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ABSTRACT

Two deduction rules are introduced to give streamlined treatment to relations of special importance in an
automated theorem-proving system. These rules, the relation replacement and relation matching rules, gen-
eralize to an arbitrary binary relation the paramodulation and E-resolution rules, respectively, for equality,
and may operate within a nonclausal or clausal system. The new rules depend on an extension of the notion
of polarity to apply to subterms as well as to subsentences, with respect to a given binary relation. The rules
allow us to eliminate troublesome axioms, such as transitivity and monotonicity, from the system; proofs are
shorter and more comprehensible, and the search space is correspondingly deflated.

1. INTRODUCTION

In any theorem-proving system, the task of representing properties of objects is shared between axioms
and rules of inference. The axioms of the system are easier to introduce and modify, because they are
expressed in a logical language. However, because axioms are declarative rather than imperative, they are
given no individual heuristic controls. The rules of inference, on the other hand, cannot be altered without
reprogramming the system, and they are usually expressed in the system's programming language. However,
the rules can be given individual heuristic controls and strategies.

It is customary to use rules of inference to express properties of the logical connectives, which are the
same from one theory to the next, and to use axioms to express properties of constants, functions, and
relations, which may vary. It is hazardous, however, to express certain properties of functions and relations
by axioms. Some properties of the equality relation, for example, are rarely represented axiomatically. For
one thing, in a first-order system indefinitely many axioms are necessary to represent the substitutivity
property of this relation, depending on how many function and relation symbols are in the vocabulary of
the theory.

For instance, for a binary function symbol f(x, y), we must introduce two functional-substitutivity ax-
ioms,

if X=y and if X=y
then f(x, z) = f(y, z) then f(z, x) = f(z, y),

and for a binary predicate symbol p(x, y), we must introduce two predicate-substitutivity axioms,

if X =y and if X = y
then if p(xz) then p(y, z) then if p(z,x) then p(z,y).

An abbreviated version of this paper appears in the proceedings of the Twelfth International Colloquium
on Automata, Languages, and Programming (ICALP), Nafplion, Greece, July 1985.
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2 1. INTRODUCTION

(We tacitly quantify variables universally over the entire sentence.) In general, for each n-ary function
symbol f(xi, .. , x,,), we introduce n functional-sustitutivity axioms. Similarly, for each n-ary predicate
symbol p(, .. . , x,n), we introduce n predicate-substitutivity axioms.

More importantly, axioms for equality are difficult to control strategically, because they have many
irrelevant consequences. An axiom such as transitivity,

ifx=y and y=z
then x = z,

will allow us to derive logical consequences from any sentence mentioning the equality relation. Few of these

consequences will have any bearing on the proof.

In response to this problem, some theorem-proving researchers have paraphrased their theories to avoid
explicit mention of the equality axiom (e.g., Kowalski [79]). Others have adopted special inference rules for
dealing with equality. In resolution systems, two equality rules, paramodulation (Wos and Robinson [69])
and E-resolution (Morris [69]) have been found to be effective. Variations of these rules are used in many
theorem provers today (e.g., Boyer and Moore [79], Digricoli [83]). By a single application of either of these
rules, we can derive conclusions that would require several steps if the properties of equality were represented
axiomatically. The proofs are markedly shorter, and the search spaces are even more dramatically compressed
because the axioms and intermediate steps are not required. Within their limited domain of application,
theorem-proving systems using these rules surpass most human beings in their capabilities.

SPECIAL RELATIONS

The authors became involved in theorem proving because of its application to program synthesis, the deriva-
tion of a program to meet a given specification. We have been pursuing a deductive approach to this problem,
under which computer programming is regarded as a theorem-proving task. In the proofs required for pro-
gram synthesis, certain relations assume special importance. Again and again, proofs require us to reason
not only about the equality relation, but also about the less-than relation < (over the integers or reals),
the subset relation C, the sublist relation -_•it, or the subtree relation --'tree- To represent the transitivity
and other properties of these relations axiomatically leads to many of the same problems that were faced
in dealing with equality: the axioms apply almost everywhere, spawning innumerable consequences that
swamp the system. Yet we would not want to implement a new inference rule for each of the relations we
find important.

Both the paramodulation and the E-resolution rules are based on the substitutivity property of equality,
that if two elements are equal they may be used interchangeably; i.e., for any sentence P(x, y), the sentence

if x=y

then if P(x, y) then P(y, x)

is valid. Here P (y, x) is the result of replacing in P (x, y) certain (perhaps none) of the occurrences of x with
y, and certain (perhaps none) of the occurrences of y with x. (The notations we use here informally will be
defined systematically later on. We assume throughout that sentences are quantifier-free.)

We observe that many of the relations we regard as important exhibit substitutivity properties similar
to the above property of equality, but under restricted circumstances. For example, over the nonnegative

integers, we can show that

if X < y
then if a< x.b

then a < y . b
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and, over the lists, we can show that

if X "<ti't y

then if u c x

then u E y.

Knowing that x < y or that x "<list y does not allow us to use x and y interchangeably, but it does allow us
to replace certain occurrences of z with y, and vice versa.

Based on such substitutivity properties, we can introduce two deduction rules that generalize the
paramodulation and E-resolution rules for equality to an arbitrary relation, under appropriate circumstances.
Just as the equality rules enable us to drop the transitivity and substitutivity axioms for equality, the new
relation rules enable us to drop the corresponding troublesome axioms for the relations of our theory.

POLARITY

For the equality relation, knowing that x = y allows us to replace in a given sentence any occurrence of
x with y and any occurrence of y with x, obtaining a sentence that follows from the given one. For an
arbitrary binary relation -4, knowing that x -4 y still may allow us to replace certain occurrences of x with y
and certain occurrences of y with x. We describe a syntactic procedure that, for a given relation -4, identifies
which occurrences of x and y in a given sentence can be replaced, provided we know that x -• y.

More precisely, we identify particular occurrences of subexpressions of a given sentence as being positive
(±), negative (-), or both, or neither, with respect to -4. If x -4 y, positive occurrences of x can be
replaced with y, and negative occurrences of y can be replaced with x. In other words, we can establish the
substitutivity property that, for any sentence P(x+, y-), the sentence

if x- y
then if P(+, y-) then P(y+, x-)

is valid (over the theory in question). Here P (y+, x-) is the sentence obtained from P (x+, y-) by replacing
certain positive occurrences of x with y and certain negative occurrences of y with x. With respect to the
equality relation, every subexpression is both positive and negative; therefore, if we take -4 to be =, this

property reduces to the substitutivity of equality.

Our new rules are based on the above substitutivity property just as the equality rules are based on the
substitutivity of equality. The new rules, like the equality rules, allow us to perform in a single application
inferences that would require many steps in a conventional system. Proofs are shorter and closer to an
intuitive argument; the search space is condensed accordingly.

NONCLAUSAL DEDUCTION

The paramodulation and E-resolution rules are formulated for sentences in clausal form (a disjunction of

atomic sentences and their negations); on the other hand, the two corresponding rules we introduce apply to
free-form sentences, with a full set of logical connectives (cf. Manna and Waldinger [80], Murray [82], Stickel
[82]). By adopting such a nonclausal system, we avoid the proliferation of sentences and the disintegration

of intuition that accompany the translation to clausal form. Also, it is awkward to express the mathematical
induction principle in a clausal system, because we must do induction on sentences that may require more
than one clause to express. On the other hand, our rules are also immediately and directly applicable to

clausal theorem-proving systems.
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OUTLINE

In the following section, Preliminaries, we sketch the basic concepts of logic that we use in this paper and
we briefly outline a nonclausal deduction system. Readers who are familiar with this material should skim
the section anyway, to become acquainted with our terminology and notations.

In Relational Polarity we introduce our central notion, the polarity of a subexpression of a sentence
with respect to a given relation.

We then describe, in The Relation Replacement Rule, a new deduction rule that allows us to replace
a subexpression of a sentence with another expression, under a wide variety of circumstances. This is our
generalization of the paramodulation rule.

The rules in our system can be applied when two subexpressions can be unified. However, our second
deduction rule, described in The Relation Matching Rule, allows us to draw a conclusion even though
two subexpressions fail to unify. (Typically this rule is applied when the two subexpressions "nearly" unify.)
This is our generalization of the E-resolution rule.

In Strengthening we tighten up our theory of polarity to allow the relation replacement rule to draw
a stronger conclusion, in many circumstances.

In Extensions, we indicate how the notions in this paper can be extended to apply to sentences
which contain explicit quantifiers and to define polarity with respect to functions as well as relations; we
develop more general, conditional versions of all the rules; and we show how our results apply to problems
in automated planning.

2. PRELIMINARIES

Before we can define our central notion, that of polarity of a subexpression with respect to a relation, we
must introduce some concepts and notations. We will be brief and informal, because we believe that this
material will be familiar to most readers.

EXPRESSIONS

We consider terms composed (in the usual way) of the following symbols:

"* The constant symbols a, b, c, a,, ... , s, t, and special constants such as 0.

"* The variable symbols u, v, w, I, y, ul) ....

"* The n-ary function symbols f, g, h, fl, • and special symbols such as +.

Thus a, x, f(a, x), and f(a, x) + 0 are terms.

We consider propositions composed (in the usual way) from terms and the following symbols:

"* The truth symbols (logical constants) true and false.

"* The n-ary relation symbols p, q, r, pi, ... and special symbols such as = and <.

Thus true and p(a, g(x)) are propositions.

We consider sentences composed (in the usual way) from propositions and the following symbols:

* The logical connectives not, and, or, if-then, = (if-and-only-if), if-then-else.



2. PRELIMINARIES 5

Thus (a < 0) or not(p(a, g(x))) is a sentence.

The operators consist of the function and the relation symbols. The expressions consist of the terms and
the sentences. Note that we do not include the quantifiers V and 3 in our language. The ground expressions
are those that contain no variables. The expressions that occur in a given expression are its subexpressions.

They are said to be proper if they are distinct from the entire expression.

REPLACEMENT

We introduce the operation of replacing subexpressions of a given expression with other expressions. We
actually have two distinct notions of replacement, depending on whether or not every occurrence of the
subexpression is to be replaced.

Suppose s, t, and e are expressions, where s and t are either both sentences or both terms. If we write
e as e[s], then e[t] denotes the expression obtained by replacing every occurrence of s in e[s] with t; we call
this a total replacement. If we write e as e(s), then e(t) denotes the expression obtained by replacing certain
(perhaps none) of the occurrences of s in e(s) with t; we call this a partial replacement.

When we say we replace certain (perhaps none) of the occurrences of s, we mean that we replace zero,
one, or more occurrences. We do not require that e[s] or e(s) actually contain any occurrences of a; if not, e[t]
and e(t) are the same as e[s] and e(s), respectively. Also, while the result of a total replacement is unique,
a partial replacement can produce any of several expressions.

For example, if e[s] is p(s, s, b), then e[t] is p(t, t, b). On the other hand, if e(s) is p(s, a, b), then e(t) could
be any of p(s, a, b), p(t, s, b), p(s, t, b), or p(t, t, b). If we want to be more specific about which occurrences
are replaced, we must do so in words.

A partial replacement is invertible, in the sense that any sentence e(s) can be retrieved by replacing
certain occurrences of t in e(t) with a. The occurrences of t to be replaced are precisely the ones introduced
in obtaining e(t) in the first place. For example, if e(s) is p(s, s, t), and e(t) is p(s, t, t), then e(s) can be
retrieved by replacing the newly introduced occurrence of t in e(t) with S.

Total replacement, on the other hand, is not invertible in the same sense. For example, if e[s] is p(s, s, t),
then e[t] is p(t, t, t), and e[s] cannot be obtained from e[t] by replacing every occurrence of t in e[t] with s.

MULTIPLE REPLACEMENT

We can extend the definition to allow the replacement of several subexpressions at once:

Suppose si, .-. . , ,n, ti, ... , t,, and e are expressions, where the sa are distinct and, for each i, sa
and ti are either both sentences or both terms. If we write e as e[as, . . ., $ni, then e[ti, ... , t,] denotes
the expression obtained by replacing simultaneously every occurrence of each expression sa in e with the

corresponding expression ti; we call this a multiple total replacement. If we write e as e(sa, ... ,I ,), then
e(t, ... , tn) denotes any of the expressions obtained by replacing simultaneously certain (perhaps none) of
the occurrences of some of the expressions si in e with the corresponding expression ti; we call this a multiple
partial replacement.

The replacements are made simultaneously in a single stage. For example, if e[a, b] is f(a, b), then e[b, cl
is f(b, c). On the other hand, if e(a, b) is f(a, b), then e(b, c) could denote any of f(a, b), f(b, b), f(a, c), or
f (b, c). Even though a is replaced by b and b is replaced by c, the newly introduced occurrences of b are not
replaced by c.

The replacements are made from the top down. For example, if e[p(a, b), a] is p(a, b), then e[true, b] is
true. We replace both p(a, b) and a, but a is a subexpression of p(a, b). In such cases, by convention, it is the
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outermost subexpression that is replaced. (For the corresponding partial replacement, either subexpression
can be replaced.)

By attaching a numerical superscript, we can specify exactly how many subexpression occurrences are
to be replaced in a partial replacement. Suppose si, . . , s,8, t1 , .. ., tn, and e(sl, . . . , sn) are expressions
and k is a nonnegative integer, where the si are distinct and, for each i, si and ti are either both sentences
or both terms. Then e(ti, . . , t)k is the result of replacing in e(si, ... ,s,O) precisely k occurrences of

1, ... , , sn with the corresponding expression t 1 , .-. . , tn. [We assume that at least k occurrenes exist.]

Note that precisely k occurrences are replaced altogether. For example, suppose e(a, b) is c < f(a, a, b);
then e(a + 1, b + 1)2 could denote any of

c<f(a+1,a+1,b), c<_f(a-+1, a,b+1), or c<f(a,a+1,b+1),

but not

c<f(a+1, a+1, b+1) or c<f(a+1,a,b).

We may also write e(tl, t 2 , • • , t,e)'' to indicate that precisely k or I replacements are made in the expressione(Sl ,52, ... , 1 0.

SUBSTITUTIONS

We have a special notation for a substitution, indicating the total replacement of variables with terms. A
theory of substitutions was developed by Robinson [65], in the paper in which the resolution principle was
introduced. A fuller exposition of this theory appears in Manna and Waldinger [81].

For any distinct variables X1, x2 , ... , xn and any terms t 1 , t2 , ... , t,, a substitution

0 : {X 1 *- t1, X2 *-- t2, ... X +-- tn I

is a set of replacement pairs xi +- ti. Note that there are no substitutions of form {x +- a, x 4-- b, ...

where a and b are distinct. (If a and b are identical, then the set {x -- a, x +- a, ... } is the same as the set
{x +- a, ... }.) The empty substitution { } is the set of no replacement pairs.

For any substitution 9 and expression e, we denote by e9 the expression obtained by applying 9 to C,
i.e., by simultaneously replacing every occurrence of the variable xi in e with the expression ti, for each
replacement pair xi ÷- ti in 9. We also say that e9 is an instance of e. For example,

p(x,y){x-y, y--a} = p(y,a).

The empty substitution { } has the property that e{ } - e for any expression e.

Two substitutions 9 and A are said to be equal if they have the same effect on any expression, i.e., if,
for any expression e,

e9 = eA.

For example,

x a, y-b} = x a,y -b,z+-z}.

Two substitutions 0 and A are equal if they agree on all variables, i.e., if x9 = xA for all variables x.

For any variable x, term t, and substitution 0, the result

(x t) o09
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of adding the replacement pair x -- t to 0 is defined to be the substitution that replaces x with t but agrees
with 0 on all other variables. It is thus defined by the properties

x((x- t) o 6) = t

y((x -- t) o0) = yO, for all variables y distinct from x.

