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Abstract 

Real-time systems are appearing in more and more applications where their proper 

operation is critical, e.g. transport controllers and medical equipment. However they 

are extremely difficult to design correctly: one must consider the sequencing and co- 

ordination of events in concurrent processes, as well as the times they occur. One 

approach to this problem is the use of formal description techniques and automatic 

verification. Unfortunately automatic verification suffers from the state-explosion 

problem and is computationally expensive even without real-time. The addition of 

timing information makes the problem much harder. This thesis proposes a state- 

based approximation scheme as a heuristic for reducing the effort required in verifi- 

cation. 

We first describe a generic iterative approximation algorithm for checking safety 

properties of a transition system. It exploits the fact that not all the details of a system 

need be considered to prove it correct. Successively more accurate approximations of 

the reachable states are generated until it can be determined whether the specification 

is satisfied or not. The algorithm automatically decides where the analysis needs to 

be more exact, and uses state partitioning to force the approximations to converge 

towards a solution. In the case of finite-state systems, the method is complete. 

The algorithm is used to verify that systems with hard real-time bounds sat- 

isfy timed safety properties. State approximations are performed over both timing 

information and control information. We also approximate the system's transition 

structure. Case studies include some timing properties of the MAC sublayer of the 

Ethernet protocol, the tick-tock service protocol, and a timing-based communication 

protocol where the sender's and receiver's clocks advance at variable rates. 
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Chapter 1 

Introduction 

1.1    Motivation 

Many computer-related systems are time-critical: they may depend on timing infor- 

mation for their correct operation, or their specifications may require certain tasks 

to be performed within specific time bounds. Typical examples include embedded 

systems, communication protocols, and transportation controllers. In many of these 

applications, correct operation is imperative. Failures may result in financial disaster, 

system shut-downs, physical harm, or in some cases even the loss of lives. However, it 

is generally accepted that it is a difficult task to specify and reason about the timing 

behavior of concurrent systems. It is easy for an ad hoc analysis, or even extensive 

simulation, to miss crucial cases which lead to errors. 

One approach to this problem is to develop mathematically formal methods for 

system verification. The idea is to be able to prove that the system is correct rather 

than to assume it is because no bugs have been discovered so far. In this framework, 

a potential system implementation can be modeled formally and analyzed against a 

specification early in the design cycle. Logical design bugs can be removed before 

they percolate down to lower levels of implementation. As an implementation is re- 

fined, it can be verified against its higher-level description. The major drawback of 

this approach is that formal specifications quickly become too complex to analyze 

1 



2 CHAPTER 1.   INTRODUCTION 

manually as the size of the system increases. With today's computer-based applica- 

tions growing ever larger and larger, there is a need for computer assistance in the 

verification process. Indeed one strategy is to use a fully automatic verification tech- 

nique. Here, the user supplies a verification tool with a formal system description 

and a specification for it, and then waits for the verifier to check, without any further 

human assistance, whether the system is correct or not. 

Up until recently, verification methodologies had abstracted away the times at 

which events occur, and concentrated on the logical sequencing of actions. While 

such an abstraction is often useful, it is clearly not acceptable when the specification 

includes timing properties. Over the last few years, numerous formalisms have been 

proposed for describing the real-time behavior of concurrent systems, by either ex- 

tending existing techniques or developing whole new theories. Indeed, the automatic 

verification problem for some classes of finite-state real-time systems has been solved, 

in theory [Dil89, AH89, AD90, Lew90, ACD90, LV92, HNSY92]. In many cases, there 

are known algorithms that are theoretically optimal in the worst case. However, from 

a practical standpoint, these algorithms are computationally infeasible on realistic 

examples. They have to deal with an extremely large number of reachable states, 

as well as taking into account the times at which they are reached. Algorithms are 

typically exponential in the size of the untimed part of the system description, and 

also exponential in the system's timing information. So while a verification engi- 

neer has a large choice of models to describe her system formally, she is left with no 

practical tools to verify the system is correct. Our goal is to address this shortcom- 

ing by using heuristic techniques to make automatic verification of real-time systems 

computationally feasible. 

1.2    Approximation 

This thesis describes an efficient automatic approximation scheme which has been 

applied to the verification of timed safety properties. It is based on the observation 

that usually not all of a real-time system's timing information is necessary to establish 



1.2.   APPROXIMATION 3 

its correctness. The basic idea is perform symbolic simulation of the system's execu- 

tion traces while simultaneously checking whether they violate the specification. The 

simulation however is only approximate. The set of reachable states is approximated 

from above and from below. If the overapproximation contains no violating states, 

i.e. states where an error has been detected, the system is successfully verified. If the 

underapproximation contains violating states, the system is not correct. 

Taking approximations instead of computing the exact set of reachable states can 

be computationally advantageous. Firstly, the size of the symbolic approximation 

may be far smaller than the representation of the exactly reachable states. Secondly, 

the time required to generate an approximation may be less than for performing 

precise reachability analysis. 

Approximation, however, is not always accurate enough to determine whether the 

system satisfies its specification. There is the possibility of false negatives (if the 

overapproximation contains violating states, these may or may not be truly reachable 

states of the system) and false positives (the underapproximation may not include 

violating states which are reachable). Thus the result from approximating may be 

inconclusive. 
Our algorithm tackles this problem by iteratively refining the approximations so 

that they converge towards the truly reachable states. It is complete for finite-state 

systems, in that it always decides exactly whether the system is correct. We also 

prove completeness for the class of real-time systems we verify. 

The key idea behind the iterative scheme is to limit where approximations are 

taken. This is achieved by partitioning the state-space into different regions, where 

states in the same region are believed to behave similarly. Approximation of reachable 

states is carried out within each region. When it is discovered that states in the same 

region have sufficiently different outgoing behaviors, the partitioning is refined. This 

successive refinement leads to progressively more accurate approximations. 
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1.3    Contributions 

The main contributions of this thesis are a generic framework for iterative approxi- 

mations for safety verification, an efficient approximation algorithm for real-time sys- 

tems, and the demonstrated automatic verification of non-trivial real-time systems, 

including a model of real-time systems with skewed clocks. 

The iterative algorithm proposed in this thesis solves the safety verification prob- 

lem. It is flexible enough to apply to many different problem domains. At the 

barest level, the algorithm designer needs to provide a symbolic system representa- 

tion, including set representations and next-state operators, and two approximating 

operators. If desired, he can also add any number of his own heuristics to speed 

convergence. 

The algorithm itself uses dynamic refinement of approximations, rather than stat- 

ically determined convergence. This means that it attempts to determine automat- 

ically which parts of the state-space need to be analyzed more carefully, and where 

approximations can be more liberal. It is easily parameterizable to begin approxi- 

mating as finely or loosely as desired. There is a limited capacity for user-supplied 

information to be exploited, by instructing the program where to start approximating 

more aggressively. Both backwards and forwards reachability information is utilized, 

whereas most verification methodologies choose one direction only. This is possible 

since we can take a quick analysis in one direction, and then combine that with in- 

formation from the other, rather than being bogged down in an exact analysis in 

only one direction, or attempting to compute exact reachability in both directions 

at the same time. While the main algorithm is based on state approximations, the 

theory also allows next-state relations to be approximated. The algorithm is shown 

to terminate over finite-state systems. 

The algorithm is applied to real-time verification, using both state approximations 

and transition relation approximations. Our method is the first to benefit substan- 

tially from combining symbolic representations of control information and timing 

information. We also provide a natural and efficient handling of urgency semantics, 

where urgent events are events which must take place as soon as they are enabled. 
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We use our tool to automatically verify several non-trivial real-time systems. We 

verify some timing properties of an abstracted Ethernet MAC sublayer protocol. We 

also introduce a new subclass of linear hybrid automata that models systems where 

clocks advance at variable linearly-bounded rates. Using this model, we verify a re- 

cently published audio control protocol which uses Manchester-encoded bit streams. 

Communication is between processes which have a fixed error tolerance in their clock 

speeds. We automatically prove that for arbitrary length messages, all bits are re- 

ceived correctly and in a timely fashion. The performance of our tool compares favor- 

ably to the symbolic real-time verifier KRONOS developed by Sifakis et al [NSY92a] at 

VERIMAG, France. Finally we describe our experience with developing verification 

methodologies for real-time systems. 

1.4    Real-time systems 

Recently there have been many formal description techniques proposed for describing 

real-time systems and their timing properties. We outline the model we use (timed 

safety automata [NSY92a]), and then compare it briefly with other approaches. Our 

concern is not so much with a specification technique as the algorithm required to 

verify correctness, so we concentrate more on the formalisms that lend themselves to 

automatic verification. 

Discrete vs continuous time 

A major dividing line in the methods is how they model time, as either a discrete 

entity, or as continuous. In a discrete time framework, events occur only at discrete 

clock ticks. In the continuous time model, events may occur at any real-valued time. 

The main advantages and disadvantages of each approach are listed below. 

• discrete: In this framework, it is easy to incorporate time into many existing un- 

tuned models, specification languages, and implementations. A discrete notion 

of time is accurate for some classes of processes, such as synchronous hardware. 
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• continuous: The continuous time model is more natural and accurate, especially 

since it can be shown that in some cases the time domain cannot be discretized 

sufficiently finely for an accurate semantics [Alu91]. However introducing con- 

tinuous time involves new models, more complex semantics, and more complex 

reasoning. 

Timed safety automata operate in continuous time. We later show that the savings 

due to performing discrete computation may be minimal compared to continuous, 

since there are no known symbolic methods for discrete time which outperform those 

for continuous time models. 

1.4.1 Timed safety automata 

We use timed safety automata (TSAs) to describe real-time systems and their specifi- 

cations [HNSY92, NSY92a]. They operate with finite-state control. Time is modeled 

through the addition of a finite set of fictitious clocks [AD90, AH94]. Each clock 

records the exact time which has elapsed since its last reset. Timing conditions are 

expressed by constraints on when events may occur. Following the introduction of 

timed automata by Alur and Dill [AD90] there have been many variants described 

in the literature. The particular version we use is taken from Nicollin et al [NSY92a] 

and augmented with urgency semantics. Local progress is enforced by constraining 

the amount of time which can pass while control rests in a location. However, these 

automata have no means of expressing unbounded fairness information. 

1.4.2 Other formalisms 

Real-time logics 

Temporal logics [Pnu77, Pnu86, CES83] have met wide success in reasoning about 

untimed reactive systems. Naturally, these logics are a good starting point for devel- 

oping logics that can reason directly about a system's timed behaviors. Properties 

are expressed using formulas such as "p => <><3?" to mean that when p is true, 

q will eventually be true within 3 time units.   See [AH92] for a excellent survey 
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of logics for real time. Of the logics interpreted over dense models, only MITL of 

Alur et al [AFH91] is known to be decidable. A number of decidable logics use a 

fictitious clock as a global integer variable to record the current time, for instance 

RTTL [Ost92], XCTL [HLP90], and RTCTL [EMSS89]. Essentially all discrete time 

extensions to decidable logics are decidable. 

Process algebras 

A process algebra is a calculus with operations for building more complex processes 

from simple ones [Mil80, Hoa85]. Typically the simplest processes are single events, 

and there are operations for sequential composition, parallel composition, hiding of 

events, synchronization, and non-deterministic choice. Algebraic laws state that some 

processes are equal to others; for example, the choice operator may be commutative. 

Time is usually introduced into a process algebra through a mechanism to explicitly 

model the passing of time. It is may be in the form of a unary delay operator [Yi90] 

or a special process. For example "A(t).P" may be used to represent the process 

which delays for t time units and then behaves like P. There may also be other 

operators such as a timeout operator, which states that a process executes for some 

fixed amount of time and then behaves like another. Examples of such timed process 

algebras are Timed CSP [RR88], TCCS [Yi90], and ATP [NSV90]. 

Duration calculus 

The calculus of durations [CHR91] is an extension to interval temporal logic which 

allows reasoning about the durations of states within an interval, without explicit 

mention of absolute time. A duration formula / P — 5 is true for an interval X when 

JXP = 5, and the formula J P < 20 / Q intuitively means that Q holds over the 

interval at least 1/20 of the time that P holds. In addition to the usual boolean 

operations on formulas, there is a chop operation denoted (£>i; D2) which is true over 

an interval whenever it can be partitioned into two consecutive parts, the first of which 

satisfies Di while the second satisfies D2- Formulas may be interpreted over discrete 

time or continuous time. In general, the calculus is undecidable. However, Chaochen 

et al [CHS93] have identified decidable fragments: allowing only primitive formulas 
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of the form \P], which assert that P holds almost everywhere over an interval, is 

decidable for both the dense time and discrete time versions, and admitting formulas 

I = k, which express that the interval is of length k, maintains decidability for the 

discrete time calculus only. 

Other state based approaches 

Lewis' state-diagrams [Lew90] are very similar to timed automata. The enabling 

conditions on transitions are based on delays between pairs of events, rather than 

delays since individual events occurred. The primary advantage of timed automata 

is that they have a simpler definition and semantics. 

Ostroff's timed transition machines (TTMs) [Ost92] and the timed transition sys- 

tems of Henzinger et al [Hen91] are timed extensions of Manna and Pnueli's fair 

transition systems. Each transition is associated with a lower time bound and an up- 

per bound. An execution is timing consistent if every transition which fires has been 

continuously enabled no less than its lower time bound and no more than its upper 

bound, and no transition is continuously enabled for longer than its upper bound 

without firing. Timed I/O automata [LA90] correspond to the analogous extension 

to I/O automata. The finite-state versions of all these machines can be modeled by 

timed safety automata, except that unbounded fairness cannot be expressed, nor is 

there any structure to model the input/output events of timed I/O automata. How- 

ever, it should be noted that all timing aspects of these transition systems can be 

captured. 

Various real-time extensions have been proposed for Petri nets. Time bounds 

may be placed on the lives of tokens [Van93] or enabled transitions [MF76], or delays 

may be associated with transitions [Ram74]. Again, timed automata are generally as 

expressive as all the finite-state versions of these nets. 

There are other state-based formalisms which allow more general modeling of real- 

time systems. Hybrid systems model finite-state systems augmented with continuous 

variables that evolve according to differential equations. They can be used to model 

skewed clocks, drifting clocks, and interrupted clocks, as well as analog variables such 

as pressure and temperature. 
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We choose to use timed automata because of their simplicity, expressiveness, and 

algorithmic solutions to verification problems. Many other formalisms are no more 

expressive (at least not as far as representing timing information) and can be compiled 

into timed automata, or they have undecidable verification problems. 

1.4.3    Verification 

We briefly survey the verification techniques associated with the formalisms above. 

Most algorithmic verification is no easier than verification using timed automata. In 

fact, many of the verification problems which have algorithmic solutions can be solved 

by the same techniques required for verifying timed automata. Therefore we consider 

the practical verification of timed automata a major issue in real-time verification. 

Timed automata 

Alur et al [AD90, ACD90] show how timed automata may be analyzed by first con- 

structing a finite quotient graph called a regions graph. Its equivalence classes are in 

some sense a bisimulation of the system's states. Typically an analysis problem for a 

timed automaton is reduced to its untimed counterpart over the regions graph. The 

finiteness of the regions graph allows numerous analysis problems to be solved, includ- 

ing bisimulation equivalence, automata emptiness, model-checking of TCTL formulae, 

reachability, and controller synthesis [Cer93, ACD90, HNSY92, CY92, WTH91]. Un- 

fortunately, the regions graph is exponential in the number of time-keeping elements 

in the system, and also in the size of the timing constants used. The main problem 

which this thesis tackles is reachability, which is known to be PSPACE-complete. 

This exponential blow-up makes automatic verification of real-time systems particu- 

larly challenging. Previous approaches to tackle this state-explosion are described in 

the next section. 

Logics 

One way logics can be used to verify timed systems is by proving the validity of 

the formula 4> => ip, where <j> defines the system and -ip its specification.   However 
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most temporal logics over dense models are undecidable. For the decidable logics, the 

complexity of the decision procedure is typically one exponential more than for its 

untimed version - the same blow-up we encounter moving from untimed automata to 

timed automata. Furthermore there has been no work that we know of for developing 

heuristic decision procedures for these logics. 

Model-checking is an alternative verification method where the system is given 

as a proposed model to be checked against the logical specification. For some logics 

the complexity of model-checking is better than for validity, and in the cases of 

XCTL [HLP90] and TCTL [ACD90] it is PSPACE-complete. It is in theory then no 

easier than reachability of timed automata. 

Temporal proof systems may also be used to establish the validity of temporal 

formulae. However our main interest here is in automatic methods, rather than 

human-generated proofs. 

Process algebras 

Correctness of process algebras is usually defined in terms of a process equivalence 

(where processes have similar behavior according to some criterion such as observable 

traces) or preorder (where an implementation is intended to refine a specification). 

Verification consists of either constructing proofs using the algebraic laws associated 

with the operators, or by compiling process algebraic terms into graphs which are 

then tested for equivalence or simulation preorders. For timed process algebras, the 

graphs for the algebraic terms are essentially timed automata [Cer93, NSY92b]. So 

yet again, verification reduces to analysis of timed automata. 

Duration calculus 

For some restricted subclasses of the duration calculus, the sets of satisfying behaviors 

are regular sets [CHS93]. Skakkebaek et al [SS93] discuss a verification strategy and 

implementation based on converting duration calculus formulas into regular expres- 

sions and checking for emptiness. 
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Petri nets 

The usual way Petri nets are used for verification is by performing a reachability 

analysis and testing for whether a marked place is reached. The Petri net formalism 

of Rokicki [Rok93] models timed circuits and uses a notion of conformance as its 

correctness criterion. Again, the finite-state versions of these nets (i.e. those with 

a bounded number of markings, or fc-safe), could be analyzed by the same reacha- 

bility techniques used for timed automata. However more direct methods have been 

advocated, and are described in the next section. 

Other state-based approaches 

Timed transition systems are proven correct by using a temporal proof system. Lynch 

et al [LA90, LV92] study the use of mappings and simulations between timed I/O 

automata to establish that one implements another. Neither of these two approaches 

is designed for automatic verification. 

1.5    Related work 

We describe previous attempts at tackling the state-space explosion encountered 

when verifying real-time systems. Most closely related are other approximation 

methodologies designed specifically for real-time systems [AIKY93, BSV93]. Other 

approaches directly using the timed automaton formalism include building minimal 

regions graphs [ACH+92, ACD+92], symbolic model-checking [HNSY92], and reach- 

ability graphs [KL94]. We also outline some related work on Petri net reachability 

analysis [BM83, YTK91, Rok93]. 

Finally, we give a brief comparison with similar work in the domain of abstract in- 

terpretations [CC92], and mention some other fields where state based approximation 

has been used. 
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1.5.1     Iterative approximations 

The iterative method we propose is not the only viable iterative scheme for approx- 

imating the behavior of a real-time system. We know of two other iterative approx- 

imation schemes which converge to an answer to the correctness problem. Alur et 

al [AIKY93] and Balarin et al [BSV93] describe approximation algorithms which use 

a different methodology from that advocated here. Their approach assumes that not 

many timing constraints in the system are necessary for its correct operation. Based 

on this premise, they initially attempt to verify the system based only on logical 

constraints, i.e. ignoring all timing information. When a potential violating trace 

is detected, timing constraints are used to determine how the untuned sequence is 

not timing consistent, if possible. An untimed automaton which eliminates the false 

negative based on the effect of these timing constraints is then added into the sys- 

tem. Alur et al add the minimized regions graph for the constraints, and Balarin et 

al add subprocesses which monitor difference constraints between clocks. The algo- 

rithms generate additional useful information about the system: if the system can be 

successfully verified, we know that the only constraints necessary for correctness are 

those that have been iteratively added by the algorithm. Other constraints can be 

ignored. Also Alur et al's algorithm uses a clever rounding of the timing constants 

in order to keep the regions graphs for each approximation small. This feature also 

provides parametric information about system correctness. The drawback of these 

algorithms is that while they approximate the system description (by dropping con- 

straints) they still require exact computation of the regions graph for each abstracted 

system. 
By comparison, our algorithm performs its approximations based on state informa- 

tion. It maintains all timing constraints on transitions, but then discards information 

from the states which are reached. Refinement of our approximations is primar- 

ily state based, rather than transition based, although local approximation of the 

time-passage transition is also performed. Our algorithm is general enough to allow 

approximations over control information. It can also easily be applied to systems 

other than real-time systems. 
Ostroff [Ost92] uses formulas in real-time temporal logic to describe forward and 
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backwards heuristic approximations. Since his underlying model is not finite-state, 

and his specifications are more expressive, his method does not automatically decide 

whether a property holds or not. Instead he shows how heuristics can be used to 

provide helpful hints to a human attempting a proof of a property. 

1.5.2    Analyzing timed automata 

Alur et al [ACH+92, ACD+92] approach the state-explosion problem of the regions 

graph by building a minimal regions graph instead of the full graph. Nodes in the 

minimal graph are clustered equivalence classes from the regions graph. While this 

leads to far fewer nodes in the generated graph, experience shows that even these 

graphs can easily exceed available memory. 
Our iterative approximation scheme bears resemblance to the minimization algo- 

rithms of Lee and Yannakakis [LY92, YL93]. A closer study of the relationship could 

lead to improved algorithms. Lee and Yannakakis' algorithms cleverly partition the 

reachable states of an implicitly defined system into the minimal number of bisimu- 

lation equivalence classes, while here we are interested only in reachability. However 

their marking of points may be considered an underapproximation of the reachable 

states, and the potentially reachable blocks an overapproximation. The role of the 

separating classes of our approximation algorithm is similar to the splitting of blocks 

in minimization. We are only interested in reachability, not bisimulation equivalence 

and so we need not partition the state-space as finely. In addition, we make use of 

backward reachability information. 
Kang and Lee [KL94] have recently proposed an alternative approach to solving 

the reachability problem for timed automata. Rather than build a regions graph 

(where states are partitioned according to the values of their timers), they generate 

a reachability graph where relative delay information is encoded on the transitions. 

A state is reachable if the constraints on a path to it in the reachability graph are 

satisfiable. 
Symbolic model-checking [HNSY92, NSY92a] involves iteratively computing the 

set of timed states of the system which satisfy each subformula of its TCTL specifi- 

cation. In this sense, the computation is very much driven by the specification, and 
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involves mainly backwards reachability. This computation is performed symbolically 

using the same representation for timing information which we use. However the anal- 

ysis is exact. The model-checking framework is more expressive than the reachability 

problem we consider. 

1.5.3 Petri nets 

Berthomieu and Menasche [BM83] show how the reachability problem for safe time 

Petri nets is decidable. Their symbolic representation of timing information by dif- 

ference constraints between timers is essentially the same as that of Dill [Dil89]. 

Yoneda et al [YTK91] exploit the concurrency of transition firings to generate dif- 

ference constraints which correspond to several possible firing sequences, rather than 
considering each sequence individually. Although Rokicki's description language is 

orbital nets [Rok93], a Petri-net formalism, his algorithms also compute reachability 

using constraint matrices. He builds processes whose linear executions correspond to 

multiple interleavings of events. When there is a lot of concurrency in the system, 
this technique reduces the number of interleavings he must consider and the number 

of constraint matrices needed to store the reachable states. 

1.5.4 Abstract interpretation 

Abstract interpretation is a well-studied theory of semantic approximation [CC77, 

Cou90, CC92]. The approximations described in this paper can be viewed as a com- 

bination of abstraction, operation on an abstract domain, and concretization. A 

similar idea to that of iterating forward and backwards passes, using overapproxi- 

mations only, to refine the set of reachable states on paths to violating states has 

been suggested in an abstract interpretation framework for type-checking flowchart 

programs [KU80], and for analyzing logic programs [CC92]. 

Halbwachs [Hal93b] successfully applied abstract interpretation to synchronous 

reactive systems, demonstrating its effectiveness in reducing the computational effort 

required for analysis. His approximations are taken over discrete variables, and he 

uses polyhedra for describing the reachable variable values.   He does not consider 
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approximations over control information. Moreover no means of refining approxima- 

tions is given, so if a verification attempt fails, there is no way to tell if it is due to a 

real error, or simply inaccurate approximation. 

The full algorithm presented here is the first which uses both underapproxima- 

tions and overapproximations, and for finite-state systems, automatically determines 

precisely whether there are reachable violating states. 

1.5.5     Other applications of approximation 

Approximation techniques have been used in many fields other than verification. We 

briefly describe the approaches most closely related to this thesis. 

Approximate methods for logical inference have been studied in artificial intel- 

ligence. Levesque [Lev84, Lev89] introduced the idea of limited inference to model 

an agent's "shallow" reasoning process based on simple inference rules. Kautz and 

Selman [SK91] advocate knowledge compilation of propositional theories into Horn 

approximations. Their idea is that an intractable theory may be reduced to a stronger 

(or weaker) Horn theory, allowing efficient reasoning over the Horn theories. If the 

Horn theories do not answer the logical inference problem, the method resorts to the 

exact theory. Cadoli [Cad92] describes a method which does allow both sound and 

complete approximations in a framework that incrementally iterates toward an exact 

answer. Roughly speaking, more accurate approximations are obtained by increasing 

the number of literals that are semantically consistent. However his methodology pro- 

vides no semantically based means of dynamically choosing how the approximations 

are to be refined. 
Various state based approximations are based on the idea of divide-and-conquer. 

Typically a 2-dimensional or 3-dimensional state-space is partitioned using hierarchi- 

cal data-structures called quad-trees or oct-trees. In the case of quad-trees, the root 

node represents a two-dimensional space. Each internal node has 4 leaves, represent- 

ing neighboring sets which partition the node. The quad-tree is built dynamically, 

with new nodes created whenever a leaf node needs to be analyzed more carefully. 

The idea is to work efficiently with large chunks of the state-space as much as possi- 

ble, subdividing a node only when necessary. This method has been used successfully 
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in a number of different fields, such as path-planning for robots [AKH88], image 

processing [MM88], and VLSI layout design [HF90]. With the exception of robot 

path-planning, the problem domains admit varying degrees of accuracy (e.g. many 

image resolutions are acceptable) in their solutions and the chief concern is with ob- 

taining a good approximation with low computational expense, as opposed to using 

approximation as an efficient means of finding an exact answer. In addition, our 

problems involve more complex state-spaces, a combination of n-dimensional spaces 

for timing information, where n is the number of clocks in the system, and a discrete 

component for the control information. This state-space complexity does not allow 

an easy and effective application of the quad-tree approach. 

1.6    Outline of thesis 

In the remainder of this chapter, we provide some introductory notation, describe the 
framework we use for verifying safety properties, and explain how symbolic compu- 

tation can speed up verification. 
Chapter 2 describes the main approximation algorithm for a generic safety verifi- 

cation problem. In the next chapter, we describe in more detail the model of real-time 

systems we consider, and its safety verification problem. The next two chapters out- 

line how the approximation algorithm can be applied to the verification of real-time 

systems, firstly approximating over only timing information, then over the control in- 

formation as well1. Case studies appear in the following chapter. Chapter 7 describes 

a class of hybrid systems which can be verified exactly via a reduction to real-time 

systems. Chapter 8 discusses a prototype implementation, gives performance results, 

and describes some of the lessons we learnt in building verifiers for real-time systems. 

Finally, conclusions can be found in chapter 9. 

1The main generic approximation algorithm and its application to simple timed automata without 
approximations of the next-state relation appears in [WTD94]. 
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1.7    Preliminaries 

1.7.1 Transition systems 

We model a process P as a transition system (S, S0,
N) where S is the underlying 

state-space of the system, S0 C S is a set of initial states, and N C S x S is a 

next-state relation. A transition system describes a directed graph in the usual way. 

We sometimes write s -» s' and JV(s, 5') to mean that (s, s') G N. For a set of states 

A, we abuse notation and simply use N(A) to mean the set of successors of A, i.e. 

N(A) = {yeS\3xeA s.t. N(x,y)}. An execution trace of the system is any 

infinite sequence of states s0, si, s2,... such that Si G S and (SJ, si+1) G iV for i > 0. 

A partial trace is a finite sequence s0, sx,..., sn such that Si e S and (SJ, si+i) G AT 

for 0 < i < n - 1. A trace is initialized iff its first state lies in SQ. The transition 

system is non-deadlocking iff every initialized partial trace of the system is extensible 

to an infinite execution trace. 

A state s' is said to be forward reachable from s in P iff there is a path in the 

graph for P from 5 to s'. In this case, the state s is called an ancestor of s', and s' 

is a descendant of s. A state s is backwards reachable from s' iff there is a path in P 

from s to s'. We define the set of states reach(S) to be the states which are forwards 

reachable from an initial state. 

An equivalence relation « over the states of the system is a bisimulation iff when- 

ever si « s2 and Si —» s'x then there exists a state s'2 such that «2 —► s'2 
an(* si ~ s2- 

1.7.2 Safety verification problem 

The problem we are interested in solving is called the safety verification problem. 

Intuitively, a process is correct iff it never does anything "bad". 

A common framework for verification uses trace inclusion as its correctness con- 

dition. The process P is modeled by a formal language L(P) describing the possible 

infinite execution traces of the system. Its specification is also given as a language Ls 

of infinite traces, and it represents a maximal set of permissible traces. The process 

is said to be correct iff L(P) C Ls.  In the automata-theoretic approach [VW86], 
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correctness can be decided by checking for emptiness of an automaton representing 

L(P) n Ls. We consider a special case of this approach, which we call the safety 

verification problem. 

A (safety) verification problem VP = (S,S0iN,V) consists of a process P = 

(S,S0,N) together with a set of violating states V C S which indicate that the 

process has violated some user-specified safety property. The process is said to be 

correct iff no violating states are reachable from SQ. 

The trace inclusion problem can be expressed in the form of a safety verification 

problem when the process is non-deadlocking and the specification is a safety property. 

The specification language Ls is a safety property iff it is a closed language, i.e. 

whenever an infinite string w has infinitely many prefixes which are prefixes of strings 

in Ls, then w is also in Ls. Intuitively, to verify a safety property, we may simulate 

the execution traces of a non-deadlocking process P together with a monitor which 

enters a violation state precisely when P does something undesirable (the partial trace 

so far leaves the prefix set of the specification). Because P is non-deadlocking, all 

partial traces are extensible to infinite traces, and so this violating partial trace can 

be extended to an infinite violating trace. Thus verification by automat a-emptiness 

reduces to reachability in this case. 

If the system is finite-state, it is theoretically possible to enumerate explicitly 

all reachable states in the state-space, via, for example, a depth-first search. This 

technique correctly answers the verification problem. However in many cases the 

state-space is simply too large to be fully explored, or it may even be infinite. This 

thesis proposes a symbolic state-space approximation technique for reducing the effort 

required to solve safety verification problems. It is applicable to both finite-state and 

infinite state-spaces, but termination is only guaranteed over finite spaces. 

1.8    Symbolic verification 

The use of various symbolic techniques in finite-state verification has led to great 

success in recent years. The main feature of symbolic verification algorithms is their 
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ability to express information about sets of states succinctly without having to re- 

fer explicitly to every set element. Reasoning about a system is done by reasoning 

about sets of states instead of individual elements. A symbolic algorithm may be 

computationally advantageous compared to an explicit enumeration technique if the 

number of set operations required by the symbolic algorithm is small by comparison. 

The obvious drawback is that computation over sets can be expensive. A symbolic 

technique which performs a small number of expensive algorithmic steps may do more 

work overall than an explicit technique which uses a large number of fast operations. 

However the potential benefits of symbolic techniques are numerous. In many 

cases symbolic computation over sets has been shown to be far faster than explicit 

state-by-state analysis [Bry92, BCM+90, CK91, McM92, FKM91, HWT92b, PD94]. 

Symbolic representations of sets may also be far smaller than explicitly storing indi- 

vidual states. In fact, memory usage is often a more critical resource than time. In 

addition, symbolic representations may allow infinite state spaces to be represented. 

In order for a symbolic technique to be useful, we require 

• a verification algorithm which can be expressed in terms of sets of states, and 

• an efficient representation of sets of states. 

An efficient symbolic representation of sets should ideally meet the following cri- 

teria: 

• the representation of a "typical" set encountered by the algorithm should be 

small. 

• there should be fast operations on sets of states for all operations required by 

the particular algorithm, e.g. 

- computing successors of a set of states 

- computing predecessors of a set of states 

- computing intersection 

- computing set difference and complementation 
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- computing union 

- testing equality and emptiness 

All the above characteristics are relative compared to the cost of performing ex- 

plicit analysis, i.e. storing and performing computation on all individual set elements. 

Notice too that the efficient state representation need only be applicable over those 

sets of states encountered by the algorithm. 

We should note at this point that performing computation over sets is only a 

heuristic technique. Many of the verification problems studied are PSPACE-complete, 

and the use of symbolic techniques will not overcome the inherent complexity of the 

problem in the worst-case scenario. However, in practice, some algorithms whose 

complexity is actually exponentially worse than an explicit enumeration technique 

perform extremely well on real examples. 

