
May 1992 Report No. STAN-CS-92-1428

PB96-152657

Landmark-Based Robot Navigation

by

Anthony Lazanas and Jean-Claude Latombe

Department of Computer Science

Stanford University
Stanford, California 94305

HCQUAU^E^
£

DISTRIBUTION STÄTEMENTX~1

Approved for public release;
Distribution Unlimited

19970610

LANDMARK-BASED ROBOT NAVIGATION

ANTHONY LAZANAS JEAN-CLAUDE LATOMBE
lazanas@flamingo.stanford.edu latombe@cs.stanford.edu

ROBOTICS LABORATORY
DEPARTMENT OF COMPUTER SCIENCE

STANFORD UNIVERSITY, STANFORD, CA 94305, USA

Abstract

Achieving goals despite uncertainty in control and sensing may require
robots to perform complicated motion planning and execution monitoring. This
paper describes a reduced version of the general planning problem in the pres-
ence of uncertainty and a complete polynomial algorithm solving it. The plan-
ner computes a guaranteed plan (for given uncertainty bounds) by backchaining
non-directional preimages of the goal until one fully contains the set of possible
initial positions of the robot. The planner assumes that landmarks are scat-
tered across the workspace, that robot control and sensing are perfect within
the fields of influence of these landmarks, and that control is imperfect and
sensing null outside these fields. The polynomiality and completeness of the
algorithm derive from these simplifying assumptions, whose satisfaction may
require the robot and/or its workspace to be specifically engineered. This leads
us to view robot/workspace engineering as a means to make planning prob-
lems tractable. A computer program embedding the planner was implemented,
along with navigation techniques and a robot simulator. Several examples run
with this program are presented in this paper. Non-implemented extensions of
the planner are also discussed.

Acknowledgments: This research was partially funded by DARPA contract

DAAA21-89-C0002 (us Army).

CONTENTS

1. INTRODUCTION

2. RELATED WORK

3. PLANNING PROBLEM

4. DIRECTIONAL PREIMAGE BACKCHAINING

4.1. DIRECTIONAL PREIMAGE OF A GOAL

Definition
Names, Labels and Description
Computation

4.2. FIRST-CUT PLANNING ALGORITHM

Backchaining
Planning P-Commands
Line Sweep
Choice of Directions

5. NON-DIRECTIONAL PREIMAGE BACKCHAINING

5.1. NON-DIRECTIONAL PREIMAGE OF A GOAL

Definition
D-Critical Directions
I-Critical Directions
L-Critical Directions
Computation of Non-Directional Preimage

5.2. PLANNING METHOD

Plan Generation
Plan Execution
Completeness and Optimality

5.3. COMPUTATION OF A NON-DIRECTIONAL PREIMAGE

Overview
Event Scheduling
Event Processing

5.4. COMPLEXITY ANALYSIS

6. ROBOT NAVIGATION
6.1. CASE WHERE THE PLANNER RETURNS SUCCESS

6.2. CASE WHERE THE PLANNER RETURNS FAILURE

6.3. UNEXPECTED EVENTS

7. EXPERIMENTAL RESULTS

8. DEALING WITH OBSTACLES

8.1. DIRECTIONAL PREIMAGE DESCRIPTION
8.2. CRITICAL DIRECTIONS DUE TO OBSTACLES

8.3. COMPUTATION
8.4. EXPERIMENTAL RESULTS

9. DISCUSSION AND EXTENSIONS
9.1. UNCERTAINTY IN LANDMARK AREAS
9.2. LANDMARK AND OBSTACLE GEOMETRY
9.3. VARYING DIRECTIONAL UNCERTAINTY

10. CONCLUSION

References

APPENDIX: COMPUTATION OF SPIKE EVENTS

A. SPIKE-LOCUS CURVE
B. INTERSECTION OF A SPIKE-LOCUS CURVE WITH A CIRCLE

C. CLASSIFICATION OF SOLUTIONS

D. SPIKES WITH OBSTACLE RAYS

1. INTRODUCTION

To operate in the real world robots must deal with errors in control and sensing.
Achieving goals despite these errors requires complicated motion planning and ex-
ecution monitoring [22]. Several approaches have been proposed to plan motion
strategies in the presence of uncertainty, but many of them are based on unclear as-
sumptions and/or are incomplete, yielding systems which are difficult to assess and
to work from. The most rigorous approach so far has been the LMT approach (preim-
age backchaining) [26]. Several effective planning methods based on this approach
have been proposed, but most of them require exponential time in the size of the
input problem [12, 7], or they are incomplete with respect to the class of problems
they attack [23]. Motion planning algorithms will not be applicable to real-world
problems if they remain exponential or unreliable. Since the general problem seems
to be intrinsically hard [5], a promising line of research is to identify a restricted, but
still interesting subclass of problems that can be solved in polynomial time. This
subclass can be obtained, for example, by engineering the robot and its workspace.
Thus, for the first time, engineering is formally seen as a means to make planning
problems tractable. Of course, robot/workspace engineering has its own cost, and
we should be careful not to over-specialize the class of problems.

In this paper we consider a class of planning problems in the context of the
navigation of a mobile robot. We assume that landmarks are scattered across the
robot's two-dimensional workspace. Each landmark is a physical feature of the
workspace, or a combination of features, that the robot can sense and identify if
it is located in some appropriate subset of the workspace. This subset is the field
of influence of the landmark. A landmark may be a pre-existing feature (e.g., the
corner made by two walls) or an artificial one specifically provided to help robot
navigation (e.g., a radio beacon or a magnetic device buried in the ground). We
assume that robot control and sensing are perfect in the fields of influence associated
with the landmarks, and that control is imperfect and sensing is null outside any
such field. Given an initial region in the workspace, where the robot is known to
be, and a goal region, where we would like the robot to go, the planning problem is
to generate motion commands whose execution guarantees that the robot will move
into the goal and stop there if our assumptions are satisfied. The motion commands
should also prevent the robot from colliding with the obstacles.

We propose a planning method based on the LMT approach to solve the above
problem. The method iteratively backchains non-directional preimages (weakest
preconditions) of the goal, until one preimage encloses the set of possible initial
positions of the robot. Each non-directional preimage is computed as a set of direc-
tional preimages for critical directions of motion. At every iteration, the intersection
of the current non-directional preimage with the fields of influence of the landmarks

define the intermediate goal from which to backchain. The overall algorithm takes
polynomial time in the total number of landmarks. It is complete with respect to
the problems it attacks, that is, it produces a guaranteed plan (for input control
uncertainty bounds), whenever one such plan exists, and returns failure, otherwise.
(A guaranteed plan is one whose execution is guaranteed to succeed if the actual
errors lie within the uncertainty bounds.) The polynomiality and completeness of
the algorithm essentially derive from the combination of the two notions of a land-
mark and a non-directional preimage. An interesting aspect of the method is that,
once a motion plan has been generated, the assumption that control and sensing are
perfect in landmark areas can be relaxed. Some errors in control and sensing are
thus permitted in each landmark area without affecting the guaranteedness of the
generated motion plan. However, the maximal errors allowed depend on the plan
itself and are not known prior to planning.

Another interesting aspect of the method is that, whether it returns success or
failure, it always constructs a plan in the form of a non-ordered collection of reaction
rules described as motion commands associated with regions of the workspace from
which the goal can be reliably achieved. This is important in two ways. First, if the
input problem has no solution, the robot may nevertheless try to enter one of the
regions where a rule is available by performing an initial random motion. Second, if
an unexpected event occurs at execution time, the robot may attempt to reconnect
to the plan in the same way. The insertion of random motions is an attractive idea
when the mean duration of a random motion before it enters one of the regions
where reaction rules are available is small enough, i.e. when the total area of these
regions is large relative to the workspace area.

In Section 2 (RELATED WORK) we describe how our work relates to previous re-
search. In Section 3 (PLANNING PROBLEM) we precisely state the class of problems
solved by our planner and we illustrate this statement with an example. In Sec-
tion 4 (DIRECTIONAL PREIMAGE BACKCHAINING) we present a first-cut planning
method based on the concept of directional preimage backchaining. This method
does not provide, however, an efficient way to select the directions of motion for
computing preimages. In Section 5 (NON-DIRECTIONAL PREIMAGE BACKCHAIN-

ING) we address that issue and we present the actual planning algorithm. In Section
6 (ROBOT NAVIGATION) we discuss various ways for a robot to navigate using a
plan generated by our planner. In Section 7 (EXPERIMENTAL RESULTS) we show a
series of examples run with the implemented planner. For simplification, Sections 4
through 7 assume that there are no obstacles in the robot's workspace. In Section
8 (DEALING WITH OBSTACLES) we extend the planning method to deal with ob-
stacles, and we present additional experimental results. In Section 9 (DISCUSSION
AND EXTENSIONS) we discuss our assumptions and we describe non-implemented
extensions of the planner aimed at eliminating the most restrictive ones.

2. RELATED WORK

Our planning method is an instance of the LMT preimage backchaining approach
introduced in [26, 28, 15]. The original LMT was targeted toward fine-motion plan-
ning for mechanical assembly tasks (part mating operations), but its concepts are
more general. In its current stage, our work is more concerned with mobile-robot
navigation in two dimensions. But we think that its underlying concepts could also

be applied to assembly planning.
The complexity of the general problem addressed by the LMT approach was

shown to be nondeterministic exponential-time hard (NEXPTlME-hard) in three di-
mensions [5], which strongly suggests that planning can take double exponential
time in some measure of the size of the problem. To our best knowledge, no lower-
bound time complexity result has been established for the two-dimensional problem,
but there are several upper-bound results applying to this case. A rather general
planning procedure based on algebraic decision techniques is described in [7], which
takes double exponential time in the number of steps of the motion plan (in the
worst case, this number is itself polynomial in the complexity of the workspace). A
less general algorithm obtained by restricting sensory feeback is given in [12], which
is simply exponential in the number of steps. A perhaps more practical algorithm
is presented in [23], but it is incomplete and nevertheless exponential in the number

of steps. .
Part of the complexity of LMT, and, more generally, of the motion planning prob-

lem in the presence of uncertainty, comes from the subtle interaction between goal
reachability and goal recognizability. We not only want the robot to reach the goal
despite uncertainty in control; we also want it to recognize goal achievement despite
uncertainty in sensing. It is suggested in [15] to simplify planning by assuming par-
tial independence between these two notions. This consists of extracting a subset
of the goal that can be unambiguously recognized by the sensors independently of
the way it has been achieved. This notion is central to the methods described in
[12 23] as weH as to the algorithm presented in this paper. It is also related to the
notion of a landmark used in different papers (e.g., [25]). A landmark is a recogniz-
able feature of the workspace that induces a field of influence (if the robot is in this
field, it senses the landmark). Various similar notions have also been introduced
with different names, e.g. "atomic region" [4], "signature neighborhood" [27], and
"perceptual equivalent class" [9, 13]. See also [21].

Our planning algorithm backchains non-directional preimages of the goal. The
notion of a non-directional preimage was already present in the original LMT. How-
ever, its exact computation was first described in [12, 3], where it was applied
without backchaining in order to generate one-step motion strategies. Although our
algorithm applies to a different setting (for instance, we allow no compliant motions

sliding along obstacles), it reuses several of the ideas introduced in [12,3], namely the
fact that when the commanded direction of motion varies continuously, the preimage
of a goal remains topologically the same, except at some critical directions. These
ideas are combined here with the hypothesis that every landmark allows perfect
control and sensing within its field of influence, which facilitates backchaining. This
combination is the basis of our polynomial-time planning algorithm. A different
instantiation of LMT into a polynomial-time planner able to generate multi-step mo-
tion plans with control uncertainty is described in [19]. This planner assumes perfect
sensing in the boundary of the polygonal workspace, and no sensing elsewhere.

LMT assumes bounded errors and produces guaranteed plans, that is, plans whose
success is guaranteed as long as the actual errors during execution stay within these
bounds. The concept of a weakly guaranteed plan, which may fail recognizably, is
explored in [11]. The concept of a probabilistically guaranteed plan, whose proba-
bility of success converges toward one when time grows to infinity, is developed in
[16, 18]. The idea of executing a random motion when the planning problem has no
guaranteed solution or when the robot encounters unexpected events at execution
time is related to this previous work. The notion of a plan described as an unordered
collection of reaction rules in the form of motion commands distributed over several
regions of the workspace is reminiscent of the concept of a "reaction plan" as pro-
posed in AI planning research [30, 8, 14]. A reaction plan is also represented as a
set of control rules allowing an agent to face contingencies at execution time.

