
July 1991 Report No. STAN-CS-92-1405

III llll UN I Hi Thesis

PB96-149588

Kaleidoscope:
A Model-Based Grammar-Driven

Menu Interface for Databases

by

Sang Kyun Cha

IhTiO (p^IZxx IlfE^GTED &

Department of Computer Science

Stanford University
Stanford, California 94305

19970610

KALEIDOSCOPE:

A MODEL-BASED GRAMMAR-DRIVEN

MENU INTERFACE FOR DATABASES

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

By

Sang Kyun Cha

July 1991

(c) Copyright 1992 by Sang Kyun Cha

All Rights Reserved

I certify that I have read this dissertation and that in my

opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

'UYAM/frV>K
Gio Wiederhold

(Principal Advisor)

I certify that I have read this dissertation and that in my

opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

T^Ttcn ^ Jim
Terry Winograd

I certify that I have read this dissertation and that in my

opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

9«wr. *%us& JH

John T. Gill III

Approved for the University Committee on Graduate

Studies:

Dean of Graduate Studies

m

Abstract

Most database interfaces provide poor guidance on ad hoc query formulation, forcing

end users to learn, and to recall precisely the query language and the database. The

research on the so-called natural language interface (NLI) promised a solution to

this problem. However, in practice, with the difficulty of developing a large body of

machine-interpretable knowledge on human linguistic behavior, the success of NLI

systems is inevitably limited. NLI users are still required to learn and recall the

limitations of a specific system.

This thesis presents the approach of Kaleidoscope, a cooperative query inter-

face for relieving the user's burden of learning and recalling. Kaleidoscope provides

the user with an English-like query language (EnQL) for interaction with database

systems. It guides the user's query formulation actively via a sequence of menu in-

teractions. Based on a grammar specifying the syntax and semantics of EnQL, the

interface proposes legitimate query constituents step by step as menu choices. The

objective of this grammar-driven menu guidance is to enable users to construct a

meaningful query by recognizing choices that match their mental query. The inter-

face provides additional intraquery conceptual guidance to ensure the integrity of a

partial query.

The central thesis of this work is that a data model plays a crucial role in the

Kaleidoscope's style of interfaces, as a query language conveys the underlying con-

ceptualization of data to the user. The design of grammar, lexicon, and query trans-

lator follows a formally defined data model. The absence of an explicit model leads

to the ad hoc design of these components, harming the system's transportability.

In the model-based approach, grammar design focuses on unambiguously realizing

IV

references to model concepts. As a result, all user queries are meaningful with re-

spect to the underlying data model. The model also provides a basis of defining two

other domain-independent modules: a query translator and a set of procedures for

automatically generating lexicon entries from the schema.

The major technical contribution of this thesis is a data model formalizing the con-

ceptual structure of restricted English queries. Existing data models are inadequate

for near-natural language interaction with database systems because of a significant

conceptual gap between common English concepts and database representation of

such concepts. EnQL, based on our model, enables the user to express significantly

more concise queries than SQL, often by an order of magnitude. To provide a com-

plete normative design framework, this thesis also presents a cost model of user query

production when using grammar-driven menu interfaces. This model is useful for

evaluating alternative interface designs.

Acknowledgements

I am greatly indebted to my advisor Gio Wiederhold for his generous support through

my years at Stanford. He directed me into this interdisciplinary area of research with

his professional insight and confidence, and guided me with invaluable advice until

finishing it. After all, he was not just a research supervisor but a great teacher who

set the cornerstones of my problem-solving mind.

I would also like to thank other members of my reading committee. I am fortu-

nate to have Terry Winograd as one of them. In one of my early Stanford quarters,

he enlightened me on the phenomenological foundation of language, cognition, and

computation through his course. As a devoted reader, he provided me with detailed

and objective feedback on this research. John T. Gill is the other reader who devoted

his time to serving on my committee. His interest in my research was an encourage-

ment. Teresa Meng in her office during the Christmas break kindly agreed to chair

the committee.
Charles Kellogg at Lockheed Artificial Intelligence Center is an unofficial reader

of this thesis. His extensive feedback on the early draft helped me in improving

the quality of presentation. Craig Thompson was my mentor during my internship

at Texas Instruments, Inc. This work has undoubtedly benefited by his generous

support of my NLMenu exercise over TI's VLSI design database. I am grateful to

Jack Milton for his careful reading of a part of this thesis presented elsewhere. He also

devoted his precious time during the Christmas break to scheduling my thesis defense

as the first CS545 seminar of the year 1991. I wish to thank my colleagues at IBM

Palo Alto Scientific Center for tolerating the first dry run of my oral presentation and

providing me with constructive feedback. This work has grown out of the common

VI

framework of the Stanford KBMS research. I would like to thank all of my past and

current colleagues.

A number of friends made my Stanford life enjoyable and fruitful beyond complet-

ing the Ph.D. requirements. Voy Wiederhold has acted a caring mother at Stanford.

Keith Hall and Toshi Matsushima are buddies who accompanied me to the city for

Korean B.B.Q. after finishing my thesis defense. Surajit Chaudhuri is an outspoken

reminder of an overdue homework in life. B.S. Lee was an unsuccessful preacher

sympathetic with me. Peter Rathmann has been an excellent coordinator of KBMS

activities.

Finally, I wish to extend my thanks to my family and professors in Korea for their

moral support. Their presence has been the light guiding me to the end of a long and

winding tunnel.

This research was supported by the DARPA Contract N00039-84-C-0211 for Knowl-

edge Based Management Systems. The overseas graduate study fellowship of the

Korean Ministry of Education helped me to start my computer science education at

Stanford.

vn

Contents

Abstract iv

Acknowledgements vi

1 Introduction 1

1.1 Impedance Mismatch Between User and System 2

1.2 Kaleidoscope for Controlled Near-Natural Language Interaction ... 3

1.3 Technical Problems and Contributions 5

1.4 Relation to Other Work 7

1.4.1 Cooperative Response Approach to NLI . . 7

1.4.2 Menu-Based NLI Approach 7

1.5 Organization of Thesis 8

2 Interface for EnQL Query Formulation 10

2.1 Environment and Screen Organization 10

2.2 EnQL Features 11

2.3 Menu-Guided Query Creation 12

2.4 Intraquery Conceptual Guidance 17

2.4.1 Rule-Based Guidance 17

2.4.2 Guidance on Attribute Modification 18

2.5 Summary 19

3 Why An English-like Query Language? 21

3.1 EnQL vs SQL 21

vin

3.1.1 Previous Result 22

3.1.2 EnQL Case 22

3.2 Desired Features of EnQL 25

Previous Work 27

4.1 Architectures 27

4.1.1 NLMenu/INGLISH 27

4.1.2 NLParse/NLGen ' 29

4.2 Absence of High-Level Data Model 30

4.2.1 Influence of NLI Approach 30

4.2.2 Problems with Low-level Implicit Data Model 31

4.2.3 Loose Connection Between Data Model and Language 32

4.3 Summary 32

Model-Based Approach 33

5.1 Introduction 33

5.2 Model-Dependency 34

5.3 Kaleidoscope Architecture 35

5.3.1 Grammar and Lexicon 36

5.3.2 Schema and Integrity Constraint Rules 37

5.3.3 DBMS-based Management of Knowledge Structure 37

5.3.4 Interpreter 39

5.4 Overview of Processing 39

5.5 Summary 40

EnQL Data Model 41

6.1 Introduction 41

6.1.1 Concerns in Data Model Development 42

6.2 Basic Concepts 43

6.2.1 Entities 43

6.2.2 Relationships 44

6.2.3 Relationship Modifiers 46

IX

6.3 ISA Hierarchies 46

6.4 I-OVERLAP 49

6.5 Derived Attributes and Subordinate Entities 49

6.6 Internal Query Language 50

6.6.1 Query Meaning Representation 50

6.6.2 Integrity Constraints for Intraquery Cooperation 51

6.7 Mapping to Relational Storage 52

6.7.1 Mapping 52

6.7.2 Query Translation 54

6.8 Summary 56

7 Grammar Formalism for Choice Generation 57

7.1 Augmented Context-Free Grammar 57

7.1.1 Feature Attributes , 58

7.1.2 Partial Value Representation 60

7.1.3 Feature Binding Unification 61

7.2 Partial Query Representation 63

7.3 Lexicon 65

7.3.1 Preterminal Category Definition 65

7.3.2 From Model to Lexicon 67

7.4 Procedural Decorations 68

7.4.1 Feature Variable Decorations 69

7.4.2 Optional Sequence Decorations 70

7.4.3 Rule Decorations 70

7.4.4 Preterminal Category Decoration 72

7.5 Control Flow of Choice Generation 74

7.5.1 Dynamics of Chart Manipulation 78

7.6 Grammar Transformation 79

7.7 Summary 80

8 Quantitative Dimension of Interface Design 82

8.1 Motivation 83

8.2 Cost Model of User Query Production 84

8.2.1 Non-search Cost 85

8.2.2 Search Cost 85

8.3 An Illustrative Example: Effect of Concatenation 87

8.3.1 Problem 87

8.3.2 Tradeoff Formulation 90

8.4 Summary 91

9 Conclusion 92

9.1 Kaleidoscope's Interface Approach 92

9.2 Central Theme: Model-Based Approach 93

9.3 Technical Contributions 93

9.4 Future Research 95

A Complete Sequence of Kaleidoscope States 97

B Tabular Representation of Knowledge 108

B.l Graphical Schema by Related Table Groups 109

B.l.l Gl: Entities, Relationships, and Relationship Modifiers 109

B.1.2 G2: Entities, Attributes, and Their Domains 110

B.l.3 G3: Tables for Lexicon Definition 110

B.1.4 G4: Tables for Integrity Constraint Representation Ill

B.2 Alphabetical Listing of Table Definitions Ill

Bibliography 119

XI

List of Tables

5.1 Sample Lexicon Entries 38

6.1 Entity-level Mapping of Reference/Book/Authored-Book 53

6.2 Join Table 54

6.3 An Exemplary Relationship-Level Mapping 55

7.1 Category ENTITY-SET-N and Sample Entries 66

7.2 Category FINISH and Its Sole Entry 66

7.3 Model Concepts and Preterminal Categories 67

7.4 Alternative Preterminal Categories: Examples 80

xn

List of Figures

1.1 Grammar-Driven Menu Interface 4

2.1 Progression of Kaleidoscope Screen States 13

2.2 Two States of A Hierarchical Pop-Up Menu 15

2.3 Kaleidoscope Screen with Query Output 16

3.1 SQL Translation of Ql 23

3.2 The Database Schema Covered By The Query Ql 24

3.3 Illustration of Commitment Degree Choices 25

4.1 A Context-Free Semantic Grammar 28

5.1 Model-Based Approach 34

5.2 Kaleidoscope Architecture 36

6.1 A Graphical EnQL Schema 45

6.2 A Relationship ISA Hierarchy 48

7.1 A Top-Level Grammar Rule 58

7.2 A Grammar Rule on VP 59

7.3 Example of Edge Creation on Chart 64

7.4 Another Grammar Rule on VP 71

7.5 A Grammar Rule on NP 73

7.6 Control Flow of Choice Generation Process 74

7.7 Recursive Top-Down Procedure 75

7.8 Recursive Bottom-Up Procedure 76

xm

8.1 Two Consecutive Menu States Based on AGi (No Concatenation) . . 88

8.2 Menu State Based on AG2 (Concatenated Grammar) 89

xiv

Chapter 1

Introduction

Scientific education makes use of no equivalent for the art museum
or the library of classics, and the result is a sometimes drastic
distortion in the scientist's perception of his discipline's past ...
Inevitably those remarks will suggest that the members of a mature
scientific community is, like the typical character of Owell's 1984,
the victim of a history rewritten by the powers that be.

- Thomas S. Kuhn, The Structure of Scientific Revolutions (1970)

The recent advances in hardware and network technology enable large organizations

to move to a distributed model of computation from the traditional mainframe-based

model. This distributed model increases the end-user availability and the local au-

tonomy of operation. As the database management technology also matures, the

distributed environment stimulates great interest in the end user's creation and main-

tenance of one's own database and encourages its sharing with others. With a limited

number of database specialists, the user interface for supporting the end user's au-

tonomous data access and management activities is critical for materializing the user's

interest.

While task-oriented window-based interfaces best serve routine data access and

data management functions, it is desirable to provide database interfaces with ad

hoc querying power. Task-oriented interfaces do not meet this requirement because

their design typically trades the expressive power for the ease of use. On the other

1

CHAPTER 1. INTRODUCTION 2

hand, most existing database interfaces based on general-purpose query languages are

difficult to use. The problem lies not only in the difficulty of learning and remembering

the query language but also in the complexity of interpreting the structure and content

of numerous databases distributed over the network. This dissertation considers the

architecture and design of a cooperative ad hoc query interface that relieves the user

of learning and recalling the query language and the underlying database.

1.1 Impedance Mismatch Between User and Sys-

tem

The impedance mismatch between database languages such as SQL and host pro-

gramming languages has motivated much research. Deductive and object-oriented

database systems have emerged to provide a uniform language for application pro-

grammers [45, 79]. While this research is expected to facilitate the development of

database applications, yet another type of impedance mismatch exists between the

end user's language and database languages: formal languages such as SQL burden

users to learn the syntax and semantics of the language and the underlying database,

and to recall them precisely at the time of query formulation. Most casual database

users cannot afford time and effort for such learning. For those who can, their queries

are subject to various types of failure due to the imprecise, incomplete, and incorrect

nature of knowledge in human long-term memory [11, 49]. These failures include

spelling mistakes, violation of language syntax and semantics, and misconception of

entities and relationships in a database [55, 56, 57, 73].

The impedance mismatch faced by end users cannot be treated by assimilating the

database language to the user's language alone. The so-called natural language inter-

faces (NLIs) are intended to provide the user's habitual language for human-computer

interaction. A number of research prototypes have been developed with database sys-

tems as target applications, such as LADDER [31], PLANES [72], TQA [22], TEAM

[29], and IRUS [5]. A few commercial NLI systems also exist such as INTELLECT

[1], NLI DataTalker [47], and PARLANCE [4]. However, because of the difficulty

CHAPTER 1. INTRODUCTION 3

of developing a large body of machine-interpretable knowledge on human linguistic

behavior, these systems inevitably implement only seminatural languages and limited

concepts. As a result, NLI users experience what is called proactive interference, the

difficulty of remembering artificial constraints in a seminatural language [60]. Most

NLIs are also limited in resolving the ambiguity and failure of unconstrained user

queries. This leads to the NLI user's difficulty in debugging ambiguous and failed

queries.

A field evaluation of an NLI system with some 800 BNF rules confirmed NLI user

problems. In the experiment conducted by JarA'e et a.1 [33], NLI users performed

poorly relative to SQL users. The following table summarizes the task-level perfor-

mance of NLI and SQL users:

Task-Level Performance NLI SQL

Essentially Correct 17.1% 44.2%'

Partially Solved 34.2% 23.3%

Not Solved 48.7% 32.5%

One of the concluding remarks of JarA'e et a.1 was that with at best 70 percent

of success, both NLI and SQL interfaces are inadequate for casual database users

involved in decision making.

1.2 Kaleidoscope for Controlled Near-Natural Lan-

guage Interaction

Kaleidoscope is a cooperative interface which relieves casual users of the impedance

mismatch that they experience in interacting with database systems [12, 13, 14]. It

uses a grammar-driven menu system as a device for bridging the mismatch between

the user's language and the database language. This system generates legitimate

query constituents incrementally as menu choices, and users formulate a query in a

sequence of point-and-click menu selections. A grammar specifying the syntax and

semantics of a database language governs the system's automatic choice generation.

CHAPTER 1. INTRODUCTION

Linear-Syntax Language Menu Interface

Expressive Power Transparency

Grammar-Driven Menu Interface

Figure 1.1: Grammar-Driven Menu Interface

As the result of combining the grammar and the menu interface, Kaleidoscope

inherits the advantages of both interface types. Figure 1.1 shows the inheritance

of these advantages: the expressive power from the linear-syntax language and the

transparency from the menu interface. While Kaleidoscope's grammar-driven menu

guidance can improve the usability of formal query languages such as SQL [12, 13],

a carefully designed English-like query language (EnQL) improves the efficiency of

user-system communication significantly. The following illustrates an EnQL query

constructed in tens steps of menu interaction:

[Ql] Who wrote (which 'DATABASE', books published by .'McGraw-Hill')
1283 4 5 6 78

since 1982
9 10

Here, the numbers indicate the sequence of user-system interaction. EnQL sup-

ports wij-queries. Thus the initial menu state contains a small number of wh-words

that have corresponding concepts in the underlying database. Subsequent menu states

present only legitimate choices for extending a partial query. Kaleidoscope avoids

structural ambiguity of EnQL queries by forcing the user to enclose complex phrases

with a pair of parentheses (the eighth step of the query Ql).

EnQL closely follows the syntax and semantics of restricted English wh-queries.

Thus the combination of EnQL with Kaleidoscope enables users to construct a query

CHAPTER 1. INTRODUCTION 5

by recognizing a sequence of choices matching their mental query. This interface

approach incurs minimal cognitive burden in the user's query formulation. Compared

with the SQL version of Kaleidoscope, it relieves the user of transforming mental

queries to those based on the underlying database model such as the relational model

[18].
Kaleidoscope provides additional intraquery conceptual guidance to the user by

building the query meaning incrementally. First, the interface guides the user's value

creation by executing the partial query. This reduces the chance of extensional query

failure as well as the number of choices to present on the menu for value selection.

In addition, the system uses its knowledge of integrity constraints and functional

dependency to avoid the semantic inconsistency of the partial query.

1.3 Technical Problems and Contributions

Guiding the user's incremental query formulation is a knowledge-based process. The

interface designer formalizes the types of domain-specific knowledge needed for user

guidance. The interface creator acquires such knowledge over specific databases. This

acquired knowledge is interpreted by Kaleidoscope's interpreter for guiding the user to

create meaningful and unambiguous queries. The system's lack of knowledge in this

process results in the failure to prune irrelevant choices, which not only misleads users

toward nonsensical queries but also wastes the screen space and potentially increases

the user's choice search time. Normally, the benefit passes down along the hierarchy

of the humans involved in the life cycle of interfaces. A good interface design benefits

many interface creators; a good interface creation benefits numerous end users.

A query language conveys the underlying conceptualization of data to the user.

The central theme of this dissertation is that the presence of a data model is critical

in the Kaleidoscope's style of interfaces, where a menu system generates choices for

reference to schema concepts. The model guides the process of interface design and

creation, eventually benefiting end users. The grammar, lexicon, and query translator

are model-dependent components of Kaleidoscope. The absence of an explicit model

leads to the ad hoc design of these components, harming the system's transportability.

CHAPTER 1. INTRODUCTION 6

In the model-based approach, grammar design focuses on unambiguously realizing

references to model concepts, taking into account the capability of the underlying

query processing system. As a result, all user queries are meaningful with respect to

the underlying data model. Given a grammar specification, it is possible to define

a set of procedures that generate the lexicon automatically from the schema. The

presence of a model also guides the implementation of a domain-independent mapping

to the underlying database storage model in the query translator.

The major technical contribution of this thesis is a data model formalizing the con-

ceptual structure of restricted English queries. Existing data models are inadequate

for near-natural language interaction with database systems because of a significant

conceptual gap between common English concepts and database representation of

such concepts. EnQL, based on our model, enables the user to express significantly

more concise queries than SQL, often by an order of magnitude. To focus on the model

aspect, this thesis restricts the formal power of EnQL to the support of conjunctive

queries.

The transparency of menu guidance enables the interface designer to apply the

normative design principle [62] to the design of grammar-driven menu interfaces. The

design process involves first setting the desired formal power of an interface as its

goal. Then it explores a set of alternative designs satisfying the goal. The normative

design principle requires a model for evaluating alternative designs. This dissertation

presents a simple cost model of user query production as a quantitative basis of design

evaluation.

The model-based, normative design approach distinguishes Kaleidoscope from

conventional NLI systems, which seeks to incorporate an extensive range of syntax

and semantics based on the non-normative system assumption [6, 41].

CHAPTER 1. INTRODUCTION 7

1.4 Relation to Other Work

1.4.1 Cooperative Response Approach to NLI

Past research in artificial intelligence proposed knowledge-based postquery coopera-

tion to increase the usability of NLI systems. At the parsing level, one direction of

research sought the system's robustness to extragrammatical sentences [8]. At the

conceptual level, following Grice's principle of cooperation [28], so-called cooperative

response systems dealt with the user's misconception about underlying information

systems [21, 26, 32, 35, 34, 42, 43]. When queries fail to produce meaningful results

because of the user's misconception, the system resolves specific causes of failure for

the user. Yet, in this postquery cooperation approach, the system still does not use

its knowledge until the user query fails.

Kaleidoscope takes a more active attitude in utilizing the system's knowledge: a

system knowledgeable enough to correct or to suggest the postquery correction should

use its knowledge first to guide users away from query failure. The increasing speed

of computers makes it feasible for the system to take this initiative. Nevertheless,

postquery cooperative response would be still needed to handle queries that have no

matching tuples in the database or produce too many or too small tuples. Even in

such a case, our position is to use the system's actively. Consider an extensionally

failing query with T, a set of conjuncts causing the failure. Instead of just informing

the user of Jr, the system suggests alternatives in query generalization focusing on

this set of literals. For instance, if the keyword specification of books belongs to

J7, the system suggests its generalization based on the hierarchy of keyword values.