In the symbolic methodology, safety properties for the verification problem VP = 

(S,S0,N,V) can be verified by performing the following iterative fixpoint computa- 

tion: 

Fo   =   So 

Fi+1   =   FiUNW C1-1) 
F   =   lim Fi 

i 

The specification is satisfied iff F n V ^ 0. We assume the limit always exists and 

is obtained after a finite number of iterations. Note that this assumption is always 

true when the underlying system has a finite state-space. This algorithm requires the 

computation of the next-state operator over sets, the union of sets, tests for equality 

and emptiness, and an intersection operator. While such symbolic verification can 

often outperform explicit analysis, there are still many situations when even the 

symbolic representations of states are simply too large and complex. Thus this thesis 

proposes using only approximate symbolic analysis. 



Chapter 2 

Appr oximat ion 

This thesis is built upon the simple observation that it is not always necessary to 

consider all the details of a system in order to make useful conclusions- In particular, 

the iterative approximation algorithm for real-time systems is designed to exploit the 

fact that often not all timing information is relevant to the property being verified. 

The key idea is to divide the state-space into separate regions, and to perform state 

approximation within each region. The algorithm is fully automatic, and is guaran- 

teed to terminate correctly whenever the underlying system has a finite equivalence 

structure (e.g. a finite state-space). Furthermore it makes efficient use of both back- 

wards and forwards reachability information. As presented here it is specific to the 

task of verifying safety properties. 
The algorithm is presented in a general framework: while it was developed specif- 

ically for verifying timing properties, it is applicable to a wide variety of systems. 

In chapters 4 and 5, we show how it can be applied to the verification of real-time 

systems in particular. 

2.1    Fundamental approximation algorithm 

The technique of approximation can be used to extend the usefulness of symbolic 

analysis. Here we investigate the symbolic approximation of the set of reachable 

states.   Such state-based overapproximations for verifying hard real-time systems 

21 
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were first investigated by N. Halbwachs [Hal93b], and this work is inspired by his 

success. 

The basic idea is to replace the exact "union" on sets of states in equation 1.1 

with either of 

• an (overapproximating) "join" operator U, satisfying the soundness condition: 

fox all A,B :AUBC AllB (OA_l) 

or 

• an (underapproximating) "plus" operator |> satisfying the soundness condi- 

tion: 

foTallA,B:ACA$>BCAUB (UA_1) 

and the nonemptiness condition: 

for all A : A ± 0 implies 0 &> A ^ 0 (UA.2) 

Notice that the second axiom for an underapproximating operator is asymmetric, 

and that neither operator need be commutative nor associative. The set A l> B is 

referred to as the expansion of A with B. Observe that it is not necessarily larger 

than A. 

We thus have two approximation algorithms, one for overapproximating (fig- 

ure 2.1) and one for underapproximating (figure 2.2), each obtained by performing 

the fixpoint computation with the appropriate approximating operator. Both take as 

input a safety verification problem, and return the boolean variable verified_correct. 

The function disjoint() returns the boolean value for whether its operands are disjoint 

or not. 

2.1.1     Correctness 

When computing the fixpoint using the overapproximating operator U, it is clear all 

the truly reachable states of the system are contained in the approximating set F. It 
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FundamentaLOverapprox(S,S0,N,V) 

Last_Over := So; 
Over  := So; 
converged  := FALSE; 
while (not converged) do 

Next-States  := N(Last_Over); 
Last-Over := Over; 
Over  := Over U Next-States; 
converged  := (Last_Over = Over); 

endwhile 
verified.correct  := disjoint(Over,V); 

Figure 2.1: Fundamental overapproximation 

FundamentaLUnderapprox(S,S0,N,V) 

Last-Under := So; 
Under := S0; 
converged := FALSE; 
while (not converged) do 

Next_states  := N(Last_Under); 
Last-Under  := Under; 
Under  := Under O Next-States; 
converged  := (Last-Under = Under); 

endwhile 
verified-correct  := disjoint(Under,V); 

Figure 2.2: Fundamental underapproximation 

is also easy to see that using the underapproximating operator £> gives a set which 

is contained in the set of truly reachable states. 

Proposition 2.1 Given a verification problem (S, S0, N, V), if the fundamental over- 

approximation algorithm terminates, then 

• the resulting overapproximation Over contains reach(S,So,N). 
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• if the output verified-correct has value true, then the system is correct. □ 

Proposition 2.2 Given a verification problem (S,So,N,V), if the fundamental un- 

derapproximation algorithm terminates, then 

• the resulting underapproximation Under is contained in reach(S,So,N). 

• if the output verified-correct has value false, then the system is not correct.   □ 

2.1.2 Advantages 

The computational benefit of using approximation depends critically on the approx- 

imating operators and the sets they act on. Advantages accrue when the approxi- 

mating operations are much faster than exact union, and there are fewer iterations 

overall. One way to exploit this feature is to introduce the notion of approximat- 

ing sets, a subdomain of the power set of states over which the symbolic next-state 
relation, intersection, and the approximating operators are closed. In many cases, ap- 

proximating sets can be chosen to ensure that applying the approximating operators 

is computationally inexpensive. Using approximating sets with compact represen- 

tations can lead to great reductions in the space required to perform the fixpoint 

computation. 

A further advantage may arise when the domain of approximating sets has only 

small chains of increasing sets. In this case, computing the fixpoint iterations may 

converge faster, and in any event, there is a smaller upper bound on the number of 

iterations required. 

2.1.3 Disadvantages 

There is a price paid for only approximating as opposed to using exact computa- 

tion. The approximation may not correctly determine whether the system meets its 

specification. Furthermore it is possible that computing the approximation is more 

work than finding the set of exactly reachable states. 

Before explaining the potential disadvantages of approximation, we first define 

some terms. A false negative is said to occur when a method reports the system is 
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Overapproximation Underapproximation 
Correctness Possible false negatives Possible false positives 
Computation May search many unreachable 

states 
May iterate more times than 

exact computation 

Figure 2.3: Potential disadvantages of approximation 

not correct, when in fact it is. A false positive occurs when a method reports the 

system is correct, when in fact it is not. 

When the overapproximation incorrectly includes violating states which are not 

truly reachable, a false negative may arise. In addition, a single overapproximation 

does not provide enough information to confirm any true negative, i.e. to say for sure 

that a system really does violate its specification. From a computational point of view, 

the overapproximation may waste effort searching through parts of the state-space 

which are not really reachable. 

When an underapproximation fails to include any of the violating states which are 

truly reachable, a false positive may arise. Analogous to the case of overapproxima- 

tion, there is no means of confirming any positive results when the system is correct. 

A potential computational disadvantage is that finding the underapproximating fix- 

point may involve more iterations that exact computation, since not necessarily all 

successor states are added at each iterative step. These disadvantages are summarized 

in figure 2.3. 
Individually computing both an underapproximation and an overapproximation 

solves the problem of the lack of confirmed negatives in overapproximating and con- 

firmed positives in underapproximating, but it may still yield inconclusive answers 

when the two approximations report different results. 

2.1.4    Example 

As a simple example let us overapproximate the reachable states of the following 

system. 
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Example 2.3 [Basic overapproximation] Process P 's state-space consists of all 

pairs of integer values for the variables x and y. Initially, x=y=0, and there is one 

violating state: x=6,y=0. The next-state relation is determined from the program: 

while  (x<5 & y<5)  do 

<x,y> := <x+l,y+l>; 

while TRUE do 

<x,y> := <x,y>; 

The set of truly reachable states is {(i, i) \i € [0,5]}, and so the system is correct. 

Following Cousot's interval analysis [Cou78j, we choose as approximating sets the set 

of rectangles, i.e. sets of points of the form: 

{(x, y) : lx < x < ux A ly < y < uy} 

where all bounds are integers or infinity, denoted oo. Such a set will be denoted 

[lx,ux] x [ly,Uy\. The join operator acting on A and B returns the smallest rectangle 

containing both A and B. Computing the fixpoint iterations gives 

Ft   =    [0, i] x [0, i]     for i = 0..5 

F   =   [0,5] x [0,5] 

The overapproximation F does not include the violating state so the system is 

verified. Suppose, however, the violating state were (2,0). By the second iteration the 

overapproximation would include (2,0) and a false negative would be reported.       □ 

2.2    Simple variations 

Before explaining the full iterated algorithm which determines exactly whether the 

system is correct, we first introduce some basic variations on the simple approximation 

scheme in the last section. These variations will be combined in the full algorithm 

appearing in the next section. 
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2.2.1 Backwards reachability 

While the previously described approximations proceeded forward through the state- 

space, it is also possible to approximate while performing backwards traversals. The 

system is correct iff the initial states are not backwards reachable from the violating 

states. Thus backwards graph traversal gives rise to the following verification scheme: 

BQ   =   V 

Bi+1   =   BiUN-^Bi) (2.4) 

B   =   \im Bi 
2 

The system is correct iff B D S0 # 0- Naturally, we can replace the exact union 

operator in equation 2.4 with the U and £> operators to approximate the backwards 

reachable states. 
In the remainder of this thesis we assume backwards approximations refer to 

approximations of the states backwards reachable from the violating states. 

2.2.2 Iterated overapproximations 

Information from a forward overapproximation can be used to refine the computa- 

tion of a backwards approximation, and vice versa, leading to a scheme of iteratively 

refined overapproximations. Observe that every system state lying on a violating 

execution trace satisfies two properties: it is both forward reachable from the initial 

states and backwards reachable from the violating states. In analyzing the reachable 

state-space, we need only consider states which potentially fulfill both these proper- 

ties. Thus, in a forward traversal, we may disregard states which are not backwards 

reachable from the violating states. 
Figure 2.4 outlines an iterative scheme of alternately computing forward and back- 

wards overapproximations, where the last computed overapproximation in the oppo- 

site direction is used to narrow the scope of the states considered during the current 

approximation. Overapproximations are repeatedly computed until either the sys- 

tem is verified correct, or the forward and backwards approximations are the same, 
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in which case a (potentially false) negative is reported. The function OppositeJDir 

maps FORWARDS to BACKWARDS, and vice versa. Given a set of states OverRev 

representing a superset of the reachable states in the reverse direction, the function 

Approx_Within limits the next overapproximation so it never goes outside OverRev. 

Thus for a set of initial states Start, and a known backwards overapproximation 

B.Over, the function call Approx_Within(5_Ot;er,5'tort,A/',FORWARDS) returns an 

overapproximation obtained by computing the following limit: 

FQ   =   Start n B.Over 

Fi+1   =   (FiUN(Fi))nB-Over 

F   =   lim F{ 
i 

The function Approx_Within works similarly when computing a backwards overap- 

proximation relative to the previous forwards overapproximation. The current (resp. 

last) overapproximations are stored in the array Over (resp. Last_Over), and the ar- 

rays Start and End indicate the sets of starting and ending states for violating traces 

viewed in the indexed direction. 

2.2.3     Separating classes 

We now describe a mechanism which enables more accurate approximations. The 

false negative of example 2.3 could be explained as due to poor approximation: the 

approximation was too "loose". A good goal would be to use more accurate approxi- 

mations. One way to do this would be to have the join operator result in the smallest 

enclosing convex polyhedron rather than a rectangle, i.e. improve the accuracy of the 

approximation by using more expressive approximating sets. However, we are really 

interested in a methodology which will allow approximations to become successively 

more accurate as necessary. The method we use is based on the simple idea of lo- 

calizing the approximations: we use state-space partitioning to limit the application 

of the approximating operators when it is suspected that joining states will result in 

too crude an approximation. The mechanism divides the state-space into different 

separating classes. An approximation is then a set of sets, each of which lies entirely 
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IteratecLOverapprox 

Start [FORWARDS] := End [BACKWARDS] : = S0; 
Start [BACKWARDS] := End[FORWARDS] := V; 
Last_Over[BACKWARDS]   := S; 
Last_Over[FORWARDS] := 0; 
dim  := FORWARDS; 
verified_correct  := FALSE; 
iterations-done := FALSE; 
while (not verified_correct and not iterations-done) do 

Over [dim]   := 
Approx.Within(Last_Over[Opposite_Dir(dim)],Start[dim],N,dirn); 

iterations_done  := (Overfdirn] = Last_Over[dirn]); 
verified-correct  := Disjoint(Over[dirn],End[dirn]); 
Last_Over[dirn]   := Over [dim]; 
dim  := Opposite_Dir(dirn); 

endwhile 

Figure 2.4: Iterated overapproximations 

within a separating class. The approximation operators are only applied within any- 

given class. In computing an approximation, we apply the next-state relation to each 

set of states in the current approximation, and intersect the result with each separat- 

ing class. The approximating operators are then applied only across sets from within 

the same separating class. In effect, the approximation is always localized within any 

given separating class1. 

Approximating structures 

We delay until the next section a detailed explanation of how to find a good set of 

separating classes based on avoiding joins which might lead to false negatives and false 

positives. For now, we concentrate on how separating classes enable more accurate 

approximations. Formally, we define a separating structure C for a set of states D 

1The basic approximation algorithm may be viewed as having all states lie in one large separating 
class, S. 
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to be a tuple of distinct (but not necessarily disjoint) sets (Ci)ieI which cover D, i.e. 

Uie/Ci = D. We refer to the components of a tuple as its elements. The elements 

of a separating structure are called separating classes. An approximating structure 

A with respect to C is a tuple of sets of sets {{Aij}j€Ji)iei where each A{i C C,-. 

Reference to C will be omitted when the meaning is clear. We say that the set A 

is in (or appears in) A iff A = A{j for some i and j. The i-th component of A is 

the set of sets {Aij}j€Ji and can be thought of as a set of approximating sets for 

the reachable states lying within C;. We say the base elements of an approximating 

structure are those states found in any of the individual sets of the structure, i.e. s 

is a base element of A iff s G Ui€i,jeJiAij- For any approximating structure A, let 

U.4. denote its base elements. A state appears in an approximating structure A iff it 

is one of its base elements. 

Operations on approximating structures 

Instead of using a single approximating set as an estimate for the set of reachable 

states, we now use approximating structures respecting C. Applying the next-state 

relation N to an approximating structure A = {{Aij}jeJi)ieI yields the structure 

NQ{A) whose i-th component is the set of sets 

{N{Ai,j) n d | *' G I and j G J,-} 

The join operator is defined relative to a separating structure C = (Ci)iei. Its 

operands are approximating structures respecting C. Intuitively the join is done in- 

dependently in each component, where each approximating set is the result of joining 

sets in its operands. A set of sets {DI}J€L is said to be a join-combination of a set of 

sets {Aj}jej iff 

• for each I G L, Di = Ui=i..m An where each index ji is in J, and, 

• for each j G J there exists an I G L such that Aj C Di. 

The set of sets {JD;}/GL is said to be a join-combination of two sets of sets {Aj}j€j 
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and {Bk}k€K iff it is a join-combination of their union {Aj}jeJ U {Bk}keK. An ap- 

proximating structure is a join of two approximating structures A = ({A.JjejOier 

and B = ({Bik}k€Ki}iei iff its i-th component is a join-combination of Ai and #,. For 

simplicity, we may write AuB to refer to any join of A and B, rather than introducing 

notation for relations over triples (A,B,C) of approximating structures to indicate 

that C is a join of A and B. 

We can also obtain underapproximations in a similar way. We first extend the t> 

operator to sets of states and then to approximating structures. Intuitively, expanding 

an approximating structure A with B is the result of expanding each component Ai 

with Bi. The expansion over components consists of taking sets in Bi and adding 

them via the l> operator to the sets in Ai. The set of sets {D/}/ei is said to be an 

expansion of the set of sets {Aj}jej with {Bk}keK iff it is the result of taking each 

set Aj and expanding it with some number of sets Bjti, Bjß,..., Bj^ in such a way 

that each set Bk is added to some Aj, i.e. for every k e K there are j and I such that 

Bk = Bjj. Formally, for every I £ L there is an index jt G J selecting a set Ajn and a 

sequence of indices kiyi, ki$, ■■■, h,mi G K selecting some sets in {Bj}jej to be added 

to Ajt such that 

• every Di results from expansions to A,-, by the sets Bkll,..., Bklm , i.e. for every 

I, Di = (• • • {{Ah E>Bkll)[>Bkl<2)■■■>Bklmi), and, 

• every set Aj is preserved, i.e. for every Aj there is a set D\ such that Aj C Di, 

and, 

• every set Bk is added, i.e. for every k £ K, there is some index k^m equal to k. 

An approximating structure is an expansion of the approximating structure A 

with B iff its z'-th component is an expansion of A with B^ Again we avoid unwieldy 

notation involving relations and informally write A l> B to indicate some expansion 

of A with B. 

Finally we define the separation of a set with respect to a separating structure. 

Given a set of states A and an approximating structure C, A J. C is the approximating 

structure whose i-th component is A n C{. The algorithms for computing overapprox- 

imations and underapproximations using separating structures appear in figures 2.5 
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Separating-Classes-Overapproximation((S,So,N,V),C) 

Last_Over := S0 IC; 
Over  := Last_Over; 
converged  := FALSE; 
while (not converged) do 

Next_states  := JVc(Last_Over); 
Last-Over  := Over; 
/* the join operator returns a legal join */ 
Over  := Over U Next_states; 
converged := (Last-Over = Over); 

endwhile 
verified-correct  := disjoint(UOver,V); 

Figure 2.5: Separating classes overapproximation 

and 2.6. 

Proposition 2.4 // the overapproximating algorithm using separating classes (fig- 

ure 2.5) terminates, then 

• UOver D reach{S). 

• if the boolean output verified-correct has value true, then the system is correct. 

D 

Proposition 2.5 If the underapproximating algorithm using separating classes (fig- 

ure 2.6) terminates, then 

• U Under C reach(S). 

• if the boolean output verified-correct has value false, then the system is not 

correct. ü 

Example 2.6 [Separating Classes: Overapproximation] Consider again the system 

in example 2.3, with violating state (2,0). In an effort to show that the reachable states 

do not include (2,0), we use approximating sets to partition the state space so that the 
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Separating-Classes-Underapproximation((S,So,N,V),C) 

Last-Under := S0 IC; 
Under := Last-Under; 
converged := FALSE; 
while (not converged) do 

Next-states  := iVc (Last-Under); 
Last-Under  := Under; 
/* the addition operator returns a legal expansion */ 
Under  := Under &>Next_states; 
converged  := (Last-Under = Under); 

endwhile 
verified-correct  := disjoint(UUnder,V); 

Figure 2.6: Separating classes underapproximation 

-S- 
0    12    3    4    5 

Figure 2.7: Separating classes example 

violating state is separate from the rest. Thus we may choose as a separating structure 

C = (d = [0,1] x [0, oo],C2 = [2, oo] x [1,oo], C3 = [2,2] x [0,0],C4 = [3,oo] x [0,0]). 

We adopt a simple policy for choosing a join of a set of sets: {A} U {B} = {A U B}2. 

Then we iterate from A0 = ({[0,0] x [0,0]}, {}, {}, {}), giving first Ai = ({[0,1] x 

2This policy ensures every component of every approximating structure generated is either a 
single set or the empty set. 
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[0,1]}, {}, {}, {}). To compute A2 we first find 

T   = Nc(A!) 

= N{Ai)lC 

= ([1,2] x [1,2]) K 

= ([l,l]x[l,2],[2,2]x[l,2],{},{}) 

giving 

A2   =   TU Ai 

=   ({([1,1] x [1,2]) U ([0,1] x [0,1])}, {([2,2] x [1,2])}, {}, {}) 

=   <{[0,1] x [0,2]},{[2,2] x [1,2]}, {},{}) 

({[0,1] x [0,3]}, {[2,3] x [1,3]}, {},{}) 

({[0,1] x [0,4]}, {[2,4] x [1,4]}, {},{}) 

({[0,1] x [0,5]}, {[2,5] x [1,5]}, {},{}) 

Az = 

A4 = 

A5 = 

A = lim Ai =   A5 

The base elements of the approximating structure A do not include the violating 

state, and the system is correctly verified. E 

Note that the iterated approximation method mentioned in subsection 2.2.2 is a 

special application of using the result Over[dirn] of each previous forward (or back- 

wards) pass in a separating structure (Overfdirn]) for the next pass in the opposite 

direction. 
So far the discussion has been about using separating classes for forwards ap- 

proximations, but the algorithm applies perfectly well to backwards approximation 

as well. 

2.3    Full approximation algorithm 

The full approximation algorithm iterates with increasingly accurate underap- 

proximations and overapproximations, both in the forward and backwards directions. 
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AuC 

Figure 2.8: Conditions leading to false negatives 

Approximations are computed with respect to successively finer separating structures 

which are dynamically generated by the algorithm. Whenever the algorithm termi- 

nates, it gives a true answer to the verification problem, i.e. there is no possibility 

of termination with false negatives or false positives. If the system's state-space is 

finite, the algorithm is guaranteed to terminate, and thus always determines whether 

the specification is satisfied or not. 

Iterative convergence 

Many iterative approximation schemes can be designed with this kind of progress 

property, namely that successive approximations are more accurate, and termination 

is guaranteed over finite state-spaces. For example, we need only ensure that the fi- 

nal iteration is the full exact computation gained from the separating structure where 

every state forms a class of its own. We can design iterative schemes where the approx- 

imation is performed with a fixed sequence of successively finer separating structures. 

For instance, an algorithm which uses a given partitioning of a (finite) state-space into 

at least 2J disjoint separating classes at the z'-th traversal will guarantee a confirmed 

answer to the verification problem after logarithmically many iterations. While this 

approach may be successful in some cases, it is generally difficult to choose in advance 

which separating structures should be used in order to achieve efficient verification. 

We propose instead an iterative approximation scheme which automatically discovers 

where approximations can be taken more freely, and where the analysis needs to be 
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more exact. The user provides only an initial separating structure, and then the al- 

gorithm uses information from previous approximations to generate suitable refined 

separating structures. The scheme is therefore dynamically based, and adapts itself 

to the particular problem being solved, rather than being statically determined. 

Conditional joining 

The refinement procedure is based on some simple observations about how false neg- 

atives and false positives arise. It uses a notion of conditional joining to determine 

which parts of the state-space should be kept separate, and thus placed in different 

separating classes. The additional conditions we describe for joining sets are easily 

detectable and lead to increased accuracy of the approximations only in those parts of 

the state-space which are likely to lead to false positives or negatives. Suppose a false 

negative is obtained while performing a forward overapproximation of the reachable 

states. It must be a consequence of some join in the midst of computing the approx- 

imation. Figure 2.8 shows how false negatives occur: at some point a join caused an 

ancestor state s' of s to be included in the approximation although s' and s are not 

truly reachable3. If all such joins could be avoided, there would be no false negatives 

in the approximation. However, it is not easy to use this criterion to decide whether 

to join two sets or not, since we cannot predict whether a state s' is a predecessor 

of any violating states. There is a clear trade-off in the amount of effort spent in 

determining whether s1 is a predecessor of a violating state and a possibly inaccurate 

approximation as a result of unwisely joining sets A and D. 

Quick decision strategy 

The strategy we propose is to use simple and fast checks on whether to join sets. Any 

mistakes which are made when sets are joined when they should not have been can be 

detected and corrected in a later approximation. The advantage of this approach is 

that sets are joined unless there is very strong reason not to, and so the approximating 

structures are kept small, and the computations of each approximation are fast. For 

3It may be that s = s'. 
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C 

Figure 2.9: Conditions leading to false positives 

false negatives then, we concentrate on cases where it is clearly foolish to join sets. If 

the state s' lies in the previous backwards underapproximation, then joining A and D 

in figure 2.8 will lead to a negative being introduced by this approximating step, since 

s' definitely has a path to a violating state. However, there is no particular reason 

to believe that s' is really reachable, since it is only included in the approximation 

because of a join operation and we have not constructed a path to it. Thus there 

is every chance that this negative will be a false negative. This discussion suggests 

avoiding all joins where the operands A and D contain no states in the previous 

reverse direction's underapproximation, but their join does. 

There is a similar condition based on the occurrence of false positives. It is also 

simple to detect, and results in refining the approximations in areas of the state-space 

where false positives are likely to originate. Suppose we are computing a forwards 

underapproximation. Figure 2.9 shows how the propagation of the reachable states 

is stalled at s, and its successor s' is omitted from the underapproximation. Clearly 

s' is truly reachable. Let us first examine the conditions leading to s' not appearing 

in the underapproximation. Since its predecessor s is in the underapproximation, 

there is some stage of the underapproximation algorithm when all the successors of s, 

including s', are considered for inclusion in the underapproximation. If at this point, 

the underapproximation does not include any states in the same separating class as 

s', then some states would immediately be added to the underapproximation, by the 

nonemptiness for the underapproximating operator (i.e. 0 \>A ^ 0 for nonempty sets 
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Figure 2.10: Violating conditions for permissible joins 

A). Because we know 5' is not in the underapproximation, it follows that the under- 

approximation must include some other states in s"s separating class C. One way to 

increase the likelihood s' appears in the next underapproximation is to use separating 

classes to separate it from all states in the underapproximation which lie in C. These 

separating classes are created dynamically by the next backwards overapproximation 

which will avoid joining sets within C if one of its operands contains states in Fv 

while the other does not. 

2.3.1     Conditional joins 

The usual algorithm using separating classes would always join two sets A and D 

whenever they lie within the same separating class. Following the discussion above, we 

now provide more restrictive conditions under which such joins should be performed. 

The conditions given below apply when performing forward reachability. Symmetric 

conditions apply for backwards reachability and are not explicitly stated here. Let 

A and D be two sets lying within the same separating class. Let Bu be the set of 

states in the previous backwards underapproximation which are contained in that 

separating class. A join between A and D is said to be permissible unless either of 

the following two conditions hold: 

1. both A and D are disjoint from Bu but A U D is not, or 
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2. D is disjoint from Bv and A is not, or .4 is disjoint from Bv and D is not. 

Condition 1 corresponds to a situation leading to a false negative, and Condition 2 

to possible false positives. 
We say that when sets are joined in a manner that respects the above conditions, 

the result is a Bv -consistent join, which we now formally define. The auxiliary- 

function overlap() returns whether its two parameters have non-empty intersection, 

i.e. 
.    \ TRUE     xny^0 

overlapiX.Y) = < 
\ FALSE     otherwise 

Given a set X, we say that a set of sets {Di}leL is an X-consistent join of a set of 

sets {Aj}jej iff 

• for each I e L, Di = Ui=i..m^, where each ji e J and for each i = L.ra, 

overlap(Aj{,X) = overlap(DhX). 

• for each j £ J there exists anlei such that A,- C D/. 

Corollary 2.7 If the separating classes overapproximation algorithm of figure 2.5 is 

run under the restriction that all joins are X-consistent for some set X, then 

• UOverD reach(S). 

• if the boolean output verified-correct has value true, then the system is correct. 

Proof: Obvious from proposition 2.4, since all X-consistent joins are joins. □ 

2.3.2     Refinement of approximations 

As explained informally above, the approximations are successively more accurate 

because they are computed using finer and finer separating structures. The sepa- 

rating structures are derived from the most recently computed overapproximation. 

Their refinement is the result of using only conditional joins. In other words, if an 

overapproximation contains the class C the next overapproximation may have created 

approximating sets C\, C2, ..., C*, all within C through using only conditional joins. 
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The next approximation will use each of these sets C* as separating classes instead 

of C. The result is a more accurate approximation, because some joins which would 

have taken place within the class C will no longer do so since their operands now lie 

in different classes. 

Before an approximating structure can be used as a separating structure, it 

must first be flattened, since it is a tuple of sets of sets, rather than a tuple of 

sets. We define the Flatten() function over approximating structures A such that 

Flatten(({Aij}i€Ji)ie7) = {Ak)k€K where A{j = A^^+j, i.e. every approximating 

set in A is a component of Flatten(^t). 

2.3.3     Sketch of algorithm 

The full algorithm is sketched below. Forward overapproximations and underap- 

proximations, and backwards overapproximations and underapproximations, are al- 

ternately computed. Each time an approximation is computed, information from 

the latest available approximations in the opposite direction is used. The opposite 

direction's overapproximation gives an upper bound on the states which need to be 

considered, see section 2.2.2. In addition this overapproximation also serves as a 

separating structure for the current overapproximation. The opposite direction's un- 

derapproximation is used to determine which joins are permissible, see section 2.3.1. 

Overapproximations are computed as described above, with only permissible joins. 

Thus an overapproximation may have several unjoined sets for each separating class 

of the separating structure it respects. This resulting overapproximation is used as a 

separating structure for the next pair of approximations. Thus the approximations 

are computed relative to finer and finer separating classes, resulting in successively 

more accurate approximations. 

The forward and backward overapproximations and underapproximations are suc- 

cessively computed until the system is deemed correct, or a true violation is detected. 

Notice that in general the full algorithm need not terminate: it may generate in- 

finitely many approximations without ever solving the verification problem. How- 

ever, if the state-space is finite, or can be partitioned into finitely many equivalence 

classes, the algorithm is guaranteed to terminate (see Theorem 2.14). The skeleton 



2.3.  FULL APPROXIMATION ALGORITHM 41 

Full-Approx 

Over[BACKWARDS]  := original separating structure; 
Under[BACKWARDS]  := empty approximating structure; 
confirmed-positive := FALSE; 
confirmed-negative := FALSE; 
dim  —FORWARDS; 
Sep-Structure  := original separating structure; 
while ( (not confirmed-positive) and  (not confirmed-negative) ) do 

Over [dim]   := 
Over_Approx(dirn,N,Sep_Structure,Under[Opposite_Dirn(dirn)]); 

Sep_Structure  := Flatten(Over[dirn]); 
Under[dirn]   := Under_Approx(dirn,N,Sep_Structure); 
dim  := Opposite_Dirn(dirn); 

endwhile   

Figure 2.11: Full approximating algorithm 

of the full algorithm appears in figure 2.11. The arrays Over and Under are global 

variables storing the current approximations in each direction, and confirmed-positive 

and confirmed-negative are global booleans. The algorithm starts by computing ap- 

proximations in the forward direction4. Initially nothing is known about which states 

are backwards reachable, so we assume the user supplies an initial overapproximat- 

ing structure whose base elements are all of S. We take the empty approximating 

structure as a conservative underapproximation of the backwards reachable states5. 

The functions Over_Approx() and Under_Approx() return approximations in the ap- 

propriate direction. 

Pseudocode for the overapproximation algorithm appears in figure 2.12. The pa- 

rameter Opp-U is an underapproximating structure in the opposite direction. The 

parameter Sep is the result of flattening an overapproximating structure into its cor- 

responding separating structure. When called with parameters FORWARDS, N, A 

and C, the function Successors() returns the set of successors of A via the next- 

state relation N, separated with respect to the structure C, and the function call 

4The algorithm could just as well start going backwards from the violating states instead. 
5In fact, we could use any approximating structure whose base elements are a subset of V. 
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Over-Approx(dirn, Nsr, Sep, Opp.U) 

Last_Over[dim]   := UStart[dirn] J. Sep; 
Over [dim]   := Last-Over [dim]; 
converged  := FALSE; 
while (not converged) do 

Next-States  := Successors(dirn,Nsr,Last_Over,5ep); 
Last_Over[dirn]   := Overfdirn]; 
Over[dirn]  := consistent_join(0pp_[/, Over[dirn], Next-States); 
converged := (U Last_Over[dirn] = UOver[dirn]); 

endwhile 
verified.correct  := disjoint (U Over [dim], Endfdim]); 
confirmed-positive  := verified_correct; 

Figure 2.12: Overapproximating algorithm 

Successors(BACKWARDS,iV,A,C) returns its set of predecessors separated with re- 

spect to C. The function consistent_join(), called with parameters X, A and B returns 

an X-consistent join of A and B. The algorithm for underapproximations is similar, 

except that there is no need to check for consistency when applying the approximating 

operator. 

Correctness 

Theorem 2.8  The following are true for forward and backwards traversal: 

1. The states appearing in any underapproximating structure are a subset of the 

truly reachable states. 

2. The states appearing in any overapproximating structure returned by the routine 

Over-Approx are a superset of the truly reachable states that lie on violating 

paths. n 

Termination 

Let FOi(BOi) and FUi(BUi) be the i-th. forward (backward) overapproximations and 

underapproximations in a sequence of approximations generated by the algorithm. 



2.3.   FULL APPROXIMATION ALGORITHM 43 

Under_Approx(dirn, Nsr, Sep) 

Last_Under[dirn]   := U Under[dim] j Sep; 
Under[dirn]   := Last_Under[dirn]; 
converged  := FALSE; 
while (not converged) do 

Next-States  := Successors(dim,Nsr,Last_Under[dirn],5e^); 
Last_Under[dirn]  := Under[dirn]; 
/* the addition operator returns a legal expansion */ 
Under[dirn]   := Under[dirn] £> Next_states; 
converged  := (U Last_Under[dirn] = U Under [dim]); 

endwhile 
verified_correct  := disjoint ( U Under [dirn], End [dim]); 
confirmed-negative  := not verified-correct; 

Figure 2.13: Underapproximating algorithm 

We refer to the computation of FOi and FUi as the i-th forwards traversal of the 

algorithm. We first note that when S is finite, each individual traversal will complete. 

Proposition 2.9 If S is finite, then the individual calls to Over-Approx and Un- 

der-Approx terminate. 

