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Abstract 

Si/Sii-xGex MQW Infrared Photodetectors offer the promise of normal incidence 

photodetection tunable over the range of 3-12 urn wavelength range at temperatures 

above 40 K. This system is attractive because the Sii.xGex offers greater compatibility 

with existing Si based signal processing circuitry. 

Band structures, momentum matrix elements and linear absorption coefficients are 

computed using a Luttinger-Kohn k»p analysis for Si/ Sii_xGex quantum wells grown in 

the [110] direction. The absorption coefficient as a function of energy and wavelength is 

calculated by two methods: a delta function fit to intersubband transitions, and a 

Lorentzian fit to intersubband transitions. Calculations were performed for parallel as 

well as normally incident radiation and the resulting absorption spectra are in good 

agreement with experimental observations. 
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THEORETICAL MODELING OF LINEAR ABSORPTION COEFFICIENTS IN 

Si/SiixGex MULTIPLE QUANTUM WELL PHOTODETECTORS 

Chapter I. Introduction 

The Si[l 10]/Sii.xGex multiple quantum well (MQW) system is of interest because 

it offers the promise of normal incidence radiation detection in the 8-12 urn range at 

operating temperatures well above the 20-30 K operating temperatures of existing photon 

(quantum) detectors. Normal incidence absorption and photoresponse will allow simpler 

detector design without the requirement for complicated input couplings.   This system 

has not been previously examined due to the difficulty of reliably fabricating the strained- 

layer SiGe alloys comprising the system. In recent years methods of fabricating these 

structures via molecular beam epitaxy and chemical vapor deposition have been 

developed, making theoretical and experimental studies of the system's characteristics 

both timely and possible . 

This project focuses on modeling a Si[l 10]/Sii.xGex MQW system to develop 

inter-subband absorption coefficients. This is achieved through use of k ■ p theory and 

the envelope function approximation (EFA) approach to model the bound state 

eigenfunctions. Eigenfunctions in the bulk semiconductor are obtained through the 

application of k ■ p theory, which also provides the approximate band structure near the 
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Brillouin zone center.   The EFA eigenfunctions are the eigenfunctions of the bound 

states of the quantum well and are developed by applying boundary conditions at the 

heterojunction interface to yield linear combinations of the bulk eigenfunctions. The 

boundary conditions specify the continuity of the eigenfunctions and their derivatives at 

the heterojunction between barrier and well regions. The momentum matrix elements for 

transitions between bound states are then computed using the EFA eigenfunctions and 

used to determine the strengths of intersubband transitions, which are proportional to the 

absorption coefficients for a given wavelength and polarization of the incident 

radiation2'3.   The development of absorption coefficients for Si[l 10]/Sii-xGex is not 

found in the literature and is an original contribution. 

Section A. Background 

Properties of Silicon and Germanium. 

Silicon and germanium are both familiar and well characterized materials that 

have been used in solid state devices for many years. Due to their familiarity, their 

physical characteristics have been accurately measured and are tabulated in many 

sources4. Unfortunately, neither silicon nor germanium are good elements for detection 

purposes. One of the main reasons for this is that they are indirect bandgap 

semiconductors, so the minima of the conduction band is not located at the same spot in k 

space as the maxima of the valence bands4. This means that low energy transitions must 

be phonon assisted in order to occur, thus the probability of such transitions occurring is 

lowered. This is shown schematically in figures 1-1 and 1-2 . 
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Physically, both Si and Ge belong to the group IVb on the periodic table, 

possessing partially filled 3p and 4p shells (respectively) with 2 electrons6. The four 

empty spots in the p shell can be thought of as causing these elements to form covalent 

tetrahedral bonds, shown in figure 1-3.   The tetrahedral bonding arrangements of Ge and 

Si lead them to form lattices of the diamond structure (shown in figure I-47), with lattice 

cells of dimensions 5.42 A for Si and 5.62 A for Ge8.   Table 1-1 lists some physical 

constants for Si and Ge. 

Conduction 
band edge 

Valence band edge 

Figure 1-1. Direct bandgap transition. (After Ref. 5) 
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Figure 1-2. Indirect band gap transition. Photon transitions are labeled by co and 
phonon transitions by Q. The phonon transition shown is purely schematic in nature, 
as the horizontal (As = 0) transition is not realistic. (After Ref. 5) 

Figure 1-3. Tetrahedral bonding structure. 
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Figure 1-4. Diamond lattice structure (After Ref. 7) 

Table 1-1. Physical Properties of Si and Ge ,w 

Material Structure Lattice 
Cell Edge 

Mobility 
(electrons) 

Mobility 
(holes) 

Intrinsic 
Bandgap 

Silicon Diamond 5.42 A 1,350* 480* 1.11 + 

Germanium Diamond 5.62 A 3,900* 
,„   •          .2/ ..._ix 

1,900* .67 + 

+ Resistivity at 300K, in ohm-cm 

Silicon and Germanium Alloys. 

The bulk SixGei.x (the variable x represents the percentage Ge composition) 

system has been studied since the 1950s by various groups10. The properties of the bulk 

material have been characterized to include the absorption properties, hydrostatic 

deformation potential, and deformation potentials under uniaxial strain to determine the 
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structure of the band gap as a function of the germanium composition. The usefulness of 

a SixGei-x device comes from the fact that the bandgap in this material is in the near-IR 

range where optical relay systems comprised of silica-glass waveguides are most 

efficient10. This region of efficient operation occurs in the 1.3 urn to 1.5 urn range, above 

the fundamental bandgap of silicon. Germanium is capable of operation in this regime, 

but cooling is required to overcome thermal effects. 

After the band gap of SixGei.x was determined, attempts were made in the early 

1970s to explore the behavior of thin layers of this material. The difficulty of producing 

thin epilayers of sufficient quality thwarted experimentalist's efforts at that time. It was 

not until 1985 that the first functional devices were constructed from this material, 

allowing serious efforts at experimental characterization of MQW structures to proceed. 

SixGei-x alloys are produce by strained growth when a heterojunction with pure 

silicon is present, since the differing lattice constants of Si and Sii.xGex must "match" at 

the heterojunction. This strain produces changes in the band structure of this material 

from the band structure of an unstrained alloy with similar physical parameters . This 

change has been included in these computations and is discussed in detail in chapter II. 

The strained nature of this crystalline structure is the primary source of difficulties in 

growing high quality thin layers of the type required to produce effective quantum well 

structures. 

Section B. Infrared (IK) Detector Technology 

All IR detectors in use are either thermal or photon detectors. These differ in the 

fundamental detection mode used. Thermal detectors work by inducing heating via 
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absorption of IR radiation and measuring the temperature induced change in some 

physical property of the system (resistance, capacitance, etc.). Thermal detectors are 

further broken down into: 

a) bolometers, which exhibit a change in electrical resistance; 

b) Thermocouples/Thermopiles, which operate on the photovoltaic effect; 

c) Thermopneumatics, which measure an increase in the pressure of a closed 

chamber, caused by heating of the enclosed gasses due to the temperature rise 

of the sample; and 

d) Pyroelectrics, which measure the signal voltage generated by a rise in the 

surface charge of a heated element. 

Thermal detectors, operating via temperature fluctuations, have the disadvantage of being 

slow and requiring cool down time between detections. Typically, many incident photons 

are required to raise the temperature by a measurable amount. Despite the drawbacks of 

thermal systems, research continues to develop low cost, room temperature arrays 

fabricated with Si pyroelectric detectors. With further development, these systems be 

used widely due to their simplicity and low cost  . 

Quantum detectors, on the other hand, measure the absorption of a single photon 

by triggering some quantum event that is then detected. Quantum detectors offer fast 

response times and greater sensitivity, but typically require cooling to 80° K or lower. 

Detectors of this sort include intrinsic photon detectors, extrinsic (doped) photon 

detectors, free carrier detectors, and quantum well structure detectors. 
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Intrinsic Photodetectors. 

Ternary alloy photodetectors, which are intrinsic photon detectors, are constructed 

of a bulk semiconductor, which is usually an alloy comprised of group II and group VI 

elements. The bandgaps in these materials are tailored for the desired application by 

varying the composition percentages of the elements in the alloy. These detectors include 

InAsi-xSbx, HgiATe , Hgi-xMnxTe , and Hgi.xCdxTe. Currently Hgi.xCdxTe, known as 

"merc-cad-telluride" detectors, are the dominant intrinsic detectors available for use in 

the three to 14 urn region1. These detector alloys feature a direct bandgap, providing a 

correspondingly large quantum efficiency, as no phonon interaction is required to allow 

detection. These detectors tend to have large absorption coefficients and large 

detectivities (D*) over a wide range of temperatures and over a fairly wide range of 

wavelengths (approximately 1.5 to 15 um).   When compared to free carrier and extrinsic 

photodetectors, thermal noise effects are small. The major problem with these detectors 

is the continued inability to produce large, high quality arrays. Many of these materials 

are also highly toxic which makes fabrication more difficult and more expensive . A 

chart showing detector detectivity levels for many of these systems is shown in figure I- 

513. 

Extrinsic Photodetectors. 

Extrinsic photodetectors are comprised of a bulk material (often Si) doped with an 

acceptor. Boron, the most commonly used dopant, is a trivalent acceptor impurity with 

an ionization energy of 0.045 eV in Si14. This value of energy leads to a lower bound on 

detectable wavelength of 1.2 um. Like the intrinsic photodetector described previously, 
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detection of radiation occurs in the bulk material (in this case the impurities in the bulk 

material make detection possible), which makes the 

PbS (Selected) 300 K 
'(He 0.61 Cd 0.39) Te 
-       x = 0.39 80 K 

Theoretical Peak D* for Background Limited Condition 
of 300 K, 180   Field of View 

photoconductive 
Photovoltaic 
PbTe (Selected) 

77 K 
/ (Hg 0.73 Cd 0.27) Te &. Cu (60°) 

80 KGe : Au (P-type)     -15 R 

_ *—     I    77 K&!. _.  
(Selected)^-",, i<-25 KlS^ 

"(Hg 0.J80 Cd 0720) 
80 Kj 

Pbl-xSnxTe 

0.78 <x<0.85 77 K 

Pb ' SnTe     L-Immersedl 
1-x    xi rl Thermistor 

0.78<x<0.85 77K£J       28OC    I 

Ge:Zn(l) 
4.K 

/Unimmersed Thermistor 
r     \    28%C I 
7~jGe:Hg35K    | 

1.5    2.0 3.0       4.0     5.0 6.0 7.0     9.0 
8.0    10.0 

20.0 30.0     40.0 50.0      70.0 
60.0 

Wavelength (microns) 

Figure 1-5. Spectral D* for some commercially available materials. (After Ref. 13) 

production and development simpler and therefore more efficient. Since the material that 

detection takes place in is silicon, these detectors are easily integrated with the associated 

Si circuitry in a monolithic device, increasing the reliability of the resultant detector. The 

use of bulk Si also means that such detectors can be made with the superior uniformity 

required for many applications. 