Previous research explored a range of options for such query generalization [46, 15].

1.4.2 Menu-Based NLI Approach

Recently, windows and pointing devices such as the mouse become widely available

for human-computer interaction. Many screen-oriented direct manipulation interfaces

have been developed, such as PICASSO [37] and PAST-3 [40]. In this type of inter-

faces, mouse selection and form filling are the primary means of expressing the user's

CHAPTER 1. INTRODUCTION 8

intention.

As windows and pointing devices such as the mouse become widely available for

human-computer interaction, Tennant and Thompson recognized that the window-

based interaction could restrict the users of the so-called NLIs within the system's

limited linguistic and conceptual coverage [69, 67]. This idea has developed into

so-called menu-based NLI systems NLMenu [69, 71, 70], INGLISH [53, 52], and

NLParse/NLGen [30]. A context-free, semantic grammar specifies dynamic choice

generation in NLMenu and INGLISH. NLParse/NLGen employs a unification-based

grammar to pursue linguistic generalization.

Kaleidoscope takes the notion of grammar-driven menu guidance from these menu-

based NLI systems, and provides a model-based framework for the interface design

and generation. A semantically rich model provides the basis for user guidance and

interface design. In contrast, past research assumed a very low-level model or no ex-

plicit model at all. For example, the implicit model underlying the NLMenu grammar

for relational database access [68] is not much different from the relational model [18].

As a result, NLMenu queries are often reminiscent of formal queries. The emphasis on

a model in Kaleidoscope also makes it possible to provide meaning-based guidance,

which previous menu-based NLI systems overlooked.

1.5 Organization of Thesis

The rest of this dissertation is organized as follows. Chapter 2 describes the features

of the Kaleidoscope interface for EnQL query formulation. Chapter 3 justifies the

choice of an English-like query language over the standard database query language

SQL and articulates the desired features of such a query language. Chapter 4 re-

views three previous grammar-driven menu interface systems. Chapter 5 presents

Kaleidoscope's model-based approach and architecture. Chapter 6 describes a data

model for supporting English-like queries. Chapter 7 presents Kaleidoscope's gram-

mar formalism for choice generation. Chapter 8 presents the quantitative dimension

of grammar-driven men interface design. A cost model of user query production when

using grammar-driven menu interfaces is presented. Finally, Chapter 9 summarizes

CHAPTER 1. INTRODUCTION

this dissertation.

Chapter 2

Interface for EnQL Query

Formulation

ka.lei.do.scope [Gk kalos beautiful + eidos form + E -scope]
an instrument containing loose bits of colored glass between two
flat plates and two plane mirrors so placed that changes of position
of the bits of glass are reflected in an endless variety of patterns.

- from the on-line Webster of the NeXT computer

Kaleidoscope bridges the impedance mismatch between an artificial query language

and the user's language via a context-sensitive menu system. A grammar specifies

the pattern of dynamic changes in the menu state. This approach enables users to

formulate a query via a sequence of choice recognitions. The bits forming a specific

menu state are derived from the underlying database. This chapter presents the

Kaleidoscope interface for EnQL query formulation.

2.1 Environment and Screen Organization

Kaleidoscope takes advantage of the recent proliferation of bitmap displays and the

mouse in a modern computing environment. Point-and-click selection of menu choices

is the primary means of delivering the user's intention to the machine. The keyboard

10

CHAPTER 2. INTERFACE FOR ENQL QUERY FORMULATION 11

is occasionally used to complement the mouse input. The current implementation of

Kaleidoscope runs on the XEROX LISP machine and accesses the SYBASE DBMS [64]

on a remote server.

Menu choices are organized in multiple groups by their common characteristics.

Each choice group is presented on a separate window. The content of a choice window

depends on the state of a partial query. The system removes empty choice windows

to minimize the user's visual attention space. Active windows are arranged by a

prespecified order to facilitate the user's discrimination of projected target choice

groups.

Two additional windows stay on the screen to guide the user's query formulation.

The query status window presents the state of partial query construction. The system

message window displays user-requested and system-derived intraquery information.

2.2 EnQL Features

EnQL queries begin with wii-words such as who, which, where, when, and how. This

restriction of EnQL to wh-queries alleviates the potential choice explosion at the

beginning of a query, where no information is available to the system other than

syntactic constraints. Wh-words naturally factor the set of concepts qualified to

appear at the beginning of sentences.

The underlying model of EnQL, as will be presented in Chapter 5 in detail, sup-

ports entities, relationships, and relationship modifiers. EnQL provides references to

these concepts in the form of noun phrases, verb phrases, and adverb phrases, re-

spectively. A common noun refers to an entity set, while a proper noun refers to an

individual entity. A query may contain an arbitrary number of wh-words to specify

the entities to be included in the output. EnQL does not include the construct for

specifying projection attributes such as the SQL SELECT clause. This functionality

is supported by Kaleidoscope's menu interface. We discuss this feature further in the

next section.

EnQL supports both active and passive voices. A transitive verb such as "wrote"

CHAPTER 2. INTERFACE FOR ENQL QUERY FORMULATION 12

refers to a relationship between two entities, while an intransitive one such as "ar-

rived" refers to a relationship restricting an associated entity set. An adverb phrase

further restricts entity sets through the verb that it modifies. The verb "be" is used

to establish the identity of entities in different entity sets.

Entities as well as entity attributes serve as the basis of prenoun and postnoun

modifiers. The noun "thesis" modifying "technical report" exemplifies an entity-

based modifier. EnQL also supports possessive specifiers. Thus, it is possible to

express phrases such as "Gio Wiederhold's books" and "which author's books." EnQL

optionally provides limited support of pronouns. A pronoun appears on the menu only

when there exist entity sets realized already in the partial query that it can represent.

The reference of a pronoun is resolved immediately by prompting the user with a pop-

up menu of qualified noun phrases. For example, when the user selects "their," the

system searches plural nouns in a partial query and presents them to the user.

English quantifiers such as "any" and "each" are not supported because they are

not needed to express conjunctive queries.

2.3 Menu-Guided Query Creation

In Kaleidoscope, the user constructs a query incrementally from left to right. Figure

2.1 shows a few Kaleidoscope screen states encountered while creating the query:

[Ql] Who wrote (which 'DATABASE', books published by ,'McGraw-Hiir)
1 2 ^^ 3 4 5 6 7 8

since 1982,
9 10

A complete sequence of screen states is included in Appendix A. Each state presents

only choices that are both syntactically and semantically valid for extending a partial

query.
Two types of choices exist on the menu: terminal and demon choices. Most

terminal choices, if selected, are appended to the partial query as they appear on the

menu. Some terminal choices, however, contain guiding substrings. These strings,

enclosed by a pair of parentheses as in the choice "(authored) books" shown in Figure

CHAPTER 2. INTERFACE FOR ENQL QUERY FORMULATION 13

(a)

0»

(c)

(d)

wuunytwi
WHEN

WHERE

vanna N = l

WHO

RESTART
RETRACT
CHANGE

EOT

ARE/18
EDITED

RECEIVED PHD
RECOMMENDED

REVEWED
REVISED

SUNVITTEO
§■ i^i^EilI9fl iS

N = 2

(e)

WHU WROTE (WHICH 'DATABASE' BOOKS PUBLISHED BV -MoGrax-Mr)

tmaa
nUN OUERY

RESTART
RETRACT ►
QIAMGE

EXIT
BEFOnE

BETWEEN
M

N = 9

Figure 2.1: Progression of Kaleidoscope Screen States

CHAPTER 2. INTERFACE FOR ENQL QUERY FORMULATION 14

2.1 (c), make the semantics of choices explicit to the user. The guiding substring of

a selected choice is not added to the query status window. The triangle (>) on the

side of a choice indicates that the choice can be extended into submenus as in Figure

2.1 (c). Submenus organize related general and specialized terms hierarchically under

a single choice.

Some menu choices provide a limited cue to the user in projecting the conse-

quences of selecting them. English function words are representative of such choices.

For example, the prepositions "at" and "on" are ambiguous to the user. Kaleidoscope

associates a documentation string with each choice to help the user in projecting sub-

sequent choice sets (Figure 2.1 (e)). An alternative approach to the choice ambiguity

is to attach guiding substrings to the choice. This approach presents "since (publish-

ing time)" instead of the choice "since" in Figure 2.1(e).

Demon choices, when selected, trigger attached actions. They are useful for guid-

ing the user's selection of database values, such as "DATABASE," "McGraw-Hill,"

and "1982" in the query Ql. Those bounded by "<" and ">" in Figure 2.1 (c) are

such demon choices. When selected, they prompt the user with a pop-up menu of

database values or a type-in window constraining the user's input. Figure 2.2 shows

a hierarchical pop-up menu for selecting the keyword value "DATABASE." Demon

choices are also useful for enclosing complex phrases with parentheses to avoid po-

tential ambiguity. We return to this point later in this section.

In addition to expanding a partial query, the user may retract and change early

selections by choosing the corresponding system command choice. The user's selec-

tion of "RUN QUERY" signals the completion of a query to the system. This choice

appears on the menu only when the constructed query is legitimately complete by

the grammar. Often the choice set that the system produces includes a single non-

command choice. The system takes such a choice automatically and proceeds to the

next menu state unless "RUN QUERY" is another legitimate choice.

Value Presentation The properties of a domain determine the pop-up window

type in guiding the user's value creation. For enumeratable domains such as keywords,

the system prompts the user with a pop-up menu of values. In contrast, the values in

CHAPTER 2. INTERFACE FOR F"nT "TTVBV vnvMin ATTON

<KeYWUHU>
DATABASE
Coop«rative*lntarface *
Human Factors
MLP
Names and Acronyms ►
«ABORT»

MMsl
DSOintro
D60kb
MDtoglc
DeOmodd
DeOrat

Cooperative Interface»
Human Factors
MLP
Mamas and Acronyms ►
«ABORT»

MOobject
EBHQJI

theory I

15

Figure 2.2: Two States of A Hierarchical Pop-Up Menu

the weight domain is better not enumerated. For such a domain, the system presents

a range of admissible values to the user.

Inherently hierarchical domains such as keywords are presented hierarchically to

reduce the number of choices to display in the first pass. The system constructs a

hierarchy for nonhierarchical domains using other related domains if their size pro-

hibits linear listing of values. For example, the type and location of an organization

is useful for forming a hierarchy of organizations.

Control of Ambiguity The ambiguity of queries expressed in an English-like lan-

guage is well-known [3, 77]. Domain-specific semantics and contextual information

are helpful in reducing the number of possible interpretations but do not guarantee

the unique interpretation that both the user and the machine agree to.

Kaleidoscope takes the initiative in guiding users to avoid creating ambiguous

queries. The menu window from which each token is selected provides the category

information of the token. Overloading a choice with multiple interpretations is per-

mitted only if the lexical ambiguity can be resolved by grammar. To avoid structural

ambiguity, the system prompts users to enclose complex phrases with a pair of paren-

theses. For example, the query Ql, without the parentheses enclosing the object

noun phrase, would be ambiguous because there are two possible interpretations on

the scope of the phrase "since 1982." By providing the choice of explicitly finishing

the noun phrase construction with parentheses, as shown in Figure 2.1 (d), the system

avoids this structural ambiguity.

Output Presentation Kaleidoscope presents each query result in a separate spread-

sheet window to facilitate further screen-based manipulation. Figure 2.3 shows such

CHAPTER 2. INTERFACE FOR ENQL QUERY FORMULATION 16

KALEIDOSCOPE Query Status Window
WHO WROTE (WHICH 'DATABASE' BOOKS PUBLISHED BY •McGraw-Hill')
SINCE 19B2

Sv3 Command Connective
AND RUN QUERY

RESTART
WHO WROTE (WHICH 'DATABASE' BOOKS PUBLISHED BY Mc^rav

AR JO

i;nitfHi?mnti
ARJJAME BKJD BK.TITLE
Wiederhold, Gio 3008 Database Design

17 Can, Stefano 3012 Distributed Databases
170 Pelagatl, Giuseppe 3012 Distributed Databases

111 Korth, Henry F 3013 Database System Concepts

112 Silberschatz, Abraham 3013 Database System Concepts
Wiederhole!, Go 3014 FBe Organization and Da

Figure 2.3: Kaleidoscope Screen with Query Output

a window containing the result of the query Ql. Relational, graph-drawing, and

arithmetic operations are provided as generic spreadsheet functions. With this pre-

sentation strategy, EnQL does not need features for formatting and transforming

query results.
The schema of a query result consists of the attributes drawn from the entity sets

specified by wh-words. To determine these projection attributes, the system either

prompts the user with a pop-up menu of selected entity attributes or takes default

projection attributes defined by the schema.

Meaning-Based Guidance In parallel with choice generation, Kaleidoscope builds

the meaning of a query incrementally for further intraquery conceptual guidance.

First, by executing the partial query, the system guides the user's value creation

with a dynamically computed range of values feasible for extending the partial query.

This dynamic instantiation of pop-up menus not only narrows the range of choices

for users but also reduces the chance of extensional query failure - the failure of

syntactically well-formed queries to produce tuples due to the user's misunderstanding

of database contents [35].

While the extensional failure of a query is reduced by guiding the user to select

only values feasible to extend the partial query, the so-called intensional failure [42]

is still possible to occur. In the next section, we present an intraquery conceptual

guidance scheme for avoiding intensional query failure.

CHAPTER 2. INTERFACE FOR ENQL QUERY FORMULATION 17

2.4 Intraquery Conceptual Guidance

A query may contain semantic redundancy in its condition without the user's notice.

A syntactically well-formed query may fail semantically if its hidden semantic redun-

dancy leads to an inconsistent query condition. For users, this type of failure is more

difficult to deal with than syntactic failure because the cause of failure may not be

obvious.

This section describes the heuristics used in Kaleidoscope to guide users away

from intensional failure. The system's stored integrity constraint rules and functional

dependency play the key role in this intraquery conceptual guidance.

2.4.1 Rule-Based Guidance

Integrity constraint rules express the semantic invariant of database extensions. They

are useful for checking the validity of update transactions and transforming queries

to semantically equivalent yet less expensive ones in evaluation [38] and in constraint

validation [54]. They are also useful for guiding users away from misconception.

IN Kaleidoscope, by checking the meaning of a partial query against the system's

knowledge of integrity constraint rules, the system detects user misconceptions in the

middle of query composition. Consider a query

[Q2] Which instructors who taught CS445 are students, who...
1 2 3 4 5 6 7 8

to a university database with an integrity constraint:

[ICl] Student instructors never teach CS 400 or higher level courses.

After the user's seventh selection, the system recognizes that the query Q2 becomes

inconsistent with the integrity constraint, and warns the user of the inconsistency.

This early detection of misconception, compared with postquery detection [26], saves

the user's effort that would otherwise be wasted on completing a query bound to

produce no meaningful result.

The same integrity constraint is also useful for generating informative messages.

Consider ICl rephrased as follows:

CHAPTER 2. INTERFACE FOR ENQL QUERY FORMULATION 18

[IC2] If an instructor teaches a CS course whose number is higher than or equal

to 400, then the instructor is not a student.

Once the user finishes the fifth selection in the query Q2, the system derives a con-

straint that the instructor is not a student. This derived constraint is useful for

guiding the user away from potential semantic inconsistency in the user's subsequent

selections. However, in general, presenting all derived information may distract expe-

rienced users needlessly. The user has an option of disabling the system's presentation

of derived informative messages.

Information Presentation Threshold The definition of an integrity constraint

rule assigns one of three level indicators to each derived literal:

Level 1: obvious.

Level 2: informative.

Level 3: critical.

We may think of the query condition selected by the user corresponding to the level

0. A more fine-granuled classification of derived information is conceivable. For

example, the level 2 may be divided into two levels of more informative and less

informative. The user may choose one of these levels as the threshold of intraquery

conceptual guidance. For example, if the user chooses the level 2, the system presents

the derived information of levels 2 and 3 to the user. The default threshold level is set

to 3, so that only critical derived information such as integrity constraint violation

is presented to the user. Literals of the level 1, despite their obviousness, still need

to be derived because they may be called in a chain of inference for deriving other

critical and informative literals.

2.4.2 Guidance on Attribute Modification

Functional dependency is important in avoiding redundant attribute modification of

entities. Kaleidoscope applies the following heuristics:

CHAPTER 2. INTERFACE FOR ENQL QUERY FORMULATION 19

• If an attribute is selected for restricting an entity set, it is pruned later on. The

system assumes that the user does not modify an attribute repeatedly. For ex-

ample, the menu state of Figure 2.1 (c) does not show the choice "<keyword>"

because it was selected in the previous step. (See the menu state for N = 4

in Appendix A.) The set of comparators in EnQL, which includes "between"

and "not between," enables the user to express an arbitrary range in one-time

attribute selection.

• Consider a functional dependency from the attribute A to the attribute B {A —►

B). If the user's added predicate binds A to a constant, the system also prunes

A's dependent field (B) in the conjunctive extension of the partial query. For

example, consider a partially constructed noun phrase "Which employees whose

id is 1356 ..." Since the employee id is the key attribute of the entity Employee,

the user is not allowed to add further attribute-based restrictions to "employee."

• If the key attribute A is set to a constant after its dependent attribute B

(e.g., "employee department") is specified, the system informs the user of the

redundant restriction on B, and suggests the user to remove redundancy to

avoid potential query failure.

• If the user's selection derives a constraint that a field C is restricted to a range

of values, this range guides the user's further specification of C.

2.5 Summary

This chapter presented the features of Kaleidoscope's interface for EnQL query for-

mulation. The system's guidance is summarized as proposing legitimate EnQL con-

stituents as menu choices step by step and providing immediate semantic feedback

to the user. This interface approach enables the user to construct a query via a se-

quence of choice recognitions, thus freeing the user from the burden of learning and

recalling precisely the query language and the database. The system uses its knowl-

edge of integrity constraints and functional dependency to avoid conceptual query

CHAPTER 2. INTERFACE FOR ENQL QUERY FORMULATION 20

failure. Restricting the user's value creation to the result of executing the partial

query reduces the chance of extensional query failure.

Chapter 3

Why An English-like Query

Language?

As Kaleidoscope combines the menu interface and the linear-syntax language, it in-

herits the merits of both. Its interface is transparent to the user while offering the

expressive power of a linear-syntax language. Kaleidoscope's grammar-driven menu

interface approach is applicable not only to an English-like query language but also to

formal languages as shown by our early work on menu-guided SQL interface [12, 13].

This chapter presents an argument of why an English-like query language is ben-

eficial for end users compared with SQL and articulates the desired features of such

an English-like language.

3.1 EnQL vs SQL

EnQL enables the user to express queries more concisely than SQL, and relieves

the user of transforming mental queries to those based on the underlying database

implementation.

21

CHAPTER 3. WHY AN ENGLISH-LIKE Q VERY LANGUAGE? 22

3.1.1 Previous Result

The results of previous human factors studies comparing restricted NLIs with formal

language interfaces are in general negative on NLIs [33, 60]. There is, however, a

positive side on the use of restricted natural language for querying database systems.

Jarke et al [33] found in their field experiment comparing an NLI with the SQL

interface:

•

•

NLI queries consume about one third the number of tokens than SQL queries

(10.64 vs 34.19 tokens).

NLI users spent about 29 percent less time, on the average, to formulate and

execute a query than SQL users (7.7 min vs 10.8 min).

Although this gain in the per-query efficiency is offset by 50 percent more queries

issued by NLI users per task (8 English queries vs 5.1 SQL queries per task), the

statistics measured by Jarke et a/ indicates that restricted English queries are easier

and more efficient to phrase than SQL queries.

3.1.2 EnQL Case

Our experience of EnQL over the bibliographic application shows even a stronger

result than the findings of Jarke et al in favoring the use of restricted English query

language over SQL. Some examples show that SQL translations of EnQL queries

may consume ten times as many tokens as EnQL queries and involve joins of several

tables. For example, while the query Ql, created in ten steps, consumes nine tokens,

its SQL translation comprises 89 tokens. Figure 3.1 shows a pair of EnQL and SQL

queries. Figure 3.2 presents the underlying database schema based on the structural

data model [75]. In counting tokens, we have excluded parentheses and punctuation

marks ("." and ","). One EnQL token 'DATABASE' alone accounts for 20 SQL

tokens (2 table declarations, 2 joins, and 1 restriction).

The number of tokens required to express a query is critical to the performance

of query interface users. In the absence of other information on the complexity of a

CHAPTER 3. WHY AN ENGLISH-LIKE QUERY LANGUAGE? 23

[EnQL]
Who. wrote

1 2

since 1982
9 10

(which .'DATABASE', books published by ^'McGraw-Hill')

[SQL]

SELECT

FROM

WHERE

author _ref erencel. author,
person2.pname,
book9.id,
reference?.title,

book book9,
organization organizations,
publish_reference publish_referencell,

keyword-view keyword_view4,
ref erence .keyword reference Jceyword5,

reference reference?,
author_reference author_referencel,
person person2
publish_referencell.reference = reference7.id and
organizations.id = publish_reference 11.organization and
book9.id = publish_referencell.reference and

book9.id = reference?.id and
book9.id = ref erence Jceyword5. ref erence and
keyword_view4.id = ref erence Jceyword5. keyword and

author_referencel.reference = book9.id and
author_referencel.author = person2.id and

organization^.name = 'McGraw-Hill' and

reference?.year >= 1982 and
keyword-view4. string = 'DATABASE'

n

63
Total token count 89

Figure 3.1: SQL Translation of Ql

Kaleidoscope's query translator makes no attempt of minimizing the token count. Thus
its SQL translation may include extraneous tokens and conditions. However, queries
produced by the human are equally likely to have such extraneousness. In this example,
range variable declarations are extraneous because tables are all distinct. In addition,
the WHERE clause has hidden redundancy: Either the first or the third condition may
be removed.

