
NCS TIB 96-1

NATIONAL COMMUNICATIONS SYSTEM

TECHNICAL INFORMATION BULLETIN 96-1

COLOR FACSIMILE

CLEARED
FOR OPEN ^OBLIGATION

JANUARY 1996 m o 9199* 2

DIRECTORATE FOR FREEDOM OF INFORMATION
AND SECURITYTSBVEW (OA8WA)

DEPARTMENT OF DEFENSE

3
J*S'

OFFICE OF THE MANAGER
NATIONAL COMMUNICATIONS SYSTEM

701 SOUTH COURT HOUSE ROAD
ARLINGTON, VA 22204-2198

*

»TIC QUAUT? nSSPECTBD 8

11-S- 115^

Form Approved

OMB No. 0704-0188

Public report™ burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
Gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information including suggestions for reducing this burden, to Washington Headquarters Services. Directorate for Information Operations and Reports 1215 Jefterson
Davis Highway Suite 1204 Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. ^^

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

January 1996

3. REPORT TYPE AMD DATES COVERED

Final Report ____
4. TITLE AND SUBTITLE

Color Facsimile

6. AUTHOR{sT

Stephen Perschau

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Delta Information Systems, Inc.
300 Welsh Road, Suite 120
Horsham, PA 19044-2273

5. FUNDING NUMBERS

DCA100-91-C-0031

PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Communications System
Office of Technology and Standards Division
701 South Court House Road
Arlington, Virginia 22204-2198

10. SPONSORING /MONITORING
AGENCY REPORT NUMBER

NCS TIB 96-1

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION /AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
The purpose of this project was to continue the work on color facsimile that was
started in 1994. This report describes the creation and evaluation of default
Huffman codes, which were completed in the last year. The development of default
Huffman codes was a continuation of work performed in 1994. The modified Joint
Photographic Experts Group (JPEG) software developed last year was used to compress
images from two different classes. Newly developed software was then used on the
resulting histograms to create composite Huffman code tables for the two images
classes which could be used as defaults. This report is comprised of two section:
(1) provides a brief description of the objectives of the task and an outline of the
contents of this report; and, (2) describes the creation and performance of default
Huffman coding tables for transmitting color FAX images by the JPEG (Joint
Photographic Experts Group) baseline standard.

14. SUBJECT TERMS
Facsimile
Color Facsimile
Color Fax Images

Test Images

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASS

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASS

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASS

15. NUMBER OF PAGES
60

16. PRICE CODE

20. LIMITATION OF ABSTRACT

UNLIMITED

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in each block of the form follow. It is important to stay within the lines to meet
ootics! scsnninQ requirements.

Block 1. Agency Use Only (Leave blank).

Block 2. Report Date. Full publication date
including day, month, and year, if available (e.g. 1
Jan 88). Must cite at least the year.

Blocks. Type of Report and Dates Covered.
State whether report is interim, final, etc. If
applicable, enter inclusive report dates (e.g. 10
Jun 87-30 Jun88).

Block 4, Title and Subtitle. A title is taken from
the part of the report that provides the most
meaningful and complete information. When a
report is prepared in more than one volume,
repeat the primary title, add volume number, and
include subtitle for the specific volume. On
classified documents enter the title classification
in parentheses.

Blocks. Funding Numbers. To include contract
and grant numbers; may include program
element number(s), project number(s), task
number(s), and work unit number(s). Use the
following labels:

Contract
Grant
Program
Element

Pi!
TA
WU

Project
Task
Work Unit
Accession No.

Block 6. Author(s). Name(s) of person(s)
responsible for writing the report, performing
the research, or credited with the content of the
report. If editor or compiler, this should follow
the name(s).

Block 7. Performing Organization Name(s) and
Address(es). Self-explanatory.

Block 8. Performing Organization Report
Number. Enter the unique alphanumeric report
number(s) assigned by the organization
performing the report.

Block 9. Sponsoring/Monitoring Agency Name(s)
and Address(es). Self-explanatory.

Block 10. Sponsoring/Monitoring Agency
Report Number. (If known)

Block 11. Supplementary Notes. Enter
information not included elsewhere such as:
Prepared in cooperation with...; Trans, of...; To be
published in.... When a report is revised, include
a statement whether the new report supersedes
or supplements the older report.

Block 12a. Distribution/Availability Statement.
Denotes public availability or limitations. Cite any
availability to the public. Enter additional
limitations or special markings in all capitals (e.g.
NOFQRN, REL, ITAR).

See DoDD 5230.24, "Distribution
Statements on Technical
Documents."

DOE - See authorities.
NASA - See Handbook NHB 2200.2.
NTIS - Leave blank.

Block 12b Distribution Code.

DOD - Leave blank.
DOE - Enter DOE distribution categories

from the Standard Distribution for
Unclassified Scientific and Technica
Reports.

NASA - Leave blank.
NTiS - Leave blank.

Block 13. Abstract. Include a brief (Maximum
200 words) factual summary of the most
significant information contained in the report.

Block 14. Subject Terms. Keywords or phrases
identifying major subjects in the report.

Block 15. Number of Pages. Enter the total
number of pages.

Block 16. Price Code. Enter appropriate price
code (NTIS only).

Blocks 17.-19. Security Classifications. Self-
explanatory. Enter U.S. Security Classification in
accordance with U.S. Security Regulations (i.e.,
UNCLASSIFIED). If form contains classified
information, stamp classification on the top and
bottom of the page.

Block 20. Limitation of Abstract. This block must
be completed to assign a limitation to the
abstract. Enter either UL (unlimited) or SAR (same
as report). An entry in this block is necessary if
the abstract is to be limited. If blank, the abstract
is assumed to be unlimited.

Standard Form 298 Back (Rev. 2-89)

NCS TECHNICAL INFORMATION BULLETIN 96-1

COLOR FACSIMILE

JANUARY 1996

PROJECT OFFICER APPROVED FOR PUBLICATION:

STEPHEN PERSCHAU
Computer Scientist
Technology and
Standards Division

DENNIS BODSON
Chief
Technology and
Standards Division

FOREWORD

Among the responsibilities assigned to the Office of the Manager, National
Communications System, is the management of the Federal Telecommunication
Standards Program. Under this program, the NCS, with the assistance of the
Federal Telecommunication Standards Committee identifies, develops, and
coordinates proposed Federal Standards which either contribute to the
interoperability of functionally similar Federal telecommunication systems or to the
achievement of a compatible and efficient interface between computer and
telecommunication systems. In developing and coordinating these standards, a
considerable amount of effort is expended in initiating and pursuing joint standards
development efforts with appropriate technical committees of the International
Organization for Standardization, and the International Telegraph and Telephone
Consultative Committee of the International Telecommunication Union. This
Technical Information Bulletin presents an overview of an effort which is
contributing to the development of compatible Federal, national, and international
standards in the area of facsimile. It has been prepared to inform interested Federal
activities of the progress of these efforts. Any comments, inputs or statements of
requirements which could assist in the advancement of this work are welcome and
should be addressed to:

Office of the Manager
National Communications System
Attn: N6
701 S. Court House Road
Arlington, VA 22204-2198

TASK 1
TECHNICAL WORK IN THE AREA OF FACSIMILE

SUBTASK 3
COLOR FACSIMILE

FINAL REPORT
CONTRACT DCA100-91-C-0031

OPTION YEAR 4

Submitted to:
NATIONAL COMMUNICATIONS SYSTEM

ARLINGTON, VA .

