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Abstract 

We explore the following matrix problem: Given an n x n boolean matrix, is there a permu- 

tation of the rows and a permutation of the columns such that the resulting matrix is lower 

triangular? We show the relationship of this matrix problem to the two important schedul- 

ing problems: optimization of code for pipelined execution and microcode compaction for 

very long instruction computers. 

This matrix problem is unclassified—it is unknown whether it is i\TP-Complete or 

whether it can be solved by a polynomial time algorithm. We find several minor exten- 

sions that would make the problem ATP-Complete. Also, we show polynomial algorithms 

for a number of special cases of the problem, and develop a number of interesting techniques 

in the process. We also explore approximation algorithms and lower bounds. 

in 
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Chapter 1 

Introduction 

1.1    Probing the Innards 

The triangularization problem that this thesis focuses on is deceptively simple to state: 

Given annxn boolean matrix, is there a permutation of the rows and a per- 

mutation of the columns such that the resulting matrix is lower triangular? 

This simplicity of definition is one of the things that makes this problem interesting. 

Another is that the problem is elusive: No one has been able to show either that the problem 

is in P or that the problem is NP-Complete. For the theoretically inclined, these two things 

are enough to warrant further investigation: simple, yet elusive. There must be something 

interesting going on here. 
The practical minded may not be so easily intrigued. Yet, there is something here for 

them, too. For the problem can be viewed as part of a very fundamental and useful class: 

the class of scheduling problems. The tools developed as we dissect and probe the innards 

of the triangularization problem will surely be useful in other explorations. 



Chapter 2 

Basics and Warmups 

2.1    The Basic Problem 

We will focus first on a way to formulate the triangularization problem as a scheduling 

problem. A comprehensive recent overview of work on other scheduling problems can be 

found in [LLRS85]. 

We have two processors, px and py, and two sets of jobs, X = {xi,...,xm} and 

Y = {j/i, • • •, yn}- We want to execute the jobs in the minimum amount of time. There are 

restrictions that we must obey: 

• First, the X jobs must be executed on processor px and the Y jobs must be executed 

on processor py- There are two ways to view this. We can view the two processors as 

being different; for example, one processor can perform only floating point operations 

and one can perform only integer operations. Alternately, we can consider the jobs as 

being pre-assigned to processors. 

• Second, each job takes one unit of time to execute. Whether this unit is a minute or a 

micro-second is irrelevant—-just so long as all the jobs take the same amount of time. 

• Third, the jobs are non-pre-emptive. That is, once a job is started, it runs to comple- 

tion; the job can not be halted and then restarted. 

• Fourth, there exist Xi -* y, constraints between jobs. The constraint x\ -> y$ means 

that job xi must be completed before job jfe can be started. 
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X - {xi,x2,X3,x4} 

Y = {yu S>2,3/3, VA) 

Constraints:       «i-* »1,  &2 -» Vi,  &3 -» !b.  *3 -» Itoi  *s-»»4.  and *4 -» V4 

Valid schedule:       Sx = [&3»*4» «11*2.0] 

Sy = [0,yaiife.y4.yi] 

Figure 2.1: A valid schedule 

The specification of what job to execute at what time is referred to as a schedule. The 

schedule 5 = [x3,x1,<b,x2] means that at time = 0 we start executing job x3. When it 

finishes at time = 1, we start job xx. Between time = 2 and time = 3 we execute no job; 

0 will sometimes be referred to as an idle job. At time = 3 we start executing job x2. This 

job and the schedule terminate at time = 4. 

For our problem, we will need two schedules, Sx and Sy, to specify when the jobs are 

executed on processors px and py, respectively. 

A pair of schedules (Sx,Sy) is valid if: {I) Sx contains each X job exactly once and 

contains no Y jobs; (2) Sy contains each Y job exactly once and contains no X jobs; (3) all 

Xi -» yj constraints are satisfied. The schedule (Sx, Sy) in Figure 2.1 is valid. Indeed as we 

will have little need to refer to invalid schedules, we will usually refer to "valid schedules" 

merely as "schedules". 

The length of a schedule is the largest time when a non-0 job is executing. So the length 

of (Sx,Sy) of Figure 2.1 is 5 time units, since py's last non-0 job executes at time = 5. 

Since there is no valid (Sx,Sy) schedule with length < 5, the schedule is a minimum time 

schedule or an optimum schedule. 

And this is our task: to find an optimum schedule. 

2.1.1    Viewed as a Graph Problem 

Frequently, it will be convenient to think of the set of constraints as a graph, rather than 

merely as a set of x; -» j/j constraints. In this graph we have a node for each job and a 

directed x; -* yj edge for each ij -► yj constraint. Figure 2.2 shows the graph for Figure 2.1. 

For this constraint graph we can build an n X m adjacency matrix. Each column will 

correspond to an x; job and each row to a yj job. There will be a 1 in a^'s column and y/s 
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Figure 2.2: Graph representation 

Xl X2 S3 x4 

3/1 X X • • 

3/2 • X • 

3/3 • • X 

3/4 X X 

Figure 2.3: Matrix representation 

row iff there is an x< -» y, edge—that is, anstj-» yj constraint. Otherwise the matrix entry 

will be a 0. When we actually show these matrices, we will show the Is as xs and the 0s 

as -s. Figures 2.3 and 2.4 show two possible adjacency matrices for the graph in Figure 2.2. 

Note that the arrangement in Figure 2.4 is lower triangular—all the xs are on or below 

the main diagonal. This indicates that the length 5 schedule Sx = [x3,X4,32,xi,0] and 

SY = [0,3/2,3/3,3/4,3/i] is valid. The arrangement in Figure 2.3 protrudes one diagonal above 

the main diagonal. Thus, the following length 6 schedule is valid: Sx = [xi,x2,x3,x<}0,0], 

Sy = [0,0,3/1,3/2,3/3,3/4]- 

x3 X4   xa   xi 
3/2    X •      •      • 

1/3     X •        •        • 

J/4     X X       •        • 

3/1      ■ -XX 

Figure 2.4: Alternate matrix representation 
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Definition 2.1 An ordering, like a schedule, specifies the order of execution of jobs; but 

unlike a schedule it does not indicate the exact time of execution. Thus, an ordering uses 

no 0 jobs. For example, the ordering 0Y = [yi,lto,V4,lfe] indicates that we first execute yx 

then 2/2 then yA then y3, but it doesn't specify when we will execute them. Thus an ordering 

is simply a permutation of its jobs. 

Definition 2.2 A compact schedule is one in which there are no idle times between jobs. 

There will only be idle times before and after execution. For example, the schedule 5 = 

[0,0, *i, x2,. ■ ■, Xm, 0,0] " compact. 

Definition 2.3 The delay for a compact schedule {SX,SY) is the difference between the 

number of 0 jobs at the beginning of the SY schedule and the number of 0 jobs at the 

beginning of the Sx schedule. For example, for the schedule 5 = (SX,SY) with Sx = 

[*i,x3,*3,*4,M], and SY = [M,lft,Ito.iö.lfc], then delay(5) = 2 - 0 = 2. This definition 

allows negative delays. For non-compact schedules, we wiU define the delay as the difference 

between the number of 0 jobs before the last Y job in the SY schedule and the number of 

0 jobs before the first X job in the Sx schedule. 

It turns out that: 

Lemma 2.1 If 5 = (SX,SY) is valid and has delay(5) = Äs then there is a compact schedule 

S' = (S'X,SY) that has delay(5') = Ä;. 

Proof: Look at all idle Y jobs that execute before the last non-idle Y job. Move these 

jobs to the front of the Y schedule, yielding a compact schedule for Y. 

Look at all idle X jobs that execute after the first non-idle X job. Move these jobs to 

the end of the X schedule, yielding a compact schedule for X. 

This resulting schedule is compact and has the same delay as the original.      I 

So, given an ordering of the X jobs and an ordering of the Y jobs, we can easily determine 

the delay right away. Form the adjacency matrix with rows and columns arrayed as in the 

given orderings. If the xs protrude above the main diagonal by k diagonals, then the delay 

will be A: + 1 units of time. 

There is another interesting aspect to note here. 

Lemma 2.2 A square matrix M is triangularizable iff its transpose is triangularizable. 
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Proof: This is easy to see by example. Say that our original matrix is: 

X\ X2 £3     x4 

1/1     x       • 

2/2      X       X        • 

3/3      X       X X        • 

3/4     X      X X      X 

Hence, the transpose is: 

Vl     3/2     2/3     2/4 

i! X     X     X     X 

12 -XXX 

X3 • -XX 

14 •        •        •       X 

If we merely reverse the order of the is and the ys we get: 

3/4    3/3   3/2    3/1 

i4    X      • 

13 X     X      • 

X2 XXX* 

Ii      X      X      X      X 

Thus, we can see that if a matrix is triangularizable, then so is its transpose.   Since 

transposition is its own inverse, the converse is also true.     I 

While this is relatively intuitive when we look at the problem as a matrix problem, its 

equivalent statement as a scheduling problem is not as obvious. 

Definition 2.4 The reverse of a schedule 5, indicated by rev(5), is obtained by listing the 

elements of the schedule in reverse order. That is, rev([xi,x2,a;3,0]) = [0,x3,x2, *i]. 

With this notation and a slight extension of the proof, we can state a stronger scheduling 

problem variation of Lemma 2.2. 

Corollary 2.3 For a constraint graph G with \X\ = \Y\, there is a schedule 5 = (Sx,Sy) 

with delay(5) = lb iff there is a schedule S' = (rev(Sr),rev(Sx)) with delay(5') = k for the 

constraint graph G' obtained from G by reversing all the arcs and interchanging the roles 

of the X nodes and Y nodes.      I 
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O x1 

X2 

y3   9 -^j x3 

V4   •<— KD x4 

Figure 2.5: Transposed version of Figure 2.2 

That is, instead of the graph in Figure 2.2 we would have the graph in Figure 2.5. 

Visually comparing these two figures, it is not obvious that they have the same delay; but 

we've seen that they do. And this delay is achieved in the reversed arc case by reversing 

the schedules from the non-reversed case. 

Lastly, there is an even stronger corollary. 

Corollary 2.4 If (Sx,Sy) is optimal for the square matrix M, then (rev(5r),rev(5Ar)) is 

optimal for MT.     I 

2.1.2    Implied Orderings 

We can make a further observation. If we are given an ordering of the X jobs we can easily 

find an ordering of the Y jobs that minimizes the delay for the given ordering of the X jobs; 

that is, the ordering for the Y jobs is implied by the ordering for the X jobs. There are a 

number of equivalent ways to look at the method for ordering Y. 

VIEW 1: Start with the constraint graph, an ordering of the X nodes and with a null 

ordering of the Y nodes. 

1. If any Y node is isolated, remove it and append its job to the end of the Y ordering. 

2. Repeat until the graph is empty: Remove the next X node according to the ordering; 

if any Y node is isolated, remove it and append its node to the end of the Y ordering. 

So, for Figure 2.2 with Ox = [x2,X3,xi,xA], the iterations through the loop modify the 

graph and schedule as shown in Figure 2.6. 
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ox-Ix2.x8.x1.x4] 

oY-[] 

O Vi 

Ox-[x3,xrx4J 

oY-[] 

Ox-[xrx4] 

O  *4 

-o *4 

Ox-[x4] 

oY«[y2.y3-yii 

[] 

OY-ly2.y3.yi.y4] 

Figure 2.6: Snapshots of VIEW 1 
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X2 I3 Xi I4 &2 x3 xl     x4 

y1    x • x yi x • x 
y2       . x J/2       • X 
J/3       • X • ■                   !fe       ■ * •         ■ 
3/4      • X • X                t/4      • x •       X 

I2     I3     Ii     I4 I2     £3     ^l     ^4 

J/2       •        X        • • Vl       ■        X        • 
1/3       •        X        • • 3/3       •        X        • 
yj    x     •     x     • yj    x     •     x     • 
yj    •     x     •     x y4*    •     x     •     x 

Figure 2.7: Snapshots with fixed Ox- 

VIEW 2: Consider the adjacency matrix with the columns in Ox order. At the beginning 

all rows are "unfrozen". When we freeze a row it can't be moved anymore. A frozen row will 

appear as y*. Iterating through the columns in reverse order, for each column: compact 

downward all unfrozen rows with an x in this column and then freeze those rows. For 

example, VIEW 2 gives the snapshots shown in Figure 2.7. At the end, we can read off the 

rows from top to bottom, yielding Oy = [y2,y3,yi,!M]- 

We can also perform an analogous algorithm for a fixed Oy and thus find the optimum 

Ox for that Oy. Rather than specifying the analogous algorithm for a fixed Oy, we will 

devise an equivalent algorithm by using the algorithm for a fixed Ox as a sub-routine. This 

equivalent algorithm merely consists of transposing the matrix, reversing the order of the X 

nodes and Y nodes and then calling the algorithm for a fixed Ox- The resulting snapshots 

are shown in Figure 2.8. 

So iterating this procedure has given us a delay = 1 optimum schedule. In general, 

iterating this procedure will not always produce globally optimal schedules. For instance, 

the fixed point shown in Figure 2.9 is non-optimum. The optimum Y order for [ii, x2,13, «4] 

is [yi,»alifeiIM] and the optimum X order for [yi, 1/211/3,1/4] is [sii*2»*3i354]- These have a 

delay of 2; but the schedule with Sx = [i4i*3i*ai*i] and SY = [1/4,1/3, Ito.yi] gives us a 

lower triangular matrix—that is, a schedule with a delay of only 1. 
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2/4 2/i V3 V2 2/4 2/i 2/3 2/2 

x4 X • • ■ 14 X • • 

X-i • X • • Xi X • 

*3 X • X X X2 • X • ■ 

I2 • X • * S3 X ' X X 

2/4 2/1 2/3 V2 2/4 Vi 2/3 2/2 

I4 X • • • < X • • • 

«T • X • • x{ • X • 

*3 • X • • «3 X • • 
xt X • X X x3 X X X 

Figure 2.8: Snapshots with fixed Oy. 

x\    x2    13   s4                     2/4    2/3    2/2 2/1 
yi    x     x     ■      ■              i4    x     x     • • 
2/2     •     X     x                     3:3     •     x    x • 
t/3       •         •        X       X                   12       •        •       X X 
2/4       •         •         •        X                   Zl       •        •        • X 

Figure 2.9: Non-optimum fixed point 
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X\ I2 X3 XA 

yi    x • •      • 

Vi     ■ x •      • 
y3    x x • x 

1/4       • • X        • 
1/5      X • X X 

Figure 2.10: Mi satisfies lt(Jlfi,2) but not lt(Mi,l) 

Xi     l2     ^3     XA 

1/1 X • • • 

2/2       ■ X • • 

3/4       • • X • 

2/3 X X • X 

3/5 X        • X X 

Figure 2.11: M2 satisfies lt(M2,1) 

2.2    More Basics 

We've been relatively informal so far. But now we will need to get more mathematical and 

precise. For this let us concentrate on the matrix formulation. 

An n X m matrix M is lower triangular below the fc-diagonal if all the Is are strictly 

below the Jfe-th diagonal, where the main diagonal is labelled the 0-th. Let's define a function 

which tells us if a matrix is lower triangular below the fc-th diagonal. 

Definition 2.5 For an n x m matrix M, let the boolean function lt(M,i) be true iff each 

element of M[r][c] satisfies c - r > i => M[r][c] = 0. 

The matrix M1 in Figure 2.10 satisfies lt(Ma)2) but not lt(Mi, 1). When we interchange 

rows y3 and y4 yielding the matrix M2 in Figure 2.11, then M2 satisfies lt(M2,1). 

Hence, if the order of the rows indicates the ordering of the Y jobs in a particular 

schedule and the order of the columns indicates the ordering of the X jobs in the same 

schedule, then the delay of the schedule is equal to the smallest t such that lt(M, t) is true. 

What we are ultimately after, though, is the minimum delay over all permutations of 

the rows and columns. 
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Definition 2.6 Let the boolean function plt(M,t) be true iff there is a matrix M', derived 

from M by permutations of rows and columns, such that lt(M',i) is true. 

So for the matrix Mi in Figure 2.10 and the matrix M2 in Figure 2.11, pit (Mi, 1) and 

plt(M2,1). In general, if Mi is a permutation of M2, then plt(Mi, i) = plt(M2, i). 

With these new definitions, our transposition result in Corollary 2.3 can be stated as: 

Corollary 2.5 For a square matrix M, plt(M.i) <=J> plt(MT,t).     I 

This can be generalized for rectangular matrices. 

Corollary 2.6 For annxm matrix M, plt(M, i) <=> plt(MT, i + n-m).     I 

Corollary 2.4 can also be generalized for rectangular matrices. 

Corollary 2.7 If (SX,SY) is optimal for the n X m matrix M, then (rev(Sy),rev(SA-)) is 

optimal for MT.      I 

For any given matrix M, we will refer to the smallest i such that plt(M, i) holds as the 

overhang of the matrix. This will occasionally be written as overhang(M). 

Alternately, we could define 

overhang( M) = min delay (A M B) 
A,B 

where A and B are row and column permutation matrices, respectively. 

Let's explore the following problem. 

Permutable into Lower Triangular (PLTi) 

INSTANCE:   Annxm matrix M and a number i. 

QUESTION:   Is pit(M,t) true? 

Thus, PLTi is simply the triangularization problem.   PLT0 is similar, except that is 

aren't allowed on the diagonal. 

The first obvious question is, how are these problems related to each other for various 

values of i? 

Let's start by taking an arbitrary n x m matrix M and adding to it a new column 

Xm+i with all Is.  Call the new matrix M'.  If we do this to M2) we get the matrix M'2 
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X\     X2     X3     X4     X$ 

y\ X • X 

3/2 X • X 

3/3 • X X 

3/4 X X • X X 

3/5 X X X X 

Figure 2.12: M'2 

15 Xi &2 S3 14 

2/1 X X 

3/2 X X 

3/3 X • X 

y4 X X X X 

»5 X X X X 

Figure 2.13: plt(M£,2) 

shown in Figure 2.12. By changing the column order as shown in Figure 2.13 we see that 

plt(M2,l) «=$• plt(M2,2). Our claim is that for any choice of M, plt(M, 1) <=*• 

plt(M\2). 
This is fairly straightforward to see. If we are given some delay = 1 schedule (Sx,Sy) 

for M, then it is clear that adding the new column to the beginning of Sx yields a delay = 2 

schedule for M'. 

Similarly, if we are given some schedule for M', (S'x,S{r), with delay = 2, then it is 

clear that by merely dropping out the new column, we get a schedule for M with delay = 1, 

because xro+x must be executed before any Y job and now the Y jobs can all be executed 

one time unit earlier. 
So for any M, we can find a matrix M' such that plt(M, 1) <^ plt(M',2). This tells 

us that PLTi <v PLT2. More generally, this same technique tells us that: 

Lemma 2.8 PLTi <T PLTi+i, for i > 0.     I 

Let's formalize some of the facts that we implicitly used. 

Lemma 2.9 If there is some job x* with all Is in its column, then there is an optimal 

schedule that has Xk first in Sx- 
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Xl 32 Z3 X4 &5 

3/1 X X X 

2/2 • X X X 

2/3 X X X 

3/4 • X X X 

3/5 • X X • • 

Figure 2.14: Example of domination 

Proof: Assume without loss of generality that there is an optimal schedule with Sx = 

[xi,x2, ■ • -, xm]. Consider changing the schedule to S'x = [xjt, xi, x2,..., Zfc-i, Xfc+i, ■■-, xm] 

and leaving SY = Sy- Since no Y job could have started before time k +1, this new schedule 

is still valid.      I 

Similarly, we can establish a dual result, 

Lemma 2.10 If there is some job yk with all Is in its row, then there is an optimal schedule 

which has j/jt last in Sy. 

Proof: Instead of using a proof analogous to that of Lemma 2.9, let's use what we know 

about transposition. Look at MT. Now, by Lemma 2.9, we know that there is an optimum 

schedule, (SY,SX), for MT with yk first in SY• By our transposition result of Corollary 2.7, 

(rev(5x),rev(Sy)) is optimum for MTT = M. Clearly this schedule uses yk last.     I 

This idea can be extended. We will say that a column of a matrix dominates another if 

the first one has a 1 in every row that the second one does. 

For example, in Figure 2.14 column x2 dominates columns xi, x3, i4, and x5. Column 

x3 dominates column x4. Columns xi and x5 dominate each other. Clearly two columns 

can dominate each other only if they are equal. 

This allows us to generalize Lemma 2.9. 

Lemma 2.11 If column Xj dominates column xjt, then there is an optimum schedule with 

job XJ preceding job x*. 

Proof: Similar idea to that in Lemma 2.9. Assume we have an optimum schedule 

(Sx,Sy) with xjfe before Xj. Without loss of generality, we can assume that k < j and that 
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Sx = [xi,x2,...,xm]. Let S'x = [x1,...,xk_1,xk+1,...,xj,xk,xj+1,...,xm]. Once again 

it is clear that (S'X,SY) is a valid schedule.      | 

We can define the same idea for rows. In Figure 2.14 rows y2 and y4 dominate each 

other and row y6. Transposition clearly gives us: 

Corollary 2.12 If the row for job yj dominates the row for job j/t, then there is an optimum 

schedule with job yj following job yk.     I 

We say that a column strictly dominates another if it dominates the other and they are 

unequal. Thus, in Figure 2.14, column aca does not strictly dominate x5 nor vice versa. But 

column x2 strictly dominates columns xx, x3, x4, and xs and column x3 strictly dominates 

columns x4. 

By applying the same technique from Lemma 2.11 iteratively, we get an even stronger 

result: 

Lemma 2.13 There is an optimum schedule such that 

1. For every pair of jobs such that XJ strictly dominates x*, job Xj precedes x*. 

2. For every pair of jobs such that yj strictly dominates j/jt, job yj follows 2/fc- 

3. For every pair of X jobs that have equal columns, every intervening X job has an 

equal column. 

