

only the ones which have attractive wells large enough to trap the robot permanently.

In the following, we describe a procedure that detects such local minima.

This procedure operates in two steps: the alert step and the detect step. When

there is no local minima around the current robot's configuration, the robot's direction

of motion deduced from the potential field usually does not change abruptly. Drastic

changes are a strong indication that the robot has reached the bottom of the attraction

well of a local minimum. We use such a drastic change in the direction of motion

(e.g., a change greater than 7r/2) to set the "alert" flag. However, this is only a

preliminary condition for deciding that the robot is in a local-minimum well. Indeed,

narrow turns in the channel and intricate arrangements of unexpected obstacles may

yield such changes in motion direction, without local minima. Moreover, such changes

could also result from the fact that the unexpected-obstacle potential is time-varying,

as the measurements of the sensors are updated at every instant. In order to make

sure that the robot is actually stuck at a local minimum, we must wait for a while

and check whether the robot continues moving. This is done by measuring the net

distance to the configuration where the alert flag is set. If this distance does not

54

exceed a prespecified value after a prespecified waiting time,2 the "detect" flag is

set and the configuration of the robot at this instant becomes the local-minimum

configuration qLM.

The local-minima detection procedure significantly reduces incorrect detection of

local minima. Although it does not completely eliminate incorrect diagnosis, exper-

iments have shown that a more reliable detection of local-minimum configurations

requires more time during which the robot tends to loop around. The penalty for

incorrect local minimum detection is that we unnecessarily perform local replanning.

But, as we will see below, the local replanning routine is usually very fast.

Figure 4.2 shows an example with two unexpected obstacles causing a local min-

imum: (a) shows the initial and goal configurations of the robot; (b) shows the path

of the robot until it detects that it is trapped in a local-minimum configuration; (c)

shows, in magnification, grid points corresponding to the part of the unexpected ob-

stacles detected during this motion. We describe how to build such grid points using

sensory data later in Section 4.3.2.

4.2 Escaping a Local Minimum

Once it has been determined that the robot is trapped in a local minimum, the robot

needs a strategy to escape the basin of attraction of this minimum. If the robot's

configuration space was 2-dimensional, a simple strategy would be to go around the

unexpected obstacles [CZL89]. Only two possible directions of motion are possible,

leaving the unexpected obstacle on the right or on the left of the robot, respectively.

If the first direction fails, (e.g., by requiring the robot to move out of the channel),

the second direction can be tried next. If both directions fail, this means that the un-

expected obstacle obstructs the channel completely, and global replanning is needed.

However, this simple strategy is not applicable when the robot's configuration

space is 3-dimensional (i.e., when the robot can both translate and rotate). Indeed,

2These values axe determined experimentally considering the maximum speed of the robot and
the rate of the closed-loop control in the reaction component of the navigation system.

55

Figure 4.2: The robot gets trapped in a local minimum.

56

(a) (b)

Figure 4.3: Local minimum in 3-dimensional configuration space

there are then an infinite number of directions that the robot can choose to move

around the C-obstacle corresponding to the unexpected obstacle, and there is no

way to select one that is always guaranteed to lead to a successful path. Besides,

the orientation of the robot repeats itself every 2ir along the orientation dimension

(multiple connectedness of the configuration space), and this causes an additional

difficulty in devising an escaping strategy. Figure 4.3 illustrates this difficulty with

a simple example: (a) shows one possible path of a triangular robot from the initial

configuration (I) to the goal configuration (G) in the 2-dimensional workspace. The

path is achieved by rotating the robot clockwise around its reference point (OA)-

Figure (b) shows this path in the 3-dimensional configuration space as a collision-

free line segment connecting I and G. The robot could have achieved the same goal

orientation (shown G' in (b)) by rotating counterclockwise. Although the line segment

connecting I to G' is shorter that the line segment IG, i.e., \6Q — 0j\ > (2TT — \9Q — 0j\)

where 6j and BQ are the orientations of the robot at I and G, respectively, the segment

IG' is not collision-free. Assume now the obstacle in Figure 4.3 is an unexpected one.

With the potential described in Section 3.1.3, the navigation system, without knowing

57

in advance the existing obstacle, would take G'(9G, = 9G + 2TT) as the attractive goal,

which would make the robot rotate counterclockwise until it eventually reaches a local

minimum caused by the unexpected obstacle.

Our navigation system escapes a local minimum by performing a local replanning

operation, which we describe in the following two sections. The local replanning

operation consists of two steps. First, a local path is planned to escape the local

minimum by making use of the new information about the obstacles obtained through

sensing. Second, this path is transformed into a valley-shaped potential that is then

combined with the other potentials.

4.3 Local Path Planning

The path planning operation embedded in our local replanning method considers the

cell of the channel where the local minimum has been detected. It searches this cell

for a path connecting the local-minimum configuration3 to the access gate of the

next cell in the channel without colliding with the detected unexpected obstacles.

If the minimum is close to the access gate of a cell, the path is planned in the

union of two successive cells to provide the robot more space to move and escape the

minimum. Various alternative path-planning techniques could be used to find a local

path. However, many of these techniques either require the exact information about

the geometry of the obstacles, or are too time-consuming. We make use of a very

efficient potential-guided path planning technique.

The method uses a kind of Voronoi diagram, which represents the topology of

the free space, and generates a local path that avoids as generously as possible both

the detected unexpected obstacles and the boundary of the channel. This property

is important because, in the next step, the local path is transformed into a valley-

shaped potential and the robot travels in this new valley-shaped potential among the

"yet to be detected" unexpected obstacles.

3More precisely, the configuration where the navigation system recognized that the robot was
trapped in a local minimum.

58

4.3.1 Presentation of Local Path Planning Method

Let us first present the notion of a navigation function as described in [Lat91]: A

navigation function is a potential function U : Cfree i-+ R with a minimum located at

the goal qgoal whose domain of attraction includes the entire subset of the free space

Cfree that is connected to qgoah except a finite set of isolated saddle points of U. If

a navigation function could be constructed, then a path generated by a depth-first

search algorithm following the steepest descent of this function would be guaranteed

to reach qgoal. Although it can be difficult to define an analytical navigation function

over a space of arbitrary geometry, the computation of a numerical navigation function

over a space represented in the form of a grid turns out to be much easier. A planning

method based on such a numerical navigation function was first introduced in [BL91].

From here on, the numerical navigation function constructed in a grid is called a grid

potential.

The grid-potential-based planning method consists of two steps: the generation

of the grid potential and the search of a path using this grid potential. The planning

can be performed in two different ways. The first method is to generate the grid

potential directly in the configuration space of the robot and construct a path using

the potential. The second method is to first generate a grid potential in the workspace

of the robot and then to re-construct the grid potential in the configuration space

during the search.

The operations in the first method consists of: transforming the detected obstacles

into the corresponding configuration space C-obstacles; discretizing the configuration

space into a grid; computing a potential in the configuration space grid; tracking

the steepest descent of the potential. The operations in the second method consists

of: discretizing the workspace into a grid; computing a potential in the workspace

grid; constructing a potential for the configuration space grid using the workspace

potential and performing a best-first search using the re-constructed potential. In the

second method, the configuration space potential may not be free of local minima.

Nevertheless, as we show below, the total computational cost of the second method

is usually much smaller than that of the first.

59

Except in the case where a robot moves with a fixed orientation, the number of

the grid points in the configuration space is one order of magnitude larger than that

in the workspace. For instance, in the case where a robot can both translate and

rotate, the number of grid points is n2 in the workspace, while it is of the order of

n3 in the configuration space,4 where n is the number of grid points along the axes

of the coordinate frame embedded in the workspace. The complexity of generating

a navigation function is at least linearly proportional to the number of grid points.

Hence, the cost of computing a navigation function in the configuration space (as is

done in the first method) is much higher than in the workspace (as is done in the

second method). In the second method, there is an additional cost for re-constructing

the grid potential in the configuration space from the navigation function computed in

the workspace. However, this re-construction needs to be done only for the grid points

that are explored in the search process. In the unfortunate cases where the search

procedure requires most of the grid points to be explored, the computational cost of

the second method becomes equal to the cost of the first method, at worst. But such

cases are rare. Besides, in the first method, there is the extra-cost of transforming

detected obstacles into configuration space obstacles. This cost can be quite high,

because the transformation operation requires generating algebraic representations

of the detected unexpected obstacles from raw sensory data. The transformation is

not needed in the second method. Therefore, in general, the second method is much

faster than the first, and our navigation system uses this second method.

We apply this method with a rectangular grid cell QK placed across the ex-

panded cell(s) considered for local path planning. Since these cells are usually

rather small, QK is also small in most practical cases. The expanded cell is con-

structed by projecting a cell of the channel in the workspace of the robot and by

enlarging it so that it includes all the points on the robot corresponding to the con-

figurations of the robot in the cell. For computational simplicity we transform QK

into a rectangle bounding the actual subset of the workspace swept out by the robot

4The number of grid points along the orientation axis (0) is not necessarily the same as those
along the translation axes (a; and y), but it is proportional to them.

60

when its configuration varies over the channel cell. This slightly increases the size

of the grid, but often by a negligible amount. Also, these additional grid points do

not correspond to valid configurations of the robot in the channel; therefore, they are

excluded during the search process.

