
December 1994 Report No. STAN-CS-TR-95-1546

PB96 -143547 Thesis

Symbolic Approximations for Verifying Real-Time Systems

by

l Amoved w puwie teU«

Howard Wong-Toi

ILL'iTiT^- '■*"-*"

Department of Computer Science

Stanford University
Stanford, California 94305

19970610 096

REPORT DOCUMENTATION PAGE

2. UPOUT DAT! 3. REPORT TYPE AHO OafM CCWSRSO"

4. TltlE AND SUBTITLE

A. AUTHORS)

7. PSRFORMMG ORGANIZATION NAMI(S) ANO AOORESS<ES)

pW^ ; CA «l <*!>oS

t. SPONSORING/MONITORING AGENCY NAMI(S) ANO AOORSSSUsT

11. SUPPLEMENTARY NOTES

S. PUNDMG NUMMRS

t. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORMG/MONITORING
AGENCY REPORT NUMBER

12*. OUTRISUTION/AVAILABRJTY STATEMENT 12*. DISTRIBUTION COOE

13. ABSTRACT (MUMMMI JOOwortftf

Real-time systems are appearing in more and more applications where their proper operation is
critical, e.g. transport controllers and medical equipment. However they are extremely difficult to design
correctly. One approach to this problem is the use of formal description techniques and automatic
verification. Unfortunately automatic verification suffers from the state-explosion problem even without
considering timing information. This thesis proposes a state-based approximation scheme as a heuristic
for efficient yet accurate verification.

We first describe a generic iterative approximation algorithm for checking safety properties of a
transition system. Successively more accurate approximations of the reachable states are generated until
the specification is provably satisfied or not. The algorithm automatically decides where the analysis
needs to be more exact, and uses state partitioning to force the approximations to converge towards a
solution. The method is complete for finite-state systems.

The algorithm is applied to systems with hard real-time bounds. State approximations are performed
over both timing information and control information. We also approximate the system's transition
structure. Case studies include some timing properties of the MAC sublayer of the Ethernet protocol, the
tick-tock service protocol, and a timing-based communication protocol where the sender's and receiver's
clocks advance at variable rates.

14. SUBJECT TERMS 1S, NUMBER OP PAGES

IB. PRICE COOE

17. SECURITY CLASSIFICATION
OP REPORT

IB. SECURITY CLASSIFICATION
OP THIS PAGE

It. SECURITY CLASSmCAfTÖN1

OF ABSTRACT
20. LIMITATION OF AISTRACT

SYMBOLIC APPROXIMATIONS FOR VERIFYING

REAL-TIME SYSTEMS

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

By
Howard Wong-Toi

December 1994

© Copyright 1994 by Howard Wong-Toi

All Rights Reserved

li

I certify that I have read this dissertation and that in

my opinion it is fully adequate, in scope and quality, as

a dissertation for the degree of Doctor of Philosophy.

/2^y^^?Y
David L. Dill

(Principal Adviser)

I certify that I have read this dissertation and that in

my opinion it is fully adequate, in scope and quality, as

a dissertation for the degree of Doctor of Philosophy.

\f\ • cC^_
Yoav Shoham

I certify that I have read this dissertation and that in

my opinion it is fully adequate, in scope and quality, as

a dissertation for the degree of Doctor of Philosophy.

Moshe Vardi
(Rice University)

Approved for the University Committee on Graduate
Studies:

iii

Acknowledgements

I would like to thank my advisor, David Dill, for his tremendous guidance and support.

It has been a pleasure and privilege to learn from him how to do research. He helped

me focus on the important research issues in the field, and suggested finding efficient

verification algorithms for real-time systems. His comments have helped to clarify

many ideas in this thesis. I am also thankful for his numerous careful readings of thesis

drafts. Throughout my years at Stanford, he has been always listening, concerned,

and encouraging.

I thank my reading committee members Yoav Shoham and Moshe Vardi. Toward

the beginning of my stay at Stanford, Yoav suggested to me solving problems in their

simple forms before moving to more advanced formulations. This advice has been

extremely useful in tackling tough verification problems. Moshe's comments led to a

more careful examination of the lessons learnt building the verifier and have improved

the thesis significantly. I also thank Gene Franklin and Hector Garcia-Molina who

kindly served on my Orals committee.

I benefitted from many discussions and suggestions from colleagues. In particular,

I thank Rajeev Alur for answering numerous questions about timed automata and

AT&T's verifier, Nicolas Halbwachs for explaining his approximations for reactive

systems and their limitations, and Alan Hu for sharing his expertize on OBDDs. Many

thanks go to Gerard Hoffmann: we spent many enjoyable and fruitful hours together

discussing research in general and models of discrete event control in particular. My

various office mates provided a stimulating research environment at the same time as

a friendly atmosphere for grad students blues, as well as answering many questions

on hardware and software. For this, I thank Anuchit Anuchitanukul, David Cyrluk,

IV

Dinesh Katiyar and Elizabeth Wolf. Thanks also go to all the members of the murphi

verification group.

I am grateful to Tom Henzinger for enabling me to finalize my thesis while at

Cornell University. Wee Eng Koh and Xiao-Wu Su helped me with completing ad-

ministrative details.

Many friends at Stanford made my stay here enjoyable. Special thanks go to

my host families Andy and Mamie Poggio, and Walter and Sherry Schubert. My

memories of Stanford will always include all the sisters and brothers from the Chinese

Christian Fellowship at Stanford who made up my home away from home.

Many thanks are due to my wife Sarah for her unceasing love and patience, espe-

cially her patience. I also thank my parents for their years of support and encourage-

ment of my studies.

Most of all, I am thankful in all things to God, my creator and redeemer.

Howard Wong-Toi

November 1994

Of making many books there is no end, and much study wearies the body.

Now all has been heard;

here is the conclusion of the matter:

Fear God and keep his commandments,

for this is the whole duty of man.

Ecclesiastes 12:12b, 13

Abstract

Real-time systems are appearing in more and more applications where their proper

operation is critical, e.g. transport controllers and medical equipment. However they

are extremely difficult to design correctly: one must consider the sequencing and co-

ordination of events in concurrent processes, as well as the times they occur. One

approach to this problem is the use of formal description techniques and automatic

verification. Unfortunately automatic verification suffers from the state-explosion

problem and is computationally expensive even without real-time. The addition of

timing information makes the problem much harder. This thesis proposes a state-

based approximation scheme as a heuristic for reducing the effort required in verifi-

cation.

We first describe a generic iterative approximation algorithm for checking safety

properties of a transition system. It exploits the fact that not all the details of a system

need be considered to prove it correct. Successively more accurate approximations of

the reachable states are generated until it can be determined whether the specification

is satisfied or not. The algorithm automatically decides where the analysis needs to

be more exact, and uses state partitioning to force the approximations to converge

towards a solution. In the case of finite-state systems, the method is complete.

The algorithm is used to verify that systems with hard real-time bounds sat-

isfy timed safety properties. State approximations are performed over both timing

information and control information. We also approximate the system's transition

structure. Case studies include some timing properties of the MAC sublayer of the

Ethernet protocol, the tick-tock service protocol, and a timing-based communication

protocol where the sender's and receiver's clocks advance at variable rates.

VI

Contents

Acknowledgements iv

Abstract vi

1 Introduction 1

1.1 Motivation 1

1.2 Approximation 2

1.3 Contributions 4

1.4 Real-time systems 5

1.4.1 Timed safety automata 6

1.4.2 Other formalisms 6

1.4.3 Verification 9

1.5 Related work 11

1.5.1 Iterative approximations 12

1.5.2 Analyzing timed automata 13

1.5.3 Petri nets 14

1.5.4 Abstract interpretation 14

1.5.5 Other applications of approximation 15

1.6 Outline of thesis 16

1.7 Preliminaries 17

1.7.1 Transition systems 17

1.7.2 Safety verification problem 17

1.8 Symbolic verification 18

vii

2 Approximation 21

2.1 Fundamental approximation algorithm 21

2.1.1 Correctness 22

2.1.2 Advantages 24

2.1.3 Disadvantages 24

2.1.4 Example 25

2.2 Simple variations 26

2.2.1 Backwards reachability 27

2.2.2 Iterated overapproximations 27

2.2.3 Separating classes 28

2.3 Full approximation algorithm 34

2.3.1 Conditional joins 38

2.3.2 Refinement of approximations 39

2.3.3 Sketch of algorithm 40

2.3.4 Additional splitting 47

2.3.5 Generating debugging traces 48

2.3.6 Further features 50

2.4 Approximating next-state relations 50

2.4.1 Correctness 51

2.4.2 Non-termination 52

2.4.3 Termination 53

3 Real-Time Systems 57

3.1 Introduction 57

3.2 Timed automata 57

3.2.1 Time-stamped traces 57

3.2.2 Timed traces 58

3.2.3 Timed safety automata 58

3.3 Modeling real-time systems 64

3.3.1 Process composition 64

3.3.2 Non-Zenoness 65

viii

3.3.3 Example 67

3.4 Safety verification 70

3.4.1 Decidability 74

4 Verifying Real-Time Systems - Part I 77

4.1 Introduction 77

4.2 Time zones and bounds 78

4.3 Difference bounds matrices 79

4.3.1 Canonical form for DBMs 80

4.3.2 Operations on time zones 81

4.4 Rounded time zones 83

4.4.1 Rounded time zones 85

4.4.2 Augmenting next-state relations 92

4.5 Approximation of real-time systems 93

4.5.1 Overapproximation 93

4.5.2 Underapproximation 94

4.5.3 Disjunctive next-state relation 95

4.5.4 Urgent events 96

4.6 Proof of termination 96

4.7 Examples 97

5 Verifying Real-Time Systems - Part II 102

5.1 Symbolic representation of control locations 102

5.1.1 Combining domains for approximation 103

5.1.2 Computing successors 104

5.2 Approximating real-time systems 105

5.2.1 Approximating next-state relations 105

5.2.2 Algorithm for real-time systems 108

5.2.3 Properties of algorithm 110

5.3 Ordered binary decision diagrams 110

5.3.1 Relations and Boolean functions Ill

5.3.2 Ordered binary decision diagrams Ill

ix

6 Case Studies 115

6.1 Examples 115

6.1.1 Train-gate controller 115

6.1.2 Tick-Tock protocol 117

6.1.3 Ethernet 123

6.1.4 Mutual exclusion 125

6.2 Discussion 125

7 Hybrid Systems 128

7.1 Skewed clock automata 130

7.2 Translation to timed safety automata 133

7.3 Case study: Manchester bit encoding 138

7.3.1 Protocol description 139

7.3.2 Modeling arbitrary length bit streams 141

7.3.3 Sender 142

7.3.4 Receiver 146

8 Implementation and Results 150

8.1 Implementation 150

8.1.1 Input 151

8.1.2 Implementational variations 152

8.2 Results 153

8.3 Additional heuristics 155

8.3.1 Choice of initial partition 155

8.3.2 Enhanced underapproximations 156

8.3.3 Untimed analysis 158

8.4 Performance comparison to other tools 159

8.4.1 Reachability and minimization 160

8.4.2 Symbolic model-checker KRONOS 162

8.5 Lessons learnt 165

8.5.1 Complexity issues 165

8.5.2 Large control spaces 166

x

8.5.3 User-supplied information 167

8.5.4 Symbolic representations 167

8.5.5 Simplify the problem 169

8.5.6 Indications of progress 170

8.5.7 Debugging information 172

8.6 Summary 172

9 Conclusions 175

9.1 Further work 175

9.1.1 Extensions 175

9.1.2 Real-time verifier 175

9.1.3 Other problem domains 176

9.1.4 Solving other problems 177

9.1.5 Analytic analysis 178

9.2 Discussion 178

Bibliography 180

XI

List of Figures

2.1 Fundamental overapproximation 23

2.2 Fundamental underapproximation 23

2.3 Potential disadvantages of approximation 25

2.4 Iterated overapproximations 29

2.5 Separating classes overapproximation 32

2.6 Separating classes underapproximation 33

2.7 Separating classes example 33

2.8 Conditions leading to false negatives 35

2.9 Conditions leading to false positives 37

2.10 Violating conditions for permissible joins 38

2.11 Full approximating algorithm 41

2.12 Overapproximating algorithm 42

2.13 Underapproximating algorithm 43

2.14 Non-termination example 52

3.1 TSA for a train 63

3.2 Automata for mutual exclusion protocol 68

3.3 Real-time process i for mutual exclusion protocol 69

3.4 Automaton completion 72

3.5 Bounded liveness specification 73

3.6 Mutual exclusion specification 74

3.7 Mutual exclusion specification 74

3.8 Detailed Alur-Dill regions 75

xii

4.1 Time zone Z 80

4.2 Pseudocode for finding time successors 81

4.3 Pseudocode for computing resets 82

4.4 Set reachability algorithm 84

4.5 Automaton A\, causes nontermination without rounding 85

4.6 Constraint zones 87

4.7 Rounded regions example 90

4.8 Timed safety automaton A\ 98

4.9 Approximations for A\ 99

4.10 Timed safety automaton A2 100

4.11 Approximations for A2 100

5.1 Real-time approximating algorithm 109

5.2 OBDD for the Boolean function (xx V x2) A (x3 V xA) 112

6.1 Automata for train-gate controller example 116

6.2 Real-time safety specification 116

6.3 Tick-Tock protocol block diagram 117

6.4 Tick-Tock service entity 119

6.5 Isochronism specification processes 120

6.6 Isochronism component indicating urgent enabling at SS_SAP 121

6.7 Misleading specification 126

7.1 Skewed clock automaton A± 131

7.2 Transformation K on SCA constraints 134

7.3 Transforming SCAs into TSAs 134

7.4 Timing diagram for Manchester encoding of 10100 139

7.5 Overview of processes 140

7.6 Timing specification 142

7.7 Sender 143

7.8 Process monitoring reading head of bit stream 144

7.9 Processes for generating and reading bits 145

xiii

7.10 Receiver 146

7.11 Receiver head of list pointer 147

7.12 Bit processes 148

7.13 Process coordinating acknowledgements 149

8.1 Results 154

8.2 Single locations vs sets of locations 155

8.3 Multiple underapproximating sets 158

8.4 Comparative results 163

8.5 Comparative performance 164

xiv

Chapter 1

Introduction

1.1 Motivation

Many computer-related systems are time-critical: they may depend on timing infor-

mation for their correct operation, or their specifications may require certain tasks

to be performed within specific time bounds. Typical examples include embedded

systems, communication protocols, and transportation controllers. In many of these

applications, correct operation is imperative. Failures may result in financial disaster,

system shut-downs, physical harm, or in some cases even the loss of lives. However, it

is generally accepted that it is a difficult task to specify and reason about the timing

behavior of concurrent systems. It is easy for an ad hoc analysis, or even extensive

simulation, to miss crucial cases which lead to errors.

One approach to this problem is to develop mathematically formal methods for

system verification. The idea is to be able to prove that the system is correct rather

than to assume it is because no bugs have been discovered so far. In this framework,

a potential system implementation can be modeled formally and analyzed against a

specification early in the design cycle. Logical design bugs can be removed before

they percolate down to lower levels of implementation. As an implementation is re-

fined, it can be verified against its higher-level description. The major drawback of

this approach is that formal specifications quickly become too complex to analyze

1

2 CHAPTER 1. INTRODUCTION

manually as the size of the system increases. With today's computer-based applica-

tions growing ever larger and larger, there is a need for computer assistance in the

verification process. Indeed one strategy is to use a fully automatic verification tech-

nique. Here, the user supplies a verification tool with a formal system description

and a specification for it, and then waits for the verifier to check, without any further

human assistance, whether the system is correct or not.

Up until recently, verification methodologies had abstracted away the times at

which events occur, and concentrated on the logical sequencing of actions. While

such an abstraction is often useful, it is clearly not acceptable when the specification

includes timing properties. Over the last few years, numerous formalisms have been

proposed for describing the real-time behavior of concurrent systems, by either ex-

tending existing techniques or developing whole new theories. Indeed, the automatic

verification problem for some classes of finite-state real-time systems has been solved,

in theory [Dil89, AH89, AD90, Lew90, ACD90, LV92, HNSY92]. In many cases, there

are known algorithms that are theoretically optimal in the worst case. However, from

a practical standpoint, these algorithms are computationally infeasible on realistic

examples. They have to deal with an extremely large number of reachable states,

as well as taking into account the times at which they are reached. Algorithms are

typically exponential in the size of the untimed part of the system description, and

also exponential in the system's timing information. So while a verification engi-

neer has a large choice of models to describe her system formally, she is left with no

practical tools to verify the system is correct. Our goal is to address this shortcom-

ing by using heuristic techniques to make automatic verification of real-time systems

computationally feasible.

1.2 Approximation

This thesis describes an efficient automatic approximation scheme which has been

applied to the verification of timed safety properties. It is based on the observation

that usually not all of a real-time system's timing information is necessary to establish

1.2. APPROXIMATION 3

its correctness. The basic idea is perform symbolic simulation of the system's execu-

tion traces while simultaneously checking whether they violate the specification. The

simulation however is only approximate. The set of reachable states is approximated

from above and from below. If the overapproximation contains no violating states,

i.e. states where an error has been detected, the system is successfully verified. If the

underapproximation contains violating states, the system is not correct.

Taking approximations instead of computing the exact set of reachable states can

be computationally advantageous. Firstly, the size of the symbolic approximation

may be far smaller than the representation of the exactly reachable states. Secondly,

the time required to generate an approximation may be less than for performing

precise reachability analysis.

Approximation, however, is not always accurate enough to determine whether the

system satisfies its specification. There is the possibility of false negatives (if the

overapproximation contains violating states, these may or may not be truly reachable

states of the system) and false positives (the underapproximation may not include

violating states which are reachable). Thus the result from approximating may be

inconclusive.
Our algorithm tackles this problem by iteratively refining the approximations so

that they converge towards the truly reachable states. It is complete for finite-state

systems, in that it always decides exactly whether the system is correct. We also

prove completeness for the class of real-time systems we verify.

The key idea behind the iterative scheme is to limit where approximations are

taken. This is achieved by partitioning the state-space into different regions, where

states in the same region are believed to behave similarly. Approximation of reachable

states is carried out within each region. When it is discovered that states in the same

region have sufficiently different outgoing behaviors, the partitioning is refined. This

successive refinement leads to progressively more accurate approximations.

4 CHAPTER 1. INTRODUCTION

1.3 Contributions

The main contributions of this thesis are a generic framework for iterative approxi-

mations for safety verification, an efficient approximation algorithm for real-time sys-

tems, and the demonstrated automatic verification of non-trivial real-time systems,

including a model of real-time systems with skewed clocks.

The iterative algorithm proposed in this thesis solves the safety verification prob-

lem. It is flexible enough to apply to many different problem domains. At the

barest level, the algorithm designer needs to provide a symbolic system representa-

tion, including set representations and next-state operators, and two approximating

operators. If desired, he can also add any number of his own heuristics to speed

convergence.

The algorithm itself uses dynamic refinement of approximations, rather than stat-

ically determined convergence. This means that it attempts to determine automat-

ically which parts of the state-space need to be analyzed more carefully, and where

approximations can be more liberal. It is easily parameterizable to begin approxi-

mating as finely or loosely as desired. There is a limited capacity for user-supplied

information to be exploited, by instructing the program where to start approximating

more aggressively. Both backwards and forwards reachability information is utilized,

whereas most verification methodologies choose one direction only. This is possible

since we can take a quick analysis in one direction, and then combine that with in-

formation from the other, rather than being bogged down in an exact analysis in

only one direction, or attempting to compute exact reachability in both directions

at the same time. While the main algorithm is based on state approximations, the

theory also allows next-state relations to be approximated. The algorithm is shown

to terminate over finite-state systems.

The algorithm is applied to real-time verification, using both state approximations

and transition relation approximations. Our method is the first to benefit substan-

tially from combining symbolic representations of control information and timing

information. We also provide a natural and efficient handling of urgency semantics,

where urgent events are events which must take place as soon as they are enabled.

1.4. REAL-TIME SYSTEMS 5

We use our tool to automatically verify several non-trivial real-time systems. We

verify some timing properties of an abstracted Ethernet MAC sublayer protocol. We

also introduce a new subclass of linear hybrid automata that models systems where

clocks advance at variable linearly-bounded rates. Using this model, we verify a re-

cently published audio control protocol which uses Manchester-encoded bit streams.

Communication is between processes which have a fixed error tolerance in their clock

speeds. We automatically prove that for arbitrary length messages, all bits are re-

ceived correctly and in a timely fashion. The performance of our tool compares favor-

ably to the symbolic real-time verifier KRONOS developed by Sifakis et al [NSY92a] at

VERIMAG, France. Finally we describe our experience with developing verification

methodologies for real-time systems.

1.4 Real-time systems

Recently there have been many formal description techniques proposed for describing

real-time systems and their timing properties. We outline the model we use (timed

safety automata [NSY92a]), and then compare it briefly with other approaches. Our

concern is not so much with a specification technique as the algorithm required to

verify correctness, so we concentrate more on the formalisms that lend themselves to

automatic verification.

Discrete vs continuous time

A major dividing line in the methods is how they model time, as either a discrete

entity, or as continuous. In a discrete time framework, events occur only at discrete

clock ticks. In the continuous time model, events may occur at any real-valued time.

The main advantages and disadvantages of each approach are listed below.

• discrete: In this framework, it is easy to incorporate time into many existing un-

tuned models, specification languages, and implementations. A discrete notion

of time is accurate for some classes of processes, such as synchronous hardware.

6 CHAPTER 1. INTRODUCTION

• continuous: The continuous time model is more natural and accurate, especially

since it can be shown that in some cases the time domain cannot be discretized

sufficiently finely for an accurate semantics [Alu91]. However introducing con-

tinuous time involves new models, more complex semantics, and more complex

reasoning.

Timed safety automata operate in continuous time. We later show that the savings

due to performing discrete computation may be minimal compared to continuous,

since there are no known symbolic methods for discrete time which outperform those

for continuous time models.

1.4.1 Timed safety automata

We use timed safety automata (TSAs) to describe real-time systems and their specifi-

cations [HNSY92, NSY92a]. They operate with finite-state control. Time is modeled

through the addition of a finite set of fictitious clocks [AD90, AH94]. Each clock

records the exact time which has elapsed since its last reset. Timing conditions are

expressed by constraints on when events may occur. Following the introduction of

timed automata by Alur and Dill [AD90] there have been many variants described

in the literature. The particular version we use is taken from Nicollin et al [NSY92a]

and augmented with urgency semantics. Local progress is enforced by constraining

the amount of time which can pass while control rests in a location. However, these

automata have no means of expressing unbounded fairness information.

1.4.2 Other formalisms

Real-time logics

Temporal logics [Pnu77, Pnu86, CES83] have met wide success in reasoning about

untimed reactive systems. Naturally, these logics are a good starting point for devel-

oping logics that can reason directly about a system's timed behaviors. Properties

are expressed using formulas such as "p => <><3?" to mean that when p is true,

q will eventually be true within 3 time units. See [AH92] for a excellent survey

1.4. REAL-TIME SYSTEMS 7

of logics for real time. Of the logics interpreted over dense models, only MITL of

Alur et al [AFH91] is known to be decidable. A number of decidable logics use a

fictitious clock as a global integer variable to record the current time, for instance

RTTL [Ost92], XCTL [HLP90], and RTCTL [EMSS89]. Essentially all discrete time

extensions to decidable logics are decidable.

Process algebras

A process algebra is a calculus with operations for building more complex processes

from simple ones [Mil80, Hoa85]. Typically the simplest processes are single events,

and there are operations for sequential composition, parallel composition, hiding of

events, synchronization, and non-deterministic choice. Algebraic laws state that some

processes are equal to others; for example, the choice operator may be commutative.

Time is usually introduced into a process algebra through a mechanism to explicitly

model the passing of time. It is may be in the form of a unary delay operator [Yi90]

or a special process. For example "A(t).P" may be used to represent the process

which delays for t time units and then behaves like P. There may also be other

operators such as a timeout operator, which states that a process executes for some

fixed amount of time and then behaves like another. Examples of such timed process

algebras are Timed CSP [RR88], TCCS [Yi90], and ATP [NSV90].

Duration calculus

The calculus of durations [CHR91] is an extension to interval temporal logic which

allows reasoning about the durations of states within an interval, without explicit

mention of absolute time. A duration formula / P — 5 is true for an interval X when

JXP = 5, and the formula J P < 20 / Q intuitively means that Q holds over the

interval at least 1/20 of the time that P holds. In addition to the usual boolean

operations on formulas, there is a chop operation denoted (£>i; D2) which is true over

an interval whenever it can be partitioned into two consecutive parts, the first of which

satisfies Di while the second satisfies D2- Formulas may be interpreted over discrete

time or continuous time. In general, the calculus is undecidable. However, Chaochen

et al [CHS93] have identified decidable fragments: allowing only primitive formulas

8 CHAPTER 1. INTRODUCTION

of the form \P], which assert that P holds almost everywhere over an interval, is

decidable for both the dense time and discrete time versions, and admitting formulas

I = k, which express that the interval is of length k, maintains decidability for the

discrete time calculus only.

Other state based approaches

Lewis' state-diagrams [Lew90] are very similar to timed automata. The enabling

conditions on transitions are based on delays between pairs of events, rather than

delays since individual events occurred. The primary advantage of timed automata

is that they have a simpler definition and semantics.

Ostroff's timed transition machines (TTMs) [Ost92] and the timed transition sys-

tems of Henzinger et al [Hen91] are timed extensions of Manna and Pnueli's fair

transition systems. Each transition is associated with a lower time bound and an up-

per bound. An execution is timing consistent if every transition which fires has been

continuously enabled no less than its lower time bound and no more than its upper

bound, and no transition is continuously enabled for longer than its upper bound

without firing. Timed I/O automata [LA90] correspond to the analogous extension

to I/O automata. The finite-state versions of all these machines can be modeled by

timed safety automata, except that unbounded fairness cannot be expressed, nor is

there any structure to model the input/output events of timed I/O automata. How-

ever, it should be noted that all timing aspects of these transition systems can be

captured.

Various real-time extensions have been proposed for Petri nets. Time bounds

may be placed on the lives of tokens [Van93] or enabled transitions [MF76], or delays

may be associated with transitions [Ram74]. Again, timed automata are generally as

expressive as all the finite-state versions of these nets.

There are other state-based formalisms which allow more general modeling of real-

time systems. Hybrid systems model finite-state systems augmented with continuous

variables that evolve according to differential equations. They can be used to model

skewed clocks, drifting clocks, and interrupted clocks, as well as analog variables such

as pressure and temperature.

1.4. REAL-TIME SYSTEMS 9

We choose to use timed automata because of their simplicity, expressiveness, and

algorithmic solutions to verification problems. Many other formalisms are no more

expressive (at least not as far as representing timing information) and can be compiled

into timed automata, or they have undecidable verification problems.

1.4.3 Verification

We briefly survey the verification techniques associated with the formalisms above.

Most algorithmic verification is no easier than verification using timed automata. In

fact, many of the verification problems which have algorithmic solutions can be solved

by the same techniques required for verifying timed automata. Therefore we consider

the practical verification of timed automata a major issue in real-time verification.

Timed automata

Alur et al [AD90, ACD90] show how timed automata may be analyzed by first con-

structing a finite quotient graph called a regions graph. Its equivalence classes are in

some sense a bisimulation of the system's states. Typically an analysis problem for a

timed automaton is reduced to its untimed counterpart over the regions graph. The

finiteness of the regions graph allows numerous analysis problems to be solved, includ-

ing bisimulation equivalence, automata emptiness, model-checking of TCTL formulae,

reachability, and controller synthesis [Cer93, ACD90, HNSY92, CY92, WTH91]. Un-

fortunately, the regions graph is exponential in the number of time-keeping elements

in the system, and also in the size of the timing constants used. The main problem

which this thesis tackles is reachability, which is known to be PSPACE-complete.

This exponential blow-up makes automatic verification of real-time systems particu-

larly challenging. Previous approaches to tackle this state-explosion are described in

the next section.

Logics

One way logics can be used to verify timed systems is by proving the validity of

the formula 4> => ip, where <j> defines the system and -ip its specification. However

10 CHAPTER 1. INTRODUCTION

most temporal logics over dense models are undecidable. For the decidable logics, the

complexity of the decision procedure is typically one exponential more than for its

untimed version - the same blow-up we encounter moving from untimed automata to

timed automata. Furthermore there has been no work that we know of for developing

heuristic decision procedures for these logics.

Model-checking is an alternative verification method where the system is given

as a proposed model to be checked against the logical specification. For some logics

the complexity of model-checking is better than for validity, and in the cases of

XCTL [HLP90] and TCTL [ACD90] it is PSPACE-complete. It is in theory then no

easier than reachability of timed automata.

Temporal proof systems may also be used to establish the validity of temporal

formulae. However our main interest here is in automatic methods, rather than

human-generated proofs.

Process algebras

Correctness of process algebras is usually defined in terms of a process equivalence

(where processes have similar behavior according to some criterion such as observable

traces) or preorder (where an implementation is intended to refine a specification).

Verification consists of either constructing proofs using the algebraic laws associated

with the operators, or by compiling process algebraic terms into graphs which are

then tested for equivalence or simulation preorders. For timed process algebras, the

graphs for the algebraic terms are essentially timed automata [Cer93, NSY92b]. So

yet again, verification reduces to analysis of timed automata.

Duration calculus

For some restricted subclasses of the duration calculus, the sets of satisfying behaviors

are regular sets [CHS93]. Skakkebaek et al [SS93] discuss a verification strategy and

implementation based on converting duration calculus formulas into regular expres-

sions and checking for emptiness.

1.5. RELATED WORK 11

Petri nets

The usual way Petri nets are used for verification is by performing a reachability

analysis and testing for whether a marked place is reached. The Petri net formalism

of Rokicki [Rok93] models timed circuits and uses a notion of conformance as its

correctness criterion. Again, the finite-state versions of these nets (i.e. those with

a bounded number of markings, or fc-safe), could be analyzed by the same reacha-

bility techniques used for timed automata. However more direct methods have been

advocated, and are described in the next section.

Other state-based approaches

Timed transition systems are proven correct by using a temporal proof system. Lynch

et al [LA90, LV92] study the use of mappings and simulations between timed I/O

automata to establish that one implements another. Neither of these two approaches

is designed for automatic verification.

1.5 Related work

We describe previous attempts at tackling the state-space explosion encountered

when verifying real-time systems. Most closely related are other approximation

methodologies designed specifically for real-time systems [AIKY93, BSV93]. Other

approaches directly using the timed automaton formalism include building minimal

regions graphs [ACH+92, ACD+92], symbolic model-checking [HNSY92], and reach-

ability graphs [KL94]. We also outline some related work on Petri net reachability

analysis [BM83, YTK91, Rok93].

Finally, we give a brief comparison with similar work in the domain of abstract in-

terpretations [CC92], and mention some other fields where state based approximation

has been used.

12 CHAPTER 1. INTRODUCTION

1.5.1 Iterative approximations

The iterative method we propose is not the only viable iterative scheme for approx-

imating the behavior of a real-time system. We know of two other iterative approx-

imation schemes which converge to an answer to the correctness problem. Alur et

al [AIKY93] and Balarin et al [BSV93] describe approximation algorithms which use

a different methodology from that advocated here. Their approach assumes that not

many timing constraints in the system are necessary for its correct operation. Based

on this premise, they initially attempt to verify the system based only on logical

constraints, i.e. ignoring all timing information. When a potential violating trace

is detected, timing constraints are used to determine how the untuned sequence is

not timing consistent, if possible. An untimed automaton which eliminates the false

negative based on the effect of these timing constraints is then added into the sys-

tem. Alur et al add the minimized regions graph for the constraints, and Balarin et

al add subprocesses which monitor difference constraints between clocks. The algo-

rithms generate additional useful information about the system: if the system can be

successfully verified, we know that the only constraints necessary for correctness are

those that have been iteratively added by the algorithm. Other constraints can be

ignored. Also Alur et al's algorithm uses a clever rounding of the timing constants

in order to keep the regions graphs for each approximation small. This feature also

provides parametric information about system correctness. The drawback of these

algorithms is that while they approximate the system description (by dropping con-

straints) they still require exact computation of the regions graph for each abstracted

system.
By comparison, our algorithm performs its approximations based on state informa-

tion. It maintains all timing constraints on transitions, but then discards information

from the states which are reached. Refinement of our approximations is primar-

ily state based, rather than transition based, although local approximation of the

time-passage transition is also performed. Our algorithm is general enough to allow

approximations over control information. It can also easily be applied to systems

other than real-time systems.
Ostroff [Ost92] uses formulas in real-time temporal logic to describe forward and

1.5. RELATED WORK 13

backwards heuristic approximations. Since his underlying model is not finite-state,

and his specifications are more expressive, his method does not automatically decide

whether a property holds or not. Instead he shows how heuristics can be used to

provide helpful hints to a human attempting a proof of a property.

1.5.2 Analyzing timed automata

Alur et al [ACH+92, ACD+92] approach the state-explosion problem of the regions

graph by building a minimal regions graph instead of the full graph. Nodes in the

minimal graph are clustered equivalence classes from the regions graph. While this

leads to far fewer nodes in the generated graph, experience shows that even these

graphs can easily exceed available memory.
Our iterative approximation scheme bears resemblance to the minimization algo-

rithms of Lee and Yannakakis [LY92, YL93]. A closer study of the relationship could

lead to improved algorithms. Lee and Yannakakis' algorithms cleverly partition the

reachable states of an implicitly defined system into the minimal number of bisimu-

lation equivalence classes, while here we are interested only in reachability. However

their marking of points may be considered an underapproximation of the reachable

states, and the potentially reachable blocks an overapproximation. The role of the

separating classes of our approximation algorithm is similar to the splitting of blocks

in minimization. We are only interested in reachability, not bisimulation equivalence

and so we need not partition the state-space as finely. In addition, we make use of

backward reachability information.
Kang and Lee [KL94] have recently proposed an alternative approach to solving

the reachability problem for timed automata. Rather than build a regions graph

(where states are partitioned according to the values of their timers), they generate

a reachability graph where relative delay information is encoded on the transitions.

A state is reachable if the constraints on a path to it in the reachability graph are

satisfiable.
Symbolic model-checking [HNSY92, NSY92a] involves iteratively computing the

set of timed states of the system which satisfy each subformula of its TCTL specifi-

cation. In this sense, the computation is very much driven by the specification, and

14 CHAPTER 1. INTRODUCTION

involves mainly backwards reachability. This computation is performed symbolically

using the same representation for timing information which we use. However the anal-

ysis is exact. The model-checking framework is more expressive than the reachability

problem we consider.

1.5.3 Petri nets

Berthomieu and Menasche [BM83] show how the reachability problem for safe time

Petri nets is decidable. Their symbolic representation of timing information by dif-

ference constraints between timers is essentially the same as that of Dill [Dil89].

Yoneda et al [YTK91] exploit the concurrency of transition firings to generate dif-

ference constraints which correspond to several possible firing sequences, rather than
considering each sequence individually. Although Rokicki's description language is

orbital nets [Rok93], a Petri-net formalism, his algorithms also compute reachability

using constraint matrices. He builds processes whose linear executions correspond to

multiple interleavings of events. When there is a lot of concurrency in the system,
this technique reduces the number of interleavings he must consider and the number

of constraint matrices needed to store the reachable states.

1.5.4 Abstract interpretation

Abstract interpretation is a well-studied theory of semantic approximation [CC77,

Cou90, CC92]. The approximations described in this paper can be viewed as a com-

bination of abstraction, operation on an abstract domain, and concretization. A

similar idea to that of iterating forward and backwards passes, using overapproxi-

mations only, to refine the set of reachable states on paths to violating states has

been suggested in an abstract interpretation framework for type-checking flowchart

programs [KU80], and for analyzing logic programs [CC92].

Halbwachs [Hal93b] successfully applied abstract interpretation to synchronous

reactive systems, demonstrating its effectiveness in reducing the computational effort

required for analysis. His approximations are taken over discrete variables, and he

uses polyhedra for describing the reachable variable values. He does not consider

1.5. RELATED WORK 15

approximations over control information. Moreover no means of refining approxima-

tions is given, so if a verification attempt fails, there is no way to tell if it is due to a

real error, or simply inaccurate approximation.

The full algorithm presented here is the first which uses both underapproxima-

tions and overapproximations, and for finite-state systems, automatically determines

precisely whether there are reachable violating states.

1.5.5 Other applications of approximation

Approximation techniques have been used in many fields other than verification. We

briefly describe the approaches most closely related to this thesis.

Approximate methods for logical inference have been studied in artificial intel-

ligence. Levesque [Lev84, Lev89] introduced the idea of limited inference to model

an agent's "shallow" reasoning process based on simple inference rules. Kautz and

Selman [SK91] advocate knowledge compilation of propositional theories into Horn

approximations. Their idea is that an intractable theory may be reduced to a stronger

(or weaker) Horn theory, allowing efficient reasoning over the Horn theories. If the

Horn theories do not answer the logical inference problem, the method resorts to the

exact theory. Cadoli [Cad92] describes a method which does allow both sound and

complete approximations in a framework that incrementally iterates toward an exact

answer. Roughly speaking, more accurate approximations are obtained by increasing

the number of literals that are semantically consistent. However his methodology pro-

vides no semantically based means of dynamically choosing how the approximations

are to be refined.
Various state based approximations are based on the idea of divide-and-conquer.

