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The optical properties of particles deposited on a surface. 

Final Techical Report on Contract N53171-95-C-9058 

1. Outline of the research. 
The motivation of this research stems from the need to detect and identify 

small particles deposited on a plane surface that is assumed to be otherwise 
clean. Such detection and identification is, in fact, relevant to all researches in 
which the cleannes of the surfaces is a fundamental prerequisite and to all the 
applications whose purpose is the deposition on a surface of particles of a given 
kind. 

In the preceding years we addressed our research toward the study of the re- 
sonances from particles on account that the resonance spectra are widely 
known to give useful information both fer free particles and for particles on a 
surface. Nevertheless, our methods were restricted to the case of metallic surfa- 
ces because the latter are a good approximation to perfectly reflecting surfaces. 
In this case, in fact, the image method proved to be very efficient to yield useful 
information both on the presence and of the shape of the particles of interest. 

In the last year our interest has been directed toward the properties of parti- 
cles deposited on non-perfectly reflecting surfaces, i. e. on surfaces that separate 
two different dielectric media. Of course this new purpose of our research did 
not stopped our study of the shape resonances from particles on metallic surfa- 
ces, but our main aim has been toward the formulation of a theory applicable to 
particles on a surface of general dielectric properties. 

2. Method of attack. 
It is well known that the expansion of the field in terms of spherical vector 

multipoles is a good method to deal with the electromagnetic scattering from 
small particles even when the Rayleigh approximation does not apply. Therefo- 
re our starting point has been the formulation of a general theory to describe 
the reflection of a spherical vector multipole field on a plane surface. To this 
end we expanded a general vector multipole field as a superposition of polari- 
zed plane waves with complex propagation vectors that were the reflected on 
the surface through the Fresnel reflection rule. As a result we were led to define 
a matrix that transforms the original multipole field into the reflected one. In 
this respect two point must be carefully stressed. First, the reflection of a single 
multipole field (either magnetic or electric) yields a superposition of both ma- 
gnetic and electric multipole fields and, second, the reflected multipoles do not 
satisfy the radiation condition at infinity. While the first point has no further 
consequences than some complication of the algebra, the second point seem to 
imply that the reflected field cannot yield the field in the far zone where the ob- 
servation is likely to take place. We were able, however, to show that this is a 
deriving appearence because of the fact that the expansion of a multipole field 
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as an integral over plane waves has a domain of validity that does not extend to 
infinity. To gett the reflected field at infinity we remarked that the refelcted 
field can also be written as a superposition of vector multipole fields that satisfy 
the radiation condition and whose origin is at the image point of the origin of 
the incident multipoles. The whole theory is better described in the enclosed 
paper that has been submitted for publication. 

A consequence of the research that has been outlined above is the possibility 
of studying the scattering both from a single sphere and from aggregated sphe- 
res in the presence of a surface of arbitrary dielectric properties. For the case of 
a single sphere the calculations have been completed whereas for aggregated 
spheres the calculations are still in progress. The results for a single sphere are 
better described in the second enclosed paper and may be summarized as fol- 
lows. The calculated extonction patterns show an excellent agreement with the 
available experimental data as well as with the results of ab initio numerical si- 
mulations. Morover, unlike the existing theories, our approach yields a non- 
vanishing field that propagates along the surface. The latter esult was well 
known to radio engineers but in the past it was obtained only for dipole fields 
whereas our approach yield the correct result for fields of any multiplicity. 

3. Resonances of hemispheres on a metal surface. 
As we stated above, our work on the resonance spectra from particles on a 

metal surface has not been discontinued. We, in fact dealt with the properties of 
hemispheres on a perfectly reflecting surface because such hemispheres may be 
a good model for liquid droplets on a metal surface. Of course, in this case the 
method of choice has been the image theory whose efficiency has been proved 
in our preceding works. We also studied the case of aggregated droplets. 

As a general comment to the results that are reported in the third enclosed 
paper, we can state that in the case of single hemispheres a reliable interpreta- 
tion of the behavior of the observed resonances can be given on general grouds; 
for the case of aggregated hemispheres no general rule was found so that the in- 
terpretation of the resonance spectra requires a detailed analysis of the transi- 
tion matrix of the aggregate of interest. 

The problem is still under investigation and in particular a study of the case 
of hemispheres containig small inclusions is in progress. 

4. List of publications. 
1) E. Fucile, F. Borghese, P. Denti, R. Saija and O. I. Sindoni, "General reflection 
rule for electromagnetic multipole fields on a plane interface," Submitted to 
IEEE Trans on Antennas and Propagation. 
2) F. Borghese, P. Denti, R. Saija, E. Fucile and O. I. Sindoni, "Resonance sup- 
pression in the extinction spectrum of single and aggregated hemispheres on a 
perfectly reflecting surface," submitted to Applied Optics 
3) E. Fucile, P. Denti, F. Borghese, R. Saija and O. I. Sindoni, "Optical properties 
of a sphere in the vicinity of a plane surface," submitted to Journal of the Opti- 



cal Society of America. 

5. Partecipants to the research. 
F. Borghese, P. Denti, R. Saija, Dipartimento di Fisica della Materia e Tecnologie 
Fisiche Avanzate, Universitä di Messina. 
E. Fucile, Centro siciliano per le Ricerche Atmosferiche e di Fisica dell'- 
Ambiente. 
O. I. Sindoni, Chemical Rersearch Development and Engineering Center, Aber- 
deen P. G. Maryland. 



General reflection rule for electromagnetic multipole fields on a plane 
interface. 

E. Fucile 
Centro Siciliano per le Ricerche Atmosferiche e di Fisica dell'Ambiente 

Salita Sperone 31, 98166 Messina, Italy 

F. Borghese, P. Denti, R. Saija 

Universitä di Messina, Dipartimento di Fisica della Materia, Geofisica e Fisica dell'Ambiente 
Salita Sperone 31, 98166 Messina, Italy 

0.1. Sindoni 
Chemical Research Development and Engineering Center 

Aberdeen P. G. 21010 Maryland 

The general rule for reflection of a vector 2!-pole field on a plane interface between two media 
of different dielectric properties is established starting from the expansion of the spherical multipole 
field as a linear combination of inhomogeneous vector plane waves. In fact, by considering vector 
multipole fields that satisfy the radiation condition at infinity we are able to define a matrix that 
effects their reflection on the plane interface. Such a matrix can also be used to reflect a superposition 
of many 2(-pole fields and so can be useful to describe the effect of a plane surface near to a specified 
source or to a scattering particle. 