Unfortunately, extrinsic Si photodetectors also contain a number of drawbacks. 

Cooling of such systems to low temperatures is required. A larger drawback lies in the 

mode of detection, since the only variable parameters are the doping level and dopant 
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substance. Hence these detectors are not easily tailored for operation over a wide range 

of wavelength regions  . 

To escape some of the drawbacks of the bulk detectors discussed above, some sort 

of structure is built into the detector, allowing the variation of design parameters to 

optimize the detector for a given task. While this approach expands detector capabilities 

and provides flexibility in the design, it makes the production and design more complex 

and the detector difficult to produce. 

Free Carrier Detectors. 

Internal Photo-emission (IP) Photodetectors. 

Free carrier (or Internal Photo-emission) photodetectors are based on the principle 

of photoemission observed in metals since the turn of the century. When a metal is 

illuminated by light of sufficient wavelength (above a material dependent cutoff 

frequency) electrons are emitted by the material. The free carrier detector uses such 

electrons, emitted from an embedded metal contact, to generate the signal after being 

injected into the conduction band of the semiconductor detector. The most advanced 

detector technology of this class is the metal silicide Schottky-barrier detector.16 

Heteroiunction Internal Photoemission Photodetectors. 

Another variety of free carrier photodetector is the Heteroj unction Internal 

Photoemmision detector (HIP). This architecture varies from that of the IP detector 

discussed above in that the metal emitter is replaced by an acceptor doped region which 

forms a junction with a semiconductor material. The presence of the acceptor region 

allows holes to be excited in the doped region and swept into the undoped semiconductor 

region. Devices of this sort fabricated from p+SiGe/Si have demonstrated detection in 
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the 2 to 10 um range with quantum efficiencies on the order of 4%.15   Figure 1-6 shows 

the structure of the IP and HIP photodetectors and figure 1-7 depicts the band structure for 

these detectors. 

Metal (IP) or 
Doped Semiconductor (HIP) 

Contact 

Undoped Semiconductor Material 

Substrate Material 

Figure 1-6. Structure of the IP or HIP photodetector. The use of a metal instead of a 
semiconductor material to provide the carriers distinguishes the IP from the HIP detector. 

Metal 

Semiconductor 

Internal Photoemmision 

p+ doped region 

Heterojunction 
Internal Photoemmision (p+ type) 

Figure 1-7. Band Structure of the IP photodetector and the HIP photodetector. The 
band structure for the HIP is for a p+ doped emitter region. 
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The free carrier detectors feature some degree of spectral discrimination which is 

achieved by changing the height of the barrier, good uniformity, and reproducability 

(since they utilize mature technologies) which are promising with respect to focal plane 

array applications1. The drawbacks of the IP detectors are limited spectral response, as 

band-gaps can only be changed by a finite degree to discriminate between wavelengths, 

1% or lower quantum efficiency, and a required trade off in wavelength response versus 

thermal noise (the barrier must be larger to limit thermal generation bleed over into the 

conduction band, but this makes the maximum X go down). The HIP structure suffers 

from similar disadvantages while having higher quantum efficiencies. 

Multiple Quantum Well Photodetectors. 

It is hoped that the next class of photodetectors, quantum well photodetectors, will 

remedy some of the shortcomings of the preceding detection systems. The quantum well 

system offers normal incidence absorption and flexibility of design (many parameters can 

be adjusted). 

A MQW structure is formed by placing alternating layers of different 

semiconductor materials upon a substrate material.   The Si/ Sii-xGex MQW structure is 

formed by alternating layers of Sii.xGex alloy (known as the well region) and Si (the 

barrier region) upon a Si substrate. The differences in bulk band structure between 

Sii_xGex and Si cause an offset in the band structure at the barrier-well heterojunction. 

Boundary conditions are imposed on the eigenfunctions of the holes, based on the band 

offsets, and produce bound states within the well. In the formation of bound states, the 

MQW structure is analogous to the potential well problem that is solved graphically in 

most elementary quantum mechanics texts. 
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The quantum well structure is of interest because it serves to localize electron 

wavefunctions within the well, which can be controlled through the design of the well 

structure. The structure of the energy bands can be adjusted by changing the percentage 

of Ge in the well region (x) and the width of the well (L). It is thus possible to tailor the 

detector to a specific wavelength region through the choice of well design parameters (x 

and L). A typical quantum well design with the band structure is shown in figure 1-8. 

The band structure of figure 1-8 shows the value at the Brillouin zone center of a single 

band of the bulk band structure. 

Growth Axis 

t Band Structure 

Si 

SlGC ^ —,            I—i e 

Si a" a 

D a c « 
SiGe »                   1    © 

Si 
03 
» a 

a 
SiGe U5- 
Si 

1 
Figure 1-8. Typical MQW structure with band structure. The relative sizes of the barrier 
and well regions are not shown to scale. Typically the barrier regions will be much larger 
than the well regions for a MQW structure. 

The spacing between well regions can be varied when the structure is deposited, 

with a distinction being drawn between MQW structures where the localized wave 

functions of particles in adjacent wells do not overlap, and a superlattice where there 
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exists overlap of the wavefunctions. In a superlattice, the wavefunction overlap of the 

bound states causes the energy levels of the quantum well structures to broaden and form 

a series of new band structures known as a mini-bands17.   This approach is used in the 

design of solid state lasers as well as IR detectors. 

The most common deposition technique used to produce MQW devices, 

Molecular Beam Epitaxy (MBE), is essentially the process of depositing kinetically 

liberated atoms from isolated sources onto a substrate held in a vacuum chamber . The 

source materials, Si and Ge, are loaded into separate, thermally isolated chambers known 

as effusion chambers and heated to a high temperature at a low pressure to remove 

atoms/molecules from the source kinetically. The open ends of the effusion chambers are 

pointed at the substrate, which is also heated and placed in an ultra-high vacuum. The 

beam is controlled by shutters placed in front of the effusion chambers which can 

typically operate at rates which allow the deposition of single atom/molecule layers. In 

addition to this binary control, the particle flux is changed by changing the source 

temperature. Using this process, extremely thin, high quality epitaxial layers can be 

deposited. A similar process known as Chemical Vapor Deposition (CVD) has also been 

1 o 

in use to produce these structures since 1987  . 

Effective masses in silicon are higher than those of other materials used in the 

fabrication of MQW structures to date, so the probability of electrons or holes tunneling 

through the barrier regions and producing unwanted leakage current is diminished. 

MQW detectors are reported to offer the promise of high quantum efficiencies ( TJ « 0.1 or 

greater) and high detectivities {D\ « 1010 -JHZ/W and greater)19. 
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The remainder of this thesis will focus solely on the Si/Sii.xGex MQW structure 

and the behavior of MQW photodetectors. Many of the details concerning the theoretical 

operation of the MQW are covered in chapter II, Theory Development. For detailed 

experimental data regarding the material characteristics of Si/Sii.xGex , including 

photoresponse and absorption data for a wide range of substrate orientations and well 

geometries, the reader is referred to Capt. Micheal Gregg's doctoral dissertation. 
20 

Section C. SiGe MQW Device Developments 

Experimental Data. 

Experimental data characterizing absorbance and photoresponse in various SiGe 

MQW structures, including data for the Si [110] substrate orientation, has been acquired 

by M. Gregg of the AFIT Applied Physics Department20. This data will be used as a basis 

by which to gauge the accuracy of all theoretical results.   Experimental data is widely 

available for MQW structures on Si[001] substrates, but the only existing data on Si[l 10] 

MQW structures is that of M. Gregg. The [110] substrate orientation is of interest 

because this substrate orientation may offer normal incidence absorption in «-type MQW 

detectors and may enhance normal incidence absorption in p-type MQW devices  . The 

[110] substrate system is also of interest because no theoretical calculations are present in 

the literature for absorption coefficients of devices based on this substrate orientation. 

The experimental data is available to verify theoretical predictions of device 

characteristics and perhaps validate some of the underlying assumptions and methods 

used in making those predictions. The experimental absorption profiles for the system to 

20 be modeled are presented in figure 1-9  . 
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Figure 1-9. Absorbance spectra for a Si[l 10]/Si0.7oGe0.30, 30 A wide well MQW structure 
with 15 periods.   Sample grown by MBE at 550° C. (After Ref. 20) 

History of Theoretical Developments. 

Theoretical modeling of semiconductor band structure has its roots in the work of 

Luttinger and Kohn21'22 in the 1950's in developing k ■ p theory, the application of 

effective mass theory to explain the results of cyclotron resonance measurements in 

semiconductors with complicated band structures and developing the general form of the 

Hamiltonian for the semiconductor. Luttinger and Kohn's paper is considered the 

seminal work on this topic. Hiroshi Hasegawa23 continued the development of 

k -^theory in the 1960's, expressing a general form of the Hamiltonian incorporating the 

k • p approximation and the effects of strain, but this was limited to the [001] substrate 

orientation. Bits and pieces of the theory were added through the mid 1980's by various 

theorists2'24"27 and the modeling of quantum well structures began as the capability to 

1-16 



produce them was developed in the early 1980s3-7'28'29'30. Several theorists developed 

methods of approximating, or solving exactly over limited regimes, the band structure of 

these devices. Perhaps most important to this study are the works of Szmulowicz and 

Brown3 and M. Gregg's doctoral dissertation20. Szmulowicz adapted the k-p approach 

to model the GaAs/AlxGai.xAs MQW structure to determine bound-to-bound and bound- 

to-continuum linear absorption coefficients in this structure. 

M. Gregg models the Si/Sii.xGex MQW structure for a variety of substrate 

orientations and computes the momentum matrix elements for transitions among valence 

states.   M. Gregg has modeled the MQW valence subbands via the EFA method and has 

provided the form of the subbands and the momentum matrix elements that are required 

to model the absorption coefficients. It is upon this foundation that the formulation of the 

bound-to-bound absorption coefficients of this project will proceed. 
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Chapter II. Theory Development 

Section A. Introduction and Organization 

A more complete theoretical description of the Si[l 10]/Sii.xGex MQW system is 

developed in the following two chapters. This description is based upon three major 

developmental steps: 

(1)    Determine an approximate Hamiltonian for bulk Si and Sii.xGex derived from 

the k ■ p theory of Luttinger and Kohn21, 

(3)    Use MQW boundary conditions and the envelope function approximation (EFA) 

formalism to obtain the bound state eigenfunctions in the growth direction of the 

well, 

(4)   Determine the linear absorption coefficients as a function of wavelength using 

the bound state eigenfunctions. 

A solution to the simple, one dimensional square well problem is also developed in 

Appendix A to provide an analogy to the method of solution used for the MQW problem. 

