
DIMACS Series in Discrete Mathematics
and Theoretical Computer Science

I ,IP;^ 3^013 g*f.5 TEHEES'? 5.
L&gpcsvea t« pyjsns reieoKSI

Relative Size of Certain Polynomial Time Solvable
Subclasses of Satisfiability

J. Franco

ABSTRACT. We determine, according to a certain measure, the relative sizes
of several well-known polynomially solvable subclasses of SAT. The measure
we adopt is the probability that randomly selected fc-SAT formulas belong to
the subclass of formulas in question. This probability is a function of the ratio
r of clauses to variables and we determine those ranges of this ratio that result
in membership with high probability.

We show, for any fixed r > 4/(fc(fc — 1)), the probability that a random
formula is SLUR, q-Horn, extended Horn, CC-balanced, or renamable Horn
tends to 0 as n —^ oo. We also show that most random unsatisfiable formulas
are not members of one of these subclasses.

1. Introduction

The Satisfiability problem (SAT) is to determine whether there exists a satisfy-
ing truth assignment for a given Boolean expression. This problem is NP-complete,
thus there is no known polynomial-time algorithm for solving it. Because of the
importance of SAT in logic, artificial intelligence, and operations research, consider-
able effort has been spent to determine how to cope with this disappointing reality.
Two approaches are: 1) determine whether there exist algorithms for SAT which
usually present a result in polynomial time; 2) identify special subclasses of SAT
that can be solved in polynomial time. This paper is concerned with the second
approach.

In this paper we determine, according to a certain measure, the relative sizes of
several well-known polynomially solvable subclasses of SAT. The measure we adopt
is the probability that randomly selected formulas, drawn from a family of proba-
bility spaces, belongs to the subclass of formulas in question. More specifically, the
measure is the parameter value on the probability space for which the probability
of membership tends to 0 in the limit.

Some notable polynomial time solvable subclasses of SAT (see Section 2 for
definitions) are:

1. Horn [13, 20, 24],
2. extended Horn [6],

1991 Mathematics Subject Classification. Primary 68Q15 03B05 68T15.
Supported in part by the Office of Naval Research, N00014-94-1-0382.

©0000 (copyright holder)

19970609 024
DUG QUÄLTT7 DJEPBÜ9SBP §

J. FRANCO

3. CC-balanced [11],
4. SLUR (Single Lookahead Unit Resolution) solvable [23],
5. q-Horn[3, 4].

Below, we refer to these as the well-known polynomial time solvable subclasses.
We will not be concerned with various hierarchical subclasses of SAT [12, 15,

17, 18, 21], even though portions of them are also solvable in polynomial time.
Except for the pure implicational hierarchy [15], the best known complexities of
these classes is 0(nk) where k reflects the level of a hierarchy; therefore, it is likely
that such hierarchies are not efficiently solved for any but the first few levels. Low
expressibility is the main factor in ignoring the pure implicational hierarchy. Also
2-CNF is polynomial time solvable [1, 14], but we shall not be concerned with
random 2-CNF formulas in this paper.

We are interested in the relative sizes of the subclasses above primarily because
of the results of Boros et al. [4], which suggest that the class of q-Horn formulas is
close to what might be regarded as the largest easily expressible subclass of SAT
that can be solved by a polynomial time, uniform algorithm. They formulate a
set of linear constraints, based on the input formula (with n variables) and a real
parameter Z, and show that, for any fixed c > 0, the class of formulas that satisfies
the constraints with Z = 1 + c^p- can be solved in polynomial time. In addition,
the class that satisfies the constraints with Z = 1 is precisely the q-Horn class (see
Definition 2.7). On the other hand, for any ß < 1, the class of formulas that satisfy
these constraints with Z = 1 + £? is NP-complete.

To measure size we use a well-known probability distribution M#,\t\b also
known as the constant clause-width model, defined over the sample space of k-
CNF formulas, which is defined over a set of n propositional variables. The clause
space for M#,\,\\ consists of tne 2fc(fc) clauses witn * literals such that no two lit-
erals are based on the same variable. The formula space consists of all multisets of
m clauses. Each multiset has equal probability, which is (2fc(£)) "\ Thus clauses
are generated by sampling without replacement, while formulas are generated by
sampling with replacement. This paper restricts attention to k > 3. Probability
spaces will frequently be grouped according to ratio r = m/n.