QK is constructed by discretizing the axes of the frame Fw embedded in W. The

free subset QKfree of QK is defined as:

nB

ÖtCfree = QK\ (J XBi
i=l

where xBi denotes an obstacle grid point, a marked grid point indicating that it

belongs to a detected obstacle, and nB is the number of such points in QK.

Before describing the computation of the grid potential in QKfree, we explain,

in the following subsection, how the sensory information about detected obstacles is

used to mark points in QK.

4.3.2 Local Map Building

While the robot is moving in the channel, the navigation system keeps track of the

detected outline of the unexpected obstacles by mapping the sensory data into a grid

obstacle model (see Figure 4.2 (b)). The grid model is associated with the grid cells

QKi (i = 1,..., p) of the channel, and it is continuously updated as the new sensory

data become available. A function Mk, associated with every sensor Sk, maps the

sensed distance dk (see Figure 3.3 (b)) and the current robot configuration to the

corresponding point xB in QK:

Mk : {dk,q) >-* xB € QK.

The path of the robot can be affected by the unexpected obstacles that are located

not only in the current cell but also in the neighboring cells, and it may be important

to keep a record of the unexpected obstacles even in the cells other than the current

one. However, it is a waste of processing time to try mapping the sensory data

61

over all the cells in the channel at every instant, and it is often unnecessary unless

the channel is small enough to be covered by sensory measurements at one location.

In our implementation, the navigation system updates the grid obstacles only for a

limited number of cells at a time. The number of the cells depends on the maximal

range of sensing devices and the sizes of the neighboring cells.

Although we do not attempt to exploit the grid model to extract an algebraic

representation for the detected unexpected obstacles, by increasing the resolution of

the grid, we can make the model as precise as we wish. The fine resolution of the

grid is desirable to capture the precise outline of the unexpected obstacles in the

model, but the number of the grid points must be limited to save memory space and

processing time. The resolution of the grid is limited by the resolution of the sensor

(e.g., one half of the conic beam angle covered by a proximity sensor). It also depends

on the speed of the robot (i.e., the size of a grid element does not need to be smaller

than the distance traveled by the robot during one sensing/reaction loop).

4.3.3 Computation of Potential

The generation of the grid potential consists of computing workspace potentials (navi-

gation functions) associated with control points in the robot and combining them into

a configuration space potential.

Let a,-, i = 1,..., nc, be the control points selected in the robot A. For a mobile

robot moving in a plane in both translation and rotation, we typically take nc = 2,

since two points suffice to determine the robot's configuration. The control point a,-

on A at configuration q is denoted by a,i(q) in W. With each point a, we associate a

navigation function V,- defined over QtCfree.

Once the workspace potentials have been computed over GJCfree, the configuration

62

space potential U at q can be computed by:5

i=l

where a,- is the (positive) weighting factor for each control point.

However, as discussed earlier, this potential function is not computed at every

configuration, but only at the configurations where the value of U is needed for the

search process. In order to compute U at a given configuration q, the position a^q)

of every control point is first computed and the value of V; at the closest position of

üi(q) in QIC is used to compute U(g).

The computation of the workspace potential V,- is done in three steps. First, a

subset S of QK.free, called a skeleton, is extracted. Second, V; is computed in <S.

Third, V,- is computed in the rest of Q)Cfree. The three steps are described in detail

in [Lat91]. In the following, We present them with modifications and illustrations

that are specific to our problem.

In order to extract S, the Ll (Manhattan) distance dx{x) from every point x €

QfCfree to the grid points on the boundary (boundary point) of QK,free is computed

using a wavefront propagation algorithm. L1 is chosen for computational simplicity,

i.e., the integer arithmetic throughout the computation of the potential, but other

distance metrics, e.g., L2 (Euclidean distance), could be used instead. The differences

in the resulting paths are relatively minor, in general. Besides, the effect of choosing a

particular distance metric on navigation is even less significant here since the resulting

path will not be strictly followed by the robot, but rather used as a guide.

The wavefront propagation starts from the boundary points of QlCfree. First, these

points are identified, and the value of d\ at these points are set to 0. Then, the d\

value is increased by 1 and assigned to every neighbor of these points which does

5 There are many variations in combining the workspace potentials to compute the configuration
space potential, and each of them gives a different "flavor" to the resulting path. However, we use
the simple weighted addition because no single method seems to be always superior to another, in
general. See [Lat91] for other combinations.

63

ffii'Miifayi'tfc*. V ft

11": 1 $m

(b)

(d)

/■---. ,'*| .V"

(e) (f)

Figure 4.4: Skeleton constructed by wavefront propagation

64

not have a value of d\ assigned to it yet. This propagation of the di value continues

until every grid point in QK,free is explored. The boundary consists of the bounding

rectangle of QK and the boundary of the regions formed by the marked point xB.

In parallel to the propagation, we construct S as the set of points where the

wavefronts issued from the boundary points meet. This is done by propagating not

only the values of di, but also the boundary points that are at the origin of the

propagation. The construction of S is completed by connecting the grid point xgoai

closest to ai(qgoai) to «S. This connection consists of a path a following the steepest

ascent of the dx map in GfCfree. This path is appended to S. Figure 4.4 illustrates the

wavefront propagation in the example workspace shown in Figure 4.2: (a) shows the

boundary of GtCfree; (b)-(d) show successive snapshots during the propagation (the

current wavefront is shown in gray, while the parts of the skeleton already computed

are shown in black.) ; (e) shows the skeleton constructed at the end of the propagation;

(f) shows the final skeleton including the path a from the goal agoai at the cell exit

to the skeleton.

Next, Vj is computed in «S by another wavefront propagation algorithm restricted

to S and starting from the grid point xgoai. The algorithm uses the di map previously

computed in order to guide the propagation. At first, the starting grid point xgoa\ is

given the value 0 of V,-, and it is inserted in a list sorted by decreasing value of d\.

The grid point x at the top of the list (i.e., the one having the largest value of dx,

the furthest away from the boundary of GK,free) is removed from the list and used at

the next step of the propagation. Every neighbor of x in <S whose potential has not

been computed yet receives a potential value of V,-(a;) + 1, and is inserted in the list.

This procedure continues until the list becomes empty, i.e., when all the points in S

accessible from xgoai has been assigned a potential value. Figure 4.5 illustrates this

computation. The skeleton elements shown black are those which have been attained

at the current stage of the propagation. The parts of the skeleton located in the

widely open areas are explored earlier, shown in (a) through (c), than the ones in the

narrow areas. This results in a discontinuity in the value of skeleton potential when

two wavefronts meet in a closed loop of the skeleton (for example, see the lower part

65

Figure 4.5: Computation of potential in the skeleton by wavefront propagation

66

of the skeleton in Figure (d)). This discontinuity results in a "cliff" in the final grid

potential (see Figure 4.7) with two opposite gradients on each side of the cliff. So,

in the search process, the path is created such that it goes through an most widely

open area rather than through the narrow area.

Finally, the potential V; in the rest of GfCfree is computed, again, by a wavefront

propagation starting from every point in S with its initial potential value assigned in

the previous step. Each neighbor x' of every grid point x € S is given a potential

value of V,-(ar) + 1. The propagation continues similarly and terminates when all the

accessible grid points from xgoai have been explored. Figure 4.6 illustrates this final

propagation process. Figures (a) through (d) show snapshots during the propagation.

The current wavefronts are shown in gray, and the grid points inside these wavefronts

are those whose potential have been computed already. Figure 4.7 shows the 3-

dimensional perspective view (a) and the equipotential contours (b) of V,- for QK.

The potential at the obstacle grid points is not determined; arbitrary high values are

given to these points for the search process. The resulting potential has no other local

minimum than the intermediate goal at the exit gate of the cell.

4.3.4 Grid Search

The Best First Search technique [Lat91] is used to compute a local path 7 connecting

qLM and qgoal using the configuration space potential U defined as above. However,

because it is computed using a few control points only, this potential does not guaran-

tee that there will be no overlap between the robot and the boundary of QK.free during

the search. Therefore, at each step of the search, all the points A(q) of the robot at

the current configuration q must be checked to lie in QK,free. Collision-checking is

performed using the grid outline of the robot (with the same resolution as the grid

cell). Such collision-checking technique is justified by the assumption that motion

increments in the search are small enough so that if the robot is in free space near

the outline of an obstacle at one step, it cannot "jump" over the outline and be in

free space at the next step.

Figure 4.8 shows a path generated by the Best First Search method: (a) shows

67

(c) (d)

Figure 4.6: Potential propagation from the skeleton

68

II
(a) 3-dimensional perspective view (*>) equipotential contours

Figure 4.7: Grid potential in a cell

(a) grid nodes along the local path (b) configurations at the nodes

Figure 4.8: Local path

69

the grid points corresponding to the reference point of the robot along the path;

(b) shows (with transparent robot) the configurations of the robot at all the grid

points along the path. Note that the local path leads the robot to collide with a still

undetected obstacle. This potential collision stresses the need for transforming the

generated local path into a less committed motion plan (valley-shaped potential). We

now describe this final transformation.

