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Abstract 

This dissertation describes a new approach and enabling techniques to build the 

navigation system of a mobile robot operating in a partially known environment. 

The main layout of this environment is known in advance, but the locations and 

shapes of some smaller objects may not be known. Environments of this type include 

shop-floors, clean rooms, offices, etc. The problem is to automatically determine how 

the robot should move from one position to another without colliding with any of the 

objects in the environment. 

In order to be both efficient and robust, the navigation system should interweave a 

planning component and a reaction component. The planning component should take 

advantage of available prior knowledge to produce globally efficient plans. However, 

it should be aware that knowledge may be incomplete and generate lesser-committed 

plans that leave some freedom of choice at execution time to deal with contingencies. 

The reaction component should organize the robot's behavior according to both the 

ongoing plan and the sensory inputs. 

The main idea underlying the approach proposed in this dissertation is to let the 

reaction component share some global knowledge of the robot's environment with the 

planning component. Based on this idea, we have developed a new type of navigation 

system where the planning component generates a lesser-committed motion plan, 

called a channel, represented by a sequence of parallelepipedic cells, and the reaction 

component uses artificial potential fields to pull the robot toward its goal within the 

channel, while repelling it away from unexpected obstacles. 

Various arrangements of unexpected obstacles may be encountered during naviga- 

tion. The treatment of these arrangements by the reaction component is organized in 



three layers: channel navigation, local replanning, and global replanning. The most 

common and simpler cases are processed by the first layer using less complex tech- 

niques (tracking an artificial potential field), while less frequent but more complex 

cases are handled by the other layers using more complex techniques (local/global 

replanning). 

This navigation system applies to mobile robots with holonomic, as well as non- 

holonomic constraints. Three versions of the system have been implemented. They 

have been experimented with simulated robots, a Robotworld system, and the GOFER 

mobile robot, respectively. Experimental results are discussed in this report. 

VI 
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Chapter 1 

Introduction 

During the past twenty years many advances have been made in mobile robotics. The 

ultimate goal of such robots is to operate autonomously and achieve high-level goals 

describing what should be done, rather than how to do it. Various application tasks 

have been considered, for example, delivering mail, carrying luggage, guiding people, 

surveilling offices, acquiring information. To accomplish such tasks successfully, the 

very basic thing that a robot must be able to do is to navigate reliably from one 

location to another. Yet, reliable navigation remains a standing problem. This is due 

to the fact that real world is full of uncertainties and contingencies that are difficult to 

model meaningfully, e.g., motion control is imperfect, sensors are inaccurate and/or 

may not work properly, knowledge of the world is incomplete. Such imperfections 

yield events that the robot may not handle appropriately or even recognize. It is 

definitely not reasonable to expect that a robot can face all sorts of unexpected events 

(humans certainly can't). Nevertheless, for virtually any environment, it should be 

possible to define a finite set of event types covering all events that may reasonably 

occur. In such an environment, a reliable robot is one that behaves appropriately 

when these events occur. Notice that these events are "expected" in the sense that 

it is known in advance that they may occur. But they are "unexpected" in the sense 

that one cannot predict when and/or how they will occur. 

In this dissertation, we consider the case of an office-assistant mobile robot.1 

1 Office robots are only used here as a source of inspiration and an illustrative example. Most of 



Clearly, such a robot cannot have or maintain complete knowledge of its workspace. 

Hence, a major type of events is caused by "unexpected obstacles," that is, obstacles 

which are not part of the robot's workspace model. In this dissertation, we focus on 

handling this type of events. We address the following question: EXPECTING THE 

EXISTENCE OF UNEXPECTED OBSTACLES, HOW CAN THE NAVIGATION SYSTEM OF 

A MOBILE ROBOT EFFICIENTLY DEAL WITH THESE OBSTACLES? 

1.1    Motivation 

The problem of planning and executing motions in an incompletely known envi- 

ronment is an important one in robotics. It occurs in various applications such as 

transportation tasks in shop-floors, office environments, clean rooms and construction 

sites. In all these workspaces, substantial knowledge exists in advance; but it is un- 

realistic or too constraining to assume that this knowledge is accurate and complete. 

In fact, there exist very few applications where prior knowledge is either complete, 

or totally nonexistent. Incomplete knowledge requires the navigation system to com- 

bine planning and reactive capabilities. This combination is under active study in 

the artificial intelligence community [Fir87, GL87, Kae86], but often at a high level 

of task performance. So far, it has made few inroads at the robot motion planning 

and control level. 

Most existing robot navigation systems fall into either one of two classes: 

• Systems of the first class plan a navigation path assuming complete knowledge 

and then execute the path. If a significant difference with the planning model 

is perceived during execution, they stop the motion and replan a path using 

the additional knowledge acquired by the sensors. Most path planners (e.g., 

[BL91, BLP85, LPW79, SS83]) can be used to build navigation systems of this 

class. 

The drawbacks of these systems are: 

our work can be extended to other indoor robots and, to a lesser extent, outdoor robots. 



- They produce over-constrained plans that may cause frequent replanning op- 

erations. 

- They require dedicating significant processing power to check the difference 

between the planning model and the real world. 

Moreover, uncertainties in sensing and control make it difficult to decide whether 

a difference is significant enough to terminate a path and replan a new one. 

• Systems of the second class lie at the other extreme. They assume no prior 

knowledge. They pilot the robot using only local information provided by 

the sensors and/or the workspace model. Examples of such systems include 

potential-field-based controllers [Kha86] and boundary-following controllers 

[LS86]. 

Because they use only local information, these systems either lack completeness 

(i.e., they may fail even if the goal is reachable), or may often be very inefficient. 

Potential-field-based systems, which follow the steepest descent of a potential 

field, may get trapped into obstacle concavities. Boundary-following systems, 

which track the contours of the obstacles, may explore a large subset of the 

workspace at every motion. 

These systems lack a planning component to take advantage of the available 

prior knowledge and guide the global behavior of the robot. 

Neither of these two approaches alone allows a mobile robot to efficiently navigate 

in an incompletely known environment. In this thesis we present a new approach 

to robot navigation dealing with unexpected obstacles; we describe an implemented 

system based on this approach; and we show experimental results obtained with 

this system. Our navigation approach yields a hierarchical architecture interweaving 

planning and reaction components. We will outline our approach and architecture 

into more detail later in this introductory chapter. First, however, we present more 

precisely the navigation problem considered in this dissertation. 



1.2    Navigation Problem 

We address the problem of mobile robot navigation in an incompletely known 

workspace. This environment contains two types of obstacles: those which are part of 

the robot's model (i.e., the robot knows the geometry and position of these obstacles), 

and those which aren't. The former are called known obstacles. The latter are called 

unexpected obstacles, though their existence is expected. Known obstacles are known 

with sufficient accuracy to allow gross navigation. Over planning/execution cycles 

unknown obstacles may become known obstacles through some learning process, but 

such a learning process is not studied here. 

Typically, known obstacles are large, fixed, or hardly movable. In an office en- 

vironment, they include the building walls as well as large pieces of furniture, e.g., 

desks, copying machines. Unexpected obstacles are usually small and easily movable, 

e.g., chairs, trash bins. It is not completely ruled out, however, that some unexpected 

obstacles are large. 

All obstacles, both known and unexpected, are stationary. Later in this report, 

we will discuss how one may try to relax this assumption. 

The mobile robot is equipped with sensors (e.g., proximity range sensors) that 

can detect obstacles located within some limited distance. Hence, these sensors only 

provide local information. 

The problem for the robot is to reliably and efficiently navigate from one given 

location to another. As much as possible, the robot should use its partial knowledge of 

the workspace to avoid wandering around. Yet, it should be reactive to the unexpected 

obstacles and not collide with them. As much as possible, it must avoid stopping (even 

for short amounts of time) when unexpected obstacles bar its route. 

Although sensory data are not perfect, we assume that they allow the robot to 

locate itself at any time with enough precision to perform the navigation and make the 

right decisions. Without this assumption, the robot system would have to plan motion 

strategies guaranteeing that enough sensory information will be collected at execution 



Figure 1.1: Mobile robot navigation with incomplete knowledge 

time to determine the robot's location with sufficient precision. The generation of such 

strategies in the absence of unexpected obstacles is explored in [TL92] and [LL92]. It 

is not considered here. In other words, collision avoidance and motion efficiency are 

our only concerns in this thesis. 

Figure 1.1 illustrates the above problem with an example. Known obstacles are 

shown black, unexpected ones are displayed in grey. The figure shows an acceptable 

navigation path followed by the robot between two given locations, I and G. 

1.3    Approach 

A navigation system that operates with incomplete knowledge should interweave a 

planning component and a reaction component. The planning component should 

take advantage of available knowledge to produce globally efficient plans to achieve 

specified goals. However, it should be aware that knowledge is incomplete in order to 

generate lesser-committed motion plans, i.e., plans that leave some freedom of choice 



at execution time.   The reaction component should organize the robot's behavior 

according to both the ongoing plan and the sensory inputs. 

The main idea underlying our approach is to let the reaction component share 

some global knowledge of the robot's environment with the planning component. 

This knowledge is contained in the lesser-committed plan generated by the planning 

component. In more traditional navigation approaches, the planning and reaction 

components are organized sequentially in such a way that the global prior knowledge 

is exclusively accessed by the planning component for creating motion plans. The 

reaction component's only source of information consists of the local information 

provided by the sensors. The result is that motion changes caused by this information 

are decided independently of any desired global behavior, and therefore may often 

be inconsistent with it. In our approach, the reaction component has access to some 

global knowledge contained in the lesser-committed plan. This knowledge has been 

"compiled" by the planning component in order to make it usable in real time by 

the reaction component. The reaction component determines the appropriate robot's 

reaction to unexpected obstacles detected by sensors in the context of the compiled 

global knowledge. Moreover, this approach frees the planning component from having 

to arbitrarily select a specific motion path that unexpected obstacles could rapidly 

make obsolete. 

But: 

• What is a lesser-committed motion plan? 

• How can a reaction system make use of it? 

Most of this report is aimed at giving precise answers to those two questions. Let 

us just say here that a lesser-committed plan is a continuous set of contiguous paths 

that are free of collisions with the known obstacles. We call such a set a channel.2 

There is no guarantee that a channel does not intersect unexpected obstacles. But, if 

2Actually, a channel is the main form of a lesser-committed plan used in our navigation system, 
but it is not the only one. 



these obstacles are small (as should often be the case), it is likely to contain some paths 

that are free of collision with any of them. In other words, the channel leaves some 

freedom of choice at execution time, while providing global information about what 

is likely to be a suitable direction of motion. Reaction is organized in a channel by 

using artificial potential fields that pull the robot toward its goal within the channel, 

while repelling it away from the unexpected obstacles. At every instant, the robot 

is commanded to move along the negated gradient of the total potential field, as if 

it was a particle under the influence of this field [Kha86]. Figure 1.2 is a simplified 

diagram of the information flow between the planning and the reaction components. 

However, various situations may be encountered. For instance, though most un- 

known obstacles are likely to be small and scattered, a number of small obstacles 

may have been gathered together. Big unexpected obstacles are not impossible, ei- 

ther. This may seriously complicate reactive motion in a channel, for example by 

creating local minima of the artificial potential field. Without global knowledge of 

the unexpected obstacles, such a contingency cannot be fully eliminated. Thus, lo- 

cal replanning may be needed to generate refined lesser-committed plans within the 

current channel.3 It cannot be excluded either that unexpected obstacles completely 

obstruct a channel (for example, such an obstacle may be a big piece of furniture 

temporarily pushed across a corridor). Then it may become necessary to re-plan a 

new channel 

Obviously, all situations are not equally likely. In a typical office environment, 

unexpected obstacles are usually small and sparsely scattered around. Less often, 

but still quite frequently, some are gathered together (e.g., chairs). More rarely, big 

unexpected obstacles obstruct passageways. Although the navigation system should 

handle all these situations, it should not waste time hypothesizing that the worst 

situation occurs at every instant. Thus: 

• How should computation be organized so that the most common situations are 

handled as quickly as possible? 

3We will see that, in our navigation system, these refined plans are not constructed as channels, 
though they could be. 
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Another large part of this thesis is devoted to answering this question (including 

the problem of recognizing situations). Our approach here is to organize both planning 

and reaction into a hierarchy of modules interweaving their execution. The highest 

layer treats the most common situations efficiently Alone, it could also recover 

from any contingency whose occurrence is expected, but not always efficiently. The 

lower layers provide more efficient treatment of the less common contingencies. This 

architecture provides opportunities for incremental performance improvements. 

A navigation system based on the above approach can be made complete under 

the assumptions that knowledge of known obstacles is accurate, all obstacles are 

stationary and sensing is perfect. Completeness means that, if it is possible to attain 

the goal, the robot will ultimately find a path; otherwise it will report failure. Of 

course, completeness also depends on the particular techniques embedded in this 

architecture. 

1.4    Technical Issues 

The above approach raises a variety of technical issues. This section briefly analyzes 

these issues. The following chapters will address them in detail. 

1.4.1     Channel Definition and Generation 

In an partially known environment, a path defining the continuous sequence of posi- 

tions and orientations of the robot is an overly constrained motion plan to go from 

one location to another. Indeed, there usually exist many different paths connecting 

the two locations which avoid collision with the known obstacles. Some of these paths 

may lead the robot toward unexpected obstacles. Others may not. But, at planning 

time, there is no way to know which paths are good and which ones are not. Rather 

than generating a single path, we propose that the planner constructs a channel, i.e., 

a set of contiguous paths connecting the initial and goal locations without collision 

with the known obstacles. 

However, the definition of a channel as a set of contiguous paths is not sufficient 



to characterize a satisfactory channel. Indeed, this loose definition and the least- 

commitment arguments aimed at giving maximal freedom of choice to the reaction 

component would simply lead to considering the whole free space (the set of robot 

configurations not colliding with any known obstacle) as a channel. But, in general, 

this set has a complex geometry and topology, and it would not be easy for the 

reaction component to exploit it in real time. Arbitrarily simplifying the geometry of 

a channel is not the answer either. 

We have identified three criteria to guide the choice of the general geometry of a 

channel: 

1. This geometry should yield efficient channel generation (i.e., global planning). 

2. It should yield large channels leaving significant freedom to the reaction 

component.4 

3. It should allow fast computation of motion commands by the reaction compo- 

nent. 

These criteria led us to define a channel as a sequence of adjacent parallelepipedic 

cells in the robot's configuration space.5 As we will see, artificial potential fields can 

easily be defined and computed in a channel having such geometry. Moreover, in a 

low-dimensional configuration space (which is the case for a mobile robot), such a 

channel can be efficiently generated by an approximate cell decomposition planning 

method [Lat91]. Actually, when it is used to plan a path, such a method first produces 

a channel and then extracts a path from this channel. In contrast, other planning 

approaches, such as roadmap and potential-field planning approaches [Lat91], directly 

generate a single path. Using them here would require us to add a postprocessing step 

transforming the generated path into a channel. An exact cell decomposition method 

4Because we do not require a channel to leave maximal freedom to the reaction component, we 
call it a "lesser-committed plan", rather than a least-committed plan. 

5We recall that the configuration of a robot is a list parameters representing the position and 
orientation of the robot. In the case of a non-circular robot, it consists of three parameters (two for 
the robot's position, one for its orientation). Then the configuration space is three-dimensional. See 
Chapter 2 for more detail. 

10 



would in general produce larger channels than approximate cell decomposition. But 

the more complex geometry of these channels would conflict with the third criterion 

above. On the other hand, the loss of free space resulting from the approximate 

decomposition is not dramatic for gross navigation and is acceptable as long as the 

robot is not required to make contact (e.g., docking) with obstacles. Furthermore, 

unlike exact cell decomposition, approximate cell decomposition allows us to easily 

take some uncertainty in robot control into account, e.g., by imposing a minimal-size 

requirement on both the cells and the intersection of any two consecutive cells. This 

is a major practical advantage in order to run experiments with real robots. 