4. For every pair of Y jobs that have equal rows, every intervening Y job has an equal 

row. 

I 

Also note that given any optimal schedule that doesn't satisfy these conditions, we can 

modify it to satisfy them in polynomial time. 

While all of this is interesting and will be useful later, let's return to our immediate task 

of exploring the relationship between the PLT; problems. We know that PLT; <T PLTi+i 

if i > 0. What if t < 0? 

Lemma 2.14 If plt(M,i) for i < 0, then M must have at least \i\ + 1 rows of all 0s.     I 
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So assume we are trying to solve plt(M, i) with t < 0. Since there is at least one row of 

all 0s, we create matrix M' by deleting one such row. 

Clearly if we have a delay = t schedule for M, then we can obtain a delay = i + 1 

schedule for M'. The reverse is just as clear: If we have a delay = t + 1 schedule (S'X,S'Y) 

for M' then we can obtain a delay = i schedule for M by re-adding the deleted row at the 

beginning of S{r. Thus plt(M',i + 1) = plt(M.t). 

So, now we've shown PLT; <v PLTi+i for all i < 0 and we already showed in Lemma 2.8 

that it was true for i > 0. Hence: 

Lemma 2.15 PLT; <v PLT;+X for all t.     I 

Similarly, we can show that 

Lemma 2.16 PLTi+i <v PLT; for all i. 

Proof: Start with a matrix M' and the question plt(M',t + 1). Create M by adding a 

row of 0s. Our argument from the earlier paragraph still holds, telling us that plt(M', i+1) = 

plt(M, t) and hence PLTi+i <f PLT<.      I 

Consequently all the problems PLT< have equivalent complexity up to polynomial fac- 

tors, for fixed i . 

2.3    Variants 

There is still much more use we can make of our dominance lemma, Lemma 2.13. We can 

use it to show that our original problem is equivalent to a more general variant. This general 

version allows x -> x and y -* y precedence constraints and non-unit execution times. 

2.3.1    Non-unit execution times 

Let's start with non-unit execution times. In this case we associate a positive integer weight 

or execution length with each node/job as in Figure 2.15. 

If we iteratively apply the following modification to each X node and Y node then we 

will have an instance of our original problem: If a node is of weight k, then replace it with k 

1-unit nodes, each of which has arcs to/from the same nodes as the original weighted node 

did. See Figure 2.16 for an example of the transformation. 
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Figure 2.15: Non-unit execution times 

original modified 

«1* 
Hi:1 

*1,2:1 

Figure 2.16: Mapping weighted times to unit execution times 
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We will refer to xi,i, xi?2 and xi,3 as the sub-nodes of xa. Obviously a delay = i schedule 

for the weighted version yields a delay = i schedule for the unit weight version. What we 

must show is that any delay = i schedule for the unit weight graph can be modified to yield 

a delay = i schedule for the original graph. The dominance lemma does all the work for us. 

Assume we have a delay = i schedule of G'. By Lemma 2.13 we can easily construct a 

schedule where all nodes of equal dominance are adjacent. For example, given the following 

schedule for the modified version of the graph in Figure 2.15 

([«1,1, «2,11*6,11 X2,2, &3,2, «4,1, «3,11 % [0, 3/l,2, 3/1,3,1/4,1, 3/l,l, 3/2,1, 3/3,1, 3/3,2]) 

dominance tells us that we can modify it to 

([«1,1, «5,1, «2,1, «2,2,13,2, «4,1, «3,1, 0], [0, 3/1,2, 3/l,3, 3/1,1, 3/4,1, 3/2,1, 3/3,1, 3/3,2]) 

After this, the only case when a set of sub-nodes aren't adjacent is if two of the weighted 

nodes had exactly the same neighbors—as happened with x3 and x4 in the example. 

But, clearly in such a case, we can re-order the nodes yielding: 

([«1,1, «5,1, X2,l, «2,2, a:4,l,a;3,2, X3,l, 0], [0, 3/1,2, 01,3, 3/1,1, lfo.li lfe.li «3,1» 3/3,2]) 

Since all sub-jobs are adjacent, the weighted node schedule 

([xi, x5, x2, x2, x4, x3, x3,0], [0,3/1,3/1,3/1,3/4,3/2,3/3,3/3]) 

is clearly valid. So, we can transform any delay = i schedule of the unit-weight version into 

a delay = t schedule of the weighted version. 

2.3.2    Allowing I-*I Constraints 

Let's look at what happens to the problem when we allow x —► x constraints. Our basic 

claim is that we can replace all the x -♦ x links by a set of x -» y links such that any 

solution for the modified problem can be converted into a solution for the original problem 

and vice-versa. Figure 2.17 has an example. 

The way we perform this transformation is as follows: 

1. Find the transitive closure of all the constraints and add all those edges to the graph. 

2. Throw away all the x -» x edges. 
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original modified 

x1   • HD  Yi r= x2 * HD y2 

Figure 2.17: Removing a; -» i edges: valid 

original modified 

:^°" 
ki 

Figure 2.18: Removing i -> x edges: invalid 

It is clear that taking the transitive closure has no effect on the solutions: any valid 

schedule before is a valid schedule afterward and vice-versa. 

What we must show is that it is permissible to throw away the x -► i edges at this 

point. Our difficulty is shown in Figure 2.18. It has no valid schedule before discarding the 

edges, but it does have one afterwards. 

Hence, we will show that if the original has a valid schedule, then any delay = i schedule 

of the original graph can be converted into a delay = i schedule of the modified graph. 

Again, it is obvious that any delay = i schedule of the original graph is a delay = i 

schedule of the modified graph. 

We need to show the converse. Say we are given a schedule of the modified graph. To 

get a valid delay = i schedule of the original graph simply perform the following routine: 

1. Apply the dominator method to it, yielding a schedule {S'X,S'Y) satisfying Lemma 2.13. 

2. If any columns of the modified graph are equal, their x nodes will all be adjacent 

to each other. Re-order these columns in topological order according to the x -► x 

ordering of these nodes in the original graph. 

To see correctness: If X{ precedes XJ in the original graph then column Xi dominates 
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column XJ in the modified graph. There are two cases. In one case, column xt strictly 

dominates column «,-, and hence x{ will already be before Xj in S'x. In the other case, x{ 

and XJ have equal columns and there again, z< wiU be before Xj because of the topological 

ordering in step (2) of our routine. 

2.3.3    All Together 

What about allowing y -* y arcs? Although transposition as we've proven it so far doesn't 

automatically imply this from the results about the x - x arcs, it can be easily extended 

to do so. That is 

Lemma 2.17 Given an optimum schedule (SX,SY) for a graph G with x - y and x - x 

arcs, (rev(5y),rev(5x)) will be an optimum schedule for the graph with the directions of 

the edges reversed.      I 

But ultimately, we claim not merely the three individual results but rather the compo- 

sition of them. We need to transform a graph with x -» x edges, y-> y edges and non-unit 

weights into an equivalent one without x -> x edges, y -> y edges and non-unit weights. 

Our combined transformation is 

Given a graph G with x -* x, x -* y and y — y arcs and non-unit weights. 

1. Find the transitive closure of G. 

2. Discard all x -» x and y -» y edges. 

3. Split up each node with weight k into k unit-weight nodes. 

Assuming we have a valid schedule for the modified problem, we can convert it into a 

valid schedule for the original, if one exists, by: 

1. Apply the dominance lemma to both rows and columns. 

2. For each set of equal columns (rows): 

(a) Re-order them so that all sub-nodes of an original node are adjacent. 

(b) Combine those nodes into a single node of weight k. 

(c) Re-order the weighted nodes to obey the original topological ordering. 
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In going from the schedule for the modified graph to the schedule for the original graph, 

all the modifications are delay-non-increasing. 

This, along with the fact that any schedule for the original graph can be transformed 

into a schedule for the modified graph with the same delay tells us that the two problems 

are equivalent. 

2.3.4    Contractor Cash-Flow 

A non-computer scenario where this problem is useful involves a contractor who is working 

on a large construction project. He is paid portions of his earnings for reaching certain 

milestones in the construction: $4 when the foundation is laid, $B when the frame is up, 

$C when the plumbing and electrical wiring are installed. Naturally there are restrictions 

on the order he completes various tasks — you can't install wiring in thin air. Lastly, the 

contractor has to make payments for materials and labor associated with various tasks. 

The contractor doesn't have a large financial reserve, and he needs to complete the 

project without running out of cash. How should he order the tasks so as to minimize the 

amount of his own money that he needs to use to pay for the intermediate expenses? He 

doesn't want his cash balance to go below 0. 

This problem corresponds to allowing x -» x constraints and weighted nodes. Every i 

node represents a task to be completed and its weight represents the cost in material and 

labor that the contractor must put up to complete that task. The x -> x arcs encode the 

precedence relations among the tasks. There is one isolated y node with a weight equal to 

his initial cash balance. The other y nodes represent pay-off conditions, which may be any 

conjunction of tasks — if completing tasks xt and x3 means that the contractor is paid $w, 

then we create a y node with weight w and precedence arcs to it from xa and x3. 

The contractor runs out of cash iff overhang > 0. 

At this point we should make the technical note that the sizes of the payoffs must 

be limited by some constant or limited by some multiple of log n, for the problem to be 

equivalent under polynomial reductions to PLTo- 

2.4    Allowing y —► x Constraints 

The next natural question is what happens when we allow all four types of arcs: x -* y, 

x -* x,  y -» y,  and y -* x. This turns out to be a well-studied problem. 
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2.4.1    Microcode Compaction for Very Long Instruction Word Computers 

One approach to increasing parallelism within a processor is the use of very-long instruction 

words, or VLIWs [Fis79] [Veg82] [Lam87] [FERN84] [Tou84] [LDSM80]. A conventional 

processor will read in a machine-code instruction such as "ADD Rl, R2" which it then 

decodes and maps to a series of microcode instructions. These microcode instructions are 

extremely low-level. Each instruction is made up of micro-operations: put the contents of 

Rl out onto internal bus B; read the contents of internal bus A into the ALU; and so on. 

By their nature, the micro-operations for different components of the processor can 

be executed in parallel. Due to the coarse nature of the instructions like "ADD Rl, R2" 

however, large portions of the processor may be idle at any time. The VLIW approach 

says: instead of the program being written as machine code, let's have it written as micro- 

code. Let's have the compiler translate our high-level language into a series of micro-code 

instructions. Since micro-code specifies so much detail, it requires much longer instruction 

words—and hence the name VLIW. 

Obviously to make use of this new ability we don't just translate the source code into the 

same microcode instructions that the machine code gets translated to and then concatenate 

them all. This is a first step, but it doesn't yield any improvements. Instead, we want to 

compact these micro-ops together so that some of them will be executed in parallel. Natu- 

rally, the micro-ops will have precedence constraints between them. The micro-instructions 

typically have several fields and each micro-op must go into a specific field. For example, 

if there are exactly two fields, and we represent instructions that must go in the first field 

with circles and instructions that must go in the second field with squares, then we might 

have a precedence graph like the one in Figure 2.19. 

So we can now define the micro-code compaction problem for VLrWs. 

Micro-Code Compaction for VLIWs (MC-COMPACTION) 

INSTANCE:   Set O of unit-time micro-operations, number A: of classes of operations, class 

number. 1 < c(o) < k for each o £ 0, partial order on 0 and deadline t. 

QUESTION:   Is there a schedule of the micro-operations that obeys the partial order, never 

schedules two micro-operations with the same value of c{o) for the same time slot and is of 

length < tl 

This problem with k = 2 is equivalent to our scheduling problem allowing x -» x, x -* y, 
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Figure 2.19: Micro-operations with dependencies 

y —► y and y —» x arcs. 
This problem is JVP-complete. This was shown by Goyal [Goy76, Goy77]. Since we will 

want to modify his proof, let's look at it in detail. 

He reduces the m-PROCESSOR SCHEDULING problem to it. The m-PROCESSOR 

SCHEDULING problem is known to be JVP-complete [U1176]. 

m-PROCESSOR SCHEDULING 

INSTANCE:   Set X of unit-time tasks, number m of processors, partial order on X, and 

deadline t. 

QUESTION:   Is there a schedule of the n = \X\ tasks that obeys the partial order, never 

schedules more than m tasks for the same time slot and is of length < t? 

This problem can be reduced to MC-COMPACTION with k = 2. 

We start with the precedence graph for an instance of m-PROCESSOR SCHEDULING 

such as that in Figure 2.20. 

Split each node into two nodes—an in-node and an out-node. Replace any arc x< -> Xj 

with an ifut -♦ xf arc. Add the arcs x? -» ifut. Figure 2.21 shows the result. 

The out-node jobs will be required to execute on processor px and the in-node jobs will 

be required to execute on processor py ■ Lastly, we will add an enforcing graph consisting of 

the filled nodes in Figure 2.22. The dashed nodes represent the slots available for execution 
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Figure 2.20: m-PROCESSOR SCHEDULING instance 

1,out 

2,out 

3,out 

4,out 

5,out 

6,out 

7,out 

O   Lin 

2,in 

3,in 

4,in 

5,in 

6,in 

7,in 

Figure 2.21: Transformed version of Figure 2.20 
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Figure 2.22: Enforcing graph for m = 3 

of the other jobs. 

We ask the question, can the transformed jobs be scheduled to complete in 2n time 

steps? The answer is yes iff the m-PROCESSOR PROBLEM could have been scheduled in 

n/m time steps. 

This is straightforward to see. The only out-nodes that can execute at times m + 1 to 

2m are those corresponding to the in-nodes that were executed from time 1 to m. This will 

then make available for execution at time 2m +1 all those jobs that are released by running 

the in-jobs we ran at time 1 to m. Thus, any schedule for the m-PROCESSOR PROBLEM 

can be transformed into a schedule for MC-COMPACTION. 

To see the other direction, we merely have to note that there is no way to cheat: (1) 
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No out-node can be executed before its corresponding in-node; (2) if an in-node is executed 

during some time range 2am + 1 to (2a + l)m, then all out-nodes that (edgewise) precede 

it must have been executed before 2am + 1 and hence all in-nodes of jobs that (edgewise) 

precede it must have been executed before 2(a - l)m + 1. 

There is an even tighter result that shows that the MC-COMPACTION remains in- 

complete even when the precedence graphs are limited to being chains [LLMS87]. That 

reduction is from 3-partition. 

But we want to limit the graphs in a different direction. We want to know the minimum 

degree of y —► x arcs we can allow while still having the problem be JVP-complete. 

Our construction shows that allowing one y -» x and one y -> y out of each y node and 

one i ->i out of each X node and an unlimited number of x -» y arcs makes the problem 

JVP-complete. What if we didn't want to allow y -> y and x -> x arcs? We could try the 

dominance methods we tried in Section 2.3. But they don't carry over. 

Alternately we could replace the enforcing graph of Figure 2.22 with that of Figure 2.23. 

That is, for the enforcing graph, each X node has an edge to each Y node in the following 

string of Y nodes and vice versa. Clearly the enforcing structure is equivalent to the original 

and uses noi-»i and y —» y arcs. 

Can we reduce the number of y -> x arcs? Yes, the enforcing structure in Figure 2.24 

uses at most two y —> x arcs per Y node. 

It seems hard to get JVP-completeness with at most one y -+ x arc per Y node. We will 

say more about this in Section 2.5. 

However, it turns out that we can get NP-completeness with at most one y -► x arc per 

Y node and one i-narc per X node. This is done by using the enforcing structure in 

Figure 2.25. 

It is not clear what happens when we allow one y -+ x arc and one y -> y arc per Y 

node—or even k y -> y arcs per Y node. 

2.5    Pipeline Scheduling 

A special case of allowing one y -► x arc per y node is related to the problem of pipeline 

scheduling [Gro83] [HG83] [GM86]. 

Like very long instruction words, pipelining is a technique to keep less of a computer 

processor idle at any time, thus increasing the effective execution rate of programs. 
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Figure 2.23: Enforcing graph for m = 3 with EOI->I and y —► y edges. 
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Figure 2.24: Enforcing graph for m - 4 with at most two y -» x edges per Y node 
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Figure 2.25: Enforcing graph for m = 3 with at most one y 
most one x -* x edge per X node 

x edge per Y node and at 
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In a pipelined computer, the processor is split up into a series of stages. During an 

instruction's execution, it passes from one stage to the next, freeing up the previous stage 

for the next instruction. The hope is that each stage of the processor can always be kept 

busy processing some instruction. 

With pipelining, a new complication sets in. Sometimes an instruction must be pre- 

vented from starting until after some other instruction is completely precessed through all 

stages of the pipeline. This leaves intervening execution slots that should be filled. 

Hence, one variant that arises for a fc-stage pipeline is 

PIPELINE-fc 

INSTANCE: Set X of unit-time instructions, number k of pipeline stages, partial order 

on X, and deadline t. 

QUESTION: Is there a schedule of the n = \X\ tasks of length < t such that for every pair 

of tasks such that Xi precedes Xj in the partial order, the instruction ij starts at least k 

time units before Xjl 

If Ar = 1, then we merely have the normal DAG constraints and any topological order is 

optimal. 

The A; = 2 case turns out to be equivalent to the following problem: 

YX-MATCH 

INSTANCE: Two processors px and py, set of unit-time jobs X, set of unit-time jobs Y 

with \Y\ = \X\ - n, unlimited precedence constraints of the form X{ -> y,, exactly one 

y -» x precedence constriant coming out of each Y node, exactly one y -* x precedence 

constriant going into each X node, and a time bound t. 

QUESTION: Is there a schedule of time < t + 1 satisfying the precedence constraints and 

such that the X jobs are only scheduled on processor px and the Y jobs are only scheduled 

on processor pyl 

The transformations are quite simple. To go from the constraint graph of an instance 

of YX-MATCH (shown on the left in Figure 2.26) to the constraint graph for an instance 

of PIPELINE-2 (shown on the right in Figure 2.26), simply merge together nodes Xi and 

yj wherever there is an edge yj —► i^. 
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Figure 2.26: Transforming YX-MATCH to PIPELINE-2 

The transformation from an instance of PIPELINE-2 to YX-MATCH is simply the 

reverse of this: split each node into an xin and an xout. Any edge x< -» Xj gets mapped to 

an x?ut -» x^ edge. Also add the edges xjn -♦ x?ut. The in-nodes must execute on py and 

the out-nodes on px • 
Merely stating the transformations does not prove that a solution to one problem trans- 

lates into a solution for the other. 

Lemma 2.18 YX-MATCH and PIPELINE-2 are equivalent under polynomial-time reduc- 

tions. 

Proof: Assume that we are given an instance of YX-MATCH, that we transform it into 

an instance of PIPELINE-2 and that there is a schedule of time < t for the PIPELINE-2 

instance. Without loss of generality, let our schedule for PIPELINE-2 be 5 = [si,...,sj] 

{xi may refer to an idle job). Then our schedule S' = (S'X,SY) for YX-MATCH is SY = 

[xf,x!p,...,x?\0] and S'x = [0,x?ut,x$uV. .,«?*]. where *?"* and °? are the X and Y 

nodes that were originally collapsed together to create x^. Since for 5', xj" precedes x?ut, 

then all y -> x edges are satisfied. For any edge x; -» XJ, there must be a job in 5 between 

ii and xj\ hence there is at least one job in between xj" and xf. Thus, xfut is executed 

before x^ and hence all x -» y edges are satisfied. Thus we have a schedule of time < t + 1 

for our original instance of YX-MATCH. 

Assume that we are given an instance of PIPELINE-2, that we transform it into an 

instance of YX-MATCH and that there is a schedule {Sx,Sy) of time < t + 1 for the 
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YX-MATCH instance. Let's first create an alternate schedule (S'X,SY) of the YX-MATCH 

instance. Let SY = SY. To create S'x, for each Xj schedule it one time unit after the j/< 

that has aji-> Xj arc. Claim: 5' = (S'X) SY) is valid. Because of our matching of Y -► X 

edges, no two X jobs are assigned the same execution time. Each Xj is executed no later for 

S'x than it did for Sx, since in S'x it is executed as soon as possible, given Sy. Since X jobs 

are moved earlier, but Y jobs are unmoved, all X -» Y constraints remain satisfied. Our 

specification of S'x also satisfies all Y -» X constraints. So 5' is valid. To get a schedule 

for our original instance of PIPELINE-2, simply make S" = SY. The last job of SY must 

be an idle one, so we can discard it, yielding an 5" of length < t. We just need to verify 

that if there is a x; -► Xj edge, these jobs will always be separated by at least one time unit. 

Since the YX-MATCH version had a x?ut -» x'f -* x?ut path, then x?ut and xf * must have 

had an intervening job.     I 

PIPELINE-2 can be solved by a polynomial time algorithm. The algorithm is based on 

modifications to a classic scheduling problem: 

TWO PROCESSOR SCHEDULING 

INSTANCE:   Set X of unit-time tasks, partial order on X, and deadline t. 

QUESTION: Is there a schedule of the n = |X| tasks that obeys the partial order, never 

schedules more than two tasks for the same time slot and is of length < <? 

In other words, solve the m-PROCESSOR SCHEDULING problem except that m is 

fixed at 2. There are a number of solutions to this problem [CG72, Gab82]. Leung, Vorn- 

berger and Witthoff [LVW84] extend these to handle the PIPELINE-2 problem — which 

they refer to as the "directed separation problem". 

Unfortunately, it is not clear how to modify this algorithm once we start deleting the 

y-n arcs. This destroys an important notion used in the papers—the notion of levels—and 

hence the notion of a highest-level is destroyed. 

