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Abstract 

Intelligent agents that operate in real-world real-time environments 
have limited resources. An agent must take these limitations into account 

when deciding which of two control modes - planning versus reaction - should 
control its behavior in a given situation. The main goal of this thesis is to 
develop a framework that allows a resource-bounded agent to decide at 
planning time which control mode to adopt for anticipated possible run-time 
contingencies. Using our framework, the agent: (a) analyzes a complete 
(conditional) plan for achieving a particular goal; (b) decides which of the 
anticipated contingencies require and allow for preparation of reactive 
responses at planning time; and (c) enhances the plan with prepared 
reactions for critical contingencies, while maintaining the size of the plan, 
the planning and response times, and the use of all other critical resources of 
the agent within task-specific limits. For a given contingency, the decision to 
plan or react is based on the characteristics of the contingency, the associated 
reactive response, and the situation itself. Contingencies that may occur in the 
same situation compete for reactive response preparation because of the 
agent's limited resources. The thesis also proposes a knowledge representation 
formalism to facilitate the acquisition and maintenance of knowledge involved 
in this decision process. We also show how the proposed framework can be 
adapted for the problem of deciding, for a given contingency, whether to 
prepare a special branch in the conditional plan under development or to 
leave the contingency for opportunistic treatment at execution time. We make 
a theoretical analysis of the properties of our framework and then 
demonstrate them experimentally. We also show experimentally that this 
framework can simulate several different styles of human reactive behaviors 
described in the literature and, therefore, can be useful as a basis for 
describing and contrasting such behaviors. Finally we demonstrate that the 
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framework can be applied in a challenging real domain. That is: (a) the 
knowledge and data needed for the decision making within our framework 
exist and can be acquired from experts, and (b) the behavior of an agent that 
uses our framework improves according to response time, reliability and 

resource utilization criteria. 
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Chapter 1 

Introduction 

How should an intelligent agent prepare to satisfy a goal, while being 
able to respond to the great variety of contingencies that might impede its 
achievement of goals? Short answer: through planning. For a more 
comprehensive answer, you may want to read this thesis. It may provide you 
with a partial answer to this question, but it may also raise many other 

questions. 

Many AI research resources have already been devoted to finding 
solutions to the problem of planning, usually defined as choosing the next step 
or steps for the execution of a system, based on knowledge of the present 
situation, the system's goals, and the operators available. The essence of 
planning in AI is the ability to reason about actions and their effects, and 
equally important, this reasoning process can take place before the actual 
execution starts. Therefore, it must deal with all the uncertainties due to the 
fact that the actual situation at execution time can only be assumed at 
planning time, when many characteristics of the environment either cannot 
be taken into account, or simply cannot be known. Many activities in 
Computer Science can be regarded as instances of planning. One example is 
programming, which requires making decisions (at planning - i.e. 
programming - time) about actions to be performed later, at program 
execution time, based on expectations about the environment in which they 
will be executed. A computer program is a formal specification of how the 
resources of the computer will be applied to solve a given problem. Although 
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conventional plans are not synonymous with programs, as also argued in 
[Drummond, 1989], we briefly use the analogy here for explanatory purposes. 
The more complex and unpredictable the execution environment is, the more 

contingencies can occur during a program execution. The programmer must 
therefore prepare the computer to properly respond to as many of these 
contingencies as possible, while still keeping the program within the 
computer resources, that is, it must still be small enough to fit in memory and 
must still be fast enough to give an answer in a required amount of time. The 
same situation occurs in all other domains in which planning is required. 

A special kind of planning is reactive planning, i.e. building a set of 

specific perception-action rules stored in a computationally efficient form 

[Brooks, 1986; Agre & Chapman, 1987]. From now on, we will call this type of 

planning reaction, as opposed to the conventional type of planning which we 

will call simply planning or sometimes, to clearly distinguish it from reaction, 
conditional planning. To continue our parallel with computer programming, 
interruptions, traps, exceptions, and error treatment routines in a program 
can be regarded as reactions. They are executed as response to a large number 
of specific situations, and are not necessarily intended to ensure the successful 
normal continuation of the program towards completing its final goal. 
Sometimes, they are just intended to allow the program to interact gracefully 
with the environment or to help the program recover from a critical point 
and allow the user to intervene to facilitate the continuation of the program, 
or maybe to start the execution of another program, or even to write another 

program (to replari). 

All the characteristics discussed so far for computer programming 

apply to most domains where planning is needed as a means of ensuring 
proper behavior of the system, before starting the actual execution of that 
system to achieve a given goal. Such domains range from "high-level" 
cognitive, symbolic domains like medical fields (e.g. anesthesiology, intensive 
care monitoring), to "low-level" manipulation domains like robot manipulator 
control. The common characteristics of all such domains is that their planning 
tasks can be (at least conceptually) translated into computer programs, and 

therefore conform to our previous discussion. 
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The same planning problem can be of very different levels of difficulty, 
depending on the assumptions made about the environment in which the plan 

is to be executed. For a well structured, "well behaved" environment which 

will not present "surprises" to the executing agent, the planning problem is 
much easier than for a more natural environment. In the latter case, many 

contingencies are possible during plan execution. We will call a contingency 
any state of the world entered by the executing agent while following a plan, 

that should not have occurred as a result of executing the plan up to that point. 
Contingencies are the effect of interactions between the agent and the 
environment; they occur because of: (i) predictable actions of the 
environment, or (ii) the unpredictability of the environment, or (iii) the 
unpredictability of the execution subsystems of the agent. In the real world, 
the number and variety of contingencies that can occur during the execution 
of a plan is unlimited. An ideal planner should take care of all these 
contingencies and build a "universal" plan [Schoppers, 1987] for the agent. As 
has already been shown [Ginsberg, 1989], building such a plan is not feasible 
for interesting application domains, due to practical limitations of the agent's 
resources. However, many of these contingencies can be ignored, either 
because they do not seriously affect the execution of the plan or because they 
have an extremely low likelihood of occurrence. Some of the remaining 
contingencies may have a very high likelihood of occurrence while also 
requiring elaborate subplans to treat them. Therefore, these subplans should 
be included as conditional branches in the original plan. Other significantly 
less likely contingencies may allow for a very short time of response, while 
having disastrous consequences if the response does not occur in time. Such 
contingencies probably should be treated reactively. These reactions need not 
lead the agent to the final goal of the initial plan; it is enough if they can 
stabilize the situation, avoid the consequences of the contingency, and allow 
the planner to replan a comprehensive solution from the current situation to 
the final goal. Yet other contingencies, not extremely likely and without short 

term dramatic consequences, can be ignored at planning time and left for a 
possible replanning phase at execution time: when they appear, the agent 

(which is not under very high time pressure) can suspend execution and take 
its time to replan a solution from that situation to the final goal. This may 
involve either a complete solution or, more frequently, a patch to bring the 
agent back to one of the states in its original plan from which it can continue 
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execution (one such mechanism was implemented by the triangle tables used 

in STRIPS [Nüsson, 1984]). 

From the above discussion we can derive the two basic control modes for 
an agent that must deal with such contingencies: planning and reaction. By 
planning we will understand here both building a course of action before 

starting its execution and dynamic replanning, i.e. interleaving planning 
with execution. Each of these two modes has its advantages in certain 
circumstances, and we shall summarize them here. [Hayes-Roth, 1993] presents 

a complete discussion of these characteristics. 

Among the strengths of the planning model is the fact that plans can be 

built to have a set of desirable global properties regarding the goals to be 

attained and the resources of the agent. The side effects of the actions to be 

executed as part of the plan can be carefully taken into account and analyzed 
before execution begins. These properties are achieved by taking into account 
complete descriptions of the states of the world as they are predicted by the 
planner. Of course, these states will conform to reality only if the 
environment behaves according to the model that the planner has about it. 
The more incomplete this model is, the more uncertainty in the behavior of 
the environment, and the more uncertainty about the actual states that will be 
encountered by the agent during plan execution. The final plan has a high 
degree of coherence and is easily comprehensible by a human user (this last 
point is very important in domains where the entire credibility of the system 
depends on how much a user can understand from the reasoning of the 
system, such as medical domains). The plan generated by a conditional planner 
usually makes a close approximation of the optimal usage of the agent's 
resources. Finally, the planned actions can be executed promptly at run time 
(since the agent simply follows a completely specified plan, in which the next 
action is taken according to the plan, maybe after evaluating the results of 
some tests in the case of conditional plans). However, the planning model has 
its weaknesses with respect to the real world. The two main disadvantages are: 
(i) the high computational cost of planning (which makes it necessary to 
carefully consider which contingencies should be exhaustively treated in this 
way - otherwise the time to build the plan may become prohibitive); and (ii) 
the inflexibility of the planned behavior - the agent can only act in states of 
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the world which are specified in the plan, and its performance will degrade 
very abruptly with any variations to such states. 

The reactive model constructs a set of goal-specific perception-action 

rules and stores them in a computationally efficient form. The main 

advantages of the reactive model are its flexibility of response to a larger set of 
run-time conditions (since each response is less carefully analyzed than in 

the previous case, and the response does not need to embody a complete 

solution to the final goal but can merely be an action to stabilize the situation 
and allow the time for replanning) and its short time of response (determined 

by the efficient way of storing the reactive plan). On the other hand, reaction 
still cannot anticipate, distinguish and store all runtime contingencies. It will 
therefore still exhibit precipitous failure in unanticipated conditions. But the 
main disadvantage of reaction is that it is taken after a superficial evaluation 
of the current state, and does not benefit from an in depth analysis of this state 
and the related action consequences. Therefore, while a reaction may be 
locally appropriate, its global effectiveness is uncertain. 

The planning and reactive control modes are near the end-points of a 
theoretical continuum of control modes. Together with two other control 
modes (reflex and dead-reckoning), they form a two-dimensional space 
described in [Hayes-Roth, 1993]. Also analyzed there is the correspondence 
between the space of control modes and a two-dimensional space of control 
situations, as well as the effect of combining the control modes in different 
degrees on the quality of run-time behaviors in the corresponding space of 
control situations. 

We believe that planning and reacting complement each other, and 
therefore we envision agents that: (a) plan courses of action designed to 
achieve goals under certain anticipated contingencies - conditional branches 
are built in the plan for the very likely contingencies that also require 
significant planning to reach the goal; (b) augment these plans with context- 
dependent reactions for noticing and responding to less likely, but important 
exogenous events; (c) control their behavior by following their plans, while 

simultaneously monitoring for and, when appropriate, executing reactions 
associated with particular phases of their plans; and (d) revise their plans 
when local reactions do not adequately address unanticipated events. 
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However, this complementarity of the planning and reaction control 

modes in intelligent agents is overlooked by many researchers today. Most 

planning research to date has been concentrated either towards just one of the 
two control modes, or when it attempts to combine them, the main purpose is to 
increase the reactive capabilities of the agent and to unload the conventional 
planner's responsibilities. In this latter case, the general assumption is that 
reaction comes for free, that is, either the agent's resources are unlimited or 
the reaction process does not use any significant amount of the agent's 
resources. Unfortunately, this is not the case in reality: any real agent has 
limited resources, and the reaction process may use significant amounts of the 

agent's resources. This fact has a couple of consequences: (i) a decrease in the 

reactive responsiveness of the agent (or equivalently an increase in its 

response time to a given contingency), which may make some reactions 

useless if they come too late, and (ii) a limitation in the number of reactions 
for which the agent can prepare in a given situation. This means that the 
agent must be more selective in the types of reaction it prepares for each 
situation, preparing the most important reactions and ignoring the others. In 
the following chapters we define and characterize the value of reactions and 
identify those characteristics of the agent and its working environment that 
influence the response capabilities of the agent to different situations that it 
may encounter in its working environment. Based on this analysis, we 
formulate a framework to decide, at planning time, which control mode to 
choose for contingencies that may appear during plan execution, that is, a 

framework to decide, at planning time, whether a certain situation requires 

special preparation for a possible reactive response, or whether it can be left 
for dynamic replanning at execution time. The problem is particularly 
important for planning the activity of an intelligent agent which must work 

in a dynamic, complex, unpredictable real-time environment. 

The approach begins with a plan designed to achieve a goal and 
enhances it to cope reactively with critical contingencies, while maintaining 
the size of the plan and the planning and response times within reasonable 
limits. The framework can also be modified for the problem of deciding, for a 
given contingency, whether to prepare a special branch in the (conditional) 

plan or to leave the contingency for opportunistic treatment at execution time. 
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As an example, consider driving a car between two given locations. 

Before starting, the driving agent plans its route in some detail, including 
turns at intersections and expectations of achieving milestones along the way, 
in order to minimize travel time. It also prepares a conditional branch in its 
plan as an alternative route in case the original route is blocked at a certain 
intersection where blockage is highly probable. This conditional branch 
requires extensive planning resources but produces a complete solution that 

leads all the way to the final goal. Along the way, the agent in fact encounters 
unexpected heavy traffic and revises the remainder of its plan to take an 
alternate route. As it follows the revised plan, the agent passes a school, where 

it watches carefully for children who might suddenly run into the street. As it 

leaves the neighborhood of the school and enters an industrial area, the agent 

forgets about children and watches for other contingencies (e.g., railway 
crossings, trucks coming out of driveways). Note that the agent, while 
executing the plan, is prepared to react to certain contingencies at different 
stages of the plan, while using dynamic replanning to solve other 

contingencies. 

Given certain conditions (like the time of day, the weather, the type of 
roads to be used) the agent prepares in advance for possible contingencies 
that may appear on certain portions of the trip. However, it does not include 
expectations for and responses to these contingencies as steps of the plan, 
since they are not essential for the plan to be executed successfully. On the 
other hand, if they happen and are not responded to properly, they may 
preclude the successful completion of the plan. Examples of such 
contingencies are: sliding on a slippery road in cold weather, an unsignalled 
object in the street during night time, a child running in front of the car from 
a nearby school, or a traffic jam at rush hours. Note that these contingencies 
were qualified by the characteristics of the situation in which they are likely 
to appear. For some such contingencies, a reactive response must already exist 
since the situation does not allow enough time for the agent to replan a 
solution. There exists an infinite set of such contingencies, so the agent 
cannot prepare to always react to all of them. Moreover, due to limited 
computational and non-computational resources, if the agent prepares for too 
large a set of contingencies in a situation, selecting the correct response for 
the one that actually occurs may become a too long process, thus rendering 



CHAPTER 1. INTRODUCTION 
o 

the response ineffective. However, the responses to such contingencies do not 
need to include an entire solution to the main plan's ultimate goal; if the agent 
responds to them fast enough to avoid unwanted consequences, then it may 
take the time to replan the entire solution from there on. Since these 
contingencies are too many and not very likely, they do not warrant a 

complete conditional branch in the initial plan to lead to the final goal. 

Therefore, we need a decision framework to guide the selection of 

contingencies for which a reactive response should be prepared at planning 

time. This need arises in many domains besides car driving (for example, in 

intensive care monitoring, anesthesiology [DeAnda & Gaba, 1991; Fish & al, 

1991; Gaba & al, 1991; Gaba 1991], nuclear power plant operation [Woods & al., 

1987]). Formulating this framework is an important step toward building the 
control engine of real-time intelligent agents with limited resources for such 
domains. The formulation and evaluation (theoretical and experimental) of 

such a framework is the topic of this research. 

In the following chapter, we outline the problem in more precise terms. 
We define the notion of contingency and classify contingencies into types 
according to their importance and the way they should be treated by the agent 
(with conditional plans, with reactions, or simply ignored at planning time 

and left for dynamic replanning if necessary). We also characterize the 
domains where the framework developed here will be most applicable. Finally 

a review of related work points out similarities with other paradigms. 

Chapter 3 presents the basic approach. After giving an intuitive 

solution for a simple problem in the driving domain and analyzing this 
solution, we present the details of the framework for the reaction preparation 
decision. We show how it can be used to establish the value of reacting to a 
contingency in a given situation and to make the decision of whether to plan 
to react to that contingency. The chapter closes with a discussion of how this 
framework may be modified and applied to decide whether a certain 
contingency, in a given situation, requires preparation of a complete branch 

in the initial conditional plan. 
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Chapter 4 discusses a proposal for a knowledge representation 

formalism for contingencies, reactions and situations, to facilitate the 

structuring of the planner's knowledge and its manipulation. 

Chapter 5 presents a theoretical analysis of the framework presented in 

chapter 3 for deciding whether to plan to react to a given contingency in a 
given situation. A few formal properties are stated and justified, to support 

claims of generality and optimality (in terms of using the agent's resources) 

for the proposed formalism. 

Experimental demonstrations are then presented and briefly analyzed 
in chapter 6. Three domains were used for this purpose: an everyday domain 
where everyone is an "expert" (car driving) and two highly specialized 
medical domains of expertise (anesthesiology and intensive care monitoring). 
Results include simulations of several models of human reactive behavior 
discussed in the literature. A demonstration in a complex, real-world 
application domain shows: (1) that the knowledge and data needed for the 

decision making process exists and can be acquired from experts in that 
domain; and (2) that the behavior of the agent improves (according to 
response time, reliability and resource use criteria) as a result of 
incorporating our decision framework in the agent's planning mechanisms. 

After summarizing our work, we make in chapter 7 a few suggestions of 
natural continuations of this research, including applications of case based 
reasoning techniques for managing a library of reactive plans and a library 
of contingencies and reactions, and several applications of learning 
mechanisms to different parts of our framework. 

Appendix 1 briefly presents the architecture of the reaction decision 

module and the interface for integrating the module in an intelligent agent. 

Appendix 2 completes the vocabulary example started in chapter 4 for 
the driving domain. It presents a large enough grammar to represent most of 
the situations, contingencies and reactions used as examples from this domain 
throughout the thesis. 

In appendix 3 we present the results of a number of experiments we 
have conducted in the anesthesiology domain, in order to provide further 
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evidence regarding the generality and applicability of our framework in real- 

world domains. 

Finally, appendix 4 complements the presentation of intensive care 

monitoring domain experiments in chapter 6, by presenting a few complete 

sets of contingencies as they were ranked by our framework. 



Chapter 2 

The Problem 

In this chapter, we outline the problem in more precise terms. We 
define the notion of contingency and classify contingencies into three types 
according to their importance and the way they should be treated by the agent 
(with conditional plans, with reactions, or simply ignored at planning time 
and left for dynamic replanning if necessary). We also give a characterization 
of the domains where the framework developed here will be best applicable 
and what its limitations are. Finally a review of related work points out 
similarities with other planning paradigms. 

2.1. Contingencies 

Let us consider first a more detailed version of the example presented in 
the previous chapter. Suppose the agent commutes each morning by car from 
home (starting point S) to the office (final goal G), as shown in figure 2.1. We 
will limit ourselves to the study of a small segment of the car's route between 
points A and E. Suppose the route comes to an intersection with a traffic light 
(point B). The fastest route between B and E is through C, which is the route 
the agent normally takes if the traffic light at point B is green. However, the 
driving agent knows that, if this traffic light is red, then many other traffic 
lights between B and E through C will be red when the car will reach them, 
thus making the journey very slow. In the same time, the agent knows that if, 
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at point B, it will take a right turn and go through point D, then it can reach 

point E (and therefore the goal G) much faster. 

Figure 2.1. Conditional plan 

The fact (and its associated state of the world) that the traffic light is red 

when the agent reaches the intersection at point B is a contingency, since it is 

not a result of the execution of the plan. In this case, the agent prepares a 

complete branch in the conditional plan to treat this contingency. 

Suppose now that the point A in the plan built by the agent is a school 
in front of which the agent passes with its car. If the commute takes place at a 
time when children are at school, or go to school, the agent prepares to watch 
carefully for children who might suddenly run into the street. It also knows 
that in front of a school, a ball may suddenly pop up in front of the car. These 
and many other contingencies (some more of which will be considered in the 

demonstrations described later on) may appear during the time when the car 
is in the school zone A. As it leaves the neighborhood of the school and enters 
another area (e.g. an industrial area), the agent forgets about children and 
balls and prepares for other contingencies (e.g. railway crossings, trucks 

coming out of driveways, etc.). 

Let us consider for a moment the following three contingencies which 
appeared in the previous example: the traffic light at point B, the child 
running into the street in front of the car, and the ball popping up in front of 
the car1. The common characteristic of these three contingencies is that they 

are not generated as a result of the execution of the plan. We define a 
contingency to be any state of the world entered by the executing agent while 

following a plan, which is not: (i) a direct consequence of executing the 

1 In order to simplify the analysis for clarity of exposition, we have deliberately 
excluded the conventional driver's wisdom case that a ball popping up in the street is 
usually followed by a running child. 
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actions of the plan up to that point, or (ii) an exogenously generated state of 

the world assumed in the design of the plan. Therefore, a contingency does not 

necessarily affect the agent or the plan execution, and when a contingency 
does affect the plan, it is not necessary that it will negatively affect it. For 
example, a contingency may be a state which is not the current expected state 

according to the plan execution, but is a state which should have been reached 

along the way, after executing some more steps of the plan. The agent may 

detect it and use it to skip the unnecessary steps in the plan, for example in the 

same way as it was done with triangle tables in [Nilsson, 1984]. To simplify the 

exposition, from here on we will use the term contingency to also mean any 

fact or sign that was not expected as a result of the plan execution, and which 

may indicate that a state is a contingency according to the previous definition. 

The three contingencies presented above are very different in nature, 

and will be treated differently by our agent. The traffic light contingency may 
happen very often (the actual probability to encounter a red signal is given 
by the length of time the signal is green divided by the length of time it takes 
the signal to complete an entire cycle, provided that the signal is not 

correlated with another signal previously encountered by the car and that the 
signal behaves independently of the amount of traffic that passes through it; 

for a two-way signal equally divided between the two directions of traffic, this 
probability is almost 0.5, though somewhat less because of the color yellow). Its 
likelihood of occurrence is significantly (one or more orders of magnitude) 
higher than that of the other two contingencies. The treatment of this 
contingency (by following an alternate route through point D to reach point E 

and then the goal G) also needs an elaborate plan which must be prepared in 
advance (otherwise, after turning right at the traffic light, the agent must 

stop and replan its route by possibly using maps, which may take a long 
enough time to wipe out any savings obtained by avoiding the traffic lights on 

the path through C). Therefore, the agent must prepare a conditional branch 
in the main plan for this contingency. This will use significant planning 

resources, but will have all the advantages associated with the planning 

control model discussed in the previous chapter. 

The contingency defined by the child running in front of the car is 

much less likely to happen than encountering a red traffic light, even when 
driving in front of the school. This contingency has also a much higher 
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uncertainty about when and where it can occur. Thirdly, the plan to treat this 

contingency is much simpler (it is usually enough to brake and maybe to steer 
to the right, depending on the distance to the child); after taking the 

corrective action and avoiding the collision, the situation does not present any 
more dangers, so the agent can take its time to replan a course of action that 
will get it from the new state to the goal (this may be as simple as restarting 
the car, or as elaborate as finding an alternative means of transportation if 

the car was damaged by hitting a pole on the side of the road while avoiding 

the child). While the critical situation was avoided by a simple plan, the state 

obtained after its execution is unknown and may belong to a large set of very 

different states. Therefore, a comprehensive conditional plan to exhaustively 

treat all these states and preplan the agent's execution from them to the initial 

goal G may be prohibitive. The practical alternative is to treat such 

contingencies in a reactive manner, by attaching simple reactive plans to 
those points in the main plan where such contingencies may occur. After the 
reaction will yield a non-dangerous state for the agent, it can take its time to 

dynamically replan for a complete solution. 

The third contingency stated before - the ball popping up in front of 
the car when driving along a school - is a little more probable than the child 
running in front of the car, but the likelihoods of the two contingencies are 

roughly of the same order of magnitude. However, in this third case, the 

consequences of hitting a ball with a car (especially with a relatively slow 
moving car in the vicinity of a known school) are significantly smaller than 

in the child case. Moreover, the side effects of making a dangerous maneuver 
to avoid the ball may outweigh by far the consequences of hitting the ball. 
Therefore, for such a contingency, the agent is much better off if it ignores it 
at planning time, thus conserving its limited resources for other more 

important contingencies. 

To summarize the discussion in this section, we have identified there 

types of contingencies that may appear during the execution of a plan. They 

are classified according to the action taken by the agent at planning time to 
prepare for their occurrence at execution time. These types of contingencies 

are: 
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(i) contingencies for which the planner builds complete conditional 
branches, from the contingency state to the goal state, in the main plan; 

(ii) contingencies for which the agent prepares reactive responses; they 
are combined into reactive plans by a reactive planner, and are 
attached to appropriate segments of the complete plan provided by the 

conditional planner; 

(iii) contingencies ignored by the agent at planning time, either because 
their treatments can be left for dynamic replanning when they are 

encountered at execution time, or because they are considered less 

important than the contingencies included in the previous two 
categories, and the agent simply does not have the resources to prepare 

a reaction (much less a complete branch in the plan) for them. 

The justification for this classification is mainly related to the limited 
resources that a real agent can use. For a few contingencies, the agent can 
generate complete plans and combine them in a conditional plan. However, 
the agent's limited planning and execution resources do not allow for too many 
contingencies to be treated this way. Still, the agent can prepare at planning 
time reactive responses for a larger set of contingencies; these responses will 
not ensure full solutions to the goal state, but they will give the agent the 
possibility to dynamically replan its actions at execution time. But in no case 
can a real agent with limited resources prepare for all possible contingencies 
in a real world application domain. Many of these contingencies must be 
ignored at planning time. The problem addressed in this thesis is how to decide 
which contingencies to select for preparation of reactive responses, and 

which to ignore at planning time. 

2.2. Summary of the Problem 

The example problem outlined in the previous section highlights many 
aspects of the general problem with which we are concerned. We shall define 
here this problem more precisely, and then we will propose a solution for it in 

the next chapter. 
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In all our previous discussion we have referred to reaction planning as 
a conscious form of preparing condition-action behavior. That is, the agent 

consciously prepares, before starting the actual execution, a set of perception- 
action rules for a certain segment of the plan. They are to be executed by high 
level execution mechanisms of the agent similar to those that execute the main 
plan, and are not intended for execution by a "lower level", higher priority 
execution mechanism which may be part of the agent architecture (like the 

one proposed by [Brooks, 1986; Kaelbling, 1987]). Actually, the agent will resort 

to a reaction to a contingency only if it has no conditional branch in the plan 

at that stage during the execution, and will consciously take the decision to try 

to use reaction in that situation. This does not mean that we specifically 

prohibit in our agent architectures any lower level execution mechanisms 

which have the ability to react faster and with higher priority to certain 
contingencies. It only means that we are not concerned with such 
precognitive types of reaction (e.g. locomotion type reactions like avoiding 
obstacles by a moving robot). We are only concerned here with contingencies 
to which such reaction mechanisms cannot respond. On the other hand, if the 
agent architecture does not include such low level reaction mechanisms, then 
the contingencies to be treated by them may join the set of contingencies 
which are analyzed by the higher level cognitive mechanisms of the agent 

using the framework proposed in this work. 

Since we will talk more in the following section about the 

characteristics of the domains in which this work is best applicable, We will 
simply say here that we are particularly interested in planning the activity of 
an intelligent agent with limited resources and multiple goals working in a 
dynamic, unpredictable, real-time environment. The agent must itself act in 
real-time, i.e. be "predictably fast enough for use by the process being 
serviced" [Marsh & Greenwood, 1986]. In order to behave properly, the agent 
must plan its actions ahead of time, and then monitor the plan execution and 
be prepared to respond to contingencies that may appear during this 
execution. This emphasizes two orthogonal qualities that the agent must 
exhibit: sensitivity to run-time contingencies and commitment to specific 
goal-oriented actions. Such behavior can be accomplished by combining the 

two fundamental control modes mentioned before: planning and reacting. 
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As will be shown in section 2.4, most research to date is concerned 

either with employing only one of these control modes, or simply attempts to 
turn a system to become increasingly reactive and rely as little as possible on 
planning. These works concentrate mainly on how to prepare reactive 
responses and tend to use them in such a way as to substitute regular 

planning. Our approach differs from these others in its recognition of the 
complementary strengths and weaknesses of the two modes, and in its full 

integration of planning and reacting within a single agent. 

Our premise is that, whenever time and other resources allow, a 

dynamically planned response is never worse (and usually better) in 

responding to a contingency than a reactive response2 previously prepared 
for it. There are several reasons for this assumption: (i) the replanned 
response is generated at execution time when more information is available, as 
opposed to planning time, when the reaction is prepared; (ii) when 
replanning, an agent has time to analyze all the relevant information and to 
search for the best available solution by planning a complete solution path to 
the goal, while in order to react, the agent may have only a few alternatives 
(in the reactive plan) to choose from and only a few tests to decide on the 
response, which must therefore be taken based on incomplete information 
obtained from an incomplete analysis of the current situation; (iii) if time is so 
limited that it cannot even perform all these tests, the agent may have to take a 
more general action hoping to improve the situation at least temporarily and 
to buy more time to look for a better solution. The reason we need to use 
reaction is that the replanned solution may be found too late and therefore be 
of no more use at the time it can be taken. Thus, we assume that the importance 
of regular planning makes it irreplaceable (due to the vast diversity of 
situations in real-world environments), but the agent's real-time performance 
can be significantly improved by preparing reactive responses for a limited 
number of critical contingencies that may be foreseen to appear during 

execution of the plan already built to achieve the main goal. 

2 Again we stress that, in this work we study conscious forms of reaction, prepared at 
planning time and consciously taken, as opposed to precognitive types of reaction (e.g. 
locomotion type reaction). 
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By not including enough contingencies for reactive treatment, the 

performance of the agent will be suboptimal. On the other hand, by including 
too many such contingencies, the reactive response time becomes too slow, 

thus degrading the system performance once again. 

Unless otherwise stated, we assume that, given a contingency, the agent 

knows of an action (maybe a small sequence of elementary actions) which, if 

applied reactively, either solves the problem generated by the contingency, or 

at least postpones its deadline long enough to allow for replanning of the 

entire solution. 

The main issue for us then is to enable the agent, for each phase of the 

main plan, to select the right set of contingencies for which to prepare 

reactions. That is, our problem is to specify a decision framework which: 

O given: 
• an intelligent agent with: 

♦ capabilities: 
♦ planning and dynamically replanning 

♦ monitoring 
♦ reactive behavior 

•♦• constraints: 
♦ limited resources 
♦ real-time performance 

• a (possibly conditional) plan by which the agent can achieve its 

current goal 
• a set of contingencies known to possibly appear at certain times 

during the plan execution, each with: 
■> reactive responses associated with them 
♦ known characteristics associated with each such contingency (e.g. 

gravity of consequences, time deadlines) and with their reactions 

(e.g. resource requirements) 

O enable the agent to decide at planning time on how to select a "rational" 

subset of these contingencies (according to a desired behavior pattern) 
for which the reactive responses should be attached to the main plan 
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(while preserving the real-time responsiveness of the agent to all these 

contingencies, given its limited resources). 

We have used the word "rational" in the previous definition, and it 

needs some disambiguation. A behavior of the agent in a given situation is 

defined by the order in which the agent classifies the set of contingencies for 

that situation, according to the value of reacting to them. For the same 

situation and set of contingencies, there are different behaviors that the agent 

may exhibit. Some of these behaviors may either not be suitable for that 

situation, or may even be considered abnormal, hazardous or even 

pathological. But there is at least one such behavior which is considered 

appropriate or normal for that situation, by the experts in the domain. It is 

even possible that there are several different behaviors that may be 

considered appropriate in a given situation. Each behavior is appropriate 

according to a behavior model, and in the literature there have been defined a 

number of such reactive behavior types for domains in which critical and 

stressful situations are common and very dangerous like aircraft flying [FAA, 

1991], nuclear power plant management [Woods & al., 1987] or anesthesia [Gaba 

& al., 1991]. In most of the thesis we will refer to what is considered to be the 

"normal" behavior by experts in each domain from which we draw our 

examples. However, in section 6.3, we will discuss some other types of 

behaviors and how they can be translated and simulated with our framework. 

One problem related to the one we stated before is conditional planning. 

As discussed before, there are three courses of action that an agent can take to 

prepare a response to a possible contingency: plan a conditional branch, plan 

a reactive behavior, or ignore the contingency at planning time. Our analysis 

will focus on how to decide whether to prepare a reactive response to a 

contingency, but the general framework which will be developed for this 

purpose is also applicable (with certain modifications) to the problem of 

deciding whether to prepare an entire conditional branch in the main plan 

for a possible contingency. In section 3.5 we will briefly discuss what are the 

changes that must be made to our formalism so that it can also be used to decide 

which is the set of contingencies for which conditional branches should be 

planned. However, in the rest of the thesis, we will assume that the agent has 

already built the complete conditional plan, and is only trying to augment it 
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with reactive responses to as many contingencies as possible being limited by 

its finite resources. 

The selection criteria which we are looking for are much more complex 

than any utility measures (e.g., [Minton, 1990]) proposed so far. For example, 
in our approach, some of the contingencies associated with a situation may 
appear in practice with a very low probability, but they may be very critical if 
they occur, and thus are worth preparing for reactively and are also worth 
being remembered. This is in contrast with most of the research to date, which 
is mainly concerned with improving the systems' performance by caching 

into reactive plans the responses to the most frequently occurring 

contingencies. 

But before reviewing the previous research in this domain, let us 

attempt to characterize first the domains in which the problem stated here is 

significant and where our solution framework is applicable. 

2.3. Application Domains 

Much of the planning work to date has concentrated on applications in 
artificial domains. Such domains are well-structured and well-defined by the 

system designer, which usually means that the entire set of possible 

contingencies is known in advance, and that this set is of a manageable size. 

The main implication of this is that the resource limitations of the agent can 

be ignored (particularly at execution time) with respect to the size of the plan, 
whether the main control mode employed is conditional planning or reactive 
planning, that is, we can always assume that we have a powerful enough agent 
to be able to respond in time to any of the contingencies that it knows about. 
This is clearly an artificial assumption which drastically simplifies the 
planning problem and limits the applicability of the solutions proposed. 

By contrast, we are interested here in applying the planning paradigms 
to real-world domains and to allow the agent to operate in real-world (albeit 

closed and limited for practical purposes) domains. The main characteristic of 

such a domain and the agents operating in them is real-time defined by 
[Marsh and Greenwood, 1986] as "predictably fast enough for use by the 
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process being serviced". This means that the agent must be guaranteed to 
respond, at execution time, in a prespecified time limit to any contingency for 
which it has prepared a response at planning time. However, if an agent with 
limited resources prepares to respond to too many contingencies in a certain 
situation, than it may not be able to guarantee a timely response to the most 
time-pressured of these contingencies: e.g. it make take too long for the agent 

to discriminate among the possible contingencies for which it is prepared to 

react, from the time it detects a contingency and until it has to take the 
corrective action. An example of an interesting domain for our framework is 
the car driving domain, which will be used for exemplification throughout 

most of the thesis. If a child appears in front of the car at small distance, there 
is very little time for the agent to discriminate among the contingencies for 
which it is prepared to react in that situation and to decide what kind of 
contingency this is and how to react to it. For an agent with limited 
computational resources it may be therefore better not to prepare to react in 
the same situation for a much less critical contingency like a ball coming in 

front of the car, or a sudden loss in the radio signal, and so on. 

These observations are valid in real-life domains because another of 
their characteristics: they are very large, both in the number and variety of 
contingencies that may appear (which has been noticed a long time ago in 
[McCarthy, 1977] when describing the qualification problem), and in the 
variety of corrective actions that may apply. Each corrective action applicable 
to a certain contingency may be better suited in some situation than in 
another one. Therefore, we will always consider pairs contingency-situation 
associated with each situation in which that contingency may arise and in 
which that response is the best to this contingency. For well-structured 
(usually artificial) or very limited domains where the number of 
contingencies and responses is limited, the framework described in this thesis 
is not necessary, since it is conceptually possible to use a more powerful agent 
which can take care of all the contingencies in each situation. 

As seen before, real-world environments are usually unpredictable, 

that is contingencies may occur at any time, or at least uncertain in that the 

effects of actions and the actual state of the world after the execution of a plan 
step cannot be foreseen with utmost precision. Such domains are also usually 
dynamic in the sense that the state of the world may change without the 
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participation of our agent, for example, as a result of actions of other - 
cooperative or antagonistic - independent agents working in the same 
environment (e.g. there are other agents driving cars on the same streets as 
our agent and their paths may intersect3). In real domains some contingencies 

tend to appear associated with certain plan steps or situations and the 
likelihood of their appearance may be different for different situations, while 

others can appear at any time with the same likelihood. For example, it is 
always possible for a child to run into the street, or for a meteor to fall into the 

street or for the car to fall to pieces, but it is impractical for the agent to be on 

the lookout for all of these possible events all the time. Real-world domains 

also present a huge variety of situations. In each situation different 

contingencies can happen, and the same contingency may be viewed 
differently in different situations. In certain situations, some contingencies 

are more likely or more important than others. If the agent has to drive the 
car on a mountain road in winter, it should expect bumps or damaged portions 
of the road, or slippery roads, instead of, say, traffic lights. The agent should 
prepare for yet another set of possible contingencies in the case of driving on 
freeways. Also, the most effective responses associated with a contingency 
which may appear in different situations may be situation dependent. The 
agent should therefore be able to selectively prepare itself for the most 

critical contingencies in each possible situation along a prepared plan. 

We should also note that some of the contingencies associated with a 

situation may appear with a very low probability, but they may be very 
critical if they occur, and thus are worth preparing for. This is in contrast 
with most of the literature to date, since most authors are mainly concerned 
with improving their systems' performance by caching the most frequently 

used plans. 