Note that 0 may already replace x with some term t'; if so, that replacement is superseded by the new one.

For example,

(y4-b)o{} = {y*-b}

(x4-a)ol{y-b} = {x4-a, y'4-b}

(y,-c)o{•x-a,y,--b} = {x+-a,y+--e}

(x .- x) o Ix - a) = { }.

We write (x ,- t) o (y +- t') o 0 as an abbreviation for (x +- t) o ((y +- t')o 0).

The composition OA of two substitutions 0 and A is defined by the properties

{}A = A

((x X- t) o 6)A = (x -tA) o (OA)

for all variables x and terms t. The most important property of the composition function is that applying
the composition of two substitutions 0 and A to an expression e is the same as applying first one and then
the other; that is, e(0A) = (e0)A. The empty substitution can be shown to be an identity under composition;
that is, { }0 = 0{ } = 0, for all substitutions 0. Also, composition can be shown to be associative; that is,
6(Ap) = (6A)p for all substitutions 0, A, and p.

The definition of composition suggests a way of computing it. For example,

{y- g(z)}{y - x, z - b} = (y- g(b)) o {y4-- x, z +- b)

= {y -g(b), z - b}

and therefore

{X4-Y, Y +-g(z)}{y - x, z - b) (x+- x) o{y - g(b), z+- b}

= {y-- g(b), z - b}.

Note that the composition of substitutions is not commutative. For example, {z 4- y}{y -- x} =

{y +-- x} and {y +- x}{x +- y} = {x - y}, but {y +- x} 5 {x 4- y}.

A substitution 0 is said to be more general than a substitution 0' if there exists a substitution A such that
OA = 0'. For example, the substitution 0 : {x 4- y} is more general than the substitution 0' : {x 4- a, y 4-- a},
because

O{y.--a} = {x4--y}{y -a} = {x -a,y--a} = 0'.

On the other hand, 0 : {x 4-- y} is not more general than the substitution I: {x +- a}, because there is no
substitution A such that

OA = {x +- y}A = {x - a} =

A substitution is regarded as more general than itself, because 0{ } = 0 for any substitution 6. It is
possible for two distinct substitutions to be more general than each other. For example, 0 : {x +- y} and
0' : {y 4-- x} are more general than each other, because

0{y -- } = {x - y}{y - X} = {y - X} = 0'
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and

0'{X - y} = { -Z}{X - Y} = {x - Y} = 0.

UNIFIERS

A substitution 9 is said to be a unifier of two expressions e and i if

eo = E9,

that is, if eO and a9 are identical expressions. Two expressions are unifiable if they have a unifier.

For example, the substitution

9: {Ix--b, y +-z}

is a unifier of the two expressions

e: f(x, z) and j: f(b, y),

because e9 = j9 = f(b, z). Thus, e and a are unifiable. The substitutions

4: {x"-b, z-y}

and

p: {x 4-b, y -- w, z -W}

are also unifiers of these two expressions. Thus, unifiers of expressions are not unique.

The expressions p(a) and p(b) are clearly not unifiable and neither are the expressions q(x, f(x)) and
q(g(y), y). The expressions x and f(x) are also not unifiable. Because x is a proper subexpression of f(x), we
know x9 is a proper subexpression of (f(x)) 0, for any substitution 0; hence x9 and (f(x)) 0 are not identical.

A substitution 9 is said to be a most-general unifier of two expressions e and E if 9 is a unifier of e and 3
and if 0 is more general than any unifier of e and 3. For example, the distinct substitutions 9 {x +- b, y +- z}
and € : {x 4-- b, z -- y} are both most general unifiers of the expressions e: f(x,z) and E : f(b, y). Thus,
most-general unifiers are not unique. It is clear, however, that all most-general unifiers of two expressions
are equally general, i.e., each is more general than any of the others.

There is a unification algorithm (Robinson [65]) for determining whether a given pair of expressions is
unifiable and, if so, for producing a most general unifier.

We can extend the notion of unifier to apply to a list of pairs of expressions. A substitution 0 is said to
be a simultaneous unifier of the list

((el, rl), (e2, F2, .... (en, in))

of pairs of expressions if

e19 = e, e 20= 0, . .. , and eO = '- .

(Note that we do not require that ej9 = ej., for distinct i and j.) We may also say that 0 is a
simultaneous unifier of el and r, of e2 and F2, ... , and of en and 9. A list of pairs of expressions is

simultaneously unifiable if it has a simultaneous unifier.

A list may fail to be simultaneously unifiable even though the expressions of each pair it contains are

unifiable independently. For example, the list of pairs

((1, g(y)), (f(z), Y))
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is not simultaneously unifiable, even though the expressions x and g(y) are unifiable, by the substitution
{x *-- g(y)}, and the expressions f(x) and y are unifiable, by the substitution {y -- f(x)}.

For any list of pairs of expressions, a simultaneous unifier is most general if it is more general than any
other simultaneous unifier.

We can extend the notion of unifier further to apply to a list of lists of expressions. A substitution 0 is
said to be a simultaneous unifier of the list

((e1,EE,2, ... ), ,........

of lists of expressions if

e19 = e9 = Alo =

e29 = i2 = 40 =

en = = = = 0 ..

We may also say that 9 is a simultaneous unifer of el,; ,i , ... , of 2,, . .. , and of en, 4n) r,, ....
The notion of most-general simultaneous unifier and the unification algorithm may be extended accordingly.
The notation is more complex but the concepts are the same.

SUBSTITUTION AND REPLACEMENT

We sometimes find it convenient to use the replacement and substitution notations together. Suppose a, t,
and e are expressions, where s and t are either both sentences or both terms. Let 0 be a substitution. If we
write e as e[s], then

eo[t]

denotes the expression obtained by replacing every occurrence of sO in eO with t. If we write e as e(s), then

eo(t)

denotes the expression obtained by replacing certain (perhaps none) of the occurrences of sO in eO with t.

For example, consider the expression

e p(f(x, a)) or q(f(x, y)) or r(f(b, a))

and the substitution

0: {Ix4-b, y,--a}.

If we write e as e[f(x, a)], then eO[g(c)] is

p(g(c)) or q(g(c)) or r(g(c)).

Note that two of the replaced occurrences of f(x, a)0 in eO do not correspond to occurrences of f(x, a) in e;
they were created by application of the substitution 0.

INTERPRETATIONS

We shall use the Herbrand notion of interpretation, in which the elements of the domain are identified with
the terms of the language.
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An interpretation I is an assignment of truth values, either T (true) or F (false), to every ground
proposition (i.e., to every proposition that contains no variables). If I assigns T [or F] to a ground proposition,
that proposition is said to be true [or false] under 1. The truth [or falseness] of a nonpropositional ground
sentence under an interpretation I may be determined from that of its propositional constituents by the
familiar semantic rules for the logical connectives.

A nonground sentence P is true under I if every ground instance of P is true under 1; otherwise, P is
false under 2. Note that, according to this definition, free variables have a tacit universal quantification.

We can now define the notions of implication and equivalence between sentences. The sentences
P1 , P2 , P3 , ... imply a sentence Q if, for any interpretation 2,

if P1, P2 , P2 , ... are all true under 2,
then Q is true under 2.

Note that if P implies -Q, it is not necessarily the case that the sentence (if P then Q) is valid. For
example, p(x) implies p(a), because free variables are taken to be universally quantified. But the sentence
(if p(x) then p(a)) is not valid: its instance (if p(b) then p(a)) is false under any interpretation for which
p(b) is true and p(a) is false.

Two sentences P and Q are equivalent if, for any interpretation 2,

P is true under I
if and only if

Q is true under 2.

Hence P is equivalent to Q if P implies Q and Q implies P. For example, the sentences p(x) and p(y) are
equivalent.

Lemma (instantiation)

For any sentence 7 and substitution 0, 7 implies 70.

Both total and partial replacement exhibit the following value property:

Suppose P, Q, and 7 are ground sentences and I is an interpretation. Then

if P and Q have the same truth value under 2,
then F[P] and .7[Q] have the same truth value under 2.

Also,

if P and Q have the same truth value under 2,
then 7"(P) and 7(Q) have the same truth value under 2.

A corresponding value property applies to multiple replacements.

Remark

The value property applies only to ground sentences, not to sentences with variables. For instance, let
P be the sentence p(x), let Q be the sentence false, and let F[P] be the sentence (not p(x)). Consider an
interpretation I under which

p(a) is true and p(b) is false.

Then (by the definition of truth for a nonground sentence) p(x) is false under I and hence

p(x) and false have the same truth value under 2.
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On the other hand (by the definition again) not p(x) is also false under I and hence

(not p(x)) and (not false) do not have the same truth value under 1,

contradicting the conclusion of the value property.

THEORIES

A theory is a set of sentences 7 that is closed under logical implication: If 7 implies a sentence P then P
belongs to 7. A member of a theory 7' is also said to be valid in 7.

A theory 7 is said to be defined by a set of sentences A if 7 is precisely the set of sentences implied by
A. We shall also say that A is a set of axioms for 7.

An interpretation 2 is said to be a model for a theory 7 if every sentence of 7 is true under 2.

For example, let 7 be the set of sentences implied by the transitivity axiom,

if x -< y and y-< z
then x -< z,

and the irreflexivity axiom,

not x -< x.

Then 7 is a theory, defined by these axioms. The asymmetry property

if x -< y
then not y -< x

is a (valid) sentence of this theory.

RELATIONS

We need some special terminology for speaking about relations. Henceforth, let us consider a particular
theory. When we speak of validity, we shall mean validity in that theory.

Let p and q be n-ary relations. Then we say that p implies q if

if p(x 1 , x 2, ... ,xn) then q(xj,x 2 , ... ,Xn)

is valid (in the theory under discussion). We also say that p is equivalent to q if

p(Xl, X2, .,Xn) a- q~xl, 02, .... ,Xn)

is valid.

Let -4 be an arbitrary binary relation. We shall say that, over a given theory, -4 is reflexive if

x -q X

is valid (in the theory); -4 is irreflexive if

not (X -< X)

is valid; -< is total if

x -- y or x = y or y -4 x
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is valid; -4 is transitive if

if (x-4y and y-4z) then x-4z

is valid; and -4 is symmetric if

if x -4 y then y - x

is valid.

We regard logical connectives as relations on the set of truth values {T, F}. For instance, the implication
connective (if P then Q) is the relation that holds if P has value F or if P and Q both have value T; we may
read it as "P is falser than (or as false as) Q." The equivalence connective P =- Q is simply the equality
relation on {T, F}. Note that, viewed as binary relations, the implication connective if-then is reflexive, total,
and transitive, and the equivalence connective -= is reflexive, transitive, and symmetric.

ASSOCIATED RELATIONS

For each binary relation, we shall be concerned with certain associated relations.

Consider an arbitrary binary relation x -4 y (read as "x is related to y"). The reflexive closure -4 of -4
is defined by

X _y - (x y or x=y).

The irreflexive restriction -< of -4 is defined by

x •• -= (x -.4 y and not (x = y)).

The inverse *- of -4 is defined by

x =-y Y *-X.

The negation 74 of -4 is defined by

x 7 y - not(x-4y).

We use >- and >- to denote the inverses of -< and -<, respectively, and -A and :ý to denote their negations. If
we are using the prefix notation p(x, y) for a binary relation, we denote its reflexive closure by =(x, y), its

irreflexive restriction by P(x, y), and its negation by 3(x, y).

The following proposition connects the relations associated with a given binary relation:

Proposition (negation of associated relations)

Consider an arbitrary binary relation -4.

The negation ;ý of the reflexive closure of -- is equivalent to the irreflexive restriction of its negation
74, that is,

x A y if and only if (X 74 y and not (x= y)).

The negation -4 of the irreflexive restriction of -4 is equivalent to the reflexive closure of its negation
74, that is,

x-y if and only if (x74y or x=y). j
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3. RELATIONAL POLARITY

We are now ready to define our key notion, the polarity of a subexpression with respect to a given binary
relation. We actually define the polarity of a subexpression with respect to two binary relations, -"1 and

-42. This notion is to be defined so that, if the subexpression is positive, replacing that subexpression with a
larger expression (with respect to -"1 ) will make the entire expression larger (with respect to -42). Similarly,
if the subexpression is negative, replacing that subexpression with a smaller expression (with respect to -41)
will make the entire expression larger (with respect to -42).

We begin by defining polarity for the arguments of an operator (i.e., function or relation).

Definition (polarity of an operator)

Let f be an n-ary operator and -"1 and -42 be binary relations. Then

* f is positive over its ith argument with respect to -4 1 and -42 if the sentence

if X -41 y
then f(z1,...,zi.i,x,zi+l,...,Zn) -"2 f (zi,.",Zi--,1, yzi+i,..",Zn)

is valid. In other words, replacing x with a larger element y makes

f(zi, ..., z 1 _, zi+i..., zn)

larger.

* f is negative over its ith argument with respect to -41 and -42 if the sentence

if x -• y
then f(zi,..,ziiY zi+1, ...,zn) -42 f(z1,...;Zi...iz-i+i, -.,Zn)

is valid. In other words, replacing y with a smaller element x makes

f (-lj - ... Zi--1, Y, Zi+ l, ... , Zn)

larger. j

We illustrate this notion with two examples.

Example

Suppose our theory includes the finite sets and the nonnegative integers. Take f(z) to be the cardinality
function card(z), which maps each set into the number of elements it contains. Take -"1 to be the subset
relation C over the finite sets and -42 to be the weak less-than relation _< over the nonnegative integers.

Then the card function is positive over its first (and only) argument with respect to the relations C and
<, because the sentence

if X C_ y
then card(x) < card(y)

is valid (in the theory).,

Example

Consider the theory of the integers. Take f(zi, z2) to be the less-than relation z, < z 2 . Take x -4 1 y to

be the predecessor relation x "<pred Y, which holds if x = y - 1, and take -42 to be the if-then connective.

(Recall that we regard connectives as relations on the set of truth values.)
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Then the less-than relation < is negative over its first argument with respect to "<pred and if-then,
because the sentence

if X <-pred Y

then if y < z2 then x < z 2

is valid. Also, < is positive over its second argument with respect to "<pred and if-then, because the sentence

if X <-pred Y
then if z, < x then z, < y

is valid.

It follows from the definition that, for any n-ary operator f and binary relations -• and -42,

f is positive over its ith argument with respect to -41 and -42
if and only if

f is negative over its ith argument with respect to *-1 and -42
if and only if

f is negative over its ith argument with respect to -41 and )'2
if and only if

f is positive over its ith argument with respect to *-- and ý-2.

When we say that a relation p(z1 , ... , zn) is positive or negative over its ith argument with respect
to a single relation -"1, without mentioning a second relation -4, we shall by convention take -42 to be the
if-then connective. Thus in the above example we may simply say that < is negative over its first argument
and positive over its second argument, with respect to "<pred.

Every relation is both positive and negative over each of its arguments with respect to the equality
relation =, because the sentences

if X=y if x=y
then if p(zl, ..., , ... , ,Zn) and then if p(z,, ..., y, ..., zn)

then p(z, ... , y, ... , zn) then p(Z,..., X, ... , Zn)

are valid. This is equivalent to the relational-substitutivity property of equality. Also, every function is both

positive and negative over each of its arguments with respect to - and =, because the sentences

if X = y and if x=y
then f(zi,..., X, ... , )Z,) = f(zi,..., Y, ... , z,) then f (z, Y, .... Zn) = f (z,, - , ., Zn)

are valid. This is equivalent to the functional-substitutivity property of equality.

Every connective is both positive and negative over all its arguments with respect to -. For example,
the not connective is both positive and negative over its argument with respect to -=, because both sentences

if XZ y and if X y
then if (not x) then (not y) then if (noty) then (notx)

are valid.