Substantial work has been devoted to developing methods computing an opti-
mized estimate of the robot's position while it is moving. For example, techniques
have been proposed to combine the estimates provided by both dead-reckoning and
environment sensing (e.g., see [2, 10, 24]). However, these techniques address the
problem of tracking a selected motion plan as well as possible, not the problem of
generating this plan. The goal of planning in the presence of uncertainty is to make
sure that executing the plan will reveal enough information to guarantee reliable
execution.

3. PLANNING PROBLEM

The robot is a point moving in a plane, called the workspace, containing stationary
forbidden circular regions called the obstacle disks. The robot can move in either
one of two control modes, the perfect and the imperfect modes.

The perfect control mode can only be used in some stationary circular areas of
the workspace called the landmark disks (the fields of influence of the landmarks).
These disks have null intersection with the obstacle disks. When the robot is in
a landmark disk, it knows its position exactly and it has perfect control over its

motions. Some disks may intersect, creating larger areas, called landmark areas,
through which the robot can move in the perfect control mode. A motion command
in the perfect control mode, called a P-command, is described by a sequence of via
points such that all the via points are in the same landmark area, any two consecutive
via points are in the same landmark disk, and any two non-consecutive via points are
in different landmark disks. The robot can start executing the command only when
it is in the landmark disk containing the first via point. It executes the command
by moving through the successive via points and stops when it reaches the last one.

A motion command in the imperfect control mode, called an I-command is de-
scribed by a pair (d,C), where d € S1 is a direction in the plane, called the com-
manded direction of motion, and £ is a set of landmark disks, called the termination
set of the command. This command can be executed from anywhere in the plane
outside the obstacle disks. The robot follows a path whose tangent at any point
makes an angle with the direction d that is no greater than some prespecified angle
0 called the directional uncertainty. The cone of angle 20 whose axis points along
d is called the directional uncertainty cone. The robot stops as soon as it enters a
landmark disk in C.

The robot has no sense of time, which means that the modulus of its velocity is
irrelevant to the planning problem.

The initial position of the robot is known to be anywhere in a specified region
1, called the initial region, that consists of one or several disks, called the initial-
region disks. At planning time, we only know that the robot will be in the initial
region when the execution of the plan starts; but the robot may not be there yet.
Furthermore, we do not want to make any assumption about how it will move into
the initial region; perhaps it will be transported there, or it will use another control
mode not considered in this paper. Thus, each initial-region disk may be disjoint
from the landmark areas, or it may overlap some of them, or it may be entirely
contained in one of them. The robot must move into a given region Go, called the goal
region, which is any subset, connected or not, of the workspace whose intersection
with the landmark disks is easily computable. The problem is to generate a motion
plan, i.e. an algorithm made up of I- and P-commands, whose execution guarantees
that the robot will be in Go when the execution of the plan terminates. The robot
is not allowed to collide with any of the obstacle disks.

Throughout this paper we let £ denote the number of landmark disks scattered
across the workspace. We assume that the number of obstacle disks is in 0(1) and
that the number of initial-region disks is small enough to be considered constant.
We precompute the set of all landmark areas. Computing a landmark area includes
identifying its landmark disks, constructing its boundary as one or several lists of
circular arcs, and identifying which initial-region disks are fully contained in the
area. The number of circular arcs bounding the union of I disks is linear in / [20].

Figure 1: Example of a planning problem

Hence, the total size of the landmark areas' boundaries is 0(C). The precomputation
is carried out using a divide-and-conquer algorithm that takes 0(t\og21) time [29].
We also precompute the intersection of Go with the landmark areas. We select a
point, called a goal point, in the intersection of every landmark area with Go, if
this intersection is not empty. We assume that Go is simple enough so that this
precomputation takes 0(1) time. (If the intersection of Go with the landmark areas
is empty, the goal cannot be achieved reliably, unless it already contains I!)

The planner described in this paper is complete, i.e. it generates a motion plan
whenever one exists and returns that no such plan exists otherwise. It takes time
O(s£3log^) and space 0(l3), where 5 € 0(1) is the number of landmark areas.

Example: Fig. 1 illustrates the previous description with an example run using the
implemented planner. The workspace contains 23 landmark disks (shown white or
grey) forming 19 landmark areas, and 25 obstacle disks. The directional uncertainty
0 is set to 0.09 radian. The initial and goal regions are two small disks designated

by I and Go, respectively.
The white landmark disks are those with which the planner has associated mo-

tion commands. The arrow attached to a white disk is the commanded direction of
motion of an I-command planned to attain another set of disks. There is at least
one arrow per landmark area not intersecting the goal.

The execution of the plan begins with performing the I-command attached to the
initial region. When the robot reaches a disk in the termination set of this command,
it is guaranteed that a P-command is attached to this disk (hence, it is a white disk
in the figure). Executing that P-command allows the robot to attain a point in
the current landmark area that is either a goal point (if the goal region intersects
this landmark area) or such that an I-command is associated with it (the arrows
shown in the figure are drawn from such points). In the first case, plan execution
terminates when the goal point is attained. In the second case, the I-command is
executed, and so on.

The figure also shows the path produced by a sample execution of the plan. This
path first takes the robot from the initial region to the landmark area designated
by B. From there, it successively attains and traverses the landmark areas marked
C, D, E, F, G, H, J, K, M, and N. The P-command associated with N takes the
robot to Go where it stops.

The path shown in the figure was produced by the execution of 11 I-commands
and 11 P-commands. However, the generated plan could have required up to 12 I-
commands. Indeed, the I-command from K is only guaranteed to attain the union of
the landmark areas L, M, and N, which form the termination set of the command.
Another execution (with different control errors) could have caused the robot to
reach L rather than M. The motion command attached to L would then have
allowed the robot to reach M. ■

The above problem is a simplification of a real mobile-robot navigation problem,
but it is not oversimplified. In Section 9 (DISCUSSION AND EXTENSIONS) we will
see that the most restricting assumptions (e.g., that control and sensing are perfect
in landmark areas; that landmark and obstacle areas are unions of disks) can be
eliminated or made looser, so that the methods described in this paper provide a
solid foundation for real mobile-robot navigation.

4. DIRECTIONAL PREIMAGE BACKCHAINING

In this section and the next three we simplify our presentation by assuming that
the workspace contains no obstacle disks. Obstacles will be introduced in Section 8
(DEALING WITH OBSTACLES).

10

0>

Figure 2: A directional preimage

4.1. DIRECTIONAL PREIMAGE OF A GOAL

Definition Consider a goal region Q. We define the kernel of Q as the largest set
of landmark disks such that, if the robot is in one of them, it can attain the goal by
executing a single P-command. Thus, the kernel of G, denoted by K{Q), is the set of
all the landmark areas having a non-zero intersection with Q. The disks in K{Q) are
called the kernel disks. The other landmark disks are called the non-kernel disks.

The directional preimage of Q, for any given commanded direction of motion d,
is the region P{G,d) defined as the largest subset of the workspace such that, if
the robot executes the I-command (d, K(G)) from any position in P(G, d), then it
is guaranteed to reach K{G) and thus to stop in K{G). From the entry point in
the kernel, the robot can attain G by executing a P-command. (Note that K(G) C
P(G,d). If the robot is already in K{G) the I-command (d,K(G)) immediately
terminates.)

There is no larger region than P{G, d) from where the robot is guaranteed to at-
tain G recognizably by executing one I-command along d followed by a P-command.
Indeed, if the robot executes the I-command (d, K(G)) from any position outside
this region, it is not guaranteed to reach K(G)- From some positions, it may be
guaranteed to reach G, but since it may not enter any landmark disk intersecting
G, it may not recognize goal achievement and it may thus traverse the goal without
stopping.

Names, Labels and Description The directional preimage of a goal G for any
direction d € S1 consists of one or several connected subsets. Fig. 2 shows an
example of a directional preimage with four connected subsets.

Each connected subset in P(G, d) has no hole, even when the union of the kernel
disks has some. Its boundary consists of circular segments called arcs and straight

11

left ray

right ray

Figure 3: Right and left rays of a landmark disk

segments called edges. Each arc is a subset of the boundary of a kernel disk. Let the
right ray (resp. left ray) of a kernel disk L be the half-line tangent to L erected from
the tangency point in the direction pointed by JT + d + 0 (resp. TT + d - 6), as shown
in Fig. 3. Each edge is contained in the right or left ray of some kernel disk, and is
called a right or left edge, accordingly. One extremity of the edge, called its origin,
is the tangency point of the ray. The other extremity, called the edge's endpoint,
is the first intersection point of the ray with another kernel disk or another erected
ray. The right (or left) ray of any kernel disk thus supports at most one edge of the
total preimage's boundary. If two edges share the same endpoint, this endpoint is
called a spike.

We assign a distinct integer in [1,1] to every landmark disk. Using these numbers
we give a distinct name to every disk, ray and intersection of two rays:
- d,- is the name of the disk whose number is i,
- ii is the name of the right ray of d,-,
- 1,- is the name of the left ray of d,-,
- Xitj is the name of the intersection of r; and lj.

We label every edge in the directional preimage's boundary by the name of the
ray supporting it, every arc by the name of the disk it belongs to, and every spike
by the name of the corresponding intersection. (Two distinct arcs may receive the

same label.)
Except for isolated singular commanded directions of motion where an edge is

tangent to a kernel disk or a spike is in contact with a kernel disk (see Fig. 4), every
connected subset of a directional preimage is bounded by a simple curve (Jordan

curve).
Let the commanded direction of motion be non-singular. Consider a connected

subset S of the preimage for this direction. We describe S as the circular list D of

12

Figure 4: Singular directions

LA,

(^ dl I4 d^ds r5 d2 dara) — j (l4 ^ ds r5)

Figure 5: Hidden-spike transformation

the labels met along its boundary as it is traced counterclockwisely. If D is of the
form (a,d;,lj,/?,rjt,d/,7), such that:
- a, ß, and 7 are non-empty sublists,

13

- the endpoints of lj and r* are in the same landmark area LA, and
- ß does not contain the name of any disk in LA,
we say that the intersection of the two rays lj and rjt forms a hidden spike. In
this case, we apply the following transformation, which is illustrated in Fig. 5:
We break D into two lists Dx and D2, with X>i = (a,ß',f) and D2 = (lj,ß,ik),
where /?' is the sequence of arc labels encountered while following the boundary of
LA counterclockwisely between the last arc of a and the first arc of 7. For every
connected subset of the directional preimage, the transformation is repeated until it
is applicable to none of the generated lists. The set of lists then obtained is called
the description of the directional preimage. Each list describes the boundary of a
subarea of the preimage, called a component. Every component contains a single
spike, hidden or not.

At singular directions, we divide the connected subsets with non-simple bound-
aries into smaller subsets with simple boundaries that touch each other at isolated
points, and we then proceed as above.

The kernel K(Q) contains 0(£) disks. Its boundary contains 0(£) arcs. For any
d € S1, the boundary of P{G,d) contains 0(£) edges. Indeed, each ray of a kernel
disk supports at most one edge. Therefore, the size of the description of P(Q, d)
is 0(C). The number of spikes is O(s), where s G 0(1) is the number of landmark

areas. Thus:

Lemma 1 The description of a directional preimage has size 0(1).

Computation We erect the 0(1) rays tangent to the precomputed boundary of
K(Q) and pointing along the directions T + d ± 6. We compute the boundary of
every connected subset of P(G,d), in the form of a list of disk and ray names, by
sweeping a line perpendicular to d, in the direction of d + JT [29, 22]. Each ray is
interrupted where it first intersects a kernel disk or another ray. This computation
takes 0(£\og£) time.