We also assume that short plans (a single action or a small sequence of 
actions), if applied reactively, are usually enough to either solve the problem 
generated by the contingency, or at least to postpone its deadline long enough 
to give the planner the time needed to dynamically replan the entire solution 

under the new circumstances. 

3 Hopefully not at the same time... 
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Most real domains which have the features described above are usually 
characterized as high level, knowledge intensive domains. Examples of such 
domains are some medical domains (e.g. intensive care monitoring, 
anesthesia), nuclear power plant operation, aircraft flying, car driving and so 
on. These are contingency-intensive domains, in which many contingencies 
can appear and in which some of these contingencies are very time-critical 
and / or with very high consequences, even if they do not appear with very 

high frequency. Although these domains also require (some more than 

others) significant skill development (by skill we mean here automatic, low- 
level, unconscious reflexes to certain contingencies), their main 
characteristic is that the process of planning and responding to contingencies 

is knowledge-intensive and thus uses significant high-level cognitive 
resources of the agent. Our framework can be in principle applied to any 
domain, but its value and effectiveness can be questioned for very well 
structured, artificial domains (like the blocks world) and for low-level, skill 
intensive domains (or such tasks in higher-level domains), like locomotion 
tasks (e.g. reflex obstacle avoidance) or fine-motion robot manipulation tasks 
(e.g. the peg-in-the-hole insertion problem), in which the number and 
diversity of contingencies is limited and well-known in advance. 

Even for such limited but real domains, we can argue that our 
framework can be applicable as long as the resources of the agent involved 
are not powerful enough to completely remove the uncertainty in the domain. 
An example of such a domain is robot motion planning. The main problem 
here is the uncertainty, at execution time, in the position and orientation of 
the parts and of the robot (e.g., a manipulator) in the workspace. A class of 
planning methods developed for this problem deal with such uncertainty in a 
second phase of planning; in the first phase, plan skeletons and local 
strategies are produced, using path planning methods which assume zero 
uncertainty (i.e. no contingencies) [Latombe & al., 1991]. Then different 
methods are used to deal with contingencies generated by the aforementioned 
uncertainties. For example, SPAR [Hutchinson and Kak, 1990] adds verification 
and local recovery plans to reduce uncertainty and to prepare for possible 
failures. Similarly to the reactions used in our framework, these local 
recovery plans are only single, special-purpose actions (which may be 
entered by the user) and are associated with uncertainty-reduction goals a 
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priori. An inductive learning technique is used by [Dufay and Latombe, 1984]: 

a trainer module generates patches to be inserted in the ground plan. These 

are local strategies refining the ground plan, similar to our reactive plans 

attached to the main plan (e.g. rotate a card to insert it into a slot). The system 

further provides for the graceful degradation of its performance by allowing 

for entering rules on line if everything else fails. However, the most common 

technique for dealing with uncertainty-generated contingencies in this 

domain is skeleton refining [Lozano-Perez, 1976; Taylor, 1976]. A skeleton plan 

(or assembly description) appropriate to the task at hand is retrieved as initial 

plan and then iteratively modified by inserting complements (e.g. sensor 

readings) during a feedback planning or plan checking phase. The 

modification of assembly strategies to fit particular geometric environments 

results in building conditional plans. Then strategies are examined for likely 

failures and the planner generates tests (monitoring actions) and inserts 

corrective actions (which are either conditional branches, or reactive plans - 

e.g. if the robot manipulator is on the verge of overturning a workpiece by 

pushing it with a peg, then retract the hand a little to stabilize the situation 

and then replan the action). If the plan contains many such reactions to too 

many contingencies for the same situation, the agent may become too slow to 

respond to some of the most time-critical of these contingencies. The solution 

is to use the framework developed here to choose among these contingencies. 

Further refinements of the plan-skeleton paradigm include symbolical 

computations of the effects of uncertainties [Brooks, 1982] to identify and treat 

the most significant ones by making inferences about uncertainties and using 

them in computations, as well as using formal program proving techniques to 

deal with these uncertainties [Pertin-Troccaz and Puget, 1987]. All this 

discussion shows that, even if the robot manipulator programming domain is 

not, as a whole, a high-level knowledge intensive domain (in the sense defined 

before), the formalism presented here can still be applied if the set of 

uncertainty-related contingencies becomes too large and if their treatment 

requires conscious actions (as opposed to just locomotive reflexes). 

Besides the domain characteristics, the agent's capabilities are also 

important in this discussion. If we have an ideal agent with unlimited 

resources and unlimited speed of computation, then the entire formalism may 

become useless, even in the real-world, high-level domains presented before. 
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However, if we are again interested in the real world, then it is only natural to 
assume that the agent has limited resources and that the number of 
contingencies for which it has to prepare exceed both its conditional planning 
capabilities, and its real-time execution capabilities. In such cases, the domain 
exerts time pressure on the agent's limited resources. Therefore, the agent 

needs to be able to decide which contingencies to prepare treatment for and 

which to ignore at planning time. These are the types of agents and domains 

for which the framework developed here is useful. 

2.4. Related Work 

We make here a brief review of other work that is relevant to the 
problem of how to combine planning and reaction to achieve the best 
performance of the agent in a particular environment. The purpose of this 
section is to place our work in the global context of related research and to 

outline its original contributions. 

Planning (describing a set of actions expected to allow the agent to 
achieve a given goal) has been a central problem in AI since its very 
beginnings [McCarthy, 1958]. The techniques proposed have evolved 
considerably, and so have the application domains. We classify these 
techniques into several classes, according to the ways they combine the two 
fundamental control modes described before: conditional planning (also called 
here classical planning or simply planning) and reactive planning (also 
simply called reaction). These classes are: 

(i) purely conditional planning techniques 

(ii) purely reactive techniques 

(iii) static combinations of planning and reaction 

(iv) techniques to shift from planning to reaction 

(v)   techniques to decide at execution time whether to (re)act or to 

continue the replanning process 
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(vi) techniques to decide at planning time which contingencies to 

prepare reactions for 

A lot of early planning work has been conducted towards specifying 

robust techniques for conditional planning. The systems produced (e.g. STRIPS 
[Fikes and Nilsson, 1971], NOAH [Sacerdoti, 1975], MOLGEN [Stefik, 1981], TWEAK, 
[Chapman, 1987] to almost randomly name just a very tiny subset since an 
exhaustive summary would be well beyond the scope of this section) were able 
to solve increasingly complex problems. Although some of them had facilities 

for monitoring their plans execution and responding to some contingencies 

(e.g. PLANEX for STRIPS [Fikes & al., 1972]), these facilities were very limited 

and worked only in well-structured domains, based on the existence of a state 

matching the contingency in the original conditional plan. More flexibility 

and higher response speed was needed to build systems for real-world tasks. 

The need for reactivity to the dynamic aspects of the environment was 
addressed by building systems which operate on a perception-action basis 
without relying on an abstract representation of the environment [Brooks, 
1991]. Horizontal layer decomposed systems [Brooks, 1986; Kaelbling, 1987] 
included such reactions while still being able to pursue high-level goals, but 
their reactions were limited to the types of locomotive, low-level precognitive 
reactions which we described earlier and which do not make the object of our 

work. 

Realizing full reactive behavior (reaction plan planning) has been 
proposed through universal plans [Schoppers, 1987] which are exhaustive 
conditional plans, and therefore are prohibitively expensive to produce for 
any reasonably complex domain [Ginsberg, 1989]. Situated Control Rules 
[Drummond, 1989] are used for situation-based plan indexing, to reduce the 
non-deterministic choice in the case of plan nets. They may be used as an 
incomplete alternative to universal plans, in those cases when there is not 
enough time to build the entire universal plan. An incomplete universal plan 
may not contain any answer to a problem, while missing situated control rules 
do not necessary preclude a solution (which may be found 
nondeterministically); they only ensure a solution when they are specified. 
This approach maximizes the use of planning time and takes into account 
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planning resource limitations, but without taking into account any execution 

time limitations of the agent. 

Pengi [Agre and Chapman, 1987] is a purely reactive planning system 

which uses sensory input to index structures for possible subsequent actions. 
However, Pengi cannot completely represent most real situations due to their 
uncertainty and the limited information available about other agents and 

processes. 

Due to the shortcomings of pure reactive systems, researchers have 
subsequently concentrated on integrating planning with high-level reaction. 
[Firby, 1987] uses Reactive Action Packages like stored reactive plans to 

integrate planning and reactive responses. However, reactive planning is 
used without time considerations, while we allow the agent to try to 
dynamically replan its course of action if there is enough time to do it, and 
only prepare to react to critical events. [Hendler & Agrawala, 1990] implement 
reactive planning systems on a guaranteed scheduling, real-time operating 
system using the Dynamic Reaction model: an agent performs an activity until 
either its goals lead it to select some new action, or some event in the world 
forces it to react, thus integrating planning and reaction in a complex 
environment. [Georgeff & Lanski, 1987; Georgeff, 1989] propose an 
architecture (the Procedural Reasoning System) that is both highly reactive 
and goal directed. They store (reactive) plans, called Knowledge Areas, in 
procedural form, supplied in advance. [Cohen & al., 1989] monitor the 
execution of the Phoenix agents' plans and use three mechanisms for 
handling unexpected events: low level reflexes to stabilize the situation, error 
recovery and replanning implemented as high level cognitive actions, and 
envelopes as a general monitoring mechanism. The agent always prepares for 
the same fixed set of reactions, without considering the characteristics of the 
plan or of the situations that might be encountered during its execution. These 
systems have limited flexibility since the set of reactions is limited, always the 
same, and always available in its entirety to the execution components. 

Hardware implementations of reactive plans into agents whose actions 
are guided by overall goals have been proposed in [Nilsson, 1988; 1992]. 
Continuous actions are modeled using T-R trees (teleo-reactive, i.e. both goal- 
directed and ever-responsive) to build a reactive program whose execution 
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produces circuits to control the agent's actions. Selective reactions would be 
very important here because of the various costs associated with hardware 

implementations. 

The next step on the research path towards agents with better response 

performance was to devise techniques which shift some of the system's 
activities from planning to reaction, with the aim of producing increasingly 
reactive agents. [Mitchell, 1990] combines reactive (stimulus-response) and 
search-based architectures to control autonomous agents. Explanation-based 

learning techniques [Mitchell & al., 1986] are used to extract rules (condition- 

action pairs) from plans to make the theo-Agent increasingly reactive by 

learning plans into reactions: the agent first tries to react, then to plan. 

Scaling issues for the approach are briefly mentioned, and a solution is 
proposed based on selective learning invocation using a utility function 
similar to the one suggested in [Minton, 1990]. However, as we mentioned 
before, there are too many characteristics of the situations and contingencies 
as well as of the agent (planning and execution modules) which are not taken 
into account by this utility function. This fact is even more important since 
rules are tested in sequence for reaction, which yields a high cost of reaction 
at execution. [Martin & Allen, 1990] propose a two-level architecture 
consisting of a strategic planner (generating high-level goal descriptions) 
which sends commands to a reactive system which must fill in the details. They 
use statistics to constrain the probability that the execution module can 
accomplish a particular task. Reactive behaviors are learned selectively, using 
statistical estimates on the utility of these actions versus the utility of their 
components. But once learned, the reactions are always available to the 
execution system. Soar [Laird & Rosenbloom, 1990] also provides a combination 
of reactive execution and planning seen as essential behaviors of an 
autonomous intelligent agent. Plans are learned into reactions using 
chunking, and afterwards all reactive plans learned are always available to 
the executor. The authors express their concern that after learning too many 
such reactions, the responsiveness of the system may be significantly reduced, 

but do not attempt to address this problem. 

These works concentrate mainly on how to prepare reactive responses 
and tend to use them in such a way as to substitute regular planning. Our 
approach differs from these others in its recognition of the complementary 
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strengths and weaknesses of the two modes, and in its full integration of 

planning and reacting within a single agent. A recurring, unaddressed 

problem in these works is the value (utility) of reaction. While we believe that 

learning such reactions is very useful in real domains, we also believe that 

this utility problem should be addressed at planning time, and not (only) at 

learning time. The work described in this thesis is aimed precisely towards this 

goal. In the next chapter, we will define a framework to select only the 

relevant events associated with a given situation. Reactions to them are 

incorporated into stored reactive plans, depending on several factors such as 

event criticality, reaction time allowed and exhibited, load of the agent's 

reasoning capabilities and other resources, and reactive plan size, as well as 

on the desired behavior pattern for the agent. Our main problem is to decide 

which contingencies to prepare reactive responses for, in each situation. This 

is in contrast with most of the research cited above, where the authors are 

concerned mainly with improving their systems' performance by trying to 

react (and maybe cache) the most frequently used plans. Our selection criteria 

will necessarily be much more complex than the utility measures proposed so 

far. 

However, the utility of reacting versus planning can also be, and has 

lately already been, addressed at execution time. [Horvitz, 1989] develops a 

decision theoretic framework to reason about the value of continuing to 

reflect about a problem vs. taking an action to try to solve it, at execution time, 

using the expected value of computation (EVC) as fundamental measure. He 

attempts to optimize behavior under resource constraints by integrating 

reaction with deliberative reasoning (replanning). However, he ignores the 

overhead of retrieval of a reaction and the computation time while taking into 

account only limited other resource constraints (e.g. memory cost) which may 

not be the most relevant ones for real-world agents. He also assumes all 

reactions are always available and only attempts to decide, at execution time, 

whether to react or to replan, and is not concerned with such decisions at 

planning time (clearly, some contingencies do not allow time for such 

metalevel deliberations at run-time, before taking an action to respond to 

them). [Yamada, 1992] uses the notion of success probability to determine the 

best time until which dynamic replanning may continue and when execution 
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of the action should actually start. Again, the computation is done at execution 

time. 

The sixth category of techniques which we have identified at the 
beginning of this section involves methods to decide, at planning time, on 
which contingencies to select for preparation of reactive responses in the 
plan, and which to ignore and leave for dynamic replanning at execution time 
if such a contingency will arise. The problem is occasionally mentioned in the 
literature, but without being analyzed in detail and especially without 

proposing any solutions to it. While discussing the CIRCA system, [Musliner et. 

al., 1994] make the most comprehensive presentation of the problem that we 

were able to find. They recognize the limitations that exist in the agent 

execution resources, and attempt to divide the main plan into smaller pieces 
and create reactive plans that guarantee the achievement of critical goals. 
However, there is no analysis of how to partition the set of goals into 
guaranteed and unguaranteed ones (when the system cannot guarantee 
responses to all of them). CIRCA only tries to build guaranteed plans by taking 
into account only the time allowed to respond to a contingency. Other 
contingency characteristics relevant for the decision process (like criticality 
and probability) are mentioned as necessary to be considered in future works, 
but they are not actually used here. Control level goals are linked to the 
system's safety, which is not always necessary (in our work, any change in 
the environment that was not expected as a result of executing the main plan 
is considered a contingency). CIRCA also partitions the goals into just two 
subsets according to a system designer specified priority: critical or not. 

We are unaware of any previous research towards a solution to the 
general problem of deciding whether to prepare a reactive response to a 
contingency or not; therefore, it is here where the work described in this 

thesis has been concentrated. 

As shown before most research to date is concerned either with 
employing only one of the planning or reacting control modes, or simply 
attempts to turn a system to become increasingly reactive and rely as little as 
possible on planning. All the reactive responses are always available to the 
agent executing a plan, and they usually tend to take precedence over the 
(re)planning alternative. This approach can only work in either very simple 
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task environments, or for idealized, unlimited resource agents. In our work, 
we take into account the real-world constraint of limited resources for agents 
that have to act in stressful, resource-demanding, real-time situations, in 

which reaction does not come for free. Therefore, we assume that the 
importance of regular planning makes it irreplaceable, but the agent's 
performance can be significantly improved by selectively preparing reactive 

responses only for those contingencies that are critically enough to justify 

them. We work towards integrating planning with reaction, instead of just 

enabling the agents to shift from planning to reaction. [Hayes-Roth, 1993] 
proposes a paradigm for integrating planning and reaction using 
opportunistic control of action: run-time control conditions trigger a subset of 
possible actions, strategic plans constrain intended actions, and the match 
between possible actions and strategic plans controls action execution. 

Other work, directly related to various subsections of the thesis, are 

briefly surveyed when relevant. 



Chapter 3 

The Approach 

In this chapter we describe our framework for deciding, at planning 
time, whether to prepare a reaction for a given contingency in a certain 
situation. We first define a few terms which we will frequently use: 

O a plan (conditional plan, or main plan, or conventional plan) is a 
(possibly conditional) time dependent, partially ordered set of actions 

and expectations (figures 2.1 and 3.1.a). 

O an action is the application of an operator to the current state. It yields a 

new state, which may be identical or not to an expected state. 

O a contingency is any state of the world entered by the executing agent 
while following a plan, which is not: (i) a direct consequence of 
executing the actions of the plan up to that point, or (ii) an exogenously 
generated state of the world assumed in the design of the plan. 
Therefore, a contingency does not necessarily affect the agent or the 
plan execution, and when a contingency does affect the plan, it is not 
necessary that it will negatively affect it. For example, a contingency 
may be a state which is not the current expected state according to the 
plan execution, but is a state which should have been reached along the 
way, after executing some more steps of the plan. The agent may detect 
it and use it to skip the unnecessary steps in the plan, for example in 
the same way as it was done with triangle tables in [Nilsson, 1984]. To 
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simplify the exposition, we also use the term contingency to mean any 

event, fact or sign that was not expected as a result of the plan 

execution, and which triggers an (undesired) change in the state of the 

world, not expected at that time in the plan, i.e. which characterizes a 

state as a contingency according to the previous definition. 

(a) Conditional plan 

test 

contingencies & reactions 

(b) Reactive plan 

main plan 

monitoring actions 
(2)        (3)        (4) 

Reactive plans 

(c) Context-specific plan 

Figure 3.1. Types of plans 

O a reaction is a perception-action rule of behavior, usually stored in a 

computationally efficient form. The action part may be a short sequence 

of actions which are enough to either solve the problem generated by a 

contingency, or at least to extend its deadline long enough to allow "for 

replanning of the entire solution under the new circumstances. 

O a condition is a pair contingency-reaction; there may be more than one 

reaction which can solve the same contingency, and there may be more 

than one contingency which can be solved by the same reaction. 
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O a reactive plan is a set of tests and reactions (possibly arranged 

hierarchically for efficiency reasons [Ash & Hayes-Roth, 1993] and 

therefore represented as triangles in figure 3.Lb) able to solve any one 

of a set of contingencies. 

O a context-specific plan is obtained from a conditional plan by 

augmenting it with monitoring actions and reactive plans for certain 

contingencies (figure 3.1.c). It deals with these contingencies in a local 

and usually incomplete way, as opposed to the conditional plan which 

prepares in advance for a full treatment of the possible situations that 

were taken into account. 

The basic approach to obtain a final context-specific plan for a given 

problem starts with a conditional plan (produced by a conventional planner) 

to achieve the main goal of the problem. The agent has a knowledge base of 

contingencies that may appear during the execution of plans, together with 

proper reactions to them. After developing a plan, this knowledge is used to 

analyze it and to identify situations of interest, that is, those points in the plan 

for which the agent knows of possible contingencies and how to respond to 

them. 

The general agent architecture to do this is briefly discussed in 

appendix 1. In the rest of the thesis, we assume that the agent has already 

decided upon such a situation and has identified the set of contingencies 

which may be associated with it together with their appropriate reactive 

responses. Now the task of the agent is to decide for which of these 

contingencies to actually include responses in a reactive plan which will 

subsequently be attached to the main plan at the appropriate place (specified 

by the particular situation isolated before). The context-specific plan is thus 

completed by augmenting the initial main plan with monitoring actions and 

reactive plans for the critical contingencies (figure 3.1.c). Monitoring actions 

can be attached to the plan even if reactions to their contingencies are not 

(e.g. when the contingency is important enough to be watched for, but either 

its likelihood of occurrence is low enough, or the time allowed to respond to it 

is long enough for replanning). 
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In the next section, we first analyze a simple problem and try to 

formulate an intuitive solution. We then formalize this intuitive solution in 

the rest of the chapter. 

3.1. Intuitive Solution 

Let us revisit the driving problem presented in the previous chapters, 

and attempt to analyze it in more detail. 

In section 2.1 we formulated the problem of an agent which commutes 

every morning by car from home to work, and at some point A along the way it 

passes in front of a school while driving straight, at 25 mph. The commute 
takes place at a time when children are at school, or go to school. The agent 
knows its route well enough to know about a few contingencies that may occur 

while on this portion of its route. Table 3.1 lists a partial set of such 

contingencies, and the best reaction for each of them known to the agent. 

Notice that the contingencies are dependent on the characteristics of the 
actual situation described. Here are some of these dependencies: the 

contingencies depend on the type of plan used (e.g. if the agent uses public 
transportation, than it need not be concerned with hitting a child, since it is 

not in control of the car), on the action involved (if the current action would 
be driving on a freeway, then the likelihood of having children running in 
front of the car would be much smaller), on the context of solving the problem 
(if the same action takes place during vacation time, when that school is 
closed, then again the likelihood of having a child run in front of the car 
decreases a lot), and so on. In the next section, we rigorously define the notion 
of a situation, and then precisely characterize this particular situation as an 

example of our definition. 

In order to be useful for our purpose, the notion of a situation (and its 
associated characteristics) must be much more rigorously specified. Also the 

contingencies must be expressed in some structured language in order to allow 

a better representation and usage (e.g. it is important whether the car moves 

slowly or fast, whether the child runs from left to right or from right to left, 

and so on). We detail these specification requirements and present formalisms 



36 Chapter 3. APPROACH 

to facilitate their expression in the next three sections of this chapter and in 

the next chapter. 

Contingency 

1    Child runs from right, 20 m in front of car 
2   Car crosses w/o priority 20 m in front, from right to left 

3   Car in front stops suddenly 
4   Cat runs across street, 20 m in front 
5   Traffic light changes red 40 m in front 

6   Tire explosion 
7   A deep and medium width hole detected 30 m in front 

8   Airplane lands in front of car 
9   Brake malfunction light turns on 

10   Engine overheat light turns on 
11    Loud radio turns on suddenly 
12   Meteor falls on the trunk of the car 
13   A ball pops in the street, from the right, at 20 m in front 

Reaction 

Brake hard and steer right 
Brake and gently steer right 

Brake hard 
Brake hard and steer right gently 

Brake hard 
Brake gently and do not steer 
Brake hard and steer right gently 

Brake moderately hard 
Brake gently 
Brake gently to stop the car 
Adjust radio volume 
Accelerate hard 
Brake hard and steer right  

Table 3.1. Set of contingencies for the car driving domain 

Our problem is to decide which of these contingencies are critical 

enough to require the agent to prepare in advance reactive responses for 

them and which should be ignored at planning time. The solution has two 

phases. In the first phase, the agent must order the contingencies according to 
the value of reacting to them; then taking into account the characteristics of 
the planner and the limitations of the agent's run-time resources, it must find 
out how many (and actually which) of the contingencies can be taken into 
account for reactive treatment. In order to be able to define the value of 
reaction to a contingency and to be then able to order the contingencies 
according to this value, we have to identify the characteristics of 
contingencies which influence this reaction value. These characteristics are 

defined not for a contingency alone, but for a condition (pair contingency- 

response) in a given situation (as seen above, these characteristics can vary 

from one situation to another). 

One characteristic which has been recognized by earlier research (as 

remarked in section 2.4) is the likelihood of appearance of the contingency in 

that situation. We have already discussed how the same contingency may have 
different likelihood in different situations. Also, different contingencies may 
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have different likelihood in the same situation. For example, in our case, a 
child running into the street is less likely than encountering a red traffic 
light, but more likely than having a plane land on the street in front of the 

car. 

Since reactive response is geared especially towards satisfying real- 
time deadlines, of special concern is the time pressure exerted by the 
contingency upon the agent. This time pressure (or urgency) is inversely 
proportional to the actual real time allowed for the agent to act in response to 

the contingency. Clearly, responding to the child contingency is more urgent 
than taking care of the radio which has just turned on by itself. On the other 

hand, the child running into the street and the ball popping up in front of the 
car at the same distance, allow for the same time of response, i.e. exert the 
same time pressure onto the agent. 

But the value of reacting to a contingency is also determined by the 
gravity of the consequences presented by the contingency if no action is 
taken in the allowed response time. Obviously, the consequences are much 
more dramatic in the case of hitting a child, than if the car hits a ball. 

And finally, there is one more characteristic of the conditions that has 
to be taken into account. This characteristic is more closely related to the 
response associated to the contingency, and it takes into account the possible 
side-effects that may be incurred if the reaction to the contingency is taken in 
time. For example, the side-effects of avoiding the child by braking hard (the 
possibility to be hit by the car following our agent's car) and steering right 
(the agent's car may hit the sidewalk, or a pole on the sidewalk) are the same 
as for avoiding the ball through the same maneuver, and can be significantly 
higher than the side-effects of adjusting the radio. 

We assume that the agent's knowledge base contains, along with each 
contingency and reaction, a set of values for these characteristics (they can 
be obtained from experts in the domain - as we have done it, or through 
automatic learning methods). These characteristics have different weights in 
deciding upon the value of reacting to a given contingency. As we shall see, 
these weights are not fixed, but they are dependent on the application domain, 
and also on the behavior model according to which the agent acts. We shall for 
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now restrict our discussion to a generally accepted (by the experts in the 
domain) "normal" behavior, and will briefly discuss other types of behaviors 
in section 6.3. Under this behavior model, the highest weight is associated to 
the time pressure characteristic, followed by consequences and then 
likelihood. However, if the side-effects are much higher than the 
consequences, then the agent is probably better off by ignoring the 

contingency at planning time. 

Therefore, a driving agent will give highest priority to the child 

running into the street contingency (since the time pressure is very high, 

and the consequences are also very high), and will give a very low priority to 

the ball contingency, since the side-effects of doing a dangerous maneuver 
outweigh by far the consequences of hitting the ball. The traffic light turning 
red contingency will follow the child one, followed in turn by the airplane 
landing and the loud radio turning on (since both have low likelihood, but the 
airplane has much higher consequences and time pressure). The 
contingencies listed in table 3.1 are actually ordered according to the normal 
behavior model described by a panel of experts whom we have interviewed 
(section 6.1 presents more details about our knowledge acquisition process for 
this domain). At first glance it may be surprising, for example, that the ball 
contingency was placed after the radio contingency; remember however that 
we are only interested here in preparing reactions for these contingencies. 

Therefore, this ordering says that, if the agent has enough resources, it may 
try to prepare a reaction to the radio contingency (although the value of 
reacting to it will be pretty low), but should avoid as much as possible to 
prepare a reaction to the ball contingency, since the side-effects of reacting to 
it may be much higher than the consequences of not reacting (or 

equivalently, the benefits of reacting). 

The second phase of our solution involves deciding which of these 
contingencies will actually be included in the reactive plan, by taking into 
account the characteristics of the reactive planner and the limitations on the 
agent's resources. The characteristics of the reactive planner (specified as a 
reactive planner model) allow the agent to estimate the complexity of isolating 

the contingency and its reaction from the reactive plan prepared for the 
entire set of selected contingencies associated with that situation. This 
complexity is direct proportional to the time needed by the agent from the 
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moment it detects the existence of a contingency and until it can start a 
reaction to it. However, this time is further influenced (i.e. increased) by the 
availability and limitations of the agent's resources, specified by an agent 
model (e.g. computational overhead). For each contingency included in the 
reactive plan, this response time has to be smaller than the time allowed by 
the contingency before the (re)action has to be taken (otherwise the reaction 
to that contingency becomes useless). Therefore, given the reactive planner 
model and the agent model, we have to analyze each contingency associated 
with the situation, in the order specified by the first phase of our analysis. In 
our example, we will always include in our reactive plan a response to the 

child contingency, since it has the top priority. We will also include in the 

plan a response to the car crossing contingency, if we estimate that the agent 
will have the resources to react to both contingencies in time, and so on. If we 
reach a contingency which cannot be responded to in the allowed time period 
while still being able to respond to all the contingencies included in the 
reactive plan before it, then this contingency will be left out. However, this 
process continues until all contingencies have been examined, since some 
contingency further down the list may allow a longer response time, while 
still allowing time to respond to all the already included contingencies. For 
example, assume we have time to respond to only two contingencies with very 
high time pressure, and to some other contingency with much lower time 
pressure. Then we will want to include the child and car crossing 
contingencies (which are the first two on our ordered list), ignore the car 
stopping and cat crossing contingencies for which we do not have time to 
respond, and include the red traffic light contingency which follows in the 
list, because it allows for a much longer response time. Such a policy (which is 
rigorously defined in section 3.4) makes optimal use of the agent's execution 
time resources, as justified in chapter 5). 

In the following three sections we define our framework, along the 
lines of the intuitive analysis presented here, and in chapter 5 we make a 
brief analysis of some of the theoretical properties of this framework. In 
chapter 6 subsequently then present a few more examples of applying this 
framework in other domains like anesthesia and intensive care monitoring. 
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3.2. Framework for Reaction Decision 

In the following sections we define our framework, along the lines of 

the intuitive analysis presented above. We specify a consistent framework to 
help decide whether the agent should prepare in advance to react to certain 
possible contingencies, or whether it can ignore them at planning time and 
can replan at execution time to deal with them. As seen before, the inclusion of 
monitoring actions and/or reactive responses for a particular contingency in 
a plan may depend on a large number of characteristics of the environment, 

the contingency and its response, and on the relations between them, as well 

as on the models of the different factors involved in this process: the expert, 

the agent and the reactive planner. They also depend on the set of other 

contingencies possible in the same situation (how many, how critical, and how 

complex their reactions are) vs. the agent's capabilities. To help visualize the 
heuristic rules that take these decisions, we define a few multi-dimensional 
spaces and the relationships among them. The position of a contingency in 
these spaces determines whether or not the agent reacts to the event. 

3.2.1. Overview of the Framework 

We begin with a general presentation of the interactions among the 

components of our framework, and in the subsequent sections we present in 

detail each of these components. 

Figure 3.2 presents a schematic overview of the framework described 
here. The entire framework is used to decide, for a given condition (pair 
contingency-reaction), whether the agent should include the reaction to this 
contingency in the reactive plan which is prepared for the situation under 
consideration. Therefore, given the condition and the situation, the 
framework has to provide the means to associate a criticality value to the 

contingency. This criticality reflects the value of reacting to the contingency 
(using its associated reaction, if it appears in this situation), as opposed to 
leaving the agent unprepared to respond to this contingency and hoping that 
it will be able to solve it by dynamic replanning if the need will arise. If the 
reaction value is high enough, the agent will at least monitor for the 
occurrence of this contingency during execution of this phase of the plan. 
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However, the agent may not be able to prepare for all contingencies with 

criticality high enough to be monitored for. 

Reactive Planner Model v     Agent Model 

Situation 

Condition 
(Contingency + Response) 

& its characteristics 

Agent's 
Knowledge 

Criticality 
(reaction value) 

Behavior Model: f. 

Inclusion 
(yes / no) 

Monitor 
(yes / no) 

Figure 3.2. Overview of the Framework 

The decision of whether to include the reaction to this contingency in 
the reactive plan is taken based on the characteristics of the situation, the 
time pressure exerted by the contingency upon the agent (or equivalently the 
time allowed for response by the contingency), and of course the criticality of 
the contingency, compared with the criticalities of the other contingencies 
known to the agent to possibly appear in the current situation. The criticality 
values induce an order relation on the set of contingencies associated with a 
situation, and the agent first attempts to include the most critical of these 
contingencies for reactive response. All the contingencies (taken from the 
agent's knowledge base) associated with the current situation are considered 
in turn for inclusion, in the order of their criticality value. When reaching 
the stage where the current contingency is analyzed, all the contingencies 
applicable in the current situation, with higher criticality, have been already 
analyzed, and for some of them (not necessarily all) the agent has decided to 
include reactive responses in the reactive plan. The current contingency will 
be included in the reactive plan only if the agent using this new reactive plan 
will be able, at execution time, to respond to this contingency in its allowed 
time, while still being able to respond in their allowed times to all the 
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contingencies already included in the reactive plan. In order to take this 
decision, our framework needs a model of the characteristics of the reactive 
plan built by the agent, as well as a model of the execution time characteristics 

of the agent resources and their limitations. 

Figure 3.3 presents in more detail the source and flow of information 

through our framework. Each situation has a number of characteristics, and is 
therefore represented as a point in a situation space. This representation 
allows for flexible generalizations and for the representation of sets of related 
situations as regions in the situation space. Similarly, the characteristics of a 

contingency will define the dimensions of a criticality space, in which each 

point represents the value of reacting to that type of contingency. The third 
space used represents the reactive plan characteristics, in terms of the 

resources required by the execution of the reactive plan (given by the 
reactive planner model) and the resources available for execution by the 
agent. The agent model gives indications on how these resources are managed 
by the agent and how they are used by other modules of the agent, as well as 
the limitations on the agent resources, and is therefore used in the final stage 
of the decision process. The expert model is used by the framework to interpret 
the values suggested by the expert for the characteristics of the 
contingencies, and specifies a set of threshold values for these characteristics. 
Finally, the behavior model defines the function which computes the 
criticality value for each contingency. Different behavior models associate 
different values for the same reaction to the same contingency, according to 
the individual values of its criticality space characteristics. The two critical 
stages of the framework are establishing the criticality or reaction value of 
the contingency, and making the decision of whether to include its reaction 

into the reactive plan built for the current situation. 

In the remaining subsections of this section we discuss in detail each of 
the three spaces mentioned above, and then we present a complete summary of 
the entire framework. The following two sections will then describe the two 

critical points of the framework mentioned above. 
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3.2.2. The Situation Space 

The situation space is the set of all possible situations. Its dimensions are 

the aforementioned characteristics of a situation. A point in this space 
characterizes a general, contingency-independent environment situation or 

state. Situations will be used to index contingency-response pairs in the 
agent's knowledge base, according to the relevant situation characteristics in 

which they may apply. We will elaborate more on the same driving example 

used before, and will try to specify it more accurately from the perspective of 

our problem. The seven dimensions of this situation space are: 

O problem - is the main problem to be solved by the agent. It is a synthesis 
of the problem characteristics and how they can determine the global 
situation. An example of problem is to carry a small package of books 
from home to work. We shall use this example throughout this section. A 
small change in the problem statement can have important influences 
on the set of contingencies that can be expected. For example, if the 
problem is instead: carry a small package of radioactive material from 
home to work, then an entire subset of contingencies generated by the 
fact that the package contains radioactive materials has to be taken into 

account. 

O plan - is a synthesis of the characteristics of the type of main plan used 
to solve the problem. The type of plan chosen by the conventional 
planner is obviously dependent on the problem to be solved. For 
example, the plan may differ depending on the size of the package to be 
carried, on its weight or on its content, as well as on the distance to be 
traveled. However, even for the same given problem there may be a 
large number of solutions (plans to solve it), and each of them may 
create different conditions with which contingencies may be associated. 

For example, for our problem, one can choose to walk or to use a means 
of transportation, and further, to drive or to use public transportation, 

and further to drive a car or a bike, or any combination of these, and so 

on. Let us assume the planner's choice was to drive a car. 
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O context - is a synthesis of the characteristics of the environment in 

which the plan is to be executed to solve the problem. It covers all the 

general aspects of the domain which are not covered by the previous 

two dimensions. For the driving example, it includes the time of the day 

(it may make a considerable difference for the types of contingencies to 

be expected, whether it is day or night), the time of the year (in winter, 

the road is usually more slippery, but the engine is less likely to 

overheat), weather conditions, the abilities of the driver, and so on. 

Suppose in our example the context is a working day morning during 

the month of May. This means that children are going to school, and 

therefore children and balls can be very well expected into the street 

around the school. 

O action - is the action to be currently executed by the agent according to 

the plan. Since the contingency preparation process is an off-line 

analysis of the main plan, "current" here means the currently analyzed 

time point of the plan. Non-execution of planned actions (missing 

actions) may also be represented on this dimension, since contingencies 

may occur both associated with the execution of actions in the main 

plan (e.g. steering to the right may cause the car to slip sideways) as 

well as with non-execution of an action (e.g. not steering to the right 

when the road turns right may have obvious consequences...). In our 

example the action is just to drive straight ahead on street S at a speed of 

25 mph. 

O expectations - are descriptions of situations (changes in the state of the 

environment) along the plan path. In order to monitor the execution of 

the plan, the agent looks for some important such states which are 

prespecified at planning time. We call these states milestones. The 

achievement (or not) of a milestone may determine the agent to change 

the conditional plan branch which it is following, and therefore to 

change the set of contingencies for which it is on the lookout. 

According to the way they may be generated, there are two kinds of 

expectations which must be taken into account when defining a 

situation: 
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• internal expectations - due to actions performed by our agent while 
executing the plan (e.g.: an attained milestone may be entering on a 
freeway, as expected, while to the contrary, an unattained milestone 

may be a situation in which the agent did not enter the freeway, 
although this was expected as a result of executing a set of plan 
steps). Such an occurring state change can be foreseen, and if the 
change does not occur, it becomes a contingency: it may signal that 

something went wrong with the plan execution, and therefore the 

agent should try to find out what and replan, but in the meantime it 

should be on the lookout for a certain set of contingencies that may 

also appear in this situation. For example, due to driving on street S, 

the agent expects (as milestone) to arrive in front of a school. If it 
does not, then maybe the plan was not entirely correct and the agent 
is somewhere else than it should be at that time. It should therefore 
react (attempt to stop) and replan: attempt first to find out where it is 
(e.g. by reading the street signs), and then replan its route from 

there on. 