1. Introduction 

Several problems in electromagnetic wave propagation imply the reflection on the plane interface 
between two different media of the vector 2'-pole fields emitted by a localized source: let us recall, 
for instance, the effect of earth on the propagation of the field emitted by an antenna1'2 and the 
reflection on a plane interface of the light scattered by a particle.3-5 The literature reports several 
papers that deal with some specific aspects of the subject, for instance the reflection of the field 
emitted by electric and magnetic dipoles,6'7 but a general solution to the problem of the reflection of 
a spherical 2'-pole field is still to come. This is not surprising because the mathematical structure 
of the vector multipole fields makes rather difficult the imposition of the boundary conditions 
across a plane interface. 

In this paper we show how this difficulty can be overcome by combining together the expansion of 
a scalar spherical multipole field in terms of inhomogeneous scalar plane waves3 and the definition 
of the vector multipole fields.8 Since the components of a vector multipole field are indeed linear 
combinations of scalar multipole fields, we are able to build the vector equivalent of the expansion 
referred to above. The resulting formula gives, in fact, the expansion of a general vector multipole 
field that satisfy the radiation condition at infinity as a linear combination of inhomogeneous 
vector plane waves that can thus be reflected through the Fresnel reflection rule. By expanding the 
reflected vector plane waves into a series of vector multipole fields we are led to define a multipole 
reflection matrix that effects the transformation of the incident vector multipole field into a linear 
combination of reflected vector multipole fields. Close examination of the latter combination shows 
that the reflected multipoles appear as emitted by the mirror image of the original source with 
respect to the interface. 

In Section 2 we establish the formula for the expansion of a vector 2'-pole field in terms of 
vector plane waves and with the help of the Fresnel reflection rule define the matrix that effects 
the reflection of such a field on the plane interface. To this end we assume that the source of 
multipole fields be embedded within a homogeneous medium with real refractive index; also the 
medium beyond the interface is assumed to be homogeneous but its refractive index may possibly 
be complex. The theory also includes, as a limit, the case of a perfectly reflecting surface. 

In Section 3 we show how the formal solution that has been established in Section 2 is actually 
suitable for numerical calculations. In particular, the elements of the multipole reflection matrix 
turn out to be given by integrals that can be evaluated through standard numerical methods. 

In Section 4 the accuracy of the calculated elements of the multipole reflection matrix is tested 
by investigating the numerical stability of the intensity that would be detected in the far zone 
when a vector multipole field that satisfies the radiation condition at infinity is emitted by a point 
source located in the vicinity of the plane interface. Since, according to our previous remark, the 
reflected field is given by a series of vector multipole fields that appear as emitted by the image 
of the source with respect to the interface, we also check the convergence of the latter series as a 
function of the distance of the source from the interface. 

A number of useful formulas and expansions are, for completeness, summarized in Appendix A 
and B. 

2. Multipole reflection rule 

The field emitted by a localized source, embedded in a homogeneous medium of refractive index n, 
can be expanded as a linear combination of spherical vector multipoles that satisfy the radiation 
condition at infinity.2,9 In order to define such multipole fields we consider a cartesian frame of 
reference whose axes are characterized by the unit vectors x, y and z. Then, by assuming that all 
the fields depend on time through the factor exp(—iuit), the appropriate vector 2'-pole fields are8 

nW>(r,nk) = h,(nkr)X,m(r), 

H&W*)=^VxH£(r,n*), 



where, as usual, k = u/c and the superscripts 1 and 2 are the values of the parity index p that 
distinguishes the magnetic multipoles (p = 1) from the electric ones (p = 2); the quantities hi are 
spherical Hankel functions of the first kind and the vectors X;m are vector spherical harmonics.9 

The latter are conveniently defined as 

X,m = -£C(ll/,/;-Ai,m + /Onm+,.(tf,p)£-/.. (2) 

where the functions yjm(i?,<p) are (scalar) spherical harmonics,9 

£o = z,    Ui = T-/=(x±iy), 

are the unit vectors of the spherical basis and the C are the Clebsch-Gordan coefficients8 

(*D           I(I ± m)(l T m + 1) 
C{l,l,l;±l,m?l) =c|^1) = ± JK- 2^fi) ~> 

C(l,/,/;0Im)=C^ = 

Our present purpose is to establish a general rule for the reflection of the multipole fields H,^ 
on the plane interface between two media of different dielectric properties. It is easily understood, 
however, that the mathematical structure of the spherical multipole fields, Eqs. (1), makes rather 
difficult imposing the appropriate boundary conditions across the flat interface.4 In order to face 
this problem we search for the vector equivalent of the integral expression3 

hi(nkr)Yim{d,ip) i-^- /     dtpk / <Wt sintftY,m(tffc,¥*)«*". (3) 
™    Jo Jo 

that, in the halfspace z > 0, gives the scalar multipole h{Yim as a superposition of plane waves 
with complex propagation vectors (inhomogeneous plane waves). It may be worth noticing that 
the range of integration in Eq. (3) is such that the real part of all the propagation vectors lies in the 
halfspace z > 0: thus the scalar multipole field h\{nkr)Ylm{d, ip) turns out to be a superposition 
of inhomogeneous plane waves that come from the source at the origin and propagate through the 
halfspace z > 0. An analogous expansion, applicable to the halfspace z < 0, can be written by 
considering plane waves whose propagation vectors have a real part that lies in the latter region. 

A. Reflected field 

Let us now define a cartesian frame of reference whose origin O lies on the plane interface between 
two media. Without loss of generality we can assume that the interface coincides with the plane 
z = 0 and that a homogeneous medium of refractive index n' fills the half-space z < 0 whereas a 
different homogeneous medium of refractive index n" fills the half-space z > 0 (see Fig. 1). We 
assume that a source of H multipole fields lies entirely within the half-space z < 0 and define a 
further frame of reference that is translated with respect to O and whose origin, O', lies within the 
source at a distance d from the interface. For our purposes it is also convenient to define a third 
frame of reference that is also translated with respect to 0 and whose origin, O", is the mirror 
image of O' with respect to the interface. We will denote with R' and R" the vector position of 
the origins O' and O" in the frame of reference with origin at O, respectively, whereas the vector 
position of the point of observation P in the three frames defined above will be denoted with r, r' 
and r", respectively. Then, by applying Eq. (3) to each of the scalar multipole fields that appear 

in the definition of an H multipole field, Eqs. (1) and (2), the multipole field H^(r',n'fc) with 
origin at O' can be expanded as 



H&V, n't) = (   %+'~%  / Z&>(£) exp(ik • r') dk, (4) 

where we define the transverse vector harmonics 

Z^(k) = X,m(k),    Z«(k) = X,m(k)xk, (5) 

V denotes the same integration domain as in Eq. (3) and k = n'kk is the propagation vector of 
the component plane wave. 

