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ABSTRACT 

A diagnostic method is introduced for helicopter gearboxes that uses knowledge of the gear- 
box structure and characteristics of the 'features' of vibration to define the influences of faults on 
features. The 'structural influences' in this method are defined based on the root mean square 
value of vibration obtained from a simplified lumped-mass model of the gearbox. The struc- 
tural influences are then converted to fuzzy variables, to account for the approximate nature 
of the lumped-mass model, and used as the weights of a connectionist network. Diagnosis in 
this Structure-Based Connectionist Network (SBCN) is performed by propagating the abnormal 
vibration features through the weights of SBCN to obtain fault possibility values for each compo- 
nent in the gearbox. Upon occurrence of misdiagnoses, the SBCN also has the ability to improve 
its diagnostic performance. For this, a supervised training method is presented which adapts 
the weights of SBCN to minimize the number of misdiagnoses. For experimental evaluation of 
the SBCN, vibration data from a OH-58A helicopter gearbox collected at NASA Lewis Research 
Center is used. Diagnostic results indicate that the SBCN is able to diagnose about 80% of the 
faults without training, and is able to improve its performance to nearly 100% after training. 

INTRODUCTION 

Present helicopter power trains are significant contributors to both flight safety incidents 
and maintenance costs. Power trains comprise almost 30% of maintenance costs and 22% of 
mechanically related malfunctions that often result in loss of life and the aircraft (Astridge, 1989). 
Future helicopters such as the LH and fixed wing aircraft like the ATF require increased levels of 
mission capability which cannot be met without advancing the state of the art in fault diagnosis. 
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Fault diagnostic systems are necessary to detect failures in the power train reliably and rapidly, 
so as to allow scheduling of maintenance before a catastrophic failure occurs. 

Fault diagnosis of helicopter gearboxes (like most rotating machinery) is based upon the de- 
tection of abnormalities in features of vibration such as the Root Mean Square (RMS), Kurtosis, 
Skewness, etc. A considerable effort has been directed towards identification of individual features 
that would be affected by specific faults in the gearbox (Zakrajset et al, 1995, Mertaugh, 1986, 
Mcfadden and Smith, 1985, Dyer and Stewart, 1978) The traditional approach to diagnosis has 
relied on human expertise to identify the abnormal features and to relate them to component 
faults. In this approach, a diagnostician would relate the abnormal features to component faults 
based on the component's proximity to the sensor producing the feature. Using the proximity 
information, along with the information about the specific fault that the abnormal feature rep- 
resents, the diagnostician would hypothesize faults in various components. The hypothesis is 
then verified or discarded by examining the features from other sensors in the proximity of the 
suspect component. The advantage of the traditional approach is that it utilizes the structure 
of the gearbox to isolate faults. Its disadvantages stem from the difficulty associated with iden- 
tifying abnormality in features that are contaminated with noise, in addition to processing the 
overwhelming number of features that are obtained from the sensors. Due to the large number of 
features and sensors associated with a gearbox, the diagnostician cannot pay equal attention to 
all the features and is likely to ignore information that contradicts the hypothesis. 

In order to cope with noise as well as the multiplicity of information in the features, pattern 
classification through connectionist networks has been proposed as a means to integrate the fea- 
tures for diagnosis (Chin et al, 1993). In these networks, the connection weights which represent 
the decision regions for various faults are usually formed through supervised training. Therefore, 
these networks require a sample set of measurement-fault data for training. Since such data is 
usually not available and is very expensive to generate, the applicability of supervised networks 

is limited in practice. 
Although they have not been extensively developed for helicopter gearbox diagnosis so far, 

expert systems offer another alternative to the traditional approach (Pau, 1986, Milne, 1987). 
Expert systems are developed at two different levels. At one level, shallow expert systems are 
developed to compile human diagnostician's knowledge relating measurements to faults into if 

then rules. At another level, deep expert systems are developed where the diagnostic knowl- 
edge is derived from the physics of the process instead of pre-compiling it (Davis, 1984, Reiter, 
1987). Shallow expert systems have been used extensively in the industry, but since they require 
human expertise and lack generality, they have not been considered feasible for helicopter gearbox 
diagnosis. In deep expert systems, on the other hand, measurements are related to component 
faults by modeling the energy flow via the structural connections between components and sen- 
sors. Although deep expert systems use the knowledge of structure and function for diagnosis, 
their inherent assumption that faults interrupt the flow of energy to the sensors is a limitation. 
While this assumption is valid for faults that were considered (e.g., lead breakages in electronic 
circuits), it is not suitable for gearboxes where a fault does not necessarily result in breakage of 
energy flow. A gear tooth chip, for example, would invariably increase the level of vibration, but 
may not break transfer of power from the driver to the driven gear. 

