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Abstract 

Most database interfaces provide poor guidance on ad hoc query formulation, forcing 

end users to learn, and to recall precisely the query language and the database. The 

research on the so-called natural language interface (NLI) promised a solution to 

this problem. However, in practice, with the difficulty of developing a large body of 

machine-interpretable knowledge on human linguistic behavior, the success of NLI 

systems is inevitably limited. NLI users are still required to learn and recall the 

limitations of a specific system. 

This thesis presents the approach of Kaleidoscope, a cooperative query inter- 

face for relieving the user's burden of learning and recalling. Kaleidoscope provides 

the user with an English-like query language (EnQL) for interaction with database 

systems. It guides the user's query formulation actively via a sequence of menu in- 

teractions. Based on a grammar specifying the syntax and semantics of EnQL, the 

interface proposes legitimate query constituents step by step as menu choices. The 

objective of this grammar-driven menu guidance is to enable users to construct a 

meaningful query by recognizing choices that match their mental query. The inter- 

face provides additional intraquery conceptual guidance to ensure the integrity of a 

partial query. 

The central thesis of this work is that a data model plays a crucial role in the 

Kaleidoscope's style of interfaces, as a query language conveys the underlying con- 

ceptualization of data to the user. The design of grammar, lexicon, and query trans- 

lator follows a formally defined data model. The absence of an explicit model leads 

to the ad hoc design of these components, harming the system's transportability. 

In the model-based approach, grammar design focuses on unambiguously realizing 
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references to model concepts. As a result, all user queries are meaningful with re- 

spect to the underlying data model. The model also provides a basis of defining two 

other domain-independent modules: a query translator and a set of procedures for 

automatically generating lexicon entries from the schema. 

The major technical contribution of this thesis is a data model formalizing the con- 

ceptual structure of restricted English queries. Existing data models are inadequate 

for near-natural language interaction with database systems because of a significant 

conceptual gap between common English concepts and database representation of 

such concepts. EnQL, based on our model, enables the user to express significantly 

more concise queries than SQL, often by an order of magnitude. To provide a com- 

plete normative design framework, this thesis also presents a cost model of user query 

production when using grammar-driven menu interfaces. This model is useful for 

evaluating alternative interface designs. 
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Chapter 1 

Introduction 

Scientific education makes use of no equivalent for the art museum 
or the library of classics, and the result is a sometimes drastic 
distortion in the scientist's perception of his discipline's past ... 
Inevitably those remarks will suggest that the members of a mature 
scientific community is, like the typical character of Owell's 1984, 
the victim of a history rewritten by the powers that be. 

- Thomas S. Kuhn, The Structure of Scientific Revolutions (1970) 

The recent advances in hardware and network technology enable large organizations 

to move to a distributed model of computation from the traditional mainframe-based 

model. This distributed model increases the end-user availability and the local au- 

tonomy of operation. As the database management technology also matures, the 

distributed environment stimulates great interest in the end user's creation and main- 

tenance of one's own database and encourages its sharing with others. With a limited 

number of database specialists, the user interface for supporting the end user's au- 

tonomous data access and management activities is critical for materializing the user's 

interest. 

While task-oriented window-based interfaces best serve routine data access and 

data management functions, it is desirable to provide database interfaces with ad 

hoc querying power. Task-oriented interfaces do not meet this requirement because 

their design typically trades the expressive power for the ease of use.  On the other 
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CHAPTER 1.   INTRODUCTION 2 

hand, most existing database interfaces based on general-purpose query languages are 

difficult to use. The problem lies not only in the difficulty of learning and remembering 

the query language but also in the complexity of interpreting the structure and content 

of numerous databases distributed over the network. This dissertation considers the 

architecture and design of a cooperative ad hoc query interface that relieves the user 

of learning and recalling the query language and the underlying database. 

1.1    Impedance Mismatch Between User and Sys- 

tem 

The impedance mismatch between database languages such as SQL and host pro- 

gramming languages has motivated much research. Deductive and object-oriented 

database systems have emerged to provide a uniform language for application pro- 

grammers [45, 79]. While this research is expected to facilitate the development of 

database applications, yet another type of impedance mismatch exists between the 

end user's language and database languages: formal languages such as SQL burden 

users to learn the syntax and semantics of the language and the underlying database, 

and to recall them precisely at the time of query formulation. Most casual database 

users cannot afford time and effort for such learning. For those who can, their queries 

are subject to various types of failure due to the imprecise, incomplete, and incorrect 

nature of knowledge in human long-term memory [11, 49]. These failures include 

spelling mistakes, violation of language syntax and semantics, and misconception of 

entities and relationships in a database [55, 56, 57, 73]. 

The impedance mismatch faced by end users cannot be treated by assimilating the 

database language to the user's language alone. The so-called natural language inter- 

faces (NLIs) are intended to provide the user's habitual language for human-computer 

interaction. A number of research prototypes have been developed with database sys- 

tems as target applications, such as LADDER [31], PLANES [72], TQA [22], TEAM 

[29], and IRUS [5]. A few commercial NLI systems also exist such as INTELLECT 

[1], NLI DataTalker [47], and PARLANCE [4].   However, because of the difficulty 
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of developing a large body of machine-interpretable knowledge on human linguistic 

behavior, these systems inevitably implement only seminatural languages and limited 

concepts. As a result, NLI users experience what is called proactive interference, the 

difficulty of remembering artificial constraints in a seminatural language [60]. Most 

NLIs are also limited in resolving the ambiguity and failure of unconstrained user 

queries. This leads to the NLI user's difficulty in debugging ambiguous and failed 

queries. 

A field evaluation of an NLI system with some 800 BNF rules confirmed NLI user 

problems. In the experiment conducted by JarA'e et a.1 [33], NLI users performed 

poorly relative to SQL users. The following table summarizes the task-level perfor- 

mance of NLI and SQL users: 

Task-Level Performance NLI SQL 

Essentially Correct 17.1% 44.2%' 

Partially Solved 34.2% 23.3% 

Not Solved 48.7% 32.5% 

One of the concluding remarks of JarA'e et a.1 was that with at best 70 percent 

of success, both NLI and SQL interfaces are inadequate for casual database users 

involved in decision making. 

1.2    Kaleidoscope for Controlled Near-Natural Lan- 

guage Interaction 

Kaleidoscope is a cooperative interface which relieves casual users of the impedance 

mismatch that they experience in interacting with database systems [12, 13, 14]. It 

uses a grammar-driven menu system as a device for bridging the mismatch between 

the user's language and the database language. This system generates legitimate 

query constituents incrementally as menu choices, and users formulate a query in a 

sequence of point-and-click menu selections. A grammar specifying the syntax and 

semantics of a database language governs the system's automatic choice generation. 
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Linear-Syntax Language Menu Interface 

Expressive Power Transparency 

Grammar-Driven Menu Interface 

Figure 1.1: Grammar-Driven Menu Interface 

As the result of combining the grammar and the menu interface, Kaleidoscope 

inherits the advantages of both interface types. Figure 1.1 shows the inheritance 

of these advantages: the expressive power from the linear-syntax language and the 

transparency from the menu interface. While Kaleidoscope's grammar-driven menu 

guidance can improve the usability of formal query languages such as SQL [12, 13], 

a carefully designed English-like query language (EnQL) improves the efficiency of 

user-system communication significantly. The following illustrates an EnQL query 

constructed in tens steps of menu interaction: 

[Ql] Who wrote    (   which 'DATABASE', books published by .'McGraw-Hill'   ) 
1283 4 5 6 78 

since 1982 
9 10 

Here, the numbers indicate the sequence of user-system interaction. EnQL sup- 

ports wij-queries. Thus the initial menu state contains a small number of wh-words 

that have corresponding concepts in the underlying database. Subsequent menu states 

present only legitimate choices for extending a partial query. Kaleidoscope avoids 

structural ambiguity of EnQL queries by forcing the user to enclose complex phrases 

with a pair of parentheses (the eighth step of the query Ql). 

EnQL closely follows the syntax and semantics of restricted English wh-queries. 

Thus the combination of EnQL with Kaleidoscope enables users to construct a query 
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by recognizing a sequence of choices matching their mental query. This interface 

approach incurs minimal cognitive burden in the user's query formulation. Compared 

with the SQL version of Kaleidoscope, it relieves the user of transforming mental 

queries to those based on the underlying database model such as the relational model 

[18]. 
Kaleidoscope provides additional intraquery conceptual guidance to the user by 

building the query meaning incrementally. First, the interface guides the user's value 

creation by executing the partial query. This reduces the chance of extensional query 

failure as well as the number of choices to present on the menu for value selection. 

In addition, the system uses its knowledge of integrity constraints and functional 

dependency to avoid the semantic inconsistency of the partial query. 

1.3    Technical Problems and Contributions 

Guiding the user's incremental query formulation is a knowledge-based process. The 

interface designer formalizes the types of domain-specific knowledge needed for user 

guidance. The interface creator acquires such knowledge over specific databases. This 

acquired knowledge is interpreted by Kaleidoscope's interpreter for guiding the user to 

create meaningful and unambiguous queries. The system's lack of knowledge in this 

process results in the failure to prune irrelevant choices, which not only misleads users 

toward nonsensical queries but also wastes the screen space and potentially increases 

the user's choice search time. Normally, the benefit passes down along the hierarchy 

of the humans involved in the life cycle of interfaces. A good interface design benefits 

many interface creators; a good interface creation benefits numerous end users. 

A query language conveys the underlying conceptualization of data to the user. 

The central theme of this dissertation is that the presence of a data model is critical 

in the Kaleidoscope's style of interfaces, where a menu system generates choices for 

reference to schema concepts. The model guides the process of interface design and 

creation, eventually benefiting end users. The grammar, lexicon, and query translator 

are model-dependent components of Kaleidoscope. The absence of an explicit model 

leads to the ad hoc design of these components, harming the system's transportability. 
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In the model-based approach, grammar design focuses on unambiguously realizing 

references to model concepts, taking into account the capability of the underlying 

query processing system. As a result, all user queries are meaningful with respect to 

the underlying data model. Given a grammar specification, it is possible to define 

a set of procedures that generate the lexicon automatically from the schema. The 

presence of a model also guides the implementation of a domain-independent mapping 

to the underlying database storage model in the query translator. 

The major technical contribution of this thesis is a data model formalizing the con- 

ceptual structure of restricted English queries. Existing data models are inadequate 

for near-natural language interaction with database systems because of a significant 

conceptual gap between common English concepts and database representation of 

such concepts. EnQL, based on our model, enables the user to express significantly 

more concise queries than SQL, often by an order of magnitude. To focus on the model 

aspect, this thesis restricts the formal power of EnQL to the support of conjunctive 

queries. 

The transparency of menu guidance enables the interface designer to apply the 

normative design principle [62] to the design of grammar-driven menu interfaces. The 

design process involves first setting the desired formal power of an interface as its 

goal. Then it explores a set of alternative designs satisfying the goal. The normative 

design principle requires a model for evaluating alternative designs. This dissertation 

presents a simple cost model of user query production as a quantitative basis of design 

evaluation. 

The model-based, normative design approach distinguishes Kaleidoscope from 

conventional NLI systems, which seeks to incorporate an extensive range of syntax 

and semantics based on the non-normative system assumption [6, 41]. 
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1.4    Relation to Other Work 

1.4.1 Cooperative Response Approach to NLI 

Past research in artificial intelligence proposed knowledge-based postquery coopera- 

tion to increase the usability of NLI systems. At the parsing level, one direction of 

research sought the system's robustness to extragrammatical sentences [8]. At the 

conceptual level, following Grice's principle of cooperation [28], so-called cooperative 

response systems dealt with the user's misconception about underlying information 

systems [21, 26, 32, 35, 34, 42, 43]. When queries fail to produce meaningful results 

because of the user's misconception, the system resolves specific causes of failure for 

the user. Yet, in this postquery cooperation approach, the system still does not use 

its knowledge until the user query fails. 

Kaleidoscope takes a more active attitude in utilizing the system's knowledge: a 

system knowledgeable enough to correct or to suggest the postquery correction should 

use its knowledge first to guide users away from query failure. The increasing speed 

of computers makes it feasible for the system to take this initiative. Nevertheless, 

postquery cooperative response would be still needed to handle queries that have no 

matching tuples in the database or produce too many or too small tuples. Even in 

such a case, our position is to use the system's actively. Consider an extensionally 

failing query with T, a set of conjuncts causing the failure. Instead of just informing 

the user of Jr, the system suggests alternatives in query generalization focusing on 

this set of literals. For instance, if the keyword specification of books belongs to 

J7, the system suggests its generalization based on the hierarchy of keyword values. 

Previous research explored a range of options for such query generalization [46, 15]. 

1.4.2 Menu-Based NLI Approach 

Recently, windows and pointing devices such as the mouse become widely available 

for human-computer interaction. Many screen-oriented direct manipulation interfaces 

have been developed, such as PICASSO [37] and PAST-3 [40]. In this type of inter- 

faces, mouse selection and form filling are the primary means of expressing the user's 
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intention. 

As windows and pointing devices such as the mouse become widely available for 

human-computer interaction, Tennant and Thompson recognized that the window- 

based interaction could restrict the users of the so-called NLIs within the system's 

limited linguistic and conceptual coverage [69, 67]. This idea has developed into 

so-called menu-based NLI systems NLMenu [69, 71, 70], INGLISH [53, 52], and 

NLParse/NLGen [30]. A context-free, semantic grammar specifies dynamic choice 

generation in NLMenu and INGLISH. NLParse/NLGen employs a unification-based 

grammar to pursue linguistic generalization. 

Kaleidoscope takes the notion of grammar-driven menu guidance from these menu- 

based NLI systems, and provides a model-based framework for the interface design 

and generation. A semantically rich model provides the basis for user guidance and 

interface design. In contrast, past research assumed a very low-level model or no ex- 

plicit model at all. For example, the implicit model underlying the NLMenu grammar 

for relational database access [68] is not much different from the relational model [18]. 

As a result, NLMenu queries are often reminiscent of formal queries. The emphasis on 

a model in Kaleidoscope also makes it possible to provide meaning-based guidance, 

which previous menu-based NLI systems overlooked. 

1.5    Organization of Thesis 

The rest of this dissertation is organized as follows. Chapter 2 describes the features 

of the Kaleidoscope interface for EnQL query formulation. Chapter 3 justifies the 

choice of an English-like query language over the standard database query language 

SQL and articulates the desired features of such a query language. Chapter 4 re- 

views three previous grammar-driven menu interface systems. Chapter 5 presents 

Kaleidoscope's model-based approach and architecture. Chapter 6 describes a data 

model for supporting English-like queries. Chapter 7 presents Kaleidoscope's gram- 

mar formalism for choice generation. Chapter 8 presents the quantitative dimension 

of grammar-driven men interface design. A cost model of user query production when 

using grammar-driven menu interfaces is presented. Finally, Chapter 9 summarizes 
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this dissertation. 



Chapter 2 

Interface for EnQL Query 

Formulation 

ka.lei.do.scope [Gk kalos beautiful + eidos form + E -scope] 
an instrument containing loose bits of colored glass between two 
flat plates and two plane mirrors so placed that changes of position 
of the bits of glass are reflected in an endless variety of patterns. 

- from the on-line Webster of the NeXT computer 

Kaleidoscope bridges the impedance mismatch between an artificial query language 

and the user's language via a context-sensitive menu system. A grammar specifies 

the pattern of dynamic changes in the menu state. This approach enables users to 

formulate a query via a sequence of choice recognitions. The bits forming a specific 

menu state are derived from the underlying database. This chapter presents the 

Kaleidoscope interface for EnQL query formulation. 

2.1    Environment and Screen Organization 

Kaleidoscope takes advantage of the recent proliferation of bitmap displays and the 

mouse in a modern computing environment. Point-and-click selection of menu choices 

is the primary means of delivering the user's intention to the machine. The keyboard 
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CHAPTER 2.   INTERFACE FOR ENQL QUERY FORMULATION 11 

is occasionally used to complement the mouse input. The current implementation of 

Kaleidoscope runs on the XEROX LISP machine and accesses the SYBASE DBMS [64] 

on a remote server. 

Menu choices are organized in multiple groups by their common characteristics. 

Each choice group is presented on a separate window. The content of a choice window 

depends on the state of a partial query. The system removes empty choice windows 

to minimize the user's visual attention space. Active windows are arranged by a 

prespecified order to facilitate the user's discrimination of projected target choice 

groups. 

Two additional windows stay on the screen to guide the user's query formulation. 

The query status window presents the state of partial query construction. The system 

message window displays user-requested and system-derived intraquery information. 

2.2    EnQL Features 

EnQL queries begin with wii-words such as who, which, where, when, and how. This 

restriction of EnQL to wh-queries alleviates the potential choice explosion at the 

beginning of a query, where no information is available to the system other than 

syntactic constraints. Wh-words naturally factor the set of concepts qualified to 

appear at the beginning of sentences. 

The underlying model of EnQL, as will be presented in Chapter 5 in detail, sup- 

ports entities, relationships, and relationship modifiers. EnQL provides references to 

these concepts in the form of noun phrases, verb phrases, and adverb phrases, re- 

spectively. A common noun refers to an entity set, while a proper noun refers to an 

individual entity. A query may contain an arbitrary number of wh-words to specify 

the entities to be included in the output. EnQL does not include the construct for 

specifying projection attributes such as the SQL SELECT clause. This functionality 

is supported by Kaleidoscope's menu interface. We discuss this feature further in the 

next section. 

EnQL supports both active and passive voices. A transitive verb such as "wrote" 
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refers to a relationship between two entities, while an intransitive one such as "ar- 

rived" refers to a relationship restricting an associated entity set. An adverb phrase 

further restricts entity sets through the verb that it modifies. The verb "be" is used 

to establish the identity of entities in different entity sets. 

Entities as well as entity attributes serve as the basis of prenoun and postnoun 

modifiers. The noun "thesis" modifying "technical report" exemplifies an entity- 

based modifier. EnQL also supports possessive specifiers. Thus, it is possible to 

express phrases such as "Gio Wiederhold's books" and "which author's books." EnQL 

optionally provides limited support of pronouns. A pronoun appears on the menu only 

when there exist entity sets realized already in the partial query that it can represent. 

The reference of a pronoun is resolved immediately by prompting the user with a pop- 

up menu of qualified noun phrases. For example, when the user selects "their," the 

system searches plural nouns in a partial query and presents them to the user. 