Equation (4) is the vector equivalent of Eq. (3) that is suitable for our purposes as it states that 
any H multipole field can be written as a superposition of inhomogeneous vector plane waves, of 

amplitude z{^, whose propagation vectors have a real part that points towards the flat interface: 
as a consequence, each of the component plane waves can be reflected according to the Fresnel 
reflection rule. To this end each component plane wave must be rewritten as a superposition of 
its polarized components that are parallel and perpendicular to the plane of incidence, that, as 
usual, is defined as the plane that contains both k and the z axis. Let us therefore define a pair 
of unit vectors, u,,, (rj = 1,2), that are parallel (r] = 1) and perpendicular (77 = 2) to the plane of 
incidence and so oriented that 

Ui X Ü2 : = k. 

Now, since r' = r - -R' , Eq. (4) can be rewritten as 

H&V.» '*) = (- iy+<- 
2n -J Jv El» 

n 
vz&(k)]ü zim (£)]ü» exP(ik • r) exp(-ik • R') dk, (6) 

so that the integrand contains only plane waves referred to the origin at O. In fact, the term 
u, exp(ik • r) in Eq. (6) is a vector inhomogeneous plane wave that is unitary at O and that can 
be reflected using the Fresnel reflection rule. As a result of the reflection we get the field 

H(
B

PL = !z!f___ /   V F„ |u„ • Z^(k)| ÜÄ„ exp(tkÄ • r) exp(-ik • R') dk, (7) ^— j Y,F» [ü" ' Z/m(k)] "Rn exp(*K • r) exp(-tk • R) dk, 

where k^ and U.RV are, respectively, the wave vector and the polarization unit vectors for the 
reflected wave and the quantities Fv are the Fresnel reflection coefficients9 

_ n2 cos dk-ß      F  _ cos dk - ß 
1_n2cos^+/?'        2~ cos^k + ß' 

where 

ß = yV - 1) + cos2 ■dk 

and n = n"/n'. The integrand in Eq. (7) can be referred back to the origin at O' by the phase 
factor exp(ikß • R') with the result 

<L=M^XS>M^>] 
ÜH„ exp(ikß • r') exp[i(kÄ - k) • R'] dk. (8) 

Now, according to Appendix A, the multipole expansion of the vector inhomogeneous plane wave 
in Eq. (8) is 

üfl„exp(ikß -r') = 47r][V
+'-1(-r+1Z^m(kß) . Ü^J^(r',n'fc), (9) 

plm 



where the multipole fields 3$ are identical to the H^ except for the substitution of a spherical 
Bessel function j, for the Hankel function h,. Then, substitution of Eq. (9) into Eq. (8) leds us to 
write the reflected field as 

H(P)    _   V   7(p,) (v' n'k)F(p':P) (10) "■Rim  —    2-^1   Jl'm'\V >" KK('m'Jm' V     ' 
p'l'm' 

where we define the quantities 

T\fjL = 2/-p+''-<(-r
+1 / £ Fn [Ü, • Z«(£)] 

Jv   v 

x [ÜÄ, • Z|f'2m,(kß)] exp(2»n'*dcosi?0 dk, (11) 

that are the elements of the matrix F that effects the reflection of the spherical vector multipoles. 
Equation (10) is thus the formal solution of the problem at hand. 

B. Far field 

It may be surprising that Eq. (10) gives the reflected field H^/m in terms of multipole fields, namely 
the J fields, that do not satisfy the radiation condition at infinity. This is a deceiving appearance, 
however, because it must be borne in mind that the reflection has been performed on the terms of 
an expansion, Eq. (6), that is valid only in the half-space z' > 0: as a result the region of validity 
of Eq. (10) is still to be determined. 

A simple way to asses this point is suggested by the fact that Eq. (8) can be rewritten in the 
form 

H&L = (~°2
PJ>"1 J £ Fn [ü, • Z&(k)] ÜÄ„ exP(ik* • r") dk, (12) lRlm 

so that the integrand is expressed in terms of reflected plane waves that are referred to the origin 
O": the phase factor 

exp[i(kfl — k) • R/] = exp(2m'fcdcos$jt) 

in Eq. (8) effects, indeed, the translation of origin from O" to O'. With the help of Eqs. (A7) 
and (A8) in Appendix A it is an easy matter to see that the amplitudes of the incident and of the 
reflected wave are related by the equation10 

ü«„ • z«(£Ä) = (-)"+"+'+mü, • z<£(£), (I») 

so that Eq. (12) can be rewritten as 

x Ün„ exp(ikfi • r") dk. (14) 

The interpretation of Eq. (14) is straightforward when the plane interface is perfectly reflecting. 
In this case, in fact, the Fresnel coefficients take on the limiting value 

Fn = (-y1 

and Eq. (14) can be easily verified to represent, except for a sign, the multipole field H^m
;(r", rik), 

with origin at the image point O": this representation is valid in the half-space z" < 0. Let us thus 



assume that in the general case Eq. (14) represents, in the half-space z" < 0, a linear combination 
of H multipole fields with origin at O" such as 

p"l"m" 

In order to determine the amplitudes a,flf^„ lm we express each of the H multipole fields in Eq. (15) 
as a combination of multipoles centered at O' through the use of the appropriate addition theo- 
rem.11 By defining R = R' — R", in the region inside the sphere with center at O' and of radius 
R (see Fig. 1), i. e. for r' < R, the addition theorem yields 

H&,= E E $2>vyw$$L»(*,n'Q*&M> (16) 
p"l"m"p'l'm' 

whereas, in the region outside this sphere, i. e. for r' > R, we get 

<n=    E     E ^>VyWlÜ!L^n'k)atfj)M. (17) 
p"l"m"p'l'm' 

The quantities 7i|fmf ,2m„(R,n'&) and jj)p
m?i-)mii(R;n'k) are explicitly given in Appendix B. By 

comparing Eq. (16) and Eq. (10) we get for the coefficients a}flnf/Im the expression 

n(p">p)      -   V^ f'W-l,\(p"'p')      -riP'-P) fl8") al"m",lm  —    2-1  V )l"m",I'm'^l'm',lm' \±0> 
p'I'm 

that, when substituted into Eq. (17), yields the reflected field Hfl in a form that is valid at large 
distance from the source and satisfy the radiation condition at infinity as it contains H multipole 
fields only. 