Typically a 2-dimensional or 3-dimensional state-space is partitioned using hierarchi-

cal data-structures called quad-trees or oct-trees. In the case of quad-trees, the root

node represents a two-dimensional space. Each internal node has 4 leaves, represent-

ing neighboring sets which partition the node. The quad-tree is built dynamically,

with new nodes created whenever a leaf node needs to be analyzed more carefully.

The idea is to work efficiently with large chunks of the state-space as much as possi-

ble, subdividing a node only when necessary. This method has been used successfully

16 CHAPTER 1. INTRODUCTION

in a number of different fields, such as path-planning for robots [AKH88], image

processing [MM88], and VLSI layout design [HF90]. With the exception of robot

path-planning, the problem domains admit varying degrees of accuracy (e.g. many

image resolutions are acceptable) in their solutions and the chief concern is with ob-

taining a good approximation with low computational expense, as opposed to using

approximation as an efficient means of finding an exact answer. In addition, our

problems involve more complex state-spaces, a combination of n-dimensional spaces

for timing information, where n is the number of clocks in the system, and a discrete

component for the control information. This state-space complexity does not allow

an easy and effective application of the quad-tree approach.

1.6 Outline of thesis

In the remainder of this chapter, we provide some introductory notation, describe the
framework we use for verifying safety properties, and explain how symbolic compu-

tation can speed up verification.
Chapter 2 describes the main approximation algorithm for a generic safety verifi-

cation problem. In the next chapter, we describe in more detail the model of real-time

systems we consider, and its safety verification problem. The next two chapters out-

line how the approximation algorithm can be applied to the verification of real-time

systems, firstly approximating over only timing information, then over the control in-

formation as well1. Case studies appear in the following chapter. Chapter 7 describes

a class of hybrid systems which can be verified exactly via a reduction to real-time

systems. Chapter 8 discusses a prototype implementation, gives performance results,

and describes some of the lessons we learnt in building verifiers for real-time systems.

Finally, conclusions can be found in chapter 9.

1The main generic approximation algorithm and its application to simple timed automata without
approximations of the next-state relation appears in [WTD94].

1.7. PRELIMINARIES 17

1.7 Preliminaries

1.7.1 Transition systems

We model a process P as a transition system (S, S0,
N) where S is the underlying

state-space of the system, S0 C S is a set of initial states, and N C S x S is a

next-state relation. A transition system describes a directed graph in the usual way.

We sometimes write s -» s' and JV(s, 5') to mean that (s, s') G N. For a set of states

A, we abuse notation and simply use N(A) to mean the set of successors of A, i.e.

N(A) = {yeS\3xeA s.t. N(x,y)}. An execution trace of the system is any

infinite sequence of states s0, si, s2,... such that Si G S and (SJ, si+1) G iV for i > 0.

A partial trace is a finite sequence s0, sx,..., sn such that Si e S and (SJ, si+i) G AT

for 0 < i < n - 1. A trace is initialized iff its first state lies in SQ. The transition

system is non-deadlocking iff every initialized partial trace of the system is extensible

to an infinite execution trace.

A state s' is said to be forward reachable from s in P iff there is a path in the

graph for P from 5 to s'. In this case, the state s is called an ancestor of s', and s'

is a descendant of s. A state s is backwards reachable from s' iff there is a path in P

from s to s'. We define the set of states reach(S) to be the states which are forwards

reachable from an initial state.

An equivalence relation « over the states of the system is a bisimulation iff when-

ever si « s2 and Si —» s'x then there exists a state s'2 such that «2 —► s'2
an(* si ~ s2-

1.7.2 Safety verification problem

The problem we are interested in solving is called the safety verification problem.

Intuitively, a process is correct iff it never does anything "bad".

A common framework for verification uses trace inclusion as its correctness con-

dition. The process P is modeled by a formal language L(P) describing the possible

infinite execution traces of the system. Its specification is also given as a language Ls

of infinite traces, and it represents a maximal set of permissible traces. The process

is said to be correct iff L(P) C Ls. In the automata-theoretic approach [VW86],

18 CHAPTER 1. INTRODUCTION

correctness can be decided by checking for emptiness of an automaton representing

L(P) n Ls. We consider a special case of this approach, which we call the safety

verification problem.

A (safety) verification problem VP = (S,S0iN,V) consists of a process P =

(S,S0,N) together with a set of violating states V C S which indicate that the

process has violated some user-specified safety property. The process is said to be

correct iff no violating states are reachable from SQ.

The trace inclusion problem can be expressed in the form of a safety verification

problem when the process is non-deadlocking and the specification is a safety property.

The specification language Ls is a safety property iff it is a closed language, i.e.

whenever an infinite string w has infinitely many prefixes which are prefixes of strings

in Ls, then w is also in Ls. Intuitively, to verify a safety property, we may simulate

the execution traces of a non-deadlocking process P together with a monitor which

enters a violation state precisely when P does something undesirable (the partial trace

so far leaves the prefix set of the specification). Because P is non-deadlocking, all

partial traces are extensible to infinite traces, and so this violating partial trace can

be extended to an infinite violating trace. Thus verification by automat a-emptiness

reduces to reachability in this case.

If the system is finite-state, it is theoretically possible to enumerate explicitly

all reachable states in the state-space, via, for example, a depth-first search. This

technique correctly answers the verification problem. However in many cases the

state-space is simply too large to be fully explored, or it may even be infinite. This

thesis proposes a symbolic state-space approximation technique for reducing the effort

required to solve safety verification problems. It is applicable to both finite-state and

infinite state-spaces, but termination is only guaranteed over finite spaces.

1.8 Symbolic verification

The use of various symbolic techniques in finite-state verification has led to great

success in recent years. The main feature of symbolic verification algorithms is their

1.8. SYMBOLIC VERIFICATION 19

ability to express information about sets of states succinctly without having to re-

fer explicitly to every set element. Reasoning about a system is done by reasoning

about sets of states instead of individual elements. A symbolic algorithm may be

computationally advantageous compared to an explicit enumeration technique if the

number of set operations required by the symbolic algorithm is small by comparison.

The obvious drawback is that computation over sets can be expensive. A symbolic

technique which performs a small number of expensive algorithmic steps may do more

work overall than an explicit technique which uses a large number of fast operations.

However the potential benefits of symbolic techniques are numerous. In many

cases symbolic computation over sets has been shown to be far faster than explicit

state-by-state analysis [Bry92, BCM+90, CK91, McM92, FKM91, HWT92b, PD94].

Symbolic representations of sets may also be far smaller than explicitly storing indi-

vidual states. In fact, memory usage is often a more critical resource than time. In

addition, symbolic representations may allow infinite state spaces to be represented.

In order for a symbolic technique to be useful, we require

• a verification algorithm which can be expressed in terms of sets of states, and

• an efficient representation of sets of states.

An efficient symbolic representation of sets should ideally meet the following cri-

teria:

• the representation of a "typical" set encountered by the algorithm should be

small.

• there should be fast operations on sets of states for all operations required by

the particular algorithm, e.g.

- computing successors of a set of states

- computing predecessors of a set of states

- computing intersection

- computing set difference and complementation

20 CHAPTER 1. INTRODUCTION

- computing union

- testing equality and emptiness

All the above characteristics are relative compared to the cost of performing ex-

plicit analysis, i.e. storing and performing computation on all individual set elements.

Notice too that the efficient state representation need only be applicable over those

sets of states encountered by the algorithm.

We should note at this point that performing computation over sets is only a

heuristic technique. Many of the verification problems studied are PSPACE-complete,

and the use of symbolic techniques will not overcome the inherent complexity of the

problem in the worst-case scenario. However, in practice, some algorithms whose

complexity is actually exponentially worse than an explicit enumeration technique

perform extremely well on real examples.

In the symbolic methodology, safety properties for the verification problem VP =

(S,S0,N,V) can be verified by performing the following iterative fixpoint computa-

tion:

Fo = So

Fi+1 = FiUNW C1-1)
F = lim Fi

i

The specification is satisfied iff F n V ^ 0. We assume the limit always exists and

is obtained after a finite number of iterations. Note that this assumption is always

true when the underlying system has a finite state-space. This algorithm requires the

computation of the next-state operator over sets, the union of sets, tests for equality

and emptiness, and an intersection operator. While such symbolic verification can

often outperform explicit analysis, there are still many situations when even the

symbolic representations of states are simply too large and complex. Thus this thesis

proposes using only approximate symbolic analysis.

Chapter 2

Appr oximat ion

This thesis is built upon the simple observation that it is not always necessary to

consider all the details of a system in order to make useful conclusions- In particular,

the iterative approximation algorithm for real-time systems is designed to exploit the

fact that often not all timing information is relevant to the property being verified.

The key idea is to divide the state-space into separate regions, and to perform state

approximation within each region. The algorithm is fully automatic, and is guaran-

teed to terminate correctly whenever the underlying system has a finite equivalence

structure (e.g. a finite state-space). Furthermore it makes efficient use of both back-

wards and forwards reachability information. As presented here it is specific to the

task of verifying safety properties.
The algorithm is presented in a general framework: while it was developed specif-

ically for verifying timing properties, it is applicable to a wide variety of systems.

In chapters 4 and 5, we show how it can be applied to the verification of real-time

systems in particular.

2.1 Fundamental approximation algorithm

The technique of approximation can be used to extend the usefulness of symbolic

analysis. Here we investigate the symbolic approximation of the set of reachable

states. Such state-based overapproximations for verifying hard real-time systems

21

22 CHAPTER 2. APPROXIMATION

were first investigated by N. Halbwachs [Hal93b], and this work is inspired by his

success.

The basic idea is to replace the exact "union" on sets of states in equation 1.1

with either of

• an (overapproximating) "join" operator U, satisfying the soundness condition:

fox all A,B :AUBC AllB (OA_l)

or

• an (underapproximating) "plus" operator |> satisfying the soundness condi-

tion:

foTallA,B:ACA$>BCAUB (UA_1)

and the nonemptiness condition:

for all A : A ± 0 implies 0 &> A ^ 0 (UA.2)

Notice that the second axiom for an underapproximating operator is asymmetric,

and that neither operator need be commutative nor associative. The set A l> B is

referred to as the expansion of A with B. Observe that it is not necessarily larger

than A.

We thus have two approximation algorithms, one for overapproximating (fig-

ure 2.1) and one for underapproximating (figure 2.2), each obtained by performing

the fixpoint computation with the appropriate approximating operator. Both take as

input a safety verification problem, and return the boolean variable verified_correct.

The function disjoint() returns the boolean value for whether its operands are disjoint

or not.

2.1.1 Correctness

When computing the fixpoint using the overapproximating operator U, it is clear all

the truly reachable states of the system are contained in the approximating set F. It

2.1. FUNDAMENTAL APPROXIMATION ALGORITHM 23

FundamentaLOverapprox(S,S0,N,V)

Last_Over := So;
Over := So;
converged := FALSE;
while (not converged) do

Next-States := N(Last_Over);
Last-Over := Over;
Over := Over U Next-States;
converged := (Last_Over = Over);

endwhile
verified.correct := disjoint(Over,V);

Figure 2.1: Fundamental overapproximation

FundamentaLUnderapprox(S,S0,N,V)

Last-Under := So;
Under := S0;
converged := FALSE;
while (not converged) do

Next_states := N(Last_Under);
Last-Under := Under;
Under := Under O Next-States;
converged := (Last-Under = Under);

endwhile
verified-correct := disjoint(Under,V);

Figure 2.2: Fundamental underapproximation

is also easy to see that using the underapproximating operator £> gives a set which

is contained in the set of truly reachable states.

Proposition 2.1 Given a verification problem (S, S0, N, V), if the fundamental over-

approximation algorithm terminates, then

• the resulting overapproximation Over contains reach(S,So,N).

24 CHAPTER 2. APPROXIMATION

• if the output verified-correct has value true, then the system is correct. □

Proposition 2.2 Given a verification problem (S,So,N,V), if the fundamental un-

derapproximation algorithm terminates, then

• the resulting underapproximation Under is contained in reach(S,So,N).

• if the output verified-correct has value false, then the system is not correct. □

2.1.2 Advantages

The computational benefit of using approximation depends critically on the approx-

imating operators and the sets they act on. Advantages accrue when the approxi-

mating operations are much faster than exact union, and there are fewer iterations

overall. One way to exploit this feature is to introduce the notion of approximat-

ing sets, a subdomain of the power set of states over which the symbolic next-state
relation, intersection, and the approximating operators are closed. In many cases, ap-

proximating sets can be chosen to ensure that applying the approximating operators

is computationally inexpensive. Using approximating sets with compact represen-

tations can lead to great reductions in the space required to perform the fixpoint

computation.

A further advantage may arise when the domain of approximating sets has only

small chains of increasing sets. In this case, computing the fixpoint iterations may

converge faster, and in any event, there is a smaller upper bound on the number of

iterations required.

2.1.3 Disadvantages

There is a price paid for only approximating as opposed to using exact computa-

tion. The approximation may not correctly determine whether the system meets its

specification. Furthermore it is possible that computing the approximation is more

work than finding the set of exactly reachable states.

Before explaining the potential disadvantages of approximation, we first define

some terms. A false negative is said to occur when a method reports the system is

2.1. FUNDAMENTAL APPROXIMATION ALGORITHM 25

Overapproximation Underapproximation
Correctness Possible false negatives Possible false positives
Computation May search many unreachable

states
May iterate more times than

exact computation

Figure 2.3: Potential disadvantages of approximation

not correct, when in fact it is. A false positive occurs when a method reports the

system is correct, when in fact it is not.

When the overapproximation incorrectly includes violating states which are not

truly reachable, a false negative may arise. In addition, a single overapproximation

does not provide enough information to confirm any true negative, i.e. to say for sure

that a system really does violate its specification. From a computational point of view,

the overapproximation may waste effort searching through parts of the state-space

which are not really reachable.

When an underapproximation fails to include any of the violating states which are

truly reachable, a false positive may arise. Analogous to the case of overapproxima-

tion, there is no means of confirming any positive results when the system is correct.

A potential computational disadvantage is that finding the underapproximating fix-

point may involve more iterations that exact computation, since not necessarily all

successor states are added at each iterative step. These disadvantages are summarized

in figure 2.3.
Individually computing both an underapproximation and an overapproximation

solves the problem of the lack of confirmed negatives in overapproximating and con-

firmed positives in underapproximating, but it may still yield inconclusive answers

when the two approximations report different results.

2.1.4 Example

As a simple example let us overapproximate the reachable states of the following

system.

26 CHAPTER 2. APPROXIMATION

Example 2.3 [Basic overapproximation] Process P 's state-space consists of all

pairs of integer values for the variables x and y. Initially, x=y=0, and there is one

violating state: x=6,y=0. The next-state relation is determined from the program:

while (x<5 & y<5) do

<x,y> := <x+l,y+l>;

while TRUE do

<x,y> := <x,y>;

The set of truly reachable states is {(i, i) \i € [0,5]}, and so the system is correct.

Following Cousot's interval analysis [Cou78j, we choose as approximating sets the set

of rectangles, i.e. sets of points of the form:

{(x, y) : lx < x < ux A ly < y < uy}

where all bounds are integers or infinity, denoted oo. Such a set will be denoted

[lx,ux] x [ly,Uy\. The join operator acting on A and B returns the smallest rectangle

containing both A and B. Computing the fixpoint iterations gives

Ft = [0, i] x [0, i] for i = 0..5

F = [0,5] x [0,5]

The overapproximation F does not include the violating state so the system is

verified. Suppose, however, the violating state were (2,0). By the second iteration the

overapproximation would include (2,0) and a false negative would be reported. □

2.2 Simple variations

Before explaining the full iterated algorithm which determines exactly whether the

system is correct, we first introduce some basic variations on the simple approximation

scheme in the last section. These variations will be combined in the full algorithm

appearing in the next section.

2.2. SIMPLE VARIATIONS 27

2.2.1 Backwards reachability

While the previously described approximations proceeded forward through the state-

space, it is also possible to approximate while performing backwards traversals. The

system is correct iff the initial states are not backwards reachable from the violating

states. Thus backwards graph traversal gives rise to the following verification scheme:

BQ = V

Bi+1 = BiUN-^Bi) (2.4)

B = \im Bi
2

The system is correct iff B D S0 # 0- Naturally, we can replace the exact union

operator in equation 2.4 with the U and £> operators to approximate the backwards

reachable states.
In the remainder of this thesis we assume backwards approximations refer to

approximations of the states backwards reachable from the violating states.

2.2.2 Iterated overapproximations

Information from a forward overapproximation can be used to refine the computa-

tion of a backwards approximation, and vice versa, leading to a scheme of iteratively

refined overapproximations. Observe that every system state lying on a violating

execution trace satisfies two properties: it is both forward reachable from the initial

states and backwards reachable from the violating states. In analyzing the reachable

state-space, we need only consider states which potentially fulfill both these proper-

ties. Thus, in a forward traversal, we may disregard states which are not backwards

reachable from the violating states.
Figure 2.4 outlines an iterative scheme of alternately computing forward and back-

wards overapproximations, where the last computed overapproximation in the oppo-

site direction is used to narrow the scope of the states considered during the current

approximation. Overapproximations are repeatedly computed until either the sys-

tem is verified correct, or the forward and backwards approximations are the same,

28 CHAPTER 2. APPROXIMATION

in which case a (potentially false) negative is reported. The function OppositeJDir

maps FORWARDS to BACKWARDS, and vice versa. Given a set of states OverRev

representing a superset of the reachable states in the reverse direction, the function

Approx_Within limits the next overapproximation so it never goes outside OverRev.

Thus for a set of initial states Start, and a known backwards overapproximation

B.Over, the function call Approx_Within(5_Ot;er,5'tort,A/',FORWARDS) returns an

overapproximation obtained by computing the following limit:

FQ = Start n B.Over

Fi+1 = (FiUN(Fi))nB-Over

F = lim F{
i

The function Approx_Within works similarly when computing a backwards overap-

proximation relative to the previous forwards overapproximation. The current (resp.

last) overapproximations are stored in the array Over (resp. Last_Over), and the ar-

rays Start and End indicate the sets of starting and ending states for violating traces

viewed in the indexed direction.

2.2.3 Separating classes

We now describe a mechanism which enables more accurate approximations. The

false negative of example 2.3 could be explained as due to poor approximation: the

approximation was too "loose". A good goal would be to use more accurate approxi-

mations. One way to do this would be to have the join operator result in the smallest

enclosing convex polyhedron rather than a rectangle, i.e. improve the accuracy of the

approximation by using more expressive approximating sets. However, we are really

interested in a methodology which will allow approximations to become successively

more accurate as necessary. The method we use is based on the simple idea of lo-

calizing the approximations: we use state-space partitioning to limit the application

of the approximating operators when it is suspected that joining states will result in

too crude an approximation. The mechanism divides the state-space into different

separating classes. An approximation is then a set of sets, each of which lies entirely

2.2. SIMPLE VARIATIONS 29

IteratecLOverapprox

Start [FORWARDS] := End [BACKWARDS] : = S0;
Start [BACKWARDS] := End[FORWARDS] := V;
Last_Over[BACKWARDS] := S;
Last_Over[FORWARDS] := 0;
dim := FORWARDS;
verified_correct := FALSE;
iterations-done := FALSE;
while (not verified_correct and not iterations-done) do

Over [dim] :=
Approx.Within(Last_Over[Opposite_Dir(dim)],Start[dim],N,dirn);

iterations_done := (Overfdirn] = Last_Over[dirn]);
verified-correct := Disjoint(Over[dirn],End[dirn]);
Last_Over[dirn] := Over [dim];
dim := Opposite_Dir(dirn);

endwhile

Figure 2.4: Iterated overapproximations

within a separating class. The approximation operators are only applied within any-

given class. In computing an approximation, we apply the next-state relation to each

set of states in the current approximation, and intersect the result with each separat-

ing class. The approximating operators are then applied only across sets from within

the same separating class. In effect, the approximation is always localized within any

given separating class1.

Approximating structures

We delay until the next section a detailed explanation of how to find a good set of

separating classes based on avoiding joins which might lead to false negatives and false

positives. For now, we concentrate on how separating classes enable more accurate

approximations. Formally, we define a separating structure C for a set of states D

1The basic approximation algorithm may be viewed as having all states lie in one large separating
class, S.

30 CHAPTER 2. APPROXIMATION

to be a tuple of distinct (but not necessarily disjoint) sets (Ci)ieI which cover D, i.e.

Uie/Ci = D. We refer to the components of a tuple as its elements. The elements

of a separating structure are called separating classes. An approximating structure

A with respect to C is a tuple of sets of sets {{Aij}j€Ji)iei where each A{i C C,-.

Reference to C will be omitted when the meaning is clear. We say that the set A

is in (or appears in) A iff A = A{j for some i and j. The i-th component of A is

the set of sets {Aij}j€Ji and can be thought of as a set of approximating sets for

the reachable states lying within C;. We say the base elements of an approximating

structure are those states found in any of the individual sets of the structure, i.e. s

is a base element of A iff s G Ui€i,jeJiAij- For any approximating structure A, let

U.4. denote its base elements. A state appears in an approximating structure A iff it

is one of its base elements.

Operations on approximating structures

Instead of using a single approximating set as an estimate for the set of reachable

states, we now use approximating structures respecting C. Applying the next-state

relation N to an approximating structure A = {{Aij}jeJi)ieI yields the structure

NQ{A) whose i-th component is the set of sets

{N{Ai,j) n d | *' G I and j G J,-}

The join operator is defined relative to a separating structure C = (Ci)iei. Its

operands are approximating structures respecting C. Intuitively the join is done in-

dependently in each component, where each approximating set is the result of joining

sets in its operands. A set of sets {DI}J€L is said to be a join-combination of a set of

sets {Aj}jej iff

• for each I G L, Di = Ui=i..m An where each index ji is in J, and,

• for each j G J there exists an I G L such that Aj C Di.

The set of sets {JD;}/GL is said to be a join-combination of two sets of sets {Aj}j€j

2.2. SIMPLE VARIATIONS 31

and {Bk}k€K iff it is a join-combination of their union {Aj}jeJ U {Bk}keK. An ap-

proximating structure is a join of two approximating structures A = ({A.JjejOier

and B = ({Bik}k€Ki}iei iff its i-th component is a join-combination of Ai and #,. For

simplicity, we may write AuB to refer to any join of A and B, rather than introducing

notation for relations over triples (A,B,C) of approximating structures to indicate

that C is a join of A and B.

We can also obtain underapproximations in a similar way. We first extend the t>

operator to sets of states and then to approximating structures. Intuitively, expanding

an approximating structure A with B is the result of expanding each component Ai

with Bi. The expansion over components consists of taking sets in Bi and adding

them via the l> operator to the sets in Ai. The set of sets {D/}/ei is said to be an

expansion of the set of sets {Aj}jej with {Bk}keK iff it is the result of taking each

set Aj and expanding it with some number of sets Bjti, Bjß,..., Bj^ in such a way

that each set Bk is added to some Aj, i.e. for every k e K there are j and I such that

Bk = Bjj. Formally, for every I £ L there is an index jt G J selecting a set Ajn and a

sequence of indices kiyi, ki$, ■■■, h,mi G K selecting some sets in {Bj}jej to be added

to Ajt such that

• every Di results from expansions to A,-, by the sets Bkll,..., Bklm , i.e. for every

I, Di = (• • • {{Ah E>Bkll)[>Bkl<2)■■■>Bklmi), and,

• every set Aj is preserved, i.e. for every Aj there is a set D\ such that Aj C Di,

and,

• every set Bk is added, i.e. for every k £ K, there is some index k^m equal to k.

An approximating structure is an expansion of the approximating structure A

with B iff its z'-th component is an expansion of A with B^ Again we avoid unwieldy

notation involving relations and informally write A l> B to indicate some expansion

of A with B.

Finally we define the separation of a set with respect to a separating structure.

Given a set of states A and an approximating structure C, A J. C is the approximating

structure whose i-th component is A n C{. The algorithms for computing overapprox-

imations and underapproximations using separating structures appear in figures 2.5

32 CHAPTER 2. APPROXIMATION

Separating-Classes-Overapproximation((S,So,N,V),C)

Last_Over := S0 IC;
Over := Last_Over;
converged := FALSE;
while (not converged) do

Next_states := JVc(Last_Over);
Last-Over := Over;
/* the join operator returns a legal join */
Over := Over U Next_states;
converged := (Last-Over = Over);

endwhile
verified-correct := disjoint(UOver,V);

Figure 2.5: Separating classes overapproximation

and 2.6.

Proposition 2.4 // the overapproximating algorithm using separating classes (fig-

ure 2.5) terminates, then

• UOver D reach{S).

• if the boolean output verified-correct has value true, then the system is correct.

D

Proposition 2.5 If the underapproximating algorithm using separating classes (fig-

ure 2.6) terminates, then

• U Under C reach(S).

• if the boolean output verified-correct has value false, then the system is not

correct. ü

Example 2.6 [Separating Classes: Overapproximation] Consider again the system

in example 2.3, with violating state (2,0). In an effort to show that the reachable states

do not include (2,0), we use approximating sets to partition the state space so that the

2.2. SIMPLE VARIATIONS 33

Separating-Classes-Underapproximation((S,So,N,V),C)

Last-Under := S0 IC;
Under := Last-Under;
converged := FALSE;
while (not converged) do

Next-states := iVc (Last-Under);
Last-Under := Under;
/* the addition operator returns a legal expansion */
Under := Under &>Next_states;
converged := (Last-Under = Under);

endwhile
verified-correct := disjoint(UUnder,V);

Figure 2.6: Separating classes underapproximation

-S-
0 12 3 4 5

Figure 2.7: Separating classes example

violating state is separate from the rest. Thus we may choose as a separating structure

C = (d = [0,1] x [0, oo],C2 = [2, oo] x [1,oo], C3 = [2,2] x [0,0],C4 = [3,oo] x [0,0]).

We adopt a simple policy for choosing a join of a set of sets: {A} U {B} = {A U B}2.

Then we iterate from A0 = ({[0,0] x [0,0]}, {}, {}, {}), giving first Ai = ({[0,1] x

2This policy ensures every component of every approximating structure generated is either a
single set or the empty set.

34 CHAPTER 2. APPROXIMATION

[0,1]}, {}, {}, {}). To compute A2 we first find

T = Nc(A!)

= N{Ai)lC

= ([1,2] x [1,2]) K

= ([l,l]x[l,2],[2,2]x[l,2],{},{})

giving

A2 = TU Ai

= ({([1,1] x [1,2]) U ([0,1] x [0,1])}, {([2,2] x [1,2])}, {}, {})

= <{[0,1] x [0,2]},{[2,2] x [1,2]}, {},{})

({[0,1] x [0,3]}, {[2,3] x [1,3]}, {},{})

({[0,1] x [0,4]}, {[2,4] x [1,4]}, {},{})

({[0,1] x [0,5]}, {[2,5] x [1,5]}, {},{})

Az =

A4 =

A5 =

A = lim Ai = A5

The base elements of the approximating structure A do not include the violating

state, and the system is correctly verified. E

Note that the iterated approximation method mentioned in subsection 2.2.2 is a

special application of using the result Over[dirn] of each previous forward (or back-

wards) pass in a separating structure (Overfdirn]) for the next pass in the opposite

direction.
So far the discussion has been about using separating classes for forwards ap-

proximations, but the algorithm applies perfectly well to backwards approximation

as well.

2.3 Full approximation algorithm

The full approximation algorithm iterates with increasingly accurate underap-

proximations and overapproximations, both in the forward and backwards directions.

2.3. FULL APPROXIMATION ALGORITHM 35

AuC

Figure 2.8: Conditions leading to false negatives

Approximations are computed with respect to successively finer separating structures

which are dynamically generated by the algorithm. Whenever the algorithm termi-

nates, it gives a true answer to the verification problem, i.e. there is no possibility

of termination with false negatives or false positives. If the system's state-space is

finite, the algorithm is guaranteed to terminate, and thus always determines whether

the specification is satisfied or not.

Iterative convergence

Many iterative approximation schemes can be designed with this kind of progress

property, namely that successive approximations are more accurate, and termination

is guaranteed over finite state-spaces. For example, we need only ensure that the fi-

nal iteration is the full exact computation gained from the separating structure where

every state forms a class of its own. We can design iterative schemes where the approx-

imation is performed with a fixed sequence of successively finer separating structures.

For instance, an algorithm which uses a given partitioning of a (finite) state-space into

at least 2J disjoint separating classes at the z'-th traversal will guarantee a confirmed

answer to the verification problem after logarithmically many iterations. While this

approach may be successful in some cases, it is generally difficult to choose in advance

which separating structures should be used in order to achieve efficient verification.

We propose instead an iterative approximation scheme which automatically discovers

where approximations can be taken more freely, and where the analysis needs to be

36 CHAPTER 2. APPROXIMATION

more exact. The user provides only an initial separating structure, and then the al-

gorithm uses information from previous approximations to generate suitable refined

separating structures. The scheme is therefore dynamically based, and adapts itself

to the particular problem being solved, rather than being statically determined.

Conditional joining

The refinement procedure is based on some simple observations about how false neg-

atives and false positives arise. It uses a notion of conditional joining to determine

which parts of the state-space should be kept separate, and thus placed in different

separating classes. The additional conditions we describe for joining sets are easily

detectable and lead to increased accuracy of the approximations only in those parts of

the state-space which are likely to lead to false positives or negatives. Suppose a false

negative is obtained while performing a forward overapproximation of the reachable

states. It must be a consequence of some join in the midst of computing the approx-

imation. Figure 2.8 shows how false negatives occur: at some point a join caused an

ancestor state s' of s to be included in the approximation although s' and s are not

truly reachable3. If all such joins could be avoided, there would be no false negatives

in the approximation. However, it is not easy to use this criterion to decide whether

to join two sets or not, since we cannot predict whether a state s' is a predecessor

of any violating states. There is a clear trade-off in the amount of effort spent in

determining whether s1 is a predecessor of a violating state and a possibly inaccurate

approximation as a result of unwisely joining sets A and D.

Quick decision strategy

The strategy we propose is to use simple and fast checks on whether to join sets. Any

mistakes which are made when sets are joined when they should not have been can be

detected and corrected in a later approximation. The advantage of this approach is

that sets are joined unless there is very strong reason not to, and so the approximating

structures are kept small, and the computations of each approximation are fast. For

3It may be that s = s'.

2.3. FULL APPROXIMATION ALGORITHM 37

C

Figure 2.9: Conditions leading to false positives

false negatives then, we concentrate on cases where it is clearly foolish to join sets. If

the state s' lies in the previous backwards underapproximation, then joining A and D

in figure 2.8 will lead to a negative being introduced by this approximating step, since

s' definitely has a path to a violating state. However, there is no particular reason

to believe that s' is really reachable, since it is only included in the approximation

because of a join operation and we have not constructed a path to it. Thus there

is every chance that this negative will be a false negative. This discussion suggests

avoiding all joins where the operands A and D contain no states in the previous

reverse direction's underapproximation, but their join does.

There is a similar condition based on the occurrence of false positives. It is also

simple to detect, and results in refining the approximations in areas of the state-space

where false positives are likely to originate. Suppose we are computing a forwards

underapproximation. Figure 2.9 shows how the propagation of the reachable states

is stalled at s, and its successor s' is omitted from the underapproximation. Clearly

s' is truly reachable. Let us first examine the conditions leading to s' not appearing

in the underapproximation. Since its predecessor s is in the underapproximation,

there is some stage of the underapproximation algorithm when all the successors of s,

including s', are considered for inclusion in the underapproximation. If at this point,

the underapproximation does not include any states in the same separating class as

s', then some states would immediately be added to the underapproximation, by the

nonemptiness for the underapproximating operator (i.e. 0 \>A ^ 0 for nonempty sets

38 CHAPTER 2. APPROXIMATION

Bu

A

D

AUD

Condition 1

A

Bu

_

D

Condition 2

B u

D

/

Figure 2.10: Violating conditions for permissible joins

A). Because we know 5' is not in the underapproximation, it follows that the under-

approximation must include some other states in s"s separating class C. One way to

increase the likelihood s' appears in the next underapproximation is to use separating

classes to separate it from all states in the underapproximation which lie in C. These

separating classes are created dynamically by the next backwards overapproximation

which will avoid joining sets within C if one of its operands contains states in Fv

while the other does not.

2.3.1 Conditional joins

The usual algorithm using separating classes would always join two sets A and D

whenever they lie within the same separating class. Following the discussion above, we

now provide more restrictive conditions under which such joins should be performed.

The conditions given below apply when performing forward reachability. Symmetric

conditions apply for backwards reachability and are not explicitly stated here. Let

A and D be two sets lying within the same separating class. Let Bu be the set of

states in the previous backwards underapproximation which are contained in that

separating class. A join between A and D is said to be permissible unless either of

the following two conditions hold:

1. both A and D are disjoint from Bu but A U D is not, or

2.3. FULL APPROXIMATION ALGORITHM 39

2. D is disjoint from Bv and A is not, or .4 is disjoint from Bv and D is not.

Condition 1 corresponds to a situation leading to a false negative, and Condition 2

to possible false positives.
We say that when sets are joined in a manner that respects the above conditions,

the result is a Bv -consistent join, which we now formally define. The auxiliary-

function overlap() returns whether its two parameters have non-empty intersection,

i.e.
. \ TRUE xny^0

overlapiX.Y) = <
\ FALSE otherwise

Given a set X, we say that a set of sets {Di}leL is an X-consistent join of a set of

sets {Aj}jej iff

• for each I e L, Di = Ui=i..m^, where each ji e J and for each i = L.ra,

overlap(Aj{,X) = overlap(DhX).

• for each j £ J there exists anlei such that A,- C D/.

Corollary 2.7 If the separating classes overapproximation algorithm of figure 2.5 is

run under the restriction that all joins are X-consistent for some set X, then

• UOverD reach(S).

• if the boolean output verified-correct has value true, then the system is correct.

Proof: Obvious from proposition 2.4, since all X-consistent joins are joins. □

2.3.2 Refinement of approximations

As explained informally above, the approximations are successively more accurate

because they are computed using finer and finer separating structures. The sepa-

rating structures are derived from the most recently computed overapproximation.

Their refinement is the result of using only conditional joins. In other words, if an

overapproximation contains the class C the next overapproximation may have created

approximating sets C\, C2, ..., C*, all within C through using only conditional joins.

40 CHAPTER 2. APPROXIMATION

The next approximation will use each of these sets C* as separating classes instead

of C. The result is a more accurate approximation, because some joins which would

have taken place within the class C will no longer do so since their operands now lie

in different classes.

Before an approximating structure can be used as a separating structure, it

must first be flattened, since it is a tuple of sets of sets, rather than a tuple of

sets. We define the Flatten() function over approximating structures A such that

Flatten(({Aij}i€Ji)ie7) = {Ak)k€K where A{j = A^^+j, i.e. every approximating

set in A is a component of Flatten(^t).

2.3.3 Sketch of algorithm

The full algorithm is sketched below. Forward overapproximations and underap-

proximations, and backwards overapproximations and underapproximations, are al-

ternately computed. Each time an approximation is computed, information from

the latest available approximations in the opposite direction is used. The opposite

direction's overapproximation gives an upper bound on the states which need to be

considered, see section 2.2.2. In addition this overapproximation also serves as a

separating structure for the current overapproximation. The opposite direction's un-

derapproximation is used to determine which joins are permissible, see section 2.3.1.

Overapproximations are computed as described above, with only permissible joins.

Thus an overapproximation may have several unjoined sets for each separating class

of the separating structure it respects. This resulting overapproximation is used as a

separating structure for the next pair of approximations. Thus the approximations

are computed relative to finer and finer separating classes, resulting in successively

more accurate approximations.

The forward and backward overapproximations and underapproximations are suc-

cessively computed until the system is deemed correct, or a true violation is detected.

Notice that in general the full algorithm need not terminate: it may generate in-

finitely many approximations without ever solving the verification problem. How-

ever, if the state-space is finite, or can be partitioned into finitely many equivalence

classes, the algorithm is guaranteed to terminate (see Theorem 2.14). The skeleton

2.3. FULL APPROXIMATION ALGORITHM 41

Full-Approx

Over[BACKWARDS] := original separating structure;
Under[BACKWARDS] := empty approximating structure;
confirmed-positive := FALSE;
confirmed-negative := FALSE;
dim —FORWARDS;
Sep-Structure := original separating structure;
while ((not confirmed-positive) and (not confirmed-negative)) do

Over [dim] :=
Over_Approx(dirn,N,Sep_Structure,Under[Opposite_Dirn(dirn)]);

Sep_Structure := Flatten(Over[dirn]);
Under[dirn] := Under_Approx(dirn,N,Sep_Structure);
dim := Opposite_Dirn(dirn);

endwhile

Figure 2.11: Full approximating algorithm

of the full algorithm appears in figure 2.11. The arrays Over and Under are global

variables storing the current approximations in each direction, and confirmed-positive

and confirmed-negative are global booleans. The algorithm starts by computing ap-

proximations in the forward direction4. Initially nothing is known about which states

are backwards reachable, so we assume the user supplies an initial overapproximat-

ing structure whose base elements are all of S. We take the empty approximating

structure as a conservative underapproximation of the backwards reachable states5.