We determine those regions of the parameter space (m, n, k) over which a ran-
dom formula has low probability of being in a certain subclass, such as q-Horn, etc.
We use this approach because

1. several of the subclasses considered are incomparable;
2. the ratio r = m/n provides a scale which has been shown, both theoretically

and experimentally, to measure the hardness of formulas;
3. many results already proven for the formula distribution may be used to add

dimension to the results presented here.

Except for point 8, the following results for random formulas under M$x\b & > 3,
are known [5, 7, 8, 9, 10, 16, 19].

1. For any fixed r > .65 2fc, the probability that a random formula is unsatis-
fiable tends to 1 as n —> oo.

2. For any fixed r > .65 2fe, there is no known algorithm that will verify unsat-
isfiability of a random formula in polynomial time with probability tending
to 1 as n —> oo.

3. For any fixed r < .25 2h/k, the probability that a random formula is satis-
fiable tends to 1 as n -> oo.

RELATIVE SIZE OF CERTAIN POLYNOMIAL TIME SOLVABLESUBCLASSES OF SATISFIABILITY

4. For any fixed r < .25 2k/k, with probability tending to 1 as n ->■ oo, a
random formula that is satisfiable can be solved in polynomial time by an
iterative variable elimination algorithm that relies primarily on choosing
variables for elimination from a shortest clause.

5. For any fixed r < 1.63, a random 3-CNF formula can be satisfied by repeated
application of the pure literal rule, with probability tending to 1 as n —> oo.

6. For any fixed r < 1, a random formula can be satisfied by applying any
algorithm for 2-SAT to the formula with all but 2 literals randomly removed
from each clause, with probability tending to 1 as n -> oo.

7. The average number of occurrences of a variable in a random formula is less
than 1 if r < l/k.

8. The average number of cycles in a random formula is bounded from above
by a small constant if r < l/k2. A cycle in this context means an undi-
rected cycle in the graph formed by considering each clause as a node and
connecting each pair of clauses that share a variable. This result is proved
in Section 3.3.

The first two points above show where random formulas are "hard" and the
last six points show where random formulas are "easy." Notice the progression
from very hard formulas (not easily solved by resolution) at r = .65 2fc, r fixed,
to usually solvable in polynomial time at r = .25 2k/k by non-trivial heuristics to
easily solvable by a 2-SAT algorithm at r = 1 to very easily solvable since variables
usually occur one time in a formula at r = l/k to trivially solvable due to no or
few cycles at r = l/k2. Thus, M^\^\ may be thought of as a generator of formulas
of hardness controlled by the ratio r. We wish to see where the well-known classes
fall on this scale.

In this paper we present the following result. Definitions appear in Section 2.

• For any fixed r > 4/(k{k — 1)), the probability that a random formula is
SLUR, q-Horn, extended Horn, CC-balanced, or renamable Horn tends to 0
as n —y oo.

Therefore, the well-known polynomial time solvable subclasses of SAT, by our mea-
sure, do not represent most "easy" formulas for a wide range of values of r and are
much smaller than other classes of formulas that, as an aggregate, are easily solved
with high probability. It is interesting to note that the probability that a random
formula T is in one of the well-known subclasses tends to 0 as n -^ oo, unless the
average number of occurrences of a variable in T is less than 4./(k — 1), a very small
number. In addition, our results show that most random unsatisfiable formulas are
not members of one of the well-known subclasses.

2. Polynomial Time Solvable Subclasses of SAT

We specify SAT for the purposes of this paper as follows. Let V = {vi,..., vn}
be a set of n Boolean variables. Let Ln = {vi, V\,..., vn, v„} be a set of n positive
and n negative literals over variables in V. A truth assignment to the literals L
is a mapping t : L ->■ {T, T) such that t(v) = T if and only if t(v) — T. A
subset of literals L is called a clause. A clause C has truth value T under a truth
assignment t if and only some literal in C is assigned T. A collection (multiset) of
clauses, {C\, Ci, • • •, Cm}, is a formula in Conjunctive Normal Form (CNF). From
now on, it is understood that formula means formula in Conjunctive Normal Form.
A formula T is satisfiable if and only if there exists a truth assignment t such

J. FRANCO

that every clause in T has truth value T under t. Such a t is said to satisfy T.
The objective of an algorithm for SAT is to determine whether a given formula is
satisfiable.

It will be useful to represent a formula T as an m x n (0, ±l)-matrix.