3. Calculation of the reflected field 

Equation (11), that defines the elements of the multipole reflection matrix, may seem to give only 
a formal solution to the problem of reflection. Nevertheless in this section we use the properties 
of the spherical multipole fields to put Eq. (11) into a form that is suitable for actual calculations. 
First by substituting Eq. (13) into Eq. (11) we eliminate the reflected wavevector kß and the 

polarization vectors ü^ so that the integrand depends on the dot product üv • Z^(k) only. The 
latter can be calculated by representing the polarization unit vectors on the spherical basis as 

costfitexpfVyjjfc)             -at'    cos^texp(-tVfc) 
ui =  -j=A ^£_i - sini?)b£o -j= Ci, 

% 1 
ü2 = -=exp(z>jt)£_i + -y=exp(-i(pk)£i, 

so that we get 

Ü!    Z cJm
}P/,m + l(cOSt?fc)cOS7?fc-l- 

+c\%P,m(c08-dkWl ~ COS2 tft + 

+ -^c(i~1)Pl>m-i(cos'dk) COStfk exp(im<pk), 



ft      7(1)   - u2 • ^Im    ~ ^C^P,,m+1 (COS tf*) + 

exp(im(pk), + -^c|-1)P(,m_i(cos^fc) 

where we define the functions 

_    , x /2/+l(/-m)!_    , x 

in which P|m(z) denotes the Legendre functions of complex argument 

l\        _2\m/2   Jl+m 

^w = (-r(1"2'/,
)   d^

(z2-1}'- 
Then it can be easily verified that the relation ü2 = k x üi and the definition of the transverse 
harmonics, Eq. (5), yield the rules 

üa-Z^-Üi-Z^-Üi-X,»», 

Üi-Z^ = ü2-zW = Ü2-X/m> 

whereas, the properties of the vector spherical harmonics yield the relation 

u, -X/,_m = (-)"+mu„ •X,,mexp(-2im^)- 

We are now able to perform at once the integration over the angle ipk with the result 

flu 

I     exp[i(m — m')ipk]dipk = 27r<5mm/, 
Jo 

so that the elements of the multipole reflection matrix T\fj]m with m ^ rri do vanish.   This 
property is conveniently expressed by the equation 

T(P',P)    _ TTCP'JOX     , (19) 
S I'm',Im  — •rl',l,m°mm', v      ' 

that, when introduced into Eq. (11) yields the useful relation 

-T(P'.P)   _ <T(.P.P') 
•'"I'.Il-ra   — •r','';m " 

At this stage each element of the matrix F is given by an integral of the form 

,-f-too 
/ /(cos tft) exp (2in'kdcos i?fc) sin dk ddk, 

Jo 

that, through the substitution x = 2in'kd(l - costfjt) becomes 

i2n'kd     J0      
fV     2in'kd)eXP{   X)dX' 

and is thus suitable for numerical integration, e. g. through the Gauss-Laguerre method.12 In 
practice, the implied formula is 

,oo JV 

/     f(x)exp(-a;) dx as ]Pwif(xi)> 
Jo i=\ 



where the weights Wi are 

- (N\)2xj 
Wi~ (N + l)*[LN(xi+1)]*' 

Xi being the i-th zero of the Laguerre polynomial LN ■ Thus to get reliable values of the elements 
of F the order N must be wisely chosen so as to ensure a fair convergence of the integrals. 

Let us now recall that, according to Eqs. (15) and (18), the calculation of the reflected field 

requires the elements of the reflection matrix F as well as the quantities (ft-1),,,^,, ,,m,. Since in 
the present case the translation vector R is parallel to the z axis, the elements of Ti, according 

to Eq. (B3), vanish for m ^ m'. As a result also the quantities (W_1),„^„ ,,m, have the same 

property so that also the amplitudes a)f,mVlm do vanish unless m" = m, i. e. 

ll"m",lm  — "l".l;m°"""   i 

with 

y,p) _ \-'(7J-I\(P"'P')T(P',P) f2n 

p'l' 

4. Results and discussion 

The main result of the theory that we developed in Section 2 is the introduction of the matrix F 
that effects the reflection of a H multipole field on a plane interface. The elements of this matrix 
were shown in Section 3 to be given by integrals that, though suitable for numerical calculations, 
require a careful check of their convergence. Nevertheless, considering the convergence of each 
of the elements of F only would be, in our opinion, of little significance because their numerical 
values, for fixed values of n', k and d, may have widely different values with varying pi, p'l' and 
m. We thus resolved to make an indirect test of F by investigating the numerical stability of the 
field that would be observed in the far zone. 

At any point in the half-space z < 0 the total field is the superposition of the field that is directly 
emitted by the source and of the field that is reflected by the surface. The physical situation is 
much the same as a detector that receives both the field from an emitting antenna and the field that 
is reflected by the surface of earth. According to Section 2B, the total field is the superposition of 
the original multipole field with origin at O' and of the reflected field that is given by a combination 
of multipole fields with origin at O", Eq. (15): it is thus convenient to refer all the multipole fields 
to the same origin by resorting again to the addition theorem of ref. 11. For symmetry reasons we 
choose to refer all the multipole fields to the origin O on the interface (see Fig. 1) and get for the 
total field in the far zone 

41=   £ 4p;>(r,nfc)Äi(-R',n'fc) 
p'l'm' 

p'l'm'p"I" 

where the arguments of the quantities J get a minus sign because the translations go towards O 
and are thus opposite both to R' and to R". By defining the amplitudes 

Al'm',lm — Jl'm',lm\    H- '"M+^J Jl'm',l"m\    "-   >n K)al",l;m ' 



the total field becomes 

"-Tim —    2-~i   rlIlm'\T>n K)Al'm',lm> 
p'l'm' 

so that at P it turns out to be a superposition of H multipole fields only. Now, if the receiver 
is far enough from O, it is sufficient to consider the asymptotic form of the field. On account of 
the limiting form of the spherical Hankel functions for large values of their argument2 and of the 
transversality of the far field with respect to the direction of observation f, we can write 

(P)    _ exp(m'fcr)f(p) 
"■Tim   — r 

llm ' 

where we define the vector amplitude 

Ap) _ _L  V^ f-,V+''z(p')rrU(p',p) 
'Im   " 31   L V      > ''I'm'V-l-n-l'm'M- 

U K p'l'm' 

Accordingly, the waves that are polarized along the unit vector ü yield the intensity 

riP) _  J_|f(P) . ul2 
1lm   —   rl\

llm     Ul   ' 

where, by using the definition of the amplitudes WfJ,*, Eq. (A8), we have 

AP)   ,-. _ '       Y^ w(p')Vfi fU(p''p) 

,m iirn/k  *-"     l'm' (-u,x)A''"t'M- 
p'l'm' 

The preceding equation can be greatly simplified by resorting to Eq. (B5). On account of the 

definition of the amplitudes A^jm and of the fact that, as we stated in Section 1, the refractive 

index n' is assumed to be real we get 

f/p).u= — 
lm A-KTl'k 

exP(ik • K')WJ^*(u, r) + £ exp(ik • R")wff*(Ü, v)af^ (22) 

that is the equation that we actually used to calculate the far field intensity. 
Equation (22) shows that one has to extend the sum within the square brackets to a sufficiently 

high value of /" to get reliable values for the observed intensity. It must be borne in mind, however, 

that one should also check the convergence of the amplitudes a,Pj'.„ that, according to Eq. (21), 
imply a further sum over the intermediate index /'. We remark, however, that, whatever value of 

/' is needed to get the convergence of the amplitudes a^,'.^, the calculation of the elements of H 

and thus of the elements of 7i~l did not give any computational trouble: therefore the convergence 
of the sum in Eq. (21) stands on the values of the elements of F only. 