CHAPTER 3. WHY AN ENGLISH-LIKE QUERY LANGUAGE? 24

author_reference publish_reference

* * * * ::

person reference organization

U
* »

book reference_keyword

::

keyword_view

Figure 3.2: The Database Schema Covered By The Query Ql

X —*- \Y I represents one-to-many ownership connection from X to Y.
X represents a subset connection from X to Y.

query, the ratio of the required number of tokens and the capacity of human short-

term memory (7 ± 2 [44]) could be a measure of the user's cognitive burden. The

higher this ratio, the more cognitive swapping, we suspect, is required to produce a

query. Note that the EnQL query Ql roughly fits into human short-term memory,

while the its SQL equivalent does not.

Automatic Database-Level Join Generation The SQL query in Figure 3.1

involves the join of eight tables - an indication of the degree of conceptual complexity

that the user might have to go through if the query had to be written manually.

Human factors experiments have been conducted on SQL and other formal languages

in their early development stage [56]. In the experiment conducted by Welty and

Stemple [73], SQL join was found to be one of the two problematic features of SQL.

(GROUP BY is the other, and the most problematic SQL feature.) Considering that

the join queries in this experiment typically involved two tables, we can easily project

the difficulty of phrasing SQL queries involving several joins.

CHAPTER 3. WHY AN ENGLISH-LIKE QUERY LANGUAGE? 25

KALEIDOSCOPE Query Status Window
WHICH AUTHORS

Sva Command Connective Verb
RESTART
RETRACT ►
CHANGE ►

EXIT

THAT
WHOSE

ARE/IS
RECEIVED PHD

REVISED k

SUBMITTED *
WROTE

(a) After selection of a specialized term

■HMMbldhHJJJWJimUMUILLI^
WHICH PERSONS

r#H-l,,LN.I-m-I.L
RESTART
RETRACT >
CHANGE >

EXIT

THAT
WHOSE

ARE/IS
EDITED

RECEIVED PHD
RECOMMENDED

REVIEWED
REVISED

SUBMITTED
WROTE

(b) After selection of a general term

Figure 3.3: Illustration of Commitment Degree Choices

EnQL users do not have to worry about the conceptual burden of joining. The

system automatically creates an SQL query involving the join of multiple database

tables. As the detail of this translation will be given in Chapter 5, each translated

SQL query corresponds to a minimal dynamic view in the sense that only tables

necessary to answer a given query are joined.

3.2 Desired Features of EnQL

The fact that EnQL queries consume a significantly smaller number of tokens than its

SQL translations suggests that EnQL queries are more efficient and probably easier

to phrase than SQL queries. This leads us to ask what the elements of the English-

likeness are that contribute to the conciseness of EnQL queries, and that will be of

further benefit to grammar-driven menu interface users. Our answer to this question

CHAPTER 3. WHY AN ENGLISH-LIKE QUERY LANGUAGE? 26

is summarized in terms of four degrees of freedom:

1. Distribution of modifiers over the span of a sentence: The underlying data model

should support a rich set of modifier types. This set includes verb modifiers as

well as prenoun and postnoun modifiers.

2. Reduction of query production steps: For example, the user should be able to

choose a shorthand expression "DATABASE books" instead of its full-fledged

version "books written on DATABASE." The latter structure is still needed

for the user to add adverb phrases modifying the verb. Similarly, the phrase

"McGraw-Hill's books" is a shorthand for "books published by McGraw-Hill."

3. Alternative ordering of references: While users can tolerate limited syntax with

menu guidance, too restrictive a syntax forces users to navigate through a nar-

row network of choice sets. To lessen this burden, the language syntax should

support means of alternatively ordering references to entities and relationships.

The particular syntactic features useful for this purpose are passive voice and

adverb preposing. These enable the user to choose the logical object and an

' adverb phrase of the verb phrase at the beginning of a query, respectively.

4. Choice of commitment degree: The user's selection of a generalized term, com-

pared with a specialized term, makes a weak commitment in referring to entity

sets and relationships, thus leaving more options in the subsequent menus. For

example, the choice set following "which persons" includes verbs that are not

applicable to "which authors," such as editing books. Figure 3.3 shows two

Kaleidoscope screen states for comparison.

Chapter 4

Previous Work

As windows and pointing devices such as the mouse become widely available for

human-computer interaction, Tennant and Thompson recognized that the window-

based interaction could restrict users within the system's limited linguistic and con-

ceptual coverage [69, 67]. This idea has developed into the so-called menu-based NLI

systems NLMenu [69, 71, 70], INGLISH [53, 52], and NLParse/NLGen [30].

Taking the notion of grammar-driven menu guidance from these menu-based NLI

systems, Kaleidoscope provides a model-based framework for the interface design and

generation. Before introducing Kaleidoscope's approach, this chapter reviews menu-

based NLI systems and discusses their limitations.

4.1 Architectures

4.1.1 NLMenu/INGLISH

NLMenu and INGLISH capture constraints on choice generation in the so-called se-

mantic grammar. Proposed by Burton [7], this grammar formalism represents both

syntactic and semantic constraints uniformly in a collection of rewrite rules. Inter-

esting concepts in the application domain are chosen as grammar symbols. NLMenu

and INGLISH use a context-free version of semantic grammar. Figure 4.1 shows such

a grammar for the bibliographic database application. The rule SGI states that a

27

CHAPTER 4. PREVIOUS WORK 28

SGI S -> AUTHOR-NP, AUTHOR-VERB,
AUTHORED-OBJ-NP, {? AUTHOR-ADVPS}

SG2 AUTHOR-ADVPS -> AUTHOR-ADVP, {? AUTHOR-ADVPS}

SG3 AUTHORED-OBJ-NP -» BOOK-NP
SG4 AUTHORED-OBJ-NP -* JOURNAL-ARTICLE-NP

SG5 AUTHORED-OBJ-NP -► THESIS-NP
SG6 THESIS-NP -> PHDTHESIS-NP
SG7 AUTHOR-ADVP -+ AUTHORING-TIME-ADVP
SG7 AUTHOR-ADVP -» AUTHORING-KEYWORD-ADVP

Figure 4.1: A Context-Free Semantic Grammar

query is composed of a noun phrase representing the author (AUTHOR-NP), a verb

(AUTHOR-VERB), another noun phrase representing the authored object (AUTHORED-

OBJ-NP), and an optional list of adverb phrases (AUTHOR-ADVPS). Those inside {?

—} form an optional sequence, the rule SG2 governs recursive instantiation of adverb

phrases (AUTHOR-ADVPS) based on a single adverb phrase (AUTHOR-ADVP). Rules

SG3, SG4, SG5, and SG6 capture the generalization/specialization (ISA) hierarchy

of authored objects.

Context-free semantic grammar enables the early activation of semantic con-

straints using a simple predictive context-free grammar interpreter. However, this

approach is bound to show limited context-sensitivity in user guidance:

1. Unconstrained Recursion: Recursion in grammar represents the repeated oc-

currence of patterns in sentences. Context-free recursion such as the rule SG2

of Figure 4.1 lacks context-dependent constraining power. Thus the system re-

peatedly generates choices whose semantic basis has been specified by the user's

previous selections. For example, the rule SG2 enables the user to construct

multiple time adverb phrases in a single query as in "Who wrote books in 1983

in 1985?" If the query translator interprets two adverb phrases as a conjunc-

tion, the publishing time of books is restricted to two disjoint ranges in the

translated query. No output tuples result from this redundant query. The user,

however, may have a different, disjunctive interpretation from the user.

CHAPTER 4. PREVIOUS WORK 29

2. Coarse Semantic Granularity: The difficulty of developing and maintaining se-

mantic grammar over large application domains [65, 66] leads to a grammar

often written with coarse semantic granularity. For example, the rule SGI

relates AUTHORED-OBJ-NP with AUTHOR-ADVPS. This rule assumes that a sin-

gle set of adverb phrase types apply to all authored object types. While this

could have been true in the designer's initial conception, it is no longer valid

as the system's semantic coverage expands to include additional authored ob-

ject types, such as journal article. Authoring journal articles may accompany

adverb phrases such as "in IEEE transactions" for specifying the journals in

which articles appear. This type of adverb phrases is not applicable to other

authored object types.

Semantic grammar is not reusable. To overcome this problem, NLMenu provides a

template grammar so that the interface creator compiles a run-time semantic grammar

by combining this template grammar with the so-called portable spec, a collection of

domain-specific information.

4.1.2 NLParse/NLGen

NLParse/NLGen is an interface to Prolog knowledge base. To avoid semantic gram-

mar problems, NLParse/NLGen employs a unification-based grammar which aug-

ments linguistic categories with Prolog terms representing syntactic and semantic

features. Lexicon supplies the run-time binding of these features. Unification of se-

mantic feature bindings enforces domain-specific constraints. For example, the verb

"schedule" is restricted to take only event nouns such as "talks" for its object, and

talks may be scheduled for "interviewers." NLParse/NLGen deductively generates

lexicon entries dynamically from the assertions in its knowledge base. While this is

a noble idea, it does not show how complete and general such deduction could be

given an arbitrary knowledge base structure. NLParse/NLGen only takes advantage

of context-sensitivity to a limited degree. No attention has been paid to pragmatic

constraints such as avoiding unconstrained recursion.

CHAPTER 4. PREVIOUS WORK 30

4.2 Absence of High-Level Data Model

4.2.1 Influence of NLI Approach

The NLI approach [6, 9, 41] is pervaded by the goal of building non-normative systems

capable of recognizing unconstrained natural language input. This goal has led NLI

research to put great emphasis on syntax to build a general-purpose linguistic proces-

sor. No assumption is made on the underlying data model in grammar development.

To represent the meaning of natural language input, NLI systems commonly employ

an intermediate-level knowledge representation. At the application development time,

a loose connection is established from the general linguistic module to the capability

of the underlying query system. The emphasis on the surface-level capability and the

adoption of the top-down layered mapping inevitably introduce interlayer capability

mismatch. As a result, the meaning of some parsed sentences may not be represented

internally, and those whose meanings are known to the system may not be processed

by the underlying query processing system.

The so-called menu-based NLIs, despite their use of menus to control user input,

inherit the top-down perspective of NLI design and processing. Grammar is designed

without much concern on the formal model of the underlying system capability, often

overlooking some crucial aspects of formal language design. The absence of pronoun

support in these systems exemplifies this. As the means of referring to entities in a

query, pronouns play the role of tuple variables in relational query languages. While

these systems may be excused for not supporting intersentential anaphora, leaving out

intraquery anaphora makes their query language relationally incomplete [19]. Queries

such as "Which students earn more salary than their advisors?" are not expressible

in these systems, although they are in relational languages. The lack of concern on

formal expressive power in surface language design leads to an additional problem:

the power of a surface query language may exceed the capability of the underlying

system. Thus, the system may guide users to create queries that it can parse but not

necessarily process them to return meaningful results.

CHAPTER 4. PREVIOUS WORK 31

4.2.2 Problems with Low-level Implicit Data Model

The style of NLMenu queries is reminiscent of formal language queries [61]. We

consider that this is largely attributed to an implicit, low-level data model underlying

the NLMenu interface for relational database access [68]. The level of abstraction

captured in NLMenu's portable spec is not much different from that of the relational

model [18]. Tables and fields are defined as two separate categories of common nouns.

English terms are specified for all possible join paths. Tables may be restricted and

joined via postnoun modifiers. The following query shows an NLMenu approximation

of the EnQL query Ql.

[NLMenu-Ql]

Find persons who wrote books published by 'McGraw-Hill'
"*->^—' •! / v ' "—v—' > v ' " «

1 2 3 4 5 6

and whose book published year is greater than 1980,
7 ' 8 " 9 ' 10

and whose book keyword is 'DATABASE*
^"V—' - v ' V *

11 12 13

This query is only an approximation of the EnQL query Ql because NLMenu grammar

does not allow the result of a join query to be drawn from more than one table.

The EnQL query Ql is more concise and comprehensible than the above NLMenu

query. The difference is attributed to the rich set of modifiers distributed over the

span of the query Ql. While NLMenu-Ql's modifiers are all postnoun, Ql has a

prenoun modifier, a postnoun modifier, and an adverb phrase. The freedom of dis-

tributing the modifier load functionally constitutes a key to constructing concise and

comprehensible queries. Although NLMenu grammar can be extended to incorporate

prenoun modifiers, its underlying model does not permit adverb phrases. To support

adverb phrases, the model should include two additional conceptual primitives, one

for representing verbs and another for verb modifiers. The verb phrases appearing in

NLMenu queries are not supported as full-fledged concepts. They are just connectors

specifying table joins. For example, the third and the fifth choices of the query Ql

specify the following join paths:

CHAPTER 4. ■ PREVIOUS WORK 32

"who wrote" : person —► author_reference —► book_reference.

"published by" : book-reference —> publish_reference —► organization.

Here, book-reference is a view created by joining two tables "book" and "refer-

ence." With no conceptual distance between NLMenu queries and relational queries,

the process of query translation is straightforward. Relational queries are directly

composed from the parse trees of NLMenu queries.

4.2.3 Loose Connection Between Data Model and Language

The loose connection between the data model and the grammar leads the interface

designer to overlook important model features useful for user guidance. The ISA

hierarchy is such a model feature. It is useful for structuring information econom-

ically and for saving computation if embedded in the inference (e.g., [2]). In the

grammar-driven menu interface, it is the basis of providing the user with the choice

of commitment degree, which we discussed as a desired EnQL feature in the previous

chapter. In NLParse/NLGen, although its knowledge base represents the ISA hierar-

chies, only terms corresponding to the leaf nodes of hierarchies are presented to the

user.

INGLISH also does not convey the type hierarchy of SmallTalk objects to the

user. Furthermore, it shows how a grammar created in an ad hoc fashion is troubled

with an ad hoc, domain-specific query translation scheme [53].

4.3 Summary

In this chapter, we have discussed the problems associated with the approaches taken

by previous grammar-driven menu systems. In the next chapter, we present the

model-based approach and architecture of Kaleidoscope.

Chapter 5

Model-Based Approach

I don't think that simple home appliances — stoves, washing ma-
chines, audio and television sets — should look like Holliwood's
idea of a spaceship control room.

- Donald Norman, The Psychology of Everyday Things (1988)

5.1 Introduction

To support Kaleidoscope's style of user-system interaction, coupling of syntactic,

semantic, and contextual information is indispensable. The lack of semantic and

contextual information in choice generation results in the failure to prune irrelevant

choices, which not only misleads users toward nonsensical queries but also wastes the

screen space and potentially increases the user's choice search time. On the other

hand, in defining the interface architecture, there is a seemingly conflicting objective

of facilitating specific interface creation. A high degree of modularity is required to

meet this objective. Specifically, it is desirable for the architecture to provide (1)

a domain-independent grammar, (2) a domain-independent translator, and (3) ease

in generating a domain-specific lexicon, where the lexicon refers to a collection of

categorized choices.

33

CHAPTER 5. MODEL-BASED APPROACH 34

Grammar Lexicon
Integrity

Constraints

t t A

Schema MODEL

I
Translator

Domain-Independent

Part

Domain-Specific
Part

Figure 5.1: Model-Based Approach

The central theme of this dissertation is that in seeking these architectural goals,

the presence of a high-level data model is critical. The absence of an explicit model

leads to ad hoc grammar design and query translation, thus harming the transporta-

bility of the system. Existing data models are inadequate for supporting the desired

features of EnQL. There is a significant conceptual gap between common English con-

cepts and database representation of such concepts. Ignoring this gap would either

force users to create cumbersome queries, or overload the grammar with a complex

mapping to achieve a comfortable level of English-likeness.

5.2 Model-Dependency

Recognizing the conceptual distance between English-like queries and the the un-

derlying database representation, this thesis defines a data model formalizing the

conceptual structure of EnQL queries. Figure 5.1 shows how this model serves as

the basis of defining the run-time components of the transportable grammar-driven

menu system. First, it guides the the acquisition of domain-specific information in

the schema. Integrity constraint rules are expressed in terms of this schema.

CHAPTERS. MODEL-BASED APPROACH 35

In the model-based approach, grammar design focuses on the specification of rules

for realizing unambiguous and meaningful references to model concepts and construct-

ing the query meaning incrementally. Unlike the conventional NLI approach in which

the goal of non-normative systems is pervasive [6, 41], the normative design principle

[62] is applied. The design process sets a target expressive power by considering the

capability of the underlying query processing system. Alternative designs are eval-

uated by a cost function. In our research, we have taken conjunctive queries as the

target expressive power, and devised a simple cost model of user query production

when using grammar-driven menu interfaces. One benefit of this model-based gram-

mar design is that all queries created via menu guidance are meaningful with respect

to the data model.
Grammar design produces a set of preterminal category definitions. Instead of ac-

quiring the domain-specific lexicon entries independently, the model-based approach

generates the lexicon automatically from the schema. A set of model-dependent yet

domain-independent procedures implements this automatic lexicon generation. For

this automated lexicon generation, a schema definition includes a collection of En-

glish words/phrases as references to schema concepts. This approach first insures

the semantic consistency between the schema and the lexicon. Second, it relieves

interface creators of dealing with the linguistic part of the interface. Finally, with a

well-defined model, it is possible to define a mapping from this model to a target stor-

age model. This thesis takes the relational model for the target model. In addition,

we limit the expressive power of EnQL to conjunctive queries. This restriction avoids

the quantifier scope resolution problem of true English, and thus enables incremental

forward-chaining inference on the partial query meaning.

5.3 Kaleidoscope Architecture

Figure 5.2 shows the architecture of Kaleidoscope. Rounded boxes represent the

knowledge structures, and rectangles represent domain-independent procedures. Ar-

rows indicate the direction of information flow.

CHAPTER 5. MODEL-BASED APPROACH 36

Menu
Interface

. Choice
I Sei

jSyslem
Msg

Query Output

Interpreter

1. Chart-based Generator
2. F.C. Inference Engine

iP*\ N—\
Who wrote which

LJLfl

IQL
Query

Translator

Grammar Cached
Lexicon

I
Cached
Schema

IC Rules

SQL
Query Database

Server

Lexicon,
Schema,
IC Rules
in Tables

DB
Tables

Figure 5.2: Kaleidoscope Architecture

5.3.1 Grammar and Lexicon

This section briefly describes Kaleidoscope's grammar formalism. A more detailed

description will be presented in Chapter 7.

Around 40 phrase structure rules specify EnQL. The following shows a top-level

rule prescribing the construction of queries comprising a noun phrase (NP) followed

by a conjunction of verb phrases (VPS):

S NP

subj.entity,

subj.evar,

(detl :init 'wh),

relationship,

_rel_obj,

number,

(case unit 'subj),

compare_pred,

subj.entity,

subj_evar,

case,

VPS
relationship,

number,

(form unit

'[pres,past]),

demodifiers

Each grammar symbol is augmented by a collection of feature attributes (shown

CHAPTER 5. MODEL-BASED APPROACH 37

in boxes next to symbols) that formalizes the context of constituent structures. Both

syntactic and semantic features are captured this way. The run-time binding of these

features comes primarily from the lexicon, although grammar rules often provide

domain-independent values such as wh and subj. Feature attributes may take a

limited constraint formula: disjunction of atoms (enclosed by "[" and "]"), negated

disjunction of atoms, or conjunction of one disjunction and one negated disjunction.

Unification of feature bindings is enforced between a parent rule and its children to

block unnecessary application of child rules.

Kaleidoscope also supports attachment of several types of procedural decoration

to grammar rules. These decorations enable interface designers to capture arbitrary

constraints and actions in grammar rules.

The lexicon consists of a list of preterminal categories. Each category defines a

list of feature attributes, a list of choices, and a display menu window. Table 5.1

shows sample lexicon entries. Semantic feature attributes, such as entity, v_subj, and

v.obj, refer to the schema concepts.

5.3.2 Schema and Integrity Constraint Rules

The schema defines domain-specific concepts in frames. Each frame contains infor-

mation on mapping to underlying databases. Schema concept names occur as the

values of semantic features of lexical items. Integrity constraint rules are production

rules based on the schema concepts.

5.3.3 DBMS-based Management of Knowledge Structure

Complex dependencies exist among schema entries and from schema to integrity con-

straint rules. For example, renaming an entity requires updating more than dozen

places in the underlying knowledge structure. File-based storage is inadequate for

keeping track of such complex dependencies. Kaleidoscope manages the schema,

integrity constraints, and the English terms for reference to schema terms in the re-

lational database. This DBMS-based approach first provides the locality of changes

and supports set-oriented queries to the knowledge structure. Furthermore, with rules

CHAPTER 5. MODEL-BASED APPROACH 38

WH-PN:
"who"

entity = Person
v_subj = [Author-Reference, Edit-Book, ...]
v.obj = NIL

V:
"wrote"

rel = Auth or-Refer en ce
subj.entity =
obj-entity =

Author
Reference A Edited-Book

arity = 2
tense = past
form = past

ENTITY-SET-IS f:
"books"

entity = BooA-
v_subj = NIL
v_obj = [Author-Book, Edit-Book,

Publish-Book]
countp = plus

number = pi
"(authored) books"

entity = Authored-Book
v_subj = NIL
v_obj = Author-Book

countp = plus
number = Pi

Table 5.1: Sample Lexicon Entries

CHAPTER 5. MODEL-BASED APPROACH 39

and triggers supported as a part of DBMS functionality [74, 64, 63], updates can be

automatically propagated based on known dependencies.