The functions Over_Approx() and Under_Approx() return approximations in the ap-

propriate direction.

Pseudocode for the overapproximation algorithm appears in figure 2.12. The pa-

rameter Opp-U is an underapproximating structure in the opposite direction. The

parameter Sep is the result of flattening an overapproximating structure into its cor-

responding separating structure. When called with parameters FORWARDS, N, A

and C, the function Successors() returns the set of successors of A via the next-

state relation N, separated with respect to the structure C, and the function call

4The algorithm could just as well start going backwards from the violating states instead.
5In fact, we could use any approximating structure whose base elements are a subset of V.

42 CHAPTER 2. APPROXIMATION

Over-Approx(dirn, Nsr, Sep, Opp.U)

Last_Over[dim] := UStart[dirn] J. Sep;
Over [dim] := Last-Over [dim];
converged := FALSE;
while (not converged) do

Next-States := Successors(dirn,Nsr,Last_Over,5ep);
Last_Over[dirn] := Overfdirn];
Over[dirn] := consistent_join(0pp_[/, Over[dirn], Next-States);
converged := (U Last_Over[dirn] = UOver[dirn]);

endwhile
verified.correct := disjoint (U Over [dim], Endfdim]);
confirmed-positive := verified_correct;

Figure 2.12: Overapproximating algorithm

Successors(BACKWARDS,iV,A,C) returns its set of predecessors separated with re-

spect to C. The function consistent_join(), called with parameters X, A and B returns

an X-consistent join of A and B. The algorithm for underapproximations is similar,

except that there is no need to check for consistency when applying the approximating

operator.

Correctness

Theorem 2.8 The following are true for forward and backwards traversal:

1. The states appearing in any underapproximating structure are a subset of the

truly reachable states.

2. The states appearing in any overapproximating structure returned by the routine

Over-Approx are a superset of the truly reachable states that lie on violating

paths. n

Termination

Let FOi(BOi) and FUi(BUi) be the i-th. forward (backward) overapproximations and

underapproximations in a sequence of approximations generated by the algorithm.

2.3. FULL APPROXIMATION ALGORITHM 43

Under_Approx(dirn, Nsr, Sep)

Last_Under[dirn] := U Under[dim] j Sep;
Under[dirn] := Last_Under[dirn];
converged := FALSE;
while (not converged) do

Next-States := Successors(dim,Nsr,Last_Under[dirn],5e^);
Last_Under[dirn] := Under[dirn];
/* the addition operator returns a legal expansion */
Under[dirn] := Under[dirn] £> Next_states;
converged := (U Last_Under[dirn] = U Under [dim]);

endwhile
verified_correct := disjoint (U Under [dirn], End [dim]);
confirmed-negative := not verified-correct;

Figure 2.13: Underapproximating algorithm

We refer to the computation of FOi and FUi as the i-th forwards traversal of the

algorithm. We first note that when S is finite, each individual traversal will complete.

Proposition 2.9 If S is finite, then the individual calls to Over-Approx and Un-

der-Approx terminate.

Proof: The while loop of each algorithm is only repeated when additional base

elements are added to the currently computed approximation. Therefore the loop

terminates since the state-space is finite. □

The argument for termination of the full algorithm consists of showing that there

is well-founded ordering over the approximations generated by the algorithm, such

that they are non-increasing and decreasing infinitely often.

We define a partial order over approximating structures, where

A <baSe B if and only if UACUB

In addition, we say

A dibase B if and only if UiCUß

44 CHAPTER 2. APPROXIMATION

We also denote A -<ba*e B by B ybase A, and write B hbase A for A ^6ase B. The

orders are well-founded.

Proposition 2.10 If S is finite, then there are no infinite strictly -<base-descending

or -<base-ascending chains of approximating structures. □

We now show the overapproximations are non-increasing with respect to -<base-

Proposition 2.11 BOi+i ^base FOi+l ^base BOi -<base FO{

Proof: Every base element of an approximation is also a base element of the sepa-

rating structure it respects. The separating structures are obtained by flattening the

previous overapproximations and flattening preserves the base elements of a structure.

D

Finally we establish that if the algorithm does not terminate, then the forwards

overapproximations must decrease infinitely often with respect to -<base- In the next

proposition we first show non-termination implies that after every two traversals

either the overapproximations strictly decrease, or the underapproximations strictly

increase. Then the proof of proposition 2.13 shows the overapproximations must

decrease infinitely often, since the underapproximations cannot increase infinitely

often in a finite state-space. This contradicts the well-foundedness of -<base-

We first introduce some notation. Given a set of states Y C S, we say that a set

X of states is Y-avoiding iff X n Y # 0. It is Y-touching iff it is not Y-avoiding.

Proposition 2.12 If the algorithm has not terminated after computing FOi+2, then

either FOi+2 -<base FOi} or BUi -<base BUi+1.

Proof: The proposition essentially states that in every couple of traversals some

progress is made in either the overapproximations or the underapproximations. As-

sume the algorithm has not terminated after computing FOi+2. Then by proposi-

tion 2.11 if BOi+i ^base FOi, it follows that FOi+2 ^.base FOh and progress has

been made in the overapproximation as required. Thus we need only consider the

case where U BOi+i = U FOi. First observe that BUi debase BUi+i since UBUi+1

contains UBU{ n ö BOi+i which equals Li BUi n I) BOi which equals öBUi since

2.3. FULL APPROXIMATION ALGORITHM 45

U BUi C U B0{. Hence in order to show that BUi -(.base BUi+i we need only demon-

strate that BUi+i includes some state not in BUi.

We establish three claims that complete the proof:

1. there is at least one UBU{-avoiding approximating set A of FOi+x whose set of

successors is Uß£/rtouching, i.e. N(A) n UBUi ^ 0.

2. there is at least one Uß 17,-avoiding approximating set B of BOi+\ whose set

of successors is U ß ^-touching.

3. some state b G B appears in BUi+i but not BUi, and hence BUi -<base BUi+i.

The first claim follows from the fact that only U ß ^-consistent joins are performed

at any stage of the Over_Approx routine. Since the full algorithm has not terminated,

we know that the initial states used in Over_Approx are disjoint from UBUi, and

hence all approximating sets in So | BOi are Uß{7,-avoiding. The final converged

overapproximation FOi+i is not Uß [/^-avoiding, or else it is also V-avoiding, and

hence verified correct. Thus at some stage of the overapproximating routine a U BUr

touching set is including in the accumulated overapproximation. Since all joins are

UßC/j-consistent, no Ußf/j-avoiding approximating sets are ever replaced with U BUr

touching sets. Hence there must be some UßC/j-touching set which is first added to

the overapproximation, and it must be added as a result of computing the successors

of a U ß[/"j-avoiding approximating set. Let this set be AQ. Thus AQ has successor

states in U BUi. The overapproximating algorithm may join other sets to AQ, but

only if the join is Uß£/,-consistent, so there is always an approximating set that is

U ßC/j-avoiding and contains AQ. This argument establishes the first claim above.

Let the approximating set thus found be called A.

The second claim states that BOi+i also has such a set. We know that some state

a e A has a successor a' G UßC/,-. We have already shown that UBUi C UBUi+i

and soUß^CUßOj+i- In particular, a'euBOi+\. When the overapproximation

algorithm computes the predecessors of an approximating structure containing a',

it obtains a structure B with at least one set ß0 containing a. Thus when B is

joined to the current backwards overapproximation under construction, there is some

46 CHAPTER 2. APPROXIMATION

approximating set containing a which is a subset of both BQ and the class A, since

approximating sets in FOi+i are used as separating classes in computing BOi+i. The

converged backwards overapproximation also contains some set B C A which contains

a. Because the class A is U-BC/ravoiding, so is B, and the claim is established.

Finally, for the third claim, we need to show that some state a' e A is in BUi+\.

The state a has been chosen so that N(a) includes elements of U BUi. Let B' =

N(a) n U BUi ^ 0. While computing the underapproximation BUi+\, the routine

Under_Approx at some stage considers all predecessors of some approximating set

containing some b e B'. These predecessors B" would include the state a € A. Since

B is a separating class used in this computation, B D B" is a set in the approximating

structure for the predecessors being considered now. Suppose the underapproximation

under construction already included some states in A. Then we are done since U BUi

does not, and since the underapproximation algorithm never discards base elements, it

follows that BUi -<base BUi+i. So suppose not. But in this case the algorithm would

then include some set of states in B by the second axiom for underapproximating

operators, namely that 0 te>X ^ 0. It follows that BUi -<base BUi+\. □

Proposition 2.13 Given a finite state-space, if the algorithm generates infinitely

many forwards overapproximations, then infinitely many of them are strictly decreas-

ing with respect to -<base-

Proof: Suppose the forwards overapproximations are not infinitely often decreasing.

Then by proposition 2.11 the base elements of the forwards overapproximation must

converge to some set UFO. Suppose this occurs after k traversals. From this point

on, the backwards underapproximations are non-decreasing, since UBUi C UFO and

UBUi n UFO C \JBUi+1 for i > k. Hence they cannot increase infinitely often

since they are contained within a finite set. Thus by proposition 2.12 the forwards

overapproximations are infinitely often decreasing. □

Theorem 2.14 Given a finite state-space S, the full approximation algorithm of fig-

ure 2.11 terminates.

2.3. FULL APPROXIMATION ALGORITHM 47

Proof: The well-founded ordering z^e over the forwards overapproxirnations is non-

increasing and strictly decreasing infinitely often, and so the algorithm must termi-

nate. D

Theorem 2.15 Given a finite state-space S, the full approximation algorithm termi-

nates with the correct answer to the verification problem.

Proof: Immediate from theorems 2.8 and 2.14. □

2.3.4 Additional splitting

The full algorithm can easily be modified to allow additional splitting of classes. This

feature enables the program to use various heuristics to accelerate convergence, other

those outlined above for conditional joins.
Additional splitting may be safely performed between traversals. In the algorithm

given above, each successive traversal of the algorithm uses a separating structure de-

rived from the previous overapproximation. However it is always possible to refine

this separating structure without losing soundness, or completeness over finite-state

systems. If the separating structure used instead of the previous overapproximation

has the same base elements as the overapproximation, correctness is maintained. Fur-

thermore, if it is also finer than it (wrt <sp defined below) the property of termination

is maintained.
We define a notion of splitting one approximating structure into another. Intu-

itively, A is the result of some splitting of B iff it is obtained by taking some sets in

B and splitting them into nontrivial parts.

A<SVB if and only if
VA € A, 3B € B such that ACB, and

VBeB,B = U{AeA\ACB}

We let Split() be any function which, given input approximating structure B, returns

some Flatten(*4) for which A ^sp B.

Proposition 2.16 Replacing the Flatten function with the Split function in the full

48 CHAPTER 2. APPROXIMATION

approximation algorithm maintains the properties of termination over finite-state sys-

tems, and correctness.

Proof: Correctness is obvious, since the base elements are maintained and thus still

form an overapproximation.

An examination of the termination proof over finite-state systems reveals that

termination depends on successive overapproximations containing sets which do not

contain elements in the underapproximations, but which have successor states which

do. See the proof of proposition 2.12. Suppose X is such a class as required by the

proof of termination, i.e. X is a set in FOi that is U i? ^-avoiding but its successors

are not. Suppose then that s e X'\s not in U BUi but has a successor state which is.

Splitting a class X into several classes Xu X2, ...,Xk which partition X ensures that

there will always be a class among the Xi which contains s and is U i? [^-avoiding. E

Alternative termination conditions

An alternative dynamic method for refining the separating structure used for each

iteration is to separate states appearing in the underapproximation from those which

do not. This technique may be seen as a special case of allowing additional split-

ting. The potential disadvantage of this approach is that classes may get fragmented

quickly, and it requires use of the difference or negation operator. In particular, for

the real-time systems we consider we do not have a space-time efficient means of

computing the difference between approximating sets.

2.3.5 Generating debugging traces

An important, and often overlooked, factor in any algorithm for verification is the

ability to generate useful debugging information when a system violation is detected.

Here we briefly describe how the underapproximations can be used to generate de-

bugging traces, and some of the limitations associated with them.

In its most general form, the algorithm as it stands does not guarantee violating

paths will be obtained every time a violation is detected. However, the underapprox-

imation algorithm can easily be used to generate a graph whose nodes are sets of

2.3. FULL APPROXIMATION ALGORITHM 49

states with an edge between nodes whenever there is an edge between elements of

the two sets. If a violation is detected, the graph contains violating states. From this

graph it is possible to generate a pseudo-trace Ax,A2,Az,...,Ak where all states in

Ai are initial, all states appearing in any Ai are reachable from the initial states, and

between any two successive sets A\ and Ai+\ in the sequence there is at least one edge

from a state in Ai to a state in Ai+i. Notice however that there is no guarantee at all

that there is even a path als a%,..., at in (S,So,N) such that a,- € A\. In many cases

however, this kind of debugging information can be useful.

There are a number of ways to generate real violating paths. One could use exact

analysis over that part of the state-space covered by the underapproximation until a

violating state is reached.

Another method is to use a restricted form of underapproximating operator that

enables real violating traces to be extracted. The idea is to build a graph whose nodes

are sets of states with edges between sets whenever there is an edge to every element

in the second set from some element of the first set. We say a graph with sets of

states in S as nodes is a 3V-setgraph for (S, So, N) iff whenever A —> B, for every
<—

be B there is some a e A such that a —> b. Every trace in a BV-setgraph corresponds

to a trace in the underlying transition system.

Proposition 2.17 Given a Ji-setgraph G for the transition system (S,SQ,N), for

every path A\,A2, ■ ■ ■, A* in G, there is a path ai, 02,..., a* in (S, SQ, N) such that

ai e Ai. □

Thus we need only guarantee that the underapproximation builds an 3V-setgraph.

An easy way to achieve this is to restrict the underapproximating operator so that

A [> B = A whenever A is non-empty. However this results in a very weak underap-

proximating operator. In order to compensate for the weak operator, we may restrict

the expansion operator over sets so that the underapproximation advances sufficiently.

We propose using the expansion operator which always returns a set of sets which is

maximal, up to a certain limit on its size. Given a sets of sets {Ai} and {Bj}, we say

that any subset of {^4,} U {Bj} which contains every Ai, has at most k members, and

is maximal is an expansion of {Ai} with {Bj}. The larger the value of k, the closer

50 CHAPTER 2. APPROXIMATION

the approximation is to being exact, at a cost of time and space.

2.3.6 Further features

All the algorithms described in this section are flexible enough to allow the user to

specify an initial separating structure. Hence the algorithms can be run approximat-

ing as aggressively (loosely), or as accurately (tightly), as desired. The user can also

use her own understanding of the system to determine which parts of the state-space

to analyze more accurately, and over which states rough approximations are adequate.

An additional advantage of this approximation scheme is that it utilizes both for-

wards and backwards reachability information. Empirical experience with finite-state

verification has shown that in some instances performing reachability in one direction
is easy while the other is prohibitively expensive. Rather than having to commit to an
expensive exact forward or backwards analysis, or perform both simultaneously, the

approximation algorithm can quickly compute an approximation in one direction, and

then the other. Thus information from both traversals may be combined relatively

quickly before the analysis becomes more exact.

2.4 Approximating next-state relations

We conclude this chapter by showing how approximations can be made over not

only the accumulated set of reachable states, but also over the individual image

computations. In the description above, the exact next-state relation is used to

compute the successors of a set of states. However, it is not always easy to find

the exact set of successor states for a given approximating set. Furthermore, the set

of successors may not be a single approximating set, but rather a large number of

approximating sets. We later explain in subsection 5.1.2 how this situation occurs for

the real-time systems we verify, where we find it necessary to approximate next-state

relations.

2.4. APPROXIMATING NEXT-STATE RELATIONS 51

This section outlines how next-state relations can be approximated. It also pro-

vides sufficient conditions for the approximation algorithm to terminate over finite-

state systems.

An underapproximation of the next-state relation N, usually denoted N, is any

relation such that N C N. Similarly, a relation N is an overapproximation of N

iff N C N. These relations induce relations over sets of states in the natural way,

i.e. N(A) = {t | 3 s E A such that N(s,t)}. Since we are mainly concerned here

with relations over sets of states, we further define a set-underapproximation of the

set-relation induced by N as any relation Ns over sets of states such that for every

set ACS, NS(A) C N(A). Set-overapproximations are similarly defined. Set-

approximating next-state relations are usually referred to simply as approximations

of AT.

2.4.1 Correctness

The following propositions state that it is sound to replace N with an overapprox-

imation in the overapproximation algorithms, and with an underapproximation in

the underapproximating algorithms. As a point of clarification, the algorithms for

backwards overapproximation do not use (N)'1, but rather an overapproximation

N71 of the inverse relation N"1. Similarly N'1 should be replaced by some AL1 in

the underapproximating algorithms.

Proposition 2.18 The overapproximating algorithms (for fundamental overapprox-

imation (figure 2.1), for iterated approximations (figure 24), for separating classes

(figure 2.5), and within the full approximation algorithm (figure 2.12)), when run with

N replaced by an overapproximating relation N (N-1) in the forwards (backwards) di-

rection yield converged overapproximations whose base elements are a superset of the

states lying on violating paths. E

Proposition 2.19 The underapproximating algorithms (for fundamental underap-

proximation (figure 2.2), for separating classes (figure 2.6), and within the full ap-

proximation algorithm (figure 2.13)), when run in the forwards (backwards) direction

52 CHAPTER 2. APPROXIMATION

o
N = N-* = N
N = N? = {}

Figure 2.14: Non-termination example

with N replaced by an underapproximating relation N (N~\) yield converged under-

approximations whose base elements are a subset of the states forwards (backwards)

reachable from S0 (V). □

Combining propositions 2.18 and 2.19 gives soundness for the full approximation

algorithm.

Proposition 2.20 // the full algorithm terminates when N is replaced by N (N'1) in

the overapproximating routines, and by N (N'1) in the underapproximating routines,

it gives a correct answer to the verification problem. ü

2.4.2 Non- termination

The following examples illustrate that even if N is approximated for just over-

approximations (or under approximations) and the approximation operators actually

return the exact union, termination is not guaranteed even for finite-state systems.

Example 2.21 Consider the verification problem (S, So, N, V) for the 2-state system

withS = {i,v}, So = {i}, V = {v}, andN = {(i,v)}, shown in figure 2.14- Letususe

exact operators as our approximating operators, i.e. we assume that U> and U are ex-

act over the sets we consider. Suppose we approximate N with the overapproximation

N = N7* = N, and the underapproximation N = N_^ = {}• The initial separating

structure must separate i from v, and is thus taken to be ({?'}, {v}}. The first iteration

of the forwards overapproximation yields the approximating structure ({{i}}, {{v}})-

The forward underapproximation is ({{i}}, {})• The system contains an unconfirmed

2.4. APPROXIMATING NEXT-STATE RELATIONS 53

violation. The backwards iterations yield the same overapproximation, and the un-

derapproximation ({{}}, {{?>}})• Continued iterations of the algorithm result in no

change, so the violation will never be detected. n

Example 2.22 Consider a system where S, S0, and V are as above but with N = {}.

Take N to be N, and the overapproximation N to be {(i,v)}. In this case we iterate

with exactly the same approximations as before, and never discover that the system is

correct. n

Proposition 2.23 The full algorithm, with N replaced by Ns in the overapproximat-

ing routines, and byNs in the underapproximating routines, need not terminate even

over finite-state systems. n

2.4.3 Termination

We outline methods which guarantee the full approximation algorithm terminates

over finite-state systems, even when the next-state relation is approximated.

Convergence to exact relations

The first strategy proposed is to use a sequence of approximations to N rather than a

fixed approximation. Let N\, N2,... be overapproximations of N that are converging

towards N, i.e. N{ D Ni+1 D N. It is easy to that if Ni is used in place of N on the

i-th. traversal of the full approximation algorithm, then correctness is maintained. A

sequence of next-state relations increasing towards N may also be used soundly for

underapproximating N. If the approximate next-state relations converge to the exact

relation N, then the algorithm terminates over finite-state systems.

We define a straightforward ordering on set-approximating next-state relations as

follows:
N[* Ni iff VA C S, N*(A) C N%{A)

Proposition 2.24 Given sequences of decreasing over approximating relations for N

and sequences of increasing underapproximating relations for N both of which even-

tually converge to exactly N, the full approximation algorithm terminates correctly

54 CHAPTER 2. APPROXIMATION

over finite state-spaces if the i-th approximating relations are used instead of N in

computing the i-th approximations.

Proof: Running the full approximation algorithm as described with overapproximat-

ing relations iVJ- and N-1 and underapproximating relations Ni and N£ is sound, by-

repeated applications of propositions 2.18 and 2.19, and then proposition 2.20. The

algorithm cannot run forever since after j traversals the approximating next-state

relations converge to the exact relation, from which point the algorithm is guaran-

teed to terminate. In other words, the computation can be viewed as taking place in

two distinct phases, each of which will terminate. Any computation using approxi-

mate next-state relations up to the j-th traversal may be regarded as a preliminary

restriction of the state-space to states potentially lying on violating paths. Compu-

tation from the j-th traversal on may be regarded as running the full approximation

algorithm with the exact next-state relation. O

Exact application of approximate relations

The second strategy suggested is to use a set-approximating next-state relation which

is exact when applied to a subclass of approximating sets. Rather than guaranteeing

a priori that a sequence of approximating relations converges to the exact relation,

we can use a fixed approximating relation, and instead ensure that it is eventually

only ever applied to approximating sets over which it is exact. This strategy is the

one we use for verifying real-time systems. Let Domo C Dom be a subset of the

domain of approximating sets. A set next-state relation N' exactly matches a set

next-state relation N over Dom0 iff for all sets A e Dom0, N'(A) = N(A).

Proposition 2.25 If the full algorithm is run with set-underapproximating relations

and set-overapproximating relations which are exact over the domain of all sets ap-

pearing in the initial separating structure and all subsets of those sets, then the algo-

rithm terminates over finite state-spaces.

Proof: It is sufficient to establish that the approximating relations are exact over all

sets to which they are applied. First observe that at any stage of the full algorithm,

2.4. APPROXIMATING NEXT-STATE RELATIONS 55

every separating class is the subset of one of the classes in the original separating

structure. All approximating sets lie within some separating class, and hence are

subsets of some initial separating class. Thus, by the assumption in the statement of

the proposition, the next-state relation is exact over all sets it operates on. □

Theorem 2.26 Given a finite state-space and a well-founded ordering, if the full

approximation algorithm is run with set-underapproximating relations N and N'1

and set-overapproximating relations N and N'1 such that the separating structures

generated are non-increasing, and at each traversal, either the most recent separating

structure C is strictly less than the previous one, or N, N~\N andN_^ exactly match

N over the domain of separating sets appearing in C, then the algorithm terminates.

Proof: Assume the algorithm generates infinitely many approximations without ter-

minating. If there is are infinitely many approximations which are strictly decreasing,

then the algorithm must terminate. Suppose then that this is not the case, and that

eventually all adjacent overapproximations have the same set of base elements. By

assumption, N, jVi\ N and N11 all exactly match N over the current separating

classes, and then by proposition 2.25, the algorithm terminates. □

A natural candidate for the well-founded ordering is ^base- However, it is often

difficult to guarantee that the successive approximations are decreasing infinitely often

with respect to this ordering. We introduce another ordering for which it is easy to

modify the algorithm so that the approximations decrease as required.

Let

f VA e A 3B <= B such that ACB, and
A -<set B if and only if <

(3B eB such that $A e A with BCA

Proposition 2.27 Over a finite state-space, there are no infinite chains of approxi-

mating structures which are strictly -<set-descending or strictly -<set-ascending.

Proof: Over a finite state-space, there are only finitely many approximating struc-

tures, so we need only show that -<set admits no cycles. By definition, if A -<set B,

then some set B e B has no superset in A. HB <setC, then there is some set C € C

56 CHAPTER 2. APPROXIMATION

such that B C C. The set C cannot have any superset in A or else A would contain a

superset of B. By induction it is impossible for there to be a cycle A -<Set B -<set •A,

since every set is a superset of itself. D

Corollary 2.28 Given a finite state-space, if the successive overapproximations are

strictly decreasing with respect to -<set up until the approximating relations are exactly

matching, then the algorithm terminates. n

It is easy to see how to obtain from an overapproximation A a separating structure

C which has the same base elements, but such that A -<set C. We need only take any

non-zero number of approximating sets in A which are not contained in any other

approximating set in A, and let C be result of replacing each with nontrivial parts

which partition it. Since the replaced approximating sets do not have supersets in A,

it follows that A -<set C.

Proposition 2.29 The successive overapproximations of the full algorithm will be

decreasing with respect to -<set if the following alteration is made to the algorithm:

whenever the algorithm generates overapproximations whose base elements are not a

strict subset of the base elements in the separating structure used in its computation,

use as the next separating structure one obtained by splitting as described above. O

These results suggest a policy for ensuring termination when using approximate

next-state relations over finite-state systems. Classes in the separating structures can

be split whenever "sufficient" progress is not made in successive overapproximations,

up until the approximate relations are exactly matching.

Chapter 3

Real-Time Systems

3.1 Introduction

Computerized controllers are appearing more and more in embedded systems as the

cost, size, development time and power requirements of computerized systems plum-

mets. In these systems, the computer interacts with physical processes for which time

is an important factor. Thus the design of these controllers must consider not only

the sequencing and coordination of events, but also the times at which they occur.

Any formal methodology for specifying and reasoning about such interactive systems

must include an accurate model of timed behavior.
In this chapter we review a formalism for modeling real-time systems: timed

automata, and show how they can specify timed safety problems.

3.2 Timed automata

3.2.1 Time-stamped traces

The domain of time is the set of non-negative reals, simply denoted H. Given an

alphabet E, a timed-stamped trace is a sequence of pairs in E x IR

{ao,to},{ai,ti),{a2,t2),...

57

58 CHAPTER 3. REAL-TIME SYSTEMS

such that

• (weak monotonicity): U < U+i for all i > 0

An infinite time-stamped trace is divergent iff

• (divergence): for all k G 1R, there exists an i such that U > k.

Note that timed-stamped traces may be finite or infinite, and that several events

may occur in sequence with the same time-stamp.

3.2.2 Timed traces

A timed trace is an alternative view of a time-stamped trace. Rather than noting the

time of every event, we instead model explicitly the passage of time (if any) between

events. Let Ar be the set of time-passage events

AT = {6t\te IR}

Given an alphabet E disjoint from AT, a timed trace consists of a sequence of

events taken from E U AT. Events from E take place instantaneously, while events

from IR represent the passage of time. It is easy to see that every time-stamped trace

can be modeled as a timed trace, and vice versa.

An infinite timed trace is divergent iff its corresponding time-stamped trace is.

To express this explicitly, we define a duration function over E U At as follows:

, , . f t if e = St G Ar
dur(e) = <

{ 0 if e G E

Then an infinite timed trace e is divergent iff the sum of event durations is un-

bounded, i.e. for all k G IR there exists a j such that Ei=o..j^wr(e,) > k.

3.2.3 Timed safety automata

We recall the definition of timed safety automata (TSAs) as a means of specifying

timed transition systems and their properties [HNSY92]. There are many variants of

3.2. TIMED AUTOMATA 59

timed automata; the one we use most closely resembles those of [NSY92a, HNSY92].

Timed safety automata are a form of finite-state automata with finitely many real-

valued clocks. Each clock records the exact amount of time which has elapsed since

its last reset. Each transition has an enabling condition depending on the values of

the clocks. Transitions occur instantaneously and may include the resetting of clocks.

Each enabling condition is expressed as a non-empty set of points in]Rn, where n

is the number of clocks in the automaton. We assume the clocks have been ordered

so that the values of all the clocks may be expressed as a vector of real values. The

transition is enabled whenever the n-vector of clock values lies in its enabling set.

Enabling conditions are restricted to be sets definable as a conjunction of constraints

of the form x ~ k where x is a clock and ~ € {<, <, =, >, >}. For convenience, we

may refer to an enabling condition as either a set of points or the logical formula

defining it. The domain of all enabling conditions is called £n. We define a set of

reset actions A(n), which are functions from B71 to IT corresponding to the resetting

of some of the clocks to 0. For each a € A(n), there is a set of indexes Ia C {1... n}

such that
f 0 ift'e/«
y (x)i otherwise

The enabling conditions on events express precisely that they are enabled to take

place: they do not stipulate that the event must occur at all. However in many

real-time systems, we need to model the fact that an event is guaranteed to occur

within a certain time bound. This situation is modeled in a timed safety automaton

by giving safety invariants for each location, thereby specifying upper bounds on how

long time may progress. For example, if an event is guaranteed to occur at control

location q at time x = 5, the invariant at q should require "x < 5". This condition

expresses that time cannot pass beyond x = 5 without an event occurring.

Definition 3.1 A timed safety automaton (TSA) G is a tuple (E, Q, Qinit, C,T, Inv)

where

• S is a finite set of events, disjoint from AT,

• Q is a finite set of control locations,

60 CHAPTER 3. REAL-TIME SYSTEMS

• Qinit Q Q is a set of initial locations,

• C — {xi,..., xn} is a finite set of clocks,

• TCQxY,x£nx A(n) x Q x {0,1} is a proper transition relation, defined

below,

• Inv G (Q —> IZ) is an invariant assignment mapping control locations to the

domain IZ of safety invariant zones defined below.

Transition relations

An edge e = (q,a,<j>,a,q',urg) in the timed automaton's transition relation corre-

sponds to a transition from control location q labeled with event a. It is enabled

iff the values of the clock variables satisfy 0. The transition is instantaneous and

the reset action a is applied to the clock values. The resulting control location is q'.

The transition is said to be urgent iff urg = 1. An urgent transition must occur as

soon as it is enabled, unless another instantaneous event occurs and disables it. In

other words, no time may pass while an urgent event is enabled. There is an added

restriction that all urgent events are never constrained by a timing condition with

strict lower bounds. This restriction ensures that the time when an urgent event first

becomes enabled because of time passing is well-defined. For example, if an urgent

event has enabling condition x > 3, and the value of x is currently 2, then it would be

impossible for time to pass incrementing x beyond 3, and yet having the urgent event

occur as soon as x > 3 since there is no first value of x which is strictly greater than

3. Formally, then, we first define the vector t to be the n-vector with all components

equal to t, i.e. t = {t,t,... ,t) G H".

A transition is proper iff it is non-urgent, or it is urgent and its enabling timer

values form a set Z which is topologically closed in the downwards direction, i.e. for
—*

all points x, if there exists an e > 0 such that x + 8 e Z for all 0 < 6 < e, then

x e Z. This set closure condition is equivalent to saying that the enabling condition

can be defined without using any strict lower bound constraints on the absolute values

of any clocks. A transition relation is proper iff all its transitions are proper.

3.2. TIMED AUTOMATA 61

Safety invariants

The domain IZ of invariant zones is defined to be the set of all predecessor closed

time zones. A time zone Z is any convex polyhedron of JRn, consisting of all solutions

of a system of linear inequalities where each inequality is of one of the following forms:

• x < k, x < k, x > k, x > k, where x is a clock and k is an integer constant

• x — y < k, x — y < k, where x and y are clocks and k is an integer constant.

Let Z(n) be the set of zones of Hn. The set of time successors of a zone Z is the set

Zy = { y | 3 x € Z, t e IR, such that y = x + t}

The set of time predecessors of a zone Z is the set

Z/ — { y | 3 x G Z, t e R, such that y + t - x}

Finally, a time zone Z is predecessor closed iff it includes all its time predecessors.

An equivalent definition is that it can be defined without using any lower bound

constraints on the absolute values of clocks.

Semantics

We are now ready to define operational semantics for a timed safety automata G

in terms of a transition system {S,SQ,N). A timed-state of the system is a pair

s = {q, x), where q € Q is a control location and x € IRn a vector of clock values.

The set S consists of all timed-states.

The set So of initial states is the set of all timed-states whose control component

is an initial location in G, and whose clocks values are all equal to 0, as given by

So = {(q, 0} | q € Qinit}

For each transition e = (q, a, 0, a, q', urg) G T, let

Ne = {({q, x), (q', x')) | x € <f>, x' = a(x), and x' € Inv(q')}

62 CHAPTER 3. REAL-TIME SYSTEMS

For each t e JR., we define

NSt = {((q, x), (q, x + t})\ x + te Inv(q), and VO < t' < t, Ve e T,

e is urgent implies Ne({(q, x + t'}}) = 0}

In other words, time may increase at a uniform rate over all clocks, provided the

control location's safety invariant is satisfied, and no urgent events are enabled. The

next-state relation for all time-passage events is then Ns = Ui€ JR-^ . The next-state

relation of the transition system is

N= UeeTNel)N5

The transition system induced by the timed safety automaton G is referred to as

(SG,S0,G,NG).

Because a transition system is unlabeled, we find it convenient for our discussion

of timed systems to first define some familiar language-theoretic terms for timed

automata. A run of the TSA G for the timed trace e0,ei,e2,... is any infinite

sequence of timed states s0, $i, «2, - • • which is a path in (SG, S0,G, NG) such that for

all i > 0, either

• a = a and (s4, si+i) € Na, where Na = U{Ne | e is labeled with a}, or,

• e,- = 8t and (s;, si+1) G NSt.

Such a run may be represented pictorially as

eo ei «2
so -> Si —>■ s2 —*• • • •

The language accepted by G is defined as the set of all divergent timed traces for

which (SQ, S0,G, NG) has a run starting in SO,G-

Graphical conventions

Automata are depicted graphically by labeled, directed graphs. Locations are repre-

sented by circular nodes, and transitions by labeled edges. Reset actions of transitions

3.2. TIMED AUTOMATA 63

approach x < 5
x:= 0

out
X <5 ^ > 3 x < 5

Train

Figure 3.1: TSA for a train

are denoted by explicit assignments to 0. Urgent actions are denoted by double-lined

arrows. Small incoming arrows mark any initial locations. Safety invariants are writ-

ten next to the locations they apply to.

Example 3.2 The automaton in figure 3.1 represents a train approaching a control

intersection. While TSAs do not distinguish between input and output events, it is

convenient here to think of the train as sending an approach signal to the controller.

The train then enters the intersection (the in event) at least 2 time units later. The

safety invariant x < 5 forces execution to leave location q\ before the clock x reaches

5. We can infer that the in event must occur, and that it does so within 5 time units

of the approach, because there is only one event leaving location q\. Upon entering

92, if the value of x is at least Z, then the urgent event out must occur right away,

otherwise it will occur exactly 3 time units after the approach. □

Simple timed automata

We introduce a special subclass of timed safety automata called simple timed automata

(STAs). These are sufficient for modeling some but not all aspects of timed safety

64 CHAPTER 3. REAL-TIME SYSTEMS

automata, and are particularly useful for analyzing systems which do not depend

on the eventuality of timed events. A simple timed automaton is a timed safety

automaton with no urgent events, and where all safety invariants are trivial, i.e.

Inv(q) = JRn for all q G Q. These automata have no means of forcing control to leave

any given location, and therefore cannot model events which are guaranteed to occur.

In particular they cannot express bounded liveness properties such as "y = 5 within

3 seconds". However their simplified semantics permits faster verification.

3.3 Modeling real-time systems

This section discusses process composition using timed safety automata, and how we

can guarantee non-Zenoness, i.e. ensuring timed safety automata do not represent

systems for which time cannot progress without bound.

3.3.1 Process composition

Most systems consists of a number of interacting processes. For a clear and com-

pact description, each component can be represented with a separate timed safety

automaton, and their parallel execution modeled by their automaton composition.

For simplicity, we interchangeably use the term real-time process to refer to both the

process being modeled and its timed safety automaton representation.

The composition operation uses interleaving semantics, with synchronization over

shared events. Note however that a straightforward language semantics of a real-

time process is not compositional, because of the treatment of urgent events, whose

enabling conditions depend on external components.

Given two real-time processes denoted P' = (E', Q', Q'init, C, T', Inv') and P" =

(E", Q", Q"nit, C",T", Inv"), with disjoint sets of clocks, their composition is defined

by the real-time process P = (E, Q, Qinit, C,T,Inv), where

• E = E'UE"

. Q = Q>xQ"

3.3. MODELING REAL-TIME SYSTEMS 65

• Qinit = Qinit X Qinit

• C = C'UC"

• T consists of all tuples ((q'v q"),<7, tp, a, (q^, q^^rg) such that either

- a e S' and a 0 S" and there is a transition (g^, a, ip, a, q'2, urg) in T", and

«2 = 9i> or>

- <r G E" and cr 0 £' and there is a transition (q,(,(T,ip,a,q2,urg) in T", and

«2 = <fn or>

- d 6 S' fl S" and there are transitions {q,
1,a,/ip',a',q2,urg') in T', and

{qJ{,a,ip",a",q'2^urg") in T" such that

* iß = ip1 A tp", and,

* Ia = 4' U/0", and,

* urg = 1 iff either urg' = 1 or urg" = 1

• Inv((q',q")) = Inv'(q') A Inv"(q")

3.3.2 Non-Zenoness

A machine model of a timed system is non-Zeno iff every finite execution can be

extended to an divergent infinite one [HNSY92]. A timed safety automaton Px is

called time progressive with respect to a set of processes {P2,..., Pk} iff it satisfies

the following conditions:

• (immediate progress): every control location q has either

1. no upper bound in its safety invariant, i.e. Inv(q) includes all its time

successors, or

2. for every x G Inv(q), there is a transition labeled a leaving location 5,

such that

- for some 6, x + 6 satisfies its timing enabling condition, and

66 CHAPTER 3. REAL-TIME SYSTEMS

- the transition is guaranteed to be enabled in the product because all

other processes sharing the event a never disable a regardless of which

timed-states they are in, i.e. for every i > 2, if a € £,, then for every

control location q' e Qi and point x' there is an outgoing transition

from q' labeled a satisfied by x'.