January 1996 CLEARED
FDR OPEN PUBLICATION

APR 0 9 1997 2

DUG qULUTY INSPECTED S
DIRECTORATE FOR FREEDOM OF INFORMATION

AND SECURITY?e/EW (0A3D-PA)
DEPARTMENT OF DEFENSE

*

DELTA INFORMATION SYSTEMS, INC.
300 Welsh Road, Bldg. 3, Ste. 120

Horsham, PA 19044-2273
TEL: (215)657-5270 FAX: (215)657-5273

<T7-S-IKM

TABLE OF CONTENTS

TABLE OF CONTENTS '

1 INTRODUCTION 1

2 DEFAULT HUFFMAN CODES 2
2.1 Background 2

2.2 Scope of Renewed Study 3
2.3 Image Model 3
2.4 Sample Size 4

2.4.1 Theory 4

2.4.2 Random Sampling Results 4
2.4.3 JPEG Huffman Coding Anomaly • 5

2.5 The Effects of Image Characteristics 6
2.6 Designing a Universal Huffman Code Set 12

2.6.1 Required Data 13
2.6.2 The Probability Tree 13
2.6.3 Estimating Tree Branch Probabilities 15

2.7 Default Huffman Coding Conclusions 17

REFERENCES 19

APPENDIX A - SOFTWARE TOOLS

APPENDIX B - ESTIMATING SAMPLE SIZE

APPENDIX C - BUSY AND BLAND IMAGES FOR GENERATION OF DEFAULT
HUFFMAN CODES

1 INTRODUCTION

This document summarizes work performed by Delta Information
Systems, Inc. (DIS) for the National Communications System (NCS), Office of
Technology and Standards. This office is responsible for the management of the
Federal Telecommunication Standards Program, which develops telecommunication
standards, whose use is mandatory for all Federal departments and agencies. The
purpose of this project, performed under Task 2, Subtask 3 of contract number
DCA100-91-C-0031 during Option Year 4, was to continue the work on color
facsimile that was started in 1994.

This report describes the creation and evaluation of default Huffman codes,
which were completed in the last year. The development of default Huffman
codes was a continuation of work performed in 1994. The modified Joint
Photographic Experts Group (JPEG) software developed last year was used to
compress images from two different classes. Newly developed software was then
used on the resulting histograms to create composite Huffman code tables for the
two image classes which could be used as defaults.

This report is comprised of two sections.

Section 1.0 provides a brief description of the objectives of the task and an
outline of the contents of this report.

Section 2.0 describes the creation and performance of default Huffman
coding tables for transmitting color FAX images by the JPEG (Joint Photographic
Experts Group) baseline standard.

2 DEFAULT HUFFMAN CODES

2.1 Background

In the 1994 study1 eight test images were compressed with three
candidates for default Huffman code sets. A "code set" is a set of four codes, one
each for DC luminance, AC luminance, DC chrominance and AC chrominance.
The three candidate Huffman code sets were:

T.81 JPEG default codes
Contribution D10 ITU-T Delayed Contribution from Japan

Delta Composite

The Delta composite code set was derived from the combined histograms of the

eight test images.

For any given test image, there was significant variation in the bit counts of
the compressed data streams across the different Huffman code sets. That is, for
a given image, the three Huffman code sets performed significantly differently.
Typical differences were a few percent for images with data compression scale
factors of 9 and 24 (low to medium compression, excellent to good image quality),
and sometimes by more than 10 percent for a data compression scale factor of 71
(high compression, poorer image quality).

The theoretically optimal default Huffman code set is based on the total
probability function of the symbols in a given symbol set. This probability function
is the set of relative frequencies of the symbols over the "universe" of all images
processed with all image processing parameters. A method of estimating such a
probability function is presented later in this section. Had the candidate Huffman
codes evaluated in 1994 closely approached the theoretical optimal code set, their
performances for any given image and set of processing parameters would have

been nearly identical)

Because of the significant differences in the performance of the test code
sets, it was concluded that the three candidate code sets suffered from either or
both of the following deficiencies: (1) they were derived from too few symbol
samples, or (2) there was an insufficient mix of image characteristics and
processing parameters that possess their own peculiar statistics.

2.2 Scope of Renewed Study

The 1995 study included: (1) obtaining and verifying an estimate of required
sample size, (2) a measurement of the effects of image characteristics, and (3) the
development of a theoretically sound procedure for creating a universal default
Huffman code set that closely approaches the theoretical optimum.

The study employed some software tools developed in 1994 and 1995.
These tools are summarized in Appendix A.

2.3 Image Model

In the present study, an image is assumed to have four symbol sets
("components"): DC luminance, AC luminance, DC chrominance and AC
chrominance. In an actual CIELAB image, the "chrominance" comprises the A and
B color components. The DC A and the DC B symbols are encoded by a common
"DC chrominance" Huffman code; similarly, the AC A and the AC B symbols share
a common "AC chrominance" code.

The JPEG compression and decompression software, as modified during the
1994 study, does not generate separate DC and AC histograms for the A and B
components. Instead, as a byproduct of constructing the DC and AC
chrominance Huffman codes, it produces DC and AC chrominance histograms,
which are composites (sums) of the DC A and B, and the AC A and B, histograms
respectively.

Because the 1995 study focuses on the number of bits generated just by
Huffman coding, exclusive of other bits included in an actual compressed data
stream, a "test image" in this study is not an image at all. Instead, the "image" is
represented by the histograms produced when the actual image is compressed.
The number of Huffman coded bits, for a given symbol set, is the sum of the
products, over all symbols, of the number of times each symbol occurs, multiplied
by the Huffman code word length for that symbol.

Since the modified JPEG software generates histograms for DC and AC
"chrominance," and not separate A and B color components, the image model
employed in this study lumps the A and B components (DC and AC) into DC and
AC "chrominance" components. This lumping should not diminish the validity of
the results and conclusions of this study, which evaluates the effects of random
sampling and image characteristics on Huffman codes.