DEFINITION 2.1. Given a formula T, its clause-variable matrix, denoted as
Mr, is the m x n matrix in which element (i,j) has the value +1 if clause C,- has
literal VJ, has the value -1 if clause d has literal iij, and has the value 0 otherwise.

The remainder of this section defines certain subclasses of SAT that are solved
in polynomial time.

DEFINITION 2.2. A formula T is Horn if and only if every row of Mr has at
most one +1 value.

Horn formulas can be solved in linear time by unit resolution [13, 20, 24].

DEFINITION 2.3. (Lewis [22]) A formula T is renamable Horn if and only
if multiplying each of some subset of columns of M? by -1 yields an M matrix
corresponding to a Horn formula.

Renamable Horn formulas can also be solved in linear time [2].
Extended Horn formulas can be expressed as linear inequalities for which 0-1

solutions can always be found (if one exists) by rounding a real solution obtained
using an LP relaxation [6]. We find an alternative characterization is easier to
understand.

DEFINITION 2.4. Given a formula T, let R be a rooted directed tree in which
each edge is labeled with a different variable from the set V.

A clause C is an extended Horn clause w.r.t. R if the positive literals of C
correspond to a (possibly empty) directed path P in R, and the set of negative
literals in C correspond to a set of directed paths Ni, N2,..., Nt of R, and exactly
one of the following conditions holds:

1. Ni, N2,..., Nt start at the root s.
2. Ni, N2,..., Nt-i, (say), start at the root s, and Nt starts at a vertex q ^ s.

Moreover, if P is not empty, it also starts at q.
A formula is an extended Horn formula w.r.t. R if each of its clauses is an extended
Horn clause w.r.t. R. A formula is an extended Horn formula if it is an extended
Horn formula w.r.t. some such rooted directed tree R.

One tree R for a given Horn formula is a star (one root and all leaves with an
edge for each variable in the formula). Hence, the class of extended Horn formulas
is a generalization of the class of Horn formulas.

Unsatisfiable extended Horn formulas can be recognized in polynomial time,
by an algorithm based on unit-resolution plus rounding [6]. Therefore, if a formula
is known to be extended Horn a priori, it can be solved in polynomial time. How-
ever, there is no known polynomial time algorithm for recognizing extended Horn
formulas.

The following class is also rooted in Linear Programming.

DEFINITION 2.5. A formula T is CC-balanced if in every submatrix of MT with
exactly two nonzero entries per row and per column, the sum of the entries is a
multiple of four [25].

RELATIVE SIZE OF CERTAIN POLYNOMIAL TIME SOLVABLESUBCLASSES OF SATISFIABILITY

The motivation for studying CC-balanced formulas is the question, for SAT,
when do Linear Programming relaxations have integer solutions? CC-balanced
formulas can be recognized and solved in polynomial time [11],

The class SLUR, for Single Lookahead Unit Resolution, is peculiar in that
it is defined by an algorithm, and not by structural properties of formulas. The
algorithm defining SLUR is given below. In it, the function unitprop(T) returns the
result of performing the well-known unit clause simplification until no unit clauses
remain in the formula. It also returns the set of unit clauses found and derived. It
is known that unitprop can be implemented in time linear in \T\ [12].

Algorithm SLUR(^)
Input: A CNF formula T with no empty clause
Output: A satisfying partial truth assignment for the variables in T,

or "unsatisfiable", or "give up"

Initialize T :— unitprop(T).
Initialize t := the set of unit clauses returned by unitprop.
If 0 S T, then

Output "unsatisfiable" and halt.
While T is not empty do the following:

Select a variable v appearing as a literal of T.
Set T^ ■= unitprop{FU{Ü}).
Set t\ := unit clauses returned by unitprop.
Set J"6 := unitprop(FU {Q).
Set ^2 '■= unit clauses returned by unitprop.
If 0 € J"oo and0 € J"e, then

Output "give up" and halt.
Otherwise, if 0 ^ .Foo, then

OCl J~ I J~ QQ .

Set t :=t\Jh.
Otherwise,

Set F:=F€.
Set t := tUt2.

(Continue the loop.)
Output t.

End Algorithm SLUR

DEFINITION 2.6. A formula is in the class SLUR if, for all possible sequences
of selected variables, algorithm SLUR does not give up.