• (time-progressive cycles): for every cycle of transitions in P there is a positive

constant 6 > 0 such that it is impossible to traverse the cycle without at least

6 time passing.

Theorem 3.3 Given a set of real-time processes V = {Pi, P2, ■ ■ •, Pk}, if each Pi is

time progressive with respect toV\ Pi, then Px \\ P2 || • • • || Pk is non-Zeno.

Proof: We show that every finite timed run can be extended to an infinite divergent

one. Consider the timed-state s = (q, x) at the end of the finite run. We extend the

run inductively as follows.

If time can progress without bound in the current control location, we are done,

since we can repeatedly take events St for any fixed positive t, yielding a divergent

run.

Suppose otherwise. If a transition is enabled, take it, leading to timed-state Si.

Otherwise, we may add a time passage event St until a transition t is enabled. The

following reasoning shows this can always be done. By the immediate progress prop-

erty, for every i > 1 for which P;'s control location has a nontrivial safety invariant

there is a 6i such that a transition is enabled in Pj after Si time units and the safety

invariant in Pi still holds. Let St be the smallest such Si. Then we can safely add St

time units to the global state without violating any safety invariants, and there is an

event enabled at (q, x + St). After adding this time passage event to the run, the

transition t is fired.

Repeating the above procedure results in a path either leading to a control location

with no upper bound in its invariant, or a path involving infinitely many labeled

transitions. The first case obviously gives a divergent run, and in the second case,

the run must pass through infinitely many cycles, giving a divergent run because

3.3. MODELING REAL-TIME SYSTEMS 67

each cycle takes at least a fixed non-zero number of time units, because of the time-

progressive cycles condition. ü

Finally, we note that simple timed automata are always non-Zeno, since arbitrary

amounts of time may pass while control remains in any fixed location.

Theorem 3.4 Simple timed automata are non-Zeno. □

3.3.3 Example

We consider a simple version of the well-known timed mutual exclusion protocol due

to Fischer. A similar example appears in [AL92, SBM92].

This is an n process algorithm, where each process uses timing constraints on its

actions to ensure mutual exclusion. Each process has a unique process identifier i and

4 operating states. They synchronize their actions through the shared variable X.

From location (?o a process may advance to location qi at any time provided X has

value 0. It may delay here for up to AB seconds before setting the value of X to i. It

simultaneously advances to location q2, from which it may enter its critical section as

long as it does so after at least 6C seconds and the value of X is still i. Upon leaving

its critical section, it reinitializes X to 0.

The timed safety automata for the case of two processes are given in figure 3.2.

The conditions on the value of the global variable X are maintained by the special

process called VARIABLE-X whose states encode the current value of the global

variable. In other words, if this process is at control location qi then X equals i.

Because each process can independently read and write the value of the variable X,

we need to create separate events for each process. If not, the events could only

occur when they were synchronized across all processes. Thus Process l's alphabet

has events startl for starting the protocol, setXl for moving from state q\ to q2 and

setting X to 1, enterl for entering its critical section, and PlsetXO for leaving its

critical section and reassigning the global variable x to 0. Whenever a process has an

event for writing the value of X, the process for the variable X shares that event, and

its effect in VARIABLE-X reflects the written value. Constraints on each process's

behavior are expressed by disallowing certain process events when the value of X

68 CHAPTER 3. REAL-TIME SYSTEMS

90

PlsetXO

93

startl
J/i:=0

2/1 < :AS

\1
setXl

J/i < A5

yi:=0

fft)
enterl
yx > &c

v!y

Process 1

enterl
setXl

9o

P2setX0

93

startl
start2

PlsetXO
P2setX0

start2 2/2 < As
y2:=0

2/2 > 8c

Process 2

enter2
setX2

VARIABLE-X

Figure 3.2: Automata for mutual exclusion protocol

9i

setX2
2/2 < As
i/2~0

92

would prohibit it. For example, the lack of a startl action out of locations q\ and #2

indicates Process 1 cannot start the protocol if X equals 1 or 2.

The clock yi is used to express the timing conditions on transitions. Notice that

the safety invariants at locations q\ of each contending process force the process to

proceed to the next step of the algorithm: it cannot delay in q1 forever. However,

there is no similar invariant forcing a process to eventually enter its critical section

in location q%.

3.3. MODELING REAL-TIME SYSTEMS 69

X = 0 yi<As
Vi ~0

q0 j „(qi

X:=0

93
enteri

Vi > Sc

X :=i
Vi<A>B

92

Process i

Figure 3.3: Real-time process i for mutual exclusion protocol

Non-Zenoness

The composed system is non-Zeno since each process Pi satisfies both the immediate

progress property (since the safety invariant at q-i implies the enabling constraint on

the event leaving qi) and the time-progressive cycles condition (since at least AB

time units pass on each cycle through Pi). Thus by theorem 3.3 their composition is

non-Zeno.

Graphical shorthand

For simplicity and clarity of exposition, we allow an abbreviated automaton represen-

tation which handles discrete-valued variables over finite domains. We write X := k

within a process P to mean that it executes a write event of the variable X, assigning

it the value k. It is understood that the process for the variable X will include tran-

sitions modeling the effect of the P's write event. Similarly, read events may appear

as X = k in a process, with the corresponding event enabled in the process for X

from the location for value k. In this case the automaton model for the variable X

need not be explicitly shown.

70 CHAPTER 3. REAL-TIME SYSTEMS

For example, an automaton for the z'-th process in the Fischer's mutual exclusion

algorithm appears in figure 3.3. By convention, variables are written in upper case

to help distinguish them from clocks.

3.4 Safety verification

A methodology for verifying timed safety properties of a non-Zeno real-time system

is the following:

1. Describe the real-time system to be verified as a non-Zeno timed safety automata

A.

2. Describe the complement of the specification as a timed automaton D with

a specially marked violation state, i.e. all violating traces have a run in the

automaton leading to its violation state.

3. Form the product G of D and A.

4. Test whether the violating state in D is reachable in G.

This procedure is equivalent to checking for emptiness of the language L(A) n

L(Spec). In many instances, the automaton for the complemented specification may

be obtained by first constructing a deterministic timed safety automaton for the

specification, then taking its completion. The idea behind the completion automa-

ton is that every trace not in the specification induces a run leading to the violating

state. Because a violation corresponding to time exceeding a safety invariant is not de-

tectable as a labeled event, we need to add a new event a to signal this has happened.

The completion compl(A) of the automaton A is a timed automaton with a specially

marked trap state which has incoming edges for every potential transition not enabled

in A, including those which correspond to allowing time to pass beyond any safety

invariants. Let W(q, a) = Inv(q) n U{4>' \ Bq1, a' such that (q, a, ft, a', q1) € T} be

the set of points within q's safety invariant for which q has an enabled transition

labeled a. The action a ro is the null reset action. A constraint is maximal in a set Y

iff it is contained in Y and not contained in any other enabling constraint within Y.

3.4. SAFETY VERIFICATION 71

The definition uses maximal sets because the direct complements are not time zones,

and so are not permissible as timing constraints on transitions. The completion of

deterministic automaton A is defined as compl(A) — (Y,',Q',Qinit,C,T',Inv') where

• X' = E U {a}, where the event a g S signifies time has exceeded a location's

safety invariant.

• Q' = Q u {qVioi}, where <jw is a special violation state.

• Inv'(q) = H™ for all control locations q € Q'.

• V = T0 U Ti U T2 U T3, where

- T0 = {(q,a,(f>',a,q') | (g, a, 0, a, g7) € T and 0' = 0 n 7ra/(g)}, represent-

ing transitions in ^4 with the implicit constraint that safety invariants be

satisfied made explicit,

- Ti = {(q, a, <p, a m, qvioi) \ (p is maximal in W(q, a)}, representing all events

for which A has no transition.

T2 = {(q, a, 4>,am,qvioi) \ 4> C Inv(q), and 0 is maximal in Inv(q)}, repre-

senting events which may occur when the safety invariant at q does not

hold.

Tz = {qvioh v-, TRUE, am, qvi0i)}

Example 3.5 Figure 34 shows a deterministic automaton A and its completion.

The alphabet of A is S = {a, b}. The safety invariant on location qo is removed.

In order to correctly constrain the event a leading to location q\ the conjunct x < 5

is added to its enabling condition. If a b event ever occurs in location go ü is a

violation. Furthermore any event occurring beyond go 's safety invariant indicates

that no outgoing event has taken place in timely fashion, and again control enters the

qvi0i state. Strictly speaking, the enabling condition x ^ 3 is syntactically illegal since

it does not represent a time zone, but we use it as shorthand for two transitions for

b, one enabled when x < 3 and one when x > 3. ü

72 CHAPTER 3. REAL-TIME SYSTEMS

compl(A)

0,6, a
x > 5

Figure 3.4: Automaton completion

The projection of a timed trace e over E onto a subalphabet E' C E is denoted

pro?'(E')(e) and is defined as the trace obtained by deleting all events in E \ E' from

e.

Proposition 3.6 Given a deterministic timed safety automaton A, a timed trace r

is not in L(A) iff there exists a trace T' such that proj{H){r') = r and compl{A)'s

run for r' enters the trap state.

Proof: (Sketch) Since A is deterministic, by construction so is compl(A). Furthermore

compl(A) has a run for every timed trace over E.

If the timed trace r is not in L(A), then there must be some point at which

either time passes beyond the current safety invariant or an event occurs for which

there is no enabled transition in A. We show that both cases cause compl(AYs run

to enter the violation state for a trace whose projection is r. In the first case, the

safety invariant in A is violated. If this happens after i events in r, then compl{A)

3.4. SAFETY VERIFICATION 73

Figure 3.5: Bounded liveness specification

can mimic A over the first i events of r using transitions in To, take a transition in

T2 via the added event a to the violation location, then follow transitions in T3 for

the remainder of r. In the second case, an illegal labeled transition occurs in A. If

this happens at the i-th event in r, then compl(A) can mimic A over the first % — 1

events of r using transitions in To, take a transition in T\ to the trap location, then

follow transitions in T$ for the remainder of r. In both cases, it is easy to see that

compl(A)^ trace r1 projects onto r.

The reverse direction of the equivalence is similar and omitted. □

We note that for the purposes of safety verification the self-loops on the violation

location can be dropped. This is because it is not necessary to continue the run for

a trace not in L(A) once it is known that compl(A) has a corresponding run to the

qvioi location.

Example 3.7 Bounded liveness is a common form of specification property. Fig-

ure 3.5 shows how an automaton can specify the property "every a event is followed

by ab event within 5 time units." D

Example 3.8 Fischer mutual exclusion: The automata of the processes in the Fis-

cher mutual exclusion algorithm were given in figure 3.2. We verify the untimed

safety property that no two processes are ever in their critical sections at the same

time. This property is expressed by the automaton of figure 3.6. As an alternative,

we observe that if all the processes are symmetric, we can test for the error condition

74 CHAPTER 3. REAL-TIME SYSTEMS

PlsetXO
P2setX0

enterl, enter* enter 1, enter2
qo) (Qi) ■ "i&ioi),

PlsetXO
P2setX0

Figure 3.6: Mutual exclusion specification

PlsetXO

enterl enter2

— (00) (01

PlsetXO

Figure 3.7: Mutual exclusion specification

resulting from Process 1 entering its critical section, followed by Process 2 entering

its critical section, as shown in figure 3.7. Q

3.4.1 Decidability

This section is a restatement of results by Alur, Courcoubetis, and Dill [ACD90,

AD90], who show that the state-space of an timed automaton can be divided into a

finite number of equivalence classes sufficient for deciding whether a particular control

location is reachable. We briefly describe the equivalence relation, which gives a

bisimulation over the transition system induced by a timed automaton. It essentially

distinguishs the critical integral values of the clocks and the ordering of their fractional

parts. We assume that every clock appears in some enabling condition, and define Ki

to be the largest constant which clock ar,- is ever compared to. For any r € H, let [r\

denote the integral part of r and fract(r) the fractional part, i.e. fract(r) = r - [r\.

We first define the equivalence relation &AD on n-vectors as x ^AD X' if and only if

3.4. SAFETY VERIFICATION

i
X2

2-

1 ~

cP]

i

L 2 3 ii

75

Figure 3.8: Detailed Alur-Dill regions

1. Vi = l..n, if as» < Ki or x\ < K{ then

(a) [xt\ = L<J

(b) fract(xi) = 0 iff/ruc*^) = 0

2. Vi, j = l..n, if Xi < Ki and Xj < Kj, then

fract(Xi) < fract(xj) iff fractfa'j) < fract(x'j)

We extend this equivalence relation from points in JRn to timed-states as follows:

{q, x) ttAD (cf, x') iff x PZAD x' and 9 = q'. The equivalence classes are called

detailed regions.

Example 3.9 The detailed regions induced by the two clocks X\ and X2 with K\ = 2

and K2 = 1 aTe all the intersection points, open line segments, and open faces in

figure 3.8. □

The following three theorems are due to Alur and Dill.

Theorem 3.10 For a timed safety automaton A, the number of equivalence classes

of the relation ^AD is 0{\Q\ ■ \C\\ ■ 2^ • UxeC(2Kx + 2)). □

A relation « is said to be a labeled bisimulation over a set of timed-states with

respect to the relations No- and N$, given in subsection 3.2.3, iff for all si, s2, Si ~ S2

implies

76 CHAPTER 3. REAL-TIME SYSTEMS

1. for all s[, if Ns(si,Si) then there exists a timed-state s'2 such that Ns(s2-Is'2)

and s[~ s2.

2. for all cr, for all si, if Na(si, s[) then there exists a timed-state s'2 such that

N<r(s2,s'2) and s'x « s^.

Theorem 3.11 The relation TU AD is a labeled bisimulation over the timed-states. □

A reachability analysis can be performed over the equivalence classes, instead of

over the individual timed-states. We construct a set-graph, a graph whose nodes are

sets of states. There is an edge in the set-graph from set A to set B whenever there

exists an edge in the underlying transition system from some state a € A to some

state b e B. The nodes of the set-graph are the detailed regions, and because these

form a bisimulation, a class is reachable in the set-graph iff some element of it is

reachable in the underlying timed transition system.

Theorem 3.12 The timed safety verification problem is decidable. □

We note however that the problem is PSPACE-complete. It is exponential both in

the number of clocks and the size of the timing constants. Reachability over modular

untimed systems is already a hard problem. But the addition of timing information

is comparable to adding extra processes, and makes real-time verification in practice

much harder than analyzing untimed systems. This difficulty motivated the search

for effective heuristics for timing verification to be viable on real examples.

Chapter 4

Verifying Real-Time Systems

Part I

4.1 Introduction

The approximation algorithm can be applied to real-time systems represented by

timed safety automata. The first four sections of this chapter show how to perform

forward and backward symbolic reachability on timed automata. Sets of timed states

are symbolically represented using rounded regions. We define these sets of states in

section 4.4 and review a description of an efficient data-structure for them, differ-

ence bounds matrices due to Dill [Dil89]. We show how to perform the successor,

predecessor, and intersection operations.

The rest of the chapter describes how approximation is applied to verify real-

time systems. It provides the approximating operators, discusses termination, and

demonstrates the algorithm over toy examples.

In this chapter, we describe approximations over the timing component only of

the state-space. We delay until the next chapter a discussion of how approxima-

tions can be performed simultaneously over both the control information and timing

information.

77

78 CHAPTER 4. VERIFYING REAL-TIME SYSTEMS - PART I

Symbolic representation of timing information

We use the rounded regions of an automaton as the domain of approximating sets.

Recall that the states of a real-time system are pairs of the form (q, x), where q is

a TSA location and x is a vector of clock values. In this chapter we consider only

sets of states which share the same control location, namely sets of the form {q, Z)

where Z is a rounded (time) zone. The algorithm for approximating reachable states

is obtained in a straightforward way, except for two considerations, namely rounding

(to ensure the algorithm terminates) and the use of a disjunctive next-state relation

(to ensure that each next-state computation is closed for the approximating sets).

4.2 Time zones and bounds

Successful symbolic verification of real-time systems depends on effective manipula-

tion of sets of timed states. The rounded zones we use in our approximating sets are a

subclass of time zones. Time zones have an efficient representation due to Dill [Dil89]

called difference bounds matrices (DBMs). Difference bounds matrices have a canoni-

cal form for which there are 0(n3) algorithms for finding intersections, time successors,

time predecessors, images and preimages of events [Dil89, ACD+92, Rok93], where n

is the number of clocks in the systems.

Recall that a time zone Z e Z(n) is a (possibly unbounded) polyhedron defined by

integer constraints on clocks and clock differences. If we identify a new fictitious clock

variable XQ with the constant value 0, these constraints can be represented uniformly

as bounds on the difference between two clock values. For instance, x > 5 can be

expressed as x — XQ > 5. Furthermore we can restrict attention to upper bounds

without loss of generality. More precisely, each inequality can be re-expressed in one

of the following forms:

Xi — Xj < k or Xi — Xj < k, for some integer k,

To describe these inequalities in a uniform fashion we introduce the domain of

bounds. Let Z~ = {... — 3~, — 2~, —1~, 0~, 1~, 2~,...} where n~ represents a value

"infinitesimally different from n". A bound is any element of Z U Z- U {-oo,oo}.

4.3. DIFFERENCE BOUNDS MATRICES 79

Each bound is intended to represent an upper bound on a real value. We take both

"x < n-" and "x < n~" to mean "x < n" and similarly ux > n~" and ux > n~"

stand for "x > n". We define an ordering -< on bounds as the smallest ordering

induced by the usual ordering over Z U {-co, 00} and n — 1 -< n~ -< n. The relation

:< is defined over bounds as 61 ^ b2 iff 61 -< b2 or 61 = b2.

Bounds can be added, with the exception that —00 cannot be added to 00. Bounds

in Z and Z~ are finite, and the value of the bounds n and n~, denoted v(n) and v(n~)

respectively, is n. The result of computing b + b' is

f (v(b)+v(V))

(v(b) + v(b')Y

-00

00

if b and b' are in Z

if b and b' are both finite, and at least one is in Z"

if b or b' is — 00

otherwise

4.3 Difference bounds matrices

A difference bounds matrix (DBM) for Kn is an (n + 1) x (n + 1) matrix of bounds,

with rows and columns indexed from 0 to n. The DBM A with entries a,j represents

the polyhedron consisting of all points that satisfy the inequalities Xi — Xj < a,ij for

each i and j. Clearly every time zone can be described by a DBM. However there

are many DBMs defining the same zone, because some of the upper bounds need not

be tight. For example, the time zone Z in figure 4.1 represented by the system of

inequalities

Xi < 2

Xi > 1

x2 < 5

can be represented by any matrix

80 CHAPTER 4. VERIFYING REAL-TIME SYSTEMS - PART I

where fei -^ 2~ and b2 -fi 4.

X2 '

5

L

/

x2-xx< b2

/

\

4 /

/

/

/
0 1 ') Xi

Figure 4.1: Time zone Z

0-10

2- 0 6i

5 fe2 0

4.3.1 Canonical form for DBMs

The key idea in performing operations on zones is to represent them as canonical

DBMs. A constraint Xi — Xj < b is said to be tight for a time zone Z iff there is

no bound b' -< b such that all of Z satisfies Xi - Xj < b'. The canonical matrix,

denoted ci(Z), has all entries representing tight constraints. Dill [Dil89] showed that

this matrix can be computed from an arbitrary matrix for Z by applying an all-pairs

shortest path algorithm. This representation therefore leads to easy tests for equality

and emptiness of time zones.

4.3. DIFFERENCE BOUNDS MATRICES 81

procedure time^successors(A,.g)

input DBM 4; /* DBM for Z */
output DBM B\ I* DBM for time successors */

B :=A;
for i := 1 to n do

B\i][0] := oo;
endfor

Figure 4.2: Pseudocode for finding time successors

4.3.2 Operations on time zones

We demonstrate how operations on time zones can be computed over their DBM

representations.

Intersection

The intersection of two time zones Z and Z' is a time zone. It can be computed from

their DBMs. Intuitively we take the conjunction of all the inequalities for both zones

by taking the lower of the two bounds for each pair of clock differences. Let A and

A' be DBMs for Z and Z'. The zone Z n Z' is represented by the matrix B where

for all i and j, by = min{%•, a•_,-}, where the minimum min of two bounds is defined

using the ordering -< over bounds.

Time successors

The set of time-successors Zy of the time-zone Z is obtained from Z by removing

all inequalities of the form x < k or x < k, since these upper bounds restrict time

passing indefinitely. The pseudo-code of figure 4.2 describes how this operation can

be performed on a canonical DBM. The result is a canonical DBM for Z/.

82 CHAPTER 4. VERIFYING REAL-TIME SYSTEMS - PART I

procedure reset(A,Ia,B)

input DBM A, reset Ja; /* DBM for Z, reset index set Ia */
output DBM B; /* DBM for a(Z) */

B :=A;
for Xi € Ia do

/* disregard constraints involving clock a;, */
for j := 1 to n do

£[«][?] :=oo;
B[j][i\ :=oo;

endfor
/* enforce clock reset, i.e. X{ = 0 */
J5[«][0] :=0;
B[0][t\ :=0;

endfor

Figure 4.3: Pseudocode for computing resets

Time predecessors

Similar to the computation of time successors, we may replace all lower bounds on

clocks with 0. However in this case, canonical input does not in general imply the

output will be canonical.

Reset actions

In order to find the set of timed successors under an instantaneous transition, we

need to compute the image of the transition's reset action. Let a be a reset action

with corresponding index set Ia. Then a(Z) is the projection of Z onto the axes for

variables in Ia. It can be found by first ignoring all constraints on variables in Ia,

and then taking the subset for which all variables in Ia equal 0. Pseudo-code for this

operation appears in figure 4.3.

4.4. ROUNDED TIME ZONES 83

Inverse images of reset actions

We also need to compute the inverse image of the transition's reset action. Let a be

a reset action with corresponding index set Ia. The set a~1(Z) consists of all timer

vectors x such that a(x) € Z. It is the union \Jy-eZ{x \ a(x) = y} which is the

same as Uyeznza{% I a{%) — V}> where Za is the zone where all clocks in Ia are

equal to 0. In other words, it is the set of all clock vectors x for which there exists

a vector y G Z D Za which agrees over all clock variables not in Ia.

Thus the inverse a_1(^)is computed by first finding the possible image of a within

Z (this is done by setting to 0 the bounds on the absolute value of each clock in Ia

and canonicalizing), and then taking the inverse projection of the reset variables (by

making all bounds relating to clocks in Ia trivial).

4.4 Rounded time zones

This section explains why using arbitrary time zones would not guarantee termination

in reachability algorithms. We then define a restricted form of time zone called the

rounded time zone, which is used in our approximating sets.

Decidability of the timed safety verification problem follows from the finiteness of

the Alur-Dill equivalence relation. A naive verification algorithm could explicitly enu-

merate all the reachable equivalence classes. A more practical algorithm may choose

to use symbolic enumeration, by considering sets of equivalence classes at a time.

Time zones are a natural candidate for a symbolic representation of sets, because

operations on them can be performed efficiently. If the time zones encountered by an

algorithm were always Alur-Dill equivalence classes, or the exact union of classes, the

algorithm would terminate. This, however, is not always the case. Consider a simple

set-reachability algorithm that generates a set-graph where each node is a time zone,

and every successor set of every node also appears in the graph. Such a graph can

be generated using a simple reachability algorithm as in figure 4.4. The algorithm

will terminate if and only if the cardinality of {Nk(S0) \ k > 0} is finite. However for

timed systems, the algorithm may generate time zones with successively larger finite

bounds.

84 CHAPTER 4. VERIFYING REAL-TIME SYSTEMS - PART I

procedure set-reachability

input (S,SQ,N); /* a transition system */
output G; /* a set-graph as described above */

vertices(G) := {};
edges(G) :={}
initial(G) := {S0};
stack := emptystack;
push(S'o, stack);
while (not empty (stack)) do

A := pop(stack);
B := N(A);
if (B # {}) then

if (B & vertices(G)) then
vertices(G) := vertices(G) U B;
push(£?, stack);

endif
edges(G) := edges(G) U (A,B);

endif
endwhile

Figure 4.4: Set reachability algorithm

Example 4.1 The set-reachability algorithm applied as above to the two-state au-

tomaton Ai in figure 4.5 would not terminate. The algorithm would successively

generate sets with points (i, 0) after each self-loop on q$. The reachable time zones

for qo are shown in the figure. Q

One way to use symbolic representations of timed states and still maintain termi-

nation properties is to replace each time zone generated with the set of Alur-Dill equiv-

alence classes that it intersects. The problem with this strategy is two-fold: firstly,

finding the set of intersecting equivalence classes may be expensive, and secondly, the

classes may not be representable by a small number of time zones. For instance^ in

a 3-clock automaton with Kx = 1, K2 = 2, and Kz — 3, the classes intersecting the

time successors of the singleton time zone consisting of the origin require at least 3

time zones to be represented, e.g. (xi = z2 = %z < 1)5 (1 < %i A 1 < x2 = xz < 2),

4.4. ROUNDED TIME ZONES 85

Figure 4.5: Automaton A±, causes nontermination without rounding

and (1 < Xi A 2 < ^2 A 2 < a;3).

The approach we take is to use rounded time zones instead. Rather than replacing

a time zone Z with the union of all the classes it intersects, we round it off by adding

some but not necessarily all states which lie within the union. Such rounding preserves

the correctness of the algorithm. The potential disadvantage of this approach is that

there are more rounded time zones than zones. The advantages are that the rounded

time zone is easy to compute, and the result is by definition a single time zone, rather

than a union of separate time zones. We will see that for the example above, the

rounded zone for the time successors is the zone of time successors itself.

4.4.1 Rounded time zones

In this subsection we define the rounding operation on zones. Since there are only

finitely many rounded time zones, symbolic analysis over rounded time zones is guar-

anteed to terminate. We first provide an equivalent definition of the Alur-Dill parti-

tioning relation TU AD in terms of the constraints. Equivalence classes are determined

by a set of primary constraints which are always applied, and also secondary con-

straints, only some of which may be relevant depending on which particular primary

constraints are satisfied. We then show how to refine this relation into constraint

zones, where both primary and secondary constraints are always relevant. Rounded

time zones are defined to be time zones which are the exact union of constraint zones.

86 CHAPTER 4. VERIFYING REAL-TIME SYSTEMS - PART I

Alternative definition for Alur-Dill classes

We now give an equivalent definition for ~Ar>- We say x «r x' iff

1. they satisfy the exact same subset of primary constraints, of the form:

Xi < k, Xi < k, Xi > k, Xi> k, where Xi is a clock and k < Ki is an integer

constant

and,

2. if they satisfy any of the above constraints of the form x < k or x < k for both

Xi and Xj, then they also satisfy the exact same subset of secondary constraints,

of the form:

Xi — Xj < k, Xi— Xj < k, where Xi and Xj are clocks and —Kj < k < Ki is

an integer constant.

Proposition 4.2 The equivalence relations &r and «AD are the same, i.e. x «T x'

iff x *iAD x'.

Proof: The first set of constraints in the definition of «r determines whether Xi is

less than or equal to Ki, and if so its exact integral part, and whether its fractional

part is equal to zero. Thus if x and x' satisfy the same set of constraints, then they

also share the same integral parts, and both are either exact integers or not.

We claim the second set of constraints is sufficient to determine the relative order-

ing of the fractional parts of two clocks, whenever both clocks are sufficiently small.

Suppose Xi < K and Xj < Kj. Then -Kj < Xi - Xj < K, since clock values

are always positive. Now observe the condition of the Alur-Dill equivalence can be

reexpressed in terms of the constraints.

• fract(xi) < fract(xj) iff xt — Xj < [xij — [XJ\.

Each of these two conditions is determined by the constraint sets of the definition of
~ D

4.4. ROUNDED TIME ZONES 87

Figure 4.6: Constraint zones

Constraint zones

We define a third equivalence, which partitions the timer-valuations into constraint

zones. These constraint zones are finer than the regions obtained from the above

definition, and are used in describing rounded regions. We say x «cz x' iff they

satisfy the exact same subset of legal constraints, of the form:

• X{ < k, Xi < k, Xi > k, Xi > k, where Xi is a clock and k < Ki is an integer

constant,

• Xi - Xj < k, Xi - Xj < k, where Xi and Xj are clocks and —Kj < k < Ki is an

integer constant.

The legal constraints are precisely the primary and secondary constraints used in

defining the relation «r. Observe that in contrast to «r, the secondary constraints

are always used in partitioning classes, regardless of which primary constraints hold.

Notice that if we define K0 = 0 for the fictitious clock x0 whose value is always 0,

then all legal constraints are of the form

• Xi — Xj < fe, where x^ and Xj are clocks and b is a bound value such that

-Kj <b<K{.

88 CHAPTER 4. VERIFYING REAL-TIME SYSTEMS - PART I

The constraint zones induced by the two clocks xi with Kx — 2 and x2 with

K2 = 1 are shown in figure 4.6. Pictorially the difference between these regions and

the Alur-Dill regions (see figure 3.8) is the extension of the diagonals for the secondary

difference constraints.

Proposition 4.3 The relation &cz refines the relation «r. □

Let a rounded zone be any time zone which is the union of constraint zones.

Proposition 4.4 Rounded zones are closed under intersection.

Proof: Clearly the intersection of rounded zones is a time zone, so we need only show

that it is the union of constraint zones. Constraint zones are disjoint, so since every

rounded zone is the union of constraint zones, so must be its intersection. □

We define the function round to map any time zone to the intersection of all

rounded zones which include it, i.e.

round(Z) = f]{Z' \ Z C Z' and Z' is a rounded zone}

Corollary 4.5 For any time zone Z, round(Z) is a rounded zone. □

Lemma 4.6 A time zone Z is a rounded zone iff it is definable as the conjunction

of a set of legal constraints, i.e. there exists a set of legal constraints 0 such that

Z — {x | x satisfies every constraint inQ}.

Proof: if: Let Z be defined by the set of legal constraints 0. We show how Z can be

partitioned into constraint zones. Each legal constraint x{ — Xj < b is equivalent to

the disjunction of legal constraints, b" <X{- Xj < b' for each bound b' < &, where b"

is the nearest bound strictly lower than b', provided b" < Xj — Xi is a legal constraint,

and —oo otherwise. Taking the conjunction of the disjuncts for each constraint in 0

defines Z in such a way that each product term defines a constraint zone.

only if: Let Z be a rounded zone. Then consider for each pair a;,-, Xj, the set

of all maximal bounds appearing in constraints X{ — Xj < b used in tightly defining

each of the constraint zones contained in Z. Each of these bounds corresponds to a

4.4. ROUNDED TIME ZONES 89

legal constraint. Let Z' be the time zone defined by this set of legal constraints. We

establish that Z is exactly Z'.

The zone Z' contains Z since its defining bounds are all greater that those ap-

pearing in the constraints defining each constraint zone in Z. Furthermore all bounds

are tight. They cannot be lowered or else some points in Z would be excluded. Thus

Z' is the smallest time zone containing Z, and hence is equal to Z. □

An array entry in a DBM is called legal iff it corresponds to a legal constraint.

In other words, its integer bounding value is neither too small nor too big. Illegal

constraints and entries are defined analogously.

Theorem 4.7 The time zone for round(Z) can be represented by the DBM B ob-

tained from the canonical DBM A for Z where all illegal entries have their bounds

rounded up to the nearest legal bound value, i.e.

{üij if - Kj < a,ij < Ki

—Kj if aij < —Kj

oo if üij > K{

Proof: Let R be the time zone round(Z). Let ZB be the time zone represented by

B. Since ZB is a rounded zone including Z, it follows that R C ZB.

To see that ZB Q R, first observe by lemma 4.6 that R is definable by a set 0 of

legal constraints. Let AR be the matrix for R whose ij-ih entry is

if Xi — Xj < k is in 0

otherwise

Since A is contained in R and A is canonical, it follows that a^ ^ afj because otherwise

there would be a point in Z which satisfies x{ - Xj < a^ but not Xi - Xj < afj.

The rounding process replaces two kinds of entries, in either case with some hj -<

afi from which it follows that ZB Q R as required.
~%]

Case 1: a^ < —Kj

Then % = -Kj. If x{ - Xj < afj is a defining constraint in R, then -Kj ^ afj

90 CHAPTER 4. VERIFYING REAL-TIME SYSTEMS - PART I

round(Z)

3 *i

Figure 4.7: Rounded regions example

since it must be a legal constraint. This implies bij ^ af-.

If there is no defining constraint along the Xi — Xj diagonal then of- = oo, in

which case it is clear that b^ < afj.

Case 2: a^- > K{

We have that K{ < a,ij ^ af- and since all elements of AR are either oo or legal

constraint entries, it follows that a$ must be oo, so replacing o^ with b^ = oo

does not affect containment. □

The rounded zone for Z defined by 1 < x^ < 2 and X\ — X2 < 1 is shown in

figure 4.7. In section 4.4, we considered an automaton with K\ = 1, K2 = 2, and

Kz = 3. Three time zones are used to represent the time successors of the origin if we

use Alur-Dill equivalence classes. However, the successor set is represented exactly

by one rounded time zone.

Theorem 4.8 For every time zone Z, round(Z) intersects the same regions as Z,

i.e. for every s G round(Z) there is a state $' <E Z such that s = s'.

Proof: The proof must show that rounding Z is sound, i.e. it introduces no states

whose Alur-Dill equivalence classes are not already represented in Z.

4.4. ROUNDED TIME ZONES 91

We first show it is sound to replace a single illegal constraint from a time zone

which lies entirely within a detailed time zone. From this we infer that replacing all

constraints from such a time zone is also sound. Given this fact, the result follows

for an arbitrary zone Z, since Z is the union of zones Zi which lie in distinct detailed

regions, and if a defining constraint is illegal in Z{ then there is a similar defining

illegal constraint in Z. In other words, the effect of replacing illegal constraints in Z

is the same as replacing illegal constraints from each Z^ Thus we need only establish

the first claim, namely that we can soundly exchange a single illegal constraint from

a zone contained in a detailed zone.

Let Z be such a zone, contained in the detailed zone D, and let 9 : x* — x3, < b be

an illegal constraint in the canonical DBM representation of Z. The constraint 9 is

said to be a defining constraint for Z iff it is essential in the definition of Z, i.e. iff

removing 9 from the constraints in the DBM results in a different zone from Z. If 9 is

not a defining constraint, then replacing it with a weaker constraint in the rounding

process has no effect, so we need only consider defining constraints.

For an illegal defining constraint 9, we consider four cases.

• 9 = Xi < k, for some k > K{.

Then 9 is replaced by the trivial constraint Xi < oo in the rounding process.

Since Z is contained in a detailed zone and 9 is tight, it must be the case that

Xi > Ki for all points in Z. Thus D includes as a defining constraint x^ < oo,

and so replacing 9 with x, < oo in Z's DBM results in a region contained in D.

• 9 — Xj > k, for some k > Kj.

Then 9 is replaced by the constraint Xj > Kj in the rounding process. Since

Z is contained in the detailed zone D and 9 is tight, it must be the case that

Xj > Kj is a constraint in D, since there are no critical constraints of form

Xj > k for any k < Kj. Thus replacing 9 with Xj > Kj in Z's DBM results in

a region contained in D.

• 9 = Xi — Xj < k, for some k > Ki.

Then 9 is replaced by the constraint Xi - Xj < oo in the rounding process.

92 CHAPTER 4. VERIFYING REAL-TIME SYSTEMS - PART I

Suppose all points in D satisfy some primary constraint Xi <b for some bound

b < Ki. Then since 6 is a tight constraint for Z, this contradicts containment in

D. Therefore no points in D satisfy any primary constraints of the form Xi < b.

Thus D is not defined by any secondary constraints of the form Xi — Xj < b',

and hence discarding the constraint 6 from Z results in a zone contained in D.

• 0 = X{ — Xj < k, for some k < —Kj.

Then 6 is replaced by the constraint X{ - Xj < -Kj in the rounding process.

Suppose all points in D satisfy some primary constraint Xj < b for some bound

b < Kj. Then since 6 is a tight constraint for Z, this contradicts containment in

D. Therefore no points in D satisfy any primary constraints of the form Xj < b.

Thus D is not defined by any secondary constraints of the form Xi — Xj < b',

and hence relaxing the constraint 6 in Z results in a zone contained in D. □

4.4.2 Augmenting next-state relations

We now formally justify the use of rounded regions. Given a verification problem

VP = (S, SQ,N,V), a bisimulation » respects VP iff every equivalence class is either

entirely in V or disjoint from V. The set next-state relation N : 2s —»■ 2s is said to

be a R2-set-augmentation of N for W iff

1. « is a bisimulation respecting VP, and

2. N augments N, i.e. for all sets A C S,N(A) C N(A), and

3. for all ACS, for all s e N(A), there exists t € N(A) such that seat.