English quantifiers such as "any" and "each" are not supported because they are 

not needed to express conjunctive queries. 

2.3    Menu-Guided Query Creation 

In Kaleidoscope, the user constructs a query incrementally from left to right. Figure 

2.1 shows a few Kaleidoscope screen states encountered while creating the query: 

[Ql]  Who wrote    (    which 'DATABASE', books published by ,'McGraw-Hiir   ) 
1 2 ^^        3 4 5 6 7 8 

since 1982, 
9 10 

A complete sequence of screen states is included in Appendix A. Each state presents 

only choices that are both syntactically and semantically valid for extending a partial 

query. 
Two types of choices exist on the menu: terminal and demon choices. Most 

terminal choices, if selected, are appended to the partial query as they appear on the 

menu. Some terminal choices, however, contain guiding substrings. These strings, 

enclosed by a pair of parentheses as in the choice "(authored) books" shown in Figure 
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(a) 

0» 

(c) 

(d) 

wuunytwi 
WHEN 

WHERE 

vanna N = l 

WHO 

RESTART 
RETRACT 
CHANGE 

EOT 

ARE/18 
EDITED 

RECEIVED PHD 
RECOMMENDED 

REVEWED 
REVISED 

SUNVITTEO 
§■ i^i^EilI9fl  iS 

N = 2 

(e) 

WHU WROTE (WHICH 'DATABASE' BOOKS PUBLISHED BV -MoGrax-Mr) 

tmaa 
nUN OUERY 

RESTART 
RETRACT   ► 
QIAMGE 

EXIT 
BEFOnE 

BETWEEN 
M 

N = 9 

Figure 2.1: Progression of Kaleidoscope Screen States 
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2.1 (c), make the semantics of choices explicit to the user. The guiding substring of 

a selected choice is not added to the query status window. The triangle (>) on the 

side of a choice indicates that the choice can be extended into submenus as in Figure 

2.1 (c). Submenus organize related general and specialized terms hierarchically under 

a single choice. 

Some menu choices provide a limited cue to the user in projecting the conse- 

quences of selecting them. English function words are representative of such choices. 

For example, the prepositions "at" and "on" are ambiguous to the user. Kaleidoscope 

associates a documentation string with each choice to help the user in projecting sub- 

sequent choice sets (Figure 2.1 (e)). An alternative approach to the choice ambiguity 

is to attach guiding substrings to the choice. This approach presents "since (publish- 

ing time)" instead of the choice "since" in Figure 2.1(e). 

Demon choices, when selected, trigger attached actions. They are useful for guid- 

ing the user's selection of database values, such as "DATABASE," "McGraw-Hill," 

and "1982" in the query Ql. Those bounded by "<" and ">" in Figure 2.1 (c) are 

such demon choices. When selected, they prompt the user with a pop-up menu of 

database values or a type-in window constraining the user's input. Figure 2.2 shows 

a hierarchical pop-up menu for selecting the keyword value "DATABASE." Demon 

choices are also useful for enclosing complex phrases with parentheses to avoid po- 

tential ambiguity. We return to this point later in this section. 

In addition to expanding a partial query, the user may retract and change early 

selections by choosing the corresponding system command choice. The user's selec- 

tion of "RUN QUERY" signals the completion of a query to the system. This choice 

appears on the menu only when the constructed query is legitimately complete by 

the grammar. Often the choice set that the system produces includes a single non- 

command choice. The system takes such a choice automatically and proceeds to the 

next menu state unless "RUN QUERY" is another legitimate choice. 

Value Presentation The properties of a domain determine the pop-up window 

type in guiding the user's value creation. For enumeratable domains such as keywords, 

the system prompts the user with a pop-up menu of values. In contrast, the values in 
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Figure 2.2: Two States of A Hierarchical Pop-Up Menu 

the weight domain is better not enumerated. For such a domain, the system presents 

a range of admissible values to the user. 

Inherently hierarchical domains such as keywords are presented hierarchically to 

reduce the number of choices to display in the first pass. The system constructs a 

hierarchy for nonhierarchical domains using other related domains if their size pro- 

hibits linear listing of values. For example, the type and location of an organization 

is useful for forming a hierarchy of organizations. 

Control of Ambiguity The ambiguity of queries expressed in an English-like lan- 

guage is well-known [3, 77]. Domain-specific semantics and contextual information 

are helpful in reducing the number of possible interpretations but do not guarantee 

the unique interpretation that both the user and the machine agree to. 

Kaleidoscope takes the initiative in guiding users to avoid creating ambiguous 

queries. The menu window from which each token is selected provides the category 

information of the token. Overloading a choice with multiple interpretations is per- 

mitted only if the lexical ambiguity can be resolved by grammar. To avoid structural 

ambiguity, the system prompts users to enclose complex phrases with a pair of paren- 

theses. For example, the query Ql, without the parentheses enclosing the object 

noun phrase, would be ambiguous because there are two possible interpretations on 

the scope of the phrase "since 1982." By providing the choice of explicitly finishing 

the noun phrase construction with parentheses, as shown in Figure 2.1 (d), the system 

avoids this structural ambiguity. 

Output Presentation    Kaleidoscope presents each query result in a separate spread- 

sheet window to facilitate further screen-based manipulation. Figure 2.3 shows such 
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KALEIDOSCOPE Query Status Window 
WHO WROTE (WHICH 'DATABASE' BOOKS PUBLISHED BY •McGraw-Hill') 
SINCE 19B2 

Sv3 Command   Connective 
AND RUN QUERY 

RESTART 
WHO WROTE (WHICH 'DATABASE' BOOKS PUBLISHED BY   Mc^rav 

AR JO 

i;nitfHi?mnti 
ARJJAME BKJD     BK.TITLE 
Wiederhold, Gio 3008 Database Design 

17 Can, Stefano 3012 Distributed Databases 
170 Pelagatl, Giuseppe 3012 Distributed Databases 

111 Korth, Henry F 3013 Database System Concepts 

112 Silberschatz, Abraham 3013 Database System Concepts 
Wiederhole!, Go 3014 FBe Organization and Da 

Figure 2.3: Kaleidoscope Screen with Query Output 

a window containing the result of the query Ql. Relational, graph-drawing, and 

arithmetic operations are provided as generic spreadsheet functions. With this pre- 

sentation strategy, EnQL does not need features for formatting and transforming 

query results. 
The schema of a query result consists of the attributes drawn from the entity sets 

specified by wh-words. To determine these projection attributes, the system either 

prompts the user with a pop-up menu of selected entity attributes or takes default 

projection attributes defined by the schema. 

Meaning-Based Guidance In parallel with choice generation, Kaleidoscope builds 

the meaning of a query incrementally for further intraquery conceptual guidance. 

First, by executing the partial query, the system guides the user's value creation 

with a dynamically computed range of values feasible for extending the partial query. 

This dynamic instantiation of pop-up menus not only narrows the range of choices 

for users but also reduces the chance of extensional query failure - the failure of 

syntactically well-formed queries to produce tuples due to the user's misunderstanding 

of database contents [35]. 

While the extensional failure of a query is reduced by guiding the user to select 

only values feasible to extend the partial query, the so-called intensional failure [42] 

is still possible to occur. In the next section, we present an intraquery conceptual 

guidance scheme for avoiding intensional query failure. 
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2.4    Intraquery Conceptual Guidance 

A query may contain semantic redundancy in its condition without the user's notice. 

A syntactically well-formed query may fail semantically if its hidden semantic redun- 

dancy leads to an inconsistent query condition. For users, this type of failure is more 

difficult to deal with than syntactic failure because the cause of failure may not be 

obvious. 

This section describes the heuristics used in Kaleidoscope to guide users away 

from intensional failure. The system's stored integrity constraint rules and functional 

dependency play the key role in this intraquery conceptual guidance. 

2.4.1    Rule-Based Guidance 

Integrity constraint rules express the semantic invariant of database extensions. They 

are useful for checking the validity of update transactions and transforming queries 

to semantically equivalent yet less expensive ones in evaluation [38] and in constraint 

validation [54]. They are also useful for guiding users away from misconception. 

IN Kaleidoscope, by checking the meaning of a partial query against the system's 

knowledge of integrity constraint rules, the system detects user misconceptions in the 

middle of query composition. Consider a query 

[Q2] Which instructors who taught CS445 are students, who... 
1 2 3 4 5 6 7 8 

to a university database with an integrity constraint: 

[ICl] Student instructors never teach CS 400 or higher level courses. 

After the user's seventh selection, the system recognizes that the query Q2 becomes 

inconsistent with the integrity constraint, and warns the user of the inconsistency. 

This early detection of misconception, compared with postquery detection [26], saves 

the user's effort that would otherwise be wasted on completing a query bound to 

produce no meaningful result. 

The same integrity constraint is also useful for generating informative messages. 

Consider ICl rephrased as follows: 



CHAPTER 2.   INTERFACE FOR ENQL QUERY FORMULATION 18 

[IC2] If an instructor teaches a CS course whose number is higher than or equal 

to 400, then the instructor is not a student. 

Once the user finishes the fifth selection in the query Q2, the system derives a con- 

straint that the instructor is not a student. This derived constraint is useful for 

guiding the user away from potential semantic inconsistency in the user's subsequent 

selections. However, in general, presenting all derived information may distract expe- 

rienced users needlessly. The user has an option of disabling the system's presentation 

of derived informative messages. 

Information Presentation Threshold The definition of an integrity constraint 

rule assigns one of three level indicators to each derived literal: 

Level 1: obvious. 

Level 2: informative. 

Level 3: critical. 

We may think of the query condition selected by the user corresponding to the level 

0. A more fine-granuled classification of derived information is conceivable. For 

example, the level 2 may be divided into two levels of more informative and less 

informative. The user may choose one of these levels as the threshold of intraquery 

conceptual guidance. For example, if the user chooses the level 2, the system presents 

the derived information of levels 2 and 3 to the user. The default threshold level is set 

to 3, so that only critical derived information such as integrity constraint violation 

is presented to the user. Literals of the level 1, despite their obviousness, still need 

to be derived because they may be called in a chain of inference for deriving other 

critical and informative literals. 

2.4.2    Guidance on Attribute Modification 

Functional dependency is important in avoiding redundant attribute modification of 

entities. Kaleidoscope applies the following heuristics: 



CHAPTER 2.   INTERFACE FOR ENQL QUERY FORMULATION 19 

• If an attribute is selected for restricting an entity set, it is pruned later on. The 

system assumes that the user does not modify an attribute repeatedly. For ex- 

ample, the menu state of Figure 2.1 (c) does not show the choice "<keyword>" 

because it was selected in the previous step. (See the menu state for N = 4 

in Appendix A.) The set of comparators in EnQL, which includes "between" 

and "not between," enables the user to express an arbitrary range in one-time 

attribute selection. 

• Consider a functional dependency from the attribute A to the attribute B {A —► 

B). If the user's added predicate binds A to a constant, the system also prunes 

A's dependent field (B) in the conjunctive extension of the partial query. For 

example, consider a partially constructed noun phrase "Which employees whose 

id is 1356 ..." Since the employee id is the key attribute of the entity Employee, 

the user is not allowed to add further attribute-based restrictions to "employee." 

• If the key attribute A is set to a constant after its dependent attribute B 

(e.g., "employee department") is specified, the system informs the user of the 

redundant restriction on B, and suggests the user to remove redundancy to 

avoid potential query failure. 

• If the user's selection derives a constraint that a field C is restricted to a range 

of values, this range guides the user's further specification of C. 

2.5    Summary 

This chapter presented the features of Kaleidoscope's interface for EnQL query for- 

mulation. The system's guidance is summarized as proposing legitimate EnQL con- 

stituents as menu choices step by step and providing immediate semantic feedback 

to the user. This interface approach enables the user to construct a query via a se- 

quence of choice recognitions, thus freeing the user from the burden of learning and 

recalling precisely the query language and the database. The system uses its knowl- 

edge of integrity constraints and functional dependency to avoid conceptual query 
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failure.   Restricting the user's value creation to the result of executing the partial 

query reduces the chance of extensional query failure. 



Chapter 3 

Why An English-like Query 

Language? 

As Kaleidoscope combines the menu interface and the linear-syntax language, it in- 

herits the merits of both. Its interface is transparent to the user while offering the 

expressive power of a linear-syntax language. Kaleidoscope's grammar-driven menu 

interface approach is applicable not only to an English-like query language but also to 

formal languages as shown by our early work on menu-guided SQL interface [12, 13]. 

This chapter presents an argument of why an English-like query language is ben- 

eficial for end users compared with SQL and articulates the desired features of such 

an English-like language. 

3.1    EnQL vs SQL 

EnQL enables the user to express queries more concisely than SQL, and relieves 

the user of transforming mental queries to those based on the underlying database 

implementation. 

21 
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3.1.1    Previous Result 

The results of previous human factors studies comparing restricted NLIs with formal 

language interfaces are in general negative on NLIs [33, 60]. There is, however, a 

positive side on the use of restricted natural language for querying database systems. 

Jarke et al [33] found in their field experiment comparing an NLI with the SQL 

interface: 

• 

• 

NLI queries consume about one third the number of tokens than SQL queries 

(10.64 vs 34.19 tokens). 

NLI users spent about 29 percent less time, on the average, to formulate and 

execute a query than SQL users (7.7 min vs 10.8 min). 

Although this gain in the per-query efficiency is offset by 50 percent more queries 

issued by NLI users per task (8 English queries vs 5.1 SQL queries per task), the 

statistics measured by Jarke et a/ indicates that restricted English queries are easier 

and more efficient to phrase than SQL queries. 

3.1.2    EnQL Case 

Our experience of EnQL over the bibliographic application shows even a stronger 

result than the findings of Jarke et al in favoring the use of restricted English query 

language over SQL. Some examples show that SQL translations of EnQL queries 

may consume ten times as many tokens as EnQL queries and involve joins of several 

tables. For example, while the query Ql, created in ten steps, consumes nine tokens, 

its SQL translation comprises 89 tokens. Figure 3.1 shows a pair of EnQL and SQL 

queries. Figure 3.2 presents the underlying database schema based on the structural 

data model [75]. In counting tokens, we have excluded parentheses and punctuation 

marks ("." and ","). One EnQL token 'DATABASE' alone accounts for 20 SQL 

tokens (2 table declarations, 2 joins, and 1 restriction). 

The number of tokens required to express a query is critical to the performance 

of query interface users. In the absence of other information on the complexity of a 
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[EnQL] 
Who. wrote 

1 2 

since 1982 
9 10 

(    which .'DATABASE', books published by ^'McGraw-Hill'    ) 

[SQL] 

SELECT 

FROM 

WHERE 

author _ref erencel. author, 
person2.pname, 
book9.id, 
reference?.title, 

book book9, 
organization organizations, 
publish_reference publish_referencell, 

keyword-view keyword_view4, 
ref erence .keyword reference Jceyword5, 

reference reference?, 
author_reference author_referencel, 
person person2 
publish_referencell.reference = reference7.id and 
organizations.id = publish_reference 11.organization and 
book9.id = publish_referencell.reference and 

book9.id = reference?.id and 
book9.id = ref erence Jceyword5. ref erence and 
keyword_view4.id = ref erence Jceyword5. keyword and 

author_referencel.reference = book9.id and 
author_referencel.author = person2.id and 

organization^.name = 'McGraw-Hill' and 

reference?.year >= 1982 and 
keyword-view4. string = 'DATABASE'  

n 

63 
Total token count 89 

Figure 3.1: SQL Translation of Ql 

Kaleidoscope's query translator makes no attempt of minimizing the token count. Thus 
its SQL translation may include extraneous tokens and conditions. However, queries 
produced by the human are equally likely to have such extraneousness. In this example, 
range variable declarations are extraneous because tables are all distinct. In addition, 
the WHERE clause has hidden redundancy: Either the first or the third condition may 
be removed. 
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author_reference publish_reference 

* * * * :: 

person reference organization 

U 
* » 

book reference_keyword 

:: 

keyword_view 

Figure 3.2: The Database Schema Covered By The Query Ql 

X  —*- \Y I represents one-to-many ownership connection from X to Y. 
X represents a subset connection from X to Y. 

query, the ratio of the required number of tokens and the capacity of human short- 

term memory (7 ± 2 [44]) could be a measure of the user's cognitive burden. The 

higher this ratio, the more cognitive swapping, we suspect, is required to produce a 

query. Note that the EnQL query Ql roughly fits into human short-term memory, 

while the its SQL equivalent does not. 

Automatic Database-Level Join Generation The SQL query in Figure 3.1 

involves the join of eight tables - an indication of the degree of conceptual complexity 

that the user might have to go through if the query had to be written manually. 

Human factors experiments have been conducted on SQL and other formal languages 

in their early development stage [56]. In the experiment conducted by Welty and 

Stemple [73], SQL join was found to be one of the two problematic features of SQL. 

(GROUP BY is the other, and the most problematic SQL feature.) Considering that 

the join queries in this experiment typically involved two tables, we can easily project 

the difficulty of phrasing SQL queries involving several joins. 
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KALEIDOSCOPE Query Status Window 
WHICH AUTHORS 

Sva Command    Connective   Verb 
RESTART 
RETRACT   ► 
CHANGE    ► 

EXIT 

THAT 
WHOSE 

ARE/IS 
RECEIVED PHD 
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SUBMITTED       * 
WROTE 

(a) After selection of a specialized term 

■HMMbldhHJJJWJimUMUILLI^ 
WHICH PERSONS 

r#H-l,,LN.I-m-I.L 
RESTART 
RETRACT   > 
CHANGE     > 

EXIT 

THAT 
WHOSE 

ARE/IS 
EDITED 

RECEIVED PHD 
RECOMMENDED 

REVIEWED 
REVISED 

SUBMITTED 
WROTE 

(b) After selection of a general term 

Figure 3.3: Illustration of Commitment Degree Choices 

EnQL users do not have to worry about the conceptual burden of joining. The 

system automatically creates an SQL query involving the join of multiple database 

tables. As the detail of this translation will be given in Chapter 5, each translated 

SQL query corresponds to a minimal dynamic view in the sense that only tables 

necessary to answer a given query are joined. 