Over thirty relations are used to represent the schema, integrity constraint rules,

and lexicon. The information in these relations is then cached in the main memory

for run-time efficiency. Shaded arrows in Figure 5.2 indicate that the structure at its

source is cached at the destination. This caching is more than simple duplication.

A set of procedures generates schema frames, rules, and lexical entries in the form

desired by the interpreting procedures [76]. The use of relational DBMS also facilitates

creation of interfaces covering a subset of concepts in an application domain.

5.3.4 Interpreter

For the interface creator, it is desirable for the interpreter of a complex knowledge

structure to exhibit simple behavior so that the consequence of changing the structure

is easily projectable. Kaleidoscope's interpreter is made of two interacting procedures:

• Grammar interpreter incrementally generates choices as specified by a grammar

based on the partial query state. This interpreter is based on the notion of ac-

tive chart, a run-time structure for keeping track of partial query creation. The

unification embedded in this interpreter is extended to recognize the general-

ization/specialization hierarchy. Although the partial structure handled by this

unification is not as sophisticated as those in other unification-based grammar

formalisms, this extension is original.

• Forward-chaining inference engine keeps track of the partial query meaning and

generates informative or corrective messages. Because of the forward-chaining

nature, Kaleidoscope uses 0PS5 [25, 20].

5.4 Overview of Processing

Given a partial query, the interpreter generates a set of lexicon match descriptors

(LMDs). An LMD is specified by:

CHAPTER 5. MODEL-BASED APPROACH 40

• A preterminal category symbol,

• A list of feature attribute constraints

• A filtering constraint expressed in terms of feature attributes

For each LMD, the system retrieves a list of matching items from lexicon, and sorts

and presents them on the screen. Some choices on the screen may actually represent

multiple lexicon entries. Once the user selects a choice from the screen, the system

expands its hypothesis on the partial query, which is internally represented by an

incomplete forest (a set of trees) sharing intermediate and leaf nodes, and generates

a new set of LMDs.

To illustrate, consider a partial query consisting of a single user-selected choice

"which." An incomplete forest maintained by the system leads to the generation of

"authors" as one of choices for its extension. Once this choice is selected by the user,

the syntactic and semantic information associated with "authors" are used to extend

the hypothesis forest. Since the noun "authors" refers to the entity set Author, this

information is used to select subsequent verb phrases. This cycle goes on until the

user selects the finishing choice "RUN QUERY" enabled when it is legitimate to

finish.

5.5 Summary

This chapter has presented Kaleidoscope's model-based approach to the design of a

tightly constrained transportable gram mar-driven menu system. The next chapter

describes the data model for supporting this model-based approach.

Chapter 6

EnQL Data Model

Many readers, I suspect, will take the title of this book as sug-
gesting that women, fire, and dangerous things have something in
common - say, that women are fiery and dangerous. Most fem-
inists I've mentioned it to have loved the title for that reason,
though some have hated it for the same reason. But the chain of
inference - from conjunction to categorization to commonality - is
norm. The inference is based on what it means to be in the same
category: things are categorized together on the basis of what they
have in common.

- Georgy LakofT, Women, Fire, and Dangerous Things (1987)

6.1 Introduction

Past research in natural language processing attempted to capture the semantic roles

of noun phrases (NPs) in a small number of deep cases such as agent, patient, and

instrument [24, 58]. The intent is to use these cases as the basis of specifying the

argument structure of verbs and representing the meaning of sentences for general

inference. For example, the definition of the verb "wrote" includes two mandatory

cases, agent and patient. An NP that refers to a set or an individual of Author fills

the agent case. Similarly, an NP that refers to the entity Reference fills the patient

case. The verb "wrote" may have optional cases relating it to the time, place, and

41

CHAPTER 6. ENQL DATA MODEL 42

keyword areas of authoring. Rules are needed to assign possible NP positions, such

as subject, object, and prepositional phrase (PP) object, to deep cases.

While the notion of deep case engenders generality in representing sentence mean-

ings, it is difficult to agree on what constitute a complete collection of deep cases. In

the problem domain of querying databases, fortunately, such generality is not needed

because the semantics of a specific database determines the collection of meaningful

verbs and their argument structures. This chapter develops a model to be used as

the basis of representing this database semantics.

6.1.1 Concerns in Data Model Development

A significant conceptual gap exists between EnQL and the database representation

of entities and relationships. Thus the development of a model should address the

issue of what level of representation to choose and how to resolve this conceptual gap.

In Kaleidoscope, the grammar and the query translator together take the burden of

resolving this conceptual gap. If one of these components takes less burden, the other

is subject to more. Our approach is to relieve the grammar of the burden as much

as possible so that the grammar embodies a simple mapping between EnQL and the

model. Thus the model captures the level of representation that is close to the con-

ceptual structure of restricted English queries. The query translator implements a

mapping between this model and the underlying storage models such as the relational

model [18]. Our premise for this decision is that once a mapping to a storage model is

defined, its benefit persists. On the other hand, we expect many variations of EnQL

grammar. The simplicity of the mapping between EnQL and the data model facili-

tates the development of these variations. In addition, the simple mapping between

EnQL and the model makes the process of instantiating specific database interfaces

transparent. The interface creators easily project the consequence of introducing new

concepts in the schema.

Our secondary concern is on the representation of the information needed for

enforcing the integrity of partial queries. The redundancy in the query specification

potentially breaches such integrity. As we seek to provide a natural view of data,

this redundancy may inherently appear in the schema. For instance, the keyword

CHAPTER 6. ENQL DATA MODEL 43

area of authoring may be considered a full-fledged entity as well as an attribute

subordinate to the entity Reference. If the user has specified Reference's attribute

keyword, the subsequent selection of an adverb phrase based on Keyword potentially

introduces inconsistency. The model should allow the interface creator to express

the redundancy of information in the schema so that the system may use it to avoid

potential inconsistency in user queries.

6.2 Basic Concepts

Entities, relationships, and relationship modifiers describe the overall schema of a

database. In this sense, the model may be called E-R-M model. Only entities are

allowed to own attributes. Entities correspond to noun phrases (NPs) appearing

as subjects, objects, and prepositional phrase (PP) objects. Relationships model

domain-specific verbs, and take one or two entities as arguments. Relationship mod-

ifiers represent adverb phrases, such as wh-adverbs and prepositional phrases. Each

relationship modifier takes two arguments: one for the base entity involved in modify-

ing the relationship, and another for the relationship that it modifies. The arguments

of both relationships and relationship modifiers can be specified by constraint formu-

las as well as atoms. In our model, a typical E-R relationship [16,17] is represented by

a relationship of fixed arity (< 2) and an arbitrary number of relationship modifiers.

Figure 6.1 shows a graphically represented schema. Rectangles, diamonds, and

trapezoids represent entities, relationships, and relationship modifiers, respectively.

Note that our model avoids the need of introducing deep cases explicitly by as-

signing subjects and object to relationship arguments, and collecting the deep cases

corresponding to adverb phrases as relationship modifiers.

6.2.1 Entities

Entities model not only objects with unique identity such as Author and Book but also

mass nouns, such as Salary, if domain-specific verbs take them as subjects, objects, or

PP objects. Count and mass entities have different wh-determiners in EnQL: "which"

CHAPTER 6. ENQL DATA MODEL 44

and "how much," respectively. Mass entities may have comparative adjectives as in

"Who earn more salary than their managers?" An entity definition includes:

• a feature countp, which indicates the countability of an entity,

• a noun to be used for reference,

• a set A of attributes (or properties),

• a set K of key attributes (/C C A),

• a set V of default projection attributes (V C A).

Entity Attributes An attribute is marked to indicate if it is qualified for a prenoun

modifier. Key attributes are in general not allowed to appear as prenoun modifiers.

All attributes may appear in postnoun modifier clauses. Each entity attribute refers to

a domain and has a noun for its reference. A domain definition contains information

on guiding the user's value creation, such as the type of pop-up menus.

6.2.2 Relationships

Relationship arguments are assigned their roles: subject or object. In the graphical

schema representation, an arrow from an entity to a relationship indicates that the

entity plays the subject role, while an arrow from a relationship to an entity indicates

that the entity plays the object role. A relationship definition additionally includes:

• a feature tense to specify the legitimate tenses of a relationship,

• a verb to be used for reference.

Example The query Ql illustrates the realization of two binary relationships: Au-

thor-Book {Author3ubj, AuthorecLBookobj) and Publish-Book (Publishersubj, Bookobj)

underly the verbs "wrote" and "published," respectively.

The unary relationship ReceiveJ3hD (Authorsubj) with tense = past models the

fact that some authors received PhD. When this relationship is realized in a query,

an NP referring to Author appears in the subject position of verb "received PhD."

CHAPTER 6. ENQL DATA MODEL 45

Figure 6.1: A Graphical EnQL Schema

CHAPTER 6. ENQL DATA MODEL 46

While three-place relationships are conceivable to model bitransitive verbs (e.g., "x

pays y $2"), such relationships are substituted by two-place relationships by moving

indirect objects to adverb positions (ux pays $z to y").

6.2.3 Relationship Modifiers

An arbitrary number of relationship modifiers may be associated with each rela-

tionship, and vice versa. As a result, the relationship argument of a relationship

modifier is typically specified by a disjunction of relationships. For example, in Fig-

ure 6.1, In .Publishing-Time and On-Keyword modify the relationships Author-Book,

Edit-Book, Publish-Book, and Author-Journal-Article. The relationship argument

of these modifiers is then expressed by a disjunctive formula:

Author-Book V Edit-Book V Publish-Book V Author Journal-Article.

A relationship modifier may be realized with multiple prepositions. For example,

although our convention affixes a representative preposition "In" to the base entity

name "Publishing-Time," hi-Publishing-Time may be realized not only as "in 1982"

but also as "since 1982" or "before 1982."

Some relationship modifiers are shared by a set of relationships in the sense that

two verbs sharing an NP also share adverb phrases. The query Ql exemplifies this. If

either of two verbs "wrote" and "published" is restricted by the adverb phrase "since

1982," the other is also restricted by the same adverb phrase. This information is use-

ful for checking the semantic consistency of two related verb phrases. In the graphical

schema representation, arrowed lines connect relationship modifiers to relationships.

If the line ends with multiple relationships, they share the relationship modifier.

6.3 ISA Hierarchies

ISA hierarchies organize schema concepts by similarity and difference. Figure 6.1

also shows ISA relationships between entities. The semantics of the entity hierarchy

is that if Ed is a descendent of Ea (ISA(Ed, Ea)), then Ed is a subset of Ea. Ed

CHAPTER 6. ENQL DATA MODEL 47

inherits all attributes of Ea, and may define new attributes. The model imposes a

mandatory rule regarding entity specialization:

If a set of relationships disjointly divides an entity set, create specialized

entity sets, one for each of the relationships.

For example, two relationships Autiior_BooA' and EditJiook disjointly divide the en-

tity set Book because a book is either authored or edited but not both. (An edited

book, however, may contain many authored chapters or articles.) By the mandatory

rule, two entities Authored-Book and Edited-Book are created as specializations of

Book, and used for specifying the object arguments of the relationships. This manda-

tory entity specialization avoids nonsensical queries such as "Who wrote books edited

by ..." Here, the entity Authored-Book referred to by "books" cannot be an argu-

ment of Edit-Book. Thus "edited by" is pruned from the choice set presented after

the user's selection of "books."

The entity hierarchy enables users to query a specialized entity set. Let Na and

Nd be NPs realizing entities Ea and Ed. Users may ask:

"Which Na are NdT

("Which theses are PhD theses?")

Note that reversing the order of Na and Nd leads to trivial questions such as "Which

PhD theses are theses?" Therefore EnQL does not support this type of query.

Relationships are also organized into hierarchies as shown in Figure 6.2. The argu-

ments of a parent relationship subsume the arguments of all of its child relationships.

A child relationship inherits all the modifiers associated with its parent. Additional

relationship modifiers may be defined for the child relationship. The existence of

additional relationship modifiers mandates relationship specialization. For instance,

the relationship Author Journal-Article is specialized from AuthorJteference because

the modifier InJournal is applicable only to Author Journal-Article. A relation-

ship is also specialized without introducing new modifiers when its arguments are

specialized. For example, Author-Thesis has specializations AuthorJ>hDThesis and

Author-MasterThesis.

CHAPTER 6. ENQL DATA MODEL 48

Rsfarenc« * Edited Book

PhD Thesis

Authored
Book

•^^ Author
^Mast»r_Th«s

MsstarJThMia

Figure 6.2: A Relationship ISA Hierarchy

Benefits The ISA hierarchies form a basis for:

• Extending unification in such a way that two atoms in ISA relationship unify

to the specialized one. As a result, Book and Authored-Book unify to Au-

thored-Book.

• Overloading attribute-based choices. For example, the choice "edition" is spec-

ified as the attribute of the entity BooA', but also serves as an attribute of

Authored-Book and Edited-Book, thus reducing the number of choices on the

screen.

• Supporting the user's choice of commitment degree: Let Vx denote a set of verbs

that can be attached to an NP referring to the entity Ex. Then Vd C Va holds

for ISA(Ed, Ea). Similarly, let Ax be a set of attributes that can be matched

by the entity specification Ex. Then, Ad Q Aa holds as well.

Presenting general/specialized terms hierarchically on the menu.

CHAPTER 6. ENQL DATA MODEL 49

• Organizing lexicon entries hierarchically such that the failure of unification at

a nonleaf node guarantees the failure at all of its descendents. For example, if

the match fails at Books, it is unnecessary to try to match AuthoredJiook and

Edited-Book.

6.4 I-OVERLAP

Often two entity sets such as Thesis and TechnicalJieport overlap, even if they are

not in ISA relationship. The I-OVERLAP relationship captures such intrinsically

overlapping entity sets. This relationship provides the basis of determining legiti-

mate noun qualifiers, such as "thesis" in "thesis technical reports," and qualified NP

complements for establishing the entity identity as in "Which technical reports are

'Stanford' theses?" I-OVERLAP has following properties:

Symmetry:

I-OVERLAP(Ei, E2) =► I-OVERLAP(E2, Ex). Thus, if "thesis technical re-

ports" is legitimate, so is "technical report theses."

Pseudotransitivity:

ISAiEr, E2) A I-OVERLAP{E2, E3) =► I-OVERLAP(Eu E3). As a result, "PhD

thesis technical reports" is also a legitimate NP.

With the I-OVERLAP relationship, entity sets with multiple parents are not

necessary. As a result, the ISA hierarchies in our model retain the simplicity of tree

structures. Compared with the lattice-based multiple inheritance, our inheritance

model reduces the number of entity sets to represent in the schema significantly.

6.5 Derived Attributes and Subordinate Entities

It is desirable for entities, relationships, and relationship modifiers to be defined with-

out redundancy. For example, if Keyword is modeled as the base entity of the relation-

ship modifier OnJieyword, the keyword information does not appear in the definition

CHAPTER 6. ENQL DATA MODEL 50

of Book. However, to support the shorthand expression "DATABASE books," it is

desirable to treat Keyword as if it were an attribute of Book. In Kaleidoscope, this is

done by derived attributes: the attributes from a relationship modifier's base entity

are imported to the argument entity of the relationship.

Similarly, it is desirable to refer to some entities as if they were subordinate to

others, as in "which publisher's books" or "which book's publishers." The relationship

Publish-Book is implicit in both cases. The schema may define an argument entity

of a binary relationship subordinate to the other.

6.6 Internal Query Language

This section defines an internal query language (IQL) for representing the query

meaning and integrity constraints, and presents a mapping from our model to the

relational model.

Let R, M, and S be the sets of symbols representing relationships, relationship

modifiers, and built-in predicates. S includes =, ^, >, <, >, <, between, and not

between as its members. Note that 5' is closed under negation. A query may contain

range-restricted variables for entity sets and relationships.

6.6.1 Query Meaning Representation

A query Q is a conjunction of positive literals P,:

Q={(eue2, ...)\}\pi}
«=i

where e.\, e?,... are free entity variables. Let pi be the predicate symbol of Pt-, then p,-

is drawn from R, M, or S. All relationship variables, and the entity variables which

do not appear as free variables are existentially quantified. The following condition

holds for Q: for each literal Pi, there exists at least one literal Pj(i -fi j) such that

the variables in the arguments of Pi and P) overlap.

EnQL grammar encodes the following mapping from EnQL to IQL:

CHAPTER 6. ENQL DATA MODEL 51

• For each reference to an entity set or an individual entity in EnQL, an entity

variable is created. If an entity set reference is qualified by a wh-word, the

variable is free; otherwise, it is existentially quantified.

• If pi € R, Pi has three arguments: a relationship variable, and variables for the

subject and object entities. If p, represents a unary relationship, one argument

is left empty.

• If pi 6 M, the first argument of P, is a relationship variable, and the second is

a variable for the base entity of p,.

• If pi € S, the first argument of P, is a pair of an entity variable and an attribute.

Either constants or pairs of entity variables and attributes are qualified for the

remaining arguments.

Example The system builds the following conjunctive query incrementally while

the user creates the query Q1.

{{x,y) | {Author-Book r, x y) A (= y.keyword "DATABASE") A

{Publish-Book r2 p y) A (= p.name "McGraw-Hill") A

{In-Publishing.Time r, 0 A (> t.year 1982) }

where x € Author, y € Authored-Book p € Publisher,

t € Publishing .Time 7^ G Author .Book, r2 € Publish-Book.

In this query, variables p, t, r^, r2 are existentially quantified.

6.6.2 Integrity Constraints for Intraquery Cooperation

An integrity constraint is a negated conjunction of literals:
m

-(A Li)
«=1

where the predicate symbol /, of L, is drawn from ß, M, or S. We restrict I, to be

positive if U belongs to R and M. With S closed under negation, the literals based

on the symbols in S could be treated as either positive or negative.

To illustrate, the integrity constraint ICl is formally expressed as:

CHAPTER 6. ENQL DATA MODEL 52

- ((Teach r i c) A (I-OVERLAP i\ s) A s € Student

A (= c.dept "CS") A (> c.number 400))

Here, for the simplicity of presentation, we left out the declaration of range variables

except for s. If all literals of an integrity constraint are true in a query, the system

warns the user of the integrity constraint violation. For this inference, Kaleidoscope

uses OPS5 [25]. Thus, Kaleidoscope represents the above integrity constraint by a

production rule:

IF (Teach r i c) A (I-OVERLAP i s) A s € Student A

(= cdept |CS|) A (> c.number 400)

THEN MAKE (Warning

|Student instructors never teach CS400 or higher level courses]).

The Integrity constraint IC2, on the other hand, has a different type of THEN part

to derive literals:

IF (Teach ric) A (I-OVERLAP i s) A

(= c.dept |CS|) A (> c.number 400)

THEN MAKE s £ Student

In the actual OPS5 implementation of integrity constraint rules, all literals are

defined with two system-defined arguments:

1. The classification (0: user-selected, 1: trivial, 2: informative, 3:critical).

2. The time stamp of creation.

The first is needed for the application of the information presentation heuristics

presented in Chapter 2. The latter is useful for removing all user-selected and derived

literals when the user retracts selections.

6.7 Mapping to Relational Storage

6.7.1 Mapping

A mapping from an EnQL schema to a relational schema consists of:

CHAPTER 6. ENQL DATA MODEL 53

Entity Name Attribute Range Relation Range Field Joins

Reference id reference id

title reference title
published-year reference year
keyword keyword_view string 3,4

reference-keyword

Book id book id

title reference title 5
published-year reference year 5

keyword keyword_view string 3,6
edition book edition
length book length

reference-keyword

Authored-Book id book id 7

title reference title 5
published-year reference year 5

keyword keyword-view string 3,6

edition book edition
length book length

reference-keyword
author_reference

Table 6.1: Entity-level Mapping of Reference /Book/Authored-Book

• An attribute-level mapping, which maps entity attributes to database (DB)

relation attributes.

• An entity-level mapping, which adds restrictions and joins to the collection of

attribute-level mappings.

• A relationship-level mapping, which defines joins between the arguments of a

relationship, and between the argument of a relationship and the base entities

of its modifiers.

Restrictions may add at entity and relationship levels, but they are trivial to

process in query translation. Tables 6.1 and 6.2 show the entity-level mapping and a

reference join table, respectively. Entity keys are printed in boldface. We have shown

CHAPTER 6. ENQL DATA MODEL 54

Id Relation 1 Field 1 Pred Relation 2 Field 2

1
2
3
4
5
6

person_name
author_reference
keyword-view
reference
book
book

id
author
id
id
id
id

=

person-organization
person_name
reference-keyword
reference-keyword
reference
reference .keyword

person
id
keyword
reference
id
reference

7
8
9

author_reference
book
organization

reference
id
id

=

book
publish-reference
publish-reference

id
reference
organization

Table 6.2: Join Table

a corresponding relational storage schema based on the structural data model [75] in

Figure 3.2. Table 6.3 shows the relationship-level mapping. At this level, multiple

entity sets may map to a single relation. The appearance of identical relations on the

left and right of the predicate in the rows of the table 6.3 indicates such sharing of

relations.