Section B. Development of the Halmiltonian in the Bulk Semiconductor 

An approximate form of the Hamiltonian for the bulk semiconductor must be 

known before the hole eigenfunctions can be calculated. The total Hamiltonian in the 

bulk material is comprised of a number of terms: 

(1) a term due to the kinetic energy of the holes, 

(2) a term due to the periodic potential due to the lattice, 
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(3) a term due to the spin-orbit interaction, and 

(4) a term due to the effects of strained growth (in the SiGe alloy). 

The terms listed above are the only effects that this study will treat. Terms representing 

other physical interactions such as coupling of the conduction and valence bands and 

electron-electron interactions are not included in the Hamiltonian and are assumed to be 

much smaller in magnitude than the terms considered. 

The first task in developing the total bulk Hamiltonian, Hi, is to examine the 

contribution due to the presence of the periodic potential of the lattice and the momentum 

of the particle itself. This can be done through the framework of the k-p theory 

developed by Luttinger and Kohn in the 1950's. 

The Hamiltonian describing the behavior of the holes in the bulk semiconductor is 

H = £- + V{r) (1) 
2m 

where V(r) has the periodicity of the lattice. The hole eigenvalues and eigenvectors are 

obtained by representing the Hamiltonian of equation 1 in a basis given by Luttinger and 

Kohn21. 

The basis that H will be represented in is developed by first considering Bloch's 

theorem. Bloch's theorem states that the hole eigenfunction in the solid is expressible as a 

plane wave times a function possessing the periodicity of the lattice, given by 

Vnk(r) = eikr-unk(r) (2) 
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where n is a band label and k is the wavevector within the first Brillouin zone of the 

crystal21. The w„k(r) are functions which have the periodicity of the lattice. The cell 

periodic parts of the eigenfunctions may be expanded in Fourier series to yield 

^k(r) = ^'kr-I^(k)e-^
r, (3) 

m 

where the km are reciprocal lattice vectors and the B^(k) are expansion coefficients. As 

shown by Luttinger and Kohn, the eigenfunction near Brillouin zone center may also be 

expressed as 

ZnM = eikr-un0(r) 

= eikr-^Bn
m(k = 0)e -*„T (4) *m 

In bra-ket notation, the eigenfunction of equation 3 is expressed as 

K} = IX(k)|k-0 (5) 
m 

and equation 4 is expressed as 

W = 5>;(o)|k-k.,) (6) 
m 

The Luttinger-Kohn basis in equation 6 may be conveniently expressed as 

\nk) = T(k)\un0) (7) 

where 

IO-Z^:(o)l-0 ^ 
m 

and 7(k) is the boost operator, elkr, which will increase k when applied to an 

eigenfunction. 
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The form of the matrix elements of the Hamiltonian will be determined next, 

using the Luttinger-Kohn basis. The matrix elements of the Hamiltonian 

(~2 1 
(9) 

are evaluated by using equation 6 and 

p\nk) = hk\nk) (10) 

Equation 9 may be expressed as 

-2 

H„w = <w'kl|H»k> + <n'k'|F(r)|/ik) (11) 

and each part evaluated by replacing \rik) with the expression of equation 6. The first 

quantity on the right hand side of equation 11 is 

-^-(/i'k'|p-(p|/ik>) 
2m 

(12) 

where 

p|«k) = PX^(0)|k-O 

= /£X(o)k|k-km) 
(13) 

The result of equation 13 is evaluated through the use of 

k|k) = k|k), (14) 

so that 

^E5:(o)k|k-km)=ÄkX5:(o)|k-km)-^^(o)kjk-km). as) 
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When equation 13 is evaluated using equation 15, the result is 

p\nk) = hk\nk)-hZB"m(0)km\k-K)- (16> 
m 

The effect of the operator p on the right hand side of equation 16 is 

p2\nk) = h2k2\nk)-2h2kZB"m(0)km\k-km) 
m 

+»22>:(o)ki|k-iO-' 
(17) 

Equation 17 is re-expressed as 

^2|«k) = ^2r(k){^|W„0)-2kS^(0)kJ-km) + i:^(0)k2|-km)}   (18) 

Remembering that k| k) = k| k), the above equation can be simplified to 

^2|«k> = ^r(k)^2|M„0>-2kkX5:(o)|-km)+k2S^(o)|-km>},  (19) 

or, letting p = fik and simplifying, 

^kk) = r(k)|^|M„o>+^-p|^o)+^k„o>|- (20) 

Note the appearance of the k • p term from which the theory earned its moniker. Using 

the result of equation 20, matrix elements of the Hamiltonian in equation 1 are given by 

(«'k'|^«k) = (M„0|rUkOr(k){^+F(r)+^k-p+^|w„0).     (2i) 
2m m 2m 

The symbol T1" is used above to represent the Hermitian adjoint of the boost operator and 

rf(k')r(k)isgivenby 

P(k')T(k) = e'(k"k')? = T(k - k') (22) 
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by the definition of the boost operator. 

Matrix elements given by the first term in equation 21 are 

(un,Q\T\k')T(k)H\un0) = En0(un.0\T\k')T(k)\un0) ^ 

= En0(n'k'\nk) 

where H = p2/lm + V(r) and En0 is the zone center energy of the band. Only diagonal 

matrix elements are non-zero since the basis vectors | nk) form a complete orthonormal set , 

<H'k'|Hk) = £„„,£(k-k'). (24) 

The energy En0 represents the energy of the band at zone center.   Since this study focuses 

on intra-subband transitions, the absolute magnitudes of the energies of the subbands are 

irrelevant and only the differences between subband energies are important. As a result, 

the zero point of the energy is typically chosen so that En0 is zero. The third term in 

equation 21 is given by 

h2k2      v    h2k2 

(un.0\T%')T(k)—- \un0) = -—- (n'k'\nk) 
2m Im 

h2k2 
(25) 

^(k-k'), 
2m 

and is also nonzero only for diagonal matrix elements. The two diagonal terms of 

equations 23 and 25 are grouped together and represented by the symbol H0. 

The second term in equation 21 is evaluated as 

tik J     \     hk 
—PKO/ = — m   ' m 

Hkl 

m ' 

(w„,0|r(k-k')^p|w„0) = ^X5:(0)^(°)(-k-lr(k-k')p|-k-> 
n,m' 

(-n)YK(o)B"m(o)km(k' -km,|k-km) 
(26) 
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Using the orthogonality of the basis functions, equation 26 is expressed as 

(W„,0|r(k-k')—p|M„0) = ^Z^(0)5:(0)k^(k'-km,-k + kJ.    (27) 
m m 

The delta function in equation 27 can be simplified somewhat by examining the geometry 

of the reciprocal lattice. Due to the fact that the wave vector lies in the first Brillioun 

71 K 
zone, k' and k must lie between - — and —. The difference between the reciprocal 

a a 

lattice vectors km, - km is defined to be a reciprocal lattice vector Km.m\ In order for 

Km.m> to be in the first Brillouin zone, m' must equal m and thus 

S(k'-k-Km_m,) = ö(k'-k)ö, mm ■ (28) 

The matrix elements given by equation 27 are then given by 

/     i hk i     \     h 
(un,0\T(k-k')—p\un0) = -k-pm,ö(k'-k), (29) 

where inter-band momentum matrix elements are defined as 

P^--^K'(0)<(0)- 
m,m 

Using the results of equations 23, 25, and 29 the matrix elements of the 

Hamiltonian of equation 21 are given by 

r 
(n'k'\H\nk) = 

h2k2^ 

K
E"0+'2m 

önn,ö{k'-k) 

fhk 
S(k'-k). 

(30) 

(31) 
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The second term of equation 31 is not diagonalized in the |«k) basis, so a unitary 

transformation of the Hamiltonian H is performed in order to diagonalize H to second 

order in k. 

Defining a new basis set, 

\Snk) = e*\nk), (32) 

q may be chosen so that H is diagonalized. The matrix elements of the Hamiltonian H' 

are given by 

(Sn'k'\H\Snk) = (n'k'\e^He^\nk) (33) 

where H is diagonal in the | Snk) basis. The term within the bra-ket on the right hand side 

can be expanded via the expansion of the exponent in Taylor Series, yielding 

( 
e~gHeg = W+Y+- \HQ + Hk.py 

-2        ^ 

i + ff+y-H (34) 

which when expanded yields 

e-*H* = H0 + Hk.p + [H0,g] + \Hk.ptg\ + |[[^o^]^] 

where the brackets are commutator notation and 

+• (35) 

^.p,rt(k)^k.p]r(k) (36) 

in the |»k) basis. 

The value of q is selected such that Hkp = -[HO ,g], which cancels two of the terms of 
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equation 35. Ignoring the higher order terms (in q) of equation 35 leads to 

H' = H0+±Hk.p-g-±g-Hk.p. (37) 

Evaluating the expectation value ofHk.p via the use of completeness and the relationship 

Hk   = -\H0,g] leads to the following expression for the matrix elements of Hkp 

(n'k'\HkJnk) = E„,n+- 
h2k>2^ 

Jn'0 2m 
(n'k'\g\nk)- 

h2k2^ 
{n'k'\g\nk).      (38) 

This expression is equal to the matrix elements derived in equation 29, providing a means 

of solving for q 

hk 

(n'k'|^|«k) = m 
Pn,nS(k'-k) 

iE,-En) 
(39) 

so that the value of <; has been determined as a function of Pn,n in the non-degenerate case. 

This expression can be used then to evaluate the matrix elements of the Hamiltonian, 

which is our principal goal, 

{n'k'\H\nk) = (n'k^HQ\nk) + \{n'k^Hk.pg\nk)-\{n'k'\gHk.p\nk)     (40) 

and when equation 40 is evaluated via the expressions developed in equations 31 and 38, 

the result is (to second order in k) 

(n'k'|fl1«k) = £«0 + 
ft £Z + *1 Y _ Pnn"Pn"n 
2m m ;2 »» (En ~ En"), 

S{k' - k), (41) 

Equation 41 provides diagonal matrix elements of the non-degenerate Hamiltonian in 

terms of pn"n and k . 
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The valence subbands which this project focus on are degenerate, so the 

formulation of equation 41 is inappropriate in the current case and degenerate pertubation 

theory must be applied. The analysis in the degenerate case leads to a block diagonal 

form of the bulk Hamiltonian, which can be expressed in terms of a linear combination of 

angular momentum operators21,23. The expansion coefficients of these linear 

combinations are composed of experimentally determined parameters (the Luttinger 

parameters, yO and powers of k. The expression of the Hamiltonian given by Hasegawa 

is the one which will be used in this study. 

General Form of the Bulk Hamiltonian. 

The form of the Hamiltonian given by Hasegawa is 

H' = 
h2 

2ri(*„ + *„ + kB)l6 - 12y2[(4 -\L
2
)■ kx +c.p. 

2^0 

^r3[(Lx-Ly)kXy+c.p. 