Algorithm SLUR takes linear time with the modification, due to Truemper [25],
that unit resolution (in unitprop) be applied simultaneously to both branches of a
selected variable, abandoning one branch if the other finishes first without falsifying
a clause. Note that due to the definition of this class, the question of class recogni-
tion is avoided. The class SLUR was developed as a generalization of other classes
including Horn, renamable Horn, extended Horn, and CC-balanced formulas [23].

The class q-Horn was developed in [3, 4].

DEFINITION 2.7. Let {vi,V2,—,vn} be a set of Boolean variables. For clause
d, let Pj be the set of indices of its positive literals and let TV,- be the set of indices

6 J. FRANCO

of its negative literals. Construct the following system of inequalities:

]£ aj + Yl t1 - aj) ^ z' (*'= J»2' •••'m)>and ^
0<«i<l (i=l,2,...,n). (2)

where Z € R+. If all these constraints can be satisfied with Z = 1, then the formula
is q-Horn.

We may also characterize this class as a special case of monotone decomposition
of matrices [25]. Given formula T, the monotone decomposition of M?, consists
of multiplying some columns by -1 and moving rows and columns to form the
following partition into submatrices:

A1 \E

D \A2
y

where the submatrix A1 has at most one +1 entry per row, the submatrix D con-
tains only -1 or 0 entries, the submatrix E has only 0 entries, and the submatrix
A2 has no restrictions. Below, we will be concerned with the maximum mono-
tone decomposition where matrix A1 is the largest possible. Maximum monotone
decompositions are essentially unique [25].

DEFINITION 2.8. If the maximum monotone decomposition of Mr is such that
A2 has no more than two nonzero entries per row, then T is q-Horn.

Recognition of q-Horn formulas is made easy by the fact that monotone decom-
position can be carried out in linear (0(rn + n)) time [25]. Once a q-Horn formula
J is in its decomposed form it can be solved in linear time as follows. Treat subma-
trix A1 as a Horn formula and solve it in linear time using a method that returns
a minimum, unique truth assignment for the formula with respect to true [13, 20].
If the Horn formula is unsatisfiable, then T is unsatisfiable. Otherwise, remove all
rows satisfied by the unique minimum truth assignment. Solve what is left of sub-
matrix A2 by a 2-SAT algorithm [1, 14]. If a satisfying assignment is found, it may
be combined with the unique minimum assignment above to give an assignment
satisfying T. Otherwise, T is not satisfiable.

In the analysis below we will not directly consider some of the classes defined
above because they are subclasses of either SLUR or q-Horn. However, the classes
of SLUR, and q-Horn formulas are incomparable as the following examples show.

EXAMPLE 2.9. Any formula {v1,v2,v3}{v1,v2,v3}... is not q-Horn. To see
this, construct inequalities as in (1) and (2) for the first two clauses. These force
ati > 2 - Z/2 which requires Z > 2.

EXAMPLE 2.10. The formula {v1,v2,v3}{v1,v2,v3} is not q-Horn but it is ob-
viously SLUR. This formula can easily be extended to less trivial SLUR formulas
that are not q-Horn.

EXAMPLE 2.11. The formula {«i, v2, v3}{vx, v2, v4}{v1,v2, v5}{vi, v2, v6} ■.., where
... is Horn and does not contain vi or v2 is q-Horn but not SLUR.

3. Analysis

We restate the definition of model M#t\t\\ in terms of the notation of Section 2.
Let C\,|| be the set of all subsets of Ln of size k such that no element of C\}\\ con-
tains duplicate or complementary literals. Random formulas generated according to

RELATIVE SIZE OF CERTAIN POLYNOMIAL TIME SOLVABLESUBCLASSES OF SATISFIABILITY

Mft \ || contain m clauses selected uniformly, independently, and with replacement
from Cy|. We will be interested in the case k > 3 since random formulas generated
from M^,\,\b k < 2, are solved in linear time by existing 2-SAT algorithms [1, 14].

3.1. SLUR Analysis.

DEFINITION 3.1. For any even x > 4, call a set of x clauses an equivalence
cycle if all but two literals can be removed from each clause, the variables can be
relabeled, and the clauses can be reordered in the following sequence

{Vi, V2}{v2, V3}... {V|, Vi}{üi, V| + i} ... {Vr-l, üi},

where Vj ^ Vj if i ^ j. Given an equivalence cycle C C T, if every clause C £ C
contains at most k — 2 literals that are the same as or complementary to the
removed literals of C, and no two of the literals removed from C are the same or
complementary, then C is called a blocked equivalence cycle. The variable v\ is
called the end variable of the cycle.