6.7.2 Query Translation

Query translation proceeds as follows:

1. From an IQL representation, create an input record with:

• Entity variables and their types.

• Free entity variables and projection attributes: the latter are acquired ei-

ther by prompting the user with pop-up menus or by retrieving the default

set of attributes.

• Entity restrictions and joins.

• Relationships and their modifiers: collect relationship modifiers within

the relationship that they are associated with. Relationship variables are

removed in this process.

CHAPTER 6. ENQL DATA MODEL 55

Relationship

Entity 1 relation 1. field 1 relation2.field2 Entity 2/Modifier

Auth or-Refer en ce

Reference keyword.view.id keyword.view.id In-Keyword

Reference reference.id reference.id In-Publishing. Time

Author author_reference.reference reference.id Reference

Reference reference-key word.key word reference .key word, key word In-Keyword

Author-Book

Author author .reference, reference book.id Authored-Book

Authored-Book keyword.view.id keyword.view.id In-Keyword

Authored-Book reference.id reference.id In-Publishing. Time

Author author_reference.reference author .reference, reference Authored-Book

Authored.Book reference Jcey word.key word referen ce .key word. key word In-Keyword

Table 6.3: An Exemplary Relationship-Level Mapping

2. Create a hash table for keeping track of entity views. An entity view is created

for each entity variable in the query and contains a minimal list of attributes:

key attributes, projection and restriction attributes, and join attributes that are

either explicit in the user query or required by the entity and relationship-level

mapping.

3. For each relationship R with a list of modifiers {Mi}, do the following:

(a) Collect entity views corresponding to the entity variables found in R and

Mi's.

(b) Create DB joins across these entity views as defined by the relationship-

level mapping. Also unify multiple instantiations of identical DB relations

in this process.

4. For each instance of I-OVERLAP in the query, create an equijoin of two entity

views.

5. Collect the DB projection attributes, DB relation instances (pairs of relation

names and unique identifiers), DB table joins, and DB table restrictions, and

create an SQL query.

CHAPTER 6. ENQL DATA MODEL 56

6.8 Summary

This chapter has presented a data model for supporting EnQL queries. Its features

are:

• Entities, relationships, and relationship modifiers describe the overall structure

of a schema. Unary and binary relationships model the semantics of intransi-

tive and transitive verbs, respectively. Relationship modifiers are intended to

support full-fledged adverb phrases involving complex noun phrases.

• Generalization hierarchies form a basis of structuring schema concepts and menu

choices. To users, hierarchically organized choices provide a range of commit-

ment in choosing references.

• The notions of subordinate entities and derived attributes enable users to create

shorthand expressions for referring to relationships and relationship modifiers.

• The notion of intrinsically overlapping entity sets provides a semantic basis

of generating noun modifiers and establishing identity of entities belonging to

different sets. In addition, it avoids the need for the explicit creation of entity

sets with multiple ancestors, thus reducing the number of entity sets to represent

in the schema.

We have also specified a query language IQL for the internal meaning represen-

tation of EnQL queries and expression of integrity constraint rules. Finally, we have

defined a mapping from the EnQL model to the relational model and a query trans-

lation procedure.

Chapter 7

Grammar Formalism for Choice

Generation

To provide a flexible grammar formalism for choice generation, Kaleidoscope extends

Context-Free Grammar (CFG) in two ways. First, it augments each category sym-

bol with a list of feature attributes. The role of these feature attributes is similar to

attributes [23], registers [78], and features [59] of other grammar formalisms in pro-

viding context-dependency. Second, Kaleidoscope's formalism provides several types

of procedural decoration for attachment to grammar rules. This decoration enables

the interface designer to capture arbitrary context-dependent constraints and actions

in grammar.

7.1 Augmented Context-Free Grammar

A CFG defines a set of rewrite rules over category and terminal symbols. Each

rule rewrites the symbol on the left-hand side (LHS) to a sequence of one or more

right-hand side (RHS) symbols. The grammar designates a special symbol as the

start symbol. We choose the symbol S to denote this start symbol. The set of rules

rewriting preterminal symbols to terminal symbols is called lexicon and maintained

separately from the rest of rewrite rules.

57

CHAPTER 7. GRAMMAR FORMALISM FOR CHOICE GENERATION 58

LI NP

subj.entity,

subj.evar,

(detl :init 'wh),
relationship,

_rel_obj,

number,

(case :init 'subj),
compare-pred,

VPS

subj.entity,

subj.evar,

case,

relationship,

number,

(form unit

'[pres,past]),

jcmodifiers

Figure 7.1: A Top-Level Grammar Rule

7.1.1 Feature Attributes

Kaleidoscope augments each category symbol with an ordered list of feature attributes

to formalize the context of a constituent category. A feature attribute is called seman-

tic if its domain of values depends on schema terms. Otherwise, it is called syntactic.

With feature augmentation, grammar rules rewrite in terms of a category symbol

and a list of variables representing feature attributes. We call these variables feature

variables. The scope of a feature variable is a single rule.

Figure 7.1 shows a top-level EnQL grammar rule. This rule states that a query

(s) is made up of a noun phrase (NP) and a conjunction of verb phrases (VPS). A

collection of feature variables (typed in a sans serif style) appear boxed next to the

category symbol. Figure 7.2 shows a more complex rule on VP for constructing a

single verb phrase in VPS. This rule states that a verb phrase (VP) comprises a

verb of present or past form, optionally followed by an object noun phrase (NP) and

a list of adverb phrases (ADVPS). The symbols inside { \T\ ... } form an optional

sequence. Those immediately following [7] make conditions for turning the sequence

into a mandatory or null sequence. This feature is discussed further in Section 7.4.

The run-time binding of most feature variables come from lexicon. However, some

variables representing syntactic features are often initialized by grammar rules. The

rule in Figure 7.1 illustrates such initialization. Initializing detl to wh mandates the

first NP of a query to begin with a wh-word. The rule also assigns the constant

CHAPTER 7. GRAMMAR FORMALISM FOR CHOICE GENERATION 59

VP

bound_entity,
bouncLevar,
(filled.case

:init 'subj),
relationship,
number,
(form

:init '[pres,past]),
(xmodJist

:if-unbound NIL)

bound.entity,
obj_entity,
relationship,

V arity,
form,
number,
tense

:local (reLvar unit (genvar))
•.demon
(assert 'type bound.entity bound.evar)
(assert 'type obj_entity obj_evar)
(assert 'rel relationship reLvar bound.evar obj_evar)

0 ADVPS

:require-if
(equal arity 2)
:skip-if
(equal arity 1)

NP

relationship,
reLvar,
xmodJist

obj_entity,
(obj_evar

:init (genvar)),
_det2,
_rel_subj2,
relationship,
_number2,
(case2

:init 'obj),
.comparcpred

Figure 7.2: A Grammar Rule on VP

CHAPTER 7. GRAMMAR FORMALISM FOR CHOICE GENERATION 60

subj to the feature variable case to indicate that the NP plays the subject role in

the sentence. The feature variable form in VPS is also initialized by the rule to limit

the verb phrases to present and past forms. Kaleidoscope provides two procedural

decorations on feature variables, one for initialization and another for specification of

default values. The semantics of these decorations is further discussed in Section 7.4.

Unification of feature variable bindings in rule rewriting blocks unnecessary ap-

plication of child rules. For example, the appearance of subj.entity and relationship in

both NP and VPS requires that the bindings of these variables at two positions unify.

If they don't, rules on VPS will not be activated. A special unification procedure

may be specified for feature attributes. For example, most semantic features are as-

sociated with the unification procedure that recognizes ISA hierarchies. The default

unification procedure does not.

7.1.2 Partial Value Representation

Partial values express constraints on the ultimate binding of variables. For example,

the initial value '[pres.past] of form in Figure 7.1 specifies that the value of form

is either present or past. Partial values enable compact expression of constraints

on feature attributes, thus reducing the size of grammar and lexicon. The run-time

efficiency of choice generation also increases as a result. Kaleidoscope provides a

limited language for partial value representation.

A disjunction formula expresses a constraint that the binding of a variable should

be restricted to a set of constants. Such a set is denoted by a list of constants enclosed

with a pair of brackets.

(x= [c1,c2,...,cn]) = (x = C! Vx = c2 V... Vx = c„).

A negation formula expresses a constraint that a variable should not be bound to

any element of a given list. For the sake of notational consistency with disjunction

formulas, we represent a negation formula in terms of a negated disjunction formula:

(x = [ci,C2,...,c„]) = (x = ci Ax = c2 A... Ax = c„)

= (x = C\ V x = c2... V x = Cn).

CHAPTER 7. GRAMMAR FORMALISM FOR CHOICE GENERATION 61

Partial values for semantic feature attributes may contain the nonleaf nodes of

ISA hierarchies. Let c be such a constant. If c appears in a disjunction formula for

the variable x, x may be bound to not only c but also any descendent of c. If c appears

in a negation formula for x, c and its descendents cannot be taken as x's value. For

example, a disjunction formula entity = [Thesis, TechReport] states that entity can

be bound to PhDThesis and MasterThesis as well as Thesis and TechReport.

We say that a disjunctive value formula or a negation formula is minimized if no

constant in the formula is repeated or in ISA relationship to another. In Kaleidoscope,

the binding of a feature variable takes one of the following forms:

• A constant.

• A minimized disjunction formula.

• A minimized negation formula.

• A pair of minimized disjunction and negation formulas in conjunction.

7.1.3 Feature Binding Unification

Unification is an operation of merging two partial object descriptions [39]. A feature

binding list F combined with a category C forms a partial description of constituents

in C. Let F\ and F2 be bindings on two feature attribute sets A\ and A2, respectively.

F\ and F2 unify if fx
3 and f2

3 unify for any attribute Oj G AiClA2, where /,-' represents

the binding of the attribute öJ appearing in F,- (i = 1,2). Let /"J 0 f2
3 denote the

result of successful unification of f"3 and f2
3. Then the result of successful unification

of F\ and F2 is:

Fi®F2 = U

Below we present the operational semantics of unifying /"' 's based on the set-

oriented view of partial values. We say that a formula / has a positive constant set

(PSET) P if P is the set of disjunctive constants in /. Similarly, we say that / has a

CHAPTER 7. GRAMMAR FORMALISM FOR CHOICE GENERATION 62

negative constant set (NSET) TV if N is the set of negative constants in /'s negated

formula. A constant value may be regarded as a PSET of cardinality 1.

Based on these set terminologies, unification of two formulas /] (which has Pi and

Ni as PSET and NSET, respectively) and f2 (which has P2 and N2 as PSET and

NSET, respectively) is specified as follows:

1. Merging PSETs: If two PSETs P\ and P2 are not null, compute their intersec-

tion by the following semantics:

• collect pu (or p2j) if pu = Pij where pu € Pi and p2j 6 P2,

• collect pu if ISA(pu, P2j) holds, or p2j if ISA(p2j, pu) holds.

In the absence of ISA information, this corresponds to usual set intersection.

If any of Pi and P2 is null, take non-null one. If both of them are null, return

NIL.

2. Merging NSETs: Make union of two NSETs TV, and N2. Eliminate any item

that is a specialization of another in this process.

3; Subtracting NSET from PSET: Remove an item p from the collected PSET if p

or p's generalization appears in NSET, or if a set of p's specializations covering

p appear in NSET.

4. Removal of Tautology in NSET if PSET is not null: Remove tautological con-

stants from NSET. A constant n in NSET is tautological if no constant in PSET

is a generalization of n.

Example We illustrate the feature binding unification over the noun category. The

following table presents sample entries in this category with their entity bindings.

The rightmost column shows the result of unifying these entries with an input feature

constraint {entity = Reference A Edited-Book}.

CHAPTER 7. GRAMMAR FORMALISM FOR CHOICE GENERATION 63

Choice String Choice Binding Unification Result

"authors"

"references"

"theses"

"PhD theses"

"technical reports"

"books"

entity = Author

entity = Reference

entity = Thesis

entity = PhDThesis

entity = TechReport

entity = BooA-

FAIL!

entity = Reference A Edited-Book

entity = Thesis

entity = PhDThesis

entity = TechReport

entity = BooA- A Edited-Book

= Authored JBook

This process actually occurs after choosing the choice "wrote" in the course of con-

structing the query Ql.

7.2 Partial Query Representation

A partial query state consists of a collection of well-formed constituent structures

and pending hypotheses on completing the partial query. A proper representation of

this state is prerequisite for the system's exhibition of coherent behavior to the user.

Kaleidoscope employs a run-time data structure called chart for the partial query

representation.

Commonly used for syntactic analysis in natural language processing [36], a chart

consists of a sequence of vertices and a set of edges connecting vertices. In Kaleido-

scope, a vertex represents the point of user-system interaction. Each edge represents

the state of a grammar rule applied to the partial query, and is labeled with the rule's

LHS symbol. Two types of edges are distinguished: active and inactive edges. An

inactive edge represents a completed constituent structure, and corresponds to a node

in the parse tree. An active edge represents a partially completed or just activated

grammar rule awaiting the completion of constituents.

A chart grows monotonically by incorporating new vertices and edges. Edges are

never deleted or modified except by the user's explicit request to retract previous

selections. As the user constructs a query, alternative parse trees are constructed in

parallel. This parallel monotonic nature of the chart also makes it suitable for keeping

track of feature bindings.

CHAPTER- 7. GRAMMAR FORMALISM FOR CHOICE GENERATION 64

Rule: P ■-+ Q R {[?] S}

p
Order of Edge Instantiation: P0 Q0 \ Qi Px Ro \ Rx p

2 S0 | 5i P4

Edge Content

Edge State Predecessor Subsumed Outstanding Remaining Symbols

Po active Qo R(? S)

Pi active Po Qi Ro (?S)

Pi active Pi Qi fii So
Pz inactive Pi Qi Ri
P4 inactive P2 Q\ R\ S\

Figure 7.3: Example of Edge Creation on Chart

CHAPTER 7. GRAMMAR FORMALISM FOR CHOICE GENERATION 65

Figure 7.3 shows an exemplary chart created for the hypothetical grammar rule:

0 p
x,

w
Q

x,

y
R y,

z
S

w

Bold edges represent inactive edges, and regular edges represent active edges awaiting

extension. In Section 7.5, we describe the control flow of constructing the chart.

7.3 Lexicon

In Kaleidoscope, lexicon supplies candidate menu choices to the choice generator.

Lexicon entries satisfying the context-sensitive constraints of grammar are presented

on the menu. For the user, lexicon provides an additional layer of database view.

Removal of entries from the lexicon disables reference to corresponding schema terms.

7.3.1 Preterminal Category Definition

Kaleidoscope's lexicon is organized by preterminal categories. Table 7.1 shows the

definition of a preterminal category ENTITY-SET-N and sample entries. A preterminal

category defines:

• Feature attributes.

• Special unify functions for feature attributes.

• A menu window.

• A collection of lexicon entries, each of which carries a feature binding list. Lex-

icon entries may specify a demon function to be executed upon the user's selec-

tion. Demon functions are executed with two arguments: the string and feature

binding list of the selected choice.

• An optional pivot feature, which provides the basis of organizing lexicon entries

hierarchically. For example, the pivot feature specification of ENTITY-SET-N

organizes the nouns representing entity sets by entity ISA hierarchies.

CHAPTER 7. .GRAMMAR FORMALISM FOR CHOICE GENERATION 66

ENTITY-SET-N
menu window: Concept-Noun
feature attrs: entity, v_subj, v_obj, countp, number

unify fn: isa-unify: entity, v_subj, v_obj
pivot feature: entity

"references"
entity = Reference
v_subj = NIL
v_obj = [Author-Reference, EditJBook, Publish.Book, ...]

countp = plus
number = Pi

"books"
entity = BooA-
v_subj = NIL
v_obj = [Author-Book, Edit.Book, Publish-Book]

countp = plus
number = Pi

"(authored) books "

entity = AuthoredJBook
v_subj = NIL
v_obj = Author-Book

countp = plus
number = Pi

Table 7.1: Category ENTITY-SET-N and Sample Entries

FINISH:
menu window:
feature attrs:

before fn:

Finish-Phrase
root-cat, start-vertex-id
finish_before_fn

Table 7.2: Category FINISH and Its Sole Entry

CHAPTER 7. GRAMMAR FORMALISM FOR CHOICE GENERATION 67

Model Concept Category Exemplary Choices

Entity ENTITY-SET-N

WH-PN

INDIV-N

PhD Theses, authors
who, whom, whose
<PhD Thesis>, <author>

Attribute ATTR-N-BE

ATTR-DEMON

PRENOM-DEMON

name is, id is, keyword is
<name>, <id>, <keyword>
< keyword >

Relationship v (form = past)
(form = ppby)
(form = beppby)

wrote,
written by
were written by

Relationship
Modifier

PREP
WH-ADV

at, on
when, where

Possessive Entity

Subordinate Entity

POSS-SET-N

POSS-INDIV-N

POSSED-SET-N

publisher's
<publisher>'s
books

Overlapping Entities ENTITY-MOD thesis, technical report

Table 7.3: Model Concepts and Preterminal Categories

• An optional before function, which is applied to matched lexicon entries be-

' fore being presented to the user. This function is useful for computing choices

dynamically from the partial query state. For example, the choice for paren-

thesizing Ql's complex noun phrase is computed by the before function of the

category FINISH. Table 7.2 shows the definition of this category and its sole en-

try. The function f inish_bef ore_f n follows up the partial parse tree searching

the node whose category is the same as the value of root-cat and produces a

choice string by concatenating the leaf nodes of the subtree.

7.3.2 From Model to Lexicon

Kaleidoscope's model-based approach generates lexicon automatically from schema

terms and a collection of English terms. Appendix B lists the tabular representation

of information needed for this automatic lexicon generation.

Table 7.3 presents sample preterminal categories and their source concepts of the

CHAPTER 7. GRAMMAR FORMALISM FOR CHOICE GENERATION 68

EnQL model. In addition to syntactic feature attributes such as form, each of these

categories defines a key semantic feature attribute corresponding to its source model

concept. For example, the feature definition of the category ENTITY-SET-N includes

entity as its key feature attribute. Most categories define auxiliary semantic feature

attributes derived from other related model concepts. The attributes v_subj and v.obj

of the category ENTITY-SET-N are such features. These attributes specify the verbs

that take the noun entry as the subject and object, respectively. Auxiliary semantic

feature attributes are useful for pruning dead-end choices. When selected by the user,

these choices lead the user to an empty menu state, thus forcing the user to backtrack

previous selections. For example, unconstrained application of the S rule of Figure

7.1 presents the entity nouns with no follow-up verbs as choices for the first noun.

The noun "keywords," which represents the entity Keyword, is such a noun. The

user's selection of this choice for the subject of a sentence leads to an empty menu

state because Keyword is only modeled as the base entity of On-Keyword. In the

next section, we show how Kaleidoscope's preterminal category decoration prunes

dead-end choices using auxiliary semantic feature attributes.

7.4 Procedural Decorations

The second CFG extension of Kaleidoscope captures the computation to carry out

inside a rule body in parallel with rule rewriting. For this purpose, Kaleidoscope

supports a few types of procedural decoration on feature variables, optional se-

quences, preterminals, and rules. Procedures in these decorations are arbitrary LISP

s-expressions which may have feature variables as parameters.

The goal of procedural decoration is:

1. To compose the binding of one feature variable from the bindings of others in

an arbitrary way.

2. To prune syntactically valid but semantically infeasible extension of the partial

query.

3. To prune dead-end choices.

CHAPTER 7. GRAMMAR FORMALISM FOR CHOICE GENERATION 69

4. To interact with the nonlinguistic part of the system:

(a) To construct the partial query meaning and pass it to the rule-based in-

ference system.

(b) To provide an escape mechanism for accessing desired semantic information

missing in the lexicon.

A pure unification-based grammar formalism does not provide the power and flex-

ibility of Kaleidoscope's procedural decorations. This section presents the syntax and

semantics of procedural decoration types and justify their utility in choice generation.

7.4.1 Feature Variable Decorations

Feature variables may have two kinds of decoration governing their initial and default

binding:

(x :init £): If x appears on the left-hand side of the rule, evaluate £ as the initial

value to be unified with the corresponding value inherited from its parent rule.

Otherwise, evaluate S if x is unbound whenever it is needed by the rule rewriting

process or evaluating other procedural decorations.

(x :if-unbound £): Evaluate £ as its default value if x is unbound when needed

for evaluating other procedural decorations and passing feature bindings up to

parent rules. This decoration is not evaluated when passing feature bindings

down to child rules while the :init decoration is.

The scope of a feature variable decoration is a single grammar rule. Thus the

actual position of decoration in the rule does not matter. It is meaningless to attach

:if-unbound decoration to a feature variable in the presence of :init.

We have shown the exemplary use of the :init decoration in Figure 7.1. The :if-

unbound decoration is useful for specifying the default binding of unbound feature

variables when they are needed by the parent rule.

CHAPTER 7. GRAMMAR FORMALISM FOR CHOICE GENERATION 70

7.4.2 Optional Sequence Decorations

The optional occurrence of symbols is often context-dependent. Two types of deco-

rations may appear at the beginning of optional sequences:

:require-if £: If £ evaluates to non-NIL value, the optional sequence becomes a

required sequence.

:skip-if £: If £ evaluates to non-NIL, the optional sequence should be skipped.

The example of using these decorations appears in the VP rule of Figure 7.2:

« ?