• external expectations - due to other independent agents which work 
in the same environment (e.g. changes in traffic lights). These 
agents may generate contingencies by themselves, since they 

actively change the environment; their actions may have a certain 
non-zero degree of correlation with the actions of our agent, or may 
be totally uncorrelated. For example, the traffic light is an agent 
whose actions may be somewhat correlated with our agent's actions 
if our agent approaches the traffic light from some direction where 
there are street sensors or other traffic lights synchronized with 
this one; otherwise, the traffic light's actions are totally 
uncorrelated with the actions of our agent. Two kinds of events may 
be distinguished here too: (i) something may happen (like the signal 
change) or (ii) something expected may not happen (e.g. a 
malfunctioning red signal which does not change after a long 

waiting time period). In the example situation we have been 
building in this section, a possible external expectation might be to 
notice children in the area (since it is a working day morning in 
May and we are in front of a school). However, this is not a 
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milestone: it is possible that the children may be in class at that time, 
and this fact does not alter in any way the execution of our main 

plan. 

O time - this basic characteristic of planning problems will appear in each 
of the abstract spaces we consider, although with different meanings 
(when the possibility of confusion arises, we will denote the time 
dimension for the situation space with times). Here it represents the 

amount of time elapsed since some action was taken or since a situation 

change was noticed, or the amount of time allowed until a situation 

change must appear. It is therefore strongly coupled with the 
expectations dimensions (expectations become more or less stronger 
with time passage). For example, if we allow for 3 minutes from the 
moment we start driving on street S until reaching the school and the 
expectation is not met, then something wrong may be going on (e.g. a 
traffic jam, or a deviation from the route) and the agent should try to 
replan (or maybe first to react and then to replan) for an alternate 

route. 

Problem > 

Plan, 

Context 

Action 

External 
Expectations 

Internal 
v Expectations 

Times 

Situation = fs (Problem, Plan, Context, Action, 

lnternal_Expectations, 
External_Expectations, Times) 

•Situation 

Figure 3.4. The Situation Space 

The values along each dimension of the situation space are descriptions 
of those dimensions, as given in the example built during this section and 
summarized in section 3.2.5. A point (called situation) of this space, fully 
defines (for our purposes) the agent's situation, that is: the action executed and 
the current expectations in the course of executing a certain type of plan to 
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solve a given problem in a specific general context or environment. We will 
use it further to determine whether the agent should prepare or not a reaction 
for a contingency "in the current situation". In chapter 4 we present a 
representation formalism for the values of the situation space dimensions, 
which allows us to group situations into classes to facilitate the storage of 
knowledge and the reasoning and knowledge acquisition processes for an 
agent using our framework. Figure 3.4 summarizes the functional 

dependencies described here. 

With each point in the situation space, there is a (possibly null) set of 

contingencies (and responses) associated (known to the agent through its 

knowledge base) for which the agent has to further decide whether to watch 

for and to prepare reactions for. Let us suppose that the contingencies known 

by our agent to be associated with the situation described in this section are 
the ones listed in table 3.1. However, we shall mainly discuss and compare the 
characteristics of only two of these contingencies, which have essentially the 
same reaction: (i) children running in the street in front of the car, and (ii) a 
ball appearing in front of the car. As the need will arise, we will refer to other 

contingencies in the set for comparisons too. 

3.2.3. The Criticality Space 

The criticality space describes the characteristics of a contingency and 
its associated reaction in a specific situation, and helps in establishing the 
value of performing the reaction when the contingency appears in that 
situation. In the previous subsection we used the situation space to evaluate a 
situation, independently of the contingencies that might appear in it. Here we 
evaluate the criticality of a contingency, dependent on the situation in which 
it occurs, but independent of the set of other possible contingencies for the 
same situation, and independent of the characteristics of the reactive planner 
and those of the agent. Resuming our driving example, we continue to 
exemplify our presentation by analyzing the two contingencies associated 

with the situation described during subsection 3.2.2. The four dimensions (with 

situation-dependent values) defining the criticality space are (figure 3.5): 

O time - is the time deadline, or the urgency to correct the problem raised 
by the contingency. This is in contrast with the time dimension for the 
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situation space introduced in the previous subsection, which 

represented the time allowed to pass until a contingency is declared. We 

actually use two strongly correlated values here: 

• Time re - is the actual real-time interval allowed to pass (without 

consequences) between the time a contingency is detected and until 

the corrective action is taken. 

• Timep -   is the corresponding time pressure acting upon the agent; it 

is   inversely proportional to the real time (the proportionality factor 

is a parameter of the expert model). 

In our example, in both the child and the ball case, this is the dynamic 

planning time available before the action must be taken in order to 

avoid collision, from the moment the contingency is detected. This time 

is shorter than, for example, the time allowed to respond to the radio 

turning itself suddenly loud. Therefore, the time pressure is much 

higher in the first two cases than in the radio contingency. 

O consequences - is a summary of the gravity of the consequences that 

may appear if no action is taken (before the time deadline) in response 

to the contingency. This value can (but need not) be situation 

dependent. In our example, hitting a child can be fatal, and this value 

will be very high. But hitting a ball is usually no big deal, so its value 

will be small. 

O side-effects - is a summary of the gravity of the consequences that may 

occur as a result of reacting, and therefore this characteristic is mainly 

dependent on the reaction and the situation, and less dependent on the 

actual contingency. Alternatively, it is a measure of the risk of not 

being able to reach the final goal anymore, once the reaction is 

executed. In our case, in order to avoid hitting the child or the ball 

when driving a car, the same reaction is indicated. It is a dangerous 

maneuver (braking hard implies the possibility to be hit by the car 

following our agent's car, and steering right implies the possibility that 

the agent's car may hit the sidewalk or a pole on the sidewalk) and this 

yields a high value for the side-effects characteristic in this case, i.e. 

significantly higher than, say, the side-effects of adjusting the radio. 
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O likelihood - this dimension summarizes the probability of occurrence of 
a given contingency in a given situation. However, it is important to 
note that it need not be the actual probability, or not even perfectly 
correlated to it. It can simply be a value that is approximately correlated 
to the actual probability, in that the relative values of the probabilities 
of different contingencies are reflected in their relative likelihood 
values. Initially, this value can be determined from previously known 
cases in the literature describing the domain, from the estimates of an 
expert, or from a theoretical analysis when a sufficiently strong domain 
theory exists. Later on during its lifetime, the agent may adjust it 

according to its own experience. Assuming the agent has no prior 

experience in our example, we initialize the likelihood as medium for 

both a child and a ball appearing in front of the car passing in front of 

a school, with the likelihood for the ball contingency a little higher 
than for the child one. They are both higher than the likelihood to have 
an airplane land on the street, but lower than the likelihood to 

encounter a red traffic sign. 

The values along the consequences, side-effects and likelihood 
dimensions of the criticality space are reals in the interval [0,10]. The values 
for the time pressure dimension are real numbers greater than 0; the upper 
limit for the time pressure depends on the threshold values imposed by the 

expert model, which will be discussed in section 3.3.1. All the values for all the 
criticality space dimensions may be specified qualitatively (e.g. for the 
consequences dimension using {very small, small, medium, high, very high}) 
and are then translated into numeric values. These values are situation 
dependent; they may be different for the same contingency associated with 
different points in the situation space. For example, the side-effects of the 
proposed dangerous maneuver to avoid a collision with a child or a ball are 
much smaller if driving in an empty, large parking lot, than when driving on 
a busy street. The values for the criticality space dimensions for each 
condition and situation, must be specified in the agent's knowledge base. It is 
important to note here that these values need not be very precise in absolute 
values. It is enough if they are in the correct order and approximately of 

correct relative values. This is because the method for computing the 
criticality value (section 3.3.2) and the way this value is used further in the 
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framework are robust (i.e. noise tolerant), making the entire framework 

robust. We shall substantiate these remarks in chapter 6, when we shall 
discuss the experiments we have conducted. Given these relaxed precision 
requirements, the experts with whom we have worked on the knowledge 
acquisition part of our experiments were able to specify quickly and with little 

effort suitable values for the characteristics of the contingencies in our 

experiments. 

A point in the criticality space presented here defines an expected 
value for the reaction to a contingency, versus a dynamically replanned 
response, as shown in section 3.3.2. The agent attaches to the plan such a 
reaction only if the contingency is critical enough with respect to the other 

contingencies possible in this situation, and only if it will have enough 
resources at execution time to respond in time to this contingency as well as to 
all the previously accepted contingencies. That is, as we shall see in section 
3.4, not all such reactions can be included, but monitoring actions for all 
contingencies found to be critical enough (according to an expert defined 
threshold) after this analysis will be included in the plan. 

Situation 

Criticality 
(reaction value) 

Condition 
(Contingency + Response) Criticality Space 

Timerc = f-j (Situation, Condition) Consequences = f2 (Situation, Condition) 
Side-effects = fß (Situation, Condition)      Likelihood = f4 (Situation, Condition) 
Timep = fa (Timerc) = k / Timerc Monitor = fm (Criticality) 
Criticality = fc (Timep, Consequences, Side-effects, Likelihood) 

Figure 3.5 The Criticality Space 

Figure  3.5   summarizes  the  characteristics  of the criticality  space 
defined above, and their relationships (functions) to other elements of our 
framework. Functions ^ to f4 are implicitly contained in the expert model; 

they are not explicitly used in the framework, since the values for the four 
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dimensions of the criticality space are acquired directly form the experts. 
However, for well-structured domains, it is possible that a strong domain 

theory might exist which can explicitly specify these functions. 

3.2.4. Reactive Plan Space 

The reactive plan characteristics represent one more set of features to 

consider in deciding whether to prepare a reaction to a contingency or not. 
We define a reactive plan characteristics space to help us study the 

relationships between replanning a response, versus reacting to the same 

contingency in the same situation. The factors to be taken into account here 

are the availability of computational and non-computational resources of the 

agent, expressed through the reactive planner model and the agent model 

(subsections 3.4.1 and 3.4.2). Here, the values of the dimensions in this space 
will be based on all the elements of our framework: situation, contingency 
criticality, and reactive planner and agent models. Thus, we have built our 
framework hierarchically, the coordinates of each space of the framework 
being defined in terms of the values of elements in (and the dimensions of) 

the previous spaces. 

Reactive Planner Model 
Reactive Plan 
Characteristics 

Agent Model 

Situation 

Criticality 

Inclusion 
(yes / no) 

Timer = ft (Situation, Criticality, Agent's_knowledge, Reactive_planner_model) 
Resourcej = ftj (Situation, Criticality, Agent's_knowledge, RP_model) 

Inclusion = fr (Timer,Resourcei Resourcen,Agent_model,Situation,Criticality) 

Figure 3.6. Reactive Plan Characteristics Space 

The dimensions of the reactive plan space, which also represent the 

characteristics of reactive plans, are (figure 3.6): 
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O timer - is the time needed by the agent between the moment a 

contingency is detected, and until the proper reaction to it can be 

started; it depends on both the computational and non-computational 

resources of the agent, their capabilities and their load in that situation. 

The value of this dimension grows with the number of the 

contingencies included in the reactive plan and with the complexity of 

identifying them and their reactive responses. 

O resource} - is the total requirement imposed on the agent's i-th resource 

by the reactive plan containing the current contingency analyzed plus 

all the contingencies previously decided to be included for reactive 

response and associated with this same situation. These dimensions are 

of special concern for real systems. Both computational and non- 

computational resources (including memory) are limited, and their 

availability may be decisive for the successful completion of the 

reaction (e.g., in the limit, a universal plan for a real domain may 

require an infinite amount of memory, which is unacceptable in real 

systems). 

Inclusion of a reaction to a new contingency depends on the size of the 

resulting reactive plan, which combines it with the set of all the reactions to 

contingencies already decided to be included in the reactive plan for that 

situation. These contingencies were obtained from the agent's knowledge base 

where they are indexed by their applicable situations, and have been 

previously analyzed by this framework (since their criticality must be higher 

than the criticality of the currently analyzed contingency). 

The agent's knowledge base includes all the contingency-reaction pairs 

known to the agent, indexed by the situations in which they may appear, and 

with associated descriptions for the criticality space dimensions. We shall 

present in chapter 4 a formalism to construct languages for representing 

situations, contingencies and reactions in the knowledge base, designed to take 

advantage of the regularities of the application domain. 

To continue with our example, the more contingencies (selected from 

the 13 contingencies given in table 3.1) are included in the reactive plan, the 

more likely it is to decrease the responsiveness of the agent to each of the 
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contingencies included. Since we have no information (yet) on the structure 
of the reactive plan built by the reactive planner, and also on the agent's 
resource limitations, we cannot actually specify how much each of the added 
contingencies will increase the response time (we shall see in section 3.4.1 
that for some structures of reactive plans, adding some new contingency may, 
in some circumstances, not increase the response time at all). In any way, the 
agent will always try to include at least the reaction to the child-in-front-of- 

the-car contingency, and will continue to add to it as many as possible, in the 

order given in the table. However, it will not add a contingency if either (i) its 

estimated response time would be bigger than its allowed response time, or (ii) 

if adding it would determine the response time to any previously included 
contingency to exceed its allowed response time (given by the Timerc value of 

the criticality space associated with this contingency). 

Figure 3.6 summarizes the characteristics of the reactive plan space 
defined above, and their relationships (functions) to other elements of our 
framework. Functions ft and all ft. are explicitly contained in the reactive 

planner model and are then used in conjunction with the limitations on the 

agent resources defined by the agent model. 

3.2.5. Summary of the Framework 

The purpose of our entire framework (and of the thesis for that matter) 

is to keep the reactive response time and other resources for very critical 
contingencies within acceptable (i.e. useful) bounds, while ensuring reactive 
behavior at least for the most critical contingencies known for every 
situation. Given the information contained in the three spaces defined above, 
the agent has all the data it needs to be able, for every contingency, to take the 
decision of whether to include it or not in the reactive plan associated with a 
given situation. The result of processing the contingencies through the entire 
framework is a partition of the set of known contingencies possible in a given 

situation into two classes: to be included in and to be excluded from the 

reactive plan. 
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Figure 3.7 shows a detailed summary of the framework for selecting the 

contingencies for which reactions are prepared and those for which 
monitoring actions are added to the plan. It details the diagram presented in 
figure 3.3, and essentially combines figures 3.4, 3.5 and 3.6. At any time, the 
agent knows of a set of contingencies and reactions to them. Each contingency 
may be associated with several regions in the situation space, and each point 
in the situation space may have several contingencies associated (many-many 
relationship). Each contingency is characterized in a situation by a criticality 

point. While the criticality value alone decides which contingencies will be 

monitored in which situations, the decision for including the treatment of the 

contingency in the reactive plan associated with that situation is made based 

on both the criticality value, and the reaction value of the entire reactive 

plan for that situation, in relationship with the reactive planner model and 

the agent model. 

Situation = fs (Problem, Plan, Context, Action, lnternal_expectations, 
External_expectations, Times) 

Timerc = fl (Situation, Condition) 
Consequences = f2 (Situation, Condition) 
Side-effects = f3 (Situation, Condition) 
Likelihood = f4 (Situation, Condition) 

Timep = ftc (Timerc) = k / Timerc 

Criticality = fc (Timep, Consequences, Side-effects, Likelihood) 

Monitor = fm (Criticality) - Expert Model 

Timer = ft (Situation, Criticality, Agent's_knowledge, 
Reactive_planner_model) 

Resource! = fy (Situation, Criticality, Agent's_knowledge, 
Reactive_planner_model) (i = 1,2,...) 

Inclusion = fr (Timer, Resourcei,..., Resourcen, 
 Agent_model, Situation, Criticality)  

Figure 3.8. Functional Relationships for the 
Plan-to-React Decision Framework 

The  set  of functional  relationships  among  the elements  of the 

framework is summarized in figure 3.8. 
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Appendix 1 presents the general agent architecture and the basic data 

flow during the plan modification process. 

Our agent integrates reactive responses with the plan to compensate for 

the unfeasibility of universal plans. It does not only try to prepare for the 

most frequent or likely contingencies, but also for some very infrequent ones 
which are very critical. Due to real-world resource limitations, some of the 
frequent but not very critical contingencies may be excluded from reaction in 
favor of less frequent but very critical ones. 

Space Dimensions 

Situation 

Problem Deliver package to work 

Plan drive car 

Context school time (May, week) 

Action drive straight, 25 mph 

Intern. Expectations reaching school 

External Expectations children in sight 

Time max. 3 mins. 

Contingency Child / Ball in front of car 

Criticality 

Time to avoid collision (short) 

Consequence fatal (very high) / small 

Side_effects high 

Likelihood medium 

React. Plan 

Characts. 

Time N.A. / to be considered 

Memory N.A. / to be considered 

Figure 3.9. Example for the driving domain 

Two advantages of the framework introduced here are: (i) its 
specification is general, domain and agent-independent, so we expect it to be 

applicable to a wide variety of agents working in a variety of environments, 
and (ii) it is highly parameterized, which ensures a proper adjustment of the 

framework to  a  specific  agent  and  to  domain-dependent  requirements 
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(domain, expert, reactive planner, and agent characteristics and capabilities)! 

as well as to the desired type of behavior. In chapter 5 we claim and justify 
that the framework, as presented here, is free of redundancies; that is, each of 
the elements included in our framework are necessary to completely describe 
the characteristics of a contingency and its reaction in order to allow the 
agent to decide at planning time whether to prepare for the reaction to that 
contingency in that situation. While we cannot prove that the framework is 
also sufficient (i.e. that there are no other elements needed for this decision 
besides the ones described here), the experiments described in chapter 6 were 

successfully conducted using this framework. Should the need to extend the 

framework arise, we believe that it can be easily done, while preserving the 

elements and their structure discussed here. 

Space Dimensions 

Situation 

Problem inquinal hernia 

Plan surqery procedure H 

Context heart disorder history 

Action apply anesthetic 

Internal Expectations qet patient asleep 

External Expectations surqeon pert, incision 

Time from action to sleep 

Contingency heart failure 

Criticality 

Time to restore heart (short) 

Consequence fatal (very hiqh) 

Side effects very low 

Likelihood hiqh 

React. Plan 

Characts. 

Time N.A. (irrelevant) 

Memory N.A. (irrelevant) 

Figure 3.10. Example for the anesthesia domain 

1 In a specific setting (domain, expert, reactive planner and executing agent), these 
parameters can be automatically or interactively learned using paradigms like the ones 
proposed in [Dabija, 1990; Dabija & al., 1992a,b]. 
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Figure 3.9 presents a summary of the car driving example used 
throughout this section to illustrate our framework. Figure 3.10 presents an 

example from a different domain - anesthesiology, to show the generality of 

our theoretical framework. 

The agent is an anesthesiologist preparing for an operation during 

which contingencies that endanger a patient's life may appear. The situation 
space is defined by the general characteristics of the operation (inguinal 
hernia to be treated through a specific surgery procedure performed on a 
patient with heart disorder history). The plan analysis is at the point where 
anesthetic is applied. This action will give rise to two kinds of expectations 
(milestones) to be watched for: as a result of the action, the patient should get 
asleep after a certain amount of time, and from the external environment the 
expectation of an incision being performed by a surgeon. At this point, the 
anesthesiologist agent analyzes as a possible contingency a heart failure. It 
has a short deadline (the time to restore the patient's heart without causing 
brain damage) and the consequences of not reacting in time are fatal (very 
high). It also has a high likelihood of occurrence, given the patient's medical 
history. As we shall see in the following sections, since these characteristics 
yield a very high criticality value for this contingency, the agent will 
probably decide to add monitoring actions to the plan, and will probably 
include its reaction in the reactive plan for this situation, almost regardless of 
the rest of the contingencies relevant to the same situation (analogous to the 
child contingency in the driving example). In chapter 6 we present a larger 
set of results which we have obtained from our experiments in this medical 

domain. 

3.3. Establishing the Value of Reaction 

As mentioned in the overview of the framework which we made in 
section 3.2.1, our framework has two critical phases: establishing the 
criticality (or reaction value) of the contingency, and making the decision of 
whether to include its associated reaction into the reaction plan built for the 
current situation. In this section we will concentrate on the first of these 

phases, and will leave the second one for the next section. But before we can 
present our method for establishing the reaction value of a contingency, we 
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have to talk briefly about the expert model, since it is according to such a 

model that the values for the criticality space dimensions are specified. 

3.3.1. The Expert Model 

The situation-dependent criticality space values for a contingency- 

reaction pair are supplied by an expert, and are thus subject to the personal 
interpretation of the expert, according to his own expert model. As our 
experiments have shown (chapter 6), the experts need not be very precise in 
the absolute values they provide. It is enough if they are in the correct order 
and approximately of correct relative values. This is because the method for 

computing the criticality value (section 3.3.2) and the way this value is used 

further in the framework are robust (i.e. noise tolerant), making the entire 

framework very robust. We shall substantiate these remarks in chapter 6, 

when we shall discuss the experiments we have conducted. Given these relaxed 

precision requirements, the experts with whom we have worked on the 
knowledge acquisition part of our experiments were able to specify quickly 
and with very little effort suitable values for the characteristics of the 

contingencies in these experiments. 

The values specified by the expert for each contingency are the real 
time interval allowed between the moment a contingency is detected and until 
its reaction is started, the consequences of not reacting to the contingency, 
the side-effects of executing the reaction associated with the contingency, and 
the likelihood of occurrence of the contingency in that situation. The last 
three values are real numbers in the interval [0,10]. The values for the time 
pressure dimension are positive reals; the upper limit for the time pressure 
depends on the threshold values imposed by the expert model, which are 
presented below. All these values may be specified qualitatively (e.g. for the 
consequences dimension using {very small, small, medium, high, very high}) 
and are then translated into numeric values (e.g., corresponding to the 
previous set of qualitative values, these numeric values will be in the 
intervals: {(0.2], (2,4], (4,6], (6,8], (8,10]}. As seen in previous chapters, these 
values are situation dependent; they may be different for the same 

contingency associated with different points in the situation space. 
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The expert model reflects the expert's interpretation of the domain (and 

the way he or she estimates the values of the contingency characteristics). 

This model must include the following threshold values, which will be used in 

the next section in our analysis: 

O Tmax - is an upper limit on the reasonable values for the time pressure 

exerted by contingencies on the agent. A time pressure higher than 

this value makes the reaction useless since it can only be taken too late 

(the agent has no way to react before the deadline). In our driving 

example, the meteor contingency has a too short deadline to be 

responded to realistically, so the agent is better off by not including 

such a reaction in the reactive plan (and leaving the reactive plan only 

for contingencies that can be responded to in reasonable time). 

O Tmin - is a lower limit on the time pressure values for which the agent 

should try to respond reactively. If the agent has more time than this 

threshold, then it can probably dynamically replan its response, thus 

leaving room in the reactive plan for other, more time pressuring 

contingencies. Therefore, the value of reacting here is significantly 

lower, although not zero - if the agent has left enough execution 

resources, then maybe it is still a good idea to prepare a reactive 

response for such a contingency. For example, if the agent driving a 

car detects a traffic jam, it does not have to react (well, usually...) but 

can take its time to replan an alternate route. However, we can easily 

imagine traffic jam situations in which the agent is much better off by 

first reacting (and, say, leave the freeway) and then replanning, than 

just by taking its time to dynamically replan (and, say, pass the freeway 

exit). 

O Lmin - is a lower limit on the likelihood of occurrence of contingencies 

for which the agent should prepare reactions. A likelihood value lower 

than this threshold indicates that the contingency is so unlikely to 

appear in this situation that the overhead of preparing and managing a 

reactive response is probably unjustified, so the value of reacting here 

is significantly lower. An example here can again be the meteor 

contingency, and maybe the airplane landing contingency too. This 

treatment   can   be   dangerous   in   certain   domains   where   the 
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consequences may still be fatal, but in such cases this threshold can be 
lowered to zero. Also, the value of reacting if the likelihood drops below 
the threshold is again still positive (though much smaller), so if the 
agent has left enough execution resources, then it may again be a good 

idea to prepare a reactive response for such a contingency. 

O CSmin - if the side-effects of a reaction to a contingency outweigh the 

consequences of not reacting by more than this value, then it is 
probably wiser not to take any action. In this case, like in the upper 
time pressure threshold, Tmax, the value of reacting to the contingency 

is considered zero. An example is the contingency of a ball popping up 

in front of the agent's car: the side-effects of taking the recommended 

dangerous maneuver outweigh by far the consequences of hitting a ball 

at 25 mph, so the agent is better off by ignoring this contingency from 

the reactive plan preparations. 

O MON - is a criticality threshold beyond which monitoring actions for the 
contingency should be included in the main plan (even if reactions to it 
cannot be included); the reason is that the decision to include a reaction 
for a contingency is taken dependent on the agent's run-time resources 
and performance, which may change over time, but are not taken into 
account at this stage of the decision process. Also, these monitoring 
actions may detect a contingency for which no reactive response was 
prepared, but for which the agent has the resources to dynamically 

replan its response. 

The agent model must also specify the function ftc which transforms 

real-time values into time-pressure values. These pairs of values are inversely 

proportional, so this function has the form: 

Timep = ftc (Timerc) = k / Timerc 

where only the constant k has to actually be specified by the expert model, and 
has to be in some (weak) correlation with the two time pressure thresholds 

presented above. 
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Also implicitly contained in the expert's model are the functions f i, to f4 

which associate the values for the criticality space dimensions with each pair 

condition-situation, as discussed in section 3.2.2. 

3.3.2. Value of Reaction 

The criticality value for a contingency-reaction pair is a measure of the 
merit of the reaction to the contingency as opposed to dynamically replanning 
a response to that contingency, in a particular situation in which the 

contingency is known to possibly appear. This value induces an order relation 
on the set of contingencies that can appear in that situation. This order is used 

to allow the selection of those contingencies that should be reacted to given 
the limited resources of the agent. Function fc, which computes the criticality 

value for a contingency given the values of the characteristics of the 
criticality space for the contingency, implements the evaluation function of 
the behavioral model to be exhibited by the agent. 

The behavior model represents the type of behavior which the agent 
attempts to simulate. By imposing an order (i.e. a preference of treatment) on 
the set of contingencies associated with a situation, the agent commits itself to 
a pattern of reactive behavior. It involves both which contingencies are 
preferred over which, and which contingencies are ruled out altogether from 
the reaction process. Each behavior model is characterized by an evaluation 

function which, given a set of conditions (pairs contingency-reaction) and a 
situation in which they apply, computes a score with the following property: 
the higher this score is, the better (more appropriate) that set of 
contingencies is (according to the particular reaction philosophy of that 
behavior model). The evaluation function orders the set of contingencies 
associated with a situation according to their priority for a reactive response. 

The behavior model is implemented in our framework through the 
relative values of the parameters in the function computing the value of 
reaction (which is presented here), and through the values of the thresholds 
on the criticality space dimensions (presented in the expert model) relative to 
the values of the parameters of the criticality function. In chapter 5 we prove 
a few properties of the relationship between the evaluation function of a 
behavior model and the criticality function defined below. The most important 
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property is that both functions define the same order relation on a set of 

contingencies associated with a same situation, which implies that the 

criticality function can be consistently used to implement behavior models. 

The criticality function we have used in our experiments has the 

following general form: 

Criticality = fc (t, c, s, 1) = 

if (t > Tmax) 
then      fc = 0 

elseif   (c + CSmin - s < 0) 

then   fc = 0 

elseif   (t < Tmin)   

then 

elseif   (1 < Lmin) 

fc = VtPl*cP2*sP3*(c+s)P4*(c+CSmin-s)P5*lP6 

then      fc = VtPl*cP2*sP3*(c+s)P4*(c+CSmin-s)P5*lP6 

else fc - tPl*cP2*sP3*(c+s)P4*(c+CSmin-s)P5*lP6 

where, for the purpose of stating the criticality function in a more succinct 

form, we made the following notations for the (situation dependent) criticality 

space dimensions: 

t = Timep (is the time pressure) 

c = Consequences (of not reacting) 

s = Side-effects (of the reaction) 

1 = Likelihood (of encountering the contingency) 

Parameters Tmax, Tmin. CSmin, Lmin are dependent on the domain and 

are defined by the expert specifying the domain knowledge. Their meaning 

has already been defined in the previous subsection. They are important in 

implementing a specific behavior model. For example, if the upper threshold 

on the time pressure Tmax is made lower, than more contingencies will be left 

out of the reactive plan since the agent estimates that there is not enough time 

at execution time to give a timely response to these contingencies. This 

behavior simulates the resignation behavior model [FAA, 1991] (the agent 

leaves responses to contingencies to others, since it believes there is no use to 
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try to react to them, i.e. it believes that there is no time to take care of them 

anyway). On the other hand, taking Tmax= °° emulates a behavior intended to 

avoid legal liabilities by always doing something. 

Parameters pi to p6 are also used to model different (human) behaviors: 

their relative values place the agent in different behavioral models and can be 
viewed as labels for human reactive behavior. For example, p1>p5>p£>P2 

(with P3 and p4 very low) represents what is usually accepted as normal 

behavior in the car driving domain: most importance is given to the time 

pressure and then to the difference between consequences and likelihood, 

with more emphasis on consequences; lastly, it also considers the likelihood of 

occurrence. Another behavior model in which consequences and especially 

side-effects are almost disregarded with respect to time pressure implements 

an attitude of invulnerability - the agent is prone to risk taking and does not 

believe that anything wrong can happen to him. Again, it is important to 

notice the robustness of our model: the only important thing about these 

parameters are their relative values, and these can themselves vary widely 

while still obtaining consistent results. This property makes the life of the 

domain experts participating in the knowledge acquisition and behavior model 

specification process much easier. In chapter 6 we shall discuss a number of 

experiments we have made and how they justify our claims for the framework 

robustness. 

As stated before, the value of reaction associated with a contingency 

induces a total order relation on the set of contingencies associated with a 

certain situation. This is only a partial order on the set of all contingencies 

known to the agent, since contingencies in different situations may not 

(although sometimes can) be comparable according to their criticality values. 

This order relation is defined as: 

"A is more_critical_than B" if and only if: 

A and B are contingencies applicable in the same situation S, and 

A has higher criticality value than B, or 

A and B have same criticality, but A has higher consequences, or 

A and B have same criticality and same consequences, but A has 

higher likelihood. 
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This ordering characterizes the behavior model of the agent. It will 

subsequently be used to choose the contingencies for which reactions are 

prepared (section 3.4.3). 

Different combinations of these parameters defining the criticality 

function are used in both the theoretical and experimental evaluations to 
prove certain conjectures. In chapter 5 we claim that the parameterized 
function defined here can implement the human reactive behavior models 

described in the literature, and while we cannot formally prove this claim, we 
justify it through the experiments discussed in chapter 6. Therefore, our 

framework can also be used in psychological studies of "hazardous" attitudes in 

certain high-risk domains like nuclear power plant operation and airplane 

flying. In section 6.3 we present and briefly evaluate a series of experiments 
we have conducted with our framework to simulate a number of reactive 

behavior models described in the literature. 

3.4. The Reaction Decision Making 

Making the actual decision of whether to include the contingency and 
its associated reaction into the reaction plan built for the current situation is 
the second and last critical phase of our framework. This phase is based on all 
the elements and the information previously acquired and computed by the 
framework. As shown in figure 3.7, there are two agent dependent models that 
participate in this phase: the reactive planner model and the agent model. 
They synthesize the agent's properties and the limitations on its resources at 
planning time and execution time respectively. We first make a brief 
presentation of these models and the information they are expected to contain, 

and then we give the actual algorithm for deciding whether to plan to react. 

3.4.1. The Reactive Planner Model 

The reactive planner model describes the planning time properties of 
the agent, and the characteristics of the reactive plans built by the agent and 
their relationships to the agent's execution time resources (computational time 
as well as other non-computational resources). This model must allow the 
agent, at planning time, to estimate the variations in execution time resource 
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requirements with respect to the growth of the reactive plan, namely with the 
number of contingencies and reactions included in the reactive plan. This is 
accomplished by the functions ft and fq in figure 3.11 which depicts the 

entire decision making process presented in this section. 

Reactive Planner Model: 

ft = ftQ - ftj 0 = 1.2.-) 

Reactive Plan 
Characteristics 

Agent Model: 
Kt) Kj (i = 1,2,...), 
fro,frj(i = 1,2,...) 

Situation 

Criticality 

*r^ Inclusion 
(yes / no) 

Timer = ft (Situation, Criticality, Agent's_knowledge, 
Reactive_planner_model) 

Resource; = fc (Situation, Criticality, Agent's_knowledge, 

Reactive_planner_model) 
Inclusion = fr (Timer, Resourcei,..., Resourcen, Agentjnodel, 

Situation, Criticality) 

Figure 3.11. The Reaction Decision Making Phase 

Function ft estimates the time needed by the agent from the moment it 

detects the existence of a contingency and until it can react to this particular 
contingency, when the reactive plan known to the agent in this situation 
contains the response to this contingency as well as responses to all the 
contingencies with higher criticality which apply in the current situation. 
The reactive planner model assumes that the agent can devote all its 
computational resources to this task (this assumption is then taken care of by 
the agent model, described in the next section, which takes into account any 
overhead that the agent may experience in that situation). Function ft 

estimates how much does the reactive response time increase, on average, by 

adding this contingency to the reactive plan. 



68 Chapter 3. APPROACH 

k>0- 

*\\S J12 

t21/ 
Vj22    ^3/ J24 

C1 c2 c3 c4 c5   c6 c7 c8 

(b) Decision Tree 

Figure 3.12. Two reactive plan models 

Two commonly encountered examples of reactive planner models are 
decision lists and decision trees. For a reactive planner based on decision lists 
(figure 3.12.a), the time to react increases approximately linear with the 
number of contingencies to be considered, since for each new contingency 
added to the reactive plan, a new test must be added to discriminate it. 
Therefore, the time needed to react to a contingency according to this model 
will be the sum of the times required for each test that has to be done before 
deciding on the contingency. If we assume the testing time to be roughly 

constant, then the estimated time to react becomes: 

Timer = test_time * rank_in_reactive_plan 

i.e. is directly proportional to the number of tests to be performed which is 
equal to the number of levels in the decision list before the contingency in 
question. In figure 3.12, ti (i = 0,...,3) and ty (i = 0,1,2; j = 0,...,4) are tests to be 

performed in order to determine the proper reaction to the contingency, and 
Ci (i = 1,...,8) are the contingencies (and their associated reactions) for which 

the reactive plan contains responses. 

If the reactive planner uses decision trees to index the reactions in the 

final reactive plan, then the time to reach a response is closer to the logarithm 
of the number of contingencies (the base of the logarithm is equal to the 
branching factor (assumed constant) of the decision tree), assuming again an 
approximately constant testing time. Figure 3.12.b presents such a complete 
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binary tree, for which the reaction time for each of the contingencies is 

roughly: 

Timer = test_time * log2 (number_of_contingencies_in_reactive_plan) 

i.e. is directly proportional to the logarithm of the number of contingencies 
treated by that reactive plan (we assume complete decision trees, in which the 
k leaves (contingency-reaction pairs) are all situated at level m if k = 2   , or 2p 

m    1 
of the leaves are at level 2m and the other k-2p leaves are placed at level 2 

when k = 2m_1 + p, (1 < p < 2m_1). 

Similar reactive planner models can be built for other methods of 

organizing the reactions in reactive plans. 

Functions fti have the same mission for each of the other critical 

resources of the agent (e.g. the amount of memory needed by the reactive 
plan, as well as any other non-computational limited resources that the agent 
might need in order to start its reactive response), as ft has for computational 

time. 

The two formalisms for structuring reactive plans mentioned above 
(complete binary decision trees and decision lists)  deserve here a brief 
comparison. At the first glance, a qualitative reasoning seems to imply that 
decision trees are better (or at least never worse) than decision lists. After 
running the experiments described in chapter 6, we have found out that this is 
not necessarily the case. We shall show here when this is not necessarily true, 
and analyze and justify it. (A formalism is considered better if it can include 
more reactions to more critical contingencies in the reactive plan to be 
executed by the same agent with the same resource characteristics and 
limitations, in identical situations). During this discussion we will assume that 
all the tests require the same amount of time (T), and that there are enough 
tests available such that any arrangement of reactions in the respective 
reactive models is possible. In this case, responding to the n-th contingency in 
the reactive plan will take time T * n in the decision lists case, and T * log2 (n) 

in the case of complete binary decision trees. 

We must note two things here: (i) different contingencies may have 
significantly different time pressures  (i.e. significantly different allowed 
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response times), and (ii) a structural difference between decision lists and 
decision trees is that the complete decision tree takes the same amount of time 
to respond to all the contingencies, while decision lists respond faster to 

contingencies placed towards the root of the list, and this response time 

increases with the distance of the condition from the root. 

Therefore, once the decision tree reactive planner has decided to 

include a given contingency (say C) in the reactive plan, it can only add so 

many contingencies to the plan until the estimated response time to 

contingency C becomes larger than its allowed response time. This means that 

the decision tree formalism is actually limited by the contingency with the 

highest time pressure which the agent decided to include in the reactive plan. 

This is not the case however for reactive planners based on decision lists. 
Here, the contingencies with the highest time pressure can be placed towards 
the root of the tree, and the response time to them will not be affected by the 
number of contingencies covered by that reactive plan. Therefore, 
contingencies with lower time pressure can still be added towards the end of 
the decision list, since they allow for a longer time of response, and will not 
affect the response time for contingencies placed higher on the list. A number 
of experimental results which support this analysis (actually, as we stated 
earlier, they have prompted this analysis) are presented and discussed in 

section 6.2. 