2.4 Sample Size

Determining an appropriate sample size consists of estimating the required
number of symbols, selected at random from a much larger pool of symbols, to be
statistically representative of the entire pool. This is different from selecting
images from a large pool of images, because the image characteristics of the
smaller set of images may be statistically significantly different from those of the
large pool. To establish this statistical significance, one must estimate the random
error associated with sampling symbols from a pool whose image characteristics
are fixed. If this random error is small compared to differences arising from image
characteristics, then the latter are statistically significant.

2.4.1 Theory

An analytical method of estimating the appropriate sample size is presented
in Appendix B. This method yields an optimistic estimate of only a few thousand
symbols, and a conservative estimate of high tens to high hundreds of thousands.
This is small compared to the millions of symbol occurrences for each of the four
symbol sets in the Delta composite histograms.

2.4.2 Random Sampling Results

A C program, SampHist.c, randomly samples, with replacement, symbols
whose statistics are controlled by an input histogram set. The user specifies a
percentage sampling rate that sets the number of samples to be taken for each
image component. The program output is a set of histograms based on the
sample results. If a possible symbol never occurs in the sample, it is assigned a
count of 1.

SampHist.c simulates the following experiment: Mix a very large number of
marbles labeled with symbol names in a box, with the proportion of marbles with a
given symbol name specified by the input histogram. Draw N times from the box,
each time noting the symbol name, and then throwing the marble back in the box
and remixing the marbles before drawing again. Build a new histogram based on
the results of the drawings.

This program was employed to randomly sample a symbol pool at sampling
rates of 50 percent and 10 percent, with the symbol pool statistics determined by
the Delta composite histograms. Huffman code tables (consisting of code word
lengths, not the codes themselves) for each image component were generated
from the original composite histograms, the 50 percent histograms, and the 10
percent histograms. AvHuflen.c, a C program written in 1994, was then run to
compute the average number of Huffman coded bits per symbol when the "image"

was always represented by the whole composite histogram set (one histogram for
each of the four image components), and the Huffman codes were the three sets
mentioned above. The results for the original composite and the 50 percent
sample were identical in bit count for all components. The 10 percent sample
results agreed exactly for the DC luminance, differed by 1 bit out of approximately
3 million for DC chrominance, by approximately 2400 bits out of 19.9 million, or
0.012 percent for the AC luminance, and roughly 2000 bits out of 11.7 million,
i.e., 0.017 percent for the AC chrominance. These differences were much
smaller than those observed in 1994 when different Huffman code sets encoded a
given image. The results show that performance differences among the code sets
tested in 1994 were almost certainly due to differing image characteristics and/or
processing parameters in the image sets used to derive these codes.

2.4.3 JPEG Huffman Coding Anomaly

In the random sampling experiment described above, a startling result
occurred. The Huffman codes derived from 10 percent sampling of the Delta
composite performed slightly better than those derived from the full histogram
when the "test image" was represented by the full histogram itself. This anomaly
occurred in the AC luminance and AC chrominance components. Even though the
differences were very small, the fact that another Huffman code could do even
very slightly better than the full histogram's own Huffman code caused
considerable consternation.

A copy of AvHuflen.c was modified to derive pure Huffman code word
lengths from a supplied histogram, instead of reading the JPEG Huffman code
word lengths from a file. Pure Huffman codes are not constrained to the JPEG
length limit of 16 bits. When the code performance comparisons were repeated
with pure Huffman codes, the anomaly disappeared.

Spreadsheets were created to compare the bit counts produced by various
Huffman codes for each symbol of the AC luminance symbol set, and to show the
total differences. The comparisons were:

Pure Huffman, full histogram v. pure Huffman, 10 percent sample,
JPEG v. pure Huffman, both derived from the full histogram,
JPEG v. pure Huffman, both derived from the 10 percent sample,
JPEG Huffman, full histogram v. JPEG Huffman, 10 percent sample.

In all four cases, the encoded "image" is represented by the full, unsampled
composite histogram, i.e., the Delta composite from the 1994 project.

The first comparison showed that the pure Huffman code behaved as

expected, namely, that the code from the 10 percent sample performed very
slightly worse than that from the full histogram when encoding an "image" whose
statistics are represented by the latter histogram.

The second and third comparison showed that the JPEG Huffman code does
worse than the pure code when both codes are derived from either the full or the
10 percent histogram. The degradation was worse, however, for the full
histogram than for the 10 percent sample, enough worse to cause the anomaly.

In the fourth spreadsheet, there were only four symbols in which the code
word lengths differed. Table 2.1 shows these differences.

TABLE 2.1 - SYMBOLS IN WHICH THE CODE LENGTH DIFFERS

Symbol
No. (hex)

Number of
occurrences

Code word length
(full histogram)

Code word length
(10 percent sampled)

Bit count
Difference

25 486 16 14 972

34 753 15 16 -753

E1 1478 15 12 4434

FO 2252 11 12 -2252

The Huffman code word lengths derived from the full histogram produced 2401
more bits than did those derived from the 10 percent sample.

It is evident, therefore, that the JPEG Huffman coding algorithm, with its 16
bit limit on the code word length, may produce sub-optimal codes in the sense
that a code produced from a given "image" (e.g., the full composite histogram)
may not perform quite as well when encoding that same image as code produced
by another "image" with nearly identical statistics (e.g., the 10 percent sampled
histogram). However, the difference is tiny compared with the various differences
observed in the 1994 Color Facsimile project.

2.5 The Effects of Image Characteristics

Busy and bland images aptly illustrate how image characteristics affect
JPEG symbol statistics. Busy images exhibit rapid spatial variations in brightness
and/or hue; bland images are the opposite. These two image classes are easily
distinguished by visual inspection. Of course, there are intermediate images, parts
of which are busy and parts bland, and there are degrees of busyness. The
images evaluated for the 1995 study were deliberately chosen to be obviously

busy or obviously bland.

Busy images are inherently harder to compress than bland images, because,
as is explained presently, the former generate more symbols to be encoded than
the latter. A universal default Huffman code should take this into account by
favoring busy image statistics according to the proportion of busy image symbols.
Section 2.6 shows how to determine the extent to which busy image statistics
should be favored.

A DC symbol represents the difference between the quantized DC
coefficient of the block being encoded and that of the block that was most
recently encoded. Because the DC coefficients vary more from block to block in
busy images than in bland, the probability of the zero-value symbol (SSSS = 0) is
considerably less in busy than in bland images.

For AC, busy images produce more non-zero quantized coefficients than do
bland images. Consequently, busy images produce more AC symbols for a given
image size, since, in any given block, a symbol is generated for each non-zero
coefficient.

Each block almost always includes an end-of-block symbol in both busy and
bland images. (In the very rare case of the last coefficient in a block being non-
zero, an end-of-block symbol is not encoded.) Since busy images generate, on the
average, more AC symbols per block, the probability of the end-of-block symbol is
significantly less in busy than in bland images.