Proof: The while loop of each algorithm is only repeated when additional base 

elements are added to the currently computed approximation. Therefore the loop 

terminates since the state-space is finite. □ 

The argument for termination of the full algorithm consists of showing that there 

is well-founded ordering over the approximations generated by the algorithm, such 

that they are non-increasing and decreasing infinitely often. 

We define a partial order over approximating structures, where 

A <baSe B if and only if UACUB 

In addition, we say 

A dibase B if and only if UiCUß 
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We also denote A -<ba*e B by B ybase A, and write B hbase A for A ^6ase B. The 

orders are well-founded. 

Proposition 2.10 If S is finite, then there are no infinite strictly -<base-descending 

or -<base-ascending chains of approximating structures. □ 

We now show the overapproximations are non-increasing with respect to -<base- 

Proposition  2.11   BOi+i ^base FOi+l ^base BOi -<base FO{ 

Proof: Every base element of an approximation is also a base element of the sepa- 

rating structure it respects. The separating structures are obtained by flattening the 

previous overapproximations and flattening preserves the base elements of a structure. 

D 

Finally we establish that if the algorithm does not terminate, then the forwards 

overapproximations must decrease infinitely often with respect to -<base- In the next 

proposition we first show non-termination implies that after every two traversals 

either the overapproximations strictly decrease, or the underapproximations strictly 

increase. Then the proof of proposition 2.13 shows the overapproximations must 

decrease infinitely often, since the underapproximations cannot increase infinitely 

often in a finite state-space. This contradicts the well-foundedness of -<base- 

We first introduce some notation. Given a set of states Y C S, we say that a set 

X of states is Y-avoiding iff X n Y # 0. It is Y-touching iff it is not Y-avoiding. 

Proposition 2.12 If the algorithm has not terminated after computing FOi+2, then 

either FOi+2 -<base FOi} or BUi -<base BUi+1. 

Proof: The proposition essentially states that in every couple of traversals some 

progress is made in either the overapproximations or the underapproximations. As- 

sume the algorithm has not terminated after computing FOi+2. Then by proposi- 

tion 2.11 if BOi+i ^base FOi, it follows that FOi+2 ^.base FOh and progress has 

been made in the overapproximation as required. Thus we need only consider the 

case where U BOi+i = U FOi. First observe that BUi debase BUi+i since UBUi+1 

contains UBU{ n ö BOi+i which equals Li BUi n I) BOi which equals öBUi since 
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U BUi C U B0{. Hence in order to show that BUi -(.base BUi+i we need only demon- 

strate that BUi+i includes some state not in BUi. 

We establish three claims that complete the proof: 

1. there is at least one UBU{-avoiding approximating set A of FOi+x whose set of 

successors is Uß£/rtouching, i.e. N(A) n UBUi ^ 0. 

2. there is at least one Uß 17,-avoiding approximating set B of BOi+\ whose set 

of successors is U ß ^-touching. 

3. some state b G B appears in BUi+i but not BUi, and hence BUi -<base BUi+i. 

The first claim follows from the fact that only U ß ^-consistent joins are performed 

at any stage of the Over_Approx routine. Since the full algorithm has not terminated, 

we know that the initial states used in Over_Approx are disjoint from UBUi, and 

hence all approximating sets in So | BOi are Uß{7,-avoiding. The final converged 

overapproximation FOi+i is not Uß [/^-avoiding, or else it is also V-avoiding, and 

hence verified correct. Thus at some stage of the overapproximating routine a U BUr 

touching set is including in the accumulated overapproximation. Since all joins are 

UßC/j-consistent, no Ußf/j-avoiding approximating sets are ever replaced with U BUr 

touching sets. Hence there must be some UßC/j-touching set which is first added to 

the overapproximation, and it must be added as a result of computing the successors 

of a U ß[/"j-avoiding approximating set. Let this set be AQ. Thus AQ has successor 

states in U BUi. The overapproximating algorithm may join other sets to AQ, but 

only if the join is Uß£/,-consistent, so there is always an approximating set that is 

U ßC/j-avoiding and contains AQ. This argument establishes the first claim above. 

Let the approximating set thus found be called A. 

The second claim states that BOi+i also has such a set. We know that some state 

a e A has a successor a' G UßC/,-. We have already shown that UBUi C UBUi+i 

and soUß^CUßOj+i- In particular, a'euBOi+\. When the overapproximation 

algorithm computes the predecessors of an approximating structure containing a', 

it obtains a structure B with at least one set ß0 containing a. Thus when B is 

joined to the current backwards overapproximation under construction, there is some 
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approximating set containing a which is a subset of both BQ and the class A, since 

approximating sets in FOi+i are used as separating classes in computing BOi+i. The 

converged backwards overapproximation also contains some set B C A which contains 

a. Because the class A is U-BC/ravoiding, so is B, and the claim is established. 

Finally, for the third claim, we need to show that some state a' e A is in BUi+\. 

The state a has been chosen so that N(a) includes elements of U BUi. Let B' = 

N(a) n U BUi ^ 0. While computing the underapproximation BUi+\, the routine 

Under_Approx at some stage considers all predecessors of some approximating set 

containing some b e B'. These predecessors B" would include the state a € A. Since 

B is a separating class used in this computation, B D B" is a set in the approximating 

structure for the predecessors being considered now. Suppose the underapproximation 

under construction already included some states in A. Then we are done since U BUi 

does not, and since the underapproximation algorithm never discards base elements, it 

follows that BUi -<base BUi+i. So suppose not. But in this case the algorithm would 

then include some set of states in B by the second axiom for underapproximating 

operators, namely that 0 te>X ^ 0. It follows that BUi -<base BUi+\. □ 

Proposition 2.13 Given a finite state-space, if the algorithm generates infinitely 

many forwards overapproximations, then infinitely many of them are strictly decreas- 

ing with respect to -<base- 

Proof: Suppose the forwards overapproximations are not infinitely often decreasing. 

Then by proposition 2.11 the base elements of the forwards overapproximation must 

converge to some set UFO. Suppose this occurs after k traversals. From this point 

on, the backwards underapproximations are non-decreasing, since UBUi C UFO and 

UBUi n UFO C \JBUi+1 for i > k. Hence they cannot increase infinitely often 

since they are contained within a finite set. Thus by proposition 2.12 the forwards 

overapproximations are infinitely often decreasing. □ 

Theorem 2.14 Given a finite state-space S, the full approximation algorithm of fig- 

ure 2.11 terminates. 
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Proof: The well-founded ordering z^e over the forwards overapproxirnations is non- 

increasing and strictly decreasing infinitely often, and so the algorithm must termi- 

nate. D 

Theorem 2.15 Given a finite state-space S, the full approximation algorithm termi- 

nates with the correct answer to the verification problem. 

Proof: Immediate from theorems 2.8 and 2.14. □ 

2.3.4    Additional splitting 

The full algorithm can easily be modified to allow additional splitting of classes. This 

feature enables the program to use various heuristics to accelerate convergence, other 

those outlined above for conditional joins. 
Additional splitting may be safely performed between traversals. In the algorithm 

given above, each successive traversal of the algorithm uses a separating structure de- 

rived from the previous overapproximation. However it is always possible to refine 

this separating structure without losing soundness, or completeness over finite-state 

systems. If the separating structure used instead of the previous overapproximation 

has the same base elements as the overapproximation, correctness is maintained. Fur- 

thermore, if it is also finer than it (wrt <sp defined below) the property of termination 

is maintained. 
We define a notion of splitting one approximating structure into another. Intu- 

itively, A is the result of some splitting of B iff it is obtained by taking some sets in 

B and splitting them into nontrivial parts. 

A<SVB if and only if 
VA € A, 3B € B such that ACB, and 

VBeB,B = U{AeA\ACB} 

We let Split() be any function which, given input approximating structure B, returns 

some Flatten(*4) for which A ^sp B. 

Proposition 2.16 Replacing the Flatten function with the Split function in the full 
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approximation algorithm maintains the properties of termination over finite-state sys- 

tems, and correctness. 

Proof: Correctness is obvious, since the base elements are maintained and thus still 

form an overapproximation. 

An examination of the termination proof over finite-state systems reveals that 

termination depends on successive overapproximations containing sets which do not 

contain elements in the underapproximations, but which have successor states which 

do. See the proof of proposition 2.12. Suppose X is such a class as required by the 

proof of termination, i.e. X is a set in FOi that is U i? ^-avoiding but its successors 

are not. Suppose then that s e X'\s not in U BUi but has a successor state which is. 

Splitting a class X into several classes Xu X2, ...,Xk which partition X ensures that 

there will always be a class among the Xi which contains s and is U i? [^-avoiding. E 

Alternative termination conditions 

An alternative dynamic method for refining the separating structure used for each 

iteration is to separate states appearing in the underapproximation from those which 

do not. This technique may be seen as a special case of allowing additional split- 

ting. The potential disadvantage of this approach is that classes may get fragmented 

quickly, and it requires use of the difference or negation operator. In particular, for 

the real-time systems we consider we do not have a space-time efficient means of 

computing the difference between approximating sets. 

2.3.5     Generating debugging traces 

An important, and often overlooked, factor in any algorithm for verification is the 

ability to generate useful debugging information when a system violation is detected. 

Here we briefly describe how the underapproximations can be used to generate de- 

bugging traces, and some of the limitations associated with them. 

In its most general form, the algorithm as it stands does not guarantee violating 

paths will be obtained every time a violation is detected. However, the underapprox- 

imation algorithm can easily be used to generate a graph whose nodes are sets of 
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states with an edge between nodes whenever there is an edge between elements of 

the two sets. If a violation is detected, the graph contains violating states. From this 

graph it is possible to generate a pseudo-trace Ax,A2,Az,...,Ak where all states in 

Ai are initial, all states appearing in any Ai are reachable from the initial states, and 

between any two successive sets A\ and Ai+\ in the sequence there is at least one edge 

from a state in Ai to a state in Ai+i. Notice however that there is no guarantee at all 

that there is even a path als a%,..., at in (S,So,N) such that a,- € A\. In many cases 

however, this kind of debugging information can be useful. 

There are a number of ways to generate real violating paths. One could use exact 

analysis over that part of the state-space covered by the underapproximation until a 

violating state is reached. 

Another method is to use a restricted form of underapproximating operator that 

enables real violating traces to be extracted. The idea is to build a graph whose nodes 

are sets of states with edges between sets whenever there is an edge to every element 

in the second set from some element of the first set.  We say a graph with sets of 

states in S as nodes is a 3V-setgraph for (S, So, N) iff whenever A —> B, for every 
<— 

be B there is some a e A such that a —> b. Every trace in a BV-setgraph corresponds 

to a trace in the underlying transition system. 

Proposition 2.17 Given a Ji-setgraph G for the transition system (S,SQ,N), for 

every path A\,A2, ■ ■ ■, A* in G, there is a path ai, 02,..., a* in (S, SQ, N) such that 

ai e Ai. □ 

Thus we need only guarantee that the underapproximation builds an 3V-setgraph. 

An easy way to achieve this is to restrict the underapproximating operator so that 

A [> B = A whenever A is non-empty. However this results in a very weak underap- 

proximating operator. In order to compensate for the weak operator, we may restrict 

the expansion operator over sets so that the underapproximation advances sufficiently. 

We propose using the expansion operator which always returns a set of sets which is 

maximal, up to a certain limit on its size. Given a sets of sets {Ai} and {Bj}, we say 

that any subset of {^4,} U {Bj} which contains every Ai, has at most k members, and 

is maximal is an expansion of {Ai} with {Bj}. The larger the value of k, the closer 
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the approximation is to being exact, at a cost of time and space. 

2.3.6    Further features 

All the algorithms described in this section are flexible enough to allow the user to 

specify an initial separating structure. Hence the algorithms can be run approximat- 

ing as aggressively (loosely), or as accurately (tightly), as desired. The user can also 

use her own understanding of the system to determine which parts of the state-space 

to analyze more accurately, and over which states rough approximations are adequate. 

An additional advantage of this approximation scheme is that it utilizes both for- 

wards and backwards reachability information. Empirical experience with finite-state 

verification has shown that in some instances performing reachability in one direction 
is easy while the other is prohibitively expensive. Rather than having to commit to an 
expensive exact forward or backwards analysis, or perform both simultaneously, the 

approximation algorithm can quickly compute an approximation in one direction, and 

then the other. Thus information from both traversals may be combined relatively 

quickly before the analysis becomes more exact. 

2.4    Approximating next-state relations 

We conclude this chapter by showing how approximations can be made over not 

only the accumulated set of reachable states, but also over the individual image 

computations. In the description above, the exact next-state relation is used to 

compute the successors of a set of states. However, it is not always easy to find 

the exact set of successor states for a given approximating set. Furthermore, the set 

of successors may not be a single approximating set, but rather a large number of 

approximating sets. We later explain in subsection 5.1.2 how this situation occurs for 

the real-time systems we verify, where we find it necessary to approximate next-state 

relations. 
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This section outlines how next-state relations can be approximated. It also pro- 

vides sufficient conditions for the approximation algorithm to terminate over finite- 

state systems. 

An underapproximation of the next-state relation N, usually denoted N, is any 

relation such that N C N. Similarly, a relation N is an overapproximation of N 

iff N C N. These relations induce relations over sets of states in the natural way, 

i.e. N(A) = {t | 3 s E A such that N(s,t)}. Since we are mainly concerned here 

with relations over sets of states, we further define a set-underapproximation of the 

set-relation induced by N as any relation Ns over sets of states such that for every 

set ACS, NS(A) C N(A). Set-overapproximations are similarly defined. Set- 

approximating next-state relations are usually referred to simply as approximations 

of AT. 

2.4.1     Correctness 

The following propositions state that it is sound to replace N with an overapprox- 

imation in the overapproximation algorithms, and with an underapproximation in 

the underapproximating algorithms. As a point of clarification, the algorithms for 

backwards overapproximation do not use (N)'1, but rather an overapproximation 

N71 of the inverse relation N"1. Similarly N'1 should be replaced by some AL1 in 

the underapproximating algorithms. 

Proposition 2.18 The overapproximating algorithms (for fundamental overapprox- 

imation (figure 2.1), for iterated approximations (figure 24), for separating classes 

(figure 2.5), and within the full approximation algorithm (figure 2.12)), when run with 

N replaced by an overapproximating relation N (N-1) in the forwards (backwards) di- 

rection yield converged overapproximations whose base elements are a superset of the 

states lying on violating paths. E 

Proposition 2.19 The underapproximating algorithms (for fundamental underap- 

proximation (figure 2.2), for separating classes (figure 2.6), and within the full ap- 

proximation algorithm (figure 2.13)), when run in the forwards (backwards) direction 
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o 
N = N-* = N 
N = N? = {} 

Figure 2.14: Non-termination example 

with N replaced by an underapproximating relation N (N~\) yield converged under- 

approximations whose base elements are a subset of the states forwards (backwards) 

reachable from S0 (V). □ 

Combining propositions 2.18 and 2.19 gives soundness for the full approximation 

algorithm. 

Proposition 2.20 // the full algorithm terminates when N is replaced by N (N'1) in 

the overapproximating routines, and by N (N'1) in the underapproximating routines, 

it gives a correct answer to the verification problem. ü 

2.4.2    Non- termination 

The following examples illustrate that even if N is approximated for just over- 

approximations (or under approximations) and the approximation operators actually 

return the exact union, termination is not guaranteed even for finite-state systems. 

Example 2.21 Consider the verification problem (S, So, N, V) for the 2-state system 

withS = {i,v}, So = {i}, V = {v}, andN = {(i,v)}, shown in figure 2.14- Letususe 

exact operators as our approximating operators, i.e. we assume that U> and U are ex- 

act over the sets we consider. Suppose we approximate N with the overapproximation 

N = N7* = N, and the underapproximation N = N_^ = {}• The initial separating 

structure must separate i from v, and is thus taken to be ({?'}, {v}}. The first iteration 

of the forwards overapproximation yields the approximating structure ({{i}}, {{v}})- 

The forward underapproximation is ({{i}}, {})• The system contains an unconfirmed 
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violation. The backwards iterations yield the same overapproximation, and the un- 

derapproximation ({{}}, {{?>}})• Continued iterations of the algorithm result in no 

change, so the violation will never be detected. n 

Example 2.22 Consider a system where S, S0, and V are as above but with N = {}. 

Take N to be N, and the overapproximation N to be {(i,v)}. In this case we iterate 

with exactly the same approximations as before, and never discover that the system is 

correct. n 

Proposition 2.23 The full algorithm, with N replaced by Ns in the overapproximat- 

ing routines, and byNs in the underapproximating routines, need not terminate even 

over finite-state systems. n 

2.4.3     Termination 

We outline methods which guarantee the full approximation algorithm terminates 

over finite-state systems, even when the next-state relation is approximated. 

Convergence to exact relations 

The first strategy proposed is to use a sequence of approximations to N rather than a 

fixed approximation. Let N\, N2,... be overapproximations of N that are converging 

towards N, i.e. N{ D Ni+1 D N. It is easy to that if Ni is used in place of N on the 

i-th. traversal of the full approximation algorithm, then correctness is maintained. A 

sequence of next-state relations increasing towards N may also be used soundly for 

underapproximating N. If the approximate next-state relations converge to the exact 

relation N, then the algorithm terminates over finite-state systems. 

We define a straightforward ordering on set-approximating next-state relations as 

follows: 
N[ * Ni iff VA C S, N*(A) C N%{A) 

Proposition 2.24 Given sequences of decreasing over approximating relations for N 

and sequences of increasing underapproximating relations for N both of which even- 

tually converge to exactly N, the full approximation algorithm terminates correctly 
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over finite state-spaces if the i-th approximating relations are used instead of N in 

computing the i-th approximations. 

Proof: Running the full approximation algorithm as described with overapproximat- 

ing relations iVJ- and N-1 and underapproximating relations Ni and N£ is sound, by- 

repeated applications of propositions 2.18 and 2.19, and then proposition 2.20. The 

algorithm cannot run forever since after j traversals the approximating next-state 

relations converge to the exact relation, from which point the algorithm is guaran- 

teed to terminate. In other words, the computation can be viewed as taking place in 

two distinct phases, each of which will terminate. Any computation using approxi- 

mate next-state relations up to the j-th traversal may be regarded as a preliminary 

restriction of the state-space to states potentially lying on violating paths. Compu- 

tation from the j-th traversal on may be regarded as running the full approximation 

algorithm with the exact next-state relation. O 

Exact application of approximate relations 

The second strategy suggested is to use a set-approximating next-state relation which 

is exact when applied to a subclass of approximating sets. Rather than guaranteeing 

a priori that a sequence of approximating relations converges to the exact relation, 

we can use a fixed approximating relation, and instead ensure that it is eventually 

only ever applied to approximating sets over which it is exact. This strategy is the 

one we use for verifying real-time systems. Let Domo C Dom be a subset of the 

domain of approximating sets. A set next-state relation N' exactly matches a set 

next-state relation N over Dom0 iff for all sets A e Dom0, N'(A) = N(A). 

Proposition 2.25 If the full algorithm is run with set-underapproximating relations 

and set-overapproximating relations which are exact over the domain of all sets ap- 

pearing in the initial separating structure and all subsets of those sets, then the algo- 

rithm terminates over finite state-spaces. 

Proof: It is sufficient to establish that the approximating relations are exact over all 

sets to which they are applied. First observe that at any stage of the full algorithm, 



2.4.  APPROXIMATING NEXT-STATE RELATIONS 55 

every separating class is the subset of one of the classes in the original separating 

structure. All approximating sets lie within some separating class, and hence are 

subsets of some initial separating class. Thus, by the assumption in the statement of 

the proposition, the next-state relation is exact over all sets it operates on. □ 

Theorem 2.26 Given a finite state-space and a well-founded ordering, if the full 

approximation algorithm is run with set-underapproximating relations N and N'1 

and set-overapproximating relations N and N'1 such that the separating structures 

generated are non-increasing, and at each traversal, either the most recent separating 

structure C is strictly less than the previous one, or N, N~\N andN_^ exactly match 

N over the domain of separating sets appearing in C, then the algorithm terminates. 

Proof: Assume the algorithm generates infinitely many approximations without ter- 

minating. If there is are infinitely many approximations which are strictly decreasing, 

then the algorithm must terminate. Suppose then that this is not the case, and that 

eventually all adjacent overapproximations have the same set of base elements. By 

assumption, N, jVi\ N and N11 all exactly match N over the current separating 

classes, and then by proposition 2.25, the algorithm terminates. □ 

A natural candidate for the well-founded ordering is ^base- However, it is often 

difficult to guarantee that the successive approximations are decreasing infinitely often 

with respect to this ordering. We introduce another ordering for which it is easy to 

modify the algorithm so that the approximations decrease as required. 

Let 

f VA e A 3B <= B such that ACB, and 
A -<set B if and only if   < 

(3B eB such that  $A e A with BCA 

Proposition 2.27 Over a finite state-space, there are no infinite chains of approxi- 

mating structures which are strictly -<set-descending or strictly -<set-ascending. 

Proof: Over a finite state-space, there are only finitely many approximating struc- 

tures, so we need only show that -<set admits no cycles. By definition, if A -<set B, 

then some set B e B has no superset in A. HB <setC, then there is some set C € C 
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such that B C C. The set C cannot have any superset in A or else A would contain a 

superset of B. By induction it is impossible for there to be a cycle A -<Set B -<set •A, 

since every set is a superset of itself. D 

Corollary 2.28 Given a finite state-space, if the successive overapproximations are 

strictly decreasing with respect to -<set up until the approximating relations are exactly 

matching, then the algorithm terminates. n 

It is easy to see how to obtain from an overapproximation A a separating structure 

C which has the same base elements, but such that A -<set C. We need only take any 

non-zero number of approximating sets in A which are not contained in any other 

approximating set in A, and let C be result of replacing each with nontrivial parts 

which partition it. Since the replaced approximating sets do not have supersets in A, 

it follows that A -<set C. 

Proposition 2.29 The successive overapproximations of the full algorithm will be 

decreasing with respect to -<set if the following alteration is made to the algorithm: 

whenever the algorithm generates overapproximations whose base elements are not a 

strict subset of the base elements in the separating structure used in its computation, 

use as the next separating structure one obtained by splitting as described above.    O 

These results suggest a policy for ensuring termination when using approximate 

next-state relations over finite-state systems. Classes in the separating structures can 

be split whenever "sufficient" progress is not made in successive overapproximations, 

up until the approximate relations are exactly matching. 



Chapter 3 

Real-Time Systems 

3.1    Introduction 

Computerized controllers are appearing more and more in embedded systems as the 

cost, size, development time and power requirements of computerized systems plum- 

mets. In these systems, the computer interacts with physical processes for which time 

is an important factor. Thus the design of these controllers must consider not only 

the sequencing and coordination of events, but also the times at which they occur. 

Any formal methodology for specifying and reasoning about such interactive systems 

must include an accurate model of timed behavior. 
In this chapter we review a formalism for modeling real-time systems:   timed 

automata, and show how they can specify timed safety problems. 

3.2    Timed automata 

3.2.1     Time-stamped traces 

The domain of time is the set of non-negative reals, simply denoted H.  Given an 

alphabet E, a timed-stamped trace is a sequence of pairs in E x IR 

{ao,to},{ai,ti),{a2,t2),... 

57 
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such that 

• (weak monotonicity): U < U+i for all i > 0 

An infinite time-stamped trace is divergent iff 

• (divergence): for all k G 1R, there exists an i such that U > k. 

Note that timed-stamped traces may be finite or infinite, and that several events 

may occur in sequence with the same time-stamp. 

3.2.2 Timed traces 

A timed trace is an alternative view of a time-stamped trace. Rather than noting the 

time of every event, we instead model explicitly the passage of time (if any) between 

events. Let Ar be the set of time-passage events 

AT = {6t\te IR} 

Given an alphabet E disjoint from AT, a timed trace consists of a sequence of 

events taken from E U AT. Events from E take place instantaneously, while events 

from IR represent the passage of time. It is easy to see that every time-stamped trace 

can be modeled as a timed trace, and vice versa. 

An infinite timed trace is divergent iff its corresponding time-stamped trace is. 

To express this explicitly, we define a duration function over E U At as follows: 

,    , .      f t    if e = St G Ar 
dur(e) = < 

{ 0    if e G E 

Then an infinite timed trace e is divergent iff the sum of event durations is un- 

bounded, i.e. for all k G IR there exists a j such that Ei=o..j^wr(e,) > k. 

3.2.3 Timed safety automata 

We recall the definition of timed safety automata (TSAs) as a means of specifying 

timed transition systems and their properties [HNSY92]. There are many variants of 
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timed automata; the one we use most closely resembles those of [NSY92a, HNSY92]. 

Timed safety automata are a form of finite-state automata with finitely many real- 

valued clocks. Each clock records the exact amount of time which has elapsed since 

its last reset. Each transition has an enabling condition depending on the values of 

the clocks. Transitions occur instantaneously and may include the resetting of clocks. 

Each enabling condition is expressed as a non-empty set of points in ]Rn, where n 

is the number of clocks in the automaton. We assume the clocks have been ordered 

so that the values of all the clocks may be expressed as a vector of real values. The 

transition is enabled whenever the n-vector of clock values lies in its enabling set. 

Enabling conditions are restricted to be sets definable as a conjunction of constraints 

of the form x ~ k where x is a clock and ~ € {<, <, =, >, >}. For convenience, we 

may refer to an enabling condition as either a set of points or the logical formula 

defining it. The domain of all enabling conditions is called £n. We define a set of 

reset actions A(n), which are functions from B71 to IT corresponding to the resetting 

of some of the clocks to 0. For each a € A(n), there is a set of indexes Ia C {1... n} 

such that 
f 0        ift'e/« 
y (x)i   otherwise 

The enabling conditions on events express precisely that they are enabled to take 

place: they do not stipulate that the event must occur at all. However in many 

real-time systems, we need to model the fact that an event is guaranteed to occur 

within a certain time bound. This situation is modeled in a timed safety automaton 

by giving safety invariants for each location, thereby specifying upper bounds on how 

long time may progress. For example, if an event is guaranteed to occur at control 

location q at time x = 5, the invariant at q should require "x < 5". This condition 

expresses that time cannot pass beyond x = 5 without an event occurring. 

Definition 3.1 A timed safety automaton (TSA) G is a tuple (E, Q, Qinit, C,T, Inv) 

where 

• S is a finite set of events, disjoint from AT, 

• Q is a finite set of control locations, 
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• Qinit Q Q is a set of initial locations, 

• C — {xi,..., xn} is a finite set of clocks, 

• TCQxY,x£nx A(n) x Q x {0,1} is a proper transition relation, defined 

below, 

• Inv G (Q —> IZ) is an invariant assignment mapping control locations to the 

domain IZ of safety invariant zones defined below. 

Transition relations 

An edge e = (q,a,<j>,a,q',urg) in the timed automaton's transition relation corre- 

sponds to a transition from control location q labeled with event a. It is enabled 

iff the values of the clock variables satisfy 0. The transition is instantaneous and 

the reset action a is applied to the clock values. The resulting control location is q'. 

The transition is said to be urgent iff urg = 1. An urgent transition must occur as 

soon as it is enabled, unless another instantaneous event occurs and disables it. In 

other words, no time may pass while an urgent event is enabled. There is an added 

restriction that all urgent events are never constrained by a timing condition with 

strict lower bounds. This restriction ensures that the time when an urgent event first 

becomes enabled because of time passing is well-defined. For example, if an urgent 

event has enabling condition x > 3, and the value of x is currently 2, then it would be 

impossible for time to pass incrementing x beyond 3, and yet having the urgent event 

occur as soon as x > 3 since there is no first value of x which is strictly greater than 

3. Formally, then, we first define the vector t to be the n-vector with all components 

equal to t, i.e. t = {t,t,... ,t) G H". 

A transition is proper iff it is non-urgent, or it is urgent and its enabling timer 

values form a set Z which is topologically closed in the downwards direction, i.e. for 
—* 

all points x, if there exists an e > 0 such that x + 8 e Z for all 0 < 6 < e, then 

x e Z. This set closure condition is equivalent to saying that the enabling condition 

can be defined without using any strict lower bound constraints on the absolute values 

of any clocks. A transition relation is proper iff all its transitions are proper. 
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Safety invariants 

The domain IZ of invariant zones is defined to be the set of all predecessor closed 

time zones. A time zone Z is any convex polyhedron of JRn, consisting of all solutions 

of a system of linear inequalities where each inequality is of one of the following forms: 

• x < k, x < k, x > k, x > k, where x is a clock and k is an integer constant 

• x — y < k, x — y < k, where x and y are clocks and k is an integer constant. 

Let Z(n) be the set of zones of Hn. The set of time successors of a zone Z is the set 

Zy = { y   | 3 x € Z, t e IR, such that y = x + t} 

The set of time predecessors of a zone Z is the set 

Z/ — { y   | 3 x G Z, t e R, such that y + t - x} 

Finally, a time zone Z is predecessor closed iff it includes all its time predecessors. 

An equivalent definition is that it can be defined without using any lower bound 

constraints on the absolute values of clocks. 

Semantics 

We are now ready to define operational semantics for a timed safety automata G 

in terms of a transition system {S,SQ,N). A timed-state of the system is a pair 

s = {q, x), where q € Q is a control location and x € IRn a vector of clock values. 

The set S consists of all timed-states. 

The set So of initial states is the set of all timed-states whose control component 

is an initial location in G, and whose clocks values are all equal to 0, as given by 

So = {(q, 0} | q € Qinit} 

For each transition e = (q, a, 0, a, q', urg) G T, let 

Ne   =   {({q, x), (q', x')) | x € <f>, x' = a(x), and x' € Inv(q')} 
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For each t e JR., we define 

NSt = {((q, x), (q, x + t})\ x + te Inv(q), and VO < t' < t, Ve e T, 

e is urgent implies Ne({(q, x + t'}}) = 0} 

In other words, time may increase at a uniform rate over all clocks, provided the 

control location's safety invariant is satisfied, and no urgent events are enabled. The 

next-state relation for all time-passage events is then Ns = Ui€ JR-^ . The next-state 

relation of the transition system is 

N=  UeeTNel)N5 

The transition system induced by the timed safety automaton G is referred to as 

(SG,S0,G,NG). 

Because a transition system is unlabeled, we find it convenient for our discussion 

of timed systems to first define some familiar language-theoretic terms for timed 

automata. A run of the TSA G for the timed trace e0,ei,e2,... is any infinite 

sequence of timed states s0, $i, «2, - • • which is a path in (SG, S0,G, NG) such that for 

all i > 0, either 

• a = a and (s4, si+i) € Na, where Na =  U{Ne | e is labeled with a}, or, 

• e,- = 8t and (s;, si+1) G NSt. 

Such a run may be represented pictorially as 

eo ei «2 
so -> Si —>■ s2 —*• • • • 

The language accepted by G is defined as the set of all divergent timed traces for 

which (SQ, S0,G, NG) has a run starting in SO,G- 

Graphical conventions 

Automata are depicted graphically by labeled, directed graphs. Locations are repre- 

sented by circular nodes, and transitions by labeled edges. Reset actions of transitions 
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approach    x < 5 
x:= 0 

out 
X <5      ^ > 3        x < 5 

Train 

Figure 3.1: TSA for a train 

are denoted by explicit assignments to 0. Urgent actions are denoted by double-lined 

arrows. Small incoming arrows mark any initial locations. Safety invariants are writ- 

ten next to the locations they apply to. 

Example 3.2 The automaton in figure 3.1 represents a train approaching a control 

intersection. While TSAs do not distinguish between input and output events, it is 

convenient here to think of the train as sending an approach signal to the controller. 

The train then enters the intersection (the in event) at least 2 time units later. The 

safety invariant x < 5 forces execution to leave location q\ before the clock x reaches 

5. We can infer that the in event must occur, and that it does so within 5 time units 

of the approach, because there is only one event leaving location q\. Upon entering 

92, if the value of x is at least Z, then the urgent event out must occur right away, 

otherwise it will occur exactly 3 time units after the approach. □ 

Simple timed automata 

We introduce a special subclass of timed safety automata called simple timed automata 

(STAs). These are sufficient for modeling some but not all aspects of timed safety 
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automata, and are particularly useful for analyzing systems which do not depend 

on the eventuality of timed events. A simple timed automaton is a timed safety 

automaton with no urgent events, and where all safety invariants are trivial, i.e. 

Inv(q) = JRn for all q G Q. These automata have no means of forcing control to leave 

any given location, and therefore cannot model events which are guaranteed to occur. 

In particular they cannot express bounded liveness properties such as "y = 5 within 

3 seconds". However their simplified semantics permits faster verification. 

3.3    Modeling real-time systems 

This section discusses process composition using timed safety automata, and how we 

can guarantee non-Zenoness, i.e. ensuring timed safety automata do not represent 

systems for which time cannot progress without bound. 

3.3.1     Process composition 

Most systems consists of a number of interacting processes. For a clear and com- 

pact description, each component can be represented with a separate timed safety 

automaton, and their parallel execution modeled by their automaton composition. 

For simplicity, we interchangeably use the term real-time process to refer to both the 

process being modeled and its timed safety automaton representation. 