Furthermore, this is about the only case of pipeline scheduling that is polynomial. Gross 

and Hennessy [Gro83, HG83] showed that the problem becomes W-complete if we allow 

the interlocks to be mixed between lengths of 1 and 2 — where an interlock is the amount 

of intermediate time units that must separate the execution of the two instructions. 
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2.6    Precedence Constraints 

In summary, the following are all TVP-complete: 

• xi -» yj, Xi -* Xj, yi -» yj, Vi -* XJ. 

• X{ -► yj, yi -» Xj. 

• Xi —> j/j, at most 2 y< —» Xj per yi- 

• Xi -► yj, at most 1 yi -* Xj per yi, at most li,-» Xj per Xi. 

The following are all equivalent: 

• Xi-* yj. 

• Xi-* yj, Xi -* XJ, yi -> yj. 

The following is polynomial: 

• Xi —► yj, and yi —► Xi for each i. 

The following is as yet unclassified: 

• Xi -* yj, at most 1 yi —► Xj per j/i. 



Chapter 3 

Well-Ordered Schedules 

The relationship of triangularization to other problems is interesting in itself. However, 

let's turn more directly to the task of dealing with the triangularization problem proper. 

3.1    Definitions 

We will need some new notation before we plunge into this. The graph in Figure 3.1 will 

serve as an example. 

Definition 3.1 The T() function returns the neighbors of a node or set of nodes. So for 

any node z, let T{z) be the set of nodes adjacent to z. Let T(Z) = \J^Z T{z). In Figure 3.1, 

we have T(x2) = {yi,V2,2fe} and T({yuy2}) = {*i,x2}. Note that we have stopped drawing 

the edge directions in the drawings; in any figure, the black nodes must be executed before 

the adjacent white nodes are released. 

Definition 8.2 For a set of nodes Z, we will sometimes want to know: if we remove the 

nodes in Z from the graph, what nodes become isolated—that is degree = 0. This is our 

function T'(Z) = {z \ T(z) C Z}. Alternatively T'{Z) = Y{Z~). 

So in Figure 3.1, we have r'(i2) = {j/3> and T'({yi,y2}) = {xi,x5}. 

Definition 3.3 For a schedule 5 of the X nodes, we will use 5* (0 < k < m) to denote 

the subschedule consisting of the first k elements.  So, if S = [xi,x2,. ■-,xm], then 5* = 

[X1,X2, ...,Xfc]. 

34 
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xi   #5c ^O   yi 

X3   €L ID   ya 

X4      *-v.       \     ^       y4 

X5      • ^0       Y5 

Figure 3.1: Example of constraints 

We will use Tk to indicate the set of Y nodes that would be free to execute if all the 

jobs in Sk were executed. That is, Tk = T'{Sk) for 0 < k < m. So, if in Figure 3.1 

5 = [xi,X2,x3,xA,xs], then T3 = {j/i,y2,2/3,y4}- 

AT* will be the set of Y jobs released for execution in going from St-i to Sk. That 

is, let ATfc = Tfc \ Tk-\ for 1 < k < m; AT0 = T0. So, continuing our example, if 

S = [a:i,a:a,a;3,a!4,*5], then AT2 = {yi,y2,V3}- 

As mentioned in Section 2.1.1 a schedule for px given by Sx implies a natural schedule 

Sy for PY ■ Two views of this schedule were given. A third way to think of this schedule is 

even simpler: [AT0, ATU AT2,..., ATm]. 

3.1.1    Charts 

When a Y job isn't available yet, then py must just wait for one. How long must it wait? 

Definition 3.4 Let nk = \Tk\ - \Sk\, 0 < k < m and hk = \Tk\ - |Sfc+i|, 0 < k < m. Let 

dk = min*_0 n; and dk = minjL0 hk. 

The total time that py must wait is -dm_i. So we will call -dm_i the delay of 5, 

sometimes written delay(S). If <£m_i is positive, then py could have started executing 

dm-i time units before px did and will not have to execute an idle job until all Y jobs are 

exhausted. 
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no  no  ni ni  x\2 r\2 n-s n3  n4  n4 ns 

Figure 3.2: Chart corresponding to Figure 3.1 

For unit time jobs, nk = nk - 1 and thus dm_i = dm_i - 1. When we generalize these 

definitions for non-unit time jobs, this will not necessarily be true. 

If there are no isolated X nodes in the constraint graph, then nm > nm_i and thus 

dm = dm_i. Hence if we are dealing with only unit time jobs and there are no isolated X 

nodes in the constraint graph, then dm = d,„_i + 1. Thus, sometimes when we really want 

to show that an operation doesn't change the delay of a graph, instead of showing that dm_i 

doesn't change, we may show that dm doesn't change. Since we can always throw away 

all isolated X nodes and put them at the end of any schedule that we ultimately find, the 

simplification of UBing dm doesn't cause any problems unless we are dealing with lemmas 

about square matrices. 

For any schedule 5 of the X nodes, we will draw a chart of the sequence differences 

[n0)n0,ni,.. .,1^-1,^. Figure 3.2 illustrates the chart for our example from Figure 3.1 

with the schedule 5 = [si,..., x5]. We can read the delay of the schedule right off the chart. 

The delay is the negation of the lowest value that the chart dips to. In this case the chart 

dips to -2, so the delay is equal to 2. 

Before we start it is important to note: Since the delay(S) is determined by the worst dip 

in the chart (-dm_i), and since local modifications to S result in only local modifications 

to the chart, then all we need to do is to make sure that our modification doesn't worsen 

the dip of the chart in the neighborhood of the modification and that will be enough to 

ensure that we haven't worsened the delay. To be more specific, partition a schedule into 

three parts 5 = [Xi,X2,X3]. If all we do is modify the order of nodes within X2, yielding 

S' = [Xi,X2,X3], then the chart for Xi clearly remains the same, since Xj, occurs before 

X2. Since no modifications to the order of the jobs within X2 can allow X2 to relase a job 

previously released by X3, and since at the end of X'2 we will have released exactly the same 

jobs as released at the end of X2, then the chart for X3 remains unchanged. 
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3.2    Two Is Per Row 

Let's start with a special case. Let's consider the case where^eur matrix has no more than 

two Is per row. That is, each Y node has degree at most 2, as in Figure 3.1. 

3.2.1    Component Types 

The first step in understanding the case with two Is per row is to classify the possible 

connected subgraphs of this class of graphs into 7 types. Each type will have a characteristic 

chart as shown in Figure 3.3. 

Type (-1, -1): an isolated X node. Looking at the chart for it gives an explanation of 

its name. Its worst (lowest) dip is -1 and its final value is -1. 

Type (0,1): an isolated Y node. Since there are no X nodes, the chart instantly reaches 

its final value of 1. It never dips, which we will choose to define as 0; we will see that this 

choice works best, but there is no choice that really suffices in all that follows. Fortunately, 

these nodes and the (-1, -l)s can be and will be discarded early. 

Type (-1,0): these are the connected components with the same number of X nodes 

and Y nodes and with at least one Y node having degree = 1. It follows that there is 

exactly one such Y node. For this type of component, there is always a way to remove an 

X node such that it releases a Y node and leaves behind only (-1,0) subpieces. Hence 

the optimum chart will be a saw-tooth, bouncing back and forth between 0 and -1, ending 

at 0. 

Type (-1,+Jfe), where k > 0: these are the components with k > 0 more Y nodes than 

X nodes and with at least one Y node having degree = 1. For this type of component, 

there is always a way to remove an X node such that it releases a Y node and leaves behind 

only subpieces of types (0,1) and (-1,/), where 0 < / < k. 

Type (-2,0): these are the components with the same number of X nodes and Y nodes, 

and such that every Y node has degree = 2. Clearly two X nodes must be removed before 

a Y node can be released. There is always a choice of two X nodes whose removal releases 

one Y node. If the component has more than two X nodes, this leaves behind a (-1, +1) 

piece and possibly some (-1,0) pieces. 

Type (-2, +k), where k > 0: these are the components with k > 0 more Y nodes than 

X nodes and with all Y nodes having degree = 2. Clearly two X nodes must be removed 

before a Y node can be released. There is always a choice of two X nodes whose removal 
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(-1.-1) 

(0,1) .:♦ 

(-1.0) 
0 — IN/W 

(-2,0) 

(-1,+k) 0 — 

(-2,+k) 
0 — 

(-2,-1) 
0 — 

Figure 3.3: Seven types of components. 
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releases one Y node. Other than the just released Y nodes, the remaining graph will consist 

of pieces of types (-1,0) and (-1,0» where 0 < I < k + 1. 

Type (-2,-1): these are the components which have one less Y node than X nodes, 

yet all Y nodes have degree = 2. That is, they are trees whose leaves are all X nodes. 

Removing any leaf turns it into a (-1,0) piece. 

3.2.2    Ordering the Components 

The intuition for finding an optimum schedule is that we want to quickly force the chart 

values to get high enough so that any subsequent dips in the chart won't dip down very far. 

It turns out that it is always best to schedule the components in a particular order based 

on their types: (0,1), (-1, +fc), (-2, +*), (-1,0), (-2,0), (-2, -1), (-1, -1). 

We already know why it is best to put (0, l)s first and the (-1, -l)s last—dominance. 

But how can we see the rest of this? 

Definition 3.5 The borrowing of a subschedule Sk is like the delay of a schedule, except 

that we don't negate it, that is, it equals dk-\. The profit of a subschedule Sk is Bimply 

\Tk\-\Sk\ = nk. Thus the type (b,p) of a component reflects its borrowing b and profit p. 

Choosing to put the (-1,+Jb)s next after the (0,l)s is an example of what we call 

"greedy use of minimum-borrowing non-negative profit subschedules". This terminology 

may cause some confusion: the more that is borrowed, the more negative the borrowing. 

So the minimum borrowing is actually the borrowing with the largest numerical value. 

For the moment we treat each connected component as an indivisible piece. In the 

general case this is not allowable and we will show later why this is valid for our current 

case of two Is per row. First let's show why our schedule is optimal under this assumption. 

We will come up with an ordering < on pieces of the type t = (b,p) where b is the 

amount of borrowing we did, and p is the profit that we realized. 

Assume that we have two tuples tx = (&i,pi), <2 = {h,P2)- The O-ordering is as follows. 

• If pi and p2 are positive, we have these cases: &i < b2 => h t> t2, 6i = b2 => t\ = *2> 

and &i > 62'=*• *i <1 h- 

• If Pi and P2 are negative, we have these cases: 61 - pi < b2 - P2 => h <i *2> h _ Pi — 

b2-P2=> h = h, and 61 - pi > b2 - P2 =» h t> h- 

• If pi is positive and p2 is nonpositive or if pi = 0 and p2 is negative, then ti <! <2- 
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• If pi is nonpositive and p2 is positive or if pi is negative and p2 = 0, then t\ \> t2. 

• If pi = P2 = 0, then ti = t2. 

One property of the O-ordering that we can immediately observe is: 

Lemma 3.1 (&i,pi) <J (b2,p2) <=*  {h,P2) > (h,Pi)-     I 

Lemma 3.2 Given a schedule with h = (6i,Pi) directly following t2 = (&2.P2)- If h <J *2 

or ti = <2, then it is never worse to swap the order and schedule *i directly before t2. 

Proof: The swapping operation has no global effects. So all we need to look at is 

the worst borrowing for each of the two orders within their local portion of the schedule. 

Without swapping, that is if t2 is before ti, then the worst borrowing is b = min(62, &i +P2). 

If we swap so that t\ is before t2, then the worst borrowing is b' = min(&i,62 + pi). So we 

must show that if t\ O t2 then b' > b. 

Let's follow the case structure of the definition of <1. 

• pi and p2 are positive. So we know that 61 > b2. Hence, 61 +p2 > b2 and b = b2. So, 

b' > b regardless of whether b' = 61 or 6' = b2 + p\. 

• pi and p2 are negative. Since tx < t2 or <i = t2, we know that b2 -p2 > 61 -pi- Hence, 

b2> bi+ p2 and b = 61 + p2. So, 6' > b regardless of whether b' = 61 or 6' = b2 + p\. 

• pi is positive and p2 is nonpositive or p\ = 0 and p2 is negative.  This implies that 

b\ > bi + p2 and 62 + p\ > b2. Hence, b' > b. 

• Pi = P2 = 0. This implies that 61 = &i + p2 and b2 + p\ = b2. Hence, 6' = b. 

I 

Lemma 3.3 For any set of independent (borrowing.profit) tuples, there is an optimal or- 

dering that obeys the <j-ordering. 

Proof: Assume that we have some schedule S that is A: > 0 inversions away from the 

nearest <J-valid ordering. Clearly there is some place where two adjacent (b,p) tuples are 

out of order. By Lemma 3.2 we can swap these two tuples without degrading the schedule. 

The post swap schedule S' is k - 1 inversions away. 
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We can clearly repeat this until we get a A: = 0 schedule that is at least as good as 5. 

I 

We have previously stated that the order should be: (0,1), (-1,+fc), (-2,+k), (-1,0), 

(-2 0) (-2,-1), (-1,-1). Now we can see that that was a simplification. Components 

of types (-2,0) and (-1,0) are equivalent and can be interchanged without degrading the 

schedule. 

3.2.3    Transposition of a Chart 

With what we have now defined, we can take a detour and look at what happens to a chart 

for a matrix G when we transpose its matrix, yielding G'. When we are looking at the chart 

of G, the schedule of the Y nodes is determined by the schedule of the X nodes; when we 

are looking at the chart of G', the schedule of the X nodes is determined by the schedule 

of the Y nodes. Hence, when looking at the chart of the transpose, we aren't necessarily 

interested in the reverse of the original schedule of the X nodes, rather we are interested 

in the schedule of the X nodes that is determined by the reverse of the original schedule of 

the Y nodes in G. This difference requires us to explore a few new lemmas. 

Lemma 3.4 For a graph G, we are given a schedule S = [xu...,xn] with profit p and 

maximum borrowing b. If we transpose the graph yielding G\ then the schedule S' = 

[yn, • • •, J/i] will have profit p' = -p and maximum borrowing b' > b - p. 

Proof: Since the original profit is p = \Y\ - \X\ and the profit of the transpose is 

p' = \X\ - \Y\, we can see that p = -p. 

We can think of schedule 5' as [Arm, ATm_i,..., AT0]. Let's compute the borrowing 

at any point during the scheduling of some AT,;. By this point we could have scheduled at 

most the Y nodes Y \ Ti-i. We will have released at least the X nodes im, im_i,..., Xi+i- 

So we have; 

a' > |x\si|-|y\r,_1| 
= iiui-s.-ari-ixi) 
= ftt - p 

Since b is the minimum over all fii and b' is the minimum over all n', then b' > b - p.      I 
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no  no  ni ni  r\z n2  n3 n3 n4  n4 ns 

Figure 3.4: Chart corresponding to transpose of the graph in Figure 3.1 

Lemma 3.5 For a graph G, we are given an optimum schedule S = [xi,...,x„] with 

profit p and maximum borrowing b. If we transpose the graph yielding <?', then the schedule 

5' = [yn, ...yi] will have profit p' = -p and maximum borrowing V = b - p. 

Proof: By Lemma 3.4, V > b - p. Take G' and transpose it again to yield G". By 

Lemma 3.4, b" > b' - p'. Since the original schedule S is optimal, b" = b. So we have 

b = b" > b' - p' > b - p - p' = b. Hence 6 = V - p' and b' - b - p.     I 

This extends to individual (b,p) pieces, provided that each X node in the (b,p) piece is 

adjacent to some Y node in the piece. Hence, to get the chart of the transpose of the graph 

in Figure 3.1 we first take each (b,p) of the original graph and replace it with (6 - p, -p) 

and then reverse the order of the sequence of (b,p) pairs. So for our example we start 

with [(-2,1),(-1,0),(-1,-1)] as shown in Figure 3.2. This gets transformed first into 

[(-3,-l),(-l,0),(0,l)] and then into [(0, l),(-l,0),(-3,-l)]. 

Figure 3.4 shows the chart of the transpose of Figure 3.1 using the schedule Sx = 

[y&,yA, 1/3,1/2, in]- We can see that the chart for Figure 3.4 does precisely follow the behavior 

[(0,1), (-1,0), (-3,-1)], as expected. 

A few other things to note. (1) Since (0, l)s and (-1, -l)s are transposes of each other, 

this (b,p) -y {b-p, -p) transformation implies that we chose the right name for the (0,1) 

pieces. (2) This transformation of sequences of (b,p) pairs is its own inverse. (3) If the 

original sequence of (b,p) pairs obeys the O ordering, then so does the transformed one, 

since: 

Lemma 3.6 (&i,Pi) <l (&2,P2) <=> (&2 ~P2, -P2) < (&i -Pi,~Pi)- {h,Pi) = (h,P2) <=^ 

{b2-P2,-P2) = (b1-Pl,-Pl).  (&l,Pl)  >(&2,P2)   <=>   (&2-P2.-P2)  t>(&l-Pl,-Pl)-        I 

Proof: Let's follow the case structure of the definition of <. 
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• pi and p2 are positive. There are three cases. Case 1: (&i,pi) < (&2,p2) <=> &i > 

b2 «=> (6i-pi)-(-pi) > (&a-Pa)-(-Pa) •*=► (*>2-p2, -p2)<l(&i-Pi,-Pi)- Case2: 

(61,Pi) = (&2,p2) ■*=► 6a = 62 <=> (*i - Pi) " ("Pi) = (b2 ~ P2) - (-P2) 

(62 - p2,-p2) = (61 - Pi,-Pi)- Case 3: (&i,pi) t> (62,P2) <=*• &i < 62 

(61 - Pi) - (-Pi) < (*>2 - P2) - (-P2) <=> (&2 - P2, -Pa) > (*>i ~ Pi. -Pi)- 

• 

• pi and p2 are negative. There are three cases. Case 1: (61,pi) < (&2,P2) 

b1-p1<b2-Pi *=> (h - Pi) < {b2 - P2) «=> (&2-P2,-P2)<l (&i -Pi»-Pi)- 

Case 2: (&i,Pi) = (b2,P2) <=► &i - Pi = *>2 - P2 <=> (61 - Pi) = (*>2 - P2) <=> 

(62-p2,-P2) = (fei-Pi,-Pi)- Case 3: (&a,pi) \>{b2,p2) <=^> &i-Pi>*>2-P2 «=> 

(61 - pi) > (62 - P2) <=*  (*>2 - P2, -P2) > (h - Pi, -Pi)- 

• px is positive and p2 is nonpositive or pi = 0 and p2 is negative. This implies that 

either -p\ is negative and -p2 is nonnegative or -pi = 0 and -p2 positive. This is 

equivalent to saying that either -p2 is positive and -pi is nonpositive or -p2 = 0 and 

-px is negative. Hence both (&i,pi) O (b2,p2) and (b2 - p2,-p2) < (h - Pi, -Pi)- 

Px is nonpositive and p2 is positive or pi is negative and p2 = 0. This implies that 

either -pi is nonnegative and -p2 is negative or -pi is positive and -p2 = 0. This 

is equivalent to saying that either -p2 is nonpositive and -pi is positive or -p2 is 

negative and -pi = 0. Hence both (bi.Pi) t>(62,p2)and (b2-p2,-p2) >(&i-Pi, ~Pi)- 

• Pl = P2 = 0. Then -p2 = -pi = 0. Hence both (61,pi) = (b2,p2) and (b2-p7, -p2) = 

(*>i-Pi,-Pi)- 

I 

3.2.4    Indivisible Components? 

Returning to our proof for two Is per row, we still have to show that we can treat the 

components as indivisible. That is, we have to show that we cannot get a better schedule 

by allowing a schedule to start with one component and switch to a second component and 

then back to the first. 

This is not true in the general case, when we have more than two Is per row, as Figure 3.5 

shows. The reason that intermixing schedules is an improvement in Figure 3.5 is because a 

positive point in the chart for one component preceded the chart's lowest point. 
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Figure 3.5: Intermixing can improve the solution. 
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Because of dominance, for this section we can ignore connected components with only 

one node. 

The following lemma will help us in proving that we can treat the components as indi- 

visible. 

Lemma 3.7 Given a connected bipartite graph G = (X,Y,E) in which the maximum 

degree of the Y nodes is < 2. For every non-empty subset 0 C X' C X, we have \T'(X')\ - 

\X'\ <\V'(X)\-\X\ = n-m. 

Proof: As this will be a proof by contradiction, assume that we have a set X' ^ 0 such 

that |r'(X')| - \X'\ > |r'(X)| - \X\. Let Y' = T'(X'), X" = X\ X' and Y" = Y\ Y'. 
Consider the graph induced by the nodes X" U Y". It has some number, c, of connected 

components. Thus there must be at least \X"\ + \Y"\ - c edges between X" and Y". By 

definition oiT'{X'), there are no edges from X" to Y' = T'(X'). Since our bipartite graph is 

connected, there must be at least c edges between Y" and X'. Thus there at least |X"| + |Y"| 

edges that have one endpoint in Y". Since \X"\ = \X\ - \X'\ > \T'{X)\ - \T'{X')\ = \Y"\, 

then there are > 2 • |Y"| edges that have one endpoint in \Y"\. But every node in \Y"\ is of 

degree < 2. This is a contradiction.      I 

Corollary 3.8 Given any schedule S for a connected bipartite graph G = (X,Y,E) in 

which the maximum degree of the Y nodes is < 2. It follows that maxjla n; = rim.     | 

Corollary 3.9 Given any schedule S for a connected bipartite graph G = (X,Y,E) in 

which the maximum degree of the Y nodes is < 2. Either max^.0 Uj = n„, or maxJ!L0 ni = n0. 

I 

Definition 3.6 For any specified schedule, we will refer to n< as the balance at time t. And 

max£l0 ni will be referred to as the peak balance. 