In order to cope with the complications arising from accurate modelling of gearboxes, yet take 
advantage of the pattern classification capability of artificial neural nets, the authors have recently 
proposed a connectionist diagnostic network that incorporates structural and featural influences 



as its weights (Jammu et al, 1995). This method, which is a hybrid between connectionist net- 
works and deep expert systems, determines the weights of the network through incorporation of 
structural and featural influences. In this Structure-Based Connectionist Network (SBCN), the 
structural influences represent the proximity effect of component faults on various accelerometers, 
and featural influences the type of fault characterized by each feature. IdeaUy, in order to accu- 
rately account for the proximity effect, the strength of the vibration signal from the components 
at the frequencies represented by the features needs to be modeled. This requires modeling the 
attenuation of vibration at these frequencies as the vibration travels from the components to the 
accelerometers. However, such a modeling task is difficult to perform, because: (1) the correct 
values of the stiffness and damping coefficients in the path cannot be accurately determined due 
to their time-varying and non-linear nature (Lin et al, 1988, While, 1979), and (2) it is not possi- 
ble to evaluate the attenuation of vibration for the multitude of paths between components and 
sensors (Singh and Lim, 1990, Hollins, 1986). 

As a compromise to accurate attenuation levels for individual vibration features, m the pro- 
posed method the average attenuation of vibration across all frequencies is used to represent the 
overall proximity effect of gearbox components. In order to obtain the average attenuation, the 
gearbox is represented by a simplified lumped mass model, and the Root Mean Square (RMS) 
value of the vibration from this model is used to characterize the average attenuation. These RMS 
values are then used to assign structural influences representing the proximity effect of the com- 
ponents on the sensors. In order to account for the approximate nature of the simplified gearbox 
model, in the proposed method the structural influences are represented by fuzzy variables. 

The structural influences only constitute the knowledge of the gearbox structure. So, there 
is a need to represent the relation between component faults and vibration features separately. 
Since vibration features are usually obtained at specific frequencies that are associated with the 
rotational frequency of individual components (Stewart Hughes, 1986), their relation to various 
components is readily available. This relation is used to assign the featural influences representing 
the effect of component faults on features. The structural influences and featural influences are 
incorporated as weights of a SBCN for diagnosis, which propagates abnormal features through 
its fuzzy influence weights to calculate fault possibility values for each component in the gearbox. 
For more details on structural and featural influences, please refer to (Jammu, 1996). 

The SBCN is designed to provide fault possibility values for gearbox components without any 
prior training. However, its design does not preclude the possibility of training. Misclassifications 
in pattern classifying diagnostic systems are in the form of undetected faults, false alarms, and 
misdiagnoses. Among these, undetected faults are safety hazards that should be avoided at all 
costs, and false alarms and misdiagnoses, although not as crucial as undetected faults, should 
be minimized so as to improve the reliability of the diagnostic system. One of the features of 
the SBCN is its ability to benefit from connectionist learning mechanisms (Hertz et al, 1991) to 
improve diagnostic performance after misdiagnoses. For this purpose, an error minimizing algo- 
rithm, (a least mean square training algorithm customized to SBCN), is developed for adapting 
the fuzzy influence weights of SBCN so as to avoid re-occurrence of misdiagnosis. 

The proposed SBCN is experimentally evaluated in application to a OH-58A helicopter gear- 
box. Experimental vibration data for the OH-58A gearbox were collected at the NASA Lewis 
Research Center. The proposed method is evaluated in diagnosis of eleven OH-58A gearbox faults 
that occurred during 57 days of testing. The diagnostic results indicate that the SBCN is able to 
correctly diagnose about 80% of the OH-58A gearbox faults without any training and is able to 



improve its performance to nearly 100% after training. 