1.4.2    Design of Potential Functions 

A channel defines a continuous set of paths. The actual path followed by the robot 

is selected by the reaction component. This component computes an artificial po- 

tential field over the channel and makes the robot track the negated gradient of this 

potential. The artificial potential must depend on the specific shape of the planned 

channel in order to produce motion commands that are consistent with the global 

plan represented by this channel. It must also depend on the sensed unexpected 

obstacles to provide needed reaction to these obstacles. The artificial potential and 

its gradient are computed on-line while the robot is moving. At every instant, the 

gradient determines the instantaneous evolution of the specific path followed by the 

robot. 

The potential field must achieve three functions: 

1. Drive the robot toward the goal. 

2. Keep the robot within the channel. 

3. Avoid collision with unexpected obstacles. 

Furthermore, as much as possible, the potential field should have no local minima 

where the robot could get stuck. 

11 



These considerations led us to define the potential function as a weighed sum of 

three elementary potentials: 

• An intermediate-goal potential attracts the robot through intermediate goal con- 

figurations chosen along the channel. It is intended to make the robot progress 

toward the goal. 

• A channel-wall potential repels the robot away from the boundary of the channel. 

To prevent the robot from moving out of the channel, the magnitude of this 

potential increases to infinity as the distance to the boundary tends to zero. 

To facilitate navigation in the channel, this potential vanishes beyond some 

distance of the boundary. This distance is selected in each cell of the channel 

according to the size of this cell. 

• An unexpected-obstacle potential repels the robot away from the sensed un- 

expected obstacles. Its magnitude increases toward infinity when the sensed 

distance to an unexpected obstacles tends toward zero. It vanishes when the 

distance to unexpected obstacles is large enough. 

The intermediate-goal potential and the channel-wall potential are designed such 

that their combination, the channel potential, is free of local minima. Thus, when 

there are no unexpected obstacles lying in a channel, the robot navigates through the 

channel without a hitch. In the presence of non-expected obstacles, the addition of 

the unexpected-obstacle potential does no longer guarantee that this is true. 

1.4.3    Local Replanning 

Sensing unexpected obstacles causes a repulsive component (the unexpected-obstacle 

potential) to be added to the potential function. The purpose of adding this repulsive 

component is to make the robot navigate around these obstacles. However, as men- 

tioned above, it may result in a total potential function that has local minima, and 

there seems to be no ways to prevent this from happening. Fortunately, as long as the 

unexpected obstacles are small and sparsely scattered, the attraction wells of these 

12 



minima (if any) are small, so that it is rather unlikely that the robot gets trapped 

into any one of them. 

Nevertheless, it would not be reasonable to completely disregard local minima. 

First, even if the attraction domain of a local minimum is small, the robot may 

nevertheless enter it. Second, several small unexpected obstacles close to each other 

(e.g., two chairs) or a large one may form a trap and produce a local minimum with 

a larger attraction basin. One way to deal with such a minimum is to replan a 

completely new channel connecting the robot's current location to the goal using the 

detected unexpected obstacles as additional world knowledge. This could be done 

using the previous planner, but would often be too time-consuming. An alternative 

is to take advantage of the existing channel and to locally refine it into a smaller one 

not containing the detected unexpected obstacles, if one such refined channel exists. 

This approach, however, has two main drawbacks: 

• It heavily relies on sensing being accurate. Noise in sensing and thereby imper- 

fect models may result in an incorrect refined channel. This becomes especially 

critical in cluttered areas of the workspace. 

• Channel refinement tends to yield narrow channels. In such channels, potential- 

field-based navigation is difficult, because the channel-wall repulsive potential 

is permanently active causing the robot to oscillate about its main route. 

Instead, we propose to use a fast potential-field planning method (namely, the 

method described in [BL91]) to generate a local path in the channel among the un- 

expected obstacles. This path is constructed in the cell (exceptionally, in two con- 

secutive cells) of the channel where the robot is currently located and connects the 

current location of the robot to the next cell (hence, the term "local path"). Because 

planning is restricted to a small area, it can be made extremely fast. The generated 

local path, however, may be too committed a plan. We soften this commitment by 

transforming the path into a valley-shaped potential that is added to the previous 

potentials. Intuitively, this potential is shaped like the valley of a river that would 

follow the path. Hence, it does not constrain the robot to exactly follow the generated 

local path. 
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Above, we did not mention one important issue: How are local minima detected? 

Typically, a robot never exactly attains a local minimum. Because of discretized con- 

trol, it tends to loop around it. Local minima can thus be detected when the gradient 

of the potential field abruptly changes direction. This may be too conservative a test, 

but local replanning is so fast that it is preferable to detect some wrong local minima 

than to let the robot waste time at any actual minimum. 

1.4.4    Global Replanning 

To get a reliable navigation system, big unexpected obstacles that completely obstruct 

a channel cannot be totally excluded. Such obstacles result in a local minima that 

the robot cannot miss, nor escape by staying in the channel. However, when such a 

local minimum is attained, only a subset of the corresponding obstacle has usually 

been sensed. Hence, there is no way for the robot to immediately recognize that the 

channel is fully obstructed. 

The robot escapes such a minimum as any other local minimum. It then naturally 

falls into a second minimum that it tries to escape again, and so on, until enough 

sensory information has been accumulated that local replanning fails to find a path. 

Then, the navigation system calls back the original planner to construct a new channel 

connecting the current robot location to the goal one with the detected unexpected 

obstacles added to the world model. If no new channel can be found, the navigation 

system reports global failure. 

The number of local minima successively encountered before a new channel is 

generated depends on the size of the channel cell and the obstructing obstacle, and 

on the robot's sensors. The more local the sensors, the longer it takes to recognize 

obstruction. In environments where channel obstruction is frequent, it could be more 

efficient to skip local replanning and, instead, directly call back the channel planner 

whenever a local minimum is encountered. 
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ARCHITECTURE TECHNIQUE 

f Channel Planning  J 

(Navigation in Channel) 
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f Global Replanning j 

Approximate Cell Decomposition 

Potential Field Tracking 

Grid Potential Planning 

Figure 1.3: Architecture and techniques of the navigation system 

1.4.5     Summary 

Figure 1.3 shows the architecture of the proposed navigation system. In addition to 

the main planner, it has three layers, channel navigation, local replanning, and global 

replanning. Each layer handles the navigation problem at a different complexity. 

The most common and simpler cases (navigation in channel) are processed by the 

less complex technique (tracking an artificial potential field), while less frequent but 

more complex cases (escaping local minima) are handled by more complex techniques 

(local/global replanning). 

1.5    Example 

Figure 1.4 shows several paths of a robot generated by our navigation system. 

(a) shows a typical workspace with known obstacles (shown black), and the initial 

and goal configurations of the robot (I and G). 

(b) shows a 3-dimensional channel, where the vertical dimension represents the 
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Figure 1.4: Channel and navigation paths 
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robot's orientation. In this simple channel, every parallelepipedic cell extends over 

the interval [0,27r], allowing the robot to take any orientation. 

(c) shows the projection of the channel in the 2-dimensional workspace. When 

the center of the robot lies in this channel, the robot collides with none of the known 

obstacles, whatever its orientation. 

(d) shows the path of the robot when it navigates in the channel with no unex- 

pected obstacles. 

(e) shows the path of the robot when it navigates in the channel with unexpected 

obstacles (shown grey) not causing any local minimum. 

(f) shows the path of the robot when it navigates in the channel with unexpected 

obstacles causing local minima, which are escaped by local replanning. 

1.6    Implementation 

Our navigation system has been tested and verified on a computer-simulated robot 

and two real robot systems, Robotworld and GOFER. 

A computer simulation system was developed on NeXT computer using C and 

LISP programming languages. It has a graphical user interface, and was used mainly 

for the algorithm development/verification and for studying the sensitivity of the 

system to various parameters and setting the values of these parameters. 

Robotworld was used to test the navigation system for a robot that can translate 

and rotate simultaneously, without constraint, on its planar workspace. Robotworld 

consists of several manipulation robots. These robots, supported by electric magnets 

and air-cushion, translate under a planar ceiling. Combined with its gripper, each 

manipulation robot can provide three-degree-of-freedom motions (translation and ro- 

tation) in the plane for an object it manipulates.6 One of the robots holds an object 

with its gripper and moves it in a planar workspace crowded with obstacles. Both 

6In fact, the gripper can also provide an additional degree of freedom (vertical motion), but we 
do not use it for navigation experiments. 
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planning and reaction component of the navigation system runs on a remote host com- 

puter, and the motion commands for the robot are sent to the Robotworld's controller 

via a serial line interface. The description of both known and unknown obstacles is 

specified to the host computer, but only the information about known obstacles is 

provided to the planning component for the generation of the channel. The informa- 

tion about unknown obstacles is not directly accessible to the reaction component; 

but it is provided during navigation through computer-simulated proximity sensors 

running simultaneously on the host computer. 

GOFER was used to demonstrate the navigation system in a real office-like en- 

vironment. GOFER is a mobile robot developed in the Computer Science Robotics 

Laboratory of Stanford University. It consists of a three-wheeled two-degrees-of- 

freedom mobile base, a ring of infra-red proximity sensors, a laser-camera ranging 

system, touch sensors and on-board computer. Like a car, GOFER is subject to 

non-holonomic constraints restricting its linear velocity to the direction its wheels are 

aligned with. Unlike a car, however, GOFER can turn with arbitrary turning-radii 

(including zero). These kinematic constraints are taken into account by the reac- 

tion component (but not by the planning component) to generate of smooth motion 

commands. The planning component of the navigation system runs on an off-board 

computer and the reaction component runs on the on-board computer. The descrip- 

tion of the planned channel is sent to the GOFER's on-board computer through a 

radio modem. For the experiments, we used infra-red proximity sensors to detect 

obstacles. 

1.7    Related Work 

1.7.1     "Historical" Systems 

Research on mobile robots began in the late sixties with the Stanford Research Insti- 

tute's pioneering work. Two versions of SHAKEY were built in 1968 and 1971, and 

they were used as a tool for research in planning and learning [Nil69]. 
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In the late seventies, Moravec started his work on mobile robots with the Stanford 

Cart [Mor77]. The Cart was a minimal computer-controlled mobile platform. It used 

stereo-vision to locate objects and deduce its own motion. In the early eighties, 

the Stanford Mobile Robot, also known as MOBI, was used as a testbed for world 

modeling and navigation with stereo-vision [KTB89]. Since the late eighties, a series 

of mobile robots called GOFER have been developed for indoor automation [CCL+90]. 

Their main goal is to navigate in an office environment and perform tasks such as 

delivering small objects, guiding/following people and surveilling offices. 

Other historical mobile robot projects were developed at various organizations. 

The HILARE project started in the late seventies at LAAS (Toulouse) [Gir79]. 

The project goal was to perform general research in robot perception and planning. 

Moravec continued his work at Carnegie-Mellon University with a more capable mo- 

bile robot, the CMU Rover [Mor83]. Since 1985, the MIT Mobile Robot group has 

advocated a radically different architecture for autonomous mobile robots [Bro86]. 

They build a reactive architecture, called "Subsumption architecture", by stacking 

up layers of primitive goal-achieving behaviors formed from precompiled sensor to 

actuator transformations. This new approach has been implemented on a group of 

MIT robots, called MOBOTs, such as Allen, Hebert, Tom and Jerry [FB88]. 

Some mobile robot projects explicitly focused on navigation in outdoor environ- 

ments. A series of outdoor robots, including NAVLAB, were developed at Carnegie- 

Mellon University. NAVLAB was built based on a commercial van chassis, with 

hydraulic drive and electric steering, and was used as a testbed for integrating per- 

ception and navigation capabilities [THTS88]. The Mars Rover project at Jet Propul- 

sion Laboratory aimed at developing the capabilities in machine intelligence systems 

required for a semi-autonomous vehicle to be used in remote planetary exploration 

[0'H73, Tho77, Ran86]. There are many other projects dealing with autonomous 

mobile robots, and additional references can be found in [SE87, CT90]. 
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1.7.2    Major Research Issues 

In spite of the diversity of the configurations and objectives of the mobile robots in 

these projects, all autonomous mobile robots must perform certain common functions. 

For very simple tasks, motion control and position localization functions are sufficient. 

Robots performing sophisticated tasks must also be able to perceive their surrounding 

environment, match sensing data with an internal world model, and build maps. To 

perform successfully in the real world, they must also deal with uncertainties in 

sensing and control. The various mobile robot projects contributed in identifying key 

navigation problems, and in producing approaches to solve such basic problems as 

localization, world-modeling/map-building, and dealing with uncertainties. 

The localization problem is to determine the robot's position in some reference 

coordinate frame. For example, this may be necessary to determine the remaining dis- 

tance to the goal or to construct a map of an incompletely known environment. Com- 

mon techniques include using reference beacons [CL85], inertial navigation systems 

[Tho77], dead reckoning [Nil69], landmark recognition [Har85], and map matching 

[LK85]. 

World-modeling/map-building aims at constructing and maintaining a spatial de- 

scription of the robot's environment (or updating a priori knowledge) using sensory 

data. For example, path planning involves the use of a map. The level of detail repre- 

sented in a map is constrained not only by the available sensing accuracy, but also by 

considerations of cost such as storage requirements and processing complexity. Ex- 

isting techniques use stochastic representations [SSC88], hierarchical representations 

[Elf85], symbolic representations [KTB87] and combinations of these [Gir84]. 

Uncertainty in mobile robot navigation exists in sensing, control, and prior knowl- 

edge. Dealing with it is closely coupled with localization and map-building. Many 

techniques including Kaiman filtering [May79] and multi-sensor integration (sensory 

data fusion) [DW87] are used to reduce uncertainty [AF89, Cro89]. [LL92] presents a 

guaranteed navigation strategy under both sensing and control uncertainties. [TL92] 

describes navigation strategies to reduce sensing uncertainties. 
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Besides the above basic problems, mobile robot navigation involves other prob- 

lems such as kinematics, motion control and trajectory generation. However, these 

problems tend to be tightly coupled with the specific configuration of a robot, and 

they are beyond the scope of our concern. 

1.7.3    Dealing with Unexpected Obstacles 

Approaches to robot navigation with no prior knowledge have been proposed by 

Khatib [Kha86] and Lumelsky [LS86]. The only available information assumed by 

these approaches is the robot's own configuration at any given moment, the goal 

configuration and the obstacles detected by the robot's sensors. 

The potential field method proposed by Khatib places an artificial repulsive po- 

tential field around the obstacles and an attractive potential field at the goal. The 

motion along the steepest descent of the total potential field takes the robot towards 

the goal while avoiding obstacles. This method has been demonstrated to work well 

in practice when the environment is not densely occupied by obstacles. However, 

the total potential may have local minima, and the robot may get trapped at one 

of them. This shortcoming comes from the fact that the method relies only on local 

information about obstacles. 

The boundary-following method proposed by Lumelsky uses three basic types of 

movements of the robot: move towards the goal on a straight line; move along the 

obstacle boundary in a predetermined direction (e.g., left or right); stop at the goal. 

Under this method, the robot moves towards its goal until the path is blocked by 

an obstacle, and then it moves around the obstacle boundary until the path towards 

the goal is clear. The method keeps track of when and where the robot starts to 

follow/leave the boundaries of obstacles, and uses the information in order to prevent 

infinite loops around the obstacles. Unlike the potential field method, this method 

is guaranteed to converge toward the goal. However, the path traveled by the robot 

tends to be far from optimal because the robot may have to explore large subsets of 

the obstacle boundaries on its way to the goal. 
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Numerous attempts have been made to improve the performance of these two 

basic approaches [Ark87, Kro84, KV89, Sla90]. Yet, they showed only marginal suc- 

cesses in gross navigation. Successful gross navigation requires not only knowledge of 

the robot's local surroundings, but also knowledge about places that are beyond the 

robot's local surroundings. The two levels of knowledge (i.e., local and global knowl- 

edge) lead to a natural division of the navigation system into two smaller interacting 

components: global planning and local reaction. 

An approach combining a planning and a reaction component has previously been 

proposed by Krogh and Thorpe [KT86]. In this approach, a sequence of critical points 

along a globally desirable path are first computed. Potential fields are then used for 

local feedback to drive the robot along a collision-free path using the critical points 

as subgoals. At execution time, the navigation system has no model (similar to our 

channel) of the expected free space. Hence, it does not use a potential depending on 

this knowledge. As a result, it may run into trouble when critical points are occupied 

or hidden by unexpected obstacles. Accidental arrangements of unexpected obstacles 

can also take the robot far away from the desirable path. 