On account of the preceding considerations we resolved to investigate the convergence of the 
quantity r2/,(p) for both values of p and for / = 1, 2 and 3. The field was calculated for polarization 
both parallel and perpendicular to the plane that contains the z axis and the direction of observa- 
tion. We assumed that the source at O' were embedded in a medium with refractive index n' = 1 
and that its distance from the interface were such that kd = 0.5, 1.0 and 1.5. The angle between 
the direction of observation and the z axis was assumed to be d = 165°: in fact, this choice ensures 
that the trigonometric functions that are involved in the elements of F do not assume particular 
values that may produce undue cancellation. 

In Table 1 we report the result of our study of the convergence of the total field for A = 500 m 
and n" = 9; this choice of the refractive index is, indeed, appropriate for water in the radiowave 
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range.2 More precisely we reported in Table 1 the value of N that ensures the convergence of all 
the relevant elements of F, Eq. (20). As regards the convergence of the sums in Eq. (21) and (22) 
we found that, in the worst case, it suffices to consider elements up to and including /" = /' = 7 to 
ensure that the observed intensity be stable at least to two decimal digits. 

In Table 2 we report similar information for A = 500 nm and n" = 1.3, the latter choice of the 
refractive index being appropriate in the visible range. Even in this case we had to retain, at worst, 
terms up to and including /" = /' = 7 to get convergence of the calculated field at least to two 
decimal digits. 

We notice that the values reported in the tables above apply to both values of p and to any 
choice of the polarization; in other words, the convergence of the calculated field is practically 
independent of these features. On the contrary, comparison of Table 1 and 2 show that the rate of 
convergence is quite different in the radiowave and in the optical range: the values of N in Table 1 
decrease with increasing kd whereas the values in Table 2 are more or less independent of the choice 
of kd. Close examination of Eq. (11), that defines the elements of F, leads us to conclude that this 
different behavior is entirely due to the Fresnel coefficients Fn on account of their dependence on 
the ratio n"/n'. Our investigation on this point was further pursued by examining in detail the 
specific behavior of a few selected elements of F when they are calculated by means of Eq. (20). 
We found that the real and the imaginary part of the integral in Eq. (20) may converge at a 
different rate that depends on the choice of the refractive index n". In particular, when n" = 9, 
this difference of convergence rate may become large and leads to the highest values of N that are 
reported in Table 1. 

5.  Conclusions 

The theory that we presented in the preceding sections is essentially based on two main ingredients: 
the extension to vector multipole fields of the plane-wave expansion of Bobbert and Vlieger3 and 
the addition theorem for vector multipole fields.11 

The first ingredient allowed us to formulate our theory in terms of vector fields only and thus to 
account for the reflection of both magnetic and electric multipole fields of arbitrary order and for 
the effect of the polarization. 

The second ingredient, in turn, proved to be the key tool to define unambiguously the region 
within which the reflected field is given by J multipole fields and the region in which it is given by 
H multipole fields with origin at the actual source. As a result, we were able to get the reflected 
field at any point within the accessible half-space z < 0 without resort to any approximation. 
Moreover, the addition theorem allows us to introduce the image source in a quite natural way. 

The formal solution to the multipole reflection problem is given in terms of the multipole re- 
flection matrix F that proved to be suitable for numerical calculations; in fact, the discussion in 
Section 4 leds us to conlude that the elements of F that may be needed for particular applications 
can confidently be calculated without undue computational effort. 

Appendix A: Multipole amplitudes of an inhomogeneous plane wave 

The field of a plane wave of unit amplitude, (possibly complex) propagation vector k = nkk and 
polarization unit vector ü can be expanded into a series of spherical vector multipoles as 

E = Ü exp(.-k • r) = £ J<£(r, nk)WJ£(ü, k), (Al) 
plm 

tB = i V x E = m(k x Ü) exp(ik • r) = n ]T J<£(r. nk)w£*p\ü, £), (A2) 
plm 
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where the amplitudes W depend only on the polarization and propagation unit vectors. Multipli- 
cation of Eqs. (Al) and (A2) by (-)m+1X,,_m(r), integration over the solid angle and use of the 
well known orthonormality relation 

(_)«•+! / XjTO(r) -X,,_m(r)dr = 6„,6mm. 
Jn 

yields 

Ü • w;m(k, r) = ^»(u, k)i,("fcr), (A3) 

f(k x Ü) • w,m(k, r) = WJ£(u,&)j,(nkr), (A4) 

where 

w,m(k,r)=  /(-)m+1X,1_m(p)exp(ikT)dr. (A5) 
Jo, 

Now, by inserting into Eq. (A5) the Bauer expansion of a scalar plane wave,9 

exp(ik • r) = AvJ2i,'(-)m'Yi;-m'(M)Y,'m>(i')ji'(kr). 
I'm' 

we get 

w,m(k,r) = 4«'(-r+1X(,_m(k)j,(fcr), (A6) 

on account of the orthogonality relations for the (scalar) spherical harmonics and of the definition 
of the vector spherical harmonics, Eq. (2). Ultimately, from Eqs. (A3), (A4) and (A6) we get the 
expression 

W&\u,k) = 4^+'-1(-r+1Z^m(k) • ü (A7) 

that gives the multipole amplitudes of an inhomogeneous plane wave. We also need the complex 
conjugate of Eq. (A7) that is easily seen to be 

Wff*(Ü,k) = 4x(-.y+'-1 Z«(£) • ü. (A8) 

Let us now recall that if the polar angles of the incident wavevector k are i? and <p we have10 

k = 0?,y>), üxsOJ+f.p), Ü2 = (!,?+f), 

and that any unit vector v = ($, <p) can be represented on the spherical basis as13 

Thus, representing both the incident and the reflected polarization and propagation unit vectors 
on the spherical basis it is an easy matter to see that the properties of the spherical harmonics 
under change of their arguments yield the relation 

W^(nRr}>kR) = (-r+?+'+"^Wk), (A9) 

between the multipole amplitudes of the incident and of the reflected wave. 
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Appendix B: Addition theorem for multipole fields 

The addition theorem of Ref. 11 gives a vector multipole field with origin at O" as a linear 
combination of vector multipole fields with origin at a different point O'; in a sense it is thus 
a translation rule for the origin of a vector multipole. Let us denote with R' and R" the vector 
position of 0'. and O", respectively, with respect to an arbitrary origin, 0. Then, by denning 
r' = r - R', r" = r - R" and R = R' - R" we get for an H field 

HS(rw,nt)=£jÖ(r'Int)?Ö;L(Il1»i),    *»    r> < R, 
p'l'm' 

and 

^(r'\nk)=^U^(r\nk)J^fi(R,nk),    for   r> > R. 
p'l'm' 