When we say that a connective is positive or negative over its ith argument, without mentioning any
relations -.< and -42 at all, we shall by convention take both -4 and -<2 to be the if-then connective. Polarity
in this sense is close to its ordinary use in logic. The negation connective not is negative in its first (and
only) argument, because the sentence

if if x then y
then if (noty) then (notz)
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is valid. The conjunction connective and and the disjunction connective or axe positive over both their
arguments. The implication connective if-then is negative in its first argument, but positive in its second.

The equivalence connective =- has no polarity in either argument. The conditional connective if-then-else

has no polarity in its first argument, but is positive in its second and third argument.

Note that a binary relation -4 is transitive if and only if it is negative with respect to -4 itself over its

first argument, because the polarity condition

if x -4 y
then if y -4 z then x -4 z

is equivalent to the definition of transitivity. Also, -4 is transitive if and only if it is positive with respect to
-4 over its second argument.

We are now ready to define polarity for the subexpressions of a given expression. The definition is

inductive.

Definition (polarity of a subexpression)

Let -qi and -42 be binary relations. Then

& An expression s is positive in s itself with respect to -41 and -42 if -4 1 implies -42.

* An expression s is negative in s itself with respect to -41 and -42 if - 4 1 implies *'2.

Let f be an n-ary operator and el, e2 , • .. , e,• be expressions. Consider an occurrence of s in one
of the expressions ei. Then

"* The occurrence of s is positive in f(e1, e2 , ... ,e,) with respect to -41 and -"2 if there

exists a binary relation -4 such that

the polarity of the occurrence of s in ei with respect to -<1 and -4

is the same as
the polarity of f over its ith argument with respect to -4 and -42.

"* The occurrence of s is negative in f(el, e2 , ... , en) with respect to -41 and -42 if there
exists a binary relation -4 such that

the polarity of the occurrence of s in ei with respect to -41 and -4

is opposite to
the polarity of f over its ith argument with respect to -4 and -42.

Furthermore, if f has no polarity over its ith argument or if s has no polarity in e1, then a has
no polarity in f(el, e 2, ... , e,). On the other hand, if s has both polarities in ei and f has some
polarity over its i argument, or if f has both polarities over its ith argument and a has some polarity

in ei, then s automatically has both polarities in f(el, e2 , • .. , e). j

Remark

For any binary relation -4, any expression s is positive in s itself with respect to -4 and -. (because -4

implies -4). Similarly, s is negative in s with respect to -4 and .-.

If f is positive over its ith argument with respect to -41 and -"2, then, for any expressions el, e2 , en. ,

the occurrence of ei is positive in f(el, . . ., ei, • • •, en) with respect to -41 and -42. For take -4 to be -<1. Then
the polarity of ei in ei itself is positive with respect to -41 and -41. Also, f is positive over its ith argument

with respect to -41 and -42. Because these two polarities are the same, ei is positive in f(ei, ... , ei, . .. , e)
with respect to -<1 and -42.
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Similarly, if f is negative over its ith argument, then ei is negative in f(el, ... , ej, ... , e,), with respect
to -.4 and -42. j

We may indicate the polarity of a subexpression s by annotating it s+, s-, or s±.

For example, suppose our theory includes the theories of sets and nonnegative integers. The occurrence
of a in the sentence

card(s-) < m

is negative with respect to the subset relation C- and the if-then connective. For note that card is positive
over its argument with respect to C and < and that < is negative over its first argument with respect to <
and if-then. Therefore, by our remark, we know that s is positive in card(s) with respect to C and < and

that card(s) is negative in card(s) < m with respect to <- and if-then. By the definition, taking -41 to be
C, -4 to be <, and -42 to be if-then, we conclude that s is negative in card(s) < m with respect to C and

if-then.

When we say that an occurrence of a subexpression is positive or negative in a sentence with respect

to a single relation -41, without mentioning a second relation -42, we shall again take -42 to be the if-then
connective. When we say that an occurrence of a subsentence is positive or negative in a sentence, without

mentioning any relation at all, we shall again take both -. 1 and -42 to be if-then.

It can be established from the definition that, for expressions s and t and binary relations -41 and -42,

an occurrence of s is positive in t with respect to -.< and "42
if and only if

the occurrence of s is negative in t with respect to *-- and -42
if and only if

the occurrence of s is negative in t with respect to -"1 and )'2
if and only if

the occurrence of s is positive in t with respect to *-1 and --2.

This is analogous to our previous result concerning polarity for the argument of an operator.

Suppose an occurrence of a is positive [or negative] in t with respect to -41 and -42. Then if "41 is a

binary relation that implies -41, then s is positive [or negative, respectively] in t with respect to 41 and -42.

Similarly, if -42 implies a binary relation 42, then s is positive [or negative, respectively] in t with respect
to -41 and -42.

We can establish the following result:

Lemma (polarity operator)

Let -.41 and -"2 be binary relations, f be an n-ary operator, and el, e2, • , e,n be expressions. Con-
sider an occurrence of s in one of the expressions ei such that s has some polarity in f(el, e 2 , ... en)
with respect to -41 and -42.

Then there exists a binary relation -4 such that

f is positive over its ith argument with respect to -4 and -42

and

the polarity of the occurrence of s in f(el, e2 , ... , en) with respect to -41 and -42

is the same as
the polarity of the occurrence of s in ei with respect to -"1 and -4.
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Proof

Consider the case in which the occurrence of s is positive in f(el, e2, ... , en) with respect to -41 and
"-42. According to the definition, this means that there exists a binary relation ; such that

the polarity of the occurrence of s in e, with respect to -41 and -
is the same as

the polarity of f over its ith argument with respect to -4 and -42.

If f is positive over its ith argument with respect to ; and -42, then the occurrence of s is positive in
ej with respect to -41 and .- , and we can simply take -4 to be .4.

On the other hand, if f is negative over its ith argument with respect to :4 and -42, then the occurrence
of s is negative in ej with respect to --< and -;. By previous remarks, this means that f is positive over its
ith argument with respect to the inverse relation ;- and -42, and the occurrence of s is positive in ej with
respect to -41 and the inverse relation ;-. Hence we can take -4 to be ;-.

The case in which s is negative in f(eC, e2 , ... , e,) is treated similarly. j

Polarities of subexpressions of subexpressions can be composed according to the following result.

Lemma (polarity composition)

Consider an occurrence of a subexpression r in an expression s and an occurrence of s in an
expression t. Then the polarity of the occurrence of r is positive [or negative] in t with respect to
binary relations -41 and -<2 if and only if there exists a binary relation -4 such that

the polarity of the occurrence of r in s with respect to -41 and -4
is the same as [or opposite to, respectively]

the polarity of the occurrence of s in t with respect to -4 and "42.

For instance, if r is negative in a and s is negative in t then r is positive in t, with respect to the
appropriate binary relations. If r has both polarities in s and s has some polarity in t, then r has both
polarities in t.

We can now establish the fundamental property of polarity.

Lemma (polarity replacement)

For any binary relations -"1 and -42 and expression e(x+, y-), the sentence

if X -41 y

then e(X+, y -<2 e(y+, x-)'

is valid. Here e(y+, x-)' is the result of replacing in e(x+, y-) precisely one positive occurrence
of x with y or negative occurrence of y with z (we assume that such an occurrence exists) where
the polarity is taken in e(x+, y-) with respect to -41 and -42.

Example

Suppose our theory includes the theories of lists and nonnegative integers. Take -- 1 to be the tail
relation x -taiL y, which is true if

not (y []) and x = tail(y),



18 3. RELATIONAL POLARITY

that is, if y is nonempty and x is the list of all but the first element of y. Take -42 to be the predecessor
relation -<pred. Take e(x+, y-) to be the expression

length(x+) + length(x+),

where the function length(x) yields the number of elements in the list x.

Note that each occurrence of x is positive in length(x) + length(x) with respect to -<tail and "<pred, as
indicated by the annotations. For, each occurrence is positive in length(x) with respect to -<tail and "<pred,

and the plus function + is positive over either of its arguments with respect to "<pred and -<pred.

Therefore, according to the lemma, the sentence

if X -<tail Y

then length(x) + length(x) lpred length(y) + length(x)

is valid, because length(y) + length(x) is the result of replacing one positive occurrence of x in length(x) +
length(x) with y. Also, according to the lemma, the sentence

if X -<tail Y

then length(x) + length(x) "<pre, length(x) + length(y)

is valid, because length(x) + length(y) is the result of replacing one positive occurrence of x in length(x) +
length(x) with y.

On the other hand, the lemma does not allow us to conclude that

if x -<tait Y

then length(x) + length(x) <pred length(y) + length(y)

is valid, because length(y) + length(y) is obtained by replacing two, not one, positive occurrences of x in
length(x) + length(x) with y. In fact, this third sentence is not valid.

We now prove the lemma.

Proof (polarity replacement lemma)

For any arbitrary binary relation -<,, suppose that

X -41 Y.

We show that, for any expression e(x+, y-), we have, for any binary relation -42,

e(x+, Y-) -2 e(y+, Xr)'.

The proof is by induction on the structure of e(x+, y-). In other words, we show the desired conclusion
for an arbitrary expression e(x+, y-), under the induction hypothesis that, for any proper subexpression
Z'(x+, y-) of e(x+, y-), we have, for any binary relation -•2,

Z(+ Y-) 2 YX-I

As in the statement of the lemma, Z(y+, x-) 1 is obtained from 2'(x+, y-) by replacing precisely one occurrence
of x or y, of suitable polarity with respect to -(q and -•2.

The proof distinguishes among several subcases.

Case: The expression e(x+, y-) is simply x

Then, because the replaced variable x is positive in x, with respect to -41 and -42, we have (by the
definition of polarity) that -41 implies -42.
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In this case, e(y+, x-)' is y, and we must show

X -42 Y.

But this follows from our supposition that x -41 y, because -"1 implies -"2.

Case: The expression e(x+, y-) is simply y

Then, because the replaced variable y is negative in y with respect to -41 and "42, we have (by the

definition of polarity) that -"1 implies )-2.

In this case, e(y+, x-) is x, and we must show that

Y -42 X,

or, equivalently, that

X*'2 y.

But this follows from our supposition that x -41 y, because -"1 implies 1-2.

Case: e(x+, y-) is of form f(eleC, 2.'', en), where f is an n-ary operator

The replaced occurrence of x [or y] must occur in one of the arguments ej of f. Because this occurrence

is positive [or negative, respectively] in f(el, e 2 , ... , en,) with respect to -41 and -42, we know (by the polarity

operator lemma) that there exists a binary relation -4 such that

f is positive over its ith argument with resect to -4 and -42

and

the polarity of the replaced occurrence of x [or y] in ej with respect to -"1 and -4
is the same as

the polarity of the replaced occurrence of x [or y] in f(el, e2 , ... , e,), that is,

e(x+, y-), with respect to -41 and -42.

Let us therefore write ei as e (a+, y-).

Because ei(x+, y-) is a proper subexpression of e(x+, y-), we can apply our induction hypothesis,

taking Z•'(+, y-) to be ei(x+, y-) and "•2 to be -4, to conclude that

ei(x+, y) ei(y+, x-)-.

Therefore (by the definition of polarity of an operator, because f is positive over its ith argument with

respect to -4 and -42), we have

f (el,.-.,ei(x+, Y),...,en) -42 f(ej,...,ei(y+, -),..., en),

that is,

e(a+, y-) 2 e(y+, X-)i,

as we wanted to show. This completes the proof.

The polarity replacement lemma allows us to replace precisely one occurrence of a variable. If we know

more about the relation -42, we can establish stronger versions of the lemma. In particular, if we know that

"-42 is transitive, we can replace one or more occurrences of the variable.

Lemma (transitive polarity replacement)
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For any binary relations -41 and -42 and expression e(x+, y-), where -*2 is transitive, the sentence

if X -' y
then e(X+, Y-) -2 e(y+, X-)n

is valid for every positive integer n. Here e(y+, x-)n is the result of replacing in e(x+, y-) precisely

n positive occurrences of x with y or negative occurrences of y with x, where the polarity is taken

in e(x+, y-) with respect to -"1 and -42. .1

Note that we can replace occurrences of both x and y in the same expression; precisely n replacements

are made altogether. Also, the lemma requires that at least one replacement be made.

Example

Suppose our theory includes the theories of both lists and integers. Take e(x+, y-) to be the expression

e(x+, y-: length(x+) + (length(x+) - length(y-)).

Take -41 to be the tail relation -<tail (defined in a previous example) and -"2 to be the less-than relation

<. Note that, with respect to -<tail and <, both occurrences of x are positive and the occurrence of y is

negative in e(x+, y-); also < is transitive. According to the lemma, the following sentences (among others)

are valid: the sentence
if X -<tail Y

then length(x) + (length(x) - length(y)) < length(y) + (length(y) - length(y)),

for which both occurrences of x in e(x+, y-) have been replaced, and

if X "<tail Y

then length(x) + (length(x) - length(y)) < length(x) + (length(y) - length(x)),

for which one occurrence of x and one of y in e(x+, y-) have been replaced.

On the other hand, the lemma does not allow us to conclude that

if Z -<tai••

then length(x) + (length(x) - length(y)) < length(x) + (length(x) - length(y)),

is valid, because no replacements of x or of y in e(x+, y-) have been replaced. In fact, this final sentence is

clearly not valid.

We now prove the lemma

Proof (transitive polarity replacement lemma)

We assume throughout that polarity is with respect to -41 and -42. We suppose that

x -41 y

and show that

e(z+, y-) -2 e(y+, X-n

for every positive integer n. The proof is by induction on n.

Base Case: n = 1.

In this case, precisely one replacement is made. The desired result

e(X+, Yo) -42 e(y+, r e)e

follows from the original polarity replacement lemma.
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Inductive Step:

For an arbitrary positive integer k, we assume inductively that

e(X+, Y-) -42 e(y+, X-)k

and show that

e(X+, y-) -<2 e(Y+, x-)k+l.

Observe that e(y+, x-)k+l can be obtained from e(y+, x-)k by replacing precisely one positive occur-

rence of z with y or one negative occurrence of y with x. Therefore, by the original polarity replacement

lemma, we have

e(y+, x-)' -42 e(Y+, X-)k+1.

Because our induction hypothesis is that e(x+, y-) -42 e(Y+, x-)k, and because we have assumed that

-42 is transitive, we can conclude that

e(X+, y-) -42 e(Y+, X-)k+l,

as we wanted to show.

If -42 is transitive, the above lemma allows us to replace one or more occurrences of a variable. If -42 is
both reflexive and transitive, the following lemma allows us to replace zero, one, or more occurrences.

Lemma (reflexive transitive polarity replacement)

For any binary relations -41 and -42 and expression e(x+, y-), where -42 is both reflexive and transitive,

the sentence

if z -41 y
then e(X+, Y-) -42 e(Y+, X-)

is valid. Here e(y+, x-) is the result of replacing in e(x+, y-) certain positive occurrences of z with y and
certain negative occurrences of y with x, where polarity is taken in e(x+, y-) with respect to -41 and -42.

J

This lemma, as opposed to the transitive polarity replacement lemma, admits the possibility of replacing no

occurrences at all of x or y in e(x+, y-).

Example

Suppose our theory includes the theories of both finite sets and integers. Take e(x+, y-) to be the

expression

e(x+, y-): card(x+ - y-) - card(y- - x+)

where x - y is the difference between the sets x and y, that is, the set of elements of x that do not belong to

y. Take -41 to be the subset relation C and -42 to be the weak less-than relation <. Note that, with respect

to C and <, both occurrences of x are positive and both occurrences of y are negative in e(x+, y-), as the

annotations indicate. Also, < is both transitive and reflexive.

Therefore, according to the lemma, the following sentences are valid: the sentence

if z C__y
then card(x - y) - card(y - x) •_ card(y - x) - card(x - y),
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for which all occurrences of x and y in e(x+, y-) have been replaced, and the sentence

if xC_y
then card(x - y) - card(y x) • card(x - y) - card(y~ x),

for which no occurrences of x and y in e(x+, y-) have been replaced. Of course, other valid sentences can
be obtained by replacing some, but not all, of the occurrences of x and y in e(x+, y-).