STRUCTURE-BASED CONNECTIONIST NETWORK 

The overview of the proposed diagnostic system is presented in Fig. 1. The inputs to this 
system are the vibration features which are first utilized by an unsupervised Fault Detection 
Network (FDN) to identify the presence of faults in the gearbox. When the presence of a fault is 
prompted by the FDN, fault diagnosis is performed by the Structure-Based Connection^ Network 
(SBCN) Since SBCN uses abnormal features as inputs, the vibration features need to be scaled for 
abnormality before diagnosis can be performed. In this research, abnormality-scaling is performed 
by an unsupervised pattern classifier, referred to as the Single Category-Based Classifier (SCBC 
(Jammu and Danai, 1995), which is designed to identify the degree of abnormality m individual 

features. 
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Figure 1: Overview of fault detection and diagnosis in the proposed structure-based 
diagnostic system for helicopter gearboxes. 

The schematic of the SBCN is shown in Figure 2. Diagnosis in SBCN is performed by prop- 
agating the n abnormality-scaled values of the vibration features /;(i) through the SBCN, and 
obtaining as outputs the fault possibility values associated with individual gearbox components 

as: 

Pk(t) = Y,fi(t)w* (1) 

t'=i 

where the wik represents the weighting factors determined based on the lower and upper bounds 
of the fuzzy influences (lik and uik) between the ith accelerometer and fcth component as: 

wik = hk + («,-* - hk)fi(t). (2) 

In SBCN, in order to make uniform interpretation of the fault possibility values ph(t), they 
are normalized to have values between 0 an 1 as: 

ck(t) = 
Pk 

ELi^fc 
(3) 
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Figure 2: Schematic of the Structure-Based Connectionist Network (SBCN). 

An important feature of SBCN is the ability to improve its performance after occurrence of 
misdiagnoses. It is assumed that upon detection of a fault by FDN, the hypothesis of SBCN 
indicating possible faulty components is verified by a physical inspection of the gearbox. If the 
hypothesis is found to be incorrect, then a misdiagnosis is assumed to have occurred. To ensure 
that this misdiagnosis does not re-occur, an adaptation mechanism is proposed for SBCN which 
uses the correct information about the faulty component from physical inspection to adjust the 
weights of the SBCN. The adaptation algorithm for SBCN is a generic error minimizing least mean 
square training algorithm (Hertz et al, 1991) customized to SBCN. This algorithm reduces the 
error between the outputs of the SBCN ck(t) and the binary target Tk{t) obtained from physical 
inspection. The binary target takes the value of 0 for all the normal components and 1 for the 
faulty component. Sequential update rules for adapting the fuzzy influences in SBCN have the 
form: 

,   _ f Uk + v(Tk(t) - cfc(t))(l - fi(t))fi(t)   if 0 < lik < 1 m 
<lfc ~ 1   /ifc otherwise v ; 

f uik + r,(Tk(t)-ck(t)(fi(t)y if 0 < Uik < 1 
otherwise 

(5) 

where TJ represents the learning rate which can have values between 0 and 1. In the proposed 
method, in order to allow uniform interpretation of the trained fuzzy influences with respect to 
their original values, adaptation is stopped when the weight values reach the bounds 0 or 1. 

EXPERIMENTAL 

The effectiveness of the SBCN was demonstrated using vibration data from an OH-58A heli- 
copter main rotor gearbox (see Fig. 3). Vibration data was collected at the NASA Lewis Research 



r,    * t „f 9 inint NASA/Naw/Army Advanced Lubricants Program.  Various compo- 
££^1 0*^Ä«remission were produced during accelerated farigue 
f? flZ», rt al 19921 Tie vibration signals were recorded from eight piezoelectric accderom- 
ÄTS«4 ^lejenc^ange of up to 10 KHz using an PM tape recorder The dgmds 
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TKHTTWO magnetic chip detectors were also used to detect «he debris caused by component 
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Figure 3- Layout of the various components in the OH-58A gearbox. Thefigure 
also shows division of the gearbox into subsystems for diagnosis. 