The composition operation uses interleaving semantics, with synchronization over 

shared events. Note however that a straightforward language semantics of a real- 

time process is not compositional, because of the treatment of urgent events, whose 

enabling conditions depend on external components. 

Given two real-time processes denoted P' = (E', Q', Q'init, C, T', Inv') and P" = 

(E", Q", Q"nit, C",T", Inv"), with disjoint sets of clocks, their composition is defined 

by the real-time process P = (E, Q, Qinit, C,T,Inv), where 

• E = E'UE" 

. Q = Q>xQ" 
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• Qinit = Qinit X Qinit 

• C = C'UC" 

• T consists of all tuples ((q'v q"),<7, tp, a, (q^, q^^rg) such that either 

- a e S' and a 0 S" and there is a transition (g^, a, ip, a, q'2, urg) in T", and 

«2 = 9i> or> 

- <r G E" and cr 0 £' and there is a transition (q,(,(T,ip,a,q2,urg) in T", and 

«2 = <fn or> 

- d 6 S' fl S" and there are transitions {q,
1,a,/ip',a',q2,urg') in T', and 

{qJ{,a,ip",a",q'2^urg") in T" such that 

* iß = ip1 A tp", and, 

* Ia = 4' U/0", and, 

* urg = 1 iff either urg' = 1 or urg" = 1 

• Inv((q',q")) = Inv'(q') A Inv"(q") 

3.3.2    Non-Zenoness 

A machine model of a timed system is non-Zeno iff every finite execution can be 

extended to an divergent infinite one [HNSY92]. A timed safety automaton Px is 

called time progressive with respect to a set of processes {P2,..., Pk} iff it satisfies 

the following conditions: 

• (immediate progress): every control location q has either 

1. no upper bound in its safety invariant, i.e. Inv(q) includes all its time 

successors, or 

2. for every x G Inv(q), there is a transition labeled a leaving location 5, 

such that 

- for some 6, x + 6 satisfies its timing enabling condition, and 
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- the transition is guaranteed to be enabled in the product because all 

other processes sharing the event a never disable a regardless of which 

timed-states they are in, i.e. for every i > 2, if a € £,, then for every 

control location q' e Qi and point x' there is an outgoing transition 

from q' labeled a satisfied by x'. 

• (time-progressive cycles): for every cycle of transitions in P there is a positive 

constant 6 > 0 such that it is impossible to traverse the cycle without at least 

6 time passing. 

Theorem 3.3 Given a set of real-time processes V = {Pi, P2, ■ ■ •, Pk}, if each Pi is 

time progressive with respect toV\ Pi, then Px \\ P2 || • • • || Pk is non-Zeno. 

Proof: We show that every finite timed run can be extended to an infinite divergent 

one. Consider the timed-state s = (q, x) at the end of the finite run. We extend the 

run inductively as follows. 

If time can progress without bound in the current control location, we are done, 

since we can repeatedly take events St for any fixed positive t, yielding a divergent 

run. 

Suppose otherwise. If a transition is enabled, take it, leading to timed-state Si. 

Otherwise, we may add a time passage event St until a transition t is enabled. The 

following reasoning shows this can always be done. By the immediate progress prop- 

erty, for every i > 1 for which P;'s control location has a nontrivial safety invariant 

there is a 6i such that a transition is enabled in Pj after Si time units and the safety 

invariant in Pi still holds. Let St be the smallest such Si. Then we can safely add St 

time units to the global state without violating any safety invariants, and there is an 

event enabled at (q, x + St). After adding this time passage event to the run, the 

transition t is fired. 

Repeating the above procedure results in a path either leading to a control location 

with no upper bound in its invariant, or a path involving infinitely many labeled 

transitions. The first case obviously gives a divergent run, and in the second case, 

the run must pass through infinitely many cycles, giving a divergent run because 
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each cycle takes at least a fixed non-zero number of time units, because of the time- 

progressive cycles condition. ü 

Finally, we note that simple timed automata are always non-Zeno, since arbitrary 

amounts of time may pass while control remains in any fixed location. 

Theorem 3.4 Simple timed automata are non-Zeno. □ 

3.3.3    Example 

We consider a simple version of the well-known timed mutual exclusion protocol due 

to Fischer. A similar example appears in [AL92, SBM92]. 

This is an n process algorithm, where each process uses timing constraints on its 

actions to ensure mutual exclusion. Each process has a unique process identifier i and 

4 operating states. They synchronize their actions through the shared variable X. 

From location (?o a process may advance to location qi at any time provided X has 

value 0. It may delay here for up to AB seconds before setting the value of X to i. It 

simultaneously advances to location q2, from which it may enter its critical section as 

long as it does so after at least 6C seconds and the value of X is still i. Upon leaving 

its critical section, it reinitializes X to 0. 

The timed safety automata for the case of two processes are given in figure 3.2. 

The conditions on the value of the global variable X are maintained by the special 

process called VARIABLE-X whose states encode the current value of the global 

variable. In other words, if this process is at control location qi then X equals i. 

Because each process can independently read and write the value of the variable X, 

we need to create separate events for each process. If not, the events could only 

occur when they were synchronized across all processes. Thus Process l's alphabet 

has events startl for starting the protocol, setXl for moving from state q\ to q2 and 

setting X to 1, enterl for entering its critical section, and PlsetXO for leaving its 

critical section and reassigning the global variable x to 0. Whenever a process has an 

event for writing the value of X, the process for the variable X shares that event, and 

its effect in VARIABLE-X reflects the written value. Constraints on each process's 

behavior are expressed by disallowing certain process events when the value of X 



68 CHAPTER 3.   REAL-TIME SYSTEMS 

90 

PlsetXO 

93 

startl 
J/i:=0 

2/1 < :AS 

\1 
setXl 

J/i < A5 

yi:=0 

fft) 
enterl 
yx > &c 

v!y 

Process 1 

enterl 
setXl 

9o 

P2setX0 

93 

startl 
start2 

PlsetXO 
P2setX0 

start2    2/2 < As 
y2:=0 

2/2 > 8c 

Process 2 

enter2 
setX2 

VARIABLE-X 

Figure 3.2: Automata for mutual exclusion protocol 

9i 

setX2 
2/2 < As 
i/2~0 

92 

would prohibit it. For example, the lack of a startl action out of locations q\ and #2 

indicates Process 1 cannot start the protocol if X equals 1 or 2. 

The clock yi is used to express the timing conditions on transitions. Notice that 

the safety invariants at locations q\ of each contending process force the process to 

proceed to the next step of the algorithm: it cannot delay in q1 forever. However, 

there is no similar invariant forcing a process to eventually enter its critical section 

in location q%. 
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X = 0    yi<As 
Vi ~0 

q0 j „( qi 

X:=0 

93 
enteri 

Vi > Sc 

X :=i 
Vi<A>B 

92 

Process i 

Figure 3.3: Real-time process i for mutual exclusion protocol 

Non-Zenoness 

The composed system is non-Zeno since each process Pi satisfies both the immediate 

progress property (since the safety invariant at q-i implies the enabling constraint on 

the event leaving qi) and the time-progressive cycles condition (since at least AB 

time units pass on each cycle through Pi). Thus by theorem 3.3 their composition is 

non-Zeno. 

Graphical shorthand 

For simplicity and clarity of exposition, we allow an abbreviated automaton represen- 

tation which handles discrete-valued variables over finite domains. We write X := k 

within a process P to mean that it executes a write event of the variable X, assigning 

it the value k. It is understood that the process for the variable X will include tran- 

sitions modeling the effect of the P's write event. Similarly, read events may appear 

as X = k in a process, with the corresponding event enabled in the process for X 

from the location for value k. In this case the automaton model for the variable X 

need not be explicitly shown. 
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For example, an automaton for the z'-th process in the Fischer's mutual exclusion 

algorithm appears in figure 3.3. By convention, variables are written in upper case 

to help distinguish them from clocks. 

3.4    Safety verification 

A methodology for verifying timed safety properties of a non-Zeno real-time system 

is the following: 

1. Describe the real-time system to be verified as a non-Zeno timed safety automata 

A. 

2. Describe the complement of the specification as a timed automaton D with 

a specially marked violation state, i.e. all violating traces have a run in the 

automaton leading to its violation state. 

3. Form the product G of D and A. 

4. Test whether the violating state in D is reachable in G. 

This procedure is equivalent to checking for emptiness of the language L(A) n 

L(Spec). In many instances, the automaton for the complemented specification may 

be obtained by first constructing a deterministic timed safety automaton for the 

specification, then taking its completion. The idea behind the completion automa- 

ton is that every trace not in the specification induces a run leading to the violating 

state. Because a violation corresponding to time exceeding a safety invariant is not de- 

tectable as a labeled event, we need to add a new event a to signal this has happened. 

The completion compl(A) of the automaton A is a timed automaton with a specially 

marked trap state which has incoming edges for every potential transition not enabled 

in A, including those which correspond to allowing time to pass beyond any safety 

invariants. Let W(q, a) = Inv(q) n U{4>' \ Bq1, a' such that (q, a, ft, a', q1) € T} be 

the set of points within q's safety invariant for which q has an enabled transition 

labeled a. The action a ro is the null reset action. A constraint is maximal in a set Y 

iff it is contained in Y and not contained in any other enabling constraint within Y. 
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The definition uses maximal sets because the direct complements are not time zones, 

and so are not permissible as timing constraints on transitions. The completion of 

deterministic automaton A is defined as compl(A) — (Y,',Q',Qinit,C,T',Inv') where 

• X' = E U {a}, where the event a g S signifies time has exceeded a location's 

safety invariant. 

• Q' = Q u {qVioi}, where <jw is a special violation state. 

• Inv'(q) = H™ for all control locations q € Q'. 

• V = T0 U Ti U T2 U T3, where 

- T0 = {(q,a,(f>',a,q') | (g, a, 0, a, g7) € T and 0' = 0 n 7ra/(g)}, represent- 

ing transitions in ^4 with the implicit constraint that safety invariants be 

satisfied made explicit, 

- Ti = {(q, a, <p, a m, qvioi) \ (p is maximal in W(q, a)}, representing all events 

for which A has no transition. 

T2 = {(q, a, 4>,am,qvioi) \ 4> C Inv(q), and 0 is maximal in Inv(q)}, repre- 

senting events which may occur when the safety invariant at q does not 

hold. 

Tz = {qvioh v-, TRUE, am, qvi0i)} 

Example 3.5 Figure 34 shows a deterministic automaton A and its completion. 

The alphabet of A is S = {a, b}. The safety invariant on location qo is removed. 

In order to correctly constrain the event a leading to location q\ the conjunct x < 5 

is added to its enabling condition. If a b event ever occurs in location go ü is a 

violation. Furthermore any event occurring beyond go 's safety invariant indicates 

that no outgoing event has taken place in timely fashion, and again control enters the 

qvi0i state. Strictly speaking, the enabling condition x ^ 3 is syntactically illegal since 

it does not represent a time zone, but we use it as shorthand for two transitions for 

b, one enabled when x < 3 and one when x > 3. ü 
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compl(A) 

0,6, a 
x > 5 

Figure 3.4: Automaton completion 

The projection of a timed trace e over E onto a subalphabet E' C E is denoted 

pro?'(E')(e) and is defined as the trace obtained by deleting all events in E \ E' from 

e. 

Proposition 3.6 Given a deterministic timed safety automaton A, a timed trace r 

is not in L(A) iff there exists a trace T' such that proj{H){r') = r and compl{A)'s 

run for r' enters the trap state. 

Proof: (Sketch) Since A is deterministic, by construction so is compl(A). Furthermore 

compl(A) has a run for every timed trace over E. 

If the timed trace r is not in L(A), then there must be some point at which 

either time passes beyond the current safety invariant or an event occurs for which 

there is no enabled transition in A. We show that both cases cause compl(AYs run 

to enter the violation state for a trace whose projection is r. In the first case, the 

safety invariant in A is violated. If this happens after i events in r, then compl{A) 
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Figure 3.5: Bounded liveness specification 

can mimic A over the first i events of r using transitions in To, take a transition in 

T2 via the added event a to the violation location, then follow transitions in T3 for 

the remainder of r. In the second case, an illegal labeled transition occurs in A. If 

this happens at the i-th event in r, then compl(A) can mimic A over the first % — 1 

events of r using transitions in To, take a transition in T\ to the trap location, then 

follow transitions in T$ for the remainder of r. In both cases, it is easy to see that 

compl(A)^ trace r1 projects onto r. 

The reverse direction of the equivalence is similar and omitted. □ 

We note that for the purposes of safety verification the self-loops on the violation 

location can be dropped. This is because it is not necessary to continue the run for 

a trace not in L(A) once it is known that compl(A) has a corresponding run to the 

qvioi location. 

Example 3.7 Bounded liveness is a common form of specification property. Fig- 

ure 3.5 shows how an automaton can specify the property "every a event is followed 

by ab event within 5 time units." D 

Example 3.8 Fischer mutual exclusion: The automata of the processes in the Fis- 

cher mutual exclusion algorithm were given in figure 3.2. We verify the untimed 

safety property that no two processes are ever in their critical sections at the same 

time. This property is expressed by the automaton of figure 3.6. As an alternative, 

we observe that if all the processes are symmetric, we can test for the error condition 
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PlsetXO 
P2setX0 

enterl, enter*            enter 1, enter2 
qo ) (Qi) ■ "i&ioi), 

PlsetXO 
P2setX0 

Figure 3.6: Mutual exclusion specification 

PlsetXO 

enterl enter2 

— ( 00 ) (01 

PlsetXO 

Figure 3.7: Mutual exclusion specification 

resulting from Process 1 entering its critical section, followed by Process 2 entering 

its critical section, as shown in figure 3.7. Q 

3.4.1    Decidability 

This section is a restatement of results by Alur, Courcoubetis, and Dill [ACD90, 

AD90], who show that the state-space of an timed automaton can be divided into a 

finite number of equivalence classes sufficient for deciding whether a particular control 

location is reachable. We briefly describe the equivalence relation, which gives a 

bisimulation over the transition system induced by a timed automaton. It essentially 

distinguishs the critical integral values of the clocks and the ordering of their fractional 

parts. We assume that every clock appears in some enabling condition, and define Ki 

to be the largest constant which clock ar,- is ever compared to. For any r € H, let [r\ 

denote the integral part of r and fract(r) the fractional part, i.e. fract(r) = r - [r\. 

We first define the equivalence relation &AD on n-vectors as x ^AD X' if and only if 
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Figure 3.8: Detailed Alur-Dill regions 

1. Vi = l..n, if as» < Ki or x\ < K{ then 

(a) [xt\ = L<J 

(b) fract(xi) = 0 iff/ruc*^) = 0 

2. Vi, j = l..n, if Xi < Ki and Xj < Kj, then 

fract(Xi) < fract(xj) iff fractfa'j) < fract(x'j) 

We extend this equivalence relation from points in JRn to timed-states as follows: 

{q, x) ttAD (cf, x') iff x PZAD x' and 9 = q'. The equivalence classes are called 

detailed regions. 

Example 3.9 The detailed regions induced by the two clocks X\ and X2 with K\ = 2 

and K2 = 1 aTe all the intersection points, open line segments, and open faces in 

figure 3.8. □ 

The following three theorems are due to Alur and Dill. 

Theorem 3.10 For a timed safety automaton A, the number of equivalence classes 

of the relation ^AD is 0{\Q\ ■ \C\\ ■ 2^ • UxeC(2Kx + 2)). □ 

A relation « is said to be a labeled bisimulation over a set of timed-states with 

respect to the relations No- and N$, given in subsection 3.2.3, iff for all si, s2, Si ~ S2 

implies 
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1. for all s[, if Ns(si,Si) then there exists a timed-state s'2 such that Ns(s2-Is'2) 

and s[ ~ s2. 

2. for all cr, for all si, if Na(si, s[) then there exists a timed-state s'2 such that 

N<r(s2,s'2) and s'x « s^. 

Theorem 3.11  The relation TU AD is a labeled bisimulation over the timed-states. □ 

A reachability analysis can be performed over the equivalence classes, instead of 

over the individual timed-states. We construct a set-graph, a graph whose nodes are 

sets of states. There is an edge in the set-graph from set A to set B whenever there 

exists an edge in the underlying transition system from some state a € A to some 

state b e B. The nodes of the set-graph are the detailed regions, and because these 

form a bisimulation, a class is reachable in the set-graph iff some element of it is 

reachable in the underlying timed transition system. 

Theorem 3.12  The timed safety verification problem is decidable. □ 

We note however that the problem is PSPACE-complete. It is exponential both in 

the number of clocks and the size of the timing constants. Reachability over modular 

untimed systems is already a hard problem. But the addition of timing information 

is comparable to adding extra processes, and makes real-time verification in practice 

much harder than analyzing untimed systems. This difficulty motivated the search 

for effective heuristics for timing verification to be viable on real examples. 



Chapter 4 

Verifying Real-Time Systems 

Part I 

4.1    Introduction 

The approximation algorithm can be applied to real-time systems represented by 

timed safety automata. The first four sections of this chapter show how to perform 

forward and backward symbolic reachability on timed automata. Sets of timed states 

are symbolically represented using rounded regions. We define these sets of states in 

section 4.4 and review a description of an efficient data-structure for them, differ- 

ence bounds matrices due to Dill [Dil89]. We show how to perform the successor, 

predecessor, and intersection operations. 

The rest of the chapter describes how approximation is applied to verify real- 

time systems. It provides the approximating operators, discusses termination, and 

demonstrates the algorithm over toy examples. 

In this chapter, we describe approximations over the timing component only of 

the state-space. We delay until the next chapter a discussion of how approxima- 

tions can be performed simultaneously over both the control information and timing 

information. 
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Symbolic representation of timing information 

We use the rounded regions of an automaton as the domain of approximating sets. 

Recall that the states of a real-time system are pairs of the form (q, x), where q is 

a TSA location and x is a vector of clock values. In this chapter we consider only 

sets of states which share the same control location, namely sets of the form {q, Z) 

where Z is a rounded (time) zone. The algorithm for approximating reachable states 

is obtained in a straightforward way, except for two considerations, namely rounding 

(to ensure the algorithm terminates) and the use of a disjunctive next-state relation 

(to ensure that each next-state computation is closed for the approximating sets). 

4.2    Time zones and bounds 

Successful symbolic verification of real-time systems depends on effective manipula- 

tion of sets of timed states. The rounded zones we use in our approximating sets are a 

subclass of time zones. Time zones have an efficient representation due to Dill [Dil89] 

called difference bounds matrices (DBMs). Difference bounds matrices have a canoni- 

cal form for which there are 0(n3) algorithms for finding intersections, time successors, 

time predecessors, images and preimages of events [Dil89, ACD+92, Rok93], where n 

is the number of clocks in the systems. 

Recall that a time zone Z e Z(n) is a (possibly unbounded) polyhedron defined by 

integer constraints on clocks and clock differences. If we identify a new fictitious clock 

variable XQ with the constant value 0, these constraints can be represented uniformly 

as bounds on the difference between two clock values. For instance, x > 5 can be 

expressed as x — XQ > 5. Furthermore we can restrict attention to upper bounds 

without loss of generality. More precisely, each inequality can be re-expressed in one 

of the following forms: 

Xi — Xj < k or Xi — Xj < k, for some integer k, 

To describe these inequalities in a uniform fashion we introduce the domain of 

bounds. Let Z~ = {... — 3~, — 2~, —1~, 0~, 1~, 2~,...} where n~ represents a value 

"infinitesimally different from n". A bound is any element of Z U Z- U {-oo,oo}. 
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Each bound is intended to represent an upper bound on a real value. We take both 

"x < n-" and "x < n~" to mean "x < n" and similarly ux > n~" and ux > n~" 

stand for "x > n". We define an ordering -< on bounds as the smallest ordering 

induced by the usual ordering over Z U {-co, 00} and n — 1 -< n~ -< n. The relation 

:< is defined over bounds as 61 ^ b2 iff 61 -< b2 or 61 = b2. 

Bounds can be added, with the exception that —00 cannot be added to 00. Bounds 

in Z and Z~ are finite, and the value of the bounds n and n~, denoted v(n) and v(n~) 

respectively, is n. The result of computing b + b' is 

f (v(b)+v(V)) 

(v(b) + v(b')Y 

-00 

00 

if b and b' are in Z 

if b and b' are both finite, and at least one is in Z" 

if b or b' is — 00 

otherwise 

4.3    Difference bounds matrices 

A difference bounds matrix (DBM) for Kn is an (n + 1) x (n + 1) matrix of bounds, 

with rows and columns indexed from 0 to n. The DBM A with entries a,j represents 

the polyhedron consisting of all points that satisfy the inequalities Xi — Xj < a,ij for 

each i and j. Clearly every time zone can be described by a DBM. However there 

are many DBMs defining the same zone, because some of the upper bounds need not 

be tight. For example, the time zone Z in figure 4.1 represented by the system of 

inequalities 

Xi < 2 

Xi > 1 

x2   <   5 

can be represented by any matrix 
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where fei -^ 2~ and b2 -fi 4. 

X2 ' 

5 

L 

/ 

x2-xx< b2 

/ 

\ 

4 / 

/ 

/ 

/ 
0 1 ' )                         Xi 

Figure 4.1: Time zone Z 
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4.3.1     Canonical form for DBMs 

The key idea in performing operations on zones is to represent them as canonical 

DBMs. A constraint Xi — Xj < b is said to be tight for a time zone Z iff there is 

no bound b' -< b such that all of Z satisfies Xi - Xj < b'. The canonical matrix, 

denoted ci(Z), has all entries representing tight constraints. Dill [Dil89] showed that 

this matrix can be computed from an arbitrary matrix for Z by applying an all-pairs 

shortest path algorithm. This representation therefore leads to easy tests for equality 

and emptiness of time zones. 
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procedure time^successors(A,.g) 

input    DBM 4;     /* DBM for Z */ 
output DBM B\     I* DBM for time successors */ 

B  :=A; 
for i  := 1 to n do 

B\i][0]   := oo; 
endfor 

Figure 4.2: Pseudocode for finding time successors 

4.3.2     Operations on time zones 

We demonstrate how operations on time zones can be computed over their DBM 

representations. 

Intersection 

The intersection of two time zones Z and Z' is a time zone. It can be computed from 

their DBMs. Intuitively we take the conjunction of all the inequalities for both zones 

by taking the lower of the two bounds for each pair of clock differences. Let A and 

A' be DBMs for Z and Z'. The zone Z n Z' is represented by the matrix B where 

for all i and j, by = min{%•, a•_,-}, where the minimum min of two bounds is defined 

using the ordering -< over bounds. 

Time successors 

The set of time-successors Zy of the time-zone Z is obtained from Z by removing 

all inequalities of the form x < k or x < k, since these upper bounds restrict time 

passing indefinitely. The pseudo-code of figure 4.2 describes how this operation can 

be performed on a canonical DBM. The result is a canonical DBM for Z/. 
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procedure reset(A,Ia,B) 

input    DBM A, reset Ja;     /* DBM for Z, reset index set Ia */ 
output DBM B; /* DBM for a(Z) */ 

B  :=A; 
for Xi € Ia do 

/* disregard constraints involving clock a;, */ 
for j  := 1 to n do 

£[«][?]   :=oo; 
B[j][i\   :=oo; 

endfor 
/* enforce clock reset, i.e. X{ = 0 */ 
J5[«][0]   :=0; 
B[0][t\   :=0; 

endfor 

Figure 4.3: Pseudocode for computing resets 

Time predecessors 

Similar to the computation of time successors, we may replace all lower bounds on 

clocks with 0. However in this case, canonical input does not in general imply the 

output will be canonical. 

Reset actions 

In order to find the set of timed successors under an instantaneous transition, we 

need to compute the image of the transition's reset action. Let a be a reset action 

with corresponding index set Ia. Then a(Z) is the projection of Z onto the axes for 

variables in Ia. It can be found by first ignoring all constraints on variables in Ia, 

and then taking the subset for which all variables in Ia equal 0. Pseudo-code for this 

operation appears in figure 4.3. 
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Inverse images of reset actions 

We also need to compute the inverse image of the transition's reset action. Let a be 

a reset action with corresponding index set Ia. The set a~1(Z) consists of all timer 

vectors x such that a(x) € Z. It is the union \Jy-eZ{x \ a(x) = y} which is the 

same as Uyeznza{% I a{%) — V}> where Za is the zone where all clocks in Ia are 

equal to 0. In other words, it is the set of all clock vectors x for which there exists 

a vector y G Z D Za which agrees over all clock variables not in Ia. 

Thus the inverse a_1(^)is computed by first finding the possible image of a within 

Z (this is done by setting to 0 the bounds on the absolute value of each clock in Ia 

and canonicalizing), and then taking the inverse projection of the reset variables (by 

making all bounds relating to clocks in Ia trivial). 

4.4    Rounded time zones 

This section explains why using arbitrary time zones would not guarantee termination 

in reachability algorithms. We then define a restricted form of time zone called the 

rounded time zone, which is used in our approximating sets. 

Decidability of the timed safety verification problem follows from the finiteness of 

the Alur-Dill equivalence relation. A naive verification algorithm could explicitly enu- 

merate all the reachable equivalence classes. A more practical algorithm may choose 

to use symbolic enumeration, by considering sets of equivalence classes at a time. 

Time zones are a natural candidate for a symbolic representation of sets, because 

operations on them can be performed efficiently. If the time zones encountered by an 

algorithm were always Alur-Dill equivalence classes, or the exact union of classes, the 

algorithm would terminate. This, however, is not always the case. Consider a simple 

set-reachability algorithm that generates a set-graph where each node is a time zone, 

and every successor set of every node also appears in the graph. Such a graph can 

be generated using a simple reachability algorithm as in figure 4.4. The algorithm 

will terminate if and only if the cardinality of {Nk(S0) \ k > 0} is finite. However for 

timed systems, the algorithm may generate time zones with successively larger finite 

bounds. 
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procedure set-reachability 

input    (S,SQ,N);      /* a transition system */ 
output G; /* a set-graph as described above */ 

vertices(G)   := {}; 
edges(G)  :={} 
initial(G)  := {S0}; 
stack  := emptystack; 
push(S'o, stack); 
while (not empty (stack)) do 

A  := pop(stack); 
B  := N(A); 
if (B # {}) then 

if (B & vertices(G)) then 
vertices(G)   := vertices(G) U B; 
push(£?, stack); 

endif 
edges(G)   := edges(G) U (A,B); 

endif 
endwhile 

Figure 4.4: Set reachability algorithm 

Example 4.1 The set-reachability algorithm applied as above to the two-state au- 

tomaton Ai in figure 4.5 would not terminate. The algorithm would successively 

generate sets with points (i, 0) after each self-loop on q$. The reachable time zones 

for qo are shown in the figure. Q 

One way to use symbolic representations of timed states and still maintain termi- 

nation properties is to replace each time zone generated with the set of Alur-Dill equiv- 

alence classes that it intersects. The problem with this strategy is two-fold: firstly, 

finding the set of intersecting equivalence classes may be expensive, and secondly, the 

classes may not be representable by a small number of time zones. For instance^ in 

a 3-clock automaton with Kx = 1, K2 = 2, and Kz — 3, the classes intersecting the 

time successors of the singleton time zone consisting of the origin require at least 3 

time zones to be represented, e.g. (xi = z2 = %z < 1)5 (1 < %i A 1 < x2 = xz < 2), 
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Figure 4.5: Automaton A±, causes nontermination without rounding 

and (1 < Xi A 2 < ^2 A 2 < a;3). 

The approach we take is to use rounded time zones instead. Rather than replacing 

a time zone Z with the union of all the classes it intersects, we round it off by adding 

some but not necessarily all states which lie within the union. Such rounding preserves 

the correctness of the algorithm. The potential disadvantage of this approach is that 

there are more rounded time zones than zones. The advantages are that the rounded 

time zone is easy to compute, and the result is by definition a single time zone, rather 

than a union of separate time zones. We will see that for the example above, the 

rounded zone for the time successors is the zone of time successors itself. 

4.4.1     Rounded time zones 

In this subsection we define the rounding operation on zones. Since there are only 

finitely many rounded time zones, symbolic analysis over rounded time zones is guar- 

anteed to terminate. We first provide an equivalent definition of the Alur-Dill parti- 

tioning relation TU AD in terms of the constraints. Equivalence classes are determined 

by a set of primary constraints which are always applied, and also secondary con- 

straints, only some of which may be relevant depending on which particular primary 

constraints are satisfied. We then show how to refine this relation into constraint 

zones, where both primary and secondary constraints are always relevant. Rounded 

time zones are defined to be time zones which are the exact union of constraint zones. 
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Alternative definition for Alur-Dill classes 

We now give an equivalent definition for ~Ar>- We say x «r x' iff 

1. they satisfy the exact same subset of primary constraints, of the form: 

Xi < k, Xi < k, Xi > k, Xi> k, where Xi is a clock and k < Ki is an integer 

constant 

and, 

2. if they satisfy any of the above constraints of the form x < k or x < k for both 

Xi and Xj, then they also satisfy the exact same subset of secondary constraints, 

of the form: 

Xi — Xj < k, Xi— Xj < k, where Xi and Xj are clocks and —Kj < k < Ki is 

an integer constant. 

Proposition 4.2 The equivalence relations &r and «AD are the same, i.e. x «T x' 

iff x *iAD x'. 

Proof: The first set of constraints in the definition of «r determines whether Xi is 

less than or equal to Ki, and if so its exact integral part, and whether its fractional 

part is equal to zero. Thus if x and x' satisfy the same set of constraints, then they 

also share the same integral parts, and both are either exact integers or not. 

We claim the second set of constraints is sufficient to determine the relative order- 

ing of the fractional parts of two clocks, whenever both clocks are sufficiently small. 

Suppose Xi < K and Xj < Kj. Then -Kj < Xi - Xj < K, since clock values 

are always positive. Now observe the condition of the Alur-Dill equivalence can be 

reexpressed in terms of the constraints. 

• fract(xi) < fract(xj) iff xt — Xj < [xij — [XJ\. 

Each of these two conditions is determined by the constraint sets of the definition of 
~ D 
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Figure 4.6: Constraint zones 

Constraint zones 

We define a third equivalence, which partitions the timer-valuations into constraint 

zones. These constraint zones are finer than the regions obtained from the above 

definition, and are used in describing rounded regions. We say x «cz x' iff they 

satisfy the exact same subset of legal constraints, of the form: 

• X{ < k, Xi < k, Xi > k, Xi > k, where Xi is a clock and k < Ki is an integer 

constant, 

• Xi - Xj < k, Xi - Xj < k, where Xi and Xj are clocks and —Kj < k < Ki is an 

integer constant. 

The legal constraints are precisely the primary and secondary constraints used in 

defining the relation «r. Observe that in contrast to «r, the secondary constraints 

are always used in partitioning classes, regardless of which primary constraints hold. 

Notice that if we define K0 = 0 for the fictitious clock x0 whose value is always 0, 

then all legal constraints are of the form 

• Xi — Xj < fe, where x^ and Xj are clocks and b is a bound value such that 

-Kj <b<K{. 
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The constraint zones induced by the two clocks xi with Kx — 2 and x2 with 

K2 = 1 are shown in figure 4.6. Pictorially the difference between these regions and 

the Alur-Dill regions (see figure 3.8) is the extension of the diagonals for the secondary 

difference constraints. 

Proposition 4.3 The relation &cz refines the relation «r. □ 

Let a rounded zone be any time zone which is the union of constraint zones. 

Proposition 4.4 Rounded zones are closed under intersection. 

Proof: Clearly the intersection of rounded zones is a time zone, so we need only show 

that it is the union of constraint zones. Constraint zones are disjoint, so since every 

rounded zone is the union of constraint zones, so must be its intersection. □ 

We define the function round to map any time zone to the intersection of all 

rounded zones which include it, i.e. 

round(Z) = f]{Z' \ Z C Z' and Z' is a rounded zone} 

Corollary 4.5 For any time zone Z, round(Z) is a rounded zone. □ 

Lemma 4.6 A time zone Z is a rounded zone iff it is definable as the conjunction 

of a set of legal constraints, i.e. there exists a set of legal constraints 0 such that 

Z — {x | x satisfies every constraint inQ}. 

Proof: if: Let Z be defined by the set of legal constraints 0. We show how Z can be 

partitioned into constraint zones. Each legal constraint x{ — Xj < b is equivalent to 

the disjunction of legal constraints, b" <X{- Xj < b' for each bound b' < &, where b" 

is the nearest bound strictly lower than b', provided b" < Xj — Xi is a legal constraint, 

and —oo otherwise. Taking the conjunction of the disjuncts for each constraint in 0 

defines Z in such a way that each product term defines a constraint zone. 

only if: Let Z be a rounded zone. Then consider for each pair a;,-, Xj, the set 

of all maximal bounds appearing in constraints X{ — Xj < b used in tightly defining 

each of the constraint zones contained in Z. Each of these bounds corresponds to a 
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legal constraint. Let Z' be the time zone defined by this set of legal constraints. We 

establish that Z is exactly Z'. 