The channel navigation technique described in this dissertation is an extension of 

this approach. The multi-layered architecture of our navigation system is similar to 

the subsumption architecture in a sense that each layer deals the event at a different 

level of competence. The difference is that the layers in our system architecture make 

use of the global information as well as the local information of the robot's workspace, 

and thus ensure better global behavior. 

1.8    Summary of Results and Contributions 

This thesis investigates mobile robot navigation in a stationary indoor environment 

in the presence of unexpected obstacles. It proposes the design of a new navigation 

system that interweaves planning and reaction components. This system has been 

implemented. Experimentation has been conducted successfully with simulated and 

real robots. 
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Our results bring two levels of contribution: (1) the system architecture itself and 

(2) the planning/reaction techniques embedded in this architecture. 

The proposed architecture interweaves planning and reaction. In itself, this idea 

is not new. It has previously been developed in the artificial intelligence community, 

but for high levels of reasoning in task performance. It has not yet been thoroughly 

investigated at the robot navigation level, where geometry plays a key role. Our 

combination of planning and reaction is based on two new key ideas: 

• The reaction component must have some global knowledge of the robot's 

workspace in order to react appropriately to unexpected obstacle events. This 

knowledge can be provided in the form of a lesser-committed motion plan gener- 

ated by a planning component aware that unexpected obstacles may be present 

in the workspace. In our system, lesser-committed plans take two forms: chan- 

nels made up of adjacent parallelepipedic cells and valley-shaped potentials. 

• Multiple layers of treatment deal with classes of events according to their ex- 

pected frequency. The top layer can treat alone all the events that the lower 

levels are intended for. The lower levels only provide more efficient treatment. 

This architecture makes it possible to introduce a reliable function (treatment 

of unexpected obstacles in our case) by building the top layer. This function 

can then be made more efficient by adding new layers. Our system consists of 

three layers: channel planning, local replanning and global replanning. 

At the technical level, our work brings the following contributions: 

• It introduces the concept of a channel as a lesser-commitment motion plan, and 

instantiates this concept as a sequence of parallelepipedic cells that can easily 

be generated using an approximate cell decomposition planning method. 

• It defines potential field functions computed on-line to navigate in a channel to- 

ward the goal and simultaneously react to unexpected obstacles. The potential 

is guaranteed to be local-minima free when there are no unexpected obstacles. 
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• It presents a new way to escape local minima on-line by replanning a local path 

and integrating it in the current potential field function using the notion of a 

valley-shaped potential. This technique is general and can be used in other 

potential-field-based navigation systems. 

These contributions are supported by experiments with the implemented naviga- 

tion system. 

1.9    Thesis Outline 

The rest of this thesis is organized as follows: 

Chapter 2 describes the internal structure of a channel and its generation from 

the given geometric model of the robot environment. 

Chapter 3 defines a local-minima-free potential field in the channel, when there is 

no unexpected obstacle. It extends this potential field to the case with unexpected 

obstacles. It shows how this potential is used to compute the motion commands 

during navigation. 

In Chapters 4 and 5 we discuss local replanning and global replanning. Chapter 

4 addresses the problem of recognizing local minima and proposes a local planning 

technique to escape them within a cell of the channel. Chapter 5 extends this tech- 

nique to multiple cells to deal with the case where local replanning fails to find an 

escape route within a single cell. It also presents a global replanning method to deal 

with the case where a channel is completely obstructed by unexpected obstacles. 

In Chapter 6 we present the experiments done with our navigation system. This 

chapter describes three implementations: computer simulation, Robotworld, and 

GOFER. It discusses, based on the results with the simulated robot system, the 

sensitivity of the navigation system to sensing uncertainties. Also, in the case of the 

mobile robot GOFER, it discusses the impact of nonholonomic kinematic constraints 

on the navigation system. 

Chapter 7 summarizes our work, comments on the limitations of the approach 
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and techniques presented in this dissertation, proposes a number of extensions to the 

current work, and provides a guide/suggestion for future research. 

Appendices consists of three parts. Appendix A shows two additional examples 

of navigation in channel, which is described in Chapter 3. Appendix B describes 

GOFER's hardware in detail. Appendix C shows three simulation results of GOFER 

navigation in the presence of no unexpected obstacles, unexpected obstacles with no 

local minima, and unexpected obstacles with a local minimum, respectively. 
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Chapter 2 

Channel Definition and 

Generation 

The planning component of our navigation system generates a channel, i.e., a set 

of contiguous paths, using the global information of known obstacles. A channel 

provides guidance for the robot from the initial to the goal configuration, while leaving 

significant freedom of choice to the reaction component to deal with unexpected 

obstacles, and allowing the fast computation of motion commands. In this chapter 

we instantiate this concept into a specific representation and we present a method for 

computing it. 

2.1     Configuration Space 

Let us denote the robot by A and the workspace by W. We attach a Cartesian frame 

TA to A and a Cartesian frame Fw to W. See Figure 2.1. A configuration q of 

A is a specification of the position and orientation of TA with respect to JVv- The 

configuration space of A, denoted by C, is the set of all the possible configurations 

of A. The subset of W occupied by A at configuration q is denoted by .4(g). 

Throughout this report, we model the robot as a two-dimensional object moving 

in a planar workspace W isomorphic to R2. This corresponds to projecting both the 
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Figure 2.1: Robot and workspace Cartesian frames 

real robot and the obstacles into the horizontal ground. Therefore, C is isomorphic to 

either R2 (if A can only translate or if it is a disc) or R2 x S1, where Sl is the unit 

circle (if A can both translate and rotate). However, since the concepts underlying 

our approach are more general,1 we keep our presentation as independent as possible 

from these assumptions. In general, C is a manifold of some dimension m. 

In addition to A, W contains known stationary obstacles denoted by Bi,i = 

1,..., n. Each obstacle 23,- maps into C to the subset CBi of configurations where A 

intersects B{. This subset is defined by [LP83, Lat91]: 

CBi = {q 6 C | A(q) n B{ # 0}. 

It is called a C-obstacle. Figure 2.2 shows C-obstacles corresponding to a rectangular 

obstacle Bi and a triangular robot A. In (a), A has a fixed orientation, and the C- 

obstacle is a polygon in the robot's 2-dimensional configuration space. In (b), the 

orientation 6 of A can vary in [0,27r], and the C-obstacle is a volume bounded by 

patches of ruled surfaces in the robot's 3-dimensional configuration space. 

The C-obstacle region is CB = U"=i CBi. The complement to the C-obstacle region 

JFor example, the same approach could be extended to a six-degree-of-freedom free-flying plat- 
form or to an articulated manipulator arm. 
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(a) 

(b) 

Figure 2.2: C-obstacles in 2 and 3 dimensions 
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in C is called the free space and is denoted by Cfree: 

Cfree = C\CB. 

A path of the robot A from the initial configuration qinit to the goal configuration 

qgoal is a continuous map r : [0,1] ->• C, with r(0) = qinit and r(l) = qgoal. A 

collision-free path is any continuous map T : [0,1] —»• Cfree. 

We will introduce unexpected obstacles later. 

2.2    Definition of a Channel 

We parametrize a configuration q € C by a list of m generalized coordinates 

(9n---)9m) m a Cartesian space, where m is the dimension of the configuration 

space manifold. We assume, without practical loss of generality, that the range of 

possible values for the q/s are closed intervals [q?in, q™ax\. Hence, we represent C as 

a closed rectangloid: 

[Ql      >9l      J X ••• X [Qm    ,Qm    JCK    . 

For our mobile robot example, if C = R2, we take q = (x,y), with x and y 

being the coordinates of the origin 04 of TA with respect to Tyy. If C = R2 x S1, 

we take q = (x,y,6), with a: and ?/ defined in the same fashion, and 9 e [0,27r] 

being the angle (modulo 27r) between the a;-axes of ^>v and TA- We represent C as 

^mtn^mox] x ^min^maxj x [Q, 27r] with the faces 9 = 0 and e = 27T made identical. 

We formally define a channel as a sequence (KI,...,KP), p > 1, of rectangloids, 

called cells, such that: 

1. qinit e «i and qgoal G KP - i.e., the channel connects the initial configuration to 

the goal configuration; 

2. Vi G [l,/?],int(Ki) C C/ree - i-e-, the interior of every cell is contained in C/ree; 
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3. Vi,i € [l,p],» 7^ i,«#(«,-) n t'nt(«,-) = 0 - i.e., no two cells overlap; 

4. Vf € [l,p-l],K,-nKi+i is an (m-l)-dimensionalrectangloid-i.e., two successive 

cells in the sequence are adjacent by sharing a portion of their boundary having 

non-zero measure in Rm_1. 

The (m- l)-dimensional rectangloid K,-_I PIK,- (resp., «,- H/q+i) is called the access 

gate (resp., the exit gate) of «,-,-with the convention that KQ = KP+\ = 0. 

When C = R2 x «S1, a spurious effect of the Cartesian representation of the 

configuration space is to introduce an artificial boundary for the cells at 6 = 0 and 

8 = 2it. We remove this artificial boundary by considering two regions of the following 

forms: 

[xmin,xmax] x [ymin,ymax] x [O,0i] 

and 

[xmin,xmax] x [ymin,ymax] x [02,2TT], 

as a single cell, although it is represented as two rectangloids. 

If C = R2, the boundary #«,■ of a cell K,- simply consists of the four edges of the 

cell. If C = R2 x [0,27r], d«, consists of the six faces of the corresponding rectangloid, 

if Ki does not range over all the orientations in [0,27r]. Otherwise, it only consists of 

the four faces perpendicular to the x and y axes. The boundary dll of the channel 

II = (KI, ..., KP) is defined as: 

p p-i 
an = U dKi - (j K{ n K.-+1 

i=i       t=i 

2.3    Construction of a Channel 

A channel is constructed by iteratively partitioning the Cartesian representation of the 

configuration space C into non-overlapping rectangloid cells parallel to the coordinate 

axes. At each iteration, every cell is labelled as empty, full, or mixed, depending 

on whether it has no intersection with the C-obstacle region CB, it is completely 
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contained in CB, or only partially contained in CB. 

The connectivity graph representing the adjacency relation among the empty and 

mixed cells is constructed and searched for a sequence of cells, («i,..., KP), p > 1, such 

that qinit € «i, qgoai € «p, and Vi € [l,p - l],/q and Ki+X are adjacent. If a sequence 

containing only empty cells is found, it is the generated channel. If a sequence is 

found, but contains mixed cells, those cells are decomposed into smaller cells, and the 

connectivity graph is updated and searched again. This iterative process is bounded 

by setting a minimal size on the mixed cells. This size may also be used to take 

uncertainty in robot control into account. 

The actual decomposition and search techniques used in our navigation system 

to generate channels are described in [Zhu92]. They are resolution-complete, i.e.: if 

a channel exists, the planner is guaranteed to return one in a finite amount of time, 

provided that the minimal size of a mixed cell is set sufficiently small; if no channel 

exists or the minimal size of a mixed cell is too big, the planner returns failure in 

a finite amount of time. During channel generation, most of the computation time 

is spent in decomposing the configuration space and labelling the cells. However, if 

the model of the environment is not changed often, most of the decomposition and 

labelling work can be saved for future use, so that channel generation rapidly reduces 

to searching a preexisting connectivity graph. 

2.4    Examples 

Figure 2.3 shows an example of the robot's workspace and its corresponding channel, 

(a) shows a robot's workspace with known obstacles and the initial and goal configu- 

rations of the robot, (b) shows the 2-dimensional projection of the channels into the 

workspace plane. This projection is an incomplete, but much more readable repre- 

sentation of the complete 3-dimensional channel shown in (c). We will exclusively use 

this representation in the rest of this report, unless the complete perspective view is 

absolutely needed. 

Figure 2.4 shows two more examples. Note that both the channels in Figure 2.3 
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(c) and 2.4 (f) contain cells whose ranges along the 0-axis is a subset of [0,2ic]. 
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Figure 2.3: Typical example of a workspace and a channel 
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Figure 2.4: More channel examples 
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Chapter 3 

Navigation in Channel 

Given a channel, the reaction component generates motion commands for the robot 

by defining an artificial potential field U over the channel and tracking its negated 

gradient — VU. U should have a global minimum at the goal configuration qgoai- It 

should grow towards infinity when the distance between the robot and an unexpected 

obstacle (if any) tends towards 0, in order to avoid collisions. It should also grow 

to infinity when the robot's configuration tends towards the channel's boundary, in 

order to keep the robot within the channel. We would also very much like U to have 

no local minima. However, since the values of this function depends on sensory data 

triggered by unexpected obstacles, there seems to be no way to guarantee this last 

property.1 

The potential U is constructed at every configuration q as the sum of two func- 

tions: 

V(q) = Vc(q) + Vs(q) 

where Uc(<jr) is a function of both the robot's current configuration and the geometry 

of the channel. Us(q) is a function of the current configuration relative to unexpected 

obstacles detected by sensors. Uc is called the channel potential. Us is called the 

1Both analytical and numerical techniques have been developed for computing local-minima-free 
potentials [RK90, BL91]. But these techniques assume complete prior knowledge of the obstacles; 
hence, they are not applicable here. 
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unexpected-obstacle potential. Uc is free of local minima. Since both Uc(g) 

and Vs(q) depend on the robot's configuration q, it is very important to have accu- 

rate estimates of q (i.e., localization) throughout the navigation. The localization is 

typically obtained by dead reckoning and/or environment sensing. 

3.1    Channel Potential 

One simple way to construct Uc is to add an attractive potential pulling the robot 

toward its goal and a repulsive potential pushing it away from the channel's boundary. 

However, because a channel is usually a non-convex region, this simple construction 

could result in a function Uc with local minima. This is not acceptable, since the 

robot could get stuck at one of them even in the absence of unexpected obstacles. 

The local-minima-free potentials proposed in [RK90, BL91] can be applied to this 

non-convex channel, but their computation is too complex to be done in real time 

because they are based on global information. To overcome this problem, we patch 

together several potential functions. Each such function is defined in a rectangloid 

for an intermediate goal selected in the channel and has only one minimum at this 

intermediate goal. The definition domain of the various potential functions overlap so 

that the robot can shift from one function to the next before it attains an intermediate 

goal (hence, avoiding the corresponding minimum). 

3.1.1    Intermediate Goals 

We construct a sequence of intermediate goal configurations in the channel, the last 

one being qgoal. Then we define Uc piecewisely so that the robot A is successively 

attracted by each intermediate goal configuration. The issues are: 

1. How to choose the intermediate goal configurations? 

2. When to shift from one intermediate goal to the next? 

A possible sequence of intermediate goal is (qlt..., qp), where q{ is the midpoint 

of Ki D Ki+U for * = l,...,p- 1, and qp = qgoal.   Then, in each cell nh we can 
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define the potential U£, (i = 1,..., j>) as the sum of an attractive potential pulling A 

toward q{ and a repulsive potential pushing it away from the boundary of the channel 

restricted to the cell, i.e., öK; D 911. When A traverses K{ n K,+I, the attractive goal 

is switched to qi+1. When the last cell, KP, is entered, qgoal becomes the goal. 

The problem with this definition is that the attractive potential has a minimum 

at each intermediate goal q{. Therefore, in the vicinity of each q0 A is mainly under 

the influence of the repulsive potential, if any, and, at best, lacks any goal-oriented 

behavior. This is likely to increase the risks of spurious stable equilibrium states near 

the intermediate goals. A solution to this drawback is to make A abandon every 

intermediate goal before it is attained and shift to the next, so that the attractive 

force never vanishes. This led us to retain a slightly different definition for Uc, which 

we present below. 

Let us consider a cell K*. We denote by at- (resp., ft) the region obtained by 

sweeping the access gate (resp., the exit gate) of Kj perpendicularly to itself inside K,-. 

Both a,- and ft may be identical to «,-. In the first cell of the channel, we only sweep 

its exit gate (ft). In the last cell, we only sweep its access gate (ap). Figure 3.1 (a) 

illustrates the construction of the a,'s and the ft's in a 2-dimensional channel. 