In the preceding equations we define 

^(P'.P) ni'm',lm 
.   121' + 1 „      c    N 6PP'+ l\J YTY (l ~ V) 

x^0(l, /' - 1 + Spp',1'; -fi, m' + ti)Gr-i+6rpl,m'+li;i,m+ßC(l, I, I; -p, m + /x), (Bl) 

where 

GVm.Xm =■ 47r^i''-'+AIA(/',m';/,m)/lA(n^)yA*m,_m(R). (B2) 
A 

In Eq. (B2), in turn, the quantities 1\ are Gaunt integrals, whose expression in terms of the 
Clebsh-Gordan coefficients C is13 

2x(l', m'; I, m) = J^^l' + l)^ C(A''' *''' °'0)C(A''' '" "*' " ™'"^ 

The quantities j{?mflm are identical to the quantities ftjwi™ except that in Eq. (B2) the Bessel 
function jx must be substituted for the Hankel function hx. When the addition theorem is applied 
to a J field we get the result 

p'l'm' 

for any value of R. From the definitions above it can also be proved that, for real n, the elements 
J have the property 

4&$.(R,»*) = rim'fU-KM) (B3) 
When the translation is parallel to the z axis, R = ±Rz, and the above formulas assume a 

simple form that proves useful for the calculation of the far field. Since 

/2A+ 1\ ' 
Yx,m.-m(v,v) = (-)xYx,ml.m(0,<p) = (-)A \—^r)      6> 

1/2 

'm' — m,Oj 

the quantities H and J do vanish unless m! = m. This property is conveniently expressed by the 
equations 
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HÜ}m(±m, nk) = nfißfrRz, nk)6mm,, (B4) 

J&?}m{±Rx,nk) = jfi£\±R&,nk)6mm.. 

The addition theorem yields also a useful relation that we used in Section 4 to calculate the far 
field intensity. Let us, indeed, consider the vector plane wave uexp(ik • r") that is referred to the 

origin O". With reference to the geometry that we described above we have 

uexp(ik • r") = exp[ik • R]uexp[ik • r'] 

= exp[zk • R] £ j[Ö(r', nk)W^)(n,k), 
p'l'm' 

where we used the multipole expansion of Appendix A. On the other hand we also have 

uexp(ik • r") =    £   JÖ«(r", nk)w{CU"*) 
p"l"m" 

= E jfö(r'.«fc) E ÄÄ,«(B-.™fc)wÄ»(fi.£). 
p'l'm' p"l"m" 

where we used the addition theorem to translate the origin of each of the J multipole fields. 

Comparison of the preceding equations the yield the relation 

exp[tk.R]^)(ü,fc)=   £ J&fl.(K,nk)W}?2&£)- 
p'l'm' 

By assuming n to be real, we can take the complex conjugate of the latter equation, written for 
R -+ -R, and use Eq. (B3), that holds true for real n only, to get the required result 

exp[»k • R)W^\u,k) =   £  W#2*(ü,k)Äi(tt.nk). (B5) 
p'l'm' 
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Fig. 1. Sketch of the geometry that has been adopted in the present paper. The axes of the three 
frames with origin at O, O' and O" are parallel to each other. Both media are assumed to be homogeneous 
and the refractive index of the accessible half-space is assumed to be real, whereas the refractive index 
n" is allowed to be complex. The axes z, z' and z" are oriented from the medium of refractive index n' 
towards the medium of refractive index n  . 

Table 1. Values of N that ensure the convergence of all the relevant elements of F that enter the 
calculated intensity for the indicated values of the distance of the source from the interface. The relevant 
parameters are n = 1, n" = 9, A = 500 m, I" = I' = 7; the angle between the direction of observation and 
the z axis is ■d = 165°. The convergence is ensured for both values of p and for polarization both parallel 
and perpendicular to the plane that contains the z axis and the direction of observation. 

kd = 0.50 kd = 1.00 kd = 1.50 

/ = 1 m = 1 14 10 10 

m = 0 14 14 10 

1 = 2 TO = 2 18 10 10 

TO = 1 34 22 10 

TO = 0 24 22 10 

1 = 3 TO = 3 26 10 10 

TO = 2 30 10 10 

TO = 1 38 18 10 

TO = 0 38 18 10 

Table 2. Values of N that ensure the convergence of all the relevant elements of F that enter the 
calculated intensity for the indicated values of the distance of the source from the interface. The relevant 
parameters are n' = 1, n" = 1.3, A = 500 nm, /" = /' = 7; the angle between the direction of observation 
and the z axis is ■d = 165°. The convergence is ensured for both values of p and for polarization both 
parallel and perpendicular to the plane that contains the z axis and the direction of observation. 

kd = 0.50 kd = 1.00 kd = 1.50 

/= 1 m = 1 10 10 10 

TO = 0 10 10 10 

1 = 2 TO = 2 10 10 10 

TO = 1 12 10 10 
m = 0 12 10 10 

1 = 3 TO = 3 10 10 10 
TO = 2 10 10 12 

TO = 1 10 10 10 

TO= 0 10 10 10 
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The effect of a perfectly reflecting surface on the extinction spectrum from single and aggre- 
gated hemispheres whose fiat face lies on the surface is investigated. When the spectrum of these 
particles is calculated in the framework of image theory some of the expected resonances are found 
to disappear for specific choices of the direction and polarization of the incident wave. This reso- 
nance suppressing effect is fully explained for the case of single hemispheres whereas for the case of 
aggregated hemispheres the guidelines for its explanation are given for the case of binary aggregates. 



1. Introduction 

The electromagnetic resonances are a well known feature of the extinction spectrum of a spherical scatterer. In the 
plot of the extinction cross section vs. the size parameter a resonance appears as a peak that can be explained in the 
framework of the Mie theory and of its extensions for radially non-homogeneous spheres.1,2 The resonance spectra 
of spherical scatterers have been thoroughly investigated3""8 and several methods have been proposed to relate the 
observed peaks to the actual size and shape of the scattering particles.9-13 Resonances may also occur in the spectra 
from spheres in the vicinity of a plane substrate and of hemispheres with their flat face on a plane surface. The 
resonances of these systems have been investigated, though in the long wevelength limit,14-17 on account of their 
relevance for the analysis of the cleannes and of the smoothness of surfaces. 

Li and Chylek18 and Videen and Chylek19 observed that the resonances of spheres and cylindes can be enhanced 
or suppressed by illuminating such particles with two mutually coherent plane waves of fixed phase relation. In turn, 
Johnson20'21 suggested to resort to the coherence of a plane wave and of its mirror image to study the scattering 
from a spherical particle coupled to a perfectly reflecting surface. As a matter of fact, refs. 18-21 are strictly related 
to the purpose of the present paper. 