Every landmark area in K(Q) is contained in one and only one connected subset
of the preimage. During the sweep we keep track of the edge endpoints in every
landmark area. When the sweep is completed, we sort the endpoints in every land-
mark area in counterclockwise order in a cyclic list. Whenever the endpoint of a
left edge immediately precedes the endpoint of a right edge in such a list, the rays
supporting these two edges form a hidden spike and we apply the transformation
described in the previous paragraph. The combined cost of all the transformations

is O(£\og£). Hence:

Lemma 2 The description of a directional preimage is computed in time O(£\og£).

14

4.2. FIRST-CUT PLANNING ALGORITHM

Backchaining Assume that we select do such that the directional preimage of
the problem's goal Go contains the initial region I. We then have a motion plan
to achieve the goal. Indeed, from its initial position in I, the robot can attain the
kernel K(Go) by executing the I-command (d0, K(Go))- Then, by switching to the
perfect control mode, it can reach the goal without leaving K(Go)-

However, in general, such a "one-step" motion plan does not exist. If K(Go)
is empty, so is P(Go,d) for any d € 51; then the planner can safely return failure
(if I £ Go)- If K{Go) is not empty and P(Go, d0), for the selected direction d0,
does not contain X, we can treat P(Go,do) as an intermediate goal G\ and try to
produce a motion plan to achieve it from 2". This means that we compute the kernel
K{G\) and, if it is a proper superset of K(Go), the preimage P(Gi,di) for some
direction d\ € 51. If we select d\ such that P(Gi,di) contains I, we then have a
two-step motion plan to achieve Go', otherwise, we can consider P(Gi,di) as a new
intermediate goal G21 and so on. The whole process is called directional preimage
backchaining.

Planning P-commands Let LA be a landmark area in K(Go) and G be the goal
point in LA. We construct a tree, called the P-command tree of LA, whose nodes
are all the disks in LA. The root of the tree is the disk containing G and any two
disks related by a link of the tree overlap. (Any tree verifying these properties is
adequate.) We select a via point in the intersection of every disk other than the root
with its immediate parent in the tree. The P-command tree of LA will be used at
execution time to select the P-command to execute when the robot enters a disk in
LA. The P-command will simply be the sequence of via points collected by tracing
the path in the tree between the entered disk and the root, with the goal point
G added at the end of the sequence. A P-command tree is constructed for every
landmark area in K(Go)-

Consider now the kernel K(Gi) of an intermediate goal Gi (i > 0). In every
landmark area LA C K(Gi)\K(Gi-i), we pick a disk that has a non-zero intersection
with Gi and a point in this intersection. This point is called the exit point of LA.
In the same way as above, we construct the P-command tree of LA, with the disk
containing the exit point as the root. At execution time, if the robot attains this
exit point, the generated plan prescribes to immediately switch to executing the
I-command (rf1-_1,Ä'(öi-i))-

A straightforward computation of all the P-command trees takes 0(£2) time in
total.

15

Line Sweep Directional preimage backchaining requires every newly computed
preimage to be checked for containment of the initial region I. If it does not contain
I, the new preimage must also be checked for intersection with landmark disks not in
the current goal's kernel. These computations can be incorporated in the sweep-line
algorithm that constructs the preimage.

The augmented algorithm generates the description of the intersection of the
preimage with every initial-region disk J in a data structure attached to I consisting
of a boolean value, IN, and two sets, Right-Cut and Left-Cut. The value of IN is
true if I is entirely contained in the preimage and false otherwise. The Right-Cut
(resp. Left-Cut) set contains the label of every right (resp. left) edge intersecting I.
The initial region is contained in the preimage when the IN value of every initial-
region disk is true. (The Right-Cut and Left-Cut sets will be used later.)

The description of the intersection of the preimage with the non-kernel disks is
simpler. It is generated as the set of all non-kernel disks intersected by the preimage.

During the sweep we remove any non-kernel disk from further consideration, as
soon as we detect that it is intersected by an edge of the preimage being computed.
With this simplification, the time complexity of the sweep-line algorithm remains
0(/log/).

Choice of Directions In order to transform directional preimage backchaining
into an effective planning algorithm, we still need a method for choosing a direction
of motion at every iteration of the backchaining process. One simple method would
be to discretize the continuous set S1 into a finite set of regularly spaced directions
and search a graph by trying all possible combinations of directions in this finite set.
But the resulting planning algorithm would not be complete in general, even if we
used a very fine discretization. In the worst case, it would also require exponential
time in the number of landmark areas.

We solve the above issue by using the notion of a non-directional preimage and
modifying the preimage backchaining process accordingly, as described in the next
section.

5. NON-DlRECTIONAL PREIMAGE BACKCHAINING

5.1. NON-DIRECTIONAL PREIMAGE OF A GOAL

Definition Let us consider the directional preimage P(Q, d) when d varies contin-
uously over S1. For every value of d, we are interested in answering the questions
"Does P(G,d) include I?" and "What non-kernel disks does P(G,d) intersect?".
Although there are infinitely many possible values of d, we will see below that these
answers change at a finite number of critical directions. In order to detect these

16

^

(a) K-Left-Birth (c) K-Left-Vertex (e) K-Left-Touch (g) K-Left-Exit

(b) K-Right-Death (d) K-Right-Vertex (f) K-Right-Touch (h) K-Right-Exit

Figure 6: Events responsible for D-critical directions

changes we must also track the variation of P(Q,d). Fortunately, P(G,d) varies
continuously and keeps the same description, except at a finite number of critical
directions, many of which are different from the previous ones. Each open angu-
lar interval of S1 between any two consecutive critical directions is called a regular
interval.

Let (dCl,..., dCp) be the cyclic list of all critical directions in counterclockwise or-
der and Ji,.. ., Jp be the regular intervals between them, with /,- = (dcodC;+j(m<>dp)).
For any interval /;, let dnCi be any direction in /,-. In order to characterize all the
directional preimages of Q and their intersection with I and the non-kernel disks,
it suffices to compute P(Q, d) for all d € {dnci, dCl, dnC2,..., dCp}. The set NP(G) of
all these directional preimages is called the non-directional preimage of Q [12].

Every critical direction corresponds to an event caused by the motion of an edge
or a spike of the current directional preimage, e.g. an edge hits a landmark disk.
We describe below all such events. We assume that the landmark and initial-region
disks are in general position, i.e. no two events occur simultaneously.

17

We call the critical directions where the description of the directional preimage
does change the D-critical directions. The critical directions where the description
of the intersection of the directional preimage with the initial-region disks changes,
other than the D-critical directions, are called the I-critical directions. The critical
directions where the intersection with non-kernel disks changes, other than the D-
critical directions, are the L-critical directions.

D-Critical Directions As d varies counterclockwisely, the description of a direc-
tional preimage P(Q, d) changes when and only when one of the following events

occur (see Fig. 6):1

- A K-Left-Birth event occurs when a new left edge emerges at the intersection of

two kernel disks.
- A K-Right-Death event occurs when a right edge disappears at the intersection of

two kernel disks.
- A K-Left-Vertex event occurs when the endpoint of a left edge crosses the inter-
section between two kernel disks.
- A K-Right-Vertex event occurs when a right edge crosses the intersection between
two kernel disks.
- A K-Left-Touch event occurs when a left edge reaches a kernel disk by becoming

tangent to it.
- A K-Right-Touch event occurs when a right edge reaches a kernel disk by becoming

tangent to it.
- A K-Left-Exit event occurs when a left edge leaves the kernel disk containing its
endpoint by becoming tangent to it.
- A K-Right-Exit event occurs when a right edge leaves the kernel disk containing
its endpoint by becoming tangent to it.

There are 0(£) rotating rays. The boundary of K(G) has 0{l) arcs. Hence,
there are 0{t) K-Left-Birth and K-Right-Death events, and 0(£2) K-Left-Vertex
and K-Right-Vertex events. There also are 0(i2) K-Left-Touch, K.Right-Touch,
K-Left-Exit and K-Right-Exit events. Therefore:

Lemma 3 There are 0(£2) D-critical directions.

I-Critical Directions As d rotates counterclockwisely, the description of the in-
tersection of P(g,d) with initial-region disks may change at some D-critical values
of d. It also changes at I-critical directions corresponding to the following events

i All these events are due to kernel disks and, for this reason, we call them K-... events. In Section
8 we will define other D-critical directions, due to obstacle disks; we will call the corresponding

events O-... events.

18

^

(a) I-Reach (c) I-Leave (e) I-Spike-In (g) I-Left-Vertex (i) I-Vertex-Cross

(b)I-Include (d)I-Exclude (f) I-Spike-Out (h) I-Right-Vertex (j) I-Vertex-Cross

Figure 7: Events responsible for I-critical directions

(see Fig. 7, where the striped disk is an initial-region disk):
- An I-Reach event occurs when a left edge reaches an initial-region disk by becom-

ing tangent to it.
- An I-Include event occurs when a left edge leaves an initial-region disk by becom-

ing tangent to it.
- An I-Leave event occurs when a right edge reaches an initial-region disk by be-
coming tangent to it.
- An I-Exclude event occurs when a right edge leaves an initial-region disk by be-
coming tangent to it.
- An I-Spike-In event occurs when a spike enters an initial-region disk.
- An I-Spike-Out event occurs when a spike exits an initial-region disk.
- An I-Left- Vertex event occurs when a left edge crosses the intersection of the kernel
disk containing its endpoint with an initial-region disk.
- An I-Right-Vertex event occurs when a right edge crosses the intersection of the
kernel disk containing its endpoint with an initial-region disk.
- An /- Vertex-Cross event occurs when the origin of an edge crosses the intersection
of its kernel disk with an initial-region disk.

19

The number of initial-region disks is assumed constant. Hence, events other
than I-Spike-In and I-Spike-Out produce 0{£) I-critical directions. I-Spike-In and
I-Spike-Out events create 0(£2) I-critical directions. Hence:

Lemma 4 There are 0(£2) I-critical directions.

L-Critical Directions As d rotates counterclockwisely, the description of the
intersection of P(G,d) with non-kernel disks may change at some D-critical values
of d. It may also change at L-critical directions corresponding to the following

events:
- An L-Reach event occurs when a left edge reaches a non-kernel disk by becoming

tangent to it.
- An L-Include event occurs when a left edge leaves a non-kernel disk by becoming

tangent to it.
- An L-Leave event occurs when a right edge reaches a non-kernel disk by becoming

tangent to it.
- An L-Exclude event occurs when a right edge leaves a non-kernel disk by becoming

tangent to it.
- An L-Spike-In event occurs when a spike enters a non-kernel disk.
- An L-Spike-Out event occurs when a spike exits a non-kernel disk.

There are 0{£2) L-Reach, L-Include, L-Leave, L-Exclude events and 0(£3) L-
Spike-In and L-Spike-Out events. Hence:

Lemma 5 There are 0(£3) L-critical directions.

Since we are only interested in knowing that a non-kernel disk is intersected by
some directional preimage and in computing a direction for which this happens, we
will consider only the L-Reach and L-Spike-In events in the following.

Computation of Non-Directional Preimage See Subsection 5.3.

5.2. PLANNING METHOD

Plan Generation If 1 <t Go, the planner first computes the kernel K(Go)- If
K(Go) is empty, the planner returns failure. Otherwise, it associates a P-command
to reach a goal point with every landmark disk in this kernel. If I C K(Go) the

planner returns success.
Let us assume that I£K{Go). The planner then computes the non-directional

preimage NP(Go). If NP(Go) contains a directional preimage P(Go,d) that includes
I, then the planner attaches the motion command (d, K{Go)) to I and returns

20

success. Otherwise, for every landmark area LA<£K(Go) that has a non-zero inter-
section with a directional preimage P(Go,d) in NP(Go), an exit point is arbitrarily
selected in LA D P{Go,d) and the I-command (d,K(Go)) is attached to this point.
(If the same area LA intersects several directional preimages, only one intersection is
used to produce the I-command.) The union of the directional preimages in NP(Go)
is now considered as an intermediate goal G\-

The kernel K{Gi) is constructed. By construction, K(Gi) 2 K(Go). If K{G\) =
K(Go), the planner terminates with failure since it cannot compute a larger non-
directional preimage than NP(Go)- Otherwise, every landmark area in K(Gi)\K(Go)
contains one disk L with an exit point and a motion command attached to it. With
every other disk in the landmark area, the planner associates a P-command to reach
the exit point in X. If ICK(Gi) the planner returns success, else it computes the
non-directional preimage of Gi, and so on.