In summary, when the response times allowed by the contingencies 
under consideration vary within a small relative range, the decision tree 
based reactive planner will be able to include more such contingencies (since 
all its leaves are reached in roughly the same amount of time). On the other 
hand, when the time pressures of the contingencies vary widely (which tends 
to be the case in real-world domains), decision lists are better suited for 
including responses to a larger number of contingencies, since testing first 
for contingencies with shorter time of response allows timely reactions to 
more contingencies with lower time pressure. Naturally, the best solution 
would be an incomplete decision tree which combines the advantages of both 

formalisms. 

In this thesis, we assume that the agent has enough planning resources 
and time to build the most comprehensive reactive plans which do not exceed 
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its execution time resource limitations. However, this framework may also be 
applied when dynamically replanning courses of actions, and when the 
limitations on the agent's planning resources needed to build such reactive 
plans may become a factor to be considered. In such cases, the reactive 
planner model may also be required to estimate the complexity of the reactive 

plan structuring algorithm. This estimate can then be taken into account by 
our framework, and may lead to the decision of reducing the set of conditions 

to be included into the reactive plan, in order to ensure that the time required 

to construct the reactive plan will not exceed the time allowed for this task. 

3.4.2. The Agent Model 

The second agent dependent model involved in this later stage of the 
framework in which the agent makes the actual decision of whether to include 
the contingency and its associated reaction into the reaction plan built for the 
current situation is the agent model. It synthesizes the agent's properties and 

the limitations on its resources at execution time. 

The agent model describes the (situation dependent) response 
capabilities of the agent (figure 3.11). The functions (fq ) describe the 

variation of the availability of resource i (i=0 for computational time) due to 
the fact that the agent cannot devote its entire resource! exclusively to 

responding to that contingency. For example, the computational load on the 
agent slows its responsiveness by a factor Kt greater than 1, and can be 

expressed by: 

fro (timer) = timer * Kt; 

or if the agent can devote itself to solving this contingency only after some 
constant time Ka, then 

fr0 (timer) = timer + Ka, 

and so on. 

The agent model also supplies the amount of each resource (Kl, K.2, ...) 

that may be allocated to reacting in the given situation, for the non- 
computational resources. Example of non-computational resources are, in the 
anesthesiology domain, oxygen masks and ventilators. Such resources are 
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available in limited quantity, and also may only become available after a 

certain waiting period. The agent model does not have to specify such an 
upper limit on the availability of resources for computational time, since this 

is already specified separately for each contingency through the reaction 
time allowed to respond to it (the time pressure dimension of the criticality 

space values associated with the condition in the agent's knowledge base). 

The agent model is very important in domains where non- 
computational resources may not be available all the time, but may be obtained 
after some waiting period (as in medical domains like anesthesia or intensive 

care monitoring, or in nuclear power plant operation). 

By comparing the requirements of each of the agent's run time 

resources, for the set of the previously included contingencies plus the 

current contingency under consideration, with the limitations on the 

availability of that respective resource (given by the agent model for non- 
computational resources and the agent's knowledge base for time), the agent 
can decide whether this contingency can be included in the reactive plan for 
the current situation or not. We shall analyze this decision process in detail in 

the next subsection. 

3.4.3. Deciding Whether to Prepare to React 

The final purpose of this entire framework is to decide, for each 
contingency-response pair associated with a given situation, whether to 

preplan the reaction to it or not. As shown in figure 3.11, this decision is taken 
by comparing the estimated execution time resource requirements for the 
agent to respond to all the contingencies already decided to be included in the 
reactive plan plus the contingency currently under consideration, with the 
allowed response times for each of these contingencies in that situation. 

Given the criticality of the current contingency and the set of the other 
contingencies known possible in the current situation, this decision process 
proceeds as follows: the framework computes the agent's execution time 

resource requirements to respond to any of the contingencies as: 

Resource. = ft. (Situation, Criticality, Agent's_knowledge, RP_model) 
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for each resource, (i = 0,1,...) of the agent (for a unitary exposition we shall 

sometimes call the agent's computation time as resource^.; all other resources 

of the agent (possibly including the amount of memory needed by the reactive 
plan, as well as other domain dependent critical and limited resources like 
ventilators in an intensive care unit, etc.) are numbered starting with 1. The 
functions  ft.  are given by the reactive planner model, and estimate the 

increase in resource, requirements by adding this new contingency-reaction 
pair to the reactive plan. For i = 0, ftn = ft estimates how much does the reactive 

response time (considered from the time a contingency is detected, and until a 

reaction to resolve it can be taken) increase, on average, by adding this 
condition  to  the  reactive  plan.  As  discussed  in  subsection  3.4.1,  ft is 

approximately linear for decision lists and roughly logarithmic for decision 
trees. Obviously, the better the reactive planner model is (i.e. the better these 
estimates are), the better use of the execution time resources of the agent will 
be ensured by the selected set of contingencies. 

As we have mentioned in section 3.3.1, the decision to monitor for a 
contingency is taken based only on the criticality value of the contingency, 
and independent of the reactive plan characteristics. The reason is that the 
decision to include a reaction for a contingency is taken dependent on the 
agent's run-time resources and performance, which may change over time, 
but are not taken into account for monitoring purposes. Also, these 
monitoring actions may detect a contingency for which no reactive response 
was prepared, but for which the agent has the resources to dynamically 
replan its response. The decision to monitor is taken as a threshold function on 
the criticality of the contingency: 

Monitor = f    (Criticality) = (criticality >   MON) = 

if (criticality >  MON)       then     fm = yes 
else fm = no . 

where MON is the monitoring threshold defined by the expert in the expert 
model (section 3.3.1). 

The final decision of preparing a reaction for the currently analyzed 
contingency is taken by the function fr: 
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React = fr (Timer, Resourcei,...,Resourcen, Agent_model, Situation, Criticality) 

if criticality < MON then fr = no 

elseif fro(Timer) > Timerc then fr = no 

elseif fri(Resourcei) > Ki then fr = no 

elseif fr2(Resource2) > K2 then fr = no 

elseif frn(Resourcen) > Kn then fr = no 

else fr = yes 

n 
= (monitor A J|(fr.(Resource^ <    K.))   , 

i-0 

where resource0 is the real computational time, and Ko = Timerc is the real 

response time allowed by the contingency for the response to be started 
without consequences (the time pressure dimension of the criticality space 

values for this contingency). 

The functions fq are given by the agent model, and describe the 

execution time overhead imposed by other processes which the agent has to 
attend to in the same time in which it must respond to the contingency. 
Equivalently, they describe the availability of resource! for this reactive plan. 

They may be therefore situation dependent, and can be described as such in 

the agent model. A common expression for these functions is of the form: 

fr. (resource^ = resourcei * kt + k& , 

where k is the overhead due to the agent's load (or the portion of it which can 
be expressed as a delaying factor), and ka is an initial delay or cost associated 

with the use of that resource (for example, a process which cannot start before 
a certain lead time, or a resource which cannot be delivered to the agent 
before a waiting period has elapsed). All these parameters must be specified by 

the agent model. 
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//  input a situation 

//  output a list of reactions (symptoms-actions pairs) for that situation 

cr-list <- extract from the agent's KB all contingency-reaction pairs matching situation; 

//  cr-list is the set of all the contingencies known to the agent to be possible in situation 

for each contingency in cr-list    do 

time-pressure <- ftc (timerc); // expert model 

criticality <- fc (time-pressure, consequences, side-effects, likelihood); // behavior model 

if criticality > MON 

then monitor <-true 

else monitor <- false 

if not monitor 

then eliminate this contingency from cr-list 

enddo 

cr-list <- order cr-list by criticality value, then by consequences, then by likelihood 

include <- () 

//  include is the set of all the contingencies to be included in the reactive plan 

// associated with situation 

for each contingency in cr-list  do 

timer <- ft (include + contingency, situation); 
resourcej <-ftj (include + contingency, situation); 

inclusion <- fr (timer, resource-i,..., resource^ timerc, kl, -, kk) 

// fr returns true iff there are enough resources to respond reactively to all 
//   contingencies previously added to the list include and to the currently 
//    considered contingency. 

if inclusion 

then add contingency to include 

enddo 

return the list include. 

Figure 3.13. Reaction decision making algorithm 
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function fr (timer, resourcei resourcek, timerc, h kk) 

// returns true iff there are enough resources to respond reactively to all contingencies 
// previously added to the list include, and to the currently considered one. 

if frQ (timer) > timerc 

then return NO; 

for i = 1 to number_of_agent_resources do 
if frj (resources) > kj 

then return NO; 

enddo 

for each contingency in include do 

if frQ (contingency.timer) > contingency. timerc 

then return NO; 

for i = 1 to number_of_agent_resources do 
if ir, (contingency, resource;) > kj 

then return NO; 

enddo 

enddo 

return YES. 

Figure 3.13. Reaction decision making algorithm (continued) 

One final set of parameters specified by the agent model are the 
execution time resource limitations of the agent (Ki , i = 1,2,... , in the formula 
for fr above). They do not include Timerc which is a characteristic of the 

contingency and therefore is specified in the agent's knowledge base. Thus, 

what the decision function does is simply to check that: 

(i) the contingency is critical enough to be at least monitored for, 

(ii) the agent will have enough time at execution to respond to this 
contingency in the context of the larger set of contingencies 

considered for reactive response in the same situation, 
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(iii) none of the execution time limitations of the agent resources (besides 
computational time) may be exceeded when attempting to respond to 
this contingency, considering the entire reactive plan containing it 
(i.e. all the contingencies with higher criticality, already decided to be 

included in this reactive plan), and 

(iv) the agent's run time resources are still enough to respond properly to 

all the contingencies previously included in the reactive plan, when 

this new contingency is added to the reactive plan. 

This decision process ensures that no reaction is included for 
contingencies which are not monitored for, and that there is enough available 
of each resource in order to attempt a reaction for all the contingencies 
included in a reactive plan. For the computational time resource, this means 
that the time needed to start a reaction to the contingency is less than the real 
time allowed before the action must be taken (otherwise the reaction becomes 

useless). 

Figure 3.13 makes a brief summary of the algorithm for deciding, given 
a plan execution situation, on the set of contingencies to be included in a 
reactive plan which will be associated with the conditional plan before the 
actual execution starts. The actual decision function fr is presented separately 

in the second part of the figure. 

The fourth test mentioned above essentially repeats the second and 
third tests  (carried out by the functions fr. , i = 0,1,...) for each of the 

contingencies already decided to be included in the reactive plan. It must be 
done each time a new contingency is considered for addition to the reactive 
plan, because the addition of the contingency, while possible from the point of 
view of the restrictions imposed by its characteristics, may increase the 
resource requirements to respond to previously included contingencies and 
may therefore exceed the restrictions imposed by their criticality 
characteristics. For example, in the case of a reactive planner based on 
decision trees, adding a new contingency may force the reactive planner to 
add one more level of tests in the decision tree, and thus increase the response 
time to all the contingencies included in this reactive plan. This way, some of 
them may now exceed the real time allowed for reaction to be taken, and their 
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reactions may become useless in that situation. (Conform to the analysis in 
section 3.4.1, the time to react to all the contingencies contained in a reactive 
plan with a complete decision tree structure is approximately constant and 

proportional to the depth of the decision tree). 

The  decision function fr  is  applied  in  turn  to  each  contingency 

considered for the current situation, in the order given by their criticality 
values, as defined in section 3.3.2 (each time, it applies each of the functions 
fr. , i = 0,1,..., to each of the contingencies already included in the reactive 

plan and to the current contingency, considering the reactive plan to include 

this contingency plus all the contingencies previously decided to be included 

in the reactive plan for this situation). This iterative process is continued until 

either all the agent's execution time resources are estimated to be exhausted, or 
no more contingencies are known to the agent to be possible in the current 

situation. 

This concludes the presentation of our framework for deciding whether 
to plan to react. Given a plan situation and a set of contingencies known to the 
agent to possibly appear in this situation, it decides for which of these 
contingencies the agent may prepare reactive responses, considering the 
execution time limitations on the agent's resources. In the next two chapters 
we present a knowledge representation formalism to help the agent to cope 
with the considerable amount of knowledge related to this decision process, 
and theoretical justifications for some properties of our decision framework. 
Then, in chapter 6, we present the results of our experiments using this 
framework. But before doing all this, let us see how the ideas presented so far 
can be applied to a related problem: given a plan situation and a set of 
contingencies known to the agent to possibly appear in this situation, decide 
for which of these contingencies the agent should prepare complete branches 

in the main conditional plan. 

3.5. Conditional Planning 

We briefly discuss here how the framework presented so far for 
deciding whether to prepare to react to a contingency can be modified to 
answer the question of whether the agent should prepare in its plan a full 
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conditional branch for a contingency. We first resume our discussion of 

section 2.1 regarding possible classifications of contingencies, and then we 
adapt the previous framework to this new task. 

3.5.1. Contingencies Revisited 

In section 2.1 we have identified there types of contingencies that may 
appear during the execution of a plan. They are classified according to the 
action taken by the agent at planning time to prepare for their occurrence at 

execution time. These types of contingencies are: 

(i) contingencies for which the planner builds complete conditional 

branches, from the contingency state to the goal state, in the main plan. 
As an example, suppose that the agent has two alternative routes for 
driving to work in the morning, depending on the color of a particular 
traffic light when the agent reaches it: the regular plan assumes the 
color is green, and the alternate branch is conditioned on the color 
being red. For a non-driving commuter, the plan may involve walking 
or taking a bus, depending on the weather, and so on. 

(ii) contingencies for which the agent prepares reactive responses, 
combined into reactive plans by a reactive planner, and attached to 
appropriate segments of the complete plan provided by the conditional 
planner. An obvious example is the one we used before, involving a 
child running in front of the car. 

(iii) contingencies ignored by the agent at planning time; their treatment 
at execution time can fall under two subclasses: 

(a) dynamic replanning, if the agent has enough resources at execution 
time to perform it. As example, suppose that the agent encounters a 
traffic jam on a seldomly traveled route, for which it did not bother 
to prepare a conditional plan branch before execution. 

(b) noop, that is take no action, either because the consequences of the 
contingencies are not high enough to warrant an action, or because 
the agent simply does not have the resources to take an action to 
solve them (e.g. they have a too short response time allowed). An 
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extreme example may be the contingency involving the meteor 
falling on the car, which we have encountered in table 3.1. 

The justification for this classification is mainly related to the limited 
resources that a real agent can use. For a few contingencies, the agent can 
generate complete plans and combine them in a conditional plan. However, 

the agent's limited planning and execution resources do not allow for too many 

contingencies to be treated this way. Still, the agent can prepare at planning 

time reactive responses for a larger set of contingencies; these responses will 

not ensure full solutions to the goal state, but they will give the agent the 

possibility to dynamically replan its actions at execution time. But in no case 

can a real agent with limited resources prepare for all possible contingencies 

in a real world application domain. Many of these contingencies must be 

ignored at planning time. 

Let us intuitively analyze now the characteristics of the examples 
given, and try to feel the qualitative differences among these classes of 

contingencies. 

In the previous conditional planning example, the contingencies occur 
often, i.e. with a high likelihood (the occurrence probability may approach 
50%, but should not exceed it, since if it does, then the contingency should 

rather be considered the normal case and the main plan should be build 

accordingly). Also, a solution to the contingency requires the preparation of 
an entire plan branch all the way to the initial goal (since the execution time 
may be critical and thus replanning cannot be used at any stage before 
reaching the goal, i.e. a local situation stabilizing response to the contingency 
is not sufficient), as well as certain resources whose availability must be 
planned in advance (e.g. an umbrella, or the correct set of maps for the 

alternate route to be traveled). 

For the reacting case we have already devised a comprehensive 
framework stating the main necessary characteristics for a contingency to be 

considered appropriate for a reactive response. For the previous example, they 

include critical response time and high consequences of not responding. An 

important characteristic is also that a short response (already available) is 



Chapter 3. APPROACH 81 

sufficient to stabilize the situation and allow for replanning of the agent's 

actions all the way to the initial goal. 

The rest of the contingencies will be ignored at planning time, but we 

have been able to further subclassify them. The ones for which the agent will 

try to replan at execution time should not occur too often (otherwise a 

conditional branch may be appropriate), and should also allow for enough 

time for the agent to be able to build the new course of action. Finally, the 

contingencies for which the agent will take no action anyway (e.g., the 

falling meteor case) do not allow for enough time to respond to them, in any 

circumstances, given the agent's limited resources and execution capabilities. 

In section 3.2.3 we introduced a criticality space, which is one possible 

representation of the space of contingencies, whose dimensions are 

appropriate for reaction decision purposes. To facilitate the understanding of 

the relationships among the classes of contingencies, we shall attempt here a 

simpler and more general graphical representation of the space Of 

contingencies, which can depict all the classes mentioned above. This 

representation can conceptually be obtained from any more complex 

representation (like the criticality space mentioned before, or the importance 

space to be introduced later on in this section), by projecting the points in the 

space onto points in the simpler spaces defined here. 

.                                        ..                              conditional noop                 replanning                         reacting                             . 
Ill                       a                |          planning         |    ^ 
II                                     1                                          1                                1    *" 

criticality 

Figure 3.14. Contingency space - linear representation 

The simplest representation for the space of contingencies is a linear 

space in which contingencies are ordered by either criticality (as defined 

before) or importance (as defined further in this section). Figure 3.14 shows 

that such a representation can outline the most frequent transitions between 

bordering classes, but cannot represent other still possible borderings like 

between reacting and noop (e.g. determined by allowed response time), or 

conditional planning and replanning (determined, for example, by the 

planning time needed). Therefore, a planar representation (figure 3.15) is 
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more appropriate. The dimensions here are the reaction response value and 

the planning response value for the contingency. While much better, this 
representation still does not represent the direct relation between conditional 
planning and noop (which, to be fair, is the least frequent one, so this 
representation can be used for most purposes). We have therefore devised a 
third, 3-D surface representation using a spherical surface (figure 3.16). The 
orthogonal dimensions (akin to latitude and longitude) are the same as for the 
second representation, and it can represent all the borders between pairs of 

classes. 

reacting 
value A 

• child frequent red m 

traffic light 

conditional 
planning 

replanning 

• meteor 
infrequent 
traffic jam • 

planning 
value 

Figure 3.15. Contingency space - planar representation 

The examples given with the informal description of these classes at the 

beginning of this section constitute extreme cases in each class (figure 3.15). 
In between these extreme cases there is an entire space of contingencies for 
which more than one (in some cases even all) of the response alternatives 
may be justified. The borders among these classes in the space of 
contingencies associated with a particular agent are determined by the agent's 
resource capabilities and limitations. For example, conditional planning and 

replanning are separated mainly by the agent's planning resources, 
replanning is circumscribed both by the agent's planning and execution 
capabilities, while reacting is mainly characterized by the agent's execution 

capabilities. 
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Due to the way the different classes of contingencies have been defined, 

in order to be able to best classify a given contingency, we only need class 

membership decision frameworks for two of them, namely conditional 

planning and reaction. We have already defined a framework for deciding 

whether the agent should prepare a reaction to a contingency in a given 

situation. In the rest of this section we will give a description of a framework 

to decide whether to prepare a conditional plan branch for a contingency in a 

given situation. 

reacting ^,—■ ■—^, ■>.         conditional 
_JV planning 

reacting/         x.                      ^ 
value   /             /\.                  JJ 

planningVA / [              ^>—.c_ 
value        A**SL         s ^ 

\    / 

noop    \^""            i» 

replanning ' 

Figure 3.16. Contingency space - 3-D surface representation 

There are two qualitative differences between conditional plan 

branches and reactions. The first is that conditional plan branches represent 

global solutions to the initial problem, that is, they are sequences of actions 

which ensure that the agent reaches the goal (in the absence of other 

contingencies). Reactions on the other hand are only single (or short 

sequences of) actions, intended only to stabilize the situation so that the agent 

can then take its time to replan a solution from the state reached after 

reacting to the initial goal. Therefore, on one hand reactions can be seen as 

the first steps of incomplete conditional branches, but in the same time they 

are more generally applicable than specific plan branches. There is also no 

assurance that after executing a reaction, the agent may find a plan to get it to 

the initial goal, i.e. it is possible that the planner may subsequently find no 

solution from the state in which the agent finds itself after completing the 

reaction to the goal; this is not the case for conditional plan branches, 
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assuming no other contingencies are encountered. Therefore, we always 

assume that a conditional planned branch is a better solution than a reaction 
to the same contingency, and as a consequence, given a set of contingencies 
for a situation, the conditional planning decision framework should be applied 

before the reaction one. 

The second difference involves the planning process itself. In 
conditional planning, the planner has to work out a solution (sequence of 
actions) from a given state (the contingency) to the goal. In reaction 

planning, as assumed throughout this thesis, the agent already knows (in its 

knowledge base) the best reactions associated with contingencies for 

applicable classes of situations, so the only task of the reaction planner is to 

combine the reactions associated with the set of contingencies to be prepared 

for, into a structure which will be conveniently searched at execution time to 
determine the actual contingency encountered and its associated reaction (e.g. 
decision trees, decision lists, etc.). Therefore, planning time is definitely of 
importance in conditional planning, but may not be an issue when 
structuring a reactive plan from a set of known reactions (if it cannot be 
ignored, then, as mentioned in section 3.4.1, the complexity of the reactive 
plan structuring algorithm can be taken into account in the Reactive Planner 
Model, to further prune the set of contingencies for which reactions should be 

prepared). 

Having noted these differences, we must now acknowledge that the 

particular decision frameworks associated with the two classes of 
contingencies have very similar underlying structures, so their presentations 
may obey the same general lines. There are significant analogies between the 
two problems and their solutions. They would suggest taking a unitary 
approach and combine the two frameworks into a single one, with aesthetical 
benefits of uniformity and elegance in presentation. However, we believe that 
this would yield an unnecessarily complex framework, intuitively difficult to 
present and understand. Therefore, as well as for easier understanding and to 
keep each framework manageable, we decided to present them separately. This 
is also in agreement with the way in which an agent should apply them, 
although in different order. Indeed, the frameworks may indicate that certain 

contingencies   are   suitable  for  both  conditional  branch   and  reaction 
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preparation. In these cases a conditional branch should be prepared, since it is 

assumed to be a more accurate solution, as argued before. 

We first presented in sections 3.1 to 3.4 the reaction decision framework 

(which is the main topic of this thesis). In the remainder of this chapter we 

use analogies with the previous presentation to describe the conditional 

planning decision framework, by pointing out their similarities and 

differences. We transform one framework into the other by removing, adding 

and replacing some of its elements. Since the two frameworks are very close in 

form (although with underlying differences in content), an aesthetically 

interested reader can easily merge them together if he or she so desires. 

3.5.2. Framework for Conditional Planning Decision 

Let us first state the conditional planning decision problem, in a form 

similar to the one used in section 2.2 for reaction. We assume the agent has 

built a linear main plan to go from an initial situation to a given goal. The 

issue then is to enable the agent, for each phase of the already built main 

plan, to select the right set of contingencies for which to prepare conditional 

branches all the way to the goal. That is, the problem is to specify a decision 

framework which: 

O given: 

• an intelligent agent with: 

♦ capabilities: 

♦ planning and dynamically replanning 

♦ monitoring 

<■ constraints: 

♦ limited resources 

♦ real-time performance 

• a linear plan by which the agent can achieve its goal 

• a set of contingencies known to possibly appear at certain times 

during the plan execution, and for which the agent may plan a 

conditional branch, each with: 

♦ known characteristics, associated with it (e.g. gravity of 

consequences, time deadlines) and with preplanning a 

conditional branch for it (e.g. resource requirements) 
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♦ characteristics of their replanning alternatives (replanning time 

and other resource requirements) 

O enable the agent to decide for which contingencies to prepare 
conditional branches in the plan (according to a desired behavior 
pattern) while not exceeding the agent's planning capabilities and 
preserving the real-time responsiveness of the agent to all these 

contingencies, given its limited resources. 

Planner Model v    Agent Model 

Agent's 
Knowledge 

Situation 

Contingency 
(& characteristics of 
it and of planning 
its response path) 

Prepare 
plan branch 
(yes / no) 

Importance 
(conditional planning value) 

Behavior Model: fj | 

Figure 3.17. Overview of the Conditional Planning Decision Framework 

As can easily be seen by comparing the two problems, they are similar 

enough such that a solution to the second problem can be obtained by 
relatively small modifications to the framework solving the first one. In fact, 
the high level overview of the conditional planning framework shown in 
figure 3.17 is very similar in form to the one for the reaction framework 
depicted in figure 3.2. There are however a few underlying differences to be 

pointed out: 

O   the   knowledge   available   to   the   agent   and   associated  with   the 
contingency does not include the response to it, but only some general 
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characteristics (outlined in section 3.5.3) of the planning process to be 

done for that contingency; 

O the criticality (reaction value) computed by the reaction decision 

framework is replaced by an importance value (conditional planning 

value) which synthesizes how important it is for the agent to prepare a 

conditional branch for that contingency, i.e. what is the value of 

preparing a conditional branch for it in the plan vs. leaving it for 

other possible treatments; 

O the reactive planner model is replaced by a model of the conventional 

planner used to build the initial plan and the conditional branches; 

O the final decision of the framework is now whether to prepare a branch 

in the plan, instead of whether to include a reaction to the contingency 

in the reactive plan associated with it. 

Also, the agent model and the behavior model will reflect slightly 

different characteristics in the two cases, and the functions used to calculate 

the conditional planning values and the final decision are based on somewhat 

different variables, as will become evident soon. 

Figure 3.18 presents in more detail the flow and source of information 

through the new framework. Again, the comparison with the general 

framework for the reaction case (figure 3.3) shows obvious similarities 

between the two frameworks. The differences between the two frameworks at 

this level of detail and functionality are basically the same as the ones 

mentioned above for the higher level of abstraction used in the overview 

presentation. 

Let us now briefly discuss each element of our new framework, and 

compare it where appropriate to the equivalent element of the reaction 

decision framework. First, the situation spaces are identical in the two 

frameworks, since a situation has the same definition and characteristics 

related to contingencies, regardless of the kind of response we prepare for 

them. 
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Two parts of the framework require special attention here. The first 

establishes the conditional planning value of the contingency, and the second 

takes the actual decision of whether to prepare a conditional branch for the 

contingency. They are briefly discussed in the following two subsections, and 

then we conclude this presentation with a summary of the entire framework 

put together. 

3.5.3. Establishing the Conditional Planning Value 

Figure 3.19 presents the part of the framework concerned directly with 

calculating a conditional planning value for the contingency in the given 

situation. It is similar to figure 3.5 which shows the criticality space and the 

process of calculating the reaction value for a contingency. We shall 

concentrate here on the differences between the two frameworks at this stage: 

O the criticality space is replaced by an Importance Space which uses 5 

dimensions to characterize a contingency from the conditional 

planning point of view. These dimensions are: 

• Timep - represents the same time pressure as in the reactive case; it is 

obtained from Timerc - the time allowed to respond to the 

contingency, once an unexpected state is detected (same as in the 

reactive case). 

• PTime - is the estimated planning time needed to build a branch for 

this contingency at planning time (e.g., the time needed to plan the 

alternative route, starting with a right turn at traffic light B, all the 

way to the office); the simplest estimate may be, for example, the 

planning time used to build the original plan from that point up to 

the goal. 

• Consequences - summarizes the consequences of not responding to 

the contingency in the time allowed (same as in the reactive case). 

• PResources - is a measure of how hard (time consuming, agent 

resource consuming and any other costs involved) it is to obtain, at 

replanning time (during execution) the resources needed to replan 

and carry out this plan branch (if not preplanned in advance). 
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Besides actual planning and replanning times, this also involves 

resources not needed in carrying out the initial plan, but which may 

be needed for replanning purposes (like maps which may be hard to 

obtain along the way) or for carrying out the alternate plan branch 

(like an umbrella if it rains, or in medical domains a ventilator or 

certain test results). 

•   Likelihood  -  represents  the  likelihood  of  occurrence  of the 

contingency in the given situation (same as for reaction). 

O the Importance value which orders contingencies by their conditional 

planning value (in the same way as criticality does for reaction). 

O the function (/)) calculating the importance value for a contingency has 

the form: 

Importance = fi (t, pt, c, pr, 1) = 

if (t > Tpmax) 
then      fi - 0 

elseif   (t < Tpmin) ,_— — 

_•     A/ PPl*   PP
7* 

PP
3*    

pp4*iPP5 then      fi = V t    ■»■♦pt    z*c    ^*pr    **1    D 

elseif   (pt > PTpmax) 

r     -\/pp1*    pp9* ppl*    PP4*iPP5 then      fi = \ t    l*pt    2*c    6*pr    4*1    5 

e7sei/   (pr < PRpmin) — 

_■     A/ 
pp1*    pp2* PP3*    PP4*iPP5 then      fi= Vt    1*pt    z*c    **pr    **1    D 

elseif   (1 < Lpmin) 

_.     A/ PPI*   
PP

?* 
pp3*    pp4*ipp5 then      ft- Vt    l*pt    z*c    ^*pr    **1    D 

.      PPi,   PP?* PP**    PP4*,PP5 else fi = t    l*pt    z*c    ^*pr    **1    D 

where, for the purpose of stating the importance function in a more 

succinct form, we made the following notations for the (situation 

dependent) importance space dimensions: 

t = Timep, pt = PTime, c = Consequences, pr = PResources, 1 = Likelihood. 

The two kinds of parameters involved are: 
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• (conditional) preplanning behavior model parameters: pp-^ to pp5; 

• parameters specified by the expert model: Tpmax> Tpmin, PTpmax- 
PRpmin, Lpmin- They are domain dependent and are defined by the 

expert specifying the domain knowledge. Their meaning is defined 

below. 

O the Expert Model reflects the new dimensions of the importance space. It 

must specify the following: 

• functions: 

♦ ftc- transforms (as for reaction decision) real-time values into 

time-pressure  values,  inversely  proportional,  so  it  has  the 
general form: 

Timep = ftc (Timerc) = k / Timerc 

• parameters: 

♦ Tpmax ~ time pressure threshold - for greater time pressure, any 
attempt  of response  is  useless  (akin to  Tmax  for reaction 

decision); 

♦ Tpmin - time pressure threshold - for smaller time pressure, 

dynamic replanning is possible (and thus less costly, since it will 
be done only if the contingency actually arises); akin to Tmin for 

the reaction framework; 

4- PTmax - planning time threshold - if the estimated planning time 

required is longer than this threshold, then the agent may not be 
able to complete the conditional branch in the estimated 

available planning time; 

♦ PRmin - replanning resources threshold - for smaller values, the 

agent has enough execution time resources such that replanning 
is possible (and presumably less costly); 
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o Lmin - likelihood threshold - if lower likelihood, the cost of 

preparing a conditional branch for this contingency in this 

situation is probably unjustified (same as for the reaction 

decision framework). 

O the parameters of the Behavior Model (pp: to pp5) also reflect the new 

dimensions of the importance space as well as the new function 

computing the importance value. 

Situation 

Expert Model: 

Tpmax' Tpmin> 
PTmax. PRmin> 

-pmin ftc 

Importance 
(conditional 

planning value) 

Contingency 

Timerc = f-| (Situation, Condition) Consequences = f2 (Situation, Condition) 
PTime = fs (Situation, Condition) Likelihood = f4 (Situation, Condition) 
PResources = f6 (Situation, Condition)   Timep = fa (Timerc) = k / Timerc 

Importance = f j (Timep, PTime, Consequences, PResources, Likelihood) 

Figure 3.19. Establishing the Conditional Planning Value 

Note that the time to preplan a conditional branch may be different 
from the time to replan it at execution time, because of different resources 
availability and different information availability; in the driving example, 
when building the plan at home we may have all the necessary maps, some of 
which may be unavailable when replanning later on during the execution of 
the initial plan, and obtaining them may be time consuming, thus making the 
initial planning time shorter than replanning time. On the other hand, when 
replanning, the agent may have access to more accurate state information 
than at initial planning time, and therefore the initial planning time may in 
this case be longer than the replanning time (for example, when the agent 
must replan its route due to a traffic jam, it has more knowledge about which 
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alternatives are available for faster traffic flow, than it could have before it 

actually reached this point in the plan execution). 

Also note that side-effects are not taken into account in this framework, 

since once prepared, the conditional branch is executed as a regular plan 
which under normal circumstances leads to the final goal (the side-effects 
were a measure of the risk of not being able to reach the final goal anymore, 

once the reaction is executed). 

3.5.4. Deciding Whether to Plan a Conditional Branch 

Figure 3.20 presents the part of the framework concerned with the final 
decision of whether to prepare a conditional branch for the contingency in 
the given situation. It is similar to figure 3.11 which shows the reaction 
decision making phase of the previous framework. We shall outline here the 
differences between the two frameworks at this stage: 

O the reactive plan characteristics space is replaced by a Plan 

Characteristics Space whose dimensions characterize the entire 
conditional plan to be built, from the point of view of the agent's 
planning and execution resources. These dimensions are: 

• TPTime - measures the total planning time needed by the planner, if a 
conditional branch for this contingency will be planned in addition 
to the main plan and conditional branches for the contingencies 
already selected for conditional planning; 

• Timer - is the estimated time needed by the agent to respond, at 

execution time, to this contingency, given that the conditional plan 
includes a branch for it together with branches for the 
contingencies already selected for conditional planning (similar to 
the reaction framework); 

• Resourcei (i = 1,2,...) - represents the total requirements imposed on 

the agent's i-th resource by the conditional plan containing a 
branch for this contingency as well as branches for the 
contingencies already selected for conditional planning (similar to 
the reaction framework); an example of such a resource may be 
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memory   amount   required   by   the   plan,   which   is   separately 

represented in figure 3.20 by the total plan size (PSize). 

Planner Model: 
functions to estimate: 
TPTime, PSize, 
Timer, Resourcej 

Agent Model: 
Ktp, Kp , Kq) 

Kj (i = 1,2,-),fb 

f.     Prepare 
"~   branch 

(yes / no) 

Situation 

Importance 
(conditional planning value) 

TPTime = ftp (Situation, Importance, Agent's_knowledge, Planner_model) 
Timer = fp (Situation, Importance, Agent's_knowledge, Planner_model) 
PSize = fpi (Situation, Importance, Agent's_knowledge, Planner_model) 

Resourcej = fpj (Situation, Importance, Agent's_knowledge, Planner_model) 

Prepare_branch = fb (TPTime, Timer, PSize, Resource,-, Resourcen, 
Agent_model, Importance, Situation) 

Figure 3.20. The Conditional Planning Decision Making Phase 

O the Planner Model reflects the new dimensions of the plan 
characteristics space. It must supply the following functions to estimate 

values for these dimensions: 

9 f _ estimates the time needed to build the plan, including a branch 

for this contingency (in its simplest form, it may simply add the 

already estimated times to build each individual branch); 

• fp - estimates the time needed to respond to the contingency when the 

plan includes conditional branches for it and for all contingencies 
with higher importance (similar to the reaction decision 

framework); 
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• fp- (i = 1,2,...) - estimates the amount of resource! needed to respond to 

the contingency when the plan contains conditional branches for it 

and for all contingencies with higher importance (similar to the 

reaction decision framework); for i = 1, the function estimates the 

amount of memory the agent needs in order to accommodate this 

conditional plan. 

O   the Agent   Model  also  reflects  the  new  dimensions  of  the  plan 

characteristics space. It must specify the following: 

• estimated maximum resource amounts that may be allocated by the 

agent to this task: 

♦ Ktp - the maximum planning time allowed to build the conditional 

plan (i.e. before any execution begins) 

♦ Ki, K.2, ... - the maximum amount of resource! (i = 1,2,...) available 

at execution time (i = 1 for memory availability or, equivalently, 

plan size) 

• functions to estimate resource utilization: 

•>   fb      -   the   increase   in   planning   time   due   to   the   agent's 

computational overhead at the time of planning; it may be of the 

form: 

fbp (TPtime) = TPtime* Kp 

where Kp is a factor greater than 1, or: 

fbp (TPtime) = TPtime + Kq 

if the agent can devote itself to planning for this contingency 

only after some constant time Kq, and so on. 

<> f£). (i = 0,1,...) - the variation of the availability, at execution time, 

of resource! (i=0 for computational time; i = 1 for memory or plan 

size) due to the fact that the agent cannot devote its entire 

resource! exclusively to responding to that contingency (same as 
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the functions fr. for the reactive plan characteristics space in 

the reaction decision framework). 

• the function (ffe) making the actual decision for a conditional branch 

preparation: 

Preplan = fD (TPTime, Timer, PSize, Resource2,... ,Resourcen, 

Agent_model, Importance, Situation) = 

if fbp(TPTime) > Ktp then fr = no 

elseif fb0(Timer) > Timerc then fr = no 

elseif fb:(PSize) > Ki then fr = no 

elseif fb2(Resource2) > K2 then fr = no 

elseif        fbn(Resourcen) > Kn    then fr = no 

else h = yes . 

n 

- J"J(fb(Resourcei) -    Ki}   ' 
i=p;0 

where resourcep is the planning time, resource0 is the execution 

real computational time, and Ko = Timerc is the real response time 

allowed by the contingency for the response to be started without 

consequences (the time pressure dimension of the importance space 

values for this contingency). 