4.4 Valley-shaped Potential

4.4.1 Principle

Once the path planner has succeeded generating a local path 7, the reaction compo-

nent must drive the robot along 7 to escape the local minimum. It must also avoid

collision with other (still undetected) unexpected obstacles and stay inside the chan-

nel. Following the local path 7 exactly may lead the robot to collide with the new

undetected obstacles (or the still unsensed parts of previously detected obstacles), as

illustrated in Figure 4.8 (b). This leads us to transform the local path into a poten-

tial function to be combined with the channel potential and the unexpected-obstacle

potential.

We relax the commitment to the local path 7 by transforming it into a valley-

shaped potential field U7 (with 7 as the "bottom" of the valley) defined over the one

or two cells containing 7. We next add U7 to Uc and U5, and make the robot follow

the negated gradient of the total potential:

Ufa) = Ue(9)+U.(g) + U7fo).

U7 is constructed in such a way that at any q € 7, the vector -VU7 points

along the tangent of 7, and at any 9^7, - VU7 is the sum of two components, one

pointing along the tangent of 7, the other pointing toward 7 (see Figure 4.9). Hence,

the robot is attracted back to 7 whenever it deviates from it. It is also pulled toward

the end extremity of 7. If another local minimum is detected, it is treated in the

70

Figure 4.9: Vector field induced by the valley potential

same way as the previous one, i.e., by generating another local path (the previous

local path is forgotten). When the robot reaches the end of 7, the potential field is

re-established to Uc + Us. In the following subsection, we describe in detail how the

valley potential is computed from a locally planned path.

4.4.2 Implementation

The local path lies in the configuration space grid. Hence, it is made of line segments

connecting a sequence of configurations in the grid cell, starting at the local minimum

and ending at the intermediate goal of the cell exit. Figure 4.10 (a) illustrates the

2-dimensional projection of a portion of a typical local path. The local path 7 may

include two or more successive segments that are collinear; then, these segments are

merged into a single one to reduce the number of segments as shown in Figure 4.10 (b).

The sequence of obtained segments is called a spine. The vertices of the spine are

denoted by q{ (i = 1,... ,n7). A segment of the spine between two vertices q{ and

qi+1 is denoted by s*. The valley potential U7 is the union of several potentials 15Si.

Each U5l. is defined over the influence region of a segment s,- (i = 1,..., n7 — 1):

U7fo) = VSl(q) U US2(9) U ... U U,_ _>(<?).

71

91 92 93 111 Uj^
s,

94

92

«2

s2.

94 u4 \9s

(b) merged local path

<\LHi
1_ L

(c) valley potential defined on each segments

Figure 4.10: Spine of a valley projected on a plane

72

The influence region lZSi of a segment st- is a set of configurations defined by:

n7 —1

Ha = {<11 d(q, s^ = min d(g, Sj)}

where d(q,Sj) is the shortest distance from <? to Sj. Configurations that achieve

minimal distance with more than one segment are placed in the influence region of

one of these segments selected as described below. Hence, at every configuration

q, V-f(q) is completely determined by a single segment st-. Therefore, instead of

computing the complete valley potential in advance, the potential is computed for

each configuration as the robot moves along the successive segments of the spine.

When the configuration q of the robot enters the influence region of a segment s,-,

the robot becomes under the influence of VSi. We call this segment the effective

segment. The computation of USi is performed in two steps: (1) find the effective

segment for q; (2) compute the two components, Uj and Un, of Uäi. As described

in the previous section, Ut is used for moving the robot along the tangent of s,-, and

U„ for attracting the robot back to s,- (see Figure 4.10 (c)).

Instead of computing the influence region of s,- in advance, we compute, at every

cycle in the reaction control loop, the shortest distances from the current configura-

tion to the current effective segment (in the beginning, the first segment is considered

effective) and every following segments in the spine. A segment closest to q is selected

as the effective segment for the current configuration. When the configuration is at

the same distance to two or more segments, the furthest segment in the sequence is

selected as the effective segment, thus giving a higher priority to the forward mo-

tion along the spine. Excluding the segments that are behind the current effective

segment prevents the robot from oscillating between two segments, especially when

two segments are close to each other and have an acute angle between them. It also

reduces computation.

Computing the shortest distance of a point to a line segment is simple. However,

if there are many segments in the spine, the cost of computation may not be ignored,

because the computation is repeated at every cycle of the reactive control loop. We

73

,-0: ::.::':

s*9i+i:

Figure 4.11: Effective segment and its shadow points

reduce the computation by comparing the bounding box that contains the current

effective segment and the current configuration to the bounding boxes of the remaining

segments and precluding the segments that are far away.

Figure 4.11 shows a configuration of the robot q and its effective segment 5,-. Let L,-

be the supporting line of s,. Let the normal shadow point of q be the point qSn € L,

such that the line segment qq~ is normal to L,-. Let the tangential shadow point

be the point qSt in the plane perpendicular to L,- at qi+1 such that the line segment

qq^t is parallel to L,-. If qSn lies outside of s,-, qt becomes qSn. Given qSt and qSn of

Si, we compute \JSi as follows:

U, = -Ktp
2

t(q)

Un = -Knpl(q)

74

Figure 4.12: Escaping a local minimum

where

- Kt and Kn are scaling factors,

- pt(q) is the distance between q and q$t (i.e., pt(q) = d(q,qSt)),

- pn{q) is the distance between q and qSn (i.e., pn(q) = d(q,qSn)).

4.5 Examples

Figure 4.12 shows the path followed by the robot to escape the local minimum

encountered in Figure 4.2. Due to the combination of Uc, Vs and U7, this path

slightly differs from 7 and is free of collision with any obstacle. Figure 4.13 shows

another example where the robot encountered two local minima during navigation,

(a) shows the path followed by the robot; (b) shows two skeletons generated by local

replanning, performed twice during the navigation. The skeleton in the first cell was

generated after the first local minimum had been attained, and the second skeleton

75

/

s
\./

s

J
(b) the complete path (a) the skeletons

Figure 4.13: Navigation of the robot with two local minima

in the last cell was generated after the second local minimum had been attained. In

both the first and last cell, a grid of size of 69 x 44 x 36 is used for local path planning.

76

Chapter 5

Global Replanning

In the previous chapter we discussed local replanning to escape local minima. In

most cases, the presented method successfully generates an escape route for the robot.

However, for some arrangements of unexpected obstacles, our local replanning method

fails. The reason for such failure is that replanning is restricted to one or two channel

cells. In this chapter we extend the local replanning method to multiple cells. We

also present a global replanning method which generates an alternative channel when

it is detected that the current channel is completely obstructed. Throughout this

chapter, we simplify our presentation by assuming, without loss of generality, that

the robot is circular, which yields a 2-dimensional configuration space. In particular,

this assumption results in simpler figures.

5.1 Local Replanning Failures

The single-cell (or double-cell) local replanning may fail to find a path for one of the

following two reasons: (1) The current channel is completely obstructed; (2) The local

minimum cannot be escaped by staying in the current cell. Let us illustrate each case

with examples.

Figure 5.1 illustrates an example where our local replanning fails because the

channel is completely obstructed by two unexpected obstacles (shown in dark gray).

First, in (a), the robot falls into a local minimum due to the unexpected obstacles.

77

(c) (d)

Figure 5.1: Local replanning failure due to channel obstruction

78

Figure 5.2: Local replanning failure due to locality of replanning

However, when this minimum is attained, only a subset of the unexpected obstacles

has been detected (shown in light gray). Therefore, there is no way for the navigation

system to immediately recognize that the channel is completely obstructed. The robot

escapes the local minimum as any other local minimum using the method described

in the previous chapter. Then, it falls into a second local minimum that it tries to

escape again. This escape process is repeated until enough sensory information about

the unexpected obstacles has been accumulated so that local replanning fails to find

a path. Figures (b) through (d) show the sequence of the escape trials with each

locally planned path displayed as a gray line.

Figure 5.2 illustrates the second case of failure of our replanning method. Here

local replanning fails because it is restricted to the current cell. Three unexpected

obstacles create a dead-end lying over two cells. This dead-end results in a local

minimum where the robot gets trapped. Although there still exists an escape path

in the current channel, the path planner used by the local replanning method only

considers the cell of the local minimum, and it fails to find a path in this cell.

In the above examples, paths to the goal G do exist despite the local replanning

79

failures. The first case is solved by global replanning, i.e., finding an alternative

channel, using the additional information provided by the sensors. The second case

can be also solved by alternative channel generation, although it can be solved by

multi-cell local replanning, which we will describe later. First, we describe alternative

channel generation.

5.2 Alternative Channel Generation

An alternative channel is generated by the planning component of the navigation

system. The operation, as described in Chapter 2, consists of two steps: updating

the connectivity graph and searching the graph for a new channel.

Some empty cells in the current connectivity graph become mixed cells due to

the detected unexpected obstacles represented by obstacle grid points. Mixed cells

are identified by merging adjacent obstacle grid points into rectangular obstacles and

by computing the intersection between empty cells in the current connectivity graph

and rectangles bounding C-obstacles corresponding to these new obstacles. Once the

connectivity graph is updated, it is searched for a new sequence of the empty cells

between the cell containing the local-minimum configuration, where local replanning

has failed, and the cell containing the goal configuration. When a new channel is

found, navigation resumes in this channel. If an alternative channel cannot be found,

the planning component reports failure and the navigation system stops.

Figure 5.3 illustrates alternative channel generation for the example of Figure 5.1.