The zone Z' contains Z since its defining bounds are all greater that those ap- 

pearing in the constraints defining each constraint zone in Z. Furthermore all bounds 

are tight. They cannot be lowered or else some points in Z would be excluded. Thus 

Z' is the smallest time zone containing Z, and hence is equal to Z. □ 

An array entry in a DBM is called legal iff it corresponds to a legal constraint. 

In other words, its integer bounding value is neither too small nor too big. Illegal 

constraints and entries are defined analogously. 

Theorem 4.7 The time zone for round(Z) can be represented by the DBM B ob- 

tained from the canonical DBM A for Z where all illegal entries have their bounds 

rounded up to the nearest legal bound value, i.e. 

{üij if - Kj < a,ij < Ki 

—Kj        if aij < —Kj 

oo if üij > K{ 

Proof: Let R be the time zone round(Z). Let ZB be the time zone represented by 

B. Since ZB is a rounded zone including Z, it follows that R C ZB. 

To see that ZB Q R, first observe by lemma 4.6 that R is definable by a set 0 of 

legal constraints. Let AR be the matrix for R whose ij-ih entry is 

if Xi — Xj < k is in 0 

otherwise 

Since A is contained in R and A is canonical, it follows that a^ ^ afj because otherwise 

there would be a point in Z which satisfies x{ - Xj < a^ but not Xi - Xj < afj. 

The rounding process replaces two kinds of entries, in either case with some hj -< 

afi from which it follows that ZB Q R as required. 
~%] 

Case 1: a^ < —Kj 

Then % = -Kj. If x{ - Xj < afj is a defining constraint in R, then -Kj ^ afj 
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round(Z) 

3   *i 

Figure 4.7: Rounded regions example 

since it must be a legal constraint. This implies bij ^ af-. 

If there is no defining constraint along the Xi — Xj diagonal then of- = oo, in 

which case it is clear that b^ < afj. 

Case 2: a^- > K{ 

We have that K{ < a,ij ^ af- and since all elements of AR are either oo or legal 

constraint entries, it follows that a$ must be oo, so replacing o^ with b^ = oo 

does not affect containment. □ 

The rounded zone for Z defined by 1 < x^ < 2 and X\ — X2 < 1 is shown in 

figure 4.7. In section 4.4, we considered an automaton with K\ = 1, K2 = 2, and 

Kz = 3. Three time zones are used to represent the time successors of the origin if we 

use Alur-Dill equivalence classes. However, the successor set is represented exactly 

by one rounded time zone. 

Theorem 4.8 For every time zone Z, round(Z) intersects the same regions as Z, 

i.e. for every s G round(Z) there is a state $' <E Z such that s = s'. 

Proof: The proof must show that rounding Z is sound, i.e. it introduces no states 

whose Alur-Dill equivalence classes are not already represented in Z. 
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We first show it is sound to replace a single illegal constraint from a time zone 

which lies entirely within a detailed time zone. From this we infer that replacing all 

constraints from such a time zone is also sound. Given this fact, the result follows 

for an arbitrary zone Z, since Z is the union of zones Zi which lie in distinct detailed 

regions, and if a defining constraint is illegal in Z{ then there is a similar defining 

illegal constraint in Z. In other words, the effect of replacing illegal constraints in Z 

is the same as replacing illegal constraints from each Z^ Thus we need only establish 

the first claim, namely that we can soundly exchange a single illegal constraint from 

a zone contained in a detailed zone. 

Let Z be such a zone, contained in the detailed zone D, and let 9 : x* — x3, < b be 

an illegal constraint in the canonical DBM representation of Z. The constraint 9 is 

said to be a defining constraint for Z iff it is essential in the definition of Z, i.e. iff 

removing 9 from the constraints in the DBM results in a different zone from Z. If 9 is 

not a defining constraint, then replacing it with a weaker constraint in the rounding 

process has no effect, so we need only consider defining constraints. 

For an illegal defining constraint 9, we consider four cases. 

• 9 = Xi < k, for some k > K{. 

Then 9 is replaced by the trivial constraint Xi < oo in the rounding process. 

Since Z is contained in a detailed zone and 9 is tight, it must be the case that 

Xi > Ki for all points in Z. Thus D includes as a defining constraint x^ < oo, 

and so replacing 9 with x, < oo in Z's DBM results in a region contained in D. 

• 9 — Xj > k, for some k > Kj. 

Then 9 is replaced by the constraint Xj > Kj in the rounding process. Since 

Z is contained in the detailed zone D and 9 is tight, it must be the case that 

Xj > Kj is a constraint in D, since there are no critical constraints of form 

Xj > k for any k < Kj. Thus replacing 9 with Xj > Kj in Z's DBM results in 

a region contained in D. 

• 9 = Xi — Xj < k, for some k > Ki. 

Then 9 is replaced by the constraint Xi - Xj < oo in the rounding process. 
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Suppose all points in D satisfy some primary constraint Xi <b for some bound 

b < Ki. Then since 6 is a tight constraint for Z, this contradicts containment in 

D. Therefore no points in D satisfy any primary constraints of the form Xi < b. 

Thus D is not defined by any secondary constraints of the form Xi — Xj < b', 

and hence discarding the constraint 6 from Z results in a zone contained in D. 

• 0 = X{ — Xj < k, for some k < —Kj. 

Then 6 is replaced by the constraint X{ - Xj < -Kj in the rounding process. 

Suppose all points in D satisfy some primary constraint Xj < b for some bound 

b < Kj. Then since 6 is a tight constraint for Z, this contradicts containment in 

D. Therefore no points in D satisfy any primary constraints of the form Xj < b. 

Thus D is not defined by any secondary constraints of the form Xi — Xj < b', 

and hence relaxing the constraint 6 in Z results in a zone contained in D.     □ 

4.4.2     Augmenting next-state relations 

We now formally justify the use of rounded regions. Given a verification problem 

VP = (S, SQ,N,V), a bisimulation » respects VP iff every equivalence class is either 

entirely in V or disjoint from V. The set next-state relation N : 2s —»■ 2s is said to 

be a R2-set-augmentation of N for W iff 

1. « is a bisimulation respecting VP, and 

2. N augments N, i.e. for all sets A C S,N(A) C N(A), and 

3. for all ACS, for all s e N(A), there exists t € N(A) such that seat. 

Proposition 4.9 Given a verification problem W, a bisimulation & respecting VV, 

and a set next-state relation N which is a «-set-augmentation of N, (S, So, N, V) is 

correct iff (S, S0, N, V) is correct. 

Proof: 

If (S, So, N, V) is incorrect, then so is (S, S0, N, V) since N C N. 
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On the other hand, if (S,S0,N,V) is incorrect, we can show that (S,S0,N, V) 

is also incorrect by constructing a violating path in the original graph as follows. 

Suppose to,ti,t2,...,tk is a violating path in (S,S0,N) with tk € V. Let s0 = t0. 

Since N is a ^-augmentation of N there is a state Si that is bisimilar to tx and 

a successor state of s0 via N. We inductively continue the construction of a path 

so, «i, ■ • •, sfc in (£, So, N) where each s; « U Now since « respects V and i* € V it 

follows that sk is in V, and hence (S, S0, N, V) is also incorrect. □ 

Lemma 4.10 The rounded regions are closed under the operations N*d = round o Ne 

and Ngd = round o Ng. 
n 

Lemma 4.11 The states reachable with N*d andNf are bisimilar to those reachable 

by usingNe and Ns, and thus UN^dUN^d is a &AD-set-augmentation of ÖNeöNs. 

a 

Theorem 4.12 The verification problem with next-state relation UNe U Ns reduces 

to that over  ÖNföNf. ° 

Theorem 4.13 The set-reachability algorithm applied to a timed safety automaton 

with NT
e
d replacing Ne and Ngd replacing Ns terminates correctly. 

Proof: The result follows from the above theorem because there are only finitely 

many rounded zones. n 

Thus we may use the rounded next-state relations to decide the verification prob- 

lem for timed safety automata. 

4.5    Approximation of real-time systems 

4.5.1     Overapproximation 

The overapproximation operator for verifying real-time systems is defined over time 

zones as the zone that results from rounding the smallest enclosing time zone: 

A U B = round(enclose(A, B)) 



94 CHAPTER 4.   VERIFYING REAL-TIME SYSTEMS - PART I 

enclose{A,B) = mm{Z"\Z" a time zone and A U B C Z"} 

The smallest enclosing region is called the prejoin of A and B, and is well-defined 

since time zones are closed under intersection. 

Proposition 4.14 // A and B are represented by canonical DBMs with the same 

name, their prejoin is represented by the DBM D whose entries are the pairwise 

maxima of entries in A and B, i.e. dij = max{<2;y, bij}. 

Proof: Let D be the time zone represented by the matrix of the same name. It 

includes A and B since all bounds in D are no tighter than in A and B. 

To see that it is the smallest time zone containing both A and B, first observe 

that all bounds in A and B are as tight as possible. If any d^ is tighter than a^ say, 

then D cannot contain all of A since A contains points for which Xi - Xj = %• but 

which are disallowed in D. Thus no bounds in D can be further tightened, and so D 

represents the smallest possible time zone enclosing A and B. O 

The overapproximation operator is extended in the expected way to regions, i.e. 

[ undefined otherwise 

Proposition 4.15 The set of rounded regions is closed under the overapproximation 

operator. n 

4.5.2    Underapproximation 

We define the operator over single approximating sets, and the extension to sets of 

approximating sets follows from the discussion in section 2.2.3. The underapproxi- 

mating |> operator is defined as: 

[ (q,Z)        otherwise 

Proposition 4.16  The operator defined above is an underapproximating operator. 
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Proof: It clearly satisfies the correctness property UA_1. The non-emptiness property 

holds by the first condition in the definition. D 

Proposition 4.17 The set of rounded regions is closed under the underapproximating 

operator. n 

The plus operator over sets of approximating sets (see subsection 2.2.3) is re- 

stricted so that it is maximal up to a limit of k underapproximating sets per separat- 

ing class. In other words the result of expanding a set {Aij} of approximating sets 

with another set {B^} is a superset of the original set, with as many B^ added as 

possible, provided there are at most k sets in the extension. 

4.5.3     Disjunctive next-state relation 

The algorithm in chapter 2 assumes that the result of applying the next-state relation 

to an approximating set A yields an approximating set B. This approximating set B 

is then split across the separating classes into further approximating sets Bh each of 

which is then joined to the existing approximating structure, one separating class at 

a time. However, the next-state relation of a timed safety automaton does not yield a 

single region, but rather a disjunction of regions, since the next-state relation is itself 

a disjunction of relations, each of which may yield different regions. 

Such a situation can easily be handled by a modified approximation algorithm, 

by computing the next-state relation in parts. Suppose the next-state relation N 

is the disjunction of k relations N{, and for each Ni is closed over the domain of 

approximating sets. Instead of computing N(A) we consider each Ni(A) in turn. The 

result after k computations, and applications of the approximating operators, has the 

same effect as computing the successors as a set of k approximating sets, and then 

performing the approximating operators in one step. 

Theorem 4.18 The modified algorithm for disjunctive next-state relations termi- 

nates correctly over finite state systems. 

Proof: (Sketch) Correctness is obvious since computing the next-state relation in 

several steps does not affect whether the algorithms correctly overapproximate or 
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underapproximate. The necessary modifications to proofs of propositions supporting 

the termination theorem 2.14 are tedious but straightforward. □ 

4.5.4    Urgent events 

We assume that urgent events have no timing constraints associated with them1. 

Urgent events could be modeled by adding safety invariants with upper time bound 

0 on a clock which is reset on entering a state in which an urgent event is enabled. 

However, it is more effective to handle them directly. Marks can be placed on control 

locations in the automaton where urgent events are enabled. Rather than resetting 

a clock on entering the control location, the next-state relation is altered to disallow 

time passing in this state. The immediate advantage of this strategy is that we reduce 

the number of clocks in the system, which increases the speed of verification. Further 

benefits are discussed in the next chapter. 

4.6    Proof of termination 

The termination proof of the previous chapter applied to finite-state systems only. 

We show now that the algorithm also terminates for the verification of timed safety 

automata, essentially because the algorithm uses the finite domain of rounded regions 

for approximating sets. 

Let X = {Xa}aej be a partition of S. We define the set 

Y = {Yi\Yi=  Ujzj.Xj for some J' C J} 

to be the sets which are the union of blocks in the partition. A verification problem 

yp = (5, S0, N, V) is said to be separated by the partition X = {Xa}aeJ of S iff 

1. S0 € Y, 

xIt is possible to convert any timed safety automata into this form. A proper transition relation 
has no strict lower bounds in the enabling conditions of urgent events, so a location with outgoing 
urgent events can be divided into separate locations, each representing a zone where the urgent event 
is either enabled or disabled. 
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2. V EY 

3. Y is closed under the next-state relation N, and the approximation operators 

U and &>. 

It is separable iff it is separated by some partition X. The problem W is said to 

be finitely separated by X iff it is separated by X and X is finite. The term finitely 

separable is similarly defined. 

Proposition 4.19 // the verification problem (S,So,N,V) is finitely separable by 

X, and the domain of approximating sets includes all elements of X, then the full 

approximation algorithm of chapter 2 terminates, and correctly decides the verification 

problem. □ 

Lemma 4.20 The transition system induced by a timed safety automaton is finitely 

separable by the detailed rounded regions. D 

Proposition 4.21 The full approximation algorithm applied to (S,So,N,V), where 

the «-augmentation N is N}d U \jNld defined in section 44-1, terminates, and 

correctly decides the verification problem for timed safety automata. □ 

4.7    Examples 

We illustrate the algorithm with a couple of examples. 

Separating classes and conditional joining 

First consider the automaton A\ in figure 4.8. An enabling condition of form (x,y) = 

(1,1) represents the constraint x = lAy — 1. The violation location is 53. The approx- 

imation algorithm finds the initial forwards overapproximation and underapproxima- 

tion, and the backwards overapproximation. After these computations the algorithm 

halts with the system verified correct. Figure 4.9 shows the truly reachable states 

and the resulting approximating structures. The forward overapproximation starts 

by adding the time successors to the origin. The successors of the set {go, (x = y)) 
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(x,y) = (l,0) 
x :=0 

(s,y) = (l,l) 
z:=0 

(x,y) = (l,l) 
y:=0 

(x,!/) = (0,l) 
j/:=0 

(x,y) = (l,0) 

(x,y) = (0,l) 

Figure 4.8: Timed safety automaton Ai 

are the sets {(51, (1,0))} and {(qi, (0,1))}, each obtained by individually following a 

transition from q0. Suppose the former set is added first to the overapproximation. 

The state-space is partitioned according to control location, so when the second set 

is added to the approximation, it is joined to the first, giving (ft, (x < 1 A y < 1)). 

Adding time successors to this set gives the region shown in figure 4.9. Joining the 

successor sets out of ft yields (q2, {x < 1 A y < 1)). Completing the approximation 

gives the states depicted on the second row of the diagram above. 

The underapproximation is taken to consist of up to two approximating sets 

per separating class. The successor states of {q0, {x = y)) are the individual sets 

{qi, {(0,1)}} and {qu {(1,0)}). Since the approximation allows up to 2 sets per sep- 

arating class, both are included. Adding time successors to (ft, {(0,1)}) leads to the 

ray (ft, (y = x + 1)). Since it includes the underapproximating set (ft, {(0,1)}), it 

replaces the latter set in the underapproximation. 

The backwards overapproximation starts with the violating states at location qz. 

Suppose the transition enabled on (x,y) = (1,0) is considered first. Then the back- 

wards overapproximation includes the set (q2,{(l,0)}). The other transition into q3 

results in adding (q2, {(0,1)}) to the approximation. These two sets at location q2 are 

not joined together because doing so would violate condition 1 for permissible joins, 
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Truly       1 

Reachable 
qO 0      12 ql 0      12 q2 0       12 q3  0       12 
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q3 0      12 

q3 0      12 

Backwards 

Overapproximation 

qO 0      1    2 
V 

ql  0       12 q2  0       12 

Figure 4.9: Approximations for A\ 

q3 0      12 

i.e. their join {q2, (x < 1 Ay < 1)} includes the forwards underapproximation whereas 

neither of the original sets do. Computation of the approximation completes without 

including the initial state, and so the system is correctly verified. 

Rounding and urgent events 

Our second example, shown in figure 4.10, illustrates rounding and the treatment of 

urgent events. The truly reachable states and the first forward overapproximation 

only are shown in figure 4.11. Time may pass without bound while control remains 

in location q0. At any time less than 1, control may pass to location q\. The urgent 

event is instantly enabled, leading to location q2. Now time is allowed to pass in 

location q2. The clock y may be reset whenever it reaches 1, and control may move 

to the location q% when x = 2. 
The first forwards overapproximation begins by adding all time successors to the 
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~€> 
X < 1 

■©= 
x = 2 

Figure 4.10: Timed safety automaton A2 

Truly 

Reachable 

% 

2^ 
/ Forwards 1 - / 

Overapprox. ^-^ 
1o 

VU 
<Ji      1    2 

'k-. 
ii  1 2       12 

Figure 4.11: Approximations for A2 

^3      12    3    4 

<l3      12    3    4 

zero vector at location q0, giving the approximating set (q0, (x = y)). This set is joined 

to the initial approximating set in the separating class for q0, namely (q0, (x = y = 0)), 

resulting in (go, (x = y)) since it contains the initial set. The transition from qo 

to q\ leads to states {qi,(x = y < 1)). Because there is an urgent event out of 

qi, no time successors are added to this set. Following the urgent event leads to 

Gi = (g2, (x = y < 1)), to which the time successors G2 = {#2, (x = y)) may be 

added. The self-loop adds states G3 = (&,{(1,0)}) for which the prejoin with G2 

yields G4 = {q2, (0 < x - y < 1)) which is a rounded region. 

Following the transition to q3 leads to #1 = (q3,(x = 2 A 1 < y < 2)). This 

is a rounded region, even though at first appearance it appears to be defined using 

the illegal constraint y < 2, which should then be discarded in the rounding process. 
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Notice however that the constraints y - x < 0 and x = 2 are legal constraints which 

imply y < 2. Thus the rounding operation leaves Hi unaffected. Similarly, time 

successors can be added to Hi giving H2 = (qz, (x>2A0<x-y< 1)). A further 

self-loop on G4 followed by adding time successors yields G5 = (q2, (0 < x - y < 2)), 

while the transition from q2 to g3 results in Hz = (qz, (x > 2 A 0 < x - y < 2)) which 

is a rounded region. Adding time successors to Hz leaves it unchanged. The effect 

of rounding can be seen when considering the next self-loop at q2 ■ The immediate 

successors of the self-loop from G5 are (q2, {y = 0 A 1 < x < 3)). The prejoin of these 

successors with G5 is G6 = {q2, (0 < x - y < 3)). The constraint x - y < 3 is illegal, 

since the constant exceeds Kx = 2. Removing x-y < 3 from G6's DBM and replacing 

it with the trivial bound x-y < oo results in the rounded region G7 = (q2, (0 < x-y)), 

and no further states are then added to the over approximation. 



Chapter 5 

Verifying Real-Time Systems 

Part II 

5.1     Symbolic representation of control locations 

In many realistic real-time systems, large state-spaces arise not only from the com- 

plexity of timing information, but also from having numerous control locations. The 

algorithm shown in the last chapter employed a single control location per approxi- 

mating set. If there are many reachable control locations, the algorithm will have to 

store a large number of approximating sets. We counter this problem by clustering 

together information across different control locations. The last chapter showed how 

to use approximating sets of the form (q,Z), where q is a control location and Z a 

rounded time zone. We generalize this to allow approximating sets of the form (A, Z) 

where A is a set of locations and Z is as before a rounded time zone. Thus control 

information may be represented symbolically as well as the timing information. This 

technique may dramatically reduce the number of approximating sets which need to 

be considered. 

We first define the approximating operators. Later we show how the algorithm is 

modified to allow approximation of the next-state relation as well as approximation of 

the state-space. These modifications are necessary for efficiently handling the issues 

of urgent events and safety constraints in the passage of time. 

102 
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5.1.1     Combining domains for approximation 

We first show how different operators over different components of the state-space 

can be combined. Suppose a state-space is the cross-product of two domains, e.g. 

S = So x Si. Approximating operators over the domains So and Si can be combined 

to give an approximating operator over S. For convenience, we use {A, B) to denote 

the cross-product A x B of A and B. 

Overapproximating 

Given approximating sets (A,B) and (A',B') for S0 x Si, and overapproximating 

operators Ux and U2 over approximating sets for S0 and Si respectively, we define 

their combination U such that 

{A, B) U {A', B') = {A Ui A', B U2 B') 

Let D be the domain consisting of the pairs of approximating sets for S0 and Si. 

Proposition 5.1 The operator U defined above is an overapproximating operator 

over D. 

Proof: The operator is closed over D since each of the component operators is. 

Furthermore, {A, B) C (A ux A', B U2 B') since AC AUXA' MVü B C BU2B'. The 

argument for {A', B') is analogous. E 

Underapproximating 

Given approximating sets (A, B) and (A\ B') and underapproximating operators E> i 

and l> 2 over approximating sets for S0 and Si respectively, we define their combina- 

tion 0 as 

{A,B)>(Ä,B') = { 

(A't ff) if{A,B)C(Ä,B') 

{A>iA',B) if B C B' and A % Ä 

{A, B>2B') ii AC A' and B £ B' 

{A,B} otherwise 
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Proposition 5.2  The operator l> defined above is an underapproximating operator 

over D. 

Proof: The operator is clearly well-defined and closed. 

Containment is obvious for the first and last cases. By symmetry, we need only 

explain the second case. If B C B', then since A £> XA' C A U A', it follows that 

(A E> !Ä, B)C(Aö Ä, B) = (A, B) U (A', B) C (A, B) U (A', B'). 

Finally, the non-emptiness condition is satisfied because of the first case. □ 

Real-time operators 

To specify the operators used for approximating real-time systems, we need only 

provide the operators over the two domains of control locations, and timer vectors. 

These operators can be combined as outlined above. We use the same operators as 

before over timer vectors. For simplicity, we use the exact union operator over sets 

of control locations, i.e. A Ux A' = A U A'. 

5.1.2     Computing successors 

In the case of a single control location per approximating set, it is easy to compute 

the exact set of successors of an approximating set for any transition. The set of 

successors is itself an approximating set. When the approximating sets include sets 

of control locations, it is still straightforward to compute successors under instanta- 

neous transitions. Timing information for the successors is independent of the control 

locations: if a transition is taken, its reset action must be applied to all timer val- 

ues, regardless of the incoming or outgoing control locations. However, computing 

the exact set of time successor states is more complicated, because now the control 

locations affect timing information: urgent events and safety invariants may restrict 

how long time can pass. Consider the problem of efficiently finding the set of time 

successor states for the approximating set {A, Z). Each location q € A has a po- 

tentially different safety invariant, so the number of approximating sets in the time 

successors of {^4, Z) may be as large as the size of A. If this were the case, it would 

defeat the purpose of grouping together information about different control locations 
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in the same approximating set. Furthermore, time is not permitted to pass in those 

control locations with urgent events enabled. We tackle this problem by allowing 

approximations of the next-state relation, as discussed in section 2.4 

5.2    Approximating real-time systems 

In this section we describe the full algorithm advocated for verifying real-time sys- 

tems using approximations over control information and timing information. The 

next-state relation for time-passage events is both underapproximated and overap- 

proximated. The algorithm requires the use of additional splitting between traversals 

to ensure termination. 

5.2.1     Approximating next-state relations 

The algorithm proceeds exactly as described above in section 5.1, except that the 

next-state relation is approximated for the passage of time. Exact computation is 

performed for instantaneous events. Recall that the next-state relation for a timed 

safety automaton is the disjunction 

N=   UeeTNeöNs 

where the time-passage relation is 

Ns=  Ut>0NSt 

We assume as before that urgent events are constrained only by control locations, 

and are independent of timing information. Let Urg(Q) be those control locations 

for which there is some outgoing urgent event. For each t € H, we observe that 

NSt = {((?, S), (q, S + t))\q£Q\ Urg{Q), x + te Inv(q)} 

The relation Ns is not closed over approximating sets. In general the successors 

Ns{{A, Z)) form a set of approximating sets, one for control locations in Urg(Q), and 



106 CHAPTER 5.   VERIFYING REAL-TIME SYSTEMS - PART II 

up to one each for every different safety invariant for the locations in A. 

NS({A,Z)) = (AC\ Urg(Q),Z) U  UqeA\UrgiQ){q,Z/ n Inv{q)) 

Notice that this successor set need not be represented with one approximating set for 

every location in A \ Urg(Q), since the approximating sets with locations sharing the 

same safety invariant will share the same time zone, and thus can be combined into 

approximating sets of the form {{q G A \ Urg(Q) \ Inv(q) = Inv(tf)}, Z/ n Inv(q')). 

However, the number of such sets can still be prohibitively large, especially since the 

timed safety automaton often represents the product of several parallel processes, 

so there may be exponentially many1 different safety invariants for a set of control 

locations. 

So while it is possible to use an exact next-state relation, we prefer to approximate 

the time successors using an overapproximating (set) next-state relation, and an un- 

derapproximating (set) next-state relation which returns exactly one approximating 

set rather than the list of approximating sets which would be returned by an exact 

computation. 

The overapproximating relation Ns for the forwards relation Ns is defined as 

NS((A,Z)) 

(A,Z) HACUrg{Q) 

(A, Zy n Inv(q)}       ifA% Urg{Q) and Mq1 G A, Inv(q) = Inv(q') 

(A, Z/) otherwise 

The underapproximating relation jVis for the forwards relation Ns is defined as 

Ns((A,Z)) = { 
' {A, Z/ n Inv{q))       if A n Urg{Q) = 0 and 

Vg' e A, Inv(q) = Inv(q') 

{A, Z) otherwise 

1 There may be a different invariant for every control location, and so the number of invariants 
may be exponential in the number of processes. 
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The approximating relations used for computing backwards reachable states are sim- 

ilar. The overapproximating relation Ng1 for the relation Nf1 is defined as 

N?{(A,Z)) = { 

(A,Z) HACUrg{Q) 

(A,{Zninv(q))y)       if A % Urg(Q) 

and Vg7 e A, Inv(q) = Inv{ql) 

(A, Zy) otherwise 

The underapproximating relation N£ for the relation Ns   is defined as 

m(A,z)) 
' {A, (Z n Inv{q))y)       if A n Urg(Q) = 0 

and Vg7 G A, Inv(q) = Inv(q') 

(A, Z) otherwise 

Let the domain of sets Q be defined as {(g,IR") | q e Q}. 

Proposition 5.3       1. The overapproximating relation Ng (Ng1) is an overapproxi- 

mation of the next-state relation Ng (NgX). 

2. Furthermore, N$ and N^ exactly match Ng over sets for which all control lo- 

cations share the same safety invariant and urgency information, and hence 

exactly match over Q. D 

Proposition 5.4      1. The underapproximating relation Ng (N£) z5 an underap- 

proximation of the next-state relation Ng (Ng~l). 

2. Furthermore, Ng and N£ exactly match Ng over sets for which all control lo- 

cations share the same safety invariant and urgency information, and hence 

exactly match over Q. E 

To guarantee termination, it would suffice to show that whenever the routine 

Over_Approx is run with the approximate next-state relations Ng.Ng1, Ng, and N£, 

successive overapproximations are strictly decreasing with respect to -<base- Unfor- 

tunately, however, this is not the case. We use instead the policy introduced in 

section 2.4 of additional splitting to force the overapproximations to decrease with 
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respect to -<set until they eventually refine the partition Q. Then since the approxi- 

mating relations are exactly matching over £>, termination follows. 

5.2.2    Algorithm for real-time systems 

The algorithm uses approximate next-state relations N = Ne U N$, N = Nel) Ns, 

N11 = N'1 U Nf, and AL1 = N'1 U A£. 

By propositions 5.3 and 5.4 and theorem 2.26, convergence is guaranteed if the 

approximating sets are forcibly refined until control locations share the same urgency 

information and invariants. Thus to ensure termination we may chose any maxi- 

mal class for which the next-state relations are not exactly matching, and refine it 

by separating locations with different timing characteristics. We prefer to choose 

the classes for splitting in a way that will likely result in faster convergence of the 

approximations. The classes chosen for splitting are those sets A which are not ade- 
quately covered by the underapproximation. The idea is that in order to accelerate 
convergence, the underapproximation should increase as quickly as possible towards 
the overapproximation, while the overapproximation should decrease as fast as pos- 

sible towards the underapproximation. By further dividing a separating class C by 

distinguishing states in the underapproximation from those not, we simultaneously 

force the overapproximations to be more accurate within C, and provide a means for 

the underapproximation to include more states in C. 

Real-time approximation algorithm 
The algorithm appears in figure 5.1. An overapproximation A is not merely flattened 

and used directly as the separating structure for the next traversal. Instead it is 
refined via the function Refine_Maximal() into a structure C such that C -<set A. The 

result of calling Refine_Maximal with overapproximation A and underapproximation 

B is a separating structure obtained from A by replacing every maximal set A with 

two disjoint parts: 

1. Ax = (Qi x ET) D A 

2. A2 = (<?2 x TR71) n A 
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RT-Approx 

Over [BACKWARDS]  := original separating structure; 
Under[BACKWARDS]  := empty approximating structure; 
confirmed-positive  := FALSE; 
confirmedjtiegative  := FALSE; 
dim —FORWARDS; 
while ( (not confirmed-positive) and  (not confirmed-negative) ) do 

Sep_Structure  := 
Refine_Maximal(Over[Opposite_Dirn(dirn)],Under[Opposite_Dirn(dirn)]); 

Over [dim]   := 
Over_Approx(dim,iV\Sep-Structure,Under[Opposite_Dim(dini)]); 

Sep_Structure  := Flatten (Over [dim]); 
Underfdirn]   := Under_Approx(dirnjy,Over[dim]); 
dim  := OppositeJDim(dirn); 

endwhile 

Figure 5.1: Real-time approximating algorithm 

where A\\J A2 = A. We define proj(Q)(W) to be the set of all control locations 

found in the set of timed-states W. The splitting of A may be obtained by separating 

control locations by any one of the following criteria: 

1. Qi = proj(Q){A n US), or, 

2. Qi= Urg(Q) D proj(Q)(A), or 

3. NS(A1) # A1 

The first condition corresponds to separating out those control locations that have 

timed-states in the underapproximation already from those that do not. This policy 

is the one suggested in the discussion above. The second and third conditions reflect 

attempts to decrease the next overapproximation, by separating out control locations 

for which the passage of time could result in fewer timed-states being encountered, 

i.e. for some subset A' of Ai, Ns(A') C A\. Such sets of locations Qi may be obtained 

by splitting according to the safety invariants associated with control locations, or by 

separating the locations which have urgent outgoing events. 
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Simple timed automata 

If we are verifying simple timed automata, there is no need to approximate the next- 

state relation N$. The syntax of simple timed automata does not allow urgent events, 

nor safety invariants, and so finding the exact sets of time successors and predecessors 

is always efficient, i.e. NS((A,Z}) = {A,Z/), and Nf\{A,Z)) = {A,Zy). 

5.2.3    Properties of algorithm 

Proposition 5.5 Each overapproximation FOi from the algorithm above will either 

be strictly decreasing with respect to -<Set, i-e. FOi -<set FOi-i, or the approximate 

next-state relations will be exactly matching over FOi. 

Proof: Suppose the approximate relations are not exactly matching. Then by the 

definitions of the approximating relations there must be a set A for which the control 

locations differ for either safety invariants or urgent events, i.e. 3q, a1 € proj(Q)(A) 

such that Inv(q) ^ Inv(q>), or 3q, q' e proj(Q)(A) such that q € Urg(Q) and q' g" 

Urg(Q). There must be a maximal set containing this set A, for which the control 

locations also differ in this regard. This set will be split causing FOi to be computed 

with respect to a separating structure strictly less than FOi-i, and hence FOi ~<set 

FOi-i. A similar argument holds for backwards approximations. □ 

Proposition 5.6  The algorithm above terminates for real-time systems. 

Proof: The result follows from proposition 5.5, the fact that the approximating re- 

lations are exact over Q and theorem 2.26. □ 

5.3    Ordered binary decision diagrams 

The success of using approximations over control information depends heavily on hav- 

ing an efficient representation for sets of control locations. We therefore conclude this 

chapter by reviewing an effective symbolic representation for Boolean functions, the 

ordered binary decision diagram (OBDD) due to Bryant [Bry86]. This representation 
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is used by our implementation for describing sets of control locations. In hardware 

verification and protocol verification, OBDDs have enabled successful formal verifi- 

cation well beyond the range of a traditional explicit implementation [BCM+90]. In 

addition it has been used for a variety of other problems involving manipulation of 

system's state-space, including the synthesis of supervisory controllers [HWT92b], 

logic synthesis [FKM91], sensitivity analysis and test generation [CB89], and logical 

databases [MC91]. 

Before defining OBDDs, we first describe how an untimed transition systems can 

be expressed and verified using Boolean functions. 