For every cell «*, we define the midpoints of a,- and ft as two additional interme- 

diate goal configurations, which we respectively denote by qf and qe
{ ? The sequence 

of intermediate goals is: 

(9ii 9n 92> Vh «2> -■> Qep-n 9p-l. <&> Qgoal)- 

These intermediate goals are also shown in Figure 3.1 (a). For some cells, it is possible 

that q? and qf coincide. If two intermediate goals coincide, they are treated as a single 

one. 

2Using the midpoints as intermediate goals may result in an inefficient path when the neighboring 
cells in the channel have "big" differences in their shapes and sizes. In the actual implementation, 
we take a point on the line segment connecting the midpoints of the access (resp., exit) region and 
the midpoints of K,_I n K,- (resp., «,- fl K,+I). The exact location depends on the relative size of the 
neighboring cells. 
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3.1.2 Intermediate-Goal Potential 

We construct Uc in a piecewise fashion over overlapping rectangloid regions. Each 

such region is either an access rectangloid, i.e., a,, an exit rectangloid, i.e., /?,-, 

or a regular rectangloid, i.e., the complement of a,- U ßi in a cell /c;, with i € 

[l,p]. For every i ^ p, the goal configuration in the access rectangloid a,- is gf; the 

goal configuration in the regular rectangloid is q{; the goal configuration in the exit 

rectangloid ßi is qr"+1. When i = p, the goal configuration is qgoal over all the cell KP. 

Uc is defined over each rectangloid as the sum of two terms, an attractive term 

Uf, which pulls the robot toward the goal configuration qg of the rectangloid, and a 

repulsive term U£, which pushes the robot away from the boundary of the channel. 

JJ9
C shifts its goal from one intermediate goal to the next whenever A's configuration 

enters a new (regular, access or exit) rectangloid. This is illustrated in Figure 3.1 

(b). If A's configuration is in «,-, i € [1,2? - 1], and not in at- U ßi, the current goal is 

q{. As soon as it enters /?,-, the current goal becomes qr°+1. When it enters K,+I (i.e., 

a,+i), the current goal becomes <j»?+1, if i + 1 ^ p- Finally, if it enters the goal cell, 

the current goal becomes qgoa\. If ^4's configuration is in a,- fl/?t- (^ 0), /?,- has a higher 

priority and the current goal is g"+1. If p = 1, there is no intermediate goal and qgoal 

is immediately taken as the goal to attain. 

Shifting from one intermediate goal to the next as explained above results in a 

discontinuity of the attractive force. Such discontinuity can be smoothed at the servo 

level. Another technique would consist of shifting continuously from an intermediate 

goal to the next, by making the goal vary along the line segment connecting them. 

3.1.3 Formal Definition of Potential 

The potentials Uf and U* can be formally defined in several ways. Our definitions 

are directly inspired from those given in [Kha86]. We take: 

U?(g) = \Kgfcq) 
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and 

\ 0 if pb(q) > po- 

where 

- Kg and Kb are scaling factors, 

- pg(q) is the distance between q and the current goal qg, 

- pb(q) is the distance from q to the boundary of the channel, 

- p0 is the distance of influence of the channel boundary. 

In our implementation, we only consider the two cases where C = R2 and C = 

R2 x S1. In the first case, the distances pg and pb are simply the Euclidean distances 

from q = (x, y) to qg = (xg, yg), and from q = (x, y) to 911 (the boundary of II). In the 

second case, we compute the distance between qx = (an,yi,0i) and q2 = (^2,2/2,^2) 

as: 

d(q1,q2) = [fa - x2f + fa - y2f + r2 l2(6u 92j\ * 

where r is a scaling factor that we take equal to the maximal distance between the 

origin of the frame TA attached to A and the boundary of A. If the cell ranges over 

all orientations in [0,2?r], we take: 

l(9u62) = mind*! - 02|,27r - ft - B2\). 

If it ranges over a subset of [0,27r], we compute l(6i,62) as the length of the arc 

connecting the orientation 6\ to the orientation 62 and contained in the angular range 

of the cell. We take: 

pg(q) = d(q,qg) 

and 

Pb(q)= min d(q,qb). 
qb€dU 
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Figure 3.2 shows the channel potential constructed using these definition in a 2- 

dimensional cell. Figure (a) shows the cell, its access (light gray) and exit (dark gray) 

regions, and the intermediate goals, (b) shows the equipotential contours of the goal 

potential in the cell. The arrows represent the negative gradients of the goal potential 

and, in each region, they point to the corresponding intermediate goal, (c) shows the 

equipotential contours of the wall potential. The distance of influence in the access 

(resp., exit) region is a fraction of the size of the access (resp., exit) gate in order to 

to prevent the creation of local minima of the channel potential. The wall potential 

vanishes near the center of these gates as well as in the central area of the cell, (d) 

shows the resulting channel potential.3 

3.2    Unexpected-Obstacle Potential 

3.2.1    Principle 

We now define the potential induced by unexpected obstacles. We assume that these 

unexpected obstacles are detected by N proximity range sensors mounted on the 

robot. We denote these sensors by Si, ...,SN. Typically, these proximity sensors are 

infra-red emitter/receiver pairs or sonars fixed on the boundary of the robot (see 

Figure 3.3 (a)). 

At every instant, each sensor Sk, k = 1, ...,N, measures the distance dk from the 

point ak in .4's boundary, where Sk is located (see Figure 3.3 (b)) to an obstacle along 

a ray Lk fixed with respect to A. (By convention, when Sk detects no obstacle, dk 

becomes infinity.) This "perfect sensing" assumption may not be verified for a single 

measurement. However, the effect of a sensing error on the behavior of the robot is 

very brief, since another measurement will be repeated shortly after. Nevertheless, 

the impact of imperfect sensing on the performance of the navigation system will be 

discussed later in Chapter 6. 

3The program used to draw the equipotential contours do not produce contours correctly near 
the boundary of two regions where values of the potential are discontinuous. The apparent local 
minima shown in Figures 3.2 (d), 3.4 (b), and 4.1 (b) are falsely generated due to this defect of the 
plotting program. 
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Let Pk denote the point of W located at distance dk of the boundary of A(q) 

along Lk. If Pk & U?=i &i (the region of the known obstacles), this point is called 

the contingency detected by Sk. At each instant, the contingencies are treated as 

independent point obstacles which create circular repulsive potential around them 

pushing the robot away from the unexpected obstacles. In order to be more consis- 

tent with the rest of the navigation system, we should rather test that the C-obstacle 

corresponding to a point obstacle Pk intersects the channel, before calling it a contin- 

gency; otherwise, the robot motion may be unnecessarily affected without reducing its 

chance of success. This additional test can be relatively time-consuming, especially 

if there are many Pks. We chose not to make this test. 

We use proximity sensors as the source of information about unexpected obstacles. 

However, we could use other ranging devices instead. For example, a typical laser- 

camera range-finder projects a plane of light from the laser either through a cylindrical 

lens or by panning the laser beam around the robot, and the camera captures the 

light reflected by the obstacles' boundary. The range information on the detected 

obstacles' boundary is obtained through triangulation. Such a range-finder provides 

more complete and accurate information about the outlines of detected obstacles and 

thus would enhance the robustness of the navigation system. However, treating the 

detected obstacles as non-point geometric objects such as line segments or curved 

lines would require more processing time. As a compromise, a limited number of 

light-rays can be used to select point obstacles from the outlines of the detected 

obstacles. Then, the sensor model used in our navigation system can be applied as 

well. 

We will see in the next chapter that the robot keeps track of the detected un- 

expected obstacles in a local model of the workspace associated with the channel. 

However, this model is not exploited here; only the current sensory data are used at 

each instant. This choice makes the computation of the potential not only faster, but 

also valid when there are moving unexpected obstacles. On the other hand, it may 

produce additional zero-force configurations (i.e., local minima). 
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(a) Unexpected-obstacle potential Us (b) Total potential U = Uc + Us 

Figure 3.4: Unexpected-obstacle potential and total potential 

3.2.2    Formal Definition 

The unexpected-obstacle potential is constructed in two steps. First, a potential 

function Vfc, called contingency potential, is denned over the workspace for every 

contingency point Pk detected by the sensors. This definition, given below, is very 

similar to the definition of the channel potential, but in a different space. In the 

second step, the various contingency potentials are combined into a function defined 

over the configuration space. This function is the unexpected-obstacle potential Us. 

- If Pk e ULi B» pk is not a contingency. Then, Vk(x, y) = 0 for all (x, y) € R2. 

- Otherwise: 

Vl(i,!/) = ^^kv)-t/ *»fcv)s/4. 
if pk{x, y) > P'Q. 

where 

- Ks is a scaling factor, 

- pk{x, y) is the Euclidean distance (in R2) between the point (x, y) and Pfc, 

- p'0 is the distance of influence of an unexpected obstacle. 

This potential induces a force field Gk = -VVfc over the workspace, which only 

applies to the point ak. The force Gk applied at ak is converted to a generalized force 
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Fk as follows: 

- IfC = R2, Fk = Gk. 

- If C = R2 x S1, Fk is a vector with three components. The first two components 

axe those of Gk. The third one is the outer product4 O^k x Gk- 

One can easily verify that Ffc(q) = -VUjt(q), where Ufc(q) = V^a^q)) [Lat91]. 

Therefore, U,(g) is defined as: 

U5(g) = EUfc(9) = f;Vfc(afc(q)). 

Figure 3.4 shows the unexpected-obstacle potential for a point robot. Figure (a) 

shows the equipotential contours around three detected point obstacles. To simplify 

the illustration, we use a point robot, but, as mentioned above, this construction 

extends to a non-point robot in 2 and 3 dimensions, (b) shows the total potential 

that is obtained by by adding the channel potential of Figure 3.2 and the unexpected- 

obstacle potential of (a). It also shows a path following the negative gradient of the 

total potential, thus illustrating the navigation of the robot in the presence of the 

detected point obstacles. 

The distance of influence p0 (channel boundary) (p0) and p'0 (unexpected obstacle) 

vary through the channel, but are constant over each cell (except, possibly the last 

cell). They increase with the size of the cell and the size of the exit gate. In the last 

cell, they are taken small enough so that U* and U, become zero at qgoal in order 

for the robot to reach qgoal even if an unexpected obstacle lies close to the robot at 

its goal configuration. In fact, in the last cell, they can be gradually reduced as the 

robot gets closer to qgoat. 

4In order for the outer product to be non-zero, the line supporting Lk should not pass through 
OA- This suggests that on non-circular mobile robots, range sensors should not be distributed along 

a ring. 
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3.3    Computation of Motion Commands 

The general dynamic equation of A in configuration space is:5 

Aq + H(q,q)-Fn m 

where q and q are the generalized velocity and acceleration of the robot, A is the 

kinetic energy matrix, ß(q, q) is the centrifugal andCoriolis generalized forces, and 

Fm is the generalized force applied by the actuators. The negative gradient of the 

potential U can be used as an external force acting on A to prescribe its behavior 

such that A is treated as a unit-mass particle moving under the influence of U. Thus, 

the motion command Fm can be computed as [Kha86]: 

Fm = A{-VV(q)]+fi(q,q). 

Such a motion command compensates the dynamic effects while it achieves the 

desired behavior of A specified by U. In practice, however, the speed of a mobile 

robot is relatively slow, and therefore, the dynamic effects of the robot motion can be 

ignored. Specifying the desired acceleration to the (kinematic) controller of the robot 

is usually sufficient. For instance, GOFER is built on a mobile base with a built-in 

PID controller. It provides a position control mode and a speed control mode. In 

a position control mode, we can specify a desired position (and orientation), and 

assign arbitrary values (within limited ranges) for the velocity and acceleration. In 

a speed control mode, which is the control mode used for our navigation system, a 

desired velocity of the robot is specified. The motion command for such a robot can 

be computed directly from U as: 

fe=^[-VU(q)] 

where Km is a scaling gain. Km is selected such that the maximal speed of the robot 

5When the robot is a wheeled vehicle moving on a plane, there exist frictions between the wheels 
and the plane. Then, the equation of motion is Aq + fi(q, q) - Ffric - Fm = 0 where F/ric is the 
generalized friction force. 
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does not exceed some prespecified value.  The desired acceleration is also specified 

not to exceed the actuator limit. 

Using the control scheme described in [Kha86], we introduce a damping term 

proportional to the velocity in the control of the robot. The damping term makes 

the robot decelerate when it gets close to an intermediate goal. This happens only at 

the final goal and at places where the channel is narrow and/or winding. Practically, 

experimentations show that, except for short acceleration and deceleration segments, 

the robot navigates at the selected maximal speed. 

3.4    Examples 

Figure 3.5 shows both the intermediate goals in the channel of Figure 2.3 (b) and 

the configurations where goal shifting occurs. In (a), the transparent robots placed at 

the intermediate goals in a 2-dimensional channel show the corresponding goal config- 

urations; the initial and goal configurations are shown with the gray robots. Figures 

(b) through (i) show various configurations of the robot (gray) and the corresponding 

intermediate goal configurations (transparent). 

Figure 3.6 (a) shows a path followed by the robot in the channel when there are 

no unexpected obstacles. Figure 3.6 (b) shows a path followed by the robot in the 

presence of unexpected obstacles (shown grey). In this example, 16 proximity-sensors 

were used to detect obstacles. Figure 3.7 illustrates the detection of unexpected 

obstacles along the path. In (b) and (d), the proximity sensors also detect known 

obstacles. The corresponding detected points are not contingencies, and, thus, should 

not contribute to the unexpected-obstacle potential. In practice, however, sensing 

is not perfect, and it is difficult (and time-consuming) to distinguish between the 

detected points from known obstacles and unexpected obstacles. Therefore, we relax 

the definition of contingencies to include the detected points from known obstacles as 

well as unexpected obstacles. This changes the robot's path slightly, specially where 

the channel is narrow. But, the success of the navigation system is not affected as 

shown in this example. The robot encounters no local minimum and navigates all the 
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Figure 3.5: Shifting between intermediate goals in a channel 
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(a) No unexpected obstacle (b) With unexpected obstacles 

Figure 3.6: Navigation in channel 

way through the channel. Due to the damping term in the goal cell, the robot slows 

down near the goal configuration until it stops at the goal. 

More examples in different environments are shown in Appendix A. 
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(e) (f) 

Figure 3.7: Detection of unexpected obstacles along a path 
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Chapter 4 

Local Replanning 

As long as the unexpected obstacles are small relative to the robot and sparsely 

scattered through the workspace, the potential fields defined in the previous chapter 

allow the robot to satisfactorily navigate in a channel. However, there may be local 

minima where the robot may get trapped. In particular, if there are big unexpected 

obstacles or unfortunate arrangements of small unexpected obstacles, local minima 

may have large attractive basins of attraction; the chances that the robot enters one 

of these basins increase. 

Therefore, local minima should not be overlooked, and we must equip the nav- 

igation system with a procedure to escape them. Ideally, we would like the robot 

to avoid local minima by detecting them early enough, using the channel geometry 

information and the sensory data. However, it is not possible in general to recog- 

nize local minima until the robot has attained them. In this chapter we describe a 

procedure for detecting local minima and a method for escaping them. 

4.1     Detection of Local Minima 

We distinguish between two types of local minima in the potential field when there 

exist unexpected obstacles: 
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- A local minimum may appear in the neighborhood of the goal configuration, if 

this configuration is within the distance of influence of the unexpected-obstacle 

potential. In this case, the goal configuration is no longer a minimum of the 

potential. As mentioned in Section 3.2.2, such a local minimum can be avoided 

by selecting the distance of influence smaller than the distance between the goal 

configuration and the unexpected obstacles. In fact, the distance of influence 

of unexpected obstacles can be reduced toward 0 as the robot gets closer to the 

goal. 

- A more common type of local minimum corresponds to a conflict between the 

channel and unexpected-obstacle potentials. It typically occurs in concavities 

made by arrangements of unexpected obstacles and the channel boundary. Fig- 

ure 4.1 illustrates such a minimum: (a) shows a channel with three unexpected 

obstacles in the first cell; (b) shows the equipotential contours of the total poten- 

tial, i.e., the combination of the channel potential and the unexpected-obstacle 

potential.1 This second type of local minimum is far more difficult to deal with 

than the first type; it is the only type of local minimum that we will consider 

in this chapter. 