So for every connected component (in the two Is per row case), the peak balance occurs 

at the beginning and/or the end of the schedule. Also note for any schedule for any of 

the (b,p) pieces we are dealing with, the balance must dip to b + 1 before the balance 

becomes positive—this is a more complicated, and more useful, way of saying that (-2, ±k) 

components must schedule two X nodes before they release any Y nodes. 

What happens to the peak balance when we transpose a component? 
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Lemma 3.10 Given a connected graph G such that for any schedule S of it max£L0 Ui = P 

and such that for any schedule 5' for G', the transpose of G, we have that max£0 n< > 

\X\ - \Y\ + P. Then given any schedule S' for G', we have that max£L0 n[ = \X\ - \Y\ + P. 

Proof: Assume to the contrary that we have a schedule 5' for G' with max£L0 nj = 

n'j > \X\ - \Y\ + P. That is, |r'(Sj)| - \S$\ > \X\ - \Y\ + P. Then in the original graph, if 

we start a schedule with X \ I"(5<), we release Y \ S'j. Thus the balance at this point is: 

|r\5^|-|x\r'(5j)|  =  |y|-|x| + (|r'(5j)|-|5j|) 
>   \Y\-\X\ + (\X\-\Y\ + P) 

= p 

This is a contradiction.      I 

Corollary 3.11 Given a connected graph G such that for any schedule S of it maxjl0 n< = 

rim - \Y| - \X\. Given any schedule S' for G\ the transpose of G, we have that max£0 nj = 

n0 = 0. 

Corollary 3.12 Given a connected graph G such that for any schedule 5 of it max£L0 n; = 

n0 = 0. Given any schedule S' for G', the transpose of G, we have that max£L0 ^ = 71^ = 

1*1-in 
Corollary 3.13 If a connected graph has its peak balance at the end (beginning) of every 

schedule of it, then the transposed version of the graph has its peak balance at the beginning 

(end) of every schedule of it. 

In talking about intermixing of multiple components, complicated notation seems un- 

avoidable. We will have a number of components Ci,C2). • .,Cfc- Each one will have a 

schedule 51,52,.. .,5fc. Let n) = \T'{S})\ - |5*|. There will be a schedule 5 which is an 

intermixing of the schedules S1, S2, ...,Sk. Let u(i,j) = the number of X nodes from 5* 

that are scheduled before or during time j in schedule 5. Hence, rij = X)i=i nu(i,j)- 

Lemma 3.14 Given k components Clt...,Ck such that (1) every component either has 

its peak balance at the end of every possible schedule for it or it has its peak balance at the 

beginning of every possible schedule for it (2) at least one component has its peak balance 
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at the end of every possible schedule for it and (3) any schedule of any (6;,?;) component d 

dips to a balance of 6^ + 1 before the balance becomes positive; given schedules 5 ,..., 5 

for the components and given an intermixed schedule S of the components.  There exists 

a schedule S' that has only k - 1 of the components intermixed and the other component 

scheduled first, such that 5' has a delay no worse than 5. 

Proof: Without loss of generality, assume that C\ is a minimum component with respect 

to the < ordering. Let S' be a schedule with C\ scheduled first and scheduled optimally, 

followed by C2l. • •, Cjt intermixed in the same order as they are in 5. 

Let mi = the number of X nodes in Ca. If the j'-th X node in 5 is not part of 

Ci, then in S1 it will be scheduled in position j + mi - u(l,j).   In 5', for j' >  mi, 

»i» = £*=i "i< = nmt + E*=a <(;,;)> where 3 is such that J' = J + "*i - «(1. J')- We claim 

that TCJ = nL > n.1,,. ~ and hence n'-, > »y. We can see that n£ = n^, since they 

are both the balance at the end of schedules of Cx. Claim: Since Ci is minimum with 

respect to <j and at least one component of Ci,..., Ck has its peak balance at the end of 

every possible schedule for it, then C\ is one such component and hence nj^ > «u(ij) f°r 

all j. To see this, note that for all components that satisfy condition (1) in the statement 

of the lemma: (a) a component has its peak balance at the end of every possible schedule 

for it iff the component has a nonnegative profit (b) a component has its peak balance at 

the beginning of every possible schedule for it iff the component has a nonpositive profit. 

Hence, some component has a nonnegative profit. Prom the definition of <J, it follows that 

Ci has a nonnegative profit. Hence, C\ has its peak balance at the end of every possible 

schedule for it. 

Now all we need to show is that min^ rij > min^x nj.  To see this, let's look at 5. 

In particular, let's look at the smallest value of / such that n^,^ = 6j» + 1 for some 5' 

and pi> > 0.   Since every component reaches a balance of 6; + 1 < 0 before its balance 

goes positive, then nj^,) < 0 for all i ^ i'. Hence min!^ rij < m = X)i=i nu(i,i) ^ nu(i'<1)' 

Since we have scheduled C\ optimally in S' and since C\ is minimum with respect to <], 

nÜ(i' i) = &i' + 1 < *i + * = n^i^i n'i and hence n^i^i ni ^ ^^I 
ni-     ' 

Because of Corollary 3.13 and Lemma 3.6, transposition gives us: 

Corollary 3.15 Given Jfe components C\,..., Ck such that (1) every component either has 

its peak balance at the end of every possible schedule for it or it has its peak balance at the 

beginning of every possible schedule for it (2) at least one component has its peak balance 
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at the beginning of every possible schedule for it and (3) any schedule of the transpose of any 

(bi,Pi) component d dips to a balance of fc; - p< + 1 before the balance becomes positive; 

given schedules S1,.. .,Sk for the components and given an intermixed schedule S of the 

components. There exists a schedule S' that has only k - 1 of the components intermixed 

and the other component scheduled last, such that 5' has a delay no worse than 5.     I 

Lemma 3.16 Given k components, each with less than two Is per row. There is an optimal 

schedule that does not intermix the components. 

Proof: This is trivially true for the base case of the induction, when k = 1, since there 

is no intermixing possible. 

Otherwise, assume that there is an optimal schedule 5 that has intermixing. For k > 1, 

either there exists a component which has its peak balance at the end of every possible 

schedule for it, or there doesn't. If such a component exists, then Lemma 3.14 tells us that 

we can find a schedule 5' that begins with one component C separated out from the others 

and has < k - 1 of the components.intermixed and such that delay(5') < delay(5). Hence 

S' is also optimal. By induction on G \ C, we obtain an optimal schedule S" of G\C that 

does not intermix the < lb - 1 intermixed components of G \ C. We can append S" to 

the optimal schedule of C, yielding an optimal schedule of the whole graph that does not 

intermix components. 
If there does not exists a component which has its peak balance at the end of every 

possible schedule for it, then for every component, every schedule has its peak balance 

at the beginning. Thus we must have only (-2,-1) components. Any schedule of the 

transpose of a (-2, -1) reaches a balance of -2 - (-1) + 1 = 0 before the balance becomes 

positive. Thus all the preconditions of Corollary 3.15 hold. Once again, this corollary gives 

us a schedule 5' that has one less intermixing than 5 and then we use induction on the 

remaining intermixed portion of 5' to yield an optimal schedule with no intermixing.      I 

3.3    Merging 

We have seen that when there are only two Is per row, we can independently solve the 

separate connected components and then merely append the solutions in an appropriate 

order to yield the overall solution. As Figure 3.5 showed, this does not apply for the more 

general case.   Thus a question arises:  In the general case, can we solve separate pieces 
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independently and then perform some simple method of combining the solutions? Or must 

we view all separate pieces at the same time, as we try to solve the problem? 

3.3.1    Peak Balance 

Our first intuitive observation is that the <d -ordering works because it gets the balance as 

high as possible so that subsequent dips will not go very far negative. 

Let's apply this intuition of goodness to a single component. What is the largest possible 

peak balance? Can it be achieved by an optimum schedule? 

Lemma 3.17 For a graph with n rows and m columns and with a maximum matching M 

of the graph, the peak balance is at most n - \M\. 

Proof: Claim: for any set Y' C Y, \Y'\ - \T{Y')\ < \Y\ - \M\. To see this: Consider, 

Y' n M and T(Y') n M. Clearly for each distinct node in the first there is a distinct 

node in the second that is adjacent to it.   That is, \Y' n M\ <  \T{Y') n M\.   Hence, 

\Y'\ - \T(Y')\ < (\Y'\ - \Y' n M\) - (|r(y')l - |r(r') n M\) < \Y'\ - \Y' n M\ < \Y\ - \M\. 

Claim: for any set X' C X, \T'{X')\ - \X'\ < \Y\ - \M\. To see this: first note that 

r(I%X-')) C X'. Thus, |r'(A")| - |*'| < \T'(X')\ - \T(T'(X'))\ < \Y\ - \M\. 
Since the balance of a schedule 5 is nk = \T'{Sk)\ - \Sk\ and since n = \Y\, we see that 

rik < n - \M\ {OT any k and any schedule S.      I 

The more interesting claim is that for every graph, there is a minimum delay schedule 

that has a peak balance of n- \M\. To show this we need a more complicated variant of our 

"inversion" strategy used in Lemma 3.3. The added complication comes from the fact that 

the pieces that we will be shifting around will no longer be independent. Instead, they will 

have edges to common nodes. Thus, once again, we will need to get more mathematical in 

order to derive a few useful lemmas. 

3.3.2    Basic Lemmas 

For the rest of this chapter, assume that all nodes in X have at least one neighbor, since 

any nodes in X with no neighbors are optimally placed at the end of the schedule. As noted 

earlier, this sometimes allows us to concentrate on dm instead of dm_i. 

The first lemma tells us the obvious: if we enlarge (shrink) the set of nodes removed 

from one side, we enlarge (shrink) the set of isolated nodes on the other. It also gives us an 

explicit formula relating these sets of isolated nodes. 
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Lemma 3.18 For any two sets of nodes such that Zx C Z2, we have r'(Zi) C T'(Z2) and 

T'(Z1) = T'(Z2)\T(Z2\Z1). 

Proof: If z G r'(Zi) then T{z) C Zx C Z2. Hence, 2 € T'(Z2) and I"(Zi) C T'(Z2). 

If2 € r'(Z2)\T(Z2\Zi) then it is not adjacent to any node in Z2\Z\. Since T(z) C Z2, 

then r(z) C Zx and z G r'(Zi). 

If z G r'(Zi) then T(z) C Zx. Since we've already shown that r'(Zx) C T'(Z2), we have 

z G r'(Z2). Since 2 is not adjacent to Z2\Zi, we must have z G T'(Z2) \ T(Z2 \ Zx). Hence, 

r'(z1) = r'(z2)\r(z2\z1).   I 

The next three lemmas help us nail down a specific formula for AT,;. 

Lemma 3.19 Given a schedule 5 = [xx, x2,..., im] and a node y € Y, we have y G AT; if 

and only if i is the largest integer such that x; G T(y). 

Proof: Let i be the largest integer such that x* G T(y). Clearly T(y) C Sif hence 

y G T'(5i) = Tt. Since ej G T(y), T(y) % S^x. Thus, y $ r'(5<_i) = T^j. So y G A^. 

Since each node y G Y" is in exactly one A^, the other direction of the implication is 

immediate.      I 

The function r'(X') tells us what Y jobs will be released by the jobs in X' if they are 

the only jobs executed. What happens when X' is intermixed with other X jobs in some 

schedule? This causes the set of Y jobs released by the jobs in X' to vary. Nevertheless, 

this set can be bounded on both sides. 

Lemma 3.20 For any schedule 5 = [xi,.. .,xm], and any set X' C X, we have 

T'(X')C   U   ATiQT{X'). 

Proof: Choose any y G T'{X'). Let i be the largest integer such that x; G T(y). By 

Lemma 3.19, y G AT*. Since T(y) C X', we have n G X' and hence y G AT< C \JXi€X> ATi- 

Choose any y G AT;, with x< G X'. By Lemma 3.19, x< G T(y). Hence y G T(xi) C 

T(X').      I 

Lemma 3.21 For any schedule 5 = [xi,.. .,xm], we have ATi = T'(Si)C\T(xi). 
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Proof:   Since T{ = T'(Sl), AT, C V'{St).   By Lemma 3.20, AT< C T{x{).   Hence, 

ATicr'esonr^)- 
If Vi € T'(Si) then y< € T,. If j/, G r(si) then W £ T,_i. Hence, Vi € AT; and 

ATi DT'(50nr(xi).      I 

Lemma 3.22 For any two sets of nodes such that Xx  C  X2 and any schedule S  = 

[SBI, asa,..., xm] of X2, we have 

r'(Xi) c r'(x2) \    (J    AT, c r'(xa) \ r'(x2 \xa). 

Proof: By Lemma 3.18, r'(Xa) C T'(X2)\T{X2\X1). By Lemma 3.20, U.i€Jr,\*x AT« ^ 

T(X2 \ JTj). Hence, r'(Xx) C T'(X2) \ Ux.eWl 
Ar- By Lemma 3-20> T'(X> \ X^ ^ 

VXiex3\Xl AT,. Hence, T'{X2) \ U*<e Wl AT, C T'(X2) \ T'(X2 \ Xx).     I 

3.3.3    Segregation 

To go further we also need a new tool. Our new tool is called segregation. From a schedule 5, 

say Sx = [*i,*3,*Bi*4i*6i»a]i we will modify it to form a segregated schedule 5'. The 

way this works is this: First, we assign each node Xi a label from a set of labels; for 

this example, let our label set be {one,two,three} and let L(xi) = one, L(x2) - one, 

L(x3) = two, L{xA) = three, L{xs) = three, L(x6) = two. The set of labellings has an 

ordering, say [one,two,three]. 

To form the segregated schedule we first use all the nodes of the first label, then all the 

nodes of the next label, and so on, until all the nodes are scheduled. All the nodes of a 

particular label will remain in the relative order that they have in the schedule 5. So in 

our example, the result will be S'x = [xi,x2,x3,xe, 15,14]- 

Like our use of inversion in the two Is per row case, we will perform these segregations 

in ways that won't degrade the schedule. So, sometimes we wish to impose two conditions: 

• The segregated schedule always has a delay no larger than the original schedule. 

• The labels can be assigned efficiently without knowing an optimal schedule. 

Then we can use the labels to divide our problem into smaller scheduling subproblems, one 

per label. Optimal solutions to the subproblems can then just be concatenated to yield an 

optimal solution to our original problem. 
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Let 5 = [i1(.. .,xm] be a schedule. Applying segregation to it will result in some other 

schedule S' = [x[,.. .,x'm]. A specific segregation of a specific schedule 5 can be viewed as 

a permutation TT; that is, Xi = x^iy 

Lemma 3.23 If St C 5^ then AT; C AT^. If 5< D 5^} then AT* D AT^. 

Proof: Since T(xi) = T{x'T{i)) and since Lemma 3.18 tells us that 5, C S;(i) implies 

T'(Si) C r'(5;(.}), we know that r'(S0nr(*<) C r'(5;(0)nr(«^)). By Lemma 3.21, this 

tells us that AT; C AT^.     I 

We can always think of more complex segregations as a composition of two-label seg- 

regations, that is segregations with |L| = 2. Let that label set be L = {one, two}; we will 

use the segregation [one,two]. Lemma 3.23 tells us that for two-label segregations, if x{ 

has label two then AT; C AT;(.} and if x; has label one then AT, D AT^. The Mowing 

three lemmas give us a set of conditions when we can be sure that applying a two-label 

segregation doesn't increase the delay. 

Lemma 3.24 Let / be the number of X nodes labelled one.   If applying a two-label 

segregation with the order [one, two] to a schedule 5 yields a segregated schedule 5' with 

rif = max/=o ni>then K{i) ^ n» for ^ z* with label two- 

Proof: Consider any xt node labeled two. Clearly, Si = S'^ \ (S'f \ S^{j)), where x,- 

is the one node most recently preceding Xj in the schedule 5. (If Xj is non-existent, then 

using ir(j) = 0 makes the following reasoning still applicable.) Since Si C 5^-j, applying 

Lemma 3.22 with schedule S' tells us that 

Ti   =   T(Si) 

c  r^0)\u*|€(Wfl,A2? 
= r'(5;(0)\(r'(5})\r'(5;(i))) 

= K{i)\(T'f\K{j)). 

Hence, 

m =   \Ti\-\Si\ 

< ir;(0\(T;\r;w)|-|5;(l)\(5}\5;(j.))i 

= (ir;(0i - \T}\ + KU)\) - (is:(0i - \s'f\ + is;(J)i) 
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I 

Lemma 3.25 Let / be the number of X nodes labelled one. If applying a two-label 

segregation with the order [one, two] to a schedule 5 yields a segregated schedule 5' with 

n'f = max™ y n'it then n\^ > n; for all i, with label one. 

Proof: Consider any Xi node labeled one. Clearly, Si = 5^(j) \(S'f\ S'n^), where Xj 

is the two node most recently preceding ij in the schedule 5. (If Xj is non-existent, then 

Si = 5;(i) and Ti = T^, and hence m = n'^y) Since Si C 5^, applying Lemma 3.22 

with schedule 5' teHs us that Ti C T;(j) \ (TJ \ T;(.}). Hence, 

n, = mi-i^i 
< l^(i)\(^\r;(l))i-|5;(i)\(5}\5;(0)i 

= (1^,1 - W + K{i)\) - (\s'«u)\ - l5/l + l5^)l) 

<    n' W 

I 

Lemma 3.26 Let / be the number of X nodes labelled one. If applying a two-label 

segregation with the order [one, two] to a schedule S yields a segregated schedule 5' with 

n'f = max£L0 n'iy then d'm > dm. 

Proof: Lemmas 3.24 and 3.25 both apply and hence we know that rii < n^ for all i. 

It is thus clear that dm < d'm.     I 

We will explore some of the power of this lemma later.   A simpler, but still useful 

segregation lemma is: 

Lemma 3.27 Applying a two-label segregation to a schedule 5 that assigns the label one 

to a single node x* 6 X such that T(xk) 2 Tk and the label two to all the other nodes in 

X results in a schedule with <£'><£„,. 
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Proof: If Tk = 0, 4 = -* = 4- If Tfc ^ 0, then Tfe_! = 0 by hypothesis, hence 

dk = 1 - k and rfj, > 1 - k. Hence, 4 > dk. For aU t > A:, a< = <(i). Hence, Sj = 5^, 

T; = T^.j and n< = n[. Thus d^ > dm.      I 

Lemma 3.27 helps us reaffirm something that we already knew because of dominance: 

Corollary 3.28 Applying to a schedule S a two-label segregation that assigns the label 

one to a set of nodes xk e X such that r(asfc) = Y and the label two to all the other nodes 

in X results in a schedule with d'm > dm.     I 

Also, Lemma 3.27 helps us to validate the legitimacy of making certain local modifica- 

tions to schedules. 

Lemma 3.29 Given a schedule 5 = [xlf. ..,xm]. If ATi+1 = ATi+2 = • • • = ATfc_i = 0 

and AT* ^ 0, then the schedule 

S' = [xi,.. .,Xi,xk,Xi+i,.. .,xk-i,Xk+i, ■ ■ -,xm] 

will have d'm>dm. 

Proof: Apply Lemma 3.27 to the graph G \ {Si U Ti) and the schedule S\Si.     I 

There is another use for segregations. Sometimes they allow us to find an optimum 

schedule for a subgraph, given an optimum schedule for the whole graph. 

Lemma 3.30 Let / be the number of X nodes labelled one. Let 5 be an optimal schedule, 

and let the two-label segregation yield a schedule S'. Let S'} = [x'/+1,.. -,x'm]. If d^^ = 

dn-x and d'f^ > d^.j, then S'f is an optimal schedule for the graph G' induced by the 

nodes (S'm\S'f)\jrm\rt). 

Proof: Assume that S'f is not optimal for G'. This means that there is a schedule S'j 

that is better. Then the schedule \Sf,S'}} would be a better schedule than 5' and 5. This 

contradicts our assumptions on 5 and thus S'f is optimal for G'.      I 
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3.3.4    Decompose 

Let's show a method to assign labels from the label set L = {ascent,plateau, descent} 

to the Xi nodes without knowing an optimum schedule, and in such a way that given any 

optimal schedule, the corresponding segregated schedule will not have a larger delay. For 

this purpose we assume that a maximum matching of the graph G(X,Y) has been given. 

Definition 3.7 An alternating path is a path that alternates between edges in a matching 

and edges not in the matching. That is, it never consecutively uses two edges not in the 

matching. 

To simplify talking about this decomposition, we will modify the bipartite graph. The 

edges are normally all oriented from X to Y. Whenever an edge is'in the matching, we will 

reverse the orientation so that the edge will point from Y to X. Thus alternating paths 

now correspond to directed paths in the modified graph. 

First find any maximum matching, M, of the bipartite graph. There are |X| - \M\ 

unmatched x;s and \Y\ - \M\ unmatched j/^s. The ascent is composed of the \Y\ - \M\ 

unmatched J/JS and any nodes that can reach them via directed paths in the modified graph. 

The descent is composed of the |X| - \M\ unmatched a^s and any nodes reachable from 

them via directed paths in the modified graph. The plateau is composed of any nodes that 

aren't reachable from and can't reach to any unmatched node via a directed path in the 

modified graph. (Note that there cannot be a directed path between unmatched vertices, 

since M is maximum.) 

This seems like a non-deterministic labeling, since we say "find any maximum match- 

ing." Actually, the labeling is unique. 

Lemma 3.31 The node labelings are invariant under different maximum matchings. 

Proof: By inverting a path, we mean changing the matching edges on it into non- 

matching edges and vice-versa. In our modified graph, this corresponds to changing the 

orientations of every edge on the path. It's a well known result in graph theory that any 

maximum matching can be converted into any other by a sequence of operations of the 

form: either invert an even length alternating path starting or ending at an unmatched 

node, or invert an alternating cycle. 
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It we invert a directed cycle we haven't changed the set of unmatched nodes, nor have 

we changed the reachability from any node to any other node. So clearly the labelings don't 

change. 