5.3.1 Relations and Boolean functions 

A transition system can be viewed as a set of tuples, which can in turn be expressed 

as Boolean functions. Operations on sets of states of a transition system can be 

expressed as manipulations on Boolean functions. This section makes this encoding 

more explicit. If Q is the set of locations of a transition diagram or automaton, let 

Q' = {(i\q e Q} be a set of locations representing the same locations in the next 

state of execution. If the alphabet of edge labels is S, a next-state relation for the 

transition function can be expressed as a set of tuples 6 in Q x E x Q'. The sets of 

initial locations and final locations of an automaton can be thought of as 1-tuples. 

Any set of n-tuples T C X\ x X<i x • • • x Xn can be expressed by its characteristic 

function, i.e. a Boolean function / : X\ x X2 x • • • x Xn *-* {0,1} where f(t) = 1 

iff t € T. We can assume each Xi domain is Boolean. If X{ has more than two 

elements we can replace it by |7op(|Xj|)] Boolean domains giving a binary-encoding 

of its elements. It follows then that next-state relations, predicates describing initial 

states, final states, can all be expressed as Boolean functions over Boolean domains. 

5.3.2 Ordered binary decision diagrams 

An ordered binary decision diagram essentially encodes a Boolean function as a 

binary decision tree with the added restriction that the decisions are performed in a 

fixed order. In addition, common subtrees are shared for efficiency, thus resulting in 
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Figure 5.2: OBDD for the Boolean function (xi V x2) A (x$ V X4) 

a directed acyclic graph (DAG). The value of the function for a particular variable 

assignment can be read by traversing the tree starting from the root, at each node 

branching according to the value of the variable labeling that node. Figure 5.2 shows 

a DAG representing / = (xi V x2) A (x3 V z4). The variable assignment (xi = 

0,x2 = l,z3 = 1,£4 = 1) leads to a node marked 1. Thus / is true under this 

variable assignment. Notice that the value of z4 is irrelevant. The path followed 

symbolically represents the two variable assignments {x\ = 0,rr2 = 1,^3 = 1,#4 = 0) 

and (xi = 0,x2 = l,a?3 = l,x4 = 1). 

Canonical form 

However a Boolean function does not have a unique representation as a DAG. An 

OBDD is a DAG satisfying the additional constraint that the occurrence of variables 

on every path from the root to a leaf obeys a given total order. The DAG in Figure 5.2 

is in fact a OBDD with variable ordering Xi < x2 < xs < xA. Bryant showed that for 

any total order on the variables, every Boolean function is represented by a unique 

OBDD respecting that order. The advantage of having such a canonical form is that 

logical tests on Boolean functions given as OBDDs is easy: logical equivalence can 

be determined in linear time, and satisfiability and validity can be tested in constant 

time. For example, a formula is valid iff its OBDD representation is the same as that 

for TRUE. 
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Operations on OBDDs 

Bryant also gave efficient algorithms to perform standard Boolean operations on OB- 

DDs. The complexity of finding the OBDD for the logical AND, OR, or NOT of two 

OBDDs is bounded by the product of the sizes of the two OBDDs. To compute the 

successor states of a set of states, we need the additional operation of quantification. 

The existential quantification formula 3xi[f] can be read as "(/ holds when Xi is 

FALSE) OR (/ holds when x{ is TRUE)". We use Bryant's restriction algorithm for 

/|Ii=0 and /|Ii=i to implement 3xi[f] as /|Ii=0 V f\Xi=v 

Computational issues 

The main advantage of using OBDDs to represent Boolean functions is that they are 

often far smaller than an explicit truth table representation. This fact can lead in 

practice to greatly improved performance but does not alter the exponential worst- 

case complexity per se. Thus the use of OBDDs is merely a heuristic to reduce the 

size of representing a Boolean function. Bryant has shown that there is no variable 

ordering that avoids an exponential representation of a multiplier. There is therefore 

no guarantee that implementations based on OBDDs will outperform those using 

explicit data structures. In the field of finite-state verification however, numerous 

researchers have already reported substantial improvements due to OBDDs [CK91, 

BCM+90] over particular problem domains. 

Finally, we note that typically an OBDD's size depends crucially on the chosen 

variable ordering. Intuitively a small OBDD will result when the function's value can 

be correctly determined from the remaining variable values and only a small amount 

of intermediate information about the variables already seen. It is generally desirable 

for a variable ordering to bunch together variables that are highly interdependent. 

For example, suppose Wx = {xn,..., xlni},..., Wm = {xmi,..., xmnm} is a partition 

of the variables of /, and / = /i A • • • A fm where each /* depends only on variables 

in Wi. Let the size of the OBDD for g be denoted \g\. Then |/| = 0(|/i| + • • • + |/m|) 

under the variable ordering xn < ■■■ < arlni < ••• < xm\ < ■•• < xmnm. Such a 

scenario can arise when composing loosely coupled components in a product system. 
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This reduced complexity is a substantial gain over an explicit representation that 

would be exponential in the number of components. However with a bad choice 

of variable ordering, the OBDD representation could also be exponential. Hence 

some understanding of the nature of the problem is needed to select a good variable 

ordering. This thesis does not explore this issue or exploit any of the advantages 

obtainable from clever variable orderings. 



Chapter 6 

Case Studies 

We give some examples of real-time systems described as timed automata. We also 

provide automata for several timing properties used as specifications. Throughout 

the chapter we provide hints for describing various aspects of timing behavior. We 

conclude with a discussion of the limitations of using timed automata as a represen- 

tation language. The performance of our verifier on the following examples can be 

found in chapter 8. 

6.1    Examples 

6.1.1     Train-gate controller 

Our first example is one which appears frequently in the literature: an automatic 

controller which opens and closes a gate at a railway track intersection [LS85, Alu91]. 

The system consists of three components: a train, a gate, and their controller. The 

automata modeling the system's components are shown in Figure 6.1. Whenever a 

train enters the intersection, it sends an approach signal at least 2 seconds in advance 

to the controller. The controller also detects the train leaving the intersection, and 

this event occurs within 5 seconds after it started its approach. The gate responds to 

lower and raise commands by moving down and up respectively within certain time 

bounds.  The controller sends a lower command to the gate exactly 1 second after 
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Figure 6.1: Automata for train-gate controller example 
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Figure 6.2: Real-time safety specification 

receiving an approach signal from the train. It commands the gate to raise within 1 

second of the train's exit from the intersection. 

We verify a simple real-time safety property, namely that whenever the gate goes 

down, it is moved back up within a certain upper time bound K. In other words, the 

gate is never down for as long as K seconds. See the Spec automaton in Figure 6.2. 

It is deterministic and its completion is expressed by the same automaton with the 

added location qi which is marked as violating. The timing conditions on the edges 

from qi to §2 are the complement of the existing edges for each event. In this case 

they happen to be the same for both down and up events. We do not need to add 

edges from qo to q^ since both events are already enabled at all times in <fo • Whenever 

the specification constant is greater than or equal to 7 the specification is satisfied. 



6.1.   EXAMPLES 117 

SENDER 

SS-SAP 

RECEIVER 

SR-SAP 

SERVER 

Figure 6.3: Tick-Tock protocol block diagram 

From our experience, it is surprisingly easy to specify incorrectly such bounded 

liveness properties by forgetting the transition labeled a which indicates the deadline 

has been missed. This omission will only catch error traces where the gate does not 

go up within K time units and does go up or down sometime later. It detects events 

occurring too late, but does not notice the error if no further events occur. 

6.1.2     Tick-Tock protocol 

The Tick-Tock protocol [LLD94] has been proposed as a test-bed for evaluating the 

success of formalisms for specifying real-time systems. The protocol describes three 

processes: a sender, a receiver, and a service component. The service entity has 

been modeled as timed automata by Daws et al [DOY94], who verify the component 

against various properties expressed in TCTL, a real-time temporal logic. Here we 

show how some, but not all, of the properties they verify can be modeled as timed 

safety automata. Thus in some cases their timing verification problems can be reduced 

to timed safety verification as outlined in chapter 3. 

System description 

The role of the server component is to provide buffered transmission of data from 

the sender to the receiver, as depicted in figure 6.3. Communication is through data 

cells passed one at a time through Service Access Points (SAPs). The sender provides 

cells to the service at the SAP referred to as the SS_SAP.  The server then passes 
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them reliably on to the receiver at the SRJ3AP. The only way a cell is lost is if the 

receiver is not ready to receive an offer from the server. Here we do not model the 

full protocol, where the service may also crash. The behavior of the server satisfies 

the following timing constraints: 

Isochronism: The server offers to accept cells from the sender only at regular 

instants, IT time units apart. At most one cell is received at any time, and the 

exchange is considered to be instantaneous. 

Transmission delays: The server always delays between rmin and rmax time units 

between receiving a cell at SS-SAP from the sender and then delivering the cell 

to an internal buffer. 

Spacing between deliveries: There must be a time delay of at least a time units 

between deliveries. 

Immediate acceptance: The server offers the receiver a cell at SR-SAP as soon 

as delivery to its internal buffer is completed. If the receiver does not accept 

the cell, it is lost. 

The description of the server is given by Daws et al as the product of the automata 

in figure 6.4. Note that the delivery of each cell is meant to take place as soon as it 

is enabled, modeled by the urgent event in the transmission delay automaton. The 

service may offer to buffer up to n SS_SAP cells at any given time. This situation is 

modeled by n different transmission delay components, each with events labeled by a 

unique identifier. The transmission delays are modeled by the product of all the delay 

cell components. However this process has events tagged with an identifier i signifying 

that it comes from the i-th. delay cell. As far as the other processes are concerned, it is 

irrelevant which cell provides the buffering, so the events are abstracted in the delay 

component before composing them with the other processes, e.g. all DeLi events are 

abstracted to Del1. 

1 Alternatively, the transitions for delivery and SS.J3AP events which occur in other processes 
could be replicated, one for each delivery or SS-SAP exchange. 
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Figure 6.4: Tick-Tock service entity 

Specification properties 

Each component in the model of the server places a restriction on the server's behav- 

ior. However it does not guarantee that the service will be offered in a timely manner. 

For instance the isochronism requirement states that SS.SAP exchanges may occur 

at most at regular punctual instances separated by it time units, but in fact the server 

may not be ready to accept an SS.SAP because transmission may be delayed while 

waiting for delivery to occur. 

Following Daws et al, we verify the server against the following three categories 

of timing properties. 
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Figure 6.5: Isochronism specification processes 

Isochronism: 

Iso-1: Whenever an SS-SAP event is enabled, it is also enabled exactly IT time 

units later. 

Iso-2: Whenever an SS_SAP event is enabled, it is never enabled again before 

x time units have passed. 

Transmission delays: After a successful SS-SAP exchange, an offer at SR-SAP 

must occur within [Tmiri,Tmax\ time units. 

Spacing between deliveries: Whenever an event is enabled at SR-SAP, there is 

a delay of at least a time units before it is enabled again. 

The specifications for properties Iso-1 and Iso-2 appear in figure 6.5. The develop- 

ment of these specification automata is explained in more detail below. Notice that 

the property Iso-1 asserts that a particular event must occur within a certain time 

interval, whereas the second property states that a particular event should not occur. 

In general, properties of the second sort are easier to specify. 

Most properties are assertions about whether SAPs are enabled in a timely fashion 

or not. However the language of timed automata has no direct means of express- 

ing that an event is enabled. We handle this by adding additional events, such as 

En_SS_SAP which is enabled in each component precisely when SS-SAP is ready for 

communication. In figure 6.4 this would result in self-loops at locations qo labeled 
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Figure 6.6: Isochronism component indicating urgent enabling at SSJ3AP 

En_SS_SAP in the isochronism process, and En_SS_SAPJ in all the delay cell pro- 

cesses for which the transmission delay product abstracts the events to En_SS_SAP 

before composing with the other processes. The conditions on the En_SS_SAP events 

match those for the SS_SAP events. Thus in testing the second isochronism speci- 

fication, the negated property asserts that a premature enabling event occurs. See 

figure 6.5. 

Verifying the first isochronism property, which asserts that SS_SAP can take place 

when v = it, is not so straightforward. The En_SS_SAP event must be urgent in the 

automaton for the isochronism property. This is because in order to correctly check 

whether SS_SAP really is enabled, we need the event En_SS_SAP to occur without 

fail whenever it is. Otherwise SS_SAP may be enabled, with the En_SS_SAP event 

enabled but not occurring, leaving the impression that time passes by without the 

event being enabled. However, we run into two difficulties. Firstly, an event may 

occur at precisely the time En_SS_SAP would occur, thereby disabling En_SS_SAP. 

We circumvent this through a specification which checks not only for the En_SS_SAP 

event, but also for events which may explicitly disable it, e.g. the event SS-SAP itself 
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may occur instead. Secondly, our verification tool does not allow urgent events to 

be subject to timed enabling conditions, e.g. the constraint x = 0 in the isochronism 

process. We handle this shortcoming by introducing additional control locations 

which are used to check whether the urgent event satisfies its timing condition, as 

in figure 6.6. Thus an urgent event Possible_En_SS_SAP is allowed to occur out of 

location q'Q regardless of the value of the clock x. The 0 upper time bound on reset 

clock x' at location test, forces control to immediately pass to qo, signaling either that 

the event truly is enabled (when x = 0) or that this excursion into the test location 

does not correspond to a real enabling at SS_SAP (when x > 0). Thus to verify 

the property Iso-1 we replace the isochronism component in figure 6.4 with that of 

figure 6.6, and add self-loops on the delay cells labeled Possible_En_SS_SAP instead 

of En_SS_SAP. 

Model-checking over TCTL formulae is strictly more expressive than our safety 

verification paradigm. In particular we cannot even model in our framework the 

following properties which Daws et al verify: 

Isochronism: 

Iso-3: An SS-SAP event is never continuously enabled for any non-zero length 

of time. 

Immediate acceptance: An offer at SR-SAP is never continuously enabled for 

any non-zero length of time, i.e. the offer is either taken immediately or lost. 

Comparison to Daws et al 

Daws et al express information about the enabling of an event by using propositions 

stating whether the event is enabled within each participating process. The event 

is enabled in the server iff it is enabled in each participating process. They also 

explicitly form the product of the individual components, allowing them to express 

the urgency semantics for the Deliver event using a special clock which ensures that 

once delivery is enabled it occurs before any time can pass. We prefer to model such 

events by labeling them as urgent. This decision allows processes to be described in 



6.1.   EXAMPLES 123 

a simple and modular format. The correct semantics is then implemented without an 

added clock by simply disallowing time to pass whenever urgent events are enabled. 

Chapter 8 contains a comparison of the performance of their symbolic verifier 

KRONOS and our approximation algorithm for those examples we can specify in the 

reachability framework. 

6.1.3    Ethernet 

We now briefly describe a more substantial example: a timed model of the Medium 

Access Control (MAC) sublayer of Ethernet's Data Link layer, first formally specified 

by Weinberg and Zuck [WZ92]. We refer the reader to their work for a full descrip- 

tion of the protocol implemented by this sublayer. It is essentially a carrier-sense / 

multiple-access protocol with collision-detect (CSMA/CD), which sends and receives 

frames between the Logical Link Layer and the Physical Layer. A request to send a 

data packet causes the transmitter to listen to the channel. If the channel is not idle it 

waits until it is, and then sends its data packet. If collision occurs it is detected, and 

the transmitter sends a special jam sequence to alert other users. It waits a random 

time, up to a limit determined by a binary exponential backoff algorithm, and then 

attempts to retransmit. The logical link layer is informed whether transmission is 

successful or not. 

The MAC sublayer consists of four different components: a frame transmitter, 

a deference generator, a bit transmitter and a frame receiver. Communication with 

processes in the Logical Link Layer above and the Physical Layer below occurs through 

a combination of shared variables and direct communication channels. 

Our modeling of the MAC sublayer differs from the description by Weinberg and 

Zuck in the following ways: 

• (data values): we perform no data encapsulation of the raw frames received: in 

fact no actual data values are sent. 

• (bit transmission): the bit transmitter is modeled by signals denoting the be- 

ginning and ending of transmission of the entire sequence of bits in a frame. 

This is essentially the same as saying all frames consist of a single bit. 
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• (semantics): timed safety automata cannot capture the unbounded liveness 

properties expressible in the timed transition systems used by Weinberg and 

Zuck. Our model therefore includes some execution traces not found in theirs. 

• (carrier sense/collision detection): the conditions for setting each of these vari- 

ables is unspecified in [WZ92]. We assume that both the conditions for carrier 

sense and collision detection may be become true at any time. Furthermore, 

carrier sense is always true while the sender is transmitting. Whenever the 

condition for a change of variable value if detected, the variable changes value 

after an appropriate time delay. 

• (retransmission delay): we set a fixed maximal number of periods to delay before 

attempting retransmission. The actual delay is nondeterministically chosen as 

any number of delay periods up to the maximum. 

Our model includes six variables (number of transmission attempts, carrier sense, 

collision detection, transmitter waiting, deferred, counter measuring time to wait 

before retransmit). There are six clocks in the system. The sizes of the individual 

component processes are given below. 

Component STA states   STA transitions 

Frame Transmitter 15 19 

Deference Generator 5 5 

Carrier Sense Generator 6 25 

Collision Detection Generator 3 3 

Bit Transmitter 7 9 

Medium 3 6 

Frame Receiver 3 4 

We tested the protocol with three timing specifications: two lower bound proper- 

ties and a bounded liveness property. 

Spec A : If the transmitter is ever deferred before transmitting, then the total time 

before successful transmission is at least 12 milliseconds. 
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Spec B : If a jam is sent by the Frame Transmitter, then at least 12 milliseconds 

pass before successful transmission is signaled to the Logical Link Layer above. 

Spec C : If there are no collisions, and the frame transmitter proceeds past the point 

of waiting to proceed, then transmission be successful within 40 milliseconds. 

CSMA/CD 

We also test our verifier on a simple CSMA/CD protocol described in [NSY92a]. This 

verification problem consists of two extremely simplified senders and the medium. 

6.1.4    Mutual exclusion 

A simple version of Fischer's mutual exclusion algorithm appears at the end of chap- 

ter 3. We also test our verifier on Alur and Taubenfeld's fast mutual exclusion al- 

gorithm [AT92] which provides a process with quicker access to its critical section in 

the absence of contention. 

6.2    Discussion 

While this thesis focusses on efficiency issues in timing verification, we comment 

briefly now on our experience with specifying verification problems. Although timed 

automata are an expressive formalism, it is not straightforward to describe systems 

accurately. We identify three primary sources of problems — the first two of which 

are generic to the shared-event automaton model. 

Limited syntax 

Our definition of timed safety automata provides only a basic syntax which is quite in- 

adequate for specifying complex systems. For instance, there is no distinction between 

input and output events (this may lead to errors when a process is not receptive of 

its intended inputs, thereby unintentionally blocking the output of another process). 
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Figure 6.7: Misleading specification 

There is no event abstraction mechanism. In the tick-tock protocol it would have 

been helpful for the timed automaton language to be able to describe how the events 

for different cells are abstracted into single events. 

There is no built-in syntax for pointers, reading and writing variables, nor for 

indexing arrays. While the lack of the above features is inconvenient, we note that 

suitable syntactic sugar can be added to the basic model to enrich the formalism. 

Machine modeling 

While automata models are often convenient for small components, their lack of 

structure can make more complex processes difficult to understand. For example, 

looping constructs can have numerous branching and entry points. In the absence 

of liveness, the basic meaning of a transition is that it may occur, as opposed to 

representing an event which must occur. This makes it difficult to express clearly 

branching points where one of several different choices must be taken. In other 

words, there are no clear equivalents of while loops, for loops, if statements and case 

statements. There is also the frequently encountered problem of modeling processes 

with automata which admit too few runs because events in their composition get 

blocked. This cause of confusion is due to the shared-events model of composition. 

A common example is in specifications which are not receptive, e.g. the automaton 

in figure 6.7 does not correctly specify that every A event is followed by a B event 

within K time units. It disregards runs where two A's followed by a B occur in quick 

succession. 
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Forced events 

A common misunderstanding is that transitions do not explicitly represent events 

which must occur. This confusion can lead to automaton models which permit pro- 

cesses to prematurely cease useful progress by resting in a location. For example, the 

safety invariant "x < 5" must be placed on all the locations qx, q2, and qz in the train 

component of figure 6.1. It is easy to overlook the invariant on q2 or even qi, but the 

invariant on q3 is not enough to ensure the automaton loops back to q^. It merely 

states that if control reaches «ft, then it will leave q% in due time — the automaton 

may end up in q\ forever. 

Summary 

The above shortcomings suggest the need for a higher level language which enables 

direct reference to variables, arrays, pointers, event abstraction, input/output events, 

and clear constructs for looping and branching. These are primarily syntactic desider- 

ata. On the other hand, timed safety automata are slightly limited in expressiveness 

too. As shown above, there are properties they cannot express, such as singularity of 

enabledness, and unbounded fairness constraints which would be helpful in specifying 

properties of the mutual exclusion algorithms. 

Nevertheless we feel the array of problems we can specify to be quite large in 

practice, and the use of a verification tool which supplies useful debugging information 

is very helpful in getting system descriptions correct. We found it critical to test not 

only that a protocol is correct, but also that suitable changes in the timing parameters 

result in error traces — this strategy helps ensure the report of correctness is not 

merely due to modeling faults which incorrectly rule out violating traces. 
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Hybrid Systems 

Introduction 

Hybrid automata [MP93, ACHH93, AHH93, NOSY93] consist of discrete state com- 

ponents interacting with continuously changing variables. They model the behavior 

of programs embedded in physical systems where the environment is changing in 

real-time. In the more general case, continuous variables are modeled by arbitrary 

differential equations, and the system's control information by discrete states. An im- 

portant class of hybrid automata is that of the linear hybrid systems, where the con- 

tinuous variables are modeled as functions whose rates of changes and reassignments 

are linear terms. Arbitrary linear hybrid systems are undecidable, but a number of 

interesting subclasses have been found which are decidable [PV94, MV94, KPSY93], 

or admit semi-decision procedures [OSY94]. 

We introduce an interesting decidable subclass of linear hybrid systems, the skewed 

clock automata (SCA), which we use to model processes whose clocks increase at 

variable rates. These are a subclass of the automata with rectangular differential 

inclusions, which were recently independently shown to be decidable [PV94, HPV94]. 

An automaton with rectangular differential inclusions has lower and upper bounds on 

its clock rates, which must be fixed rational numbers. Skewed clock automata add a 

syntactic restriction on where constraints can be placed in the automaton, the query- 

reset alternation property. The subclass is interesting in that the proof of decidability 
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reduces the emptiness problem for SCAs to emptiness over TSAs while preserving 

the structure of the automaton and the number of clocks. This reduction technique 

provides a feasible algorithmic method for safety verification of SCAs. Henzinger et 

al's reduction [HPV94] applies to a much broader class of automata but doubles the 

number of clocks, thereby reducing its usefulness in practice. 

The syntactic restriction we apply is easily checked. It is general enough to be 

applied to many forms of automata where clocks are used to force lower and upper 

bound constraints on enablement times. The alternation property essentially asserts 

that on every path in the automaton, for every clock, there is either a reset or a test 

of equality of that clock between any two queries of the clock's value (except that an 

upper bound query may follow another upper bound query without an intermediate 

reset, provided the second upper bound is no greater than the first). 

We also describe a case study of a timing-based communication protocol due to 

Bosscher et al [BPV94]. We verify correctness for arbitrarily length bit sequences. 

We are also able to prove messages are received within a reasonable time, despite the 

fact that the statement of this timing property uses arbitrarily large constants for 

deadlines. 

Related work 

SCAs are a subclass of the automata considered by Olivero et al [OSY94]. They 

give abstraction mappings which preserve emptiness in only one direction for VTCTL 

formulas, and thus lead to a semi-decision procedure for their more general class of 

automata. Our transformation from SCAs to TSAs is the same as theirs: in our case 

we prove it exactly preserves the divergent runs in our automata and therefore yields 

a decision procedure for emptiness. Puri and Varaiya [PV94] prove decidability for 

a class of linear hybrid automata incomparable to SCAs. They are not restricted by 

the query-reset alternation property we require. Their result is very general, except 

that their enabling constraints and rate intervals must correspond to closed intervals, 

whereas we allow open intervals. Unfortunately their proof of decidability relies on 

discretization of the continuous space, and does not lend itself to efficient verification 

procedures. Recently, in work with Henzinger [HPV94], they have provided a proof of 
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decidability that translates automata with rectangular differential inclusions directly 

into timed automata, but with a doubling in the number of clocks. These other 

approaches use a more general model of a hybrid system which allows for different 

bounds on clock rates at different locations, and reassignment of variables to constants 

other than 0. These extensions could be incorporated into SCAs but for simplicity 

are not included here. 

Lam and Brayton [LB93] define automata with a very similar query-reset alter- 

nation property. Their property is even more restrictive than ours in that each clock 

may only be reset and queried once in the entire automaton. However, they allow 

arbitrary timing constraints. Their clocks increase at a constant rate, and the query- 

reset alternation is used to establish a simple path property, which reduces verification 

to reachability over paths without loops. Our automata do not necessarily satisfy the 

simple path property. In comparison, we use the alternation property to show that 

constraints on a drifting clock can be mimicked by constraints on a clock advancing 

at a fixed rate. 

Another approach to verifying hybrid systems, one not pursued in this chapter, is 

to apply the approximation algorithm directly to hybrid systems. In the general case, 

the algorithm is not guaranteed to terminate, but the strategy is promising. Indeed 

Henzinger and Ho [HH94] report successful use of applying our iterated overapproxi- 

mations of subsection 2.2.2 to linear hybrid systems. They also use extrapolations to 

speed convergence. 

7.1    Skewed clock automata 

A skewed clock automaton (SCA) A is a tuple (E, Q, Qinit, C, p, T, Inv) where 

1. E is a finite set of events, disjoint from AT, 

2. Q is a finite set of control locations, 

3. Qinit Q Q is a set of initial locations, 

4. C = {xi,..., xn} is a finite set of clocks, 
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Figure 7.1: Skewed clock automaton Ai 

5. p assigns to each clock a non-empty interval of IR defined by positive integer 

endpoints. The interval p(x) represents the range of possible rates of increase 

of x, and will be denoted [dlx, dux] where dlx and dux are taken to be bounds 

in the domain ZuZ'U {oo}, 

6. TC.QxT.xSnx A(n) x Q is a query-reset alternating transition relation, 

defined below, and, 

7. Inv 6 (Q -► IZ). 

We assume without loss of generality that each clock constraint is satisfiable. 

For convenience we say that all clocks are reset at the initial state of any run. 

Before describing the query-reset alternating property, we first define the value of a 

clock x to be determined by a transition tr whenever its value on entering the successor 

location is uniquely determined by the enabling constraint of tr, i.e. x is determined 

by tr = (q, a, </>, a, q') iff <p implies x = k for some k. We assume without loss of 

generality that whenever a transition determines a clock's value, it also resets that 

clock. We also assume without loss of generality that the safety invariant on control 

location q is a conjunct in the enabling condition of every transition out of q. We now 

define some notation relating to queries and resets along paths. Let I = lo,h, ■ • •, lm 

be a path of locations and tr = tri,tr2,-.., trm a sequence of transitions such that 

tn leads from location k to location li+i. We define 4>i to be the enabling constraint 

associated with transition trt. For a given clock x, let Rf denote the index position 

of the i-th reset of clock x along the sequence of transitions, with R% set to 0. In 
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addition, let Q*j be the index of the j-th. query of clock x along tr occurring after the 

z'-th reset but not after the (f 4- l)-th reset, and let numq- be the number of queries 

of x between the i-th and (i + l)-th resets. 

Example 7.1 Consider, for example, the SCA in figure 7.1 and its path of locations 

Qo,qi,q2,q3,qo,q4, and sequence of transitions tri,tr2,tr3,tr4,tr5. Then R% = 0, 

Rf = 1, i?2 = 4, and i?f = 5. The value of numcfö is 1 with QQX = 1, and numq\ = 2 

with <5ii = 2 and Q\2 = 3, and numq^ = 1 with Q^i = 5. □ 

The query-reset alternating property states that for every path I of locations in 

the SCA A and matching sequence of transitions tr, for every clock x and i > 0, 

either numq? = 1, whenever it is defined, or the last query between the z-th and 

(i + l)-th resets, i.e. the constraint 6 associated with transition trn* , includes 

an upper bound constraint of the form x < b, and for each k < numqf, the query for 

the Qfj'th transition is an upper bound of form x < b' where b < b'. Notice that in 

the case of multiple queries between resets the last query need not be a simple upper 

bound constraint: it may be of arbitrary form as long as it implies a suitable upper 

bound on x. 

Example 7.2 The path and sequence of transitions in example 7.1 is a query-reset 

alternating path. Notice that whenever a transition has an enabling constraint and a 

reset, the query of the enabling constraint is considered to take place before the reset. 

The path has alternating queries between resets, except for the two consecutive queries 

at transitions tr2 and tr$. However these queries are permissible since the first is an 

upper bound exceeding the second. □ 

The semantics of the SCA A are given by the transition system it induces, namely 

(SA, SO,A,NA), where SA and SO,.A are as for timed safety automata, and NA = N's U 

UeeriVe, where Ne is also as before. The time passage relations JV^ are defined as 

K = {<(<?> *>> <<?> f'» I V * € 1-n, & - Xi)/6t e p{xi)} 

andiV;=   UtenN'gt. 
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Theorem 7.3 SCAs are closed under composition. 

Proof: The syntactic query-reset alternating path restriction is preserved when com- 

posing automata, since every path in the product automaton projects to a path in 

each component, and repeating the same upper bounds (for a safety invariant at the 

same component location) along a path is permitted. □ 

7.2    Translation to timed safety automata 

We define a transformation function K which converts a skewed clock automaton 

into a timed safety automaton. Note that the transformation only applies in the case 

where the SCA resets a clock every time its value is determined. The TSA K(A) has 

the same control locations and transition structure as A, the only difference being 

that its timing constraints are transformed to reflect the different clock rates. For 

each SCA clock x, there is a TSA clock x'. Intuitively, x' records the amount of time 

which has passed since x was last reset. We assume without loss of generality that 

all bounds on clock rates are integer values, either strict or non-strict. 

For SCA automaton A = (E,Q,Qinit,C,p,T,Inv), we define K(A) to be the 

tuple (T,,Q,Qiniu C',T',Inv'), where C consists of a set of primed clocks, one cor- 

responding to each clock in C. The transitions V are the set of transitions K(T), 

and Inv' are transformed invariants, both defined below via transformations on the 

timing constraints. The transformed constraints K((p) express the fact that the SCA 

constraint could be satisfied under the TSA constraint. For uniformity of exposition, 

we use bounds in enabling constraints. We use an extended domain of bounds which 

includes r and r~ where r is a rational value. Division of bounds is defined as the ex- 

pected rational division with the result being a strict bound whenever either operand 

is strict. The only exception to this rule is that a non-strict zero bound divided by 

any bound is always a nonstrict zero bound. 

The transformation for basic enabling conditions of the form x ~ b for a clock x 

and relation ~ in {<, >} is defined below. The idea is that the linearly progressing 

TSA clock x' in K(A) records the amount of real global time since the last reset 

of x.  Let t be the amount of time which has passed since x was last reset.  For a 
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<p: in SCA A K((f>) in TSA K(A) 

x<b 
x>b 

x' < b/dlx 

x' > b/dux 

Figure 7.2: Transformation K on SCA constraints 

K(A) 

x = 2    x<5 z=2    z<3 
x:=0 

-(g), '0      -*0——*©       ~*0 
1< x' < 2  x' < 3 

z':=0 
 +{ qi 

x<4 

x<2 x = 0 x'<2 x' = 0 

Figure 7.3: Transforming SCAs into TSAs 

constraint of the form x < b to be satisfied in the SCA, we know that at most ub/dlx" 

time has passed from the time of x's last reset, since x < b and t ■ dlx < x implies 

t- dlx <b which is equivalent to t < b/dlx. Because the time since x was last reset is 

measured by clock x', we replace the constraint x < b in the SCA A with x' < b/dlx 

in the TSA K(A). A similar analysis for lower bounds leads to the translation table 

for constraints shown in figure 7.2. The transformation extends to conjunctions as 

K((pi A fa) = K(<p!) A K{(p2). We define K((q, a, <f>, a, q1)) = (q, a, K(<p), a', q') where 

a' resets the primed versions of all clocks reset by a, and K(T) - {K(tr) \ tr e T}. 

Finally, we define Inv' such that Inv'(q) = K(Inv(q)) for every location q. 

Example 7.4 The SCA AQ in figure 1.3 does not reset x after determining its value 

along the transition from q0 to qx, so we cannot apply the transformation directly 
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to AQ. The SCA A accepts the same language as AQ and avoids this problem. The 

rate of increase of x lies in the interval [1,2). We apply the K transformation to A 

yielding the TSA K{A) shown in the figure. Notice that the transition from q'0 to qi 

has enabling condition x' = 0 derived from 0 < x' < 0 resulting from the non-strict 0 

lower bound obtained by dividing 0by2~. □ 

Theorem 7.5 A skewed clock automaton A has an empty language iff the timed 

safety automaton K(A) has an empty language. 