LEMMA 3.2. If a formula T has a blocked equivalence cycle, then T is not
SLUR.

Proof: In algorithm SLUR, choose for elimination the variables removed from
the blocked equivalence cycle of T\ proceed down the search tree in the direction
corresponding to falsifying the literals in the blocked equivalence cycle. By hy-
pothesis, there will be no unit clauses or empty clauses and yet what's left will be
unsatisfiable due to the equivalence cycle. This violates the definition of SLUR. D

THEOREM 3.3. Under M#t\t\\, the probability that a random formula T is in
the class SLUR tends to Oifr> 4c/(k2 — k), c > 1 a constant.

Proof: We apply the second moment method to prove the theorem. Let B,
denote the number of blocked equivalence cycles of size i in a random formula T.
Let x = |"ln2n] or x = \ln2n] + 1, whichever is even. We find E{BX), the expected
number of blocked equivalence cycles of size x, and E(Bl), the second moment of
Bx. We show E(BX) = ax, for some a > 1, when r > A/(k2 - k). Then we show
E(Bl) = E(BX)

2(1 + o(l)) under the same conditions. Therefore, by Chebyshev's
inequality,

E(Bp-E(BxV

E(BX)

when r > 4/(k2 - k).
First, we find E(BX). Pick x > 4 clauses, and x - 1 variables. Arrange the

clauses with variables so as to construct an equivalence cycle where the end variable
of the first clause is repeated in the a;/2th and x/2 + 1th clauses of the cycle. The
literal pattern of the two literals of each clause that cause it to be in the equivalence
cycle is fixed. The probability that the clauses in the sequence match their patterns

where ab is used to denote the product a(a — 1)(a — 2).. .(a — 6+1). The probability
that any non-cycle clause does not have more than k — 2 literals taken from the

Pr(Bx = 0) < Pr(\Bx - E{BX)\ > E(BX)) < y %m \ x> = o(l)

J. FRANCO

set of x - 1 chosen variables and their complements is, ignoring insignificant terms,
1 - k(x/n)h~1. Hence, the probability that all cycle clauses match their patterns
and non-cycle clauses do not share more than k - 2 literals with the cycle clauses is

(^v^o-^ry
The number of ways to select x clauses is m(m-l)(m-2)... (m-x + 1) = nf. The
number of ways to choose x - 1 variables is n(n - l)(n - 2)... (n - x + 2) = nx~ .
Therefore, ignoring insignificant terms for convenience of presentation,

Since rrf > m*(l - x/m), rF^ > n—^l - {x - l)/n), and (n - x)^2^ >
{n-(k-l)x)^-2^,

iw-^(-("))r('-^-) > -

1 Jn2n If m/n > 4c/(fc2 - Ar), where c is any constant greater than 1, E{BX) > -cn " >
alnn, in the limit, for some a > 1.

Next, we find E{B2
X). Order all possible patterns of variable choices and clause

choices. There are rrfnF^ of these. Let Bx = Xx + X2 + X3 + ... where each Xt

is 1 if, for the fth pattern, there is a blocked equivalence cycle and is 0 otherwise.
Then E{Bl) = J2itj E(XiXj).

Suppose patterns i and j have q clauses in common. If q = 0 it is possible for
both patterns to co-exist in T. But, if q > 0, they may not be able to co-exist: in
particular, the variable assignments at the clauses shared by both patterns must
agree. The number of different possible variable patterns supporting consistent
overlapping cycles is no greater than n2(*-1)_<?, except for q = x in which case it is
nx~l. The probability that patterns i and j have q clauses in commomis

x\ (m — x

(;)

- xY-lxl

^qj mr

Given two consistent blocked equivalence cycles, the probability that both are in
T is (ignoring insignificant terms as above) no greater than

Therefore,

Y^EiXiXj)

RELATIVE SIZE OF CERTAIN POLYNOMIAL TIME SOLVABLESUBCLASSES OF SATISFIABILITY

<m=^^(tö-i)-(.-„^(l-4(|)-')-"

X 4^ ("i - 2a:)9(n - 2x)« W "»* V *(*-!)/ (n - x)(fe~2)2* \ ^ /
g=o

+
4nk

(n - a0(fe-2)2* V ^' (m - 2z)a;(n - 22:)* m1 l Ar (Ar - I) I („ _ X)(ä

2I / , , t_i\ m-2x

< nfrrfn^n*-1 (^=^) " (n - s)<*-3>> - xf~2^ (l - k (^)*_1)