:require-if

(equal arity 2)

:skip-if

(equal arity 1)

t

obj_entity,

(obj_evar

:init (genvar)),

_det2,

NP
_rel_subj2,

relationship,

_number2,

(case2

:init 'obj),

_compare-pred

This optional sequence becomes mandatory if the proceeding verb is transitive, namely,

the arity of the relationship represented by the verb is 2. If the arity is 1, the choice

generator skips the optional sequence.

7.4.3 Rule Decorations

Kaleidoscope supports four types of rule decoration for

• specifying a condition for invalidating grammar rule application (:abort-if).

• attaching arbitrary computation to be carried out inside the rule body (:on-exit

and :demon).

CHAPTER 7. GRAMMAR FORMALISM FOR CHOICE GENERATION 71

bound-entity, :loca,l
bound.evar, (specializations
filled.case, :init (get-specializations bound-entity))

VP
relationship, (rel.var unit (genvar))
number, :a.bort-if
(form (null specializations)

unit 'pres), ■.demon
xmodJist (assert 'isa-instance comple-evar bound.evar)

— BE
number,
form

(compl-entity
:init (make-partial-value specializations)),

compl-evar,
(det2 :init 'no-indiv),

NP
_vp_subj,
-vp-obj,
number,
case2,
_pred,
_compare_pred

Figure 7.4: Another Grammar Rule on VP

• declaring and initializing local variables, which do not represent any feature

attributes (:ioca/).

We present below the syntax and semantics of these decorations:

:abort-if £: Abort the rule application if £ evaluates to a non-NIL value.

:on-exit £\, £2, • • •, £n'- Evaluate £1, £2,..., £„ in this order when the decorated rule

is completed.

•.demon £i,£2,...,£n'- Evaluate £\,£2, ■ ■ • ,£n in this order whenever the list of

constituents subsumed by the activated rule expands.

:local V\, V2,...: Define a list of local variables in a rule body. Here Vi is a variable

with or without :init or :if-unbound decorations.

CHAPTER 7. GRAMMAR FORMALISM FOR CHOICE GENERATION 72

In the chart representation of the partial query, the creation of new active edges

(N), the extension of existing active edges (E), and the inactivation of active edges

(/) form three major types of change in the state of an activated grammar rule. Thus

we define the execution timing of procedural decorations by these three events. The

following table summarizes the applicability of rule decorations by event types:

Decoration Type

Event Type

N E I

:abort-if V V y/

:on-exit y/

: demon V V V

The VP rule in Figure 7.4 shows the use of :abort-if decorations. This rule enables

the user to express entity specialization queries such as "Which theses are Ph.D.

theses?" The -.abort decoration states that the VP is valid only when there exists

at least one specialized entity of the subject entity. The :on-exit decoration is useful

for constructing the binding of a feature variable from other feature variable bindings

before returning it to parent edges. The -.demon decoration is useful for expressing

arbitrary actions every time when the state of an activated grammar rule changes.

Figures 7.2 and 7.4 show the use of this decoration for passing the partial query

information to the rule-based inference system.

7.4.4 Preterminal Category Decoration

While the :abort-if decoration provides the power of pruning rule applications, its

granularity of pruning is coarse, limited to the whole category. Selective pruning of

lexicon entries based on arbitrary filtering constraint is desirable. The preterminal

category decoration constraint enables to express conditions for such instance-level

pruning:

constraint S: The expression £ become the filtering constraint. Both :init and

:if-unbound decorations are used to evaluate 6.

CHAPTER 7. GRAMMAR FORMALISM FOR CHOICE GENERATION 73

entity,
(evar :if-unbound (genvar)),

NP det, v_subj, v_obj, number,
(case :if-unbound NIL),
compare_pred,

< 1
.•require-jf
(equal

det'wh)

{a

SPEC

■.demon

(assert 'type entity evar)

entity, evar,

(det :if-unbound 'some),
number, case,

(countp :if-unbound 'plus)

PREMODS
entity, case, evar,

(selected.attrs :if-unbound NIL)

| [?| | ENTITY-PREMOD entity, case, evar | \

•.constraint
(cond

ENTITY-SET-N
((equal case 'subj) (not (null v_subj)))
((equal case 'obj) (not (null v_obj)))
(t t))

entity, v_subj, v_obj, countp, number

0 POSTMODS

entity,

number,

selected.attrs

evar

FINISH
(root-cat

:init 'NP),

leftmost-vertex-id

Figure 7.5: A Grammar Rule on NP

CHAPTER- 7. GRAMMAR FORMALISM FOR CHOICE GENERATION 74

Initialize Chart Extend Chart

s_zx
Collect LMDs

I
Match Lexicon with LMDs

I
Organize Choices for Presentation

I
Prompt User

Figure 7.6: Control Flow of Choice Generation Process

The NP rule of Figure 7.5 illustrates the utility of this decoration in pruning dead-

end choices. The constraint predicate attached to the preterminal ENTITY-SET-N

states that only nouns whose v_subj (v_obj) is not null are presented as menu choices

for constructing a subject (an object) NP.

7.5 Control Flow of Choice Generation

The left-to-right incremental query construction in Kaleidoscope fixes the way that

active and inactive edges are created on the chart. Figure 7.6 shows the overall control

flow of choice generation.

1. Initialize Chart: When the user starts a query, the system initializes the chart.

This chart initialization involves top-down activation of grammar rules starting

CHAPTER 7. GRAMMAR FORMALISM FOR CHOICE GENERATION 75

RecursiveRuleApply (cat binding vertex parentEdge)
begin
if cat is a preterminal symbol

then CreateActivePreterminalEdge (cat binding vertex parentEdge)
;; The choice set is computed from the collection of active preterminal edges at vertex.

else begin
R <— MatchRules (cat binding)
for each rule € R

do begin
edge *— CreateNewActiveEdge (rule binding vertex parentEdge)
rhs <- GetRuleRHS (rule)
S <— GetSequenceSet (rhs edge)
;; If rhs begins with one or more optional sequences, the cardinality ofS> 1.

for each seq £ S
do begin
(catchild, bindingchild) <— GetFirstTerm (seq edge)
RecursiveRuleApply (catchild bindingchild vertex edge)
end do

end do
end else
end.

Figure 7.7: Recursive Top-Down Procedure

CHAPTER 7. GRAMMAR FORMALISM FOR CHOICE GENERATION 76

ExtendChart (inactive vertex)
begin
if EdgeSymbol (inactive) is the start symbol

then declare inactive is complete at vertex.
;; This enables the choice "RUN QUERY."

P *— GetParentEdges (inactive)
for each parent G P

do begin
S *— GetRemainingSequenceSet (parent inactive)
for each seq £ S

if seq is null
then inactiveparent <— InactivateActiveEdge (parent inactive)

ExtendChart (inactiveparent vertex)
else begin

extendedparent <— ExtendActiveEdge (parent inactive)
(catjvexu bindingNext) «— GetFirstTerm (seq parent)
RecursiveRuleApply (cat^ext bindingnext vertex parent)

end else
end begin

end.

Figure 7.8: Recursive Bottom-Up Procedure

CHAPTER 7. GRAMMAR FORMALISM FOR CHOICE GENERATION 77

from the start symbol S. For example, given a top-level rule S —* NP VPS, the in-

terpreter creates new active edges for this rule and the rules on NP, the first RHS

symbol. This process applies to each of the rules on NP and continues recursively

until preterminal categories are met. The interpreter assumes no left recursion

in grammar. (Any grammar with left recursion can be transformed into an

equivalent grammar without left recursion.) The procedure RecursiveRuleAp-

ply presented in Figure 7.7 captures the process of this top-down recursive rule

activation.

2. Collect LMDs: The menu choice set is computed from active preterminal edges

on the current vertex. Once chart initialization is completed, the choice gener-

ator collects a list of lexicon match descriptors (LMDs), one from each active

preterminal edge on the current vertex. An LMD defines three slots:

(a) A category symbol.

(b) A feature binding constraint.

(c) An optional constraint predicate derived from :constraint decoration.

3. Match Lexicon: For each LMD, the choice generator collects the lexicon entries

that unify with the given feature binding constraint. If the LMD contains a

constraint predicate, the choice generator further filters matched entries with

this predicate.

4. Organize Choices for Presentation: The collected lexicon entries are regrouped

by their menu windows. Each choice string may have multiple preterminal

active edges as its source. A choice maintains this source information. Hierar-

chically organized lexicon entries need special treatment at this step to avoid

presentation of choices with different display strings but with identical feature

bindings after unification. Consider the LMD whose category specification is

ENTITY-SET-N and that includes {entity = Book} as a part of its feature bind-

ing constraint. The following lists matched choices with the resultant binding

of entity:

CHAPTER 7. GRAMMAR FORMALISM FOR CHOICE GENERATION 78

"references" {entity = Book]

"books" {entity = BooA'}

"(authored) books" {entity = AuthoredJBook}

It is unnecessary to present the seemingly general choice "references" to the

user when the entity set that it refers to is identical to the entity set that the

choice "books" does.

5. Prompt User: Collected choices are presented on the menu awaiting the user's

selection.

6. Extend Chart: The user's choice selection adds a new vertex to the chart.

Inactive edges are created for the source preterminal edges of the selected choice.

These inactive edges in turn inactivate or extend other active edges in the chart.

The procedure ExtendChart in Figure 7.8 captures this bottom-up process. The

top-down procedure RecursiveRuleApply is called in this process to create new

set of active preterminal edges. When this step is complete, proceed to the step

2.

7.5.1 Dynamics of Chart Manipulation

The major event for the interpreter to monitor is creation of inactive edges immedi-

ately on the right of active edges. When a new active edge is instantiated on the chart

for a grammar rule, it keeps the information about which active edges are awaiting

its inactivated version. When the inactivated version of this active edge is created

later, the procedure ExtendChart knows which active edges to consider for extension.

To illustrate the dynamics of extending the chart, let a* be an active edge awaiting

the instantiation of an inactive edge labeled with s, and i*i be such an inactive edge

immediately on the right of a^. Instead of modifying the active edge a* to subsume

the inactive edge i3i, another active edge ajt+i, if the active edge has additional

constituents to be subsumed, or an inactive edge iak otherwise, is created. In either

case, the new edge extends the active edge a^ to subsume the inactive edge isx. Both

active and inactive edges may be created if an optional sequence is the only remaining

CHAPTER- 7. GRAMMAR FORMALISM FOR CHOICE GENERATION 79

sequence. The active edge ak is reused when is2, another inactive edge labeled with

s, is created later immediately on the right of ak. This makes it possible for multiple

hypotheses to be pending at a time.

An edge maintains a binding list of feature variables as well as a reference to the

grammar rule. When a child rule is fired by an active edge representing the parent

rule, unification is applied to the :INIT bindings of the child rule's LHS feature

variables and the corresponding bindings inherited from the parent edge. If this

succeeds, a new active edge is created for the child rule with its feature variables

initialized to the result of unification. The active edge is not created if the unification

fails or if the :abort-if condition of the child rule is true. Two decorations :abort-

if and -.demon are evaluated later on whenever a new version of the active edge is

created to subsume an inactive edge immediately on its right. The :on-exit decoration

is evaluated only when an inactive edge is created. When an inactive edge is created,

its feature variable binding list is passed up to a new version of the parent edge. In

this process, the binding of the child edge overrules the existing binding of the parent

edge.

7.6 Grammar Transformation

Table 7.3 shows the verb forms uncommon in linguistics. A verb of ppby form re-

sults from concatenating a verb of pp form and "by." Similarly, a verb of beppby

form results from concatenating a BE auxiliary verb, a verb of pp form, and "by."

This concatenation is motivated to reduce the number of steps required to create

passive verb phrases. Note that the grammar resulting from concatenation is both

syntactically and semantically equivalent to the original grammar.

Definition: Two grammars are equivalent if they generate the same set of strings,

and the sets of derivations built on each string have the same cardinality and the

same set of possible semantic interpretations.

Definition: Two preterminals in a grammar are adjacent if there exist derivations

placing them next to each other.

Let A, B be adjacent preterminals in a rule on X, say,

CHAPTER 7. GRAMMAR FORMALISM FOR CHOICE GENERATION 80

Model Concept Preterminal Category Exemplary Choices

Attribute WHOSE-ATTR-N-BE whose name is
Subordinate Entity WHOSE-POSSED-SET-N whose books

Table 7.4: Alternative Preterminal Categories: Examples

X -*...A,B...

Let Ai and Ai be new preterminals dividing the lexicon entries in the category

A into two disjoint subsets, and A\B be a new preterminal containing the result of

concatenating a £ A\ and b € B with all possible permitted combinations. Then the

above rule is split into

X-*...AXB...

X A2,B,

If A2 is null, we say that the concatenation is total. Otherwise, it is called par-

tial. This binary concatenation is applicable to an arbitrary number of symbols in

sequence.

Table 7.4 shows two additional examples of concatenation useful for reducing the

number of steps. In the next chapter, we formulate a condition when this type of

concatenation is desirable using a simple cost model of user query production.

7.7 Summary

This chapter has introduced a flexible grammar formalism for choice generation in

Kaleidoscope. It extends context-free grammar in two ways: (1) augmentation of sym-

bols with feature attributes and (2) attachment of procedural decoration to grammar

rules. The first captures the context of constituent categories, while the latter pro-

vides the power of expressing arbitrary constraints and actions in grammar. The

CHAPTER 7. GRAMMAR FORMALISM FOR CHOICE GENERATION 81

choice generator uses the chart as a run-time data structure for representing the par-

tial query state. The parallel and monotonic nature of the chart-based grammar

interpretation makes the chart suitable for keeping track of feature bindings. Kalei-

doscope's incremental choice generation fixes the way that active and inactive edges

are created on the chart. The detailed grammar interpretation process has been de-

scribed in this chapter. Finally, we have discussed possible ways of transforming a

grammar while maintaining the expressive power of the original grammar.

Chapter 8

Quantitative Dimension of

Interface Design

The direct public cost of schooling a child for thirteen years, from
kindergarten through twelfth grade is over $20,000 today (and for
the class of 2000, it may be closer to $30,000). A conservatively
high estimate of the cost of supplying each of these children with
a personal computer with enough power for it to serve the kinds of
educational ends described in this book, and of upgrading, repair-
ing, and replacing it when necessary would be about $1,000 per
student, distributed over thirteen years in school. Thus "computer
costs" for the class of 2,000 would represent only about 5 percent
of the total public expenditure on education, ...

- Seymour Papert, MINDSTORMS (1980)

A choice in user interface design potentially affects the performance of end users.

Design of a new grammar-driven menu interface is not an exception. A framework

for systematic selection of design choices is desired for the grammar-driven menu in-

terface. The normative design principle, which emphasizes the designer's articulation

and evaluation of alternative designs [62], is illuminating. To provide a quantitative

basis of design evaluation, we present a simple cost model of user query production

when using the grammar-driven menu interface.

82

CHAPTER 8. QUANTITATIVE DIMENSION OF INTERFACE DESIGN 83

8.1 Motivation

The grammar design in Kaleidoscope decides two aspects of the interface:

1. A range of syntactic alternatives for a given functionality.

2. The granularity of query constituents presented as choices.

Alternatives exist for each of these aspects, and a design choice potentially affects the

performance of end users. We illustrate this point for the entity set restriction via

attributes and subordinate entity sets.

Syntactic Coverage An entity set may be restricted via either prenoun or post-

noun modifiers:

• "DATABASE" in "DATABASE books" (a prenoun modifier).

• The clause following "books" in "books whose keyword is DATABASE" (a

postnoun modifier).

The postnoun modifier alone suffices to provide the functionality of entity set restric-

tion. However, the prenoun modifier alone does not because some attributes such as

Book's id are unqualified for the prenoun modifier. The prenoun modifier is not an

alternative but an extraneous syntactic feature.

The NLMenu grammar for database access favors minimizing the space of user

choices, thus leaving out the prenoun modifier feature. However, as the query Ql

illustrates, this feature enables the user to express concise queries. The negative side

of including an extraneous feature such as the prenoun modifier in the syntax is that

choices based on such a feature incur a pure overhead to the user who is not interested

in selecting them.

Granularity of Constituent Selection The NLMenu grammar for database ac-

cess in general takes a large constituent unit as a single menu choice. This has two

advantages. First, it reduces the number of steps necessary to express a query. Sec-

ond, a choice is more likely to be rich in its semantic content. For example, NLMenu

CHAPTER 8. QUANTITATIVE DIMENSION OF INTERFACE DESIGN 84

presents "whose book keyword is" as a single choice for leading a postnoun modifier

clause. In contrast, INGLISH and NLParse/NLGen adhere to word-by-word presen-

tation. In these systems, "whose," "keyword," and "is" are presented as separate

choices in a sequence.

Norman's Slogan In making design choices, one of Norman's slogans in the user

interface design [48] is instructive:

There are no simple answers, only tradeoffs. A central theme of our

work is that, in design, there are no correct answers, only tradeoffs. Each

application of a design principle has its strength and weakness; each prin-

ciple must be interpreted in a context. One of our goal is to make the

tradeoffs explicit.

To follow this slogan, we need to develop a cost model for design evaluation. In

the next section, we devise a simple cost model of user query production based on

previous human factors experiments on menu systems.

8.2 Cost Model of User Query Production

The cost of user query production is the sum of the cost incurred by the menu states

encountered by the user:

t=0 t'=0

where /: the number of steps required to create a query,

Mil machine-dependent cost at the i'-th step,

F: user fixed cost at each step,

Si', user search cost.

All costs are measured in elapsed time.

CHAPTER 8. QUANTITATIVE DIMENSION OF INTERFACE DESIGN 85

8.2.1 Non-search Cost

The machine-dependent cost may vary by the state of the partial query, the number of

grammar rules applicable for extending the partial query, and the number of choices

to display. This cost is scalable by the MIPS of the machine. While we can actually

measure M,- over the machine, we assume a nominal value M for M,- for the simplicity

of cost computation. For the XEROX 1186 lisp machine which runs at 0.75 MIPS,

M is roughly 7 ([3 - 11]) seconds for the bibliographic domain. For the 15 MIPS

machine, this scales down to 0.35 ([0.15 - 0.55]) second. For an ideal machine with

the infinite execution speed, M = 0.

The fixed cost F accounts for the user's nonvisual search cost incurred by various

perceptual and motor actions at each step, such as moving the mouse to the target

choice and clicking the mouse. F was measured approximately 1.2 seconds by previous

human factors experiments [11, 10].

8.2.2 Search Cost

A model of search cost should capture:

• As users get familiar with the system, they locate intended items without the

exhaustive search [10].

• The user often backtracks previously selected choices. We suspect that the more

restrictive a grammar is, the more often users backtrack choices.

We model the search cost at each step as follows:

Si = a(l + p){nis + ß(m - nis)}

where n,-: the total number of choices at the i—th step

riis'- the number of choices in the selected menu window at the i—th step

a: the unit cost incurred per choice

0 < ß < 1: the user inexperience factor

p > 0: the loss factor caused by the user's backtracking.

CHAPTER 8. QUANTITATIVE DIMENSION OF INTERFACE DESIGN 86

We assume that each choice item incurs the same cost regardless of its string length.

The constant a represents this unit cost. In choosing the target item, we also assume

that other choices in the selected menu window incur the same cost as the selected

item. This gives the minimal cost proportional to n:i5, the number of choices in the

selected menu window. The case of maximal cost occurs for the user's exhaustive

search. The inexperience factor ß parametrizes the cost between two extremes. The

closer ß is to 1, the higher the search cost is. The parameter p is the loss factor

that accounts for the relative portion of choices that are consumed by the user's

backtracking. We assume that p is dependent on a grammar. This leads us to define:

a' = a{\+p)

The value of a

We estimate the unit cost a by combining the results of two human factors experi-

ments on the menu interface.

1. Card assumed a nonsystematic model of choice search for the fixed-size menu

and measured the distribution function of search time [10]. The nonsystematic

model assumes that the user has no means of keeping track of where the user

has searched, and thus the user's choice search time t follows an exponential

distribution:

-mt F(t) = 1 - exp

m

Here F(t) and E(t) denote the cumulative distribution function and the expec-

tation of the search time, respectively. The constant m is determined by the

number of saccades made for each menu selection and the probability of finding

a target item during each eye fixation. For the menu of n = 18 items, Card

measured m « 1.2.

CHAPTER 8. QUANTITATIVE DIMENSION OF INTERFACE DESIGN 87

2. Perlman measured the effect of menu length on the user's search time [51]. The

result of his experiment suggests that the search time is a linear function of the

number of choices.

By combining the results of these two experiments, we compute a as follows:

m n 1.2 lo

In the rest of this chapter, we illustrate the use of the cost model developed in

this section.

8.3 An Illustrative Example: Effect of Concate-

nation

An equivalent grammar results from concatenating choices in adjacent preterrninal

categories. This section, taking the example of postnoun modifiers, formalizes the

effect of concatenation on the cost of user query production, and formulates the

condition under which concatenation is desired.

8.3.1 Problem

Let AGi be a portion of the grammar with the following rules on postnoun modifiers:

POSTMOD -► WHOSE ATTR-N-BE ATTR-MOD-EXPR

POSTMOD -* WHOSE POSSED-SET-N VPSPP

These rules prescribes the user's construction of postnoun modifiers for restricting

entity sets with its attributes and subordinate entity sets, respectively.