(42) 

where kaß - \(k*akß + k'pka), c.p. stands for cyclic permutations with respect to x, y, and 

z, 76is the 6x6 identity matrix, H'=H0+Hk.p, and yi , y2 , and y3 are the Luttinger 

parameters, which are material dependent. Equation 42 produces a 6x6 matrix based on 

group theory concepts that are beyond the scope of this project. At present, the best 

available method of determining these parameters (and all other material dependent, 

experimentally determined parameters) in the SiGe alloy is to interpolate between the 

values given for Si and for Ge, based on x the Ge percentage of the alloy. 
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The angular momentum matrices here are given in the \lml smsk) basis where the 

quantum numbers used are those of the atomic 3p state: 1=(1), mi=(-1,0,1), s-C/2), and 

ms=(l/2,-l/2). The angular momentum matrices are given by 

^0 0   1 0 0   Oft 

0 0   0 1 0   0 

1 1 0   0 0 1   0 
L*~-j2 0 1   0 0 0   1 9 

0 0   1 0 0   0 

lo 0   0 1 0 oJ 

f ° 0 -1 0 0     Oft 

0 0 0 -1 0     0 

i 1 0 0 0 -1     0 

V2 0 1 0 0 0    -1 

0 0 1 0 0     0 

lo 0 0 1 0    oJ 

(\ 0 0 0 0     Oft 

0 1 0 0 0     0 

0 0 0 0 0      0 

0 0 0 0 0     0 ? 

0 0 0 0 -1    0 

I 0 0 0 0 0    - -V 

(43) 

(44) 

(45) 

and 

L2=2 

'10   0   0   0   0^ 

0   10   0   0   0 

0   0   10   0   0 

0   0   0   10   0 

0   0   0   0    10 

K.0  0  0  0  0  1 

(46) 
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The eigenvalues of the 6x6 Hamiltonian matrix given by equation 42 provide dispersion 

relations for the bulk material (E(k)), which at this point are degenerate at k=0 and are 

parabolic in form, as shown in figure II-1, page 11-19. 

Coordinate Systems and Relationship to Crystal Lattice. 

The expression of equation 42 is valid only for a specific lattice orientation and 

the values of L and k must be rotated into a coordinate system that is consistent with the 

particular crystal orientation to be examined. This is accomplished using a rotation 

matrix, 

R = 

where the required rotations are given by 

COS0COS#> -smq> sin#cos^ 

cos 9 sin cp cos$> sin G sin (p 

-sin# 0 cosO 

V 4 
Ls = R- h 

VLA VLA 

(47) 

(48) 

V V 
k , = R- fc, y y 

VK\ kJ 
(49) 

and the values of 0 and (p are shown in table II-1 for the [001], [110], and [111] substrate 

orientations. 

Table II-l. 
Euler Angles (0 and cp) for Coordinate Rotation 

Z Axis Direction Theta (0) Psi (cp) 

[001] 0 7t/4 

[110] Till 71/4 

[111] cos4(l/V3) 71/4 
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Spin-Orbit Interaction. 

The interaction between the spin and the orbital angular momentum of the holes 

will affect the energy values of the holes in the bulk semiconductor. The spin orbit 

interaction is easily represented in the jm/j basis, where it is diagonal. The 

Hamiltonian, Hs0, that describes the spin-orbit interaction is 

H„ = 

{° 0 0 0 0 °) 
0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 -A 0 

I o 0 0 0 0 -AJ 

(50) 

in the irrij) basis, where A is the spin-orbit energy, an experimentally determined 

parameter. In order to use the spin-orbit interaction Hamiltonian in the j mj j basis, the 

Hamiltonian of equation 44 must also be represented in the j mj j basis (remember that 

H' is currently represented in the | l,mhs,ms) basis). This may be done by either 

transforming matrix representations of the angular momentum operators via a unitary 

transformation using the Clebsch-Gordon coefficients or by using an equivalent 

transformation (differing by a phase factor) developed by Luttinger and Kohn , 
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LK 

0 

0 

0 

0 

0 

■Hi 

4 
0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 
(51) 

When this transformation to the f,m) basis is performed, the spin-orbit Hamiltonian 

may be added to the Hamiltonian H. This results in a new Hamiltonian 

H = H0 + Hk.p + Hs0, 

where 

H 

hh 

* 
a 

ß' 

0 

-ia* 

IT 
iß* 42 

a 

Ih 

0 

ß* 
-iö* 

4i 

V2 

0 

Ih 

a 

i a 
V2 
iö 

0 

ß 

Ji 

a 

hh 

ißjl 

ia 
V2 

ia 

iS_ 
V2 

-iß*Jl 

so-A 

0 

(52) 

-ißyfl 

4it 
-ia* 
~7T 

0 

so- A 

(53) 
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Matrix elements (except the -A terms) in equation 53 are calculated by using equations 42 

through 47 and transforming to the j,m^j representation via the unitary transformation 

given in equation 51. The terms that make up H, in the case of the [110] substrate 

orientation, are given in equations 54 through 59. 

hh=Yl(ki+k2
y+ez)+y2(ki+ey-2k2

z) 

ih = *(*? + *J + *,2)-r2(*i
2 + *J -2k2) 

so = rAk2+k2+k2) 
rl 

y       { (54-59) 
a = -2U3[kx-iky)k2y3 

ß=Sy2{k
2

x-k2
y)-2iy,kxky 

ö = lh-hh 

The eigenvalues of H form three subbands with two different values at zone 

center, a set corresponding to the j=% states (which is quadruply degenerate at zone 

center) and a separate set for j=1/2 (doubly degenerate at zone center). The two subbands 

that are quadruply degenerate at subband center are known as the heavy hole and light 

hole subbands and the remaining set is known as the split-off subband. These names 

derive from the effective mass of the subbands, and from the fact that the lower subband 

is split off from the top two subbands. 

Strain Induced Pertubation. 

The band structure resulting from the eigenvalues of H (given by equation 52) 

may be further refined, by including strain terms resulting from the accommodation of the 

Si and Ge atoms into the same lattice. As discussed in Chapter I, Si and Ge each have 

different lattice constants, so when the two elements are combined into a single lattice 

with Si and Ge interspersed at random intervals and grown upon a Si substrate lattice, the 
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resulting lattice will be distorted or will have lattice defects in the vicinity of the 

boundary layer20. This strain will serve to alter the energy band structure, removing the 

fourfold zone center degeneracy and moving the light or heavy hole subbands to lower 

energy (depending on the nature of the strain, either compressing or decompressing the 

lattice respectively), so that the resulting structure will feature distinct heavy, light and 

split-off subbands at zone center. 

The form of the strain Hamiltonian may also be expressed in terms of the angular 

momentum matrices. Matrix elements are calculated using experimentally determined 

deformation potentials, and the applicable strain components. The deformation potentials 

are written as A where i is equal to 0,1 or 2, and depend on the material composition. 

The strain Hamiltonian, given by Kleiner and Roth   is 

M       = strain 

e{ + e2 

0 

0 

V N2e 

0 0 

e\       e2 

N2e7 

-i-42e 

el    e2 

0 

0 

JV2e, 

w2e, e. 

0 

0        - isP.e2 

- z'v 2e3 0 

0 

0 

(60) 

ex    ) 

where 

e^M^ + O 

e2=-Di 3       +D3 2 

(g** ~ ezz) xy 
e> = -D>^4f^+D>243 

(61) 

and the strain components, eaß, are defined as 
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P     =s 
dxß    dXa (62) 

|^      («=/») dxa 

where ua is the a component of the displacement vector ü and xa is a component of the 

position vector23. Both ü and x are defined with respect to a unit cell within the lattice, 

so the eaß terms quantify the relative amounts by which the unit cells are distorted from 

their unstrained positions in the various dimensions of the cell. 

As with the spin-orbit Hamiltonian, the strain Hamiltonian (Hstrain) will be added 

to the existing Hamiltonian to arrive at the total Hamiltonian 

Hfotal = H0 + Hk-p + Hso + Hstrain ■ (63) 

The eigenvalues of Htotal, E=E3l(k), form 3 subbands (labeled by X= HH, LH, and SO) 

that are each doubly degenerate and are distinct at zone center. These eigenvalues will be 

used throughout the rest of this work to describe the dispersion relations in the bulk solid. 

The total Hamiltonian now consists of three terms, all of which are expressed as 

matrix representations in the j,rrij) basis: 

(1) the contribution from H' = H0+ Hk.p, 

(2) a term that introduces the spin-orbit correction, Hso, and 

(3) a refinement to include the effects of strain on the total Hamiltonian, Hstraj„. 

All of the above terms are added to obtain the final form of the Hamiltonian (for the 

current study), Htotai. The band structures resulting from the inclusion of these terms are 

shown in figures II-1 through II-3. Figure II-1 shows the eigenvalues of the Hamiltonian 
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H=Ho+ Hk.p , the eigenvalues of H=H0+Hkp+Hso are shown in figure II-2, and figure II-3 

presents the eigenvalues ofHtotai- 

F~I—r 
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-0.04 
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-I 1 1 1        I        i r- 1— 
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kz  I 1 A) 
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Figure II-1. Energy subbands formed from the eigenvalues of H=H0+ Hkp for Si[l 10], 
x=0.30. Subbands are all degenerate at zone center. 
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Figure II-2. Energy subbands formed from the eigenvalues of H=Ho+Hkp+Hso for 
Si[l 10], x=0.30. The zone center degeneracy has been partially lifted by the spin-orbit 
correction. 
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Figure II-3. Energy bands formed from the eigenvalues oiH=H'+Hso+Hstrain for 
Si[l 10], x=0.30. Subbands are all distinct. 

11-19 



Section C. Envelope Function Approximation and Boundary Value Problem 

Overview of the Envelope Function Approximation. 

The Envelope Function Approximation (EFA) involves forming a linear 

combination of the plane waves corresponding to each bulk Hamiltonian subband (having 

the characteristic value of kz that derives from the energy value of the subband for a 

particular k||). Subband weights, wN:V(k\\), quantifies the relative contribution of each 

subband at a particular value of k||. The EFA wavefunctions are given by2 

6 
N,M = X2>v(tf*fl>*z)-|v,k), (64) 

v=lkz 

where v is an index which runs through the j,m/j basis states, N is a subband index that 

labels the EFA bound states, k\\ is the wave vector in the plane of the well, and kz is the 

wave vector normal to the well. The summation over £z includes all of the subbands in 

the bulk material. The boundary conditions at the barrier-well heteroj unction and the 

bulk barrier and well eigenstates are used to determine the values of the expansion 

coefficients wN:y(k\\)= ^Fv(Nk\\,kz), where N is the subband index and v is the same 
v 

index as in equation 64. 

More details for calculating the NkJ via the use of the quantum well boundary 

conditions, are given by M. Gregg20 or F. Szmulowicz et al3. Mathematica programs 

provided by M. Gregg calculate the EFA wavefunctions used in this thesis. 
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The EFA wavefunctions then can be thought of simply as linear combinations of 

the bulk eigenfunctions that satisfy the boundary conditions at the well edges. These 

values determine the composition of each of the EFA eigenfunctions in terms of the 

constituent bulk eigenfunctions. The composition of the EFA energy subbands will be 

seen to be important because of the effect this will have on intersubband transition 

strengths and the corresponding absorption coefficients. The dispersion relations 

resulting from these EFA calculations for a specific case are shown in figure II-4. 