Figures (a), (b), and (c) illustrates, in magnification, three stages of cell decomposi-

tion: (a) shows the local-minimum configuration in the current cell with obstacle grid

points transformed into two rectangular obstacles (in gray); (b) displays the rectan-

gles (in thick lines) bounding the C-obstacles (in dark gray) corresponding to the two

new rectangular obstacles; (c) shows the decomposed empty cells (in thick lines) in

the current cell. Figure (d) depicts the new channel connecting the new initial config-

uration I and the goal configuration G. Figure 5.4 shows the new channel generated

for the example of Figure 5.2 using the same global replanning method. In this case,

80

(a) rectangular obstacle models

Wm

laps

(b) bounding rectangles of C-obstacles (c) decomposed cells

(d) new channel

Figure 5.3: Alternative channel generation

81

(a) channel (b) merged channel

Figure 5.4: Merging cells in alternative channel

two cells (the second and third cells) in the original channel have been refined, and

therefore the new channel is divided by the boundary (i.e., access gate) of the current

cell (a). Cells in the new channel are merged, and the resulting channel consists of

less number of cells (b).

Local replanning failures can be handled by generating an alternative channel, as

shown in the above examples, regardless of whether the current channel is completely

obstructed or not. However, the alternative channel generation can be computation-

ally expensive, especially when the connectivity graph is large. Therefore, we extend

below the local replanning method to multiple cells. The extended replanning method

attempts to find an escaping path over two or more cells. This additional technique

can increase the efficiency of the navigation system.

5.3 Multi-cell Local Replanning

Multi-cell local replanning is an iterative local replanning over a sequence of cells,

backtracked from the current cell. Starting from a sequence of two cells, i.e., the

82

current cell and the previous cell, the sequence of cells is expanded by adding one more

previous cell every time local replanning fails to find a path in the current sequence

of cells. Before applying multi-cell local replanning, the navigation system must

determine whether the current cell (or the sequence of the cells currently considered)

is completely obstructed or not. Indeed, if it is completely obstructed, the only way

to proceed is by generating a new channel. In the following, we describe the process

to check a cell (or a sequence of cells) for obstruction.

5.3.1 Detection of Obstruction

A channel is obstructed if any cell or sequence of cells is obstructed. A cell is ob-

structed if there exists no path between its access gate (or the initial configuration if

the cell is the first cell in the channel) and its exit gate (or the goal configuration if

the cell is the last cell in the channel). This simple definition extends to a sequence

of cells.

When a robot enters a cell, it crosses the access gate of the cell at some config-

uration, called the access configuration. This configuration is recorded for each

cell. Failure of local replanning in a cell implies that there is no path between the

local-minimum configuration and the exit gate of the cell. This also means that

there exists no path between the access configuration and the exit gate because the

local-minimum configuration is attained through the access configuration.

Initially, when no unexpected obstacles have been detected, all configurations of

the robot on the access gate are believed contiguous, i.e., it is expected there exists

a path between every pair of configurations on the access gate. If all configurations

on the access gate remain contiguous after the local replanning has failed, then it can

be concluded that there exists no path between the access gate and the exit gate.

Therefore, the cell (and the channel) is obstructed.

When unexpected obstacles are detected on (or near) the access gate, the config-

urations on the access gate are divided into separate regions (usually, two or three),

83

each of which consists of a set of contiguous configurations. One of the regions con-

tains the access configuration. When local replanning fails, it is already known that

there is no path between this region and the exit gate. Then, in order to determine

that the cell is obstructed, it remains to check that there exists no path between

any of the other regions and the exit gate. This is achieved by repeating the path

planning part of the local replanning method, with the local-minimum configuration

replaced by a configuration in each of these other regions. We describe below how to

identify these regions.

First, the grid points corresponding to the configurations on the access gate are

identified, and put into a list T, i.e., {xt,...,xn§) where ng is the number of the

grid points on the access gate. The grid points in T are ordered such that xx is a

grid point corresponding to one end of the access gate, while xng corresponds to the

other end, and two successive grid points on the access gate are also successive in T.

The grid point corresponding to the access configuration is also identified, and it is

denoted by xa.

For any i (* € [1, ng]), x{ is defined to be free if none of the configurations of the

robot corresponding to x{ overlaps with detected obstacles. For all i (i G [l,ng - 1]),

Xi and xi+i are defined to be freely connected if both a, and xi+i are free. For

any t and j (i # j,i € [l,ng] and j 6 [1,%]), »,• and Xj are freely connected if all

successive pairs between »,• and Xj are freely connected. Then, identifying separate

regions is equivalent to splitting T into sub-lists so that all grid points in each sub-list

are freely connected, but grid points in one sub-list is not freely connected to grid

points in another sub-list.

The list T is split into several sub-lists. The splitting operation starts by creating

a sub-list Ta, which contains xa initially. Then, Ta is built by removing all the

grid points of T, that are freely connected to xa, and by adding them to Ta. If all

remaining grid points in T are not free, the cell (thus, the channel) is immediately

determined to be obstructed. Otherwise, the remaining free grid points in T are put

84

into other sub-lists T, (i = [l,n]):

T\ = {xh,..., xri)

T2 = (xh,...,Xr2)

Tn = (*/„,• •-,*»•„)

where li = 1, rn = ng, li < ri < I2 < .. ■ < ln < fn, and all grid points in 7* are freely

connected.

The sub-list T, corresponds to a region that consists of contiguous configurations

on the access gate. If there exists no paths for a configuration corresponding to any

grid point in each of T.'s, the channel is obstructed.

The channel may also be obstructed by unexpected obstacles placed over multiple

cells, in which case the above process is extended to a sequence of cells. A sequence

of cells is considered obstructed if there is no path between the access gate of the first

cell in the sequence and the exit gate of the last cell in the sequence. Therefore, the

access gate of the first cell is divided into separate regions, and then each of these

regions is checked for a path to the exit gate of the last cell.

5.3.2 Multi-cell Backtracking

Once the current cell is determined not obstructed, two cells (the current cell and the

one previous cell) are considered for replanning. The grid is expanded so that it covers

both the current cell and the previous cell. Then, local replanning is performed again

over the new grid (with the same initial configuration, which is the local-minimum

configuration, and the same goal configuration, which is the configuration on the exit

of the cell).

If a path is found, the robot escapes the local minimum exactly as in the previous

chapter. If local replanning fails again, the sequence of the two cells is checked for

obstruction. If it is not obstructed, local replanning is repeated with a grid expanded

85

to cover one more previous cell. This multi-cell replanning technique is repeated

until either a path is found, or the channel is determined obstructed, in which case

an alternative channel must be generated.

However, as more cells are added for local replanning, the number of grid points

becomes larger, and the local path planner takes more time. If local replanning fails

over too many cells, it may become more efficient to generate an alternative channel.

On the other hand, if the navigation system decides to generate an alternative channel

too early, it may miss the chance of finding a simple escape route in the current

channel.

In our implementation, multi-cell local replanning is attempted when local re-

planning fails. When the size of the grid becomes so large that the expected cost of

local replanning exceeds the expected cost of generating an alternative channel, local

replanning is stopped, and the generation of an alternative channel is attempted. If

an alternative channel is found, the robot navigates in the new channel.

5.4 Examples

Figure 5.5 shows a robot escaping a local minimum using the multi-cell replanning.

Figure (a) shows the path followed by the robot in the setup of Figure 5.2. The robot

escapes the local minimum in the dead-end along the escape route, which is generated

by the local path planner over two cells. Figure (b) shows a similar example, but with

an additional unexpected obstacle placed over the previous escape route. The robot

escapes the local minimum due to this obstacle along a new escape route. The robot

does not fall into the first local minimum again because the obstacles were detected

earlier and the information is used in finding the new escape route.

86

(a) (b)

Figure 5.5: Escaping a local minimum by the multi-cell replanning.

87

Chapter 6

Computer Simulation and

Experiments

We implemented three versions of the navigation system described in the previous

chapters, with a simulated robot, Robotworld and GOFER, respectively. The com-

puter simulation system has been mainly used for developing and testing the algo-

rithms, and for the study and selection of various parameters used in the navigation

system. The Robotworld system was used to demonstrate the navigation system for

a holonomic robot that can translate and rotate freely in the plane. GOFER was

used to demonstrate the system in a real mobile robot environment using real prox-

imity sensors to detect unexpected obstacles. The GOFER robot is also subject to

nonholonomic kinematic constraints. Hence, it raises additional issues not addressed

in the previous chapters. The techniques used to deal with these issues in our imple-

mentation are described below.

In this chapter we report on these three systems and we show experimental re-

sults obtained with them. These results show that our reactive navigation system

deals with unexpected obstacles gracefully in physical world as well as in simulated

environments.

88

Figure 6.1: Navigation system on NeXT computer

6.1 Simulated Robot System

The navigation system based on the reactive architecture and techniques described

in the previous chapters has been fully implemented. Figure 6.1 illustrates the multi-

window graphic interface of this implementation on the NeXT computer. The planner

(channel generation) is written in Common Lisp [ZL91]; the rest is implemented in

C.1 The system can be run to control a simulated robot. In the simulation mode, the

navigation system has complete knowledge of the workspace, which includes known

and unknown obstacles, but the planning component only uses the information about

the known obstacles to generate the channel. The reactive component of the naviga-

tion system can only access simulated sensory data. Sensor simulation makes use of

the complete knowledge of the workspace.