3.2    Desired Features of EnQL 

The fact that EnQL queries consume a significantly smaller number of tokens than its 

SQL translations suggests that EnQL queries are more efficient and probably easier 

to phrase than SQL queries. This leads us to ask what the elements of the English- 

likeness are that contribute to the conciseness of EnQL queries, and that will be of 

further benefit to grammar-driven menu interface users. Our answer to this question 
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is summarized in terms of four degrees of freedom: 

1. Distribution of modifiers over the span of a sentence: The underlying data model 

should support a rich set of modifier types. This set includes verb modifiers as 

well as prenoun and postnoun modifiers. 

2. Reduction of query production steps: For example, the user should be able to 

choose a shorthand expression "DATABASE books" instead of its full-fledged 

version "books written on DATABASE." The latter structure is still needed 

for the user to add adverb phrases modifying the verb. Similarly, the phrase 

"McGraw-Hill's books" is a shorthand for "books published by McGraw-Hill." 

3. Alternative ordering of references: While users can tolerate limited syntax with 

menu guidance, too restrictive a syntax forces users to navigate through a nar- 

row network of choice sets. To lessen this burden, the language syntax should 

support means of alternatively ordering references to entities and relationships. 

The particular syntactic features useful for this purpose are passive voice and 

adverb preposing.   These enable the user to choose the logical object and an 

'  adverb phrase of the verb phrase at the beginning of a query, respectively. 

4. Choice of commitment degree: The user's selection of a generalized term, com- 

pared with a specialized term, makes a weak commitment in referring to entity 

sets and relationships, thus leaving more options in the subsequent menus. For 

example, the choice set following "which persons" includes verbs that are not 

applicable to "which authors," such as editing books. Figure 3.3 shows two 

Kaleidoscope screen states for comparison. 



Chapter 4 

Previous Work 

As windows and pointing devices such as the mouse become widely available for 

human-computer interaction, Tennant and Thompson recognized that the window- 

based interaction could restrict users within the system's limited linguistic and con- 

ceptual coverage [69, 67]. This idea has developed into the so-called menu-based NLI 

systems NLMenu [69, 71, 70], INGLISH [53, 52], and NLParse/NLGen [30]. 

Taking the notion of grammar-driven menu guidance from these menu-based NLI 

systems, Kaleidoscope provides a model-based framework for the interface design and 

generation. Before introducing Kaleidoscope's approach, this chapter reviews menu- 

based NLI systems and discusses their limitations. 

4.1     Architectures 

4.1.1    NLMenu/INGLISH 

NLMenu and INGLISH capture constraints on choice generation in the so-called se- 

mantic grammar. Proposed by Burton [7], this grammar formalism represents both 

syntactic and semantic constraints uniformly in a collection of rewrite rules. Inter- 

esting concepts in the application domain are chosen as grammar symbols. NLMenu 

and INGLISH use a context-free version of semantic grammar. Figure 4.1 shows such 

a grammar for the bibliographic database application.  The rule SGI states that a 

27 
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SGI S -> AUTHOR-NP, AUTHOR-VERB, 
AUTHORED-OBJ-NP, {? AUTHOR-ADVPS} 

SG2 AUTHOR-ADVPS -> AUTHOR-ADVP, {? AUTHOR-ADVPS} 

SG3 AUTHORED-OBJ-NP -» BOOK-NP 
SG4 AUTHORED-OBJ-NP -* JOURNAL-ARTICLE-NP 

SG5 AUTHORED-OBJ-NP -► THESIS-NP 
SG6 THESIS-NP -> PHDTHESIS-NP 
SG7 AUTHOR-ADVP -+ AUTHORING-TIME-ADVP 
SG7 AUTHOR-ADVP -» AUTHORING-KEYWORD-ADVP         

Figure 4.1: A Context-Free Semantic Grammar 

query is composed of a noun phrase representing the author (AUTHOR-NP), a verb 

(AUTHOR-VERB), another noun phrase representing the authored object (AUTHORED- 

OBJ-NP), and an optional list of adverb phrases (AUTHOR-ADVPS). Those inside {? 

—} form an optional sequence, the rule SG2 governs recursive instantiation of adverb 

phrases (AUTHOR-ADVPS) based on a single adverb phrase (AUTHOR-ADVP). Rules 

SG3, SG4, SG5, and SG6 capture the generalization/specialization (ISA) hierarchy 

of authored objects. 

Context-free semantic grammar enables the early activation of semantic con- 

straints using a simple predictive context-free grammar interpreter. However, this 

approach is bound to show limited context-sensitivity in user guidance: 

1. Unconstrained Recursion: Recursion in grammar represents the repeated oc- 

currence of patterns in sentences. Context-free recursion such as the rule SG2 

of Figure 4.1 lacks context-dependent constraining power. Thus the system re- 

peatedly generates choices whose semantic basis has been specified by the user's 

previous selections. For example, the rule SG2 enables the user to construct 

multiple time adverb phrases in a single query as in "Who wrote books in 1983 

in 1985?" If the query translator interprets two adverb phrases as a conjunc- 

tion, the publishing time of books is restricted to two disjoint ranges in the 

translated query. No output tuples result from this redundant query. The user, 

however, may have a different, disjunctive interpretation from the user. 
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2. Coarse Semantic Granularity: The difficulty of developing and maintaining se- 

mantic grammar over large application domains [65, 66] leads to a grammar 

often written with coarse semantic granularity. For example, the rule SGI 

relates AUTHORED-OBJ-NP with AUTHOR-ADVPS. This rule assumes that a sin- 

gle set of adverb phrase types apply to all authored object types. While this 

could have been true in the designer's initial conception, it is no longer valid 

as the system's semantic coverage expands to include additional authored ob- 

ject types, such as journal article. Authoring journal articles may accompany 

adverb phrases such as "in IEEE transactions" for specifying the journals in 

which articles appear. This type of adverb phrases is not applicable to other 

authored object types. 

Semantic grammar is not reusable. To overcome this problem, NLMenu provides a 

template grammar so that the interface creator compiles a run-time semantic grammar 

by combining this template grammar with the so-called portable spec, a collection of 

domain-specific information. 

4.1.2    NLParse/NLGen 

NLParse/NLGen is an interface to Prolog knowledge base. To avoid semantic gram- 

mar problems, NLParse/NLGen employs a unification-based grammar which aug- 

ments linguistic categories with Prolog terms representing syntactic and semantic 

features. Lexicon supplies the run-time binding of these features. Unification of se- 

mantic feature bindings enforces domain-specific constraints. For example, the verb 

"schedule" is restricted to take only event nouns such as "talks" for its object, and 

talks may be scheduled for "interviewers." NLParse/NLGen deductively generates 

lexicon entries dynamically from the assertions in its knowledge base. While this is 

a noble idea, it does not show how complete and general such deduction could be 

given an arbitrary knowledge base structure. NLParse/NLGen only takes advantage 

of context-sensitivity to a limited degree. No attention has been paid to pragmatic 

constraints such as avoiding unconstrained recursion. 
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4.2     Absence of High-Level Data Model 

4.2.1    Influence of NLI Approach 

The NLI approach [6, 9, 41] is pervaded by the goal of building non-normative systems 

capable of recognizing unconstrained natural language input. This goal has led NLI 

research to put great emphasis on syntax to build a general-purpose linguistic proces- 

sor. No assumption is made on the underlying data model in grammar development. 

To represent the meaning of natural language input, NLI systems commonly employ 

an intermediate-level knowledge representation. At the application development time, 

a loose connection is established from the general linguistic module to the capability 

of the underlying query system. The emphasis on the surface-level capability and the 

adoption of the top-down layered mapping inevitably introduce interlayer capability 

mismatch. As a result, the meaning of some parsed sentences may not be represented 

internally, and those whose meanings are known to the system may not be processed 

by the underlying query processing system. 

The so-called menu-based NLIs, despite their use of menus to control user input, 

inherit the top-down perspective of NLI design and processing. Grammar is designed 

without much concern on the formal model of the underlying system capability, often 

overlooking some crucial aspects of formal language design. The absence of pronoun 

support in these systems exemplifies this. As the means of referring to entities in a 

query, pronouns play the role of tuple variables in relational query languages. While 

these systems may be excused for not supporting intersentential anaphora, leaving out 

intraquery anaphora makes their query language relationally incomplete [19]. Queries 

such as "Which students earn more salary than their advisors?" are not expressible 

in these systems, although they are in relational languages. The lack of concern on 

formal expressive power in surface language design leads to an additional problem: 

the power of a surface query language may exceed the capability of the underlying 

system. Thus, the system may guide users to create queries that it can parse but not 

necessarily process them to return meaningful results. 
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4.2.2    Problems with Low-level Implicit Data Model 

The style of NLMenu queries is reminiscent of formal language queries [61]. We 

consider that this is largely attributed to an implicit, low-level data model underlying 

the NLMenu interface for relational database access [68]. The level of abstraction 

captured in NLMenu's portable spec is not much different from that of the relational 

model [18]. Tables and fields are defined as two separate categories of common nouns. 

English terms are specified for all possible join paths. Tables may be restricted and 

joined via postnoun modifiers. The following query shows an NLMenu approximation 

of the EnQL query Ql. 

[NLMenu-Ql] 

Find  persons   who wrote  books   published by   'McGraw-Hill' 
"*->^—'  •! / v '  "—v—'  > v '  " «  

1 2 3 4 5 6 

and whose book published year is greater than   1980, 
7     ' 8 " 9 '       10 

and  whose book keyword is 'DATABASE* 
^"V—'      - v '      V *  

11 12 13 

This query is only an approximation of the EnQL query Ql because NLMenu grammar 

does not allow the result of a join query to be drawn from more than one table. 

The EnQL query Ql is more concise and comprehensible than the above NLMenu 

query. The difference is attributed to the rich set of modifiers distributed over the 

span of the query Ql. While NLMenu-Ql's modifiers are all postnoun, Ql has a 

prenoun modifier, a postnoun modifier, and an adverb phrase. The freedom of dis- 

tributing the modifier load functionally constitutes a key to constructing concise and 

comprehensible queries. Although NLMenu grammar can be extended to incorporate 

prenoun modifiers, its underlying model does not permit adverb phrases. To support 

adverb phrases, the model should include two additional conceptual primitives, one 

for representing verbs and another for verb modifiers. The verb phrases appearing in 

NLMenu queries are not supported as full-fledged concepts. They are just connectors 

specifying table joins. For example, the third and the fifth choices of the query Ql 

specify the following join paths: 
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"who wrote" : person —► author_reference —► book_reference. 

"published by" : book-reference —> publish_reference —► organization. 

Here, book-reference is a view created by joining two tables "book" and "refer- 

ence." With no conceptual distance between NLMenu queries and relational queries, 

the process of query translation is straightforward. Relational queries are directly 

composed from the parse trees of NLMenu queries. 

4.2.3    Loose Connection Between Data Model and Language 

The loose connection between the data model and the grammar leads the interface 

designer to overlook important model features useful for user guidance. The ISA 

hierarchy is such a model feature. It is useful for structuring information econom- 

ically and for saving computation if embedded in the inference (e.g., [2]). In the 

grammar-driven menu interface, it is the basis of providing the user with the choice 

of commitment degree, which we discussed as a desired EnQL feature in the previous 

chapter. In NLParse/NLGen, although its knowledge base represents the ISA hierar- 

chies, only terms corresponding to the leaf nodes of hierarchies are presented to the 

user. 

INGLISH also does not convey the type hierarchy of SmallTalk objects to the 

user. Furthermore, it shows how a grammar created in an ad hoc fashion is troubled 

with an ad hoc, domain-specific query translation scheme [53]. 

4.3    Summary 

In this chapter, we have discussed the problems associated with the approaches taken 

by previous grammar-driven menu systems. In the next chapter, we present the 

model-based approach and architecture of Kaleidoscope. 



Chapter 5 

Model-Based Approach 

I don't think that simple home appliances — stoves, washing ma- 
chines, audio and television sets — should look like Holliwood's 
idea of a spaceship control room. 

- Donald Norman, The Psychology of Everyday Things (1988) 

5.1     Introduction 

To support Kaleidoscope's style of user-system interaction, coupling of syntactic, 

semantic, and contextual information is indispensable. The lack of semantic and 

contextual information in choice generation results in the failure to prune irrelevant 

choices, which not only misleads users toward nonsensical queries but also wastes the 

screen space and potentially increases the user's choice search time. On the other 

hand, in defining the interface architecture, there is a seemingly conflicting objective 

of facilitating specific interface creation. A high degree of modularity is required to 

meet this objective. Specifically, it is desirable for the architecture to provide (1) 

a domain-independent grammar, (2) a domain-independent translator, and (3) ease 

in generating a domain-specific lexicon, where the lexicon refers to a collection of 

categorized choices. 

33 
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Figure 5.1: Model-Based Approach 

The central theme of this dissertation is that in seeking these architectural goals, 

the presence of a high-level data model is critical. The absence of an explicit model 

leads to ad hoc grammar design and query translation, thus harming the transporta- 

bility of the system. Existing data models are inadequate for supporting the desired 

features of EnQL. There is a significant conceptual gap between common English con- 

cepts and database representation of such concepts. Ignoring this gap would either 

force users to create cumbersome queries, or overload the grammar with a complex 

mapping to achieve a comfortable level of English-likeness. 

5.2    Model-Dependency 

Recognizing the conceptual distance between English-like queries and the the un- 

derlying database representation, this thesis defines a data model formalizing the 

conceptual structure of EnQL queries. Figure 5.1 shows how this model serves as 

the basis of defining the run-time components of the transportable grammar-driven 

menu system. First, it guides the the acquisition of domain-specific information in 

the schema. Integrity constraint rules are expressed in terms of this schema. 
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In the model-based approach, grammar design focuses on the specification of rules 

for realizing unambiguous and meaningful references to model concepts and construct- 

ing the query meaning incrementally. Unlike the conventional NLI approach in which 

the goal of non-normative systems is pervasive [6, 41], the normative design principle 

[62] is applied. The design process sets a target expressive power by considering the 

capability of the underlying query processing system. Alternative designs are eval- 

uated by a cost function. In our research, we have taken conjunctive queries as the 

target expressive power, and devised a simple cost model of user query production 

when using grammar-driven menu interfaces. One benefit of this model-based gram- 

mar design is that all queries created via menu guidance are meaningful with respect 

to the data model. 
Grammar design produces a set of preterminal category definitions. Instead of ac- 

quiring the domain-specific lexicon entries independently, the model-based approach 

generates the lexicon automatically from the schema. A set of model-dependent yet 

domain-independent procedures implements this automatic lexicon generation. For 

this automated lexicon generation, a schema definition includes a collection of En- 

glish words/phrases as references to schema concepts. This approach first insures 

the semantic consistency between the schema and the lexicon. Second, it relieves 

interface creators of dealing with the linguistic part of the interface. Finally, with a 

well-defined model, it is possible to define a mapping from this model to a target stor- 

age model. This thesis takes the relational model for the target model. In addition, 

we limit the expressive power of EnQL to conjunctive queries. This restriction avoids 

the quantifier scope resolution problem of true English, and thus enables incremental 

forward-chaining inference on the partial query meaning. 

5.3    Kaleidoscope Architecture 

Figure 5.2 shows the architecture of Kaleidoscope. Rounded boxes represent the 

knowledge structures, and rectangles represent domain-independent procedures. Ar- 

rows indicate the direction of information flow. 
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Figure 5.2: Kaleidoscope Architecture 

5.3.1     Grammar and Lexicon 

This section briefly describes Kaleidoscope's grammar formalism.   A more detailed 

description will be presented in Chapter 7. 

Around 40 phrase structure rules specify EnQL. The following shows a top-level 

rule prescribing the construction of queries comprising a noun phrase (NP) followed 

by a conjunction of verb phrases (VPS): 

S NP 

subj.entity, 

subj.evar, 

(detl :init 'wh), 

relationship, 

_rel_obj, 

number, 

(case unit 'subj), 

compare_pred, 

subj.entity, 

subj_evar, 

case, 

VPS 
relationship, 

number, 

(form  unit 

'[pres,past]), 

demodifiers 

Each grammar symbol is augmented by a collection of feature attributes (shown 
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in boxes next to symbols) that formalizes the context of constituent structures. Both 

syntactic and semantic features are captured this way. The run-time binding of these 

features comes primarily from the lexicon, although grammar rules often provide 

domain-independent values such as wh and subj. Feature attributes may take a 

limited constraint formula: disjunction of atoms (enclosed by "[" and "]"), negated 

disjunction of atoms, or conjunction of one disjunction and one negated disjunction. 

Unification of feature bindings is enforced between a parent rule and its children to 

block unnecessary application of child rules. 

Kaleidoscope also supports attachment of several types of procedural decoration 

to grammar rules. These decorations enable interface designers to capture arbitrary 

constraints and actions in grammar rules. 

The lexicon consists of a list of preterminal categories. Each category defines a 

list of feature attributes, a list of choices, and a display menu window. Table 5.1 

shows sample lexicon entries. Semantic feature attributes, such as entity, v_subj, and 

v.obj, refer to the schema concepts. 

5.3.2 Schema and Integrity Constraint Rules 

The schema defines domain-specific concepts in frames. Each frame contains infor- 

mation on mapping to underlying databases. Schema concept names occur as the 

values of semantic features of lexical items. Integrity constraint rules are production 

rules based on the schema concepts. 

5.3.3 DBMS-based Management of Knowledge Structure 

Complex dependencies exist among schema entries and from schema to integrity con- 

straint rules. For example, renaming an entity requires updating more than dozen 

places in the underlying knowledge structure. File-based storage is inadequate for 

keeping track of such complex dependencies. Kaleidoscope manages the schema, 

integrity constraints, and the English terms for reference to schema terms in the re- 

lational database. This DBMS-based approach first provides the locality of changes 

and supports set-oriented queries to the knowledge structure. Furthermore, with rules 
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WH-PN: 
"who" 

entity = Person 
v_subj = [Author-Reference, Edit-Book, ...] 
v.obj = NIL 

V: 
"wrote" 

rel = Auth or-Refer en ce 
subj.entity = 
obj-entity = 

Author 
Reference A Edited-Book 

arity = 2 
tense = past 
form = past 

ENTITY-SET-IS f: 
"books" 

entity = BooA- 
v_subj = NIL 
v_obj = [Author-Book, Edit-Book, 

Publish-Book] 
countp = plus 

number = pi 
"(authored) books" 

entity = Authored-Book 
v_subj = NIL 
v_obj = Author-Book 

countp = plus 
number = Pi 

Table 5.1: Sample Lexicon Entries 
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and triggers supported as a part of DBMS functionality [74, 64, 63], updates can be 

automatically propagated based on known dependencies. 