Figure 3.21 shows a detailed summary of the framework for selecting 
the contingencies for which complete conditional branches are to be 
prepared. We shall not continue the discussion on this topic, since this thesis is 
mainly concerned with developing the reaction decision framework, and we 
have included the presentation of the conditional planning framework only to 
point out that, after we have one of the two frameworks well defined and 

experimentally proved adequate, the other one can be developed using a 

certain degree of analogy. 
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Figure 3.22 presents two examples of contingencies that may warrant 

conditional planning of branches to solve them. They are both taken from the 

driving domain, but may appear in significantly different circumstances, and 

they both largely illustrate the way the framework is intended to be applied. 

Space Dimensions Car driving to work Car driving to Reno 

Situ- 

ation 

Problem Go from home to work Go from Palo Alto to Reno 

Plan Drive car Drive car on I80 

Context Morning, commute time Winter, night time 

Action Approach intersection B Approach Sacramento 

Int Expect Observe traffic light See Sacramento 

Ext Expect Heavy traffic Dark (night time) 

Time max. 3 mins. 30 mins. 

Contingency Red traffic light (slow - all 

following lights red too) 

Cold & raining hard - 

maybe snow in mountains 

Impor- 

tance 

TimeD To reach intersection B To reach junction I80,150 

PTime High (=1/2 of main plan) High (=1/2 of main plan) 

Consequence Late for imp. meeting big delay, maybe life threat 

PResources Need maps + planning Need maps + planning 

Likelihood High (< 50% of time) High 

Conditional 

plan branch 

Right turn at traffic light, 

then alternate route 

Use I50 - longer but more 

reliable when snowing 

Figure 3.22. Conditional planning examples 

The first example is the one we mentioned in this section before: on the 

usual commute to work, there is a certain traffic light which, if red on arrival, 

means that all the following traffic lights will be red, and the commute will 

take significantly longer than if an alternate route is followed by making a 

right turn. However, this alternate route is slower if the traffic light in 

question is found on green. 

The second example is set during a trip from the San Francisco Bay area 

to Reno at night time during winter. If it is cold and raining around 

Sacramento, then there is a good chance that the usual (and faster) freeway 
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may be closed in the mountains due to snow, so an alternate route is wiser, but 

it has to be prepared in advance since it may require maps for planning. 

A comparison between figures 3.21 and 3.7 shows that the two 
frameworks are close enough so that an aesthetically concerned reader can 
easily merge them into a single framework, so we shall not concern ourselves 
with this topic anymore. Instead, in the next chapter, we present a knowledge 
representation formalism to help the agent to cope with the considerable 

amount of knowledge related to these decision processes. 



Chapter 4 
Knowledge Representation Formalism 

In order to operate in an environment, the agent has to possess a lot of 
knowledge about that environment. For the purpose of deciding whether to 
plan to react to possible contingencies according to the framework presented 
in the previous chapter, the agent has to possess three types of information: 
knowledge about situations that may be encountered during plan executions, 
knowledge about the contingencies that may happen in these situations, and 
knowledge about the most suitable reactions to these contingencies. The 
agent's knowledge base contains associations of contingencies and their 
appropriate reactions. Each pair contingency-reaction is indexed in the 
knowledge base by the characteristics of the situation in which the 
contingency may appear and in which that is the most suitable reaction to it. 
Therefore, each condition stored in the knowledge base has three parts: 

(i) a description of the contingency (signs, preconditions, and so on) and a 

set of values for the dimensions of the criticality space 

(ii) a description of the best suited reaction for this contingency in the 

situation described by the third part 

(iii) a description of the situation in which this contingency may appear 
and in which the best response to it is the reaction described in part 
(ii). This description contains the values for each of the seven 

dimensions of the situation space mentioned in chapter 3. 
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In the previous chapter we have presented the kind of information 

associated with each of these classes of knowledge. With the exception of the 

contingency information which contains numerical values for the values of 
the characteristics of the criticality space, the rest of the information is 

symbolic. This includes the values for the situation space dimensions, the 
descriptions of the contingencies, and the descriptions of the actions which 
make up the reactions to contingencies. Theoretically, one could use the 
natural language to specify these values. However, such a natural language 
interface and the mechanisms to process the information in such a formalism 
are beyond the scope of this work. In order to contain the explosion in 
complexity generated by such a natural language representation, we have 
defined a knowledge representation formalism which restricts the description 
language for each of the classes of knowledge under consideration, while 

retaining enough flexibility to be suitable to any domain and with the added 
advantage of a well defined structure which can be used in the reasoning 

process. 

In this chapter we shall discuss this knowledge representation 
formalism for each of the classes of knowledge involved, with examples from 
the driving domain. We shall first present the general idea which is applied to 
all the three classes, and then we shall discuss an example of representing the 
contingency description knowledge for the car driving domain. Appendix 2 
presents an example of representations of reactions and representations of 

situations for the same domain. 

4.1. Description Languages 

The need to devise a knowledge representation formalism for describing 

situations, contingencies and reactions has arisen from two considerations: 

(i) the space of all possible natural language descriptions for these classes 
of knowledge is too large to be manageable; this in turn generated 
problems like the possibility of having different representations for 
the same piece of knowledge and the associated difficulty of comparing 
such representations and deciding on their identity. For example, in the 
car driving set of reactions we have used during the previous chapter, 
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"steer" may be equivalent to "change direction",  and clearly each 

situation has many different equivalent ways of being described. 

(ii) the practical application domains for the framework of deciding 
whether to prepare to react presented before have a significant amount 

of inherent structure implicitly contained in them and it would be 
unfortunate not to be able to exploit this structure. Notice for example 
that eleven out of the thirteen examples of contingencies we gave for 
the car driving domain (table 3.1) use the action "brake" in the 

description of their associated reactions. The car driving domain has 

also a significant amount of inherent structure in the description of the 

possible contingencies. For example, the following two contingencies: 

"Child runs from right, 20 m in front of car" and "Adult crosses the 
street from right 20 m in front of car" have both the same criticality 
space values, and the same associated reactions, and therefore do not 
need separate representations in the agent's knowledge base. 

If the structure of the application domain is not taken into account, the 
explosion of the information that has to be recorded in the agent's knowledge 
base quickly exceeds any realistically manageable amount for agents 
operating in the real-world domains described in chapter 2. For example, there 
are any number of individual situations for which the same pair contingency- 
response applies, and it would be entirely unreasonable to represent each of 

them and all their associations with different conditions. 

Given these considerations, we have designed a representation 
formalism for these classes of knowledge which preserves most of the 
flexibility of the natural language representation, while allowing the expert 

to take advantage of the structure of the domain. 

For each domain there are nine languages which must be defined: a 
language for describing the contingencies, one for describing the reactions, 

and seven languages for describing the values associated with each of the 

seven situation space dimensions. Each of these languages will be described 

according to the same formalism, so we shall only describe the formalism once, 

and then (in the following section) we will give an example of each such 

language in the driving domain. 
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The expert is required to define a hierarchical vocabulary for each of 

these languages in his domain. The words in the vocabulary are partitioned 

into two classes: terminals and nonterminals. Each nonterminal represents a 

class of words (both nonterminals and terminals). The terminals are classes by 
themselves. The expert must also define all the membership and subclass 
relationships among the words in the vocabulary. Each such relationship 
defines a directed edge in a tree (actually a forest, since there is no need for 
full connectionism in a vocabulary) which induces a hierarchy onto the 
vocabulary. The tree is actually an AND/OR graph, in which the OR nodes 

represent the membership and subclass relationships, and the AND nodes 
represent structural relationships among words in a valid sentence in the 
language. Our formalism has a few common features with the language 
representation formalism presented in [Utgoff, 1988], although it differs in 
many other aspects. Our formalism defines a context free grammar: 

G = (N, T, P, S), where 

O N - is the set of nonterminal words of the domain dependent vocabulary 

defined by the expert 

O T - is the set of terminals in the vocabulary 

O P - is the set of productions of the grammar; there are two types of 
productions: 

• unit productions, defined by a membership relation between a 
terminal and a nonterminal or by a subclass relation among two 

nonterminals 

• non-unit productions, defined by AND nodes in the vocabulary - these 

give the rules of correct derivations in the language. 

OS- the start symbol, which is either the root of the tree (if one exists), or, 
if the vocabulary is organized as a forest, then it is a new nonterminal 
(OR node) to which all the roots of the trees making up the forest are 
connected through subset relationships edges. 

This context free grammar defines the language used for describing 
either the contingencies in the domain, or the reactions, or one of the seven 
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characteristics of the situation space, with one important difference from the 
classic theory of context free languages: every word in the vocabulary may be 
part of a sentential form in the language, that is, both terminals and 
nonterminals may be used to build sentential forms. The set of terminals in the 
vocabulary makes up the agent language, that is, the set of all individual 
describable contingencies (or reactions, or characteristics of situations). A 
sentential form containing only terminals represents a description of a 
specific contingency, reaction, or situation characteristic. It can also be 
interpreted as a description of a singleton set of contingencies, reactions or 

situation characteristics. A sentential form containing at least a nonterminal 

symbol represents a description of a set (of any cardinality) of such 

contingencies, reactions or situation characteristics. This extension of the 

context free grammar paradigm enables us to represent the structure of the 

application domain. 

Our formalism also extends the classical context free grammar paradigm 
with the notion of identification functions for nonterminals in the 
vocabulary. An identification function is a compact way of representing a 
large set of class membership relationships or a large set of subclass 
relationships. For example, the nonterminal "slow_driving_speed" can be 

identified by a function defined as: 

f (speed) = 5 mph < speed < 20 mph. 

This function replaces all the edges in the tree between the nonterminal 
"slow_driving_speed" and all the terminals "speed = x" where x can take all 
the discrete values representable in the machine (or in the defined domain 

vocabulary) between 5 mph and 20 mph. 

Every tree generated by a vocabulary as described above defines two 
partial order relations among the words of the vocabulary as well as among 
the set of sentential forms that can be built. The elementary partial order 
relation, which we call "contains", among words in the vocabulary, is defined 
as: "a contains b" if and only if a and b are words in the vocabulary, a is a 
nonterminal, and either a and b are identical, or a contains b as a member (if b 

is a terminal), or a includes b as a subset (if b is a nonterminal). The extended 
partial order relation with the same name is applied to sentential forms 
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through the following definition: "A contains B" if and only if A and B are 

sentential forms in the language (according to the previous definition), and 

every word in A contains the word in B in the corresponding position, i.e. 

if     A = &Y&2 ■ ■ • ak     anc*     5= 0^02 • • • bn 

then a-i contains b1b2 • • ■ bp   , a2 contains bp +1bp +2 • • • bp   ,  and so on 

until ak which contains bpk.1+l
bpk.1+2 • ■ • bn • 

In the next section we shall give an example of applying the formalism 

described here to the car driving domain and we shall present the vocabulary 

trees which can be used to express the contingencies given in table 3.1. The 

effectiveness of this representation formalism in structuring the application 

domain will be illustrated by the realization that the same vocabulary tree 

allows for the representation of a much larger set of contingencies, with 

essentially the same knowledge acquisition effort and similar storage and 

computational requirements. We shall then conclude this chapter with a brief 

summary of the advantages of this knowledge representation formalism. 

4.2. Example 

In this section we shall present the hierarchical vocabulary (and 

consequently the grammar) which are sufficient to represent the thirteen 

contingencies for the car driving domain listed in table 3.1. Appendix 2 

contains a description of the vocabulary for representing the reactions, and 

those for the situations encountered in chapter 3. The vocabularies will not 

only be able represent the knowledge contained in table 3.1, but also a lot 

more. 

Figure 4.1 presents the hierarchical vocabulary for representing 

contingencies. 
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This hierarchy is equivalent to the following grammar: 

G = (N, T, P, S), where: 

N = { Contingency, Object, Motion, Distance, Malfunctioning, Sign, 

Animate, Non-animate, Hole, Human, Animal, Large, Small, Hard, 

Soft, A.Small, A.Big, Large&Hard, Small&hard, Large&Soft, 

Small&Soft, Same_direction, Crossing, Fast, Slow, L->R, R->L, 

Warning_light_on, Tire, Radio } 

T = { T.light, Child, Cat, Cow, Meteor, Brick, Mattress, Ball, H.Small, 

H.Medium, H.Large, Faster, Slower, Opposite_direction, 

L->R&Fast, L->R&Slow, R->L&Fast, R->L&Slow, Stopped, D.Small, 

D.Medium, D.Long, Brake, Overheat, Gas, Explosion, Flat, On, Off, 

Fade } 

P = | Contingency -> Object - Motion - Distance I Malfunctioning 

Object -> Sign I Animate I Non-animate I Hole 

Sign -> T.light I ... 

Animate -> Human I Animal 

Non- -> Large I Small I Hard I Soft 

Hole -> H.Small I H.Medium I H.Large 

Human -> Child I... 

Animal -> A.Small I A.Big 

Large -> Large&Hard I Large&Soft 

Small -> Small&Har I Small&Soft 

Hard -> Large&Hard I Small&Hard 

Soft -> Large&Soft I Small&Soft 

A.Small -> Cat I... 

A.Big -> Cow I... 

Large&Hard -> Meteor I... 

Small&Hard -> Brick I... 

Large&Soft -> Mattress i... 

Small&Soft -> Ball I... 
Motion -> Same_direction I Opposite_direction I Crossing I Stopped 

Same_direction -> Faster I Slower 

Crossing -> Fast I Slow I L->R I R->L 
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Fast -> L->R&Fast I L->R&Slow I R->L&Fast I R->L&Slow 

Distance -> D.Small I D.Medium I D.Long I N/A 

Malfunctioning ->Warning_light_on I Tire I Radio 

Warning_light_on -> Brake_light I Overheat I Gas 

Tire -> Explosion I Flat 

Radio -> On I Off I Fade } 

S = Contingency 

Some derivations may be done through identification functions. For 

example, the grammar symbols D.Small, D.Medium, D.Long can be considered 

nonterminals (instead of terminals like in the previous example), and the 

actual values of the distance can be considered terminals. Then, a function 

like: 

D.Small = 5 m < distance < 25 m 

can be used to perform the transition over the edge linking D.Small with the 

actual terminal, say "distance = 20 m". 

Every contingency in table 3.1 can now be obtained through a number 

of different derivations in this grammar, and since the reactions to them 

usually apply to more general contingencies, the derivation can be stopped at 

higher levels, since a sentential form can contain both terminals and non- 

terminals in the grammar. For example, the contingency: 

"Child runs from right 20m in front of car" 

can be obtained through the following derivation: 

Contingency -> 

Object - Motion - Distance -> 

Animate - Motion - Distance -> 

Animate - Crossing - Distance -> 

Animate - Crossing - D.Small -> 

Human - Crossing - D.Small -> 

Human - Fast - D.Small -> 

Human - R->L&Fast - D.Small -> 

Child - R->L&Fast - D.Small -> 
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Child - R->L&Fast - distance=20m. 

Any sentential form encountered during this derivation (or during any 

other derivation leading to the same contingency) can be used to denote this 
contingency. Each such sentential form contains (and denotes) the set of all 
contingencies derivable from it. The same reaction specified for this 
contingency in table 3.1. (Brake hard and steer right) would probably be 
recommended for the entire set of contingencies: "Human - R->L&Fast - 

D.Small", while the consequences of the contingency would probably have the 

same value for an even larger set of contingencies: "Human - Crossing - 

D.Small". 

Clearly, this small vocabulary is not enough to describe all possible 

contingencies in the driving domain. It was not our goal to provide such a 
vocabulary and grammar. However, while every contingency in table 3.1 can 
be derived in this formalism, it supports the derivation of many other 
contingencies for the driving domain. In fact, just by enlarging the set of 
terminals, the number of contingencies expressible with this small grammar 
becomes very large indeed. This fact underlines the most important advantage 
of this representation formalism, namely imposing a (hierarchical) structure 
on the set of possible contingencies in the domain, which then makes them 
much easier to be stored, managed, analyzed and reasoned about. 

The knowledge representation formalism used in this chapter allows for 
collapsing entire sets of contingencies in categories, thus alleviating the 

problem of knowledge base size explosion. 

Another advantage of this representation formalism is that it can be 
used in a future work for learning purposes, that is for learning which sets of 
contingencies are similar from certain points of view of the general 
framework for deciding whether to plan to react introduced in this paper: 
which contingencies have the same characteristics, or the same reactions, or 
may appear in the same situations. Concept learning mechanisms ([Mitchell, 
1978; Mitchell & al., 1983; Dabija, 1990]) can be applied to contingencies 
represented in this formalism, mainly because the terms "classification rule" 
and "concept description" used in machine learning are synonyms with "set 
description",   which  represents   any  sentential  form   derivable   in  this 
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formalism. This representation can also be used to discover new classes of 

contingencies (non-terminals in the vocabulary) which have eluded the 

expert's attention when specifying the domain, through bias shifting (either 

automatically [Utgoff, 1988], or interactively with the expert [Dabija & al., 

1992a,b]). 

The primary disadvantage of the knowledge representation formalism 

described in this chapter is that the expert must define the structure of the 

domain, that is, must specify both the nonterminals of the grammar (not just 

the terminals), and the membership and subclass relations among the 

elements of the vocabulary. This may place some burden on the expert and 

may make the knowledge acquisition process more difficult. Another 

disadvantage is that each specified vocabulary is domain-dependent (and even 

user-dependent), as are all the relationships expressed through this 

formalism. They all reflect how the expert who participated in the knowledge 

acquisition process views the domain. But the advantages (mentioned above) of 

structuring the domain and significantly reducing the size of the knowledge 

base outweigh by far this disadvantage, with the added benefit that the expert 

is himself compelled to structure his own knowledge of the domain. These 

problems may further be alleviated by using the learning techniques 

mentioned above: some of them will attempt an automatic restructuring of the 

knowledge base, while others will help the expert to structure his own 

knowledge of the domain through interactions with the system. However, no 

knowledge acquisition work has been done as part of this thesis. 

The entire previous discussion applies equally well to representing 

reactions and situations. Hierarchical vocabularies may be used to classify 

reactions since in real domains there are usually a small set of actions which 

can be combined to produce useful reactive plans, which are then associated 

with classes of (rather than individual) contingencies. This allows a better 

structuring of the set of reactions, which in turn ensures better analysis and 

facilitates the reasoning about different sets of related reactions and their 

characteristics with respect to the framework presented in the previous 

chapter. 

The same is true for representing situations. Here this representation 

formalism is even more useful since the variety of situations in real domains 
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in virtually infinite, so any mechanism which induces a certain structure and 
facilitates the reasoning process is more than welcome. Identification 
functions are also particularly useful here, since the values of some of the 
dimensions may belong to continuous sets. Classes of situations defined 
through this knowledge representation formalism and satisfying the 
"contains" relation, are used to more efficiently index contingencies and 
reactions in the knowledge base (as opposed to indexing them to specific 
situations, which would be prohibitive in any reasonably-sized real domain). 

The vocabulary for representing situations may be partitioned into seven 

distinct vocabularies, one for each dimension of the situation space. 

Alternatively, for uniformity of presentation reasons, we can combine the 

seven vocabularies into a single one, with a new start symbol "Situation", by 

adding to the grammar a new production of the form: 

Situation -> Problem - Plan - Context - Action - Internal_Expectations - 
External_Expectations - Time, 

where Problem, Plan, Context, Action, Internal_Expectations, Time and 
ExternaLExpectations, were the start symbols for each of the vocabularies for 

the seven dimensions of the situation space. 

The hierarchical vocabularies (and the grammars they generate) for 

representing the reactions listed in table 3.1 for the car driving domain, and 
for representing certain situations in this domain (including the one used 
throughout chapter 3) are presented in appendix 2. Some derivations of 
sentential forms encountered in chapter 3 for reactions and situations in the 
driving domain are also discussed in appendix 2. As in the case of 
contingencies, these vocabularies can represent a much larger set of 
reactions and situations than the ones we have encountered during our 
presentation in the previous chapters, with very little or no overhead. This 
once again supports our claim regarding the power of the knowledge 
representation formalism presented here, and outweighs by far its 

disadvantages. 



Chapter 5 

Theoretical Analysis 

The dream of any designer is to prove that his product is the ideal one to 
solve the original problem that motivated the design. In our case, this would 
mean proving that the framework introduced in chapter 3 is always able to 
decide, for any given situation, which of a set of contingencies possible in that 
situation should be selected at planning time to prepare reactive responses for. 
It would also mean to prove that this is the simplest framework with this 
property, and also that the set of contingencies selected by it make the best 
possible use of the agent's execution time resources. But since our objective is 
to design a framework that is applicable in the most demanding real-life 
domains, theoretically proving all the previous properties is beyond our 
means. However, we have been able to theoretically justify some of these 
properties and some weaker versions of others. For the rest, while we do 
believe that they hold in our case, we could only provide experimental 

justifications which are presented in the following chapter. 

In this chapter we present the theoretical justifications for a few of the 
properties stated above. We first justify (through counterexamples) our claim 
that each of the elements included in the framework is necessary, that is that 
the framework is free of redundancies. Next we claim that the framework can 
consistently implement desired behavior models, and that the criticality 
function defined in section 3.3.2 can implement any known type of reactive 
behavior; we formally justify the first of these claims, and in the next chapter 
we present an experimental justification for the second one. Finally, we also 
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claim that the set of contingencies selected through our framework makes the 
optimal use of the agent's execution time resources while simulating the 
desired reactive behavior pattern, and we formally justify it. One more claim 
which cannot be justified theoretically but is verified experimentally in the 
next chapter is that the knowledge required by our framework in order to 

execute properly exists and can be acquired in real domains. 

But in the next section let us first briefly review the general 

assumptions of our framework, which will be used during this chapter. In the 

following sections we shall then present our theoretical justifications to the 

properties of necessity, consistency and optimality of the framework. 

5.1. Assumptions 

As discussed in chapter 2, during our presentation we have made 
certain assumptions about the problem we attempted to solve. These 
assumptions refer to both the agent, and the environment in which it is 
designed to work. The assumptions regarding the agent refer both to the 
agent's execution capabilities, as well as to the design of its different control 

modes. 

The main assumptions for designing our framework were: 

O about the agent capabilities: 
• planning (and planning to react) 
• monitoring 
• reacting 
• limited resources (including computational time) 

O about the task environment: 

• real-time requirements 
• complex - there exist a large (infinite) number of possible situations 
• complex - there exist a large (maybe infinite) number of possible 

contingencies in each situation 

O about the agent control modes: 
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• planning is better than reaction, whenever the resources (including 

execution time) allow it 
• planning (like reaction) is useless whenever there is insufficient 

time to reach a solution 
• reaction is faster than planning 
• limited resources allow only for limited amounts of reaction 

We also assume that the agent's knowledge base always contains 

whatever information may be necessary for the operation of the framework. 

Whether such information exists in real life and whether its acquisition by 
the knowledge engineer or the agent is possible will not be of concern in this 
chapter. However, we claim that this information indeed exists and its 
acquisition is not very difficult, and we support our claim with the 
experiments described in the next chapter and performed in different domains 
requiring quite different types of human expertise. 

Note that all the assumptions listed here are not very restrictive. In fact, 
they mostly restate the applicability conditions for our framework, presented 
in chapter 2. This means that the following results do not lose their generality 

from these assumptions. 

Any other local assumptions that we shall make in order to allow us to 
perform theoretical analyses of our particular claims will be stated whenever 
they apply. 

5.2. Necessity 

We claim that each element of our framework is indispensable for the 

final decision, that is that each element in the framework is necessary for the 
final decision, or alternatively, that the framework is free of redundancies. 
The simplest way to justify this claim is to assume that each element of the 
framework is redundant (one at a time) and then disprove this assumption by 
presenting a counterexample. This also proves that the elements of the 
framework are independent (uncorrelated). To do this, we specify a complete 
decision problem (again in the car driving domain since now we are very 
familiar with it)  and then change the values of each element of the 
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framework, one at a time, and show that this potentially yields a different 

decision each time. This implies that if that element of the framework is 

missing, then an ambiguity is allowed in the decision process. 

Property. The framework presented in chapter 3 for deciding whether to 

plan to react to a given contingency in a given situation is free 

of redundancies, i.e. each element of the framework is necessary 

for the final decision. 

Justification: we shall state a problem, assume in turn that each element of 

it is redundant, and show by counterexample that this is not true. 

Example problem: 

Variables: 

Situation Space: 

Problem: 

Plan: 

Context: 

Action: 

Carry book from home to the office 

Drive car 
School time (Weekday, morning, May) 

drive straight on Street S, 25 mph 

Internal Expectations:   reach school 

External Expectations:   children in sight 

Times: 1 - 3 minutes 

Contingency: 

Criticality Space: 

Timep (Timerc): 

Consequences: 

Side-effects: 

Likelihood: 

Ball in front of car 

very high (very short) (9) 

small (3) 

medium-high (6) 

medium (5) 

Parameters: 

Expert Model: 

Tmax     - 9-5; 

Tmin     = 3; 

maximum time pressure allowed to respond 

minimum time pressure required to react 



Chapter 5. THEORETICAL ANALYSIS 117 

CSmin   = 4;        - maximum difference allowed between side- 

effects and consequences 

Lmin      = 3;        - minimum likelihood required to react 

MON      = 1000; - minimum criticality required to monitor 

Agent's Knowledge: 

7 contingencies:    4 of higher criticality than this one, 

2 of lower criticality than this one 

Reactive Planner Model: 

decision trees: 
ft: log: 0.2 * log2(nr_of_conting_with_greater_criticality) 

Agent Model: 

computational overload - implies computational time delay: 
frQ:   1.3 * t.imer 

Behavior Model: "normal" 

Parameters for the criticality function fc: PI > P5 > P6 > P2 

PI = 5;    P2 = 1;    P3 = 0;    P4 = 0;   P5 = 3;    p6 = 2 

Changing one element of the framework at a time produces the 

following changes in the criticality space values and implicitly in the 

reaction value of this contingency (which imply changes in the order 

of including the contingencies in the reactive plan): 

ituation Space: 

Problem: Carry 3 kg of radioactive mat 
Changes: increases Side-effects 

Plan: Ride a bike 
Changes: increases Consequences 

decreases Side-effects 

Context: Night-time (non-school time) 
Changes: decreases Likelihood 
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Action: drive straight, 40 mph 

Changes:       increases Consequences 
increases Side-effects 
increases Time pressure 

Internal Expectations:    reach railway crossing 
Changes:        decreases Likelihood 

External Expectations:   train in sight 
Changes:       decreases Likelihood 

Times: 

Changes: 

< 0.5 seconds 

decreases Likelihood 

Note: Any of the changes in the situation space dimensions 
mentioned also changes the set of possible contingencies which include 
the one under consideration. Some of the changes add contingencies 
with high criticality, so this contingency will get a smaller priority of 
being considered for reactive response, others have the opposite effect. 

Contingency 
Changes: 

Expert Model 

Tmax: 
Changes: 

Tmin- 
Changes: 

CSmuv 
Changes: 

Child in front of car 
increases Consequences 

lower (8.5) 
decreases Criticality (as a whole) since timep (9) 

becomes greater than Tmax (8.5) 

higher (9.1) 
decreases Criticality (as a whole) since timep (9) 

becomes smaller than Tmin (9.1) 

lower (2.5) 

decreases Criticality (as a whole) since the 
difference side_effects - consequences (3) 
becomes greater than CSmin (2.5) 

Lmin: higher (6) 
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Changes:        decreases Criticality (as a whole) since likelihood 

(5) becomes smaller than Lmin (6) 

MON: higher (i.e. higher than the criticality of 

this contingency) 

Changes:        do not even monitor (or prepare to react to) this 

contingency 

Agent's Knowledge: 

larger: 24 critical contingencies (more critical than this one) 

Changes:        the chances to prepare reaction to this 

contingency decrease because it has a low 

reaction value compared to the other 

contingencies known for the same situation 

Reactive Planner Model: 

decision lists: 
ft = linear: 0.2 * nr_contingencies_with_greater_criticality 

Changes:        increases real response time 

Agent Model: 

fr(v   1.8 * timer 

Changes:        increases real response time which may 

determine it to exceed timerc and thus to be 

excluded from the reactive plan 

Behavior Model: - changes in the criticality function's (fc) 

parameters: 

pi:      lower (1) 

Changes:        decreases criticality - disregards allowed 

response time 

P2:      higher (3) 

Changes:        increases criticality - stresses consequences 

P3:      higher (2) 
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Changes:        increases criticality - stresses side-effects 

P4:      higher (2) 
Changes:        increases criticality - stresses anything that can 

go wrong (both consequences and side- 

effects) 

P5:      lower (1) 
Changes:        decreases criticality - disregards consequences 

P6:      higher (5) 
Changes: increases criticality - stresses likelihood 

(prepares first for the most frequent 

contingencies) 

All these changes in the parameters values of the criticality 
function denote a change in the behavior model implemented by the 
framework, and have as effect a change in the ordering of 
contingencies by reaction value, which may yield a different set of 
contingencies to be selected for reactive response. 

□ 
This concludes our justification that each element of our framework is 

necessary for the final decision, or alternatively, that the framework is free of 
redundancies. We have shown that for any such element, there may be a 
variation in its value which may determine a different outcome of the final 
decision, and also that such a variation in this value is possible (and even 

plausible) in the domains under consideration. 

5.3. Consistency 

I would have liked to be able to say that I proved that the framework 
introduced in chapter 3 is always able to decide, for any given situation, which 
of a set of contingencies possible in that situation should be selected at 
planning time to prepare reactive responses for. This would obviously solve 
this problem forever, and we could all do something else. But since our 
objective is to design a framework that is applicable in the most demanding 
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real-life domains, theoretically proving this property is beyond our means. 

However, we are able to theoretically justify a few weaker properties which 

would still ensure the usefulness of the framework. On an encouraging note, 

the previous claim actually held in the domains in which experiments were 

conducted. And since these domains are significantly varied in nature, we may 

still conclude that it will be true for a large set of real-world domains. 

We present here the theoretical justification for our claim that the 

framework for deciding whether to plan to react defined before can 

consistently implement behavior models. This actually means that the order in 

which the contingencies associated with a certain situation are classified 

according to their reaction value by our framework is the same order as given 

by the behavior pattern under consideration. 

In order to construct our justification, we start with a few preparatory 

definitions and we will prove a few other properties along the way too. 

Definition: An Evaluation function (fe) is a function which, given a set of 

conditions (pairs contingency-reaction) and a situation in which 

they apply, computes a score, with the property: the higher the 

score, the better (more appropriate) that set of contingencies is, 

according to a particular reaction philosophy (behavior model). 

Definition: A Behavior model is an order relationship on the set of 

contingencies associated with a situation. 

The behavior model represents the type of reactive behavior exhibited 

by the agent, that is, given any pair of contingencies and their reactions in a 

situation, which contingency is to be preferred by the agent for reaction (i.e. 

has priority in reacting to, and hence in preparing a reaction for). 

Obs.: there is a functional relationship between evaluation functions and 

behavior models, i.e. every evaluation function characterizes a 

behavior model, but a behavior model may be characterized by a set 

of evaluation functions. 

Definition: A Rational behavior is a subset of conditions (pairs 

contingency-reaction) such that, given an evaluation function and 
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an agent with limited resources, there is no other subset of 
conditions that gives a better score for this function while satisfying 

the resource limitations. 

The notion of rational behavior has been defined independently of the 

situation characteristics, because all the contingencies that belong to the same 
subset must first of all apply to the same situation. The only contribution of the 
situation space to the framework is to uniquely define each situation, and thus 

unambiguously identify the contingencies and the reactions associated with it. 

The criticality function fc (section 3.3.2) defines an order relation, 

called "more important" on a set of conditions matching a given situation. 

Definition: Condition a is more important than b in situation S (a >g b) if 

and only if: 

(i) both conditions a and b match situation S 

(ii) in situation S: fc(a) > fc(b), i.e. the criticality value of a is higher 

than that of b. 

Obs: "more important" is not a partial order relation on the entire set of 
conditions in the agent's knowledge base, because there may be two 
situations (S and T) in which both contingencies a and b may appear 
and such that   a >s b, and b >T a. Therefore, the relation "more 

important" is only defined in a given situation. 

Property. The sum of the criticality values (reaction values) for a set of 
conditions is an evaluation function. 

Justification: Let fc(c) be the reaction value of condition (pair 

contingency-reaction) c in situation S, and let C be a set of 

conditions associated with situation S. Then: 

fe(C)= Xfc(c) 
ceC 

is an evaluation function. Indeed, according to the previous 
definition of an evaluation function, fc computes a score for a set of 
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conditions in a situation, and since fc(c) > 0 for any ceC (according 

to its definition in section 3.3.2), fe can characterize a behavior 

model. This is true because for any condition a and any set of 
different conditions C, Cu{a} must be preferred to C by the behavior 

model (it is never worse to be prepared to react to more 
contingencies, when agent resource limitations are not taken into 
account, and here the behavior model has been defined 

independently of the agent's resource limitations). 
□ 

Property. For any two conditions a and b associated with a same situation S, 
we have: a >s b if and only if, in situation 5, the behavior model 

prefers condition a to condition b, i.e. it requires the agent to attempt 
to include the reactive response for condition a before attempting to 
include a reactive response for b (i.e., according to the behavior 
model, given a choice, it is more important that the agent is prepared 
to react to contingency a than to contingency b). 

Justification: If a >s b then fc(a) > fc(b) in situation S, so for any set of 

conditions C not including a and b: 

fe(Cu{a}) = X fc(c) + fc(a) >   2 fc(c) + fc(b) = fe(Cu{b}), 
ce C ce C 

so the evaluation function gives a higher value for Cu{a{ than for 
Cu{b}, and thus the behavior model requires the agent to attempt to 

include a before b in the reactive plan associated with situation S. 

Conversely, if the behavior model requires the agent to attempt to 
include a before b in the reactive plan associated with situation S, 
then the evaluation function for this behavior model gives a higher 
value for Cu{a} than for Cu{b}, for any set of conditions C applicable 
in situation S and which do not include a and b, i.e.: fe(Cu{a}) > 
fe(Cu{b}),   i.e.: 

X fc(°)   >        X fc(c) - that is: 

ce Cu{A} ce Cu{B} 
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X fc(c) + fc(a) >   2 fc(c) + fc(b), 
ce C ce C 

and so fc(a) > fc(b) in situation 5, i.e. a >s b. 

□ 
Property. The framework presented in chapter 3 for deciding whether to 

plan to react to a given contingency in a given situation 

consistently implements behavior models. 

Justification: The notion of behavior model is only about the preferences of 

reacting to contingencies, and thus it is only connected to the notion 

of reaction value, implemented in the framework by the criticality 

function. The previous property shows that the "more important" 
relation introduced by the criticality function orders the 
contingencies applicable in a situation in the same way as the 
preferences of the behavior model described by this criticality 
function. Therefore, the criticality function represents an 
appropriate way to describe a reactive behavior model in our 

framework. 

□ 
Moreover, because of the optimality property proved in the next 

section, the framework, using the criticality function ordering of 

contingencies, can always optimally implement the behavior model as 
restricted by the agent's resource limitations, i.e. the rational behavior. 

This concludes our justification for the consistency property of our 
framework. This last property has stopped short of claiming that our 
framework is sufficient to simulate any behavior pattern desired, since 
theoretically there are an uncountable number of behavior models and only a 
countable number of implementable criticality functions (as a subset of the set 
of all programs written in a given programming language), so this would have 
been impossible to prove (actually we just explained it to be false). However, 

we shall state a much more practical conjecture here. 



Chapter 5. THEORETICAL ANALYSIS 12 5 

Conjecture: for each known (cited in the literature) type of behavior, there 
exists a combination of parameters in our criticality function which 

implement it. 

This conjecture cannot be actually proved, but can be experimentally 
supported, as discussed in section 6.3. Coupled with the previous property, it 

implies that the framework yields the rational behavior for the agent given 
an evaluation function (a behavior model), for any distributions of the set of 

characteristics for the conditions (including any distribution of deadlines for 
the reactions to contingencies) and for any distributions of the agent's 

resources. 

If we are unable to come up with a suitable criticality function for a 
desired behavior model, then any of a significant number of automatic or 
interactive learning methods may be employed to learn this function, as 
suggested in chapter 7. 

5.4. Optimality 

We also claim about our framework that it makes the best use of the 
execution time resources of the agent. This means that, given a set of 
contingencies for a situation, the framework will choose not only those 
contingencies that are most important to be treated reactively (according to its 
reactive model), but will also select as many as it can so that the reactive plan 
built for these contingencies maximizes the use of the agent's runtime 

resources. 

We first restate here the definition for a rational behavior introduced 

in the previous section: 

Definition: A Rational behavior is a subset of conditions (pairs 
contingency-reaction) such that, given an evaluation function and 
an agent with limited resources, there is no other subset of 
conditions that gives a better score for this function while satisfying 

the resource limitations. 
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According to this definition, a rational behavior maximizes the 

evaluation function for a given situation and agent model, while in the same 
time producing a behavior pattern consistent with the agent's behavior model. 

Property. In the assumptions of section 5.1, an agent, enhanced with the 
framework presented in chapter 3, exhibits the rational behavior: it 
maximizes the use of its resources, while simulating the desired 

reactive behavior pattern. 