In general, there is no simple way of detecting a local minimum in advance. Then, 

in theory, we can determine that the robot is trapped in a local minimum when the 

gradient of the potential vanishes. At best, we can provide methods for allowing the 

robot to escape the local minimum. 

Mathematically, detecting a local minimum of the potential is a simple procedure. 

In practice, however, due to the discrete nature of robot's control and sensing, it 

is impossible for the robot to exactly land on a local minimum. Instead, the robot 

usually oscillates around the local minimum. Also, there are local minima whose 

attractive wells are so small that the robot may get away from them without any 

further help other than its own momentum. Local minima that cause a problem are 

1The actual potential computed during navigation, however, would be slightly different, because, 
in Figure 4.1, the unexpected-obstacle potential was computed assuming complete knowledge of the 
unexpected obstacles. 
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Figure 4.1: Typical local minimum 

only the ones which have attractive wells large enough to trap the robot permanently. 

In the following, we describe a procedure that detects such local minima. 

This procedure operates in two steps: the alert step and the detect step. When 

there is no local minima around the current robot's configuration, the robot's direction 

of motion deduced from the potential field usually does not change abruptly. Drastic 

changes are a strong indication that the robot has reached the bottom of the attraction 

well of a local minimum. We use such a drastic change in the direction of motion 

(e.g., a change greater than 7r/2) to set the "alert" flag. However, this is only a 

preliminary condition for deciding that the robot is in a local-minimum well. Indeed, 

narrow turns in the channel and intricate arrangements of unexpected obstacles may 

yield such changes in motion direction, without local minima. Moreover, such changes 

could also result from the fact that the unexpected-obstacle potential is time-varying, 

as the measurements of the sensors are updated at every instant. In order to make 

sure that the robot is actually stuck at a local minimum, we must wait for a while 

and check whether the robot continues moving. This is done by measuring the net 

distance to the configuration where the alert flag is set.   If this distance does not 
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exceed a prespecified value after a prespecified waiting time,2 the "detect" flag is 

set and the configuration of the robot at this instant becomes the local-minimum 

configuration qLM. 

The local-minima detection procedure significantly reduces incorrect detection of 

local minima. Although it does not completely eliminate incorrect diagnosis, exper- 

iments have shown that a more reliable detection of local-minimum configurations 

requires more time during which the robot tends to loop around. The penalty for 

incorrect local minimum detection is that we unnecessarily perform local replanning. 

But, as we will see below, the local replanning routine is usually very fast. 

Figure 4.2 shows an example with two unexpected obstacles causing a local min- 

imum: (a) shows the initial and goal configurations of the robot; (b) shows the path 

of the robot until it detects that it is trapped in a local-minimum configuration; (c) 

shows, in magnification, grid points corresponding to the part of the unexpected ob- 

stacles detected during this motion. We describe how to build such grid points using 

sensory data later in Section 4.3.2. 

4.2    Escaping a Local Minimum 

Once it has been determined that the robot is trapped in a local minimum, the robot 

needs a strategy to escape the basin of attraction of this minimum. If the robot's 

configuration space was 2-dimensional, a simple strategy would be to go around the 

unexpected obstacles [CZL89]. Only two possible directions of motion are possible, 

leaving the unexpected obstacle on the right or on the left of the robot, respectively. 

If the first direction fails, (e.g., by requiring the robot to move out of the channel), 

the second direction can be tried next. If both directions fail, this means that the un- 

expected obstacle obstructs the channel completely, and global replanning is needed. 

However, this simple strategy is not applicable when the robot's configuration 

space is 3-dimensional (i.e., when the robot can both translate and rotate). Indeed, 

2These values axe determined experimentally considering the maximum speed of the robot and 
the rate of the closed-loop control in the reaction component of the navigation system. 
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Figure 4.2: The robot gets trapped in a local minimum. 
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(a) (b) 

Figure 4.3: Local minimum in 3-dimensional configuration space 

there are then an infinite number of directions that the robot can choose to move 

around the C-obstacle corresponding to the unexpected obstacle, and there is no 

way to select one that is always guaranteed to lead to a successful path. Besides, 

the orientation of the robot repeats itself every 2ir along the orientation dimension 

(multiple connectedness of the configuration space), and this causes an additional 

difficulty in devising an escaping strategy. Figure 4.3 illustrates this difficulty with 

a simple example: (a) shows one possible path of a triangular robot from the initial 

configuration (I) to the goal configuration (G) in the 2-dimensional workspace. The 

path is achieved by rotating the robot clockwise around its reference point (OA)- 

Figure (b) shows this path in the 3-dimensional configuration space as a collision- 

free line segment connecting I and G. The robot could have achieved the same goal 

orientation (shown G' in (b)) by rotating counterclockwise. Although the line segment 

connecting I to G' is shorter that the line segment IG, i.e., \6Q — 0j\ > (2TT — \9Q — 0j\) 

where 6j and BQ are the orientations of the robot at I and G, respectively, the segment 

IG' is not collision-free. Assume now the obstacle in Figure 4.3 is an unexpected one. 

With the potential described in Section 3.1.3, the navigation system, without knowing 
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in advance the existing obstacle, would take G'(9G, = 9G + 2TT) as the attractive goal, 

which would make the robot rotate counterclockwise until it eventually reaches a local 

minimum caused by the unexpected obstacle. 

Our navigation system escapes a local minimum by performing a local replanning 

operation, which we describe in the following two sections. The local replanning 

operation consists of two steps. First, a local path is planned to escape the local 

minimum by making use of the new information about the obstacles obtained through 

sensing. Second, this path is transformed into a valley-shaped potential that is then 

combined with the other potentials. 

4.3    Local Path Planning 

The path planning operation embedded in our local replanning method considers the 

cell of the channel where the local minimum has been detected. It searches this cell 

for a path connecting the local-minimum configuration3 to the access gate of the 

next cell in the channel without colliding with the detected unexpected obstacles. 

If the minimum is close to the access gate of a cell, the path is planned in the 

union of two successive cells to provide the robot more space to move and escape the 

minimum. Various alternative path-planning techniques could be used to find a local 

path. However, many of these techniques either require the exact information about 

the geometry of the obstacles, or are too time-consuming. We make use of a very 

efficient potential-guided path planning technique. 

The method uses a kind of Voronoi diagram, which represents the topology of 

the free space, and generates a local path that avoids as generously as possible both 

the detected unexpected obstacles and the boundary of the channel. This property 

is important because, in the next step, the local path is transformed into a valley- 

shaped potential and the robot travels in this new valley-shaped potential among the 

"yet to be detected" unexpected obstacles. 

3More precisely, the configuration where the navigation system recognized that the robot was 
trapped in a local minimum. 
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4.3.1    Presentation of Local Path Planning Method 

Let us first present the notion of a navigation function as described in [Lat91]: A 

navigation function is a potential function U : Cfree i-+ R with a minimum located at 

the goal qgoal whose domain of attraction includes the entire subset of the free space 

Cfree that is connected to qgoah except a finite set of isolated saddle points of U. If 

a navigation function could be constructed, then a path generated by a depth-first 

search algorithm following the steepest descent of this function would be guaranteed 

to reach qgoal. Although it can be difficult to define an analytical navigation function 

over a space of arbitrary geometry, the computation of a numerical navigation function 

over a space represented in the form of a grid turns out to be much easier. A planning 

method based on such a numerical navigation function was first introduced in [BL91]. 

From here on, the numerical navigation function constructed in a grid is called a grid 

potential. 

The grid-potential-based planning method consists of two steps: the generation 

of the grid potential and the search of a path using this grid potential. The planning 

can be performed in two different ways. The first method is to generate the grid 

potential directly in the configuration space of the robot and construct a path using 

the potential. The second method is to first generate a grid potential in the workspace 

of the robot and then to re-construct the grid potential in the configuration space 

during the search. 

The operations in the first method consists of: transforming the detected obstacles 

into the corresponding configuration space C-obstacles; discretizing the configuration 

space into a grid; computing a potential in the configuration space grid; tracking 

the steepest descent of the potential. The operations in the second method consists 

of: discretizing the workspace into a grid; computing a potential in the workspace 

grid; constructing a potential for the configuration space grid using the workspace 

potential and performing a best-first search using the re-constructed potential. In the 

second method, the configuration space potential may not be free of local minima. 

Nevertheless, as we show below, the total computational cost of the second method 

is usually much smaller than that of the first. 
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Except in the case where a robot moves with a fixed orientation, the number of 

the grid points in the configuration space is one order of magnitude larger than that 

in the workspace. For instance, in the case where a robot can both translate and 

rotate, the number of grid points is n2 in the workspace, while it is of the order of 

n3 in the configuration space,4 where n is the number of grid points along the axes 

of the coordinate frame embedded in the workspace. The complexity of generating 

a navigation function is at least linearly proportional to the number of grid points. 

Hence, the cost of computing a navigation function in the configuration space (as is 

done in the first method) is much higher than in the workspace (as is done in the 

second method). In the second method, there is an additional cost for re-constructing 

the grid potential in the configuration space from the navigation function computed in 

the workspace. However, this re-construction needs to be done only for the grid points 

that are explored in the search process. In the unfortunate cases where the search 

procedure requires most of the grid points to be explored, the computational cost of 

the second method becomes equal to the cost of the first method, at worst. But such 

cases are rare. Besides, in the first method, there is the extra-cost of transforming 

detected obstacles into configuration space obstacles. This cost can be quite high, 

because the transformation operation requires generating algebraic representations 

of the detected unexpected obstacles from raw sensory data. The transformation is 

not needed in the second method. Therefore, in general, the second method is much 

faster than the first, and our navigation system uses this second method. 

We apply this method with a rectangular grid cell QK placed across the ex- 

panded cell(s) considered for local path planning. Since these cells are usually 

rather small, QK is also small in most practical cases. The expanded cell is con- 

structed by projecting a cell of the channel in the workspace of the robot and by 

enlarging it so that it includes all the points on the robot corresponding to the con- 

figurations of the robot in the cell. For computational simplicity we transform QK 

into a rectangle bounding the actual subset of the workspace swept out by the robot 

4The number of grid points along the orientation axis (0) is not necessarily the same as those 
along the translation axes (a; and y), but it is proportional to them. 
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when its configuration varies over the channel cell. This slightly increases the size 

of the grid, but often by a negligible amount. Also, these additional grid points do 

not correspond to valid configurations of the robot in the channel; therefore, they are 

excluded during the search process. 

QK is constructed by discretizing the axes of the frame Fw embedded in W. The 

free subset QKfree of QK is defined as: 

nB 

ÖtCfree = QK\ (J XBi 
i=l 

where xBi denotes an obstacle grid point, a marked grid point indicating that it 

belongs to a detected obstacle, and nB is the number of such points in QK. 

Before describing the computation of the grid potential in QKfree, we explain, 

in the following subsection, how the sensory information about detected obstacles is 

used to mark points in QK. 

4.3.2    Local Map Building 

While the robot is moving in the channel, the navigation system keeps track of the 

detected outline of the unexpected obstacles by mapping the sensory data into a grid 

obstacle model (see Figure 4.2 (b)). The grid model is associated with the grid cells 

QKi (i = 1,..., p) of the channel, and it is continuously updated as the new sensory 

data become available. A function Mk, associated with every sensor Sk, maps the 

sensed distance dk (see Figure 3.3 (b)) and the current robot configuration to the 

corresponding point xB in QK: 

Mk : {dk,q) >-* xB € QK. 

The path of the robot can be affected by the unexpected obstacles that are located 

not only in the current cell but also in the neighboring cells, and it may be important 

to keep a record of the unexpected obstacles even in the cells other than the current 

one.   However, it is a waste of processing time to try mapping the sensory data 
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over all the cells in the channel at every instant, and it is often unnecessary unless 

the channel is small enough to be covered by sensory measurements at one location. 

In our implementation, the navigation system updates the grid obstacles only for a 

limited number of cells at a time. The number of the cells depends on the maximal 

range of sensing devices and the sizes of the neighboring cells. 

Although we do not attempt to exploit the grid model to extract an algebraic 

representation for the detected unexpected obstacles, by increasing the resolution of 

the grid, we can make the model as precise as we wish. The fine resolution of the 

grid is desirable to capture the precise outline of the unexpected obstacles in the 

model, but the number of the grid points must be limited to save memory space and 

processing time. The resolution of the grid is limited by the resolution of the sensor 

(e.g., one half of the conic beam angle covered by a proximity sensor). It also depends 

on the speed of the robot (i.e., the size of a grid element does not need to be smaller 

than the distance traveled by the robot during one sensing/reaction loop). 

4.3.3     Computation of Potential 

The generation of the grid potential consists of computing workspace potentials (navi- 

gation functions) associated with control points in the robot and combining them into 

a configuration space potential. 

Let a,-, i = 1,..., nc, be the control points selected in the robot A. For a mobile 

robot moving in a plane in both translation and rotation, we typically take nc = 2, 

since two points suffice to determine the robot's configuration. The control point a,- 

on A at configuration q is denoted by a,i(q) in W. With each point a, we associate a 

navigation function V,- defined over QtCfree. 

Once the workspace potentials have been computed over GJCfree, the configuration 
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space potential U at q can be computed by:5 

i=l 

where a,- is the (positive) weighting factor for each control point. 

However, as discussed earlier, this potential function is not computed at every 

configuration, but only at the configurations where the value of U is needed for the 

search process. In order to compute U at a given configuration q, the position a^q) 

of every control point is first computed and the value of V; at the closest position of 

üi(q) in QIC is used to compute U(g). 

The computation of the workspace potential V,- is done in three steps. First, a 

subset S of QK.free, called a skeleton, is extracted. Second, V; is computed in <S. 

Third, V,- is computed in the rest of Q)Cfree. The three steps are described in detail 

in [Lat91]. In the following, We present them with modifications and illustrations 

that are specific to our problem. 

In order to extract S, the Ll (Manhattan) distance dx{x) from every point x € 

QfCfree to the grid points on the boundary (boundary point) of QK,free is computed 

using a wavefront propagation algorithm. L1 is chosen for computational simplicity, 

i.e., the integer arithmetic throughout the computation of the potential, but other 

distance metrics, e.g., L2 (Euclidean distance), could be used instead. The differences 

in the resulting paths are relatively minor, in general. Besides, the effect of choosing a 

particular distance metric on navigation is even less significant here since the resulting 

path will not be strictly followed by the robot, but rather used as a guide. 

The wavefront propagation starts from the boundary points of QlCfree. First, these 

points are identified, and the value of d\ at these points are set to 0. Then, the d\ 

value is increased by 1 and assigned to every neighbor of these points which does 

5 There are many variations in combining the workspace potentials to compute the configuration 
space potential, and each of them gives a different "flavor" to the resulting path. However, we use 
the simple weighted addition because no single method seems to be always superior to another, in 
general. See [Lat91] for other combinations. 
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Figure 4.4: Skeleton constructed by wavefront propagation 
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not have a value of d\ assigned to it yet. This propagation of the di value continues 

until every grid point in QK,free is explored. The boundary consists of the bounding 

rectangle of QK and the boundary of the regions formed by the marked point xB. 

In parallel to the propagation, we construct S as the set of points where the 

wavefronts issued from the boundary points meet. This is done by propagating not 

only the values of di, but also the boundary points that are at the origin of the 

propagation. The construction of S is completed by connecting the grid point xgoai 

closest to ai(qgoai) to «S. This connection consists of a path a following the steepest 

ascent of the dx map in GfCfree. This path is appended to S. Figure 4.4 illustrates the 

wavefront propagation in the example workspace shown in Figure 4.2: (a) shows the 

boundary of GtCfree; (b)-(d) show successive snapshots during the propagation (the 

current wavefront is shown in gray, while the parts of the skeleton already computed 

are shown in black.) ; (e) shows the skeleton constructed at the end of the propagation; 

(f) shows the final skeleton including the path a from the goal agoai at the cell exit 

to the skeleton. 

Next, Vj is computed in «S by another wavefront propagation algorithm restricted 

to S and starting from the grid point xgoai. The algorithm uses the di map previously 

computed in order to guide the propagation. At first, the starting grid point xgoa\ is 

given the value 0 of V,-, and it is inserted in a list sorted by decreasing value of d\. 