In simulation, we have experimented with a holonomic robot, i.e., a robot that is

1 Graphic interfaces implemented on the NeXT computer are written in Objective-C.

89

not constrained by any kinematic constraint involving velocity parameters. Results

with such robots have been quite satisfactory; the robot found its way to the goals

along reasonably good paths (see Figures 3.6 and 4.12).

The navigation system, especially various potentials used in the reaction compo-

nent, depends on several parameters. Although intuitive/qualitative reasoning about

these parameters is possible, selecting a "right" set of values for these parameters, to

generate a good behavior of the robot for many different cases, can be rather difficult.

Numerous navigation experiments were performed, using the simulation system, with

various workspace and arrangements of unexpected obstacles, until we have found

values for the parameters producing "reasonable" paths for most cases. Then, addi-

tional experiments have shown that the navigation system is robust to small changes

in these parameters in the sense that the robot succeeds to reach the goal even though

the paths may vary.

Another difficulty in mobile robot navigation is caused by sensing errors. Data

returned by proximity sensors usually combine range error and direction error (due

to the rather wide beam angle of the emitted signal). To analyze the robustness of

the navigation system to sensing uncertainties, we have simulated sensing errors in

the simulation system by introducing random errors into the sensed range data and

by using various conic beam angles. The random range errors are bounded (by some

percentage of the maximum sensing range), and they are assumed to be proportional

to the detected range data. Tables 6.1, 6.2, and 6.3 show simulation results when

navigation was performed in the workspace of Figure 3.6 (b). We have also tested with

several different arrangements of unexpected obstacles, and the results were similar.

Table 6.1 shows the simulation results when the navigation was performed with

various range errors, but with a fixed beam angle (22.5°). The number of control

loops represents approximately the length of the resulting path. The robot failed to

reach the goal when the range errors exceeded 30% of the maximum sensing range.

The erratic sensory data caused a local minimum in the third cell of the channel (see

Figure 2.4 for the channel), and local replanning failed because the false obstacle grid

points blocked the passage. Most real infra-red proximity sensors have less errors.

90

Range Error Number of Steps Result
No Error 864 Success

10% 870 Success
20% 879 Success
30% 894 Success
40% 953 Failure

Table 6.1: Navigation with sensing range errors

Angle Number of Steps Result
0.01° 845 Success
5.0° 849 Success
10.0° 851 Success
22.5° 864 Success
30.0° 869 Success
45.0° 880 Success

Table 6.2: Navigation with various conic beam angles of sensor

Proximity sensors using ultra-sound may cause problems because the range error

become fairly big for obstacles at a relatively long distance.2 Also, they are known

to often produce spurious data when the angle between a sensing direction and the

boundary of a detected obstacle is much different from 90°.

Table 6.2 shows the simulation results when the navigation was performed with

various beam angles, but with no range errors. The changes in the angle didn't have

much impact on the resulting path when unexpected obstacles are sparsely scattered.

But, when unexpected obstacles are arranged close to each other, the robot stopped

at many places and relied on local replanning because of the false local minima due

to the sensing errors.

Finally, Table 6.3 shows the simulation results when the navigation was performed

2Failures due to this error can be reduced by limiting the maximum range.

91

Angle Range Error Number of Steps
0.01° 10% 852

20% 865
30% 870

10.0° 10% 860
20% 871
30% 889

45.0° 10% 889
20% 903
30% 924

Table 6.3: Navigation with sensing range errors and various conic beam angles

with both types of errors. Navigation terminated successfully for all cases shown in

the table. The resulting paths became longer as the combined errors increased.

6.2 Robot world Experiments

We used Robotworld [Sch87] to conduct additional experiments with the navigation

system in the case where the robot translates and rotates freely in the plane (holo-

nomic robot). The experimental setup is depicted in Figure 6.2.

Our Robotworld is made of two simple manipulation robots (I and II) and a

vision system. Each robot consists of a base and a gripper. The base hangs from the

ceiling and translates in the horizontal plane (two degrees of freedom). The gripper

translates along a vertical axis and rotates about that axis. Therefore, each robot

has four degrees of freedom in total. The vision system consists of a camera, looking

downward, mounted on a translating base identical to that of a robot.

The "robot" that our navigation system controls is an object held by the gripper

of Robotworld's robot I. It is made of Lego pieces. This "robot" navigates in a

workspace built with other Lego pieces (some are known obstacles, the others are

unexpected ones) mounted on a horizontal platform. Robot I moves the "robot"

92

Vision System
a base and a camera

- Manipulation Robot I
a base and a gripper

Known Obstacles
fixed Lego pieces

Unexpected Obstacles
movable Lego pieces

Robot
a Lego piece
held in a gripper

Figure 6.2: Robotworld setup

by holding it a fraction of an inch above this platform, so that it can collide with

the obstacles. Since the gripper can translate and rotate freely, the "robot" is free of

kinematic constraints. (Actually, wires prevent the gripper from rotating indefinitely;

when a stop of the revolute joint is attained, the gripper lifts the "robot" above the

obstacles, rotate back to maximize the angular distance to the revolute joint stops,

and translates the "robot" down back to its previous position and orientation.)

The layout of both the expected and the unexpected obstacles is input on the

computer display. (In our experiments, only the layout of the unexpected obstacles

was changing.) Robotworld's robot II automatically mounts the obstacles on the

workspace platform from this layout description. When this is done, robot I brings

the "robot" to a specified initial configuration. After the goal configuration is input,

the navigation system controls the motion of the "robot".

The vision system was used for identifying and locating obstacles in an obstacle-

supply bin, and for verifying the correct placements of the obstacles in the workspace.

However, Robotworld does not provide a sensing system that could be used to emulate

the "robot"'s sensors and detect unexpected obstacles. Such sensing is therefore

simulated using the known layout of the workspace, as in the simulation system

presented in the previous section.

93

Figure 6.3: Navigation of a simulated robot experimented on Robot World [Over]

94

Figure 6.3: Navigation of a simulated robot experimented on RobotWorld

95

In this experimental setup, our navigation system runs on a DEC 3100 worksta-

tion. This system sends its commands to a program written in RAIL (the program-

ming language of Robotworld) and running on the Macintosh II computer controlling

Robotworld. This RAIL program converts the commands sent to the "robot" into

appropriate motion commands for Robot I. The connection between the DEC 3100

workstation and the Macintosh computer is a 9600 baud serial line.

Figure 6.3 shows snapshots along the path of Figure 3.6, when executed with this

experimental setup.

6.3 GOFER Experiments

6.3.1 Description of GOFER

Over the last three years we have developed a mobile robot, GOFER (see Figure 6.4),

which is equipped with multiple sensors and on-board computing [CCL+90].3 This

robot operates in the office-like environment of our laboratory. The main charac-

teristics of the environment, i.e., the layout of the building and the main pieces of

furniture, are known a priori; but the locations and shapes of smaller objects (e.g.,

chairs) are not known. Most tasks to be performed by GOFER (e.g., delivering mail)

reduce to navigating from one location to another without colliding with any object.

When our navigation system controls the real GOFER, the planner runs on an

off-board computer (Apple Macintosh II). The description of the planned channel is

sent to the GOFER's on-board computer (Dynatem DCPU30 68030 computer board)

through a radio modem. The rest of the navigation system and sensory data process-

ing runs on the on-board computer. GOFER uses a camera-laser range sensor and a

ring of infra-red (IR) proximity sensors to detect obstacles and measure distances to

them. In our experiments, we only used the IR sensors. Although these are less accu-

rate and reliable than the camera-laser range sensor, the ring of IR sensors provides

3GOFER has a circular outline. This fact slightly simplifies channel generation, but does not
modify the rest of the navigation system significantly.

96

Figure 6.4: GOFER

97

a 360° field of view, while the camera-laser range sensor only has a 30° field of view

always pointing along the current direction of motion of the robot.

6.3.2 Control of GOFER

So far, we have only considered the case of a holonomic robot (i.e., a robot that can

freely translate and rotate at any time). However, GOFER is subject to a nonholo-

nomic constraint due to its synchro-drive mechanism (see Appendix B), i.e., it can

move only along the direction of its wheels at any given time. While this constraint is

similar to the one constraining the motion of a car, GOFER can change its orientation

without translating, i.e., it has zero turning-radius. Thus, GOFER can move from the

current configuration to another by executing the following sequence of motions: stop

at the current position; rotate to point in the direction of the desired position; move

to the position; stop and rotate to the desired orientation. The potential-field guid-

ance in our navigation system may be directly applicable to the control of GOFER,

but the negated gradients of the potentials, in general, require GOFER to frequently

change its direction of motion, especially in the presence of unexpected obstacles.

This causes frequent stop-and-rotate motion sequences.