Justification: The criticality value establishes an order on the set of 
contingencies associated with the situation, according to the desired 

evaluation function (conf. section 5.3). The decision process 
(function fr in section 3.4.3) is then applied to each of these 

contingencies, in the order established. There are two possible 
outcomes of this process for a contingency which was already 
considered worth monitoring: if there are enough resources (as 
estimated by the agent model) then the contingency will be included 
in the reactive plan; otherwise, this contingency will not be 
included for reactive response. However, this does not mean that the 
agent's resources were exhausted by the set of contingencies already 
considered. It only means that the resources left available are not 
sufficient to respond to this contingency (while still responding in 
useful time to the ones with higher criticality, already included in 
the reactive plan). Therefore, our framework continues the 
evaluation of the remaining contingencies (also in the order of 
their criticality values) since a less critical contingency may 
require less resources and therefore can also be included for 
reactive response. No contingency can be added to this set when 
each of the remaining contingencies requires more resources than 
left available by the ones already in the set. Therefore, we conclude 
that our framework makes the best use of the agent's resources (as 
estimated by the agent model) given a certain evaluation function 
(which expresses a specific desired reactive behavior of the agent). 

□ 
We have thus theoretically justified our claim that the framework we 

have introduced in chapter 3 for deciding whether to plan to react to a given 
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contingency in a certain situation yields the rational behavior for the agent 
given an evaluation function (a behavior model), for any distributions of the 
set of characteristics for the conditions (including any distribution of 

deadlines for the reactions to contingencies) and for any distributions of the 
agent's resources. This fact takes off some burden of our experiments, since we 
will only have to conduct experiments for the claims which have no 
theoretical justification. However, we also present, in chapter 6, the results of 
an experimental demonstration of the rational behavior claim as well as the 

claims justified in the previous section. 



Chapter 6 

Experiments 

In order to demonstrate the applicability and scalability of the reaction 

decision framework presented in chapter 3, we have run a number of 
experiments. We describe here these experiments and the main conclusions 
that can be drawn from them. In order to demonstrate the generality of the 
framework, we have conducted the experiments in three different domains: 
the driving domain from which we took most of the examples used during the 
previous presentations, and two medical domains of expertise: anesthesiology 
and intensive care patient monitoring. It is well known that different experts 
in a domain may have different opinions on specific subjects from the domain. 
In order to obtain a consensus of these opinions in the driving domain, we 
have polled 8 experts, and we have combined their opinions in different ways. 
It was interesting to find out that the results of these combinations had a high 
degree of similarity among them, and were well in line with the individual 
opinions of the experts (although among them opinions may have varied 
significantly). For the medical domains we have only used the advice of a 
single expert in the field. In the following section we describe the knowledge 
acquisition process which we have conducted in the driving domain, and its 
results. Then we describe a set of experiments in this domain, that support the 
claim of optimality for our framework which has been theoretically justified 
in the previous chapter. In the third section we present a set of experiments 
which were aimed to demonstrate how different behavior models can be 
described in our framework and how they affect the reactive behavior of an 
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agent using them. We conclude this chapter with a description of how the 

reaction decision framework proposed here can be included in a complex 

agent which runs in a real, complex world. 

6.1. The Driving Domain 

In this domain we were able to collect knowledge from 8 experts, since 

most people can be considered experts in this domain, and seven of my 

colleagues (David Ash, Alex Brousilovski, Lee Brownston, Janet Murdock, 

Serdar Uckun, Rich Washington and Michael Wolverton) were kind enough to 

volunteer their valuable time and experience for this part of the project. 

Beside providing the raw knowledge, they have also made significant 

comments which have helped me clarify the knowledge acquisition problems 

involved. I am indebted to all of them (the eighth person in the experiment 

was myself). 

Contingency Reaction 

1    Child runs from right, 20 m in front of car Brake hard and steer right 
2   Car crosses w/o priority 20 m in front, from right to left Brake and gently steer right 
3   Car in front stops suddenly Brake hard 
4   Cat runs across street, 20 m in front Brake hard and steer right gently 
5   Traffic light changes red 40 m in front Brake hard 
6   Tire explosion Brake gently and do not steer 
7   A deep and medium width hole detected 30 m in front Brake hard and steer right gently 
8   Airplane lands in front of car Brake moderately hard 
9   Brake malfunction light turns on Brake gently 

10   Engine overheat light turns on Brake gently to stop the car 
11    Loud radio turns on suddenly Adjust radio volume 
12   Meteor falls on the trunk of the car Accelerate hard 
13   A ball pops in the street, from the right, at 20 m in front1 Brake hard and steer right 

Table 6.1. Contingencies for the car driving domain experiments 

1 We have specifically excluded the conventional driver's wisdom case that a ball popping 
up in the street is usually followed by a running child. 
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Table 6.1 lists the 13 contingencies (also listed in table 3.1 and used for 
illustration purposes throughout the thesis) proposed, together with the 

reactions for each of them. 

The knowledge acquisition problem was to specify a value between 0 

and 10 for three of the criticality space dimensions (consequences, side effects 

and likelihood), and a real time value for the time to respond to the 
contingency, for each of these 13 contingencies, when considered possible to 

appear in the following situation: 

Problem: Deliver package to work 

Plan: Drive car 
Context: May, midweek, morning (school time), pass in front of a school 

Ext. Expect.: Children in sight 
Int. Expect.: Reaching school zone 
Action: Drive straight, 25mph 
Times: max. 3 minutes 

The experts were instructed to translate their qualitative feelings into 

quantitative values, and to concentrate more on relative values than on the 
absolute values they were giving. As some of them have commented, the scale 
used was sometimes closer to logarithmic and sometimes closer to exponential, 

but very seldom (if ever) was it approximately linear. 

Each expert was also independently asked to order the set of 

contingencies by reaction value, that is, to specify the order in which he or 
she believes the agent should consider these contingencies for reaction, as 
well as where a threshold on monitoring for them should be placed. This 
information was then used to evaluate the results of applying our framework 
to the data supplied by the experts. The experts were asked to provide the 
contingency dependent knowledge independently of the final ordering. In 
any case, we believe there is little danger of any conscious correlation 

between the data supplied by an expert for each contingency and the order 
preference specified by the same expert, because of the amount of information 

they had to supply - over 50 values each only for contingency data. 

I will omit here the individual values supplied by each expert for each 
contingency  precisely because  of the  considerable  amount  of numbers 
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involved. I would prefer to comment instead a little on the distribution of these 
values, although a meaningful statistical analysis would not be fully relevant 
because the still small number of experts involved. The absolute values 
specified varied quite a lot. For example, the consequences of not reacting to 

the engine overheating was rated between 4 and 10 (on the scale of 0 to 10, 
where 0 meant no consequences at all), while the likelihood of a child 
running in front of the car was rated between 4 and 9. Although the ordering 

of the contingencies differed too (traffic light was placed between first and 
seventh while airplane, radio and meteor all varied between the ninth and the 

thirteenth places), the experts opinions agreed much more on the set of 
contingencies to be actually taken into account (i.e. the monitoring 
threshold): all of them indicated the first four contingencies as ordered in 
table 6.1, all but one indicated the hole, and all but two indicated the cat and 
the tire contingencies. 

This was the first indication that, although individual pairs of experts 
may disagree, each of the experts tends to agree with the opinion of the group. 
This conjecture was then supported by a deeper analysis of the rest of the data 
supplied by the experts. We have further analyzed the order specified by the 
experts on the set of contingencies, by assigning an order number to each 
contingency according to each expert's specification, and then taking their 
median value, average value, and average of the set of 6 numbers obtained by 
eliminating the highest and lowest expert specified value for each 
contingency independently. In all three cases, the result of ordering the 
contingencies by the values obtained this way were identical, and the 
differences with each expert were much smaller than differences between 
individual experts. This again supports the previous conjecture. It was also 
interesting to see that not even one expert had specified the same ordering as 
inferred by all the three statistical methods. A further confirmation of the 
conjecture came from the fact that, for each characteristic of the 
contingencies, the three statistical measures have produced very similar 
results. Moreover, after eliminating the two extreme values in each case, the 
remaining values were much closer, which shows that the experts tend to 
agree with each other most of the time. Also, since different experts use 
different scales to measure the same qualitative phenomenon, the qualitative 
aspects of their input (orderings) tend to agree more than the quantitative 
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formulations (the experiments described further in this chapter will show 
that our framework is robust to quantitative variations in the knowledge 

specification, and is well suited to extract the qualitative aspects of it, which 

are the ones which eventually interest us). 

The analysis of this data also suggested that different experts take the 
same (or consistent) decisions, but apparently for different reasons, that is, 
they have different heuristic "formulae" or rules to combine their evaluation 
of the characteristics of events in their domain of expertise. All these 

observations support our explicit inclusion in the framework of an expert 

model, which has the role of calibrating the entire reaction decision 

framework according to the set of qualitative_to_quantitative transformation 

functions used by the expert providing the domain knowledge. 

Contingency Timerc Timep Consequences Side-effects Likelihood 

1 Child 1.0 10.0 10.0 6.5 4.5 
2 Car-X 1.0 10.0 8.8 5.7 4.0 
3 Car stop 2.0 5.0 7.0 3.2 6.2 
4 Cat 1.0 10.0 5.2 5.9 6.8 
S T.liaht 4.0 2.5 6.2 0.7 8.8 
6 Tire 3.0 3.3 6.0 2.8 2.3 
7 Hole 2.0 5.0 4.5 4.5 2.8 
8 Plane 2.5 4.0 9.5 4.5 0.3 
9 Brake 30.0 0.3 6.2 1.0 2.0 

10 Heat 50.0 0.2 5.5 0.3 2.2 
11 Radio 100.0 0.1 1.8 0.7 2.0 
12 Meteor 0.1 100.0 9.5 3.2 0.1 
13 Ball 1.0 10.0 0.7 5.7 5.0 

Table 6.2. Data values for the car driving domain experiments 

In our experiments conducted with data from the driving domain, we 
have used the average_after_extremes_elimination values, obtained from the 
raw data provided by the experts as described above. These values are 
presented in table 6.2. The order in which the contingencies are presented in 
both tables 6.1 and 6.2 is the average_after_extremes_elimination (which, as 
mentioned above, is the same as the average and the median) order obtained 
from the pool of experts. The experiments with this set of data are briefly 

presented in the next two sections. 
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6.2. Optimality 

We present here the results of the experiments we have conducted to 

support the theoretical claims made in chapter 5. Since most of these claims 

were justified theoretically, these experiments are merely demonstrations of 

applying the framework. We have used four different reactive planner models 

and five agent models to show how the recommendations of the framework 

vary and how it continues to ensure the optimal use of the agent's resources 

for the given agent models. 

We have also used a "normal" behavior model, that is we expect the 

agent to behave the same way as the experts recommend. In calculating the 

reaction value of a contingency, this model assigns more weight to the time 

pressure dimension, followed by the difference between consequences and 

side-effects, and then likelihood. Consequences are taken into account both by 

themselves, but also (and mostly) in combination with the side-effects. Thus, 

the criticality function parameters given by the behavior model are: 

PI = 5, p2 = 1, P3 = 0, P4 = 0, P5 = 3, p6 = 2, 

where   the   parameters   specified   by   the   expert   model   (an   abstract, 

"average_after_extremes_elimination" expert) are: 

Tmax=20.0;   Tmin = 1.0;   CSmin = 2.3;   Lmin = 1.3;   MON = 10000, 

and the function computing the time pressure is: 

ftc = 10 / timerc • 

In this particular case,   the criticality function (described in section 

3.3.2) becomes: 

Criticality = fc (t, c, s, 1) = 

if (t > 20) then     fc = 0 

elseif   (c + 2.3 - s < 0) then     fc = 0  

elseif   (t<l) then     fc = Vt5 * c * (c+CSmin-s)3 * l2 

elseif   (1 < 1.3) then     fc = Vt5 * c * (c+CSmin-s)3 * l2 

else fc = t5 * c * (c+CSmin-s)3 * l2 
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Table 6.3 presents the values returned by this function, and the outcome 

of the monitoring decision of the framework. We provide them only to allow 
the reader to 'feel' the results of the framework. The monitoring threshold was 
set by the expert model in a region of the contingency space where there is a 
substantial gap among the reaction values of the contingencies ordered by 

criticality. Since the expert and behavior models do not change during the 

experiments described in this section, these values will not change either. 
They will however change anytime at least one of the expert or behavior 
models change. In the experiments described in the following sections we will 

not include this criticality value anymore. It can however be easily 

recomputed from the behavior models, which will always be specified. 

Contingency Criticality Monitor 
1 ChUd 3.95E9 ves 
2 Car-X 2.21E9 ves 
3 Car stop 1.90E8 ves 
4 Cat 9.84E7 ves 
5 Traffic light 2.22E7 ves 
6 Tire 2.17E6 ves 
7 Hole 1.34E6 ves 
8 Plane 5.83E2 
9 Brake 6.56 
10 Heat 1.89 
11 Radio 5.3E-2 
12 Meteor 0.00 
13 Ball 0.00 

Table 6.3. Criticality values for the "normal" behavior model, 
for the car driving domain experiments 

The first and most important observation of the experiment is that our 
framework orders the contingencies by criticality value (based on the data 
from the "average" expert) identically to the order indicated by the same 
"average" expert. When presented with this ordering, all the human experts 
involved have agreed to its rationality. 

We must also point out here that the framework proved very robust, in 

that considerable variations in the values of the behavior and expert model 
parameters as well as in the absolute values for the dimensions of 
contingencies have yielded the same order induced by the criticality function. 
What really matters is the relative relationship among pairs of elements of the 
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framework. For example, in the normal behavior model, time pressure has 

greatest weight. We have experimented with variations of up to 25% in the 
absolute value of its weight (pi) and have still obtained the same order. We 

have repeated the experiment for other behavior models were time pressure is 

also considered most important, as well as by varying other parameters or 

slightly varying individual values of the characteristics of contingencies, and 

in each case we have obtained robust behaviors of the framework. This 

suggests that small variations in the values provided by experts should not 

negatively influence the behavior of an agent using this framework. 

In the experiments described in this section, we have used the following 

four reactive planner models: 

RP1: constructs balanced binary decision trees; the function estimating the 
global reacting response time: 

ft = kp * log2 (number_of_contingencies_with_>_criticality), 

where the average test time is:   kp = 0.2 seconds. 

RP2: same as RP1, but the average test time is:   kp = 0.3 seconds. 

RP3: constructs decision lists; the function estimating the global reacting 
response time is linear: 

ft = kp * number_of_contingencies_with_>_criticality, 

where the average test time is: kp = 0.2 seconds, and the decision lists 

are built such that the pre-conditions discriminating the 
contingencies with the highest time pressure are tested first. 

RP4: same as RP3, but the average test time is:   kp = 0.3 seconds. 

We have also used five agent models. The only difference among them is 
the computational load estimated to be imposed on the agent at execution time 

(for this situation), which has the effect of slowing the agent, that is, it 
increases the response time of the agent to a contingency by a factor Kt: 

frQ (timer) = timer * Kt; 
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The five agent models used are: 

AMI: Kt = 1, that is, there is no computational overhead estimated; 

AM2: Kt = 1.3, that is, there is a 30% computational overhead estimated; 

AM3: Kt = 1.8, that is, there is an 80% computational overhead estimated; 

AM4: Kt = 2.5; 

AM5: Kt = 4.0. 

Contingency Monitor React   (RPModel = decision trees - kD = 0.2) 
Kt = 1.0 Kt = 1.3 Kt = 1.8 Kt = 2.5 Kt = 4.0 

1 Child yes yes yes yes yes yes 
2 Car-X yes yes yes yes yes yes 
3 Car stop yes yes yes yes yes 
4 Cat yes yes yes yes yes 
5 Traffic light yes yes yes yes 
6 Tire yes yes yes yes 
7 Hole yes yes yes 
8 Plane 
9 Brake 
10 Heat 
11 Radio 
12 Meteor 
13 Ball 

Table 6.4. Optimality demonstrations results for reactive planner model RP1 

Contingency Monitor React   (RPModel = decision trees - kD = 0.3) 
Kt = 1.0 Kt= 1.3 Kt = 1.8 Kt = 2.5 Kt = 4.0 

1 Child yes yes yes yes yes yes 
2 Car-X ves yes yes yes yes 
3 Car stop yes yes yes ves 
4 Cat yes yes yes 
5 Traffic light yes yes yes 
6 Tire yes yes 
7 Hole ves yes 
8 Plane 
9 Brake 
10 Heat 
11 Radio 
12 Meteor 
13 Ball 

Table 6.5. Optimality demonstrations results for reactive planner model RP2 
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Contingency Monitor React (RPModel = decision lists - kr. , = 0.2) 
Kt = 1.0 Kt = 1.3 Kt = 1.8 Kt = 2.5 Kt = 4.0 

1 Chüd yes yes yes yes yes yes 
2 Car-X yes yes yes yes yes 
3 Car stop yes yes yes yes yes yes 
4 Cat yes yes yes 
5 Traffic light yes yes yes yes yes yes 
6 Tire yes yes yes yes yes yes 
7 Hole yes yes yes yes yes 
8 Plane 
9 Brake 
10 Heat 
11 Radio 
12 Meteor 
13 Ball 

Table 6.6. Optimality demonstrations results for reactive planner model RP3 

Contingency Monitor React (RPModel = decision lists - kt , = 0.3) 
Kt = 1.0 Kt = 1.3 Kt = 1.8 Kt = 2.5 Kt = 4.0 

1 Child yes yes yes yes yes 
2 Car-X yes yes yes 
3 Car stop yes yes yes yes yes yes 
4 Cat yes yes 
5 Traffic light yes yes yes yes yes yes 
6 Tire yes yes yes yes yes yes 
7 Hole yes yes yes yes 
8 Plane 
9 Brake 
10 Heat 
11 Radio 
12 Meteor 
13 Ball 

Table 6.7. Optimality demonstrations results for reactive planner model RP4 

Tables 6.4 to 6.7 summarize the results of our demonstrations. They list 
the set of contingencies recommended by our framework for reactive 
response preparation, in each case. As expected, this set decreases with an 
increase in the agent computational load, all other things being equal 
(different columns in the same table). It also decreases with an increase in the 
cost (here time) of the average tests to be performed (as can be seen by 
comparing the corresponding columns in tables 6.4 and 6.5, as well as the same 
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columns in tables 6.6 and 6.7. In each case, the agent tries to optimize the use 

of the agent resources (i.e. to include as many contingencies as possible), 

while maximizing the evaluation function on the subset of selected 

contingencies, by essentially including the highest criticality contingencies 

possible. Obviously, the more accurate the agent and planner models used, the 

better the selected contingencies will actually optimize the use of run-time 

resources (the models used here are quite rough - assume all tests take the 

same time and that the simple logarithmic and linear formulae stated above 

correctly approximate the agent). 

In this example the decision trees model always selects the 

contingencies in the strict order of criticality (which need not be the case in 

general), while the decision lists model allows for gaps in the strict order, so 

that it can accommodate a larger number of contingencies. This is one more 

proof that the algorithm proposed in chapter 3 optimizes the use of the agent's 

resources. For example, in table 6.7, for Kt = 2.5, the agent can respond to only 

one contingency with a response time of maximum 1 second, so it chooses the 

one with largest criticality (the child contingency); it can respond to both 

contingencies with maximum response time of 2 seconds (the car__stop and the 

hole contingencies), and so on, but cannot respond to the other contingencies 

with short (1 second) response time, so it will omit them from the final set. 

Also note that the decision lists based planner model assumes that the 

contingencies are ordered by the response time allowed (in the final reactive 

plan), and also that the test times for each contingency are constant. If the 

first of these assumptions would have not been included in the reactive 

planner model, then the default assumption is that the contingencies are 

ordered by criticality, and then the reactive plan for this case could not have 

included the hole contingency since it would have been last in the decision 

list, and its response time would have exceeded its allowed response time. 

One last observation from these experiments is that, for this particular 

set of data, it confirms our discussion of decision trees versus decision lists 

from section 3.4.1. We argued there that there are frequent cases in which the 

set of contingencies recommended by the framework is larger when using a 

decision lists planner than a decision trees planner, all other things being 

equal (which may seem somewhat counterintuitive at the first glance). Indeed, 

in  this   demonstration,   the  decision  lists  based   agent  includes   more 
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contingencies than its decision trees based counterpart for most of the cases 

covered. In our example, the evaluation function value is usually greater in 
the decision trees case, because of a subtle violation of the "all other things 
being equal" assumption: the decision trees based planner model assumes that 
there is no test time needed to reach a response for a single contingency 
(log-, 1 = 0), while the decision lists based planner model assumes that the time 

needed to reach such a response is still the time needed to perform one test. If 

this assumption would have been made in the first case too, then the decision 

lists planner model would have yielded also a higher evaluation function than 
its corresponding decision trees counterpart, for the set of contingencies 
recommended in at least some cases (like RP2 and RP4 (kp = 0.3) and AM4 (Kt = 

4.0)). 

6.3. Behavior Models 

Though not intended as a simulation of human behavior, our approach 
to solving the reaction planning decision problem has some potential 
applications in this area too. Specifically, it provides the basis for a possible 
language to discuss the characteristics of different human behavior models 
related to this task. In this section we shall propose a way of representing in 
our framework some such behavior models discussed in the literature, as well 
as the results of a few experiments we have done using this representation. 
Our discussion here is by no means intended to give a complete solution to the 
problem of simulating human reactive behaviors, but is only intended to 
suggest a possible such representation, which needs a lot more research to 
prove its usefulness or to find its best application domain. 

In section 5.3, we have justified the property that our reaction decision 
framework consistently implements behavior models. We stated then the 
conjecture that for most types of reaction-related behaviors cited in the 
literature, there is a corresponding behavior model encoding in our 
framework which implements that type of reaction. Here, we go even a little 
further, by defining a couple more such behavior models and representing 
them in our framework too. Since we found no way to theoretically prove this 
conjecture, we have conducted a number of experiments designed to support it, 
which we  present  in  this  section.  They show how our framework  can 
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determine an agent to exhibit different reactive behaviors for the driving 

domain described before, while also helping us to clarify the meaning of the 

different thresholds and parameters in our framework. 

Besides the so called "recommended" or "normal" behavior, we have 

found six more types of reaction-related behaviors - sometimes called 

hazardous attitudes [Woods & al., 1987; FAA, 1991]. The last two behaviors were 

proposed by David Gaba (personal communication, 1993). Here is a brief 

description of each of these behaviors: 

O Recommended Behavior - is the normal behavior expected by the expert 

and from an expert in the domain. 

O Antiauthority Behavior - is the "don't tell me!" type of behavior, in 

which the agent regards rules, regulations and procedures as 

unnecessary, and thus tends to disobey them. 

O Impulsivity Behavior - is the "do anything quickly!" type of behavior, in 

which the agent attempts to always do the first thing that comes to 

mind, without stopping to think and select the best alternative. 

O Invulnerability Behavior - is the "it won't happen to me" type of 

behavior, in which the agent is always inclined to take risks since it 

believes that the current situation is never one of those (less likely but 

still possible) situations when something wrong might just happen. 

O Macho Behavior - is the "I can do it!" type of behavior, in which the 

agent wants to impress others, and is ready to take significant risks to do 

it. It is inclined to react even when not really necessary or when it may 

be more dangerous than not to react. Such agents either forget about 

the possible side-effects of their actions, or at least discount deeply 

these side-effects. 

O Resignation Behavior - is the "what's the use?" type of behavior, in 

which the agent faced with a critical situation usually chooses to do 

nothing, since it underestimates its capacity to respond to the event and 

the effectiveness of such a response, in the given time frame. It has a 

tendency to leave such actions to others, for better or for worse. 
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O Risk-averse Behavior - the agent tries to avoid risk by all means 

(considering both the consequences of not being prepared to react in 

time, and the possible side-effects of reactions), but may therefore give 

sometimes less importance to the time pressure. 

O Liability Conscious Behavior - the agent is particularly interested in 

avoiding any legal liabilities that may arise from its actions. Therefore, 

it tends to prepare to always do something, preferably what is legally 

bounding, even if that something may be believed not to succeed in that 

particular situation. This may prevent the agent to prepare for some 

other contingencies which are less liability creating, but which could 

have been treated if there were enough resources available. 

O Social Responsibility Behavior - the "socially conscious" agent tends to 

put the interests of the society before those of the individual, including 

itself. 

Each of these behaviors can be simulated in our framework by adjusting 

the parameters of the corresponding behavior model. While the actual 

parameter values are less important, their relative values define the different 

behavior models. 

Behavior Pi 

Behavior Model 
P2  P3   P4  P5  P6 T max 

Expert Model 
T   .    CS         L   . mm      max   mm 

Recommended 5 1 0 0 3      2 20.0 1.0    2.3       1.3 
Antiauthoritv 5 1 0 0 3     0 
Impulsivitv 0 0 0 0 0     3 10.0                 5.0 
Invulnerability 5 1 0 0 3     2 4.2 
Macho 4 1 0 0 0     3 10.0 
Resignation 5 1 0 0 3     2 5.0 
Risk-averse 2 2 4 2 1      1 
Liability conscious 3 3 1 2 1      2 100.0 0.0                0.0 
Social responsibility 4 3 0 0 4     3 

Table 6.8 Representing Behavior Models 

Table 6.8 summarizes the representation of these behavior models into 

our framework. Recall that a behavior model in our framework is implemented 

by a set of values for the parameters of the criticality function (computing the 

reaction value of the contingencies), and may also be influenced by some 
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values of the thresholds given by the expert model (section 3.3). The values for 
the expert model parameters are completely specified in the table only for the 
recommended behavior model; for the other models, only values that have 
changed from the initial specification are given. Also remember that time 
pressure is the only parameter which can take values outside the interval 
[0,10], because it is converted from arbitrary real values using the expert 
specified conversion function fto Therefore, the time pressure related 

parameters are harder to generalize among domains, as will be noticed in 
appendix 3, where we present the results of the same experiments run for the 

anesthesiology domain, with the same parameter values as here except for the 

time pressure dimension. The expert models in table 6.8 were used in our 

demonstrations in the driving domain. 

To illustrate the simulation of these behaviors in our framework, we 
have run the framework with the behavior models presented in table 6.8 for 
the 13 contingencies presented previously the driving domain. Table 6.9 
summarizes the results of these experiments. We have also shown the reaction 
values produced by the criticality function. Their absolute values have no 
meaning whatsoever; what matters are their relative values (and only within 
the same behavior model), which represent the relative value of reacting to 
one contingency vs. another in a same situation and under the same behavior 
model. For each behavior, the monitoring threshold was set (through the 
expert model) in a region of the contingency space where there is a 
substantial gap among the reaction values of the contingencies ordered by 
criticality. The threshold is represented by a thicker line separating the 
contingencies for each behavior into two sets. The numbering of 
contingencies for each behavior model is the same as for the recommended 
behavior. This was done in order to facilitate comparisons of each behavior 

model with the "normal" one. 

In chapter 5, we have defined a behavior model to be an order 
relationship on the set of contingencies associated with a situation. Therefore, 
in the experiments described in this section, we only concentrate on the 
ordering of contingencies by reaction value (and sometimes relative values of 
the criticality function, but never on its absolute values), and ignore any 
issues related to the reactive planner model and the agent model, that is we 
ignore the final decision of applying the framework to a set of contingencies. 
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This is consistent with the purpose of our demonstrations here, since any 
specific agent (with a given reactive planner and resource limitations) may 
exhibit any of the reaction behaviors discussed, depending only on the order 
in which its behavior model recommends the contingencies for consideration 
to be reacted to, and not on the actual components and resources of the agent. 

Behavior Model 1 
(Recommended) 

Behavior Model 2 
(Antiauthority) 

Behavior Model 3 
(Impulsivity) 

1 Child 3.95E9 1 Child 1.95E8 4 Cat 3.14E2 
2 Car-X 2.21E9 2 Car-X 1.38E8 5 T.light 26.10 
3 Car stop 1.90E8 3 Car stop 4.96E6 3 Car stop 15.43 
4 Cat 9.84E7 4 Cat 2.12E6 1 Child 9.54 
6 T.light 2.22E7 6 Tire 4.10E5 2 Car-X 8.00 
5 Tire 2.17E6 5 T.light 2.87E5 7 Hole 4.68 
7 Hole 1.34E6 7 Hole 1.71E5 6 Tire 3.48 
8 Plane 5.83E2 8 Plane 1.94E3 10 Heat 3.26 
9 Brake 6.56 9 Brake 3.28 9 Brake 2.82 

10 Heat 1.89 10 Heat 0.86 11 Radio 2.82 
11 Radio 5.3E-2 11 Radio 2.6E-2 8 Plane 0.16 
12 Meteor 0.00 12 Meteor 0.00 12 Meteor 0.00 
13 Ball 0.00 13 Ball 0.00 13 Ball 0.00 

Table 6.9 Reactive Behavior Experiments for the Driving Domain 

Behavior Model 4 
(Invulnerability) 

Behavior Model 5 
(Macho ) 

Behavior Model 6 
(Resignation) 

1 Child 3.95E9 4 Cat 1.63E7 3 Car stop 1.90E8 
3 Car stop 1.90E8 1 Child 9.11E6 5 TJight 2.22E7 
4 Cat 9.84E7 2 Car-X 5.63E6 6 Tire 2.17E6 
5 T.light 2.22E7 3 Car stop 1.04E6 7 Hole 1.34E6 
2 Car-X 4.70E4 13 Ball 8.75E5 8 Plane 5.83E2 
6 Tire 1.47E3 5 T.light 1.65E5 9 Brake 6.56 
7 Hole 1.15E3 7 Hole 6.17E4 10 Heat 1.89 
8 Plane 5.83E2 6 Tire 9.01E3 11 Radio 5.3E-2 
9 Brake 6.56 8 Plane 8.10 1 Child 0.00 
10 Heat 1.89 9 Brake 0.78 12 Meteor 0.00 
11 Radio 5.3E-2 10 Heat 0.30 2 Car-X 0.00 
12 Meteor 0.00 11 Radio 3.7E-2 4 Cat 0.00 
13 Ball 0.00 12 Meteor 0.00 13 Ball 0.00 

Table 6.9 Reactive Behavior Experiments for the Driving Domain (continued) 
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Behavior Model 7 
(Risk-averse ) 

Behavior Model 8 
(Liability conscious ) 

Behavior Model 9 
(Social responsibility) 

1 Child 1.2E11 1 Child 2.0E11 1 Child 1.0E12 

? Car-X 3.7E10 2 Car-X 7.0E10 2 Car-X 3.7E11 

4 Cat 4.39E9 12 Meteor 3.8E10 3 Car stop 7.0E10 

3 Car stop 5.05E8 4 Cat 7.56E9 5 T.light 2.3E10 

7 Hole 1.08E8 3 Car stop 3.34E9 4 Cat 2.89E9 

6 Tire 2.40E7 5 T.light 7.49E7 6 Tire 2.96E8 

5 T.light 1.88E5 7 Hole 7.48E7 7 Hole 3.49E7 

8 Plane 1.59E5 6 Tire 5.04E7 8 Plane 4.10E3 
9 Brake 57.62 8 Plane 3.17E7 9 Brake 2.72E2 

10 Heat 2.33 9 Brake 1.37E4 10 Heat 94.70 
11 Radio 0.57 10 Heat 4.87E2 11 Radio 0.78 
12 Meteor 0.00 11 Radio 0.34 12 Meteor 0.00 
13 Ball 0.00 13 Ball 0.00 13 Ball 0.00 

Table 6.9 Reactive Behavior Experiments for the Driving Domain (continued) 

Here is a brief explanation of the changes required by the parameters 

for each behavior model, with respect to the normal behavior model described 

in the previous section, as well as the main effects they have on the ordering 

of the 13 contingencies we have presented in the previous section, for the car 

driving domain: 

O Antiauthority Behavior Model - do not take likelihood into account (most 

likely events are usually covered by laws, regulations and procedures). 

The traffic light contingency goes down in criticality, as the only 

regulation to be observed as a contingency in our set; the rest remains 

the same. 

O Impulsivity Behavior Model - consider a single response, for a 

contingency with great (but serviceable) time pressure and high 

likelihood, to allow at least for a reasonable response in a significant 

number of cases; the reactive plan will consist of a single reaction to 

this contingency. Consequences and side-effects are disregarded, while 

time pressure is considered only through raising Tmin (to 10) so as to 

include only the high but still acceptable time pressures. Likelihood is 

the only one still considered in the reaction value formula, and Lmin is 

also raised significantly (Lmin = 5). Therefore, the cat contingency 

becomes the only one selected for reaction preparation. 
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O Invulnerability Behavior Model - Low and medium likelihood 

contingencies are considered much less critical ("it won't happen to 

me..."); only high likelihood contingencies are really considered 

critical, so the Lmin threshold is significantly increased (Lmin = 4.2). In 

our tests, the car crossing contingency falls a lot because its likelihood 

becomes lower than this threshold. 

O Macho Behavior Model - Forget about side-effects, and also take 

consequences less into account, since the agent mainly tries to impress 

others, by preparing for time pressured, but especially likely 

contingencies, so that it can react most of the time. The likelihood 

weight is increased, while the CSmin threshold is also increased (CSmin 

= 10.0) such that it becomes useless. In our demonstration, ball advances 

all the way to number 4 because the difference between consequences 

and side-effects is not considered here, while cat advances to number 

one since it is more likely than the first three, and its side-effects are 

also disregarded. 

O Resignation Behavior Model - here it is interpreted as underconfidence, 

that is underestimating its own abilities, since we only talk about 

reaction preparation at planning time, and not reaction behavior at 

execution time (were it would have been interpreted as 'giving up'). The 

agent is willing to prepare to respond only to low time pressured events, 

and therefore the Tmax threshold is significantly reduced (by 75% - 

Tmax = 5). Therefore, many contingencies with higher time pressure 

get zero reaction value and fall at the end of the list. 

O Risk-averse Behavior Model - taking most precautions to avoid risk, the 

decision process considers mostly the side-effects of the reaction, 

followed by the consequences of not reacting and the sum of 

consequences and side-effects, and much less time pressure and 

likelihood. The driving domain contingencies become roughly ordered 

by this sum, with a few exceptions: the plane contingency has very low 

likelihood, the brake contingency has very low time pressure, and the 

meteor contingency has a too short response time allowed for a reaction 

to be effective. 
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O Liability Conscious Behavior Model - while the weight of time pressure 
and of the difference between contingencies and side-effects decreases, 
the agent assigns more importance to consequences, side-effects and 

their sum. Also, there are no threshold for either time pressure or 
likelihood (Tmin = Lmin = 0; Tmax = 100), since a contingency should 

never be discarded only because a reaction to it is believed to be useless. 

Therefore, meteor becomes very high priority here, and the agent will 
prepare roughly in the order of collision with people, moving cars, 

animals, objects. Ball is still not considered here at all because the side- 

effects are still much higher (and potentially more liable) than the 

consequences. Also in this case, more contingencies are considered for 

monitoring than usually. 

O Social Responsibility Behavior Model - preparing a population optimal 
behavior involves considering both consequences alone and the 
difference between consequences and side-effects, as well as the 
likelihood, more than before (with respect to time pressure). It is closest 
to the "normal" behavior described in the previous section, with the 
only difference that traffic light gains priority with respect to cat, 
since this behavior tends to favor groups of people over single people, 
and people over animals. Notice here that significant overall changes 
in the values of the parameters, but small changes in their relative 
order, have produced a very similar ordering of the contingencies as 

compared to the recommended behavior. 

As can be noticed from the above discussion, the results of these 
demonstrations require a certain amount of interpretation. This is necessary 
especially since the definitions of these behavior models are generally based 
on execution time types of reactions, while we attempt here to implement them 
at planning time. However, their interpretation shows that they are 
reasonable and consistent with the generally accepted (execution-time) 
definition of each behavior model, and that there is a plausible explanation for 
the results that maps them into the corresponding (conceptual) behaviors. 
These demonstrations show that our framework may at least provide a 
reasonable basis for representing and exchanging information and ideas 
about reaction-related behavior models, and thus for interpreting and 
studying different behaviors. For example, given a specific behavior (order on 
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the set of contingencies), we can automatically discover the parameters of a 

behavior model which emulates it, and then we can characterize this behavior 

and maybe attempt to correct it. 

The specific values of the different parameters of the behavior models 
used may vary in certain limits, producing essentially the same results. This 

fact contributes to the robustness of our framework, and simplifies the 
knowledge acquisition process by easing the burden of specifying accurate 

values for the criticality space dimensions by the expert. More important are 

the relative values the expert supplies, but this is generally easier to acquire. 
Also the expert model may influence some of the behavior models, so the 
expert should probably be informed in advance about the desired behavior 
model. However, our experiments were conducted without informing the 
expert on the type of behavior model desired, and as can be seen from the 
discussion here (and also according to our experts), the results are in 
agreement with the definition of each behavior model. 

We have also run the same demonstrations on a set of contingencies for 

a situation in the anesthesiology domain. Again the results satisfied the expert 
interpretation of the different behavior models. A brief description of this 
experiment and a short interpretation of the results for each behavior model 

are presented in appendix 3. 

In the next section we present a final experiment, aimed at 
demonstrating that the framework defined in this thesis can scale up and be 
integrated in complex autonomous agents, designed to work in real, complex 
domains, and that by doing this, we improve the agent's global real time 
performance (by making it more responsive to those events that are 
considered more critical in the domain). This way we not only improve the 

quantitative performance of the agent, but more importantly, the quality of its 
performance. The experiment presented in the next section was also aimed as 
supporting evidence that the knowledge required to apply our framework 
exists in real domains, that it can be reasonably quantified by experts in the 
domain, and that it can be acquired from these experts and produce reasonable 

results. 
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6.4. Complex Real World Domain 

We present here one more experiment we have conducted with our 
framework, in a real life medical domain: patient monitoring in an intensive 
care unit (ICU). This time, our framework was integrated in a complex real- 
time agent architecture capable of planning, reaction, and dynamic 
replanning: the Guardian system [Hayes-Roth & al., 1992, Hayes-Roth, 1990]. 
Our framework has the role of filtering the information which flows from the 

planner to the reactive planner, according to the architectural design 

outlined in appendix 1. 