Over thirty relations are used to represent the schema, integrity constraint rules, 

and lexicon. The information in these relations is then cached in the main memory 

for run-time efficiency. Shaded arrows in Figure 5.2 indicate that the structure at its 

source is cached at the destination. This caching is more than simple duplication. 

A set of procedures generates schema frames, rules, and lexical entries in the form 

desired by the interpreting procedures [76]. The use of relational DBMS also facilitates 

creation of interfaces covering a subset of concepts in an application domain. 

5.3.4    Interpreter 

For the interface creator, it is desirable for the interpreter of a complex knowledge 

structure to exhibit simple behavior so that the consequence of changing the structure 

is easily projectable. Kaleidoscope's interpreter is made of two interacting procedures: 

• Grammar interpreter incrementally generates choices as specified by a grammar 

based on the partial query state. This interpreter is based on the notion of ac- 

tive chart, a run-time structure for keeping track of partial query creation. The 

unification embedded in this interpreter is extended to recognize the general- 

ization/specialization hierarchy. Although the partial structure handled by this 

unification is not as sophisticated as those in other unification-based grammar 

formalisms, this extension is original. 

• Forward-chaining inference engine keeps track of the partial query meaning and 

generates informative or corrective messages. Because of the forward-chaining 

nature, Kaleidoscope uses 0PS5 [25, 20]. 

5.4    Overview of Processing 

Given a partial query, the interpreter generates a set of lexicon match descriptors 

(LMDs). An LMD is specified by: 
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• A preterminal category symbol, 

• A list of feature attribute constraints 

• A filtering constraint expressed in terms of feature attributes 

For each LMD, the system retrieves a list of matching items from lexicon, and sorts 

and presents them on the screen. Some choices on the screen may actually represent 

multiple lexicon entries. Once the user selects a choice from the screen, the system 

expands its hypothesis on the partial query, which is internally represented by an 

incomplete forest (a set of trees) sharing intermediate and leaf nodes, and generates 

a new set of LMDs. 

To illustrate, consider a partial query consisting of a single user-selected choice 

"which." An incomplete forest maintained by the system leads to the generation of 

"authors" as one of choices for its extension. Once this choice is selected by the user, 

the syntactic and semantic information associated with "authors" are used to extend 

the hypothesis forest. Since the noun "authors" refers to the entity set Author, this 

information is used to select subsequent verb phrases. This cycle goes on until the 

user selects the finishing choice "RUN QUERY" enabled when it is legitimate to 

finish. 

5.5     Summary 

This chapter has presented Kaleidoscope's model-based approach to the design of a 

tightly constrained transportable gram mar-driven menu system. The next chapter 

describes the data model for supporting this model-based approach. 



Chapter 6 

EnQL Data Model 

Many readers, I suspect, will take the title of this book as sug- 
gesting that women, fire, and dangerous things have something in 
common - say, that women are fiery and dangerous. Most fem- 
inists I've mentioned it to have loved the title for that reason, 
though some have hated it for the same reason. But the chain of 
inference - from conjunction to categorization to commonality - is 
norm. The inference is based on what it means to be in the same 
category: things are categorized together on the basis of what they 
have in common. 

- Georgy LakofT, Women, Fire, and Dangerous Things (1987) 

6.1    Introduction 

Past research in natural language processing attempted to capture the semantic roles 

of noun phrases (NPs) in a small number of deep cases such as agent, patient, and 

instrument [24, 58]. The intent is to use these cases as the basis of specifying the 

argument structure of verbs and representing the meaning of sentences for general 

inference. For example, the definition of the verb "wrote" includes two mandatory 

cases, agent and patient. An NP that refers to a set or an individual of Author fills 

the agent case. Similarly, an NP that refers to the entity Reference fills the patient 

case. The verb "wrote" may have optional cases relating it to the time, place, and 

41 
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keyword areas of authoring.  Rules are needed to assign possible NP positions, such 

as subject, object, and prepositional phrase (PP) object, to deep cases. 

While the notion of deep case engenders generality in representing sentence mean- 

ings, it is difficult to agree on what constitute a complete collection of deep cases. In 

the problem domain of querying databases, fortunately, such generality is not needed 

because the semantics of a specific database determines the collection of meaningful 

verbs and their argument structures. This chapter develops a model to be used as 

the basis of representing this database semantics. 

6.1.1     Concerns in Data Model Development 

A significant conceptual gap exists between EnQL and the database representation 

of entities and relationships. Thus the development of a model should address the 

issue of what level of representation to choose and how to resolve this conceptual gap. 

In Kaleidoscope, the grammar and the query translator together take the burden of 

resolving this conceptual gap. If one of these components takes less burden, the other 

is subject to more. Our approach is to relieve the grammar of the burden as much 

as possible so that the grammar embodies a simple mapping between EnQL and the 

model. Thus the model captures the level of representation that is close to the con- 

ceptual structure of restricted English queries. The query translator implements a 

mapping between this model and the underlying storage models such as the relational 

model [18]. Our premise for this decision is that once a mapping to a storage model is 

defined, its benefit persists. On the other hand, we expect many variations of EnQL 

grammar. The simplicity of the mapping between EnQL and the data model facili- 

tates the development of these variations. In addition, the simple mapping between 

EnQL and the model makes the process of instantiating specific database interfaces 

transparent. The interface creators easily project the consequence of introducing new 

concepts in the schema. 

Our secondary concern is on the representation of the information needed for 

enforcing the integrity of partial queries. The redundancy in the query specification 

potentially breaches such integrity. As we seek to provide a natural view of data, 

this redundancy may inherently appear in the schema.   For instance, the keyword 
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area of authoring may be considered a full-fledged entity as well as an attribute 

subordinate to the entity Reference. If the user has specified Reference's attribute 

keyword, the subsequent selection of an adverb phrase based on Keyword potentially 

introduces inconsistency. The model should allow the interface creator to express 

the redundancy of information in the schema so that the system may use it to avoid 

potential inconsistency in user queries. 

6.2    Basic Concepts 

Entities, relationships, and relationship modifiers describe the overall schema of a 

database. In this sense, the model may be called E-R-M model. Only entities are 

allowed to own attributes. Entities correspond to noun phrases (NPs) appearing 

as subjects, objects, and prepositional phrase (PP) objects. Relationships model 

domain-specific verbs, and take one or two entities as arguments. Relationship mod- 

ifiers represent adverb phrases, such as wh-adverbs and prepositional phrases. Each 

relationship modifier takes two arguments: one for the base entity involved in modify- 

ing the relationship, and another for the relationship that it modifies. The arguments 

of both relationships and relationship modifiers can be specified by constraint formu- 

las as well as atoms. In our model, a typical E-R relationship [16,17] is represented by 

a relationship of fixed arity (< 2) and an arbitrary number of relationship modifiers. 

Figure 6.1 shows a graphically represented schema. Rectangles, diamonds, and 

trapezoids represent entities, relationships, and relationship modifiers, respectively. 

Note that our model avoids the need of introducing deep cases explicitly by as- 

signing subjects and object to relationship arguments, and collecting the deep cases 

corresponding to adverb phrases as relationship modifiers. 

6.2.1    Entities 

Entities model not only objects with unique identity such as Author and Book but also 

mass nouns, such as Salary, if domain-specific verbs take them as subjects, objects, or 

PP objects. Count and mass entities have different wh-determiners in EnQL: "which" 
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and "how much," respectively. Mass entities may have comparative adjectives as in 

"Who earn more salary than their managers?" An entity definition includes: 

• a feature countp, which indicates the countability of an entity, 

• a noun to be used for reference, 

• a set A of attributes (or properties), 

• a set K of key attributes (/C C A), 

• a set V of default projection attributes (V C A). 

Entity Attributes An attribute is marked to indicate if it is qualified for a prenoun 

modifier. Key attributes are in general not allowed to appear as prenoun modifiers. 

All attributes may appear in postnoun modifier clauses. Each entity attribute refers to 

a domain and has a noun for its reference. A domain definition contains information 

on guiding the user's value creation, such as the type of pop-up menus. 

6.2.2    Relationships 

Relationship arguments are assigned their roles: subject or object. In the graphical 

schema representation, an arrow from an entity to a relationship indicates that the 

entity plays the subject role, while an arrow from a relationship to an entity indicates 

that the entity plays the object role. A relationship definition additionally includes: 

• a feature tense to specify the legitimate tenses of a relationship, 

• a verb to be used for reference. 

Example The query Ql illustrates the realization of two binary relationships: Au- 

thor-Book {Author3ubj, AuthorecLBookobj) and Publish-Book (Publishersubj, Bookobj) 

underly the verbs "wrote" and "published," respectively. 

The unary relationship ReceiveJ3hD (Authorsubj) with tense = past models the 

fact that some authors received PhD. When this relationship is realized in a query, 

an NP referring to Author appears in the subject position of verb "received PhD." 
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Figure 6.1: A Graphical EnQL Schema 
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While three-place relationships are conceivable to model bitransitive verbs (e.g., "x 

pays y $2"), such relationships are substituted by two-place relationships by moving 

indirect objects to adverb positions (ux pays $z to y"). 

6.2.3    Relationship Modifiers 

An arbitrary number of relationship modifiers may be associated with each rela- 

tionship, and vice versa. As a result, the relationship argument of a relationship 

modifier is typically specified by a disjunction of relationships. For example, in Fig- 

ure 6.1, In .Publishing-Time and On-Keyword modify the relationships Author-Book, 

Edit-Book, Publish-Book, and Author-Journal-Article. The relationship argument 

of these modifiers is then expressed by a disjunctive formula: 

Author-Book V Edit-Book V Publish-Book V Author Journal-Article. 

A relationship modifier may be realized with multiple prepositions. For example, 

although our convention affixes a representative preposition "In" to the base entity 

name "Publishing-Time," hi-Publishing-Time may be realized not only as "in 1982" 

but also as "since 1982" or "before 1982." 

Some relationship modifiers are shared by a set of relationships in the sense that 

two verbs sharing an NP also share adverb phrases. The query Ql exemplifies this. If 

either of two verbs "wrote" and "published" is restricted by the adverb phrase "since 

1982," the other is also restricted by the same adverb phrase. This information is use- 

ful for checking the semantic consistency of two related verb phrases. In the graphical 

schema representation, arrowed lines connect relationship modifiers to relationships. 

If the line ends with multiple relationships, they share the relationship modifier. 

6.3    ISA Hierarchies 

ISA hierarchies organize schema concepts by similarity and difference. Figure 6.1 

also shows ISA relationships between entities. The semantics of the entity hierarchy 

is that if Ed is a descendent of Ea (ISA(Ed, Ea)), then Ed is a subset of Ea.   Ed 
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inherits all attributes of Ea, and may define new attributes. The model imposes a 

mandatory rule regarding entity specialization: 

If a set of relationships disjointly divides an entity set, create specialized 

entity sets, one for each of the relationships. 

For example, two relationships Autiior_BooA' and EditJiook disjointly divide the en- 

tity set Book because a book is either authored or edited but not both. (An edited 

book, however, may contain many authored chapters or articles.) By the mandatory 

rule, two entities Authored-Book and Edited-Book are created as specializations of 

Book, and used for specifying the object arguments of the relationships. This manda- 

tory entity specialization avoids nonsensical queries such as "Who wrote books edited 

by ..." Here, the entity Authored-Book referred to by "books" cannot be an argu- 

ment of Edit-Book. Thus "edited by" is pruned from the choice set presented after 

the user's selection of "books." 

The entity hierarchy enables users to query a specialized entity set. Let Na and 

Nd be NPs realizing entities Ea and Ed. Users may ask: 

"Which Na are NdT 

("Which theses are PhD theses?") 

Note that reversing the order of Na and Nd leads to trivial questions such as "Which 

PhD theses are theses?" Therefore EnQL does not support this type of query. 

Relationships are also organized into hierarchies as shown in Figure 6.2. The argu- 

ments of a parent relationship subsume the arguments of all of its child relationships. 

A child relationship inherits all the modifiers associated with its parent. Additional 

relationship modifiers may be defined for the child relationship. The existence of 

additional relationship modifiers mandates relationship specialization. For instance, 

the relationship Author Journal-Article is specialized from AuthorJteference because 

the modifier InJournal is applicable only to Author Journal-Article. A relation- 

ship is also specialized without introducing new modifiers when its arguments are 

specialized. For example, Author-Thesis has specializations AuthorJ>hDThesis and 

Author-MasterThesis. 
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Figure 6.2: A Relationship ISA Hierarchy 

Benefits    The ISA hierarchies form a basis for: 

• Extending unification in such a way that two atoms in ISA relationship unify 

to the specialized one. As a result, Book and Authored-Book unify to Au- 

thored-Book. 

• Overloading attribute-based choices. For example, the choice "edition" is spec- 

ified as the attribute of the entity BooA', but also serves as an attribute of 

Authored-Book and Edited-Book, thus reducing the number of choices on the 

screen. 

• Supporting the user's choice of commitment degree: Let Vx denote a set of verbs 

that can be attached to an NP referring to the entity Ex. Then Vd C Va holds 

for ISA(Ed, Ea). Similarly, let Ax be a set of attributes that can be matched 

by the entity specification Ex. Then, Ad Q Aa holds as well. 

Presenting general/specialized terms hierarchically on the menu. 
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• Organizing lexicon entries hierarchically such that the failure of unification at 

a nonleaf node guarantees the failure at all of its descendents. For example, if 

the match fails at Books, it is unnecessary to try to match AuthoredJiook and 

Edited-Book. 

6.4 I-OVERLAP 

Often two entity sets such as Thesis and TechnicalJieport overlap, even if they are 

not in ISA relationship. The I-OVERLAP relationship captures such intrinsically 

overlapping entity sets. This relationship provides the basis of determining legiti- 

mate noun qualifiers, such as "thesis" in "thesis technical reports," and qualified NP 

complements for establishing the entity identity as in "Which technical reports are 

'Stanford' theses?" I-OVERLAP has following properties: 

Symmetry: 

I-OVERLAP(Ei, E2) =► I-OVERLAP(E2, Ex).   Thus, if "thesis technical re- 

ports" is legitimate, so is "technical report theses." 

Pseudotransitivity: 

ISAiEr, E2) A I-OVERLAP{E2, E3) =► I-OVERLAP(Eu E3). As a result, "PhD 

thesis technical reports" is also a legitimate NP. 

With the I-OVERLAP relationship, entity sets with multiple parents are not 

necessary. As a result, the ISA hierarchies in our model retain the simplicity of tree 

structures. Compared with the lattice-based multiple inheritance, our inheritance 

model reduces the number of entity sets to represent in the schema significantly. 

6.5 Derived Attributes and Subordinate Entities 

It is desirable for entities, relationships, and relationship modifiers to be defined with- 

out redundancy. For example, if Keyword is modeled as the base entity of the relation- 

ship modifier OnJieyword, the keyword information does not appear in the definition 
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of Book. However, to support the shorthand expression "DATABASE books," it is 

desirable to treat Keyword as if it were an attribute of Book. In Kaleidoscope, this is 

done by derived attributes: the attributes from a relationship modifier's base entity 

are imported to the argument entity of the relationship. 

Similarly, it is desirable to refer to some entities as if they were subordinate to 

others, as in "which publisher's books" or "which book's publishers." The relationship 

Publish-Book is implicit in both cases. The schema may define an argument entity 

of a binary relationship subordinate to the other. 

6.6    Internal Query Language 

This section defines an internal query language (IQL) for representing the query 

meaning and integrity constraints, and presents a mapping from our model to the 

relational model. 

Let R, M, and S be the sets of symbols representing relationships, relationship 

modifiers, and built-in predicates. S includes =, ^, >, <, >, <, between, and not 

between as its members. Note that 5' is closed under negation. A query may contain 

range-restricted variables for entity sets and relationships. 

6.6.1     Query Meaning Representation 

A query Q is a conjunction of positive literals P,: 

Q={(eue2, ...)\}\pi} 
«=i 

where e.\, e?,... are free entity variables. Let pi be the predicate symbol of Pt-, then p,- 

is drawn from R, M, or S. All relationship variables, and the entity variables which 

do not appear as free variables are existentially quantified. The following condition 

holds for Q: for each literal Pi, there exists at least one literal Pj(i -fi j) such that 

the variables in the arguments of Pi and P) overlap. 

EnQL grammar encodes the following mapping from EnQL to IQL: 
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• For each reference to an entity set or an individual entity in EnQL, an entity 

variable is created. If an entity set reference is qualified by a wh-word, the 

variable is free; otherwise, it is existentially quantified. 

• If pi € R, Pi has three arguments: a relationship variable, and variables for the 

subject and object entities. If p, represents a unary relationship, one argument 

is left empty. 

• If pi 6 M, the first argument of P, is a relationship variable, and the second is 

a variable for the base entity of p,. 

• If pi € S, the first argument of P, is a pair of an entity variable and an attribute. 

Either constants or pairs of entity variables and attributes are qualified for the 

remaining arguments. 

Example    The system builds the following conjunctive query incrementally while 

the user creates the query Q1. 

{{x,y) | {Author-Book r, x y) A (= y.keyword "DATABASE") A 

{Publish-Book r2 p y) A (=  p.name "McGraw-Hill") A 

{In-Publishing.Time r, 0 A (>   t.year 1982) } 

where x € Author, y € Authored-Book p € Publisher, 

t € Publishing .Time 7^ G Author .Book, r2 € Publish-Book. 

In this query, variables p, t, r^, r2 are existentially quantified. 

6.6.2    Integrity Constraints for Intraquery Cooperation 

An integrity constraint is a negated conjunction of literals: 
m 

-(A Li) 
«=1 

where the predicate symbol /, of L, is drawn from ß, M, or S. We restrict I, to be 

positive if U belongs to R and M. With S closed under negation, the literals based 

on the symbols in S could be treated as either positive or negative. 

To illustrate, the integrity constraint ICl is formally expressed as: 
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- ((Teach r i c) A (I-OVERLAP i\ s) A s € Student 

A (=  c.dept "CS") A (>  c.number 400)) 

Here, for the simplicity of presentation, we left out the declaration of range variables 

except for s. If all literals of an integrity constraint are true in a query, the system 

warns the user of the integrity constraint violation. For this inference, Kaleidoscope 

uses OPS5 [25]. Thus, Kaleidoscope represents the above integrity constraint by a 

production rule: 

IF (Teach r i c) A (I-OVERLAP i s) A s € Student A 

(= cdept  |CS|) A (>  c.number 400) 

THEN    MAKE (Warning 

|Student instructors never teach CS400 or higher level courses]). 