Several results have recently been reported for planning collision-free motions for

nonholonomic robots in a static environment [Lau87, LTJ90, BL89] as well as in

a dynamic environment where unknown obstacles or moving obstacles are present

[Fra90]. The approach in [LTJ90] is based on the result that when a nonholonomic

vehicle is constrained by lower-bounded turning radius (i.e., by a limited range of

its steering angle), a path of minimal length between two configurations consists

of a finite sequence of straight-line segments and circular arcs generated with the

minimum turning radius [RS90]. However, in practice, a real robot (or a vehicle)

cannot exactly follow such path because there are discontinuities of the curvature

along the path and the robot cannot instantaneously change its steering angle (i.e.,

the corresponding turning radius) from one extreme value to another. Besides, in the

presence of unexpected obstacles, the optimality in the path length becomes much less

meaningful because the path needs to be modified when it overlaps with the obstacles

98

l»m^*i*mx'!S!>m

(a) With obstacle potential (b) Without obstacle potential

Figure 6.5: Reduced oscillatory motion

and, in the end, the actual trajectory can often be far from optimal. The approach

in [Fra90] is based on using potential fields generated over a bitmap representation

of the environment, but it is not applicable to our case because the computation of

such potential fields takes too long to be done in real-time.

Our navigation system discretizes the range of values of the steering angle of

GOFER. For each discrete value, it integrates the equations of motion over a short

interval of time (with both positive and negative linear velocities), yielding possible

configurations, called candidate configurations, where the robot can go. Among

these configurations, the one with the smallest value of the potential function com-

puted by our navigation system is selected. The corresponding steering angle and

linear velocity are sent to the robot's controller for execution.

This approach produces smooth paths when the robot travels in a channel with no

unexpected obstacles, i.e., when the driving command is computed from the negated

gradient of the channel potential alone. However, when the robot gets close to unex-

pected obstacles, the unexpected-obstacle potential may cause unnecessary oscillatory

motions. The cause for these motions is that motion commands are obtained from the

noncontinuous candidate configurations. Since the direction of motion at all candi-

date configurations is known with good approximation, potential collision of the robot

with detected unexpected obstacles can be predicted using this knowledge. There-

fore, we further smooth the path by zeroing the unexpected-obstacle potential at the

candidate configurations where the robot would not head toward detected obstacles.

99

The Generalized Potential Field approach, previously described in [Kro84], is based

on a similar concept. Repulsive potential (due to an obstacle) is computed based

on the current velocity of the robot as well as the distance to the obstacle, i.e., the

value of the repulsive potential increases as the robot approaches faster and closer

to the obstacle while it becomes 0 when the robot moves away from the obstacle.

However, this method is less effective in reducing the oscillatory motion because only

the current motion direction (rather than several possible motion directions) is taken

into account.

Figures 6.5 illustrates this with an example: When all the candidate configurations

are under the influence of the unexpected-obstacle potential, the robot may attempt

to steer away from the detected unexpected obstacle even when the robot may travel

parallel to the obstacle without hitting it (a); When the unexpected-obstacle potential

is ignored for the candidate configurations that do not result in the collision of the

robot with the obstacle, the robot does not oscillate but moves straight to its goal

(b).

6.3.3 Experimental Results

The above control technique has given very good experimental results in simulation

(see Appendix C). The experimentation with the real GOFER also gave satisfactory

results, but we had some problems with the quality of the sensory data. This quality

could be improved (for instance by averaging several successive readings of the sen-

sors), but we were limited by the fact that all the software runs on the same 68030

processor. This processor alone is too slow to support both the computation of the

potentials and the direction of motion at a reasonable rate (10-20 Hz) and an adequate

processing of the incoming sensory data. This difficulty could be resolved by adding

an on-board processor to treat sensor inputs. Figure 6.6 show six snapshots along

a path executed by GOFER among unexpected obstacles. Figure 6.7 show GOFER

escaping from a local minimum created by three unexpected obstacles.

The main limitation of the current system, when connected to GOFER, comes from

the fact that it relies exclusively on the odometric sensors to determine the robot's

100

current configuration (which is needed to compute Uc). Hence, the system becomes

unreliable when the wheels slip or slide on the floor. But, the robot's current con-

figuration can be estimated more accurately by various localization techniques, e.g.,

matching environmental sensory data against the workspace model, relying on self-

contained inertial navigation system, or relying on global positioning system (GPS)

(see Section 1.7.2 for references).

101

Figure 6.6: Navigation of GOFER among Unexpected Obstacles

102

Figure 6.7: GOFER escaping a local minimum

103

Chapter 7

Conclusion

7.1 Summary of Contribution

We addressed the problem of developing a navigation system for mobile robots oper-

ating in partially known environments. We proposed a novel approach emphasizing

interaction between planning and reaction components. We developed computational

techniques to implement this approach into an operational navigation system. Three

version of this system were implemented and experimented with simulated and real

robots. The navigation system is complete under the assumptions that all obstacles

are stationary and sensing is perfect. Under these two conditions, if it is possible to

attain the goal, the robot will ultimately reach it, otherwise it will eventually give up.

The experimental results show that this new approach achieves increased robustness

in the presence of unexpected obstacles.

This research brings two levels of contributions: (1) the reactive architecture of

the navigation system; (2) the techniques embedded in this architecture.

At the architecture level, we have borrowed the concept of a reactive architecture

and applied this concept to mobile navigation by combining planning and reaction

components:

• The reaction component must have some global knowledge of the robot's

workspace in order to react appropriately to unexpected obstacle events. This

104

knowledge is provided in the form of a lesser-committed motion plan generated

by a planning component aware that there may exist unexpected obstacles. In

our system, lesser-committed plans take two forms: channels and valley-shaped

potentials.

• Multiple layers of treatment deal with classes of events according to their ex-

pected frequency. The top layer can treat alone all the events that the lower

levels are intended for. The lower levels only provide more efficient treatment.

This architecture makes it possible to introduce a reliable treatment of unex-

pected obstacles by building the top layer. This function can then be made

more efficient by adding new layers. Our system consists of three layers: chan-

nel navigation, local replanning and global replanning.

At the technical level, this work brings the following contributions:

• We have introduced the concept of a channel as a lesser-commitment motion

plan, and instantiated this concept as a sequence of rectangloid cells that can

easily be generated using an approximate cell decomposition planning method.

• We have defined potential field functions computed on-line to navigate in a chan-

nel toward the goal and to simultaneously react to unexpected obstacles. The

potential is guaranteed to be local-minima free when there are no unexpected

obstacles.

• We have developed a new way to escape local minima on-line by replanning a

local path and integrating it in the current potential field function using the

notion of a valley-shaped potential.

• We have extended our navigation system to robots with nonholonomic motion

constraints.

7.2 Directions for Future Work

The advantage of the strong interaction between the planning component and the

reaction component in our navigation system has been demonstrated by our multiple

105

experiments with both simulated and real robots. Nevertheless, our approach and

the implemented navigation system have some limitations.

Our navigation system, based on potential functions defined in channel and local-

minimum escape strategy, makes the robot adaptive to the unknown obstacles (both

stationary and moving obstacles). However, when moving obstacles exist in the

robot's workspace, the current navigation system is no longer guaranteed to succeed,

because the local/global replanning relies on the traces of the sensory data obtained

from detected unexpected obstacles. In order to increase reliability, the navigation

system must be able to distinguish moving obstacles from static ones (e.g., by mea-

suring the relative speeds of detected obstacles) and only record the traces of static

obstacles. Identifying moving obstacles by using proximity sensors is usually not

very reliable. Therefore, in addition to proximity sensors, more capable sensors (e.g.,

vision sensor with image processing) are required.

As more reliable mobile robots become available, several robots may operate si-

multaneously in the same workspace. Our navigation system can be further extended

to deal with multiple robot navigation. The division of the planning and reaction

components in the navigation system makes the combination of centralized and dis-

tributed computation more feasible. The planning component can be implemented in

a central dispatcher where multiple channels are planned: one channel is planned for

each robot based on the task/schedule of the robot. Then, the reaction component

is implemented for each robot so that obstacle avoidance is performed independently

by each robot. One of the requirements of the navigation system in application to

multiple robot navigation is that sensors of one robot must not interfere with those of

other robots. Laser-camera range sensor described in the Appendix B is a good candi-

date for such non-conflicting sensors. Some "traffic rule" may also be introduced and

embedded in the channel to resolve conflicts at the intersections of channels. Existing

approaches to motion planning of multiple moving objects are described in [Lat91].

106

Appendix A

Channel Navigation Examples

In Chapter 3, we have shown an example of robot navigation in a channel where all

cells range over [0,27r]. In the following, we show more navigation examples where the

robot's orientation in some cells is limited to a subset of [0,2n]. Figure A.l illustrates

the navigation in the channel of Figure 2.3: (a) shows the path of the robot in the

2-dimensional workspace when there are no unexpected obstacles; (c) shows the path

of the robot in the presence of two unexpected obstacles; (b) and (d) show the paths

corresponding to (a) and (c) in the 3-dimensional channel.

Figures A.2, (a) through (n) display snapshots at various stages of the navigation

process shown in Figure A.l (b) and (d). The robot in the 2-dimensional workspace

and its corresponding configuration in the 3-dimensional channel are shown in each

of the snapshots. Note that, between Figures (h) and (i), the orientation of the robot

changes from 2n to 0.

Figure A.3 illustrates another navigation example: (a) shows the path of the robot

when it navigates in the 2-dimensional workspace of Figure 2.4 (d); (b), (c) and (d)

display the corresponding path in the 3-dimensional channel from three different view

points.