The proof is straightforward.

Proof (reflexive transitive polarity-replacement lemma)

In the case in which no replacements are made, e(y+, x-) is identical to e(x+, y-), and the desired
result holds because we have supposed that -42 is reflexive. In the case in which one or more replacements are
made, the desired result follows from the transitive polarity replacement lemma, because we have supposed
that -42 is also transitive.

The following consequence of the polarity replacement lemma will be used most frequently:

Proposition (polarity replacement)

For any binary relation -4 and sentence P(x+, y-), the sentence

if x -4 y
then if P(x+, y-)

then P(y+, x-)

is valid. Here P(y+, x-) is the result of replacing in P(x+, y-) certain positive occurrences of x
with y and certain negative occurrences of y with x, where polarity is taken in P(x+, y-) with
respect to -4.

Recall that, when we refer to polarity in a sentence with respect to a single relation -4, we mean polarity
with respect to -4 and the if-then connective. The proposition allows us to replace occurrences of both x
and y in the same sentence and (trivially) admits the possibility that no replacements are made.

The proof is immediate.

Proof

Regarded as a relation, the if-then connective is reflexive and transitive. The replaced occurrences of
x and y are respectively positive and negative in P(x+, y-) with respect to -4 and if-then. Therefore the
proposition is simply an instance of the reflexive transitive polarity replacement lemma, taking -41 to be -4,

"-(2 to be if-then, and e(x+, y-) to be P(x+, y-). j

Example

Suppose our theory includes the theories of finite sets and integers. Take P(x+, y-) to be the sentence

P(x+, y-): a <card(x+ - y-) and card(y- - x+) <b.

Take -4 to be the subset relation C. Note that, with respect to C, both occurrences of x are positive and
both occurrences of y are negative in P(x+, y-), as indicated by the annotations. Therefore, according to
the proposition, the following sentences are valid: the sentence

if x C_ y
then if a < card(x - y) and card(y - x) < b

then a < card(x - x) and card(y - y) < b,
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for which one occurrence of x and one occurrence of y in P (x+, y-) has been replaced, the sentence

if X Cy
then if a < card(x - y) and card(y x) < b

then a < card(y y) and card(y y) < b,

for which both occurrences of x in P(x+, y-) have been replaced, and the sentence

if X C_ y
then if a < card(x~ y) and card(y x) < b

then a < card(y ~- x) and card(z - y) <_ b,

for which both occurrences of x and both occurrences of y in P(x+, y-) have been replaced. .

We have now developed the mathematical results on relational polarity we need in order to introduce
the special-relations rules. But first, we introduce briskly our basic nonclausal deduction system.

4. NONCLAUSAL DEDUCTION

In this section we present a basic nonclausal deduction system, without any special-relations rules. This
system bears some resemblance to those of Murray [82] and Stickel [82]; it is based on the system of Manna

and Waldinger [80], but is simplified in several respects:

"* The system presented here is a refutation system; it attempts to show that a given set of sentences
is unsatisfiable. (The original system operates on a tableau of assertions and goals, and attempts
to show that at least one of the goals follows from the assertions.)

"* The system is presented with no program synthesis capabilities.

"* The mathematical induction principle is omitted.

These simplifications have been made for purely expository purposes: the special-relations rules are
compatible with a tableau theorem prover and with the induction principle and are of great use in program
synthesis, our primary application.

THE DEDUCED SET

The deduction system we describe operates on a set, called the deduced set, of sentences in quantifier-
free first-order logic. We attempt to show that a given deduced set is unsatisfiable, i.e., that there is no
interpretation under which all the sentences are true.

Theorem proving in a first-order axiomatic theory can be reduced to showing the unsatisfiability of such

a set. In particular, to show that a sentence 7 is valid in a theory whose axioms are Al, A2 , ... , AA;, we
can

"* Remove the quantifiers of the sentences A1 , A2 , ... , Ak, and not Y, by skolemization (see,
for example, Chang and Lee [73], Loveland [78], or Robinson [79]).

"* Show the unsatisfiability of the resulting set of quantifier-free sentences.

We do not require that the sentences be in clausal form; indeed, they can use the full set of connectives of

propositional logic, including equivalence (-) and the conditional (if-then-else).
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Example

Consider the theory of the strict partial ordering -<, defined by the transitivity axiom

[if -< y and y -< z
(V) (Vy) (Vz) [then x -

and the irreflezivity axiom

(Vx) [not (x -< x)].

Suppose we would like to show that in this theory the asymmetry property

(Vu)(Vv) [if u -<v

[then not v -< u

is valid. It suffices to show that the set of quantifier-free sentences

if x -'<y and y -< z not ( -< X) not [if a-< b
then x- d - [then not (b -<a)]

is unsatisfiable.

If the truth symbol false belongs to the deduced set, the set is automatically unsatisfiable, because the
sentence false is not true under any interpretation.

Because the variables of the sentences in the deduced set are tacitly quantified universally, we can
systematically rename them without changing the unsatisfiability of the set; that is, the set is unsatisfiable
before the renaming if and only if it is unsatisfiable afterwards. Of course, we must replace every occurrence
of a variable in the sentence with the new variable, and we must be careful not to replace distinct variables
in the sentence with the same variable. The variables of the sentences in the deduced set may therefore be
standardized apart; in other words, we may rename the variables of the sentences so that no two of them
have variables in common.

For any sentence 7 in the deduced set and any substitution 9, we may add to the set the instance 70
of 7, without changing the unsatisfiability of the set. In particular, if the deduced set is unsatisfiable after
the addition of the new sentence, it was also unsatisfiable before. Note that in adding the new sentence 70,
we do not remove the original sentence 7.

THE DEDUCTIVE PROCESS

In the deductive system we apply deduction rules, which add new sentences to the deduced set without
changing its unsatisfiability. Deduction rules are expressed as follows:

71, 72...,7m

This means that, if the given sentences 71, 72, ... ,,7 belong to the deduced set, the conclusion 7 may
be added. Such a rule is said to be sound if the given sentences 71, 72, ... ., F"' imply the sentence 7". If a
deductive rule is sound, its application will preserve the unsatisfiability of the deduced set.

The deductive process terminates successfully if we introduce the truth symbol false into the deduced
set. Because deduction rules preserve unsatisfiability, and because a set of sentences containing false is
automatically unsatisfiable, this will imply that the original deduced set was also unsatisfiable.

We include two classes of deduction rules in the basic system:
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* The transformation rules, which replace subsentences with equivalent sentences.

* The resolution rule, which performs a case analysis on the truth of matching subsentences.

These rules are described in this section. In later sections, we augment the basic system with two new classes
of rules:

"• The replacement rules, which replace subexpressions with other expressions (not necessar-
ily equivalent or equal).

"* The matching rules, which introduce new conditions to be proved that enable subexpres-
sions to be matched.

We first describe the transformation rules.

TRANSFORMATION RULES

The transformation rules replace subsentences of the sentences of our deduced set with propositionally
equivalent, simpler sentences. For instance, the transformation rule

P and true -* P

replaces a subsentence of form (P and true) with the corresponding sentence of form P. The simplified
sentence is then added to the deduced set. (Logically speaking, the original sentence remains in the deduced
set too, but, for efficiency of implementation, the original sentence need not be retained.)

We include a full set of such true-false transformation rules; e.g.,

not true -+ false

P or true - true

if P then false -- not P.

These rules can eliminate from a sentence any occurrence of the truth symbols true and false as a proper
subsentence.

We also include such propositional simplification rules as

P and P -• P

not not P -- P.

These rules are not logically necessary, but are included for cosmetic purposes.

The soundness of the transformation rules is evident, because each produces a sentence equivalent to
the one to which it is applied.

Example

Suppose our deduced set contains the sentence

if q(a) then false

7 : or
(not true) or (not q(a)).

(We omit parentheses when the structure of the sentence can be indicated by indenting.) This can be
transformed, by application of the rule

if P then false - not P,
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into the sentence

not q(a)
or

(not true) or (not q(a)),

which may then be added to the deduced set.

The new sentence can be transformed in turn, by successive application of the rules

not true --+ false

false or P - P,

P orP- P,

into the sentence

not q(a).

We shall say that the original sentence I reduces to (not q(a)) under transformation.

Our original system (Manna and Waldinger [801) included many more transformation rules; also, their
operation was more complex. In this system, the role of these more complex rules has been assumed by the
replacement rule of Section 5.

RESOLUTION RULE: GROUND VERSION

The resolution rule applies to two sentences of our set, and performs a case analysis on the truth of a
common subsentence. Instances of the sentences can be formed, if necessary, to create a common subsentence;
however, we first present the ground version of the rule, which does not form instances of these sentences.

Rule (resolution, ground version)

For any ground sentences P, Y"[P], and g[P], we have

Y-[P]

F[false] or 9[true] l

In other words, if F[P] and 9[P] are sentences in our deduced set with a common subsentence P, we can
add to the set the sentence (Y[false] or g[true]) obtained by replacing every occurrence of P in F[P] with
false, replacing every occurrence of P in g[P] with true, and taking the disjunction of the results. We shall
assume that Y'[P] and g[P] have at least one occurrence each of the subsentence P. We do not require that

F[P] and g[P] be distinct sentences.

Because the resolution rule introduces new occurrences of the truth symbols true and false, it is always
possible to simplify the resulting sentence immediately afterwards by application of the appropriate true-false
rules. These subsequent transformations will sometimes be regarded as part of the resolution rule itself.
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Example

Suppose our deduced set contains the sentences

F: if q(a) then Fp-(a, b)

and

9 (not p(a, b)]) or (notq(a)).

These sentences have a common subsentence p(a, b), indicated by the surrounding boxes. By application of
the resolution rule, we may replace every occurrence of p(a, b) in .7 with false, replace every occurrence of
p(a, b) in g with true, and take the disjunction of the result, obtaining the sentence

if q(a) then false
or

(not true) or (not q(a)),

which (as we have seen in a previous example) reduces under transformation to

not q(a).

This sentence may be added to the deduced set.

Let us show that the resolution rule is sound, and hence that it preserves the unsatisfiability of the
deduced set.

Justification (resolution rule, ground version)

We must show that the given sentences F[P] and 9[P] imply the newly deduced sentence (7[false] or

9[true]). Suppose that F[P] and 9[P] are true; we would like to show that then (7[false] or 9[true]) is true.
We show that one of the two disjuncts, 7[false] or 9[true], is true.

In the case in which the common subsentence P is false, we know (by the value property, because P
and false have the same truth value and F[P] is true) that the first of the disjuncts, 7[false], is true.

Similarly, in the case in which the common subsentence P is true, we know (by the value property again,
because P and true have the same truth value and 9[P] is true) that the second of the disjuncts, 9[true], is
true.

We have established the soundness of the ground version of the resolution rule when applied to ground

sentences, which contain no variables. We require the sentences to be ground because the justification
depends on the value property, which holds only for ground sentences. We can actually apply the ground
version of the rule to sentences with variables; the soundnes of such applications follows from the justification
for the general version of the rule, which we present later.

We now discuss an important strategy for controlling the resolution rule.

THE POLARITY STRATEGY

Murray's [82] polarity strategy allows us to consider only those applications of the resolution rule under

which at least one occurrence of P is positive (or of no polarity) in F[P] and at least one occurrence of P is
negative (or of no polarity) in 9[P]. In other words, not all the subsentences that are replaced with false are
negative and not all the subsentences that are replaced with true are positive. This strategy blocks many
useless applications of the rule and rarely interferes with a reasonable step.
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The intuitive rationale for the polarity strategy is that it is our goal to deduce the sentence false, which
is more false than any other sentence. By replacing positive sentences with false and negative sentences with
true, we are moving in the right direction, making the entire sentence more false.

Example

Suppose our deduced set contains the sentences

7: I or q(b)

and

9 if p(a)]- then q(b).

These sentences have occurrences of a common subsentence p(a), of positive and negative polarity, respec-
tively, as indicated by the annotation. By application of the resolution rule, we obtain the sentence

false or q(b)
or

if true then q(b),

which reduces to q(b) under transformation.

Let us reverse the roles of our sentences.

7: if p-a)- then q(b)

9: I or q(b).

The sentences still have occurrences of a common subsentence p(a). However, it is in violation of the polarity
strategy to apply the rule for the sentences in this order, because now the occurrence of p(a) is negative in
.7, i.e., it is not positive or of no polarity. Also, the polarity of p(a) is positive in 9. If we insist on applying
the resolution rule anyway, we obtain the sentence

if false then q(b)
or

true or q(b),

which reduces to true under transformation. Although it does no harm to add the sentence true to our
deduced set, it is of no use in establishing the unsatisfiability of the set.

There are two other legal applications of the resolution rule to the same two sentences, obtained by
taking the common subsentence to be q(b) rather than p(a). Both of these applications of the rule lead us
to obtain the redundant sentence true, and both are in violation of the polarity strategy.

RESOLUTION RULE: GENERAL VERSION

The general version of the rule allows us to instantiate the variables of the given sentences as necessary
to create common subsentences. It is expressed as follows:
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Rule (resolution, general version)

For any sentences P, P, Y[P], and g[P], where F and 9 are standardized apart, i.e., they have no

variables in common, we have

70[false] or 99[true]

where 9 is a most-general unifier of P and i.

More precisely,

F 7 has one or more subsentences P, P1 , P2 , .

* 9 has one or more subsentences P, Pi, A2) ....

0 9 is a most general unifier of P, P1 , P2 , ... , and P, J, P2 , ... ; hence

PO = P10 = P20= ... =f = A = A20 =.....

* The conclusion of the rule is obtained by replacing all occurrences of PO in 79 with false,

replacing all occurrences of PG (that is, PO) in 99 with true, and taking the disjunction
of the results.

In other words, we apply the ground version of the rule to 70 and 99, taking PO as the common

subsentence.

The rule requires that the sentences .7 and 9 be standardized apart, i.e., that they have no variables

in common. This may be achieved by renaming the variables of the sentences as necessary. If both are the

same sentence, we rename the variables of one copy of the sentence.

Let us show that the general version of the rule is sound.

Justification (resolution rule, general version):

The soundness of the general version of the rule follows from the soundness of its ground version. We

show that the sentences 7 and g imply the sentence (79 [false] or 9O[true]).

We suppose that [under a given interpretation] the sentences .7 and 9 are true and show that (70[false]
or 90[true]) is also true. It suffices (by the definition of truth for a nonground sentence) to show that any

ground instance of (79[false] or 90[true]) is true.

Because I and 9 are true, we know (by the instantiation lemma) that 79 and 99 are true and hence

(by the definition of truth for a nonground sentence) that every ground instance of .79 and 99 is true. But

any ground instance of (.70[false] or 90[true]) is the result of applying the ground version of the rule to the

corresponding ground instance of .79 and 99; therefore it is also true.

The general version of the rule includes the ground version as a special case, in which the most-general

unifier 9 is the empty substitution { }.

The following illustration of the general resolution rule is extracted from the derivation of a binary-search

real-number square-root program.
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Example

In the theory of the nonnegative real numbers, suppose our deduced set contains the sentence

7: not(y2 < a and notI (y+C)2  a o ,),

where y is a variable and a and e are constants. (The sentence is negated because it is deduced from the

negation of the original theorem.)

We are about to apply the resolution rule to this sentence and itself. Therefore let us produce another

copy of the sentence and standardize the two sentences apart; i.e., we rename the variable of the second

sentence

9: not( g"_a and not((g+6)2 < a)).

The boxed subsentences

p: (y+ E)2 <a

and

P: •2 <a

are unifiable, with most-general unifier

0: {5+- y+E}.