Figure II-4.   Dispersion Relations for the [110] substrate orientation, 30 A well width, 
and 30% Ge composition (k\\ is in the kx direction). 

The label given to an EFA energy subband corresponds to which of the bulk 

eigenfunctions make the largest contribution to the EFA eigenfunction at zone center. 

The bandweights, wNtV(k\\), vary with k\\ and thus a subband that is predominantly heavy 
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hole like at zone center may become a predominantly light hole or split off hole subband 

away from zone center. Therefore, to avoid confusion the subband label is determined by 

the subband makeup at zone center. The bandweights for the HH1 subband of figure II-4 

are shown in figures II-5 and II-6. Figure II-5 plots the 6 wN>v(k\{) values corresponding all 

of the degenerate bulk eigenfunctions, and figure II-6 shows the heavy, light, and split-off 

band weights (formed from summing the appropriate wNtV(k\\) ). The areas in figures II-5 

and II-6 where the bandweights are not smoothly varying functions are areas of numerical 

instability, which will be discussed more fully in a following section. An important point 

illustrated by these figures is that the subbands have mixed character at zone center in the 

[110] substrate orientation, whereas the subbands are predominantly composed of a single 

type at zone center for [001] orientations. 

The band weights shown in figures II-5 and II-6 are normalized to unity, 

6 

v=l 

The band weight plots (II-5 and II-6) illustrate that there are significant contributions to 

the EFA energy subband from all three bulk energy subbands for the [110] substrate 

orientation throughout the range of k\\. 

HHl)=I>tf,v(*||) = l- (65) 
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Figure II-5. HH1 subband w,'s vs k\\ for the [110] substrate orientation, 30 A well 
width, and 30% Ge composition (k\\ is in the kx direction). 
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Figure II-6. HH1 bandweights vs k\\ for the [110] substrate orientation, 

30 A well width, and 30% Ge composition (*n is in the kx direction). 
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Numerical Difficulties in the Determination of the MOW Band Structure 

Band structures along k space directions that do not fall along an axis of symmetry 

such as k[001] or k[00-l] tend to be difficult to determine computationally. The reason 

for this difficulty is that the method used to determine EFA energy subband values is to 

compute the determinant of a 12x12 matrix that arises from the boundary conditions in 

the EFA approach and find the value of E which sets this determinant to zero, utilizing 

the FindRoot utility in Mathematica. The weakness of this approach is that any 

inaccuracy in computing the elements of the 12x12 matrix will be greatly magnified in 

the process of calculating the determinant. 

While the energy eigenvalues resulting from this process are acceptable along the 

[00-1] direction, where the 12x12 matrix is sparsely populated due to the fact that ky is 

constrained to be zero, the process becomes more unstable when applied along directions 

between [00-1] and [-110]. Energy eigenvalues for this direction showed large regions of 

instability, especially away from zone center. This is illustrated in figure II-7. 

Many instances of false subband structures and spurious roots were found in the 

vicinity of the correct energy subbands. In every case, these false solutions would merge 

with the stable subband structure soon after they appeared. Unfortunately, at the point 

where the spurious roots diverge from the valid roots, the root finder would tend to 

become unstable and track both solutions alternately. The false roots in these regions of 

instability were confined to regions near the valid eigenvalues. This instability is 

illustrated in figure II-8. 
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Figure II-7. Band structure of a 30 A / 30% Ge quantum well structure in a direction 45° 
between kx and ky showing an enlarged instability region. Symbols indicate locations of 
discrete data points produced by the calculations. The top subband symbols are not 
shown to emphasize that the third subband solution incorrectly collapses to the values of 
the top subband. 
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Figure II-8. Band structure of a 30 A / 30% Ge quantum well structure in the kx direction 
showing instability region. 

Instability in the band structure is not always evident through visual examination 

of the band structure plots. In many cases, the scale of the instability is small enough that 

fluctuations occur on the order of 1 part in 1000 (on the order of 10"4 eV). This is not 

enough instability to become apparent with the subband calculations themselves, but it 

will become more pronounced when the energy eigenvalues are used in calculations such 

as band weight and momentum matrix element calculations that are more sensitive to 

fluctuations in the eigenstates. An example of the discontinuities in the bandweights for 

the kx direction, shown in figure II-9, displays the isolated nature of the instability when 

the k[00-l] direction is considered. Figure 11-10 shows the instabilities in the 

bandweights 
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Figure II-9. Bandweights wt for the HH1 subband of the 30 A / 30% Ge quantum well in 
the kx direction, showing the smoothness of the bandweights outside of the instability 
region identified in figure II-7. 
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Figure 11-10. Bandweights w, for the LH1 subband of the 30 A / 30% Ge quantum well 
for 45° between the kx and ky directions, showing the instability in the bandweights 
throughout the range of k\\. 
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throughout the range of k\\ for the [-11-1] direction. Note that the instabilities in figure II- 

10 are much more widespread. 

The methodology for treating the problem of band structure instability was to 

trace the valid solutions back to where the solution bifurcated, which often resulted in the 

root finder following only the correct solutions. When a large number was inserted into 

the 12x12 matrix before the determinant was taken, the value of the determinant could 

also be used to determine the validity of the root, as spurious roots tended to have much 

larger values of the determinant at the specified energy value than the valid roots. 

The methods of the previous paragraph discarded the majority of the false roots 

and the remaining spurious roots were found to be localized and were not far removed 

from the true roots. The nature of the error in the roots is determined by examining the 

calculated band weights.   Errors that caused isolated instabilities in the band weights and 

momentum matrix elements were corrected by hand to obtain smoothly varying 

momentum matrix elements. 

It is apparent from figures II-7 through 11-10 that the subbands are far less stable 

off of the kx axis. This instability also manifests itself in the momentum matrix elements, 

which are used directly in the absorption coefficient calculations. For this reason, the 

subbands used for all of the calculations in this thesis were along the kx direction and 

localized regions of instability were corrected by hand . The smoothed band structure is 

shown in figure II-11. 
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Figure 11-11. Smoothed plot of the band structure of a 30 A / 30% Ge quantum well 
structure in the kx direction. 

Section P. Calculations of Linear Absorption Coefficients 

Subband Occupation Levels. 

The subbands represented in figure II-11 are solutions of the eigenvalue equation 

as determined by the boundary conditions at the barrier-well heteroj unction. As such, 

they are values of energy at which a bound state may exist. Several factors will determine 

if a particular state is in fact occupied by a hole (ie, not occupied by an electron): 

temperature, doping levels, and the form of the band structure. 

The temperature will determine the occupation of a subband via the Fermi-Dirac 
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distribution function, 

N(e)de = f{e)g{s)ds =    ^ff*    , (66) 
e-Sf 

where s is energy and g(s) is the density of states. This yields a occupation value for the 

band structure as a function of energy. In the present case it is assumed that temperatures 

involved are low enough that the Fermi-Dirac distribution function may be approximated 

by a step function. This implies that all states with energies lower than the Fermi energy 

are completely occupied, and higher lying states are completely vacant. This assumption 

will become important because transitions may only be made between occupied and 

unoccupied states, at a single value of k\\, as phonon assisted transitions will not be 

considered. The nature of the Fermi-Dirac distribution function is shown in figure 11-12. 

It is apparent from figure 11-12 that the approximation of the Fermi-Dirac 

distribution function with a step function is acceptable at low temperatures (0-77 K) but 

may introduce some inaccuracies as room temperature is approached. The experimental 

data which is to be compared against the results of this project falls within this low 

temperature regime. 
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Figure 11-12. Fermi-Dirac distribution function for a Fermi energy of-0.12 eV, at 
temperatures of 1 K, 77 K, and 300 K. Chemical potential not assumed to be a function 
of temperature. 

Determination of the Density of States (DOS). 

It is necessary to determine the density of states values using the quantum well 

band structure in order to determine the fermi energy and the resulting occupation profiles 

for each subband. The assumption is made that all of the dopant atoms are completely 

ionized and thus the fermi level will be fixed at the energy where the integrated density of 

states (integrated over the energy) is equal to the number of dopant atoms. The first step 

in determining the fermi level is the determination of the density of states g(s). 

The density of states can be defined in terms of either energy or k, and is given by 
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g(s)de = g(k^dkl{ 

äs) *- (67> 
de; 

dkJ ,  , k=k0 

where &0 is the value of k\\ where the derivative of the energy subband is to be evaluated. 

When multiple subbands are considered for the DOS calculation, the total DOS 

(g( e)) for a particular value of e is calculated by summing the contributions from all of 

the subbands that span that e value 

dk k=kX 

where v is an index running over all of the subbands that intersect the value of energy 

(s), and &o is the value of k\ \ where the vth subband has the energy value e. As an 

example, for the band structure shown in figure 11-11, the HH1 subband contributes to the 

DOS between energies of approximately -0.0335 eV and -0.24 eV, the LH1 subband 

contributes between -0.079 eV and -0.24 eV, and the HH2 subband contributes between - 

0.092 eV and -0.24 eV.   The -0.24 eV energy cutoff is the well depth for this particular 

well. 

Since the energy subbands are flat at zone center, the density of states must go to 

infinity whenever the value of energy used in g(E) coincides with the top of a subband. 

This behavior is known as a Van Hove singularity, and is expected when calculating the 

density of states. A plot of the density of states is shown in figure 11-13 for a typical case. 
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Figure 11-13. Density of states vs energy, [110] substrate orientation, L = 30 A, 30% 
Ge. Van Hove singularities at the energy values where HH1, LH1, and HH2 subband 
edges occur do not go to infinity due to numerical reasons. 

The contribution of the each of the energy subbands (HH1,LH1, and HH2), as 

well as the appearance of the Van Hove singularities at the top of each subband, is shown 

in figure 11-13. The addition of each subband creates the step-function like increase 

bearing the subband's label. The density of states can be calculated down to an energy 

equal to the well depth, including all of the subbands; however, this is not necessary since 

it will be shown that the integrated density of states will equal the maximum number of 

holes well above the point where the HH3 subband begins. 

Once the density of states as a function of energy is calculated, it must be 

integrated over the range of energies under investigation. This integration will yield the 

total number of available states at each energy value, shown in figure 11-14. 

11-33 



I  I I  I i—r 1-T i  i  i TT1 

doping level = 2-1019 cm 

doping level = 1 • 1019 cm 

-t  i    i    i    i    i    i    i 

-0.175        -0.15 -0.125 -0.1 -0.075 

Energy (eV) 

-0.05        -0.025 

Figure 11-14. Integrated density of states for [110] substrate, L=30 A, 30% Ge 
composition. Total numbers of dopant holes are shown for two doping levels. 