During this backchaining process, the set of landmark areas in the kernels of
the successive goals increases monotonically. At every iteration, either there is a
new landmark area in the kernel, and the planner proceeds further, or there is
no new area, and the planner terminates with failure. The planner terminates with
success whenever it has constructed a kernel K(Gn) containing I or a non-directional
preimage NP(Gn) that includes a directional preimage containing I. Let 5 be the
number of landmark areas. The number of iterations is bounded by s. Thus, n < s.

Plan Execution Assume that the planner returns success after computing a non-
directional preimage NP(Gn) that contains I. The generated plan can be regarded
as a non-ordered collection of reaction rules. Each rule is a motion command whose
execution is conditional to the entry of the robot into a region of the workspace,
either the initial region, or a landmark disk, or an exit point:
- The rule associated with I is the I-command (dn,K(Gn)), where dn is such that

XCP(Gn,dn).
- The rule associated with a landmark disk is a P-command to attain the exit point
or the goal point of the landmark area to which the disk belongs.
- The rule attached to the exit point of each landmark area LA contained in
K(Gi+i)\K(Gi), for any i G [0,n- 1], is an I-commmand (di,K(Gi)), where d,
is such that LA n P(&,d,) is a non-empty region containing the exit point.

The plan is executed as follows: The robot first executes the I-command associ-
ated with the initial region. This command guarantees that the robot will stop in
a landmark disk with a P-command attached to it. Then the robot executes this
P-command, and attains a goal point or an exit point. If it attains a goal point, the
execution of the plan is terminated. If it attains an exit point, the I-command at-
tached to this point is executed. This command leads the robot to a new landmark

disk, and so on.

21

An exit point was selected by the planner in a landmark area when this area in-
tersected a directional preimage for the first time. Later, the planner never changed
the command attached to this point. Therefore, when the robot executes the I-
command (di,K(Gi)) from the exit point of some landmark area LA, no landmark
disk in LA can possibly be in the termination set K(Gi) of this command. Thus,
since K(Go) C K{G\) C ... C K(Gn), the robot cannot terminate its motion in the
same landmark area twice by executing the plan. Hence, it is guaranteed to reach Go
after executing an alternate sequence of I- and P-commands whose length is smaller

than or equal to 2(n + 1).
If the planner returns success when K(Gn) contains I, the generated plan is

essentially the same as above, except that it does not include a rule associated with
1, since the robot will already be in a landmark area having a P-command attached

to it.

Completeness and Optimality The execution of any motion plan causes a se-
quence of I- and P-commands to be executed. Since one can always merge any two
consecutive P-commands into a single equivalent one, we say that this sequence is
fc-step if it contains exactly k I-commands.

By definition of the kernel of any goal Gi, K(Gi) is the maximal subset of the
workspace from which the robot can reliably achieve Gi in zero steps. By definition
of the non-directional preimage of Gi, the set NP(Gi) U K{NP{Gi)), i.e. the union of
the non-directional preimage of Gi and its kernel, is the maximal subset from which
the robot can reliably achieve Gi in at most one step.

Hence, K(Go) is the maximal subset from where the robot can reliably achieve
the goal of the problem in zero steps, and NP(Gi) U K(NP(Gi)), for any i > 0, is
the maximal subset from where the robot can reliably achieve Go in at most t + 1
steps. Thus, if the goal Go can reliably be achieved from I, iterative backchaining
of non-directional preimages from Go is guaranteed to terminate with success. If Go
cannot reliably be achieved from 1, backchaining will terminate with failure, since
the number of iterations is bounded by the number of landmark areas. Thus, the
planner is complete.

Let a motion plan be optimal if the maximal number of steps required by its
execution is minimal over all possible motion plans that are guaranteed to reliably
achieve the goal Go- The maximal number of steps for a plan produced by our plan-
ning algorithm is equal to the number of backchaining iterations before a kernel or a
preimage contains the initial region. By definition of the non-directional preimages,
the number of iterations is equal to the minimal number of steps that is required to
achieve the goal in the worst case. Hence, our algorithm generates optimal plans.
Furthermore, after the execution of any sequence of steps, the subset of the motion
plan that may still be used to attain the problem's goal is also optimal.

22

Theorem 1 The planning algorithm is complete and generates optimal plans.

5.3. COMPUTATION OF A NON-DIRECTIONAL PREIMAGE

Overview The above planning method does not require that we compute the full
description of the non-directional preimage of the current goal at every iteration. It
is sufficient to:
- determine whether there is a direction for which the directional preimage fully
contains I, and
- identify all the non-kernel disks that have a non-zero intersection with at least one
directional preimage.
If a directional preimage for some non-critical direction contains the initial region
(or intersects a non-kernel disk L), the directional preimage for the critical direction
just before or just after this non-critical direction contains I (or intersects L) as well.
Hence, it is sufficient to consider the directional preimages at the critical directions.

We first compute the directional preimage of Q for a direction da arbitrarily
selected in S1. Using the augmented sweep-line algorithm of Subsection 4.2, we also
compute the description of its intersection with initial-region disks and non-kernel
disks.

The rest of the computation is an alternation of two phases: event schedul-
ing and event processing. Event scheduling consists of using the current directional
preimage description to schedule potential new events by inserting the corresponding
directions in a list OPEN that is sorted in counterclockwise order. Event processing
consists of removing the first direction in OPEN, checking that it actually is a critical
direction, and updating the description of the directional preimage and its intersec-
tion with the initial-region and non-kernel disks. The alternation ends when OPEN

is empty.
We detail these two computation phases below. The names and labels given to

rays, ray intersections, edges, and spikes (see Subsection 4.1) are used to track them
across different values of the commanded direction of motion. For example, two
rays, for two different directions, are the same "object" if they have the same name.

Event Scheduling Using the description of the first directional preimage
P(G-,da), we identify potential critical directions by considering all edges and spikes
in this preimage. A direction dpc is potentially critical if the ray supporting an edge
of P(G,da) is tangent to a landmark disk or an initial-region disk at direction dpc

or passes through the intersection of the boundaries of two disks at dpc, or if the
curve traced by the intersection of two rays, when the direction varies, intersects an
initial-region or a non-kernel disk at direction dpc. The type of the potential event
associated with the direction dpc is uniquely defined in advance. For example:

23

r3

(lx di d2 I3 d3 r3) —► (li di d2 I3 d3 r3 d2 r2)

Figure 8: Updating the directional preimage at a K-Right-Touch event

- If the ray / supporting a left edge of P(G, da) is tangent to a kernel disk L at dpc,
the type of the event is K-Left-Touch if L is on the left of / and K-Left-Exit if it is
on the right.
- If the curve traced by a spike of P(Q, da) cuts an initial-region disk at dpc, the
type of the event is I-Spike-In if the curve enters the disk and I-Spike-Out if it exits
the disk.
Notice, however, that a scheduled event may not occur since the edge or the spike
used to schedule it may no longer be part of the current directional preimage at
direction dpc.

We mark the label identifying every processed edge and every processed spike.
Later on, for every new directional preimage computed at a critical direction, for
every edge or spike of this preimage whose label is not marked yet, we perform the
same computation as above and mark its label. (Note that all critical directions
caused by K-Left-Birth events are scheduled at the beginning, since these directions
only depend on the kernel.)

The curve traced by the intersection of a right and a left ray is a circle if the
two rays are tangent to the same disk. Otherwise it is a fourth-degree curve. The
algebraic expression of the intersection of this curve with a circle is given in the
Appendix at the end of this paper.

Event Processing Let dpc be a direction removed from OPEN. The first step is
to verify that this direction is actually a critical one. For example, assume that dpc

corresponds to a K-Right-Touch event. Hence, the right ray r of a kernel disk is
colinear with the right ray r' of another kernel disk V. In order for the K-Right-
Touch event to effectively occur, the ray r must support an edge of the current

24

Left-Touch

Right-Exit

Figure 9: Catastrophic K-Left-Touch and K-Right-Exit events

directional preimage and this edge's length must be greater than or equal to the
distance between the origins of r and r\ Checking whether dpc is a critical direction
takes constant time for all types of events.

The second step is carried out only if dpc is a D-critical direction. It consists
of updating the description of the directional preimage according to the occurring
event. For all events, except K-Left-Touch and K-Right-Exit events, the change is
small and can be computed in constant time. For example, assume that the above
K-Right-Touch event occurs. The description of the directional preimage is then
modified by inserting the names of L' and r' in sequence immediately after the
name of r (see Fig. 8). On the other hand, a K-Left-Touch or K-Right-Exit event
may result in a modification requiring 0(£) time to compute (see Fig. 9). When this
occurs we say that the event is catastrophic. We recompute the directional preimage
from scratch at every K-Left-Touch or K-Right-Touch event, using the sweep-line
algorithm.

The third step is carried out at every D- and I-critical orientation to update the
description of the intersection of the directional preimage with I and check if the
new preimage contains I. This consists of updating the data structure (lN,Right-
Cut,Left-Cut) attached to every initial-region disk. For example, when an I-Spike-In
event occurs involving an initial-region disk I and a spike s, the names of the right

25

and left rays of s are inserted in the Right-Cut and Left-Cut sets of/, respectively.
This update is carried out at every D-critical and I-critical direction. It takes con-
stant time for all event types, except K-Left-Touch or K-Right-Exit. But then the
sweep-line algorithm recomputes the full data structure.

The fourth step is carried out at every D- and L-critical orientation to deter-
mine which non-kernel disks are intersected by the new directional preimage. Since
a non-kernel disk will be included in the kernel of the non-directional preimage
being computed if it intersects one of its directional preimages, we remove a non-
kernel disk from further consideration as soon as it intersects a directional preimage.
Therefore, when we process events, we only have to consider K-Left-Touch, K-Right-
Exit, L-Reach, and L-Spike-In events. At K-Left-Touch and K-Right-Exit events,
the sweep-line algorithm determines which non-kernel disks are intersected by the
new directional preimage. At L-Reach and L-Spike-In events the newly intersected
non-kernel disk is identified in constant time.

5.4. COMPLEXITY ANALYSIS

At every iteration, the planner computes a directional preimage, schedules events,
and processes them.

Computing a directional preimage takes time 0(/log/), including the time for
generating the current goal's kernel.

Scheduling all the events, except the L-Spike-In ones, takes time O(£2\og£).
Indeed, there are 0(£2) potential events of these types in total, and we must sort
the corresponding directions. But there are 0(£3) L-Spike-In events and it takes
0{£3log£) time to sort the corresponding critical directions. One may remark that
we schedule some events too early. If the scheduling of these events were postponed,
the need for scheduling them could disappear in the meantime, thus reducing the
number of scheduled events. Some straightforward improvements are possible in this
way (and have been incorporated in our implementation), but they do not modify
the asymptotic time complexity of event scheduling.

Processing all the potential events takes 0(/3log^) time. The dominant cost is
that of processing the K-Left-Touch and K-Right-Exit events, because we recompute
the directional preimage at each of them. The cost of processing all the other events
is only linear in the number of these events, hence 0(£3) for the L-Spike-In events
and 0{£2) for all others.

Therefore, the time complexity of a planner iteration is 0(/3log^). Since there
are at most s iterations, the planner runs in time 0{s£3log£). We can compute
all the P-command trees at the end in time 0(£2). The overall computation re-
quires space 0(£3). The dominant cost here is that of storing the potential critical
directions (list OPEN).

26

Theorem 2 The planning algorithm takes time O(s£3log£) and space 0(£3).

The time complexity of an iteration of the planner essentially results from the
treatment of L-Spike-In, K-Left-Touch and K-Right-Exit events. Concerning L-
Spike-In events, we can compute the 0(£3) directions where they may occur in
advance, so that we sort them only once and reuse this result at every iteration of
the planner. Processing the L-Spike-In events then takes 0(s£3) time over all O(s)
iterations. On the other hand, in a way similar to the one presented in [3], we can
show that, at every iteration, although each of the 0(£2) K-Left-Touch and K-Right-
Exit events may cause 0(£) changes in the directional preimage, the total number
of changes caused by all the K-Left-Touch and K-Right-Exit events is 0(£2). We
can compute these changes in 0(l2 \og£) time by using an additional data structure
that takes 0(£2log£) time to create and update. Updating the intersection of the
directional preimages with the initial-region and non-kernel disks can be achieved
within this time complexity. All these modifications combined reduce planning time
to 0(s£3 + ^3log£), which is a relatively small improvement over the above time
complexity.