If we invert a directed even length path, then we do change the set of unmatched nodes. 

There are two mutually exclusive cases: either the first node of our directed path is an 

unmatched X node or the last node of our directed path is an unmatched Y node. 

Say that the first node is an unmatched X node. Then after inversion, this previously 

unmatched node will become matched and we will instead have a new unmatched X node at 

the end of the original directed path. Thus this new unmatched X node is at the beginning 

of the inverted directed path and all nodes on the path are now reachable from this new 

unmatched X node. Hence the labeling will remain the same. 

Similarly, if there originally was an unmatched Y node at the end of the original directed 

path, then after inversion there will be an unmatched Y node at the end of the inverted 

directed path, and hence the labeling will remain unchanged.      I 

3.3.5    APD-Segregated Schedule 

Let 5  =  [xlt...,xm] be an optimum schedule.    Segregate the schedule in the order: 

[ascent,plateau, descent]. We will call such orderings APD-segregated schedulings. 

The following lemma, while almost equivalent to Lemma 3.17, is more constructive. 

Lemma 3.32 Given a bipartite graph G - {X,Y,E) with a maximum matching M, we 

have min^cxd^'l - |r'(X')l) = \M\ - \Y\. 

Proof: Let V be the set of unmatched nodes of Y plus all nodes from which they can 

be reached by alternating paths. Let X' = Vf)X. Then T'{X') consists of the unmatched 

nodes of Y plus the nodes matched with X'; hence \X'\ - \T'(X')\ = \M\ - \Y\. 

If X' is any subset of X, if y G Y is in T'(X') and if {x,y) € M, then x G X'. Hence 

\T'(X')\ - |-X"'| < \Y\ - \M\. So, \M\ - \Y\ is the smallest possible value.      I 

Lemma 3.33 For any schedule 5  =  [ii,...,im], the APD-segregated schedule 5'  = 

[si,...,x'm] corresponding to 5 has d'm > dm. 
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Proof: First, let us add the label p-or-d to every node with the label plateau or 

descent. Let us show that for any schedule, the segregated schedule using the order 

[ascent,p-or-d] is at least as efficient as the original schedule 5. 

Let / be the number of X nodes labeled with ascent. By Lemma 3.32, max£L0n( = 

max£0(|r(StOI ~ \S'i\) ^ \Y\ - \M\- Since n'f = lFl ~ lMl' we can 8ee that the maximum 

is achieved at max£L0n- = n'f. Hence Lemma 3.26 tells us that d'm > dm. 

Instead, let us add the label a-or-p to every node with the label ascent or plateau. 

Again we will show that for any given schedule, if we segregated schedule using the order 

[a-or-p, descent] we get a new schedule at least as efficient as the original schedule 5. 

Let / be the number of X nodes labeled with a-or-p. By Lemma 3.32, max£l0 n- = 

max£o(|r'(S,0| - \Si\) < \Y\ - \M\. Since n'f = \Y\ - \M\, we can see that the maximum 

is achieved at max£L0n- = n'f. Hence Lemma 3.26 tells us that d'm > dm. 

Since both of the above segregations work for any initial schedule S, they can be com- 

posed. By composing the two segregations, we see that a [ascent, plateau, descent] seg- 

regation of a schedule 5 yields a schedule 5" with d'm > dm.     I 

By segregating, we have reduced our problem to a few more specialized ones. If we solve 

each of them optimally, we will have solved our original problem optimally. 

ASCENT 

INSTANCE:   A time bound t and a bipartite graph G = (X,Y, E) such that |X| < |y| and 

such that it has a maximum matching of size |X| and such that every node is reachable 

from one of the \Y\ - \X\ unmatched nodes by an alternating path. 

QUESTION:   Is there a valid PLT schedule of length < tl 

DESCENT 

INSTANCE:   A time bound t and a bipartite graph G = {X,Y, E) such that \Y\ < \X\ and 

such that it has a maximum matching of size \Y\ and such that every node is reachable 

from one of the \X\ - \Y\ unmatched nodes by an alternating path. 

QUESTION:   Is there a valid PLT schedule of length < tl 

PLATEAU 
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INSTANCE:   A time bound t and a bipartite graph G = {X,Y,E) such that \X\ = \Y\ and 

such that it has a perfect matching. 

QUESTION:   Is there a valid PLT schedule of length < t? 

The plateau can be further segregated. To see this consider the modified version of the 

graph which has the edges from a maximum matching oriented from Y to X. Decompose the 

plateau into a DAG of strongly-connected components (SCCs) and topologically number 

the components. Like our APD-decomposition, this decomposition also won't vary with 

different maximum matchings. To see this, we again need to consider what happens when 

we invert paths and cycles. Any directed even length path that starts at an unmatched X 

node or ends at an unmatched Y node cannot extend into the plateau, so inverting such 

a path doesn't affect the plateau at all. Any directed cycle is either wholly outside the 

plateau or wholly inside a single strongly-connected component of the plateau, and thus 

inverting such a cycle won't affect the DAG/SCC structure of the plateau. 

If the decomposition gives k components, then we can do the following A:-l segregations: 

for t = 1 to k - 1, label components 1 through i with one and i + 1 through k with two. 

These segregations will satisfy Lemma 3.26 and hence we have not harmed anything. 

Figure 3.6 shows a sample decomposition of a graph. Note that one of the two "SCCs 

of the plateau is degenerate: the plateau piece {xu.J/ig} has only two nodes and one 

edge. 

PLATEAU-SCC 

INSTANCE:   A time bound t and a bipartite graph G = (X,Y, E) such that |X| = |F| and 

such that it has a perfect matching and such that for any subset 0 C X' C X, |r'(X')| - 

|X'| < 0. 

QUESTION:   Is there a valid PLT schedule of length < tl 

Lemma 3.34 PLATEAU = PLATEAU-SCC. 

Proof: We have already described how to use segregation to decompose a single instance 

of PLATEAU into at most a linear number of instances of PLATEAU-SCC that be can 

solved independently. Hence PLATEAU <T PLATEAU-SCC. 

Since the PLATEAU problem is the same as the PLATEAU-SCC problem except 

that the allowable instances of PLATEAU are a superset of the allowable instance of 
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Figure 3.6: APD-decomposition 
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PLATEAU-SCC, then PLATEAU-SCC <v PLATEAU.     I 

Lemma 3.35 ASCENT = DESCENT. 

Proof: Because of Corollary 2.6 we can start with an instance of ASCENT, let t' = 

t+\Y\- \X\, transpose its adjacency matrix and solve the problem as a DESCENT instance. 

Similarly, we can start with an instance of DESCENT, let t' = t + \Y\ - \X\, transpose its 

adjacency matrix and solve the problem as an ASCENT instance.     | 

Lemma 8.36 ASCENT <p PLATEAU. 

Proof: Given an instance of ASCENT. Add |y|-|X| new nodes to X. Connect each one 

of these to each node of Y. Solve this instance of PLATEAU yielding an optimal schedule 5. 

Give the label two to all the original nodes of X and give the label one to the others. 

By Corollary 3.28, the segregated schedule 5' will have d'm > dm. Since 5 was optimal, 

d'm = dm and hence ^_x = 4i-i- Clearly, $f_x > ^_lf so Lemma 3.30 tells us that 

S'f = [x'd+1,..., x'm] is an optimal schedule for the graph induced by (Sm \ S'f) \J{Tm \ T'f), 

which is just our original instance of ASCENT.     I 

Lemma 3.37 PLATEAU <T ASCENT. 

Proof: Given an instance of PLATEAU. Add one new node ym+i to Y. Connect it 

to every node x; € X. Any optimal ASCENT solution is clearly an optimal PLATEAU 

solution.      | 

Corollary 3.38 PLATEAU = ASCENT = DESCENT = PLT.     I 

3.3.6    Well-Ordered Optimum 

These segregations have given us a good start on denning what we will call well-ordered 

optimum schedules. To actually define them, we need to introduce more terminology. All 

examples use the graph in Figure 3.6. 
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Definition 3.8 A nonnegative-profit subschedule (NPS) is a schedule [xi,.. .,!*], k < m, 

such that nfc > 0 and n< < 0 for all 0 < i < k. For example in Figure 3.6, the subsched- 

ule [XZ,X6>XT,XI,X9,XIO,XII] is an NPS whose chart drops all the way down to -7 before 

bouncing back up to 0; thus, this is a (-7,0) NPS. A minimum-borrowing nonnegative- 

profit subschedule (MBNPS) is a NPS whose dk-i is no smaller than that of any other 

NPS. The charts for the NPSs [x4,x3,x2] and [x2,xi] only drop to -2 and there are no 

NPSs whose chart only drops to -1; thus these are (-2, +2) and (-2, +1) MBNPSs. A min- 

imal minimum-borrowing nonnegative-profit subschedule (MMBNPS) is a MBNPS which 

is minimal in the sense that there is no strict Bubset of the X nodes of the subschedule 

that can be re-ordered to yield a nonnegative-profit subschedule with the same or better 

borrowing then the original subschedule. The (-2,+2) MBNPS \xA,xz,x2) is not minimal, 

since it contains the (-2,+l) MBNPS [12,^3]; the subschedule? [x2,x3] and [xi,x2] are 

MMBNPSs. Finally, a minimal NPS with borrowing b is an NPS that is minimal for its bor- 

rowing b, even though it may not be a MBNPS. The subschedule [xs,X6,x?,xs,xg,xio,xu] 

is a minimal NPS with borrowing -7. 

AMMBNPS 

INSTANCE:   A time bound t and a bipartite graph G = (X, Y, E) such that \X\ < \Y\ and 

such that it has a maximum matching of size \X\ and such that every node is reachable 

from one of the \Y\ - \X\ unmatched nodes by an alternating path. 

FIND:   An arbitrary MMBNPS. 

It turns out that MMBNPSs must be connected: 

Lemma 3.39 Let S = [xlf..., xh] be a (b,p) MMBNPS for a graph G. The graph induced 

by the nodes 5 U T'(S) is a connected graph. 

Proof: Assume to the contrary that SllT'(S) is made up of k > 1 connected components 

Ci,...,Ck- The schedule 5 can be viewed as a merge of k separate schedule 51,..., Sk such 

that 5* only uses nodes from C*. We will borrow the notations u(i,j) and nj that were 

used in the proof of Lemma 3.14. 

Choose j' to be the smallest number such that there exists an i with n*-, > 0 and 

u(i,j') > 0. For any j there is at most one i such that nj ^ nj_i, hence the i corresponding 
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to our choice of j = j' is unique, and we will assume without loss of generality that this i 

is equal to 1. 

Since b < nj and £{L2 nj < 0 for 0 < ; < j', then b < Zt=i "j = «j + £*=2 n) ^ n) for 

0 < j < j'- 
What this means is that the subschedule consisting of the first u(i,f) nodes of the 

schedule S1 is an NPS with borrowing > b. Thus 5 is not minimal and we have our 

contradiction.      I 

Definition 3.9 We call a schedule a well-ordered schedule if it satisfies the four constraints: 

1. The schedule is APD-segregated. 

2. The ascent is a greedy sequence of MMBNPS—that is, we find an arbitrary MMB- 

NPS, schedule it first, and then iterate on the remaining portion of the ascent. 

3. The plateau is segregated into SCCs, each of which is optimally scheduled.   The 

SCCs appear in a valid topological order. 

4. If one looks at the transpose of the descent, it is a greedy sequence of MMBNPS. 

In defining a well-ordered optimum, we have used a greedy sequence of MMBNPS's. 

Before we show that all well-ordered schedules are optimum schedules, we need some helping 

lemmas. 

Lemma 3.40 Given any minimal NPS of borrowing b then there is schedule with borrowing 

= min(6, -overhang(M)) that begins with the NPS. 

Proof: Start with an arbitrary optimum schedule S = [xi,...,xm]. As a first step, 

label the X nodes that appear in the minimal NPS with one, label the other X nodes with 

a two and then segregate in the order [one, two]. 

Let / be the number of X nodes labelled one. Since the one nodes form a minimal 

NPS, n\ < 0 for 0 < i < f. Also n'f = p > 0 where p is the profit of the NPS. Hence 

maxf=0ni = n'f and Lemma 3.24 tells us that n^(l) > n< for all x; with label two. 

The initial nodes comprising the NPS may not be optimally scheduled, so we do so now. 

This has no effect on n^ for all x; with label two. 
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The worst borrowing for the schedule either: (1) occurs during the scheduling of the 

one nodes, and hence is equal to b; (2) occurs during the scheduling of the two nodes, and 

hence is equal to —overhang(M).      I 

Lemma 3.41 Given any MMBNPS. There is optimal schedule of the ascent that begins 

with the MMBNPS. 

Proof: Let b be the borrowing of the MMBNPS. Claim: b > -overhang(M), and hence 

Lemma 3.40 gives us our result. 

To see that b > -overhang(M), start with any schedule 5 of the ascent. The balance of 

this schedule must go positive, so the schedule has some non-empty initial NPS. Say that this 

NPS has a borrowing of 6'. We know that b' < b. Also, delay(S) > -b' > -b. Furthermore, 

overhang(M) = delay(S) for any optimum schedule S. Hence overhang(M) > -6, or 

equivalently b > -overhang(M).      I 

Corollary 3.42 Greedy use of AMMBNPS is optimal.     I 

Corollary 3.43 ASCENT <T AMMBNPS.      I 

3.3.7    Fundamental Charts 

Two different well-ordered schedules may have different charts. They may even have differ- 

ent sequences of (b,p) pairs for their ASCENTS. Yet there is a certain fundamental essence 

that can be abstracted from their charts that will be identical. 

To find the fundamental chart of a chart first break it up into the standard three pieces, 

the ASCENT, the PLATEAU and the DESCENT. Modify them as follows. 

REPLACE: For the ascent, replace each MBNPS with a single (b,p) pair. For each 

plateau SCC, replace it with a single (b,p) pair. For the descent, replace each MB- 

NPS of the transpose with a single (6,p) pair. Thus since the upper chart in Figure 3.7 

isa[(-2,+l),(-l,+2),(-l,+l),(-7,+l),(-2,0),(-l)0),(-2,-l),(-2,0)],thenafterre- 

placement we get the chart in the lower left corner. 

COMBINE: For the ascent, combine adjacent (b,p) pairs as much as possible: If the 

pair (62,P2) follows the pair (&i,pi) and pi - 61 > -b2 then we can combine the two pairs 

to yield (&i,pi +P2). Do the same thing for the transpose of the descent. For the plateau, 
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0 -   -^ H-H  0 - 

Figure 3.7: Chart and Fundamental Chart. 

combine all pairs into a single (b, 0) pair, with b being the minimum b over the all the pairs 

in the plateau. These leaves us with [(-2, +4), (-7, +1), (-2,0), (-2,-1)] as shown by the 

chart in the lower right corner of Figure 3.7. This is the fundamental chart corresponding 

to the original schedule. 

If we restrict our consideration to the ascent, the Fundamental Chart will swing up or 

down only when the original chart of the schedule hits a new high or a new low. 

Lemma 3.44 Any two well-ordered optimum schedules for the same graph will have the 

same fundamental chart. 

Proof: Suppose we have two well-ordered optimum schedules Si and 52. Let a fragment 

be a section of the schedule corresponding to a single (6,p) pair in the fundamental chart. 

Let Ft and F2 be the first fragments in the ascents of 5X and S2, respectively. Since the 

borrowing of a fragment equals the borrowing of its first MMBNPS, the two fragments have 

the same borrowings bx = b2. Let pi and p2 be the profit associated with fragments Fx and 

F2, respectively. If we can just show that they use the exact same sets of X nodes, then it 
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will be clear that px = p2. Also, if they use the exact same sets of X nodes, they must leave 

the same remaining nodes. Thus we can just iterate this analysis on the remaining nodes, 

and hence the entire ascents have identical fundamental charts. 

Transposition implies that the descents of the schedules also have identical fundamental 

charts. Lastly, it is obvious that the plateaus have the same fundmental charts and hence 

the entire fundamental charts are identical. 

So all we need to do is show that F\ and F2 use the same sets of X nodes. Without loss 

of generality, assume that pi < p2. In S2, label all X nodes used by Fj with the label one 

and label all other X nodes with the label two. Segregate S2 in [one, two] order. Let / equal 

the number of X nodes labelled with one, that is / = |f\|. Let g = \Fi UF2\. Since n'f = pi 

and rig = p2, then rif < rig and hence S3 = F2\ JF\ is an NPS in G \ {Fx U r'(Fa)). Since Fx 

is comprised of MMBNPSs, maxf_0n( = rif. Thus, Lemma 3.24 tells us that n'w^ > n< for 

all Xi with label two. Hence if 53 ^ 0, the borrowing of S3 is > b + pi and 53 must contain 

an MMBNPS with borrowing > b + pi. This is impossible, since such a MMBNPS would 

have been included in Flt and hence 53 = 0. Since 53 = 0, F2 C Fx and n'f = n'g. Hence 

Pi = p2. Since pi = p2, we can now use a symmetric argument to show that F\ C F2.     I 

3.3.8    Nearly Well-Ordered Optimum Schedules 

It turns out that there are also non-well-ordered schedules for a graph that have the same 

fundamental chart as all the well-ordered schedules. We will define a nearly well-ordered 

schedule as any schedule, well-ordered or non-well-ordered, that has the same fundamental 

chart as all the well-ordered schedules. 

We will show that the following two problems are equivalent under polynomial-time 

reductions. 

Find an arbitrary optimum schedule (FIND-ARB-OPT) 

INSTANCE:   A bipartite constraint graph. 

FIND:   An arbitrary optimum schedule. 

Find a nearly well-ordered optimum schedule (FIND-NEAR-WELL-OPT) 

INSTANCE:   A bipartite constraint graph. 

FIND:   A nearly well-ordered optimum schedule. 
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Since the set of nearly well-ordered optimum schedules are a subset of the arbitrary 

optimum schedules: 

Lemma 3.45 FIND-ARB-OPT <v FIND-NEAR-WELL-OPT.     I 

To see the other direction, let's first examine the problem: 

Determine the fundamental chart (FUND-CHART) 

INSTANCE:   A bipartite constraint graph. 

FIND:   The fundamental chart. 

Lemma 3.46 FUND-CHART <T FIND-ARB-OPT. 

Proof: We are given a graph and we want to determine its fundamental chart. 

First we will find the fundamental chart of the ascent. Do the following with k running 

from 1 to n+ 1. Add a new component Kk,n+i to the original graph, with the smaller side 

of the new complete graph in X. Find an arbitrary optimum solution to the new graph; 

that is, call a polynomial time FIND-ARB-OPT routine. Plot the resulting overhangs as a 

function of k; call this plot the scon of the graph. Figure 3.8 shows the scan for the ascent 

of the graph in Figure 3.6. 
It turns out that we can read the fundamental chart right off the scan. Look at the 

horizontal sections. For example, look at the horizontal section from k = 2 to k = 6. This 

means that when adding tf3,n+i, ^4,«+i, *6.n+i or ^,n+i, there must be a NPS made 

from nodes in the original graph that preceded the Kk,n+i components in the schedule. 

This NPS must have had a borrowing of 2 and a profit of 4. This generalizes. If there is a 

horizontal section from fci to k2, then the fundamental chart has a (b,p) = (-ki,k2 - h) 

component. Thus the fundamental chart for the example in Figure 3.8 is [(-2,4)(-7,1)]. 

This carries over to finding the fundamental chart for the transpose of the descent. For 

the plateau, there will be no horizontal sections in the scan. This can be fixed by adding a 

new Y node and connecting it to all the original X nodes. When we find that this modified 

graph is of type (b, 1) for some 6, then we know that the original plateau is of type (6,0). 

I 

Let the first horizontal section be from *i to k2. Let's look at the schedule that was 

generated when we added the Kk3,n+i piece and called the FIND-ARB-OPT routine. Let's 
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Figure 3.8: Scan of a graph. 
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focus on the part of the schedule just up to when the n + 1 Y nodes of the Kk7,n+i are 

released. Label the Kk2,n+i piece with two and label all the X nodes that occur before 

the last X node of the Kk2,n+i piece with one. Segregate in [one, two] order. The result 

is a (-fci,fc2 - *i) Piece followed by a {-k2,n+ 1 - k2) piece. How do we know that the 

first piece is a (-ku k2 - h) piece? The piece can't have borrowing > -kly because then 

the first horizontal section of the scan would have started earlier. The piece can't have 

borrowing < -Jbi, because the (-k2,n + 1 - k2) piece doesn't contribute a positive amount 

to the chart value until the end, and the overall borrowing is only k\. If the piece had profit 

> k2- ki, then the first horizontal section of the scan would continue past k2. Lastly, if 

the profit were < k2 - *i, then the (-k2,n+l - k2) piece would cause a borrowing < -ki. 

The (-kltk2- ki) piece gives us the first fragment of a nearly well-ordered optimum 

schedule. Then we can simply delete all those nodes from the graph and repeat. Hence: 

Corollary 3.47 FIND-NEAR-WELL-OPT <T FIND-ARB-OPT.     I 

3.3.9    Merge 

With what we now know about well-ordered schedules we can return to the question that 

started this section. Is there a simple method of combining independent optimum schedules 

of disconnected subgraphs into an optimum schedule for the whole graph? We will show 

that well-ordered schedules are easier to merge than arbitrary optimum schedules. We will 

show this by considering the following three problems. 

MERGE-ARB 

INSTANCE:   Two separate constraint graphs and arbitrary optimal schedules for them. 

FIND:   An arbitrary optimal schedule for the combined graph. 

MERGE-NEAR 

INSTANCE:   Two separate constraint graphs and nearly well-ordered optimal schedules for 

them. 