Proposition 4.9 Given a verification problem W, a bisimulation & respecting VV,

and a set next-state relation N which is a «-set-augmentation of N, (S, So, N, V) is

correct iff (S, S0, N, V) is correct.

Proof:

If (S, So, N, V) is incorrect, then so is (S, S0, N, V) since N C N.

4.5. APPROXIMATION OF REAL-TIME SYSTEMS 93

On the other hand, if (S,S0,N,V) is incorrect, we can show that (S,S0,N, V)

is also incorrect by constructing a violating path in the original graph as follows.

Suppose to,ti,t2,...,tk is a violating path in (S,S0,N) with tk € V. Let s0 = t0.

Since N is a ^-augmentation of N there is a state Si that is bisimilar to tx and

a successor state of s0 via N. We inductively continue the construction of a path

so, «i, ■ • •, sfc in (£, So, N) where each s; « U Now since « respects V and i* € V it

follows that sk is in V, and hence (S, S0, N, V) is also incorrect. □

Lemma 4.10 The rounded regions are closed under the operations N*d = round o Ne

and Ngd = round o Ng.
n

Lemma 4.11 The states reachable with N*d andNf are bisimilar to those reachable

by usingNe and Ns, and thus UN^dUN^d is a &AD-set-augmentation of ÖNeöNs.

a

Theorem 4.12 The verification problem with next-state relation UNe U Ns reduces

to that over ÖNföNf. °

Theorem 4.13 The set-reachability algorithm applied to a timed safety automaton

with NT
e
d replacing Ne and Ngd replacing Ns terminates correctly.

Proof: The result follows from the above theorem because there are only finitely

many rounded zones. n

Thus we may use the rounded next-state relations to decide the verification prob-

lem for timed safety automata.

4.5 Approximation of real-time systems

4.5.1 Overapproximation

The overapproximation operator for verifying real-time systems is defined over time

zones as the zone that results from rounding the smallest enclosing time zone:

A U B = round(enclose(A, B))

94 CHAPTER 4. VERIFYING REAL-TIME SYSTEMS - PART I

enclose{A,B) = mm{Z"\Z" a time zone and A U B C Z"}

The smallest enclosing region is called the prejoin of A and B, and is well-defined

since time zones are closed under intersection.

Proposition 4.14 // A and B are represented by canonical DBMs with the same

name, their prejoin is represented by the DBM D whose entries are the pairwise

maxima of entries in A and B, i.e. dij = max{<2;y, bij}.

Proof: Let D be the time zone represented by the matrix of the same name. It

includes A and B since all bounds in D are no tighter than in A and B.

To see that it is the smallest time zone containing both A and B, first observe

that all bounds in A and B are as tight as possible. If any d^ is tighter than a^ say,

then D cannot contain all of A since A contains points for which Xi - Xj = %• but

which are disallowed in D. Thus no bounds in D can be further tightened, and so D

represents the smallest possible time zone enclosing A and B. O

The overapproximation operator is extended in the expected way to regions, i.e.

[undefined otherwise

Proposition 4.15 The set of rounded regions is closed under the overapproximation

operator. n

4.5.2 Underapproximation

We define the operator over single approximating sets, and the extension to sets of

approximating sets follows from the discussion in section 2.2.3. The underapproxi-

mating |> operator is defined as:

[(q,Z) otherwise

Proposition 4.16 The operator defined above is an underapproximating operator.

4.5. APPROXIMATION OF REAL-TIME SYSTEMS 95

Proof: It clearly satisfies the correctness property UA_1. The non-emptiness property

holds by the first condition in the definition. D

Proposition 4.17 The set of rounded regions is closed under the underapproximating

operator. n

The plus operator over sets of approximating sets (see subsection 2.2.3) is re-

stricted so that it is maximal up to a limit of k underapproximating sets per separat-

ing class. In other words the result of expanding a set {Aij} of approximating sets

with another set {B^} is a superset of the original set, with as many B^ added as

possible, provided there are at most k sets in the extension.

4.5.3 Disjunctive next-state relation

The algorithm in chapter 2 assumes that the result of applying the next-state relation

to an approximating set A yields an approximating set B. This approximating set B

is then split across the separating classes into further approximating sets Bh each of

which is then joined to the existing approximating structure, one separating class at

a time. However, the next-state relation of a timed safety automaton does not yield a

single region, but rather a disjunction of regions, since the next-state relation is itself

a disjunction of relations, each of which may yield different regions.

Such a situation can easily be handled by a modified approximation algorithm,

by computing the next-state relation in parts. Suppose the next-state relation N

is the disjunction of k relations N{, and for each Ni is closed over the domain of

approximating sets. Instead of computing N(A) we consider each Ni(A) in turn. The

result after k computations, and applications of the approximating operators, has the

same effect as computing the successors as a set of k approximating sets, and then

performing the approximating operators in one step.

Theorem 4.18 The modified algorithm for disjunctive next-state relations termi-

nates correctly over finite state systems.

Proof: (Sketch) Correctness is obvious since computing the next-state relation in

several steps does not affect whether the algorithms correctly overapproximate or

96 CHAPTER 4. VERIFYING REAL-TIME SYSTEMS - PART I

underapproximate. The necessary modifications to proofs of propositions supporting

the termination theorem 2.14 are tedious but straightforward. □

4.5.4 Urgent events

We assume that urgent events have no timing constraints associated with them1.

Urgent events could be modeled by adding safety invariants with upper time bound

0 on a clock which is reset on entering a state in which an urgent event is enabled.

However, it is more effective to handle them directly. Marks can be placed on control

locations in the automaton where urgent events are enabled. Rather than resetting

a clock on entering the control location, the next-state relation is altered to disallow

time passing in this state. The immediate advantage of this strategy is that we reduce

the number of clocks in the system, which increases the speed of verification. Further

benefits are discussed in the next chapter.

4.6 Proof of termination

The termination proof of the previous chapter applied to finite-state systems only.

We show now that the algorithm also terminates for the verification of timed safety

automata, essentially because the algorithm uses the finite domain of rounded regions

for approximating sets.

Let X = {Xa}aej be a partition of S. We define the set

Y = {Yi\Yi= Ujzj.Xj for some J' C J}

to be the sets which are the union of blocks in the partition. A verification problem

yp = (5, S0, N, V) is said to be separated by the partition X = {Xa}aeJ of S iff

1. S0 € Y,

xIt is possible to convert any timed safety automata into this form. A proper transition relation
has no strict lower bounds in the enabling conditions of urgent events, so a location with outgoing
urgent events can be divided into separate locations, each representing a zone where the urgent event
is either enabled or disabled.

4.7. EXAMPLES 97

2. V EY

3. Y is closed under the next-state relation N, and the approximation operators

U and &>.

It is separable iff it is separated by some partition X. The problem W is said to

be finitely separated by X iff it is separated by X and X is finite. The term finitely

separable is similarly defined.

Proposition 4.19 // the verification problem (S,So,N,V) is finitely separable by

X, and the domain of approximating sets includes all elements of X, then the full

approximation algorithm of chapter 2 terminates, and correctly decides the verification

problem. □

Lemma 4.20 The transition system induced by a timed safety automaton is finitely

separable by the detailed rounded regions. D

Proposition 4.21 The full approximation algorithm applied to (S,So,N,V), where

the «-augmentation N is N}d U \jNld defined in section 44-1, terminates, and

correctly decides the verification problem for timed safety automata. □

4.7 Examples

We illustrate the algorithm with a couple of examples.

Separating classes and conditional joining

First consider the automaton A\ in figure 4.8. An enabling condition of form (x,y) =

(1,1) represents the constraint x = lAy — 1. The violation location is 53. The approx-

imation algorithm finds the initial forwards overapproximation and underapproxima-

tion, and the backwards overapproximation. After these computations the algorithm

halts with the system verified correct. Figure 4.9 shows the truly reachable states

and the resulting approximating structures. The forward overapproximation starts

by adding the time successors to the origin. The successors of the set {go, (x = y))

98 CHAPTER 4. VERIFYING REAL-TIME SYSTEMS - PART I

(x,y) = (l,0)
x :=0

(s,y) = (l,l)
z:=0

(x,y) = (l,l)
y:=0

(x,!/) = (0,l)
j/:=0

(x,y) = (l,0)

(x,y) = (0,l)

Figure 4.8: Timed safety automaton Ai

are the sets {(51, (1,0))} and {(qi, (0,1))}, each obtained by individually following a

transition from q0. Suppose the former set is added first to the overapproximation.

The state-space is partitioned according to control location, so when the second set

is added to the approximation, it is joined to the first, giving (ft, (x < 1 A y < 1)).

Adding time successors to this set gives the region shown in figure 4.9. Joining the

successor sets out of ft yields (q2, {x < 1 A y < 1)). Completing the approximation

gives the states depicted on the second row of the diagram above.

The underapproximation is taken to consist of up to two approximating sets

per separating class. The successor states of {q0, {x = y)) are the individual sets

{qi, {(0,1)}} and {qu {(1,0)}). Since the approximation allows up to 2 sets per sep-

arating class, both are included. Adding time successors to (ft, {(0,1)}) leads to the

ray (ft, (y = x + 1)). Since it includes the underapproximating set (ft, {(0,1)}), it

replaces the latter set in the underapproximation.

The backwards overapproximation starts with the violating states at location qz.

Suppose the transition enabled on (x,y) = (1,0) is considered first. Then the back-

wards overapproximation includes the set (q2,{(l,0)}). The other transition into q3

results in adding (q2, {(0,1)}) to the approximation. These two sets at location q2 are

not joined together because doing so would violate condition 1 for permissible joins,

4.7. EXAMPLES 99

Truly 1

Reachable
qO 0 12 ql 0 12 q2 0 12 q3 0 12

Forwards

Overapproximation

1° 0 12

Forwards

Underapproximation

qO 0 12

ql 0 12

A/
1 '

ql 1 2

q2 0 12

q2 0 12

q3 0 12

q3 0 12

Backwards

Overapproximation

qO 0 1 2
V

ql 0 12 q2 0 12

Figure 4.9: Approximations for A\

q3 0 12

i.e. their join {q2, (x < 1 Ay < 1)} includes the forwards underapproximation whereas

neither of the original sets do. Computation of the approximation completes without

including the initial state, and so the system is correctly verified.

Rounding and urgent events

Our second example, shown in figure 4.10, illustrates rounding and the treatment of

urgent events. The truly reachable states and the first forward overapproximation

only are shown in figure 4.11. Time may pass without bound while control remains

in location q0. At any time less than 1, control may pass to location q\. The urgent

event is instantly enabled, leading to location q2. Now time is allowed to pass in

location q2. The clock y may be reset whenever it reaches 1, and control may move

to the location q% when x = 2.
The first forwards overapproximation begins by adding all time successors to the

100 CHAPTER 4. VERIFYING REAL-TIME SYSTEMS - PART I

~€>
X < 1

■©=
x = 2

Figure 4.10: Timed safety automaton A2

Truly

Reachable

%

2^
/ Forwards 1 - /

Overapprox. ^-^
1o

VU
<Ji 1 2

'k-.
ii 1 2 12

Figure 4.11: Approximations for A2

^3 12 3 4

<l3 12 3 4

zero vector at location q0, giving the approximating set (q0, (x = y)). This set is joined

to the initial approximating set in the separating class for q0, namely (q0, (x = y = 0)),

resulting in (go, (x = y)) since it contains the initial set. The transition from qo

to q\ leads to states {qi,(x = y < 1)). Because there is an urgent event out of

qi, no time successors are added to this set. Following the urgent event leads to

Gi = (g2, (x = y < 1)), to which the time successors G2 = {#2, (x = y)) may be

added. The self-loop adds states G3 = (&,{(1,0)}) for which the prejoin with G2

yields G4 = {q2, (0 < x - y < 1)) which is a rounded region.

Following the transition to q3 leads to #1 = (q3,(x = 2 A 1 < y < 2)). This

is a rounded region, even though at first appearance it appears to be defined using

the illegal constraint y < 2, which should then be discarded in the rounding process.

4.7. EXAMPLES 101

Notice however that the constraints y - x < 0 and x = 2 are legal constraints which

imply y < 2. Thus the rounding operation leaves Hi unaffected. Similarly, time

successors can be added to Hi giving H2 = (qz, (x>2A0<x-y< 1)). A further

self-loop on G4 followed by adding time successors yields G5 = (q2, (0 < x - y < 2)),

while the transition from q2 to g3 results in Hz = (qz, (x > 2 A 0 < x - y < 2)) which

is a rounded region. Adding time successors to Hz leaves it unchanged. The effect

of rounding can be seen when considering the next self-loop at q2 ■ The immediate

successors of the self-loop from G5 are (q2, {y = 0 A 1 < x < 3)). The prejoin of these

successors with G5 is G6 = {q2, (0 < x - y < 3)). The constraint x - y < 3 is illegal,

since the constant exceeds Kx = 2. Removing x-y < 3 from G6's DBM and replacing

it with the trivial bound x-y < oo results in the rounded region G7 = (q2, (0 < x-y)),

and no further states are then added to the over approximation.

Chapter 5

Verifying Real-Time Systems

Part II

5.1 Symbolic representation of control locations

In many realistic real-time systems, large state-spaces arise not only from the com-

plexity of timing information, but also from having numerous control locations. The

algorithm shown in the last chapter employed a single control location per approxi-

mating set. If there are many reachable control locations, the algorithm will have to

store a large number of approximating sets. We counter this problem by clustering

together information across different control locations. The last chapter showed how

to use approximating sets of the form (q,Z), where q is a control location and Z a

rounded time zone. We generalize this to allow approximating sets of the form (A, Z)

where A is a set of locations and Z is as before a rounded time zone. Thus control

information may be represented symbolically as well as the timing information. This

technique may dramatically reduce the number of approximating sets which need to

be considered.

We first define the approximating operators. Later we show how the algorithm is

modified to allow approximation of the next-state relation as well as approximation of

the state-space. These modifications are necessary for efficiently handling the issues

of urgent events and safety constraints in the passage of time.

102

5.1. SYMBOLIC REPRESENTATION OF CONTROL LOCATIONS 103

5.1.1 Combining domains for approximation

We first show how different operators over different components of the state-space

can be combined. Suppose a state-space is the cross-product of two domains, e.g.

S = So x Si. Approximating operators over the domains So and Si can be combined

to give an approximating operator over S. For convenience, we use {A, B) to denote

the cross-product A x B of A and B.

Overapproximating

Given approximating sets (A,B) and (A',B') for S0 x Si, and overapproximating

operators Ux and U2 over approximating sets for S0 and Si respectively, we define

their combination U such that

{A, B) U {A', B') = {A Ui A', B U2 B')

Let D be the domain consisting of the pairs of approximating sets for S0 and Si.

Proposition 5.1 The operator U defined above is an overapproximating operator

over D.

Proof: The operator is closed over D since each of the component operators is.

Furthermore, {A, B) C (A ux A', B U2 B') since AC AUXA' MVü B C BU2B'. The

argument for {A', B') is analogous. E

Underapproximating

Given approximating sets (A, B) and (A\ B') and underapproximating operators E> i

and l> 2 over approximating sets for S0 and Si respectively, we define their combina-

tion 0 as

{A,B)>(Ä,B') = {

(A't ff) if{A,B)C(Ä,B')

{A>iA',B) if B C B' and A % Ä

{A, B>2B') ii AC A' and B £ B'

{A,B} otherwise

104 CHAPTER 5. VERIFYING REAL-TIME SYSTEMS - PART II

Proposition 5.2 The operator l> defined above is an underapproximating operator

over D.

Proof: The operator is clearly well-defined and closed.

Containment is obvious for the first and last cases. By symmetry, we need only

explain the second case. If B C B', then since A £> XA' C A U A', it follows that

(A E> !Ä, B)C(Aö Ä, B) = (A, B) U (A', B) C (A, B) U (A', B').

Finally, the non-emptiness condition is satisfied because of the first case. □

Real-time operators

To specify the operators used for approximating real-time systems, we need only

provide the operators over the two domains of control locations, and timer vectors.

These operators can be combined as outlined above. We use the same operators as

before over timer vectors. For simplicity, we use the exact union operator over sets

of control locations, i.e. A Ux A' = A U A'.

5.1.2 Computing successors

In the case of a single control location per approximating set, it is easy to compute

the exact set of successors of an approximating set for any transition. The set of

successors is itself an approximating set. When the approximating sets include sets

of control locations, it is still straightforward to compute successors under instanta-

neous transitions. Timing information for the successors is independent of the control

locations: if a transition is taken, its reset action must be applied to all timer val-

ues, regardless of the incoming or outgoing control locations. However, computing

the exact set of time successor states is more complicated, because now the control

locations affect timing information: urgent events and safety invariants may restrict

how long time can pass. Consider the problem of efficiently finding the set of time

successor states for the approximating set {A, Z). Each location q € A has a po-

tentially different safety invariant, so the number of approximating sets in the time

successors of {^4, Z) may be as large as the size of A. If this were the case, it would

defeat the purpose of grouping together information about different control locations

5.2. APPROXIMATING REAL-TIME SYSTEMS 105

in the same approximating set. Furthermore, time is not permitted to pass in those

control locations with urgent events enabled. We tackle this problem by allowing

approximations of the next-state relation, as discussed in section 2.4

5.2 Approximating real-time systems

In this section we describe the full algorithm advocated for verifying real-time sys-

tems using approximations over control information and timing information. The

next-state relation for time-passage events is both underapproximated and overap-

proximated. The algorithm requires the use of additional splitting between traversals

to ensure termination.

5.2.1 Approximating next-state relations

The algorithm proceeds exactly as described above in section 5.1, except that the

next-state relation is approximated for the passage of time. Exact computation is

performed for instantaneous events. Recall that the next-state relation for a timed

safety automaton is the disjunction

N= UeeTNeöNs

where the time-passage relation is

Ns= Ut>0NSt

We assume as before that urgent events are constrained only by control locations,

and are independent of timing information. Let Urg(Q) be those control locations

for which there is some outgoing urgent event. For each t € H, we observe that

NSt = {((?, S), (q, S + t))\q£Q\ Urg{Q), x + te Inv(q)}

The relation Ns is not closed over approximating sets. In general the successors

Ns{{A, Z)) form a set of approximating sets, one for control locations in Urg(Q), and

106 CHAPTER 5. VERIFYING REAL-TIME SYSTEMS - PART II

up to one each for every different safety invariant for the locations in A.

NS({A,Z)) = (AC\ Urg(Q),Z) U UqeA\UrgiQ){q,Z/ n Inv{q))

Notice that this successor set need not be represented with one approximating set for

every location in A \ Urg(Q), since the approximating sets with locations sharing the

same safety invariant will share the same time zone, and thus can be combined into

approximating sets of the form {{q G A \ Urg(Q) \ Inv(q) = Inv(tf)}, Z/ n Inv(q')).

However, the number of such sets can still be prohibitively large, especially since the

timed safety automaton often represents the product of several parallel processes,

so there may be exponentially many1 different safety invariants for a set of control

locations.

So while it is possible to use an exact next-state relation, we prefer to approximate

the time successors using an overapproximating (set) next-state relation, and an un-

derapproximating (set) next-state relation which returns exactly one approximating

set rather than the list of approximating sets which would be returned by an exact

computation.

The overapproximating relation Ns for the forwards relation Ns is defined as

NS((A,Z))

(A,Z) HACUrg{Q)

(A, Zy n Inv(q)} ifA% Urg{Q) and Mq1 G A, Inv(q) = Inv(q')

(A, Z/) otherwise

The underapproximating relation jVis for the forwards relation Ns is defined as

Ns((A,Z)) = {
' {A, Z/ n Inv{q)) if A n Urg{Q) = 0 and

Vg' e A, Inv(q) = Inv(q')

{A, Z) otherwise

1 There may be a different invariant for every control location, and so the number of invariants
may be exponential in the number of processes.

5.2. APPROXIMATING REAL-TIME SYSTEMS 107

The approximating relations used for computing backwards reachable states are sim-

ilar. The overapproximating relation Ng1 for the relation Nf1 is defined as

N?{(A,Z)) = {

(A,Z) HACUrg{Q)

(A,{Zninv(q))y) if A % Urg(Q)

and Vg7 e A, Inv(q) = Inv{ql)

(A, Zy) otherwise

The underapproximating relation N£ for the relation Ns is defined as

m(A,z))
' {A, (Z n Inv{q))y) if A n Urg(Q) = 0

and Vg7 G A, Inv(q) = Inv(q')

(A, Z) otherwise

Let the domain of sets Q be defined as {(g,IR") | q e Q}.

Proposition 5.3 1. The overapproximating relation Ng (Ng1) is an overapproxi-

mation of the next-state relation Ng (NgX).

2. Furthermore, N$ and N^ exactly match Ng over sets for which all control lo-

cations share the same safety invariant and urgency information, and hence

exactly match over Q. D

Proposition 5.4 1. The underapproximating relation Ng (N£) z5 an underap-

proximation of the next-state relation Ng (Ng~l).

2. Furthermore, Ng and N£ exactly match Ng over sets for which all control lo-

cations share the same safety invariant and urgency information, and hence

exactly match over Q. E

To guarantee termination, it would suffice to show that whenever the routine

Over_Approx is run with the approximate next-state relations Ng.Ng1, Ng, and N£,

successive overapproximations are strictly decreasing with respect to -<base- Unfor-

tunately, however, this is not the case. We use instead the policy introduced in

section 2.4 of additional splitting to force the overapproximations to decrease with

108 CHAPTER 5. VERIFYING REAL-TIME SYSTEMS - PART II

respect to -<set until they eventually refine the partition Q. Then since the approxi-

mating relations are exactly matching over £>, termination follows.

5.2.2 Algorithm for real-time systems

The algorithm uses approximate next-state relations N = Ne U N$, N = Nel) Ns,

N11 = N'1 U Nf, and AL1 = N'1 U A£.

By propositions 5.3 and 5.4 and theorem 2.26, convergence is guaranteed if the

approximating sets are forcibly refined until control locations share the same urgency

information and invariants. Thus to ensure termination we may chose any maxi-

mal class for which the next-state relations are not exactly matching, and refine it

by separating locations with different timing characteristics. We prefer to choose

the classes for splitting in a way that will likely result in faster convergence of the

approximations. The classes chosen for splitting are those sets A which are not ade-
quately covered by the underapproximation. The idea is that in order to accelerate
convergence, the underapproximation should increase as quickly as possible towards
the overapproximation, while the overapproximation should decrease as fast as pos-

sible towards the underapproximation. By further dividing a separating class C by

distinguishing states in the underapproximation from those not, we simultaneously

force the overapproximations to be more accurate within C, and provide a means for

the underapproximation to include more states in C.

Real-time approximation algorithm
The algorithm appears in figure 5.1. An overapproximation A is not merely flattened

and used directly as the separating structure for the next traversal. Instead it is
refined via the function Refine_Maximal() into a structure C such that C -<set A. The

result of calling Refine_Maximal with overapproximation A and underapproximation

B is a separating structure obtained from A by replacing every maximal set A with

two disjoint parts:

1. Ax = (Qi x ET) D A

2. A2 = (<?2 x TR71) n A

5.2. APPROXIMATING REAL-TIME SYSTEMS 109

RT-Approx

Over [BACKWARDS] := original separating structure;
Under[BACKWARDS] := empty approximating structure;
confirmed-positive := FALSE;
confirmedjtiegative := FALSE;
dim —FORWARDS;
while ((not confirmed-positive) and (not confirmed-negative)) do

Sep_Structure :=
Refine_Maximal(Over[Opposite_Dirn(dirn)],Under[Opposite_Dirn(dirn)]);

Over [dim] :=
Over_Approx(dim,iV\Sep-Structure,Under[Opposite_Dim(dini)]);

Sep_Structure := Flatten (Over [dim]);
Underfdirn] := Under_Approx(dirnjy,Over[dim]);
dim := OppositeJDim(dirn);

endwhile

Figure 5.1: Real-time approximating algorithm

where A\\J A2 = A. We define proj(Q)(W) to be the set of all control locations

found in the set of timed-states W. The splitting of A may be obtained by separating

control locations by any one of the following criteria:

1. Qi = proj(Q){A n US), or,

2. Qi= Urg(Q) D proj(Q)(A), or

3. NS(A1) # A1

The first condition corresponds to separating out those control locations that have

timed-states in the underapproximation already from those that do not. This policy

is the one suggested in the discussion above. The second and third conditions reflect

attempts to decrease the next overapproximation, by separating out control locations

for which the passage of time could result in fewer timed-states being encountered,

i.e. for some subset A' of Ai, Ns(A') C A\. Such sets of locations Qi may be obtained

by splitting according to the safety invariants associated with control locations, or by

separating the locations which have urgent outgoing events.

110 CHAPTER 5. VERIFYING REAL-TIME SYSTEMS - PART II

Simple timed automata

If we are verifying simple timed automata, there is no need to approximate the next-

state relation N$. The syntax of simple timed automata does not allow urgent events,

nor safety invariants, and so finding the exact sets of time successors and predecessors

is always efficient, i.e. NS((A,Z}) = {A,Z/), and Nf\{A,Z)) = {A,Zy).

5.2.3 Properties of algorithm

Proposition 5.5 Each overapproximation FOi from the algorithm above will either

be strictly decreasing with respect to -<Set, i-e. FOi -<set FOi-i, or the approximate

next-state relations will be exactly matching over FOi.

Proof: Suppose the approximate relations are not exactly matching. Then by the

definitions of the approximating relations there must be a set A for which the control

locations differ for either safety invariants or urgent events, i.e. 3q, a1 € proj(Q)(A)

such that Inv(q) ^ Inv(q>), or 3q, q' e proj(Q)(A) such that q € Urg(Q) and q' g"

Urg(Q). There must be a maximal set containing this set A, for which the control

locations also differ in this regard. This set will be split causing FOi to be computed

with respect to a separating structure strictly less than FOi-i, and hence FOi ~<set

FOi-i. A similar argument holds for backwards approximations. □

Proposition 5.6 The algorithm above terminates for real-time systems.

Proof: The result follows from proposition 5.5, the fact that the approximating re-

lations are exact over Q and theorem 2.26. □

5.3 Ordered binary decision diagrams

The success of using approximations over control information depends heavily on hav-

ing an efficient representation for sets of control locations. We therefore conclude this

chapter by reviewing an effective symbolic representation for Boolean functions, the

ordered binary decision diagram (OBDD) due to Bryant [Bry86]. This representation

5.3. ORDERED BINARY DECISION DIAGRAMS 111

is used by our implementation for describing sets of control locations. In hardware

verification and protocol verification, OBDDs have enabled successful formal verifi-

cation well beyond the range of a traditional explicit implementation [BCM+90]. In

addition it has been used for a variety of other problems involving manipulation of

system's state-space, including the synthesis of supervisory controllers [HWT92b],

logic synthesis [FKM91], sensitivity analysis and test generation [CB89], and logical

databases [MC91].

Before defining OBDDs, we first describe how an untimed transition systems can

be expressed and verified using Boolean functions.

5.3.1 Relations and Boolean functions

A transition system can be viewed as a set of tuples, which can in turn be expressed

as Boolean functions. Operations on sets of states of a transition system can be

expressed as manipulations on Boolean functions. This section makes this encoding

more explicit. If Q is the set of locations of a transition diagram or automaton, let

Q' = {(i\q e Q} be a set of locations representing the same locations in the next

state of execution. If the alphabet of edge labels is S, a next-state relation for the

transition function can be expressed as a set of tuples 6 in Q x E x Q'. The sets of

initial locations and final locations of an automaton can be thought of as 1-tuples.

Any set of n-tuples T C X\ x X<i x • • • x Xn can be expressed by its characteristic

function, i.e. a Boolean function / : X\ x X2 x • • • x Xn *-* {0,1} where f(t) = 1

iff t € T. We can assume each Xi domain is Boolean. If X{ has more than two

elements we can replace it by |7op(|Xj|)] Boolean domains giving a binary-encoding

of its elements. It follows then that next-state relations, predicates describing initial

states, final states, can all be expressed as Boolean functions over Boolean domains.

5.3.2 Ordered binary decision diagrams

An ordered binary decision diagram essentially encodes a Boolean function as a

binary decision tree with the added restriction that the decisions are performed in a

fixed order. In addition, common subtrees are shared for efficiency, thus resulting in

112 CHAPTER 5. VERIFYING REAL-TIME SYSTEMS - PART II

0
0/ Ä si

(xA
9^\

1

0] L

Figure 5.2: OBDD for the Boolean function (xi V x2) A (x$ V X4)

a directed acyclic graph (DAG). The value of the function for a particular variable

assignment can be read by traversing the tree starting from the root, at each node

branching according to the value of the variable labeling that node. Figure 5.2 shows

a DAG representing / = (xi V x2) A (x3 V z4). The variable assignment (xi =

0,x2 = l,z3 = 1,£4 = 1) leads to a node marked 1. Thus / is true under this

variable assignment. Notice that the value of z4 is irrelevant. The path followed

symbolically represents the two variable assignments {x\ = 0,rr2 = 1,^3 = 1,#4 = 0)

and (xi = 0,x2 = l,a?3 = l,x4 = 1).

Canonical form

However a Boolean function does not have a unique representation as a DAG. An

OBDD is a DAG satisfying the additional constraint that the occurrence of variables

on every path from the root to a leaf obeys a given total order. The DAG in Figure 5.2

is in fact a OBDD with variable ordering Xi < x2 < xs < xA. Bryant showed that for

any total order on the variables, every Boolean function is represented by a unique

OBDD respecting that order. The advantage of having such a canonical form is that

logical tests on Boolean functions given as OBDDs is easy: logical equivalence can

be determined in linear time, and satisfiability and validity can be tested in constant

time. For example, a formula is valid iff its OBDD representation is the same as that

for TRUE.

5.3. ORDERED BINARY DECISION DIAGRAMS 113

Operations on OBDDs

Bryant also gave efficient algorithms to perform standard Boolean operations on OB-

DDs. The complexity of finding the OBDD for the logical AND, OR, or NOT of two

OBDDs is bounded by the product of the sizes of the two OBDDs. To compute the

successor states of a set of states, we need the additional operation of quantification.

The existential quantification formula 3xi[f] can be read as "(/ holds when Xi is

FALSE) OR (/ holds when x{ is TRUE)". We use Bryant's restriction algorithm for

/|Ii=0 and /|Ii=i to implement 3xi[f] as /|Ii=0 V f\Xi=v

Computational issues

The main advantage of using OBDDs to represent Boolean functions is that they are

often far smaller than an explicit truth table representation. This fact can lead in

practice to greatly improved performance but does not alter the exponential worst-

case complexity per se. Thus the use of OBDDs is merely a heuristic to reduce the

size of representing a Boolean function. Bryant has shown that there is no variable

ordering that avoids an exponential representation of a multiplier. There is therefore

no guarantee that implementations based on OBDDs will outperform those using

explicit data structures. In the field of finite-state verification however, numerous

researchers have already reported substantial improvements due to OBDDs [CK91,

BCM+90] over particular problem domains.

Finally, we note that typically an OBDD's size depends crucially on the chosen

variable ordering. Intuitively a small OBDD will result when the function's value can

be correctly determined from the remaining variable values and only a small amount

of intermediate information about the variables already seen. It is generally desirable

for a variable ordering to bunch together variables that are highly interdependent.

For example, suppose Wx = {xn,..., xlni},..., Wm = {xmi,..., xmnm} is a partition

of the variables of /, and / = /i A • • • A fm where each /* depends only on variables

in Wi. Let the size of the OBDD for g be denoted \g\. Then |/| = 0(|/i| + • • • + |/m|)

under the variable ordering xn < ■■■ < arlni < ••• < xm\ < ■•• < xmnm. Such a

scenario can arise when composing loosely coupled components in a product system.

114 CHAPTER 5. VERIFYING REAL-TIME SYSTEMS - PART II

This reduced complexity is a substantial gain over an explicit representation that

would be exponential in the number of components. However with a bad choice

of variable ordering, the OBDD representation could also be exponential. Hence

some understanding of the nature of the problem is needed to select a good variable

ordering. This thesis does not explore this issue or exploit any of the advantages

obtainable from clever variable orderings.

Chapter 6

Case Studies

We give some examples of real-time systems described as timed automata. We also

provide automata for several timing properties used as specifications. Throughout

the chapter we provide hints for describing various aspects of timing behavior. We

conclude with a discussion of the limitations of using timed automata as a represen-

tation language. The performance of our verifier on the following examples can be

found in chapter 8.

6.1 Examples

6.1.1 Train-gate controller

Our first example is one which appears frequently in the literature: an automatic

controller which opens and closes a gate at a railway track intersection [LS85, Alu91].

The system consists of three components: a train, a gate, and their controller. The

automata modeling the system's components are shown in Figure 6.1. Whenever a

train enters the intersection, it sends an approach signal at least 2 seconds in advance

to the controller. The controller also detects the train leaving the intersection, and

this event occurs within 5 seconds after it started its approach. The gate responds to

lower and raise commands by moving down and up respectively within certain time

bounds. The controller sends a lower command to the gate exactly 1 second after

115

116 CHAPTER 6. CASE STUDIES

approach x < 5

go) ■ \9lJ

lower y < 1

-*-(90) V ~ ►AiJ

in «P
z>2 1<J/<2

rawe
y < 2 y := 0

Gate

approach z < 1

— (90)-—^= ►(«)

Controller

Figure 6.1: Automata for train-gate controller example

up

down
w := 0

up
w <K

down
w < K

Y7
< K

up

-*-(90

down
w.= 0

down
w <K up, down

up, down, a

©^ © W'K -Q tip

Spec Completed Spec

Figure 6.2: Real-time safety specification

receiving an approach signal from the train. It commands the gate to raise within 1

second of the train's exit from the intersection.

We verify a simple real-time safety property, namely that whenever the gate goes

down, it is moved back up within a certain upper time bound K. In other words, the

gate is never down for as long as K seconds. See the Spec automaton in Figure 6.2.

It is deterministic and its completion is expressed by the same automaton with the

added location qi which is marked as violating. The timing conditions on the edges

from qi to §2 are the complement of the existing edges for each event. In this case

they happen to be the same for both down and up events. We do not need to add

edges from qo to q^ since both events are already enabled at all times in <fo • Whenever

the specification constant is greater than or equal to 7 the specification is satisfied.

6.1. EXAMPLES 117

SENDER

SS-SAP

RECEIVER

SR-SAP

SERVER

Figure 6.3: Tick-Tock protocol block diagram

From our experience, it is surprisingly easy to specify incorrectly such bounded

liveness properties by forgetting the transition labeled a which indicates the deadline

has been missed. This omission will only catch error traces where the gate does not

go up within K time units and does go up or down sometime later. It detects events

occurring too late, but does not notice the error if no further events occur.

6.1.2 Tick-Tock protocol

The Tick-Tock protocol [LLD94] has been proposed as a test-bed for evaluating the

success of formalisms for specifying real-time systems. The protocol describes three

processes: a sender, a receiver, and a service component. The service entity has

been modeled as timed automata by Daws et al [DOY94], who verify the component

against various properties expressed in TCTL, a real-time temporal logic. Here we

show how some, but not all, of the properties they verify can be modeled as timed

safety automata. Thus in some cases their timing verification problems can be reduced

to timed safety verification as outlined in chapter 3.

System description

The role of the server component is to provide buffered transmission of data from

the sender to the receiver, as depicted in figure 6.3. Communication is through data

cells passed one at a time through Service Access Points (SAPs). The sender provides

cells to the service at the SAP referred to as the SS_SAP. The server then passes

118 CHAPTER 6. CASE STUDIES

them reliably on to the receiver at the SRJ3AP. The only way a cell is lost is if the

receiver is not ready to receive an offer from the server. Here we do not model the

full protocol, where the service may also crash. The behavior of the server satisfies

the following timing constraints:

Isochronism: The server offers to accept cells from the sender only at regular

instants, IT time units apart. At most one cell is received at any time, and the

exchange is considered to be instantaneous.

Transmission delays: The server always delays between rmin and rmax time units

between receiving a cell at SS-SAP from the sender and then delivering the cell

to an internal buffer.

Spacing between deliveries: There must be a time delay of at least a time units

between deliveries.

Immediate acceptance: The server offers the receiver a cell at SR-SAP as soon

as delivery to its internal buffer is completed. If the receiver does not accept

the cell, it is lost.

The description of the server is given by Daws et al as the product of the automata

in figure 6.4. Note that the delivery of each cell is meant to take place as soon as it

is enabled, modeled by the urgent event in the transmission delay automaton. The

service may offer to buffer up to n SS_SAP cells at any given time. This situation is

modeled by n different transmission delay components, each with events labeled by a

unique identifier. The transmission delays are modeled by the product of all the delay

cell components. However this process has events tagged with an identifier i signifying

that it comes from the i-th. delay cell. As far as the other processes are concerned, it is

irrelevant which cell provides the buffering, so the events are abstracted in the delay

component before composing them with the other processes, e.g. all DeLi events are

abstracted to Del1.