The Integrity constraint IC2, on the other hand, has a different type of THEN part 

to derive literals: 

IF (Teach ric) A (I-OVERLAP i s) A 

(= c.dept  |CS|) A (>  c.number 400) 

THEN    MAKE s £ Student 

In the actual OPS5 implementation of integrity constraint rules, all literals are 

defined with two system-defined arguments: 

1. The classification (0: user-selected, 1: trivial, 2: informative, 3:critical). 

2. The time stamp of creation. 

The first is needed for the application of the information presentation heuristics 

presented in Chapter 2. The latter is useful for removing all user-selected and derived 

literals when the user retracts selections. 

6.7    Mapping to Relational Storage 

6.7.1    Mapping 

A mapping from an EnQL schema to a relational schema consists of: 
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Entity Name Attribute Range Relation Range Field Joins 

Reference id reference id 

title reference title 
published-year reference year 
keyword keyword_view string 3,4 

reference-keyword 

Book id book id 

title reference title 5 
published-year reference year 5 

keyword keyword_view string 3,6 
edition book edition 
length book length 

reference-keyword 

Authored-Book id book id 7 

title reference title 5 
published-year reference year 5 

keyword keyword-view string 3,6 

edition book edition 
length book length 

reference-keyword 
author_reference 

Table 6.1: Entity-level Mapping of Reference /Book/Authored-Book 

• An attribute-level mapping, which maps entity attributes to database (DB) 

relation attributes. 

• An entity-level mapping, which adds restrictions and joins to the collection of 

attribute-level mappings. 

• A relationship-level mapping, which defines joins between the arguments of a 

relationship, and between the argument of a relationship and the base entities 

of its modifiers. 

Restrictions may add at entity and relationship levels, but they are trivial to 

process in query translation. Tables 6.1 and 6.2 show the entity-level mapping and a 

reference join table, respectively. Entity keys are printed in boldface. We have shown 
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Id Relation 1 Field 1 Pred Relation 2 Field 2 

1 
2 
3 
4 
5 
6 

person_name 
author_reference 
keyword-view 
reference 
book 
book 

id 
author 
id 
id 
id 
id 

= 

person-organization 
person_name 
reference-keyword 
reference-keyword 
reference 
reference .keyword 

person 
id 
keyword 
reference 
id 
reference 

7 
8 
9 

author_reference 
book 
organization 

reference 
id 
id 

= 

book 
publish-reference 
publish-reference 

id 
reference 
organization 

Table 6.2: Join Table 

a corresponding relational storage schema based on the structural data model [75] in 

Figure 3.2. Table 6.3 shows the relationship-level mapping. At this level, multiple 

entity sets may map to a single relation. The appearance of identical relations on the 

left and right of the predicate in the rows of the table 6.3 indicates such sharing of 

relations. 

6.7.2    Query Translation 

Query translation proceeds as follows: 

1. From an IQL representation, create an input record with: 

• Entity variables and their types. 

• Free entity variables and projection attributes: the latter are acquired ei- 

ther by prompting the user with pop-up menus or by retrieving the default 

set of attributes. 

• Entity restrictions and joins. 

• Relationships and their modifiers: collect relationship modifiers within 

the relationship that they are associated with. Relationship variables are 

removed in this process. 
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Relationship 

Entity 1 relation 1. field 1 relation2.field2 Entity 2/Modifier 

Auth or-Refer en ce 

Reference keyword.view.id keyword.view.id In-Keyword 

Reference reference.id reference.id In-Publishing. Time 

Author author_reference.reference reference.id Reference 

Reference reference-key word.key word reference .key word, key word In-Keyword 

Author-Book 

Author author .reference, reference book.id Authored-Book 

Authored-Book keyword.view.id keyword.view.id In-Keyword 

Authored-Book reference.id reference.id In-Publishing. Time 

Author author_reference.reference author .reference, reference Authored-Book 

Authored.Book reference Jcey word.key word referen ce .key word. key word In-Keyword 

Table 6.3: An Exemplary Relationship-Level Mapping 

2. Create a hash table for keeping track of entity views. An entity view is created 

for each entity variable in the query and contains a minimal list of attributes: 

key attributes, projection and restriction attributes, and join attributes that are 

either explicit in the user query or required by the entity and relationship-level 

mapping. 

3. For each relationship R with a list of modifiers {Mi}, do the following: 

(a) Collect entity views corresponding to the entity variables found in R and 

Mi's. 

(b) Create DB joins across these entity views as defined by the relationship- 

level mapping. Also unify multiple instantiations of identical DB relations 

in this process. 

4. For each instance of I-OVERLAP in the query, create an equijoin of two entity 

views. 

5. Collect the DB projection attributes, DB relation instances (pairs of relation 

names and unique identifiers), DB table joins, and DB table restrictions, and 

create an SQL query. 
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6.8    Summary 

This chapter has presented a data model for supporting EnQL queries. Its features 

are: 

• Entities, relationships, and relationship modifiers describe the overall structure 

of a schema. Unary and binary relationships model the semantics of intransi- 

tive and transitive verbs, respectively. Relationship modifiers are intended to 

support full-fledged adverb phrases involving complex noun phrases. 

• Generalization hierarchies form a basis of structuring schema concepts and menu 

choices. To users, hierarchically organized choices provide a range of commit- 

ment in choosing references. 

• The notions of subordinate entities and derived attributes enable users to create 

shorthand expressions for referring to relationships and relationship modifiers. 

• The notion of intrinsically overlapping entity sets provides a semantic basis 

of generating noun modifiers and establishing identity of entities belonging to 

different sets. In addition, it avoids the need for the explicit creation of entity 

sets with multiple ancestors, thus reducing the number of entity sets to represent 

in the schema. 

We have also specified a query language IQL for the internal meaning represen- 

tation of EnQL queries and expression of integrity constraint rules. Finally, we have 

defined a mapping from the EnQL model to the relational model and a query trans- 

lation procedure. 



Chapter 7 

Grammar Formalism for Choice 

Generation 

To provide a flexible grammar formalism for choice generation, Kaleidoscope extends 

Context-Free Grammar (CFG) in two ways. First, it augments each category sym- 

bol with a list of feature attributes. The role of these feature attributes is similar to 

attributes [23], registers [78], and features [59] of other grammar formalisms in pro- 

viding context-dependency. Second, Kaleidoscope's formalism provides several types 

of procedural decoration for attachment to grammar rules. This decoration enables 

the interface designer to capture arbitrary context-dependent constraints and actions 

in grammar. 

7.1     Augmented Context-Free Grammar 

A CFG defines a set of rewrite rules over category and terminal symbols. Each 

rule rewrites the symbol on the left-hand side (LHS) to a sequence of one or more 

right-hand side (RHS) symbols. The grammar designates a special symbol as the 

start symbol. We choose the symbol S to denote this start symbol. The set of rules 

rewriting preterminal symbols to terminal symbols is called lexicon and maintained 

separately from the rest of rewrite rules. 

57 
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LI NP 

subj.entity, 

subj.evar, 

(detl :init 'wh), 
relationship, 

_rel_obj, 

number, 

(case :init 'subj), 
compare-pred, 

VPS 

subj.entity, 

subj.evar, 

case, 

relationship, 

number, 

(form unit 

'[pres,past]), 

jcmodifiers 

Figure 7.1: A Top-Level Grammar Rule 

7.1.1    Feature Attributes 

Kaleidoscope augments each category symbol with an ordered list of feature attributes 

to formalize the context of a constituent category. A feature attribute is called seman- 

tic if its domain of values depends on schema terms. Otherwise, it is called syntactic. 

With feature augmentation, grammar rules rewrite in terms of a category symbol 

and a list of variables representing feature attributes. We call these variables feature 

variables. The scope of a feature variable is a single rule. 

Figure 7.1 shows a top-level EnQL grammar rule. This rule states that a query 

(s) is made up of a noun phrase (NP) and a conjunction of verb phrases (VPS). A 

collection of feature variables (typed in a sans serif style) appear boxed next to the 

category symbol. Figure 7.2 shows a more complex rule on VP for constructing a 

single verb phrase in VPS. This rule states that a verb phrase (VP) comprises a 

verb of present or past form, optionally followed by an object noun phrase (NP) and 

a list of adverb phrases (ADVPS). The symbols inside { \T\ ... } form an optional 

sequence. Those immediately following [7] make conditions for turning the sequence 

into a mandatory or null sequence. This feature is discussed further in Section 7.4. 

The run-time binding of most feature variables come from lexicon. However, some 

variables representing syntactic features are often initialized by grammar rules. The 

rule in Figure 7.1 illustrates such initialization. Initializing detl to wh mandates the 

first NP of a query to begin with a wh-word.   The rule also assigns the constant 
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VP 

bound_entity, 
bouncLevar, 
(filled.case 

:init 'subj), 
relationship, 
number, 
(form 

:init '[pres,past]), 
(xmodJist 

:if-unbound NIL) 

bound.entity, 
obj_entity, 
relationship, 

V arity, 
form, 
number, 
tense 

:local   (reLvar unit (genvar)) 
•.demon 
(assert 'type bound.entity bound.evar) 
(assert 'type obj_entity obj_evar) 
(assert 'rel relationship reLvar bound.evar obj_evar) 

0 ADVPS 

:require-if 
(equal arity 2) 
:skip-if 
(equal arity 1) 

NP 

relationship, 
reLvar, 
xmodJist 

obj_entity, 
(obj_evar 

:init (genvar)), 
_det2, 
_rel_subj2, 
relationship, 
_number2, 
(case2 

:init 'obj), 
.comparcpred 

Figure 7.2: A Grammar Rule on VP 
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subj to the feature variable case to indicate that the NP plays the subject role in 

the sentence. The feature variable form in VPS is also initialized by the rule to limit 

the verb phrases to present and past forms. Kaleidoscope provides two procedural 

decorations on feature variables, one for initialization and another for specification of 

default values. The semantics of these decorations is further discussed in Section 7.4. 

Unification of feature variable bindings in rule rewriting blocks unnecessary ap- 

plication of child rules. For example, the appearance of subj.entity and relationship in 

both NP and VPS requires that the bindings of these variables at two positions unify. 

If they don't, rules on VPS will not be activated. A special unification procedure 

may be specified for feature attributes. For example, most semantic features are as- 

sociated with the unification procedure that recognizes ISA hierarchies. The default 

unification procedure does not. 

7.1.2     Partial Value Representation 

Partial values express constraints on the ultimate binding of variables. For example, 

the initial value '[pres.past] of form in Figure 7.1 specifies that the value of form 

is either present or past. Partial values enable compact expression of constraints 

on feature attributes, thus reducing the size of grammar and lexicon. The run-time 

efficiency of choice generation also increases as a result. Kaleidoscope provides a 

limited language for partial value representation. 

A disjunction formula expresses a constraint that the binding of a variable should 

be restricted to a set of constants. Such a set is denoted by a list of constants enclosed 

with a pair of brackets. 

(x= [c1,c2,...,cn])   =   (x = C! Vx = c2 V... Vx = c„). 

A negation formula expresses a constraint that a variable should not be bound to 

any element of a given list. For the sake of notational consistency with disjunction 

formulas, we represent a negation formula in terms of a negated disjunction formula: 

(x = [ci,C2,...,c„])   =   (x = ci Ax = c2 A... Ax = c„) 

=    (x = C\ V x = c2... V x = Cn). 
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Partial values for semantic feature attributes may contain the nonleaf nodes of 

ISA hierarchies. Let c be such a constant. If c appears in a disjunction formula for 

the variable x, x may be bound to not only c but also any descendent of c. If c appears 

in a negation formula for x, c and its descendents cannot be taken as x's value. For 

example, a disjunction formula entity = [Thesis, TechReport] states that entity can 

be bound to PhDThesis and MasterThesis as well as Thesis and TechReport. 

We say that a disjunctive value formula or a negation formula is minimized if no 

constant in the formula is repeated or in ISA relationship to another. In Kaleidoscope, 

the binding of a feature variable takes one of the following forms: 

• A constant. 

• A minimized disjunction formula. 

• A minimized negation formula. 

• A pair of minimized disjunction and negation formulas in conjunction. 

7.1.3    Feature Binding Unification 

Unification is an operation of merging two partial object descriptions [39]. A feature 

binding list F combined with a category C forms a partial description of constituents 

in C. Let F\ and F2 be bindings on two feature attribute sets A\ and A2, respectively. 

F\ and F2 unify if fx
3 and f2

3 unify for any attribute Oj G AiClA2, where /,-' represents 

the binding of the attribute öJ appearing in F,- (i = 1,2). Let /"J 0 f2
3 denote the 

result of successful unification of f"3 and f2
3. Then the result of successful unification 

of F\ and F2 is: 

Fi®F2   =   U 

Below we present the operational semantics of unifying /"' 's based on the set- 

oriented view of partial values. We say that a formula / has a positive constant set 

(PSET) P if P is the set of disjunctive constants in /. Similarly, we say that / has a 
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negative constant set (NSET) TV if N is the set of negative constants in /'s negated 

formula. A constant value may be regarded as a PSET of cardinality 1. 

Based on these set terminologies, unification of two formulas /] (which has Pi and 

Ni as PSET and NSET, respectively) and f2 (which has P2 and N2 as PSET and 

NSET, respectively) is specified as follows: 

1. Merging PSETs: If two PSETs P\ and P2 are not null, compute their intersec- 

tion by the following semantics: 

• collect pu (or p2j) if pu = Pij where pu € Pi and p2j 6 P2, 

• collect pu if ISA(pu, P2j) holds, or p2j if ISA(p2j, pu) holds. 

In the absence of ISA information, this corresponds to usual set intersection. 

If any of Pi and P2 is null, take non-null one. If both of them are null, return 

NIL. 

2. Merging NSETs: Make union of two NSETs TV, and N2. Eliminate any item 

that is a specialization of another in this process. 

3; Subtracting NSET from PSET: Remove an item p from the collected PSET if p 

or p's generalization appears in NSET, or if a set of p's specializations covering 

p appear in NSET. 

4. Removal of Tautology in NSET if PSET is not null: Remove tautological con- 

stants from NSET. A constant n in NSET is tautological if no constant in PSET 

is a generalization of n. 

Example We illustrate the feature binding unification over the noun category. The 

following table presents sample entries in this category with their entity bindings. 

The rightmost column shows the result of unifying these entries with an input feature 

constraint {entity = Reference A Edited-Book}. 
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Choice String Choice Binding Unification Result 

"authors" 

"references" 

"theses" 

"PhD theses" 

"technical reports" 

"books" 

entity = Author 

entity = Reference 

entity = Thesis 

entity = PhDThesis 

entity = TechReport 

entity = BooA- 

FAIL! 

entity = Reference A Edited-Book 

entity = Thesis 

entity = PhDThesis 

entity = TechReport 

entity = BooA- A Edited-Book 

= Authored JBook 

This process actually occurs after choosing the choice "wrote" in the course of con- 

structing the query Ql. 

7.2    Partial Query Representation 

A partial query state consists of a collection of well-formed constituent structures 

and pending hypotheses on completing the partial query. A proper representation of 

this state is prerequisite for the system's exhibition of coherent behavior to the user. 

Kaleidoscope employs a run-time data structure called chart for the partial query 

representation. 

Commonly used for syntactic analysis in natural language processing [36], a chart 

consists of a sequence of vertices and a set of edges connecting vertices. In Kaleido- 

scope, a vertex represents the point of user-system interaction. Each edge represents 

the state of a grammar rule applied to the partial query, and is labeled with the rule's 

LHS symbol. Two types of edges are distinguished: active and inactive edges. An 

inactive edge represents a completed constituent structure, and corresponds to a node 

in the parse tree. An active edge represents a partially completed or just activated 

grammar rule awaiting the completion of constituents. 

A chart grows monotonically by incorporating new vertices and edges. Edges are 

never deleted or modified except by the user's explicit request to retract previous 

selections. As the user constructs a query, alternative parse trees are constructed in 

parallel. This parallel monotonic nature of the chart also makes it suitable for keeping 

track of feature bindings. 
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Rule: P ■-+ Q R {[?] S} 

p 
Order of Edge Instantiation: P0 Q0 \ Qi Px Ro \ Rx   p

2 S0 | 5i P4 

Edge Content 

Edge State Predecessor Subsumed Outstanding Remaining Symbols 

Po active Qo R(? S) 

Pi active Po Qi Ro (?S) 

Pi active Pi Qi fii So 
Pz inactive Pi Qi Ri 
P4 inactive P2 Q\ R\ S\ 

Figure 7.3: Example of Edge Creation on Chart 
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Figure 7.3 shows an exemplary chart created for the hypothetical grammar rule: 

0 p 
x, 

w 
Q 

x, 

y 
R y, 

z 
S 

w 

Bold edges represent inactive edges, and regular edges represent active edges awaiting 

extension. In Section 7.5, we describe the control flow of constructing the chart. 

7.3    Lexicon 

In Kaleidoscope, lexicon supplies candidate menu choices to the choice generator. 

Lexicon entries satisfying the context-sensitive constraints of grammar are presented 

on the menu. For the user, lexicon provides an additional layer of database view. 

Removal of entries from the lexicon disables reference to corresponding schema terms. 

7.3.1     Preterminal Category Definition 

Kaleidoscope's lexicon is organized by preterminal categories. Table 7.1 shows the 

definition of a preterminal category ENTITY-SET-N and sample entries. A preterminal 

category defines: 

• Feature attributes. 

• Special unify functions for feature attributes. 

• A menu window. 

• A collection of lexicon entries, each of which carries a feature binding list. Lex- 

icon entries may specify a demon function to be executed upon the user's selec- 

tion. Demon functions are executed with two arguments: the string and feature 

binding list of the selected choice. 