Evaluation of the statistical differences between busy and bland images
commenced with the selection of a set of 7 obviously busy and 7 obviously bland
images, all fully sampled. Table 2.2 describes the characteristics of each of the
14 color images chosen. All images were first converted to the CIELAB color
space. The DLB extension on the filenames was added to indicate that the images
are in the RAW format with the Delta header. Hard copies of the images (in
grayscale) are included in Appendix C of this report.

The images were compressed with the modified JPEG software at a
compression scale factor of 25 (the JPEG recommendation for satisfactory image
quality and good compression) to build a histogram for each symbol set of each
image. Program CHistv2 then produced composite histograms for the busy image
set and the bland image set. In the composite histograms, possible symbols that
never occurred were assigned counts of 1 to guarantee a Huffman code for each
possible symbol.

TABLE 2.2 - BUSY AND BLAND IMAGE SET DESCRIPTION

File Name Description Image Type Image Size

img0009.dlb boats busy 1504x2048

img0005.dlb fish busy 1504x2048

img0024.dlb train in warehouse busy 1504x2048

img0012.dlb handbags busy 1496x2040

img0021.dlb violin & tapestry busy 1504x2032

n8.dlb woman in photo busy 1504x2048

bikerace.dlb bike race busy 1504x2048

img0008.dlb water bland 1520x2048

img0003.dlb floppy disk bland 1520x2048

img0020.dlb 2 violins bland 1520x2048

n6.dlb flower bland 1520x2048

sunset.dlb sunset bland 1520x2048

plane.dlb airplane bland 2560x1216

gcanyon.dlb grand canyon bland 1520x2048

The next step was to run SampHist.c to perform random sampling at 50 and
10 percent for both image classes. For each class, separate Huffman code sets
were generated from the original composite histogram set and the 50 and 10
percent samples, and AvHuflen.c measured the performances of the three code
sets against the original composite histogram set. The Huffman codes derived
from the 50 percent samples gave results, for both the busy and bland
composites, that agreed in average bits per symbol with the results of using the
Huffman codes from the original histograms to within 0.001 bit for all symbol sets.
The results of using the Huffman codes derived from the 10 percent samples
agreed to within 0.001 bit per symbol in all symbol sets, except, in the bland
composite, the AC luminance and AC chrominance results differed by 0.002 bit.
Therefore, the "noise level" due to random sampling is no more than 0.002 bit per
symbol.

8

In the final step, the Huffman code set generated by the full busy composite
was designated "busy Huffman code," and that produced by the full bland
composite was called "bland Huffman code." The Huffman code sets from the 50
and 10 percent histograms were discarded. AvHuflen.c was then run with both
the busy and bland Huffman codes, with test "images" represented by the
following histogram sets: (1) the busy composite, (2) each busy image, (3) the
bland composite and (4) each bland image.

The initial plan specified that all images have the same number of pixels,
and that both the width and height of each image be a multiple of 8 pixels. The
second specification ensures that each image component produces a whole
number of 8 x 8 blocks without the JPEG compression software's having to fill out
partial blocks.

The goal of all the images having the same number of pixels was not met.
All bland images produced 48128 blocks per component, as did five of the seven
busy images. The remaining two busy images generated 47685 and 47752 blocks
per component. The goal of each image dimension being a multiple of 8 was met.

Because of the differing sizes, the data for the number of symbols are
expressed in average symbols per block instead of total number of symbols. In
the following tables, the number of luminance blocks in an image is the total
number of pixels divided by 64. The number of chrominance blocks is twice this
value, because the JPEG program generates separate blocks for the A and B color
components, i.e., two "chrominance" blocks for each luminance block. The
average number of symbols per block is always 1 for the DC luminance and the
DC chrominance, because exactly one DC symbol (the difference between the
quantized DC coefficients in the current and previous block) is encoded per block.

In the busy (bland) composite, the numbers of luminance and chrominance
blocks are the sums of the corresponding numbers over all busy (bland) images.
However, in the composites, each possible symbol that never occurs in any image
comprising the composite is assigned a value of 1 for the number of occurrences.
This slightly increases the total number of occurrences, hence very slightly
increases the average number of symbols per block. This effect is so small,
however, that the average number of symbols per DC block computes to 1.0 with
several more zeros before another non-zero digit occurs, and hence is negligible.

Table 2.3 shows the results of encoding the busy composite and the
individual busy images with both the busy and the bland Huffman codes. Table
2.4 is a similar table for the bland composite and images.

TABLE 2.3

Results of Encoding Busy Images with Busy and Bland Huffman Codes

Image
(or composite)

Number of Blocks
Luminance

Symbol Set Average
Symbols
per Block

Average bits per
symbol
(busy Huffman code)

Average bits per
symbol
(bland Huffman code)

Chrominance

Busy Composite 336077 DC Luminance
AC Luminance
DC Chrominance
AC Chrominance

1
12.-71

1
3.03

2.981
3.374
2.344
2.737

3.690
3.695
2.490
2.822

672154

Boats 48128

96256

DC Luminance
AC Luminance
DC Chrominance
AC Chrominance

1
13.63

1
2.76

2.982
3.384
2.202
2.699

3.483
3.655
2.203
2.716

Fish 48128

96256

DC Luminance
AC Luminance
DC Chrominance
AC Chrominance

1
9.48

1
2.75

2.936
3.331
2.318
2.630

3.550
3.462
2.474
2.630

Train in
Warehouse

48128

96256

DC Luminance
AC Luminance
DC Chrominance
AC Chrominance

1
9.14

1
2.42

3.041
3.442
2.225
2.672

3.260
3.568
2.160
2.618

Handbags 47685

95370

DC Luminance
AC Luminance
DC Chrominance
AC Chrominance

1
12.41

1
3.16

2.829
3.318
2.295
2.723

3.719
3.676
2.401
2.843

Violin & Tapestry 47752

95504

DC Luminance
AC Luminance
DC Chrominance
AC Chrominance

1
11.35

1
2.97

3.019
3.338
2.330
2.633

3.978
3.670
2.561
2.662

Woman in Photo 48128

96256

DC Luminance
AC Luminance
DC Chrominance
AC Chrominance

1
25.44

1
3.55

2.983
3.406
2.426
2.948

3.970
3.919
2.605
3.126

Bike Race 48128

96256

DC Luminance
AC Luminance
DC Chrominance
AC Chrominance

1
7.51

1
3.63

3.074
3.360
2.613
2.779

3.876
3.526
3.023
2.996

10

TABLE 2.4

Results of Encoding Bland Images with Busy and Bland Huffman Codes

Image
(or composite)

Number of Blocks
Luminance

Symbol Set Average
Symbols
per Block

Average bits per
symbol
(busy Huffman code)

Average bits per
symbol
(bland Huffman code)