1 Alternatively, the transitions for delivery and SS.J3AP events which occur in other processes
could be replicated, one for each delivery or SS-SAP exchange.

6.1. EXAMPLES 119

■©-

DeLl

z:=0

<a
Isochronism

SS-SAP-i ' ' Tmin < Z < Tmax

Z := 0 x — r"»oi tmd.i

z:=0

Transmission delays - i-th cell

y — a
A

g := 0 yjLa

Del

»:=0

Spacing Immediate acceptance

Figure 6.4: Tick-Tock service entity

Specification properties

Each component in the model of the server places a restriction on the server's behav-

ior. However it does not guarantee that the service will be offered in a timely manner.

For instance the isochronism requirement states that SS.SAP exchanges may occur

at most at regular punctual instances separated by it time units, but in fact the server

may not be ready to accept an SS.SAP because transmission may be delayed while

waiting for delivery to occur.

Following Daws et al, we verify the server against the following three categories

of timing properties.

120 CHAPTER 6. CASE STUDIES

SS-SAP
En-SS-SAP

SS-SAP
En-SS-SAP En-SS-SAP

v:=0

En-SS-SAP \i v < 7T
v~0 r^\ En-SS-SAP ,,

<?0) ■ *~[Ql] ►•((viol]

v = It

En-SS-SAP, SS-SAP

Iso-1 specification

Iso-2 specification

Figure 6.5: Isochronism specification processes

Isochronism:

Iso-1: Whenever an SS-SAP event is enabled, it is also enabled exactly IT time

units later.

Iso-2: Whenever an SS_SAP event is enabled, it is never enabled again before

x time units have passed.

Transmission delays: After a successful SS-SAP exchange, an offer at SR-SAP

must occur within [Tmiri,Tmax\ time units.

Spacing between deliveries: Whenever an event is enabled at SR-SAP, there is

a delay of at least a time units before it is enabled again.

The specifications for properties Iso-1 and Iso-2 appear in figure 6.5. The develop-

ment of these specification automata is explained in more detail below. Notice that

the property Iso-1 asserts that a particular event must occur within a certain time

interval, whereas the second property states that a particular event should not occur.

In general, properties of the second sort are easier to specify.

Most properties are assertions about whether SAPs are enabled in a timely fashion

or not. However the language of timed automata has no direct means of express-

ing that an event is enabled. We handle this by adding additional events, such as

En_SS_SAP which is enabled in each component precisely when SS-SAP is ready for

communication. In figure 6.4 this would result in self-loops at locations qo labeled

6.1. EXAMPLES 121

I < ir
<7T

A
x := 0

Revised isochronism process

Figure 6.6: Isochronism component indicating urgent enabling at SSJ3AP

En_SS_SAP in the isochronism process, and En_SS_SAPJ in all the delay cell pro-

cesses for which the transmission delay product abstracts the events to En_SS_SAP

before composing with the other processes. The conditions on the En_SS_SAP events

match those for the SS_SAP events. Thus in testing the second isochronism speci-

fication, the negated property asserts that a premature enabling event occurs. See

figure 6.5.

Verifying the first isochronism property, which asserts that SS_SAP can take place

when v = it, is not so straightforward. The En_SS_SAP event must be urgent in the

automaton for the isochronism property. This is because in order to correctly check

whether SS_SAP really is enabled, we need the event En_SS_SAP to occur without

fail whenever it is. Otherwise SS_SAP may be enabled, with the En_SS_SAP event

enabled but not occurring, leaving the impression that time passes by without the

event being enabled. However, we run into two difficulties. Firstly, an event may

occur at precisely the time En_SS_SAP would occur, thereby disabling En_SS_SAP.

We circumvent this through a specification which checks not only for the En_SS_SAP

event, but also for events which may explicitly disable it, e.g. the event SS-SAP itself

122 CHAPTER 6. CASE STUDIES

may occur instead. Secondly, our verification tool does not allow urgent events to

be subject to timed enabling conditions, e.g. the constraint x = 0 in the isochronism

process. We handle this shortcoming by introducing additional control locations

which are used to check whether the urgent event satisfies its timing condition, as

in figure 6.6. Thus an urgent event Possible_En_SS_SAP is allowed to occur out of

location q'Q regardless of the value of the clock x. The 0 upper time bound on reset

clock x' at location test, forces control to immediately pass to qo, signaling either that

the event truly is enabled (when x = 0) or that this excursion into the test location

does not correspond to a real enabling at SS_SAP (when x > 0). Thus to verify

the property Iso-1 we replace the isochronism component in figure 6.4 with that of

figure 6.6, and add self-loops on the delay cells labeled Possible_En_SS_SAP instead

of En_SS_SAP.

Model-checking over TCTL formulae is strictly more expressive than our safety

verification paradigm. In particular we cannot even model in our framework the

following properties which Daws et al verify:

Isochronism:

Iso-3: An SS-SAP event is never continuously enabled for any non-zero length

of time.

Immediate acceptance: An offer at SR-SAP is never continuously enabled for

any non-zero length of time, i.e. the offer is either taken immediately or lost.

Comparison to Daws et al

Daws et al express information about the enabling of an event by using propositions

stating whether the event is enabled within each participating process. The event

is enabled in the server iff it is enabled in each participating process. They also

explicitly form the product of the individual components, allowing them to express

the urgency semantics for the Deliver event using a special clock which ensures that

once delivery is enabled it occurs before any time can pass. We prefer to model such

events by labeling them as urgent. This decision allows processes to be described in

6.1. EXAMPLES 123

a simple and modular format. The correct semantics is then implemented without an

added clock by simply disallowing time to pass whenever urgent events are enabled.

Chapter 8 contains a comparison of the performance of their symbolic verifier

KRONOS and our approximation algorithm for those examples we can specify in the

reachability framework.

6.1.3 Ethernet

We now briefly describe a more substantial example: a timed model of the Medium

Access Control (MAC) sublayer of Ethernet's Data Link layer, first formally specified

by Weinberg and Zuck [WZ92]. We refer the reader to their work for a full descrip-

tion of the protocol implemented by this sublayer. It is essentially a carrier-sense /

multiple-access protocol with collision-detect (CSMA/CD), which sends and receives

frames between the Logical Link Layer and the Physical Layer. A request to send a

data packet causes the transmitter to listen to the channel. If the channel is not idle it

waits until it is, and then sends its data packet. If collision occurs it is detected, and

the transmitter sends a special jam sequence to alert other users. It waits a random

time, up to a limit determined by a binary exponential backoff algorithm, and then

attempts to retransmit. The logical link layer is informed whether transmission is

successful or not.

The MAC sublayer consists of four different components: a frame transmitter,

a deference generator, a bit transmitter and a frame receiver. Communication with

processes in the Logical Link Layer above and the Physical Layer below occurs through

a combination of shared variables and direct communication channels.

Our modeling of the MAC sublayer differs from the description by Weinberg and

Zuck in the following ways:

• (data values): we perform no data encapsulation of the raw frames received: in

fact no actual data values are sent.

• (bit transmission): the bit transmitter is modeled by signals denoting the be-

ginning and ending of transmission of the entire sequence of bits in a frame.

This is essentially the same as saying all frames consist of a single bit.

124 CHAPTERS. CASE STUDIES

• (semantics): timed safety automata cannot capture the unbounded liveness

properties expressible in the timed transition systems used by Weinberg and

Zuck. Our model therefore includes some execution traces not found in theirs.

• (carrier sense/collision detection): the conditions for setting each of these vari-

ables is unspecified in [WZ92]. We assume that both the conditions for carrier

sense and collision detection may be become true at any time. Furthermore,

carrier sense is always true while the sender is transmitting. Whenever the

condition for a change of variable value if detected, the variable changes value

after an appropriate time delay.

• (retransmission delay): we set a fixed maximal number of periods to delay before

attempting retransmission. The actual delay is nondeterministically chosen as

any number of delay periods up to the maximum.

Our model includes six variables (number of transmission attempts, carrier sense,

collision detection, transmitter waiting, deferred, counter measuring time to wait

before retransmit). There are six clocks in the system. The sizes of the individual

component processes are given below.

Component STA states STA transitions

Frame Transmitter 15 19

Deference Generator 5 5

Carrier Sense Generator 6 25

Collision Detection Generator 3 3

Bit Transmitter 7 9

Medium 3 6

Frame Receiver 3 4

We tested the protocol with three timing specifications: two lower bound proper-

ties and a bounded liveness property.

Spec A : If the transmitter is ever deferred before transmitting, then the total time

before successful transmission is at least 12 milliseconds.

6.2. DISCUSSION 125

Spec B : If a jam is sent by the Frame Transmitter, then at least 12 milliseconds

pass before successful transmission is signaled to the Logical Link Layer above.

Spec C : If there are no collisions, and the frame transmitter proceeds past the point

of waiting to proceed, then transmission be successful within 40 milliseconds.

CSMA/CD

We also test our verifier on a simple CSMA/CD protocol described in [NSY92a]. This

verification problem consists of two extremely simplified senders and the medium.

6.1.4 Mutual exclusion

A simple version of Fischer's mutual exclusion algorithm appears at the end of chap-

ter 3. We also test our verifier on Alur and Taubenfeld's fast mutual exclusion al-

gorithm [AT92] which provides a process with quicker access to its critical section in

the absence of contention.

6.2 Discussion

While this thesis focusses on efficiency issues in timing verification, we comment

briefly now on our experience with specifying verification problems. Although timed

automata are an expressive formalism, it is not straightforward to describe systems

accurately. We identify three primary sources of problems — the first two of which

are generic to the shared-event automaton model.

Limited syntax

Our definition of timed safety automata provides only a basic syntax which is quite in-

adequate for specifying complex systems. For instance, there is no distinction between

input and output events (this may lead to errors when a process is not receptive of

its intended inputs, thereby unintentionally blocking the output of another process).

126 CHAPTER 6. CASE STUDIES

Figure 6.7: Misleading specification

There is no event abstraction mechanism. In the tick-tock protocol it would have

been helpful for the timed automaton language to be able to describe how the events

for different cells are abstracted into single events.

There is no built-in syntax for pointers, reading and writing variables, nor for

indexing arrays. While the lack of the above features is inconvenient, we note that

suitable syntactic sugar can be added to the basic model to enrich the formalism.

Machine modeling

While automata models are often convenient for small components, their lack of

structure can make more complex processes difficult to understand. For example,

looping constructs can have numerous branching and entry points. In the absence

of liveness, the basic meaning of a transition is that it may occur, as opposed to

representing an event which must occur. This makes it difficult to express clearly

branching points where one of several different choices must be taken. In other

words, there are no clear equivalents of while loops, for loops, if statements and case

statements. There is also the frequently encountered problem of modeling processes

with automata which admit too few runs because events in their composition get

blocked. This cause of confusion is due to the shared-events model of composition.

A common example is in specifications which are not receptive, e.g. the automaton

in figure 6.7 does not correctly specify that every A event is followed by a B event

within K time units. It disregards runs where two A's followed by a B occur in quick

succession.

6.2. DISCUSSION 127

Forced events

A common misunderstanding is that transitions do not explicitly represent events

which must occur. This confusion can lead to automaton models which permit pro-

cesses to prematurely cease useful progress by resting in a location. For example, the

safety invariant "x < 5" must be placed on all the locations qx, q2, and qz in the train

component of figure 6.1. It is easy to overlook the invariant on q2 or even qi, but the

invariant on q3 is not enough to ensure the automaton loops back to q^. It merely

states that if control reaches «ft, then it will leave q% in due time — the automaton

may end up in q\ forever.

Summary

The above shortcomings suggest the need for a higher level language which enables

direct reference to variables, arrays, pointers, event abstraction, input/output events,

and clear constructs for looping and branching. These are primarily syntactic desider-

ata. On the other hand, timed safety automata are slightly limited in expressiveness

too. As shown above, there are properties they cannot express, such as singularity of

enabledness, and unbounded fairness constraints which would be helpful in specifying

properties of the mutual exclusion algorithms.

Nevertheless we feel the array of problems we can specify to be quite large in

practice, and the use of a verification tool which supplies useful debugging information

is very helpful in getting system descriptions correct. We found it critical to test not

only that a protocol is correct, but also that suitable changes in the timing parameters

result in error traces — this strategy helps ensure the report of correctness is not

merely due to modeling faults which incorrectly rule out violating traces.

Chapter 7

Hybrid Systems

Introduction

Hybrid automata [MP93, ACHH93, AHH93, NOSY93] consist of discrete state com-

ponents interacting with continuously changing variables. They model the behavior

of programs embedded in physical systems where the environment is changing in

real-time. In the more general case, continuous variables are modeled by arbitrary

differential equations, and the system's control information by discrete states. An im-

portant class of hybrid automata is that of the linear hybrid systems, where the con-

tinuous variables are modeled as functions whose rates of changes and reassignments

are linear terms. Arbitrary linear hybrid systems are undecidable, but a number of

interesting subclasses have been found which are decidable [PV94, MV94, KPSY93],

or admit semi-decision procedures [OSY94].

We introduce an interesting decidable subclass of linear hybrid systems, the skewed

clock automata (SCA), which we use to model processes whose clocks increase at

variable rates. These are a subclass of the automata with rectangular differential

inclusions, which were recently independently shown to be decidable [PV94, HPV94].

An automaton with rectangular differential inclusions has lower and upper bounds on

its clock rates, which must be fixed rational numbers. Skewed clock automata add a

syntactic restriction on where constraints can be placed in the automaton, the query-

reset alternation property. The subclass is interesting in that the proof of decidability

128

129

reduces the emptiness problem for SCAs to emptiness over TSAs while preserving

the structure of the automaton and the number of clocks. This reduction technique

provides a feasible algorithmic method for safety verification of SCAs. Henzinger et

al's reduction [HPV94] applies to a much broader class of automata but doubles the

number of clocks, thereby reducing its usefulness in practice.

The syntactic restriction we apply is easily checked. It is general enough to be

applied to many forms of automata where clocks are used to force lower and upper

bound constraints on enablement times. The alternation property essentially asserts

that on every path in the automaton, for every clock, there is either a reset or a test

of equality of that clock between any two queries of the clock's value (except that an

upper bound query may follow another upper bound query without an intermediate

reset, provided the second upper bound is no greater than the first).

We also describe a case study of a timing-based communication protocol due to

Bosscher et al [BPV94]. We verify correctness for arbitrarily length bit sequences.

We are also able to prove messages are received within a reasonable time, despite the

fact that the statement of this timing property uses arbitrarily large constants for

deadlines.

Related work

SCAs are a subclass of the automata considered by Olivero et al [OSY94]. They

give abstraction mappings which preserve emptiness in only one direction for VTCTL

formulas, and thus lead to a semi-decision procedure for their more general class of

automata. Our transformation from SCAs to TSAs is the same as theirs: in our case

we prove it exactly preserves the divergent runs in our automata and therefore yields

a decision procedure for emptiness. Puri and Varaiya [PV94] prove decidability for

a class of linear hybrid automata incomparable to SCAs. They are not restricted by

the query-reset alternation property we require. Their result is very general, except

that their enabling constraints and rate intervals must correspond to closed intervals,

whereas we allow open intervals. Unfortunately their proof of decidability relies on

discretization of the continuous space, and does not lend itself to efficient verification

procedures. Recently, in work with Henzinger [HPV94], they have provided a proof of

130 CHAPTER 7. HYBRID SYSTEMS

decidability that translates automata with rectangular differential inclusions directly

into timed automata, but with a doubling in the number of clocks. These other

approaches use a more general model of a hybrid system which allows for different

bounds on clock rates at different locations, and reassignment of variables to constants

other than 0. These extensions could be incorporated into SCAs but for simplicity

are not included here.

Lam and Brayton [LB93] define automata with a very similar query-reset alter-

nation property. Their property is even more restrictive than ours in that each clock

may only be reset and queried once in the entire automaton. However, they allow

arbitrary timing constraints. Their clocks increase at a constant rate, and the query-

reset alternation is used to establish a simple path property, which reduces verification

to reachability over paths without loops. Our automata do not necessarily satisfy the

simple path property. In comparison, we use the alternation property to show that

constraints on a drifting clock can be mimicked by constraints on a clock advancing

at a fixed rate.

Another approach to verifying hybrid systems, one not pursued in this chapter, is

to apply the approximation algorithm directly to hybrid systems. In the general case,

the algorithm is not guaranteed to terminate, but the strategy is promising. Indeed

Henzinger and Ho [HH94] report successful use of applying our iterated overapproxi-

mations of subsection 2.2.2 to linear hybrid systems. They also use extrapolations to

speed convergence.

7.1 Skewed clock automata

A skewed clock automaton (SCA) A is a tuple (E, Q, Qinit, C, p, T, Inv) where

1. E is a finite set of events, disjoint from AT,

2. Q is a finite set of control locations,

3. Qinit Q Q is a set of initial locations,

4. C = {xi,..., xn} is a finite set of clocks,

7.1. SKEWED CLOCK AUTOMATA 131

Figure 7.1: Skewed clock automaton Ai

5. p assigns to each clock a non-empty interval of IR defined by positive integer

endpoints. The interval p(x) represents the range of possible rates of increase

of x, and will be denoted [dlx, dux] where dlx and dux are taken to be bounds

in the domain ZuZ'U {oo},

6. TC.QxT.xSnx A(n) x Q is a query-reset alternating transition relation,

defined below, and,

7. Inv 6 (Q -► IZ).

We assume without loss of generality that each clock constraint is satisfiable.

For convenience we say that all clocks are reset at the initial state of any run.

Before describing the query-reset alternating property, we first define the value of a

clock x to be determined by a transition tr whenever its value on entering the successor

location is uniquely determined by the enabling constraint of tr, i.e. x is determined

by tr = (q, a, </>, a, q') iff <p implies x = k for some k. We assume without loss of

generality that whenever a transition determines a clock's value, it also resets that

clock. We also assume without loss of generality that the safety invariant on control

location q is a conjunct in the enabling condition of every transition out of q. We now

define some notation relating to queries and resets along paths. Let I = lo,h, ■ • •, lm

be a path of locations and tr = tri,tr2,-.., trm a sequence of transitions such that

tn leads from location k to location li+i. We define 4>i to be the enabling constraint

associated with transition trt. For a given clock x, let Rf denote the index position

of the i-th reset of clock x along the sequence of transitions, with R% set to 0. In

132 CHAPTER 7. HYBRID SYSTEMS

addition, let Q*j be the index of the j-th. query of clock x along tr occurring after the

z'-th reset but not after the (f 4- l)-th reset, and let numq- be the number of queries

of x between the i-th and (i + l)-th resets.

Example 7.1 Consider, for example, the SCA in figure 7.1 and its path of locations

Qo,qi,q2,q3,qo,q4, and sequence of transitions tri,tr2,tr3,tr4,tr5. Then R% = 0,

Rf = 1, i?2 = 4, and i?f = 5. The value of numcfö is 1 with QQX = 1, and numq\ = 2

with <5ii = 2 and Q\2 = 3, and numq^ = 1 with Q^i = 5. □

The query-reset alternating property states that for every path I of locations in

the SCA A and matching sequence of transitions tr, for every clock x and i > 0,

either numq? = 1, whenever it is defined, or the last query between the z-th and

(i + l)-th resets, i.e. the constraint 6 associated with transition trn* , includes

an upper bound constraint of the form x < b, and for each k < numqf, the query for

the Qfj'th transition is an upper bound of form x < b' where b < b'. Notice that in

the case of multiple queries between resets the last query need not be a simple upper

bound constraint: it may be of arbitrary form as long as it implies a suitable upper

bound on x.

Example 7.2 The path and sequence of transitions in example 7.1 is a query-reset

alternating path. Notice that whenever a transition has an enabling constraint and a

reset, the query of the enabling constraint is considered to take place before the reset.

The path has alternating queries between resets, except for the two consecutive queries

at transitions tr2 and tr$. However these queries are permissible since the first is an

upper bound exceeding the second. □

The semantics of the SCA A are given by the transition system it induces, namely

(SA, SO,A,NA), where SA and SO,.A are as for timed safety automata, and NA = N's U

UeeriVe, where Ne is also as before. The time passage relations JV^ are defined as

K = {<(<?> *>> <<?> f'» I V * € 1-n, & - Xi)/6t e p{xi)}

andiV;= UtenN'gt.

7.2. TRANSLATION TO TIMED SAFETY AUTOMATA 133

Theorem 7.3 SCAs are closed under composition.

Proof: The syntactic query-reset alternating path restriction is preserved when com-

posing automata, since every path in the product automaton projects to a path in

each component, and repeating the same upper bounds (for a safety invariant at the

same component location) along a path is permitted. □

7.2 Translation to timed safety automata

We define a transformation function K which converts a skewed clock automaton

into a timed safety automaton. Note that the transformation only applies in the case

where the SCA resets a clock every time its value is determined. The TSA K(A) has

the same control locations and transition structure as A, the only difference being

that its timing constraints are transformed to reflect the different clock rates. For

each SCA clock x, there is a TSA clock x'. Intuitively, x' records the amount of time

which has passed since x was last reset. We assume without loss of generality that

all bounds on clock rates are integer values, either strict or non-strict.

For SCA automaton A = (E,Q,Qinit,C,p,T,Inv), we define K(A) to be the

tuple (T,,Q,Qiniu C',T',Inv'), where C consists of a set of primed clocks, one cor-

responding to each clock in C. The transitions V are the set of transitions K(T),

and Inv' are transformed invariants, both defined below via transformations on the

timing constraints. The transformed constraints K((p) express the fact that the SCA

constraint could be satisfied under the TSA constraint. For uniformity of exposition,

we use bounds in enabling constraints. We use an extended domain of bounds which

includes r and r~ where r is a rational value. Division of bounds is defined as the ex-

pected rational division with the result being a strict bound whenever either operand

is strict. The only exception to this rule is that a non-strict zero bound divided by

any bound is always a nonstrict zero bound.

The transformation for basic enabling conditions of the form x ~ b for a clock x

and relation ~ in {<, >} is defined below. The idea is that the linearly progressing

TSA clock x' in K(A) records the amount of real global time since the last reset

of x. Let t be the amount of time which has passed since x was last reset. For a

134 CHAPTER 7. HYBRID SYSTEMS

<p: in SCA A K((f>) in TSA K(A)

x<b
x>b

x' < b/dlx

x' > b/dux

Figure 7.2: Transformation K on SCA constraints

K(A)

x = 2 x<5 z=2 z<3
x:=0

-(g), '0 -*0——*© ~*0
1< x' < 2 x' < 3

z':=0
 +{ qi

x<4

x<2 x = 0 x'<2 x' = 0

Figure 7.3: Transforming SCAs into TSAs

constraint of the form x < b to be satisfied in the SCA, we know that at most ub/dlx"

time has passed from the time of x's last reset, since x < b and t ■ dlx < x implies

t- dlx <b which is equivalent to t < b/dlx. Because the time since x was last reset is

measured by clock x', we replace the constraint x < b in the SCA A with x' < b/dlx

in the TSA K(A). A similar analysis for lower bounds leads to the translation table

for constraints shown in figure 7.2. The transformation extends to conjunctions as

K((pi A fa) = K(<p!) A K{(p2). We define K((q, a, <f>, a, q1)) = (q, a, K(<p), a', q') where

a' resets the primed versions of all clocks reset by a, and K(T) - {K(tr) \ tr e T}.

Finally, we define Inv' such that Inv'(q) = K(Inv(q)) for every location q.

Example 7.4 The SCA AQ in figure 1.3 does not reset x after determining its value

along the transition from q0 to qx, so we cannot apply the transformation directly

7.2. TRANSLATION TO TIMED SAFETY AUTOMATA 135

to AQ. The SCA A accepts the same language as AQ and avoids this problem. The

rate of increase of x lies in the interval [1,2). We apply the K transformation to A

yielding the TSA K{A) shown in the figure. Notice that the transition from q'0 to qi

has enabling condition x' = 0 derived from 0 < x' < 0 resulting from the non-strict 0

lower bound obtained by dividing 0by2~. □

Theorem 7.5 A skewed clock automaton A has an empty language iff the timed

safety automaton K(A) has an empty language.

Proof: The proof of correctness shows that nonemptiness is preserved, i.e. a run in

the TSA K(A) implies a run in the SCA A and vice versa.

SCA non-empty implies TSA non-empty

We first prove the simpler direction, namely that a run in the SCA A has a

matching run in the TSA K{A). The time in K(A) represents the real time. Given

a run in the SCA A,
ei e% e3

S0 —► Si —> s2 -* • • •

let U = T,j<idur(ej). We refer to the transition which takes place from state Si as

ifj+i, and let tr'i+1 denote K(tri+i). The location of Si is referred to as qi. The run

sQ —» sx —* s2 —► • ■ •

in the TSA is obtained as follows. The control location at s'j is qi. Let x'k be the value

of clock x at state s'k, which we set as x'k = xk_! +tk — £*-i if tri does not reset clock

x, and x'h = 0 otherwise.

It is easy to see that the timed-states along the run are reset appropriately, and

advance correctly for time-passage events. Thus we need only check that all queries

in K(A) are satisfied along the run. Consider a query of x' along the run at transition

tri+i out of state s^. Suppose the most recent reset of x' occurred at transition tr'r

into state sj.. Then the value of x' at s'^ is xl
i=ti- tr, since resets of x' match those

of x. If tr'i+1 has a constraint of form x' < b' in ^(^4), then tri+i has a constraint of

form x < b such that b/dlx = b'. By the lower bound on the rate of progress of x, and

the fact that x satisfies its constraint in tri+i at s,-, we have that (U — tr) -dlx < x <b,

136 CHAPTER 7. HYBRID SYSTEMS

which implies that (U — tr)< b/dlx = b'. Since Xi = ti — tT, it follows that x\ < b' as

required. The argument for lower bounding constraints is similar.

TSA non-empty implies SCA non-empty

We construct a matching run in A for every run in K(A). Analogous to the above

argument, we use the values of the clocks in the given run to provide clock values

for the constructed run. We then show that the corresponding skewed clocks satisfy

their timing constraints because their mapped clocks x' in K(A) do.

Consider a run
/ el / e2 / e3

s0 sl 52

in the TSA K(A). Suppose £■ = Hj<idur(e'j). We claim that

j ei „i el 2 c3
So -* Si —► 52 —► • • •

is a run in A if Sk = {q'k, Xk) with control location and transitions matching those of

the TSA's run and the values of each x"k determined below.

The value of each clock x is assigned independently of the other clocks. Let

Rf, numqf, and Qfj be defined for the run as in the definition of the query-reset

alternating path property, i.e. Rf is the index position of the i-th reset of x, numq? is

the number of queries between the i-th and (i + l)-th resets, and for 1 < j < numq?,

Qfj the index position of the j-th. query of x after its i-th reset. Clearly Xk should

be assigned the value 0 whenever A; = Rf for some i. We need to define Xk between

resets, i.e. for Rf < k < Rf+V To do so, we use the last query of a; before the (i+l)-th

reset, i.e. the query at the Qfnum^-th transition out of the (Qfj7lum<g - l)-th state, to

choose a linear rate of progress between the Rf-th and Rf+1-th states. We will then

show that for all 1 < j < numqf the queries at the (Qfj — l)-th states are satisfied.

First we choose an appropriate rate of progress A which guarantees the enabling

constraint <f> at the {Qfynumif — l)-th state is satisfied. For notational convenience, we

fix M = (Qfinumqr -1), and let the enabling constraint of tr'M+1 be <f>', i.e. K(<f>) = cf>'.

Let the value of x' at s'M be v.

• If v ^ 0 and <p' includes an upper bound constraint of the form x' < b' in the

7.2. TRANSLATION TO TIMED SAFETY AUTOMATA 137

SCA K(A) derived from the constraint x < b in A, we require A to lie in the

range [dlx,b/v]

• If v 7^ 0 and <ff includes a lower bound constraint of the form x' > b' in the

SCA K(A) derived from the constraint x > b in A, we require A to lie in the

range [b/v, dux]

We need to show that there is a A 6 p(x) satisfying the above constraints. We do

this in two steps: first showing each interval above is non-empty, and then showing

they must overlap. For non-emptiness, the case where v = 0 is obvious, so suppose

v > 0. Consider the restriction implied by an upper bound constraint. Since the

value of x' at s'M satisfies the constraint <f/, it follows that x'M = v < b' = b/dlx.

Hence dlx < b/v since both v and dlx are non-negative. For lower bound constraints

we have that b/dux = b' < x'M = v, and hence b/v < dux.

To see that the intervals overlap, first observe that <j> is satisfiable by assumption

on the structure of SCAs . Therefore when it contains constraints h < x and x <b2

it must be that b\ ■< b2 with b\ ^ b2 unless both represent non-strict bounds, and

hence b\/v < b2/v. Because dlx ^ dux, all interval restrictions of form [dlx,b2/v]

and [bi/v, dux] overlap as required. Thus for each i, we may fix a rate Aj within the

prescribed ranges.
We are now ready to give the explicit values of the clock variable x over the

intervals between resets, namely, for all i we set Xk = Ai-(tk — t^) for all R* < k <

We need to show that all queries are satisfied. Consider a query <j> at state s*.

Then k = Q*j — 1 for some i and j. We examine two cases.

Case 1: j = numq?.

Then the query is the last before the (i + l)-th reset. Let the time elapsed since

that reset be v — tk - tR*. The value Aj has been chosen so that for every upper

bound constraint x < b2 in <p, A, e [dlx, b2/v] if v > 0 and [dlx, dux] otherwise.

In either case, xk = A; • (tk - tR*) < b2.

The argument for lower bound constraints is similar.

138 CHAPTER 7. HYBRID SYSTEMS

Case 2: j < num<£.

By the query-reset alternating property, 0's constraint on the clock x must be

of the form x < b where the numq--ih constraint fa after the i-th. reset has a

constraint of form x <b2 for some b2 < b. Since, by case 1 above, fa is satisfied,

we know that Xk < XM <b2<b: in other words, since the value of x at this

later query does not exceed b2, its no greater value at Sk cannot exceed the

higher bound b.

Thus all timing constraints are satisfied and K(A) non-empty implies A non-

empty. □

Notice that the above result also holds for SCAs augmented with urgent transi-
tions. Such transitions can be encoded using an auxiliary clock x being reset on entry

into every location where any urgent events are enabled, and having invariant x < 0

at all such locations.

7.3 Case study: Manchester bit encoding

We describe how a timing-based communication protocol using Manchester encod-

ing [BPV94] can be verified using skewed clock automata. The protocol forms a small

part of a real audio control protocol under development by Philips. Bits are encoded

based on timing delays between signals, and the rates of both the sender's and re-

ceiver's clocks vary within a given tolerance. The algorithm is due to Bosscher et

al [BPV94] who model the protocol using a general model of linear hybrid systems,

and verify its correctness using simulation-based proof rules. They also provide a

counterexample when the timing constraints are not appropriately met. We model

the protocol with skewed clock automata, and specify its correctness by adding vio-

lation states which should not be reachable. It is then manually converted to a timed

safety automaton representation, and then automatically verified using our approx-

imation algorithm. We verify two properties: correctness of the bit stream that is

received, and timeliness of the output.

7.3. CASE STUDY: MANCHESTER BIT ENCODING 139

Figure 7.4: Timing diagram for Manchester encoding of 10100

7.3.1 Protocol description

Bit streams are communicated using Manchester encoding. See figure 7.4 for the

encoding of 10100. The voltage on the communication bus is either high or low. A 0

bit is sent as a down signal from high voltage to low, and a 1 bit as an up signal from

low to high. The time line is divided into equal length time slots, and the signals are

sent in the middle of each time slot. In order to send a repeated bit, there must be an

intermediate change in voltage, and this occurs at the edge of the time slot as shown

in the diagram for the last two bits.

Bosscher et al [BPV94] report a number of complications in the algorithm used

by Philips, partly due to the fact that there is a ±5% tolerance in the clock rates of

the sending and receiving components.

1. The receiver does not know when the first time slot begins, although it does

know the agreed upon width of the slots. The sender and receiver synchronize

the start of transmission by requiring a low voltage whenever no bits are being

sent, and starting all bit streams with a 1.

2. The receiver is not explicitly told the length of the message being sent. It must

infer the bit stream is complete after a suitable lapse in receiving bits.

3. Drops in voltage are not instantaneous, and cannot be reliably detected. There-

fore, the receiver must decode the message based solely on upgoing signals. Be-

cause the downgoing edge of a final 0 bit is not seen, this would create ambiguity

between messages ending in 10 and in 1. This problem is solved by restricting

140 CHAPTER 7. HYBRID SYSTEMS

UP
ÖÜINJJHi«. JXZi^Eji. V JDXV

SEND
HEAD

REC
HEAD

1

\

i s

V

READ
BITS

CHOOSE
BITS

ACK
BITS

, i i i

1

h

LIST OF BIT VALUES

Figure 7.5: Overview of processes

bit streams to be either odd in length, or ending in 00.

4. Message collisions may occur due to several components sending at the same

time.

5. There may be significant delays in communication over the bus.

The algorithm considered here ignores the last two difficulties, i.e. we assume there

is a single sender and a single receiver and each upgoing signal is seen instantaneously

by the receiver. We verify for arbitrary length bit streams that the receiver correctly

receives all bits, and realizes the bit stream has finished in a timely fashion.

The sender and receiver have the same clock error tolerance of ±T%. The receiver

interprets the up signals by rounding the times they are received to the nearest time

it expects them to be sent, i.e. to the slot edges or to the middle of a time slot,

whichever is closer. We use the constant Q to denote 1/4 the length of the bit slot.

The protocol is modeled using two primary components, the sender and the re-

ceiver, and a number of auxiliary processes for the stream of bits, pointers into the

stream, and processes coordinating the reading of bit values and generation of the

nondeterministic bit sequences. The overall structure of the system is shown in fig-

ure 7.5.

7.3. CASE STUDY: MANCHESTER BIT ENCODING 141

7.3.2 Modeling arbitrary length bit streams

We briefly indicate how we model arbitrary length bit streams. SCAs have only

finite control structure, so they cannot store the value of an arbitrarily long input bit

stream, model the message being sent and received, and then compare the received

message with the input.

Generating bit sequences

Instead, we generate the bits to be sent on-the-fly, and compare each received bit

with its intended value as it is received. Each correctly received bit may then be

discarded. This is modeled by the reuse of bit values. The protocol is such that we

need only store a small number of the most recent bits: this is because the receiver

can never get too far "behind" the sender in acknowledging bits sent.

We store the most recent bit values as a list of separate processes, one per bit. Bit

values are either 0, 1, or null. A null bit indicates the end of the list. Both the sender

and receiver maintain pointers into the list. Each time the sender reads another bit

to send it advances its pointer into the bit list and, if necessary, the next bit value(s)

to send is also nondeterministically chosen. Care is taken to ensure that the resulting

bit stream is legal, i.e. bit streams are either odd in length or end in 00. Whenever

termination is chosen, the values 0, 0, and null are selected for the next three bits if an

even number of bits have already been sent, and the value null is selected otherwise.

Since the receiver is sometimes two bits "behind" the sender, we need to store the

last 5 bit values. However for simplicity of description, we choose to model an even

number of bits in order to maintain the parity of bits, and hence store 6 bit values.

In addition the first bit is treated separately since it must always be 1.

Verifying timing properties

Bosscher et al prove the timing property that the bit stream is output by the

receiver within (4m + 5)Q/(1 - T) time units, where m is the length of the message.

We are also able to automatically verify this property, despite the fact that it appears

to be described by a timing constraint on a clock that must increase without bound.

142 CHAPTER 7. HYBRID SYSTEMS

xt < 4Q/(1-T)

inc send head
xt := 0

Figure 7.6: Timing specification

We achieve this by proving a stronger property, namely that whenever the sender

reads a bit to send, either the next bit to be sent is read within 4Q/(1 - T) time

units, or the bit stream is output within 5Q/(1 - T). This property implies that the

output takes place within the desired time, since the deadline for output is delayed

by at most AQ/(l-T) time units for every bit sent. This localized property can be

encoded in the timed automaton of figure 7.6 using fixed time bounds, and therefore

used as input to our verifier.

7.3.3 Sender

Figure 7.7 shows the SCA for the sending process. The sender starts execution as

soon as it receives the list input signal. During transmission it looks ahead at the

next bit value, and decides whether it needs to perform an intermediate transition

before sending the bit signal in the middle of the time slot. Thus the sender must

keep track of the current voltage value. After transmitting each signal, the sender

immediately increments Send-Head, its pointer into the bit stream, reads the next bit

to send, if any, and decides how long to wait until its next signal. Timing constraints

are correctly maintained by the skewed clock x which is reset each time there is a

voltage change. It is relatively straightforward to see that the query-reset alternating

7.3. CASE STUDY: MANCHESTER BIT ENCODING 143

Figure 7.7: Sender

voltage change. It is relatively straightforward to see that the query-reset alternating

property holds. The processes for reading and generating the bit sequences appear in

figures 7.8 and 7.9, and are explained in more detail below.

Reading pointer values

Our automata have no explicit means of managing pointers. Thus to determine

whether the "next" bit has value 0, 1 or null, we cannot refer directly to the bit

pointed to by Send-Head. We model this by enumerating the possible values of the

head pointer and the bit values and creating separate events for each combination.