(^ fx\ (W V / W
X \^ W U(* - l)(m - ix)2(n - 2*x)*-V + " U(* - l)(m ~ *x)2(n ~ 2A;a;)'=-1

* \\ + k{k - l)(m - 3z)2(n - 2kx)k~1) + " \fe(* - l)(m - 3z)2(n - 2kx)k~1))

X V1 + A(Ar - l)(m - 3z)2(n - 2Az)fc-1 + " VAr(Ar - l)(m - 3z)2(n - 2kx)k~1))

= E(Bx)
2(l + o(l))(l + o(l/n))

since x2nk/{k{k - l)(m - 3a;)2(n - 2Aar)fc-1) -» x2n/{k{k - l)m2) = 0(x2/n) and
n{4xnk/{k{k - l)(ro - 3ar)2(n - 2Arx)Ä-1))* -»• n(4xn/(Ar(Ar - l)m2))* = o(l/n*-a)
due to m — 3a; —> m, n — 2kx —> n, and m/n = r > 4/(Ar2 — A). D

3.2. Q-Horn Analysis.

DEFINITION 3.4. For x = [\nn\ > 4, call a set of x clauses a c-cycle if all but
two literals can be removed from each of x — 2 clauses, all but three literals can be
removed from two clauses, the variables can be relabeled, and the clauses can be
reordered in the following sequence

{VI,V2}{V2, V3}... {V{, Vi+i,Vx + i} . . . {vj,Vj + 1, vx+1} ...{vx, Vi},

where u; ^ Vj if i ^ j. Given a c-cycle C C T, if none of the literals removed from
C are the same or complementary, then C is called a q-blocked c-cycle.

LEMMA 3.5. // a formula T has a q-blocked c-cycle then it is not q-Horn.

Proof: Let a q-blocked c-cycle in T be represented as follows

{t>l, V2, ...}.. . {vi,Vi + i, Vx+i, ...}... {Vj, Vj + i, vx+i,...}... {vx, vi,...}.

Develop inequalities (1) and (2) for the formulas above. We get, after rearranging
terms in each

a1<Z-l + a2-... (3)

cti < Z - 1 + orj+i - ax+i - ...

10 J. FRANCO

aj < Z - 1 + Qfj+i - (1 - ax+i) - ...

ctt-KZ-l+ct!-.... (4)

From inequalities (3) to (4) we deduce

a\ < xZ — x + ai — (1 — ax + ax) - ...

or
0<xZ-x-l- ...

where all the terms in ... are non-negative. Thus, all solutions to (3) through (4)
require Z > {x + l)/x = 1 + 1/x = 1 + 1/|>2«J > 1 + 1/n" for any fixed ß < 1.
This violates the result of [4] that requires Z < 1 in order for T to be q-Horn. D

THEOREM 3.6. Under M^t\,\\, the probability that a random formula T is q-
Horn tends to 0 if r > 4c/(k2 - k), c> 1 a constant.

Proof: This is another application of the second moment method closely fol-
lowing that of Theorem 3.3. This time we seek the expected number of q-blocked
c-cycles in T and to show that this expectation is large and variance small over the
indicated range of r. Then, by Lemma 3.5, the result follows.

Taking advantage of the remarkable similarities between q-blocked c-cycles and
blocked equivalence cycles, we need modify the proof of Theorem 3.3 only by the
small changes due to a slightly different probability of the event being measured
and count of the number of possibilities. Thus,

rrfrf-1 is replaced by raIuI+1,

and

fHk J-A" (n - a.)(*-2)* is replaced by

(^röc**^)"'----'» _ y\(k-2){x-2)+2(k-3)

(k — 1 \ 1 ~ * (n)) *s not usec^- ^e details are omitted. D

3.3. Cycles. As stated before, a cycle in a formula is an undirected cycle in
the graph formed by considering each clause as a node and connecting each pair
of clauses that share a variable. A formula without a cycle is trivially satisfied by
assigning values to variables satisfying the "leaf" clauses, working inward to the
root(s). A formula with no cycles is a member of all the well known polynomially
solvable subclasses except for Horn (however, it is renamable Horn). The results
above for SLUR and q-Horn show that cycles in a random formula are abundant if
r > 4/(k(k - 1)). The next theorem shows that random formulas have few cycles
ifr<.618/(*(*-l)).