6. ROBOT NAVIGATION

6.1. CASE WHERE THE PLANNER RETURNS SUCCESS

See Subsection 5.2, paragraph Plan Execution.

6.2. CASE WHERE THE PLANNER RETURNS FAILURE

The planner returns failure when the kernel of the current goal, call it Gm+i, is
equal to the kernel of the previous goal, i.e. K(Gm+i) = K(Gm)- No I-command is
then attached to the initial region. But an incomplete plan has nevertheless been
generated, in the form of a collection of reaction rules attached to all landmark disks
(and exit points) from which it is possible to reliably achieve Go- The robot may
attempt to attain the goal by using this plan.

Let us assume that there exists a third control mode, called the random control
mode. A motion command in this mode, called an R-command, only specifies a
termination set C of landmark disks. When the robot executes this command, it
performs a Brownian motion with mean 0, until it enters any disk in £; then it
stops.

The probability of a Brownian motion in the plane to enter a disk of non-zero
radius converges to 1 when the duration of the motion grows toward infinity. (The
hypothesis that the robot has no sense of time does not mean that time does not

27

exist.) Therefore, the robot could construct £ as the set of all landmark disks which
have a reaction rule attached to them and execute the R-command that stops in £.
The robot is then guaranteed to attain a disk in C. When this happens, it shifts
to executing the incomplete plan generated by the planner. Neither the duration of
the execution of the initial R-command, nor even its expected value, are bounded,

however.
Let us assume that the robot workspace is bounded by a wall forming a smooth

simple curve W enclosing all the landmark disks. Let a motion in the random
control mode be a Brownian motion with reflection on W [1]. This means that, if
the robot hits the wall, its motion is reflected symmetrically to the tangent of W
at the hitting point. Then, in principle, we can bound the expected duration of a
Brownian motion starting anywhere in the initial region and terminating as soon as
it enters a disk in C. Using this bound, the robot's navigation system may decide
whether it is worth to execute an R-command.

A Brownian motion with reflection on W is guaranteed to reach any landmark
disk provided that we wait long enough. In particular, it is guaranteed to reach
K{Qa). Therefore, the robot could achieve the goal without planning. The role of
planning is to bound the time necessary to achieve the goal (if the planner returns
success), or reduce the expected time before entering a landmark disk from which
a guaranteed plan to the goal exists (if the planner returns failure). We could also
make the planner evaluate the expected time to attain any landmark disk in the
kernel of the current goal at every iteration, and stop planning when this time is
small enough. This may be useful if the time allocated to planning is limited.

An alternative to executing an uninformed random motion from the initial region
is to run the planner with a reduced directional uncertainty 0 until it finds a plan
from the initial region. This alternative will be discussed in Subsection 9.3.

6.3. UNEXPECTED EVENTS

Let us assume Jhat the hypotheses concerning motion control and landmark sensing
stated in the problem description of Section 3 are only almost always correct, so
that unexpected events may occur during plan execution. For example, the robot's
wheels may slip on the ground yielding a directional error greater than 0; or the
robot may accidentally be pushed outside a landmark area while it was executing a
P-command; or, a landmark may have been inadvertently "turned off", so that for
a while it cannot be sensed by the robot. This event may have no noticeable effect
on the execution of the plan, in which case it is harmless to continue executing the
plan. The event may also lead the robot to enter a landmark area that it was not
expected to enter, or reach the wall W bounding the workspace, or become senseless
while it was expected to sense a landmark. The robot then detects that something

28

Figure 10: Example with 0 = 0.1 radian

abnormal happened. It does not make sense for it to continue the execution of the
plan. One way to proceed is to execute an It-command terminating in any landmark
disk with a reaction rule attached to it, and resume executing the plan afterward.
Executing random motions is a general approach to recover from unexpected events,
but it can only be efficient if unexpected events remain exceptional [16].

7. EXPERIMENTAL RESULTS

We implemented the above planning and navigation techniques, along with a robot
simulator, in C on a DECstation 5000. The implemented planner incorporates two
significant improvements:

(1) During the computation of a non-directional preimage, it does not discard a
non-kernel disk L as soon as this disk intersects a directional preimage. Instead, it
determines the intervals of all directions at which the directional preimage intersects

29

Figure 11: Example with 0 = 0.2 radian

L, computes the intersection of L with the directional preimage at the midpoint
of each such interval, and keeps the intersection having the biggest area. This
intersection is called the exit region of L.

(2) Several exit regions, each in a unique disk, may be generated in the same
landmark area. With each disk in such a landmark area, the planner associates
a P-command leading to one exit region constructed in the area. When several
exit regions are available, it selects the region that allows the generation of the
P-command containing the smallest number of via points.

The purpose of the first modification is to allow some errors in control and
sensing in the landmark areas (see Subsection 9.1). The second modification avoids
planning P-commands through long sequences of disks in a landmark area when this
is not necessary (however, it is only a heuristic, since it does not take the radii of
the landmark disks into account).

Below we present examples of plans generated by the implemented planner, along

30

with their simulated execution. In all the figures (for instance, see Fig. 11) white
disks are landmark disks that intersect the non-directional preimages computed by
the planner, except the last one when this last preimage includes the goal region.
Grey disks are the other landmark disks; if they have not been touched by the
last non-directional preimage computed, no command is attached to them. In all
examples, there is a single initial-region disk designated by I, and a single goal-
region disk designated by Go-

Whenever the robot enters a new landmark area L that is part of the termination
set of the I-command currently being executed (then the disks in L are necessarily
white), it shifts to executing a P-command leading to a point (the exit point) selected
in an exit region in L; as soon as it enters the exit region containing the exit point,
it abandons the P-command and shifts to executing the corresponding I-command
attached to the exit point. The exit region constructed in every white disk, if there
is one such region, is shown in the figures (except when it covers the whole disk),
together with the direction of the I-command attached to the selected exit point.
The termination sets of the I-commands are not shown in the figure, but can be
inferred from the drawings.

Fig. 10, 11, and 12 display three examples with the same workspace containing
51 landmark disks of various size and the same initial and goal regions, but with
increasing directional uncertainty 9. These examples show that, when uncertainty
grows, the planner returns more and more sophisticated plans, as it attempts to
reduce uncertainty by leading the robot through additional landmark disks.

In Fig. 10 we set 9 to 0.1 radian. The planner returned success after 2 iterations
and less than 3 seconds of computation time. Because the directional uncertainty is
small, the plan is almost directly aimed toward the goal. The simulated execution
produces a path traversing a single landmark disk designated by D before entering
the goal kernel. Although the disk marked E is along the path between D and
F (the goal's kernel), it is not in the termination set of the I-command executed
from the exit point of D. The robot traverses E without shifting to another motion
command.

In Fig. 11 we set 9 to 0.2 radian. It took 4 iterations of the planner, and 19
seconds of computation, before the initial region was included in a preimage. In
the process, the planner attached motion commands to many landmark disks. The
simulated execution of the plan produced a path that uses three successive landmark
areas designated by B, D, and E, before entering the goal's kernel (F). The area
C is also traversed by the path, but it is not part of the termination set of the
I-command executed from B.

In Fig. 12 we set 9 to 0.3 radian. A plan was generated after 6 iterations, and
52 seconds of computation. A quick comparison of the commanded directions of
motion attached to the white landmark disks shows that this plan is quite different

31

Figure 12: Example with 0 = 0.3 radian

from the plan of Fig. 11. The executed path traverses 5 landmark areas designated
by A, B, C, D, and E. Notice that both B and C are now used by the navigation
system, because it is no longer reliable to directly achieve D from B; C has to be
used along the way to reduce uncertainty.

Fig. 13 shows two examples run with another workspace containing 6 landmark
disks. In the example on the left, 0 was set to 0.3 radian and the planner returned
success. In the example on the right, 0 was set to 0.35 radian; then no guaranteed
plan to the goal exists and the planner returned failure. However, the planner
associated motion commands with all landmark disks in the workspace. An R-
command was then attached to the initial region. In the sample path shown in the
figure, the Brownian subpath resulting from the execution of this command enters
the upper-left landmark disk in a relatively short amount of time. From there the
navigation system shifts to the safe plan generated by the planner.

32

0 = 0.3 radian 9 = 0.35 radian

Figure 13: Using a Brownian motion to connect to a plan

Figure 14: Right and left rays of an obstacle disk

8. DEALING WITH OBSTACLES

Let us now introduce 0(£) forbidden circular regions, the obstacle disks, in the
workspace. We assume for simplicity that these disks have null intersection with
the landmark and initial-region disks, and do not even touch them. (Retracting this
assumption presents no particular difficulty, but significantly increases the number

of event types to be considered.)

8.1. DIRECTIONAL PREIMAGE DESCRIPTION

Let us consider an obstacle disk B and a commanded direction of motion d. We
define the right ray (resp. left ray) of B as the half-line tangent to B drawn from

33

Figure 15: Directional preimage in the presence of obstacle disks

the tangency point in the direction TT + d + 6 (resp. TT + d - 6), with the obstacle on
its right-hand side (resp. left-hand side), as shown in Fig. 14.

The directional preimage of a goal in the presence of obstacle disks is a region
bounded by arcs and edges. Each arc is a subset of the boundary of a kernel or
obstacle disk. Each edge is a line segment supported by the right or left ray of
a kernel or obstacle disk. When an edge intersects a kernel disk L, the edge is
terminated and L is included in the preimage. When an edge intersects an obstacle
disk B, the ray is also interrupted, but B is excluded from the preimage. Fig. 15
shows an example of such a directional preimage. Kernel disks are shown white,
while obstacle disks are shown black. Notice that the preimage may now contain
holes, which themselves may contain components of the preimage. Moreover, its
components may have zero, one, or several spikes. The total number of edges and
arcs in the preimage's boundary is still in 0{t).

We construct the description of a directional preimage very much in the same
way as when there are no obstacles. We simply give a name to every obstacle disk so
that we can label the various edges and arcs of the preimage's boundary that arise
from the presence of the obstacles. Since there may be holes, the description of a
component of the preimage now consists of nested lists of labels. Although there
are more types of labels to handle, the computation of this description still takes

time O(l\ogt).

Lemma 6 The description of a directional preimage in the presence ofO(£) obsta-

cles is computed in time 0(£\og£).

34

^

(a)O-Reach (c) O-Spike-Birth (e) O-Spike-In (g) O-Left-Vertex (i) O-Right-Birth

&
(b)O-Exclude (d)O-Spike-Death (f) O-Spike-Out (h) O-Right-Vertex (j) O-Left-Death

Figure 16: Events caused by obstacle disks

8.2. CRITICAL DIRECTIONS DUE TO OBSTACLES

When the commanded direction of motion d varies over 5\ we have the same types
of D-critical events as in Subsection 5.1, plus the following ones, which are caused
by obstacle disks (see Fig. 16, where kernel disks are shown white and obstacle disks

are shown black):
- An O-Reach event occurs when a left edge reaches an obstacle disk by becoming

tangent to it.
- An O-Exclude event occurs when a right edge leaves an obstacle disk by becoming

tangent to it.
- An O-Spike-Birth event occurs when a spike emerges as a left edge terminating on
an obstacle disk reaches the point where a right edge arises from this disk.
- An O-Spike-Death event occurs when a spike vanishes as its left edge, pushed by
its right edge, shortens to zero length against an obstacle disk.
- An O-Spike-In event occurs when a spike enters an obstacle disk.
- An 0-Spike-Out event occurs when a spike exits an obstacle disk.
- An O-Left-Vertex event occurs when the endpoint of a left edge reaches the inter-

35

section of two obstacle disks.
- An O-Right-Vertex event occurs when the endpoint of a right edge reaches the

intersection of two obstacle disks.
- An O-Right-Birth event occurs when a right edge emerges at the intersection of

two obstacle disks.
- An O-Lefi-Death event occurs when a left edge disappears at the intersection ol

two obstacle disks. ,
There are 0(t) events of types O-Right-Birth and O-Left-Death, 0(f) events

of types O-Reach, O-Leave, O-Spike-Birth, O-Spike-Death, O-Right-Vertex, O-Left-
Vertex, and 0{l3) events of types O-Spike-In and 0-Spike-Out.