• An optional pivot feature, which provides the basis of organizing lexicon entries 

hierarchically. For example, the pivot feature specification of ENTITY-SET-N 

organizes the nouns representing entity sets by entity ISA hierarchies. 
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ENTITY-SET-N 
menu window: Concept-Noun 
feature attrs: entity, v_subj, v_obj, countp, number 

unify fn: isa-unify: entity, v_subj, v_obj 
pivot feature: entity 

"references" 
entity = Reference 
v_subj = NIL 
v_obj = [Author-Reference, EditJBook, Publish.Book, ...] 

countp = plus 
number = Pi 

"books" 
entity = BooA- 
v_subj = NIL 
v_obj = [Author-Book, Edit.Book, Publish-Book] 

countp = plus 
number = Pi 

"(authored) books " 

entity = AuthoredJBook 
v_subj = NIL 
v_obj = Author-Book 

countp = plus 
number = Pi 

Table 7.1: Category ENTITY-SET-N and Sample Entries 

FINISH: 
menu window: 
feature attrs: 

before fn: 

Finish-Phrase 
root-cat, start-vertex-id 
finish_before_fn 

Table 7.2: Category FINISH and Its Sole Entry 
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Model Concept Category Exemplary Choices 

Entity ENTITY-SET-N 

WH-PN 

INDIV-N 

PhD Theses, authors 
who, whom, whose 
<PhD Thesis>, <author> 

Attribute ATTR-N-BE 

ATTR-DEMON 

PRENOM-DEMON 

name is, id is, keyword is 
<name>, <id>, <keyword> 
< keyword > 

Relationship v    (form = past) 
(form = ppby) 
(form = beppby) 

wrote, 
written by 
were written by 

Relationship 
Modifier 

PREP 
WH-ADV 

at, on 
when, where 

Possessive Entity 

Subordinate Entity 

POSS-SET-N 

POSS-INDIV-N 

POSSED-SET-N 

publisher's 
<publisher>'s 
books 

Overlapping Entities ENTITY-MOD thesis, technical report 

Table 7.3: Model Concepts and Preterminal Categories 

• An optional before function, which is applied to matched lexicon entries be- 

' fore being presented to the user. This function is useful for computing choices 

dynamically from the partial query state. For example, the choice for paren- 

thesizing Ql's complex noun phrase is computed by the before function of the 

category FINISH. Table 7.2 shows the definition of this category and its sole en- 

try. The function f inish_bef ore_f n follows up the partial parse tree searching 

the node whose category is the same as the value of root-cat and produces a 

choice string by concatenating the leaf nodes of the subtree. 

7.3.2    From Model to Lexicon 

Kaleidoscope's model-based approach generates lexicon automatically from schema 

terms and a collection of English terms. Appendix B lists the tabular representation 

of information needed for this automatic lexicon generation. 

Table 7.3 presents sample preterminal categories and their source concepts of the 
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EnQL model. In addition to syntactic feature attributes such as form, each of these 

categories defines a key semantic feature attribute corresponding to its source model 

concept. For example, the feature definition of the category ENTITY-SET-N includes 

entity as its key feature attribute. Most categories define auxiliary semantic feature 

attributes derived from other related model concepts. The attributes v_subj and v.obj 

of the category ENTITY-SET-N are such features. These attributes specify the verbs 

that take the noun entry as the subject and object, respectively. Auxiliary semantic 

feature attributes are useful for pruning dead-end choices. When selected by the user, 

these choices lead the user to an empty menu state, thus forcing the user to backtrack 

previous selections. For example, unconstrained application of the S rule of Figure 

7.1 presents the entity nouns with no follow-up verbs as choices for the first noun. 

The noun "keywords," which represents the entity Keyword, is such a noun. The 

user's selection of this choice for the subject of a sentence leads to an empty menu 

state because Keyword is only modeled as the base entity of On-Keyword. In the 

next section, we show how Kaleidoscope's preterminal category decoration prunes 

dead-end choices using auxiliary semantic feature attributes. 

7.4    Procedural Decorations 

The second CFG extension of Kaleidoscope captures the computation to carry out 

inside a rule body in parallel with rule rewriting. For this purpose, Kaleidoscope 

supports a few types of procedural decoration on feature variables, optional se- 

quences, preterminals, and rules. Procedures in these decorations are arbitrary LISP 

s-expressions which may have feature variables as parameters. 

The goal of procedural decoration is: 

1. To compose the binding of one feature variable from the bindings of others in 

an arbitrary way. 

2. To prune syntactically valid but semantically infeasible extension of the partial 

query. 

3. To prune dead-end choices. 
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4. To interact with the nonlinguistic part of the system: 

(a) To construct the partial query meaning and pass it to the rule-based in- 

ference system. 

(b) To provide an escape mechanism for accessing desired semantic information 

missing in the lexicon. 

A pure unification-based grammar formalism does not provide the power and flex- 

ibility of Kaleidoscope's procedural decorations. This section presents the syntax and 

semantics of procedural decoration types and justify their utility in choice generation. 

7.4.1     Feature Variable Decorations 

Feature variables may have two kinds of decoration governing their initial and default 

binding: 

(x :init £): If x appears on the left-hand side of the rule, evaluate £ as the initial 

value to be unified with the corresponding value inherited from its parent rule. 

Otherwise, evaluate S if x is unbound whenever it is needed by the rule rewriting 

process or evaluating other procedural decorations. 

(x :if-unbound £): Evaluate £ as its default value if x is unbound when needed 

for evaluating other procedural decorations and passing feature bindings up to 

parent rules. This decoration is not evaluated when passing feature bindings 

down to child rules while the :init decoration is. 

The scope of a feature variable decoration is a single grammar rule. Thus the 

actual position of decoration in the rule does not matter. It is meaningless to attach 

:if-unbound decoration to a feature variable in the presence of :init. 

We have shown the exemplary use of the :init decoration in Figure 7.1. The :if- 

unbound decoration is useful for specifying the default binding of unbound feature 

variables when they are needed by the parent rule. 
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7.4.2     Optional Sequence Decorations 

The optional occurrence of symbols is often context-dependent. Two types of deco- 

rations may appear at the beginning of optional sequences: 

:require-if  £:  If £ evaluates to non-NIL value, the optional sequence becomes a 

required sequence. 

:skip-if £: If £ evaluates to non-NIL, the optional sequence should be skipped. 

The example of using these decorations appears in the VP rule of Figure 7.2: 

«  ? 

:require-if 

(equal arity 2) 

:skip-if 

(equal arity 1) 

t 

obj_entity, 

(obj_evar 

:init  (genvar)), 

_det2, 

NP 
_rel_subj2, 

relationship, 

_number2, 

(case2 

:init 'obj), 

_compare-pred 

This optional sequence becomes mandatory if the proceeding verb is transitive, namely, 

the arity of the relationship represented by the verb is 2. If the arity is 1, the choice 

generator skips the optional sequence. 

7.4.3    Rule Decorations 

Kaleidoscope supports four types of rule decoration for 

• specifying a condition for invalidating grammar rule application (:abort-if). 

• attaching arbitrary computation to be carried out inside the rule body (:on-exit 

and :demon). 
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bound-entity, :loca,l 
bound.evar, (specializations 
filled.case, :init  (get-specializations bound-entity)) 

VP 
relationship, (rel.var unit  (genvar)) 
number, :a.bort-if 
(form (null specializations) 

unit   'pres), ■.demon 
xmodJist (assert 'isa-instance comple-evar bound.evar) 

— BE 
number, 
form 

(compl-entity 
:init  (make-partial-value specializations)), 

compl-evar, 
(det2  :init   'no-indiv), 

NP 
_vp_subj, 
-vp-obj, 
number, 
case2, 
_pred, 
_compare_pred 

Figure 7.4: Another Grammar Rule on VP 

• declaring and initializing local variables, which do not represent any feature 

attributes (:ioca/). 

We present below the syntax and semantics of these decorations: 

:abort-if £: Abort the rule application if £ evaluates to a non-NIL value. 

:on-exit £\, £2, • • •, £n'- Evaluate £1, £2,..., £„ in this order when the decorated rule 

is completed. 

•.demon   £i,£2,...,£n'-   Evaluate £\,£2, ■ ■ • ,£n in this order whenever the list of 

constituents subsumed by the activated rule expands. 

:local V\, V2,...: Define a list of local variables in a rule body. Here Vi is a variable 

with or without :init or :if-unbound decorations. 



CHAPTER 7.   GRAMMAR FORMALISM FOR CHOICE GENERATION 72 

In the chart representation of the partial query, the creation of new active edges 

(N), the extension of existing active edges (E), and the inactivation of active edges 

(/) form three major types of change in the state of an activated grammar rule. Thus 

we define the execution timing of procedural decorations by these three events. The 

following table summarizes the applicability of rule decorations by event types: 

Decoration Type 

Event Type 

N E I 

:abort-if V V y/ 

:on-exit y/ 

: demon V V V 

The VP rule in Figure 7.4 shows the use of :abort-if decorations. This rule enables 

the user to express entity specialization queries such as "Which theses are Ph.D. 

theses?" The -.abort decoration states that the VP is valid only when there exists 

at least one specialized entity of the subject entity. The :on-exit decoration is useful 

for constructing the binding of a feature variable from other feature variable bindings 

before returning it to parent edges. The -.demon decoration is useful for expressing 

arbitrary actions every time when the state of an activated grammar rule changes. 

Figures 7.2 and 7.4 show the use of this decoration for passing the partial query 

information to the rule-based inference system. 

7.4.4    Preterminal Category Decoration 

While the :abort-if decoration provides the power of pruning rule applications, its 

granularity of pruning is coarse, limited to the whole category. Selective pruning of 

lexicon entries based on arbitrary filtering constraint is desirable. The preterminal 

category decoration constraint enables to express conditions for such instance-level 

pruning: 

constraint S:   The expression £ become the filtering constraint.   Both :init and 

:if-unbound decorations are used to evaluate 6. 
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entity, 
(evar :if-unbound  (genvar)), 

NP det, v_subj, v_obj, number, 
(case :if-unbound  NIL), 
compare_pred, 

< 1 
.•require-jf 
(equal 

det'wh) 

{a 

SPEC 

■.demon 

(assert 'type entity evar) 

entity, evar, 

(det :if-unbound  'some), 
number, case, 

(countp :if-unbound  'plus) 

PREMODS 
entity, case, evar, 

(selected.attrs :if-unbound  NIL) 

| [?|  | ENTITY-PREMOD      entity, case, evar   |  \ 

•.constraint 
(cond 

ENTITY-SET-N 
((equal case 'subj) (not (null v_subj))) 
((equal case 'obj) (not (null v_obj))) 
(t t)) 

entity, v_subj, v_obj, countp, number 

0 POSTMODS 

entity, 

number, 

selected.attrs 

evar 

FINISH 
(root-cat 

:init 'NP), 

leftmost-vertex-id 

Figure 7.5: A Grammar Rule on NP 



CHAPTER- 7.   GRAMMAR FORMALISM FOR CHOICE GENERATION 74 

Initialize Chart Extend Chart 

s_zx 
Collect LMDs 

I 
Match Lexicon with LMDs 

I 
Organize Choices for Presentation 

I 
Prompt User 

Figure 7.6: Control Flow of Choice Generation Process 

The NP rule of Figure 7.5 illustrates the utility of this decoration in pruning dead- 

end choices. The constraint predicate attached to the preterminal ENTITY-SET-N 

states that only nouns whose v_subj (v_obj) is not null are presented as menu choices 

for constructing a subject (an object) NP. 

7.5     Control Flow of Choice Generation 

The left-to-right incremental query construction in Kaleidoscope fixes the way that 

active and inactive edges are created on the chart. Figure 7.6 shows the overall control 

flow of choice generation. 

1. Initialize Chart: When the user starts a query, the system initializes the chart. 

This chart initialization involves top-down activation of grammar rules starting 
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RecursiveRuleApply (cat binding vertex parentEdge) 
begin 
if cat is a preterminal symbol 

then CreateActivePreterminalEdge (cat binding vertex parentEdge) 
;; The choice set is computed from the collection of active preterminal edges at vertex. 

else begin 
R <— MatchRules (cat binding) 
for each rule € R 

do begin 
edge *— CreateNewActiveEdge (rule binding vertex parentEdge) 
rhs <- GetRuleRHS (rule) 
S <— GetSequenceSet (rhs edge) 
;; If rhs begins with one or more optional sequences, the cardinality ofS> 1. 

for each seq £ S 
do begin 
(catchild, bindingchild) <— GetFirstTerm (seq edge) 
RecursiveRuleApply (catchild bindingchild vertex edge) 
end do 

end do 
end else 
end. 

Figure 7.7: Recursive Top-Down Procedure 
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ExtendChart (inactive vertex) 
begin 
if EdgeSymbol (inactive) is the start symbol 

then declare inactive is complete at vertex. 
;; This enables the choice "RUN QUERY." 

P *— GetParentEdges (inactive) 
for each parent G P 

do begin 
S *— GetRemainingSequenceSet (parent inactive) 
for each seq £ S 

if seq is null 
then inactiveparent <— InactivateActiveEdge (parent inactive) 

ExtendChart (inactiveparent vertex) 
else begin 

extendedparent <— ExtendActiveEdge (parent inactive) 
(catjvexu bindingNext) «— GetFirstTerm (seq parent) 
RecursiveRuleApply (cat^ext bindingnext vertex parent) 

end else 
end begin 

end. 

Figure 7.8: Recursive Bottom-Up Procedure 
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from the start symbol S. For example, given a top-level rule S —* NP VPS, the in- 

terpreter creates new active edges for this rule and the rules on NP, the first RHS 

symbol. This process applies to each of the rules on NP and continues recursively 

until preterminal categories are met. The interpreter assumes no left recursion 

in grammar. (Any grammar with left recursion can be transformed into an 

equivalent grammar without left recursion.) The procedure RecursiveRuleAp- 

ply presented in Figure 7.7 captures the process of this top-down recursive rule 

activation. 

2. Collect LMDs: The menu choice set is computed from active preterminal edges 

on the current vertex. Once chart initialization is completed, the choice gener- 

ator collects a list of lexicon match descriptors (LMDs), one from each active 

preterminal edge on the current vertex. An LMD defines three slots: 

(a) A category symbol. 

(b) A feature binding constraint. 

(c) An optional constraint predicate derived from :constraint decoration. 

3. Match Lexicon: For each LMD, the choice generator collects the lexicon entries 

that unify with the given feature binding constraint. If the LMD contains a 

constraint predicate, the choice generator further filters matched entries with 

this predicate. 

4. Organize Choices for Presentation: The collected lexicon entries are regrouped 

by their menu windows. Each choice string may have multiple preterminal 

active edges as its source. A choice maintains this source information. Hierar- 

chically organized lexicon entries need special treatment at this step to avoid 

presentation of choices with different display strings but with identical feature 

bindings after unification. Consider the LMD whose category specification is 

ENTITY-SET-N and that includes {entity = Book} as a part of its feature bind- 

ing constraint. The following lists matched choices with the resultant binding 

of entity: 
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"references" {entity = Book] 

"books" {entity = BooA'} 

"(authored) books"    {entity = AuthoredJBook} 

It is unnecessary to present the seemingly general choice "references" to the 

user when the entity set that it refers to is identical to the entity set that the 

choice "books" does. 

5. Prompt User: Collected choices are presented on the menu awaiting the user's 

selection. 

6. Extend Chart: The user's choice selection adds a new vertex to the chart. 

Inactive edges are created for the source preterminal edges of the selected choice. 

These inactive edges in turn inactivate or extend other active edges in the chart. 

The procedure ExtendChart in Figure 7.8 captures this bottom-up process. The 

top-down procedure RecursiveRuleApply is called in this process to create new 

set of active preterminal edges. When this step is complete, proceed to the step 

2. 

7.5.1    Dynamics of Chart Manipulation 

The major event for the interpreter to monitor is creation of inactive edges immedi- 

ately on the right of active edges. When a new active edge is instantiated on the chart 

for a grammar rule, it keeps the information about which active edges are awaiting 

its inactivated version. When the inactivated version of this active edge is created 

later, the procedure ExtendChart knows which active edges to consider for extension. 

To illustrate the dynamics of extending the chart, let a* be an active edge awaiting 

the instantiation of an inactive edge labeled with s, and i*i be such an inactive edge 

immediately on the right of a^. Instead of modifying the active edge a* to subsume 

the inactive edge i3i, another active edge ajt+i, if the active edge has additional 

constituents to be subsumed, or an inactive edge iak otherwise, is created. In either 

case, the new edge extends the active edge a^ to subsume the inactive edge isx. Both 

active and inactive edges may be created if an optional sequence is the only remaining 
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sequence. The active edge ak is reused when is2, another inactive edge labeled with 

s, is created later immediately on the right of ak. This makes it possible for multiple 

hypotheses to be pending at a time. 

An edge maintains a binding list of feature variables as well as a reference to the 

grammar rule. When a child rule is fired by an active edge representing the parent 

rule, unification is applied to the :INIT bindings of the child rule's LHS feature 

variables and the corresponding bindings inherited from the parent edge. If this 

succeeds, a new active edge is created for the child rule with its feature variables 

initialized to the result of unification. The active edge is not created if the unification 

fails or if the :abort-if condition of the child rule is true. Two decorations :abort- 

if and -.demon are evaluated later on whenever a new version of the active edge is 

created to subsume an inactive edge immediately on its right. The :on-exit decoration 

is evaluated only when an inactive edge is created. When an inactive edge is created, 

its feature variable binding list is passed up to a new version of the parent edge. In 

this process, the binding of the child edge overrules the existing binding of the parent 

edge. 

7.6    Grammar Transformation 

Table 7.3 shows the verb forms uncommon in linguistics. A verb of ppby form re- 

sults from concatenating a verb of pp form and "by." Similarly, a verb of beppby 

form results from concatenating a BE auxiliary verb, a verb of pp form, and "by." 

This concatenation is motivated to reduce the number of steps required to create 

passive verb phrases. Note that the grammar resulting from concatenation is both 

syntactically and semantically equivalent to the original grammar. 

Definition: Two grammars are equivalent if they generate the same set of strings, 

and the sets of derivations built on each string have the same cardinality and the 

same set of possible semantic interpretations. 

Definition: Two preterminals in a grammar are adjacent if there exist derivations 

placing them next to each other. 

Let A, B be adjacent preterminals in a rule on X, say, 
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Model Concept Preterminal Category Exemplary Choices 

Attribute WHOSE-ATTR-N-BE whose name is 
Subordinate Entity WHOSE-POSSED-SET-N whose books 

Table 7.4: Alternative Preterminal Categories: Examples 

X -*...A,B... 

Let Ai and Ai be new preterminals dividing the lexicon entries in the category 

A into two disjoint subsets, and A\B be a new preterminal containing the result of 

concatenating a £ A\ and b € B with all possible permitted combinations. Then the 

above rule is split into 

X-*...AXB... 