Let AG2 be an equivalent grammar of AGi with the following rules on POSMOD:

POSTMOD -* WHOSE-ATTR-N-BE ATTR-MOD-EXPR

POSTMOD -> WHOSE-POSSED-SET-N VPSpp

CHAPTER 8. Q UANTITATIVE DIMENSION OF INTERFA CE DESIGN 88

KALEIDOSCOPE Query Status Window
WROTE WHICH BOOKS

3v3 Command Wh-Word Verb
RUN QUERY

RESTART
RETRACT ►
CHANGE ►

EXIT

WHEN

Bfflffi
AND

THAT mm
■I

PUBLISHED BY
WRITTEN BY

H
BEFORE

BETWEEN
IN
ON

SINCE

KALEIDOSCOPE Querv Status Window
WHO WROTE WHICH BOOKS WHOSE

RESTART
RETRACT ►
CHANGE ►

EXIT EDITION IS
ID IS

KEYWORD IS
LENGTH IS

PUBLISHED YEAR IS
TITLE IS

Figure 8.1: Two Consecutive Menu States Based on AG] (No Concatenation)

CHAPTER- 8. Q UANTITATIVE DIMENSION OF INTERFACE DESIGN 89

.ALEIDOSCOPE Query Status Window
WHO WROTE WHICH BOOKS

iand Wh-Word Subordinate Noun Header
RUN QUERY

RESTART
RETRACT >
CHANGE ►

EXIT

BEFORE
BETWEEN

IN
ON

SINCE

WHOSE EDITION IS
WHOSE ID IS

WHOSE KEYWORD IS
WHOSE LENGTH IS

WHOSE PUBLISHED YEAR IS
WHOSE TITLE IS

Figure 8.2: Menu State Based on AG2 (Concatenated Grammar)

The preterminal category WHOSE-ATTR-N-BE is a category formed by concatenating

WHOSE and ATTR-N-BE in AGi. Similarly, the category WHOSE-POSSED-SET-N is

formed by concatenating WHOSE and POSSED-SET-N. The following illustrates the

content of the lexicon corresponding to two grammars:

Grammar Category Example String

Ad WHOSE "whose"

ATTR-N-BE "title is"

POSSED-SET-N "publishers"

AG2 WHOSE-ATTR-N-BE "whose title is"

WHOSE-POSSED-SET-N "whose publishers"

Figure 8.1 shows two consecutive menu states based on the grammar AGi while

Figure 8.2 shows a corresponding state based on the grammar AG2. This example

shows that choice concatenation reduces the number of steps necessary to formulate

queries matching certain patterns, but also increases the number of choices for other

paths. For example, if the user is selecting a preposition, the choices in the windows

"Subordinate Noun Header" and "Property Modifier Header" create a pure overhead.

CHAPTER 8. QUANTITATIVE DIMENSION OF INTERFACE DESIGN 90

8.3.2 Tradeoff Formulation

Let Ppmod be the probability of choosing a postnoun modifier clause after selection

of a noun for representing an entity set, npmod be the total number of the selected

noun's subordinate entities and properties, and nr be the number of choices that are

not affected by AG,'s (i = 1,2). For the menu state shown in Figures 8.1 and 8.2,

ttpmod = 8 and nr = 15 (5 system commands, 1 wh-word, 2 connectives, 2 verbs, and

5 prepositions).

We consider the case of ß = 1 (exhaustive search). The case of ß = 0 is trivial;

the concatenated grammar always wins. Let

AC2 = (M + F) + a'(npmod + np).

Then AC2 is the cost incurred by the menu state of Figure 8.2. The comparable cost

incurred by the menu states of Figure 8.1 is given by:

Ad = (M + F) + a'(nr + l)

+ Ppmod {(M + F) + a'npmod}.

The right-hand side of the first line accounts for the cost incurred by the first menu

state, while the second line accounts for the cost by the second menu state. The latter

is weighed by the probability of choosing "whose" from the first menu state.

Concatenation is desirable if ACi — AC2 > 0:

ACi - AC2 = o'{(nr + 1) + Ppmodftpmod - («pmod + "r)}

+ Ppmod (M + F)

> 0

or
a'(npmod - 1)

Ppmod -> a'npmod + (M + F)

Interpretation

Notice that this inequality suggests that for slow machines, where M is large, concate-

nation is desirable even with a low probability of choosing postnoun modifier clauses.

CHAPTER 8. QUANTITATIVE DIMENSION OF INTERFACE DESIGN 91

To illustrate, we substitute the parameters npmod = 8,nr = 15, p = 0, F = 1.2 and

vary the value of M:

M = 0: Ppmod > 0.66

M = 0.7: Ppmod > 0.58

M = 7: Ppmod > 0.27

8.4 Summary

This chapter has presented a cost model of the user's query production and illustrated

how this model can guide the systematic choice of design options. The proposed model

may be used for building an adaptive interface system. Such an interface suggest the

user to switch to an alternative grammar design based on the statistics on the actual

interface usage and incurred cost.

Chapter 9

Conclusion

Formulating database queries is a cognitively demanding process. In the absence of

proper guidance from the interface, the user is burdened to learn and recall precisely

the query language and the underlying database. This dissertation has addressed

relieving the user of this cognitive burden as the prime function of a cooperative query

interface, and presented Kaleidoscope's approach to the design of such an interface

system.

9.1 Kaleidoscope's Interface Approach

Kaleidoscope provides an English-like query language for users to phrase queries with

restricted yet common English expressions. A grammar-driven menu system bridges

the inevitable mismatch between this language and the user's language. By generating

legitimate EnQL constituents step by step as menu choices, this matching device

relieves casual database users of learning and recalling the restrictions on EnQL and

the conceptual coverage of a specific database. Users formulate queries by recognizing

choices coming one after another that match their mental queries. The system uses

its knowledge actively to guide users to create unambiguous and meaningful queries.

92

CHAPTER 9. CONCLUSION 93

9.2 Central Theme: Model-Based Approach

Kaleidoscope's interface approach reduces the design of a limited language interface to

a tractable engineering problem. As the interface takes the initiative in user-system

communication, it is possible to apply the normative design principle. The design

goal is explicitly represented and alternative designs are evaluated.

The central theme of this thesis is that a data model plays a critical role in

designing a normative query interface system, as a query language essentially conveys

the underlying conceptualization of data to the user. The design of grammar, lexicon,

and query translator follows a well-defined data model. First, grammar design focuses

on unambiguous, meaningful realization of references to model concepts. Then, a set

of domain-independent procedures is defined for automatically generating lexicon

from the schema and a collection of English terms referring to the schema terms. A

data model also serves as the basis of implementing a domain-independent mapping

to the underlying storage model in the query translator. Thus the creation of an

interface over a specific database involves only defining schema terms and English

references to such terms. This way of using the data model in Kaleidoscope differs

significantly from the way that the model is used in the conventional NLI design,

in which the model assists the linguistic processor to assign possible semantics to

arbitrary, unconstrained queries.

9.3 Technical Contributions

Data Model for EnQL The major technical contribution of this dissertation is a

semantically rich data model for supporting the generation of legitimate English con-

stituents on the menu. As the grammar defines the mapping between the data model

and a query language, the simplicity of this mapping has been a primary concern

in defining the conceptual primitives. The model defines entities, relationships, and

relationship modifiers as basic concepts corresponding to noun phrases, verb phrases,

and adverb phrases, respectively. ISA hierarchies organize these concepts by similar-

ity and difference. Kaleidoscope uses this hierarchical information in various ways.

CHAPTER 9. -CONCLUSION 94

The model introduces I-OVERLAP to represent the relationship among inherently

overlapping entity sets. I-OVERLAP avoids the need for explicitly representing entity

sets with multiple inheritance, thus reducing the total number of entity sets in the

schema. Finally, the model supports the definition of two derived concepts: subor-

dinate entities from relationships and derived attributes from relationship modifiers.

They are useful for referring to source concepts concisely.

EnQL, based on the rich set of conceptual primitives, provides users with various

degrees of freedom in query formulation. To measure the gain in the user's benefit of

using EnQL, we have relied on a syntactic measure - the number of tokens required

to express a query. When SQL is taken as a reference, EnQL queries are significantly

more concise than their SQL translations, often by an order of magnitude.

Cost Model for Evaluation of Design Alternatives To provide a complete

normative design framework, this dissertation has presented the quantitative dimen-

sion of grammar-driven menu interface design. We have constructed a cost model of

user query production from the result of previous human factors experiments, and

illustrated the utility of this model for evaluation of alternative grammar designs.

Flexible Grammar Formalism for Choice Generation In developing a gram-

mar formalism for incremental constituent generation, its flexibility in capturing con-

straints, both linguistic and heuristic, has been a prime concern as well as the gen-

erality of grammar. Following other grammar formalisms for natural language pro-

cessing, Kaleidoscope extends context-free grammar by augmenting category symbols

with feature attributes. In addition, it provides a few types of procedural decoration

for attachment to augmented grammar rules. Procedures in these decorations are ex-

ecuted when matching events occur during grammar interpretation. This procedural

decoration gives a full degree of flexibility in enforcing the integrity of a partial query

and interfacing with the nonlinguistic part of the system.

Engineering Solution to Big Menu Problem The explosion of choices is often

cited as the major problem in applying grammar-driven menu guidance to a large

CHAPTER 9. CONCLUSION 95

application domain. We have articulated a set of heuristics useful for alleviating this

problem:

• Restrict the initial set of choices to a small set of words loaded with multiple

semantics, such as wh-words.

• Activate domain-specific semantics to prune irrelevant choices in the choice

generation process.

• Use abstraction hierarchies (ISA and Part-of) to cluster related choices under

a single choice.

• Break a preterminal category formed by concatenating preterminal categories

if applicable. This may increase the number of steps to construct a query. The

cost of user query production is useful for formulating a trade-off condition when

it is desirable.

• As the last resort, construct a subset lexicon based on a subset view of schema.

9.4 Future Research

This research can be extended in several directions.

Beyond Conjunctive Queries This research restricted EnQL to the conjunctive

class of queries. This restriction enabled us to focus on the model-based approach

without being involved in the sophisticated linguistic issues such as quantifiers and

negated verbs. We expect to extend both the surface and internal query languages

to include such features. The capability of the underlying query processing system

needs to be extended accordingly.

Human Factors Experiment Controlled measurement of the end user's perfor-

mance with grammar-driven menu system is a challenging work. For this experiment

to be meaningful, the current implementation of Kaleidoscope needs to be ported on

CHAPTER 9. CONCLUSION 96

fast machines. The state of hardware and software technology is mature enough to

provide subsecond update in the menu.

While previous human subject experiments involved two styles of languages [56,

73, 33], we expect to compare four cases resulting from combining two types of inter-

face and two styles of language:

Menu-Guided

EnQL

Menu-Guided

SQL

Conventional

NLI

Conventional

SQL

Through these experiments, we expect to measure semantic gains such as the

user's conceptual freedom in expressing a query, and improve the cost model of user

query production.

Towards A Multilingual Interface English is the model language considered

throughout this dissertation. We expect to test the universality of Kaleidoscope's

interface approach and its EnQL data model against other languages. Especially, we

are interested in languages whose origin is different from English, such as Korean,

and Japanese.

Application to Other Domains The scope of this work has been guiding the

user's query formulation. While this dissertation has taken examples from biblio-

graphic and academic database applications, its approach is not bound to a particular

application domain. In the future, we expect to apply Kaleidoscope's approach to

other large-scale applications such as integrated design and manufacturing databases

[27, 50].
Grammar-driven menu guidance is applicable to other problem domains. Acquisi-

tion of production rules is one of such domains. Kaleidoscope's model-based approach

is also applicable to this problem domain. The generation of domain-specific vocab-

ularies from the concepts in the knowledge base can be automated.

Appendix A

Complete Sequence of

97

APPENDIX A. COMPLETE SEQUENCE OF KALEIDOSCOPE STATES 98

Kaleidoscope States

Initial Screen State

System Messaae Window
Exit Kaleidoscope system.

KALEIDOSCOPE Query Status Window

Sys Command Wh-Word

| 02I] WHEN
WHERE

WHO
\

Determiner

WHICH

N = 1

APPENDIX A. COMPLETE SEQUENCE OF KALEIDOSCOPE STATES 99

N = 2

KALEIDOSCOPE Query Status Window
WHO

Sys Command Verb
RESTART
RETRACT
CHANGE

EXIT

ARE/IS
EDITED

RECEIVED PHD
RECOMMENDED

REVIEWED
REVISED

SUBMITTED
| WROTE ■

N = 3

KALEIDOSCOPE Query Statu s Window
WHO WROTE

Sys Command Determiner Concept Noun
RESTART
RETRACT ►
CHANGE ►

EXIT

WHICH REFERENCES ►
"\ Specific Entity

<REFERENCE> ►
Specific Possessive

<PUBLISHER>'S
<RESEARCH INSTITUTED
Attribute Qualifier

<CONFERENCE>
<EDITION>

<JOURNAL>
<KEYWORD>

<LENGTH>
<NUMBER>

<PUBLISHED YEAR>
Noun Qualifier

TECHNICAL REPORT
THESIS ►

APPENDIX A. COMPLETE SEQUENCE OF KALEIDOSCOPE STATES 100

N = 4

KALEIDOSCOPE Query Status Window
WHO WROTE WHICH

;ys Command Concept Noun
RESTART
RETRACT
CHANGE

EXIT

REFERENCES
Possessive Specifier

PUBLISHER'S
RESEARCH INSTITUTE'S

Attribute Qualifier
<CONFERENCE>

<EDITION>
<JOURNAL>

<KEYWORD>
<LENGTH> \
<NUMBER>

PUBLISHED YEAR>
Noun Qualifier
TECHNICAL REPORT

THESIS ►

APPENDIX A. COMPLETE SEQUENCE OF KALEIDOSCOPE STATES 101

N = 4: Pop-Up Menu for Keyword Value Selection

<KEYWORD>
DATABASE ¥
CooperativeMnterface ¥
Human Factors
NLP
Names and Acronyms ►
«ABORT»

N = 4: Extended Pop-Up Menu State

<KEYWORD>
DATABASE
Cooperative Interface»
Human Factors
NLP
Names and Acronyms ►
«ABORT»

DBDdist
DBDintro
DBDkb
DBDIogic
DBDmodel
DBDnat
DBDobject
H.liJ.ll'^M
DBDtheoryl
EIS

APPENDIX A. COMPLETE SEQUENCE OF KALEIDOSCOPE STATES 102

N = 5

KALEIDOSCOPE Query Status Window
WHO WROTE WHICH 'DATABASE'

Sys Command Concept Noun

REFERENCES RESTART
RETRACT ¥
CHANGE >

EXIT

Attribute Qualifier
<CONFERENGE>

<EDITION>
<JOURNAL>
<LENGTH>
<NUMBER>

<PUBLISHED YEAR>
Noun Qualifier

THESES ►
TECHNICAL REPORTS
JOURNAL ARTICLES
(AUTHORED) BOOKS

CONFERENCE PAPERS

TECHNICAL REPORT
THESIS

APPENDIX A. COMPLETE SEQUENCE OF KALEIDOSCOPE STATES 103

N = 6

KALEIDOSCOPE Query Status Window
WHO WROTE WHICH 'DATABASE' BOOKS

Sys Command Wh-Word Verb
RUN QUERY 1 WHEW 1 PUBLISHED BY 1

RESTART
RETRACT ►
CHANGE ►

EXIT

| WRITTEN BY-^ Connective
AND

THAT
WHOSE

►

Preposition
BEFORE

BETWEEN
IN

SINCE

N = 7

KALEIDOSCOPE Query Status Window
WHO WROTE WHICH 'DATABASE' BOOKS PUBLISHED BY

Sys Command Determiner Concept Noun
RESTART
RETRACT ►
CHANGE >

EXIT

WHICH PUBLISHERS
:pecific Entity

PUBLISHER >
ipecific Possessive

<BOOK>'S

APPENDIX A. COMPLETE SEQUENCE OF KALEIDOSCOPE STATES 104

N = 7: Pop-Up Menu for Publisher value Selection

<PUBLISHER>
CSP
McGraw-Hill
«ABORT»

N = 8

KALEIDOSCOPE Query Status Window
WHO WROTE WHICH 'DATABASE' BOOKS PUBLISHED BY *McGraw-HiT

Svs Command Wh-Word Finish Phrase
(WHIGH 'DATABA RESTART

RETRACT ►
CHANGE ►

EXIT

BEFORE
BETWEEN

IN
SINGE

APPENDIX A. COMPLETE SEQUENCE OF KALEIDOSCOPE STATES 105

N = 9

;vstem Messaae Window
since (publishing time;

KALEIDOSCOPE Query Status Window
WHO WROTE (WHICH 'DATABASE' BOOKS PUBLISHED BY 'McGraw-Hill')

Svs Command Wh-Word
RUN QUERY

RESTART
RETRACT ►
CHANGE >

| WHEN
Connective

| AND
EXIT Preposition

BEFORE
BETWEEN

IN

N = 10

i&Mui.i.m.idjaiEH 'tatus Window
WHO WROTE (WHICH 'DATABASE' BOOKS PUBLISHED BY 'McGraw-Hill')
SINCE

Sys Command Determiner Concept Noun
RESTART
RETRACT ►
CHANGE ►

EXIT

| WHICH | PUBLISHED TIMES |
Specific Entity

1 PUBLISHED TIME> 1

APPENDIX A. COMPLETE SEQUENCE OF KALEIDOSCOPE STATES 106

N = 10: Pop-Up Menu for Published Year Selection

PUBLISHED TIME>
1982
1983 \
1984
1986
1988
«ABORT»

APPENDIX A. COMPLETE SEQUENCE OF KALEIDOSCOPE STATES 101

Final Screen State

System Messaae Window

KALEIDOSCOPE Query Status Window

WHO WROTE (WHICH 'DATABASE' BOOKS PUBLISHED BY 'McGraw-Hill')
SINGE 1982

Sys Command Connective
RUN QUERY

RESTART
ESEES

AR.ID

17
170
111
112

W| AND

sataasas
AR.NAME

EHEEäsEHEEE

Wiederhold, Gio
Ceri, Stefano
Pelagati, Giuseppe
Korth, Henry F
Silberschatz, Abraham
Wiederhold, Gio

BK.ID
=isy»iatfHftHdJAWJgiiiMdiai.igE3a

3006
3012
3012
3013
3013
3014

BK.TITLE
Database Design
Distributed Databases
Distributed Databases
Database System Concepts
Database System Concepts
File Organization and Da

Appendix B

Tabular Representation of

Knowledge

This part of appendix shows the definition of tables for representing Kaleidoscope's

knowledge structure. Connection types in the structural data model [75] are used to

denote the relationships among these tables in the graphical schema representation.