FIND:   A nearly well-ordered optimal schedule for the combined graph. 
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MERGE-WELL 

INSTANCE:   Two separate constraint graphs and well-ordered optimal schedules for them. 

FIND:   A well-ordered optimal schedule for the combined graph. 

We will show that MERGE-WELL and MERGE-NEAR are quite easy. However, 

MERGE-ARB is as hard as the problem of finding a nearly well-ordered schedule and 

hence can only be solved easily if PLT can. 

Lemma 3.48 FIND-NEAR-WELL-OPT <T MERGE-ARB 

Proof: The proof runs exactly like Lemma 3.46 and Corollary 3.47, except that we 

replace calls to FIND-ARB-OPT with calls to MERGE-ARB. Everything else goes through 

the same way.      I 

Corollary 8.49 MERGE-ARB = PLT.      I 

What about MERGE-WELL? Once again, the problem can be partitioned into ascent, 

plateau and descent pieces. The ascent of the merged schedules will be a merge of the 

two ascents. The plateau of the merged schedules will be a merge of the two plateaus. To 

merge the two descents we transpose them into ascents, merge them and then transpose 

them back. 
How do we merge two well-ordered ascents? Corollary 3.42 tells us that greedy use 

of AMMBNPS is optimal. Fortunately, Lemma 3.39 tells us that a MMBNPS must be a 

connected piece and hence any MMBNPS of the combined graph is an MMBNPS of one 

of the ascents. Look at the first MMBNPS of each of the two schedules. They are easy 

to find since they are already right at the beginning of the schedules. They are of some 

types, say (61)Pl) and (b2,p2). If h > b2 then by greedy use of AMMBNPS we can choose 

the (fei.pi) piece as the first MMBNPS of our new merged schedule; otherwise choose the 

(62,p2) piece as the first MMBNPS. After removing the chosen MMBNPS, iterate on the 

remaining portion of the graph. 

The optimal merge of two well-ordered plateaus is even simpler. One only needs to 

concatenate the two schedules without interweaving. This is because all MMBNPSs have 

profit = 0 and each (6,0) MMBNPS will dip to the same chart level relative to the peak 

balance regardless of the order of the MMBNPSs. 
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For example, given the following two well-ordered schedules: 

[(-2,0))(-l)2),(-2,0))(-2)0))(-5)-l))(-5,-3)] 

[(-l,l),(-3,l),(-l,0),(-3,0),(-4,-l),(-4,-3)]. 

The (b,p) pairs up to and including the last one with a positive p comprise the ASCENT. 

The (b,p) pairs starting from and including the first one with a negative p comprise the 

DESCENT. The (6,0) pairs left in the middle comprise the PLATEAU. So, one possible 

well-ordered merge is: 

{(-l^),(-2,0U-l,2),(-3,l),(-2,0),(-2,0),(-l,0),(-3,0), 

(_5)_l),(-4,-l),(-5,-3),(-4,-3)] 

What about MERGE-NEAR? It turns out that we can use the same algorithm used for 

MERGE-WELL. 

3.4    Weighted Chains 

We can generalize "charts" to handle weighted nodes directly. The reduction in Section 2.3 

was mainly to show equivalence. It is unlikely that someone faced with the weighted problem 

would wish to convert it to the unit-weight version before actually solving it. 

We generalize the definitions of n< and n; in Section 3.2 to: 

ni   =   (£ w(y)) - (£ w(x)) 

n,    =    (E«W)-(  £   "(*)) 

So the graph in Figure 2.15 with the schedule Sx = [*i, sB, *2, »4, «a] will have the chart 

shown in Figure 3.9. 
The algorithm for merging schedules based on their charts remains the same, so we can 

merge well-ordered schedules of weighted graphs in polynomial time. This serves as the 

basis for a polynomial time algorithm to schedule weighted chains. 

A chain is a string of nodes as shown in Figure 3.10. 

The algorithm to schedule chains is based on dynamic programming. We will compute 

the optimum schedule for every connected subgraph of the chain. These correspond to 

intervals of the chain. There are 0((m + n)2) such intervals. 
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Figure 3.9: Chart for a weighted graph. 
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Figure 3.10: A chain. 

We compute these schedules in a particular order and by a particular method: We first 

compute the schedule for all connected subgraphs of size 1, then size 2, then size 3, and 

so on. For a particular graph with A; X nodes, we compute its schedule as follows: We 

will compute k different schedules one of which is guaranteed to be a nearly well-ordered 

optimum; then, we pick out the nearly well-ordered optimum from this set. 

The k different schedules correspond to the fact that the schedule must start with some 

one of the X nodes. We can easily compute the best schedule given that a particular 

node x is first: After removing x, what is left is one or two smaller connected pieces. We 

have already computed nearly well-ordered optimums for these pieces. By merging them, 

we get a nearly well-ordered optimum for the whole graph piece minus the node x. 

By the suffix law of Corollary 3.51, if some nearly well-optimum for the piece begins 

with x, then the suffix of the optimum schedule can be any well-ordered optimum schedule 

of the remaining graph. Thus by concatenating the merge of the pieces to i, we will get 

a well-ordered optimum for the piece, assuming there is a well-ordered optimum beginning 

with x. That is: 

Lemma 3.50 Given that there is a well-ordered optimum schedule starting with the node x. 

Let 5 = {Sx,Sy) be an arbitrary well-ordered optimum schedule for G\x. Then 5 = 

([x, Sx], 5y) is a well-ordered optimum schedule for G.     I 

Corollary 3.51 Given that there is a nearly well-ordered optimum schedule starting with 

the node x. Let 5 = (5jc,Sy) be an arbitrary nearly well-ordered optimum schedule for 
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G\x. Then 5 = ([x, Sx], Sy) is a nearly well-ordered optimum schedule for G.      I 

Since we construct one such schedule for each x, and some x must be first in the nearly 

well-ordered optimum, at least one of the A; schedules is our nearly well-ordered optimum 

schedule. All we need to do is pick it out and we are done. 

So this brings up the new sub-problem: 

Select a nearly well-ordered optimum (SELECT-NWO-OPT) 

INSTANCE:   A set of schedules that is guaranteed to contain a nearly well-ordered optimum 

schedule. 

FIND:   A member of the set that is a nearly well-ordered optimum schedule.. 

Since we just have to pick an optimum out from a set of schedules which is guaranteed 

to contain one, we only need to be able to make comparative evaluations: "this schedule is 

more nearly well-ordered than this other schedule." 

So how do we pick out a nearly well-ordered optimum schedule from amidst a line-up 

of fakers? For example, say that our set of schedules is: 

5a = [(-2,2),(-3,2),(-2,0),(-l,0),(-3,-2)] 

52 = [(-2,2),(-3,2),(-3,0),(-l,0),(-3,-2)] 

53 = [(-3,2),(-2,2),(-2,0),(-l,0),(-3,-2)] 

54 = [(-2,2),(-3,l),(-2,0),(-l,0),(-3,-l)] 

55 = [(-2,2),(-3,2),(-l,0),(-2,0),(-3,-2)] 

Divide the schedules into ascent, plateau and descent. We can discard a schedule if 

its plateau dips further negative relative to the peak balance than some other schedule. So 

in the example, we can discard 52. 

Now we just have to check the ascents (and the transposed descents). Assume that 

we have two alternate schedules S and S'. Assuming they are nearly well-ordered we 

can easily determine their fundamental charts and break them up into their fragments: 

S = [Fu F2, F3,...] and S' = [F[, F£, F^,...]. Corresponding to each fragment is a (bi,pi) 

or (6{,Pi) pair. In our example, we now have: 

Si    =    [(-2,4), (-2,0), (-3,-2)] 
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53 =   [(-3(4),(-2,0),(-3,-2)] 

54 =    [(-2,3),(-2,0),(-3,-l)] 

Ss   =   [(-2,4))(-2,0))(-3,-2)] 

For i increasing from 1 perform the following comparison procedure: If 6< > b[ then we 

can discard S' and stop. If b[ > 6< then we can discard 5 and stop. So b> = b[. If p, > p[ 

then we can discard S' and stop. If p- > Pi then we can discard S and stop. 

Lemma 3.52 If both schedules survive the comparison procedure, and either one is a 

nearly well-ordered schedule, then the other is too. 

Proof: Easy. Both survive if and only if they have the same fundamental chart.      | 

In our example, only schedules Si and 5B survive. 

Since all nearly well-ordered schedules will survive, since there exists at least one well- 

ordered schedule, and since the surviving schedules are either all nearly well-ordered or all 

not nearly well-ordered, then all the surviving schedules are nearly well-ordered. Thus we 

can arbitrarily pick any one of them. 



Chapter 4 

One, Two, Three, Approximation 

4.1     Nodes with degree = 1 

There is a simple rule for any Y node with degree = 1, that is, for any node y with 

T(y) = {x}. We can schedule the node x immediately. We can do this because scheduling 

x has a borrowing of 1 and a non-negative profit; it is (-1,0) and hence it is an MMBNPS 

and we can schedule it next by Corollary 3.42. If this creates more Y nodes of degree one, 

then we can repeatedly apply this rule. By transposition, we can apply a similar rule when 

we have an X node of degree 1. 

4.1.1    Scheduling trees in polynomial time 

A consequence of this is that we can handle graphs whose underlying constraint graph, 

ignoring the directions on the precedence arcs, is a tree. We can schedule a tree as fol- 

lows: As long as there is a leaf node that is a Y node, schedule its X-neighbor next. This 

may completely schedule the tree, or it may leave us a tree in which all the leaves are X 

nodes. In the latter case, we will have a partial schedule {Sx,Sy)- So for the example 

in Figure 4.1, we may get a schedule ([xi,*2i*6][0iViilfeilöi!to])- K our remaining tree 

has only X nodes as leaves, then we treat the remainder as a separate problem by trans- 

posing it and recursing. This will return us a schedule (S^,S'X) for the transposed tree. 

So for the example in Figure 4.1, we may get ([ys.lfeMMB.au.a*])- Easily construct a 

schedule for the overall graph as ([Sx,rev(S^)],[Sy,rev(S^)]), so in our example, we get: 

([xi,x2, x6, x3, x4, x5,0], [0,3/1, J/2, 3/3,3/6,3/4,3/s])- 

74 
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Figure 4.1: Scheduling a tree in polynomial time 

4.2     Nodes with degree = 2 

The degree = 1 rule that we just used suggests a degree = 2 rule. Say that we have a node y 

with degree 2 and T(y) = {xi,i2}- Once we schedule one of these two nodes — without 

loss of generality say xt — then y becomes a degree 1 node. Once x\ has been scheduled 

and removed from the graph, scheduling x2 next becomes a (-1,0) MMBNPS and hence is 

optimal by Corollary 3.42. 

So the general rule is: 

Lemma 4.1 Given a schedule Sx = [*i, • • .,*n] and a node y such that T(y) = {xi,Xj}, 

i < j, transforming the schedule into Sx = [^i,- ■ .,X{,Xj,Xi+i,.. .,Xj^i,Xj+i,.. .xm] is 

delay non-increasing.      | 

4.2.1    Collapsing Transformation 

The lemma leads us to consider a transformation where we collapse together the two X nodes 

and discard the Y node as shown in Figure 4.2. Define the Collapsing Transformation as: 

• Replace a degree 2 node y and its two neighbors x\ and 12 with a single node x' such 

thBtr(s,) = (r(«i)ur(xa))\y. 

Under the right conditions, this transformation will not affect the overhang of the graph. 

Under the wrong conditions, such as in the two graphs in Figure 4.3, the Collapsing Trans- 

formation does affect the overhang. 
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Figure 4.4: Effect of constrained Collapsing Transformations 

The following lemma spells out the proper constraints to ensure that our transformation 

doesn't change the overhang of the graph. 

Lemma 4.2 Under the constraints that r(ii) n r(z2) = {y} and |r(xi) U r(x2)| > 2, the 

Collapsing Transformation leaves the overhang of the graph unchanged. 

Proof: By Lemma 4.1 there is an optimum schedule of the original graph that has xi 

and x2 consecutive. Create an ordering for the new post-collapsing graph that schedules x 

in the place of where ii and x2 were. We claim that this ordering has the same delay as the 

optimal schedule of the original graph. To see this, we just need to look at the two cases 

shown in Figure 4.4: 

• Case 1: Due to their position in the schedule, either xi or x2 releases at least one job 

other than y, say y2. Since r(xi) n T{x2) = {y}, y2 can be released by executing the 

appropriate one of the two x jobs first. Without loss of generality assume that it is 

xx. In this case the original schedule could have scheduled xi before x2 and thus the 

minimum borrowing of the chart is clearly not affected by the transformation. 

• Case 2: Due to their position in the schedule, neither xi nor x2 releases a job other 

than y. Since |r(si)ur(x2)| > 2, x2 and xx cannot be the last X jobs scheduled; they 
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Figure 4.5: Expanding nodes into degree 3 nodes 

O y« 

must be followed by some other job, say x3. Again, the chart is clearly not affected 

by the transformation. 

This shows that the collapsed version has a delay no better than the original. To see 

that it is no worse note that we could just replace x by xi and xt and yield a schedule for 

the original graph that is no worse than the one that we already know is optimal.      I 

So, naturally, repeating this constrained Collapsing Transformation as many times as 

we want will not change the overhang of the graph. 

4.3    Nodes with degree < 3 

There is no apparent way to extend this to collapsing degree 3 nodes. Instead what we 

will do in this section is look at a reverse of the Collapse Transformation from the previous 

section, and we will simultaneously explore the question: how hard is it to optimally schedule 

graphs whose nodes all have degree < 3? 

4.3.1    Expanding Transformation 

What does the reverse of the Collapse Transformation look like? An example is shown in 

Figure 4.5. Say in a graph G we have a node ix of degree 4 with T(ii) = {2/1,2/2,2/3, Vi}- To 

yield the graph G', we remove the node X\ and replace it with the two nodes x\ and x", and 

we create a new node y[. We add edges so that T(xi) = {2/1,2/2,2/1} and r(x") = {2/3,2/4,2/1}- 
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Since r(yj) = {x[,x'{} and r(x'x) n r(x'a') = {yj} and |r(*i) U r(x'/)| > 2, then we could 

clearly apply the Collapsing Transformation to y' and G' yielding the original graph G. Thus 

the two graphs G and G' have the same overhang by Lemma 4.2. The only constraints for the 

Expanding Transformation are that |r(ii)| > 1 and that we ensure that r(xi)nr(xi') = {y'} 

and r(xi) u r(ii') = r(x) u {y'}. 

Lemma 4.3 Under the constraints that r(*i) fl r(x'/) = {y'} and T(x[) U T{x'{) = r(x) U 

{y1}, the Expanding Transformation leaves the overhang of the graph unchanged. 

Proof: By Lemma 4.2, if we start with G' and collapse y', yielding G, we will not have 

changed the overhang of the graph. Thus G and G' have the same overhang.      | 

4.3.2    Three ones per row 

We have seen that it is easy to solve the PLT problem when we have two Is per row. What 

about threes Is per row? four Is per row? In this section we will look at the special case 

of having at most three Is per row. We will show that this special case is as hard as the 

original problem. Even the restriction "at most three Is per row and at most three Is per 

column" is as hard as the original problem. 

Lemma 4.4 Any nxn matrix M with < k Is per column, can be reduced to an equivalent 

2n X 2n matrix M' with < (\k/2] + 1) Is per column. By being "equivalent" we mean that 

they have the same overhang. 

Proof: Choose any X node (that is, a column) with degree > \k/2] + 1. Apply the 

Expanding Transformation to it, creating new nodes x' and x" such that |r(x')| < \k/2~\ +1 

and |r(x")| < \k/2) + 1. We can always do this, since |r(x')| + |r(x")| = |T(x)| + 1 < k + 1. 

Each transformation adds one row and one column to the matrix and preserves the 

overhang. There need be at most n transformations.     I 

Corollary 4.5 Any nxn matrix with < n Is per column, can be reduced to an equivalent 

n2 x n2 matrix with < 3 Is per column.      I 

Corollary 4.6 Any nxn matrix with < n Is per row and < n Is per column can be 

reduced to an equivalent n3 x n3 matrix with < 3 Is per row and < 3 Is per column.      I 

Figure 4.6 shows an example where we go from 4 Is per row to 3 Is per row. 
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Figure 4.6: From 4x to 3x per row and column 

4.4    Polynomial Solutions to Overhang-Limited PLATEAUs 

In this section we describe an algorithm that can solve PLATEAU-SCC with a fixed bound 

of t = k and consequently AMMBNPS with borrowing < k in time 0{nk+3). The work 

was inspired by work on the related problem known as Bandwidth Minimization [GGJK78] 

[Sax80] [GS84]. One interesting consequence of this result is that we can solve the PLT3 

problem in polynomial time for any graph whose nodes are all of degree exactly equal to 

three. 

Since we will deal with PLATEAU-SCC, the chart will never go above 0. Since we are 

only interested in schedules with a bound of t = k, the chart can never go below k. It is 

this tight constraint on chart values that allows us to have a polynomial time algorithm. 

Note that we are only interested in finding some schedule with delay < k, not necessarily 

an optimum one. An optimum one can be found by running this algorithm multiple times 

with different values for k. 

Here is how it works: 

At phase i, the set of active schedules can be depicted as a rooted tree of depth i. The 

edges of the search tree will have the names of X nodes attached to them. Every "active" 
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Figure 4.7: The Input Graph 

0 

-1 -1 -1 -1 

Figure 4.8: Phase 1 

leaf of the graph represents an active alternative sub-schedule for the graph. That sub- 

schedule is simply the sequence of edge labels along the path from the root of the tree to 

the leaf. The nodes will have numbers, representing chart levels, attached to them. 

For example, let the graph in Figure 4.7 be our input. The search tree is expanded 

breadth first. So the search tree after phase 1 is shown in Figure 4.8. This means that our 

four active sub-schedules are [A], [B], [C] and [D]. Each has a resulting balance of -1. 

At the next phase, each active leaf is expanded in all possible ways to yield sub-schedules 

that are one node longer. Thus at phase 2, we have the tree in Figure 4.9. Fortunately, at 

this point we can prune the tree. Without any pruning, the algorithm would require 0(n\) 

time. 

Here is how the pruning works: Since the leaf corresponding to S = [A, B] rises back 

up to a chart level that was achieved by a prefix of it, namely 5' = [A], then 5 \ 5' is a 

nonnegative profit sub-schedule of G \ S'. Indeed, it is a shortest nonnegative profit sub- 

schedule ofG\S' and hence a minimal NPS. Let b be the lowest chart level reached by 5 

and b' be the final chart level reached by S'. Lemma 3.40 tells us that there is some schedule 

oiG\S' that starts with S\S' and has borrowing of min(6-b',-overhang(G\5')). Thus, 

except for the path from 5' to S in the search tree, we can prune all other descendants of 
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Figure 4.9: Phase 2 

-1   -2 -1 -2 -1   -2 -2 -2 -2  -1 -2 -1 

Figure 4.10: Phase 3 

the node corresponding to S'. This is why the nodes corresponding to [A, C] and [A, D] are 

filled in in black. Note that Lemma 3.40 tells us that the choice between saving [B, A) and 

[B, C] can be made arbitrarily. 

The next phase is shown in Figure 4.10. We have again expanded all active leaves. This 

time we have a larger example of pruning. S = [D,B,C] climbs back up to the chart level 

achieved by 5' = [D]. This allows us to prune 5 leaves and 2 interior nodes. 

The algorithm continues in this manner until completion (only one more phase for 

our example). Because of the pruning described above, if a leaf node is labelled with 

borrowing b, then only |6| of its ancestors can currently have multiple children. Let's add 

one more pruning rule: If a leaf is labeled with -k, then mark that leaf as inactive. We 

can do this because extending the sub-schedule any further will violate the given bound on 

borrowing. 

The result of all this is that there are never more than n*"1 active leaves at the end of 
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any phase. This implies that no more than nfe+1 nodes are ever generated. Allowing 0(n2) 

time to generate each node, our overall time is 0(nk+3). 

4.4.1    3-Regular Graphs 

As we mentioned at the beginning of the section, a consequence of this result is that if 

the nodes of a graph are all of degree exactly equal to three, then we can solve the PLT3 

problem in polynomial time. 

This is because of the following lemma: 

Lemma 4.7 Each connected component of a fc-regular graph is a single PLATEAU-SCC 

problem. 

Proof: There is a perfect matching of the graph, and hence every component is part of 

the plateau, but we have made an even stronger claim: that every connected component is 

a single PLATEAU-SCC piece. To see this, assume without loss of generality that we have 

two PLATEAU-SCCs (?i = {X1(Yi} and G2 = {X2,Y2} that are connected by an edge ea 

from Xi to Y2. Since Gx and G2 are PLATEAU-SCC pieces, |Xi| = \YX\ and \X2\ = \Y2\. 

There are A: • |Yi| edges from nodes in Yx. Because of the edge from Xx to Y2, there can 

be at most k • |XX| - 1 = k ■ \YX\ - 1 edges between Yx and Xx. Thus there must be an 

edge e2 from Yi to X2. Since neither ex nor e2 is a matching edge, G\ and G2 are strongly 

connected together.     | 

At first it might seem like we have just solved our overall problem. We haven't. The 

deficiency isn't that our algorithm only works for 3-regular graphs — we only used the 

3-regularity of the graphs to show that we had a PLATEAU-SCC problem. The algorithm 

will solve any PLATEAU problem with t = 3. We can also use it to find MMBNPS with 

borrowing = 3. 