The two domain experts who have generously advised us (David Gaba 

and Serdar Uckun) have identified 68 contingencies for a set of situations 

corresponding to a general intensive care monitoring case (figure 6.1). They 
have also specified heuristic values for the four characteristics for each of 
these contingencies. For an easier understanding of the presentation, we shall 
present part of these experiments and most of the data concerned, in appendix 

4, and shall discuss here only the main results. 

Problem: Intensive care monitoring 
Plan: normal postoperative procedure 
Context: after coronary artery bypass grafting (CABG) procedure, 

50 years old patient, no other history known 

Action: ventilate patient / weaning / extubate patient 

Internal Expect: 
External Expect: 
Time: 0-8 hours / 9-18 hours / 18-48 hours 

Figure 6.1. Situations for the ICU domain 

Table A4.1 lists the entire set of contingencies and the characteristic 

values for them, in the order specified by the experts (grouped by categories 

of complications that may develop). 

The first part of this demonstration consisted in running the criticality 
function part of the framework on this data set, for the recommended 
behavior model  (section 6.3),  for several expert models. We have thus 
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exemplified for a large real-life case, the influence of varying different 
expert model parameters, over the ordering of contingencies by criticality. 
Appendix 4 presents a partial set of results from this demonstration (tables 

A4.2toA4.5). 

The most important conclusion to be drawn from this demonstration is 

that the recommendations of our framework are reasonable from the expert's 

point of view. Our experts have agreed, in each case (i.e. for each expert model 
used) with the ordering of the contingencies proposed by our system, finding 

them reasonable and finding reasonable interpretations for them. Since there 

is no other (objective) way to evaluate the framework's recommendations, we 
may conclude that the framework and the "normal" behavior model we have 
defined are a reasonable solution to our original problem. 

# Contingency  (Response  would  be 
the typical response for this event) 

Resp. 
time 

Conse- 
quences 

Side- 
eff. 

Likeli- 
hood 

Criti- 
cality 

34 et-tube-disconnection 2 10 2 4 4.2E12 
18 ventricular-tachycardia 1 9 7 2 2.2E12 
13 ventricular-fibrillation 1 10 8 1 6.1E11 
35 kinked-et-tube 5 8 2 4 1.8E10 
20 hypoxia 5 8 6 4 2.53E9 
7 myocardial-ischemia 5 8 6 3 1.42E9 

15 sinus-bradycardia 5 7 5 3 1.24E9 
14 ventricular-ectopv 5 7 7 6 7.62E8 
5 cardiac-tamponade 5 8.5 7.5 3 6.84E8 

19 sinus-tachycardia 10 6 5 7 8.21E7 
22 cardiogenic-pulmonary-edema 10 8.5 7 3 3.26E7 

1 myocardial-depression-post-cpb 10 8.5 7 3 3.26E7 
32 pulmonary-embolism 10 8.5 7.5 3 2.13E7 
6 hypovolemia 20 7 3 7 2.08E7 
3 decreased-preload 20 7 3 7 2.08E7 

25 Pneumothorax 10 8 7 3 2.01E7 
40 acute-hemolvtic-transfusion-react 10 8.5 5 1 1.28E7 
26 hemothorax 10 7 7 4 1.05E7 
9 right-heart-failure 10 8 7 2 8.94E6 

11 postop-hvpertension 20 6.5 5 4 1.38E6 

Table 6.10. Selected Contingencies for kp = 0.5 (30 seconds) 
for Explorer!! (kt = 1.166) 

The second part of the demonstration considers the behavior of our 
framework in the context of the Guardian system. The blackboard-based 
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[Hayes-Roth,  1985]  Guardian agent has a reactive planner (ReAct)  using 

action-based hierarchies [Ash, 1994]. 

# 

34 
18 
13 
35 
20 

15 
14 

19 
22 

32 

25 
40 
26 

11 

36 
16 
iL 
67 
42 
66 
64 
17 
23 
68 
31 
62 
45 

Contingency  (Response  would  be 
the typical response for this event) 
et-tube-disconnection  
ventricular-tachycardia  
ventricular-fibrillation 
kinked-et-tube 
hypoxia 
myocardial-ischemia 
sinus-bradvcardia 
ventricular-ectopy 
cardiac-tamponade 
sinus-tachycardia 
cardiogenic-pulmonary-edema 
myocardial-depression-post-cpb 
pulmonary-embolism 
hvpovolemia 
decreased-preload 
Pneumothorax 
acute-hemolytic-transfusion-react 
hemothorax 
right-heart-failure 
postop-hypertension 
increased-afterload 
right-mainstem-intubation 
atrial-fibrillation 

febrile-nonhemolytic-transfus-react 
low-k 
mechanical-bleeding 
dilutional-low-na 
low-na 

Resp. 
time 

Conse- 
quences. 

Side- 
eff. 

Likeli- 
hood 

10 
10 
10 
10 
20 
20 
10 
10 
10 
10 
20 
20 
20 
20 
20 
30 
20 
30 
30 

paroxysmal-supraventric-tachycardic    20 
noncardiogenic-pulmonary-edema 
high-k 
bronchospasm 
low-mg 
intrinsic-pathway-defects 

20 
30 
30 
60 
60 

10 

10 

8 

8.5 

8.5 
8.5 
8.5 

8.5 

6.5 
6.5 
6.5 

6.5 
7.5 
7.5 

8.5 
8 

_6_ 
5 

7.5 

7.5 

_3_ 
7 

7_ 
7 

7.5 

Criti- 
cality 
4.2E12 
2.2E12 
6.1E11 
1.8E10 
2.53E9 
1.42E9 
1.24E9 
7.62E8 
6.84E8 
8.21E7 
3.26E7 
3.26E7 
2.13E7 
2.08E7 
2.08E7 
2.01E7 
1.28E7 
1.05E7 
8.94E6 
1.38E6 
1.38E6 
1.23E6 
9.78E5 
6.98E5 
6.63E5 
3.54E5 
3.48E5 
3.48E5 
2.83E5 
1.81E5 
1.47E5 
1.47E5 
8.57E4 
4.37E4 

Table 6.11. Selected Contingencies for kp = 0.5 (30 seconds) 

for SPARC10 (kt = 1.02) 

The reactive planner model for it (kindly specified by my colleague and 

its designer, David Ash) states that the reactive plan built tends to be an 

implicit hierarchy with about 3 levels, with a roughly constant branching 

factor throughout.  Actually distinguishing a  child node in the  implicit 
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hierarchy is accomplished in the real hierarchy with a decision list-like 
structure. According to this model, reaching a contingency in the plan built 

for n contingencies takes roughly a constant time, equal to 3*Vn times the 

amount of time for a single test (assuming the tests take approximately 
constant time). This assumption can be made in our domain and for our agent, 
since tests which take much longer (e.g. laboratory tests) are to be included in 

the main plan by the planner, to be performed regularly so that their data is 
always meaningful. This is generally the way physicians operate in real ICU 
settings. Therefore, for the purpose of our model, we can assume that the 
length of a test is roughly given by the time a human operator needs in order 
to retrieve and check a piece of data and to input it into the computer, i.e. 
approximately 30 seconds. The reactive planner model also allows for a small 
set of contingencies (say, three) to be hooked directly to the top of the 
hierarchy, and thus to be reached by tests independently of the other 
contingencies to be solved by this reactive plan. This is useful when there are 
a few very time critical contingencies, and the rest are with a much smaller 

time pressure. 

# Contingency  (Response would be 
the typical response for this event) 

Resp. 
time 

Conse- 
quences 

Side- 
eff. 

Likeli- 
hood 

Criti- 
cally 

34 et-tube-disconnection 2 10 2 4 4.2E12 
18 ventricular-tachycardia 1 9 7 2 2.2E12 
13 ventricular-fibrillation 1 10 8 1 6.1E11 
35 kinked-et-tube 5 8 2 4 1.8E10 
20 hypoxia 5 8 6 4 2.53E9 

7 myocardial-ischemia 5 8 6 3 1.42E9 
15 sinus-bradycardia 5 7 5 3 1.24E9 
14 ventricular-ectopy 5 7 7 6 7.62E8 
5 cardiac-tamponade 5 8.5 7.5 3 6.84E8 

19 sinus-tachycardia 10 6 5 7 8.21E7 
22 cardiogenic-pulmonary-edema 10 8.5 7 3 3.26E7 

Table 6.12. Selected Contingencies for kp = 0.6 (36 seconds) 
for Explorer!! (kt = 1.166) 

The agent model only takes into account the slowdown of the system due 
to computational overhead. Simulations on two different platforms have 
yielded significantly different results: if Guardian is run on Explorern 
machines, the computational overhead is on average 16% for the simulated 
time period we are interested in (approximately two hours of simulated time); 
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on a SPARC 10 workstation, this overhead is reduced to approximately 2%. Table 
6.10 presents the results of running our entire framework, with the reactive 
planner and agent models described here, for the Guardian agent running on 
an Explorern platform. Table 6.11 presents the same results for a SPARC10 
workstation. We have run the same experiment for an estimated test time of 
20% larger (36 seconds) and the results are presented in tables 6.12 and 6.13 

for Explorern and SPARC 10 respectively. In the second case, the system was 
able to include about 75% more contingencies in the reactive plan. Also note 

that in all cases the system was able to include about 66% more contingencies 

in the reactive plan to be run on the SPARC 10. 

# Contingency  (Response would be 
the typical response for this event) 

Resp. 
time 

Conse- 
quences 

Side- 
eff. 

Likeli- 
hood 

Criti- 
cality 

.34 et-tube-disconnection 2 10 2 4 4.2E12 

18 ventricular-tachycardia 1 9 7 2 2.2E12 

13 ventricular-fibrillation 1 10 8 1 6.1E11 
3S kinked-et-tube 5 8 2 4 1.8E10 
70 hvpoxia 5 8 6 4 2.53E9 
7 mvocardial-ischemia 5 8 6 3 1.42E9 

15 sinus-bradvcardia 5 7 5 3 1.24E9 
14 ventricular-ectopv 5 7 7 6 7.62E8 

5 cardiac-tamponade 5 8.5 7.5 3 6.84E8 
19 sinus-tachvcardia 10 6 5 7 8.21E7 

77 cardiogenic-pulmonarv-edema 10 8.5 7 3 3.26E7 
1 mvocardial-depression-post-cpb 10 8.5 7 3 3.26E7 

V pulmonary-embolism 10 8.5 7.5 3 2.13E7 
6 hvpovolemia 20 7 3 7 2.08E7 
3 decreased-preload 20 7 3 7 2.08E7 

75 Pneumothorax 10 8 7 3 2.01E7 
40 acute-hemolvtic-transfusion-react 10 8.5 5 1 1.28E7 
76 hemothorax 10 7 7 4 1.05E7 

9 right-heart-failure 10 8 7 2 8.94E6 

Table 6.13. Selected Contingencies for kp = 0.6 (36 seconds) 
for SPARC10(kt= 1.02) 

The sets of selected contingencies include the first as many as possible 
contingencies in the order of their criticality value (table A4.2). They do not 
include the fourth contingency in table A4.2 because of the special treatment 
of highly time pressured contingencies in the reactive planner model (it 
allows for three contingencies to be reacted to faster than the rest - otherwise, 
the   set   of   contingencies   might   have   included   only   the   first   four 
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contingencies, but very few others if any). Due to the decision tree form of the 

reactive plan, all leaves are reached in approximately the same time (section 

3.4.1), so the set of contingencies selected is limited by the response time to the 

most time pressured contingency included (in our case 5 minutes, since the 

one and two minute contingencies are treated separately). 

These experiments reinforce a few statements we have made along the 

thesis. They show that the framework proposed here is useful in pruning the 

set of contingencies for which the agent should prepare to react. This is 

however necessary only in such domains where the number of contingencies 

is large enough to pose problems due to agent resource limitations (and we 

have characterized such domains in chapter 2); Guardian and its domain are 

typical in this respect. The performance of the enhanced agent improves upon 

the performance of the same agent without the benefit of our framework, 

because in the latter case, the reactive planner would have prepared a 

reactive plan to include all 68 contingencies, and due to its size, the resource 

requirements for such a plan could not achieve reactions to the most time 

pressured contingencies in this set. The set of contingencies selected depends 

on the characteristics of the agent and of its reactive planner (as represented 

by the agent model and reactive planner model). The more accurate these 

models are, the better will be the use of agent resources made by the set of 

contingencies selected. Also note that the agent may exhibit different reactive 

behaviors, as defined by the reactive behavior model. 

Our experiments also show that the necessary data for our framework to 

be applicable exists in practice and can be acquired from experts in real-world 

domains. The more difficult part of the knowledge acquisition process was the 

identification of the set of contingencies possible in a given situation (the 

acquisition of the characteristic values for them was much easier, especially 

since their absolute values are less important than their relative order, due to 

the robustness of the framework). 

The experiments described in this chapter and performed in different 

domains requiring quite different types of human expertise (mundane tasks, 

highly skilled domains, etc.) demonstrate the applicability of our framework 

in the general types of domains described in chapter 2. 
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Conclusions 

Most research projects have their roots in one or two basic questions, 
attempt (more or less successfully) to provide answers to these questions, and 
during this process usually generate many more new questions than answers. 
This thesis was no exception. In the next section, we present a summary of the 
answers which our work provides, and in the following section we enumerate 
a few questions raised and research avenues opened during our efforts to find 

solutions to the original problems stated in chapter 2. 

7.1. Summary 

Executing plans in the real world has long ago been recognized as a 
difficult and uncertainty-filled problem, due to contingencies generated by 
interactions between the executing agent and its environment. Conditional 
planning, reaction and dynamic replanning are all possible control modes to 
solve this problem, but none of them alone is entirely suitable for agents with 
limited resources working in complex environments. Therefore, the need 
arises for a mechanism to select, from the set of possible contingencies in the 
domain, the subsets which should be treated using each of the previously 

mentioned control modes. In this thesis we have defined a framework to select 

the subset of contingencies which are best suited for reactive response. Our 
framework's decisions are based on the plan situation under consideration, the 
characteristics of the contingencies and of an expert model specifying them, 
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as well as on the reactive planner and agent models. A behavior model 

determines the type of reactive behavior to be exhibited by the agent. All 
these models are designed as application-dependent plug-in modules to be 
attached to our framework, thus substantially increasing its generality and 
applicability across domains and types of agents. The decision of whether to 
prepare a reaction to a given contingency or not is taken while considering 

the entire set of contingencies that may appear in that situation, in 

relationship with the limitations of the agent's execution time resources. We 

have justified a few theoretical claims about our framework (including the 
optimal use of agent's resources), and then we have verified them 
experimentally. We have also demonstrated other properties of the framework, 
the most important being that the reactive behavior of an agent using our 
framework has the agreement of the experts in the field. 

A couple of extensions to our framework were also discussed. The first 
one involves a similar framework to decide on the subset of contingencies for 
which to prepare a conditional branch (all the way to the final goal) in the 
plan. The second involves a proposal for a knowledge representation 

formalism for the types of knowledge involved in our framework: 

contingencies, reactions and situations. It was designed to facilitate the 
structuring and manipulation of this knowledge, as well as to facilitate the use 
of automatic knowledge acquisition and learning techniques to cope with the 
explosion of the related knowledge in complex domains. However, both these 
extensions were discussed only at a theoretical level and, as stated in the next 
section, they need more work in order to be fully understood and for their 
potential to be fully used. 

7.2. Future Work 

It is unfortunate (or maybe actually very fortunate) that a thesis cannot 
encompass an entire research career. Unfortunate because while trying to 
solve the originally stated problems, there are so many new problems that 
arise and which I would have liked to address. Fortunate because I am sure that 
while trying to address these new issues, many other problems would arise, 
and then no thesis would ever be finished. We shall briefly overview in this 
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section a few of the research issues which came up while solving the problems 

mentioned before. 

Two already stated issues are the extensions to our framework cited 

above. The first involves the framework for deciding whether to prepare a full 
conditional branch for a contingency. While we have defined the general 
framework in section 3.5, there are many details that still have to be sorted out 
before a usable framework like the one for reactions can be obtained. The 
function computing the conditional planning value of a contingency must be 
identified and tested, and the values for its parameters must be specified for a 

normal behavior model (and possibly for other types of behavior models). 

Guidelines for specifying the planner model and especially the agent model 

(from the perspective of conventional plan execution) must also be set. 

The second issue involves the knowledge representation formalism 

proposed in chapter 4. Since specifying the nonterminals of the grammar 
imposes some additional burden on the experts, it would be very helpful to 
devise a set of knowledge acquisition and learning tools to help the expert in 
this task. We believe that the best results here can be achieved by combining 
automatic learning methods with interactive knowledge acquisition tools 
(similarly with the methods used in [Dabija & al., 1992a]). Such an approach 
would better use the potential for bias shifting [Utgoff, 1988] and concept 
classification that this knowledge representation formalism is appropriate for. 

Another open research issue related to our framework is its potential 

integration with case based reasoning and planning techniques. Figure 7.1 

presents the possible information flow in such a system. The agent's 
knowledge base (contingencies and associated reactions in specific situations) 
may be organized as a library of cases. The agent may also have a library of 
reactive plans already built (each reactive plan built, may be cached into this 
library), organized by the situations in which they may apply. New knowledge 
may be added at any time to the case library, and each time an already 
encountered situation arises, the reactive plan that may already exist in the 
plan library is combined with any new contingency-reaction pairs applicable 

in that situation that have been included in the agent's knowledge base since 
the last use of this reactive plan. Our framework will decide, for each such 
situation, which are the best contingencies for which reactions should be 
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included in the updated reactive plan. If no new relevant knowledge (i.e. 

applicable in the current situation) has been added to the knowledge base 

since its last use, this reactive plan may be used without any changes or delay. 
Many issues arise here related to the independent management of the two 
libraries (knowledge structuring, and "forgetting") as well as the 
relationships between them. There are also interesting research issues related 
to the problem of acquiring the knowledge for the two libraries: knowledge 

for each of them may be acquired from an expert (and here interactive 

knowledge acquisition techniques may be used) or from the agent's own 

domain experience. 

Formalism for 
Reaction 
Decisions 

Main Plan 
Situation 

\ M / c ■= 

Case 
Library 

■ Reactive Plan 
Generation 

Reactive Plan 
Library 

C^Nev 
I 

"^ t 
Figure 7.1. Extended system architecture 

In domains where strong theories about possible contingencies exist, 
these theories can be used to anticipate all the contingencies that may appear 
for situations along the plan, and to specify their characteristics. However, in 
most domains with which we are concerned, such theories either do not exist, 
or they are very weak (e.g. cover the domain only partially, or can anticipate 
only certain kinds of events all over the domain). In such cases, the agent may 
generate prototype cases (akin to the cases in the case library) and propose 
solutions for them. They may then be evaluated and compared to 
corresponding actual cases, and the differences may be used to improve the 
weak domain theory that has generated them in the first place. 

In this thesis we have also introduced a formalism to describe reactive 
behavior models. As we have shown in chapter 6, most of the human reactive 
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behavior models described in the literature can be conveniently expressed in 
our framework, which therefore provides a possible vehicle for the exchange 
of information on this subject. However, we have only touched the tip of the 
iceberg in this respect. Considerably more research is needed to refine this 
formalism so that it can be really useful for providing complete 
characterizations of these behavior models and therefore become useful in 
attempts to correct or influence human behaviors in critical domains like 
nuclear power plant supervision or aircraft flying. For example, in order to 

better model the differences between behaviors like social responsibility and 

individualism, the consequences dimension of the criticality space may be 

split into two components: (i) internal-consequences (which directly affect 

our agent) and (ii) external-consequences (effects of not responding to the 

contingency, over other agents in the environment). 

As stated at the beginning of this section, the range of open problems 
suggested by this research is very wide, and we believe that at least part of 
them are worth further investigation. 



Appendix 1 

System Architecture 

We briefly present here the way our framework is to be integrated in 
the general architecture of an agent with planning, reaction and monitoring 
capabilities. We assumed a modular system, in which each component can, in 
principle, be plugged in and out and the agent's performance should change 
gracefully. For example, if the agent is to operate without a reactive planner, 
then it will be able to respond only to the contingencies for which conditional 

branches have been prepared by the planner, while if it is to operate only 
with a reactive planner, then the agent should be able to react to all the 
contingencies for which it has reactions prepared for, but may never reach 
the overall goal since it lacks the main plan to do it. The framework to decide 
whether to prepare to react may be regarded as another such module, which 
when present, ensures that the agent is better prepared to cope with the 
different contingencies that may appear during its plan execution. 

An alternative view is that the other agent modules (the planner, 
reactive planner, execution mechanisms, knowledge base, the expert model 
and the behavior model) are all independent modules which can be plugged 
into, and out of, the framework discussed in the thesis. The framework was 
defined in a general manner such that all these modules are parameters which 
will change the outcome of the analysis, but the general principles presented 
in chapters 3 and 4 and the theoretical analysis in chapter 5 remain all valid 
(since they all were done independent of any particular such module). 
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Figure Al presents how all these modules fit together in a "complete" 

agent, as well as the information flow during the plan modification process. 

We assume this process starts when the planner has produced a complete 
(conditional) plan to solve a given problem. In order to identify the situations 
that may generate contingencies in the plan, the plan analyzer scans the plan 
and for each stage (situation) searches the agent's knowledge base for the set 

of contingencies that may appear in that situation, and their appropriate 

reactions. Each situation for which there are known contingencies will be 

further analyzed to prepare reactive plans for it. 

All relevant contingencies found in the agent's knowledge base by the 
contingency extractor for a certain situation are passed on to the reaction 

decision maker which uses our framework presented in chapter 3, together 
with an expert model, a behavior model, the agent model (corresponding to the 
execution capabilities of this agent), and the reactive planner model 

(corresponding to the reactive planner available to this agent), to select those 
contingencies for which reactive responses should be prepared by the 
reactive plan generator. The reactive plan is passed back to the planner 

together with monitoring actions to be included in the plan. The reactive plan 
is eventually attached to the context-specific plan and the next stage of the 

plan will be subsequently analyzed. 

This entire process is performed first at planning time, before the agent 
starts executing the main plan, and is repeated each time the agent is forced to 
dynamically replan its actions (and generate a new main plan) during the 
execution phase because of a major failure in executing the initial main plan. 

One agent with such an architecture with which we have conducted 
demonstrations of our framework is the Guardian agent (for monitoring 
patients in an intensive care unit) [Hayes-Roth, 1990]. The results of these 

demonstrations are discussed in section 6.4. 



Appendix 2 

Knowledge Representation 
in the Car-Driving Domain 

We continue here the example started in section 4.2, with the 
hierarchical vocabularies and the corresponding grammars for representing 
reactions and situations in the car driving domain. While we do not plan to 
specify the complete vocabularies for this domain, the ones that are given 
here are sufficient to represent all the examples encountered in chapter 3, as 
well as the experiments discussed in chapter 6 for the driving domain. They 
are also enough to represent a good deal more knowledge from this domain. 

Figure A2.1 presents the hierarchical vocabulary for representing 
reactions in the car driving domain. This hierarchy is equivalent (according 

to the formalism discussed in chapter 4) to the following grammar: 

G = (N, T, P, S), where: 

N = { Reaction, Brake, Steer, Other, Left, Right, Hard, Gently, 
Adjust_Radio } 

T = { B.Hard, B.Gently, B.None, Left&Hard, Right&Hard, Left&Gently, 
Right&Gently, None, Turn_on_Lights, Adjust_Volume, 
Adjust_Station, Open_Window } 

P = { Reaction -> Brake - Steer I Other 
Brake -> B.Hard I B.Gently I B.None 
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Steer -> Left I Right I Hard I Gently I None 

Left -> Left&Hard I Right&Hard 

Right -> Right&Hard I Right&Gently 

Hard -> Left&Hard I Right&Hard 

Gently -> Left&Gently I Right&Gently 

Other -> Turn_on_Lights I Adjust_Radio I Open_Window 

Adjust_Radio -> Adjust.Volume I Adjust_Station } 

S = Reaction 

Reaction Brake 

Brake - Steer Other B.Hard B.Gently B.None 

Steer 

Left Right        Hard Gently        None 

Left&Hard Right&Hard  Left&Gently  Right&Gently 

Other 

Turn_on_Lights Adjust_Radio   Open_Window   • - 

Adjust_Volume   Adjust_Station 

Figure A2.1. Vocabulary for describing reactions in the driving domain 

Every reaction specified in table 3.1 can be obtained through a number 

of different derivations in this very small and simple grammar. Also, many 
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other reactions in the driving domain can be expressed using this vocabulary 

(this is generally true especially for reactions, since there are usually a small 
set of actions in a domain which can make up useful reactive plans in that 
domain). Since general reactions are often enough to be specified, the 

derivations may be stopped at those levels where the reaction expressed by the 
sentential form obtained thus far "contains" (according to the order relation 
defined in chapter 4) all the elementary reactions acceptable in that situation. 

For example, if the agent only needs to reduce speed somewhat, than "Brake" 

may be sufficient, without qualifying the action further. 

Here is an example of deriving the reaction "Brake hard and steer 

right" to the first contingency in table 3.1 ("Child runs from right 20m in 

front of car"): 

Reaction -> 
Brake - Steer -> 
B.Hard - Steer -> 
B.Hard - Right. 

This derivation has already been stopped before reaching a sentential 
form made up only of terminals in the vocabulary, since the "Right" 
nonterminal could have been further refined to one of the two terminals 

given by the production: 

Right -> Right&Hard I Right&Gently. 

It therefore represents a set of possible reactions, contained in this 

description (i.e. derivable from it). 

Figure A2.2 presents the hierarchical vocabulary for representing 

situations in the car driving domain. 

Some productions (both shown in figure A2.2 and omitted) may be 
realized through identification functions, as shown in chapter 4. For example, 
the grammar symbols Slow, Medium, Fast, can be considered nonterminals 
(instead of terminals like in this example), and the actual values of the speed 

can be considered terminals. 
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An example of such a function may then be: 

Slow = fs (speed) = 5 mph < speed < 20 mph, 

which can be used to perform the transition over the edge linking "Slow" with 

the actual terminal, say "speed =15 mph". 

We have collapsed the seven vocabularies for representing values for 

the seven dimensions of the situation space into a single vocabulary, with the 

help of the first production of the grammar. Alternatively, we could have 

specified seven independent grammars, by throwing out the first production 

and the nonterminal Situation; each of these grammars would have had as 

starting symbols the nonterminals: Situation, Problem, Plan, Context, Action, 

Internal_Expectations, External_Expectations, Time (respectively), as 

productions all the productions which can be reached from their respective 

start symbols using the productions of the reunited grammar, and as 

nonterminals and terminals all those from the large grammar which are 

involved in the productions of each respective grammar. 

The hierarchy in figure A2.2 is equivalent (according to the formalism 

discussed in chapter 4) to the following grammar: 

G = (N, T, P, S), where: 

N = { Situation, Problem, Plan, Context, Action, Internal_Expectations, 

ExternaLExpectations, Time, 

Object, Animate, Human, Cannot_take_care_of_himself, Animal, 

A.Small, A.Big, Non-animate, Large, Small, Heavy, Light, 

Large&Heavy, Small&Heavy, Large&Light, Small&Light, 

Place, Close, Far, Known, Unknown, Close&Unknown, 

Local.Transp, Drive, Ride, Public.Transp, 

C.Time, Day .Time, Year.Time, Weather, 

Direction, Steer, Left, Right, Hard, Gently, 

Speed, Constant, Accelerate, Break, 

Adjust_Control, 

Sound, Type, Intensity } 

T = { Airplane, Walk, 
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Very.Short, Short, Medium, Long, Very.Long, 

Can_take_care_of_himself, Old, Infant, Cat, Cow, Meteor, Brick, 

Mattress, Book, Ball, 

Office, Far&Known, Close&Unknown, Far&Unknown, 

Car, Truck, Bike, Horse, Bus, Subway, 

Morning, Afternoon, Evening, Night, 

Winter, Spring, Summer, Fall, 

Sunny, Rain, Snow, 

Straight, Left&Hard, Right&Hard, Left&Gently, Right&Gently, 

Slow, Medium, Fast, A.Hard, A.Slowly, B.Hard, B.Slowly 

Window, Radio, 

Gentle, Harsh, Soft, Loud, 

P = { Situation -> Problem - Plan - Context - Action - 

InternaLExpectations - External_Expectations - Time 

Problem -> Object - Place 

Plan -> Airplane I Local.Transp I Walk I.. . 

Context -> C.Time I Weather I. . . 

Action -> Direction - Speed I Adjust_Control 

InternaLExpectations -> Object I Sound I... 

External_Expectations -> Object I Sound I... 

Time -> Very.Short I Short I Medium I Long I Very.Long 

Object -> Animate I Non-animate 

Animate -> Human I Animal 

Human -> Can_take_care_of_himself I 

Cannot_take_care_of_himself 

Cannot_take_care_of_himself -> Old I Infant I... 

Animal -> A.Small I A.Big 

A.Small -> Cat I... 

A.Big -> Cow I... 

Non-animate -> Large I Small I Heavy I Light 

Large -> Large&Heavy I Large&Light 

Small -> Small&Heavy I Small&Light 

Heavy -> Large&Heavy I Small&Heavy 

Light -> Large&Light I Small&Light 
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Large&Heavy -> Meteor I .. . 

Small&Heavy -> Brick I... 

Large&Light -> Mattress I.. . 

Small&Light -> Book I Ball I... 

Place -> Close I Far I Known I Unknown 

Close -> Close&Known I Close&Unknown 

Far -> Far&Known I Far&Unknown 

Known -> Close&Known I Far&Known 

Unknown -> Close&Unknown I Far&Unknown 

Close&Unknown -> Office I... 

Local.Transp -> Drive I Ride I Public.Transp 

Drive -> Car I Truck 

Ride -> Bike I Horse 

Public.Transp -> Bus I Subway I... 

C.Time -> Day .Time I Year.Time 

Day .Time -> Morning I Afternoon I Evening I Night I... 

Year.Time -> Winter I Spring I Summer I Fall 

Weather -> Sunny I Rain I Snow 

Direction -> Straight I Steer 

Steer -> Left I Right I Hard I Gently 

Left -> Left&Hard I Left&Gently 

Right -> Right&Hard I Right&Gently 

Hard -> Left&Hard I Right&Hard 

Gently -> Left&Gently I Right&Gently 

Speed -> Constant I Accelerate I Break 

Constant -> Slow I Medium I Fast 

Accelerate -> A.Hard I A.Slowly 

Break -> B.Hard I B.Slowly 

Adjust_Control -> Window I Radio i... 

Sound -> Type I Intensity 

Type -> Gentle I Harsh I... 

Intensity -> Soft I Loud I. .. } 

S = Situation 

Most of the driving domain situations encountered during this thesis 

can now be obtained through a number of different derivations in this 
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grammar. Also, many other situations in the driving domain can be expressed 
using this vocabulary. Clearly, this vocabulary is not enough to describe all 
possible contingencies in the driving domain. It was not our goal to provide 
such a vocabulary and grammar. However, it can be easily extended to 
encompass, in the same domain, any other desired situation which cannot be 

represented yet. 

Contingencies and reactions are, in general, associated with sets of 
situations. Therefore, general situations are most often enough to be specified, 

and the derivations may be stopped at those levels where the situation 

expressed by the sentential form obtained thus far "contains" (according to 

the order relation defined in chapter 4) all the elementary situations to which 

the contingency or reaction apply. This knowledge structuring property of 

the representation formalism is most important here, since it helps contain 
the explosion of the situations in the domain, ensuring the representability of 
the knowledge needed for our planning-to-react decision framework in large 

domains. 

While most situations encountered in chapter 3 can be derived in this 
formalism, it also supports the derivation of many other situations for the 
driving domain. In fact, just by enlarging the set of terminals, the number of 
situations expressible with this small grammar becomes very large indeed. 
This fact underlines the most important advantage of this representation 
formalism, namely imposing a (hierarchical) structure on the set of possible 
situations in the domain, which then makes them much easier to be stored, 

managed, analyzed and reasoned about. 
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Anesthesiology Domain Experiments 

In order to demonstrate the applicability and scalability of the reaction 
decision framework presented in chapter 3, we have run demonstrations in 
one other domain than those described in chapter 6. We briefly describe here 
these demonstrations. The domain is anesthesiology, and I am indebted to Dr. 
David Gaba for letting me benefit from his time and knowledge by serving the 
role of the domain expert both for the knowledge acquisition task, as well as 
for the evaluation phase of the experiments. Working in a professional domain 
of high expertise, we have used this time a single expert to provide us the 
necessary knowledge (in contrast with the driving domain where we have 
acquired it through a statistical analysis of the opinions of a group of experts 
in the domain, as explained in section 6.1). 

Table A3.1 lists the set of 13 contingencies selected for this experiment, 
together with the reactions for each of them (in the "random" order specified 

by the expert), for the following situation: 

Problem:        Anesthetize patient for bowel obstruction 
Plan: Induce anesthesia [rapid sequence induction] 
Context: Middle of the night, emergency case, patient has coronary 

artery   disease   (moderate)   and   chronic   obstructive 

pulmonary disease (severe) 

Ext. Expect.:   Change in vital signs 
Int. Expect.:   Patient becomes unresponsive to commands 
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Action: Rapid sequence  induction  (Pentothal  and  Succinylcholinc 

have just been administered) 

Times: 60 seconds. 

The expert was asked to translate his qualitative feelings into 

quantitative values, and to concentrate more on relative values than on the 
absolute values he was going to specify. The expert was not asked to order the 
contingencies as he feels would be appropriate for a normal behavior. Rather, 
we have presented him with the system's results and ask him to evaluate the 
behavior recommended by our framework. The knowledge acquired from the 
expert was for the following contingency characteristics: time to respond 

(real values in seconds), criticality, side-effects, and likelihood (all these three 

on a scale of [0,10]). 

Contingency Reaction 

1   Patient vomits Turn head; suction mouth; intubate 
2   Patient does not "fall asleep" Check IV and syringe; give more drug 
3   Muscle fasciculations 

(twitching 2" to drug) 
Ensure patient does not fall asleep 

4   Decreased blood pressure Increase TV rate; administer vasopressor 
5   Increased heart rate Consider deeper anesthesia or ß blocker 
6   Cardiac Arrest ACLS (Advanced Cardiac Life Support) 

7   Meteor strikes OR Move patient out of OR 
8   Failure of pipeline oxygen 

supply 
Switch tanks ON; disconnect pipeline 

9   Failure of 1° and backup 
electric power 

Obtain flashlight 

10   Inability to intubate trachea Ventilate by mask if possible; emer- 
gency procedures for difficult airway 

11   Message from PACU about 
previous patient 

Listen to the message 

12   Severe bronchospasm 
(wheezing) 

Ensure correct intubation; treat with 
bronchodilators 

13   02 saturation decreases to < 90% Ventilate by mask or tube with 100% 02 

Table A3.1. Contingencies for the anesthesia domain experiments 

We have also asked the expert to calibrate his data by supplying values 
for the expert model parameters for the recommended behavior model. These 
values were: 1 second for minimum real time (corresponding to Tmax), 30 
minutes for maximum real time threshold (corresponding to Tmin), 1.0 for 
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minimum likelihood (Lmin)> and 2.3 for the difference between consequences 

and side-effects (CSmin)- We did not ask tne expert to actually give us a 

function to translate from real time to time pressure, but rather we have 

specified it ourselves, in such a way as to include most of the time pressures in 

the interval [0,10]. The function we came up with is: 

ftc = k / timerc = 50 / timerc • 

We have experimented with significantly different values for k (between 

[10,100]) and the results obtained were remarkably similar (actually most were 

identical) with the ones reported here. However, we have settled for the value 

k = 50, for the reason stated above (all but one time pressure values are 

between [0,10], with a reasonable spread in this interval). The results of the 

knowledge acquisition process in this domain are summarized in table A3.2 (in 

the same order as the previous table). 

Contingency timerc timep consequence side-effect likelihood 
1 vomit 15.0 3.33 8.0 2.0 7.0 
2 not fall asleep 45.0 1.11 7.0 4.0 4.0 
3 muscle fascic. 100.0 0.5 3.0 1.0 8.0 
4 decreased BP 15.0 3.33 8.0 5.0 6.0 
5 increased HR 15.0 3.33 6.0 6.0 7.0 
6 cardiac arrest 5.0 10.0 10.0 7.0 2.0 
7 meteor 0.1 500.0 9.0 7.0 0.01 
8 02 supply fails 30.0 1.67 8.5 5.0 1.0 
9 power failure 30.0 1.67 6.0 5.0 1.0 

10 can't intubate 10.0 5.0 9.5 8.0 5.0 
11 PACU message 200.0 0.25 1.0 1.0 4.0 
12 bronchospasm 25.0 2.0 9.0 7.0 6.0 
13 02 sat < 90% 15.0 3.33 8.0 4.0 6.0 

Table A3.2. Data values for the anesthesiology domain experiments 

We have first run the "normal" behavior model on these contingencies. 