Lemma 7 There are 0(l3) D-critical directions due to the 0(1) obstacles.

8.3. COMPUTATION

The directional preimage undergoes a small change at each of the above events.
This change is computed in constant time for all events, except O-Spike-In events.
At each O-Spike-In event we must identify the label of the arc touched by the spike,
which takes 0(log/) time. Therefore, the non-directional preimage in the presence
of obstacle disks still requires 0(t3\ogl) to compute, and the time complexity of the
planning algorithm remains O(s£3\ogl). The space complexity also remains 0(1).

Hence:

Theorem 3 The planning algorithm in the presence of 0(1) obstacle disks takes

time O(sl3\ogl) and space 0(£3).

8.4. EXPERIMENTAL RESULTS

Fig 1 displays both an example of a plan generated by the planner and a sample
run of this plan. Obstacle disks are shown black. Landmark disks are shown white
or grey depending on whether a reaction rule has been attached to them, or not (see
Section 7). The initial region is the disk 1. The goal region is the disk Go- In this
example, 0 was set to 0.09 radian. The generation of the plan took 12 iterations of
the planner, and about 3.5 minutes of computation.

Fig. 17 shows another example with the same landmark and obstacle disks (ex-
cept for 3 obstacles disks that have been removed) and 0 set to 0.1 radian. This
example was solved after 6 iterations (the displayed path has only 5 steps) requiring

40 seconds of computation.
Fig 18 shows a third example with a different workspace containing 34 landmark

disks forming 28 landmark areas, and 37 obstacle disks. It was solved in 7 iterations
(the displayed path also 7 steps) and less than 6 minutes of computation.

36

Figure 17: Example with obstacles (0 = 0.1 radian)

Remarks:
- In the presence of obstacles, R-commands (see Subsections 6.2. and 6.3) are allowed
to hit obstacles. They generate Brownian motions with reflection on the obstacles'
boundary.
- As in the original LMT [26], the planner could easily be adapted to accept compliant
I-commands. Such commands would be allowed to hit obstacles, then causing the
robot to slide along the obstacles' boundary.

9. DISCUSSION AND EXTENSIONS

In this section we discuss non-implemented extensions of the planner which eliminate
or soften the most restrictive assumptions contained in the problem statement of

Section 3.

37

Figure 18: Another example with obstacles (0 = 0.1 radian)

9.1. UNCERTAINTY IN LANDMARK AREAS

Perhaps the less realistic assumption in the problem definition of Section 3, with
respect to mobile robot navigation, is that control and sensing are perfect in land-
mark areas, while sensing is null outside any such area. Below, we first argue that
this assumption is not too far from reality. We then give the intuition underlying
an approach to relieve it.

A typical mobile robot uses two techniques to continuously estimate its position,
dead-reckoning and environmental sensing. Environmental sensing provides perti-
nent information only when some characteristic features of the workspace ("land-
marks") are visible by the sensors. Then the robot knows its position with a good
accuracy. When no or few features are visible, the robot relies on dead-reckoning,
which yields cumulative errors that we model by the directional uncertainty cone.
Our assumption that sensing outside landmark areas is null is perhaps conservative,
but it does not prevent the robot's navigation system from using all available sensing

38

information at execution time to better determine the robot's current position. In
the worst case this may lead the planner to return failure, while reliable paths exist
in practice.

On the contrary, the assumption that control is perfect in the landmark areas
is anti-conservative; but if we choose safe features to create landmark disks, it is a
reasonable one. To some extent, most workspace can be engineered to include such
features. Landmark areas with sharp boundaries can be obtained by introducing
artificial landmarks and/or thresholding an estimate of the sensing uncertainty. For
example, the notion of a "sensory uncertainty field" (SUF) is introduced in [31, 32].
At every possible point p in the workspace, the SUF estimates the range of possible
errors in the sensed position that the navigation system would compute by matching
the sensory data against a prior model of the workspace, if the robot was at p. The
SUF is computed at planning time from a model of the robot's sensing system.

More interestingly, however, one can notice that perfect control and sensing in
landmark areas are not strictly needed. Indeed, once the robot enters a landmark
area it is sufficient that it reaches an exit region of non-zero measure prior to execut-
ing the next I-command. (If the landmark area intersects the goal, the "exit region"
is the intersection with the goal.) For example, the maximal sensing error allowed
in a landmark area could be half the radius of the largest disk fully contained in an
exit region. Thus, although the planner assumed perfect sensing in landmark areas,
we can now create these areas by engineering the workspace in such a way that the
sensors just provide the information that is needed by the plan (see [17] for a similar
idea).

At the beginning of Section 7, we mentioned a simple way of computing exit
regions, but that computation treats landmark disks individually. Other techniques
could be developed to compute larger exit regions overlapping several disks in the
same landmark area, thus permitting larger errors. In any case, maximal errors in
landmark areas seem to depend on the plan itself, so that they can only be computed
once a plan has been generated assuming no such errors. We believe, however, that,
given a distribution of landmark areas, it is possible to compute a lower bound on
the maximal errors that can be allowed in every landmark area over all possible
plans. But, in order to turn all these ideas into algorithms, we will have to be more
specific and propose an effective model of control and sensing in these areas. We
currently work on this issue.

9.2. LANDMARK AND OBSTACLE GEOMETRY

In our current algorithm, the landmark and obstacle areas are limited to be unions of
circular disks. We initially chose to model the fields of influence of the landmarks by
disks because we had in mind some sorts of beacons (e.g., radio or infra-red beacons)

39

Figure 19: Intersection of a kernel and an obstacle disk

to guide the robot. For simplicity, we made the same choice for the obstacles.
However, most natural landmarks do not entail circular fields of influence. We can
certainly approximate any landmark or obstacle area by a collection of overlapping
disks. However, the number of these disks grows quickly with the precision of the
approximation, yielding longer computation.

Fortunately, our algorithm can be easily adapted to deal with landmark and
obstacle areas described as generalized polygonal regions bounded by straight and
circular edges. In this extension, for any commanded direction of motion, we can
still define the right and left rays of a landmark or an obstacle area. If the area is not
convex, it may have several right and/or left rays. While the origin of the right or left
ray of a circular contour varies continuously as the commanded direction of motion
rotates, the origin of the right or left ray of a polygonal contour remains anchored
at a fixed vertex, except at critical directions where it jumps from one vertex of the
contour to another. These directions (which are parallel to the straight edges of the
generalized polygonal contours of the landmark and obstacle areas) are additional
critical directions to be treated by the planner. Also, if a kernel landmark area and
an obstacle area touch each other, we may have to erect a ray whose origin is an
intersection point of the two contours, as shown in Fig. 19 for a kernel disk (shown
white) intersecting an obstacle disk (shown black). The origin of such a ray remains
stationary for a subrange of orientations d. The curves traced by the spikes are not
more complicated than in the pure circular case and their degrees remain no greater

than 4.
Although several small adaptations have to be carefully made, our planning

method thus extends to the case where landmark and obstacle areas are bounded

40

by straight edges and circular arcs and may touch each other. If the workspace
contains s landmark areas bounded by 0(1) edges and arcs and the obstacle areas
are bounded by 0(1) edges and arcs, the time complexity of the planner remains
0(s£3\ogl).

Representing landmark and obstacle areas as generalized polygons is a very re-
alistic model for most applications. In particular, if the robot is an omnidirectional
circular robot moving among polygonal obstacles, shrinking the robot to its cen-
terpoint and growing the obstacles isotropically by the robot's radius yields such
generalized polygonal regions.

Using algorithms from [12, 3], it is possible to further extend our planning al-
gorithm to include compliant motion commands allowing the robot to slide along
obstacle boundaries. This development would be particularly interesting in order
to apply our planner to the generation of fine-motion strategies for part-mating op-
erations in assembly tasks. This application would require, however, to allow the
"point robot" to move in higher-dimensional spaces, since the configuration space
of a moving rigid part in a three-dimensional workspace has dimension 6. In such
a space, critical directions of motion are no longer defined as isolated angles, but
form submanifolds of various dimensions.

9.3. VARYING DIRECTIONAL UNCERTAINTY

The experimental runs with the implemented planner show that the value of 6
has major impact on the generated plans. This immediately raises the following
question: How to choose 01 In the real world, errors are often difficult to model and
not uniformly distributed over an interval. Our argument in favor of the notion of a
bounded directional uncertainty is that it makes it possible to define the notion of
a guaranteed plan, that is, a plan whose execution is guaranteed to succeed as long
as actual errors are within this uncertainty. The advantage of such a plan is that
its failures can eventually be traced back to the assumptions made in the problem
statement. On the other hand, a too small value of 6 may result in plans whose
execution is unreliable, while a too large one may produce inefficient plans with too
many commands, or no plan at all. One way to deal with this issue is to introduce
the notion of a critical value for 0.

Assume that the planner constructs a non-directional preimage NP(Qi), for some
i > 0, that intersects none of the non-kernel disks. If NP(Gi) does not contain I, our
current planner gives up and returns failure. Then the robot may decide to execute
an R-command to connect to the incomplete plan built by the planner.

Instead, rather than giving up, the planner could try to use a smaller value of
0, such that the new non-directional preimage of £, either intersects a non-kernel
disk, or contains the initial region. In the first case, the planner could resume

41

planning with the previous value of 0. In the second case, it would return success
and a complete plan. In this way, the planner would fail only if a reliable plan does
not exist when perfect control (0 = 0) is assumed (this may occur, for example,
when there are no landmark areas and the initial region is larger than the goal
region). It would always produce a complete plan, but this plan would not be
guaranteed. However, a non-guaranteed motion command is more informed than a
pure Brownian motion. Hence, by using a plan generated as above, the robot would
be more likely to reach the goal quickly than by starting with a Brownian motion.
If something goes wrong during plan execution, it will always be possible to turn to
a Brownian motion to recover from the incident, as suggested in Subsection 6.3.

How can we compute the new value of 0? Let Pe0(Gi,d) be the directional
preimage of Gi for a direction d, computed with 9 = 90. For almost any value 0O, if
we let 0 decrease slightly, the edges of the directional preimage rotate continuously,
the right edges clockwisely and the left edges counterclockwisely, with the preimage
description remaining constant. For isolated values of 6, this is not true. These
values are not difficult to identify and compute. Extending this notion to the non-
directional preimage of Gi, we say that a value Bc of 0 is critical if there exists a
direction d € Sl such that the intersections of P6c+e(Gi,d) and P8c-e(Gi,d), for an
arbitrarily small e, with the initial-region and the non-kernel disks are different. We
can now answer the question asked above: The new value of 0 should be taken equal
to the largest critical value below 0O.

An exact computation of the critical values of 0 is possible by explicitly com-
puting the contour of a non-directional preimage, tracking the variations of this
contour when 0 decreases, and computing the values of 0 when the non-directional
preimage intersects a new landmark disk. This computation will be described in a
forthcoming publication.

We can extend the use of the critical values of 0 further and compute different
plans solving the same problem with different values of 0. If a plan generated for
some value of 0 succeeds without a hitch, this value may be "rewarded"; if, instead,
the plan meets multiple unexpected events requiring the execution of random mo-
tions, the value may be "punished". By looking at the reward/punish record of
the values of 0, the robot may continuously adapt the value of 0 to be used by its

planner.

10. CONCLUSION

This paper described a complete polynomial planning algorithm for mobile-robot
navigation in the presence of uncertainty. The algorithm addresses a class of prob-
lems where landmarks create regions in the workspace where both control and sens-

42

ing are perfect. Outside these regions sensing is null; control, which relies on dead-
reckoning, is imperfect, but directional errors are bounded. Although this class
of problems is a simplification of real mobile-robot planning problems, it is by no
means oversimplified.

A computer program embedding the planning algorithm was implemented, along
with navigation techniques and a robot simulator. This program was run with many
different examples, some of which were presented in this paper. The planner is rea-
sonably fast. In its present form, it assumes that all landmark and obstacle areas
are described as unions of disks. However, we saw that extending the planner to
accept a more general geometry (generalized polygonal areas) is rather straight-
forward. Other interesting extensions (uncertainty in landmark areas, compliant
motion commands, adaptative directional uncertainty) are possible.