Chrominance

Bland Composite 340480 DC Luminance
AC Luminance
DC Chrominance
AC Chrominance

1
6.23

1
2.28

3.256
3.452
2.095
2.564

2.414
3.217
1.815
2.414

680960

Water 48640

97280

DC Luminance
AC Luminance
DC Chrominance
AC Chrominance

1
4.43

1
1.16

3.451
3.950
2.000
2.138

2.036
3.405
1.277
1.354

Floppy Disk 48640

97280

DC Luminance
AC Luminance
DC Chrominance
AC Chrominance

1
6.22

1
2.06

3.311
3.306
2.202
2.587

2.464
3.177
1.813
2.452

Two Violins 48640

97280

DC Luminance
AC Luminance
DC Chrominance
AC Chrominance

1
6.92

1
2.24

3.099
3.437
2.192
2.526

2.670
3.271
2.139
2.390

Flower 48640

97280

DC Luminance
AC Luminance
DC Chrominance
AC Chrominance

1
9.15

1
1.54

3.113
3.557
2.094
2.334

2.698
3.416
1.681
1.876

Sunset 48640

97280

DC Luminance
AC Luminance
DC Chrominance
AC Chrominance

1
4.71

1
2.55

3.417
3.405
2.043
2.623

2.210
3.037
1.772
2.520

Airplane 48640

97280

DC Luminance
AC Luminance
DC Chrominance
AC Chrominance

1
5.29

1
2.96

3.278
3.337
2.084
2.646

2.412
3.066
1.973
2.632

Grand Canyon 48640

97280

DC Luminance
AC Luminance
DC Chrominance
AC Chrominance

1
6.88

1
3.42

3.119
3.256
2.051
2.703

2.405
3.047
2.048
2.733

11

The composite data serve as an indication of the average performance of
busy and bland images compressed with busy and bland Huffman codes. The
most striking difference was in the DC luminance: the degradation suffered from
encoding the busy composite with the bland Huffman code or vice versa was in
the order of 30 percent. The other symbol sets gave considerably less
degradation, in the neighborhood of 5 to 10 percent.

The individual image data produced some surprises. Among the busy
images, the Train image DC and AC chrominance did slightly better with the bland
than with the busy Huffman codes. The AC chrominance for the Fish image
scored a dead heat with the two Huffman codes. The DC chrominance results in
the Boats image differed by 0.001 bit, which is not statistically significant because
of the random sampling uncertainty. In the bland set, the AC chrominance of the
Grand Canyon image produced 0.01 fewer bits per symbol with the busy Huffman
code than with the bland. These small "reversals" in the chrominance data may
have occurred because the luminance data probably contribute more than the
chrominance to a visual judgement of whether an image is busy or bland.

2.6 Designing a Universal Huffman Code Set

Building a universal default Huffman code set (one code for each image
component) to cover all image classes and processing parameters is
straightforward in principle when one employs a probability tree to obtain the total
probability of each symbol in a symbol set.2 The method is illustrated by an
example.

Let all images be classified into two or more mutually exclusive classes (no
image can belong to more than one class). The current example assumes two
classes, d and c2, for example, busy and not busy. Assume that the processing
parameters are characterized by three compression scale factors and two sub-
sampling rates. Let f1, f2 and f3, for example 8, 25 and 71, be the compression
scale factors; let r1 and r2, e.g., 1:1:1 and 4:2:2, be the sub-sampling rates.

Each combination of class, scale factor and sub-sampling rate may produce
significantly different statistics for the encoded symbols. Consequently, a
separate default Huffman code set for each combination would be expected to do
better when used to encode images characterized by that combination than one
"universal" code set. However, if a single default code set is required, the
procedure described below leads to the best compromise across all image
characteristics and processing parameters.

12

2.6.1 Required Data

The required data are:

• Conditional probability estimates
• Composite histograms

The present example assumes that the image sub-sampling rate is
conditioned on the compression scale factor, which, in turn, is conditioned on
image class. This is a purely arbitrary assumption for illustrative purposes only. If
other dependencies become evident, then the probability tree must be restructured
accordingly.

For this example, the required probability estimates for each image
component are:

d and c2 (unconditional),
f1, f2 and f3 given c1, and f1, f2 and f3 given c2,
r1 and r2 given d and f1, r1 and r2 given d and f2,

r1 and r2 given c2 and f3.

In all, there are 20 probabilities to be estimated: 2 for the classes, 6 for the
compression scale factors (3 for each class) and 12 for the sub-sampling rates (2
for each compression scale factor and each class). For simplicity, one might
assume that the various parameters are statistically independent, in which case
there are only 3 scale factor and 2 sub-sampling rate probabilities. The example
given here is not restricted to this assumption.

A composite histogram for each image component is compiled from several
images for each of the 12 combinations of class, scale factor and sub-sampling
rate. From each such histogram an estimated symbol probability function is
computed.

2.6.2 The Probability Tree

Figure 2.1 shows the probability tree. At the bottom of the tree there is a
"leaf" for every symbol in the set for each of the 12 combinations; for clarity, the
figure shows a leaf representing just one symbol for each combination.

13

Class

Compression
Scale
Factor

Sampling
Parameters

Symbol

0.1 0.2 0.05 0.02 0.03
Probability of symbol s'for each combination of class, compression scale factor and sampling rate

Figure 2.1 Probability Tree for Image Classes and Processing Parameters

The general rules for any probability tree are:

The probability associated with any tree branch is the probability of the
event represented by that branch, given the set of events associated with
the node from which the branch leads.

The sum of the probabilities associated with all branches leading away from

any one node is always 1.

The probability of passing through the root (top) node is 1.

The probability of passing through any other node is the product of the
usually conditional probabilities associated with all the branches in the path
from the root to the node. (The probabilities associated with branches

14

leading from the root node are unconditional, since the probability of
passing through the root node is 1.)

• Events represented by a tree node may be conditioned on events
represented by higher-level nodes in the tree (toward the root node), but not

by lower-level nodes.

To compute the total probability of symbol s, one forms a sum of products.
Each product is the probability of the symbol given one of the (in this example) 12
combinations of class, scale factor and sub-sampling rate, times the probabilities
associated with the path leading from that combination back to the tree root.

In the example shown in the figure, the various probabilities are chosen
arbitrarily for illustrative purposes only. With some terms missing, the method of
computing the total probability for one symbol is shown:

tp(s) = (0.1 x 0.2 x 0.4 x 0.7)
+ (0.2 x 0.8 x 0.4 x 0.7)
+ (0.05 x 0.6x0.5 x0.7)
+ 7 terms
+ (0.02 x 0.6 x 0.5 x 0.3)
+ (0.03 x 0.4 x 0.5 x 0.3).

With accurate symbol probability estimates for the 12 combinations of
image class and processing parameters (from the 12 composite histograms), and
good conditional probability estimates (f1 given d, r2 given f2 given c2, etc.),
one can compute the total probabilities of all the symbols, and from this probability
function, derive an optimal Huffman code that is universal over all image class and

processing combinations.