X A2,B, 

If A2 is null, we say that the concatenation is total. Otherwise, it is called par- 

tial. This binary concatenation is applicable to an arbitrary number of symbols in 

sequence. 

Table 7.4 shows two additional examples of concatenation useful for reducing the 

number of steps. In the next chapter, we formulate a condition when this type of 

concatenation is desirable using a simple cost model of user query production. 

7.7    Summary 

This chapter has introduced a flexible grammar formalism for choice generation in 

Kaleidoscope. It extends context-free grammar in two ways: (1) augmentation of sym- 

bols with feature attributes and (2) attachment of procedural decoration to grammar 

rules. The first captures the context of constituent categories, while the latter pro- 

vides the power of expressing arbitrary constraints and actions in grammar.   The 
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choice generator uses the chart as a run-time data structure for representing the par- 

tial query state. The parallel and monotonic nature of the chart-based grammar 

interpretation makes the chart suitable for keeping track of feature bindings. Kalei- 

doscope's incremental choice generation fixes the way that active and inactive edges 

are created on the chart. The detailed grammar interpretation process has been de- 

scribed in this chapter. Finally, we have discussed possible ways of transforming a 

grammar while maintaining the expressive power of the original grammar. 



Chapter 8 

Quantitative Dimension of 

Interface Design 

The direct public cost of schooling a child for thirteen years, from 
kindergarten through twelfth grade is over $20,000 today (and for 
the class of 2000, it may be closer to $30,000). A conservatively 
high estimate of the cost of supplying each of these children with 
a personal computer with enough power for it to serve the kinds of 
educational ends described in this book, and of upgrading, repair- 
ing, and replacing it when necessary would be about $1,000 per 
student, distributed over thirteen years in school. Thus "computer 
costs" for the class of 2,000 would represent only about 5 percent 
of the total public expenditure on education, ... 

- Seymour Papert, MINDSTORMS (1980) 

A choice in user interface design potentially affects the performance of end users. 

Design of a new grammar-driven menu interface is not an exception. A framework 

for systematic selection of design choices is desired for the grammar-driven menu in- 

terface. The normative design principle, which emphasizes the designer's articulation 

and evaluation of alternative designs [62], is illuminating. To provide a quantitative 

basis of design evaluation, we present a simple cost model of user query production 

when using the grammar-driven menu interface. 

82 
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8.1    Motivation 

The grammar design in Kaleidoscope decides two aspects of the interface: 

1. A range of syntactic alternatives for a given functionality. 

2. The granularity of query constituents presented as choices. 

Alternatives exist for each of these aspects, and a design choice potentially affects the 

performance of end users. We illustrate this point for the entity set restriction via 

attributes and subordinate entity sets. 

Syntactic Coverage An entity set may be restricted via either prenoun or post- 

noun modifiers: 

• "DATABASE" in "DATABASE books" (a prenoun modifier). 

• The clause following "books"  in "books whose keyword is DATABASE" (a 

postnoun modifier). 

The postnoun modifier alone suffices to provide the functionality of entity set restric- 

tion. However, the prenoun modifier alone does not because some attributes such as 

Book's id are unqualified for the prenoun modifier. The prenoun modifier is not an 

alternative but an extraneous syntactic feature. 

The NLMenu grammar for database access favors minimizing the space of user 

choices, thus leaving out the prenoun modifier feature. However, as the query Ql 

illustrates, this feature enables the user to express concise queries. The negative side 

of including an extraneous feature such as the prenoun modifier in the syntax is that 

choices based on such a feature incur a pure overhead to the user who is not interested 

in selecting them. 

Granularity of Constituent Selection The NLMenu grammar for database ac- 

cess in general takes a large constituent unit as a single menu choice. This has two 

advantages. First, it reduces the number of steps necessary to express a query. Sec- 

ond, a choice is more likely to be rich in its semantic content. For example, NLMenu 
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presents "whose book keyword is" as a single choice for leading a postnoun modifier 

clause. In contrast, INGLISH and NLParse/NLGen adhere to word-by-word presen- 

tation. In these systems, "whose," "keyword," and "is" are presented as separate 

choices in a sequence. 

Norman's Slogan In making design choices, one of Norman's slogans in the user 

interface design [48] is instructive: 

There are no simple answers, only tradeoffs. A central theme of our 

work is that, in design, there are no correct answers, only tradeoffs. Each 

application of a design principle has its strength and weakness; each prin- 

ciple must be interpreted in a context. One of our goal is to make the 

tradeoffs explicit. 

To follow this slogan, we need to develop a cost model for design evaluation. In 

the next section, we devise a simple cost model of user query production based on 

previous human factors experiments on menu systems. 

8.2     Cost Model of User Query Production 

The cost of user query production is the sum of the cost incurred by the menu states 

encountered by the user: 

t=0 t'=0 

where    /:    the number of steps required to create a query, 

Mil machine-dependent cost at the i'-th step, 

F:  user fixed cost at each step, 

Si',  user search cost. 

All costs are measured in elapsed time. 
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8.2.1 Non-search Cost 

The machine-dependent cost may vary by the state of the partial query, the number of 

grammar rules applicable for extending the partial query, and the number of choices 

to display. This cost is scalable by the MIPS of the machine. While we can actually 

measure M,- over the machine, we assume a nominal value M for M,- for the simplicity 

of cost computation. For the XEROX 1186 lisp machine which runs at 0.75 MIPS, 

M is roughly 7 ([3 - 11]) seconds for the bibliographic domain. For the 15 MIPS 

machine, this scales down to 0.35 ([0.15 - 0.55]) second. For an ideal machine with 

the infinite execution speed, M = 0. 

The fixed cost F accounts for the user's nonvisual search cost incurred by various 

perceptual and motor actions at each step, such as moving the mouse to the target 

choice and clicking the mouse. F was measured approximately 1.2 seconds by previous 

human factors experiments [11, 10]. 

8.2.2 Search Cost 

A model of search cost should capture: 

• As users get familiar with the system, they locate intended items without the 

exhaustive search [10]. 

• The user often backtracks previously selected choices. We suspect that the more 

restrictive a grammar is, the more often users backtrack choices. 

We model the search cost at each step as follows: 

Si = a(l + p){nis + ß(m - nis)} 

where  n,-:  the total number of choices at the i—th step 

riis'- the number of choices in the selected menu window at the i—th step 

a:   the unit cost incurred per choice 

0 < ß < 1: the user inexperience factor 

p > 0: the loss factor caused by the user's backtracking. 
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We assume that each choice item incurs the same cost regardless of its string length. 

The constant a represents this unit cost. In choosing the target item, we also assume 

that other choices in the selected menu window incur the same cost as the selected 

item. This gives the minimal cost proportional to n:i5, the number of choices in the 

selected menu window. The case of maximal cost occurs for the user's exhaustive 

search. The inexperience factor ß parametrizes the cost between two extremes. The 

closer ß is to 1, the higher the search cost is. The parameter p is the loss factor 

that accounts for the relative portion of choices that are consumed by the user's 

backtracking. We assume that p is dependent on a grammar. This leads us to define: 

a'  =  a{\+p) 

The value of a 

We estimate the unit cost a by combining the results of two human factors experi- 

ments on the menu interface. 

1. Card assumed a nonsystematic model of choice search for the fixed-size menu 

and measured the distribution function of search time [10]. The nonsystematic 

model assumes that the user has no means of keeping track of where the user 

has searched, and thus the user's choice search time t follows an exponential 

distribution: 

-mt F(t) = 1 - exp 

m 

Here F(t) and E(t) denote the cumulative distribution function and the expec- 

tation of the search time, respectively. The constant m is determined by the 

number of saccades made for each menu selection and the probability of finding 

a target item during each eye fixation. For the menu of n = 18 items, Card 

measured m « 1.2. 
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2. Perlman measured the effect of menu length on the user's search time [51]. The 

result of his experiment suggests that the search time is a linear function of the 

number of choices. 

By combining the results of these two experiments, we compute a as follows: 

m     n 1.2     lo 

In the rest of this chapter, we illustrate the use of the cost model developed in 

this section. 

8.3    An Illustrative Example:  Effect of Concate- 

nation 

An equivalent grammar results from concatenating choices in adjacent preterrninal 

categories. This section, taking the example of postnoun modifiers, formalizes the 

effect of concatenation on the cost of user query production, and formulates the 

condition under which concatenation is desired. 

8.3.1    Problem 

Let AGi be a portion of the grammar with the following rules on postnoun modifiers: 

POSTMOD    -►     WHOSE ATTR-N-BE ATTR-MOD-EXPR 

POSTMOD    -*     WHOSE POSSED-SET-N VPSPP 

These rules prescribes the user's construction of postnoun modifiers for restricting 

entity sets with its attributes and subordinate entity sets, respectively. 

Let AG2 be an equivalent grammar of AGi with the following rules on POSMOD: 

POSTMOD     -*     WHOSE-ATTR-N-BE ATTR-MOD-EXPR 

POSTMOD     ->     WHOSE-POSSED-SET-N VPSpp 
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KALEIDOSCOPE Query Status Window 
WROTE WHICH BOOKS 

3v3 Command   Wh-Word       Verb 
RUN QUERY 

RESTART 
RETRACT   ► 
CHANGE    ► 

EXIT 

WHEN 

Bfflffi 
AND 

THAT mm 
■I 

PUBLISHED BY 
WRITTEN BY 

H 
BEFORE 

BETWEEN 
IN 
ON 

SINCE 

KALEIDOSCOPE Querv Status Window 
WHO WROTE WHICH BOOKS WHOSE 

RESTART 
RETRACT  ► 
CHANGE    ► 

EXIT EDITION IS 
ID IS 

KEYWORD IS 
LENGTH IS 

PUBLISHED YEAR IS 
TITLE IS 

Figure 8.1: Two Consecutive Menu States Based on AG] (No Concatenation) 
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.ALEIDOSCOPE Query Status Window 
WHO WROTE WHICH BOOKS 

iand    Wh-Word       Subordinate Noun Header 
RUN QUERY 

RESTART 
RETRACT   > 
CHANGE    ► 

EXIT 

BEFORE 
BETWEEN 

IN 
ON 

SINCE 

WHOSE EDITION IS 
WHOSE ID IS 

WHOSE KEYWORD IS 
WHOSE LENGTH IS 

WHOSE PUBLISHED YEAR IS 
WHOSE TITLE IS 

Figure 8.2: Menu State Based on AG2 (Concatenated Grammar) 

The preterminal category WHOSE-ATTR-N-BE is a category formed by concatenating 

WHOSE and ATTR-N-BE in AGi. Similarly, the category WHOSE-POSSED-SET-N is 

formed by concatenating WHOSE and POSSED-SET-N. The following illustrates the 

content of the lexicon corresponding to two grammars: 

Grammar Category Example String 

Ad WHOSE "whose" 

ATTR-N-BE "title is" 

POSSED-SET-N "publishers" 

AG2 WHOSE-ATTR-N-BE "whose title is" 

WHOSE-POSSED-SET-N "whose publishers" 

Figure 8.1 shows two consecutive menu states based on the grammar AGi while 

Figure 8.2 shows a corresponding state based on the grammar AG2. This example 

shows that choice concatenation reduces the number of steps necessary to formulate 

queries matching certain patterns, but also increases the number of choices for other 

paths. For example, if the user is selecting a preposition, the choices in the windows 

"Subordinate Noun Header" and "Property Modifier Header" create a pure overhead. 
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8.3.2    Tradeoff Formulation 

Let Ppmod be the probability of choosing a postnoun modifier clause after selection 

of a noun for representing an entity set, npmod be the total number of the selected 

noun's subordinate entities and properties, and nr be the number of choices that are 

not affected by AG,'s (i = 1,2). For the menu state shown in Figures 8.1 and 8.2, 

ttpmod = 8 and nr = 15 (5 system commands, 1 wh-word, 2 connectives, 2 verbs, and 

5 prepositions). 

We consider the case of ß = 1 (exhaustive search). The case of ß = 0 is trivial; 

the concatenated grammar always wins. Let 

AC2   =    (M + F) + a'(npmod + np). 

Then AC2 is the cost incurred by the menu state of Figure 8.2. The comparable cost 

incurred by the menu states of Figure 8.1 is given by: 

Ad   =   (M + F) + a'(nr + l) 

+   Ppmod {(M + F) + a'npmod}. 

The right-hand side of the first line accounts for the cost incurred by the first menu 

state, while the second line accounts for the cost by the second menu state. The latter 

is weighed by the probability of choosing "whose" from the first menu state. 

Concatenation is desirable if ACi — AC2 > 0: 

ACi - AC2     =     o'{(nr + 1) + Ppmodftpmod - («pmod + "r)} 

+    Ppmod (M + F) 

>   0 

or 
a'(npmod - 1) 

Ppmod     -> a'npmod + (M + F) 

Interpretation 

Notice that this inequality suggests that for slow machines, where M is large, concate- 

nation is desirable even with a low probability of choosing postnoun modifier clauses. 



CHAPTER 8.   QUANTITATIVE DIMENSION OF INTERFACE DESIGN 91 

To illustrate, we substitute the parameters npmod = 8,nr = 15, p = 0, F = 1.2 and 

vary the value of M: 

M = 0: Ppmod > 0.66 

M = 0.7: Ppmod > 0.58 

M = 7: Ppmod > 0.27 

8.4    Summary 

This chapter has presented a cost model of the user's query production and illustrated 

how this model can guide the systematic choice of design options. The proposed model 

may be used for building an adaptive interface system. Such an interface suggest the 

user to switch to an alternative grammar design based on the statistics on the actual 

interface usage and incurred cost. 
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Conclusion 

Formulating database queries is a cognitively demanding process. In the absence of 

proper guidance from the interface, the user is burdened to learn and recall precisely 

the query language and the underlying database. This dissertation has addressed 

relieving the user of this cognitive burden as the prime function of a cooperative query 

interface, and presented Kaleidoscope's approach to the design of such an interface 

system. 

9.1    Kaleidoscope's Interface Approach 

Kaleidoscope provides an English-like query language for users to phrase queries with 

restricted yet common English expressions. A grammar-driven menu system bridges 

the inevitable mismatch between this language and the user's language. By generating 

legitimate EnQL constituents step by step as menu choices, this matching device 

relieves casual database users of learning and recalling the restrictions on EnQL and 

the conceptual coverage of a specific database. Users formulate queries by recognizing 

choices coming one after another that match their mental queries. The system uses 

its knowledge actively to guide users to create unambiguous and meaningful queries. 

92 



CHAPTER 9.   CONCLUSION 93 

9.2 Central Theme: Model-Based Approach 

Kaleidoscope's interface approach reduces the design of a limited language interface to 

a tractable engineering problem. As the interface takes the initiative in user-system 

communication, it is possible to apply the normative design principle. The design 

goal is explicitly represented and alternative designs are evaluated. 

The central theme of this thesis is that a data model plays a critical role in 

designing a normative query interface system, as a query language essentially conveys 

the underlying conceptualization of data to the user. The design of grammar, lexicon, 

and query translator follows a well-defined data model. First, grammar design focuses 

on unambiguous, meaningful realization of references to model concepts. Then, a set 

of domain-independent procedures is defined for automatically generating lexicon 

from the schema and a collection of English terms referring to the schema terms. A 

data model also serves as the basis of implementing a domain-independent mapping 

to the underlying storage model in the query translator. Thus the creation of an 

interface over a specific database involves only defining schema terms and English 

references to such terms. This way of using the data model in Kaleidoscope differs 

significantly from the way that the model is used in the conventional NLI design, 

in which the model assists the linguistic processor to assign possible semantics to 

arbitrary, unconstrained queries. 

9.3 Technical Contributions 

Data Model for EnQL The major technical contribution of this dissertation is a 

semantically rich data model for supporting the generation of legitimate English con- 

stituents on the menu. As the grammar defines the mapping between the data model 

and a query language, the simplicity of this mapping has been a primary concern 

in defining the conceptual primitives. The model defines entities, relationships, and 

relationship modifiers as basic concepts corresponding to noun phrases, verb phrases, 

and adverb phrases, respectively. ISA hierarchies organize these concepts by similar- 

ity and difference.  Kaleidoscope uses this hierarchical information in various ways. 
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The model introduces I-OVERLAP to represent the relationship among inherently 

overlapping entity sets. I-OVERLAP avoids the need for explicitly representing entity 

sets with multiple inheritance, thus reducing the total number of entity sets in the 

schema. Finally, the model supports the definition of two derived concepts: subor- 

dinate entities from relationships and derived attributes from relationship modifiers. 

They are useful for referring to source concepts concisely. 

EnQL, based on the rich set of conceptual primitives, provides users with various 

degrees of freedom in query formulation. To measure the gain in the user's benefit of 

using EnQL, we have relied on a syntactic measure - the number of tokens required 

to express a query. When SQL is taken as a reference, EnQL queries are significantly 

more concise than their SQL translations, often by an order of magnitude. 

Cost Model for Evaluation of Design Alternatives To provide a complete 

normative design framework, this dissertation has presented the quantitative dimen- 

sion of grammar-driven menu interface design. We have constructed a cost model of 

user query production from the result of previous human factors experiments, and 

illustrated the utility of this model for evaluation of alternative grammar designs. 

Flexible Grammar Formalism for Choice Generation In developing a gram- 

mar formalism for incremental constituent generation, its flexibility in capturing con- 

straints, both linguistic and heuristic, has been a prime concern as well as the gen- 

erality of grammar. Following other grammar formalisms for natural language pro- 

cessing, Kaleidoscope extends context-free grammar by augmenting category symbols 

with feature attributes. In addition, it provides a few types of procedural decoration 

for attachment to augmented grammar rules. Procedures in these decorations are ex- 

ecuted when matching events occur during grammar interpretation. This procedural 

decoration gives a full degree of flexibility in enforcing the integrity of a partial query 

and interfacing with the nonlinguistic part of the system. 

Engineering Solution to Big Menu Problem The explosion of choices is often 

cited as the major problem in applying grammar-driven menu guidance to a large 
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application domain. We have articulated a set of heuristics useful for alleviating this 

problem: 

• Restrict the initial set of choices to a small set of words loaded with multiple 

semantics, such as wh-words. 

• Activate domain-specific semantics to prune irrelevant choices in the choice 

generation process. 

• Use abstraction hierarchies (ISA and Part-of) to cluster related choices under 

a single choice. 

• Break a preterminal category formed by concatenating preterminal categories 

if applicable. This may increase the number of steps to construct a query. The 

cost of user query production is useful for formulating a trade-off condition when 

it is desirable. 