108

APPENDIX B. TABULAR REPRESENTATION OF KNOWLEDGE 109

B.l Graphical Schema by Related Table Groups

B.l.l Gl: Entities, Relationships, and Relationship Modi-

fiers
entity kbjjverlap

overlapping_entity

die noun

kb_possessive

die verb form

APPENDIX B. TABULAR REPRESENTATION OF KNOWLEDGE 110

B.1.2 G2: Entities, Attributes, and Their Domains

kb_db_join_edge

paren

kb_entity

id

join

kb_entity_dbjoin

entity
parent

kb_entity_attr
domain domain

kb attr domain name

entity, attr

entity, attr

domain

domain

kb_entity_derived_attr

lex kwd item

string

comparator

kb_comparator

kb_domain_dom parator

B.1.3 G3: Tables for Lexicon Definition
lex_menu_window

i
' id

menu

lex_item lex_preterminal

:

id

id featui e

cat

cat

— —

feature

APPENDIX B. TABULAR REPRESENTATION OF KNOWLEDGE 111

B.1.4 G4: Tables for Integrity Constraint Representation

ic literal

name

literal

ic literal def

ic_rule, el_sequence

ic_rule, el_sequence

ic rule rhs el

B.2 Alphabetical Listing of Table Definitions

0. Column Definition Format:

attribute type note

1. dicjioun: Gl

1 singular varchar (64) e.g., "(authored) book"

2 plural varchar (64) e.g., "(authored) books"

3 countp char (5) {"plus" "minus"}

2. dic_prep: Gl

1 string varchar (64) e.g., "since"

2 pred varchar (8) e.g., "gt"

3. dic_verb_form: Gl

1 string varchar (64) e.g., "were written by"

2 form char (6) e.g., "beppby"

3 num char (2) e.g., "pl"

APPENDIX B. TABULAR REPRESENTATION OF KNOWLEDGE 112

4. ic_cluster: G4

1 name varchar (64) a collection of similar rules

2 note varchar (255)

5. icJiteral: G4

1 name varchar (64) e.g., "teach"

2 attribute-count smallint

6. icJiteraLdef: G4

1 literal varchar (64) *- icJiteral.name

2 attribute varchar (64) e.g., "instructor"

3 sequence smallint relative position

4 note varchar (255) explanation string

7. ic_rule: G4

1 name varchar (64) e.g., "univ-cs400-constraint"

2 message varchar (255) a message to user

3 type char (10)

4 cluster varchar (64) *- iccluster.name

8. ic_rule_el_component: G4

1 ic_rule varchar (64) *- ic_rule.name

2 position char (1) {"1" "r"}

3 el-sequence smallint element sequence number

4 comp_sequence smallint component sequence number

5 attribute varchar (64) —> icJiteraLdef.attribute

6 expression varchar (255) value

9. ic_rule_lhs_el: G4

APPENDIX B. TABULAR REPRESENTATION OF KNOWLEDGE 113

1 ic_rule varchar (64) *- ic_rule_el_component.ic.rule

2 eljsequence smallint {"]" "r"}

3 eLvar varchar (64) an 0PS5 element variable

4 sign smallint {"+" "-"}, postive or negative literal

5 literal varchar (64) —► ic-literal, name

10. ic_rule_rhs_el: G4

1 ic_rule varchar (64) *- ic_rule_el_component.ic_rule

2 el_sequence smallint {"1" "r"}

3 action varchar (64) {"make" "modify" "write" ...}

4 obj varchar (255) a qualified 0PS5 action object

11. kb_attr_domain: G2

1 domain varchar (64) e.g., "pdom.book.title"

2 parent varchar (64) —* kb_attr_domain.domain

3 datatype varchar (64) e.g., "varchar"

4 ref_db_table varchar (64) reference DB table

5 ref_db_field varchar (64) reference DB field

12. kb_comparator: G2

/ comparator varchar (64) e.g., "gt"

2 arity smallint e.g., 2

13. kb_db_join_edge: G2, Implementation of Table 6.2

id smallint

pred varchar (8)

tablel varchar (64)

fieldl varchar (64)

table2 varchar (64)

field2 varchar (64)

APPENDIX B. TABULAR REPRESENTATION OF KNOWLEDGE 114

14. kb_domain_comparator: G2

/ domain varchar (64) *- kb_attr_domain.domain

2 comparator varchar (64) *- kb-comparator.comparator

15. kb_ entity: Gl, G2

1 name varchar (64) e.g., "book"

2 parent varchar (64) —♦ kb.entity.name

3 noun varchar (64) —► dic_noun.singular

4 active_p bit

16. kb_ entity_attr: G2

/ entity varchar (64) *- kb_entity.name

2 attr varchar (64) e.g., "title"

3 position smallint relative column position

4 domain varchar (64) e.g., "dom.reference.title"

5 db_table varchar (64) DB table mapping, e.g., "reference"

6 dbJield varchar (64) DB field mapping, e.g., "title"

7 noun varchar (64) e.g., "title"

8 num char (2) {"sg" "pi"}

9 prenom_p bit / if qualified for prenoun modifier

10 key_attr_p bit 1 if part of key

11 descriptive_p bit 1 if default projection attribute

17. kb_< 2ntity_db_join: G2

1 entity varchar (64) *- kb-entityjittr.entity

2 attr varchar (64) *- kb_entity^attr.attr

3 join smallint —► kb_db_join_edge.id

18. kb_entity_derived_attr: G2

APPENDIX B. TABULAR REPRESENTATION OF KNOWLEDGE 115

1 entity varchar (64) *- kb.entity^attr.entity, e.g. "book"

2 attr varchar (64) *- kb-entity^attr.attr, e.g., "keyword'

3 rel varchar (64) e.g., "author_book"

4 mod varchar (64) e.g., "on_keyword"

5 mocLentity _attr varchar (64) e.g., "string"

19. kb_modifier: Gl

1 name varchar (64) e.g., "onJceyword"

2 parent varchar (64) —> kb_modifier.name

3 wh_adv varchar (64) e.g., "when"

4 entity varchar (64) —► kb.entity.name

20. kb_overlap: Gl

1 entity varchar (64) —» kb.entity.name, e.g., "thesis"

2 overlapping_entity varchar (64) —> kb.entity.name, e.g., "techreport'

21. kb_possessive: Gl

2

rel

possessive_role

3 cardinality

varchar (64)

varchar (4)

char (2)

e.g., "author_book"

e.g., "obj"

e.g., "pi"

22. kb_rel: Gl

1 name varchar (64) e.g., "author.book"

2 arity smallint {l,2},e.g.,2

3 parent varchar (64) —* kb_rel.name, e.g., "author.reference"

4 tense varchar (8) {"past" "pres" "future"}, e.g., "past"

23. kb_rel_entity_role: Gl

APPENDIX B. .TABULAR REPRESENTATION OF KNOWLEDGE 116

1 rel varchar (64) e.g., "author_book"

2 role varchar (4) {"subj" "obj"}, e.g., "subj"

3 entity varchar (64) e.g., "author"

4 polarity char (1) {«+" »."}; PSET/NSET membership

24. kb_rel_modifier: Gl

2

rel

modifier

varchar (64)

varchar (64)

*- kb_rel.name

*- kb_modifier.name

25. kb_rel_role_conn: Gl, Implementation of Table 6.3

1 rel varchar (64) *- kb_rel.name

2 pred varchar (8) /«)) U-^H 1

3 concept1 varchar (64) entity name

4 tablel varchar (64) DB table name

5 fieldl varchar (64) DB field name

6 concept2 varchar (64) entity or modifier name

7 table2 varchar (64) DB table name

8 field2 varchar (64) DB field name

26. kb_view: Subset views of schema concepts

1 concept varchar (64) concept names

2 type varchar (64) {"entity" "rel" "modifier"}

3 view .set varchar (64) unique view name

27. lex_menu_window: G3

1 id varchar (64) e.g., "concept-noun"

2 title varchar (64) e.g., "Concept Noun"

3 width smallint bitmap width of window

4 position smallint relative position of window

APPENDIX B. TABULAR REPRESENTATION OF KNOWLEDGE 117

28. lex_preterminal: G3

1 cat varchar (64) e.g., "entity-set-n"

2 menu varchar (64) —> lex_menu_window.id

3 type varchar (4) domain-dependent or keyword

4 demon .fn varchar (64) default demon fn to be inherited

5 beforeJn varchar (64) before function

6 pivot-feature varchar (64)

29. lex_preterminal_feature: G3

1 cat varchar (64) *- lex.preterminal.cat

2 feature varchar (64) e.g., "entity"

3 position smallint relative position

4 unify _fn varchar (64) special unify function

5 note varchar (255) help string

30. lex_prep_modifier: Gl

1 prep varchar (64) —* dic.prep.string

2 pred varchar (8) —► dic.prep.pred

3 modifier varchar (64) *- kb_modifier.name

4 help varchar (255) a help string

31. lex_verb: Gl

1 verb varchar (64) —► dic_verb_form. string

2 rel varchar (64) *- kb_rel.name

3 form char (6) —* dic_verb_form.form

4 num char (2) -4 dic.verbJorm.num

5 help varchar (255) a help string

32. lexJtem: G3, Only contains keyword category entries.

APPENDIX B. TABULAR REPRESENTATION OF KNOWLEDGE 118

1 id smallint a unique number

2 cat varchar (64) *- lex_preterminal.cat

3 string varchar (80) choice string

4 help varchar (255) mouse documentation string

5 demon Jn varchar (64) demon function

33. lexjtem_feature: G3, Only contains keyword category entries.

1 id smallint *- lexJtem.id

2 feature varchar (64) —* lex_preterminal_feature.feature

3 value varchar (80) a constant

4 polarity bit 1 if part of PSEET; 0 otherwise.

Bibliography

[1] AlCorp, Inc. INTELLECT: Natural language system, conversational English

access to corporate databases. Brochure. 138 Technology Drive, Waltham, MA

02154.

[2] Hassan Ait-Kaci and Roger Nasr. LOGIN: A logic programming language with

built-in inheritance. J. Logic Programming, 3(3):185—215, 1986.

[3] James Allen. Natural Language Understanding. The Benjamin/Cummings Pub-

lishing Co, 1987.

[4] Madeleine Bates. Rapid porting of the PARLANCE natural language interface.

In Proc. Speech and Natural Language Workshop, pages 83-88. DARPA/ISTO,

February 1989. BBN Systems and Technologies Corp.

[5] Madeleine Bates, M.G. Moser, and David Stallard. The IRUS transportable nat-

ural language database interface. In Larry Kerschberg, editor, Expert Database

Systems: Proceedings from the First International Workshop, pages 617-630.

Benjamin/Cummings Publishing Co., 1986.

[6] Robert J. Bobrow and Madeleine Bates. Design dimensions for non-normative

understanding systems. In Proc. 22th Annual Meeting of ACL, 1982.

[7] Richard R. Burton. Semantic Grammar: A Technique for Efficient Language

Understanding in Limited Domains. PhD thesis, University of California, Irvine,

1976.

119

BIBLIOGRAPHY 120

[8] J. G. Carbonell and P. J. Hayes. Recovery strategies for parsing extragrammatical

language. Technical Report CMU-CS-84-107, Dept. of Computer Science, CMU,

February 1984.

[9] Jaime Carbonell, Barbara Grosz, Wendy Lehnert, Mitchell Marcus, Raymond

Perrault, and Robert Wilensky. White paper on natural language processing.

In Proc. Speech and Natural Language, pages 481-493. DARPA/ISTO, October

1989.

[10] Stuart K. Card. Visual search of computer command menus. In H. Bourma and

D. Bouwhuis, editors, Attention and Performance X, pages 97-108. Hillsdale,

NJ: Erlbaum, 1984.

[11] Stuart K. Card, Thomas P. Moran, and Allen Newell. The Psychology of Human-

Computer Interaction. Lawrence Erlbaum Associates, 1983.

[12] Sang K. Cha. Kaleidoscope: A cooperative menu-guided query interface (SQL

version). In Proc. IEEE Artificial Intelligence Applications, pages 304-310, Santa

Barbara, California, March 1990.

[13] Sang K. Cha. Kaleidoscope: A cooperative menu-guided query interface (SQL

version). IEEE Trans, on Knowledge and Data Engineering, 3(l):42-47, March

1991.

[14] Sang K. Cha and Gio Wiederhold. Kaleidoscope data model for an English-like

query language. In Proc. 17-th Conf. on VLDB, September 1991.

[15] Surajit Chaudhuri. Generalization and a framework for query modification. In

Proc. IEEE Data Engineering Conf, Feb 1990.

[16] Peter Chen. The Entity-Relationship Model - toward a unified view of data.

ACM Trans, on Database Systems, 1 (1):9—36, 1976.

[17] Peter Chen. Entity-Relationship diagrams and English sentence structures. In

Peter Chen, editor, Int. Conf. on Entity-Relationship Approach to Systems Anal-

ysis and Design. North-Holland Publishing Company, 1980.

BIBLIOGRAPHY 121

[18] E. F. Codd. A relational model of data for large shared data banks. Communi-

cations of ACM, 13(6):377-387, 1970.

[19] E. F. Codd. Relational database: A practical foundation for productivity. Com-

munications of ACM, 25(2):109-117, Feb 1982.

[20] Thomas A Cooper and Nancy Wogrin. Rule-based Programming with OPS5.

Morgan Kaufmann, 1988.

[21] Francisco Corella, S. J. Kaplan, G. Wiederhold, and L. Yesil. Cooperative re-

sponses to boolean queries. In Proc. IEEE Data Engineering Conf, pages 77-93,

April 1984.

[22] Fred J. Damerau. Operating statistics for the transformational question answer-

ing system. Computational Linguistics, 7(1), 1981.

[23] Knuth Donald E. Semantics of context-free languages. Mathematical Systems

Theory, 2(2):127-145, 1968. Errata, Mathematical Systems Theory, 2(l):95-96

1971.

[24] C. J. Fillmore. The case for case. In E. Bach and R. Harms, editors, Universals

in Linguistic Theory. Holt, Rinehart, and Winston, 1968.

[25] C. L. Forgy. OPS5 user's manual. Technical Report CMU-CS-81-135, Carnegie-

Mellon University, Pittsburgh, PA, 1981.

[26] Annie Gal and Jack Minker. Informative and cooperative answers in databases

using integrity constraints. Technical Report CS-TR-1191, University of Mary-

land, September 1987.

[27] Jay Glicksman, Jeff Y.-C. Pan, Jay M. Tenenbaum, and Bruce L. Hitson. A

central knowledge service for a distributed cim environment. Schlumberger Tech-

nologies and Center for Integrated Systems, Stanford University, 1990.

[28] H. P. Grice. Logic and Conversation. In Donald Davidson and Gilbert Harman,

editors, The Logic of Grammar, pages 64-75. Dickinson Publishing Co, 1975.

BIBLIOGRAPHY 122

[29] Barbara Grosz, Douglas E. Appelt, Paul Martin, and Fernando Pereira. TEAM:

An experiment in the design of transportable natural language interfaces. Tech-

nical Report 356, SRI AI center, Aug 1985.

[30] Charles T. Hemphill, Inderjeet Mani, and Steven L. Bossie. Towards an effec-

tive natural language interface to knowledge based systems. Internal Working

Paper, AI lab., Computer Science Center, Texas Instruments, Inc., Dallas, TX,

December 1986.

[31] Gary G. Hendrix, Earl D. Sacerdoti, Daniel Sagalowicz, and Jonathan Slocum.

Developing a natural language interface to complex data. ACM Trans, on

Database Systems, 3(2):105-147, June 1978.

[32] Jürgen M. Janas. On the feasibility of informative answers. In H. Gallaire,

J. Minker, and J. M. Nicolas, editors, Advances in Database Theory, pages 397-

414. Plenum Press, 1981.

[33] Matthias Jarke, Jon A. Turner, Edward A Stohr, Yannis Vassiliou, Norman H.

White, and Ken Michielsen. A field evaluation of natural language for data

retrieval. IEEE Trans. Soßware Engineering, SE-11(1):97-114, January 1985.

[34] Mimi Kao, Nick Cercone, and Wo-Shun Luk. Providing quality responses with

natural language interfaces: The null value problem. IEEE Trans, on Software

Engineering, 14(7):959-984, July 1988.

[35] S. Jerrold Kaplan. Cooperative responses from a portable natural language query

system. Artificial Intelligence, 19:165-187, October 1982.

[36] M. Kay. Algorithm schemata and data structures in syntactic processing. In Bar-

bara J. Grosz, Karen Sparck Jones, and Bonnie Lynn Webber, editors, Readings

in Natural Language Processing. Morgan Kaufmann Publishers, Inc, 1986.

[37] H. J. Kim, H. F. Korth, and A. Silberschatz. PICASSO: A graphical query

language for naive end users. Technical Report TR-85-30, Dept. of Computer

Science, Univ. of Texas at Austin, November 1985.

BIBLIOGRAPHY 123

[38] Jonathan J. King. Query Optimization by Semantic Reasoning. PhD thesis,

Stanford University, May 1981. Also published by University of Michigan Press,

1984.

[39] Kevin Knight. Unification: A multidisciplinary survey. ACM Computing Surveys,

21(1):93-124, March 1989.

[40] Michel Kunz and Rainer Melchart. Pasta-3's graphical query language: Direct

manipulation, cooperative queries, full expressive power. In Proc. 15th Conf. on

VLDB, 1989.

[41] Mitchell P. Marcus. Building non-normative systems - the search for robustness.

In Proc. 20th Annual Meeting of ACL, 1982.

[42] Eric Mays. Failures in natural language systems: Applications to data base query

systems. In Proc. AAAI, pages 327-330, 1980.

[43] Kathleen Filliben McCoy. Correcting Object-Related Misconceptions. PhD thesis,

University of Pennsylvania, Dec 1985.

[44] G. A. Miller. The magical number seven, plus or minus two: Some limits on

our capacity for processing information. The Psychological Review, 63(2):81—97,

March 1956.

[45] Jack Minker, editor. Foundations of Deductive Databases and Logic Porgram-

ming. Morgan Kaufmann Publishers, Inc., San Mateo, CA, 1988.

[46] Amihai Motro. Query generalization: A method for interpreting null answers. In

Larry Kerschberg, editor, Expert Database Systems: Proceedings from the First

International Workshop, pages 597-616. Benjamin/Cummings, 1986.

[47] Natural Language, Inc. How to choose a natural language interface for your

database. Brochure, 1989. 2910 Seventh Street, Berkeley, CA 94710, U.S.A.

BIBLIOGRAPHY 124

[48] Donald A. Norman. Design principles for human-computer interfaces. In

Ronald M. Baecker and William A.S. Buxton, editors, Readings in Human-

Computer Interaction, pages 492-501. Morgan Kaufmann, 1987. Also in Proc.

of ACM CHI'83.

[49] Donald A. Norman. The Psychology of Everyday Things. Basic Books, Inc.,

1988.

[50] Jeff Y-C Pan and Jay M. Tenenbaum. An intelligent agent framework for enter-

prise integration. Schlumberger Technologies and Center for Integrated Systems,

Stanford University, 1990.

[51] Gary Perlman. Making the right choices with menus. In Human-Computer Inter-

action — Interact' 84, Amsterdam, pages 317-321. North Holland, Amsterdam,

1985.

[52] Brian Phillips, Michale J. Freiling, James H. Alexander, Steven L. Messick, Steve

Rehfuss, and Sheldon Nicholl. An eclectic approach to building natural language

interfaces. In Proc. 26th Annual Meeting of ACL, 1986.

[53] Brian Phillips and Sheldon Nicholl. INGLISH: A natural language interface.

In Foundation for Human-Computer Communication. IFIP WG 2.6 Working

Conference on The Future of Command Languages, 1985.

[54] Xioalei Qian. The Deductive Synthesis of Database Transactions. PhD thesis,

Stanford University, November 1989. Also as Technical Report No. STAN-CS-

89-1291.

[55] Phyllis Reisner. Use of psychological experimentation as an aid to development

of a query language. IEEE Transactions on Soßware Engineering, SE-3(3), 1977.

[56] Phyllis Reisner. Human factors studies of database query languages: A survey

and assessment. ACM Computing Surveys, 13(1), 1981.

BIBLIOGRAPHY 125

[57] Phyllis Reisner, Raymond F. Boyce, and Donald D. Chamberlin. Human factors

evaluation of two data base query languages - SQUARE and SEQUEL. In Proc.

National Computer Conf. AFIP Press, 1975.

[58] Roger C. Schänk and Charles J. Rieger III. Inference and the computer under-

standing of natural language. Artificial Intelligence, 5:373-412, 1974.

[59] Stuart M. Shieber. An introduction to Unification-Based Approaches to Gram-

mar. Center for the Study of Language and Information, Stanford University,

1985.

[60] Ben Shneiderman. Software Psychology: Human factors in Computer and Infor-

mation Systems. Winthrop Publishers, Inc., 1980.

[61] Robert F. Simmons. Man-machine interface: Can they guess what you want?

IEEE EXPERT, pages 86-93, 1986.

[62] Herbert A. Simon. The Sciences of the Artificial. MIT Press, 2 edition, 1981.

[63] M. Stonebraker, M. Hearst, and S. Postamianos. A commentary on the Postgress

rule system. ACM SIGMOD Record, 18(3):5-11, September 1989.

[64] Sybase. TRANSACT-SQL manual, 1988.

[65] Marjorie Templeton. Problems in natural-lanugage interface to DBMS with ex-

amples from EUFID. In Proc. 23rd Annual Meeting of ACL, 1983.

[66] Marjorie Templeton and John Burger. Considerations for development of natural-

language interfaces to database management systems. In L. Bole and M. Jarke,

editors, Cooperative Interfaces to Information Systems, chapter 3, pages 67-99.

Springer-Verlag, 1986.

[67] Harry Tennant. The commercial application of natural language interfaces. A

preprint for COLING 86 Panel Discussion Natural Language Interfaces - Ready

for Commercial Success?, 1986.

BIBLIOGRAPHY 126

[68] C. Thompson, S. Corey, M. Rajinikanth, P. Bose, S. Martin, R. Roberts,

R. Lewis, R. Enand, T. DiPesa, and S. Cha. RTMS: Toward close integra-

tion between database and application. In Proc. of 20-th Annual Hawaii Int'l

Conf. on System Sciences, 1987.

[69] C. W. Thompson, K. M. Roth, H. R. Tennant, and R. M. Saenz. Building

usable menu-based natural language interface to databases. In Proc. 9th Conf.

on VLDB, pages 43-55, 1983.

[70] Craig W. Thompson. Beyond Retrieval: Updating a Database using Menu-

Based natural Language Understanding. In Conference on Intelligent Systems

and Machines, April 1984.

[71] Craig W. Thompson. Using Menu-based Natural Language Understanding to

Avoid Problems Associated with Traditional Natural Language Interfaces to

Databases. PhD thesis, Univ. of Texas, Austin, May 1984. Also published as

CSL Tech Report 84-12, Texas Instruments, Inc.

[72] David L. Waltz, Timothy Finin, Fred Green, Forrest Conrad, Bradley Goodman,

and George Hadden. The planes system: Natural language access to a large data

base. Technical Report T-34, Coordinated Science Lab., Univ. of Illinois, Nov

1976.

[73] Charles Welty and David W. Stemple. Human factors comparison of a procedural

and nonprocedural query language. ACM Trans, on Database Systems, 6(4),

1981.

[74] Jennifer Widom and Sheldon J. Finkelstein. A syntax and semantics for set-

oriented production rules in relational database systems. Technical report, IBM

Almaden Research Center, 1989.

[75] Gio Wiederhold. Database Design. McGraw-Hill, second edition, 1983.

[76] Gio Wiederhold. Views, objects, and databases. IEEE Computer, 19(12):37—44,

December 1986.

BIBLIOGRAPHY 127

[77] Terry Winograd. Language as a Cognitive Process : Syntax. Addison Wesley,

1983.

[78] W. A. Woods. Transition network grammars for natural language analysis.

Comm. of ACM, 3(10):591-606, 1970.

[79] Stanley B. Zdonik and David Maier, editors. Reading in Object-oriented Database

Systems. Morgan Kaufmann Publishers, Inc., San Mateo, CA, 1990.