2.6.3 Estimating Tree Branch Probabilities

When estimating the probabilities for the probability tree branches, one must
remember that one is in effect counting symbols, not images. For example,
suppose that the two image classes, d and c2, represent busy and not-busy
images. The probability of d is not defined as the probability that an image is
busy, but rather as the proportion of symbols that are generated by busy images.
Busy images tend to generate more AC symbols than do bland images, because
the former produce more non-zero AC spatial frequency coefficients.

For the DC components, the number of symbols is independent of whether
the image is busy or bland; therefore, d and c2 are the probabilities that the
image is busy and bland respectively.

15

The following treatment shows how to estimate the d and c2 probabilities
for AC luminance or chrominance in terms of the probability that an image is busy,
while allowing for the difference in symbol production by busy and bland images.

Assume that the following quantities are known, for AC luminance or AC
chrominance:

p(bi) probability that an image is busy,
p(ni) probability that an image is bland (not busy),
n(b) average number of symbols produced by a busy image,
n(n) average number of symbols produced by a bland image,

where, for n(b) and n(n), the images are assumed to be of the same size. If this
assumption is false, then size related weighting factors must be included.
Absolute values of n(b) and n(n) are not required; only the following ratios:

R(b) = n(b) /[n(b) + n(n)],
R(n) = n(n) / [n(b) + n(n)].

It is now shown that the symbol probabilities for d and c2 (busy and bland)
are given by:

p(busy symbol) = p(bi)R(b) / [(p(bi)R(b) + p(ni)R(n)],
p(bland symbol) = p(ni)R(n) / [(p(bi)R(b) + p(ni)R(n)].

Assume that, in the following imaginary experiment, Kb) busy images and
l(n) bland images are processed. Let n(b) be the average number of symbols per
busy image, and n(n) be the average number per bland image. Let p(bi) and p(ni)
be estimated by the ratios

p(bi) = Kb) / [1(b) + l(n)]
and

p(ni) = Kn) /[Kb) + l(n)].

Then:
Total number of busy image symbols = n(b)Kb),
Total number of bland image symbols = n(n)l(n),
Total number of all image symbols = n(b)Kb) + n(n)l(n).

To estimate the probabilities of busy and bland image symbols from this
experiment, one would compute the following ratios:

p(busy symbol) = total busy image symbols / total symbols,

16

p(bland symbol) = total bland image symbols / total symbols,

from which

p(busy symbol) = n(b)Kb) / [n(b)l(b) + n(n)l(n)],
p(bland symbol) = n(n)l(n) / [n(b)l(b) + n(n)l(n)].

Dividing the numerators and denominators of both expressions by the product

[(n(b) + n(n)][l(b) + l(n}]

gives

p(busy symbol) = p(bi)R(b) / [(p(bi)R(b) + p(ni)R(n)],
p(bland symbol) = p(ni)R(n) / [(p(bi)R(b) + p(ni)R(n)].

Estimating the probability that a symbol comes from an image compressed
by a given scale factor requires similar treatment, because low scale factors
produce more AC symbols than do high scale factors. Similarly, different sub-
sampling rates produce different numbers of symbols.

2.7 Default Huffman Coding Conclusions

An optimal universal default Huffman code for any given symbol set is that
which comes from the total probability function of the symbols. Unlike many
random processes, like games of chance, drawing names from a hat, or
radioactive decay, the probability function of a JPEG symbol set does not lend
itself to theoretical derivation. There is no a priori knowledge of the proportions in
which various kinds of images and image processing parameters will occur.
Estimating symbol probabilities even for one image by analytical means, without
actually counting symbols, is probably not feasible. Consequently, empirical,
rather than analytical, means are required to estimate the total probability function.

A brute force method of estimating this probability function would be to
collect histograms for all the images processed by all sites over a long period of
time and compile a composite histogram. Such an estimate would ensure a mix of
image characteristics and processing parameters that would be representative of
the "universe." Unfortunately, such a scheme is economically impractical, because
every facsimile machine would have to be equipped with the extra hardware and
software required to collect the histograms. Selected sites could be so equipped;
however, this might introduce site-dependent statistics. There would have to be
enough sites to average out this effect. Each such site would have to save its
histograms and send them to a processing center for compilation after the test

17

period expires.

The probability tree approach offers the following advantages over the brute

force method:

• A few selected test sites would gather the composite histograms for
the various combinations of image characteristics and processing
parameters. The random sampling theory and experiments reported
above show that only a few images would be required for each

combination.

• If the image classes are readily observable by visual inspection (for
example busy/bland), a large number of sites could, for each of
hundreds, possibly thousands, of images processed, log the image
classes and processing parameters, and send the logs to a processing
center. Such logs could be entered separately from the facsimile
machines, for example, into text files on small computers. The
processing center could then design the probability tree.

Even the probability tree approach is not simple, because it may be difficult
to estimate all the conditional probabilities. Various simplifying assumptions may
be required; such assumptions would, unless realistic, compromise the universality

of the default codes.

In the 1994 project, all three tested code sets performed, for a given image,
mostly within a few percent of each other, and always within approximately ten
percent of one another. If such variations are acceptable,, then an adequate
default code set can be derived by any facility by compiling composite histograms
from tens to hundreds of images, representing a thorough mix of image
characteristics and processing parameters. To combat the "not invented here"
syndrome, a compromise code set could be derived by combining the composite
histograms of all contributors, all sharing credit for the resulting Huffman codes.

If further effort toward better performance is to be undertaken, then the
probability tree approach is recommended. Several contributors should
independently develop Huffman codes, and all should be tested with each of many
images. If, over the various test images, the performances of all codes with any
given image are nearly the same (for example to within a few tenths of a percent),
then these codes closely approach the optimum, and, as suggested above, a joint
code can be developed, with the contributors jointly claiming credit.

To avoid bias toward any contributor, the images used to test the codes
should be chosen at random from a set that excludes all images from which the

18

candidate codes are derived.

REFERENCES

[1] National Communications System, Color Facsimile, NCS TIB 95-2, February
1995.

[2] C. Ash, The Probability Tutoring Book, IEEE Press, pp.56-58.

19

APPENDIX A

SOFTWARE TOOLS

This appendix summarizes the various computer programs employed during

this study.

JPEG Software Modifications

In 1994 the JPEG compression and decompression software was modified
for the following purposes: (1) process or generate the Delta Information Systems
CIELAB image file format as discussed in Section 3.1.1 of the 1994 final report;
(2) save into a text file a histogram of symbol occurrences used to generate each
Huffman code table; (3) use such a histogram text file to generate Huffman tables,
and (4) to save Huffman tables to a text file.