The shortcoming is this: while being able to solve PLATEAUs and MMBNPS implies 

that we can solve PLT, it is not true that solving PLATEAU with t = 3 and MMBNPS 

with borrowing = 3 implies that we can solve PLT3. Indeed, solving a PLT3 problem may 

involve solving PLATEAU problems with arbitrarily large t. 
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4.5    Approximations 

We have seen that given a PLATEAU-SCC piece, we can find an optimal schedule in 

polynomial time, provided that the delay of the optimal schedule is below some fixed k of 

our choosing. If the actual delay is large, this is not useful. In this case, we would stiU like 

to be able to get an approximation to the delay, and to get a schedule that is approximately 

optimum. 

Consider the simplest approximation algorithm: While \Y\ > 0, choose the node y G Y 

of minimum degree and schedule the nodes T{y). If there is a tie for minimum degree, pick 

randomly. 
What can we say about this approximation algorithm? Let's concentrate on graphs with 

degree < 3. Also let's assume we have a single PLATEAU piece with m = mx = mY. 

The first thing to note is that: after our algorithm picks the first Y node and schedules 

T(y), the graph will have |X| < \Y\. This will hold true until all the Y nodes are exhausted. 

What does this tell us? 

Lemma 4.8 If we have a graph with X nodes of degree < c, then some Y node must have 

degree <c-|Xl/lY|. 

Proof: This is a simple pigeon hole argument. There are < c • |X| edges. If every Y 

node had degree > c • \X\/\Y\, then we would have > c • \X\ edges. Contradiction.      I 

Corollary 4.9 If we have a graph with X nodes of degree < 3, and \X\ < \Y\ then some 

y node must have degree < 2.      I 

This gives us our first bound on the overall length of the schedule that the approximation 

algorithm will give us. 

Lemma 4.10 The approximation algorithm will always return a schedule with a length of 

at most 1.5m + 2 for a graph with max Y degree = 3. 

Proof: The way to determine the length is to find a limit on the number of idle Y jobs 

that can be needed. When we choose a Y job and schedule T(y), we need \T(y)\ - 1 idle Y 

jobs. We also need one additional idle Y job at time 1. 
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In the worst case the first Y node has \T(y)\ = 3. Thereafter, Corollary 4.9 tells us that 

|r(»)| < 2, since \X\ < \Y\. We can have \T(y)\ = 2 for at most (m - 3)/2 y-jobs. So we 

have a total of at most (m - 3)/2 + 3 idle jobs. Thus our overall length is < 1.5m + 2.      I 

But we can do even better than that. This is because if the schedule is really using one 

idle Y job per Y job released, then we wiU get to a point where \Y\ > 1.5 • \X\. If that 

happens, then Lemma 4.8 tells us that there is a Y node of degree = 1. Thus it would seem 

that we wouldn't need any more idle y-slots after that time. There is one complication. 

The X node may release more than one Y node. What happens if the balance of X's and 

Y's shifts back so that \Y\ = 1.5 • \X\ or \Y\ < 1.5 • |X|? By careful counting this can be 

shown to not be a problem. 

Lemma 4.11 Given a graph with degree < 3 for the X nodes, and with mY > 1.5 • mx, 

where mx = \X\ and mY = \Y\. The approximation algorithm will schedule this with only 

one idle Y job. 

Proof: The idle Y job will obviously be at time 1. What we need to show is that if we 

run into a situation where all the Y nodes have degree > 2, then we will have accumulated 

enough excess released Y jobs that we can execute them instead of having an idle Y job. 

To do this we will show that the invariant 

\Y\ + excess - 1 > \X\ + mx/2 

always holds as \X\ and \Y\ vary and that excess, the number of excess available y jobs, is 

always > 0. 
At the start of our execution, \X\ = mx and |Y| = my. Since mY > 1.5 • mx, then 

|y| - 1 > 1.5 • \X\. Since excess = 0, the invariant holds at the beginning of the execution. 

How does it change as we go along? 

CASE 1: We can schedule one X job which releases k>lY jobs. Since \Y\ decreases by 

k, excess increases by k - 1 and \X\ decreases by 1, the invariant remains satisfied. 

CASE 2: We need to schedule two X jobs in order to release k > 1 Y jobs. First excess 

decreases by 1, then \Y\ decreases by k, excess increases by k - 1 and \X\ decreases 

by 2. At the end the invariant is satisfied, but we need to verify that excess > 1 at 

the beginning. Since we needed two X jobs, we know that initially \Y\ < 1.5 • \X\. 

Since \Y\ + excess - 1 > \X\ + mx/2> 1.5- \X\, then excess > 1.5- |X| - \Y\ + 1 > 1. 
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CASE 3: We need to schedule three X jobs in order to release k > 1 Y jobs. First excess 

decreases by 2, then \Y\ decreases by k, excess increases by k - 1 and \X\ decreases 

by 3. At the end the invariant is satisfied, but we need to verify that excess > 2 at 

the beginning. Since we needed three X jobs, we know that initially \Y\ <\X\. Since 

\Y\ + excess - 1 > \X\ + mx/2, then excess > mx/2 + \X\ - \Y\ + 1 > mx/2 + 1. For 

case 3 to be possible, we must have mx > 3, so everything is OK. 

I 

So what is the largest number of idle jobs we can need before we hit the first crossover 

point where \Y\ > 1.5 • |X|? 

For the portion of the schedule before we hit |F| > 1.5 • \X\, let j; be the number of 

Y jobs that had \T(y)\ = t when they were picked by the algorithm. We will have used 

2J3 + j2 + 1 idle jobs. When we hit the crossover point, |F| = mY - h - h ~ h and 

\X\ = mx- 3J3 - 2J2 - ji■ At crossover \Y\ < 1.5 • \X\ + 1, so my - j3 - 32 - Ji < l-5mx - 

4.5J3 - 3J2 - 1.5ji + 1. Simplifying, and plugging in j3 = 1, gives 2j2 + ji/2 < {mx - 5)/2. 

We want to choose j3 and ji to maximize j3 + 3, which means ji = 0 and j2 = (mx - 5)/4. 

Hence the overall idle time is (mx + 7)/4. 

Thus we can replace Lemma 4.10 with 

Lemma 4.12 The approximation algorithm will always return a schedule with a length of 

at most (5m + 7)/4 + 1 for a graph with max Y degree = 3.     I 

Figure 4.11 shows a near worst case example where this bound is almost achieved because 

of extreme unluckiness by the algorithm when it chooses between nodes of equal degree. 

The 6/8m unshown edges from A go to the nodes in B' and C"; each node in B' and C" 

touches exactly one of these edges. The 3/8m unshown edges from B go to the nodes in C"; 

each node in C" touches exactly one of these edges. We'll specify more detail in a moment. 

This detail is enough to see that the schedule length is 5m/4 + 1 without the dashed edge 

and (5m + 4)/4 + 1 with the dashed edge. 

How does this compare to the optimum for this graph? Not very well. By filling in the 

unspecified edges in the appropriate pattern, we can repeatedly alternate scheduling A, B 

and C nodes in the pattern shown by Figure 4.12. There will be some initial start-up delay. 

But once we get over that constant amount of borrowing, we won't need any more. 
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Figure 4.11: Worst Case for Approximation 
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Figure 4.12: A constant borrowing schedule 
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Hence, 
opprox = 125 + 0(1/n) 

opt 
So that's as well as this approximation scheme does. What about other approximation 

algorithms?  Can we find an algorithm that will approximate to within a constant?  This 

turns out not to be possible unless we could solve PLT itself. 

Lemma 4.13 If, using a polynomial amount of time, we could approximate the schedule 

for an arbitrary graph such that 

approx — opt < c 

then PLT € P. 

Proof: Take an instance of PLT. Multiply the weights by c+ I. If we can approximate 

the new problem to within a constant c, then this gives us an optimum for the original.      I 

What about approx - opt < logn or approx - opt < n1'2? 

Assume that we can approximate so that approx - opt < f(n) for some function f(n). 

We will multiply the weights of the graph by another function g(n) + 1. If f(n ■ (g(n) +1)) < 

g(n) + 1 then we can use the approximation to the weighted version to solve the original. 

Assume that f(n) = ne for some e. Let's choose g{n) = n<1+Ä)e - 1. For what values of 

e can we find a 6 such that f(n ■ (g(n) + 1)) < g{n) + 1? 

We want (n(n(1+Ä)£))£ < n(1+*K So 

e+(l + 6)e2 < {1 + S)e 

(l + 6)e2 < 6e 

{l + 6)e < S 

e < (l-e)S 

6/(1 -e) < * 

That is, for every constant e < 1, there is a constant 6 such that f(n ■ (g(n) + 1)) < 

g(n) + 1. Hence, 

Lemma 4.14 Any polynomial time approximation algorithm with a bound of approx - 

opt < /(n) = n£ for e < 1 implies a polynomial solution to PLT itself.      I 



Chapter 5 

Lower Bound Techniques 

The type of approximation algorithms that we were just considering give upper bounds on 

what the actual overhang is. It is also interesting to be able to obtain lower bounds on the 

overhang. 

5.1     Simple Methods 

A few lower bound techniques are easy to validate. 

Lemma 5.1 If M contains a bipartite clique KCtd as a subgraph and c,d > 0, then the 

overhang of M is > c + d — \Y\. 

Proof: Even if the clique is stuck in the lower-left-hand corner, as shown in Figure 5.1, 

its upper-right corner will protrude enough to ensure that the overhang is > c + d - \Y\. 

I 

A clique which maximizes c + d can be found in polynomial time by complementing 

the edge set {E1 = {(x,y)\ x G X,y G Y,(x,y) $ E}) and then finding the maximum 

independent set. We can find the maximum independent set in polynomial time since our 

graph is bipartite. 

Another obvious lower bounding technique is less computationally feasible. 

Lemma 5.2 If every subset Y' CY of size c has |r(y')| > d, then the overhang is > d-c+1. 

Proof: Let Y' be the first c nodes released by a schedule and let X' = r(F'). Segregate 

X' to the front of Sx- Now, Y' and X' are in the upper left corner as shown in Figure 5.2. 

90 
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c+d-|Y 

|Y| 

Figure 5.1: overhang > c + d - \Y\ 

There must be an X in each column of the sub-rectangle. If the lower-right corner of this 

sub-rectangle is occupied by an edge, then the overhang is > d - c + 1. If the x in that 

column where in any other row, then the overhang would be worse: > d-c + 1. Similarly, 

if X' isn't restricted to the first d columns, then the overhang would be > d - c + 1.      I 

Corollary 5.3 If every subset of X nodes of size t has \V'{X)\ < j, then the overhang is 

>t-; + l.      I 

This is a more general version of a previous result: 

Lemma 5.4 [Too87] Given an n X n binary matrix M. plt(M, 1) => there is no 2 < i < n 

such that i columns of the matrix each have > n - t + 2 Is.      I 

As an example, consider the graph in Figure 5.3. Every set of Y nodes of size 2 is 

adjacent to 5 X nodes, so by Lemma 5.2 the overhang >5-2 + l = 4. Equivalently, 

every set of 5 X nodes releases no more than 2 Y nodes, so by Corollary 5.3 the overhang 

> 5-2 +1 = 4. 

This technique is potentially exponential, and is not guaranteed to yield the correct 

result. For example, Figure 5.4 shows a graph (X nodes are filled in in black) with overhang 

7 for which Lemma 5.2 can only show a lower bound of 6 (the dashed splines enclose a Y 
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,    'x''=d , 
d-c+1 

|Y'|=c 

Figure 5.2: overhang > d - c + 1 

0 1 2 3 4 5 6 
0 X • X X • • 
1 • X X X • • 
2 • • X • X X • 
3 • • X • X X 

4 X • • X • X 

5 X X • • X • 
6 X X • • • X 

Figure 5.3: 3-regular graph 
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that minimizes |r(Y)| over all Y of a fixed \Y\). To see that it has overhang 7, delete the 

dashed edge and the two nodes dangling from it. In the resulting graph every set of 7 Y 

nodes has 13 X nodes as neighbors, so Lemma 5.2 tells us that the overhang is 7. Adding 

the two nodes back to the graph can not reduce the overhang. 

5.2    Permanents and Perfect Matchings 

Matchings also shed some light on the overhang. 

When a maximum matching touches every node in the graph, we say that it is a perfect 

matching. One useful function of an adjacency matrix M of a bipartite graph with \X\ = 

\Y\ = n is the permanent of the matrix, which we will write as per(M). The permanent is 

equal to the number of different perfect matchings of the graph. 

Another previous result is: 

Lemma 5.5 [Too87] Given an n x n binary matrix M. plt(M, 1) => the permanent of M 

is 0 or 1.     | 

This iB straightforward once it is stated. Another straightforward result is that: 

Lemma 5.6 Given an n x n binary matrix M. The permanent of M is 1 =*• plt(M, 1). 

Proof: Since per(M) = 1, there is exactly one maximum matching of the graph. As we 

did in Section 2, let's reverse the directions of the edges in the maximum matching. The 

resulting graph is a directed-acyclic graph. Give the Y nodes a topological numbering. For 

each edge j-ti, give s the same number as y. If we schedule the X nodes and the Y 

nodes in the order of this numbering, the resulting matrix will be lower-triangular with Is 

down the diagonal.     | 

Furthermore, Lemma 5.5 can be generalized to: 

Lemma 5.7 If the n x n matrix M has overhang k > 0, then per(M) < kn~kk\. 

Proof: The question here is: what is the largest possible permanent for an n x n matrix 

with overhang kt We will call this P(n,k). Clearly adding more Is to the matrix can only 

increase the permanent. Hence what we need to figure out is the permanent of the matrix 

with all Is below the Jfc-diagonal.   Figure 5.5 shows the case where n - 6 and k = 3.  If 
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■o-.. • a.. 

-o-i 

Figure 5.4: Lower bound from Lemma 5.2 is not tight. 
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0 1 2 3 4 5 
0 X X X • • 
1 X X X X • • 
2 X X X X X • 
3 X X X X X X 

4 X X X X X X 

5 X X X X X X 

Figure 5.5: Matrix for P(6,3) 

Jfe = n, clearly the permanent is n!. That is, P(n, n) = n!. If k < n, then look at the column 

with k Is in it. There are k choices for which row to match to that column. After we have 

made that choice, the remaining matrix is an (n - 1) x (n - 1) matrix with overhang k 

and with all Is below the Jfe-diagonal. That is, if k < n, P(n,k) = k ■ P{n - l,fc). Hence, 

P(n,k) = kn~kk\.     I 

The non-monotonicity of the implications of the permanent is interesting: per(M) > 2 

=* 'no'; per(M) = 1 => 'yes'; per(M) = 0 => 'no information'. 

5.2.1    Subarrays 

Checking if the permanent = 0 or = 1 is easy.  However, the problem of computing the 

permanent is #P-Complete [Val79]. That is, it is hard to compute. For the moment, we 

will ignore this and see what light the permanent sheds on our problem. 

In particular, what peaks our interest are the following simple lemmas. 

Lemma 5.8 H the matrix M has overhang k {k > 1) then it has an (n - k +1) x (n - k +1) 

subarray M' of overhang 1.     I 

Lemma 5.9 If the matrix M has a n' x n' subarray M' with overhang k (k > 0) then 

plt(M,n-n' + A:).     I 

Hence, if the matrix M has an ri x ri subarray M' with per(M') = 1, then plt(M, n - 

n' + 1), since M' has overhang 1. 

By Lemma 5.5 the matrix M' in Lemma 5.8 must have per(M') = 0 or per(M') = 1. In 

the case where per(M') = 0, is there some other submatrix M" of the same size such that 

per(M") = 1? 
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0 12 3 
0 x x     • • 
1 x x     • • 
2 x x    x x 
3 x x    x x 

Figure 5.6: Counterexample 

If BO, then there always exists a maximum submatrix with per(M") < 1, which actually 

has per(M) = 1. The following lemma almost gives us what we want. 

Lemma 5.10 For a matrix M let M' be a largest submatrix with per(Af)  <   1.    If 

per(M') = 0, then overhang(M) > n-n'+l. If per(M') = 1, then overhang(M) = n-n'+l. 

Proof: Assume to the contrary that M has overhang k < n - n' + 1. Hence there is 

an (n - k + 1) x (n - A; + 1) subarray M" of overhang 1 (by Lemma 5.8). By Lemma 5.5, 

M" has per(Af") < 1. But by assumption k < n - n' + 1 and hence n - k + 1 > n'. This 

contradicts our assumption that M' was the largest subarray with per(Af') < 1. Hence, 

overhang(M) > n — n' + 1. 

Furthermore, in the case where per(M') = 1, we know that overhang(M') = 1. Then 

Lemma 5.9 tells us that M haB overhang < n - n' + 1. Hence, overhang(M) = n - n' + 1. 

I 

But unfortunately, our desired lemma is not true: 

False Lemma 5.11 Let M' be the largest subarray of M with per(Af')  =  1.    Then 

overhang(Af) = n — n' + 1.      | 

The counterexample in Figure 5.6 has numerous 2x2 subarrays with permanent 1, no 

3x3 subarrays with permanent 1, and yet has an overhang of only 2. 

Another tempting but false lemma is: 

False Lemma 5.12 Let the maximum subarray M' with per(M') < 1 have overhang k. 

Then the array M has overhang n-n' + k.     I 

As the maximum such subarray is [j/o>yi>!/2> 1/3)y4][x4,2s,xe,xr,xs], the lemma would 

imply that the array in Figure 5.7 has overhang 7, when it actually has overhang 6.  To 
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lO     El     X2 13     I4     I5 x6 17 *8 

I/o XXX 

1/1 XXX XXX X X 

1/2 XXX XXX X X 

3/3 XXX XXX X X 

1/4 XXX XXX X X 

1/5 XXX XXX X X X 

1/6 X       X XXX X X X 

1/7 X XXX X X X 

1/8 XXX X X X 

Figure 5.7: Counterexample 

A f~\ A 
\ 

/ 

x* u w 

N 
X X. 

u 

—r\  

0 

s y 
Figure 5.8: Flow of 3 from j/i to j/2 

see that it has overhang 6, simply transpose the matrix; that is, the following is a valid 

schedule: 

Sx    ~    lx*i x7i XB> X5,X4, x3,x2, «i, x0] 

SY     =     [0, 0, 0, 0,0, 0,1/8,1/7,1/6,1/5, ¥4,1/3,1/2,1/1, I/o] 

5.3    Network Flow 

We can also use network flow techniques to obtain lower bounds on the overhang for a 

graph. 
We will use sets of source nodes and sets of sink nodes. The sources and sinks will either 

all be X nodes or all Y nodes. We will set the capacities of the nodes and the edges to 1. 

Thus the flow is actually the number of vertex disjoint paths between the two sets of nodes. 

Let's start out with the simplest case. Consider the graph in Figure 5.8. 
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Lemma 5.18 Given a unit-capacity graph and a single source node 3/1 and a single sink 

node y2. Let the maximum flow from source to sink be k and assume that the set of k 

disjoint paths uses every node in the graph. Then, the overhang of the graph is > k. 

Proof: The basic idea is that there is no way to release either the source or the sink 

without borrowing k. Hence there is no way to schedule the whole graph without borrowing 

k. 

Let the first source/sink released be in AT,-. Let's look at Sj and T,_i. Claim n,-_i = 

\Tj-i\-\Si\<-k. 
To see this claim, we partition each of the sets Sj and T,_i into k pieces. Since the graph 

has a flow of k between the source and sink, there are k vertex disjoint paths between 3/1 

and y2. Number these paths from 1 to k. Let Ui be the nodes of Sj that are on path number 

i. Let Vi be the nodes of Tj_i that are on path number i. For all i, \Ui\ > |V*| + 1. To see 

this, look at two cases. If |Vj| > 0, then Ui must contain all the X nodes on path i that are 

adjacent to the Y nodes in V- and hence \Ut\ > |VJ| + 1. If |Vi| = 0, then \Ut\ > |VJ| + 1, 

since in order for the source/sink to be released in AT,-, we must have \Ui\ > 1 for all i. 

Thus, \T3.i\ - \Sj\ = ES* \Vi\ - £?=i \Ui\ = £*=i(M - \Ui\) < £*=i -1 = -*• 
Hence, overhang > k.     I 

The cases where the flow actually uses up the whole graph will be rare. If the flow 

doesn't use all the nodes, then does the flow still give us some information? Yes. 

Lemma 5.14 Given a unit-capacity graph and a single source node yx and a single sink 

node y2. Let the maximum flow from source to sink be k. There may be several ways 

to achieve a Ä-flow. For each such A-flow, there will be some Y nodes that have no flow 

through them. If delay(S) < k, then for each possible Mow from 3/1 to y2, S must release 

some Y node with no flow through it strictly before S releases 3/1 or y2. 

Proof: Assume to the contrary that there is some schedule 5 with delay(5) < k and 

there is some Jfc-flow from 3/1 to y2 such that the source or the sink is released before a Y node 

with zero flow is released. Let the first source/sink released be in AT,-. The equations in 

Lemma 5.13 involving \Ut\ and |V5| still hold, and \Tj_i\ - \Sj\ < -k. Thus delay(S)/5egA:. 

Contradiction.      I 

Using different choices for sources and sinks, this lemma gives us sets of conditions on 
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Figure 5.9: overhang = 3 

Figure 5.10: overhang = 2 

allowable schedules. Along with other constraints, we can prove lower bounds on the delays 

of certain graphs. 

Let's examine the example in Figure 5.9. There is a flow of 3 from j/i to y2 that uses 

all Y nodes except y3. Lemma 5.14 tells us that y3 must be released strictly before either 

j/x or 3/2 in any schedule with delay < 3. Similarly, the flow of 3 from j/i to y3 that uses 

all Y nodes except y2 tells us that y2 must be released strictly before either yx or y3 in 

any schedule with delay < 3. Since these two conditions are contradictory, no delay < 3 

schedule is possible, and overhang > 3. 