The points where the total number of dopant holes equals the integrated density of 

states are the fermi levels for the applicable doping level. The assumption is made that 

below this energy all states are occupied and above this energy no states are populated. 

This value of energy corresponds to a different value of k\\ for each of the partially 

occupied subbands. This value of k\\ is the point at which the subband ceases to be 

populated, and is important in determining whether transitions will be made from the 

subband or to the subband, since transitions must originate in an occupied region of a 

subband and fill an unoccupied state in another subband. With wavefunctions, band 

structure, density of states values and fermi levels calculated, it is possible to compute the 
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transition strengths between valence subbands and the corresponding absorption 

coefficients. 

Calculation of Inter-subband Momentum Matrix Elements. 

The derivation of the absorption coefficient for a system of one electron atoms 

interacting with a weak field is given by Bransden and Joachain31. An outline of the 

derivation is provided here to provide some insight into the source of the relationship 

between the momentum matrix elements and the absorption coefficients. 

In the presence of electromagnetic radiation, the kinetic energy term of the 

Hamiltonian is modified as 

|U£fr-,A)' (69) 

where q is the charge of the particle and A is the vector potential of the incident field. In 

the time dependent Schrödinger equation, 

ih-^v(r,t) = HV(T,t) (70) 

a new term will appear from the addition of the vector potential interaction, 

¥(r,f) (71) mJ^M = ̂ m 2m     j 

where H0 is the Hamiltonian of equation 63. In the weak field approximation, the A 

term is neglected and the A- V term is treated. Schrödinger's equation becomes, 

//4^M = U-— A.pWr,0, (72) 
at v m J 
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and is solved using standard time dependent pertubation theory31, where the probability 

amplitude of the system to be in a state 1^) is given by 

MNkrMkr{N^re.v\Mk^ 

= jV*   (rykrl-W*    (r)*' 
(73) 

In equation 73, Mk|| and Nky are the final and initial states of the particle and s is the 

polarization vector of the incident radiation. The transition rate for absorption is defined 

as the time derivative of the square of the probability of being in the state y¥b), which is 

a function of Mba. The absorption cross section is proportional to the transition rate and 

2 
thus is proportional to M, ba 

The inter-subband momentum matrix elements are given by Szmulowicz as 

K ~s-p 
vv' 

(74) 

where 

FN,v=Fv(Nkvz)„ (75) 

is the vth component of the envelope function in the coordinate representation. The 

matrices P and Q are given by 6x6 matrices that are dependent upon both the substrate 

orientation and the polarization of the incident radiation  . 
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The first integral of equation 74 is the overlap integral for direct coupling of like 

states such as HH- HH or LH-LH. The second and third integrals are the dipole coupling 

terms which couple dissimilar states, such as for LH-HH or HH-LH transitions. Since the 

subbands in the EFA are mixed the Q matrix elements will couple the various dissimilar 

components and the P matrix elements will couple the like state components, allowing 

strong transitions between states that would not be coupled as strongly for non-mixed 

subbands. 

A plot of the momentum matrix elements as a function of k\\ is shown in figure 

11-15. The Px momentum matrix elements for transitions from the HH1 subband are 

shown as an example of the form of the momentum matrix elements. Momentum matrix 

elements are calculated for Px, Py, and Pz components for transitions from all populated 

subbands and these results will be presented in Chapter III. 
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*,[00-l]-A 
Figure 11-15. Px momentum matrix elements squared for transitions from the HH1 

subband to higher levels for the Si[l 10]/ 30 A / 30% Ge case. 

Bound to Bound Absorption Coefficients. 

With the momentum matrix elements, fermi levels, and energy band structure 

calculated, all of the elements required to perform the calculation of the absorption 

coefficient are present. The form of the linear absorption coefficient is given by Bastard 

as 

,  .        Ane       vn 1 L  - 
a{co) = — 2,—\£-pi,f ncm0 co £2   (/ m0 ' 

» 

§\Ef - Ei - hco) 
(76) 
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where Q is the characteristic volume suitable to the problem (which will be replaced with 

the dimension of the well, L, the only length present in the problem), e is the polarization 

vector, fiE) is the fermi occupation factor for a subband at energy E (not including the 

density of states), and Plf = P,Jx + P1/y + P'/z is the momentum vector for the 

transition between states i and/which is formed from the momentum matrix elements 

derived earlier. 

Equation 76 is re-expressed by Szmulcowicz3 as 

«M=i • K x|* • M'l^W*.) - M*.) - M        (77) 

where the subscripts N and M denote final and initial states, and the fermi factors are 

treated step functions and are not written out explicitly. The general form of the delta 

function is given by 

V   dx 

in one dimension, which is used to re-express equation 77 (in three dimensions) as 

cc(o)) = 5—-Ar; \T- y'V) 
ncn$a)Lf%\\7(EN-EM)\ 

The factor of 2 n in the numerator of equation 79 results from the azimuthal integral in k\\ 

space and the assumption that the transition probability is isotropic throughout a 2 % 

rotation in k\\ space. The variable k0 appearing in equation 79 is the value of k\\ that 

satisfies the delta function of equation 77. 
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Equation 77 must be evaluated only over the appropriate regions in k space where 

the initial state lies within a populated region of a subband and the final state lies in the 

unpopulated region of a higher lying subband. As each value of (o is examined, all 

possible transitions of energy AE = ho) must be identified and checked to insure that 

occupation levels of the subbands allow a transition. The value of \V(EN - EM)\ must be 

calculated for every value of AE that is defined for the given ground and excited 

subbands. This process is accomplished by determining AE and \V\EN - EM)\ as 

functions of % and stepping over the values of k\\ corresponding to a populated ground 

state subband and an unpopulated excited state subband. The value of a must be 

calculated using the correct value of the momentum matrix element for the value of k\\ 

where AE occurs.   The values of a for each ground-excited subband pair for each value 

of AE are summed to produce a value for a(AE ). A plot of a(E) is shown in figure 11-16 

for a pure z polarization state. 
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Figure 11-16. Linear absorption coefficient vs energy (eV) for pure z polarization. No 
magnification of smaller peaks is performed. Absorption coefficients shown are obtained 
using the formula of equation 79. 

An alternate method of calculating absorption coefficients arises by replacing the 

delta function in equation with the familiar Lorentzian distribution common in lifetime 

broadening approximations, 

AE 
L(E) = (80) 

2x[(E-AENM)2+{AE) 

where AE in this case is the FWHM of the energy spread around AENM, the energy 

difference between energy levels. When equation 80 is recast in a form applicable to the 

MQW problem, it becomes30 
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r   (   k\ (r-(^»)/2) m) 

[(^(*,)-^(*,)-»ffl) +(rJW(*,)/2) 

which will remove the singularities inherent in the delta function approach, replacing 

them with a more physically meaningful line broadened behavior. In equation 81, 

r^A, U||) is a line width parameter equal to the average scattering rate for the states M, 

and  Mk^j in the well2. The value of r^ji,) for the GaAs/AlxGai.xAs system is 

reported by Chang and James2 as a function that increases with energy and shows a step- 

like increase for each of the subbands. As an approximation to this behavior, a single 

value of TNM{kl{ 1= 45 meV is used for all calculations30. 

In order to implement an approach based upon the Lorentzian line broadening 

function, an integration in k space is required along the k\\ axis, 

MOA) (82) 

(E^-E^-ha)2 +(rNU(kl)/2f 

where fN and^/ are the fermi occupation factors of equation 66 (not including the density 

of states), and the assumption of azimuthal isotropy is still in place. The approach of 

equation 82 will permit a more refined calculation of absorption profile shapes as well as 

absorption coefficient magnitudes. 

The calculation of the absorption coefficients using the expression of equation 82 

involves determining the regions in k\\ space over which integration should be carried out. 
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The integration is carried out over regions that have a populated ground state and 

unpopulated excited state, as determined by the values of k\\ that correspond to the fermi 

levels calculated via the DOS calculation. For each value of k\\ that must be integrated 

over it is necessary to determine the AE between the ground and excited states and the 

value of YNM f kt) in order to compute the value of the Lorentzian at that point and 

contributions from the proper combinations of the polarization vector and the momentum 

matrix elements must be integrated as well. The integration over k\\ must be carried out 

for all values of E 0, the energy corresponding to hco of the incident radiation, and the 

results stored along with the value of E 0. An example of an absorption coefficient plot 

generated via equation 82 is shown in figure 11-17. 
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Figure 11-17. Linear absorption coefficient vs energy produced by integrating a Lorentzian 
fit to all possible transitions. Absorption coefficient is for normally polarized light only. 
Exchange interaction is included. 
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Note that figure 11-17 assumes light polarized in a single direction, which is not 

characteristic of any of the cases examined, but is meant merely to demonstrate some of 

the properties of the various methods of calculation. It should be noted that the 

magnitudes of the absorption coefficients, obtained via both the delta function and 

Lorentzian methods, match well with coefficients in the literature produced by similar 

methods applied to GaAs/AlxGai.xAs3 and Si/Sii.xGex
30 MQW structures. 

Exchange Interaction. 

The population of the lower lying subbands caused by the doping of the MQW 

sample produces an additional term referred to as the exchange interaction, which will 

change the energy level of the ground state subband. This term is due to the 

electromagnetic interaction between the carriers that populate the subbands, and will 

lower the energy of the ground state subbands from which inter-subband transitions are 

made, raising the energy difference between subbands. A detailed analysis of this 

interaction is carried out by Bandara and Coon27, and the programs used to calculate this 

effect for this thesis are provided by M. Gregg20. The addition of this effect, for the 

doping levels considered, brings the calculated peak positions closer to the experimental 

data. 

The procedures described in chapter II must all be accomplished in order to arrive 

at an estimation of the linear absorption coefficients. This thesis project has resulted in 

the completion of absorption coefficient calculations for the Si [110] / Sii_xGex MQW 

system with x=.30 and well widths of 30 A, and a variety of doping levels. These results 
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are easily applied to different well widths and Ge concentrations, as the mechanisms to 

calculate these cases are now in place. Chapter III describes presents the results of the 

calculations and experimental values for comparison and validation, along with some 

discussion of the approximations involved, and areas in which improvement of the model 

is desirable. 
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Chapter III. Results and Discussion 

This chapter provides the results of calculations, using the various methods developed in 

chapter II, of the following quantities: 

(A) momentum matrix elements for transitions between the calculated well 
energy bands, 

(B) linear absorption coefficients calculated via equation 82 (the delta function 
formulation), and 

(C) linear absorption coefficients calculated via equation 87 (the Lorentzian 
distribution approximation). 

Discussion of the relationship between calculated values and experimentally determined 

values or published theoretical results is included as well. Finally, recommendations for 

further investigation are included. 

Section A. Calculation of Momentum Matrix Elements 

Chapter II discussed the instability problem with respect to energy eigenvalues 

and bandweights. The problem of numerical instability also arises when the momentum 

matrix elements are calculated and the method of dealing with this instability is detailed 

below. 