107

(b)

nT=d

(c) (d)

Figure A.l: Robot paths with and without unexpected obstacles

108

(a) (b)

(c) (d)

(e) (f)

Figure A.2: Navigation of the robot shown in 2D and 3D [Over]

109

(g)

(i)

00

(j)

(k) (1)

Figure A.2: Navigation of the robot shown in 2D and 3D [Over]

110

(m) (n)

Figure A.2: Navigation of the robot shown in 2D and 3D

111

(b)

V— / 7
f

• • • • •

• •

1 \

I
i

• •
•

_J 1—

^ / k\

(c) (d)

Figure A.3: Robot paths in various 3-dimensional perspectives

112

Appendix B

GOFER Hardware

The hardware of GOFER consists of a 12-inch diameter mobile base and interface

modules (see Figure B.l). The 3-wheeled 2 DOF mobile base (B12 by Real World

Interface [Rea88]) is equipped with two DC motors, four 6V gel-cell batteries and an

8-bit microcomputer for low-level control. The mobile base has a belt-driven synchro-

drive mechanism which allows the base to translate and rotate independently. When

the base rotates, only the top plate of the base and the wheels rotate. Two optical

shaft encoders are directly attached to the motors to provide linear and angular

positions of the base. Motor control and inquiries about encoders, battery status and

motor status are processed by the base microprocessor. The interface modules consist

of a touch sensor module, an infra-red module, a laser-camera ranging module and a

computer module.

Each module, except the touch sensor, is built on its own modular plate. All

modules are placed one on top of the other, with the bottom one rigidly attached to

the top plate of the base. Interface modules are designed such that they are indepen-

dent of each other. Also, each module communicates on a common robot bus which

is passed through each module. Therefore, each module can be detached for test or

repair without affecting the use of other modules. This design allows easy expand-

ability. Independency among modules facilitated debugging and experimentation of

our navigation system.

113

Camera

Laser-ranging Module

Computer Module

Infra-red Module

op floor of mobile base

Figure B.l: Closeup of hardware modules in GOFER

114

The computer module has a 5 slot VME-bus card cage. A totally CMOS 20MHz

MC68030 based computer board and a custom-designed 10 board are installed in

it. The 68030 board has battery backed 1 Mega byte SRAM and four RS232 serial

ports, three of which are currently being used (one for the communications between

the robot base computer, the other two for the communications between the host

computer for down-loading of the system software and the input and output of the

user commands). The computer board draws about lAmp and the 10 board has 64

general 10 lines and draws less than 100mA.

The touch sensor module is placed around a steel bumper which encases the robot

base. The touch sensor has two levels of 12 segment tape switches. Each tape switch

detects a pressure of 9 oz. and provides on/off information. Therefore, the touch

sensor module serves to protect the base as well as to detect the direction of contact

between the robot and obstacles.

On the infra-red sensor module, 16 emitter/receiver pairs are evenly distributed

around the perimeter of the modular plate and a control circuit board is located at

the center of the plate. Each infra-red emitter/receiver can detect an object up to 18

inches in 250 micro-seconds with an average resolution of 0.25 inches (the accuracy

increases as the range decreases). This is an intensity based device, so it is inherently

subject to color and specularity problems. For our navigation system, we solved some

of these problems by conservative measurement of the signal.

On the laser-camera ranging module, a laser diode and a CCD camera are placed

in a reconfigurable fixture. The fixture allows the laser unit and the CCD camera

to have different offsets and relative orientations. Ranging is achieved by emitting a

plane of light and watching from some offset distance for intersections with this plane.

Then, triangulation is done to find the actual distance. An infra-red laser diode and a

cylindrical lens create the plane of light. By turning a camera 90 degrees on its side, so

the scan lines run vertically, we can measure the distance to an object by monitoring

the composite video output. By measuring the time from the beginning of any scan

line to the sudden increase in intensity that would correspond to an object reflecting

the laser light, we get a direct relation to the object's distance. An interference filter

115

that allows only the laser light frequency to pass is put over the camera lens to reduce

the noise. This system provides 15360 data points per second, 512 ranging values over

the approximately 30 degree field of view of the camera 30 times per second. The

timing information along with the intensity of the reflection is then directly dumped

into memory by DMA over the VMEbus. The resolution varies nonlinearly with the

distance: closer objects are seen with better resolution. The resolution is directly

related to the offset of the camera with the laser plane. So a 6 inch offset produces a

theoretical resolution of 0.03 inches at one foot and a resolution of 2.3 inches at ten

feet.

116

Appendix C

GOFER Simulation Results

In this appendix we show simulation results of GOFER navigation to compare the mo-

tion commands and the linear/angular velocities in three different cases. Figures C.2,

C.4, and C.6 illustrates the paths navigated by GOFER in the computer simulation

system for three different cases, i.e., with no unexpected obstacles, with unexpected

obstacles causing no local minima, and with unexpected obstacles causing local min-

ima. Figure C.2 (a) shows the initial and goal configurations and the corresponding

channel. The same initial and goal configurations are used for the other two cases,

and, thus, the channel is identical for all three cases. Figures C.3, C.5, and C.7 illus-

trates the motion commands (shown in (a)'s) generated by the navigation system, the

resulting linear velocities (shown in (b)'s) and rotational velocities (shown in (c)'s)

of GOFER during navigation.

Motion commands corresponding to the discrete turning radii are indexed such

that the number 0 (resp., -1) corresponds to the forward (resp., backward) translation

without rotation, and the positive numbers correspond to the clockwise rotation of

the robot while the negative numbers, except — 1, correspond to the counterclockwise

rotation. Figure C.l illustrates such indexing.

Figures C.3 (b) and C.5 (b) show that the robot traveled at maximum linear

velocity except during the initial acceleration period.1 However, in Figure C.7 (b),

^n the simulation, the execution of the navigation system has been terminated, without waiting

117

Figure C.l: Discrete turning radii and the corresponding indexes

the robot slows down and stop when the local minimum is attained. It then moves

backward and escapes the local minimum. When the robot is outside the attraction

basin of the local minimum, it travels forward at the maximum linear velocity again.

The first two glitches in the figure happened due to the local minima. The third

glitch happened when the robot tried to go between two obstacles near the bottom.

At first, the local-minimum "alert" flag was set due to the repulsive potentials from

the two obstacles, but the robot found a way around the last obstacle (in the bottom)

before the "detect" flag was set. Therefore, the robot regained its full speed without

stopping, and moved around the obstacle.

The dimension of the workspace used in the simulation is 300 x 300 in2. The

maximum linear velocity was set to 0.013 in/sec (« 0.1 m/sec), and the four discrete

turning radii were set to be the radius of GOFER multiplied by 1.0, 2.0, 2.5, and 3.0,

respectively. Each time step is 0.1 second. The trace of the robot is shown every 5

time steps.

for the robot to stop completely, when the robot reaches near the goal within a prespecified distance.
Therefore, the linear/angular velocities in the Figures C.3-C.7 do not drop to 0 at the end.

118

(a) Initial and goal configurations, and the Channel

(b) Trajectory

Figure C.2: Example 1: Navigation of GOFER with no unexpected obstacles

119

3

CO

c

Q

0.02

0.015

1
> 0.01

0.005

Time step

(a) Control history

50 100 150
Time step

200 250

(b) Linear velocity

50 100 150
Time step

200 250

(c) Angular velocity

Figure C.3: Example 1: Control history, the linear and angular velocity profile

120

^^^^^^1
©

•

©

^^^^^^1
(a) Initial and goal configurations

•fit

(b) Trajectory

Figure C.4: Example 2: Navigation of GOFER with unexpected obstacles

121

0.02

SO 100 150 200
Time step

250 300

(a) Control history

150 200
Time step

(b) Linear velocity-

Time step

(c) Angular velocity

Figure C.5: Example 2: Control history, the linear and angular velocity profile

122

(a) Initial and goal configurations

^^^^^H

E m 4jB

4m

^^^^^H
(b) Trajectory

Figure C.6: Example 3: Escaping a local minimum created by unexpected obstacles

123

0.5

1

8

c <
-0.5

200

Time step

(a) Control history

0.02

0.01

(

/ it

0

i

V
I

V
1 ._!

100 200 300

Time step

(b) Linear velocity

100 200

Time step
300

400

400

(c) Angular velocity

Figure C.7: Example 3: Control history, the linear and angular velocity profile

124

Bibliography

[AF89] N. Ayache and 0. D. Faugeras. Maintaining Representations of the Envi-

ronment of a Mobile Robot. IEEE Trans. Robotics Automation, RA-5(6),

1989.

[Ark87] R. C. Arkin. Motor Schema-Based Mobile Robot Navigation. The Inter-

national Journal of Robotics Research, December 1987.

[BL89] J. Barraquand and J.-C. Latombe. On Nonholonomic Mobile Robots and

Optimal Maneuvering. In Proc. of IEEE International Symposium on In-

telligent Control 1989, Albany, NY, USA, September 1989.

[BL91] J. Barraquand and J.-C. Latombe. Robot Motion Planning: A Distributed

Representation Approach. The International Journal of Robotics Research,

10(6), December 1991.

[BLP85] R. A. Brooks and T. Lozano-Perez. A Subdivision Algorithm in Configu-

ration Space for Findpath with Rotation. IEEE Transactions on Systems,

Man and Cybernetics, 15(2), 1985.