To apply the rule, we replace all occurrences of P0 in 70 with false, replace all occurrences of '0 in 90 with

true, and take the disjunction of the results, obtaining

not (y2 <_ a and not false)
or

not (true and not (((y + ÷) + C)2 < a)).

This sentence reduces under transformation to

not(y 2 <a) or ((y+E) +) 2 <a.

The above application of the rule is in accordance with the polarity strategy, because the boxed sub-

sentence P is positive in 7 and the boxed subsentence P is negative in 9. j

The resolution rule presented here is an extension of the rule of Robinson [65] to the nonclausal case.

Robinson's rule applies to clauses of the form

7: P or 7'

9: (not f) or 9',

where P and J are unifiable propositions, with most-general unifier 0, and 7' and 91 are themselves clauses.

Robinson's rule deduces the new sentence

P'0 or P'0.

The resolution rule presented here deduces, from the same sentences 7 and g, the new sentence

false or 7P9

or
(not true) or 9'0.

This sentence reduces under transformation to (P09 or 9'O), the same sentence deduced by Robinson's version

of the rule.
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Nonclausal resolution was developed independently by Manna and Waldinger [80] and Murray [82]. The
resolution and transformation rules together have been shown by Murray to provide a complete system for
first-order logic. An implementation of a nonclausal resolution theorem prover by Stickel [82] employs a
connection graph strategy.

5. THE RELATION REPLACEMENT RULE

We now begin to extend our nonclausal deduction system to give special treatment to a binary relation
-4. The two new rules of the extension allow us to build into the system instances of the polarity replace-
ment proposition, just as the paramodulation and E-resolution rules allow us to build in instances of the
substitutivity of equality.

Recall that, according to the polarity replacement proposition, for any sentence P(x+, y-) and binary
relation -4, the sentence

if X -4 Y
then if P(x+, y-) then P(y+, x-)

is valid.

If we could add this sentence to our deduced set for each relevant sentence P (x+, y-), we could achieve a
considerable abbreviation of the proof, at the cost of a dramatic explosion of the search space. The extended
system will behave as if the sentences were present, achieving the same abbreviation of the proof and, at the
same time, collapsing rather than exploding the search space.

We begin with the relation replacement rule, which is our generalization of the paramodulation rule.

THE GROUND VERSION

With respect to a given relation -4, the rule allows us to replace subexpression occurrences with larger or
smaller expressions, depending on their polarity. The ground version of the rule which applies to sentences
with no variables, is as follows:

Rule (relation replacement, ground version)

For any binary relation -4, ground expressions s and t, and ground sentences F[s -4 t] and g(s+, t-),
we have

FS-4 t]

9(s+, t-)

F[falsel or 9(t+, s-).

Here g(t+, s-) is obtained from 9(s+, t-) by replacing certain positive occurrences of a with t
and replacing certain negative occurrences of t with s, where polarity is taken in 9(s+, t-) with
respect to -4.

J

In other words, if F[s -4 t] and 9(s+, t-) are sentences in our deduced set, we can add to the set the sentence
(7[false] or 9(t+, s-)).

For a particular relation -4, we shall refer to this rule as the -4-replacement rule: thus, we have a <-
replacement rule, a <-replacement rule, and so forth. Although the rule allows us to replace occurrences in
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9 (s+, t-) of both expressions s and t at the same time, it is typically applied to replace occurrences of one or
the other expression, but not both. Subsequent application of transformation rules, to remove occurrences
of the truth symbols true and false, may be regarded as part of the relation replacement rule itself.

There is a polarity strategy for the relation replacement rule, which allows us to apply the rule only if
some occurrence of s -4 t is positive (or of no polarity) in 7[s -4 t].

Naturally we may also require that some occurrence of s or t is actually replaced; otherwise, 9(t+, s-)
is identical to 9(s+, t-), and the sentence we obtain is (F[false] or 9(s+, t-)); this is weaker than the

sentence 9(s+, t-), which was already in the deduced set.

In illustrating the rule we draw boxes around the matching occurrences of s and t.

Example

In the theory of the nonnegative integers, suppose our deduced set contains the sentences

i7 (ps)

then ( < t)+
and

9: < ~+2

Note that the boxed occurrence of s in 9 is positive with respect to the less-than relation <. Therefore we
can apply the <-replacement rule to replace the occurrence of s in 9 with t, to deduce

[if p(s) 1
then false] or a <

which reduces under transformation to

(not p(s)) or 5 < t 2 .

The above application of the rule is in accordance with the polarity strategy, because the occurrence of
s < t is positive in 7. Note that not every occurrence of s in 9 was replaced in applying the rule.

In a system without the relation replacement rule, we could have deduced the same conclusion by
applying the resolution rule in sequence to 7, 9, the monotonicity property

if x<y
then x2 < y2,

and the transitivity property

if X<y
then if y < z

then x < z.

The rule allows us to draw the conclusion even if the monotonicity and transitivity properties are not in our
deduced set.

The following illustration of the rule is extracted from the derivation of a program to find the maximum
element of a list of numbers.
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Example

In a theory of lists of numbers (integers, say), suppose our deduced set contains the sentences

[if g(m) = h 1
I: not Lthen not (M <

ort - [

and

9: not ifg(h) E t ]S.or Lthen g(h)-< -

Note that the boxed occurrence of h in 9 is negative with respect to <. Therefore we can apply the

<-replacement rule to replace the occurrence of h in 9 with rm, to deduce[not then]]th.aen not falseJ ]
or J
or

no i g(h) E t
not ghhen g(h) < m)J.

This sentence reduces under true-false transformation to

t=[]
or

not [if g(h) m] tot[then g(h)_<MI

The above application of the rule is in accordance with the polarity strategy, because the subsentence
rn < h is positive in r. . J

Let us now establish the soundness of the rule.

Justification (relation replacement, ground version)

We show that the given sentences F[s -4 t] and 9(s+, t-) imply the conclusion (7[false] or 9(t+, s-)).

We distinguish between two cases and show that in each case one of the two disjuncts, F[falsel or 9(t+, s-),

is true.

In the case in which the subsentence s -4 t is false, we know (by the value property, because s -4 t and

false have the same truth value and f[s -4 t] is true) that the first of the disjuncts, F[false], is true.

In the case in which s -4 t is true, we know (by the polarity replacement proposition, because 9(s+, t-)

is true) that the second of the disjuncts, 9(t+, s-), is true. J

As with the resolution rule, we have established the soundness of the ground version of the relation

replacement rule when applied to sentences with no variables. We will actually apply the ground version of

the rule to sentences with variables. The above justification does not extend to this case, however, because

the value property only holds for ground sentences. Such applications are an instance of the following general

version of the rule.
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THE GENERAL VERSION

We are now ready to give the general version of the rule, which applies to sentences with variables and
allows us to instantiate the variables as necessary to create common subexpressions.

Rule (relation replacement, general version)

For any binary relation -q, expressions a, t, Z, and Z, and sentences r[s -• t] and g(s'+, - where

7 and 9 are standardized apart, we have

7[s -4 t]

79[false] or g6(t9+,s9-)

where 9 is a simultaneous, most-general unifier of s, ý' and of t, t.

More precisely,

* 7 has one or more subsentences s -4 t, s, -4 t1 , 82 -4 t2 , .

g 9 has one or more subexpressions 7, 2'1, 92, ... and ,t, 72 .. . .

* Bis a simultaneous most-general unifier of s, s 1 , S2 , J.1, 2,.. and of t, t1 , t2 , .

7,71,7 2 , . . . ; hence

s8 = 10= s20 .... = '1 = '20...

and

t9 = t1 = t 2 F ... = Z10 = 720

* The conclusion of the rule is obtained by replacing all occurrences of (a -4 t)9 in '79 with

false, replacing certain positive occurrences of sO in 99 with tO, replacing certain negative

occurrences of tO in g9 with .5, and taking the disjunction of the two results. Here polarity

is in 99 with respect to -4.

In other words, we apply the ground version of the rule to 79 and 90. j

The justification of the general version of the rule, which we omit, is straightforward now that the

soundness of the ground version has been established. The proof is analogous to the proof of the general

version of the resolution rule. The polarity strategy for this rule allows us to assume that at least one

occurrence of the subsentence (a -4 t)O is positive or of no polarity in 79.

Example

In the theory of sets, suppose our deduced set contains the sentences

7: fp(•)

then (rh(x_,a)]CMf)~ or (F h(b, y)] c F-)~
and

9e(c -E h(u, a)+e - v) or q(u,fv),

where i- is the set difference function.
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Note that

* .7 contains the [positive] subsentences h(x, a) c b and h(b, y) C x.

* The boxed subterms h(x, a), h(b, y), and h(u, a) and the boxed subterms b and x are

simultaneously unifiable, with most-general unifier

0: {x+-'b, u +--b, y4--a}.

* The boxed occurrence of h(u, a) is positive in 9 with respect to c.

Therefore we can apply the c-replacement rule, replacing all occurrences of h(b, a) c b in 70 with false,
replacing the occurrence of h(b, a) in 90 with b, and taking the disjunction of the results, to obtain

if p(b) ]
then false or false]

or

(c~b-v) or q(b,v).

This sentence reduces under transformation to

(not p(b)) or (c E b , v) or q(b, v).

The above application of the rule is in accordance with the polarity strategy. j

Use of the relation replacement rule allows a dramatic abbreviation of many proofs. For this reason

and because the rule enables us to eliminate troublesome axioms from the deduced set, the search space
is constricted. We have not established completeness results for the rule; judging from the corresponding
theorem for paramodulation (Brand [75]), we expect such results to be difficult.

SPECIAL CASE: THE EQUALITY REPLACEMENT RULE

The most important instance of the relation replacement rule is obtained by taking the relation -4 to
be the equality relation =. This special case of the rule, which allows us to replace equals with equals, is a
nonclausal version of the paramodulation rule. It may be expressed as follows:

Rule (equality replacement)

For any terms s, t, Z, and Z, and sentences 7[s = t] and g(s, ý, where 7 and 9 are standardized
apart, we have

7[s =t]

70[false] or gO(tO,sO)

where 0 is a simultaneous, most-general unifier of s, Z and of t, t.

The notation is analogous to that for the general relation-replacement rule. We do not need to restrict
the polarity of the replaced subterms sO and tO in 90, because any term has both polarities with respect to
the equality relation. The polarity strategy is the same as before.

The following illustration of the equality replacement rule is extracted from the derivation of an integer
quotient program.
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Example

In the theory of the nonnegative integers, suppose our deduced set contains the sentences

7: (F6 -0u= o)+
and

9 : not ([ 7-d < n and (z +1) -d >n).

(In the derivation, 7 is an axiom and g is deduced from the negation of the theorem.)

Note that

* .7 contains the (positive) subsentence 0 . u = 0.

* The boxed subterms 0 u and z d are unifiable, with most-general unifier

6: {z -0, u*--d}.

Therefore we can apply the =-replacement rule, replacing all occurrences of 0 • d = 0 in 7O with false,
replacing the occurrence of 0 d in 96 with 0, and taking the disjunction of the results, to deduce

false
or

not (o< n and (0+1) d> n).

This sentence reduces under true-false transformation to

not (o< n and (0+1). d>n). J

SPECIAL CASE: THE EQUIVALENCE REPLACEMENT RULE

Another important instance of the relation replacement rule is obtained by taking the relation -4 to be
the equivalence connective =. This is possible only because we regard connectives as relations over truth
values. The rule is analogous to the equality replacement rule.

Rule (equivalence replacement rule)

For any sentences S, T, F, T, 7[S T], and 9(S, T), where 7 and g are standardized apart, we have

7[S - T]

.7r[false] or g6(7r, SO)

where 0 is a simultaneous, most-general unifier of S, ý and of T, T.

As in the equality replacement rule, we do not need to restrict the polarities of the replaced subsentences
SO and TO in g9, because any subsentence has both polarities with respect to the equivalence relation. The
polarity strategy is the same as for the general relation-replacement rule.

The following illustration of the equivalence replacement rule (or =--replacement rule) is drawn from the

derivation of a program to find the maximum of a list of numbers (e.g., integers or reals).
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Example

In the theory of lists of (say) integers, suppose our deduced set contains the sentences

if not (x = { })

7: then -- [tuh or uEt]

and

rzEs and
9:not i[then z _> g[,)j

(In the derivation, 7 is an axiom and 9 is deduced from the negation of the theorem.)

Note that the boxed subsentences u E x and g(z) E a are unifiable, with most-general unifier

"8: {u +- g(z), x +- s}.

Therefore we can apply the =--replacement rule, replacing the occurrence of g(z) e a in 90 with

g(z)=h or g(z) Et,

to deduce

[if not (s={ )
then false
or

tzE andnot / if [g(z) = h or g(z) E t]]

I Lthen z > g(Z)
This sentence reduces under transformation to

s={}
or

z E and

not if[gz ) =r h or g(z) E tI]
[Lthen z > g(z)

6. THE RELATION-MATCHING RULE

We are about to introduce not a rule in itself but an augmentation of the other rules. The resolution and
relation replacement rules draw a conclusion when one subexpression in our proof unifies with another. The
relation-matching augmentation allows these rules to apply even if the two expressions fail to unify, provided
that certain conditions can be introduced into the conclusion. We begin by describing the augmentation of
the resolution rule.

RESOLUTION WITH RELATION MATCHING: GROUND VERSION

This rule is our generalization of the E-resolution rule. The ground version of the rule is as follows:
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Rule (resolution with relation matching, ground version)

For any binary relation -4, ground expressions s and t, and ground sentences P(s+, t+, s-, t-),
79[P(3+, s+, t-, t-)], and 9[P(t+, t+, s, s)] we have

F.[P<S+, s+, t-, t-)]
9[~+ t+, s-, $-)I
if -8 : t

then 9[false] or 9[true]

Here

* P(s+, t+, s-, t-) is an arbitrary sentence, called the intermediate sentence, which may

have positive and negative occurrences of s and t; polarity is taken with respect to -4.

* The sentence 7 may have several distinct subsentences P(s+, s+, t-, t-), each obtained
from the intermediate sentence P(s+, t+, s-, t-) by replacing certain of the positive
occurrences of t with s and certain of the negative occurrences of a with t.

* Similarly, 9 may have several distinct subsentences P(t+, t+, s-, s-), each obtained from
the intermediate sentence by replacing certain of the positive occurrences of s with t and
certain of the negative occurrences of t with s.

For a particular relation -4, we shall refer to the above as the resolution rule with -4-matching.

Note that if all the subsentences P(s+, s+, t-, t-) and P(t+, t+, a-, s-) were identical, we could
apply the original resolution rule, obtaining the conclusion (7[false] or 9[true]). The augmented rule allows
us to derive the same conclusion rule even if the subsentences P do not match exactly, provided that the
mismatches occur between terms s and t of restricted polarity and that the condition s -4 t is introduced.

The polarity strategy allows us to apply the rule only if an occurrence of one of the sentences P (a+, s+, t, t-)
is positive or of no polarity in 7 and if an occurrence of one of the sentences P(t+, t+, s-, s-) is negative
or of no polarity in 9.

Note that the intermediate sentence P(a+, t+, s-, t-) does not necessarily appear in either of the
sentences of the deduced set and that the rule does not stipulate how to find such a sentence. We shall
discuss the choice of the intermediate sentence in the subsection Selection of Application Parameters.

Example

In the theory of lists, suppose that our deduced set includes the sentences

7: p(t) or c E (tail(t))+

and

9: if c t+ T then q(t).

The two boxed subsentences are not identical. Let us take our intermediate sentence to be one of them,
P : c E tail(e). The subterm s+ : tail(e) is positive in c E tail(e) with respect to the proper-sublist relation
-<fi5t. The other boxed subsentence c G t can be obtained by replacing this subterm with t+ : f. Therefore
we can apply the resolution rule with -<titt-matching to obtain

if tail(e) "ti.t £
then p(t) or false

or

if true then q(t),



6. THE RELATION-MATCHING RULE 39

which reduces under transformation to

if tail(e) _Iiat f
then p(t) or q(e).