In these experiments the gearbox was run under a constant load and was dis«aemWed and 
inspected periodically, or when one of the chip detectors indicated a failure. A total of five tests 
w rperformed, wheie each test was run between nine and fifteen days for approximately four 
To Iht hours a day. Among the eleven failures which occurred during these tests, there were 
Ä^^b-ringW fatigue, three cases of sun gear pitting fatigue, two cases of 
top housing cover cracking, and one case each of spiral bevel pinion pitting fatigue, mast bearing 
miCpU ing and planet gtr pitting fatigue. Insofar as fault detection during these tests the chip 
detectors we e reliable in detecting failures in which a significant amount of debris was generated 
sucnt the planet bearing failures and one sun gear failure. The remaining failures were detected 

during routine disassembly and inspection. ,.,,..       •      i   „u,™nri 
In order to identify the effect of faults on the vibration data, the vibration signals obtained 

fron7the five tests were digitized and processed by a commercially availab e diagnostic analyzer 
(Stewart Hughes, 1986). For analysis purposes, only one data record per day was used for each 
test Overall fifty four vibration features were extracted for each accelerometer. Out of these, 
SiitL«. indicators of general faults, whereas the other thirty five features were 
synchronous time averaged signals which related to specific gears in the gearbox. The detailed 
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Figure 4: Location of the accelerometers on the test stand for OH-58A. 

description of these parameters is included in (Chin 1992). 

RESULTS 

For fault diagnosis of the OH-58A gearbox, the influences between the gearbox components 
and the eight accelerometers were obtained. For this purpose, five primary vibration travel paths 
in the gearbox were modeled using lumped mass modeling. These paths consisted oft (1) Duplex 
Bearing to Triplex Bearing through Spiral Bevel mesh, (2) Duplex Bearing to ^G^^m^L 

the Sun-Planet mesh, (3) Mast Roller Bearing to Mast Ball Bearing through the Mam Shaft, (4 
Bins Gear to Mast Ball Bearing through Planet Bearing, and (5) Duplex Bearing to Mast Ball 
Bearing through the Sun-Planet mesh. The first travel path was in connection to Accelerometers 
4 5 and 6 whereas all the other paths were connected to Accelerometer 1, 2, 3, 6, 7, and 8. 
Based on the lumped mass model of these paths, the RMS values of vibration are computed and 
used to assign the fuzzy influences between each of the components and the accelerometers. 

Fault diagnosis of the OH-58A is performed in two hierarchies. In the top hierarchy, the 
gearbox is divided into three subsystems (see Fig. 3) and faults in each subsystem are isolated. 
The weights of the top SBCN sub-section are set equal to the average of the structural influences 
of the components within each subsystem (see Table 1). The inputs to this sub-section consist of 



the averaged values of abnormality-scaled features from the eight accelerometers, and its outputs 
denote the fault possibility values for the three subsystems. In the second hierarchy, the faulty 
components within each subsystem are isolated. The inputs to the SBCN in this hierarchy were 
eleven of the nineteen features which were indicators of gear and bearing faults, and the thirty five 
synchronous time averaged features associated with the OH-58A gears. Due to the unavailability 
of synchronous time averaged features associated with bearings for the OH-58A gearbox, faults m 
individual bearings could not be isolated, and only bearing groups were considered. For this level 
of diagnosis, the featural influences (see Table 2) were multiplied by the subsystem influences so 
as to reflect both the proximity and frequency-specific information, and were used as the weights 

of the second SBCN sub-section. 

Table 1: Influences of the three OH-58A subsystem on the eight accelerometers. The 
influences shown are: '-' Nil, L Low, M Medium, and H High. 

Accelerometer 

Subsystems 
1. Input 2. Output 3. Transmission 

1 _ M H 

2 _ M H 

3 . M H 

4 H - L 

5 H - M 

6 M M H 

7 _ M H 

8 - M 1             H 

Table 2- Influences of the gear G and bearing B families on the features. The influ- 
ences shown are: '-' Nil, 'L' Low, <M' Medium, 'H' High, 'D' Definite. The 
characters shown in parenthesis indicate the association of each feature to 
the fault: (G) Gear faults, (B) Bearing faults, (R) Rotating element faults 
(both gears and bearings). 