However, listing the result of each possible combination in the sender process would

144 CHAPTER 7. HYBRID SYSTEMS

next is null

next is 0
inc send head

inc send head

head is 0 bit is 0
head is 1 bit is 0
head is 2 bit is 0
head is 3 bit is 0
head is 4 bit is 0
head is 5 bit is 0

inc send
head

head is 0 bit is null
head is 1 bit is null
head is 2 bit is null
head is 3 bit is null
head is 4 bit is null
head is 5 bit is null

^j/^ inc send head

head is 0 bit is 1
head is 1 bit is 1
head is 2 bit is 1
head is 3 bit is 1
head is 4 bit is 1
head is 5 bit is 1

next is 1

Figure 7.8: Process monitoring reading head of bit stream

clutter its description. So for clarity we choose instead to use a separate process

Read-Bits, depicted in figure 7.8, which keeps track of the current value of the next

bit. From its unknown state, it immediately determines the value of the next bit, as

described above, and enters either head-0, head-1, or head-null. From these locations,

it can freely allow the sender to read the head value. Because we want the process to

be ready for the sender to read the next bit value at any time, we force control to leave

the unknown location as soon as possible by making its outgoing transitions urgent1.

Whenever an event occurs which may alter the value pointed to by the Send-Head, the

Read-Bits process reenters its unknown location. We note that an extended syntax

for timed automata would eliminate the need for the Read-Bits process, e.g. allowing

abstraction of events, or pointer values. In any case, the description we give matches

exactly the input for the current implementation of our verifier.

*It is straightforward to augment the definition of SCAs and the üf-transformation with urgent
events, while maintaining reducibility to TSAs.

7.3. CASE STUDY: MANCHESTER BIT ENCODING 145

Head is first bit is 0 Head is 1 bit is 0 Head is 2 bit is 0 Head is 0 bit is 0
Head is first bit is 1 Head is 1 bit is 1 Head is 2 bit is 1 Head is 0 bit is 1

Head is first bit is null Head is 1 bit is null Head is 2 bit is null Head is 0 bit is null

j choose_bit_l \ i/ • j choose_bit_2 \ ii choose_bit-0 mc send \ f inc send
head / Ncant choose/ \ head /Ncant choose/ \ cant choose/

first) >(prel) g.(qlj ^-^^l)— g(q2J "' 51^

inc send head

Sender head

choose_bit J cant choose

choose i end
^transmitting^

Process monitoring termination

Figure 7.9: Processes for generating and reading bits

Generating the bit sequence

As mentioned above, bit values are dynamically chosen each time the sender incre-

ments its pointer into the list of bits. The bit sequence may increase in length by

choosing a 0 or 1 value. Alternatively, it may nondeterministically choose to ter-

minate. However we must be careful to ensure that only valid bit sequences are

generated. If an odd number of bits has been sent already, the next bit takes value

null. If an even number of bits have been sent, we append 00 to the bit sequence,

and so the next 3 bits are affected, taking values 0, 0 and null, respectively. In this

way, all valid bit sequences may be nondeterministically generated. In addition, the

system uses a process monitoring termination which keeps track of whether the list

has terminated. This is necessary in order to ensure the trailing 0, 0, null sequence

of bits for an even length sequence are not mistakenly overwritten with new values.

146 CHAPTER 7. HYBRID SYSTEMS

y:=0

7.3.4 Receiver

Figure 7.10: Receiver

The process modeling the receiver appears in figure 7.10. Depending on the last

bit received, and the delay between the upgoing signals it detects, it infers which

bit values are being sent. The receiver is in two basic modes, depending on the last

bit received. For each mode, there is a waiting location (lasLO and lasLl), where it

passively rests until it detects an up signal. The process then decides which bits to

"add" to its bit stream. After adding the bits, it uses urgent events to return to the

appropriate waiting location. The list is output, if, however, an up signal does not

appear within a reasonable time, i.e. within 1Q time units after the last signal if the

7.3. CASE STUDY: MANCHESTER BIT ENCODING 147

Ack first is 1

Prev even

Ack 1 is null

Ack 1 is 0

Ack 1 is 1

Prev not even

Ack 2 is null

Ack 2 is 0

Ack 2 is 1

Prev even

Ack 5 is null

Ack 5 is 0

Ack 5 is 1

Prev not even

Ack 0 is null

Ack 0 is 0

Ack 0 is 1

Prev even

Receiver head

inc rec head

Figure 7.11: Receiver head of list pointer

signal indicating the last bit was 0, and within 9Q if the last signal caused the last

bit added to be 1. At this point, a trailing 0 bit may be added to the list, depending

on the value of the last bit received, and whether the sequence received so far is odd

or even in length.

The addition of violation states, marked as nodes labeled with an X, to the re-

ceiving process enables it to serve as the specification for the correct reception of all

bits. Whenever this process does not correctly receive bits, or notice the end of the

bit sequence, a violation is flagged.

The details of how the monitoring works is similar to the modeling of the sender.

The variable recJiead indexes the stream of bits, pointing to the next bit which should

be received. When the receiver decides to add bits to the sequence it receives, the

process actually attempts to acknowledge that these are the correct bits in the chosen

bit stream. If it cannot acknowledge the correct bits, it enters the failure location.

Again urgent events are used to ensure the tests for acknowledgement all happen

without time passing, and control returns to one of the waiting locations.

For completeness, figures 7.11, 7.12, and 7.13 show the automata for the remaining

processes: the receiver's pointer into the list of bits, the individual bits with their

response to terminating the bit sequence, and the acknowledgement mechanism for

148 CHAPTER 7. HYBRID SYSTEMS

head is i bit is 0
Ack i is 0

head is i bit is 1
Ack i is 1

head is first bit is 1
Ack first is 1

choose i = 0
choose i end

choose-bit J ^ /-"" \ _ choose-bit J
choosing j ~ -S ql

choose i = 1

choose (i-2) end f 7\ choose (i-2) end
 Y---L »f mil 4* -^—'

Bit-first head is i bit is null
Ack i is null

Bit-i (i=2k)

head is i bit is 0

AckiisO choose (i-1) end

head is i bit is 1
Ack i is 1

choose_bit J /^ ^~\ . choose-bit J
choosing J " -A ql

choose i = 0 choose i = 1

choose i end

head is i bit is null
Ack i is null

Bit-i (i=2k+l)

Figure 7.12: Bit processes

abstracting events for the acknowledgement of bits depending on the value of the

receiver's pointer.

7.3. CASE STUDY: MANCHESTER BIT ENCODING 149

Ack null

AckO
inc rec head

inc rec head

Ack first is 0
Ack 0 is 0
Ack 1 is 0
Ack 2 is 0
Ack 3 is 0
Ack 4 is 0
Ack 5 is 0

Ack first is null
Ack 0 is null
Ack 1 is null
Ack 2 is null
Ack 3 is null Ack 1
Ack 4 is null
Ack 5 is null

inc rec head

Ack first is 1
Ack 0 is 1
Ack 1 is 1
Ack 2 is 1
Ack 3 is 1
Ack 4 is 1
Ack 5 is 1

Figure 7.13: Process coordinating acknowledgements

Chapter 8

Implementation and Results

The approximation algorithm for verifying real-time systems has been implemented

and tested on several examples. For the more challenging verification problems, it

outperforms other symbolic verification algorithms we have implemented, as well as

KRONOS, a symbolic model-checker developed elsewhere.

8.1 Implementation

Two forms of the algorithm - approximating only timing information, and approx-

imating over both timing information and the control locations - have been imple-

mented. Time zones are represented by DBMs, and sets of locations by ordered binary

decision diagrams (OBDDs). Unless otherwise stated, the following discussion applies

to the algorithm where control information is also represented symbolically.

The verification problem input is first preprocessed, and then relevant system

parameters, such as the number of clocks in the system, are used in the compilation

into executable code. In theory, the algorithm always terminates, but in practice it

is of course limited by both time, and more importantly, space. If the program has

the resources to terminate successfully, it indicates whether the system is correct or

not. If the system contains a violation, a violating pseudo-trace is generated.

150

8.1. IMPLEMENTATION 151

8.1.1 Input

The input consists of an event-based modular description of a system and its speci-

fication. It also provides the user a simple means of specifying the initial separating

structure.

Problem description

Each system component is a timed safety automaton. A global automaton for the

system is the composition of automata for each component. Each component au-

tomaton is described by its set of locations, event alphabet, initial location, and a

listing of transitions. Components synchronize their actions through shared events.

Associated with each component is an alphabet of event symbols, and an event can

occur provided it is enabled in every component automaton whose alphabet includes

the event.

The specification is also given as a timed safety automaton, and is included in the

input as a special component. Its violating locations are labeled.

Initial partitioning

The user may specify the initial separating structure. It must be given as a partition

of the timed state-space which is determined by each process's control locations.

The user partitions the control locations within each component process, thereby

partitioning the state-space such that two timed-states are in the same separating

class precisely when their control locations are in the same block of the partitioning

for every process component. In other words, given blocks {Xfi as a partition of the

control locations Q* of process i, {q, x) is in the same separating class as (<?', x')

if and only if for all i both (q)i and (q')i are in the same X!j. We require that

the partitioning respect V, and hence the specification process must have its control

locations partitioned with all blocks either containing only violating locations, or

containing no violating locations.

152 CHAPTER 8. IMPLEMENTATION AND RESULTS

8.1.2 Implement at ional variations

We explain here how the algorithm implemented departs from the algorithm described

in chapter 5. The reader may safely choose to skip this section without losing any

understanding of the rest of the chapter.

The algorithm has been modified for the implementation in the following ways,

none of which affect the correctness nor termination properties:

1. separating structures are refined on-the-fly: a separating structure may be re-

fined during a traversal, not just after a traversal is complete. This change

is the most significant variation from the algorithm described in the previous

chapters. The idea is that if it can be detected that a class should be split at

some later point, such as after the traversal, it might as well be split in the mid-

dle of the traversal. This anticipated split refines the approximation right away

rather than waiting until the next set of traversals. However, to avoid excessive

splitting in the middle of a traversal, a limit is imposed on the number of times

a block may be predictively split in this way.

In our implementation, such predictive splits are designed to decrease the over-

approximation. As before, classes are split according to their control locations.

A class may be split if doing so enables a finer approximation which avoids

some states in the reverse direction's underapproximation which would other-

wise have been included. The particular rule implemented attempts to split a

class so that the time-passage events are more accurately approximated. The

reason for this is that the next-state relations are only approximate over time-

passage events, so a great deal of inaccuracy can potentially be introduced in

the computation of time successors. The heuristic we use anticipates such prob-

lems and allows a more accurate calculation of time successors when it appears

the approximation is too crude. More specifically, if the approximating set A

is disjoint from the reverse direction's underapproximation Opp-U, and Ns(A)

is not, the set A may be split by control locations into Ai and A2 if either or

both of Ns(Ai) and Ns(A2) is disjoint from Opp-U. This split is brought into

effect by splitting the separating class containing A in the appropriate manner.

8.2. RESULTS 153

2. Identical classes may be repeated in a separating structure. Theoretically, re-

peated sets may not occur in a separating structure: the definition of a separat-

ing structure requires that each class be distinct. However we choose to allow

repeated sets rather than performing a potentially expensive check to remove

all redundant sets.

3. Disjuncts are combined: transitions which share the same timing information

are combined into a single disjunct in the next-state relation regardless of the

symbol they are labeled by. This strategy allows a more compact system de-

scription, and avoids repeatedly analyzing the same timing conditions. We

found this strategy to be essential when analyzing larger systems, since many

disjuncts do indeed share the same timing constraints. In some cases, systems

with over 400 transitions are reducible to only 20 distinct disjuncts.

4. Splitting occurs over non-maximal sets as well as maximal sets. The algorithm

description requires only that maximal sets be split between different traversals

of the algorithm. However, we avoid the check for maximality and split also

non-maximal overapproximating sets according to locations appearing in the

underapproximation. As well as bypassing the check for maximality, this extra

splitting has the advantage of accelerating convergence of the underapproxi-

mation by allowing the next underapproximation to include more states. For

example, suppose that A has been split into Ai and A2 where A\ intersects the

underapproximation and A2 does not. By separating out states in A2, we make

it easier for reachable states there to appear in the next underapproximation.

For instance, if A2 contains successors of states in the current underapprox-

imation, by the second condition of the l> operator, they will occur in the

next underapproximation (unless their predecessors no longer occur in the next

overapproximation).

8.2 Results

The approximation algorithm enables us to verify larger systems than our previous

154 CHAPTER 8. IMPLEMENTATION AND RESULTS

Ex. TA locns
Nr.

Clocks Mem (MB) Time (s)

Fischer Mutual exclusion
MX-4 1,704 4 4 23

MX-4-e 1,704 4 4 9
MX-7 120,863 7 5 126

MX-7-e 120,863 7 5 56

MX-9 3,259,136 9 9 941

MX-9-e 3,259,136 9 9j 585

Fast Mutual exclusion FMX-3 17,377 3 8 144

AUDIO 83,660 2 7 489

AUDIO with timing 202,802 3 14 1077

Ethernet
ETE-A 41,733 6 6 159
ETH-A-e 41,733 6 11 727
ETH-B 27,045 6 9 279
ETH-B-e 27,045 6 7 723
ETE-C 6,405 7 6 197
ETE-C-e 6,405 7 5 89

CSMA 189 4 3 3

Tick-tock protocol
TT:iso-l 384 7 6 148
TT:iso-2 216 6 4 19
TTrtransmission delay 432 7 7 356
TTrspacing 216 7 4 22

MX-i Fischer mutual exclusion, i processes
FMX-i Fast mutual exclusion, i processes

AUDIO Audio control protocol
ETE-X Ethernet examples, Specification X
CSMA Carrier Sense / Multiple Access Protocol

-e example contains error run

Figure 8.1: Results

implementations of verifiers, as well as any other automata-based automatic verifiers.

It is also relatively fast. All code is in C, and the OBDD routines are from David

Long's package. The results in figure 8.1 were obtained on a DEC 5000 with 56

MB of main memory. The number of "reachable" TSA locations refers to those

locations forwards reachable in an untimed analysis of the state graph, i.e. assuming

the enabling of events is independent of the timing conditions. We note that we are

able to verify systems with over a million control locations.

8.3. ADDITIONAL HEURISTICS 155

Ex. TA locns

SINGLE
LOCNS

SETS of
LOCNS (OBDDs)

Itns Time (s) # Itns Time (s)

MX-4 1,704 1 3 12 23
MX-4-e 1,704 1 26 3 9
MX-7 120,863 — — 18 417

MX-7-e 120,863 — — 4 37

ETH-A 41,733 — — 1 220
ETH-A-e 41,733 — — 7 1501
ETH-B 27,045 1 2160 1 108
ETH-B-e 27,045 — — 3 1929

Figure 8.2: Single locations vs sets of locations

Approximating over control information

For the larger examples we considered, the implementation using a symbolic repre-

sentation of sets of control locations far outperforms the one with all control locations

separated, see figure 8.2. It should be noted however that performance may depend

critically on the initial separating structure used.

8.3 Additional heuristics

8.3.1 Choice of initial partition

The system designer is capable of using her own knowledge of the system to aid the

verification procedure, by judicious choice of an initial separating structure. Many

other automatic verification techniques do not allow the user to supply useful infor-

mation directly to the verification package. Typically the verification engineer must

have a thorough understanding of both the system being verified, and the algorithm

being used to verify it, and then devise a clever encoding of the problem which takes

both into account. While optimal use of the approximation algorithm also requires

knowledge of both the system being verified and the approximation technique, the

features of the algorithm can be exploited without having to manipulate the system

description itself. The user need only tell the algorithm where to approximate the

truly reachable states more carefully, and where it can be more lax. In general, states

156 CHAPTER 8. IMPLEMENTATION AND RESULTS

can be kept in the same separating class whenever their outgoing behaviors are in

some sense similar. The following heuristics can be used to guide the choice of an

initial separating structure:

• parts of the state-space where timing information (either for outgoing con-

straints or incoming timer values) is similar can be clustered together.

• the state-space should be finely partitioned in areas where timing information

is critical for correct operation.

• states which correspond to different branches of a critical case analysis should

be separated.

• processes or variables which play a key role in the correctness of the specification

should be partitioned more finely.

• the size of the initial separating structure should depend on the memory avail-

able. If a machine has only enough memory to store n approximating sets

and their associated overhead, then a good heuristic is to keep the size of the

initial separating structure less than n/30. This policy allows room for the

four converging approximations, while still permitting reasonable growth due

to splitting.

As an example, if the Fischer mutual exclusion protocol for six processes is ver-

ified by separating out locations based only on their specification component, the

computation takes 17 traversals to complete in 343s. If a finer partition is chosen,

namely splitting also according to the value of the critical controlling variable X, only

5 traversals are made and verification completes in 57s. If the additional splitting is

done for process 1 rather than for the control variable X we find that 13 traversals

are required in 298s.

8.3.2 Enhanced underapproximations

Experience shows that the main drawback to the performance of the approximation

algorithm is due to slow convergence of the underapproximations. Slowly increasing

8.3. ADDITIONAL HEURISTICS 157

underapproximations not only hamper the detection of violations, but also contribute

to slow downward convergence of the overapproximations, since the refinement of the

separating structures relies on information from the underapproximations.

In the case of real-time systems, the underapproximating operator over time zones

is extremely weak. It essentially throws away information about its second operand

unless it contains the first. In other words, sets of newly reachable timer vectors are

discarded unless their time zone includes all timer vectors already reached within the

class.

We now discuss further two techniques which help the propagation of the under-

approximations.

Multiple underapproximation sets

The first strategy is to allow the underapproximating operator to return expansions

which contain more than one approximating set. Allowing more approximating sets

in the underapproximation results in more accurate underapproximations, but at the

expense of additional memory. At one extreme we may chose to allow an underap-

proximation to consist of arbitrarily many approximating sets, and let the underap-

proximating operator return the union of its operands. In this case, computing an

underapproximation will be essentially the same as performing exact set reachability.

A happy compromise between a weak underapproximation and an exact computation

is to allow the user to specify a fixed maximal number of approximating sets as the

result of an application of the underapproximation operator.

Figure 8.3 shows how increasing the number of approximating sets can decrease

the number of iterations necessary. The possible cost is more memory for storing an

increased number of approximating sets.

Stuttering the next-state relation

Underapproximations can be propagated throughout the state-space without the need

for storing more approximating sets. First observe how a truly reachable state may be

left out of the underapproximation. Suppose s € S is in the underapproximation but

one of its successors s' is not. The non-emptiness condition for underapproximating

158 CHAPTER 8. IMPLEMENTATION AND RESULTS

1 U/A SET 3 U/A SETS 5 U/A SETS 7 U/A SETS
Itns Time Mem Itns Time Mem Itns Time Mem Itns Time Mem

Ex. # s MB # s MB # s MB # s MB

MX-4 14 32 3.8 4 10 3.7 4 11 3.8 2 5 3.6
MX-4-e 3 6 3.7 2 6 3.7 2 4 3.6 2 4 3.6
MX-7 17 389 5.4 6 160 4.9 6 198 5.0 4 126 4.9
MX-7-e 3 69 4.8 2 67 4.7 2 55 4.5 2 56 4.6

Figure 8.3: Multiple underapproximating sets

operators implies the only way this can occur is if every separating class containing

s' already contains other states in the underapproximation. If the only separating

class containing s' also contains s, it may well be that no other successors of s appear
in the underapproximation at all. Propagation of the underapproximation may be

"stalled" at s.

d Co

t'- t"

This nonextension of states in the underapproximation can be partially solved by

computing successors using an iterated (or stuttered) next-state relation, i.e. N can

be replaced in the underapproximating algorithms with some Nk, where Nk is the

result of composing N with itself k — 1 times.

8.3.3 Untimed analysis

Sometimes computing even the first approximation of the reachable timed-states is

expensive. A preliminary untimed analysis may be able to prune large parts of the

state-space from consideration. For example, it may be that many control locations

are forward reachable from the initial states, but not backwards reachable, and in

this case the first forwards overapproximation will explore numerous control locations

unnecessarily. A simple untimed backwards reachability analysis would rule out many

of these control locations.

8.4. PERFORMANCE COMPARISON TO OTHER TOOLS 159

We propose the following procedure to cope with such situations: first analyze

the state-space by ignoring all timing information, and then begin approximating the

reachable timed-states over the reduced state-space. The untimed analysis should re-

turn a superset of the control locations which may possibly lie on violating paths. This

phase considers the timed automaton as a simple (untimed) finite-state automaton,

with an edge between two control locations whenever there is a transition between

them. The analysis may be either exact or itself approximate, but it must yield an

overapproximation of the control locations on violating paths. Indeed, this first un-

timed analysis may be considered to be a special case of overapproximating with an

approximate next-state relation which disregards timing constraints and clock resets.

In our implementation, the untimed analysis consists of an exact forwards untimed

traversal of the states, followed by an untimed backwards reachability analysis from

the violating locations which are encountered.

The disadvantage of performing this untimed analysis is that it may itself be

expensive to perform, and indeed may not even complete.

We note in passing that this untimed analysis may be sufficient to prove the system

is correct, in which case either the system does not depend on timing information for

correctness, or there is a description error in the input.

Observe that the algorithms of Alur et al [AIKY93] and Balarin et al [BSV93]

also begin with an untimed analysis, and iteratively restrict the untimed traces by

adding untimed components to rule out paths which are not possible because of timing

constraints. In contrast, we use the untimed analysis merely as a special preliminary

procedure to narrow the search space for our state-based approximations.

8.4 Performance comparison to other tools

Meaningful comparison with other implementations is difficult. Firstly there are not

many verifiers which handle dense-time semantics. Secondly, those which do are often

still undergoing development. Thirdly, and perhaps most prohibitive, is the fact each

tool uses at least slightly different formalisms for describing real-time processes, and

for specifying timing properties.

160 CHAPTER 8. IMPLEMENTATION AND RESULTS

We compare our approximation algorithm against our previous implementations

based on set-reachability and minimization, and against the symbolic model-checker

KRONOS, recently been made publicly available by Sifakis et al [NSY92a, HNSY92,

DOY94] at IMAG in Prance.

8.4.1 Reachability and minimization

The approximation algorithm represents a significant practical improvement over a

couple of previously published algorithms we have experimented with. In this sub-

section, we describe our previous implementations and compare their performance.

Many of the ideas behind the approximation scheme advocated here arose from ex-
perience with these other verifiers, and we discuss some of these issues in more detail

in section 8.5.

Set-reachability

A basic set-reachability algorithm is given in figure 4.4 of section 4.4. It can be

used in a straightforward way to solve the timed safety verification problem, since

it computes exactly which regions have states which are reachable from the initial

states. It can also be easily modified to prove stronger properties involving fairness.

One problem with explicitly enumerating all nodes in the regions graph, is that

many different regions need to be examined, and the size of the graph generated

depends crucially on the size of the timing constraints used. Set-reachability does

much better locally, since all successors of a single transition can be added in a single

step. For example, sets of time successors can be clustered together in a single DBM.

In systems with simple looping structures this algorithm may be quite effective, but

in more complex examples, a single control location can be entered along different

transitions, each with different timing constraints. When the algorithm follows these

transitions, many new sets may be generated. Of all the algorithms we provide

comparative data for, this one is the least efficient in practice, as shown by the data

in figure 8.4 appearing later in this section.

8.4. PERFORMANCE COMPARISON TO OTHER TOOLS 161

Minimization

An approach to circumventing the size of the regions graph is to build instead a mini-

mal representation of the reachable part of the graph. The algorithms of Bouajjani et

al [BFH+92] and Lee and Yannakakis [LY92] simultaneously minimize and generate a

superset of the reachable subgraph of a transition system. We implemented a variation

of the algorithm of Bouajjani et al applied to timed automata [ACH+92, ACD+92].

We refer the reader to their publications and only sketch the ideas behind their al-

gorithm. The algorithm starts with a transition system and an initial partition of

its states. A class X is stable if whenever a state s € X has a successor in a class

X', all states in s's class have successors in X'. The algorithm continually refines the

partition by splitting reachable classes which are not stable with respect to the other

classes.

Lee and Yannakakis's minimization algorithm [LY92] is similar to the one above.

They specify an explicit strategy for choosing which class of the partition to split

next. Their selection strategy guarantees an upper bound on the running time which

is quadratic in the size of the minimal graph, provided there is a finite minimal

graph and a means of detecting termination. The idea is to search forward to find

classes which need to be split, and to give every class a fair chance of being split.

Classes are marked with reachable points, and consequent splitting is done "around"

this reachable point, thereby ensuring that all splitting is done on reachable classes.

Yannakakis and Lee [YL93] also discuss how the algorithm can be applied efficiently

to minimize a real-time system.

The most straightforward use of the minimization algorithm for safety verification

would be to generate the minimal reachable graph starting from an initial partition

which separates the violating states from the rest. We could then check whether any

block containing violating states were reachable. If any were, then the system would

contain a violation.

The algorithm we implemented improves on this strategy by avoiding unnecessary

refinement of the graph. The modifications are based on the simple observation that it

is not necessary to generate the exact minimal reachable graph in order to determine

whether the violating states are reachable. For instance, if a class A is unstable with

162 CHAPTER 8. IMPLEMENTATION AND RESULTS

respect to a class B, and it is known that no violation states are accessible from

states in B, then it is unnecessary to split A with respect to B. Of course we do not

know in advance exactly which states lie on violating paths, but we can ascertain for

sure that some do not using the following reasoning. Given a set-graph G that has

an edge between two nodes A and B whenever there are states a € A and b € B

such that N(a,b), then the states in reach(G) contains reach(S). Thus we may be

able to determine that some blocks contain only states that definitely have no paths

to violating states: although they may be reachable, we need not stabilize them, or

stabilize other classes with respect to edges into them. Thus we advocate specializing

the minimization algorithm by periodically removing from consideration all classes

from which violation states are not accessible. We also developed refined methods

for choosing which class to split next, an order for the transitions to be stabilized in,

lookahead strategies for increasing the number of classes detected as reachable, and

simple techniques to ensure refining of the graph occurred evenly across the state-

space rather than potentially wasting effort in a localized area which does may not

lie on any violating paths.

Comparison

Comparative results are displayed in figure 8.4. Not surprisingly, approximation

outperforms set-reachability. It is also far more efficient, in time and space, than

our implementation of the minimization-based verifier, despite the large number of

heuristics added to the latter. The results suggest that an exact reachable state

analysis of a real-time system is both expensive and unnecessary for many timing-

based verification problems.

8.4.2 Symbolic model-checker KRONOS

The model-checker KRONOS [NSY92a] computes whether a given timed safety

automaton satisfies a specification given as a formula in the branching-time temporal

logic TCTL [ACD90] where modal operators are time-bounded. It implements the

symbolic model-checking algorithm found in [HNSY92].

8.4. PERFORMANCE COMPARISON TO OTHER TOOLS 163

Ex. TA locns

SET
REACH. MINIM. APPROX.
Time (s) Time (s) Time (s)

GTC 32 1 4 1

MX-3 344 5 2 8
MX-3-e 344 27 26 3
MX-4 1,704 28 15 23
MX-4-e 1,704 -m- -m- 9
MX-7 120,863 -m- -m- 417
MX-7-e 120,863 -m- -m- 37

FMX-3 17,377 -m- 197 608

ETH-A 41,733 -m- -m- 220
ETH-A-e 41,733 -m- -m- 1501
ETH-B 27,045 -m- -m- 108
ETH-B-e 27,045 -m- -m- 1929

GTC Gate-Train Controller
MX-i Fischer mutual exclusion, i processes

FMX-i Fast mutual exclusion, i processes
ETH-X Ethernet examples, Specification X

-e example contains error run
-m- ran out of memory

Figure 8.4: Comparative results

Our process semantics exactly match that of KRONOS. However their specifica-

tions are more general than ours. They verify formulae written in TCTL, a branching-

time temporal logic with time-bounded modal operators. Using this logic they are

able to express every timed safety verification problem, since reachability is express-

ible in the logic. Furthermore, there are properties given as logical formulae which

are not timed-safety properties, such as non-Zenoness, and the singularity constraint

that an event is never enabled for an open interval of time. In any case, a very pre-

liminary analysis shows our approximation algorithm completes in less time, and uses

less memory. The results for the Fischer mutual exclusion protocol and the tick-tock

protocol examples appear in figure 8.5. The parameter set E has values n = 100,

Tmin = 75, Tmax = 120 and a = 50, F has -K = 100, Tmin = 50, rmax = 75 and a - 150,

and G uses x = 100, Tmin = 75, Tmax = 220 and a = 50. Results were obtained

on a Sun Sparestation 2 with 128 MB of memory, of which all the examples given

were verified by our algorithm using less than 9 MB. Notice that we cannot verify the

164 CHAPTER 8. IMPLEMENTATION AND RESULTS

Ex.
KRONOS APPROX* Factor

Faster #Itns Time (s) #Itns Time (s)

MX-6 12 1174 4 74 16
MX-6-e 10 1323 2 30 44
MX-7 -m- -m- 4 164 -
MX-7-e -m- -m- 2 78 -
MX-8 -m- -m- 4 375 -
MX-8-e -m- -m- 2 220 -
MX-9 -m- -m- 4 891 -
MX-9-e -m- -m- 2 596 -

TICK-TOCK
E:iso-l 15 1016 8 112 9.0
E:iso-2 9 13 4 3 4.0
E:iso-3 1 1 N/A N/A —
E:transmd 17 1227 14 69 17.7
E:sp 7 26 4 4 6.0
E:imm 1 1 N/A N/A —
F:iso-l -e 33 87 4 39 2.2
F:iso-2 7 5 4 3 1.7
F:iso-3 1 1 N/A N/A —
Frtransmd -e 23 191 4 72 2.7
F:sp 8 33 4 5 6.9
F:imm 1 1 N/A N/A —
G:iso-l -e 22 121 6 93 1.3
G:iso-2 9 7 4 3 2.0
G:iso-3 1 1 N/A N/A —
Grtransmd 15 264 10 166 1.6
G:sp 7 20 4 5 4.2
G:imm 1 1 N/A N/A —

MX-i Fischer mutual exclusion, i processes
E/F/G indicates different timing parameters

-e example contains error run
-m- ran out of memory

(*) excludes 1 min compilation time

Figure 8.5: Comparative performance

singularity properties Iso-3 and Imm, since they are not expressible in our framework.

However, for all the properties which can be expressed by both methodologies, the

approximation algorithm is more memory efficient and is able to complete verification

for every example for which KRONOS completes. We are also able to verify systems

with much larger control spaces. For example the Fischer protocol with 9 processes

8.5. LESSONS LEARNT 165

has 9 clocks and 3,259,136 control locations reachable in an untimed analysis, and

verification completes in under 9 MB. Our implementation is up to 44 times faster

over the 6 process example KRONOS can verify. The approximation algorithm is also

consistently faster, up to a factor of 18, over examples published by the developers

of KRONOS, even when the examples use tight timing constraints. The relative ben-

efits of the two verifiers needs to be explored in more depth. Indeed, it appears the

advantages of both verifiers could be exploited by using KRONOS to verify the TCTL

properties not expressible as safety verification problems, and using our approxima-

tion scheme to verify more limited properties over large examples.

8.5 Lessons learnt

The approximation strategies discussed in this thesis, and some of the implementa-

tional choices, are the result of lessons we learnt in building verifiers and examining

how they performed over the case studies described in the previous chapters. This

section collects together some of our experiences, which are by no means unique, in

the hope that it can guide future development of verification tools.

8.5.1 Complexity issues

The worst-case complexity is not always the most relevant feature of an algorithm:

the adversarial problem inputs may occur rarely in practice. This fact suggests it may

be useful to give a stronger characterization of problem inputs, to restrict analysis to

certain useful subclasses of the problem domain, to perform an average-case analysis,

or to provide an analysis which compares two algorithms over each individual input

instance. However, it is usually difficult to define or even describe a "typical" problem,

or give additional useful measures of the problem's complexity.

We note that in our experience some algorithms with poorer complexity outper-

form theoretically optimal ones. The regions construction of Alur and Dill [AD90]

has worst-case complexity exponentially better than the set-reachability algorithm of

Dill [Dil89], yet it is easy to see that in many instances of the train-gate example the

166 CHAPTER 8. IMPLEMENTATION AND RESULTS

size of the regions graph is far greater than the set-reachability graph. In addition,

our implementation of the minimization algorithm of Lee and Yannakakis [LY92] does

not perform better than that of Bouajjani et al [BFH90], despite its theoretical ad-

vantages of being polynomial in the size of the minimized graph. However, one of

their key ideas in providing an upper bound on run-time, namely using points to mark

classes, was very helpful in forcing the splitting of classes to occur throughout the

state-space, rather than being localized. This marking of classes, together with giving

each class a fair chance of being split, is used in their upper bound results. However,

when we experimented with different orderings for splitting classes, we found Lee

and Yannakakis's queuing strategy to have no practical effect on convergence, de-

spite being required for their upper bound result. In fact, we implemented heuristics

based on splitting classes whose successor classes were not marked, and these made

a significant improvement.

8.5.2 Large control spaces

Realistic systems have not only complex timing constraints, but also large control

spaces. While there may be ways to extract the timing properties of some systems,

and analyze them separately, we believe that in general it is essential to be able to

model both timing information and large control spaces in a single system descrip-

tion. It was this fact that lead us to consider algorithms which could share timing

information over different control locations. Otherwise it is likely to be too expensive

to associate timing constraints with every reachable location. A hash table can do

this effectively when the exact same timing constraints apply at many different loca-

tions. However this is not always the case. Approximation can be used to associate

numerous locations, having different exact timing constraints, with the same approx-

imate timing constraints, thereby allowing even further reductions in storage. This

motivates the use of sets of control locations in approximating sets. The results of

this chapter demonstrate the success of this approach.

8.5. LESSONS LEARNT 167

8.5.3 User-supplied information

A good heuristic algorithm should allow the user to provide some guiding information

in a natural and simple way. There is a good chance that the system designer or

verifier has some knowledge about why the system is correct (or why she suspects

it is). It is potentially very useful for this information to be passed directly to the

verifier. For example, enumeration-based techniques usually work with some fixed

steps designed to exhaustively cover every combination of possibilities, without regard

to how its search of the state-space could be optimized. User-intervention could be

used to focus attention in particular areas, or supply invariant information about the

state-space.

Our approximation algorithm has a straightforward means for the user to decide

how roughly or accurately to begin approximating. While this information is very

limited in form, we find it very effective in increasing the performance of our verifier.

For more details, see subsection 8.3.1.

The user may also fix the maximum number of underapproximating sets within

each class. This parameter can be matched with the size of the initial separating

classes. In other words, if there are long paths within the separating classes, the un-

derapproximations may increase very slowly, requiring numerous traversals before all

reachable states within the class are detected. Thus having fewer separating classes

requires more underapproximating sets per class for similar progress in the propa-

gation of the underapproximations. Note that this strategy maintains a relatively

constant total number of underapproximating sets.

8.5.4 Symbolic representations

While we have been suggesting that symbolic representations can lead to reductions

in computation time and memory usage, it must be remembered that only a good

symbolic representation of a problem will help. The representation must be small for

most sets encountered, and admit efficient operations. Furthermore, the algorithm

must consider only a small number of symbolic sets — otherwise it may use more

memory to store sets of states than if it explicitly enumerated the individual states.

168 CHAPTER 8. IMPLEMENTATION AND RESULTS

Time zones

Time zones and DBMs do work well for representing the reachable states of a system.

As shown above, there are fast algorithms for finding successor states of any time zone.

Their canonical form has an 0(n2) representation and is 0(n3) to compute. They

are also closed under intersection, as required by the approximation algorithm. Their

main disadvantage is that they are not closed under union, and in exact reachability

algorithms this can result in a long list of time zones to represent the reachable time

vectors for a given control location. Using approximation has the advantage of storing

only a fixed number of time zones for a location, avoiding the blow-up due to lack of

closure under union.

The overapproximation operator is an effective means of capturing the information

in its operands. It returns the smallest possible zone which contains its operands,

and is in effect the pairwise disjunction of all constraints needed in defining them.

Quite often this zone encapsulates sufficient reachability information for an accurate

approximation. For instance, it is common for the value of a particular clock to be

irrelevant in determining the outgoing paths from a state s. Approximation over the

values of such a clock at s does not directly lead to any false negatives. In other

cases, outgoing traces from s depend only on whether a clock x lies above (or below)

a certain threshold, I say. Storing information about the exact reachable values is no

more useful that knowing whether any reachable values exceed the threshold I, and

this information is retained by the overapproximation operator.

OBDDs for control information

We find that using OBDDs for the control component of the state-space is also ef-

fective. Firstly, there are potentially many control locations with the same timing

constraints on reachable states. In systems with large control spaces, there may be

many events which are essentially asynchronous, and only a small part of the system

which is really timing dependent. Many events may have no timing constraints as-

sociated with them. The constraints associated with state s are the same as for its

successor state s' if the only event into s' originates at 5 and is independent of the

8.5. LESSONS LEARNT 169

clock values. Thus the time zones for these adjacent states are identical. Further-

more sets of adjacent states often have small OBDDs since they may be obtained

via untimed events occurring individually in different components. This observation

also allows effective initial partitioning which clusters together locations which are

separated only by untimed events.