We shall give some more complex examples of the application of the rule after we establish its soundness.

Justification (resolution with relation matching, ground version)

Note that (by the invertibility of partial replacement) the intermediate sentence P(s+, t+, a-, t-) can
be obtained from any of the subsentences P(s+, s+, t-, t-) of I by replacing certain positive occurrences
of s with t and certain negative occurrences of t with a, where polarity is taken in P with respect to -4.
Therefore (by the polarity replacement proposition) each of the sentences

if s - t
(t) then if P(s+, s+, t-, t-)

then P(s+, t+, s-, t-)

is valid.

Also any of the subsentences P(t+, t+, s-, s-) of 9 can be obtained from the intermediate sentence
P(s+, t+, s-, t-) by replacing certain positive occurrences of s with t and certain negative occurrences of
t with s. Therefore (by the polarity replacement proposition again) each of the sentences

if s -4t
(W) then if P(s+, t+, s-, t-)

then P(t+, t+, s-, a-)

is valid.

Suppose that the sentences 7j[P(s+, s+, t-, t-)] and g[P(t+, t+, s-, s-)] are true and that s -4 t.
We would like to show that then (r[false] or 9[true]) is true. The proof distinguishes between two cases,
depending on whether the intermediate sentence P(s+, t+, s-, t-) is false or true. We show that in each
case one of the two disjuncts, F[false] or 9[true], is true.

Case: P(s+, t+, s-, t-) is false

Then by our previous conclusion (f), because s -4 t, we know each of the subsentences P(s+, a+, t-, t-)
of I is false. Because F[P(s+, s+, t-, t-)] is true and because the subsentences P(a+, s+, t-, t-) and
false all have the same truth value, we know (by the value property) that the first disjunct, 7[false], is true.

Case: P(s+, t+, s-, t-) is true

Then by our previous conclusion (t), because s -4 t, we know each of the sentences P(t+, t+, s-, s-)
is true. Because g[P(t+, t+, s-, s-)] is true and because P(t+, t+, s-, s-) and true have the same truth
value, we know (by the value property again) that the second disjunct, q[true], is true.

The resolution rule with relation matching must be regulated with strict heuristic controls; if the controls
are too permissive, any two subsentences may be matched.

The following example is a bit contrived but illustrates some of the power of the rule.
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Example

In the theory of sets, suppose our deduced set includes the two sentences

e E ((s+ - a)U (b - t-)U (t+ ..,)U(d.-.-t-))+
7:" or

e E ((s+ - a)U (b,- s-)U (s+ c)u +

and
e E ((t+~-a) U (b - s-) U(t+~-c) U(d t-))]-]

9: not and

eE((s+ja)U(b-s-)U(t+-c)U(d-s-))

Let us take our intermediate sentence to be

P: eE•((s+-~a) U(b ~ 8-) U(t+-~c) U(d-t-)).

The occurrences of s and t have been annotated with their polarities in P with respect to the proper-subset

relation C. Note that each of the boxed sentences in 7 may be obtained from P by replacing certain of the
positive occurrences of t with s and certain of the negative occurrences of a with t. Also, each of the boxed

subsentences of 9 may be obtained from P by replacing certain of the positive occurrences of s with t and

certain of the negative occurrences of t with s. Therefore we can apply the resolution rule with c-matching
to obtain

if a C t
then false or false

or
not (true and true),

which reduces under transformation to the sentence

not (s c t). _

Note that this conclusion, obtained by a single application of the rule, is not immediately evident to the

human reader.

SPECIAL CASE: RESOLUTION WITH EQUALITY MATCHING

In the case in which the relation -4 is taken to be the equality relation =, the resolution rule with
relation matching reduces to a nonclausal variant of the E-resolution rule. It may be expressed (in the
ground version) as follows:

Rule (resolution with equality matching)

For any terms s and t and sentences P(s,t,s,t), 7T[P(,a) ,t,t,)], and 9[P(t,t,s,s)], we have

F[P(s, s, t, t)]

g[P(t, t,' , 8)]

if a = t
then F[falsel or 9[true]. j
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Here P(s, s, t, t) and P(t, t, s, s) are obtained from P(s, t, s, t) by replacing certain occurrences of s with t and
certain occurrences of t with a. In other words, all the subsentences P(a, s, t, t) and P(t, t, s, s) are identical
except that one may have occurrences of a where another has occurrences of t. We do not need to restrict
the polarities, because every subterm of a sentence is both positive and negative with respect to the equality
relation.

MULTIPLE MISMATCHED SUBSENTENCES

The resolution rule with relation matching can be extended to allow several corresponding pairs of
subexpressions 81 , t1 , s2 , t 2 , • .. and s,, t, rather than a single pair a, t, and several binary relations -41, -42

... , and -4n rather than a single binary relation -4. To write the extended rule succinctly, we abbreviate
81, S2, . .. sn as S, t1 , t2 , .. ., tn as f, -41 ,-4 2 , • .. , and -4, as -:4, and

s 1 1i ti and s 2 :-2 t2 and ... and sn -_,4 t, as 9 5_ F

Then for any binary relations -4, expressions i and i, and sentences P(8+, f+, 8-, f-), 7r[P(g+, 3+, f-, i-)],
and 9[P(F+, i+, 3-, S-)], we have

ifs S
then 7r[false] or 9[true].

The extended rule is easily justified, given the soundness of the original rule.

RESOLUTION WITH RELATION MATCHING: GENERAL VERSION

The general version of the rule allows us to instantiate the variables of the given sentences as necessary
and then to apply the ground version. The precise statement, which we omit, is analogous to the precise
statement of the general version of the resolution rule. We illustrate the application of the general rule with
an example.

Example

Suppose our deduced set contains the sentences

7:if q (u)

then Ip(u+, U+

and

9: not I "+,f(e)+

Here the annotations of the subterms within the boxed subsentences indicate their polarity in these subsen-
tences with respect to a binary relation -4.

The substitution 0 : {u +- f} fails to unify the boxed subsentences of 7 and 9; the results of applying 0
to these subsentences are the sentences p(t+, &+) and p(i+, f(i)+), respectively. Note that the mismatched
occurrences of f and f(t) are positive in these sentences with respect to -4.
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To apply the ground version of the rule to .70 and 99, let us take the intermediate sentence to be
p(W, t+). We obtain

if te-- f (t)
then if q(f) or (not true),

[then false]

which reduces under true-false transformation to

if f f(f)
then not q(t). ,

SELECTION OF APPLICATION PARAMETERS

For each application of the resolution rule with relation matching, we must select the application pa-
rameters, i.e., the substitution 0, the intermediate sentence P, and the subexpressions s and t. In fact, a
satisfactory choice of application parameters is not straightforward: it depends on what other sentences are
in the deductive set. Some considerations influencing the decision are illustrated in the next few sections.

Choice of Substitution

The substitution 9 and the intermediate sentence P for applying the rule are not necessarily unique.

In the example above, consider again the boxed subsentences p(u+, u+) and p(t+, f(t)+) of I and 9-
Instead of the substitution 0 : {u -- t}, consider the substitution 0' : {u *- f(t)}. This substitution also
fails to unify the boxed subsentences; the results of applying 0' to the boxed subsentences are the sentences
p(f(t)+, f(t)+) and p(t+, f(t)+), respectively. Note that the mismatched occurrences of f(t) and e are
positive in these sentences with respect to -4.

To apply the ground version of the rule to .70' and 90', let us take the intermediate sentence to be

p(f(t)+, f(t)+). We obtain

if f (t) -<e

then eif fas] or (not true),[then false]

which reduces under true-false transformation to

if f~i M -e
then not q(t).

This is not equivalent to the sentence we obtained by applying the rule with the substitution 9,

if t __ f(f)
then not q(e).

In other words, we must consider both ways of applying the rule.

To Unify or Not to Unify

In previous examples, we have applied the resolution rule with relation matching only when it is illegal
to apply the ordinary resolution rule because the matched subsentences fail to unify. In some cases, however,
we must use relation matching to obtain a refutation even though the matched subsentences do unify and
the resolution rule could be applied.
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For example, suppose our deduced set consists of the sentences

1. p(x7) or q(x+)

2. not--(a7)

3. not-q(b+)

4. c-4a

5. c -4b,

where x is positive in the boxed subsentence p(x) and in the subsentence q(x) with respect to the relation
-(, as indicated by its annotation.

It is legal to apply the ordinary resolution rule to the first two sentences, taking the unifier to be
{x 4- al, to deduce (after transformation)

q(a).

However, this sentence is of no use in a refutation.

If instead we apply the resolution rule with -4-matching to the same boxed subsentences, taking the
unifier to be the empty substitution { }, we obtain (after transformation)

6. if x "ý a then q(x)+.

We can then apply the resolution rule to sentences 6 and 3, taking the unifier to be the empty substitution
{ }, to obtain (after transformation)

7. if x "ý b then not (x -4 a).

We finally obtain a refutation by applying the resolution rule to this sentence and the last two sentences in
turn; the unifier is {z *-- c}.

In applying the ordinary resolution rule, we committed x to be a; this turned out to be a mistake. In
applying the resolution rule with -4-matching instead, we left x free to be any element such that x -4 a; in
particular, we could then take z to be c.

Choice of Mismatched Subexpressions

In the examples of resolution with relation matching we have seen, we have always taken the mismatched
subexpressions s and t to be as small as possible. Sometimes this choice costs us a proof.

For instance, suppose our deduced set consists of the sentences

* I f(a) T +

2. not Fp(f (b).) -

3. f(a) = f(b).

If we apply the resolution rule with equality matching to the first two sentences, taking s to be a and t

to be b, we obtain

if a=b
then false or not true,

which reduces under transformation to

not (a = b).



44 6. THE RELATION-MATCHING RULE

This sentence is of no use in a refutation.

On the other hand, if instead we apply the same rule taking 8 to be f(a) and t to be f(b), we obtain

if f(a) = f.(b)
then false or not true,

which reduces under transformation to

not (f(a) = f(b)).

A refutation can be obtained immediately by applying the resolution rule to the third sentence and this one.

In the preceding examples, we have seen that in applying the resolution rule with relation matching,
the choice of appropriate application parameters, i.e., the substitution 0, the intermediate sentence P, and
the mismatched subexpressions s and t, are not unique and depend on the other sentences in the deduced
set. Digricoli [83] provides an algorithm to generate all legal sets of application parameters. This algorithm
is phrased in terms of his variant of the E-resolution rule but extends readily to the general, nonclausal
case. Digricoli also suggests a heuristic viability criterion for selecting a single appropriate set of application
parameters; this criterion appears to extend to the general case as well.

REPLACEMENT WITH RELATION MATCHING: GROUND VERSION

We have shown how to augment the resolution rule to apply even if the matched subsentences are not
entirely unified by the substitution. We now introduce an analogous augmentation of the relation replacement
rule.

Rule (replacement with relation matching, ground version)

For any binary relations -41 and -42, ground expressions 3, t, u(s+, t+, s-, t-), and v(s+, t+, s-, t-),
and ground sentences

and

.9(,(t+, t+, s-, s-)+, ,,(t+, t+, s-, s-)-),

we have

'[u(s+, s+, t-, t-) - v(s+, s+, t-, t-)]

9(,(t+, t+, s, - v)+, ,(t+, t+, s, s)-)
if s842t
then F[falsel or g(v(t+, t+, s-, s-)+, u(t+, t+, s-, s-)-)

Here

"* The expressions u(s+, t+, s-, t-) and v(s+, t+, s-, t-) are arbitrary expressions. The
sentence u(a+, t+, s-, t-) "-< v(s+, t+, s-, t-) is called the intermediate sentence.

" The subsentences u(s+, s+, t-, t-) -4 1 v(s+, s+, t-, t-) of .7 are obtained from the
intermediate sentence by replacing certain positive occurrences of t with s and certain
negative occurrences of s with t, where polarity is taken in the intermediate sentence with

respect to -42.

" The subexpressions u(t+, t+, s-, s-) and v(t+, t+, s-, s-) of 9 are obtained from

u(s+, t+, a-, t-) and v(a+, t+, s-, t-), respectively, by replacing certain occurrences of a
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with t and certain occurrences of t with s, where again polarity is taken in the intermediate
sentence with respect to -(2.

e The subsentence 9(v(t+, t+, s-, s-)+, u(t+, t+, s-, s-)-) of the conclusion is obtained
from 9(u(t+, t+, s-, s-)+, v(t+, t+, s, s-)-) by replacing certain positive occur-
rences of u(t+, t+, s-, s-) with v(t+, t+, s-, s-) and certain negative occurrences of
v(t+, t+, s-, s-) with u(t+, t+, s-, s-), where the polarity of u and v is taken in 9 with
respect to -41.

For particular binary relations -41 and -42, we shall call this the -41-replacement rule with -42 -matching.
Note that if u(t+, t+, s-, s-) and v(t+, t+, s-, s-) were identical to u(s+, 8+, t-, t-) and v(s+, s+, t-, t-),
respectively, we could apply the original -41-replacement rule without -42-matching, obtaining the conclusion

"[false] or 9(v(t+, t+, s-, s-)+, u(t+, t+, s-, s-)-).

The augmented rule allows us to derive the same conclusion, even if the subexpressions do not match exactly,
provided that the mismatches occur between subexpressions s and t of restricted polarity with respect to

-<2 and that the condition s -2 t is added.

Example

In a theory that includes the lists and the integers, suppose our deduced set contains the sentences

7: ([length(m-) - _ a) or p(m)

and

9 if q(t) then (I length(F-) + > b),

where i and m are lists and a and b are integers.

The two boxed subexpressions are not identical, so we cannot apply the original <-replacement rule.
To apply the augmented rule, let us take our intermediate sentence to be length(t) _< a. With respect to the
proper sublist relation -<Liat, the subterm s- : t is negative in the intermediate sentence u -41 v : length(t) < a.
From this sentence we can obtain the subsentence length(m) <_ a of 7 by replacing the negative occurrence
of I with t- : m. Therefore, by the <-replacement rule with -<zi1t-matching, we deduce

if -I- ist M
then false or p(m)

or

if q(t) then a> b.

Here the subsentence a > b of the conclusion is obtained from the subsentence length(t) > b of 9 by replacing
a positive occurrence of u+ : length(f) with v+ : b, where polarity is taken in 9 with respect to the weak
less-than relation <. The conclusion reduces under transformation to

if It •,t m
then p(m) or

if q(t) then a > b.
-.J

Now let us establish the soundness of the rule.

Justification (replacement with relation matching, ground version)

Note that (by the invertibility of partial replacements), the intermediate sentence u(s+, t+, s-, t-) -41
v(s+, t+, s-, t-) can be obtained from any of the subsentences u(s+, s+, t-, t-) -41 v(s+, s+, t-, t-) of
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I by replacing certain positive occurrences of s with t and certain negative occurrences of t with s, where
polarity is taken in the subsentences with respect to -42. Therefore (by the polarity replacement proposition),
each of the sentences

if s -2 t

(t) then if u(s+, s+, t-, t-) -41 v(s+, s+, t-, t-)
then u(s+, t+, s-, t-) -41 v(s+, t+, s-, t-)

is valid.

Also any of the sentences u(t+, t+, s-, a-) -41 v(t+, t+, s-, s-) can be obtained from the intermediate
sentence u(s+, t+, s-, t-) -41 v(s+, t+, a-, t-) by replacing certain positive occurrences of a with t and
certain negative occurrences of t with s, where polarity is taken in the intermediate sentence with respect to

-42. Therefore (by the polarity replacement proposition again) each of the sentences

if S "•2 t

(W) then if u(s+, t+, s-, t-) -41 v(s+, t+' s-, t-)
then u(t+, t+, s-, S-) -41 v(t+, t+, s-, S-)

is valid.