The example in Figure 5.10 is different. Here, there is a flow of 3 from 3/1 to y2 that 

uses all Y nodes except y3. This means that y3 must be released strictly before either ya 

or y2 in any schedule with delay < 3. Similarly, there is a flow of 3 from yx to y2 that uses 

all Y nodes except y4 and this tells us that j/4 must be released strictly before either yi or 

t/2 in any schedule with delay < 3. These constraints present no contradiction, and there is 

indeed a schedule with a delay of 2. 

One limitation of Lemmas 5.13 and 5.14 is that they can at best lower bound the 
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Figure 5.11: Flow of 4, before expanding j/i and y2 

Figure 5.12: After expanding y\ and y2 

overhang by the maximum degree of the graph. Clearly we should be able to do better: 

Suppose we start with the graph in Figure 5.11, which has a flow of 4, and then we apply 

the Expanding Transformation to it, yielding the equivalent graph in Figure 5.12, with a 

maximum degree 3. Now the flow can be at most 3. It would be nice if transforming the 

graph didn't diminish our ability to prove a lower bound. We will need a more powerful 

lemma. We need to use sets of sources and sinks in order to have a flow of 4. 

We will also need to have ligament sets. A ligament set will be a set of X nodes that 

intuitively ties together the Y nodes of the sink (or source). For example, in Figure 5.13, 

{i4} is a valid ligament set for the sink node set {j/4,3/5}, and {11,12. z3} is a valid ligament 

set for the source node set {2/1,2/2,1/3}- For a source/sink node set Y', the ligament set 

L(Y') C X must satisfy the following property: 

In the graph induced by (Y' UX(F')). we must have \T'(X')\ ^ \x'\ for every 

X' C L(Y') that has |X'| < \Y'\ - 1.   That is, no subset X' of the ligament 



5.3.   NETWORKFLOW 101 

•  x 

Figure 5.13: Example of ligament sets 

nodes can release more than \X'\ nodes of the source/sink. 

One consequence of this property is that \L(Y')\ > \Y'\ - 1, since otherwise X' = L(Y') has 

\x'\ < \Y'\ -1 and |r'(x')| = |r'(ü(y'))l = \Y\ > \x'\ +1 > \x'\- 
Note that the source and sinks sets don't need to be connected sets; for example, the 

source and sink sets shown in Figure 5.13 are allowed. 

Lastly, we will not allow the flows to go through the ligament set. One way to visualize 

this is that I(Y') and L(Y) are removed from the graph before the flow is computed. 

So what we have is this: 

Lemma 5.15 We have a source node set Yi and a sink node set Y2 with disjoint ligaments 

sets Z(Yi) and L(Y2), respectively. Let the maximum flow in G \ (L{YX) U L{Y2)) be k and 

assume that the set of k disjoint paths uses every node in the graph G \ (L(Yi) U L(Y2)). 

Then, the overhang of the graph G is > k. 

Proof: The basic idea remains similar. There is no way to release either all the nodes 

in Yi or all the nodes in Y2 without borrowing k. Hence there is no way to schedule the 

whole graph without borrowing k. 

Assume without loss of generality that the schedule releases all of the nodes of the source 
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before it releases all the nodes of the sink. Let the the last node of the source be released 

in AT,-. As before, let's look at Sj and Tj_x. Claim n,-_i = \Tj_i] - \Sj\ < -k. 

To see this claim, we partition each of the sets Sj and JTJ_I into k + 2 pieces. Since the 

graph has a flow of k between the source and sink, there are k vertex disjoint paths between 

yi and y2. Number these paths from 1 to Zt. Let Ui be the nodes of Sj that are on path 

number i. Let Vi be the nodes of Tj-\ that are on path number t. As before, for 1 < t < A:, 

\Ui\>\Vi\ + l. 

We let Uk+i be the nodes of Sj that are in L{Y{). We let Vk+1 be the nodes of Tj-i 

that are in Yi. We let Uk+2 be the nodes of Sj that are in L(Y2). We let Vk+2 be the nodes 

of Tj-i that are in Y2. 

We claim that \Vk+i\ < |*7*+il- &1 verifying this, there are two cases. If \Uk+i\ > |Yi|-l, 

then since |Ffc+1| < |Yk|, we see that |Vfc+i| < |ü*+1|. If \Uk+1\ < |Yi| - 1, then the 

definition of ligament sets tells us that in the graph induced by (Yi U L(Yi)), we have 

|r'(£7fc+i)| < l^fc+il; since Vk+1 C r'(^fc+i), then |Vfc+1| < \Uk+i\. Similarly we can see that 

\Vk+2\ < \Uk+2\. 

Thus, |r,-_x| - \Sj\ = E*i21^1 - £&21^1 = Zi±?(\Vi\ - Ml) < EL -i = -*• 

Hence, overhang > A;.      I 

Unfortunately, unlike with Lemma 5.13, there is no clear polynomial time algorithm to 

find the source and sink sets that yield the largest A:. 

As with the simpler source and sink sets, it is very useful to have a lemma that handles 

the case when the flows don't use all the nodes: 

Lemma 5.16 We have a source node set Y\ and a sink node set Y2 with disjoint ligaments 

sets L(Yi) and L(Y2), respectively. Let the maximum flow in G \ (L(Yi) U L(Y2)) be A;. If 

delay(5') < A;, then for each possible A;-flow from Yx to Y2, S must release some Y node with 

no flow through it strictly before S releases either all the nodes of Yi or all the nodes of Y2. 

I 

For example, in Figure 5.14 the directed arcs show a flow of 7 from the sinks to the 

sources. Hence, for a schedule to achieve a delay less than 7, it must release y\ or y2 before 

it releases all the nodes of either the source or sink. 
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Figure 5.14: Flow of 7 that doesn't use y\ and y2 

5.4    Minimal Graphs 

Now that we have some lower bound results, we can prove that some sets of graphs are 

minimal graphs. That is, removing any edge from the graph reduces its overhang. One 

interesting reason to study minimal graphs is the possibility of finding a polynomial algo- 

rithm to verify them. If there were a polynomial algorithm that could take a graph and 

verify that it was a minimal graph of overhang k, then the PLT problem would be in coNP 

and hence in coNP n NP. 

5.4.1    Simple Minimals 

One simple class of minimal graphs is suggested by Lemma 5.13. We take two Y nodes and 

string k disjoint paths between them as in Figure 5.15. 

Before we prove that these are minimal, let's define a minimal ligament set. In graph 

G, for a set Y, we will call a ligament set L(Y) minimal if (1) L{Y) C T(Y) and (2) after 

removing any edge between Y and L{Y), the set L{Y) no longer satisfies the ligament set 

property with respect to Y. 
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Figure 5.15: Minimal graph with overhang = 3 

Lemma 5.17 Given a graph with a flow of k between disjoint source and sink sets such 

that (a) the ligament sets of the source and sink are minimal ligament sets and (b) every 

edge that is not in the ligament is used by the flow. Such a graph is a minimal graph with 

overhang k. 

Proof:  We already know that overhang > k.   We will show that deleting any edge 

e = (x,y) leaveB overhang = A; - 1. There are two cases. 

If the deleted edge e is a flow edge: (Follow along in Figure 5.16.) In the graph G\e, 

there is a unique path from y to a source/sink node. Schedule the X nodes along this 

path in order (ii). Schedule all remaining X nodes adjacent to that source/sink node 

(x2, 13). Iterate through each remaining Y node that is in the same source/sink node 

set, scheduling all remaining X nodes adjacent to the Y node (x4, x5). Then repeat 

until done: for each Y node of degree 1, schedule its adjacent X node (x6) x7, x8, x9, 

»10, »11. x12> «13)- 

If the deleted edge e is between a ligament node and a source/sink node: 

(Follow along in Figure 5.17.) Removing the edge breaks the ligament set into two 

pieces. For the piece that contains y, iterate through each remaining Y node, schedul- 

ing all remaining X nodes adjacent to the Y node (xu ^2)- Then as long as possible: 

for each Y node of degree 1, schedule its adjacent X node (x3, x4, x5, x6, x7). If 

anything remains, it includes the other source/sink node set. Iterate through each 

remaining Y node that is in that source/sink node set, scheduling all remaining X 

nodes adjacent to the Y node (x8, x9, x10). Then repeat until done: for each Y node 

of degree 1, schedule its adjacent X node (in, xi2, xi3). 

I 
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1       2       3       4       5       6       7       8       9      10     11     12     13 

Figure 5.16: deleting a flow edge 
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1      2      3      4      5      6      7      8       9     10     11     12     13 

Figure 5.17: deleting a ligament edge 
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So besides proving that Figures 5.15 is minimal with overhang 3, this shows that Fig- 

ure 5.13 is minimal with overhang 6. Note that while we already knew that these were the 

overhangs of the graphs, we did not know that the graphs were minimal, since the following 

lemma is false. 

False Lemma 5.18 Let G' be a graph derived from G by applying the Collapsing Trans- 

formation. If G' is minimal for overhang k, then so is G.     I 

A simple counterexample can be seen in Figure 4.2. Both graphs have overhang 1. The 

graph on the right is minimal, but deleting the Xi -+ y edge or the x2 -* y edge does not 

reduce the overhang of the graph on the left. 

5.4.2    Disconnected Minimals 

These simple minimals will always be connected graphs. It turns out that under the right 

conditions a set of unconnected minimals will be a minimal graph. 

But, we must build up some tools, first. 

Lemma 5.19 A connected minimal graph is either an ascent piece, a descent piece or a 

plateau piece. 

Proof: Assume to the contrary that the graph has two or more such pieces. Since the 

graph is connected, there is an edge between two of the pieces. If this edge is removed, 

the pieces remain unchanged and their relative ordering is unchanged. That is, the well- 

ordered optimum schedule and hence the overhang remains unchanged. Thus the graph is 

not minimal.      | 

Lemma 5.20 For a connected minimal graph G that is an ascent with overhang = k, all 

MMBNPSs of G have borrowing = -A:. 

Proof: Assume to the contrary that the first MMBNPS piece, 5 = [xi,...,xz] is a 

(b,p) piece and that it has borrowing b > —k. So the situation is that shown on the left 

in Figure 5.18, where the initial MMBNPS 5 does not dip down the furthest. Hence, 

G \ (5 U T'(5)) must have overhang = k + p. 

Let's find a maximum matching in the graph induced by (5 U T'(5)). It will be of size 

z. In G, other than these z matching edges, delete every other arc from nodes in the set 
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rs^y 

ORIGINAL MODIFIED 

Figure 5.18: Charts for proof of Lemma 5.20 

S. This will give us a modified graph G'. G' will now be G \ (S U T'(S)) plus |I"(5)| - \S\ 

isolated Y nodes and |5| components each consisting of an X node, a Y node and an edge 

between them—(-1,0) pieces. The chart for this will now look like the chart on the right 

of Figure 5.18. G' still has overhang = k, and hence G could not have been minimal.      I 

Lemma 5.21 Let G be a graph which consists of many separate connected minimal sub- 

graphs that are ascent subgraphs, and which each have overhang = k. Then G is minimal 

and has overhang = k. 

Proof: From our merging algorithm and Lemma 5.20, we know that the overhang of the 

combined graph is k. If we delete any edge, then by scheduling the subgraph that contained 

that edge before the other subgraphs, we can find a schedule of overhang = k - 1.      I 

By Transposition: 

Corollary 5.22 Let G be a graph which consists of m minimal graphs (G\,..., Gm) which 

are descent subgraphs, and which each have overhang = k and \X{\ - |Yi| = j. Then G is 

minimal and has overhang = m(k - j) + j and \X\ - \Y\ = mj.     I 

But these two flavors of minimal graphs don't mix: 

Lemma 5.23 For a minimal graph G with overhang = k, there cannot be edges in both 

ascent and descent components. 
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OR 

Figure 5.19: subgraphs that are minimal 

Proof: Assume that the chart dips to a level of -k during either the plateau or the 

descent. Then, similarly to 5.20, we delete all edge in the ascent except for a maximum 

matching within the ascent. In this modified graph, the matching edges from the ascent 

must now be in the plateau. The modified graph still has overhang = k. 

Hence, if the chart of a minimal graph dips to -k during either the plateau or descent, 

then there are no edges in the ascent. By transposition, if the chart of a minimal graph 

dips to -A; during either the plateau or ascent, then there are no edges in the descent. 

Since the must dip to -k somewhere, then there either are no edges in the ascent or no 

edges in the descent.      I 

But, we can pepper either flavor of minimal graph with any number of isolated edges: 

Lemma 5.24 Let G be a minimal graph which has overhang = k. Add to G two new 

nodes x and y and a single edge between them (x,y), yielding G'. Then G' is minimal and 

has overhang = k. 

Proof: If the edge deleted is (x, y), then y is released immediately, and by scheduling x 

last, we will have reduced the overhang by 1. If the edge deleted is not (x, y), then schedule 

x and y last, and we will still have reduced the overhang by 1.      I 

So Figure 5.19 shows two different minimal subgraphs of the same graph. 



Chapter 6 

Games 

6.1    A Game Theory Problem 

The triangularization problem can also be framed as a two person game in the Conway 

sense [BCG82, Con76]. 
Consider the following game: There is a directed graph with Blue nodes and Red nodes. 

Blue and Red alternate turns. On a player's turn he must remove from the graph one node 

of his color that has indegree 0; all edges adjacent to the node are also deleted. The first 

player to have no legal moves on his turn is the winner. 

Our triangularization problem PLTX corresponds to the special case of this game in 

which all of the directed arcs go from Blue nodes to Red nodes and Blue goes first. Can 

Blue win? What is his winning strategy? Note that in this special case, Red's choices are 

irrelevant to the outcome of the game. 

Thus the question immediately arises: What use can we make of the theory of games 

that Conway et al develop? In Conway's theory he develops an algebra of position values. 

That is, each game position is assigned a value which has three properties: 

1. ADD: The value of the sum of two games can be computed from the values of the two 

games. 

2. AUGMENT: The value of a position can be computed from the values of its children 

positions. 

3. WINNER: Given the value of a position, one can determine who would win the game 

if Blue started and who would win the game if Red started. 

109 
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6.2    Misere Play 

Unfortunately, his algebra is intended for normal play games. That is, games where the 

player who is stuck loses, in contrast to misere play where the player who moves last loses. 

The theory does not extend to misere play. In fact, no general value scheme for misere play 

is known — you need to essentially encode the entire position in your value. 

Our game is a misere play game. Yet we can devise an algebra that satisfies all three 

properties and doesn't encode the entire problem in it. That is, it is very-many-to-1. 

For the value of a position we will just use the fundamental chart of any optimal schedule 

of the corresponding graph. 

There is an ADD procedure that is used in adding two positions: ADDing two indepen- 

dent games is the same thing that we earlier called merging two fundamental charts. 

There is an AUGMENT procedure, which only needs to look at Blue's possible moves: 

How do we compute the value of a position given the values of its children? Let vit.. .vk be 

the values of the children position for each of Blue's valid moves. We can easily compute 

v[,..., v'k, the values of the initial position, assuming that move i is Blue's best move. Then 

we just need to pick out the best one of the v[. We already showed how to pick out the best 

chart from a set of charts when we were solving weighted chains in Section 3.4. 

How do we determine the WINNER from the value? 

If it is Blue's turn: If the fundamental chart dips below -1, then Red (Y) was stuck at 

some point, and Blue (X) loses. If the chart never dips below -1, and ends at -1, 

then Red is stuck and Blue loses. Otherwise, Blue will be stuck first, and so Blue 

wins. 

If it is Red's turn: If the fundamental chart is ever below 1, then Red (Y) was stuck at 

some point, and Blue (X) loses. Otherwise, Blue will be stuck first, and so Blue wins. 

So our value satisfies all three properties. 

6.2.1     A Misere Hackenbush variant 

Obviously our algebra can't be extended to cover arbitrary misere games. However, there 

is one form of misere Hackenbush that it can handle: misere childish red-blue hackenbush 

with stalks that have blue stems and red tips. That is, starting from the ground, the edges 

are blue. At some point they turn red and stay red, all the way to the tips. 
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6.3     Normal Play 

When we play in a non-Misere fashion, we can make full use of the system of assigning 

values to games developed by Conway. 

Definition 6.1 For a bipartite graph G = (X,Y, E), a Y-dominating set is a set X' C X 

such that for any y e Y there is some x € X' such that (x,y) € E, i.e. T(X') = Y. 

Lemma 6.1 If G is such that X is a minimal Y-dominating set for Y, then the value of G 

is 0. 

Proof: If it is Y's turn to move, he has no legal moves and he loses. If it is X's turn 

to move, then each X node that he removes will release at least one Y node, and hence he 

will ultimately lose. A game in which whoever starts is the loser is a 0 game.     I 

Lemma 6.2 If G consists of an isolated Y node, then G has the value -1. 

Proof: If it is Y'B turn, his move must leave an empty graph. An empty graph is a 

special case of Lemma 6.1 and thus has value 0. If it is X's turn, he has no legal move. So 

the value of G is { | 0} = -1.     I 

Lemma 6.3 If G has a minimum Y-dominating set of size d > 1, then the value of the 

game is \X\ — d. 

Proof: We will use induction on \X\. The case when \X\ = 1 and hence d = 1 is covered 

by Lemma 6.1. 

The case when \X\ - d = 0 is also covered by Lemma 6.1, so we only need to consider 

the general case where \X\ — d > 0. Once again, since there exists a Y-dominating set, 

player Y has no legal moves. But X has three types of moves: moves that leave a minimum 

Y-dominating set of size d; moves that release a Y node, thus reducing the size of the 

minimum Y-dominating set to d - 1; and moves that don't do either. 

Since \X\ - d > 0, moves of the first type always exist; these moves are when we remove 

some X node that is not in all of the minimum Y-dominating sets of size d. They leave a 

graph G' with \X'\ = \X\-1 and \X'\ - d = \X\ - d- 1 and hence, by induction, with value 

\X\-d-l. 
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Moves of the third type are when we remove a node that is in all of the minimum Y- 

dominating sets of size d, and yet it doesn't release a Y node. Hence, it leaves a graph G' 

with d! > d and \X'\ - d' < \X\ - d - 1 and hence, by induction, with value <\X\-d-l. 

This type of move is never desirable for X. 

After a move of the second type, the graph G' has two parts. It has j > 1 isolated 

Y nodes and a piece with no isolated Y nodes, which we will call G". It is the case that 

d" = d-l and \X"\ = \X\-l. So, by induction on \X\, the value of G" is \X"\-d" = \X\-d. 

The value of G' is \X\ - d - j < \X\ - d - 1. 

Since X can always leave a game of value v - \X\ - \d\ - 1 and never leave a game of 

larger value, the overall value of the game G is {v | } = \X\ - d.     | 

So, we can find the value of a game iff we can find its minimum F-dominating set. 

Unfortunately, this turns out to be iVP-Complete. 

y-DOM-SET 

INSTANCE:   A bipartite graph G - (X,Y, E) and a bound k. 

QUESTION:   Is there a set X' C X such that |X'| < k and T(X') = Y1 

Lemma 6.4 y-DOM-SET is JVP-Complete — even if all elements of Y have degree < 2. 

Proof: Reduction from minimum vertex cover set. Given an instance of vertex cover 

set, G=(V,E) and a bound k. Is there a set V CV such that \V'\ < k and for every edge 

e = (vi, Vj) e E, either Vi € V or Vj G V? 

We convert this into an instance of y-dom-set G' = (X',Y',E') as follows: For every 

vertex Vi e V create a node XJ € X. For every edge e< G E create a node yi £ Y. If 

vertex Vi is an endpoint of edge Cj, then put an edge in E' between Xi and y,. Is there a 

Y-dominating set of size < kl      I 
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Conclusions 

We have taken the triangularization problem, recast it in a number of different forms, and 

twisted it this way and that holding it up to a variety of light sources. What have we 

learned from this? 

We have seen that the triangularization problem is very closely related to a number of 

scheduling problems that demand to be solved as computer engineers try to leave less of 

their available hardware idle. It is easy to believe that some of the tools we have honed in 

this thesis will prove useful in dealing with those scheduling problems. 

We have seen a number of JVP-complete problems that are very close to the triangular- 

ization problem. Perhaps someone else can close the gap and show that triangularization 

is ATP-complete. Such a proof would probably require some very interesting methods. 

We have developed a tool for segregating schedules. The first thing that this allowed 

us to do is break up schedules into a number of independent sub-schedules. Ultimately, 

this led us to well-ordered optimum schedules, fundamental charts, and nearly well-ordered 

schedules. 

In fundamental charts, we have found a very simple description of a graph. It is a 

description that abstracts away all the unnecessary and confusing chaos of the wild crossing 

of edges from node to node. It is also a description that allows us to merge solutions for 

independent graphs in polynomial time, without reconsidering the interconnections of edges 

and nodes. 

Besides being fascinating in their own right, these properties form the underpinnings 

of our polynomial algorithm to schedule weighted chains. We have also shown that graphs 

with all Y nodes of degree < 2, graphs with all X nodes of degree < 2, and graphs that 
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are trees are all solvable in polynomial time. However, more interesting than any of these 

is the polynomial algorithm for solving PLATEAU pieces with overhang < k. 

The next hardest problem to try to get a polynomial algorithm for is graph that are 

weighted trees. We have seen that both weighted chains and unweighted trees can be solved 

in polynomial time. Even a solution for weighted binary trees would be very interesting. 

While our approximation results seem discouraging, it should be remembered that these 

dealt with worst-case behavior of approximation algorithms. Practical approximation al- 

gorithms should be pursued, but this can only be done effectively with a source of real 

instances. 
Lastly, better lower bound techniques need to be pursued. For example, is there a family 

of graphs with all Y vertices of degree < 3 whose overhang is fl(n)? (We have proved 

Lemma 4.12 that the overhang of such problems is at most about n/4.) Any progress here 

will aid our understanding of the triangularization problem. 

Many aspects of this problem remain elusive. Something interesting is going on here. 
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