CHistv2.c

This C program, written in 1994, reads a list of file names of histogram sets
(one histogram for each Huffman code table) and builds a composite histogram set
by, for each symbol in each symbol set, summing the number of occurrences in all
the files named in the list. After the summing is completed, the program checks
each possible symbol, and if it has a count of 0, it sets it to 1. This ensures that,
when the composite histogram set produces Huffman codes, a code word is
generated for every possible symbol.

SampHist.c

This program, developed in 1995, is described in the body of this report.
The user specifies a histogram file and a number representing the sampling
percentage, for example 10 for 10 percent. The program determines, for each
histogram, the number of samples required to be the specified percentage of the
total symbol count in that histogram.

Because the sampling process is with replacement (a "marble" is "thrown
back into the box" after being "drawn"), specifying 100 percent does not
guarantee that the output histogram will be identical to the input. That is why this
report refers to the "whole" or "unsampled" histogram, or similar words, and never

"100 percent sampling."

AvHuflen.c

Written in 1994, this C program measures the performance of a Huffman
code. The total bit count produced by the JPEG image compression and
decompression program includes, among other things, SSSS bits per non-zero
quantized coefficient, where SSSS is the "size" of the coefficient. Moreover, the
bit count combines the bits generated by all image components. AvHuflen.c, on
the other hand, counts the bits produced just by the Huffman coding process and

A- 1

reports the results separately for each image component. The only drawback of
employing AvHuflen.c is the lumping of the A and B DC and AC color components
of an actual image into DC and AC "chrominance" as explained earlier.

The program reads a Huffman code file produced by the modified JPEG
program and constructs, for each symbol set, a one-dimensional array showing the
code word length for each symbol (0 for impossible symbols). The program then
reads a text file containing a list of image histogram file names. For each such
histogram file, and for each symbol set, AvHuflen.c sets the total number of bits
equal to the sum of the products, over all symbols, of the number of occurrences
of each symbol times the code word length for that symbol. The program reports,
for each component of each image, the total number of encoded bits, the total
number of encoded symbols, and the average number of bits per symbol.

A- 2

APPENDIX B

ESTIMATING SAMPLE SIZE

1 Introduction

The following theoretical analysis gives an estimate of the required number
of symbols, randomly sampled with replacement from a large pool, to adequately
represent the pool. "Adequately represent" means to produce a Huffman code that
performs nearly as well as a Huffman code derived from the entire pool when both
codes encode symbols whose statistics are identical to those of the pool.

The purpose of this analysis is to ensure that the sample size is large
enough to make random errors due to sample size small compared to differences
arising from different image characteristics or processing parameters. Sampling
with replacement ensures that the statistics of the pool being sampled are
independent of samples already selected.

2 The Estimation Method

To simplify the analysis, a coding model based on the information content of
each symbol is assumed instead of Huffman coding. The information content of

symbol s is:

l(s) = - log2 p(s),

where p(s) is the probability of the symbol. The coding model has code "words"
l(s) bits long. This is clearly not realizable in practice, at least in systems that
employ a specific binary code for each symbol, because l(s) is not necessarily an

integer."

With information coding, the average number of bits per symbol is given by:

H = Sum [-p(s) log2 p(s)],

which is the entropy of the symbol set, and is the theoretical minimum average bit
rate when the symbols are coded independently. It is well known that the optimal
Huffman code always produces an average number of bits per symbol that is at

most 1 greater than H.

Now, let the code word lengths l(s) be derived from an estimated probability

Arithmetic coding, which in effect encodes the entire message as a
long binary fraction, can very closely approach the theoretical
minimum average number of bits per symbol.

B- 1

function for the symbols. Let the estimated probability for a given symbol be

given by

q(s) = p(s) + dp(s),

where dp(s) is the estimation error. Then, the average number of bits per symbol
over the very long term is given by:

B = Sum {-p(s) log2 [p(s) + dp(s)]}.

We now approximate B under the assumption that |dp(s)| < p(s). First, it is

noted that

log2 x = In x / In 2 = K In x,

where In x is the natural logarithm (base e) of x, and K = 1.44269... .

The Taylor's series expansion of In (p + dp) about In p is:

In (p + dp) = In p + dp / p - dp2 / 2p2 + dp3 / 3p3 - dp4 / 4p4 + ...

valid for |dp| < p. Substituting into the equation for B yields:

B = K times {
Sum [-p(s) In p(s)]
- Sum [dp(s)]
+ Sum [dp(s)2 / 2p(s)]
- Sum [dp(s)3 / 3p(s)2]
+ ...}.

The first sum in the braces, multiplied by K (ratio of log2 x to In x), is H, the
entropy. The second sum vanishes, because the sum of the probabilities in both
the actual and estimated probability functions is 1; therefore, the sum of the
estimation errors is 0.

The contribution of each symbol to B - H, the excess average bits per
symbol over the entropy, is therefore given by b(s):

b(s) = K [dp(s)2 / 2p(s) - dp(s)3 / 3p(s)2 + dp(s)4 / 4p(s)3 - . . .]
K [dp(s)2 / 2p(s)] [1 - (2/3)x + (2/4)x2 - (2/5) x3 + . . .]

where x is defined as dp(s)/p(s), and Sum [b(s)] = B - H.

B- 2

Consider the infinite series inside the right set of brackets:

1 - (2/3)x + (2/4)x2 - (2/5) x3 +

For x > 0 (but less than 1, of course, for the Taylor's series to converge), the
terms alternate in sign and decrease in magnitude as the power of x increases.
The series sum is therefore bounded by

1 - (2/3)x < sum < 1 - (2/3)x + (2/4)x2.

For x < 0, all the terms are positive. Because the coefficients decrease with
increasing powers of x, the sum is less than the geometric series in |x|:

1 + |x| + |x|2 + |x|3 + ... = 1 / (1-|x|) for |x| < 1.

Therefore, for x < 0 (and |x| < 1), the infinite series is bounded by

1 < sum < 1 / (1-|x|).

For |dp(s) | / p(s) less than 0.1, the infinite series sum is, to good approximation,
1 to within an error of approximately |dp(s)| / p(s). With |dp(s)| / p(s) = Vi, the
sum is bounded below by 2/3 and above by 2. Therefore, to within a roughly 2 to
1 range, the contribution of each symbol to the excess number of bits per symbol

is given by:

b(s) = (approx.) K dp(s)2 / 2p(s).

It is now shown that the ratio of the expected value of dp(s)2 to p(s) is
almost independent of s. The number of times, n(s), symbol s occurs in a sample
(with replacement) of size N has a binomial probability function, i.e., the
probability of k successes in N trials, given the probability, p, of a success in one
trial. In the current context, a trial consists of selecting and replacing any symbol
at random, a success consists of finding that the selected symbol is symbol s, the
number of successes is n(s), and the number of trials is the sample size. The
mean and variance formulas given below are properties of the binomial function,
but are couched in terms of the symbol statistics.