So far, most algorithms to plan motion strategies under uncertainty were either
exponential in the size of the input problem, or incomplete, or both. Such algo-
rithms may be interesting from a theoretical point of view, but their computational
complexity or lack of reliability prevent them from being applied to real-world prob-
lems. Our work shows that it is possible to identify a restricted, but still realistic,
subclass of planning problems that can be solved in polynomial time. This subclass
is obtained through assumptions whose satisfaction may require prior engineering
of the robot and/or its workspace. In our case, this implies the creation of adequate
landmarks, either by taking advantage of the natural features of the workspace, or
introducing artificial beacons, or using specific sensors. We call this type of simpli-
fication engineering for planning tractability.

Engineering the robot and the workspace has its own cost and we would like to
minimize it. Therefore, future research should aim at finding more general classes
of problems than the one solved by the current planner, but requiring less engineer-
ing and still solvable in polynomial time. It should also investigate the following
"inverse" problem: Given our planning method and the description of a family of
tasks (e.g., the set of all possible initial and goal regions), how to minimally engineer
the workspace, e.g., what is the minimal number of landmarks that we should place
in the workspace and where should we place them, so that every possible problem
admits a guaranteed solution.

References

[1] Anderson, R.F. and Orey, S., "Small Random Perturbations of Dynamical Sys-
tems with Reflecting Boundary," Nagoya Math. J., 60, 1976, pp. 189-216.

[2] Ayache, N., Artificial Vision for Mobile Robots: Stereo Vision and Multisensory
Perception, The MIT Press, Cambridge, MA, 1991.

43

[3] Briggs, A.J., An efficient Algorithm for One-Step Planar Compliant Motion Plan-
ning with Uncertainty, Technical Report, Department of Computer Science, Cor-
nell University, Ithaca, NY, 1988.

[4] Buckley, S.J., Planning and Teaching Compliant Motion Strategies, Ph.D. Dis-
sertation, Department of Electrical Engineering and Computer Science, MIT,
Cambridge, MA, 1986.

[5] Canny, J.F. and Reif, J., "New Lower Bound Techniques for Robot Motion
Planning Problems," 27th IEEE Symposium on Foundations of Computer Sci-
ence, Los Angeles, CA, 1987, pp. 49-60.

[6] Canny, J.F., The Complexity of Robot Motion Planning, MIT Press, Cambridge,

MA, 1988.

[7] Canny, J.F., "On Computability of Fine Motion Plans," Proc. of the IEEE
Int. Conf. on Robotics and Automation, Scottsdale, AZ, 1989, pp. 177-182.

[8] Chapman, D. and Agre, P.E., "Abstract Reasoning as Emergent from Concrete
Activity," Reasoning about Actions and Plans, edited by Georgeff, M.P. and
Lansky, A.L, Morgan Kaufmann Publishers, Los Altos, CA, 1986, pp. 411-424.

[9] Christiansen, A., Mason, M. and Mitchell, T.M., "Learning Reliable Ma-
nipulation Strategies without Initial Physical Models," Proc. of the IEEE
Int. Conf. on Robotics and Automation, Cincinnati, OH, 1990, pp. 1224-1230.

[10] Crowley, J.L., "World Modeling and Position Estimation for a Mobile Robot
Using Ultrasonic Ranging," Proc. of the IEEE Int. Conf. on Robotics and Au-
tomation, Scottsdale, AZ, 1989, pp. 674-680.

[11] Donald, B.R., "A Geometric Approach to Error Detection and Recovery for
Robot Motion Planning with Uncertainty," Artificial Intelligence J., 37(1-3),

1988, pp. 223-271.

[12] Donald, B.R., The Complexity of Planar Compliant Motion Planning Under Un-
certainty, Tech. Rep. 87-889, Dept. of Computer Science, Cornell University,

1987.
[13] Donald, B.R. and Jennings, J., "Sensor Interpretation and Task-Directed Plan-

ning Using Perceptual Equivalence Classes," Proc. of the IEEE Int. Conf. on
Robotics and Automation, Sacramento, CA, 1991, pp. 190-197.

[14] Drummond, M. "Situated Control Rules," Proc. of the First Int. Conf. on Prin-
ciples of Knowledge Representation and Reasoning, Morhan Kaufmann Publish-
ers, Los Altos, CA, 1989, pp. 103-113.

[15] Erdmann, M., On Motion Planning with Uncertainty, Tech. Rep. 810, AI Lab.,
MIT, Cambridge, MA, 1984.

44

[16] Erdmann, M., On Probabilistic Strategies for Robot Tasks, Ph.D. Dissertation,
Tech. Rep. 1155, AI Lab., MIT, Cambridge, MA, 1990.

[17] Erdmann, M., Towards Task-Level Planning: Action-Based Sensor Design,
Tech. Rep. CMU-cs-92-116, Dept. of Computer Science, Carnegie Mellon Uni-
versity, Pittsburgh, PA, February 1992.

[18] Goldberg, K.Y., Stochastic Plans for Robotic Manipulation, Ph.D. Dissertation,
Rep. CMU-CS-90-161, Dept. of Computer Science, Carnegie Mellon University,
Pittsburgh, PA, 1990.

[19] Friedman, J., Computational Aspects of Compliant Motion Planning, Ph.D. Dis-
sertation, Report No. STAN-CS-91-1368, Dept. of Computer Science, Stanford
University, Stanford, CA, 1991.

[20] Guibas, L.J. and Stolfi, J., Ruler, Compass, and Computer: The Design and
Analysis of Geometric Algorithms, Tech. Rep. No. 37, Digital, Systems Research
Center, Palo Alto, 1989.

[21] Hutchinson, S., "Exploiting Visual Constraints in Robot Motion Planning,"
Proc. of the IEEE Int. Conf. of Robotics and Automation, Sacramento, CA,
1991, pp. 1722-1727.

[22] Latombe, J.C., Robot Motion Planning, Kluwer Academic Publishers, Boston,
MA, 1991.

[23] Latombe, J.C., Lazanas, A., and Shekhar, S., "Robot Motion Planning with
Uncertainty in Control and Sensing," Artificial Intelligence J., 52(1), 1991,
pp. 1-47.

[24] Leonard, J.J. and Durrant-Whyte, H.F., "Mobile Robot Localization by Track-
ing Geometric Beacons," IEEE Tr. on Robotics and Automation, 7(3), 1991,
pp. 376-382.

[25] Levitt, T.S., Lawton, D.T., Chelberg, D.M. and Nelson, P.C., "Qualitative
Navigation," Image Understanding Workshop, Los Angeles, CA, 1987, pp. 447-

465.
[26] Lozano-Perez, T., Mason, M.T. and Taylor, R.H., "Automatic Synthesis of

Fine-Motion Strategies for Robots," Int. J. of Robotics Research, 3(1), 1984,
pp. 3-24.

[27] Mahadevan, S. and Connell, J., Automatic Programming of Behavior-based
Robots using Reinforcement Learning, Research Rep., IBM T.J. Watson Research
Center, Yorktown Heights, NY, 1990.

[28] Mason, M.T., "Automatic Planning of Fine Motions: Correctness and Com-
pleteness," Proc. of the IEEE Int. Conf. on Robotics and Automation, Atlanta,
GA, 1984, pp. 492-503.

45

[29] Preparata, F.P. and Shamos, M.I., Computational Geometry: An Introduction,

Springer Verlag, New York, 1985.
[30] Schoppers, M.J., Representation and Automatic Synthesis of Reaction Plans,

Ph.D. Dissertation, Dept. of Computer Science, University of Illinois at Urbana-

Champaign, Urbana, IL, 1989.
[31] Takeda, H. and Latombe, J.C., "Sensory Uncertainty Field for Mobile Robot

Navigation," Proc. of the IEEE Int. Conf. on Robotics and Automation, Nice,

France, 1992.

[32] Takeda, H. and Latombe, J.C., Planning the Motions of a Mobile Robot in a
Sensory Uncertainty Field, Tech. Rep., Dept. of Computer Science, Stanford

University, Stanford, CA, 1992.

APPENDIX: COMPUTATION OF SPIKE EVENTS

In this appendix we establish the equation of the locus of a spike and the intersection
of this locus with a circle. These results are needed to schedule potential spike events
(I-Spike-In, I-Spike-Out, L-Spike-In, L-Spike-Out, O-Spike-In, O-Spike-Out). They
may also be used to compute critical values of 6 (see Subsection 9.3).

A. SPIKE-Locus CURVE

A spike is the intersection point of two rays parallel to the sides of the directional
uncertainty cone and tangent to two disks, which may, or may not, be distinct. Their
angle is constant and equal to 20, with its bisector oriented along the commanded
direction of motion d. We are interested in the equation of the locus of the spike as

d varies in S1. .
Let us consider the case where the intersecting rays are tangent to two distinct

landmark disks Lx and L2 of respective radii m and T?2. One ray, h, is the left
ray of Lx; the other, r2, is the right ray of L2, as shown in Fig. 20. The results
established below remain valid when any of the disks is an obstacle disk, provided
that we change the corresponding radius m (i = 1 or 2) into -m (Section D will
provide more detail). If the spike is produced by a single landmark disk, then its
locus is simply a circle having the same center as the landmark disk; its radius is

n/sinfl, where n is the radius of the disk.
Let if, if! and ip2 denote the angles between the z-axis of a workspace coordinate

system and the direction d, the ray h, and the ray r2, respectively. We have ^ -

<p - 6 and <p2 = f + 9- Let the center of the ^ Ll (reSp- L^ be Cl (rGSP" °2'
with coordinates (xa, Vl) (resp. (x2, y2)). We let Pl (resp. p2) denote the origin of h

46

Figure 20: A spike created by two landmark disks

(resp. r2) and s denote the intersection point of li and r2, i.e. the point we wish to
track. Let (xa,ys) be the coordinates of s in the workspace coordinate system.

The coordinates of pi are (xi — 771 sin tpi, y\ + r/i COS<£>I), and those of p2 are
(x2 + % sin V2) V2 — *?2 cos ¥2)- Hence, the equations for /1 and r2 are:

/: : -(x -i!)sinv?i + (y - yi) cos<pi - 771 = 0,
T2 : -(x - x2) sin ^2 + (j/ - J/2) cos y>2 + r\2 = 0.

Both equations must be verified for x = x, and y = y3, yielding the following
parametric equations of the spike-locus curve:

x. =
sin 20

1
sin 20

[T/1 COS lf2 + 1)2 COS ipi — X\ COS lf2
sm Vl +

x2 cos (pi sin </>2 + (1/1 - y2) cos y>i cos <p2],

[rji sin y>2 + V2 sin y>i + j/i cos y?i sin ^2 -

y2 cos y?2 sin tp\ — (xj — £2) sin <p\ sin ^2]-

(1)

(2)

47

Figure 21: Various shapes of spike-locus curves

Since both tpi and <p2 are linear functions of <p, both xs and ys are thus expressed as
functions of <p. Eliminating <p from Equ. (1) and (2) yields a fourth-degree equation
representing the locus of s. However, we will see that the above parametric form

SUlTlCGS
Different shapes of the spike-locus curve are possible, which depend on the signs

of the quantities Ai = \m cos29 + r,2\ - C and A2 = \m cos29 + m\ " C, where C
denotes the distance between d and c2. These shapes are illustrated in Fig. 21, for
two intersecting landmark disks, with Lx being the biggest of the two disks:
- If both Ax and A2 are positive, the locus is a simple (Jordan) curve that encloses
the two landmark disks without touching any of them.
- If Ai or A2 is positive and the other is negative, the locus is still a simple curve,

but it is twice tangent to L\.
- If both Ai and A2 are negative, the curve is no longer simple; it makes a loop and

is twice tangent to both disks.
(In the first example of Fig. 21, m = 50, m = 15, and 6 = .25; both \x and A2 are
positive. In the second example, m = 100, m = 30, and 6 = .65; X, is negative and
A2 positive. In the third example, m = 50, m = 15, and 0 = 1.37; both X} and
A2 are negative.) In the case where the two disks do not intersect, the quatities Ax

and A2 are always both negative; the spike-locus curve makes a loop and is twice

tangent to both disks, as shown in Fig. 22.
Notice that not all points in a spike-locus curve correspond to feasible spikes.