• As the last resort, construct a subset lexicon based on a subset view of schema. 

9.4    Future Research 

This research can be extended in several directions. 

Beyond Conjunctive Queries This research restricted EnQL to the conjunctive 

class of queries. This restriction enabled us to focus on the model-based approach 

without being involved in the sophisticated linguistic issues such as quantifiers and 

negated verbs. We expect to extend both the surface and internal query languages 

to include such features. The capability of the underlying query processing system 

needs to be extended accordingly. 

Human Factors Experiment Controlled measurement of the end user's perfor- 

mance with grammar-driven menu system is a challenging work. For this experiment 

to be meaningful, the current implementation of Kaleidoscope needs to be ported on 
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fast machines. The state of hardware and software technology is mature enough to 

provide subsecond update in the menu. 

While previous human subject experiments involved two styles of languages [56, 

73, 33], we expect to compare four cases resulting from combining two types of inter- 

face and two styles of language: 

Menu-Guided 

EnQL 

Menu-Guided 

SQL 

Conventional 

NLI 

Conventional 

SQL 

Through these experiments, we expect to measure semantic gains such as the 

user's conceptual freedom in expressing a query, and improve the cost model of user 

query production. 

Towards A Multilingual Interface English is the model language considered 

throughout this dissertation. We expect to test the universality of Kaleidoscope's 

interface approach and its EnQL data model against other languages. Especially, we 

are interested in languages whose origin is different from English, such as Korean, 

and Japanese. 

Application to Other Domains The scope of this work has been guiding the 

user's query formulation. While this dissertation has taken examples from biblio- 

graphic and academic database applications, its approach is not bound to a particular 

application domain. In the future, we expect to apply Kaleidoscope's approach to 

other large-scale applications such as integrated design and manufacturing databases 

[27, 50]. 
Grammar-driven menu guidance is applicable to other problem domains. Acquisi- 

tion of production rules is one of such domains. Kaleidoscope's model-based approach 

is also applicable to this problem domain. The generation of domain-specific vocab- 

ularies from the concepts in the knowledge base can be automated. 
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Kaleidoscope States 

Initial Screen State 

System Messaae Window 
Exit Kaleidoscope system. 

KALEIDOSCOPE Query Status Window 

Sys Command    Wh-Word 

| 02I] WHEN 
WHERE 

WHO 
\ 

Determiner 

WHICH 

N = 1 
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N =  2 

KALEIDOSCOPE Query Status Window 
WHO 

Sys Command   Verb 
RESTART 
RETRACT 
CHANGE 

EXIT 

ARE/IS 
EDITED 

RECEIVED PHD 
RECOMMENDED 

REVIEWED 
REVISED 

SUBMITTED 
|                WROTE                ■ 

N = 3 

KALEIDOSCOPE Query Statu s Window 
WHO WROTE 

Sys Command    Determiner Concept Noun 
RESTART 
RETRACT   ► 
CHANGE     ► 

EXIT 

WHICH REFERENCES          ► 
"\ Specific Entity 

<REFERENCE>         ► 
Specific Possessive 

<PUBLISHER>'S 
<RESEARCH INSTITUTED 
Attribute Qualifier 

<CONFERENCE> 
<EDITION> 

<JOURNAL> 
<KEYWORD> 

<LENGTH> 
<NUMBER> 

<PUBLISHED YEAR> 
Noun Qualifier 

TECHNICAL REPORT 
THESIS               ► 
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N = 4 

KALEIDOSCOPE Query Status Window 
WHO WROTE WHICH 

;ys Command    Concept Noun 
RESTART 
RETRACT 
CHANGE 

EXIT 

REFERENCES 
Possessive Specifier 

PUBLISHER'S 
RESEARCH INSTITUTE'S 

Attribute Qualifier 
<CONFERENCE> 

<EDITION> 
<JOURNAL> 

<KEYWORD> 
<LENGTH>    \ 
<NUMBER> 

PUBLISHED YEAR> 
Noun Qualifier 
TECHNICAL REPORT 

THESIS      ► 
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N = 4: Pop-Up Menu for Keyword Value Selection 

<KEYWORD> 
DATABASE                     ¥ 
CooperativeMnterface ¥ 
Human Factors 
NLP 
Names and Acronyms ► 
«ABORT» 

N = 4: Extended Pop-Up Menu State 

<KEYWORD> 
DATABASE 
Cooperative Interface» 
Human Factors 
NLP 
Names and Acronyms ► 
«ABORT» 

DBDdist 
DBDintro 
DBDkb 
DBDIogic 
DBDmodel 
DBDnat 
DBDobject 
H.liJ.ll'^M 
DBDtheoryl 
EIS 
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N = 5 

KALEIDOSCOPE Query Status Window 
WHO WROTE WHICH 'DATABASE' 

Sys Command    Concept Noun 

REFERENCES RESTART 
RETRACT   ¥ 
CHANGE     > 

EXIT 

Attribute Qualifier 
<CONFERENGE> 

<EDITION> 
<JOURNAL> 
<LENGTH> 
<NUMBER> 

<PUBLISHED YEAR> 
Noun Qualifier 

THESES ► 
TECHNICAL REPORTS 
JOURNAL ARTICLES 
(AUTHORED) BOOKS 

CONFERENCE PAPERS 

TECHNICAL REPORT 
THESIS 
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N = 6 

KALEIDOSCOPE Query Status Window 
WHO WROTE WHICH 'DATABASE' BOOKS 

Sys Command    Wh-Word        Verb 
RUN QUERY   1    WHEW 1           PUBLISHED BY           1 

RESTART 
RETRACT   ► 
CHANGE     ► 

EXIT 

|            WRITTEN BY-^ Connective 
AND 

THAT 
WHOSE 

► 

Preposition 
BEFORE 

BETWEEN 
IN 

SINCE 

N = 7 

KALEIDOSCOPE Query Status Window 
WHO WROTE WHICH 'DATABASE' BOOKS PUBLISHED BY 

Sys Command    Determiner    Concept Noun 
RESTART 
RETRACT   ► 
CHANGE     > 

EXIT 

WHICH PUBLISHERS 
:pecific Entity 

PUBLISHER > 
ipecific Possessive 

<BOOK>'S 
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N = 7: Pop-Up Menu for Publisher value Selection 

<PUBLISHER> 
CSP 
McGraw-Hill 
«ABORT» 

N = 8 

KALEIDOSCOPE Query Status Window 
WHO WROTE WHICH 'DATABASE' BOOKS PUBLISHED BY *McGraw-HiT 

Svs Command    Wh-Word       Finish Phrase 
(WHIGH 'DATABA RESTART 

RETRACT   ► 
CHANGE     ► 

EXIT 

BEFORE 
BETWEEN 

IN 
SINGE 
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N = 9 

;vstem Messaae Window 
since  (publishing time; 

KALEIDOSCOPE Query Status Window 
WHO WROTE (WHICH 'DATABASE' BOOKS PUBLISHED BY 'McGraw-Hill') 

Svs Command    Wh-Word 
RUN QUERY 

RESTART 
RETRACT   ► 
CHANGE    > 

|    WHEN 
Connective 

|      AND 
EXIT Preposition 

BEFORE 
BETWEEN 

IN 

N = 10 

i&Mui.i.m.idjaiEH 'tatus Window 
WHO WROTE (WHICH 'DATABASE' BOOKS PUBLISHED BY 'McGraw-Hill') 
SINCE 

Sys Command    Determiner    Concept Noun 
RESTART 
RETRACT   ► 
CHANGE     ► 

EXIT 

|    WHICH    |       PUBLISHED TIMES       | 
Specific Entity 

1      PUBLISHED TIME>       1 
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N = 10: Pop-Up Menu for Published Year Selection 

PUBLISHED TIME> 
1982 
1983 \ 
1984 
1986 
1988 
«ABORT» 
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Final Screen State 

System Messaae Window 

KALEIDOSCOPE Query Status Window 

WHO WROTE (WHICH 'DATABASE' BOOKS PUBLISHED BY 'McGraw-Hill') 
SINGE 1982 

Sys Command    Connective 
RUN QUERY 

RESTART 
ESEES 

AR.ID 

17 
170 
111 
112 

W|      AND 

sataasas 
AR.NAME 

EHEEäsEHEEE 

Wiederhold, Gio 
Ceri, Stefano 
Pelagati, Giuseppe 
Korth, Henry F 
Silberschatz, Abraham 
Wiederhold, Gio 

BK.ID 
=isy»iatfHftHdJAWJgiiiMdiai.igE3a 

3006 
3012 
3012 
3013 
3013 
3014 

BK.TITLE 
Database Design 
Distributed Databases 
Distributed Databases 
Database System Concepts 
Database System Concepts 
File Organization and Da 



Appendix B 

Tabular Representation of 

Knowledge 

This part of appendix shows the definition of tables for representing Kaleidoscope's 

knowledge structure. Connection types in the structural data model [75] are used to 

denote the relationships among these tables in the graphical schema representation. 
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B.l     Graphical Schema by Related Table Groups 

B.l.l     Gl: Entities, Relationships, and Relationship Modi- 

fiers 
entity kbjjverlap 

overlapping_entity 

die noun 

kb_possessive 

die verb form 
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B.1.2    G2: Entities, Attributes, and Their Domains 

kb_db_join_edge 

paren 

kb_entity 

id 

join 

kb_entity_dbjoin 

entity 
parent 

kb_entity_attr 
domain domain 

kb attr domain name 

entity, attr 

entity, attr 

domain 

domain 

kb_entity_derived_attr 

lex kwd item 

string 

comparator 

kb_comparator 

kb_domain_dom parator 

B.1.3    G3: Tables for Lexicon Definition 
lex_menu_window 

i 
'   id 

menu 

lex_item lex_preterminal 

: 

id 

id featui e 

cat 

cat 

— — 

feature 
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B.1.4    G4: Tables for Integrity Constraint Representation 

ic literal 

name 

literal 

ic literal def 

ic_rule, el_sequence 

ic_rule, el_sequence 

ic rule rhs el 

B.2    Alphabetical Listing of Table Definitions 

0. Column Definition Format: 

# attribute type note 

1. dicjioun: Gl 

1 singular varchar (64) e.g., "(authored) book" 

2 plural varchar (64) e.g., "(authored) books" 

3 countp char (5) {"plus" "minus"} 

2. dic_prep: Gl 

1 string varchar (64) e.g., "since" 

2 pred varchar (8) e.g., "gt" 

3. dic_verb_form: Gl 

1 string varchar (64) e.g., "were written by" 

2 form char (6) e.g., "beppby" 

3 num char (2) e.g., "pl" 
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4. ic_cluster: G4 

1 name varchar (64) a collection of similar rules 

2 note varchar (255) 

5. icJiteral: G4 

1 name varchar (64) e.g., "teach" 

2 attribute-count smallint 

6. icJiteraLdef: G4 

1 literal varchar (64) *- icJiteral.name 

2 attribute varchar (64) e.g., "instructor" 

3 sequence smallint relative position 

4 note varchar (255) explanation string 

7. ic_rule: G4 

1 name varchar (64) e.g., "univ-cs400-constraint" 

2 message varchar (255) a message to user 

3 type char (10) 

4 cluster varchar (64) *- iccluster.name 

8. ic_rule_el_component: G4 

1 ic_rule varchar (64) *- ic_rule.name 

2 position char (1) {"1" "r"} 

3 el-sequence smallint element sequence number 

4 comp_sequence smallint component sequence number 

5 attribute varchar (64) —> icJiteraLdef.attribute 

6 expression varchar (255) value 

9. ic_rule_lhs_el: G4 
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1 ic_rule varchar (64) *- ic_rule_el_component.ic.rule 

2 eljsequence smallint {"]" "r"} 

3 eLvar varchar (64) an 0PS5 element variable 

4 sign smallint {"+" "-"}, postive or negative literal 

5 literal varchar (64) —► ic-literal, name 

10. ic_rule_rhs_el: G4 

1 ic_rule varchar (64) *- ic_rule_el_component.ic_rule 

2 el_sequence smallint {"1" "r"} 

3 action varchar (64) {"make" "modify" "write" ...} 

4 obj varchar (255) a qualified 0PS5 action object 

11. kb_attr_domain: G2 

1 domain varchar (64) e.g., "pdom.book.title" 

2 parent varchar (64) —* kb_attr_domain.domain 

3 datatype varchar (64) e.g., "varchar" 

4 ref_db_table varchar (64) reference DB table 

5 ref_db_field varchar (64) reference DB field 

12. kb_comparator: G2 

/ comparator varchar (64) e.g., "gt" 

2 arity smallint e.g., 2 

13. kb_db_join_edge: G2, Implementation of Table 6.2 

id smallint 

pred varchar (8) 

tablel varchar (64) 

fieldl varchar (64) 

table2 varchar (64) 

field2 varchar (64) 
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14. kb_domain_comparator: G2 

/ domain varchar (64) *- kb_attr_domain.domain 

2 comparator varchar (64) *- kb-comparator.comparator 

15. kb_ entity: Gl, G2 

1 name varchar (64) e.g., "book" 

2 parent varchar (64) —♦ kb.entity.name 

3 noun varchar (64) —► dic_noun.singular 

4 active_p bit 

16. kb_ entity_attr: G2 

/ entity varchar (64) *- kb_entity.name 

2 attr varchar (64) e.g., "title" 

3 position smallint relative column position 

4 domain varchar (64) e.g., "dom.reference.title" 

5 db_table varchar (64) DB table mapping, e.g., "reference" 

6 dbJield varchar (64) DB field mapping, e.g., "title" 

7 noun varchar (64) e.g., "title" 

8 num char (2) {"sg" "pi"} 

9 prenom_p bit / if qualified for prenoun modifier 

10 key_attr_p bit 1 if part of key 

11 descriptive_p bit 1 if default projection attribute 

17. kb_< 2ntity_db_join: G2 

1 entity varchar (64) *- kb-entityjittr.entity 

2 attr varchar (64) *- kb_entity^attr.attr 

3 join smallint —► kb_db_join_edge.id 

18. kb_entity_derived_attr: G2 
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1 entity varchar (64) *- kb.entity^attr.entity, e.g. "book" 

2 attr varchar (64) *- kb-entity^attr.attr, e.g., "keyword' 

3 rel varchar (64) e.g., "author_book" 

4 mod varchar (64) e.g., "on_keyword" 

5 mocLentity _attr varchar (64) e.g., "string" 

19. kb_modifier: Gl 

1 name varchar (64) e.g., "onJceyword" 

2 parent varchar (64) —> kb_modifier.name 

3 wh_adv varchar (64) e.g., "when" 

4 entity varchar (64) —► kb.entity.name 

20. kb_overlap: Gl 

1 entity varchar (64) —» kb.entity.name, e.g., "thesis" 

2 overlapping_entity varchar (64) —> kb.entity.name, e.g., "techreport' 

21. kb_possessive: Gl 

2 

rel 

possessive_role 

3   cardinality 

varchar (64) 

varchar (4) 

char (2) 

e.g., "author_book" 

e.g., "obj" 

e.g., "pi" 

22. kb_rel: Gl 

1 name varchar (64) e.g., "author.book" 

2 arity smallint {l,2},e.g.,2 

3 parent varchar (64) —* kb_rel.name, e.g., "author.reference" 

4 tense varchar (8) {"past" "pres" "future"}, e.g., "past" 

23. kb_rel_entity_role: Gl 
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1 rel varchar (64) e.g., "author_book" 

2 role varchar (4) {"subj" "obj"}, e.g., "subj" 

3 entity varchar (64) e.g., "author" 

4 polarity char (1) {«+" »."}; PSET/NSET membership 

24. kb_rel_modifier: Gl 

2 

rel 

modifier 

varchar (64) 

varchar (64) 

*- kb_rel.name 

*- kb_modifier.name 

25. kb_rel_role_conn: Gl, Implementation of Table 6.3 

1 rel varchar (64) *- kb_rel.name 

2 pred varchar (8) /« ))     U-^H             1 

3 concept1 varchar (64) entity name 

4 tablel varchar (64) DB table name 

5 fieldl varchar (64) DB field name 

6 concept2 varchar (64) entity or modifier name 

7 table2 varchar (64) DB table name 

8 field2 varchar (64) DB field name 

26. kb_view: Subset views of schema concepts 

1 concept varchar (64) concept names 

2 type varchar (64) {"entity" "rel" "modifier"} 

3 view .set varchar (64) unique view name 

27. lex_menu_window: G3 

1 id varchar (64) e.g., "concept-noun" 

2 title varchar (64) e.g., "Concept Noun" 

3 width smallint bitmap width of window 

4 position smallint relative position of window 



APPENDIX B.  TABULAR REPRESENTATION OF KNOWLEDGE 117 

28. lex_preterminal: G3 

1 cat varchar (64) e.g., "entity-set-n" 

2 menu varchar (64) —> lex_menu_window.id 

3 type varchar (4) domain-dependent or keyword 

4 demon .fn varchar (64) default demon fn to be inherited 

5 beforeJn varchar (64) before function 

6 pivot-feature varchar (64) 

29. lex_preterminal_feature: G3 

1 cat varchar (64) *- lex.preterminal.cat 

2 feature varchar (64) e.g., "entity" 

3 position smallint relative position 

4 unify _fn varchar (64) special unify function 

5 note varchar (255) help string 

30. lex_prep_modifier: Gl 

1 prep varchar (64) —* dic.prep.string 

2 pred varchar (8) —► dic.prep.pred 

3 modifier varchar (64) *- kb_modifier.name 

4 help varchar (255) a help string 

31. lex_verb: Gl 

1 verb varchar (64) —► dic_verb_form. string 

2 rel varchar (64) *- kb_rel.name 

3 form char (6) —* dic_verb_form.form 

4 num char (2) -4 dic.verbJorm.num 

5 help varchar (255) a help string 

32. lexJtem: G3, Only contains keyword category entries. 
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1 id smallint a unique number 

2 cat varchar (64) *- lex_preterminal.cat 

3 string varchar (80) choice string 

4 help varchar (255) mouse documentation string 

5 demon Jn varchar (64) demon function 

33. lexjtem_feature: G3, Only contains keyword category entries. 

1 id smallint *- lexJtem.id 

2 feature varchar (64) —* lex_preterminal_feature.feature 

3 value varchar (80) a constant 

4 polarity bit 1 if part of PSEET; 0 otherwise. 
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