The grid point x at the top of the list (i.e., the one having the largest value of dx, 

the furthest away from the boundary of GK,free) is removed from the list and used at 

the next step of the propagation. Every neighbor of x in <S whose potential has not 

been computed yet receives a potential value of V,-(a;) + 1, and is inserted in the list. 

This procedure continues until the list becomes empty, i.e., when all the points in S 

accessible from xgoai has been assigned a potential value. Figure 4.5 illustrates this 

computation. The skeleton elements shown black are those which have been attained 

at the current stage of the propagation. The parts of the skeleton located in the 

widely open areas are explored earlier, shown in (a) through (c), than the ones in the 

narrow areas. This results in a discontinuity in the value of skeleton potential when 

two wavefronts meet in a closed loop of the skeleton (for example, see the lower part 
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Figure 4.5: Computation of potential in the skeleton by wavefront propagation 
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of the skeleton in Figure (d)). This discontinuity results in a "cliff" in the final grid 

potential (see Figure 4.7) with two opposite gradients on each side of the cliff. So, 

in the search process, the path is created such that it goes through an most widely 

open area rather than through the narrow area. 

Finally, the potential V; in the rest of GfCfree is computed, again, by a wavefront 

propagation starting from every point in S with its initial potential value assigned in 

the previous step. Each neighbor x' of every grid point x € S is given a potential 

value of V,-(ar) + 1. The propagation continues similarly and terminates when all the 

accessible grid points from xgoai have been explored. Figure 4.6 illustrates this final 

propagation process. Figures (a) through (d) show snapshots during the propagation. 

The current wavefronts are shown in gray, and the grid points inside these wavefronts 

are those whose potential have been computed already. Figure 4.7 shows the 3- 

dimensional perspective view (a) and the equipotential contours (b) of V,- for QK. 

The potential at the obstacle grid points is not determined; arbitrary high values are 

given to these points for the search process. The resulting potential has no other local 

minimum than the intermediate goal at the exit gate of the cell. 

4.3.4    Grid Search 

The Best First Search technique [Lat91] is used to compute a local path 7 connecting 

qLM and qgoal using the configuration space potential U defined as above. However, 

because it is computed using a few control points only, this potential does not guaran- 

tee that there will be no overlap between the robot and the boundary of QK.free during 

the search. Therefore, at each step of the search, all the points A(q) of the robot at 

the current configuration q must be checked to lie in QK,free. Collision-checking is 

performed using the grid outline of the robot (with the same resolution as the grid 

cell). Such collision-checking technique is justified by the assumption that motion 

increments in the search are small enough so that if the robot is in free space near 

the outline of an obstacle at one step, it cannot "jump" over the outline and be in 

free space at the next step. 

Figure 4.8 shows a path generated by the Best First Search method: (a) shows 
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Figure 4.6: Potential propagation from the skeleton 
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(a) 3-dimensional perspective view (*>) equipotential contours 

Figure 4.7: Grid potential in a cell 

(a) grid nodes along the local path (b) configurations at the nodes 

Figure 4.8: Local path 
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the grid points corresponding to the reference point of the robot along the path; 

(b) shows (with transparent robot) the configurations of the robot at all the grid 

points along the path. Note that the local path leads the robot to collide with a still 

undetected obstacle. This potential collision stresses the need for transforming the 

generated local path into a less committed motion plan (valley-shaped potential). We 

now describe this final transformation. 

4.4    Valley-shaped Potential 

4.4.1    Principle 

Once the path planner has succeeded generating a local path 7, the reaction compo- 

nent must drive the robot along 7 to escape the local minimum. It must also avoid 

collision with other (still undetected) unexpected obstacles and stay inside the chan- 

nel. Following the local path 7 exactly may lead the robot to collide with the new 

undetected obstacles (or the still unsensed parts of previously detected obstacles), as 

illustrated in Figure 4.8 (b). This leads us to transform the local path into a poten- 

tial function to be combined with the channel potential and the unexpected-obstacle 

potential. 

We relax the commitment to the local path 7 by transforming it into a valley- 

shaped potential field U7 (with 7 as the "bottom" of the valley) defined over the one 

or two cells containing 7. We next add U7 to Uc and U5, and make the robot follow 

the negated gradient of the total potential: 

Ufa) = Ue(9)+U.(g) + U7fo). 

U7 is constructed in such a way that at any q € 7, the vector -VU7 points 

along the tangent of 7, and at any 9^7, - VU7 is the sum of two components, one 

pointing along the tangent of 7, the other pointing toward 7 (see Figure 4.9). Hence, 

the robot is attracted back to 7 whenever it deviates from it. It is also pulled toward 

the end extremity of 7.  If another local minimum is detected, it is treated in the 
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Figure 4.9: Vector field induced by the valley potential 

same way as the previous one, i.e., by generating another local path (the previous 

local path is forgotten). When the robot reaches the end of 7, the potential field is 

re-established to Uc + Us. In the following subsection, we describe in detail how the 

valley potential is computed from a locally planned path. 

4.4.2    Implementation 

The local path lies in the configuration space grid. Hence, it is made of line segments 

connecting a sequence of configurations in the grid cell, starting at the local minimum 

and ending at the intermediate goal of the cell exit. Figure 4.10 (a) illustrates the 

2-dimensional projection of a portion of a typical local path. The local path 7 may 

include two or more successive segments that are collinear; then, these segments are 

merged into a single one to reduce the number of segments as shown in Figure 4.10 (b). 

The sequence of obtained segments is called a spine. The vertices of the spine are 

denoted by q{ (i = 1,... ,n7). A segment of the spine between two vertices q{ and 

qi+1 is denoted by s*. The valley potential U7 is the union of several potentials 15Si. 

Each U5l. is defined over the influence region of a segment s,- (i = 1,..., n7 — 1): 

U7fo) = VSl(q) U US2(9) U ... U U,_ _>(<?). 

71 



91 92 93 111 Uj^ 
s, 

94 

92 

«2 

s2. 

94     u4     \9s 

(b) merged local path 

<\LHi 
1_  L 

(c) valley potential defined on each segments 

Figure 4.10: Spine of a valley projected on a plane 
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The influence region lZSi of a segment st- is a set of configurations defined by: 

n7 —1 

Ha = {<11 d(q, s^ = min d(g, Sj)} 

where d(q,Sj) is the shortest distance from <? to Sj. Configurations that achieve 

minimal distance with more than one segment are placed in the influence region of 

one of these segments selected as described below. Hence, at every configuration 

q, V-f(q) is completely determined by a single segment st-. Therefore, instead of 

computing the complete valley potential in advance, the potential is computed for 

each configuration as the robot moves along the successive segments of the spine. 

When the configuration q of the robot enters the influence region of a segment s,-, 

the robot becomes under the influence of VSi. We call this segment the effective 

segment. The computation of USi is performed in two steps: (1) find the effective 

segment for q; (2) compute the two components, Uj and Un, of Uäi. As described 

in the previous section, Ut is used for moving the robot along the tangent of s,-, and 

U„ for attracting the robot back to s,- (see Figure 4.10 (c)). 

Instead of computing the influence region of s,- in advance, we compute, at every 

cycle in the reaction control loop, the shortest distances from the current configura- 

tion to the current effective segment (in the beginning, the first segment is considered 

effective) and every following segments in the spine. A segment closest to q is selected 

as the effective segment for the current configuration. When the configuration is at 

the same distance to two or more segments, the furthest segment in the sequence is 

selected as the effective segment, thus giving a higher priority to the forward mo- 

tion along the spine. Excluding the segments that are behind the current effective 

segment prevents the robot from oscillating between two segments, especially when 

two segments are close to each other and have an acute angle between them. It also 

reduces computation. 

Computing the shortest distance of a point to a line segment is simple. However, 

if there are many segments in the spine, the cost of computation may not be ignored, 

because the computation is repeated at every cycle of the reactive control loop. We 
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Figure 4.11: Effective segment and its shadow points 

reduce the computation by comparing the bounding box that contains the current 

effective segment and the current configuration to the bounding boxes of the remaining 

segments and precluding the segments that are far away. 

Figure 4.11 shows a configuration of the robot q and its effective segment 5,-. Let L,- 

be the supporting line of s,. Let the normal shadow point of q be the point qSn € L, 

such that the line segment qq~ is normal to L,-. Let the tangential shadow point 

be the point qSt in the plane perpendicular to L,- at qi+1 such that the line segment 

qq^t is parallel to L,-. If qSn lies outside of s,-, qt becomes qSn. Given qSt and qSn of 

Si, we compute \JSi as follows: 

U,   =   -Ktp
2

t(q) 

Un   =   -Knpl(q) 
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Figure 4.12: Escaping a local minimum 

where 

- Kt and Kn are scaling factors, 

- pt(q) is the distance between q and q$t (i.e., pt(q) = d(q,qSt)), 

- pn{q) is the distance between q and qSn (i.e., pn(q) = d(q,qSn)). 

4.5    Examples 

Figure 4.12 shows the path followed by the robot to escape the local minimum 

encountered in Figure 4.2. Due to the combination of Uc, Vs and U7, this path 

slightly differs from 7 and is free of collision with any obstacle. Figure 4.13 shows 

another example where the robot encountered two local minima during navigation, 

(a) shows the path followed by the robot; (b) shows two skeletons generated by local 

replanning, performed twice during the navigation. The skeleton in the first cell was 

generated after the first local minimum had been attained, and the second skeleton 
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Figure 4.13: Navigation of the robot with two local minima 

in the last cell was generated after the second local minimum had been attained. In 

both the first and last cell, a grid of size of 69 x 44 x 36 is used for local path planning. 
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Chapter 5 

Global Replanning 

In the previous chapter we discussed local replanning to escape local minima. In 

most cases, the presented method successfully generates an escape route for the robot. 

However, for some arrangements of unexpected obstacles, our local replanning method 

fails. The reason for such failure is that replanning is restricted to one or two channel 

cells. In this chapter we extend the local replanning method to multiple cells. We 

also present a global replanning method which generates an alternative channel when 

it is detected that the current channel is completely obstructed. Throughout this 

chapter, we simplify our presentation by assuming, without loss of generality, that 

the robot is circular, which yields a 2-dimensional configuration space. In particular, 

this assumption results in simpler figures. 

5.1    Local Replanning Failures 

The single-cell (or double-cell) local replanning may fail to find a path for one of the 

following two reasons: (1) The current channel is completely obstructed; (2) The local 

minimum cannot be escaped by staying in the current cell. Let us illustrate each case 

with examples. 

Figure 5.1 illustrates an example where our local replanning fails because the 

channel is completely obstructed by two unexpected obstacles (shown in dark gray). 

First, in (a), the robot falls into a local minimum due to the unexpected obstacles. 
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Figure 5.1: Local replanning failure due to channel obstruction 
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Figure 5.2: Local replanning failure due to locality of replanning 

However, when this minimum is attained, only a subset of the unexpected obstacles 

has been detected (shown in light gray). Therefore, there is no way for the navigation 

system to immediately recognize that the channel is completely obstructed. The robot 

escapes the local minimum as any other local minimum using the method described 

in the previous chapter. Then, it falls into a second local minimum that it tries to 

escape again. This escape process is repeated until enough sensory information about 

the unexpected obstacles has been accumulated so that local replanning fails to find 

a path. Figures (b) through (d) show the sequence of the escape trials with each 

locally planned path displayed as a gray line. 

Figure 5.2 illustrates the second case of failure of our replanning method. Here 

local replanning fails because it is restricted to the current cell. Three unexpected 

obstacles create a dead-end lying over two cells. This dead-end results in a local 

minimum where the robot gets trapped. Although there still exists an escape path 

in the current channel, the path planner used by the local replanning method only 

considers the cell of the local minimum, and it fails to find a path in this cell. 

In the above examples, paths to the goal G do exist despite the local replanning 
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failures. The first case is solved by global replanning, i.e., finding an alternative 

channel, using the additional information provided by the sensors. The second case 

can be also solved by alternative channel generation, although it can be solved by 

multi-cell local replanning, which we will describe later. First, we describe alternative 

channel generation. 

5.2    Alternative Channel Generation 

An alternative channel is generated by the planning component of the navigation 

system. The operation, as described in Chapter 2, consists of two steps: updating 

the connectivity graph and searching the graph for a new channel. 

Some empty cells in the current connectivity graph become mixed cells due to 

the detected unexpected obstacles represented by obstacle grid points. Mixed cells 

are identified by merging adjacent obstacle grid points into rectangular obstacles and 

by computing the intersection between empty cells in the current connectivity graph 

and rectangles bounding C-obstacles corresponding to these new obstacles. Once the 

connectivity graph is updated, it is searched for a new sequence of the empty cells 

between the cell containing the local-minimum configuration, where local replanning 

has failed, and the cell containing the goal configuration. When a new channel is 

found, navigation resumes in this channel. If an alternative channel cannot be found, 

the planning component reports failure and the navigation system stops. 

Figure 5.3 illustrates alternative channel generation for the example of Figure 5.1. 

Figures (a), (b), and (c) illustrates, in magnification, three stages of cell decomposi- 

tion: (a) shows the local-minimum configuration in the current cell with obstacle grid 

points transformed into two rectangular obstacles (in gray); (b) displays the rectan- 

gles (in thick lines) bounding the C-obstacles (in dark gray) corresponding to the two 

new rectangular obstacles; (c) shows the decomposed empty cells (in thick lines) in 

the current cell. Figure (d) depicts the new channel connecting the new initial config- 

uration I and the goal configuration G. Figure 5.4 shows the new channel generated 

for the example of Figure 5.2 using the same global replanning method. In this case, 
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Figure 5.3: Alternative channel generation 
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(a) channel (b) merged channel 

Figure 5.4: Merging cells in alternative channel 

two cells (the second and third cells) in the original channel have been refined, and 

therefore the new channel is divided by the boundary (i.e., access gate) of the current 

cell (a). Cells in the new channel are merged, and the resulting channel consists of 

less number of cells (b). 

Local replanning failures can be handled by generating an alternative channel, as 

shown in the above examples, regardless of whether the current channel is completely 

obstructed or not. However, the alternative channel generation can be computation- 

ally expensive, especially when the connectivity graph is large. Therefore, we extend 

below the local replanning method to multiple cells. The extended replanning method 

attempts to find an escaping path over two or more cells. This additional technique 

can increase the efficiency of the navigation system. 

5.3    Multi-cell Local Replanning 

Multi-cell local replanning is an iterative local replanning over a sequence of cells, 

backtracked from the current cell.   Starting from a sequence of two cells, i.e., the 
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current cell and the previous cell, the sequence of cells is expanded by adding one more 

previous cell every time local replanning fails to find a path in the current sequence 

of cells. Before applying multi-cell local replanning, the navigation system must 

determine whether the current cell (or the sequence of the cells currently considered) 

is completely obstructed or not. Indeed, if it is completely obstructed, the only way 

to proceed is by generating a new channel. In the following, we describe the process 

to check a cell (or a sequence of cells) for obstruction. 

5.3.1    Detection of Obstruction 

A channel is obstructed if any cell or sequence of cells is obstructed. A cell is ob- 

structed if there exists no path between its access gate (or the initial configuration if 

the cell is the first cell in the channel) and its exit gate (or the goal configuration if 

the cell is the last cell in the channel). This simple definition extends to a sequence 

of cells. 

When a robot enters a cell, it crosses the access gate of the cell at some config- 

uration, called the access configuration. This configuration is recorded for each 

cell. Failure of local replanning in a cell implies that there is no path between the 

local-minimum configuration and the exit gate of the cell. This also means that 

there exists no path between the access configuration and the exit gate because the 

local-minimum configuration is attained through the access configuration. 

Initially, when no unexpected obstacles have been detected, all configurations of 

the robot on the access gate are believed contiguous, i.e., it is expected there exists 

a path between every pair of configurations on the access gate. If all configurations 

on the access gate remain contiguous after the local replanning has failed, then it can 

be concluded that there exists no path between the access gate and the exit gate. 

Therefore, the cell (and the channel) is obstructed. 