THEOREM 3.7. Under M^\t\\, k > 3, the average number of cycles in a random

formula T is less than 1 when r = ^ < jqfrTj ■

RELATIVE SIZE OF CERTAIN POLYNOMIAL TIME SOLVABLESUBCLASSES OF SATISFIABILITY

Proof: We find the expected number of cycle patterns in T which is an over-
estimate of the expected number of cycles in T. The number of cycle patterns
involving a sequence of x clauses is rrfrf. The probability that a sequence of x

clauses matches a pattern of x clauses is [(IZD/Ck))- Therefore, the expected

number of cycle patterns in T is

-1) " Ef mk{k — 1)\ fmk{k — l
V n-1) <l n-1

x>2 V ' V
1 _ mk(k-l)
1 n-1

This is less than 1 if mk[k - l)/n - 1 < .618. D
This result shows how closely SLUR, q-Horn, and other subclasses are tied to

cycles in formulas: it seems that they are defeated rapidly by the presence of cycles
(that is, as r rises, formulas are not SLUR, q-Horn, etc. soon after they begin to
contain a significant number of cycles).

3.4. Easy Unsatisfiable Families of Formulas. Since it is based on unit
resolution, one of the drawbacks of SLUR is it fails to provide a proof of unsat-
isfiability for all but some trivial unsatisfiable formulas. On the other hand, it is
not hard to find non-trivial unsatisfiable formulas that are q-Horn. The question,
whether q-Horn contains relatively many unsatisfiable formulas, seems to have the
answer no from the results above since q-Horn formulas do not appear in abundance
if r > 4/(k(k — 1)) but formulas are satisfiable with high probability if r < .25 2k/k.
Indeed, the results above show that both SLUR and q-Horn are equally handicapped
in solving unsatisfiable formulas. On top of this, it can be shown that there are
families of unsatisfiable formulas that are easy to solve but are not in either SLUR
or q-Horn. For example, the following result is proved in a forthcoming paper by
Franco and Van Gelder.

THEOREM 3.8. //limm]„_).0O ra/nfc_1+1/2 = oo, a random formula T is un-
satisfiable and can be solved in polynomial time with probability 1 — o(l).

4. Discussion and Conclusions

The aim of this paper is to determine ti e relative sizes of some well known
polynomially solvable subclasses of Satisfiability. We used A^y] and the ratio
r = m/n to provide a scale of formula "hardness" and determined where, on that
scale, random formulas are members of the subclasses with high probability. We
found that random formulas are not SLUR or q-Horn about where formula cycles
begin to appear. Thus, neither subclass dominates in any range of r except where
formulas are extremely "easy." The weakness of all the subclasses is that some local
property can defeat them. In the case of SLUR and q-Horn this local property is
the presence of cycles and we showed that both SLUR and q-Horn are about equally
handicapped by this: that is, they are defeated by cycles that are similar in nature.
This is surprising since, except for trivial cases, SLUR is useless on unsatisfiable
formulas and q-Horn can solve non-trivial unsatisfiable formulas. Because of this,
we had expected that q-Horn would dominate in some range of r where formulas
are unsatisifable with high probability. But, this turned out not to be the case even
though there is a range of r where unsatisfiable formulas are "easy."

12 J. FRANCO

We have also observed something unexpected about the Satisfiability index of
(l)-(2) and [4]. According to this index, the subclass of formulas that satisfy a set of
constraints with parameter Z = 1 + c^p- is poly normally solvable and the subclass
of formulas that satisfy these constraints with Z — 1 + ^, for any 1 > ß > 0
is NP-complete. However, from Lemma 3.5 and Theorem 3.6, nearly all formulas
satisfy the constraints with Z > 1 + £?, for any ß > 0, if r > 4/(k{k - 1) and in
this range, up to r = .25 2k/k, most random formulas are very easy but not usually
in one of the well known polynomially solved subclasses of Satisfiability.

5. Acknowledgments

I wish to thank Allen Van Gelder for helpful comments on earlier drafts of this
paper.

References

[1] B. Aspvall, M. F. Plass, and R. E. Tarjan, A linear-time algorithm for testing the truth of
certain quantified Boolean formulas. Information Processing Letters 8(3) (1979), 121-132.

[2] B. Aspvall, Recognizing disguised NR(1) instances of the satisfiability problem. Journal of
Algorithms 1 (1983), 97-103.