In this paper, indeed, we investigate how a perfectly reflecting surface yields, for specific choice of the direction 
of incidence, the suppression of some of the expected resonances. This will be done with reference to the extinction 
spectrum of hemispheres with their flat face on the reflecting surface because hemispheres may be an acceptable 
model for liquid droplets deposited on a metal surface. Our investigation will be performed in the framework of 
image theory according to which the scattering from a particle in the vicinity of a perfectly reflecting surface is 
equivalent to the dependent scattering from the compound object that includes both the actual particle and its 
image when illuminated by the superposition of the actual incident field and of the field that comes from the image 
source. Therefore, the extinction spectrum from hemispheres on a surface is equivalent to the spectrum from whole 
spheres illuminated by the superposition of two waves whose phase relation is dictated by the reflection condition. 
Hereafter we will refer to this superposition as the exciting field and to the whole sphere as the equivalent sphere. By 
comparing the calculated spectrum from a hemisphere on the surface with the spectrum from the equivalent sphere 
illuminanted by the incident field only we will show that some of the resonances in the latter spectrum may not 
appear in the spectrum of the hemisphere. More precisely, we will show that the resonance suppressing mechanism 
is effective only for particular choices of the direction and polarization of the incident wave. 

In this paper we will also deal with a binary aggregate of identical hemispheres with their flat face on the perfectly 
reflecting surface: according to image theory, the equivalent scatterer is the aggregate of two spheres. The calculation 
of the dependent scattering from aggregated spheres is a well established procedure23 whose results are in excellent 
agreement with the available experimental data,24'25 so that no particular difficulty should be expected. However, 
the resonance spectrum from aggregated spheres is, in general, more complex that the superposition of the resonce 
spectra of the component spheres.26'27 This circumstance may frustrate our attempt to asses how the resonance 
suppressing effect of the reflecting surface works on the spectrum of aggregated hemispheres. To overcome this 
difficulty, the radius of the component hemispheres was chosen to be small while the refractive index was assumed 
to be rather high. These choices result in a spectrum whose simplicity allows us to explain the behavior of the 
spectrum for this limiting case of non-spherical equivalent scatterers and gives the giudelines to understand the 
resonance-suppressing mechanism for more general cases. . 

In Section 2 we revisit the reflection of a polarized plane wave on a perfectly reflecting surface in order to reformulate 
the problem in terms of spherical multipole fields. The conditions for the vanishing of some of the amplitudes of the 
exciting field are established on general grounds. 

In Section 3 we discuss the scattering from particles in terms of the transition matrix and give a general definition 
of the extinction cross section that applies even when a perfectly reflecting surface is present. 

In Section 4 the resonance spectra from homogeneous hemispheres and from the aggregates of two identical 
hemispheres that we mentioned above are compared with those of the equivalent sphere and of the aggregate of 
equivalent spheres, respectively, illuminated by the incident field only. The mechanism through which some of the 
resonances in the spectrum of the hemispheres disappear is also explained. 



2. Exciting field 

In the framework of the image theory,28 the exciting field is the superposition of the actual incident field and of the 
field that comes from the image source: the latter, in turn, coincides with the field that is reflected by the interface in 
the absence of any scatterer. The reflection condition implies that the amplitude and the polarization of the incident 
and of the reflected wave satisfy a relation that will now be explicitly established within the formalism of the vector 
multipole fields. Similar relations are reported in several papers22'29-32 but never in a form suitable for our present 
purposes. We want, in fact to show that as an effect of the condition of perfect reflection some of the multipole 
amplitudes of the exciting field are bound to vanish. To achieve our goal we will deal at first with the reflection on a 
plane surface that separates two media of general dielectric properties but we will specialize our results to the case 
of the perfectly reflecting interface when the need arises. 

We consider a frame of reference whose cartesian axes are characterized by the unit vectors üx, uy and uz, and 
assume that the halfspace z < 0, the accessible half-space, is filled by a homogeneous medium of refractive index n 
while a different medium of refractive index n' fills the halfspace z > 0: thus the interface coincides with xy plane 
and its unit normal concides with uz. The electromagnetic plane wave 

E/ = E0eiexp[ik/ • r], w 

that propagates through the halfspace z < 0, is reflected by the interface into the plane wave 

ER = E'QeRexp[ikR ■ r], (2) 

where e/ and eR are the (unit) polarization vectors of the incident and of the reflected wave, respectively, k/ = n&k/ 
and kfi = nkkR are the respective propagation vectors, and, as usual, k = w/c. The time dependence exp(-iwi) will 
be assumed throughout. We now introduce two pairs of unit vectors uIri and uRr, whose index t] = 1,2 distinguish 
wether they are parallel (77 = 1) or perpendicular (rj = 2) to the plane of incidence, i. e. to the plane that contains 
k/, kfl and the z axis. The orientation is chosen so that UR2 = u/2 and 

U/i  X Ü/2  = k/,      URi  X Ü/J2  = kß. 

Then Eqs. (1) and (2) can be rewritten as 

E/ = E0 ]P(e/ • ü/l7)ü/r, exp[ik/ • r], 

Efi = E'0 Y^i&R ■ ÜRr,)ÜRr, exp[ikß • r], (3) 
v 

and application of the reflection condition on the plane surface leads one to define the Fresnel coefficients Fv for the 
reflection of a plane wave with polarization along üjv. The expression of the coefficients F,, in terms of the angle tfj 

between kj and u2 is33 

F2 = 

n'2 cos dj — ny/n'2 — n2 sin2 i?/ 

n'2 cos ■di + n\/n'2 — n2 sin2 dj 

n cos $1 — v n'2 — n2 sin2 dj 

n cos dj + y/n'2 — n2 sin2 dj 

and their limiting value for the case of a perfectly reflecting surface is 

Fr, = (-r1. 

In terms of the Fresnel coefficients the relation between the components of the incident and of the reflected field is 

E'0eR ■ üRv = EoF^e-i • ü/r), 



and, as a result, the reflected plane wave, Eq. (3), can be rewritten as 

ER = E0 Y^ FV(
&
I ■ u/t,)üß, exp[ikR • r]. 

i 

At this stage we recall that the multipole expansion of a vector plane wave of wavevector K - KK is' 

E = £0üexp[iK .r] = £„^ W&\u, K)jj£(r, K), 
plm 

34,35 

where we define the spherical vector multipoles 

J^(r,/0 = j,(Kr)X,m(v),    3$(r,K) = ^V x j,(^)X,m(r) 

and the amplitudes 

w£\ü, K) = ATri'n ■ X?m(K),    wfc\u, K) = Awi'+1(K x Ü) • X?m(K). 