When unexpected obstacles are detected on (or near) the access gate, the config- 

urations on the access gate are divided into separate regions (usually, two or three), 
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each of which consists of a set of contiguous configurations. One of the regions con- 

tains the access configuration. When local replanning fails, it is already known that 

there is no path between this region and the exit gate. Then, in order to determine 

that the cell is obstructed, it remains to check that there exists no path between 

any of the other regions and the exit gate. This is achieved by repeating the path 

planning part of the local replanning method, with the local-minimum configuration 

replaced by a configuration in each of these other regions. We describe below how to 

identify these regions. 

First, the grid points corresponding to the configurations on the access gate are 

identified, and put into a list T, i.e., {xt,...,xn§) where ng is the number of the 

grid points on the access gate. The grid points in T are ordered such that xx is a 

grid point corresponding to one end of the access gate, while xng corresponds to the 

other end, and two successive grid points on the access gate are also successive in T. 

The grid point corresponding to the access configuration is also identified, and it is 

denoted by xa. 

For any i (* € [1, ng]), x{ is defined to be free if none of the configurations of the 

robot corresponding to x{ overlaps with detected obstacles. For all i (i G [l,ng - 1]), 

Xi and xi+i are defined to be freely connected if both a, and xi+i are free. For 

any t and j (i # j,i € [l,ng] and j 6 [1,%]), »,• and Xj are freely connected if all 

successive pairs between »,• and Xj are freely connected. Then, identifying separate 

regions is equivalent to splitting T into sub-lists so that all grid points in each sub-list 

are freely connected, but grid points in one sub-list is not freely connected to grid 

points in another sub-list. 

The list T is split into several sub-lists. The splitting operation starts by creating 

a sub-list Ta, which contains xa initially. Then, Ta is built by removing all the 

grid points of T, that are freely connected to xa, and by adding them to Ta. If all 

remaining grid points in T are not free, the cell (thus, the channel) is immediately 

determined to be obstructed. Otherwise, the remaining free grid points in T are put 
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into other sub-lists T, (i = [l,n]): 

T\   =   {xh,..., xri) 

T2     =     (xh,...,Xr2) 

Tn   =   (*/„,• •-,*»•„) 

where li = 1, rn = ng, li < ri < I2 < .. ■ < ln < fn, and all grid points in 7* are freely 

connected. 

The sub-list T, corresponds to a region that consists of contiguous configurations 

on the access gate. If there exists no paths for a configuration corresponding to any 

grid point in each of T.'s, the channel is obstructed. 

The channel may also be obstructed by unexpected obstacles placed over multiple 

cells, in which case the above process is extended to a sequence of cells. A sequence 

of cells is considered obstructed if there is no path between the access gate of the first 

cell in the sequence and the exit gate of the last cell in the sequence. Therefore, the 

access gate of the first cell is divided into separate regions, and then each of these 

regions is checked for a path to the exit gate of the last cell. 

5.3.2    Multi-cell Backtracking 

Once the current cell is determined not obstructed, two cells (the current cell and the 

one previous cell) are considered for replanning. The grid is expanded so that it covers 

both the current cell and the previous cell. Then, local replanning is performed again 

over the new grid (with the same initial configuration, which is the local-minimum 

configuration, and the same goal configuration, which is the configuration on the exit 

of the cell). 

If a path is found, the robot escapes the local minimum exactly as in the previous 

chapter. If local replanning fails again, the sequence of the two cells is checked for 

obstruction. If it is not obstructed, local replanning is repeated with a grid expanded 
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to cover one more previous cell. This multi-cell replanning technique is repeated 

until either a path is found, or the channel is determined obstructed, in which case 

an alternative channel must be generated. 

However, as more cells are added for local replanning, the number of grid points 

becomes larger, and the local path planner takes more time. If local replanning fails 

over too many cells, it may become more efficient to generate an alternative channel. 

On the other hand, if the navigation system decides to generate an alternative channel 

too early, it may miss the chance of finding a simple escape route in the current 

channel. 

In our implementation, multi-cell local replanning is attempted when local re- 

planning fails. When the size of the grid becomes so large that the expected cost of 

local replanning exceeds the expected cost of generating an alternative channel, local 

replanning is stopped, and the generation of an alternative channel is attempted. If 

an alternative channel is found, the robot navigates in the new channel. 

5.4    Examples 

Figure 5.5 shows a robot escaping a local minimum using the multi-cell replanning. 

Figure (a) shows the path followed by the robot in the setup of Figure 5.2. The robot 

escapes the local minimum in the dead-end along the escape route, which is generated 

by the local path planner over two cells. Figure (b) shows a similar example, but with 

an additional unexpected obstacle placed over the previous escape route. The robot 

escapes the local minimum due to this obstacle along a new escape route. The robot 

does not fall into the first local minimum again because the obstacles were detected 

earlier and the information is used in finding the new escape route. 
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(a) (b) 

Figure 5.5: Escaping a local minimum by the multi-cell replanning. 
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Chapter 6 

Computer Simulation and 

Experiments 

We implemented three versions of the navigation system described in the previous 

chapters, with a simulated robot, Robotworld and GOFER, respectively. The com- 

puter simulation system has been mainly used for developing and testing the algo- 

rithms, and for the study and selection of various parameters used in the navigation 

system. The Robotworld system was used to demonstrate the navigation system for 

a holonomic robot that can translate and rotate freely in the plane. GOFER was 

used to demonstrate the system in a real mobile robot environment using real prox- 

imity sensors to detect unexpected obstacles. The GOFER robot is also subject to 

nonholonomic kinematic constraints. Hence, it raises additional issues not addressed 

in the previous chapters. The techniques used to deal with these issues in our imple- 

mentation are described below. 

In this chapter we report on these three systems and we show experimental re- 

sults obtained with them. These results show that our reactive navigation system 

deals with unexpected obstacles gracefully in physical world as well as in simulated 

environments. 

88 



Figure 6.1: Navigation system on NeXT computer 

6.1    Simulated Robot System 

The navigation system based on the reactive architecture and techniques described 

in the previous chapters has been fully implemented. Figure 6.1 illustrates the multi- 

window graphic interface of this implementation on the NeXT computer. The planner 

(channel generation) is written in Common Lisp [ZL91]; the rest is implemented in 

C.1 The system can be run to control a simulated robot. In the simulation mode, the 

navigation system has complete knowledge of the workspace, which includes known 

and unknown obstacles, but the planning component only uses the information about 

the known obstacles to generate the channel. The reactive component of the naviga- 

tion system can only access simulated sensory data. Sensor simulation makes use of 

the complete knowledge of the workspace. 

In simulation, we have experimented with a holonomic robot, i.e., a robot that is 

1 Graphic interfaces implemented on the NeXT computer are written in Objective-C. 
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not constrained by any kinematic constraint involving velocity parameters. Results 

with such robots have been quite satisfactory; the robot found its way to the goals 

along reasonably good paths (see Figures 3.6 and 4.12). 

The navigation system, especially various potentials used in the reaction compo- 

nent, depends on several parameters. Although intuitive/qualitative reasoning about 

these parameters is possible, selecting a "right" set of values for these parameters, to 

generate a good behavior of the robot for many different cases, can be rather difficult. 

Numerous navigation experiments were performed, using the simulation system, with 

various workspace and arrangements of unexpected obstacles, until we have found 

values for the parameters producing "reasonable" paths for most cases. Then, addi- 

tional experiments have shown that the navigation system is robust to small changes 

in these parameters in the sense that the robot succeeds to reach the goal even though 

the paths may vary. 

Another difficulty in mobile robot navigation is caused by sensing errors. Data 

returned by proximity sensors usually combine range error and direction error (due 

to the rather wide beam angle of the emitted signal). To analyze the robustness of 

the navigation system to sensing uncertainties, we have simulated sensing errors in 

the simulation system by introducing random errors into the sensed range data and 

by using various conic beam angles. The random range errors are bounded (by some 

percentage of the maximum sensing range), and they are assumed to be proportional 

to the detected range data. Tables 6.1, 6.2, and 6.3 show simulation results when 

navigation was performed in the workspace of Figure 3.6 (b). We have also tested with 

several different arrangements of unexpected obstacles, and the results were similar. 

Table 6.1 shows the simulation results when the navigation was performed with 

various range errors, but with a fixed beam angle (22.5°). The number of control 

loops represents approximately the length of the resulting path. The robot failed to 

reach the goal when the range errors exceeded 30% of the maximum sensing range. 

The erratic sensory data caused a local minimum in the third cell of the channel (see 

Figure 2.4 for the channel), and local replanning failed because the false obstacle grid 

points blocked the passage.  Most real infra-red proximity sensors have less errors. 
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Range Error Number of Steps Result 
No Error 864 Success 

10% 870 Success 
20% 879 Success 
30% 894 Success 
40% 953 Failure 

Table 6.1: Navigation with sensing range errors 

Angle Number of Steps Result 
0.01° 845 Success 
5.0° 849 Success 
10.0° 851 Success 
22.5° 864 Success 
30.0° 869 Success 
45.0° 880 Success 

Table 6.2: Navigation with various conic beam angles of sensor 

Proximity sensors using ultra-sound may cause problems because the range error 

become fairly big for obstacles at a relatively long distance.2 Also, they are known 

to often produce spurious data when the angle between a sensing direction and the 

boundary of a detected obstacle is much different from 90°. 

Table 6.2 shows the simulation results when the navigation was performed with 

various beam angles, but with no range errors. The changes in the angle didn't have 

much impact on the resulting path when unexpected obstacles are sparsely scattered. 

But, when unexpected obstacles are arranged close to each other, the robot stopped 

at many places and relied on local replanning because of the false local minima due 

to the sensing errors. 

Finally, Table 6.3 shows the simulation results when the navigation was performed 

2Failures due to this error can be reduced by limiting the maximum range. 
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Angle Range Error Number of Steps 
0.01° 10% 852 

20% 865 
30% 870 

10.0° 10% 860 
20% 871 
30% 889 

45.0° 10% 889 
20% 903 
30% 924 

Table 6.3: Navigation with sensing range errors and various conic beam angles 

with both types of errors. Navigation terminated successfully for all cases shown in 

the table. The resulting paths became longer as the combined errors increased. 

6.2    Robot world Experiments 

We used Robotworld [Sch87] to conduct additional experiments with the navigation 

system in the case where the robot translates and rotates freely in the plane (holo- 

nomic robot). The experimental setup is depicted in Figure 6.2. 

Our Robotworld is made of two simple manipulation robots (I and II) and a 

vision system. Each robot consists of a base and a gripper. The base hangs from the 

ceiling and translates in the horizontal plane (two degrees of freedom). The gripper 

translates along a vertical axis and rotates about that axis. Therefore, each robot 

has four degrees of freedom in total. The vision system consists of a camera, looking 

downward, mounted on a translating base identical to that of a robot. 

The "robot" that our navigation system controls is an object held by the gripper 

of Robotworld's robot I. It is made of Lego pieces. This "robot" navigates in a 

workspace built with other Lego pieces (some are known obstacles, the others are 

unexpected ones) mounted on a horizontal platform.   Robot I moves the "robot" 
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Vision System 
a base and a camera 

- Manipulation Robot I 
a base and a gripper 

Known Obstacles 
fixed Lego pieces 

Unexpected Obstacles 
movable Lego pieces 

Robot 
a Lego piece 
held in a gripper 

Figure 6.2: Robotworld setup 

by holding it a fraction of an inch above this platform, so that it can collide with 

the obstacles. Since the gripper can translate and rotate freely, the "robot" is free of 

kinematic constraints. (Actually, wires prevent the gripper from rotating indefinitely; 

when a stop of the revolute joint is attained, the gripper lifts the "robot" above the 

obstacles, rotate back to maximize the angular distance to the revolute joint stops, 

and translates the "robot" down back to its previous position and orientation.) 

The layout of both the expected and the unexpected obstacles is input on the 

computer display. (In our experiments, only the layout of the unexpected obstacles 

was changing.) Robotworld's robot II automatically mounts the obstacles on the 

workspace platform from this layout description. When this is done, robot I brings 

the "robot" to a specified initial configuration. After the goal configuration is input, 

the navigation system controls the motion of the "robot". 

The vision system was used for identifying and locating obstacles in an obstacle- 

supply bin, and for verifying the correct placements of the obstacles in the workspace. 

However, Robotworld does not provide a sensing system that could be used to emulate 

the "robot"'s sensors and detect unexpected obstacles. Such sensing is therefore 

simulated using the known layout of the workspace, as in the simulation system 

presented in the previous section. 
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Figure 6.3: Navigation of a simulated robot experimented on Robot World [Over] 
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Figure 6.3: Navigation of a simulated robot experimented on RobotWorld 
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In this experimental setup, our navigation system runs on a DEC 3100 worksta- 

tion. This system sends its commands to a program written in RAIL (the program- 

ming language of Robotworld) and running on the Macintosh II computer controlling 

Robotworld. This RAIL program converts the commands sent to the "robot" into 

appropriate motion commands for Robot I. The connection between the DEC 3100 

workstation and the Macintosh computer is a 9600 baud serial line. 

Figure 6.3 shows snapshots along the path of Figure 3.6, when executed with this 

experimental setup. 

6.3     GOFER Experiments 

6.3.1    Description of GOFER 

Over the last three years we have developed a mobile robot, GOFER (see Figure 6.4), 

which is equipped with multiple sensors and on-board computing [CCL+90].3 This 

robot operates in the office-like environment of our laboratory. The main charac- 

teristics of the environment, i.e., the layout of the building and the main pieces of 

furniture, are known a priori; but the locations and shapes of smaller objects (e.g., 

chairs) are not known. Most tasks to be performed by GOFER (e.g., delivering mail) 

reduce to navigating from one location to another without colliding with any object. 

When our navigation system controls the real GOFER, the planner runs on an 

off-board computer (Apple Macintosh II). The description of the planned channel is 

sent to the GOFER's on-board computer (Dynatem DCPU30 68030 computer board) 

through a radio modem. The rest of the navigation system and sensory data process- 

ing runs on the on-board computer. GOFER uses a camera-laser range sensor and a 

ring of infra-red (IR) proximity sensors to detect obstacles and measure distances to 

them. In our experiments, we only used the IR sensors. Although these are less accu- 

rate and reliable than the camera-laser range sensor, the ring of IR sensors provides 

3GOFER has a circular outline.  This fact slightly simplifies channel generation, but does not 
modify the rest of the navigation system significantly. 
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Figure 6.4: GOFER 
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a 360° field of view, while the camera-laser range sensor only has a 30° field of view 

always pointing along the current direction of motion of the robot. 

6.3.2    Control of GOFER 

So far, we have only considered the case of a holonomic robot (i.e., a robot that can 

freely translate and rotate at any time). However, GOFER is subject to a nonholo- 

nomic constraint due to its synchro-drive mechanism (see Appendix B), i.e., it can 

move only along the direction of its wheels at any given time. While this constraint is 

similar to the one constraining the motion of a car, GOFER can change its orientation 

without translating, i.e., it has zero turning-radius. Thus, GOFER can move from the 

current configuration to another by executing the following sequence of motions: stop 

at the current position; rotate to point in the direction of the desired position; move 

to the position; stop and rotate to the desired orientation. The potential-field guid- 

ance in our navigation system may be directly applicable to the control of GOFER, 

but the negated gradients of the potentials, in general, require GOFER to frequently 

change its direction of motion, especially in the presence of unexpected obstacles. 

This causes frequent stop-and-rotate motion sequences. 

Several results have recently been reported for planning collision-free motions for 

nonholonomic robots in a static environment [Lau87, LTJ90, BL89] as well as in 

a dynamic environment where unknown obstacles or moving obstacles are present 

[Fra90]. The approach in [LTJ90] is based on the result that when a nonholonomic 

vehicle is constrained by lower-bounded turning radius (i.e., by a limited range of 

its steering angle), a path of minimal length between two configurations consists 

of a finite sequence of straight-line segments and circular arcs generated with the 

minimum turning radius [RS90]. However, in practice, a real robot (or a vehicle) 

cannot exactly follow such path because there are discontinuities of the curvature 

along the path and the robot cannot instantaneously change its steering angle (i.e., 

the corresponding turning radius) from one extreme value to another. Besides, in the 

presence of unexpected obstacles, the optimality in the path length becomes much less 

meaningful because the path needs to be modified when it overlaps with the obstacles 
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(a) With obstacle potential (b) Without obstacle potential 

Figure 6.5: Reduced oscillatory motion 

and, in the end, the actual trajectory can often be far from optimal. The approach 

in [Fra90] is based on using potential fields generated over a bitmap representation 

of the environment, but it is not applicable to our case because the computation of 

such potential fields takes too long to be done in real-time. 