[3] E. Boros, P. L. Hammer, and X. Sun, Recognition of q-Horn formulae in linear time. Discrete
Applied Mathematics 55 (1994), 1-13.

[4] E. Boros, Y. Crama, P. L. Hammer, and M. Saks, A complexity index for satisfiability prob-
lems. SIAM Journal on Computing 23 (1994), 45-49.

[5] A. Z. Broder, A. M. Frieze, and E. Upfal, On the satisfiability and maximum satisfiability
of random 3-CNF formulas. Proceedings of the Fourth Annual ACM-SIAM Symposium on
Discrete Algorithms (1993), 322-330.

[6] V. Chandru and J. N. Hooker, Extended Horn sets in propositional logic. J. ACM 38 (1991),
205-221.

[7] M. T. Chao and J. Franco, Probabilistic analysis of two heuristics for the 3-satisfiability
problem. SIAM J. on Computing 15 (1986), 1106-1118.

[8] M. T. Chao and J. Franco, Probabilistic analysis of a generalization of the unit-clause literal
selection heuristics for the k satisfiable problem. Information Sciences 51 (1990), 289-314.

[9] V. Chvätal and E. Szemeredi, Many hard examples for resolution. J. of ACM 35 (1988),
759-770.

[10] V. Chvätal and B. Reed, Mick gets some (the odds are on his side). Proc. 32nd Symposium
on the Foundations of Computer Science (1992).

[11] M. Conforti, G. Cornuejols, A. Kapoor, K. Vuskovic, and M. R. Rao, Balanced Matrices.
Mathematical Programming: State of the Art. J. R. Birge and K. G. Murty, eds. Braun-
Brumfield, United States. Produced in association with the 15th Int'l Symposium on Mathe-
matical Programming, University of Michigan, 1994.

[12] M, Dalai, and D. W. Etherington, A hierarchy of tractable satisfiability problems. Information
Processing letters 44 (1992), 173-180.

[13] W. F. Dowling and J. H. Gallier, Linear-time algorithms for testing the satisfiability of
propositional Horn formulae. Journal of Logic Programming 1 (1984), 267-284.

[14] S. Even, A. Itai, and A. Shamir, On the complexity of timetable and multi-commodity flow
problems. SIAM J. on Computing 5(4) (1976), 691-703.

[15] J. Franco, J. Goldsmith, J. S. Schlipf, E. Speckenmeyer, R. P. Swaminathan, An algorithm
for the class of pure implicational formulas. Proc. of the Workshop on Satisfiability, Siena,
Italy (1996).

[16] A. M. Frieze, and S. Suen, Analysis of two simple heuristics for random instances of 3-SAT.
Journal of Algorithms 20(2) (1996), 312-355.

[17] G. Gallo, and M. G. Scutella, Polynomially solvable satisfiability problems. Information Pro-
cessing Letters 29 (1988), 221-227.

[18] G. Gallo and D. Pretolani, Hierarchies of polynomially solvable SAT problems. Presented in
the 3rd International Symposium on AI & Mathematics, (January, 1994).

RELATIVE SIZE OF CERTAIN POLYNOMIAL TIME SOLVABLESUBCLASSES OF SATISFIABILITY

[19] A. Goerdt, A threshold for unsatisfiability. Proc. 17th annual Symposium on Mathematical
Foundations of Computer Science, Prague, Czechoslovakia, (1992).

[20] A. Itai and J. Makowsky, On the complexity of Herbrand's theorem. Working paper 243,
Department of Computer Science, Israel Institute of Technology (1982).

[21] H. Kleine Büning, On generalized Horn formulas and k resolution. Theoretical Computer
Science 116 (1993), 405-413.

[22] H. R. Lewis, Renaming a set of clauses as a Horn set. J. ACM 25 (1978), 134-135.
[23] J. S. Schlipf, F. Annexstein, J. Franco, and R. P. Swaminathan, On finding solutions for

extended Horn formulas. Information Processing Letters 54 (1975), 133-137.
[24] M. G. Scutella, A note on Dowling and Gallier's top-down algorithm for propositional Horn

satisfiability. Journal of Logic Programming 8 (1990), 265-273.
[25] K. Truemper, Effective Logic Computation. In preparation, expected 1997.

COMPUTER SCIENCE, ECECS, UNIVERSITY OF CINCINNATI, CINCINNATI, OH 45221-0030
E-mail address: franco@gauss.ececs.uc.edu