Furthermore the subsentence 9(v(t+, t+, -9, s-)+, u(t+, t+, s-, s-)-) of the conclusion can be
obtained from the given sentence 9(u(t+, t+, s-, s-)+, v(t+, t+, s-, s-)-) of the deduced set by replacing
certain positive occurrences of u(t+, t+, s-, s-) with v(t+, t+, s-, s-) and certain negative occurrences of
v(t+, t+, s-, s-) with u(t+, t+, s-, s-), where polarity is taken in 9 with respect to -41. Therefore (by
the polarity replacement proposition once again) each of the sentences

if ,•(t+, t+, s-, a-) -.41 ,,t+, t+, s-, S-)
(tt) then if 9(u(t+, t+, s-, s-)+, v(t+, t+, s-, s-))

then 9(v(t+, t+, s-, s-)+, u(t+, t+, s-, s-)-)

is valid.

Suppose that the ground sentences

F[u(s+, s+, t-, t-) -<1 v(s+, s+, t-, t-)] and 9(u(t+, t+, s-, a-)+, v(t+, t+, a-, a-)-)

are true and that s -<2 t- We would like to show that then

Y[false] or 9(v(t+, t+, s-, 8-)+, u(t+, t+, s,-)-)

is true. The proof distinguishes between two cases, depending on whether the intermediate sentence is false or
true. We show that in each case one of the two disjuncts, F[false] or 9(v(t+, t+, s-, s-)+, u(t+, t+, a,-)-),
is true.

Case: u(a+, t+, a-, t-) -41 v(s+, t+, s-, t-) is false

Then by our previous conclusion (t), because s ---2 t, we know each of the subsentences u(s+, 8+, t-, t-) -41
v(s+, 8+, t-, t-) of jr is false. Because 7*[u(s+, s+, t-, t-) -41 v(a+, s+, t-, t-)] is true and because the

sentences u(a+, s+, t-, t-) -41 v(s+, s+, t-, t-) and false all have the same truth value, we know (by the
value property) that the first disjunct, F[false], is true.

Case: u(a+, t+, a-, t-) -. 1 v(s+, t+, s-, t-) is true

Then by our previous conclusion (t), because s "(2 t, we know each of the sentences tu(t+, t+, s-, S-) - 41
v(t+, t+, a-, s-) is true. Therefore by several applications of our previous conclusion (tt), because

9(u(t+, t+, s-, s-)+, v(t+, t+, s-, 9-)-)
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is true, we know that the second disjunct,

9(v(t+, t+, s-, s-)+ u(t+, t+ s-, s-)-),

is true.

In each case, we have shown that the desired conclusion is true.

REPLACEMENT WITH RELATION MATCHING: GENERAL VERSION

The general version of the rule allows us to instantiate the variables of the given sentences as necessary
and then to apply the ground version. We omit the precise statement, which is analogous to the general
version of the relation replacement rule, but we illustrate the general version with an example extracted
from the derivation of a program to sort a list of numbers.

Example

In a theory of lists of (say) integers, suppose our deduced set contains the sentences

7: perm(Xl 13 ((U) E3X2 ), Y1i o (u3 1 perm(X1 1 oX2, Y1 13 2)]

and

-: not (ordered(z) and [perm(e+, z) ).

Here the term x1 C0 x2 is the result of appending the lists x, and x2 , and the term (u) is the list whose sole
element is u. Also, perm(e, z) holds if the list f is a permutation of the list z, and ordered(z) holds if the
elements of z are in (weakly) increasing order. In the derivation, 7 is one of the axioms for the permutation
relation, which states that two lists are permutations if they are still permutations after dropping a common
element, and 9 is the negation of the theorem, which states the existence of an ordered list that is a
permutation of a given list.

The results of applying the substitution

0 : {Z - Y1 0((U) 13Y2 )}

to the boxed subsentences are

perm((X1 E3 ((U) i X2 ))+, Y1 13 ((U ) 13 Y2))

and

perm(e+, yY1 ((U) 0 Y2)).

The mismatched subterms

Xic i((u) 0 x 2 ) and t

are positive in their respective subsentences with respect to the perm relation. (Because this relation is
symmetric, they also happen to be negative.) The boxed subsentence perm(t, z) is positive in 9 with respect
to the equivalence relation -. (It also happens to be negative.) Therefore, by the =--replacement rule with
perm-matching, we may deduce the sentence

if perm(xi ci ((U) 0 X2), e
then false

or

not (ordered(y, oi ((u) o y2)) and perm(xi 0 X2 , 1Y1 0Y2))
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which reduces under transformation to

if perm(xj. 0 ((U) 13X2 ), t)
then not (ordered(yi 3 ((U) o Y2)) and perm(xi 0 X2 , Y1 3 Y2)). j

RELATION MATCHING VERSUS RELATION REPLACEMENT

The relation matching and relation replacement rules play complementary roles, and one might expect

that a single deductive system would employ one or the other rule but not both. After all, in clausal equality

systems, paramodulation and a variant of E-resolution have each been shown to be complete (Anderson [70],

Digricoli [83], and Brand [751) without including the other. Moreover, by incorporating both rules, we admit

a troublesome redundancy: The same conclusion can be derived in several ways.

On the other hand, it often turns out that a proof that seems unmotivated or tricky using only one of

the rules seems more straightforward using a combination of both. For instance, in an example of a previous
section, we applied the resolution rule with relation matching to the sentences

if qq(u)

then I p(u+, U+

and

9: not IP+,f(e)+) -

taking the substitution to be

0: {u4-- t},

to obtain after transformation

if e[F :(e)
then not q(e).

If our deduced set also contains the sentence

Fv-:;f (M)

we can further deduce (by resolution) the sentence

not q(t).

Now suppose our deductive system includes the relation replacement rule but not the relation-matching
rule. Then to deduce the same conclusion not q(t), we would have to apply the relation replacement rule to
the sentences

E71 -.4 f(v)

and

9 : not p( f(t)

to obtain (after transformation)

not[ p(f(t), f(1)
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We could then obtain the same conclusion (not q(t)) by resolution applied to this sentence and the sentence

if q(u)
then ]P_(_u,• -u).

Although both sequences of inference lead to the same conclusion, the earlier proof seems better mo-
tivated: Each step is based on matching subexpressions that already possess a high degree of syntactic
similarity. In contrast, the above proof seems rather gratuitous: The application of the relation replacement
rule is based on matching the variable v with the constant 1. There is no reason to perform this step except
as a preparation for the subsequent resolution step.

Examples can also be exhibited for which a proof employing the replacement rule is well-motivated but
the corresponding proof using the matching rule appears strained. For instance, in the theory of integers,
use of the =-replacement rule and the axiom u + (-u) = 0 allows us to simplify a subterm of form t + (-t)
to 0. If we are only permitted to use the relation-matching rule, we must leave the subterm intact, and hope
that we attempt to match it against a corresponding subterm 0 later in the proof.

We expect that by including both rules together in a system we shall be able to apply more restrictive
strategies to each of them. Consequently, we shall obtain a smaller search space than if we had included
either of the rules separately.

7. STRENGTHENING

The relation replacement rule of Section 5 does not always allow us to draw the strongest possible
conclusion. In this section we establish a stronger form of the polarity replacement lemma and use it to
develop a stronger relation-replacement rule.

We motivate the strengthening of the rule with an example. In the theory of the integers, suppose our
deduced set contains the sentences

7 F: 1]<t

and

9 _<a•W +2.

Because the occurrence of s in 9 is positive with respect to the less-than relation <, the<-replacement rule
allows us to replace s with t and deduce that (after transformation)

a < t ++2.

From these two sentences, however, we should be able to deduce the stronger result

a < t +2.

Similarly, from the sentence s < t and not (a - a > b), we should be able to deduce not (a - t > b) rather
than merely not (a - t > b).

Unfortunately, the rule as we have presented it does not yield these more useful conclusions; the strength-
ened relation-replacement rule will. But first, we must introduce some preliminary notions.

THE STRENGTHENED POLARITY-REPLACEMENT LEMMA

The strengthened rule depends on the following basic result:
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Lemma (strengthened polarity replacement)

Consider arbitrary expressions e(x, Y) and e'(x, y) and binary relations -41 and -42. The sentence

if X -4 y
then if e(x, y) 42 e'(x, y)

then e(y, ) -<2 e'(y, x)

is valid provided that the replaced occurrences of x and y satisfy the following strengthening con-
ditions [in e(x, y) and e'(x, y) with respect to -41 and -421:

"* transitivity condition

The relation -<2, the irreflexive restriction of -42, is transitive.

"* top condition

The replaced occurrences of x and y are respectively positive and negative in e(x, y) -"2

e'(x, y) with respect to -"1.

"* left-right condition

One of the following two disjuncts holds:

The replaced occurrences of x and y in e(x, y) are respectively negative and positive in
e(x, y) with respect to -"1 and -<2 (and some replacement is made in e(x, y))

(left disjunct)

or

the replaced occurrences of x and y in e'(x, y) are respectively positive and negative in
e'(x, y) with respect to -4 1 and -<2 (and some replacement is made in e'(x, y)).

(right disjunct) J

Before proving this proposition, let us illustrate it with an example.

Example (strengthened polarity-replacement lemma)

In a theory that includes the sets and the nonnegative integers, take -"1 to be the proper-subset relation
c over the sets and -42 to be the weak less-than relation < over the nonnegative integers. Then -<2 is the
strict less-than relation <.

Consider the sentence

m card(y) _ n + card(x),

where x and y are sets, m and n are nonnegative integers, and card(x) is t~he cardinality of the set x.
According to the lemma, the sentence

if x C y
then if rnm card(y) :5 n + card(x)

then rnm card(x) < n + card(y)

is valid, because the replaced occurrences of x and y satisfy the strengthening conditions in m card(y) and
n + card(x) with respect to C and <. In particular,

* The relation < is transitive; hence the transitivity condition is satisfied.
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" The replaced occurrences of x and y are respectively positive and negative in m card(y) <_
n + card(x) with respect to C; hence the top condition is satisfied.

" Although the replaced occurrence of y is not positive in m • card(y) with respect to C
and < (after all, m could be 0), the replaced occurrence of x is positive in n + card(x)
with respect to C and <. Hence, though the left disjunct of the left-right condition is not
satisfied, the right disjunct is.

We are now ready to establish the lemma.

Proof (strengthened polarity-replacement lemma)

Suppose that

x -4 y and e(x, y) -42 e'(x, y),

and that the strengthening conditions are satisfied.

We would like to show that then

e(y, x) -<2 e'(y, x).

The left-right condition was stated as a disjunction of two possibilities; we treat each possibility sepa-
rately.

Case (left disjunct): The replaced occurrences of x and y in e(x, y) are respectively negative and
positive in e(x, y) with respect to -(, and -<2 (and some replacement is made in e(x, y)).

In this case (by the transitive polarity-replacement lemma, because x -"1 y), we have

e(y, x) -<2 e(x, y).

Also (by the polarity replacement proposition and our supposition that x -41 y and e(x, y) -42 e'(x, y))
we have

e(X, y) -2 e'(y, x).

(Here we have only performed the replacements on the right-hand side; by the top condition, we know the
replaced occurrences of x and y are respectively positive and negative in e(x, y) -"2 e'(X, y) with respect to
"-.41.) It follows that

e(x, y) -<2 e'(y, x) or e(x, y) = e'(y, x).

Because e(y, x) -<2 e(x, y), we thus have (either by the transitivity of -<2 or the substitutivity of equality)
that

e (Y, X) -<2 e'(y, X),

as we wanted to show.

Case (right disjunct): The replaced occurrences of x and y in e'(x, y) are respectively positive and
negative in e'(x, y) with respect to -41 and -<2 (and some replacement is made in e(x, y)).

The proof in this case is entirely symmetric to the proof in the previous case. J

THE STRENGTHENED POLARITY-REPLACEMENT PROPOSITION

The strengthened rule is expressed in terms of the following notational device:



52 7. STRENGTHENING

Definition (strengthen accordingly)

Suppose -4 is a binary relation, s and t are expressions (either both sentences or both terms), and
9 is a sentence.

If we write 9 as g(s+, t-), then g(t+, s-)T denotes the sentence obtained by replacing certain
positive occurrences of s with t, replacing certain negative occurrences of t with a (where polarity
is taken with respect to -<), and strengthening accordingly as follows:

" Whenever a replacement is made in a positive subsentence of form e(s, t); e'(s, t), where
the replaced occurrences of s and t satisfy the strengthening conditions in e(s, t) and e'(s, t)
with respect to -4 and -4, replace the occurrence of the symbol ; with :<, the irreflexive
restriction of -4.

"* Whenever a replacement is made in a negative subsentence of form e(s, t)-; e'(s, t), where
the replaced occurrences of s and t satisfy the strengthening conditions in e(s, t) and e'(s, t)
with respect to -4 and ,, replace the occurrence of the symbol -• with ;. (Here 74 and -4

are the negation, and the reflexive closure, respectively, of ;.) .

These conditions may appear mysterious at this point, but they are precisely what we need to establish
the following result, which tightens up the polarity replacement proposition:

Proposition (strengthened polarity replacement)

For any binary relation -4 and sentence P(x+, y-), the sentence

if X -4 y
then if P(x+, y-)

then P(y+, x-)T

is valid.

We illustrate the proposition with two examples.

Example

In the theory of the positive integers (excluding 0), take -4 to be the proper-divides relation -<di, and
take our sentence to be

P(x+, y-) : a < (x + 1)2 or q(x).

Then according to the proposition, the sentence

if X -<div Y

then if a < (x + 1)2 or q(x)
then a < (y + 1)2 or q(x)

is valid. Note that the symbol < has been replaced by its irreflexive restriction < as a result of the strength-
ening. This is because

"* The subsentence a < (X + 1)2 is positive in P(x+, y-).

"* The replaced occurrence of x in a < (x + 1)2 satisfies the strengthening conditions in a
and (x + 1)2 with respect to -<div and <. In particular

m The relation < is transitive; hence the transitivity condition is satisfied.
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" The replaced occurrence of x is positive in a < (x + 1)2 with respect to -<div;
hence the top condition is satisfied.

" The replaced occurrence of x is positive in (X + 1)2 with respect to -<div and <;
hence the right disjunct of the left-right condition is satisfied.

Example

In a theory that includes the lists and the nonnegative integers, take -4 to be the tail relation -<tait over
the lists and take our sentence to be

P(x+, y-) : if length(z a 1) < length(y) + m then q(x, y),

where x, y, and I are lists, m is a nonnegative integer, and length(t) is the number of elements in the list t.
Then according to the proposition, the sentence

if X "<tail Y

then if if length(z o f) < length(y) + m then q(x, y)
then if length(y a t) < length(x) + m then q(x, y)

is valid. Note that here the symbol < has been replaced by < as a result of the strengthening. This is
because

"* The subsentence length(x of) < length(y) + m is negative in P(x+, y-).

"* The replaced occurrences of x and y satisfy the strengthening conditions in length(x a t)
and length(y) + m with respect to -<tail and 1, that is >. In particular

"* The relation >, the irreflexive restriction of >, is transitive; hence the transitivity
condition is satisfied.

"* The replaced occurrences of x and y are positive and negative, respectively, in
the sentence length(x a t) > length(y) + m with respect to -<tail; hence the top
condition is satisfied.

" The replaced occurrence of x is negative in length(x o t) with respect to -<tail
and >; hence the left disjunct of the left-right condition is satisfied. (As it turns
out, the replaced occurrence of y is also negative in length(y) + m with respect
to -<tail and >; hence the right disjunct is also satisfied.) d

Let us now prove the proposition.

Proof (strengthened polarity-replacement proposition)

We suppose that

x -4 y and P(x+, y-),

and show that then

P(y+, X)1.