Feature 

Subsystem 
1 2 3 

G |  B G B G | B 

TEO-G(R) M M - M M M 

TEO-P(R) M M - M M M 

TMl-G(R) M M - M M M 

TMl-P(R) M M - M M M 

Cepstruml911(G) D - - - L - 

Cepstrum572(B) - L - L - D 

Tonel911(G) D - - - L - 

Tone572(B) - L - L - D 

Env. Kurtosis(B) - H - H - H 

Env. Base Energy(B) - H - M - H 

Env. Tone Energy(B) - H -      H -      H   1 



The fault possibility values for the three subsystems of the OH-58A gearbox obtained from 
The fault P^^y h        .   Table 3. The results m this table represent the hard- 

tLrif Test 1 faults in Subsystems 1 and 3 were correctly identified on Days 5 7 and 8 la 
T ? rihÄ on Days 3 and 4 was correctly identified, along with a possib e Test 3, the fault m   ^stemöo       y ^ unidentified because lt 

™iÄ^SÄ^ Nevertheless, this particular fault (housing 

SSÄ isolated by the current SBCN due to the absence of features that wouH be 
ffefted by tMs fault. Also for this test, faults in Subsystems 2 and 3 were correctly identified 

nnDavs 11 and 12 In Test 4, the fault in Subsystem 3 was correctly diagnosed on Days 10, 
11 lfl4 and 15 Moreover, on Day 13 of Test 4, even though the gearbox was supposed to 
oe'nor'mal The SBCN indicat d faults in Subsystem 3. This was due to the replacement of the 

äÄ^Sy with a four-planet assembly, which changed^the vi^^TST™ 
Subsystem 3. In Test 5, the fault in Subsystem 3 was correctly identified on Day 9. There was 

also a roisdiagnosis in Subsystem 1. 

Table 3: Results from the faulty subsystem isolation by the first subsection of the 
SBCN for OH-58A gearbox. Inside parenthesis the actual faults are included 

with '*' indicating the observed faults. 

Day 
l 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

Faulty Subsystems Isolation for OH-58A 

Test 1 

1,3 

1,3 
1,3 

(-) 
(-) 
(-) 
(-) 

(1,3) 
(1,3) 
(1,3) 
(1,3) 

(1*, 3* 

Test 2 

(-) 
(-) 
(-) 
(-) 
(-) 
(") 
(-) 
(-) 
(-) 

Test 3 

1,3 
1,3 

2,3 
2,3 

(-) 
(-) 
(3) 
(3*) 
(-) 
(-) 
(-) 
(-) 
(3) 
(-) 

(2,3) 
(2,3) 

(2*, 3* 

I 

t4 Test 5 

(-) (-) 
(-) (") 
(") (") 
(") (-) 
(-) (-) 
(-) (-) 

(-) (") 
(-) (3) 

(-) 1, 3      (3) 

(3) (3) 

(3) -       (3*) 
(3*) 
(-) 
(3) 
(3*) 

Table 4 presents faulty component isolation results from the second sub-section of SBCN. 
For Test 1, the Spiral Bevel Pinion (SBP) failure in Subsystem 1 was correctly ^A<£* 
a possibility value of 0.9) on Day 5. However, the possibility value decreased on £^7™£ 
probably due to increased noise levels immediately after the occurrence of faults that mask the 
affect of faults on vibration features. Also, the sun gear failure in Subsystem 3 was cor ectly 
drifted only on Day 8. The SBCN also misdiagnosed faults in bearings of Subsystems 1 and 
3 (BRG1 and W respectively) on Days 5 and 7 of Test 1. This misdiagnosis is due to 

hi ptsence of strong cross-correlation between gear aud ^^^*£»££ 
reflected by the maximum correlation values between features and faults for the OH-58A gearbox. 



The results indicate reasonable correlation values of 0.49 between gear features and gear faults, and 
0.44 between bearing features and bearing faults. These numbers, however, are not as impressive 
when they are compared with the cross-correlation values of 0.57 between gear features and bearing 
faults, and 0.38 between bearing features and gear faults. Such similar levels of correlation values 
indicate that these features do not provide the resolution necessary for faulty component isolation. 