The benefit of using OBDDs for control information is even greater when approx-

imations are used. The arguments in the previous subsection for why approximate

timing information is often good enough still holds over sets of locations. Thus we have

the potential to pool together states across different locations with slightly varying

timing constraints into single approximating sets, without much loss of information.

We find this space saving to be necessary for analyzing systems with control spaces

too large for storing individual DBMs per location.

Finally we note that the form of initial partitioning we use, dividing the control

space via a crossproduct of partitions per component, leads to small OBDDs for each

initial separating class, and therefore helps to keep the size of OBDDs in subsequent

separating classes small.

OBDDs for timing information

It is possible to use OBDDs for encoding timing information, i.e. they can encode the

detailed regions of the Alur-Dill equivalence relation, and then arbitrary sets of timed

states can be represented within a single framework. However, this approach does not

look promising. The problem is that there are too many dependencies across clocks

in different components, leading to large OBDDs. For example, computing the time

successors of a set of regions involves checking that the values of all clocks increase

at the same rate. In fact, our own experiments with OBDD-encoded regions graphs

resulted in worse performance than explicit analysis.

8.5.5 Simplify the problem

Hard problems should be simplified wherever possible until the work of the verifier

is computationally feasible. In other words, it is extremely helpful if some human

170 CHAPTER 8. IMPLEMENTATION AND RESULTS

reasoning can be used to reduce a verification problem into a simpler form before

handing it to the automatic verifier.

Unnecessary computation may be avoided via restrictions on the problem domain.

In our case, we first choose to concentrate only on reachability properties. This

simplifies our algorithms and enables us to focus on the key issue of representing

state information. Furthermore, if we cannot tackle the simpler problems, there is

little hope for the harder ones. However, we do of course sacrifice expressiveness.

Secondly, we rely on syntactic conditions to guarantee our systems are non-Zeno.

This choice saves the verifier from checking this property. One approach we took

in earlier work [ACD+92] was to have the verifier iteratively create graphs whose

paths were guaranteed to be divergent. The algorithms first generate graphs which

represented all timed runs. If these graphs are empty, the system is verified correct.

If not, they are successively refined until the only remaining paths corresponded to

divergent traces. This extra computation is time-consuming and causes the graphs

to grow rapidly.

Finally, we note that minimization-based techniques use the wrong criterion for

splitting classes, if the problem to be solved is reachability. The splitting is too

exacting for plain reachability analysis, since it is really bisimulation-based. This is

no poor reflection on the minimization algorithms themselves, but rather a comment

to tailor techniques to match the problem at hand.

8.5.6 Indications of progress

When attempting to verify large systems, a verification attempt will often run for

a long time, seemingly indefinitely, or simply fail reporting a lack of memory. In

such cases, it is useful to have an idea of how close the verifier is to solving the

problem. This information can be helpful in deciding whether a particular encoding

of a system is effective for a given verification algorithm. It can also be a useful

measure of whether one algorithm is better than another, and is thus extremely

useful in designing heuristics.

As an example of a progress indicator, for explicit enumeration methods, the ratio

of new states encountered (or the size of the search stack) may give some indication

8.5. LESSONS LEARNT 171

of how much of the reachable state-space has been found. In symbolic reachability,

the sizes of the OBDDs often slowly increase to a peak and then decline, so their sizes

can help predict how far the algorithm is from terminating.

For our approximation scheme, where there is a choice of parameters for the ver-

ifier's execution, it is even more important to have an indication of how close the

verifier is to deciding correctness. Indicators can be used to guide how to choose

effective parameters. Both kinds of convergence patterns mentioned above have been

observed in the execution of our approximation algorithm. Firstly, for any given ap-

proximation the size of the search stack gives some indication of progress. Secondly,

and perhaps of more concern is how close the successive approximations are to de-

ciding correctness. Interestingly enough, for the examples we have looked at which

require more than just a few traversals, there is a clear convergence pattern in the

size of the approximations. In the first two traversals the size of the approximations

usually decreases, since large parts of the state-space can be eliminated as being not

both forwards reachable from the initial states and backwards reachable from violat-

ing states. Then the sizes usually increase, close to monotonically, and then decrease.

We offer an intuitive explanation of this rise and fall in the size of the approxima-

tions. Changes in the size of the approximations are due to two competing factors.

Separating classes which are too large need to be split, leading to larger approxima-

tions. On the other hand, as approximations become more accurate, some previously

included states can be eliminated, including some entire classes, leading to smaller

approximations. Initially the approximations are too crude and the overly large sep-

arating classes need to be refined. Each successive traversal splits more classes, and

enables the underapproximations to increase accordingly. Rough approximations are

not good at eliminating states falsely believed to be reachable, so the number of

classes eliminated is initially small. Thus the approximations start increasing in size.

When the separating classes give more accurate approximations, more classes will be

eliminated, and fewer classes need to be split further. This phase is detected as the

decline in the size of the approximations.

Having this simple guide to convergence can be helpful in deciding how to configure

the approximation algorithm. Recall that the two primary parameters to the verifier's

172 CHAPTER 8. IMPLEMENTATION AND RESULTS

execution are the initial partition, and the number of underapproximating sets allowed

per separating class. Adjusting either or both of these parameters and watching the

convergence pattern of the approximations gives an idea of how effective changes are.

Furthermore the relative sizes of the underapproximations to the overapproximations

indicates how effectively the underapproximations are propagating through the state-

space. If the underapproximations progress too slowly, the parameters can be adjusted

accordingly.

8.5.7 Debugging information

It is crucial for a verification tool to provide useful debugging information for systems

which are found to be incorrect. The first few attempts to describe a system inevitably

contain syntax errors, or modeling errors, and a stark certification of "not correct"

from the verifier does nothing to help the designer model the system more accurately.

Our current implementation provides traces whenever errors are found. However

these are only violating pseudo-traces (see section 2.3.5). The algorithm could be

adapted to produce true violating traces, but this feature is not supported in the

current prototype. Furthermore, timing information is output via DBMs which are

not easy to interpret — there is no explicit distinction between defining constraints

and inferred constraints. The DBMs could be output via their defining constraints

only, and a path of timed-states could be extracted from a path of regions, but again

the necessary routines are not currently implemented. The control information is

output in a more user-friendly fashion, not as OBDDs, but as a listing of the control

locations they represent, in disjunctive normal form over each component's locations.

While admittedly limited, this debugging information has generally proven sufficient

for understanding errors.

8.6 Summary

Despite the fact that the verification of hard real-time systems is a difficult compu-

tational problem (PSPACE-complete), many examples are solvable in practice using

8.6. SUMMARY 173

our heuristic approximation methodology. Our implementation has been able to au-

tomatically verify systems with reasonably large control spaces and complex timing

information — largely due to our ability to combine timing information across differ-

ent locations of the state-space into single approximating sets.

The method does have its shortcomings. Sometimes even approximate analysis

is expensive to compute. Furthermore there may be many iterations required before

convergence. It is not always easy to choose a good initial partitioning: too fine a

partition means that there is little advantage gained from approximating, and the

size of the approximation can be large, whereas too coarse a partition may cause the

approximations to be too crude, and require numerous traversals of the state-space.

If all timing constraints in the system are tight, then approximation will have little

benefit since correctness will not be detected until the approximations converge to

being close to exact.

The algorithm performs well in detecting bugs in systems. More often than not,

an attempted verification contains a description error which leads to false violations.

It is therefore desirable for a verification algorithm to report errors efficiently. Our

implementation has proven effective in catching such errors and in providing useful

debugging information, albeit encoded in a symbolic form (DBMs) where the defining

timing constraints are not clear. This could be improved in future implementations.

The structure of the approximation algorithm is sufficiently flexible to enable

numerous enhancements and heuristics beyond the basic algorithmic description of

chapter 5. Because each traversal need not compute an exact set of reachable states,

there is a great deal of freedom in how an approximation algorithm can be designed.

While some heuristics have been outlined here, the wealth of possible extensions is

enormous.
Additional care and optimization could be applied to the code independently of the

approximation strategies. For example, there are specialized algorithms that could

be used for computing successor regions faster, minimizing the number of canonical-

izations necessary, performing faster canonicalizations when only a few constraints

are changed, and coalescing adjacent zones into single zones when possible [Rok93].

While we have concentrated on the approximation aspects of the algorithm during

174 CHAPTER 8. IMPLEMENTATION AND RESULTS

its implementation, there is no reason why these other optimizations could not also

be incorporated.

Finally, it should be noted that no computationally efficient algorithm can counter

the shortcomings of describing real-time systems in the low-level language of timed

automata. In our experience, we encountered many description errors resulting from

incorrect modeling in the timed automaton framework. It would be extremely help-

ful to have high-level description and specification languages. These could then be

compiled into timed automata for the purpose of verification. Indeed, Nicollin et

al [NSY92a] have developed a compiler from the process algebra ATP into timed

safety automata, and Daws et al [DOY94] give translations from ET-LOTOS to timed

safety automata.

Chapter 9

Conclusions

This thesis proposes a flexible approximation scheme for efficient safety verification.

It has been specialized for the verification of real-time systems. An implementation of

this algorithm shows very promising results. We now make suggestions for the future

and offer concluding remarks.

9.1 Further work

9.1.1 Extensions

The approximation framework we have described is very general. There is plenty

of scope for defining additional heuristics to either split classes further, not split

them at all, or even recombine them. Also, in the current set-up, one approximation

is computed at a time, either forwards or backwards, either overapproximating or

underapproximating. It would be interesting to see how well approximations could be

generated simultaneously. Another interesting direction to investigate is user-directed

refinement, rather than having the algorithm run fully automatically.

9.1.2 Real-time verifier

We have found that our verifier works very well on the reasonably large real-time

examples we have tested. We are still investigating further heuristics to increase

175

176 CHAPTER 9. CONCLUSIONS

the algorithm's effectiveness. One such example is the use of a "widening" opera-

tor [Hal93b] to accelerate the convergence of iterations within each individual traver-

sal. A straightforward widening operator has been implemented for simple timed

automata, resulting in mixed success only. Fairness could also be introduced into the

semantics of processes.

The verifier we have built is definitely a prototype. It was developed to test and

explore the ideas in this thesis. No work has been put into designing a friendly user-

interface. There are also many inefficiencies in our implementation, such as memory

handling and the storage of DBMs, which could be removed to improve efficiency.

It would be interesting to see how well the approximation technique of Alur et

al [AIKY93] and Balarin et al [BSV93] could be combined with our state-based ap-

proximations. In principle, it is not difficult to iteratively add timing constraints into

our approximation algorithm, as a special case of overapproximating next-state rela-

tions. An off-line examination of potentially false negatives can drive the convergence

of the approximating relations.

The implementation needs to be tested on a wider variety of examples. This would

lead to a better understanding of the verification problems that occur in practice and

point to improved heuristics. A more detailed performance comparison with the other

verifiers would be valuable, especially the timing approximation methods of Alur et

al and Balarin et al.

9.1.3 Other problem domains

It would be interesting to see how well the approximation algorithm works when

applied to systems other than real-time systems. The success of the algorithm for

timed systems is due to the fact that timing information can sometimes be clustered

together into a single zone without including timer vectors which exhibit different

behavior.

Given a different problem domain, we need an efficient symbolic representation

and approximation operators which are meaningful, and in some sense likely to clus-

ter together only bisimilar states. We suggest possible generic operators for overap-

proximation and underapproximation. Given a domain of approximating sets for a

9.1. FURTHER WORK 177

problem, the overapproximating operator could return the smallest enclosing approx-

imating set, and the underapproximating operator its right operand if it includes the

left operand, and the left operand otherwise.

For untimed systems, OBDDs are an obvious candidate for a symbolic represen-

tation, since they can easily represent sets of states and next-state relations. One

potential set-up for the algorithm is to use hypercubes as approximating sets, i.e.

sets which can be defined by a single conjunction of literals. The operators suggested

above result in (1) overapproximating by taking the conjunction of all positive or neg-

ative literals which appear in one operand, and whose negation does not appear in the

other, and (2) underapproximating by taking the right operand iff all its conjuncts

appear in the left operand, and the left operand otherwise. Both these operations

are obviously efficient to compute, and over some untimed domains they may be

sufficiently accurate.

Hybrid systems [AHH93] model continuously changing variables that operate un-

der a finite number of modes. Variables are usually modeled as satisfying restricted

forms of differential equations. They are more general than real-time systems, where
the clocks are a special case of variables all increasing at a fixed rate. Most prob-

lems studied in this domain are undecidable, so the need for heuristic algorithms is

even greater than for real-time systems. Already, one of the ideas proposed in this

thesis has been applied to verifying hybrid systems. Henzinger and Ho [HH94] use

the iteratively refined overapproximations of figure 2.4. They also incorporate useful

widening operators.

9.1.4 Solving other problems

We believe combining overapproximation and underapproximation information to re-

fine approximations is both sufficiently powerful and flexible to be applied successfully

to a variety of problems other than state-reachability. We are investigating the prac-

ticality of verification of more general real-time processes and specifications (such as

including fairness), not just real-time safety properties. The ideas behind the algo-

rithms could also prove fruitful for model-checking logical specifications. Dams et

al [DGG94] show how various abstractions can be combined for model-checking in an

178 CHAPTER 9. CONCLUSIONS

abstract interpretation framework. However they provide no means of dynamically re-

fining their abstractions if they prove too weak. It may be possible to extract parame-

terized information about when a system will operate correctly, as Halbwachs [Hal93a]

does for his single over approximations. We are also interested in applying iterative

approximation to real-time controller synthesis algorithms [WTH91, HWT92a].

9.1.5 Analytic analysis

The approximation algorithm proposed is clearly a heuristic. It would be of tremen-

dous value to have analytical arguments for when it would perform well, and when it

would not. It would also be helpful to have metrics for how close the approximations

are to convergence.

9.2 Discussion

We believe there is a good semantic basis for the permissible-join heuristic used to

refine approximations. The performance results of our prototype implementation for

real-time systems show extremely promising results. However it should always be

remembered that the algorithm still has poor worst-case complexity, exponentially

worse than exact explicit analysis. What works well on some examples could do ex-

tremely poorly on others. Nevertheless our verifier has so far been proven consistently

efficient.

As systems grow larger, performing an exact analysis becomes harder and harder.

While exact enumerative methods have the theoretical advantage of guaranteed ter-

mination over finite-state systems, they are restricted in a very practical sense by

the sizes of their state-spaces. It will become more important to have methods that

do not exhaustively enumerate possibilities which may not be necessary. A form of

clever decision-making is required. Our policy is to use quick and simple decisions

designed to keep the size of the approximations small. It would be interesting to see

whether a more careful analysis using greater lookahead would pay off in the long

run. Another desirable property of a verifier is that progress is always being made

9.2. DISCUSSION 179

towards a solution. The approximation method here is an attempt to combine the

ideas of approximate analysis with the ability to converge towards a solution.

Approximate analysis has been used for years in more traditional fields of engi-

neering. Typically systems are described using continuous variables, and differential

equations are solved to determine system behavior. Algorithms are designed with a

step-size parameter that dictates how accurately the system is tracked. In areas of

instability, where the system behavior is more unpredictable, a finer step-size is used.

These methods have been tremendously successful. What then is the difficulty in us-

ing similar ideas for verification? Continuous systems have compact representations,

often so do discrete systems given in modular format. However states in a continuous

system can be said to have similar behavior when they are close together, whereas the

very nature of discrete systems means that there is no reliable way to easily detect

when two discrete states have similar outgoing behaviors. The approximation method

of this thesis is an attempt to decide exactly when "neighboring" states share similar

behavior, and to approximate more finely when they do not.

Bibliography

[ACD90] Rajeev Alur, Costas Courcoubetis, and David Dill. Model-checking for

real-time systems. In Proceedings of the Fifth IEEE Symposium on Logic

in Computer Science, pages 414-425,1990.

[ACD+92] R. Alur, C. Courcoubetis, D. Dill, N. Halbwachs, and H. Wong-Toi. An

implementation of three algorithms for timing verification based on au-

tomata emptiness. In Proceedings of IEEE Real-Time Systems Sympo-

sium, pages 157-166, Phoenix, AZ, December 1992.

[ACH+92] R. Alur, C. Courcoubetis, N. Halbwachs, D. Dill, and H. Wong-Toi. Min-

imization of timed transition systems (extended abstract). In Proceedings

of CONCUR '92, Third International Conference on Concurrency Theory,

pages 340-354, Stony Brook, NY, August 1992. Springer-Verlag. Lecture

Notes in Computer Science, Volume 630.

[ACHH93] Rajeev Alur, Costas Courcoubetis, Thomas A. Henzinger, and Pei-Hsin

Ho. Hybrid automata: an algorithmic approach to the specification

and verification of hybrid systems. In Hybrid Systems, pages 340-354.

Springer-Verlag, 1993. R.L. Grossman and A. Nerode and A.P. Ravn and

H. Rischel, editors. Lecture Notes in Computer Science 736.

[AD90] Rajeev Alur and David L. Dill. Automata for modeling real-time systems.

In Proceedings of 11th International Colloquium on Automata, Languages

and Programming, pages 322-335. Springer Verlag, LNCS 443, 1990.

180

BIBLIOGRAPHY 181

[AFH91] Rajeev Alur, Tomas Feder, and Thomas A. Henzinger. The benefits of

relaxing punctuality. In Proceedings of 10th Annual Symposium on Prin-

ciples of Distributed Systems, pages 139-152. ACM Press, 1991.

[AH89] Rajeev Alur and Thomas A. Henzinger. A really temporal logic. In Pro-

ceedings of 30th Symposium on Foundations of Computer Science, pages

164-169, 1989.

[AH92] Rajeev Alur and Thomas A. Henzinger. Logics and models of real time:

a survey. In Proceedings of the 1991 REX workshop "Real Time: The-

ory in Practice", pages 74-106. Springer-Verlag, 1992. Lecture Notes in

Computer Science 600.

[AH94] Rajeev Alur and Thomas A. Henzinger. Real-time system = discrete

system + clock variables. In Theories and Experiences for Real-Time

System Development (Proceedings First AMAST Workshop on Real-Time

System Development), chapter 1. World Scientific Publishing, 1994. ed.

Teo Rus and Charles Rattray.

[AHH93] Rajeev Alur, Thomas A. Henzinger, and Pei-Hsin Ho. Automatic sym-

bolic verification of embedded systems. In Proceedings of IEEE Real-Time

Systems Symposium, Raleigh-Durham, NC, December 1993.

[AIKY93] Rajeev Alur, Alon Itai, Robert Kurshan, and Mihalis Yannakakis. Tim-

ing verification by successive approximation. In Proceedings of Fourth In-

ternational Workshop on Computer Aided Verification (CAV '92), pages

137-50, Montreal, Canada, 1993. Springer-Verlag. Lecture Notes in Com-

puter Science 663.

[AKH88] A. Ayyagari, S. Kumara, and I. Ham. Robot path planning in 2-d, us-

ing modified quad-tree approach. In Recent Developments in Production

Research, pages 707-713. Elsevier Science Publishers B.V., 1988.

[AL92] M. Abadi and L. Lamport. An old-fashioned recipe for real time. In

Proceedings of the 1991 REX workshop "Real Time: Theory in Practice",

182 BIBLIOGRAPHY

pages 1-27. Springer-Verlag, 1992. Lecture Notes in Computer Science

600.

[Alu91] Rajeev Alur. Techniques for Automatic Verification of Real-Time Sys-

tems. PhD thesis, Department of Computer Science, Stanford University,

August 1991.

[AT92] Rajeev Alur and Gadi Taubenfeld. Results about fast mutual exclu-

sion. In Proceedings of IEEE Real-Time Systems Symposium, pages 12-21,

Phoenix, AZ, December 1992.

[BCM+90] J.R. Burch, M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Sym-

bolic model checking: 1020 states and beyond. In Proceedings of Logic in

Computer Science, 1990.

[BFH90] A. Bouajjani, J. Fernandez, and N. Halbwachs. Minimal model genera-

tion. In Proceedings of Second Workshop on Computer-Aided Verification,

Rutgers University, 1990.

[BFH+92] A. Bouajjani, J. Fernandez, N. Halbwachs, P. Raymond, and C. Ra-

tel. Minimal state graph generation. Science of Computer Programming,

18(3):247-269, June 1992.

[BM83] Bernard Berthomieu and Miguel Menasche. An enumerative approach for

analyzing time petri nets. In Proceedings of IFIP Congress, pages 41-46,

Paris, September 1983. Elsevier Science Publishers BV (North-Holland).

[BPV94] Doeko Bosscher, Indra Polak, and Frits Vaandrager. Verification of an

audio control protocol. In Proceedings of Formal Techniques in Real Time

and Fault Tolerant Systems Symposium, 1994.

[Bry86] Randal E. Bryant. Graph-based algorithms for boolean function manipu-

lation. IEEE Transactions on Computers, C-35(8):677-691, August 1986.

[Bry92] Randal E. Bryant. Symbolic boolean manipulation with ordered binary-

decision diagrams. Computing Surveys, 24(3):293-318, September 1992.

BIBLIOGRAPHY 183

[BSV93] F. Balarin and A.L. Sangiovanni-Vincentelli. A verification strategy for

timing constrained systems. In Proceedings of Fourth International Work-

shop on Computer Aided Verification (CAV '92), pages 151-63. Springer-

Verlag, 1993. Lecture Notes in Computer Science 663.

[Cad92] Marco Cadoli. Two methods for tractable reasoning in artificial intelli-

gence: Language restriction and theory approximation, December 1992.

Extended abstract of PhD thesis.

[CB89] K. Cho and R.E. Bryant. Test pattern generation for sequential MOS cir-

cuits by symbolic fault simulation. In Proceedings of the 26th ACM/IEEE

Design Automation Conference, pages 418-423, Las Vegas, June 1989.

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lat-

tice model for static analysis of programs by construction or approxima-

tion of fixpoints. In Conference Record of the 4th Annual ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, pages

238-252, Los Angeles, California, 1977.

[CC92] Patrick Cousot and Radhia Cousot. Abstract interpretation and applica-

tion to logic programs. Journal of Logic Programming, 13(2-3):103-179,

July 1992.

[Cer93] K. Cerans. Decidability of bisimulation equivalence for parallel timer

processes. In Proceedings of Fourth Workshop on Computer-Aided Ver-

ification (CAV '92), Montreal, Canada, 1993. Springer-Verlag. Lecture

Notes in Computer Science 663.

[CES83] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of

finite-state concurrent systems using temporal logic specifications: A prac-

tical approach. In Proceedings of the 10th Annual ACM Symposium on

Principles of Programming Languages, pages 117-126,1983.

[CHR91] Zhou Chaochen, C.A.R. Hoare, and A.P. Ravn. A calculus of durations.

Information Processing Letters, 40(5):269-276, December 1991.

184 BIBLIOGRAPHY

[CHS93] Zhou Chaochen, M.R. Hansen, and P. Sestoft. Decidability and undecid-

ability results for duration calculus. In Proceedings of Tenth Symposium on

Theoretical Aspects of Computer Science, STACS-93, pages 58-68, 1993.

Lecture Notes in Computer Science, Volume 665.

[CK91] E.M. Clarke and R.P. Kurshan, editors. Computer-Aided Verification '90,

volume 3 of DIM ACS Series in Discrete Mathematics and Theoretical

Computer Science. American Mathematical Society, Association for Com-

puting Machinery, 1991.

[Cou78] Patrick Cousot. Methodes iteratives de construction et d 'approximation de

points fixes d'Operateurs monotones sur un treillis, analyse semantique de

programmes. PhD thesis, Universite scientifique et medicale de Grenoble,

Grenoble, France, March 1978.

[Cou90] Patrick Cousot. Methods and logics for proving programs, chapter 15,

pages 843-993. Elsevier Science Publishers B.V. (North-Holland), Ams-

terdam, 1990.

[CY92] C. Courcoubetis and M. Yannakakis. Minimum and maximum delay

problems in real-time systems. In Proceedings of the Third Workshop

on Computer-Aided Verification (CAV '91), Aalborg, Denmark, 1992.

Springer-Verlag. Lecture Notes in Computer Science 575.

[DGG94] Dennis Dams, Orna Grumberg, and Rob Gerth. Abstract interpretation

of reactive systems: abstractions preserving VCTL*, 3CTL* and CTL*.

Technical Report 94/24, Eindhoven University of Technology, Department

of Mathematics and Computing Science, May 1994.

[Dil89] David L. Dill. Timing assumptions and verification of finite-state concur-

rent systems. In Automatic Verification Methods for Finite State Systems,

International Workshop, Grenoble, Lecture Notes in Computer Science

407, pages 197-212. Springer-Verlag, 1989.

BIBLIOGRAPHY 185

[DOY94] C. Daws, A. Olivero, and S. Yovine. Verifying ET-LOTOS programs with

KRONOS. In Proceedings of FORTE '94, 1994.

[EMSS89] E.A. Emerson, A.K. Mok, A.P. Sistla, and J. Srinivasan. Quantitative

temporal reasoning. In Proceedings of International Workshop on Auto-

matic Verification Methods for Finite State Systems, Grenoble, France,

1989. Springer-Verlag. Lecture Notes in Computer Science 407.

[FKM91] M. Fujita, T. Kakuda, and Y. Matsunga. Redesign and automatic error

correction of combinational circuits. In Logic and Architecture Synthesis:

Proceedings of the IFIP TC10/WG10.5 Workshop on Logic and Architec-

ture Synthesis, pages 253-262. Elsevier, 1991. P. Michel and G. Saucier,

editors.

[Hal93a] Nicolas Halbwachs, 1993. Private communication.

[Hal93b] Nicolas Halbwachs. Delay analysis in synchronous programs. In Pro-

ceedings of Conference on Computer-Aided Verification, Heraklion, Crete,

Greece, June 1993.

[Hen91] Thomas A. Henzinger. The Temporal Specification and Verification of

Real-Time Systems. PhD thesis, Department of Computer Science, Stan-

ford University, August 1991.

[HF90] Pei-Yung Hsiao and Wu-Shing Feng. Using a multiple storage quad tree on

a hierarchical VLSI compaction scheme. IEEE Transactions on Computer-

Aided Design, 9(5):522-536, 1990.

[HH94] Thomas A. Henzinger and Pei-Hsin Ho. Model checking strategies for

hybrid systems. In Proceedings of the International Conference on In-

dustrial and Engineering Applications of Artificial Intelligence and Expert

Systems, 1994.

[HLP90] E. Harel, 0. Lichtenstein, and A. Pnueli. Explicit-clock temporal logic. In

Proceedings of the Fifth Annual Symposium on Logic in Computer Science,

pages 402-413. IEEE Computer Society Press, 1990.

186 BIBLIOGRAPHY

[HNSY92] Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio Yovine.

Symbolic model checking for real-time systems. In Proceedings of the

Seventh IEEE Symposium on Logic in Computer Science, pages 394-406,

1992.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[HPV94] Thomas A. Henzinger, Anuj Puri, and Pravin Varaiya. Clock transforma-

tion of hybrid systems with rectangular differential inclusions. Presented

at the Workshop on Hybrid Systems and Autonomous Control (Ithaca,

NY), 1994.

[HWT92a] Gerard Hoffmann and Howard Wong-Toi. The input-output control of

real-time discrete event systems. In Proceedings of the 1992 IEEE Real-

Time Systems Symposium, pages 256-265, Phoenix, AZ, December 1992.

[HWT92b] Gerard Hoffmann and Howard Wong-Toi. Symbolic synthesis of supervi-

sory controllers. In Proceedings of the 1992 American Control Conference,

pages 2789-2793, Chicago, IL, June 1992.

[KL94] Inhye Kang and Insup Lee. An efficient generation of the timed reacha-

bility graph for the analysis of real-time systems. Technical Report MS-

CIS-94-36, University of Pennsylvania, 1994.

[KPSY93] Y. Kesten, A. Pnueli, J. Sifakis, and S. Yovine. Integration graphs: a class

of decidable hybrid systems. In Hybrid Systems. Springer-Verlag, 1993.

R.L. Grossman and A. Nerode and A.P. Ravn and H. Rischel, editors.

Lecture Notes in Computer Science 736.

[KU80] M. Kaplan and J.D. Ullman. A general scheme for the automatic inference

of variable types. Journal of the Association for Computing Machinery,

27(1):128-145, 1980.

[LA90] N.A. Lynch and H. Attiya. Using mappings to prove timing properties.

In Proceedings of the Ninth ACM Symposium on Principles of Distributed

Computing, pages 265-280, 1990.

BIBLIOGRAPHY 187

[LB93] William K.C. Lam and Robert K. Brayton. Alternating RQ timed au-

tomata. In Proceedings of Fifth International Conference on Computer

Aided Verification, CAV-93, pages 237-252. Springer-Verlag, 1993. Lec-

ture Notes in Computer Science 697.

[Lev84] Hector J. Levesque. A logic of implicit and explicit belief. In Proceedings

of the Fourth National Conference on Artificial Intelligence, AAAI-84,

pages 198-202, 1984.

[Lev89] Hector J. Levesque. A knowledge-level account of abduction. In Proceed-

ings of the Eleventh International Joint Conference on Artificial Intelli-

gence (IJCAI-89), pages 1061-1067,1989.

[Lew90] Harry Lewis. A logic of concrete time intervals. In Proceedings of the Fifth

IEEE Symposium on Logic in Computer Science, pages 380-389, 1990.

[LLD94] G. Leduc, L. Leonard, and A. Danthine. The Tick-Tock case study for

the assessment of timed FDTs. In The OSI95 transport service with mul-

timedia support on HSLAN's and B-ISDN, 1994.

[LS85] N. Leveson and J. Stolzy. Analyzing safety and fault tolerance using timed

petri nets. In Proceedings of International Joint Conference on Theory and

Practice of Software Development, pages 339-355,1985. Lecture Notes in

Computer Science 186.

[LV92] N.A. Lynch and F. Vaandrager. Forward and backward simulations for

timing-based systems. In Proceedings of the 1991 REX workshop "Real-

Time: Theory in Practice", pages 397-446. Springer-Verlag, 1992. Lecture

Notes in Computer Science 600.

[LY92] David Lee and Mihalis Yannakakis. Online minimization of transition

systems (Extended Abstract). In Proceedings of ACM Symposium on

Theory of Computing 1992, Vancouver, B.C., 1992.

188 BIBLIOGRAPHY

[MC91] J.-C. Madre and 0. Coudert. A logically complete reasoning system based

on a logical constraint solver. In Proceedings of the 12th International

Joint Conference on Artificial Intelligence, pages 294-299, Sydney, August

1991.

[McM92] Kenneth McMillan. Symbolic model checking: an approach to the state

explosion problem. PhD thesis, School of Computer Science, Carnegie

Mellon University, 1992.

[MF76] P. Merlin and DJ. Faber. Recoverability of communication protocols.

IEEE Transactions on Communications, COM-24, (9), September 1976.

[Mil80] Robin Milner. A Calculus of Communicating Systems. Springer-Verlag,

1980. Lecture Notes in Computer Science 92.

[MM88] R.W. McColl and G.R. Martin. Quad-tree modelling of colour image

regions. In Proceedings of SPIE, Vol 1001 Visual Communications and

Image Processing, pages 231-238, 1988.

[MP93] Z. Manna and A. Pnueli. Verifying hybrid systems. In Hybrid Systems.

Springer-Verlag, 1993. R.L. Grossman and A. Nerode and A.P. Ravn and

H. Rischel, editors. Lecture Notes in Computer Science 736.

[MV94] Jennifer Mcmanis and Pravin Varaiya. Suspension automata: a decidable

class of hybrid automata. In Proceedings of Sixth International Conference

on Computer-Aided Verification (CAV-94), pages 105-117,1994. Lecture

Notes in Computer Science 818.

[NOSY93] X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. An approach to the

description and analysis of hybrid systems. In Hybrid Systems. Springer-

Verlag, 1993. R.L. Grossman and A. Nerode and A.P. Ravn and H.

Rischel, editors. Lecture Notes in Computer Science 736.

[NSV90] Xavier Nicollin, Joseph Sifakis, and J. Voiron. ATP: an algebra for timed

processes. In Programming Concepts and Methods. Proceedings of the

BIBLIOGRAPHY 189

IFIP Working Group 2.2/2.3 Working Conference. M. Broy and C.B.

Jones (editors), pages 415-442, Sea of Galilee, Israel, 1990.

[NSY92a] Xavier Nicollin, Joseph Sifakis, and Sergio Yovine. Compiling real-time

specifications into extended automata. IEEE TSE Special Issue on Real-

Time Systems, 18(9):794-804, September 1992.

[NSY92b] Xavier Nicollin, Joseph Sifakis, and Sergio Yovine. From ATP to timed

graphs and hybrid systems. In Proceedings of the 1991 REX workshop

"Real-time: theory in practice". Springer-Verlag, 1992. Lecture Notes in

Computer Science 600.

[Ost92] J.S. Ostroff. Verification of safety critical systems using TTM/RTTL.

In Proceedings of the 1991 REX Workshop in "Real-Time: Theory in

Practice". Springer-Verlag, 1992. ed. J.W. de Bakker and C. Huizing and

W.P. de Roever and G. Rozenberg. Lecture Notes in Computer Science

600.

[OSY94] A. Olivero, J. Sifakis, and S. Yovine. Using abstractions for the verification

of linear hybrid systems. In Proceedings of Sixth International Conference

on Computer-Aided Verification (CAV-94), pages 81-94. Springer-Verlag,

1994. Lecture Notes in Computer Science 818.

[PD94] Fong Pong and Michel Dubois. A new approach for the verification of

cache coherence protocols. IEEE Transactions on Parallel and Distributed

Systems, 1994. To appear.

[Pnu77] Amir Pnueli. The temporal logic of programs. In Proceedings of the

18th IEEE Symposium on Foundations of Computer Science, pages 46-

77, 1977.

[Pnu86] Amir Pnueli. Applications of temporal logic to the specification and veri-

fication of reactive systems: a survey of current trends. In Current Trends

in Concurrency, pages 510-584. Springer-Verlag, 1986. Lecture Notes in

Computer Science 224.

190 BIBLIOGRAPHY

[PV94] Anuj Puri and Pravin Varaiya. Decidability of hybrid systems with rectan-

gular differential inclusions. In Proceedings of Sixth International Confer-

ence on Computer-Aided Verification (CAV-94), pages 95-104. Springer-

Verlag, 1994. Lecture Notes in Computer Science 818.

[Ram74] C. Ramchandani. Analysis of asynchronous concurrent systems by timed

Petri nets. Technical Report 120, Massachusetts Institute of Technology,

February 1974. Project MAC.

[Rok93] Tomas Rokicki. Representing and Modeling Circuits. PhD thesis, Depart-

ment of Computer Science, Stanford University, 1993.

[RR88] G.M. Reed and A.W. Roscoe. A timed model for communicating sequen-

tial processes. Theoretical Computer Science, 58:249-261, 1988.

[SBM92] Fred B. Schneider, Bard Bloom, and Keith Marzullo. Putting time into

proof outlines. In Proceedings of the 1991 REX Workshop "Real-time:

Theory in Practice", pages 618-39. Springer-Verlag, 1992. Lecture Notes

in Computer Science 600.

[SK91] Bart Selman and H. Kautz. Knowledge compilation using horn approxima-

tions. In Proceedings Ninth National Conference on Artificial Intelligence,

pages 904-909,1991.

[SS93] Jens Ulrik Skakkebaek and Peter Sestoft. Checking validity of duration

calculus formulas, 1993. unpublished manuscript.

[Van93] Peter Vanbeckbergen. Synthesis of Asynchronous Controllers from Graph-

theoretic specifications. PhD thesis, Katholieke Universiteit Leuven,

September 1993.

[VW86] M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic

program verification. In Proceedings of IEEE Symposium on Logic in

Computer Science, Cambridge, 1986.

BIBLIOGRAPHY 191

[WTD94] Howard Wong-Toi and David L. Dill. Approximations for verifying timing

properties. In Teo Rus and Charles Rattray, editors, Theories and Expe-

riences for Real-Time System Development (Proceedings First AMAST

Workshop on Real-Time System Development), chapter 7. World Scien-

tific Publishing, 1994.

[WTH91] Howard Wong-Toi and Gerard Hoffmann. The control of dense real-time

discrete event systems (extended abstract). In Proceedings of 30th IEEE

Conference on Decision and Control, pages 1527-1528, Brighton, England,

December 1991.

[WZ92] Henri B. Weinberg and Lenore D. Zuck. Timed ethernet: Real-time formal

specification of ethernet. In Proceedings of Third International Conference

on Concurrency Theory, CONCUR '92, pages 370-385, Stony Brook, NY,

August 1992. Springer-Verlag. Lecture Notes in Computer Science 630.

[Yi90] Wang Yi. Real time behavior of asynchronous agents. In CONCUR 90:

Theories of Concurrency, pages 502-520. Springer-Verlag, 1990. Lecture

Notes in Computer Science 458.

[YL93] Mihalis Yannakakis and David Lee. An efficient algorithm for minimiz-

ing real-time transition systems. In Proceedings of Fifth International

Conference on Computer-Aided Verification, Elounda, Greece, June 1993.

Springer-Verlag. Lecture Notes in Computer Science 697.

[YTK91] T. Yoneda, Y. Tohma, and Y. Kondo. Acceleration of timing verifica-

tion method based on time petri nets. Systems and Computers in Japan,

22(12):37-52, 1991.