Proof: The proof of correctness shows that nonemptiness is preserved, i.e. a run in 

the TSA K(A) implies a run in the SCA A and vice versa. 

SCA non-empty implies TSA non-empty 

We first prove the simpler direction, namely that a run in the SCA A has a 

matching run in the TSA K{A). The time in K(A) represents the real time. Given 

a run in the SCA A, 
ei e% e3 

S0 —► Si —> s2 -* • • • 

let U = T,j<idur(ej). We refer to the transition which takes place from state Si as 

ifj+i, and let tr'i+1 denote K(tri+i). The location of Si is referred to as qi. The run 

sQ —» sx —* s2 —► • ■ • 

in the TSA is obtained as follows. The control location at s'j is qi. Let x'k be the value 

of clock x at state s'k, which we set as x'k = xk_! +tk — £*-i if tri does not reset clock 

x, and x'h = 0 otherwise. 

It is easy to see that the timed-states along the run are reset appropriately, and 

advance correctly for time-passage events. Thus we need only check that all queries 

in K(A) are satisfied along the run. Consider a query of x' along the run at transition 

tri+i out of state s^. Suppose the most recent reset of x' occurred at transition tr'r 

into state sj.. Then the value of x' at s'^ is xl
i=ti- tr, since resets of x' match those 

of x. If tr'i+1 has a constraint of form x' < b' in ^(^4), then tri+i has a constraint of 

form x < b such that b/dlx = b'. By the lower bound on the rate of progress of x, and 

the fact that x satisfies its constraint in tri+i at s,-, we have that (U — tr) -dlx < x <b, 
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which implies that (U — tr)< b/dlx = b'. Since Xi = ti — tT, it follows that x\ < b' as 

required. The argument for lower bounding constraints is similar. 

TSA non-empty implies SCA non-empty 

We construct a matching run in A for every run in K(A). Analogous to the above 

argument, we use the values of the clocks in the given run to provide clock values 

for the constructed run. We then show that the corresponding skewed clocks satisfy 

their timing constraints because their mapped clocks x' in K(A) do. 

Consider a run 
/    el       /    e2       /    e3 

s0        sl 52 

in the TSA K(A). Suppose £■ = Hj<idur(e'j). We claim that 

j       ei       „i el 2 c3 
So -* Si —► 52 —► • • • 

is a run in A if Sk = {q'k, Xk ) with control location and transitions matching those of 

the TSA's run and the values of each x"k determined below. 

The value of each clock x is assigned independently of the other clocks. Let 

Rf, numqf, and Qfj be defined for the run as in the definition of the query-reset 

alternating path property, i.e. Rf is the index position of the i-th reset of x, numq? is 

the number of queries between the i-th and (i + l)-th resets, and for 1 < j < numq?, 

Qfj the index position of the j-th. query of x after its i-th reset. Clearly Xk should 

be assigned the value 0 whenever A; = Rf for some i. We need to define Xk between 

resets, i.e. for Rf < k < Rf+V To do so, we use the last query of a; before the (i+l)-th 

reset, i.e. the query at the Qfnum^-th transition out of the (Qfj7lum<g - l)-th state, to 

choose a linear rate of progress between the Rf-th and Rf+1-th states. We will then 

show that for all 1 < j < numqf the queries at the (Qfj — l)-th states are satisfied. 

First we choose an appropriate rate of progress A which guarantees the enabling 

constraint <f> at the {Qfynumif — l)-th state is satisfied. For notational convenience, we 

fix M = (Qfinumqr -1), and let the enabling constraint of tr'M+1 be <f>', i.e. K(<f>) = cf>'. 

Let the value of x' at s'M be v. 

• If v ^ 0 and <p' includes an upper bound constraint of the form x' < b' in the 
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SCA K(A) derived from the constraint x < b in A, we require A to lie in the 

range [dlx,b/v] 

• If v 7^ 0 and <ff includes a lower bound constraint of the form x' > b' in the 

SCA K(A) derived from the constraint x > b in A, we require A to lie in the 

range [b/v, dux] 

We need to show that there is a A 6 p(x) satisfying the above constraints. We do 

this in two steps: first showing each interval above is non-empty, and then showing 

they must overlap. For non-emptiness, the case where v = 0 is obvious, so suppose 

v > 0. Consider the restriction implied by an upper bound constraint. Since the 

value of x' at s'M satisfies the constraint <f/, it follows that x'M = v < b' = b/dlx. 

Hence dlx < b/v since both v and dlx are non-negative. For lower bound constraints 

we have that b/dux = b' < x'M = v, and hence b/v < dux. 

To see that the intervals overlap, first observe that <j> is satisfiable by assumption 

on the structure of SCAs . Therefore when it contains constraints h < x and x <b2 

it must be that b\ ■< b2 with b\ ^ b2 unless both represent non-strict bounds, and 

hence b\/v < b2/v. Because dlx ^ dux, all interval restrictions of form [dlx,b2/v] 

and [bi/v, dux] overlap as required. Thus for each i, we may fix a rate Aj within the 

prescribed ranges. 
We are now ready to give the explicit values of the clock variable x over the 

intervals between resets, namely, for all i we set Xk = Ai-(tk — t^) for all R* < k < 

We need to show that all queries are satisfied. Consider a query <j> at state s*. 

Then k = Q*j — 1 for some i and j. We examine two cases. 

Case 1: j = numq?. 

Then the query is the last before the (i + l)-th reset. Let the time elapsed since 

that reset be v — tk - tR*. The value Aj has been chosen so that for every upper 

bound constraint x < b2 in <p, A, e [dlx, b2/v] if v > 0 and [dlx, dux] otherwise. 

In either case, xk = A; • (tk - tR*) < b2. 

The argument for lower bound constraints is similar. 



138 CHAPTER 7.   HYBRID SYSTEMS 

Case 2: j < num<£. 

By the query-reset alternating property, 0's constraint on the clock x must be 

of the form x < b where the numq--ih constraint fa after the i-th. reset has a 

constraint of form x <b2 for some b2 < b. Since, by case 1 above, fa is satisfied, 

we know that Xk < XM <b2<b: in other words, since the value of x at this 

later query does not exceed b2, its no greater value at Sk cannot exceed the 

higher bound b. 

Thus all timing constraints are satisfied and K(A) non-empty implies A non- 

empty. □ 

Notice that the above result also holds for SCAs augmented with urgent transi- 
tions. Such transitions can be encoded using an auxiliary clock x being reset on entry 

into every location where any urgent events are enabled, and having invariant x < 0 

at all such locations. 

7.3    Case study: Manchester bit encoding 

We describe how a timing-based communication protocol using Manchester encod- 

ing [BPV94] can be verified using skewed clock automata. The protocol forms a small 

part of a real audio control protocol under development by Philips. Bits are encoded 

based on timing delays between signals, and the rates of both the sender's and re- 

ceiver's clocks vary within a given tolerance. The algorithm is due to Bosscher et 

al [BPV94] who model the protocol using a general model of linear hybrid systems, 

and verify its correctness using simulation-based proof rules. They also provide a 

counterexample when the timing constraints are not appropriately met. We model 

the protocol with skewed clock automata, and specify its correctness by adding vio- 

lation states which should not be reachable. It is then manually converted to a timed 

safety automaton representation, and then automatically verified using our approx- 

imation algorithm. We verify two properties: correctness of the bit stream that is 

received, and timeliness of the output. 



7.3.   CASE STUDY: MANCHESTER BIT ENCODING 139 

Figure 7.4: Timing diagram for Manchester encoding of 10100 

7.3.1     Protocol description 

Bit streams are communicated using Manchester encoding. See figure 7.4 for the 

encoding of 10100. The voltage on the communication bus is either high or low. A 0 

bit is sent as a down signal from high voltage to low, and a 1 bit as an up signal from 

low to high. The time line is divided into equal length time slots, and the signals are 

sent in the middle of each time slot. In order to send a repeated bit, there must be an 

intermediate change in voltage, and this occurs at the edge of the time slot as shown 

in the diagram for the last two bits. 

Bosscher et al [BPV94] report a number of complications in the algorithm used 

by Philips, partly due to the fact that there is a ±5% tolerance in the clock rates of 

the sending and receiving components. 

1. The receiver does not know when the first time slot begins, although it does 

know the agreed upon width of the slots. The sender and receiver synchronize 

the start of transmission by requiring a low voltage whenever no bits are being 

sent, and starting all bit streams with a 1. 

2. The receiver is not explicitly told the length of the message being sent. It must 

infer the bit stream is complete after a suitable lapse in receiving bits. 

3. Drops in voltage are not instantaneous, and cannot be reliably detected. There- 

fore, the receiver must decode the message based solely on upgoing signals. Be- 

cause the downgoing edge of a final 0 bit is not seen, this would create ambiguity 

between messages ending in 10 and in 1. This problem is solved by restricting 
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Figure 7.5: Overview of processes 

bit streams to be either odd in length, or ending in 00. 

4. Message collisions may occur due to several components sending at the same 

time. 

5. There may be significant delays in communication over the bus. 

The algorithm considered here ignores the last two difficulties, i.e. we assume there 

is a single sender and a single receiver and each upgoing signal is seen instantaneously 

by the receiver. We verify for arbitrary length bit streams that the receiver correctly 

receives all bits, and realizes the bit stream has finished in a timely fashion. 

The sender and receiver have the same clock error tolerance of ±T%. The receiver 

interprets the up signals by rounding the times they are received to the nearest time 

it expects them to be sent, i.e. to the slot edges or to the middle of a time slot, 

whichever is closer. We use the constant Q to denote 1/4 the length of the bit slot. 

The protocol is modeled using two primary components, the sender and the re- 

ceiver, and a number of auxiliary processes for the stream of bits, pointers into the 

stream, and processes coordinating the reading of bit values and generation of the 

nondeterministic bit sequences. The overall structure of the system is shown in fig- 

ure 7.5. 
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7.3.2    Modeling arbitrary length bit streams 

We briefly indicate how we model arbitrary length bit streams. SCAs have only 

finite control structure, so they cannot store the value of an arbitrarily long input bit 

stream, model the message being sent and received, and then compare the received 

message with the input. 

Generating bit sequences 

Instead, we generate the bits to be sent on-the-fly, and compare each received bit 

with its intended value as it is received. Each correctly received bit may then be 

discarded. This is modeled by the reuse of bit values. The protocol is such that we 

need only store a small number of the most recent bits: this is because the receiver 

can never get too far "behind" the sender in acknowledging bits sent. 

We store the most recent bit values as a list of separate processes, one per bit. Bit 

values are either 0, 1, or null. A null bit indicates the end of the list. Both the sender 

and receiver maintain pointers into the list. Each time the sender reads another bit 

to send it advances its pointer into the bit list and, if necessary, the next bit value(s) 

to send is also nondeterministically chosen. Care is taken to ensure that the resulting 

bit stream is legal, i.e. bit streams are either odd in length or end in 00. Whenever 

termination is chosen, the values 0, 0, and null are selected for the next three bits if an 

even number of bits have already been sent, and the value null is selected otherwise. 

Since the receiver is sometimes two bits "behind" the sender, we need to store the 

last 5 bit values. However for simplicity of description, we choose to model an even 

number of bits in order to maintain the parity of bits, and hence store 6 bit values. 

In addition the first bit is treated separately since it must always be 1. 

Verifying timing properties 

Bosscher et al prove the timing property that the bit stream is output by the 

receiver within (4m + 5)Q/(1 - T) time units, where m is the length of the message. 

We are also able to automatically verify this property, despite the fact that it appears 

to be described by a timing constraint on a clock that must increase without bound. 
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xt < 4Q/(1-T) 

inc send head 
xt := 0 

Figure 7.6: Timing specification 

We achieve this by proving a stronger property, namely that whenever the sender 

reads a bit to send, either the next bit to be sent is read within 4Q/(1 - T) time 

units, or the bit stream is output within 5Q/(1 - T). This property implies that the 

output takes place within the desired time, since the deadline for output is delayed 

by at most AQ/(l-T) time units for every bit sent. This localized property can be 

encoded in the timed automaton of figure 7.6 using fixed time bounds, and therefore 

used as input to our verifier. 

7.3.3     Sender 

Figure 7.7 shows the SCA for the sending process. The sender starts execution as 

soon as it receives the list input signal. During transmission it looks ahead at the 

next bit value, and decides whether it needs to perform an intermediate transition 

before sending the bit signal in the middle of the time slot. Thus the sender must 

keep track of the current voltage value. After transmitting each signal, the sender 

immediately increments Send-Head, its pointer into the bit stream, reads the next bit 

to send, if any, and decides how long to wait until its next signal. Timing constraints 

are correctly maintained by the skewed clock x which is reset each time there is a 

voltage change. It is relatively straightforward to see that the query-reset alternating 
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Figure 7.7: Sender 

voltage change. It is relatively straightforward to see that the query-reset alternating 

property holds. The processes for reading and generating the bit sequences appear in 

figures 7.8 and 7.9, and are explained in more detail below. 

Reading pointer values 

Our automata have no explicit means of managing pointers. Thus to determine 

whether the "next" bit has value 0, 1 or null, we cannot refer directly to the bit 

pointed to by Send-Head. We model this by enumerating the possible values of the 

head pointer and the bit values and creating separate events for each combination. 

However, listing the result of each possible combination in the sender process would 
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next is null 

next is 0 
inc send head 

inc send head 

head is 0 bit is 0 
head is 1 bit is 0 
head is 2 bit is 0 
head is 3 bit is 0 
head is 4 bit is 0 
head is 5 bit is 0 

inc send 
head 

head is 0 bit is null 
head is 1 bit is null 
head is 2 bit is null 
head is 3 bit is null 
head is 4 bit is null 
head is 5 bit is null 

^j/^    inc send head 

head is 0 bit is 1 
head is 1 bit is 1 
head is 2 bit is 1 
head is 3 bit is 1 
head is 4 bit is 1 
head is 5 bit is 1 

next is 1 

Figure 7.8: Process monitoring reading head of bit stream 

clutter its description. So for clarity we choose instead to use a separate process 

Read-Bits, depicted in figure 7.8, which keeps track of the current value of the next 

bit. From its unknown state, it immediately determines the value of the next bit, as 

described above, and enters either head-0, head-1, or head-null. From these locations, 

it can freely allow the sender to read the head value. Because we want the process to 

be ready for the sender to read the next bit value at any time, we force control to leave 

the unknown location as soon as possible by making its outgoing transitions urgent1. 

Whenever an event occurs which may alter the value pointed to by the Send-Head, the 

Read-Bits process reenters its unknown location. We note that an extended syntax 

for timed automata would eliminate the need for the Read-Bits process, e.g. allowing 

abstraction of events, or pointer values. In any case, the description we give matches 

exactly the input for the current implementation of our verifier. 

*It is straightforward to augment the definition of SCAs and the üf-transformation with urgent 
events, while maintaining reducibility to TSAs. 
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Head is first bit is 0 Head is 1 bit is 0 Head is 2 bit is 0 Head is 0 bit is 0 
Head is first bit is 1 Head is 1 bit is 1 Head is 2 bit is 1 Head is 0 bit is 1 

Head is first bit is null Head is 1 bit is null Head is 2 bit is null Head is 0 bit is null 
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inc send head 

Sender head 

choose_bit J cant choose 

choose i end 
^transmitting^ 

Process monitoring termination 

Figure 7.9: Processes for generating and reading bits 

Generating the bit sequence 

As mentioned above, bit values are dynamically chosen each time the sender incre- 

ments its pointer into the list of bits. The bit sequence may increase in length by 

choosing a 0 or 1 value. Alternatively, it may nondeterministically choose to ter- 

minate. However we must be careful to ensure that only valid bit sequences are 

generated. If an odd number of bits has been sent already, the next bit takes value 

null. If an even number of bits have been sent, we append 00 to the bit sequence, 

and so the next 3 bits are affected, taking values 0, 0 and null, respectively. In this 

way, all valid bit sequences may be nondeterministically generated. In addition, the 

system uses a process monitoring termination which keeps track of whether the list 

has terminated. This is necessary in order to ensure the trailing 0, 0, null sequence 

of bits for an even length sequence are not mistakenly overwritten with new values. 
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y:=0 

7.3.4    Receiver 

Figure 7.10: Receiver 

The process modeling the receiver appears in figure 7.10. Depending on the last 

bit received, and the delay between the upgoing signals it detects, it infers which 

bit values are being sent. The receiver is in two basic modes, depending on the last 

bit received. For each mode, there is a waiting location (lasLO and lasLl), where it 

passively rests until it detects an up signal. The process then decides which bits to 

"add" to its bit stream. After adding the bits, it uses urgent events to return to the 

appropriate waiting location. The list is output, if, however, an up signal does not 

appear within a reasonable time, i.e. within 1Q time units after the last signal if the 
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Ack 1 is 0 

Ack 1 is 1 

Prev not even 

Ack 2 is null 

Ack 2 is 0 

Ack 2 is 1 

Prev even 

Ack 5 is null 

Ack 5 is 0 

Ack 5 is 1 

Prev not even 

Ack 0 is null 

Ack 0 is 0 

Ack 0 is 1 

Prev even 

Receiver head 

inc rec head 

Figure 7.11: Receiver head of list pointer 

signal indicating the last bit was 0, and within 9Q if the last signal caused the last 

bit added to be 1. At this point, a trailing 0 bit may be added to the list, depending 

on the value of the last bit received, and whether the sequence received so far is odd 

or even in length. 

The addition of violation states, marked as nodes labeled with an X, to the re- 

ceiving process enables it to serve as the specification for the correct reception of all 

bits. Whenever this process does not correctly receive bits, or notice the end of the 

bit sequence, a violation is flagged. 

The details of how the monitoring works is similar to the modeling of the sender. 

The variable recJiead indexes the stream of bits, pointing to the next bit which should 

be received. When the receiver decides to add bits to the sequence it receives, the 

process actually attempts to acknowledge that these are the correct bits in the chosen 

bit stream. If it cannot acknowledge the correct bits, it enters the failure location. 

Again urgent events are used to ensure the tests for acknowledgement all happen 

without time passing, and control returns to one of the waiting locations. 

For completeness, figures 7.11, 7.12, and 7.13 show the automata for the remaining 

processes: the receiver's pointer into the list of bits, the individual bits with their 

response to terminating the bit sequence, and the acknowledgement mechanism for 
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head is i bit is 0 
Ack i is 0 

head is i bit is 1 
Ack i is 1 

head is first bit is 1 
Ack first is 1 

choose i = 0 
choose i end 

choose-bit J  ^ /-"" \ _ choose-bit J 
choosing j ~ -S ql 

choose i = 1 

choose (i-2) end      f    7\    choose (i-2) end 
 Y---L »f mil 4* -^—'  

Bit-first head is i bit is null 
Ack i is null 

Bit-i (i=2k) 

head is i bit is 0 

AckiisO choose (i-1) end 

head is i bit is 1 
Ack i is 1 

choose_bit J     /^      ^~\ . choose-bit J 
choosing J " -A ql 

choose i = 0 choose i = 1 

choose i end 

head is i bit is null 
Ack i is null 

Bit-i (i=2k+l) 

Figure 7.12: Bit processes 

abstracting events for the acknowledgement of bits depending on the value of the 

receiver's pointer. 
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Ack null 

AckO 
inc rec head 

inc rec head 

Ack first is 0 
Ack 0 is 0 
Ack 1 is 0 
Ack 2 is 0 
Ack 3 is 0 
Ack 4 is 0 
Ack 5 is 0 

Ack first is null 
Ack 0 is null 
Ack 1 is null 
Ack 2 is null 
Ack 3 is null Ack 1 
Ack 4 is null   
Ack 5 is null 

inc rec head 

Ack first is 1 
Ack 0 is 1 
Ack 1 is 1 
Ack 2 is 1 
Ack 3 is 1 
Ack 4 is 1 
Ack 5 is 1 

Figure 7.13: Process coordinating acknowledgements 



Chapter 8 

Implementation and Results 

The approximation algorithm for verifying real-time systems has been implemented 

and tested on several examples. For the more challenging verification problems, it 

outperforms other symbolic verification algorithms we have implemented, as well as 

KRONOS, a symbolic model-checker developed elsewhere. 

8.1    Implementation 

Two forms of the algorithm - approximating only timing information, and approx- 

imating over both timing information and the control locations - have been imple- 

mented. Time zones are represented by DBMs, and sets of locations by ordered binary 

decision diagrams (OBDDs). Unless otherwise stated, the following discussion applies 

to the algorithm where control information is also represented symbolically. 

The verification problem input is first preprocessed, and then relevant system 

parameters, such as the number of clocks in the system, are used in the compilation 

into executable code. In theory, the algorithm always terminates, but in practice it 

is of course limited by both time, and more importantly, space. If the program has 

the resources to terminate successfully, it indicates whether the system is correct or 

not. If the system contains a violation, a violating pseudo-trace is generated. 

150 
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8.1.1    Input 

The input consists of an event-based modular description of a system and its speci- 

fication. It also provides the user a simple means of specifying the initial separating 

structure. 

Problem description 

Each system component is a timed safety automaton. A global automaton for the 

system is the composition of automata for each component. Each component au- 

tomaton is described by its set of locations, event alphabet, initial location, and a 

listing of transitions. Components synchronize their actions through shared events. 

Associated with each component is an alphabet of event symbols, and an event can 

occur provided it is enabled in every component automaton whose alphabet includes 

the event. 

The specification is also given as a timed safety automaton, and is included in the 

input as a special component. Its violating locations are labeled. 

Initial partitioning 

The user may specify the initial separating structure. It must be given as a partition 

of the timed state-space which is determined by each process's control locations. 

The user partitions the control locations within each component process, thereby 

partitioning the state-space such that two timed-states are in the same separating 

class precisely when their control locations are in the same block of the partitioning 

for every process component. In other words, given blocks {Xfi as a partition of the 

control locations Q* of process i, {q, x) is in the same separating class as (<?', x') 

if and only if for all i both (q)i and (q')i are in the same X!j. We require that 

the partitioning respect V, and hence the specification process must have its control 

locations partitioned with all blocks either containing only violating locations, or 

containing no violating locations. 
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8.1.2    Implement at ional variations 

We explain here how the algorithm implemented departs from the algorithm described 

in chapter 5. The reader may safely choose to skip this section without losing any 

understanding of the rest of the chapter. 

The algorithm has been modified for the implementation in the following ways, 

none of which affect the correctness nor termination properties: 

1. separating structures are refined on-the-fly: a separating structure may be re- 

fined during a traversal, not just after a traversal is complete. This change 

is the most significant variation from the algorithm described in the previous 

chapters. The idea is that if it can be detected that a class should be split at 

some later point, such as after the traversal, it might as well be split in the mid- 

dle of the traversal. This anticipated split refines the approximation right away 

rather than waiting until the next set of traversals. However, to avoid excessive 

splitting in the middle of a traversal, a limit is imposed on the number of times 

a block may be predictively split in this way. 

In our implementation, such predictive splits are designed to decrease the over- 

approximation. As before, classes are split according to their control locations. 

A class may be split if doing so enables a finer approximation which avoids 

some states in the reverse direction's underapproximation which would other- 

wise have been included. The particular rule implemented attempts to split a 

class so that the time-passage events are more accurately approximated. The 

reason for this is that the next-state relations are only approximate over time- 

passage events, so a great deal of inaccuracy can potentially be introduced in 

the computation of time successors. The heuristic we use anticipates such prob- 

lems and allows a more accurate calculation of time successors when it appears 

the approximation is too crude. More specifically, if the approximating set A 

is disjoint from the reverse direction's underapproximation Opp-U, and Ns(A) 

is not, the set A may be split by control locations into Ai and A2 if either or 

both of Ns(Ai) and Ns(A2) is disjoint from Opp-U. This split is brought into 

effect by splitting the separating class containing A in the appropriate manner. 
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2. Identical classes may be repeated in a separating structure. Theoretically, re- 

peated sets may not occur in a separating structure: the definition of a separat- 

ing structure requires that each class be distinct. However we choose to allow 

repeated sets rather than performing a potentially expensive check to remove 

all redundant sets. 

3. Disjuncts are combined: transitions which share the same timing information 

are combined into a single disjunct in the next-state relation regardless of the 

symbol they are labeled by. This strategy allows a more compact system de- 

scription, and avoids repeatedly analyzing the same timing conditions. We 

found this strategy to be essential when analyzing larger systems, since many 

disjuncts do indeed share the same timing constraints. In some cases, systems 

with over 400 transitions are reducible to only 20 distinct disjuncts. 

4. Splitting occurs over non-maximal sets as well as maximal sets. The algorithm 

description requires only that maximal sets be split between different traversals 

of the algorithm. However, we avoid the check for maximality and split also 

non-maximal overapproximating sets according to locations appearing in the 

underapproximation. As well as bypassing the check for maximality, this extra 

splitting has the advantage of accelerating convergence of the underapproxi- 

mation by allowing the next underapproximation to include more states. For 

example, suppose that A has been split into Ai and A2 where A\ intersects the 

underapproximation and A2 does not. By separating out states in A2, we make 

it easier for reachable states there to appear in the next underapproximation. 

For instance, if A2 contains successors of states in the current underapprox- 

imation, by the second condition of the l> operator, they will occur in the 

next underapproximation (unless their predecessors no longer occur in the next 

overapproximation). 

8.2    Results 

The approximation algorithm enables us to verify larger systems than our previous 



154 CHAPTER 8.  IMPLEMENTATION AND RESULTS 

Ex. TA locns 
Nr. 

Clocks Mem (MB) Time (s) 

Fischer Mutual exclusion 
MX-4 1,704 4 4 23 

MX-4-e 1,704 4 4 9 
MX-7 120,863 7 5 126 

MX-7-e 120,863 7 5 56 

MX-9 3,259,136 9 9 941 

MX-9-e 3,259,136 9 9j 585 

Fast Mutual exclusion FMX-3 17,377 3 8 144 

AUDIO 83,660 2 7 489 

AUDIO with timing 202,802 3 14 1077 

Ethernet 
ETE-A 41,733 6 6 159 
ETH-A-e 41,733 6 11 727 
ETH-B 27,045 6 9 279 
ETH-B-e 27,045 6 7 723 
ETE-C 6,405 7 6 197 
ETE-C-e 6,405 7 5 89 

CSMA 189 4 3 3 

Tick-tock protocol 
TT:iso-l 384 7 6 148 
TT:iso-2 216 6 4 19 
TTrtransmission delay 432 7 7 356 
TTrspacing 216 7 4 22 

MX-i Fischer mutual exclusion, i processes 
FMX-i Fast mutual exclusion, i processes 

AUDIO Audio control protocol 
ETE-X Ethernet examples, Specification X 
CSMA Carrier Sense / Multiple Access Protocol 

-e example contains error run 

Figure 8.1: Results 

implementations of verifiers, as well as any other automata-based automatic verifiers. 

It is also relatively fast. All code is in C, and the OBDD routines are from David 

Long's package. The results in figure 8.1 were obtained on a DEC 5000 with 56 

MB of main memory. The number of "reachable" TSA locations refers to those 

locations forwards reachable in an untimed analysis of the state graph, i.e. assuming 

the enabling of events is independent of the timing conditions. We note that we are 

able to verify systems with over a million control locations. 
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Ex. TA locns 

SINGLE 
LOCNS 

SETS of 
LOCNS (OBDDs) 

# Itns Time (s) # Itns Time (s) 

MX-4 1,704 1 3 12 23 
MX-4-e 1,704 1 26 3 9 
MX-7 120,863 — — 18 417 

MX-7-e 120,863 — — 4 37 

ETH-A 41,733 — — 1 220 
ETH-A-e 41,733 — — 7 1501 
ETH-B 27,045 1 2160 1 108 
ETH-B-e 27,045 — — 3 1929 

Figure 8.2: Single locations vs sets of locations 

Approximating over control information 

For the larger examples we considered, the implementation using a symbolic repre- 

sentation of sets of control locations far outperforms the one with all control locations 

separated, see figure 8.2. It should be noted however that performance may depend 

critically on the initial separating structure used. 

8.3    Additional heuristics 

8.3.1     Choice of initial partition 

The system designer is capable of using her own knowledge of the system to aid the 

verification procedure, by judicious choice of an initial separating structure. Many 

other automatic verification techniques do not allow the user to supply useful infor- 

mation directly to the verification package. Typically the verification engineer must 

have a thorough understanding of both the system being verified, and the algorithm 

being used to verify it, and then devise a clever encoding of the problem which takes 

both into account. While optimal use of the approximation algorithm also requires 

knowledge of both the system being verified and the approximation technique, the 

features of the algorithm can be exploited without having to manipulate the system 

description itself. The user need only tell the algorithm where to approximate the 

truly reachable states more carefully, and where it can be more lax. In general, states 
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can be kept in the same separating class whenever their outgoing behaviors are in 

some sense similar. The following heuristics can be used to guide the choice of an 

initial separating structure: 

• parts of the state-space where timing information (either for outgoing con- 

straints or incoming timer values) is similar can be clustered together. 

• the state-space should be finely partitioned in areas where timing information 

is critical for correct operation. 

• states which correspond to different branches of a critical case analysis should 

be separated. 

• processes or variables which play a key role in the correctness of the specification 

should be partitioned more finely. 

• the size of the initial separating structure should depend on the memory avail- 

able. If a machine has only enough memory to store n approximating sets 

and their associated overhead, then a good heuristic is to keep the size of the 

initial separating structure less than n/30. This policy allows room for the 

four converging approximations, while still permitting reasonable growth due 

to splitting. 

As an example, if the Fischer mutual exclusion protocol for six processes is ver- 

ified by separating out locations based only on their specification component, the 

computation takes 17 traversals to complete in 343s. If a finer partition is chosen, 

namely splitting also according to the value of the critical controlling variable X, only 

5 traversals are made and verification completes in 57s. If the additional splitting is 

done for process 1 rather than for the control variable X we find that 13 traversals 

are required in 298s. 

8.3.2    Enhanced underapproximations 

Experience shows that the main drawback to the performance of the approximation 

algorithm is due to slow convergence of the underapproximations. Slowly increasing 
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underapproximations not only hamper the detection of violations, but also contribute 

to slow downward convergence of the overapproximations, since the refinement of the 

separating structures relies on information from the underapproximations. 

In the case of real-time systems, the underapproximating operator over time zones 

is extremely weak. It essentially throws away information about its second operand 

unless it contains the first. In other words, sets of newly reachable timer vectors are 

discarded unless their time zone includes all timer vectors already reached within the 

class. 

We now discuss further two techniques which help the propagation of the under- 

approximations. 

Multiple underapproximation sets 

The first strategy is to allow the underapproximating operator to return expansions 

which contain more than one approximating set. Allowing more approximating sets 

in the underapproximation results in more accurate underapproximations, but at the 

expense of additional memory. At one extreme we may chose to allow an underap- 

proximation to consist of arbitrarily many approximating sets, and let the underap- 

proximating operator return the union of its operands. In this case, computing an 

underapproximation will be essentially the same as performing exact set reachability. 

A happy compromise between a weak underapproximation and an exact computation 

is to allow the user to specify a fixed maximal number of approximating sets as the 

result of an application of the underapproximation operator. 

Figure 8.3 shows how increasing the number of approximating sets can decrease 

the number of iterations necessary. The possible cost is more memory for storing an 

increased number of approximating sets. 

Stuttering the next-state relation 

Underapproximations can be propagated throughout the state-space without the need 

for storing more approximating sets. First observe how a truly reachable state may be 

left out of the underapproximation. Suppose s € S is in the underapproximation but 

one of its successors s' is not. The non-emptiness condition for underapproximating 
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1 U/A SET 3 U/A SETS 5 U/A SETS 7 U/A SETS 
Itns Time   Mem Itns Time   Mem Itns  Time   Mem Itns Time   Mem 

Ex. # s MB # s MB # s MB # s MB 

MX-4 14 32 3.8 4 10 3.7 4 11 3.8 2 5 3.6 
MX-4-e 3 6 3.7 2 6 3.7 2 4 3.6 2 4 3.6 
MX-7 17 389 5.4 6 160 4.9 6 198 5.0 4 126 4.9 
MX-7-e 3 69 4.8 2 67 4.7 2 55 4.5 2 56 4.6 

Figure 8.3: Multiple underapproximating sets 

operators implies the only way this can occur is if every separating class containing 

s' already contains other states in the underapproximation. If the only separating 

class containing s' also contains s, it may well be that no other successors of s appear 
in the underapproximation at all. Propagation of the underapproximation may be 

"stalled" at s. 

d Co 

t'- t" 

This nonextension of states in the underapproximation can be partially solved by 

computing successors using an iterated (or stuttered) next-state relation, i.e. N can 

be replaced in the underapproximating algorithms with some Nk, where Nk is the 

result of composing N with itself k — 1 times. 