All of the instabilities encountered in analyzing the momentum matrix elements 

are found to be localized and the errors are of sufficiently small magnitude that the form 

of the momentum matrix elements can be easily discerned (see figure II-9). Indeed, many 

of the momentum matrix elements and bandweights show no discontinuities. In the cases 

that showed instabilities it is possible to simply correct the errant values by hand. 
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The correction of instabilities by hand is only possible where the form of the 

momentum matrix elements as a function of k\\ is obvious.   Therefore this method is only 

used to correct the values along the Jfc||[00-1] direction, as the values along other directions 

were not easily discernible in many cases. Visually correcting the errant values is the 

method used to obtain valid relations for the momentum matrix elements and only the 

smoothed values will be presented from this point forward. 

Momentum matrix elements are calculated for the transitions shown in table III-l. 

The determination of the range of k\\ values over which inter-subband transitions may take 

place is based on the fermi level calculation outlined in chapter II. Fermi levels were 

calculated to be -.108648 eV for the 1019 cm3 doping level and -.131457 eV for the 

2 • 1019 cm3 doping level. 

TABLE III-l. 
VALUES OF Aj, FOR ALLOWED BAND TRANSITIONS FOR 

FERMI LEVELS CONSIDERED (11019 cm~3,2-1019 cm'3) 

TRANSITION NA=M019cw"3 NA=2-1019cffr3 

HH1 -► LH1 (0.013-► 0.016) (0.0107-> 0.0136) 

HH1 -> HH2 (0.00833 -» 0.016) (0.00592 -> 0.0136) 

HH1 -> HH3 (0.0 -> 0.00944) (0.0 -> 0.00944) 

HH1 -> LH2 (0.0 -► 0.00694) (0.0 -> 0.00694) 

HH1 -> HH4 (0.0-> 0.00611) (0.0^0.00611) 

LH1 -> HH2 (0.00833-» 0.013) (0.00592-^-0.0107) 

LH1 -> HH3 (0.0 -> 0.00944) (0.0 -> 0.00944) 

LH1 -> LH2 (0.0 -> 0.00694) (0.0 -> 0.00694) 

LH1 -> HH4 (0.0-> 0.00611) (0.0-► 0.00611) 

HH2 -> HH3 (0.0->0.00833) (0.0->0.00592) 

HH2 -> LH2 (0.0 -> 0.00694) (0.0 -► 0.00592) 

HH2 -> HH4 (0.0-> 0.00611) |       (0.0 -► 0.00592) 

* All vali les of k\\ are reported in units of A"1.                              1 
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In order to save time, momentum matrix elements were calculated only in the k\\ regions 

in which transitions are allowed. 

The momentum matrix elements for the various band transitions are shown in 

component form (Px, Py, and Pz) in the figures III-l through III-9, for a Si[l 10]/Si.7oGe.3o 

well of 30 A width. Note the magnitude of the Px and Py momentum matrix elements, 

which will determine the magnitude of the normal incidence absorption coefficients. 

0        0.007     0.014    0.021     0.029     0.036   0.042     0.050    0.057     0.065     0.072 
o  -1 
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Figure III-l. Px
2 vs£||for transitions from the HH1 band. 
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Figure III-2. Px
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Figure III-3. Px vs k\\ for transitions from the HH2 band. 
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Figure III-4. Py vs k\\ for transitions from the HH1 band. 

0.007      0.014      0.021       0.029       0.036     0.042      0.050      0.058 
o   -1 

fc,[00-l]-A 

Figure III-5. Py vs k\\ for transitions from the LH1 band. 
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Figure III-7. Pz
2 vs k\\ for transitions from the HH1 band. 
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Figure III-9. Pz vs k\\ for transitions from the HH2 band. 
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It is apparent from figures III-l through III-9 that normal incidence absorption 

should be possible for the well geometry and substrate orientation examined. The 

magnitudes of the Px and Py elements are comparable to the magnitudes of the Pz 

elements, so it is expected that normal incidence absorption coefficients should be of the 

same order of magnitude as of those for parallel incidence. 

Section B. Linear Absorption Coefficients Derived via the Delta Function 

Approximation 

The linear absorption coefficients obtained via equation 79 are presented in this 

section.   When the form of W(EN-EM), found in the denominator of equation 79, is 

considered it is seen to pass through zero for many of the band pairs. Since 

V(EN - EM) appears in the denominator of equation 79, this behavior will lead to 

singularities in a(E) throughout the energy spectrum. This behavior is not unexpected 

and is present in the calculations performed by Szmulowicz3 for the GaAs/AlxGai.xAs 

system. 

The principal problem with the singularities that occur in the absorption 

coefficients is that an estimation of the true magnitude of the absorption coefficient is 

impossible. The magnitudes of the various peaks are, in theory, infinite. In practice, the 

magnitudes of the peaks depend heavily upon how close the finite sized steps that the 

program takes in energy space come to the location of the singularity. The magnitude of 

the square of the momentum matrix element affects the height of the peak, but has 
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become a secondary factor. This behavior should be borne in mind while considering 

figures III-10 through 111-20 which show the absorption peaks calculated using the delta 

function approach. 
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Figure III-10. Absorption coefficient peaks for z polarization component, present in non- 
normally incident radiation. In practice, this spectrum will also be accompanied by x or 
y contributions. 
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Figure III-l 1. Absorption coefficient peaks for the z polarization component, present in 
non-normally incident radiation, scale expanded to show more details of the lower 
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Figure III-12. Absorption coefficient peaks for the x component of incident radiation. 
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Figure 111-14. Absorption coefficient peaks for the y component of incident radiation. 
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Figure 111-15. Absorption coefficient peaks for the y component of incident radiation, 

scale expanded to show detail of lower magnitude peaks. 

Despite the difficulties in determining magnitudes of absorption coefficients 

based on this approach, the method does verify the locations of absorption peaks. These 

peaks do not match perfectly with experimental data, but lie within the observed 

absorption peak region. The magnitudes of the peaks, as well as locations of the peaks, 

are similar in magnitude to theoretical predictions presented by Szmulowicz for the 

GaAs/AlGaAs system.3 Figures 111-23 through 111-24 show the relative locations of the 

calculated peaks and experimental data for the Si[l 10] / Si.7oGe.3o , 30 A well for 

suitably summed Px
2, Py

2, and Pz
2 elements to produce normal and parallel incidence 

radiation. 
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Figure III-17. Absorption coefficient (a(E)) for normal incidence compared with 
experimental data. 
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Figures 111-21 through 111-22 show that the locations of the calculated peaks 

approximate the locations of the experimental peaks. Unfortunately, the lack of 

information about the magnitude of the absorption coefficients is an inherent feature of 

the model. In order to remedy this lack of information, the absorption coefficients are 

next computed using a Lorentzian line broadened technique. 

Section C. Linear Absorption Coefficients Derived via the Lorentzian Approximation 

The standard broadening mechanism for homogeneous line broadening in atomic 

transitions has the form of the Lorentzian discussed in chapter II. However, the form of 

the Lorentzian distribution used in this model differs from the commonly used Lorentzian 

in that the bands have some internal structure themselves instead of being a constant 

energy. This means that the neither the final nor initial energy values are constant, so the 

energy difference is constantly shifting over the range k\\ values that correspond to the 

allowed AE values. The form of a representative Lorentzian for this calculation is shown 

in figure 111-24. The Lorentzian of figure 111-24 corresponds to a fixed value of the 

incident photon energy (AE=04 eV ) applied to the energy band difference HH1-LH1 

shown in figure 111-23. 
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Figure 111-18. Energy band differences between HH1 and higher lying bands. Note that 
locations where AE = hco are not unique in many of the bands so that transitions may 
occur for several values of ku. 

For a given value of incident photon energy (Tico), the Lorentzian has peaks 

wherever the inter-subband energy difference, AE, is equal to ha. This behavior will 

weight more heavily the points in the band structure where a band transition is available 

that is "tuned" to the incident radiation. This weighting factor will be integrated along 

with the PNM
2
 terms in equation 82. 
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Figure III-19. Lorentzian function for a value of fKo=.04 eV for the HH1-LH1 band 
transition shown in figure 111-24. 

Figures 111-26 Through 111-28 show the absorption coefficients due to the effects 

of radiation polarized in the x, y,and z directions respectively. These polarization 

states are not directly applicable to the experimental values, but when suitably added and 

averaged as shown in chapter II, will form the polarization vectors that correspond to 

normal and parallel incidence. It is for this reason that they are of interest. 

Ill-16 



"—I 

R 

£ 
•2 

o 

R 

0.2 

0.18.. 

0.16.. 

0.14.. 

0.12.. 

0.1 

0.08.. 

0.06.. 

0.04.. 

0.02.. 

0 

Si[110]/Si7OGe30 

30 A well 
2E19 holes/ccm 

0.05 

energy (eV) 

Figure 111-20. Linear absorption coefficient for pure x polarization. 

K ^> 

a 
R 

■2 

-45 

cs 
R 

0.14 

0.12-- 

0.1 - 

0.08 -- 

0.06- 

0.04- 

0.02- 

0 ■- 

Si[110]/Si70Ge30 

30 A well 
2E19 holes/ccm 

0.05 0.1 0.15 0.2 0.25 0.3 

energy (eV) 

Figure 111-21. Linear absorption coefficient for pure y polarization. 

Ill-17 



es 

K 

o 

% 
ö 
R 
•2 

o 

.R 

0.25 

0.2-- 

0.15-- 

0.1 -- 

0.05 

0 

0 0.05 

Si[110]/Si70Ge30 

30 A well 
2E19holes/ccm 

0.1 0.15 0.2 

energy (eV) 

0.25 
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Figures 111-23 through 111-26 will show the calculated values of the absorption 

coefficients and the experimental values for suitably averaged normal and parallel 

incidence radiation. The magnitudes of the calculated values are shown by the vertical 

scale, but the values of the experimental values are not represented in the plot. The 

magnitudes of the experimental values are not shown since the absorptance depends upon 

both the value of the absorption coefficients and the total pathlength of the beam in the 

well regions, which is not known (multiple internal reflections occur within the sample). 

This uncertainty in the pathlength makes a determination of the absorptance from the 

calculated absorption coefficients difficult to carry out with any degree of accuracy. 
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Given these facts, the form of the absorption coefficients are compared to the observed 

values of the absorptance in order to judge the accuracy of the calculations. 
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Figure 111-23. Linear absorption coefficient for parallel incident radiation. 
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absorption coefficient scale applies only to the experimental absorptance values. 
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Figure 111-26. Linear absorption coefficient for normally incident radiation, absorption 
coefficient scale applies only to the experimental absorptance values. 