[Bro86] R. A. Brooks. A robust layered control system for a mobile robot. IEEE

Journal of Robotics and Automation, 2(1), April 1986.

[CCL+90] P. Caloud, W. Choi, J.-C. Latombe, C. LePape, and M. Yim. Indoor

Automation with Many Mobile Robots. In Proc. of IROS '90. IEEE In-

ternational Workshop on Intelligent Robots and Systems '90. Towards a

New Frontier of Applications, Ibaraki, Japan, July 1990.

125

[CL85] R. Chatila and J. P. Laumond. Position Referencing and Consistent World

Modeling for Mobile Robots. In Proc. of IEEE International Conference

on Robotics and Automation, St. Louis, MO, March 1985.

[Cro89] J. L. Crowley. World Modeling and Position Estimation for a Mobile Robot

Using Ultrasonic Ranging. In Proc. of IEEE International Conference on

Robotics and Automation, New York, 1989.

[CT90] I. J. Cox and Wilfong G. T. Autonomous Robot Vehicles. Springer-Verlag,

New York, 1990.

[CZL89] W. Choi, D. J. Zhu, and J.-C. Latombe. Contingency-Tolerant Motion

Planning and Control. In Proc. of IROS '89, Tsukuba, Japan, 1989.

[DW87] H. F. Durrant-Whyte. Integration, coordination, and control of multi-

sensor robot systems. Kluwer Academic Pub., Boston, 1987.

[Elf85] A. Elfes. Multiple levels of representation and problem-solving using maps

from sonar data. In Proc. of DOE/CESAR Workshop on Planning and

Sensing for Autonomous Navigation, Oak Ridge Nat. Lab., UCLA, Los

Angeles, CA, August 1985.

[FB88] A. M. Flynn and R. A. Brooks. MIT Mobile Robots: What's next? In Proc.

of IEEE International Conference on Robotics and Automation, 1988.

[Fir87] R. J. Firby. An Investigation into Reactive Planning in Complex Domains.

In Proc. ofAAAI 81, Seattle, WA, July 1987.

[Fra90] Fraichard, Th. and Laugier, C. and Lievin, G. Robot motion planning:

the case of non-holonomic mobiles in a dynamic world. In Proc. of IROS

'90. IEEE International Workshop on Intelligent Robots and Systems '90.

Towards a New Frontier of Applications, Ibaraki, Japan, July 1990.

[Gir79] Giralt, G. and Sobek, R. P. and Chatila, R. A Multi-Level Planning and

Navigation System for a Mobile Robot; A First Approach to HILARE. In

Proc. of 6th IJCAI, 1979.

126

[Gir84] Giralt, G. and Chatila, R. and Vaisset, M. An integrated navigation and

motion control system for autonomous multisensory mobile robots. In 1st

Int. Symp. Robotics Research, 1984.

[GL87] M. P. Georgeff and A. L. Lansky. Reactive Reasoning and Planning. In

Proc. of AAAI 87, Seattle, WA, July 1987.

[Har85] S. Harmon. Knowledge Based Position Location on Mobile Robots. In

Proc. of the 11th IEEE Industrial Electronics Society Conference, San

Francisco, CA, November 1985.

[Kae86] L. P. Kaelbling. An Architecture for Intelligent Reactive Systems. Tech-

nical report, Artificial Intelligence Center, SRI International, Menlo Park,

California, 1986.

[Kha86] O. Khatib. Real-Time Obstacle Avoidance for Manipulators and Mobile

Robots. The International Journal of Robotics Research, 5(1), 1986.

[Kro84] B. H. Krogh. A Generalized Potential Field Approach to Obstacle Avoid-

ance Control. In Robotics Research: The Next Five Years and Beyond, SME

Conference, Bethlehem, PA, 1984.

[KT86] B. H. Krogh and C. E. Thorpe. Integrated Path Planning and Dynamic

Steering Control for Autonomous Vehicles. In Proc. of IEEE ICRA, San

Francisco, 1986.

[KTB87] D. J. Kriegman, E. Triendl, and T. 0. Binford. A mobile robot: Sensing,

planning, and locomotion. In Proc. of IEEE International Conference on

Robotics and Automation, Raleigh, NC, 1987.

[KTB89] D. J. Kriegman, E. Triendl, and T. 0. Binford. Stereo Vision and Naviga-

tion in Buildings for Mobile Robots. IEEE Transactions on Robotics and

Automation, 5(6), 1989.

127

[KV89] P. Khosla and R. Volpe. Superquadric Artificial Potentials for Obstacle

Avoidance and Approach. In Proc. of IEEE International Conference on

Robotics and Automation, April 1989.

[Lat91] J.-C. Latombe. Robot Motion Planning. Kluwer Academic Pub., Boston,

1991.

[Lau87] Laumond, J. P. Finding collision-free smooth trajectories for a non-

holonomic mobile robot. In Proc, of 10th IJCAI, pages 1120-1123,1987.

[LK85] A. Lucas and T. Kanade. Optical Navigation by the Method of Differences.

In Proc. of 9th IJCAI, Los Angeles, CA, August 1985.

[LL92] A. Lazanas and J.-C. Latombe. Landmark Based Navigation. In Proc.

of the IEEE International Conference on Robotics and Automation, pages

1728-1733, Nice, France, 1992.

[LP83] T. Lozano-Perez. Spatial Planning: A Configuration Space Approach.

IEEE Transactions on Computers, C-32(2), 1983.

[LPW79] T. Lozano-Perez and M. A. Wesley. An Algorithm for Planning Collision-

Free Paths among Polyhedral Obstacles. Comm. ACM, 22(10), 1979.

[LS86] V. Lumelsky and A. Sepanov. Dynamic Path Planning for a Mobile Au-

tomaton with Limited Information of the Environment. IEEE Transactions

on Automatic Control, AC-31(11), November 1986.

[LTJ90] J. P. Laumond, M. Taix, and P. Jacobs. A motion planner for car-like

robots based on a mixed global/local approach. In Proc. of IROS '90. IEEE

International Workshop on Intelligent Robots and Systems '90. Towards a

New Frontier of Applications, Ibaraki, Japan, July 1990.

[May79] P. S. Maybeck. Stochastic Models, Estimation, and Control. Academic

Press, New York, 1979.

128

[Mor77] H. P. Moravec. Towards automatic visual obstacle avoidance. In Proc. of

5th IJCAI, MIT, Cambridge, MA, August 1977.

[Mor83] H. P. Moravec. The Stanford Cart and CMU Rover. In Proc. of IEEE,

volume 71, 1983.

[NU69] N. J. Nilsson. A Mobile Automation: an Application of Artificial Intelli-

gence Techniques. In Proc. of 1st IJCAI, Washington, D.C., May 1969.

[0'H73] D. A. O'Handley. Scene Analysis in Support of a Mars Rover. Computer

Graphics and Image Processing, 2, 1973.

[Ran86] J. E. Randolph. Mars Rover 1996 Mission Concept. Technical report, Jet

Propulsion Laboratory, 1986.

[Rea88] Real World Interface, Real World Interface, P.O. Box 270, Dublin, NH

03444. Real World Interface Mobile Robot Base B12 Guide to Operations,

1988.

[RK90] E. Rimon and D. E. Koditschek. Exact Robot Navigation in Geometrically

Complicated but Topologically Simple Spaces. In Proc. of IEEE ICRA,

Cincinnati, 1990.

[RS90] J. A. Reeds and L. A. Shepp. Optimal paths for a car that goes both

forwards and backwards. Pacific Journal of Mathematics, 1990.

[Sch87] V. Scheinman. Robotworld: A Multiple Robot Vision Guided Assembly

System. In Proc. of ISRR, 1987.

[SE87] S. C. Shapiro and D. Eckroth. Encyclopedia of Artificial Intelligence. John

Wiley & Sons, Inc., New York, 1987.

[Sla90] M. G. Slack. Situationally Driven Local Navigation for Mobile Robots.

PhD thesis, Verginia Polytechnic Institute, Computer Science Department,

April 1990.

129

[SS83] J. T. Schwartz and M. Sharir. On the Piano Mover's Problem: I. The Case

of a Two-Dimensional Rigid Polygonal Body Moving Amidst Polygonal

Barriers. Communications on Pure and Applied Mathematics, 36, 1983.

[SSC88] R. Smith, M. Self, and P. Cheeseman. Estimating Uncertain Spatial Re-

lationships in Robotics. Uncertainty Artificial Intelligence, 2, 1988.

[Tho77] A. M. Thompson. The Navigation System of the JPL Robot. In Proc. of

5th IJCAI, 1977.

[THTS88] A. M. Thompson, M. Hebert, Kanade T., and Shafer S. Vision and Navi-

gation for the Carnegie-Mellon NAVLAB. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 10(3), May 1988.

[TL92] H. Takeda and J.-C. Latombe. Planning the Motions of a Mobile Robot

in a Sensory Uncertainty Field. Technical report, Stanford University,

Dept. of Computer Science, 1992.

[Zhu92] D. J. Zhu. Exploring the Interaction of Geometry and Search in Path

Planning. PhD thesis, Stanford University, Computer Science Department,

February 1992.

[ZL91] D. J. Zhu and J.-C. Latombe. New Heuristic Algorithms for Efficient

Hierarchical Path Planning. IEEE Tr. on Robotics and Automation, 7(1),

February 1991.

130