The values for the criticality function parameters given by the behavior 

model were the same as for the driving domain: 

PI = 5, p2 = 1, P3 = 0, P4 = 0, P5 = 3, p6 = 2, 

with the parameters specified by the expert model (and discussed above) close 

to those given in section 6.2. Table A3.3 summarizes the results of this run. The 

contingencies are this time numbered in the order specified by the criticality 
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function for this case, which we shall call from now on the "system- 

recommended" order (since it was obtained by running the system with the 

recommended behavior model). There are two possible monitoring thresholds, 

since there are two significant gaps in the sequence of values returned by the 

criticality function. 

Contingency Criticality Monitor 
1 cardiac arrest 5.95E8 yes 
2 vomit 9.22E7 yes 
3 can't intubate 4.07E7 ves 
4 02 sat < 90% 2.96E7 yes 
5 decreased BP 1.76E7 ves 
6 increased HR 1.47E6 ves 
7 bronchospasm 8.24E5 ves 
8 not fall asleep 2.82E4 ?? 

9 02 SUDDIV fail 2.13E4 ?? 
10 Dower failure 2.77E3 ?? 

11 muscle fascic. 4.77E2 ?? 

12 PACU messg 0.19 
13 meteor 0.00 

Table A3.3. Criticality values for the "normal" behavior model, 

for the anesthesiology domain experiments 

As mentioned before, the expert was not required to order the 

contingencies by reaction value according to his belief of what the 

recommended behavior should be like. However, when presented with the 

results, he characterized them as "definitely reasonable". This shows a 

significant portability of the behavior model and of all the parameter values 

for the criticality function, across domains (since the driving and 

anesthesiology domains are significantly different in nature, and the experts 

have specified their knowledge in the two domains independent of each 

other). 

We have then run our framework on this data, for all the other 

behavior models defined in section 6.3. We summarize in table A3.4 the values 

we have used for the criticality function parameters in each run for this 

domain. Note that all the behavior model parameters (pi to p6) have received 

identical values for the two domains. Also most of the expert model parameters 

are unchanged, and the changes reflect the different calibrations of the 

experts when they have specified the data. 
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Behavior Pi 

Behavior Model 
P2   p3   P4  P5   P6 

Expert Model 
T         T        CS         L max    min      max   min 

Recommended 5 1 0 0 3      2 50.0  0.028   2.3        1.0 
Antiauthority 5 1 0 0 3     0 
Impulsivitv 0 0 0 0 0     3 5.0                 5.0 
Invulnerability 5 1 0 0 3      2 5.2 
Macho 4 1 0 0 0     3 10.0 
Resignation 5 1 0 0 3      2 2.0 
Risk-averse 2 2 4 2 1      1 
Liability conscious 3 3 1 2 1      2 500.0     0.0                0.0 
Social responsibility 4 3 0 0 4     3 

Table A3.4 Representing Behavior Models 

Table A3.5 summarizes the results of these experiments. We have also 
shown the reaction values produced by the criticality function. Their absolute 
values have no meaning whatsoever; what matters are their relative values 
(and only within the same behavior model), which represent the relative 
value of reacting to one contingency vs. another in a same situation. For each 
behavior, monitoring thresholds were set (for the expert model) in regions of 
the contingency space where there are big gaps among the reaction values of 
the contingencies ordered by criticality. The thresholds are represented by 
thicker lines separating the contingencies for each behavior into two or three 
sets (in many cases, two possible places were indicated for this threshold). 

Behavior Model 1 
(Recommended) 

Behavior Model 
(Antiauthority) 

2 Behavior Model 3 
(Impulsivity) 

1 cardiac arrest 5.95E8 1 cardiac arrest 1.48E8 3 can't intubate 1.25E2 
2 vomit 9.22E7 2 vomit 1.88E6 11 muscle fascic. 22.62 
3 can't intubate 4.07E7 3 can't intubate 1.62E6 2 vomit 18.52 
4 02 sat < 90% 2.96E7 4 02 sat < 90% 8.23E5 6 increased HR 18.52 
6 decreased BP 1.76E7 5 decreased BP 4.90E5 7 bronchospasm 14.69 
5 increased HR 1.47E6 6 increased HR 3.00E4 5 decreased BP 14.69 
7 bronchospasm 8.24E5 7 bronchospasm 2.28E4 4 02 sat < 90% 14.69 
8 not fall asleep 2.82E4 9 02 supply fail 2.13E4 8 not fall asleep 8.00 
9 02 supply fail 2.13E4 10 power failure 2.77E3 12 PACU messg 8.00 

10 power failure 2.77E3 8 not fall asleep 1.76E3 1 cardiac arrest 2.82 
11 muscle fascic. 4.77E2 11 muscle fascic. 7.45 9 02 supply fail 1.00 
12 PACU messe 0.19 12 PACU messe 1.1E-2 10 power failure 1.00 
13 meteor 0.00 13 meteor 0.00 13 meteor 0.00 

Table A3.5 Reactive Behavior Experiments for Anesthesiology 
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Behavior Model 
(Invulnerability 

4 
) 

Behavior Model 5 
(Macho) 

Behavior Model 6 
(Resignation) 

? vomit 9.22E7 1 cardiac arrest 8.00E5 7 bronchospasm 8.24E5 

4 02 sat < 90% 2.96E7 3 can't intubate 7.42E5 8 not fall asleep 2.82E4 

S decreased BP 1.76E7 2 vomit 3.28E5 9 02 supplv fail 2.13E4 

6 increased HR 1.47E6 6 increased HR 2.54E5 10 power failure 2.77E3 

7 bronchospasm 8.24E5 5 decreased BP 2.13E5 11 muscle fascic. 4.77E2 

1 cardiac arrest 2.44E4 4 02 sat < 90% 2.13E5 12 PACU messg 0.19 

3 can't intubate 6.38E3 7 bronchospasm 3.11E4 1 cardiac arrest 0.00 

11 muscle fascic. 4.77E2 8 not fall asleep 6.82E2 3 can't intubate 0.00 

8 not fall asleep 1.68E2 11 muscle fascic. 96.00 13 meteor 0.00 

9 02 supplv fail 1.46E2 9 02 supplv fail 65.58 2 vomit 0.00 

IC power failure 52.65 10 power failure 46.29 5 decreased BP 0.00 

1? PACU messe 0.43 12 PACU messg 0.25 4 02 sat < 90% 0.00 

13 meteor 0.00 13 meteor 0.00 6 increased HR 0.00 

Table A3.5 Reactive Behavior Experiments for Anesthesiology (continued) 

Behavior Model 7 
(Risk-averse) ( 

Behavior Model 8 
Liability conscious) 

Behavior Model 9 
(Social responsibility) 

1 cardiac arrest 7.3E10 13 meteor 7.0E10 2 vomit 1.0E11 
3 can't intubate 5.3E10 1 cardiac arrest 4.2E10 1 cardiac arrest 6.3E1C 
7 bronchospasm 5.13E9 3 can't intubate 2.4E10 4 02 sat < 90% 2.1E1C 
5 decreased BP 2.38E9 5 decreased BP 3.05E9 3 can't intubate 1.3E1C 
6 increased HR 1.20E9 4 02 sat < 90% 2.47E9 5 decreased BP 1.0E1C 
4 02 sat < 90% 9.90E8 7 bronchospasm 1.61E9 7 bronchospasm 8.61E8 
9 02 supplv fail 1.32E8 2 vomit 1.54E9 6 increased HR 2.55E8 
2 vomit 6.61E7 6 increased HR 7.78E8 8 not fall asleep 2.64E7 

8 not fall asleep 3.97E7 8 not fall asleep 1.93E7 9 02 supplv fail 5.36E6 
10 power failure 2.49E7 9 02 supplv fail 1.50E7 1C power failure 1.97E5 
11 muscle fascic. 1.23E3 10 power failure 1.99E6 11 muscle fascic. 2.95E5 
1? PACU messg 2.30 11 muscle fascic. 1.48E4 12 PACU messg 6.99 
13 meteor 0.00 12 PACU messg 2.30 13 meteor 0.00 

Table A3.5 Reactive Behavior Experiments for Anesthesiology (continued) 

The numbering of contingencies for each behavior model in table A3.5 
is the same as for the recommended behavior. This was done in order to 

facilitate comparisons of each behavior model with the "normal" one. 

In chapter 5, we have defined a behavior model to be an order 
relationship on the set of contingencies associated with a situation. Therefore, 
in these experiments, we only concentrate on the ordering of contingencies 
by reaction value (and sometimes relative values of the criticality function, 



Appendix 3. 179 

but never on its absolute values), and ignore any issues related to the reactive 

planner model and the agent model, that is we ignore the final decision of 

applying the framework to a set of contingencies. This is consistent with the 

purpose of our demonstrations here, since any specific agent (with a given 

reactive planner and resource limitations) may exhibit any of the reaction 

behaviors discussed, depending only on the order in which its behavior model 

recommends the contingencies for consideration to be reacted to, and not on 

the actual components and resources of the agent. 

The results of these demonstrations require a certain amount of 

interpretation (this is necessary especially since the definitions of these 

behavior models are generally based on execution time types of reactions, 

while we attempt here to implement them at planning time). For example, for 

the antiauthority behavior model, the order of contingencies does not change 

much, since here almost all contingencies considered are covered by 

regulations or procedures; only "not fall asleep" goes down since after all this 

is precisely what we want to achieve and is therefore best covered by 

procedures in this case. In the invulnerability case, "cardiac arrest" and "can't 

intubate" fall significantly (possibly even below the monitoring threshold) 

because they are not likely enough in this particular situation (for this 

particular patient) where the likelihood threshold has been increased due to 

the type of behavior under consideration. Also "muscle fasciculations" 

advances a lot because of its high likelihood compared to the other 

contingencies. In the liability conscious behavior, the agent considers almost 

all consequences, except "message from PACU" because of its very long time of 

response which should allow for replanning (here "meteor strikes operating 

room" becomes very high priority, since once it is considered - regardless of 

its much too short response time allowed - its very high time pressure and 

consequences make it very high priority. Similar arguments can be made for 

the results of each of the behavior models used in this demonstration. 

The interpretation of our results shows (in the expert's opinion) that 

they are reasonable and consistent with the generally accepted (execution- 

time) definition of each behavior model, and that there is a plausible 

explanation for the results that maps them into the corresponding 

(conceptual) behaviors. These demonstrations again show that our formalism 

may at least provide a reasonable basis for representing and exchanging 
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information and ideas about reaction-related behavior models, and thus for 

interpreting and studying different behaviors, in a considerable variety of 
domains (from mundane tasks like car driving, to highly specialized ones like 

medical domains). A possible use is to start from a specific behavior (order on 
the set of contingencies) exhibited by an agent, discover - using machine 
learning techniques - the parameters of the behavior model which emulates 
this behavior in our framework, and then use these parameters to 
characterize the behavior and maybe to attempt to consciously modify it. 
However, these are only speculations at this point, since as stated before, much 

research is still needed to refine such a behavior description formalism into a 

useful tool for changing ideas among behavioral experts. 



Appendix 4 

Intensive Care Domain Experiments 

We present here some of the results of the experiments we have 
conducted with our framework in the intensive care monitoring domain. This 
appendix mainly complements section 6.4. 

# Contingency  (Response  would  be 
the typical response for this event) 

Response 
time (min) 

Conse- 
quences 

Side- 
effects 

Likeli- 
hood 

1 myocardial-depression-post-cpb 10 8.5 7 3 
2 myocardial-depression-sepsis 20 8 7.5 1 
3 decreased-preload 20 7 3 7 
4 increased-afterload 20 6.5 5 4 
5 cardiac-tamponade 5 8.5 7.5 3 
6 hypovolemia 20 7 3 7 
7 myocardial-ischemia 5 8 6 3 
8 myocardial-infarction 60 6 5 3 
9 right-heart-failure 10 8 7 2 

10 digitalis-toxicity 180 5 4 2 
11 postop-hypertension 20 6.5 5 4 
12 cardiac-arrest 1 10 8 1 
13 ventricular-fibrillation 1 10 8 1 
14 ventricular-ectopy 5 7 7 6 
15 sinus-bradycardia 5 7 5 3 
16 atrial-fibrillation 20 7 6 4 
17 paroxysmal-supraventric-tachycardic L        20 6 6 4 
18 ventricular-tachycardia 1 9 7 2 
19 sinus-tachycardia 10 6 5 7 
20 hypoxia 5 8 6 4 
21 respiratory-acidosis 60 6 4 4 
22 cardiogenic-pulmonary-edema 10 8.5 7 3 
23 noncardiogenic-pulmonary-edema 20 8.5 8 2 

Table A4.1 Contingencies for the ICU domain 
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74 atelectasis 120 6.5 5 6.5 

?S Pneumothorax 10 8 7 3 

?(S hemothorax 10 7 7 4 

77 chylothorax 120 7 7 2 

78 aspiration-pneumonia 240 8 5 1 

79 pneumonia 240 7 5 3 

V) diaphragmatic-paralysis 600 8 7 1 

31 bronchospasm 30 8 7 4 

V Dulmonarv-embolism 10 8.5 7.5 3 

33 ARDS 120 8.5 8 2 

34 et-tube-disconnection 2 10 2 4 

35 kinked-et-tube 5 8 2 4 

36 right-mainstem-intubation 20 6.5 3 2 

37 disseminated-intravascular-coagulat 60 8 7 2 

38 dilutional-coagulopathv 60 7 3 5 
39 platelet-deficiency 60 7 3 5 
40 acute-hemolytic-transfusion-react 10 8.5 5 1 
41 febrile-nonhemolytic-transfus-react 20 6.5 4 2 
4? mechanical-bleeding 20 7.5 7.5 4 
43 fibrinogen-defects 60 7 3 5 
44 extrinsic-pathwav-defects 60 7 3 5 
45 intrinsic-pathway-defects 60 7 3 5 

46 cerebrovascular-ischemia 60 8.5 7.5 2 
47 cerebrovascular-embolism 30 9 7.5 1 

48 endotoxemia 120 8.5 8 1 
49 rewarming 240 3 3 7 
50 hypothermia 240 4 4 7 
51 hyperglycemia 120 5 4 2 

52 metabolic-acidosis 60 6.5 4 3 

S3 acute-renal-failure 300 9 8 1 
54 acute-tubular-necrosis 300 9 8 1 
55 prerenal-azotemia 300 5 5 3 
56 renal-azotemia 300 5 6 1 
57 renal-embolism 300 7 7 1 
.58 high-cl 120 6 4 6 
59 low-cl 120 6 4 2 
eo high-ca 60 7 6 1 
61 low-ca 60 6 3 6 
6? low-mg 60 7 3 7 
63 high-mg 60 8 5 2 
64 low-na 30 7 2 2 
65 high-na 60 6 3 2 

66 dilutional-low-na 30 7 2 2 

67 low-k 30 7.5 5 5 

68 high-k 30 8 7 4 

Table A4.1 Contingencies for the ICU domain (continued) 
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# Contingency  (Response  would  be 
the typical response for this event) 

Resp. 
time 

Conse- 
quences 

Side- 
eff. 

Likeli- 
hood 

Criti- 
cally 

34 et-tube-disconnection 2 10 2 4 4.2E12 
18 ventricular-tachycardia 1 9 7 2 2.2E12 
13 ventricular-fibrillation 1 10 8 1 6.1E11 
12 cardiac-arrest 1 10 8 1 6.1E11 
35 kinked-et-tube 5 8 2 4 1.8E10 
20 hypoxia 5 8 6 4 2.53E9 
7 myocardial-ischemia 5 8 6 3 1.42E9 

15 sinus-bradycardia 5 7 5 3 1.24E9 
14 ventricular-ectopy 5 7 7 6 7.62E8 
5 cardiac-tamponade 5 8.5 7.5 3 6.84E8 

19 sinus-tachycardia 10 6 5 7 8.21E7 
22 cardiogenic-pulmonary-edema 10 8.5 7 3 3.26E7 

1 myocardial-depression-post-cpb 10 8.5 7 3 3.26E7 
32 pulmonary-embolism 10 8.5 7.5 3 2.13E7 
6 hypovolemia 20 7 3 7 2.08E7 
3 decreased-preload 20 7 3 7 2.08E7 

25 Pneumothorax 10 8 7 3 2.01E7 
40 acute-hemolytic-transfusion-react 10 8.5 5 1 1.28E7 
26 hemothorax 10 7 7 4 1.05E7 
9 right-heart-failure 10 8 7 2 8.94E6 

11 postop-hypertension 20 6.5 5 4 1.38E6 
4 increased-afterload 20 6.5 5 4 1.38E6 

36 right-mainstem-intubation 20 6.5 3 2 1.23E6 
16 atrial-fibrillation 20 7 6 4 9.78E5 
41 febrile-nonhemolytic-transfus-react 20 6.5 4 2 6.98E5 
67 low-k 30 7.5 5 5 6.63E5 
42 mechanical-bleeding 20 7.5 7.5 4 3.54E5 
66 dilutional-low-na 30 7 2 2 3.48E5 
64 low-na 30 7 2 2 3.48E5 
17 paroxysmal-supraventric-tachycardie 20 6 6 4 2.83E5 
23 noncardiogenic-pulmonary-edema 20 8.5 8 2 1.81E5 
68 high-k 30 8 7 4 1.47E5 
31 bronchospasm 30 8 7 4 1.47E5 
62 low-mg 60 7 3 7 8.57E4 
45 intrinsic-pathway-defects 60 7 3 5 4.3 7E4 
44 extrinsic-pathway-defects 60 7 3 5 4.37E4 
43 fibrinogen-defects 60 7 3 5 4.37E4 
39 platelet-deficiency 60 7 3 5 4.37E4 
38 dilutional-coagulopathy 60 7 3 5 4.3 7E4 

2 myocardial-depression-sepsis 20 8 7.5 1 4.26E4 
61 low-ca 60 6 3 6 3.21E4 
47 cerebrovascular-embolism 30 9 7.5 1 1.58E4 
21 respiratory-acidosis 60 6 4 4 7.63E3 

Table A4.2. ICU domain contingencies ordered by criticality 
for Tmin = 0.5 (2 hours) and Lmui = 1 
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52 
63 
65 

46 
37 
58 
24 
60 
59 
33 
51 
27 
48 
29 
10 
50 
49 
28 
55 
54 
53 
57 
56 
30 

m et abolic-acidosis 
high-mg 
high-na 
mvocardial-infarction 
cerebrovascular-ischemia 
disseminated-intravascular-coagulat 
high-cl  .  
atelectasis 
high-ca 
low-cl 
ARDS 
hyperglvcemia 
chvlothorax 
endotoxemia 
pneumonia 
digitalis-toxicity 
hypothermia 
rewarming 
aspiration-pneumonia 
prerenal-azotemia 
acute-tubular-necrosis 
acute-renal-failure 
renal-embolism  

60 
60 
60 
60 
60 
60 
120 
120 
60 
120 
120 
120 
120 
120 
240 
180 
240 
240 
240 
300 
300 
300 
300 

renal-azotemia 300 

6.5 

8.5 

6.5 

8.5 

8.5 

7.5 

4_ 
5 

J_ 
4 

_8_ 
_5_ 
4 

_5_ 
8 

diaphragmatic-paralysis 600 

6.5 

_2_ 
2 

6.46E3 
4.76E3 
3.57E3 
1.94E3 
1.22E3 
1.14E3 
5.36E2 
4.70E2 
2.51E2 
59.63 
23.32 
22.46 
10.64 
5.83 
2.21 
1.71 
1.52 
1.32 
1.07 
0.41 
0.32 
0.32 
0.16 

5.9E-2 
5.3E-2 

Table A4.2. ICU domain contingencies ordered by criticality 

for Tmin - 0.5 (2 hours) and Lmin = 1 (continued) 

Table A4.1 lists the entire set of 68 contingencies defined by the experts 

in the domain for the situations described in figure 6.1, together with their 

characteristic valuesm. The contingencies are listed in the order specified by 

the experts (grouped by categories of complications that may develop). 

The first part of this demonstration consisted in running the criticality 

function part of the framework on this data set, for the recommended 

behavior model (section 6.3). We have done this for several expert models 

which differ in the minimum time pressure threshold (Tmin) value, and the 

minimum likelihood threshold (Lmin) value. We shall present here only the 

results of four such experiments, although we have made a much larger 

number. 

Table A4.2 shows the order of the contingencies given by the "normal" 

behavior model for a maximum reaction time of 2 hours (Tmin = 0.5) and a 
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minimum likelihood of 1. The rest of the expert model parameters are left 

unchanged during all these experiments (they are: ftc = 60 / timerc; Tmax = 100 

(36 seconds); CSmin = 2.3). 

# Contingency   (Response  would  be 
the typical response for this event) 

Resp. 
time 

Conse- 
quences 

Side- 
eff. 

Likeli- 
hood 

Criti- 
cality 

34 et-tube-disconnection 2 10 2 4 4.2E12 
18 ventricular-tachycardia 1 9 7 2 2.2E12 
35 kinked-et-tube 5 8 2 4 1.8E10 
20 hypoxia 5 8 6 4 2.53E9 
7 myocardial-ischemia 5 8 6 3 1.42E9 

15 sinus-bradycardia 5 7 5 3 1.24E9 
14 ventricular-ectopy 5 7 7 6 7.62E8 

5 cardiac-tamponade 5 8.5 7.5 3 6.84E8 
19 sinus-tachycardia 10 6 5 7 8.21E7 
22 cardiogenic-pulmonary-edema 10 8.5 7 3 3.26E7 

1 myocardial-depression-post-cpb 10 8.5 7 3 3.26E7 
32 pulmonary-embolism 10 8.5 7.5 3 2.13E7 
6 hypovolemia 20 7 3 7 2.08E7 
3 decreased-preload 20 7 3 7 2.08E7 

25 Pneumothorax 10 8 7 3 2.01E7 
26 hemothorax 10 7 7 4 1.05E7 
9 right-heart-failure 10 8 7 2 8.94E6 

11 postop-hypertension 20 6.5 5 4 1.38E6 
4 increased-afterload 20 6.5 5 4 1.38E6 

36 right-mainstem-intubation 20 6.5 3 2 1.23E6 
16 atrial-fibrillation 20 7 6 4 9.78E5 
13 ventricular-fibrillation 1 10 8 1 7.86E5 
12 cardiac-arrest 1 10 8 1 7.86E5 
41 febrile-nonhemolytic-transfus-react 20 6.5 4 2 6.98E5 
67 low-k 30 7.5 5 5 6.63E5 
42 mechanical-bleeding 20 7.5 7.5 4 3.54E5 
66 dilutional-low-na 30 7 2 2 3.48E5 
64 low-na 30 7 2 2 3.48E5 
17 paroxysmal-supraventric-tachycardic 20 6 6 4 2.83E5 
23 noncardiogenic-pulmonary-edema 20 8.5 8 2 1.81E5 
68 high-k 30 8 7 4 1.47E5 
31 bronchospasm 30 8 7 4 1.47E5 
62 low-mg 60 7 3 7 8.57E4 
45 intrinsic-pathway-defects 60 7 3 5 4.37E4 
44 extrinsic-pathway-defects 60 7 3 5 4.37E4 
43 fibrinogen-defects 60 7 3 5 4.37E4 
39 platelet-deficiency 60 7 3 5 4.37E4 
38 dilutional-coagulopathy 60 7 3 5 4.37E4 
61 low-ca 60 6 3 6 3.21E4 
21 respiratory-acidosis 60 6 4 4 7.63E3 

Table A4.3. ICU domain contingencies ordered by criticality 
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for Tmin = 0-5 (2 hours) and Lmin = 2 

52 metabolic-acidosis 60 6.5 4 3 6.46E3 
63 high-mg 60 8 5 2 4.76E3 
40 acute-hemolvtic-transfusion-react 10 8.5 5 1 3.59E3 
65 high-na 60 6 3 2 3.57E3 

8 myocardial-infarction 60 6 5 3 1.94E3 
46 cerebrovascular-ischemia 60 8.5 7.5 2 1.22E3 
37 disseminated-intravascular-coagulat 60 8 7 2 1.14E3 
58 high-cl 120 6 4 6 5.36E2 
24 atelectasis 120 6.5 5 6.5 4.70E2 

2 myocardial-depression-sepsis 20 8 7.5 1 2.06E2 
47 cerebrovascular-embolism 30 9 7.5 1 1.25E2 
59 low-cl 120 6 4 2 59.63 
33 ARDS 120 8.5 8 2 23.32 
51 hyperglycemia 120 5 4 2 22.46 
60 high-ca 60 7 6 1 15.86 
27 chylothorax 120 7 7 2 10.64 
48 endotoxemia 120 8.5 8 1 2.41 
29 pneumonia 240 7 5 3 2.21 
10 digitalis-toxicity 180 5 4 2 1.71 
50 hypothermia 240 4 4 7 1.52 
49 rewarming 240 3 3 7 1.32 
28 aspiration-pneumonia 240 8 5 1 1.07 
55 prerenal-azotemia 300 5 5 3 0.41 
54 acute-tubular-necrosis 300 9 8 1 0.32 
53 acute-renal-failure 300 9 8 1 0.32 
57 renal-embolism 300 7 7 1 0.16 
56 renal-azotemia 300 5 6 1 5.9E-2 
30 diaphragmatic-paralysis 600 8 7 1 5.3E-2 

Table A4.3. ICU domain contingencies ordered by criticality 
for Tmin = 0.5 (2 hours) and Lmm = 2 (continued) 

To show the effect of varying the likelihood parameter in the expert 
model, table A4.3 presents the ordering of contingencies according to the same 
behavior model, with all the parameters unchanged except the minimum 
likelihood raised at 2. We can see that highly consequential but low likelihood 
contingencies like ventricular-fibrillation and cardiac-arrest experience a 
significant drop in criticality (from the 3rd place to the 22nd). However, their 
high consequences and high time pressure ensure that they do not fall very 
much (they are still ranked by the framework in the first third of all the 

contingencies considered). 
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# Contingency  (Response  would  be 
the typical response for this event) 

Resp. 
time 

Conse- 
quences 

Side- 
eff. 

Likeli- 
hood 

Criti- 
cality 

34 et-tube-disconnection 2 10 2 4 4.2E12 
18 ventricular-tachycardia 1 9 7 2 2.2E12 
13 ventricular-fibrillation 1 10 8 1 6.1E11 
12 cardiac-arrest 1 10 8 1 6.1E11 
35 kinked-et-tube 5 8 2 4 1.8E10 
20 hypoxia 5 8 6 4 2.53E9 

7 myocardial-ischemia 5 8 6 3 1.42E9 
15 sinus-bradycardia 5 7 5 3 1.24E9 
14 ventricular-ectopv 5 7 7 6 7.62E8 

5 cardiac-tamponade 5 8.5 7.5 3 6.84E8 
19 sinus-tachycardia 10 6 5 7 8.21E7 
22 cardiogenic-pulmonary-edema 10 8.5 7 3 3.26E7 

1 myocardial-depression-post-cpb 10 8.5 7 3 3.26E7 
32 pulmonary-embolism 10 8.5 7.5 3 2.13E7 
6 hypovolemia 20 7 3 7 2.08E7 
3 decreased-preload 20 7 3 7 2.08E7 

25 Pneumothorax 10 8 7 3 2.01E7 
40 acute-hemolytic-transfusion-react 10 8.5 5 1 1.28E7 
26 hemothorax 10 7 7 4 1.05E7 
9 right-heart-failure 10 8 7 2 8.94E6 

11 postop-hypertension 20 6.5 5 4 1.38E6 
4 increased-afterload 20 6.5 5 4 1.38E6 

36 right-mainstem-intubation 20 6.5 3 2 1.23E6 
16 atrial-fibrillation 20 7 6 4 9.78E5 
41 febrile-nonhemolytic-transfus-react 20 6.5 4 2 6.98E5 
67 low-k 30 7.5 5 5 6.63E5 
42 mechanical-bleeding 20 7.5 7.5 4 3.54E5 
66 dilutional-low-na 30 7 2 2 3.48E5 
64 low-na 30 7 2 2 3.48E5 
17 paroxysmal-supraventric-tachycardic L   20 6 6 4 2.83E5 
23 noncardiogenic-pulmonary-edema 20 8.5 8 2 1.81E5 
68 high-k 30 8 7 4 1.47E5 
31 bronchospasm 30 8 7 4 1.47E5 

2 myocardial-depression-sepsis 20 8 7.5 1 4.26E4 
47 cerebrovascular-embolism 30 9 7.5 1 1.58E4 
62 low-mg 60 7 3 7 2.92E2 
45 intrinsic-pathway-defects 60 7 3 5 2.09E2 
44 extrinsic-pathway-defects 60 7 3 5 2.09E2 
43 fibrinogen-defects 60 7 3 5 2.09E2 
39 platelet-deficiency 60 7 3 5 2.09E2 
38 dilutional-coagulopathy 60 7 3 5 2.09E2 
61 low-ca 60 6 3 6 1.79E2 
21 respiratory-acidosis 60 6 4 4 87.36 

Table A4.4. ICU domain contingencies ordered by criticality 

for Tmin = 2 (30 minutes) and Lmin = 1 
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s? metabolic-acidosis 60 6.5 4 3 80.43 

63 hieh-ms 60 8 5 2 69.02 

65 high-na 60 6 3 2 59.77 

8 mvocardial-infarction 60 6 5 3 44.05 

46 cerebrovascular-ischemia 60 8.5 7.5 2 34.95 

37 disseminated-intravascular-coagulat 60 8 7 2 33.91 

58 hieh-cl 120 6 4 6 23.16 

?4 atelectasis 120 6.5 5 6.5 21.70 

m high-ca 60 7 6 1 15.86 

59 low-cl 120 6 4 2 7.72 

33 ARDS 120 8.5 8 2 4.82 

51 hvperglvcemia 120 5 4 2 4.73 

27 chylothorax 120 7 7 2 3.26 

48 endotoxemia 120 8.5 8 1 2.41 

29 pneumonia 240 7 5 3 2.21 

10 digitalis-toxicity 180 5 4 2 1.71 

50 hypothermia 240 4 4 7 1.52 
49 rewarming 240 3 3 7 1.32 
28 aspiration-pneumonia 240 8 5 1 1.07 
55 Drerenal-azotemia 300 5 5 3 0.41 
54 acute-tubular-necrosis 300 9 8 1 0.32 
5?? acute-renal-failure 300 9 8 1 0.32 
57 renal-embolism 300 7 7 1 0.16 
56 renal-azotemia 300 5 6 1 5.9E-2 
30 diaphragmatic-paralysis 600 8 7 1 5.3E-2 

Table A4.4. ICU domain contingencies ordered by criticality 
for Tmin = 2 (30 minutes) and Lmin = 1 (continued) 

Tables A4.4 and A4.5 show the effect of increasing the time pressure 
threshold. While table A4.2 contains the contingencies ordered according to an 
expert model which recommends reactions for contingencies with allowed 
response time of up to 2 hours from the time a contingency is detected, table 
A4.4 reduces this time to half an hour (minimum time pressure Tmin = 2), and 

table A4.5 reduces it even further, to just 5 minutes (minimum time pressure 
Tmin =12). Notice that contingencies with very low likelihood but higher time 
pressure (like myocardial-depression-sepsis and cerebrovascular-embolism) 

advance over more likely contingencies but with time pressure lower than the 
recommended reaction threshold, in table A4.4. However, when the time 
pressure threshold is raised significantly more (table A4.5), we obtain an 
identical ordering with the initial one in table A4.2, because the expert has 
recommended reactions only for very time critical contingencies, which were 
ranked as having high criticality by the framework even from the beginning, 
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other things being equal. There is however a significant difference between 
tables A4.2 and A4.5 (and to a lesser extent table A4.4), namely a clear 

threshold for monitoring. In the case of a very low time pressure threshold (2 
hours), there is no such clear threshold, since the criticality of contingencies 

decreases gradually in table A4.2, without a clear gap. This is because, when 
the maximum reaction time recommended is very large, the time pressure for 
contingencies with long allowed response time is so small anyway, that it does 
not influence the criticality of that contingency too much. This contrasts with 
the cases when the maximum reaction time recommended is small, for which 

the time pressure is high enough to make a significant difference in the 

criticality value. This is why in table A4.5 we have a clear threshold (given by 

a significant gap in the sequence of criticality values) after the 10th 
contingency in the sequence (cardiac-tamponade). The same phenomenon 
takes place in table A4.4 after the cerebrovascular-embolism contingency. 

# Contingency  (Response  would  be 
the typical response for this event) 

Resp. 
time 

Conse- 
quences 

Side- 
eff. 

Likeli- 
hood 

Criti- 
cality 

34 et-tube-disconnection 2 10 2 4 4.2E12 
18 ventricular-tachycardia 1 9 7 2 2.2E12 
13 ventricular-fibrillation 1 10 8 1 6.1E11 
12 cardiac-arrest 1 10 8 1 6.1E11 
35 kinked-et-tube 5 8 2 4 1.8E10 
20 hypoxia 5 8 6 4 2.53E9 
7 myocardial-ischemia 5 8 6 3 1.42E9 

15 sinus-bradvcardia 5 7 5 3 1.24E9 
14 ventricular-ectopy 5 7 7 6 7.62E8 

5 cardiac-tamponade 5 8.5 7.5 3 6.84E8 
19 sinus-tachycardia 10 6 5 7 9.06E3 
22 cardiogenic-pulmonary-edema 10 8.5 7 3 5.71E3 

1 myocardial-depression-post-cpb 10 8.5 7 3 5.71E3 
32 pulmonary-embolism 10 8.5 7.5 3 4.62E3 
6 hypovolemia 20 7 3 7 4.56E3 
3 decreased-preload 20 7 3 7 4.56E3 

25 Pneumothorax 10 8 7 3 4.48E3 
40 acute-hemolytic-transfusion-react 10 8.5 5 1 3.59E3 
26 hemothorax 10 7 7 4 3.25E3 
9 right-heart-failure 10 8 7 2 2.99E3 

11 postop-hvpertension 20 6.5 5 4 1.17E3 
4 increased-afterload 20 6.5 5 4 1.17E3 

36 right-mainstem-intubation 20 6.5 3 2 1.11E3 

Table A4.5. ICU domain contingencies ordered by criticality 
for Tmin =12(5 minutes) and Lmin = 1 
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16 atrial-fibrillation 70 7 6 4 9.88E2 

41 febrile-nonhemolytic-transfus-react 20 6.5 4 7 8.35E7 

67 low-k 30 7.5 5 5 8.14E7 

4? mechanical-bleeding 70 7.5 7.5 4 5.95E7 

66 dilutional-low-na 30 7 2 7 5.90E2 

64 low-na 30 7 2 7 5.90E2 

17 paroxvsmal-suDraventric-tachycardic 70 6 6 4 5.32E2 

73 noncardiogenic-pulmonarv-edema 20 8.5 8 7 4.25E7 

68 high-k 30 8 7 4 3.83E7 

SI bronchospasm 30 8 7 4 3.83E7 

6? low-mg 60 7 3 7 2.92E2 

4S intrinsic-Dathway-defects 60 7 3 5 2.09E2 

44 extrinsic-pathway-defects 60 7 3 5 2.09E2 

43 fibrinogen-defects 60 7 3 5 2.09E2 

39 platelet-deficiency 60 7 3 5 2.09E2 

38 dilutional-coagulopathv 60 7 3 5 2.09E2 

? mvocardial-depression-sepsis 20 8 7.5 1 2.06E2 

61 low-ca 60 6 3 6 1.79E2 

47. cerebrovascular-embolism 30 9 7.5 1 1.25E2 

?1 respiratory-acidosis 60 6 4 4 87.36 
57 metabolic-acidosis 60 6.5 4 3 80.43 
63 high-mg 60 8 5 7 69.02 

65 high-na 60 6 3 7 59.77 

8 myocardial-infarction 60 6 5 3 44.05 
46 cerebrovascular-ischemia 60 8.5 7.5 7 34.95 

37 disseminated-intravascular-coagulat 60 8 7 7 33.91 
58 high-cl 120 6 4 6 23.16 
74 atelectasis 120 6.5 5 6.5 21.70 
m high-ca 60 7 6 1 15.86 
59 low-cl 120 6 4 7 7.72 
33 ARDS 120 8.5 8 7 4.82 
51 hyperglycemia 120 5 4 7 4.73 
77 chylothorax 120 7 7 7 3.26 
48 endotoxemia 120 8.5 8 1 2.41 
29 pneumonia 240 7 5 3 2.21 
10 digitalis-toxicity 180 5 4 2 1.71 
50 hypothermia 240 4 4 7 1.52 
49 rewarming 240 3 3 7 1.32 

78 aspiration-pneumonia 240 8 5 1 1.07 

55 prerenal-azotemia 300 5 5 3 0.41 

54 acute-tubular-necrosis 300 9 8 1 0.32 
53 acute-renal-failure 300 9 8 1 0.32 
57 renal-embolism 300 7 7 1 0.16 

56 renal-azotemia 300 5 6 1 5.9E-2 

30 diaphragmatic-paralysis 600 8 7 1 5.3E-2 

Table A4.5. ICU domain contingencies ordered by criticality 
for Tmin = 17 (5 minutes) and Lmin = 1 (continued) 
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The most important conclusion to be drawn from this demonstration is 

that the recommendations of our framework were found to be reasonable by 

our domain experts. They have agreed, in each case (i.e. for each expert model 
used) with the ordering of the contingencies proposed by our system, finding 
them reasonable and finding reasonable interpretations for them. Since there 
is no other (objective) way to evaluate the framework's recommendations, we 
may conclude that the framework and the "normal" behavior model we have 

defined are a reasonable solution to our original problem. 
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