Our navigation system discretizes the range of values of the steering angle of 

GOFER. For each discrete value, it integrates the equations of motion over a short 

interval of time (with both positive and negative linear velocities), yielding possible 

configurations, called candidate configurations, where the robot can go. Among 

these configurations, the one with the smallest value of the potential function com- 

puted by our navigation system is selected. The corresponding steering angle and 

linear velocity are sent to the robot's controller for execution. 

This approach produces smooth paths when the robot travels in a channel with no 

unexpected obstacles, i.e., when the driving command is computed from the negated 

gradient of the channel potential alone. However, when the robot gets close to unex- 

pected obstacles, the unexpected-obstacle potential may cause unnecessary oscillatory 

motions. The cause for these motions is that motion commands are obtained from the 

noncontinuous candidate configurations. Since the direction of motion at all candi- 

date configurations is known with good approximation, potential collision of the robot 

with detected unexpected obstacles can be predicted using this knowledge. There- 

fore, we further smooth the path by zeroing the unexpected-obstacle potential at the 

candidate configurations where the robot would not head toward detected obstacles. 
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The Generalized Potential Field approach, previously described in [Kro84], is based 

on a similar concept. Repulsive potential (due to an obstacle) is computed based 

on the current velocity of the robot as well as the distance to the obstacle, i.e., the 

value of the repulsive potential increases as the robot approaches faster and closer 

to the obstacle while it becomes 0 when the robot moves away from the obstacle. 

However, this method is less effective in reducing the oscillatory motion because only 

the current motion direction (rather than several possible motion directions) is taken 

into account. 

Figures 6.5 illustrates this with an example: When all the candidate configurations 

are under the influence of the unexpected-obstacle potential, the robot may attempt 

to steer away from the detected unexpected obstacle even when the robot may travel 

parallel to the obstacle without hitting it (a); When the unexpected-obstacle potential 

is ignored for the candidate configurations that do not result in the collision of the 

robot with the obstacle, the robot does not oscillate but moves straight to its goal 

(b). 

6.3.3    Experimental Results 

The above control technique has given very good experimental results in simulation 

(see Appendix C). The experimentation with the real GOFER also gave satisfactory 

results, but we had some problems with the quality of the sensory data. This quality 

could be improved (for instance by averaging several successive readings of the sen- 

sors), but we were limited by the fact that all the software runs on the same 68030 

processor. This processor alone is too slow to support both the computation of the 

potentials and the direction of motion at a reasonable rate (10-20 Hz) and an adequate 

processing of the incoming sensory data. This difficulty could be resolved by adding 

an on-board processor to treat sensor inputs. Figure 6.6 show six snapshots along 

a path executed by GOFER among unexpected obstacles. Figure 6.7 show GOFER 

escaping from a local minimum created by three unexpected obstacles. 

The main limitation of the current system, when connected to GOFER, comes from 

the fact that it relies exclusively on the odometric sensors to determine the robot's 
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current configuration (which is needed to compute Uc). Hence, the system becomes 

unreliable when the wheels slip or slide on the floor. But, the robot's current con- 

figuration can be estimated more accurately by various localization techniques, e.g., 

matching environmental sensory data against the workspace model, relying on self- 

contained inertial navigation system, or relying on global positioning system (GPS) 

(see Section 1.7.2 for references). 
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Figure 6.6: Navigation of GOFER among Unexpected Obstacles 
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Figure 6.7: GOFER escaping a local minimum 
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Chapter 7 

Conclusion 

7.1     Summary of Contribution 

We addressed the problem of developing a navigation system for mobile robots oper- 

ating in partially known environments. We proposed a novel approach emphasizing 

interaction between planning and reaction components. We developed computational 

techniques to implement this approach into an operational navigation system. Three 

version of this system were implemented and experimented with simulated and real 

robots. The navigation system is complete under the assumptions that all obstacles 

are stationary and sensing is perfect. Under these two conditions, if it is possible to 

attain the goal, the robot will ultimately reach it, otherwise it will eventually give up. 

The experimental results show that this new approach achieves increased robustness 

in the presence of unexpected obstacles. 

This research brings two levels of contributions: (1) the reactive architecture of 

the navigation system; (2) the techniques embedded in this architecture. 

At the architecture level, we have borrowed the concept of a reactive architecture 

and applied this concept to mobile navigation by combining planning and reaction 

components: 

• The reaction component must have some global knowledge of the robot's 

workspace in order to react appropriately to unexpected obstacle events. This 
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knowledge is provided in the form of a lesser-committed motion plan generated 

by a planning component aware that there may exist unexpected obstacles. In 

our system, lesser-committed plans take two forms: channels and valley-shaped 

potentials. 

• Multiple layers of treatment deal with classes of events according to their ex- 

pected frequency. The top layer can treat alone all the events that the lower 

levels are intended for. The lower levels only provide more efficient treatment. 

This architecture makes it possible to introduce a reliable treatment of unex- 

pected obstacles by building the top layer. This function can then be made 

more efficient by adding new layers. Our system consists of three layers: chan- 

nel navigation, local replanning and global replanning. 

At the technical level, this work brings the following contributions: 

• We have introduced the concept of a channel as a lesser-commitment motion 

plan, and instantiated this concept as a sequence of rectangloid cells that can 

easily be generated using an approximate cell decomposition planning method. 

• We have defined potential field functions computed on-line to navigate in a chan- 

nel toward the goal and to simultaneously react to unexpected obstacles. The 

potential is guaranteed to be local-minima free when there are no unexpected 

obstacles. 

• We have developed a new way to escape local minima on-line by replanning a 

local path and integrating it in the current potential field function using the 

notion of a valley-shaped potential. 

• We have extended our navigation system to robots with nonholonomic motion 

constraints. 

7.2    Directions for Future Work 

The advantage of the strong interaction between the planning component and the 

reaction component in our navigation system has been demonstrated by our multiple 
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experiments with both simulated and real robots.  Nevertheless, our approach and 

the implemented navigation system have some limitations. 

Our navigation system, based on potential functions defined in channel and local- 

minimum escape strategy, makes the robot adaptive to the unknown obstacles (both 

stationary and moving obstacles). However, when moving obstacles exist in the 

robot's workspace, the current navigation system is no longer guaranteed to succeed, 

because the local/global replanning relies on the traces of the sensory data obtained 

from detected unexpected obstacles. In order to increase reliability, the navigation 

system must be able to distinguish moving obstacles from static ones (e.g., by mea- 

suring the relative speeds of detected obstacles) and only record the traces of static 

obstacles. Identifying moving obstacles by using proximity sensors is usually not 

very reliable. Therefore, in addition to proximity sensors, more capable sensors (e.g., 

vision sensor with image processing) are required. 

As more reliable mobile robots become available, several robots may operate si- 

multaneously in the same workspace. Our navigation system can be further extended 

to deal with multiple robot navigation. The division of the planning and reaction 

components in the navigation system makes the combination of centralized and dis- 

tributed computation more feasible. The planning component can be implemented in 

a central dispatcher where multiple channels are planned: one channel is planned for 

each robot based on the task/schedule of the robot. Then, the reaction component 

is implemented for each robot so that obstacle avoidance is performed independently 

by each robot. One of the requirements of the navigation system in application to 

multiple robot navigation is that sensors of one robot must not interfere with those of 

other robots. Laser-camera range sensor described in the Appendix B is a good candi- 

date for such non-conflicting sensors. Some "traffic rule" may also be introduced and 

embedded in the channel to resolve conflicts at the intersections of channels. Existing 

approaches to motion planning of multiple moving objects are described in [Lat91]. 
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Appendix A 

Channel Navigation Examples 

In Chapter 3, we have shown an example of robot navigation in a channel where all 

cells range over [0,27r]. In the following, we show more navigation examples where the 

robot's orientation in some cells is limited to a subset of [0,2n]. Figure A.l illustrates 

the navigation in the channel of Figure 2.3: (a) shows the path of the robot in the 

2-dimensional workspace when there are no unexpected obstacles; (c) shows the path 

of the robot in the presence of two unexpected obstacles; (b) and (d) show the paths 

corresponding to (a) and (c) in the 3-dimensional channel. 

Figures A.2, (a) through (n) display snapshots at various stages of the navigation 

process shown in Figure A.l (b) and (d). The robot in the 2-dimensional workspace 

and its corresponding configuration in the 3-dimensional channel are shown in each 

of the snapshots. Note that, between Figures (h) and (i), the orientation of the robot 

changes from 2n to 0. 

Figure A.3 illustrates another navigation example: (a) shows the path of the robot 

when it navigates in the 2-dimensional workspace of Figure 2.4 (d); (b), (c) and (d) 

display the corresponding path in the 3-dimensional channel from three different view 

points. 
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nT=d 

(c) (d) 

Figure A.l: Robot paths with and without unexpected obstacles 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure A.2: Navigation of the robot shown in 2D and 3D [Over] 
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(g) 

(i) 

00 
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(k) (1) 

Figure A.2: Navigation of the robot shown in 2D and 3D [Over] 
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(m) (n) 

Figure A.2: Navigation of the robot shown in 2D and 3D 
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Figure A.3: Robot paths in various 3-dimensional perspectives 
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Appendix B 

GOFER Hardware 

The hardware of GOFER consists of a 12-inch diameter mobile base and interface 

modules (see Figure B.l). The 3-wheeled 2 DOF mobile base (B12 by Real World 

Interface [Rea88]) is equipped with two DC motors, four 6V gel-cell batteries and an 

8-bit microcomputer for low-level control. The mobile base has a belt-driven synchro- 

drive mechanism which allows the base to translate and rotate independently. When 

the base rotates, only the top plate of the base and the wheels rotate. Two optical 

shaft encoders are directly attached to the motors to provide linear and angular 

positions of the base. Motor control and inquiries about encoders, battery status and 

motor status are processed by the base microprocessor. The interface modules consist 

of a touch sensor module, an infra-red module, a laser-camera ranging module and a 

computer module. 

Each module, except the touch sensor, is built on its own modular plate. All 

modules are placed one on top of the other, with the bottom one rigidly attached to 

the top plate of the base. Interface modules are designed such that they are indepen- 

dent of each other. Also, each module communicates on a common robot bus which 

is passed through each module. Therefore, each module can be detached for test or 

repair without affecting the use of other modules. This design allows easy expand- 

ability. Independency among modules facilitated debugging and experimentation of 

our navigation system. 
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op floor of mobile base 

Figure B.l: Closeup of hardware modules in GOFER 
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The computer module has a 5 slot VME-bus card cage. A totally CMOS 20MHz 

MC68030 based computer board and a custom-designed 10 board are installed in 

it. The 68030 board has battery backed 1 Mega byte SRAM and four RS232 serial 

ports, three of which are currently being used (one for the communications between 

the robot base computer, the other two for the communications between the host 

computer for down-loading of the system software and the input and output of the 

user commands). The computer board draws about lAmp and the 10 board has 64 

general 10 lines and draws less than 100mA. 

The touch sensor module is placed around a steel bumper which encases the robot 

base. The touch sensor has two levels of 12 segment tape switches. Each tape switch 

detects a pressure of 9 oz. and provides on/off information. Therefore, the touch 

sensor module serves to protect the base as well as to detect the direction of contact 

between the robot and obstacles. 

On the infra-red sensor module, 16 emitter/receiver pairs are evenly distributed 

around the perimeter of the modular plate and a control circuit board is located at 

the center of the plate. Each infra-red emitter/receiver can detect an object up to 18 

inches in 250 micro-seconds with an average resolution of 0.25 inches (the accuracy 

increases as the range decreases). This is an intensity based device, so it is inherently 

subject to color and specularity problems. For our navigation system, we solved some 

of these problems by conservative measurement of the signal. 

On the laser-camera ranging module, a laser diode and a CCD camera are placed 

in a reconfigurable fixture. The fixture allows the laser unit and the CCD camera 

to have different offsets and relative orientations. Ranging is achieved by emitting a 

plane of light and watching from some offset distance for intersections with this plane. 

Then, triangulation is done to find the actual distance. An infra-red laser diode and a 

cylindrical lens create the plane of light. By turning a camera 90 degrees on its side, so 

the scan lines run vertically, we can measure the distance to an object by monitoring 

the composite video output. By measuring the time from the beginning of any scan 

line to the sudden increase in intensity that would correspond to an object reflecting 

the laser light, we get a direct relation to the object's distance. An interference filter 
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that allows only the laser light frequency to pass is put over the camera lens to reduce 

the noise. This system provides 15360 data points per second, 512 ranging values over 

the approximately 30 degree field of view of the camera 30 times per second. The 

timing information along with the intensity of the reflection is then directly dumped 

into memory by DMA over the VMEbus. The resolution varies nonlinearly with the 

distance: closer objects are seen with better resolution. The resolution is directly 

related to the offset of the camera with the laser plane. So a 6 inch offset produces a 

theoretical resolution of 0.03 inches at one foot and a resolution of 2.3 inches at ten 

feet. 
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Appendix C 

GOFER Simulation Results 

In this appendix we show simulation results of GOFER navigation to compare the mo- 

tion commands and the linear/angular velocities in three different cases. Figures C.2, 

C.4, and C.6 illustrates the paths navigated by GOFER in the computer simulation 

system for three different cases, i.e., with no unexpected obstacles, with unexpected 

obstacles causing no local minima, and with unexpected obstacles causing local min- 

ima. Figure C.2 (a) shows the initial and goal configurations and the corresponding 

channel. The same initial and goal configurations are used for the other two cases, 

and, thus, the channel is identical for all three cases. Figures C.3, C.5, and C.7 illus- 

trates the motion commands (shown in (a)'s) generated by the navigation system, the 

resulting linear velocities (shown in (b)'s) and rotational velocities (shown in (c)'s) 

of GOFER during navigation. 

Motion commands corresponding to the discrete turning radii are indexed such 

that the number 0 (resp., -1) corresponds to the forward (resp., backward) translation 

without rotation, and the positive numbers correspond to the clockwise rotation of 

the robot while the negative numbers, except — 1, correspond to the counterclockwise 

rotation. Figure C.l illustrates such indexing. 

Figures C.3 (b) and C.5 (b) show that the robot traveled at maximum linear 

velocity except during the initial acceleration period.1  However, in Figure C.7 (b), 

^n the simulation, the execution of the navigation system has been terminated, without waiting 
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Figure C.l: Discrete turning radii and the corresponding indexes 

the robot slows down and stop when the local minimum is attained. It then moves 

backward and escapes the local minimum. When the robot is outside the attraction 

basin of the local minimum, it travels forward at the maximum linear velocity again. 

The first two glitches in the figure happened due to the local minima. The third 

glitch happened when the robot tried to go between two obstacles near the bottom. 

At first, the local-minimum "alert" flag was set due to the repulsive potentials from 

the two obstacles, but the robot found a way around the last obstacle (in the bottom) 

before the "detect" flag was set. Therefore, the robot regained its full speed without 

stopping, and moved around the obstacle. 

The dimension of the workspace used in the simulation is 300 x 300 in2. The 

maximum linear velocity was set to 0.013 in/sec (« 0.1 m/sec), and the four discrete 

turning radii were set to be the radius of GOFER multiplied by 1.0, 2.0, 2.5, and 3.0, 

respectively. Each time step is 0.1 second. The trace of the robot is shown every 5 

time steps. 

for the robot to stop completely, when the robot reaches near the goal within a prespecified distance. 
Therefore, the linear/angular velocities in the Figures C.3-C.7 do not drop to 0 at the end. 
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(a) Initial and goal configurations, and the Channel 

(b) Trajectory 

Figure C.2: Example 1: Navigation of GOFER with no unexpected obstacles 
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Figure C.3: Example 1: Control history, the linear and angular velocity profile 
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Figure C.4: Example 2: Navigation of GOFER with unexpected obstacles 
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Figure C.5: Example 2: Control history, the linear and angular velocity profile 
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Figure C.6: Example 3: Escaping a local minimum created by unexpected obstacles 
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