In Test 3, the bearing fault (BRG3) was correctly identified on Day 4, but a carry-over 
misdiagnosis from the top sub-section of SBCN occurred in Subsystem 1. In Test 3, the two 
bearing faults in Subsystems 2 and 3 (BRG2 and BRG3, respectively) were correctly identified 
on Day 12, however, they were misdiagnosed as gear faults on Day 11. In Test 4, the bearing 
fault (BRG3) in Subsystem 3 was correctly identified only on Day 10, while it was misdiagnosed 
on the next 2 days due to the masking of the fault by noise. Also, the Sun Gear (SG) failure 
on Days 14 and 15 was not assigned the highest fault possibility values. It should be noted that 
the fault possibility values for Sun gear (SG), Planet Gear (PG) and Ring Gear (RG) have very 
similar values. This misdiagnosis is due to the new four-planet assembly installed on Day 13 of 
this test, which changed the vibration associated with these gears. In Test 5, the Sun Gear (SG) 
fault in Subsystem 3 was correctly identified, however, the planet gear failure did not have a high 
fault possibility value. There was also one carry-over misdiagnosis in Subsystem 1 on Day 9 of 
this test. 

In order to evaluate the effectiveness of the adaptation algorithm for SBCN in improving the 
diagnostic performance, data from the OH-58A gearbox were used to train the two sub-sections 
of SBCN. The fuzzy influence weights of both the SBCNs were adapted until the smallest mean 
square was achieved with a learning rate 77 set to 0.1. The target faults required for training for 
each day were determined based on information from the debris sensors, maintenance reports, 
and analysis of vibration features. 

The results from training the two sub-sections of SBCN using data from all the five tests for 
the OH-58A gearbox are presented in Tables 5 and 6. These results indicate that the training 
algorithm was able to improve the diagnostic results for both the subsystems and components. At 
the subsystem level, results after training show improvements with faults in Subsystems 1 and 3 
being picked up on Days 6 and 9, and misdiagnoses of faults in Subsystem 1 on Day 4 of Test 3 and 
Day 9 of Test 5 no longer present. For the second sub-section of SBCN, training results show a 
considerable improvement. Faults in Spiral Bevel Pinion (SBP) and Sun Gear (SG) in Test 1 and 
bearing faults (BRG2, and BRG3) in Test 3 are clearly indicated by the trained SBCN. The faults 
in bearings of Subsystem 3 (BRG3) from Days 9 through 12 and Sun Gear (SG) fault on Days 
14 and 15 are indicated as definite faults with a fault possibility value of 1.0. Similarly in Test 
5, both Sun Gear (SG) and Planet Gear (PG) faults are clearly indicated as faulty with the high 
fault possibility values. In summary, the result indicate that before training the SBCN was able 
to diagnose about 80% of the OH-58A gearbox faults, and after training produced near perfect 
diagnostic results. These results demonstrate the ability of SBCN to perform diagnosis without 
any training when training data is unavailable, while being flexible to improve its performance 
when such data is available. 

10 



Table 4: Faulty component isolation by the second sub-section of SBCN. The compo- 
nents listed are - SBP: Spiral Bevel Pinion, SBG: Spiral Bevel Gear, BRG1: 
Bearings in Subsystem (SS) 1, BRG2: Bearings in Subsystem 2, SG: Sun 
Gear, PG: Planet Gear, RG: Ring Gear, and BRG3: Bearings in Subsystem 
3. A '*' indicates the observed faulty component. 

Faulty Component Isolation foi OH-58A 

Days 
SSI SS2 SS3 

SBP SBG BRG1 BRG2 SG PG KG BRG3 

Test 1 

1 to 4 
5 0.90* 0.62 0.89 - 0.52* 

* 
0.73 0.12 0.86 

6 
7 
8 

0.68* 
0.65* 

0.43 
0.74 

0.79 
0.18 

- 0.67* 
0.98* 

1.00 
0.70 

0.23 
0.70 

0.72 
0.33 

9 - - - - - - 
Test 2 

1 to 9 - - - - - - ~ 
Test 3 

1 to 2 
3 
4 

0.43 
0.38 

0.77 
0.60 

0.80 
0.78 

- 0.65 
0.56 

0.56 
0.47 

0.71 
0.04 

0.72* 
0.79* 

5 to 10 
11 

- - ~ 
0.67 0.79 0.52 _* 

12 . - - 0.74* 0.67 0.71 0.55 1.00* 

13 . - - _* - - - 
Test 4 

1 to 9 
10 

- - - - 
0.34 0.41 0.75 0.79* 

11 . _ . 0.54 0.53 0.79 _* 

12 _ . 0.59 0.50 0.91 0.64* 

13 _ _ - 0.72 0.85 0.83 1.00 

14 . . . 0.81* 0.90 0.88 0.68 

15 _ - - - 0.79* 0.90 0.93 0.48 

Test 5 

1 to 8 
9 

10 to 11 
0.58 0.24 0.68 

; 
0.60* 

_* 
0.54* 0.50 0.58 

11 



Table 5: Subsystem isolation results for OH-58A gearbox after training the top sub- 
section of SBCN. For comparison the actual faults are included inside paren- 
thesis with '*' indicating the observed faults. 