The sentence P(y+, x-)T is obtained from P(x+, y-) by replacing certain subexpressions with others. We
show that each of these replacements makes the sentence "truer," in the sense that it produces a sentence
implied by the original.

We consider separately three kinds of replacement:
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Replacing a positive subsentence of form e(x, y): e'(x, y) with e(y, x)-• e'(y, z), where the replaced
occurrences of x and y satisfy the strengthening conditions in e(x, y) and e'(x, y) with respect to -4
and -•.

In this case, because x -4 y, we have (by the strengthened polarity-replacement lemma) that

if C(Xy) C'(XY)
then e(y, x) : e'(y, x).

Therefore, because the replaced occurrence of e(x, y)-4 e'(x, y) is positive in P(x+, y-), we know (by the
original polarity-replacement proposition) that replacing it with the "truer" subsentence e(y, x)-' e'(y, x)
makes the entire sentence truer.

Replacing a negative subsentence of form e(x, y)-• e'(x, y), with e(y, x)__. e'(y, x), where the replaced
occurrences of x and y satisfy the strengthening conditions in e(x, y) and e'(x, y) with respect to -4

and ; (the negation of -4).

In this case, because x -4 y, we have (by the strengthened polarity-replacement lemma, recalling that

is the irreflexive restriction of 7)

if e(X, y) e'(X, y)

then e(y, x) e'(y, x)

or, equivalently (taking the contrapositive),

if e(y, X) 4 e'(y, X)

then e (x, y) ; e'(z, y).

Therefore, because the replaced occurrence of e(x, y) e'(x, y) is negative in P(x+, y-), we know (by the
original polarity-replacement proposition) that replacing it with the "falser" sentence e(y, x)4 e'(y, x) will
make the entire sentence falser.

* Replacing a positive occurrence of x with y or a negative occurrence of y with x, where polarity is
with respect to -4 and where the replaced occurrence is not within the scope of any strengthened
relation -;.

In this case, the replacement makes the sentence "truer," by the original polarity-replacement proposi-
tion.

THE GROUND VERSION

We can now express the stronger version of the relation replacement rule. The ground version of the
rule is as follows:

Rule (strengthened relation replacement, ground version)

For any binary relation -4, ground expressions s and t, and ground sentences r[s -4 t] and 9(s+, t-),
we have

F[ -4 t]

9(s+, t-)

F[false] or 9(t+, s-)T
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Here 9(t+, s-)T is the result of replacing certain positive occurrences of s with t, replacing certain
negative occurrences of t with s, and strengthening accordingly, where polarity is taken in 9 (s+, t-)
with respect to -<. We assume that at least one replacement is made.

Let us illustrate the ground version of the rule with two examples.

Example

In the theory of the positive integers (excluding 0), suppose our deduced set contains the sentences

7: if p(s) then I-]-<it

and

9: a< (7fl++1)2 or q(s),

where -<div is the proper divides relation. Then we can apply the strengthened -<di, 0-replacement rule to
replace the boxed occurrence of s in 9 with t and to strengthen accordingly, obtaining

if p(s) then false

or

a < (t + 1)2 or q(s).

This sentence reduces under transformation to

(not p(s)) or a < (t + 1)2 or q(s).

The relation symbol < was replaced by its irreflexive restriction < because a < (S + 1)2 is positive and
because s and t satisfy the strengthening conditions in a and (S + 1)2 with respect to "<div and <, as we
have seen in a previous example.

Example

In a theory that includes the sets and the nonnegative integers, suppose our deduced set contains the
sentences

7 Ps, t) or[F]cM
and

not (q(st) and m ,- card(I) <,n+card([I))

where s and t are sets, m and n are nonnegative integers, and card(s) is the cardinality of the set s. Then
we can apply the strengthened c-replacement rule to replace the boxed occurrences of a with t and t with
s and to strengthen accordingly, obtaining

p(s,t) or false
or

not (q(s, t) and m card(t) • n + card(s)),

that is (after transformation),

p(s, t) or

not (q(s, t) and m. card(t) <_ n + card(s)).
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The relation symbol < has been replaced by its reflexive closure < because m • card(s) < n + card(t) is
negative and because s and t satisfy the strengthening conditions in m. card(s) and n + card(t) with respect
to C and ý, that is, >. In particular,

"* The irreflexive restriction > of > is transitive; hence the transitivity condition is satisfied.

"* The replaced occurrences of s and t are respectively positive and negative in m. card(s) <
n + card(t) with respect to C and >; hence the top condition is satisfied.

"* The replaced occurrence of t is negative in n + card(t) with respect to C and >; hence the
right disjunct of the left-right condition is satisfied.

Let us now establish the soundness of the rule.

Justification (relation replacement rule, ground version)

The proof resembles the justification of the original relation-replacement rule.

We suppose that the given sentences F[s -4 t] and 9(s+, t-) are true and show that the newly deduced
sentence (r[false] or 9(t+, s-) T ) is also true. We distinguish between two cases and show that in each case

one of the two disjuncts, r[false] or 9(t+, s-)T, is true.

In the case in which the subsentence s -4 t is false, we know (by the value property, because s -4 t and
false have the same truth value and r[s -4 t] is true) that the first of the disjuncts, r[false], is true.

In the case in which s -4 t is true, we know (by the strengthened polarity-replacement proposition,
because 9(s+, t-) is true) that the second of the disjuncts, 9(t+, s-) t , is true.

THE GENERAL VERSION

The general version of the rule allows us to instantiate the variables of the sentences as necessary to
create common subexpressions.

Rule (strengthened relation replacement, general version)

For any binary relation -4, expressions s, t, ý, and , and sentences 7[s -4 t] and 9(-s+, t+), where
7 and 9 are standardized apart, we have

r[s -4 t]9(s,+ 7-)

70[false] or 9o(tO+, s0) T ,

where 0 is a simultaneous, most-general unifier of s, " and of t,

As usual, to apply the general version of the rule to sentences 7' and 9, we apply its ground version to 70
and 90. The justification, which is straightforward, is omitted. As before, the polarity strategy for the rule
allows us to assume that a least one occurrence of the subsentence (s -4 t)O is positive or of no polarity in
70.
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8. EXTENSIONS

The concepts in this paper are being extended in several directions. We briefly indicate several of these
here.

EXPLICIT QUANTIFIERS

The system we have described deals with sentences that have had their quantifiers removed by skolem-
ization. It is impossible, however, to remove quantifiers that occur within the scope of an equivalence (-)
connective or in the if-clause of a conditional (if-then-else) connective without first paraphrasing the con-
nective in terms of others. If several of these connectives are nested, the paraphrased sentence becomes
alarmingly complex.

In an earlier work (Manna and Waldinger 182]), we extend the deductive system to sentences that
may have some of their quantifiers intact. In many cases, we can complete the proof without removing all
the quantifiers. If these quantifiers are in equivalences or if-clauses, we need not paraphrase the offending
connectives. Thus, we not only retain the form of the original sentence, but also can use the equivalences
we retain in applying the equivalence replacement rule.

POLARITY WITH RESPECT TO AN EXPRESSION

We have used the notion of polarity with respect to a relation. Because a function is a special case of
a relation, we can define polarity with respect to a function accordingly. Rather than restricting ourselves
to the functions denoted by the function symbols in our deduced set, we prefer to consider the functions
corresponding to particular expressions in the set.

Roughly speaking, suppose e[s] is a ground term; then e[s] corresponds to a binary relation -4[1] defined
by the sentence

S-4e[s y = e[x] = y.

We may define polarity with respect to -4,[1] just as we would with respect to any binary relation.

For example, in the theory of the integers, the relation -4,1,1 corresponding to the term e[s] : s + 1 is
defined by the sentence

X -4e[s] y =_ x+1=y.

(In fact, this relation turns out to be the predecessor relation "<pra we have seen earlier.) The relation
natnum(x), which holds if x is a nonnegative integer (natural number), is positive over its argument with
respect to "4e[s], for we have

if X -e[,] Y
then if natnum(x)

then natnum(y).

We can then establish an expression replacement rule analogous to our relation replacement rule; i.e.,
in the ground version:

For any expressions s and e[s] and ground sentence 9(s+, e[s]-), we have

9(s+, e[sl-)

9(e[s]+, s-)'
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Here 9(e[s]+, s-)T is obtained from 9(s+, e[s]-) by replacing certain positive occurrences of a with e[s],
replacing certain negative occurrences of e[s] with s, and strengthening accordingly, where polarity is taken

in 9(s+, e[s]-) with respect to -e[a]-

For example, in the theory of the integers, if our deduced set contains the sentence

9: not [Iatnum((s + ')-)]

we may deduce the sentence

not [natnum(s)],

because the occurrence of s + I is negative in 9 with respect to the relation corresponding to the expression

s + 1.

We can also define expression-matching rules analogous to our relation-matching rule.

For example, in the theory of lists, suppose our deduced set contains the sentences

and

9 not (I a (b o)+ s )

Here the term bos is the result of inserting the element b before the first element of the list s. By the resolution
rule with expression matching, whose precise statement we omit, we may deduce (after transformation), the

contradiction false, because s is positive in the boxed sentence a e s with respect to the relation corresponding
to b os.

CONDITIONAL POLARITY

Sometimes it is convenient to extend the notion of polarity to depend on the truth of certain conditions.
For example, in the theory of integers (including negative integers) with respect to the relation <, the

occurrence of s in the sentence

a<b-s

might be regarded as positive if b is nonnegative and negative if b is nonpositive. (If b is 0, the occurrence

might have both polarities). We could then adapt the relation replacement and relation matching rules to
use this conditional polarity, imposing the appropriate conditions on whatever conclusion they draw.

More precisely, we define the notion of conditional polarity so that if x and y are respectively positive

and negative in P(x+, y-) with respect to the binary relation -4 subject to the condition )t[x, y, Q], then the
sentence [ if X - y

xy, then if P(x+, y-)
then P(y+, x-) J

is valid. Here Q denotes an arbitrary sentence; the indicated polarities of the replaced occurrences of x and

y are subject to the condition M[x, y, Q].

For example, according to this notion of conditional polarity, in the theory of the integers, the occurrence
of x in the sentence

a < b + x 2
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is positive with respect to the relation < subject to the condition

)[x,y, Q]: if X>0
then Q.

Consequently, we have that the sentence

if x>O
then if x < y

then if a<b+x 2

then a < b + y 2

is valid. The relation < was replaced by < as the result of strengthening.

In terms of this notion, we can introduce conditional versions of the relation replacement rule and
relation-matching rules. In particular, we have the conditional relation-replacement rule, i.e., in the ground
version:

For any binary relation -4, ground expressions s and t, and ground sentences 1[s -4 t] and 9(s+, t-),
we have

F[s -.4 tI
g(s+, t-)

N[s,t,false] or F[false] or g(t+, s-)T.

Here the indicated polarities of the replaced occurrences of s and t are subject to the condition
XIs, t, Q].

For example, in the theory of the integers, suppose our deduced set contains the sentences

i: e r(s,t)
then s < t

and

9: a<b.s.

Note that the occurrence of s in 9 is positive with respect to the relation < subject to the condition

if b >0
then Q.

Therefore, according to the conditional <-replacement rule, we may deduce

if b>O 1 [if r(s,t) 1 or a<bt,
then false] [then false]

which reduces under transformation to

(not (b > 0)) or (not (r(s, t))) or a < b t.

The conditional relation-matching rules are analogous. Of course these rules can be extended to apply
to conditional polarity with respect to an expression rather than a relation.

PLANNING AND THE FRAME PROBLEM

Theorem-proving techniques have often been applied to problems in automatic planning. One approach
to this application has been the formulation of a situational logic, a theory in which states of the world are
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regarded as domain elements, denoted by terms. Typically, an action in a plan is represented as a function

mapping states into other states. The effects of an action can be described by axioms.

For example, the primary effect of putting one block on top of another is expressed by an axiom such as

if clear(x, w) and clear(y, w)
then on(z, y, puton(x, Y, W)).

In other words, if block x is put on block y in a state w, then x will indeed be on y in the resulting state

puton(x, y, w). The antecedent expresses the preconditions that x and y be clear before x can be put on y;

in other words, no block can be on x or on y. (The conventional blocks-world hand can move only one block

at a time.)

In a situational logic, a problem may be expressed as a theorem to be proved. For example, the problem

of achieving the condition that block a is on block b and block b is on block c might be phrased as the

theorem

(3z) [on(a, b, z) and on(b, c, z)].

The frame problem, which occurs when planning problems are approached in this way, is connected with

the requirement that we need to express not only what conditions are altered by a given action, but also
what conditions are unchanged. For example, in addition to the primary effect of putting one block on top

of another, we must state explicitly that this action has no effect on other relations, such as color; otherwise,
we shall have no way of deducing that the color of a block after the action is the same as its color before.

Therefore, we must include in our deduced set the frame axiom

if clear(x, w) and clear(y, w)
then if color(z, u, w)

then color(z, u, puton(x, Y, w)).

In other words, if the action of putting block x on top of block y is legal and if block z is of color u in state

w, then z will also be of color u in the resulting state puton(x, y, w). If our deduced set contains the sentence

not (color(c, red, puton(a, b, s))) ,

we can then apply the resolution rule to the frame axiom and this sentence to deduce (after transformation)

(not (clear(a, s))) or (not (clear(b, s))) or (not (color(c, red, s))).

We need a separate frame axiom not only for the color of blocks, but also their size, shape, surface

texture, and any other attributes we wish to discuss in our theory. Adding all the frame axioms to our
deduced set aggravates the search problem, because the axioms have many consequences irrelevant to the

problem at hand.

By use of the conditional expression rules, we can drop all the frame axioms from our deduced set.

For example, to paraphrase the above axiom we can declare that the relation color(z, u, w) is positive with
respect to the relation corresponding to the expression e[w] : puton(x, y, w) subject to the condition

)[w, w' Q]: if clear(x, w) and clear(y, w)

then Q.

If our deduced set again contains the sentence

not (color(c, red, puton(a, b, s) -)),

we can then apply the conditional expression-replacement rule to deduce

(not (clear(a, s))) or (not (clear(b, s))) or (not (color(c, red, s)))

as before, without requiring the frame axiom. Of course, the information that certain actions and relations

are independent must still be expressed, but this can be done by polarity declarations rather than by axioms.



9. DISCUSSION 61

9. DISCUSSION

The theorem-proving system we have presented has been motivated by our work in program synthesis,
and the best examples we have of its use are in this domain. We have used the system to write detailed
derivations for programs over the integers and real numbers, the lists, the sets, and other structures. These
derivations are concise and easy to follow: they reflect intuitive derivations of the same programs. A paper
by Traugott [85] describes the application of this system to the derivation of several sorting programs. A
paper by Manna and Waldinger [85] describes the derivation of several binary-search programs. Our earlier
informal derivation of the unification algorithm (Manna and Waldinger [81]) can be expressed formally in
this system.

An interactive implementation of the basic nonclausal theorem-proving system was completed by Malachi
and has been extended by Bronstein to include some of the relation rules. An entirely automatic imple-
mentation is being contemplated. The relation rules will also be valuable for proving purely mathematical
theorems. For this purpose they may be incorporated into clausal as well as nonclausal theorem-proving
systems.

Theorem provers have exhibited superhuman abilities in limited subject domains, but seem least com-
petent in areas in which human intuition is best developed. One reason for this is that an axiomatic
formalization obscures the simplicity of the subject area; facts that a person would consider too obvious to
require saying in an intuitive argument must be stated explicitly and dealt with in the corresponding formal
proof. A person who is easily able to conduct the argument informally may well be unable to understand
the formal proof, let alone to produce it.

Our work in special relations is part of a continuing effort to make formal theorem proving resemble
intuitive reasoning. In the kind of system we envision, proofs are shorter, the search space is compressed,
and heuristics based on human intuition become applicable.
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