8.3.3     Untimed analysis 

Sometimes computing even the first approximation of the reachable timed-states is 

expensive. A preliminary untimed analysis may be able to prune large parts of the 

state-space from consideration. For example, it may be that many control locations 

are forward reachable from the initial states, but not backwards reachable, and in 

this case the first forwards overapproximation will explore numerous control locations 

unnecessarily. A simple untimed backwards reachability analysis would rule out many 

of these control locations. 
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We propose the following procedure to cope with such situations: first analyze 

the state-space by ignoring all timing information, and then begin approximating the 

reachable timed-states over the reduced state-space. The untimed analysis should re- 

turn a superset of the control locations which may possibly lie on violating paths. This 

phase considers the timed automaton as a simple (untimed) finite-state automaton, 

with an edge between two control locations whenever there is a transition between 

them. The analysis may be either exact or itself approximate, but it must yield an 

overapproximation of the control locations on violating paths. Indeed, this first un- 

timed analysis may be considered to be a special case of overapproximating with an 

approximate next-state relation which disregards timing constraints and clock resets. 

In our implementation, the untimed analysis consists of an exact forwards untimed 

traversal of the states, followed by an untimed backwards reachability analysis from 

the violating locations which are encountered. 

The disadvantage of performing this untimed analysis is that it may itself be 

expensive to perform, and indeed may not even complete. 

We note in passing that this untimed analysis may be sufficient to prove the system 

is correct, in which case either the system does not depend on timing information for 

correctness, or there is a description error in the input. 

Observe that the algorithms of Alur et al [AIKY93] and Balarin et al [BSV93] 

also begin with an untimed analysis, and iteratively restrict the untimed traces by 

adding untimed components to rule out paths which are not possible because of timing 

constraints. In contrast, we use the untimed analysis merely as a special preliminary 

procedure to narrow the search space for our state-based approximations. 

8.4    Performance comparison to other tools 

Meaningful comparison with other implementations is difficult. Firstly there are not 

many verifiers which handle dense-time semantics. Secondly, those which do are often 

still undergoing development. Thirdly, and perhaps most prohibitive, is the fact each 

tool uses at least slightly different formalisms for describing real-time processes, and 

for specifying timing properties. 
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We compare our approximation algorithm against our previous implementations 

based on set-reachability and minimization, and against the symbolic model-checker 

KRONOS, recently been made publicly available by Sifakis et al [NSY92a, HNSY92, 

DOY94] at IMAG in Prance. 

8.4.1    Reachability and minimization 

The approximation algorithm represents a significant practical improvement over a 

couple of previously published algorithms we have experimented with. In this sub- 

section, we describe our previous implementations and compare their performance. 

Many of the ideas behind the approximation scheme advocated here arose from ex- 
perience with these other verifiers, and we discuss some of these issues in more detail 

in section 8.5. 

Set-reachability 

A basic set-reachability algorithm is given in figure 4.4 of section 4.4. It can be 

used in a straightforward way to solve the timed safety verification problem, since 

it computes exactly which regions have states which are reachable from the initial 

states. It can also be easily modified to prove stronger properties involving fairness. 

One problem with explicitly enumerating all nodes in the regions graph, is that 

many different regions need to be examined, and the size of the graph generated 

depends crucially on the size of the timing constraints used. Set-reachability does 

much better locally, since all successors of a single transition can be added in a single 

step. For example, sets of time successors can be clustered together in a single DBM. 

In systems with simple looping structures this algorithm may be quite effective, but 

in more complex examples, a single control location can be entered along different 

transitions, each with different timing constraints. When the algorithm follows these 

transitions, many new sets may be generated. Of all the algorithms we provide 

comparative data for, this one is the least efficient in practice, as shown by the data 

in figure 8.4 appearing later in this section. 
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Minimization 

An approach to circumventing the size of the regions graph is to build instead a mini- 

mal representation of the reachable part of the graph. The algorithms of Bouajjani et 

al [BFH+92] and Lee and Yannakakis [LY92] simultaneously minimize and generate a 

superset of the reachable subgraph of a transition system. We implemented a variation 

of the algorithm of Bouajjani et al applied to timed automata [ACH+92, ACD+92]. 

We refer the reader to their publications and only sketch the ideas behind their al- 

gorithm. The algorithm starts with a transition system and an initial partition of 

its states. A class X is stable if whenever a state s € X has a successor in a class 

X', all states in s's class have successors in X'. The algorithm continually refines the 

partition by splitting reachable classes which are not stable with respect to the other 

classes. 

Lee and Yannakakis's minimization algorithm [LY92] is similar to the one above. 

They specify an explicit strategy for choosing which class of the partition to split 

next. Their selection strategy guarantees an upper bound on the running time which 

is quadratic in the size of the minimal graph, provided there is a finite minimal 

graph and a means of detecting termination. The idea is to search forward to find 

classes which need to be split, and to give every class a fair chance of being split. 

Classes are marked with reachable points, and consequent splitting is done "around" 

this reachable point, thereby ensuring that all splitting is done on reachable classes. 

Yannakakis and Lee [YL93] also discuss how the algorithm can be applied efficiently 

to minimize a real-time system. 

The most straightforward use of the minimization algorithm for safety verification 

would be to generate the minimal reachable graph starting from an initial partition 

which separates the violating states from the rest. We could then check whether any 

block containing violating states were reachable. If any were, then the system would 

contain a violation. 

The algorithm we implemented improves on this strategy by avoiding unnecessary 

refinement of the graph. The modifications are based on the simple observation that it 

is not necessary to generate the exact minimal reachable graph in order to determine 

whether the violating states are reachable. For instance, if a class A is unstable with 
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respect to a class B, and it is known that no violation states are accessible from 

states in B, then it is unnecessary to split A with respect to B. Of course we do not 

know in advance exactly which states lie on violating paths, but we can ascertain for 

sure that some do not using the following reasoning. Given a set-graph G that has 

an edge between two nodes A and B whenever there are states a € A and b € B 

such that N(a,b), then the states in reach(G) contains reach(S). Thus we may be 

able to determine that some blocks contain only states that definitely have no paths 

to violating states: although they may be reachable, we need not stabilize them, or 

stabilize other classes with respect to edges into them. Thus we advocate specializing 

the minimization algorithm by periodically removing from consideration all classes 

from which violation states are not accessible. We also developed refined methods 

for choosing which class to split next, an order for the transitions to be stabilized in, 

lookahead strategies for increasing the number of classes detected as reachable, and 

simple techniques to ensure refining of the graph occurred evenly across the state- 

space rather than potentially wasting effort in a localized area which does may not 

lie on any violating paths. 

Comparison 

Comparative results are displayed in figure 8.4. Not surprisingly, approximation 

outperforms set-reachability. It is also far more efficient, in time and space, than 

our implementation of the minimization-based verifier, despite the large number of 

heuristics added to the latter. The results suggest that an exact reachable state 

analysis of a real-time system is both expensive and unnecessary for many timing- 

based verification problems. 

8.4.2     Symbolic model-checker KRONOS 

The model-checker KRONOS [NSY92a] computes whether a given timed safety 

automaton satisfies a specification given as a formula in the branching-time temporal 

logic TCTL [ACD90] where modal operators are time-bounded. It implements the 

symbolic model-checking algorithm found in [HNSY92]. 
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Ex. TA locns 

SET 
REACH. MINIM. APPROX. 
Time (s) Time (s) Time (s) 

GTC 32 1 4 1 

MX-3 344 5 2 8 
MX-3-e 344 27 26 3 
MX-4 1,704 28 15 23 
MX-4-e 1,704 -m- -m- 9 
MX-7 120,863 -m- -m- 417 
MX-7-e 120,863 -m- -m- 37 

FMX-3 17,377 -m- 197 608 

ETH-A 41,733 -m- -m- 220 
ETH-A-e 41,733 -m- -m- 1501 
ETH-B 27,045 -m- -m- 108 
ETH-B-e 27,045 -m- -m- 1929 

GTC Gate-Train Controller 
MX-i Fischer mutual exclusion, i processes 

FMX-i Fast mutual exclusion, i processes 
ETH-X Ethernet examples, Specification X 

-e example contains error run 
-m- ran out of memory 

Figure 8.4: Comparative results 

Our process semantics exactly match that of KRONOS. However their specifica- 

tions are more general than ours. They verify formulae written in TCTL, a branching- 

time temporal logic with time-bounded modal operators. Using this logic they are 

able to express every timed safety verification problem, since reachability is express- 

ible in the logic. Furthermore, there are properties given as logical formulae which 

are not timed-safety properties, such as non-Zenoness, and the singularity constraint 

that an event is never enabled for an open interval of time. In any case, a very pre- 

liminary analysis shows our approximation algorithm completes in less time, and uses 

less memory. The results for the Fischer mutual exclusion protocol and the tick-tock 

protocol examples appear in figure 8.5. The parameter set E has values n = 100, 

Tmin = 75, Tmax = 120 and a = 50, F has -K = 100, Tmin = 50, rmax = 75 and a - 150, 

and G uses x = 100, Tmin = 75, Tmax = 220 and a = 50. Results were obtained 

on a Sun Sparestation 2 with 128 MB of memory, of which all the examples given 

were verified by our algorithm using less than 9 MB. Notice that we cannot verify the 
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Ex. 
KRONOS APPROX* Factor 

Faster #Itns Time (s) #Itns Time (s) 

MX-6 12 1174 4 74 16 
MX-6-e 10 1323 2 30 44 
MX-7 -m- -m- 4 164 - 
MX-7-e -m- -m- 2 78 - 
MX-8 -m- -m- 4 375 - 
MX-8-e -m- -m- 2 220 - 
MX-9 -m- -m- 4 891 - 
MX-9-e -m- -m- 2 596 - 

TICK-TOCK 
E:iso-l 15 1016 8 112 9.0 
E:iso-2 9 13 4 3 4.0 
E:iso-3 1 1 N/A N/A — 
E:transmd 17 1227 14 69 17.7 
E:sp 7 26 4 4 6.0 
E:imm 1 1 N/A N/A — 
F:iso-l -e 33 87 4 39 2.2 
F:iso-2 7 5 4 3 1.7 
F:iso-3 1 1 N/A N/A — 
Frtransmd -e 23 191 4 72 2.7 
F:sp 8 33 4 5 6.9 
F:imm 1 1 N/A N/A — 
G:iso-l -e 22 121 6 93 1.3 
G:iso-2 9 7 4 3 2.0 
G:iso-3 1 1 N/A N/A — 
Grtransmd 15 264 10 166 1.6 
G:sp 7 20 4 5 4.2 
G:imm 1 1 N/A N/A — 

MX-i    Fischer mutual exclusion, i processes 
E/F/G    indicates different timing parameters 

-e    example contains error run 
-m-    ran out of memory 

(*) excludes 1 min compilation time 

Figure 8.5: Comparative performance 

singularity properties Iso-3 and Imm, since they are not expressible in our framework. 

However, for all the properties which can be expressed by both methodologies, the 

approximation algorithm is more memory efficient and is able to complete verification 

for every example for which KRONOS completes. We are also able to verify systems 

with much larger control spaces. For example the Fischer protocol with 9 processes 
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has 9 clocks and 3,259,136 control locations reachable in an untimed analysis, and 

verification completes in under 9 MB. Our implementation is up to 44 times faster 

over the 6 process example KRONOS can verify. The approximation algorithm is also 

consistently faster, up to a factor of 18, over examples published by the developers 

of KRONOS, even when the examples use tight timing constraints. The relative ben- 

efits of the two verifiers needs to be explored in more depth. Indeed, it appears the 

advantages of both verifiers could be exploited by using KRONOS to verify the TCTL 

properties not expressible as safety verification problems, and using our approxima- 

tion scheme to verify more limited properties over large examples. 

8.5    Lessons learnt 

The approximation strategies discussed in this thesis, and some of the implementa- 

tional choices, are the result of lessons we learnt in building verifiers and examining 

how they performed over the case studies described in the previous chapters. This 

section collects together some of our experiences, which are by no means unique, in 

the hope that it can guide future development of verification tools. 

8.5.1     Complexity issues 

The worst-case complexity is not always the most relevant feature of an algorithm: 

the adversarial problem inputs may occur rarely in practice. This fact suggests it may 

be useful to give a stronger characterization of problem inputs, to restrict analysis to 

certain useful subclasses of the problem domain, to perform an average-case analysis, 

or to provide an analysis which compares two algorithms over each individual input 

instance. However, it is usually difficult to define or even describe a "typical" problem, 

or give additional useful measures of the problem's complexity. 

We note that in our experience some algorithms with poorer complexity outper- 

form theoretically optimal ones. The regions construction of Alur and Dill [AD90] 

has worst-case complexity exponentially better than the set-reachability algorithm of 

Dill [Dil89], yet it is easy to see that in many instances of the train-gate example the 
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size of the regions graph is far greater than the set-reachability graph. In addition, 

our implementation of the minimization algorithm of Lee and Yannakakis [LY92] does 

not perform better than that of Bouajjani et al [BFH90], despite its theoretical ad- 

vantages of being polynomial in the size of the minimized graph. However, one of 

their key ideas in providing an upper bound on run-time, namely using points to mark 

classes, was very helpful in forcing the splitting of classes to occur throughout the 

state-space, rather than being localized. This marking of classes, together with giving 

each class a fair chance of being split, is used in their upper bound results. However, 

when we experimented with different orderings for splitting classes, we found Lee 

and Yannakakis's queuing strategy to have no practical effect on convergence, de- 

spite being required for their upper bound result. In fact, we implemented heuristics 

based on splitting classes whose successor classes were not marked, and these made 

a significant improvement. 

8.5.2     Large control spaces 

Realistic systems have not only complex timing constraints, but also large control 

spaces. While there may be ways to extract the timing properties of some systems, 

and analyze them separately, we believe that in general it is essential to be able to 

model both timing information and large control spaces in a single system descrip- 

tion. It was this fact that lead us to consider algorithms which could share timing 

information over different control locations. Otherwise it is likely to be too expensive 

to associate timing constraints with every reachable location. A hash table can do 

this effectively when the exact same timing constraints apply at many different loca- 

tions. However this is not always the case. Approximation can be used to associate 

numerous locations, having different exact timing constraints, with the same approx- 

imate timing constraints, thereby allowing even further reductions in storage. This 

motivates the use of sets of control locations in approximating sets. The results of 

this chapter demonstrate the success of this approach. 
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8.5.3 User-supplied information 

A good heuristic algorithm should allow the user to provide some guiding information 

in a natural and simple way. There is a good chance that the system designer or 

verifier has some knowledge about why the system is correct (or why she suspects 

it is). It is potentially very useful for this information to be passed directly to the 

verifier. For example, enumeration-based techniques usually work with some fixed 

steps designed to exhaustively cover every combination of possibilities, without regard 

to how its search of the state-space could be optimized. User-intervention could be 

used to focus attention in particular areas, or supply invariant information about the 

state-space. 

Our approximation algorithm has a straightforward means for the user to decide 

how roughly or accurately to begin approximating. While this information is very 

limited in form, we find it very effective in increasing the performance of our verifier. 

For more details, see subsection 8.3.1. 

The user may also fix the maximum number of underapproximating sets within 

each class. This parameter can be matched with the size of the initial separating 

classes. In other words, if there are long paths within the separating classes, the un- 

derapproximations may increase very slowly, requiring numerous traversals before all 

reachable states within the class are detected. Thus having fewer separating classes 

requires more underapproximating sets per class for similar progress in the propa- 

gation of the underapproximations. Note that this strategy maintains a relatively 

constant total number of underapproximating sets. 

8.5.4 Symbolic representations 

While we have been suggesting that symbolic representations can lead to reductions 

in computation time and memory usage, it must be remembered that only a good 

symbolic representation of a problem will help. The representation must be small for 

most sets encountered, and admit efficient operations. Furthermore, the algorithm 

must consider only a small number of symbolic sets — otherwise it may use more 

memory to store sets of states than if it explicitly enumerated the individual states. 
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Time zones 

Time zones and DBMs do work well for representing the reachable states of a system. 

As shown above, there are fast algorithms for finding successor states of any time zone. 

Their canonical form has an 0(n2) representation and is 0(n3) to compute. They 

are also closed under intersection, as required by the approximation algorithm. Their 

main disadvantage is that they are not closed under union, and in exact reachability 

algorithms this can result in a long list of time zones to represent the reachable time 

vectors for a given control location. Using approximation has the advantage of storing 

only a fixed number of time zones for a location, avoiding the blow-up due to lack of 

closure under union. 

The overapproximation operator is an effective means of capturing the information 

in its operands. It returns the smallest possible zone which contains its operands, 

and is in effect the pairwise disjunction of all constraints needed in defining them. 

Quite often this zone encapsulates sufficient reachability information for an accurate 

approximation. For instance, it is common for the value of a particular clock to be 

irrelevant in determining the outgoing paths from a state s. Approximation over the 

values of such a clock at s does not directly lead to any false negatives. In other 

cases, outgoing traces from s depend only on whether a clock x lies above (or below) 

a certain threshold, I say. Storing information about the exact reachable values is no 

more useful that knowing whether any reachable values exceed the threshold I, and 

this information is retained by the overapproximation operator. 

OBDDs for control information 

We find that using OBDDs for the control component of the state-space is also ef- 

fective. Firstly, there are potentially many control locations with the same timing 

constraints on reachable states. In systems with large control spaces, there may be 

many events which are essentially asynchronous, and only a small part of the system 

which is really timing dependent. Many events may have no timing constraints as- 

sociated with them. The constraints associated with state s are the same as for its 

successor state s' if the only event into s' originates at 5 and is independent of the 
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clock values. Thus the time zones for these adjacent states are identical. Further- 

more sets of adjacent states often have small OBDDs since they may be obtained 

via untimed events occurring individually in different components. This observation 

also allows effective initial partitioning which clusters together locations which are 

separated only by untimed events. 

The benefit of using OBDDs for control information is even greater when approx- 

imations are used. The arguments in the previous subsection for why approximate 

timing information is often good enough still holds over sets of locations. Thus we have 

the potential to pool together states across different locations with slightly varying 

timing constraints into single approximating sets, without much loss of information. 

We find this space saving to be necessary for analyzing systems with control spaces 

too large for storing individual DBMs per location. 

Finally we note that the form of initial partitioning we use, dividing the control 

space via a crossproduct of partitions per component, leads to small OBDDs for each 

initial separating class, and therefore helps to keep the size of OBDDs in subsequent 

separating classes small. 

OBDDs for timing information 

It is possible to use OBDDs for encoding timing information, i.e. they can encode the 

detailed regions of the Alur-Dill equivalence relation, and then arbitrary sets of timed 

states can be represented within a single framework. However, this approach does not 

look promising. The problem is that there are too many dependencies across clocks 

in different components, leading to large OBDDs. For example, computing the time 

successors of a set of regions involves checking that the values of all clocks increase 

at the same rate. In fact, our own experiments with OBDD-encoded regions graphs 

resulted in worse performance than explicit analysis. 

8.5.5     Simplify the problem 

Hard problems should be simplified wherever possible until the work of the verifier 

is computationally feasible.  In other words, it is extremely helpful if some human 
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reasoning can be used to reduce a verification problem into a simpler form before 

handing it to the automatic verifier. 

Unnecessary computation may be avoided via restrictions on the problem domain. 

In our case, we first choose to concentrate only on reachability properties. This 

simplifies our algorithms and enables us to focus on the key issue of representing 

state information. Furthermore, if we cannot tackle the simpler problems, there is 

little hope for the harder ones. However, we do of course sacrifice expressiveness. 

Secondly, we rely on syntactic conditions to guarantee our systems are non-Zeno. 

This choice saves the verifier from checking this property. One approach we took 

in earlier work [ACD+92] was to have the verifier iteratively create graphs whose 

paths were guaranteed to be divergent. The algorithms first generate graphs which 

represented all timed runs. If these graphs are empty, the system is verified correct. 

If not, they are successively refined until the only remaining paths corresponded to 

divergent traces. This extra computation is time-consuming and causes the graphs 

to grow rapidly. 

Finally, we note that minimization-based techniques use the wrong criterion for 

splitting classes, if the problem to be solved is reachability. The splitting is too 

exacting for plain reachability analysis, since it is really bisimulation-based. This is 

no poor reflection on the minimization algorithms themselves, but rather a comment 

to tailor techniques to match the problem at hand. 

8.5.6     Indications of progress 

When attempting to verify large systems, a verification attempt will often run for 

a long time, seemingly indefinitely, or simply fail reporting a lack of memory. In 

such cases, it is useful to have an idea of how close the verifier is to solving the 

problem. This information can be helpful in deciding whether a particular encoding 

of a system is effective for a given verification algorithm. It can also be a useful 

measure of whether one algorithm is better than another, and is thus extremely 

useful in designing heuristics. 

As an example of a progress indicator, for explicit enumeration methods, the ratio 

of new states encountered (or the size of the search stack) may give some indication 
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of how much of the reachable state-space has been found. In symbolic reachability, 

the sizes of the OBDDs often slowly increase to a peak and then decline, so their sizes 

can help predict how far the algorithm is from terminating. 

For our approximation scheme, where there is a choice of parameters for the ver- 

ifier's execution, it is even more important to have an indication of how close the 

verifier is to deciding correctness. Indicators can be used to guide how to choose 

effective parameters. Both kinds of convergence patterns mentioned above have been 

observed in the execution of our approximation algorithm. Firstly, for any given ap- 

proximation the size of the search stack gives some indication of progress. Secondly, 

and perhaps of more concern is how close the successive approximations are to de- 

ciding correctness. Interestingly enough, for the examples we have looked at which 

require more than just a few traversals, there is a clear convergence pattern in the 

size of the approximations. In the first two traversals the size of the approximations 

usually decreases, since large parts of the state-space can be eliminated as being not 

both forwards reachable from the initial states and backwards reachable from violat- 

ing states. Then the sizes usually increase, close to monotonically, and then decrease. 

We offer an intuitive explanation of this rise and fall in the size of the approxima- 

tions. Changes in the size of the approximations are due to two competing factors. 

Separating classes which are too large need to be split, leading to larger approxima- 

tions. On the other hand, as approximations become more accurate, some previously 

included states can be eliminated, including some entire classes, leading to smaller 

approximations. Initially the approximations are too crude and the overly large sep- 

arating classes need to be refined. Each successive traversal splits more classes, and 

enables the underapproximations to increase accordingly. Rough approximations are 

not good at eliminating states falsely believed to be reachable, so the number of 

classes eliminated is initially small. Thus the approximations start increasing in size. 

When the separating classes give more accurate approximations, more classes will be 

eliminated, and fewer classes need to be split further. This phase is detected as the 

decline in the size of the approximations. 

Having this simple guide to convergence can be helpful in deciding how to configure 

the approximation algorithm. Recall that the two primary parameters to the verifier's 
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execution are the initial partition, and the number of underapproximating sets allowed 

per separating class. Adjusting either or both of these parameters and watching the 

convergence pattern of the approximations gives an idea of how effective changes are. 

Furthermore the relative sizes of the underapproximations to the overapproximations 

indicates how effectively the underapproximations are propagating through the state- 

space. If the underapproximations progress too slowly, the parameters can be adjusted 

accordingly. 

8.5.7    Debugging information 

It is crucial for a verification tool to provide useful debugging information for systems 

which are found to be incorrect. The first few attempts to describe a system inevitably 

contain syntax errors, or modeling errors, and a stark certification of "not correct" 

from the verifier does nothing to help the designer model the system more accurately. 

Our current implementation provides traces whenever errors are found. However 

these are only violating pseudo-traces (see section 2.3.5). The algorithm could be 

adapted to produce true violating traces, but this feature is not supported in the 

current prototype. Furthermore, timing information is output via DBMs which are 

not easy to interpret — there is no explicit distinction between defining constraints 

and inferred constraints. The DBMs could be output via their defining constraints 

only, and a path of timed-states could be extracted from a path of regions, but again 

the necessary routines are not currently implemented. The control information is 

output in a more user-friendly fashion, not as OBDDs, but as a listing of the control 

locations they represent, in disjunctive normal form over each component's locations. 

While admittedly limited, this debugging information has generally proven sufficient 

for understanding errors. 

8.6    Summary 

Despite the fact that the verification of hard real-time systems is a difficult compu- 

tational problem (PSPACE-complete), many examples are solvable in practice using 
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our heuristic approximation methodology. Our implementation has been able to au- 

tomatically verify systems with reasonably large control spaces and complex timing 

information — largely due to our ability to combine timing information across differ- 

ent locations of the state-space into single approximating sets. 

The method does have its shortcomings. Sometimes even approximate analysis 

is expensive to compute. Furthermore there may be many iterations required before 

convergence. It is not always easy to choose a good initial partitioning: too fine a 

partition means that there is little advantage gained from approximating, and the 

size of the approximation can be large, whereas too coarse a partition may cause the 

approximations to be too crude, and require numerous traversals of the state-space. 

If all timing constraints in the system are tight, then approximation will have little 

benefit since correctness will not be detected until the approximations converge to 

being close to exact. 

The algorithm performs well in detecting bugs in systems. More often than not, 

an attempted verification contains a description error which leads to false violations. 

It is therefore desirable for a verification algorithm to report errors efficiently. Our 

implementation has proven effective in catching such errors and in providing useful 

debugging information, albeit encoded in a symbolic form (DBMs) where the defining 

timing constraints are not clear. This could be improved in future implementations. 

The structure of the approximation algorithm is sufficiently flexible to enable 

numerous enhancements and heuristics beyond the basic algorithmic description of 

chapter 5. Because each traversal need not compute an exact set of reachable states, 

there is a great deal of freedom in how an approximation algorithm can be designed. 

While some heuristics have been outlined here, the wealth of possible extensions is 

enormous. 
Additional care and optimization could be applied to the code independently of the 

approximation strategies. For example, there are specialized algorithms that could 

be used for computing successor regions faster, minimizing the number of canonical- 

izations necessary, performing faster canonicalizations when only a few constraints 

are changed, and coalescing adjacent zones into single zones when possible [Rok93]. 

While we have concentrated on the approximation aspects of the algorithm during 
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its implementation, there is no reason why these other optimizations could not also 

be incorporated. 

Finally, it should be noted that no computationally efficient algorithm can counter 

the shortcomings of describing real-time systems in the low-level language of timed 

automata. In our experience, we encountered many description errors resulting from 

incorrect modeling in the timed automaton framework. It would be extremely help- 

ful to have high-level description and specification languages. These could then be 

compiled into timed automata for the purpose of verification. Indeed, Nicollin et 

al [NSY92a] have developed a compiler from the process algebra ATP into timed 

safety automata, and Daws et al [DOY94] give translations from ET-LOTOS to timed 

safety automata. 



Chapter 9 

Conclusions 

This thesis proposes a flexible approximation scheme for efficient safety verification. 

It has been specialized for the verification of real-time systems. An implementation of 

this algorithm shows very promising results. We now make suggestions for the future 

and offer concluding remarks. 

9.1    Further work 

9.1.1 Extensions 

The approximation framework we have described is very general. There is plenty 

of scope for defining additional heuristics to either split classes further, not split 

them at all, or even recombine them. Also, in the current set-up, one approximation 

is computed at a time, either forwards or backwards, either overapproximating or 

underapproximating. It would be interesting to see how well approximations could be 

generated simultaneously. Another interesting direction to investigate is user-directed 

refinement, rather than having the algorithm run fully automatically. 

9.1.2 Real-time verifier 

We have found that our verifier works very well on the reasonably large real-time 

examples we have tested.   We are still investigating further heuristics to increase 
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the algorithm's effectiveness. One such example is the use of a "widening" opera- 

tor [Hal93b] to accelerate the convergence of iterations within each individual traver- 

sal. A straightforward widening operator has been implemented for simple timed 

automata, resulting in mixed success only. Fairness could also be introduced into the 

semantics of processes. 

The verifier we have built is definitely a prototype. It was developed to test and 

explore the ideas in this thesis. No work has been put into designing a friendly user- 

interface. There are also many inefficiencies in our implementation, such as memory 

handling and the storage of DBMs, which could be removed to improve efficiency. 

It would be interesting to see how well the approximation technique of Alur et 

al [AIKY93] and Balarin et al [BSV93] could be combined with our state-based ap- 

proximations. In principle, it is not difficult to iteratively add timing constraints into 

our approximation algorithm, as a special case of overapproximating next-state rela- 

tions. An off-line examination of potentially false negatives can drive the convergence 

of the approximating relations. 

The implementation needs to be tested on a wider variety of examples. This would 

lead to a better understanding of the verification problems that occur in practice and 

point to improved heuristics. A more detailed performance comparison with the other 

verifiers would be valuable, especially the timing approximation methods of Alur et 

al and Balarin et al. 

9.1.3    Other problem domains 

It would be interesting to see how well the approximation algorithm works when 

applied to systems other than real-time systems. The success of the algorithm for 

timed systems is due to the fact that timing information can sometimes be clustered 

together into a single zone without including timer vectors which exhibit different 

behavior. 

Given a different problem domain, we need an efficient symbolic representation 

and approximation operators which are meaningful, and in some sense likely to clus- 

ter together only bisimilar states. We suggest possible generic operators for overap- 

proximation and underapproximation.  Given a domain of approximating sets for a 
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problem, the overapproximating operator could return the smallest enclosing approx- 

imating set, and the underapproximating operator its right operand if it includes the 

left operand, and the left operand otherwise. 

For untimed systems, OBDDs are an obvious candidate for a symbolic represen- 

tation, since they can easily represent sets of states and next-state relations. One 

potential set-up for the algorithm is to use hypercubes as approximating sets, i.e. 

sets which can be defined by a single conjunction of literals. The operators suggested 

above result in (1) overapproximating by taking the conjunction of all positive or neg- 

ative literals which appear in one operand, and whose negation does not appear in the 

other, and (2) underapproximating by taking the right operand iff all its conjuncts 

appear in the left operand, and the left operand otherwise. Both these operations 

are obviously efficient to compute, and over some untimed domains they may be 

sufficiently accurate. 

Hybrid systems [AHH93] model continuously changing variables that operate un- 

der a finite number of modes. Variables are usually modeled as satisfying restricted 

forms of differential equations. They are more general than real-time systems, where 
the clocks are a special case of variables all increasing at a fixed rate. Most prob- 

lems studied in this domain are undecidable, so the need for heuristic algorithms is 

even greater than for real-time systems. Already, one of the ideas proposed in this 

thesis has been applied to verifying hybrid systems. Henzinger and Ho [HH94] use 

the iteratively refined overapproximations of figure 2.4. They also incorporate useful 

widening operators. 

9.1.4     Solving other problems 

We believe combining overapproximation and underapproximation information to re- 

fine approximations is both sufficiently powerful and flexible to be applied successfully 

to a variety of problems other than state-reachability. We are investigating the prac- 

ticality of verification of more general real-time processes and specifications (such as 

including fairness), not just real-time safety properties. The ideas behind the algo- 

rithms could also prove fruitful for model-checking logical specifications. Dams et 

al [DGG94] show how various abstractions can be combined for model-checking in an 
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abstract interpretation framework. However they provide no means of dynamically re- 

fining their abstractions if they prove too weak. It may be possible to extract parame- 

terized information about when a system will operate correctly, as Halbwachs [Hal93a] 

does for his single over approximations. We are also interested in applying iterative 

approximation to real-time controller synthesis algorithms [WTH91, HWT92a]. 

9.1.5    Analytic analysis 

The approximation algorithm proposed is clearly a heuristic. It would be of tremen- 

dous value to have analytical arguments for when it would perform well, and when it 

would not. It would also be helpful to have metrics for how close the approximations 

are to convergence. 

9.2    Discussion 

We believe there is a good semantic basis for the permissible-join heuristic used to 

refine approximations. The performance results of our prototype implementation for 

real-time systems show extremely promising results. However it should always be 

remembered that the algorithm still has poor worst-case complexity, exponentially 

worse than exact explicit analysis. What works well on some examples could do ex- 

tremely poorly on others. Nevertheless our verifier has so far been proven consistently 

efficient. 

As systems grow larger, performing an exact analysis becomes harder and harder. 

While exact enumerative methods have the theoretical advantage of guaranteed ter- 

mination over finite-state systems, they are restricted in a very practical sense by 

the sizes of their state-spaces. It will become more important to have methods that 

do not exhaustively enumerate possibilities which may not be necessary. A form of 

clever decision-making is required. Our policy is to use quick and simple decisions 

designed to keep the size of the approximations small. It would be interesting to see 

whether a more careful analysis using greater lookahead would pay off in the long 

run.  Another desirable property of a verifier is that progress is always being made 
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towards a solution. The approximation method here is an attempt to combine the 

ideas of approximate analysis with the ability to converge towards a solution. 

Approximate analysis has been used for years in more traditional fields of engi- 

neering. Typically systems are described using continuous variables, and differential 

equations are solved to determine system behavior. Algorithms are designed with a 

step-size parameter that dictates how accurately the system is tracked. In areas of 

instability, where the system behavior is more unpredictable, a finer step-size is used. 

These methods have been tremendously successful. What then is the difficulty in us- 

ing similar ideas for verification? Continuous systems have compact representations, 

often so do discrete systems given in modular format. However states in a continuous 

system can be said to have similar behavior when they are close together, whereas the 

very nature of discrete systems means that there is no reliable way to easily detect 

when two discrete states have similar outgoing behaviors. The approximation method 

of this thesis is an attempt to decide exactly when "neighboring" states share similar 

behavior, and to approximate more finely when they do not. 
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