Faulty Subsystems Isolation for OH-58A After Training 
Day Test 1 Test 2 Test 3 Test 4 Test 5 

1 (-) -     (-) (-) (-) (-) 

2 (-) -     (") (-) (-) (") 
3 (-) -     (") 1, 3         (3) (") (") 
4 (-) -     (") 3          (3*) (") (-) 

5 1, 3       (1, 3) -     (-) (-) (-) (-) 

6 3         (1,3) -     (-) (-) (-) (-) 

7 1, 3       (1, 3) -     (") (-) (■) 
(-) 

8 1, 3       (1, 3) -     (") (-) (-) 3      (3) 

9 1, 3     (1*. 3*) -     (-) (3) (-) 3      (3) 

10 (-) 3      (3) 3      (3) 

11 2, 3       (2, 3) 3      (3) 3     (3*) 

12 2, 3       (2, 3) 3     (3*) 

13 2, 3     (2*, 3*) (-) 
14 3      (3) 

15 3     (3*) 

CONCLUSION 

A diagnostic method for helicopter gearboxes is introduced that uses knowledge of gearbox 
structure and characteristics of the vibration features to define the influences between the features 
and faults. This method brings together the diverse areas of dynamic modeling, fuzzy systems, 
and neural networks for the purpose of modeling the gearbox structure, representing the diag- 
nostic knowledge and performing diagnosis, respectively. The effectiveness of SBCN has been 
experimentally evaluated in diagnosis of OH-58A helicopter gearbox faults. Promising diagnostic 
results have been obtained from SBCN for the OH-58A gearbox at the subsystem level. However, 
at the component level the results lacked resolution due to the strong cross-correlation among 
features. The effectiveness of the proposed supervised training algorithm has been tested in im- 
proving diagnostic performance for the OH-58A gearbox. The results indicate that the algorithm 
has been able to improve the diagnostic performance considerably for both the first and second 
sub-sections of SBCN. 
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Table 6: Faulty component results for OH-58A after training the second sub-section 

of SBCN. 

Faultv Component Isolation for OH-58A After Trauung 

Days 
SS 1 SS2 SS3 

SBP SBG BRG1 BRG2 SG PG RG BK.U3 

Test 1 

1 to 4 
5 0.90* 0.01 0.03 : 1.00* 0.41 0.01 0.78 

6 
7 
8 
9 

0.00* 
0.94* 
0.92* 
0.86* 

0.00 
0.00 
0.01 
0.01 

0.02 
0.01 
0.02 

- 
0.00* 
1.00* 
1.00* 
1.00* 

0.41 
0.56 
0.47 

0.03 
0.01 
0.01 

0.77 
0.69 
0.62 

Test 2 

1 to 9 - - - - - - - - 
Test 3 

1 to 2 
3 
4 

0.48 0.03 0.01 - 0.68 
0.73 

0.31 
0.40 

0.03 1.00* 
1.00* 

5 to 10 
11 

- - - 
0.73* 0.61 0.37 0.04 1.00* 

12 _ _ 0.74* 0.65 0.36 0.05 1.00* 

13 - - - 0.77* 0.62 0.41 0.02 1.00* 

Test 4 

1 to 8 
9 

- - - - 
0.75 0.35 0.03 1.00* 

10 . „ _ - 0.89 0.37 - 1.00* 

11 . _ - - 0.88 0.38 0.01 1.00* 

12 _ - - - 0.94 0.42 - 1.00* 

13 
14 

- - - - 
1.00* 0.35 0.03 0.71 

15 _ - - - 1.00* 0.38 0.03 0.68 

Test 5 

1 to 7 
8 

- - - - 
1.00* 0.95* 0.01 0.61 

9 . _ _ 1.00* 0.90* 0.01 0.66 

10 „. _ _ - 1.00* 0.95* - 0.60 

11 - - - - 1.00* 0.92* 0.01 0.73 . 
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