The expected value (mean) of n(s) in a sample of size N is:

E[n(s)] = p(s)N,

and the variance, which is the expected value of [n(s) - p(s)N]2 is

B- 3

E{[n(s) - p(s)N]2} = p(s)[1 - p(s)]N.

Factoring out N gives

n(s) - p(s)N = N[n(s) / N - p(s)] = Ndp(s).

This is because n(s) / N is the estimated probability of symbol s based on counting
the number of times symbol s occurs in a total of N symbols. Consequently,

E{[n(s) - p(s)N]2} = E[N2dp(s)2] = p(s)[1 - p(s)]N,

from which

E[dp(s)2] = p(s)[1 - p(s)] / N

and

E[dp(s)2] / p(s) = [1 - p(s)] / N.

For p(s) < < 1,1- p(s) is approximately 1; hence the expected contribution of
symbol s to the excess bit rate is approximately 0.721 / N, and for p(s) nearer to
1, the contribution is less than 0.721 / N, where 0.721... is K / 2. Therefore, for
dp(s) fairly small compared to p(s), the total number of excess bits is given,

roughly, by:

B - H < 0.721 times Sum (1 / N);

whence

B- H < 0.721 S / N

where S is the number of symbols in the set, and N is the number of samples.
For S = 256 (more than the maximum for JPEG AC coefficients), this analysis
shows that only about two thousand samples are required to create a code with
which B - H < 0.1; i.e., the estimated probability function would yield a code that
is less than 0.1 bit per symbol worse than the entropy. This estimate is optimistic,

however, as is shown below.

3 Discussion

The derivation presented above assumes that: (1) the Taylor's series
expansion for In (p + dp) converges, which requires that |dp| < p, and (2) that

| dp | is fairly small compared to p, so that the approximation for the excess bits is

B- 4

reasonably accurate. (If condition (2) is satisfied, then condition (1) is also.)

The expected number of occurrences of symbol s in N samples is Np(s).
However, when p is small, and N is not sufficiently large, symbol s may not occur
at all in the sample. The estimated probability of s would then be 0, dp would be
minus p, the series would not converge for that symbol, and |dp| / p would be 1,
violating condition (2).

However, as p(s) approaches 0, p(s) log p(s) (any logarithm base)
approaches 0 even though the logarithm approaches minus infinity. For example,
if p(s) is 2"14, the code word length is 14 bits, but the symbol occurs so rarely
that it contributes only 14 x 2"14, or approximately 0.0009 bit, to the total bit
rate. Therefore, symbols having very small probabilities may be ignored in
estimating the sample size.

The Poisson probability function is an approximation of the binomial function
when p < < 1. It expresses the probability of n(s) occurrences of symbol s in N
samples in terms of m = p(s)N, the expected number of occurrences. (In printed
literature, the lower-case Greek letter lambda is often used instead of m.) For p
small, N large, and m intermediate, the Poisson function is a good approximation
of the binomial function.

To assure, with high probability, that a symbol will occur at least once, and
preferably several times in the sample, the value of m should be 10 or greater.
Table B.1 was derived from a spreadsheet for the Poisson function. The table
shows that m = pN should be between 10 and 100. To make m = 10 (100) for a
probability value of 2"13 would require a sample size of 81,920 (819,200).

Applying the equation for excess bit rate to a sample size of 81,920, and
assuming that symbols having probabilities less than 2 13 contribute negligibly to
the excess bit rate, gives an estimated excess bit rate of about 0.002 bit per
symbol. Thus, a code derived from a sample in the order of 105 to 106 symbols
should very closely approximate that derived from the entire pool.

Huffman coding is more tolerant of small probability estimation errors than
information coding, because Huffman code word lengths are always integers.
Therefore, very small estimation errors may not affect the Huffman code at all.

B- 5

Table B.1

Probability that dp is within 10 (20) percent of p
as a function of m = pN

m Pr. (10 percent) Pr. (20 percen

10 0.239 0.459
20 0.339 0.622

40 0.469 0.792

60 0.559 0.878

80 0.627 0.926

100 0.682 0.955

B- 6

APPENDIX C

BUSY AND BLAND IMAGES FOR
GENERATION OF DEFAULT HUFFMAN CODES

IMG0009.DLB

ffotratM^iWrfft^*1^

IMG0005.DLB

IMG0024.DLB

IMG0012.DLB

IMG0021.DLB

N8.DLB

%.

M

BIKERACE.DLB

-P

IMG0008.DLB

IMG0003.DLB

"■^t^^iiämimii

¥'M-

WM§0f^mC
1111
:?::>*>

1111
WMk

■y.-'.-:y.^A-y.y.-:y;.-;.\<;- ?',

y:-:i:Myi V-v^X^Ov-i-'-y-'^^'-vÄ^iv:1 WIM
:<■:■:■:■_:■ ^<::.y §||||:|fi|§

■

^MiiWIWm.
:-.-.:. ■:■;. ■:"■.■:■:■.

"V
lililptifii

?m

fll§ |
s/.-:- >>>>>x> :vx »zu;.
M
'/<■ yyy'yfo Pi 1.<

'&}<Mi' wm

v....,, ,?$?

• • -- „

:-:'>>>'<x-.':

■■■

i&yyyi-iyy^Mi' y

IMG0020.DLB

N6.DLB

^^r^^^HV^f-X-f^^'""'/"'''■■■■-'

W&

mmvmmmm::

SUNSET.DLB

■MM

■iixt m

li

PLANE.DLB

mmmmmM

mm

, ■.■.■•::■:•:•;-:•.-:vs.ys,/s/yA/Mvs.::-///':■:-:•:■:■ y.<:y:y.v:

':'.•:■. ^:::•>^c:':;::>^•:v:v^>';yx•^:^Ä':v:::■,^::^^::■,•'•■ '''■'■,',',',

: v.-y. x-™v5w.v: :•»/■£• «>y<-:•>;: x >■■:•:■:■:■

'r. :■:. /\-;;-:v:'y:':v:'x':«<''>i>/:

i-l&^V-$&vs, :■:: "::::;.>:.>-x >•: ■:-:v"^v;v>:w>:'/:->>*vffivZ->>

: vV '4- ^■■■■■v:.;-v>.:.V::« * ■ ?..&■■■.:■... -<:

<> y

•' »■■■■ '.*:*, ■■^^: ■■,■.,.'vS*..- V'' •>*

9 -«"

;;<:{: ::'':\^.^:.:™; *■■;■: :;*i'i

yy/y .:- • .:*•; •;.;;yyyyy>y....._*•■:

• ■;•.. •••Üiv'yV:*:':.?'': ^ :

: '' 'yyyyyyy '**^j*

:;..%:.:
::.>s.:.:

;;.:<«4:fv;;:!.;^:: W9B

■■■■:<■:■:■:■.■:-> />//?,

GCANYON.DLB