Let us draw the line tangent to both ^ and X2, and oriented so that it touches Ia

before X2 (the dashed line in Fig. 21). The valid part of the locus (shown in thicker
line in the figure) lies on the left-hand side of this line. Therefore, intersecting a
spike-locus curve with a circle may yield both valid and invalid points, which we

must classify afterwards.

48

Figure 22: Spike-locus curve for two disjoint landmark disks

B. INTERSECTION OF A SPIKE-LOCUS CURVE WITH A CIRCLE

Let us now consider a third disk centered at c3 and having radius 773 (see Fig. 20). We
wish to compute the intersection of the spike-locus curve with the circle C bounding
this disk. To that end, we denote any intersection point of r2 with C by t, compute
the vectors s — p2 and t — p2 as functions of <p, and solve the equation s —p2 = t —p2

for <p.
We have s - p2 = (xs - x2 - r\2 sin <?2 , Vi - 2/2 + m cos <p2)- Using Equ. (1) and

(2), we get (after some calculation):

s-p2 =
sin 20

(cosy>2 , siny>2), (3)

where A = {y\ - 3/2) cos <pi - (xi - x2) sin(fi + T)I + T)2 COS26.
Let the equation of the circle C be:

(x - i3)2 + (y- yzf = V3-

By solving it together with the equation of r2, we get the coordinates (xt, yt) of the
intersection t of r2 with C. After yet some calculation, we find:

xt = X3 cos2 <f2 + X2 sin2 <p2 + *72 siQ V2 -

(3/2 - 2/3) sinip2 cos y>2 ± cos ip2\/v3 ~ -02' (4)

49

yt = (x2 + 3:3) cos (p2 sin <f2 - R2 COS <f2 +

j/3 sin2 <p2 + 2/2 cos2 <f2 ± sin y?2y vl ~ ^2> (5)

where B = (y2 - Jfe) cosy>2 - (x2 - ^3) sin y>2 - m-
We have f - p2 = (xt - x2 - % sin <?2 , yt - y2 + m cos <f2). Using Equ. (4) and

(5), we get:

t-p2 = (C ± \Ji)l - B2) (cos if2 , sin <f2), (6)

where C = (x3 - x2) cos (f2 + (y3 - y2) sin if2.
Comparing Equ. (3) and (6) we see that the equality of the components of the

two vectors yields the same equation, namely:

A = (C ± y/f]2
3 - B2) sin 20.

After rearranging to isolate the root, squaring, and performing a considerable
amount of calculation we end up with:

So + Sisiny+S2cos^ + S3sinV + S4cos2<p+55sin¥Jcos¥> = °> (7)

where:

So = (x! + yl-^) sin2 20+ 77?+ 7^ + 2771772 cos 20,
Si = 277i(Ai + A2cos20-C1sin20) + 2772(A2 + Aicos20-C2sin20),

52 = 277i(5i + 52 cos20 -Di sin 20) + 2772(^ + ^1 cos20 -D2sin20),

53 _ i4? + A2
! + 2J4iA2cos20-2(AiC1 + A2C2)sin20,

54 = 52+5| + 2J3i52cos20-2(JBiI»i + 52l>2)sin20,

55 = 2[AxBx + A2B2 + (AxB2 + A2Bx)cos2e-

{AxDx + Bid + A2D2 + B2C2) sin 20],

and t n , ■ a
Ax = -xx cos 0 + yx sin 0, A2 = x2 cos 0 + 1/2 sin 0,
Bi = xi sin 0 + 1/1 cos 0, B2 = x2 sin 6 - y2 cos 0,
Ci = -13 sin 0 + 7/3 cos 0, C2 = x3 sin 0 + y3 cos 0,
I>i = x3 cos 0 + J/3 sin 0, D2 = x3 cos 6 - y3 sin 0.

Using the transformation u = tan(y>/2), Equ. (7) becomes:

(50_52 + 54)«
4 + 2(5i-55)ti

3 + 2(5o + 253-54)«
2 + 2(51+55)« + (5o + 52 + 54) = 0 (8)

which is a fourth-degree equation that can be solved analytically. From u, we
compute <p, and from it (x„ys) using (1) and (2).

50

Figure 23: Spike valid limits

C. CLASSIFICATION OF SOLUTIONS

As we mentioned above, not every real solution of Equ. (8) corresponds to a feasible
spike. We still have to disqualify invalid solutions. We also need to classify the valid
solutions into entry and exit angles when d varies counterclockwisely.

A spike-locus curve can have up to four intersection points with a circle. How-
ever, a spike is feasible only for values of <p in the interval [vmt'n, fmax\i where <pmin
(resp. <Pmax) is the angle between the x-axis and the direction d when l\ (resp. r-i) is
the exterior common tangent to both L\ and Li (see Fig. 23). Denoting the distance
between c\ and c<i by (, and the angle between the x-axis and the vector C2 — ci by
a, we have:

<Pmin = a + arcsm —-— + 0,

<Pmax = T + ö + arcsm — ff.

Any solution ip 6 [<Pmin, fmax] is either an entry angle (i.e., the spike enters the
disk) or an exit angle (i.e., the spike exits the disk), or both (i.e., the spike-locus
curve is tangent to the circle bounding the disk). Let <pa = a.Tcta,n(y'a/x's), with
x'a = dx3/d<p and y'3 = dy3/dtp, and ipj = arctan((i - x3)/(y3 — y)) be the angles
of the x-axis with the tangents to the spike locus and the circle C, respectively, at
their intersection point. A solution <p is an entry angle if <pa € (<fd, <Pd + *) an^ an
exit angle if tpa € (<fd + n,Vd + 2TT). If (fa = <Pd + 2x, the spike locus and C are
tangent and exterior to each other (see Fig. 24 (a)). If <p„ = (fd the two curves are

51

locus ••M^ locus

locus

(b) (c)

Figure 24: Different tangent positions

tangent with one of them lying inside the other (see Fig. 24 (a) and (b)). Let T]S be
the radius of curvature of the spike locus at the point of tangency. We have:

[(x's)2 + {y's??12

with x'i = d2xa/d<p2 and y'J = tfy./ikp2. If r), > r/3 the spike locus encloses C
(Fig. 24 (b)); if 7}s < r\d the spike locus is enclosed by C (Fig. 24 (c)); if they are
equal we need higher derivative tie-breakers which are too tedious to mention here.
(Actually, in the main body of this paper, we assume that the disks are in general
position, so that no two critical events occur simultaneously. Therefore, we may
ignore the cases where the spike-locus curve is tangent to C. However, the study
of this case is of interest if we wish to compute the critical values of 6 where the
envelop of a non-directional preimage becomes tangent to a disk, as suggested in

Subsection 9.3.)

D. SPIKES WITH OBSTACLE RAYS

Spikes involving rays arising from obstacle disks are slightly different. Since obstacles
must be avoided, a left ray leaves the obstacle on its right, and a right ray on its
left (see Fig. 14). Fortunately, the only difference in the spike equations established
above is a change of sign. If a ray of a spike arises from an obstacle disk of radius 77,
(i = 1 or 2), we just need to change 77, into -r/,- wherever it appears in the equations.

However, the range of <p where a spike is feasible merits some discussion. Let us
consider a spike whose left and right rays stem from a landmark disk and an obstacle
disk, respectively. Assume for the moment that the two disks do not intersect. When
ip varies (as d spans S1), this spike emerges from the obstacle disk, with its right
ray tangent to the obstacle at this same point. Therefore, the valid subset of the
spike locus begins exactly at a point where the spike-locus curve and the obstacle

52

disk intersect or are tangent. A straightforward calculation shows that:

. T)2COS20-T)1
Vmin = a + arcsm 1- 0.

The spike terminates when its right ray becomes the internal common tangent of
the two disks. Hence:

fmax = IT + a- arcsin — 0.

In a similar fashion, we can calculate the limits for an obstacle-landmark spike:

Vmin = a + arcsin —-— + 0,

• ^2 — '/I cos 20
fmax = 7T + a + arcsin 0,

and for an obstacle-obstacle spike:

. 7/2 cos 20 + 7?i
<Pmin = a + arcsin + 0,

. %+ 7?! COS 20
fmax = 7T + a - arcsin 6.

Regarding the shape of the spike-locus curve, it still sepends on the sign of the
two quantities Ax and X2 defined above, by substituting —TU for T/,- whenever we refer
to an obstacle disk.

When the two disks do not intersect, both quantities | ± 7/1 cos 20 ± 7/21 — C and
I ± 7/2 cos 20± 7/11 — £ are always negative. Then the spike-locus curve always contains
an inner loop (see Fig. 25).

Let us consider now the case when the two disks intersect each other. (In the
main body of this paper, we accept intersecting obstacle disks, but assumed for
simplification that obstacle disks were disjoint from landmark disks. The following
shows that the case where obstacle and landmark disks intersect each other is not
difficult to handle, provided that we introduce additional events in the computation
of the non-directional preimages.) Again we begin by examining a landmark-obstacle
spike. (See Fig. 26 for illustration.) The termination of this spike cannot occur at
the internal tangent point, since this point no longer exists. When the origin of the
right ray reaches the intersection point of the two disks (an O-Right-Stick event),
it sticks there for a while as the ray continues to rotate counterclockwisely. When
the ray gets tangent to the landmark disk (an O-Right-Release event), it turns into
a landmark ray and its origin starts moving in the boundary of the landmark disk.

53

Figure 25: Spike-locus curve for disjoint landmark and obstacle disks

Thus, the landmark-obstacle spike was transformed, first into a right-stuck spike,
and then into a landmark-landmark spike. Since the right-stuck spike has a different
equation, the termination of the original landmark-obstacle spike occurs exactly at
the O-Right-Stick event. The calculation of the O-Right-Stick angle yields:

. T?2COS2g-7?i
Vmin = a + arcsm + C,

¥>*
/O.L. *?2 + C2 ~ rjj = 7r/2 + a - arccos — V-
' 2C772

The landmark-obstacle spike exists if and only if ipmin < Vmax, which translates

into the following constraint:

rß + rß-C2 < IViVi cos 20. (9)

This same constraint guarantees the existence of an obstacle-landmark spike with:

tfmin = *72 + o + arccos 1 „^ + 0,

<Pn = 7T + a + arcsin

2(vi
T]2 — J?l cos 20

c + 0.

54

Figure 26: Spike-locus curve for intersecting landmark and obstacle disks

Two intersecting obstacle disks may create a spike, but this spike can only occur
"under" the obstacles (see Fig. 27). The constraint for its existence is that the
(exterior) angle of the tangents to the two disks at an intersection point be less than
IB. This translates into the constraint:

C-nl-nl > 2^7/2 cos 20. (10)

The valid range of (p is the same as in the non-intersecting case.
Our final point will be to prove that whenever an obstacle disk is involved in

a spike, the spike-locus curve includes a loop. We already know that this is true
for two disjoint disks. So we only consider the case of two intersecting disks. First,
Vi > »7icos20 implies r/i — rj2 > rji cos 20 — r\z. Since the disks intersect, we have
C > Vi ~ V2, thus:

£ > 771 cos 20- 772.

On the other hand, the constraint (9) for the existence of the spike implies:

C2 + V2 ~ Vi > q2-T;1cos2fl
2TfeC C

(11)

55

Figure 27: Spike-locus curve for two intersecting obstacle disks

The left-hand side of this inequality is equal to the cosine of the angle between
the segment c2c\ and the segment joining c2 to an intersection point of the circles
bounding the two disks. So, it is less than one, which yields

C > % - »7i cos 20. (12)

Combining the relations (11) and (12), we get C > |%-*?i cos20|, which yields Aj < 0
for the obstacle-landmark and landmark-obstacle spikes. For the obstacle-obstacle
spike we can also prove that Aa < 0 starting from equation (10) and the fact that
Vi > -7?i cos 2Ö> and working in a similar as above fashion. In a symmetric way, we
also get A2 < 0 in all cases, proving that when at least one obstacle is involved, the
spike-locus curve always contains a loop when there exists a valid range of values of

(p.

56