The locations of absorption peaks and the shapes of the absorption profiles have been 

approximated effectively by the model developed in chapter II. Unfortunately, the 

absolute magnitudes of the absorption coefficients are not verifiable with the available 

experimental data. The agreement with experimental values shown in figures 25 and 26 

is perhaps better than expected, considering the number of approximations that are made 

to make the problem tractable. The calculated absorption coefficients and experimental 

data are shown as functions of wavelength in figures 27 and 28. 
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Figure 111-27. Calculated absorption coefficients and experimental absorption data versus 
wavelength. Values are shown for parallel incident radiation. 
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In a system as complex as the one under discussion several approximations must 

be used in order to render the problem theoretically comprehensible and computationally 

feasible and some aspects of the problem must be left unexplored. These approximations 

in many cases are areas in which further investigation may prove fruitful. Some of the 

major approximations and omissions in this project include the following: 

1) conduction band coupling to the valence bands has been treated as 

unimportant, 

2) the integration performed over the azimuthal rotation in k\ \ space in order to 

calculate absorption coefficients was assumed to be over a constant function 

as a first approximation, 

3) energy band structures are treated as being isotropic through azimuthal 

rotation in k space and no sort of averaging is attempted, 

4) the values of the line broadening parameter TNM are chosen as a parameter in 

the computation, and a value of 45 meV was chosen based on figures found in 

the literature30, 

5) physical constants for Sii.xGex alloy are approximated by linear interpolation 

from the equivalent Si and Ge constants, as no reliable data is available on this 

material, 

6) phonon assisted, or indirect, transitions are not discussed as direct transitions 

provide the dominant mode for intersubband transitions , and 

7) only the [110] substrate orientation is treated. 
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Section P. Recommendations and Summary 

The results from this model match well with the observed absorption data for the 

system for the case studied. It will not be a difficult extension to the Si[001] substrate 

orientation and to other well geometries. These systems were not studied due to time 

constraints, but offer additional areas for investigation. 

The model used for this project did not include the effects of conduction band 

coupling and did not calculate the conduction band wavefunctions. A treatment of these 

topics will allow computation of photoresponse behavior. The addition of conduction 

band coupling terms will improve the accuracy of the model with regard to the calculation 

of the absorption coefficients as well as photoresponse behavior. 

The absorption coefficients were calculated by considering only the energy band 

structure in the £||[00-1] direction. It is known that the energy band structure is not 

symmetric with respect to azimuthal rotations in the (kx,ky) plane. This means that some 

form of integration over the azimuthal variations or an averaging process involving 

several k\\ directions should be applied to improve the accuracy of the model. This was 

not accomplished due to the numerical instabilities mentioned in chapter II and due to 

time constraints. This process is an area where further refinement will be beneficial 

A determination of the processes which produce the line broadening for the 

various subbands will provide an important clue to the nature of the line broadening 
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mechanism. If this were incorporated into the model the line broadening value would no 

longer be a parameter of the model. 

An approximation is made by using the squared momentum matrix elements 

instead of using momentum matrix elements and then squaring. The cross terms 

produced by squaring terms that are complex in nature are therefore not included in the 

present calculations. 

This project not only provides a theoretical characterization of the behavior of this 

system, but also can be extended to use in future problems and new systems. The 

programs developed to perform SiGe based calculations are easily modified to work with 

MQW structures developed with other materials by the modification of a few physical 

constants and parameters. The development of wavefunctions, absorption spectra, and 

other quantities of interest can be used as a basis for further theoretical studies on this 

system. 

The linear absorption coefficient calculations performed in this thesis were shown 

to match in form with the experimental data available, to the limits of the model. The 

magnitude of the absorption coefficients were shown to be consistent with the published 

values for similar systems and well geometries. 
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Appendix A: Derivation of Finite-Depth Quantum Well Energy Levels 

The problem of finding bound state energy levels in a potential well of finite 

depth is solved graphically in many elementary quantum mechanics texts. The solution 

of this problem is of utility, as it serves to illustrate the means of determining energy 

levels in the quantum well structure given the wave functions determined via the k«p 

method. 

The quantum well is formed from a region of reduced potential embedded in a 

region of constant, higher potential. For the purposes of this derivation we will assume a 

sharp discontinuity in the potential at the well edges. The well structure and coordinates 

adopted are shown graphically in figure A.l. 

Z= (-a) 

V=0 

v=-v0 
Z=a 

Z^O 

Figure A.l. Potential well coordinate system and geometry. 

The wave function of a particle in this potential structure must obey Schrodinger's 

equation (in one dimension), given in equation (A.l). 

n2 ^T(Z) 

2m    c?Z 
+ V(Z)-V(Z) = E-X¥(Z) (A.1) 
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The form of the wave function will be defined in each of the three regions {Z<(-a), (- 

a)<Z<a, Z>a} as a combination of plane waves travelling in the positive and negative Z 

directions, with coefficients intially assumed to be independent, as shown in equation 

(A.2). The use of these simplified wave functions in solving the problem is the major 

difference between the illustrative case developed in this appendix and the calculations 

performed in the formulation of the MQW problem. 

V>x = A-Jhz+B-e-ikiZ 

% = C-eik*z +D-e~ik>z (A.2) 

% = E ■ eik,z + F ■ e-ik>z 

j2m(E-V0) V2m£ 

These wave functions are subject to 6 boundary conditions: % must be finite as 

Z-K-oo), ^3 must be finite as Z-»(+oo), the wavefunctions must be equal at the "walls" of 

the well, and the derivatives of the wave functions must be equal at the well edges. These 

conditions force B and E to zero to produce bounded wave functions at positive and 

negative infinity. These conditions produce a finite valued, continuous, smooth wave 

function over all ranges of Z. 

These boundary conditions result in four equations, which are shown below in 

equations A.3 through A.6: 

T, (-a) = % (-a) Ae-k>° = Ce~ik>a + De?'" (A - 3) 

%(a) = %(a) Fe-**a = Ce*'° + De^a (A - 4) 

^l(-a> = ^H ikxAe-^a = ik2 .(Ce-ik^a-De^a) (A-5) 
dZ dl 
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<W2(a)     d¥3(a) 

dl dl 
-ikxFe •ik,a ik2-{Ce^a-De-'^a) (A-6) 

and these four equations can be recast in matrix form as in eqn A.7: 

C 

e-<M -e-'ha -e'"2" 0 

Jt,e-*'fl -k2e-^a k2e
ik>a 0 

0 -e'k*a _e-ik2a g-<M 

0 -k2e
ik>a k2e-ik>a -kxe-^) 

D 

F) 

= 0 (A.7) 

or M- 
C 

D 

F) 

= 0 

There exists a non-trivial solution to this set of equations only if the determinant of M is 

0. This matrix is comprised only of known quantities and functions of E, the energy of 

the particle (via ki and k2) and thus, the values of E for which the determinant goes to 

zero are the only values of E which satisfy Schroedinger's equation. This is a quick 

method to find the energy eigenstates of the system which will be used to construct the 

eigenfunctions. 

The determinant of M is a complicated function of E and the zeros are found via 

the use of a numerical root solving routine (available in Mathematica). This is the 

standard method (graphical solution) found in most elementary quantum mechanics texts. 

1,2 These zeros of the determinant correspond to values of the energy that satisfy 

Schrodingers equation for the system. In the 1-D, symmetric, square-well some 

assumptions and simplifications may be made to make the problem more easily 

visualizable and to make finding the roots of the determinant simpler, but the method 
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outlined above is the most general method and corresponds most closely with the method 

used in matching boundary conditions using the envelope function approximation (EFA) 

later in the problem. In the simple symmetric, 1-D well the wave functions are easily 

shown to be either symmetric or anti-symmetric about well center, and thus the constants 

are related as shown in equations (A.8-9) and (A. 10-11). 

Symmetric Case 

A = F (A.8) 

C = D   {^2 = C cos (k2 Z)} (A.9) 

Anti-symmetric Case 

A = -F (A.10) 

C = -D {^2 = C sin (k2 Z)} (A.I 1) 

The plots of these functions are shown along with the plots of the unsimplified 

determinants to emphasize that the same answer is obtained in the general case as in these 

cases. The determinant function for a quantum well of depth of 5 au and width of 3 au is 

shown in fig. A.2, and the same determinant is shown greatly magnified ( multiplied by 

1014) along with the cos and sin terms from the simplified case in fig. A.3. Fig. A.3 

shows that the intercepts are the same for both methods. 
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Fig A.2. Plot of the determinant of M for a square well of depth 5 au and width of 3 au. 
The function is oscillating in the region between E=-5 and E=-3, and rapidly grows in 
magnitude. 
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Fig A.3. Plot of the determinant of M for the unsimplified and simplified cases. The 
vertical lines represent the unsimplified case (magnified by 1014) and the sinusoidal plots 
are the even and odd symmetry cases of the simplified matrix. Again the well depth is 5 
au and the width is 3 au. 
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The energy levels of the bound states are thus found rather simply and the bound 

state eigenfunctions can be reconstructed by solving the eqn. A.7 for the constants A, C, 

D, and F. Enough information is contained within the constraints levied to determine all 

of the constants in terms of a single constant of our choosing. The constraint required to 

determine the value of this last constant is the normalization condition of eqn (A. 12). 

00 

-00 

\B% *B%dZ + )B% *B%dZ + \B%*B%dZ = \ (A. 12) 
-co -a a 

1 
B'=- 

j%*%dZ + $%*%dZ + \%*%dZ 

Given these constants, the wavefunctions are easily reconstructed and are shown 

in fig. A.5 for a well of depth 2 au, and a width of 1 au. Fig A.4 shows the plots of the 

determinant of M versus energy for the same case. 
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Fig. A.4. Plot of the det(M) for the case of a square well of depth 2 au and width 1 au. 
One even and one odd state is shown, at energies of approximately -1.47 au and -.20 au 
respectively. 
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Fig A.5. Bound state wave functions for a well of depth 2 au and width 2 au. 
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Appendix B: Coordinate Systems 

There are two important coordinate systems that will be defined in order to 

describe the MQW problem: the coordinate system describing the growth of the quantum 

well, and the coordinate system used to describe the MQWs interaction with 

electromagnetic radiation. 

The growth direction of the MQW structure and the corresponding coordinate 

axes are shown in figure B-l. 

Growth Axis (Z) 

i 

MQW Structure 

Figure B-l. MQW coordinate axes. 

A discussion of the interaction of electromagnetic radiation with the MQW 

structure requires a definition of normal and parallel incidence. The normal incidence 

case means that the polarization vector of the radiation is normal to the plane of 
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incidence, and for the parallel incidence the polarization vector lies within the plane of 

incidence. These definitions will require that for normal incidence the polarization vector 

will lie completely within the x-y plane of the wells, and for parallel incidence the 

polarization vector will have a component in the z direction relative to the well in 

addition to a component in the x-y plane.   In both cases the plane of incidence is defined 

as the plane containing the k vector of the radiation and the vector normal to the incident 

surface. These two cases are shown in figures B-2 and B-3. 

zaxis 

polarization vector 

Figure B-2. Normal Incidence. 

zaxis 
polarization vector 

well structures 

well structures 

Figure B-3. Parallel Incidence. 
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