In the preceding equations the superscripts 1 and 2 are the values of a parity index p that distinguishes the magnetic 
multipoles (p = 1) from the electric ones (p = 2) and the functions X;m are vector spherical harmonics.33 Accordingly, 
the multipole expansions the incident and the reflected field are 

E, = Eo 5> • Ü,,) £ <L Jffi(r, nk) 
T) plm 

17 plm 

respectively, where we define 

The vector spherical harmonics have useful transformation properties under change of their arguments that help us 
to to relate the multipole amplitudes of the reflected wave, w£flm, to those of the incident wave, Wfv]m. In fact, 
the following relation holdsbetween the multipole amplitudes of the incident and the reflected field 

w'il    = (-)i+P+'+mwip),   . (4) yvRt)!m \    ) '" Iqlm- v 

As a result the reflected field takes on the final form 

Efl = £o5>„(Si -ü7,)X;(-r+p+'+m<Lj£2(r,«*). (5) 
T) plm 

that depends on the parameters of the incident wave only. 
. Equation (5) allows us to write the exciting field, that is the superposition of the incident and of the reflected field, 

as 

EE = E, + EH = E0 5>' • *'*) Et1 + (-)"+P+'+mFr,]wfflm3^(r, nk). (6) 
TJ plm 

For a surface of general dielectric properties \Fn\ ^ 1, so that the term within square brackets in eq. (6) never 
vanishes. However, for a perfectly reflecting interface F,, = (-)r,_1: therefore, when [1 - (-)P+'+m] = 0, i. e. when 
p + I + m is even, the corresponding multipole is not present in the exciting field. 



3. Scattered field and extinction cross section 

The field that is scattered by any particle embedded in a homogeneous medium of refractive index n can be expanded 
in a series of spherical vector multipoles 

Es,=£AäH^(r,nfc), 00 
plm 

where the multipole fields H^ are identical to the multipoles j[£> except for the substitution of the spherical Hankel 

functions of the first kind, h{p{kr), for the spherical Bessel functions, ji(kr). The label 77 that is attached to Es„ 

and to the amplitudes A(*m recalls that the scattered field depends on the state of polarization of the incident wave. 
According to Waterman ,36"the multipole amplitudes of the scattered field are related to the amplitudes of the exciting 

field through the equation 

p'l'm' 

where the quantities &&?l?m, are the elements of the so called transition matrix, S, that accounts for the morphology 
(structure and scattering power) and the orientation of the particle. In the absence of any substrate the amplitudes 

W^'),m, concide with those of the incident plane wave and S is the transition matrix of the actual scattering particle. 
However, when a perfectly reflecting surface is present the amplitudes of the exciting field, according to the preceding 

section, are 

<},m = [i-(-)p+'+m]<L (9) 

and S is the transition matrix appropriate to the compound object that includes both the actual particle and its 
image. In the latter case, according to Eq. (9), even a non vanishing incident amplitude W}pJm may yield a vanishing 

exciting amplitude W$,m and thus affect the amplitudes of the scattered field up to the suppression of some of the 
characteristic resonance peaks. 

We now need a definition of the extinction cross section that applies even in the presence of the reflecting surface. 
To this end we resort to the optical theorem that, according to van de Hülst,1 can be proved by considering the field 
that is actually detected by an optical instrument. Let us recall that the scattering amplitude of any particle, f„ 
can be defined through the equation 

exp(^r)^(£5i£/)) 

r 

where ks denotes the direction of observation, provided that the particle is at the origin and the distance of obser- 
vation, r, is large. The scattering amplitude depends, in general, on the morphology as well as on the orientation of 

the scatterer with respect to the incident field and, once the amplitudes A^m are known, its expression is37 

f» = i B-*')'+1 K^x^) + iA%*s x x*m^ • 
Im 

In terms of f,, the optical theorem reads 

(7IJ = ^Im[/,m(ks=k/,fc/)], (10) 

where <r„ is the extinction cross section; the index rj recalls that, for an anisotropic scatterer, the cross section depends 
on the polarization and fVtV> = f,, • u*Sr)l, so that 

plm p'l'm' 



Now, according to van de Hülst,1 Eq. (10) holds true even when a reflecting surface is present provided that the 
direction of observation be the direction of the reflected wave (k5 = kR): this is, indeed, the forward scattering 
direction when a reflecting surface is present. Nevertheless, one has to take account that, according to Section 2, 
when the incident wave is 

Ejr, = £oü/,, exp(ik/ • r), 

i. e. when E/,, is either parallel (77 = 1) or perpendicular (n = 2) to the plane of incidence, the reflected wave is 

Eß,, = Eo(-)''~1üRtlexp(ikR • r). 

Therefore, the total field that is detected by an optical instrument in the direction of reflection is 

Eo„ = EoK-y-1^ exp(ikfi • r) + 6Xp(W "r)f„(£«,£/)], 

and the optical theorem should read 
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T run = ^-Mi-)"-1 fRn^nMl (12) 

where 

/*,,£*.*/) = iiE £ <ks&ft'<?w. (13) 
plm p'l'm' 

and the subscript R that is attached to / recalls that, on account of the presence of the reflecting surface, the exciting 
field is the superposition defined in Section 1 and the transition matrix S is that of the equivalent scatterer. The 
phase factor (-)''-1 in Eq. (12) does not appear explicitly in the expression given by Johnson20 because this author 
considers only normal incidence and includes the correct phase in the expression for the reflected plane wave. 

When the particle of interest is a hemisphere whose flat face lies on the reflecting surface, the exciting field is the 
superposition of the incident and of the reflected field but the transition matrix is that appropriate to a single sphere. 
In this case S is diagonal, 

and its elements are given by 

(P) _  (1 + n6pl)u',(nokp)u,(nkp) - (1 + nSP2)ul(n0kp)u'l(nkp) ^ 
'    ~ (I + n6pl)u'l(n0kp)wi(nkp) - (1 + n6P2)ul(nokp)w'l(nkp), 

where 

n = — - 1,     ui(x) = xj,(x),    w,(x) = xh^\x). 

The quantities R^ and R^ coincide with the Mie coefficients bi and a;, respectively, for a homogeneous sphere 
of radius p and refractive index no embedded in a homogeneous medium of refractive index n. Therefore, when 
considering a hemisphere on a reflecting surface, Eqs. (11) and (13) can be rewritten as 

'««fr-£/) = äL £ <t^<l (15) 
plm 

and 

/*,,(£*.*/) = ii^E^^S- 
plm 



Now, on account that the elements B,\p^ are independent of m, the relation38,37 

m 

implies that /,,, Eq. (15), in spite of the index r), be independent of the polarization. Moreover, it is meaningful to 
define the quantity 

TAP) _ V W(p)* W(p) (17) 
m 

that, with the help of Eqs. (4), (9) and (16) can also be put into the form 

v§ = (-r-i2^(2/+i)+^(-)"+"+'+m<p,);<pL. (is) 
m 

The behavior of C/(p) as a function of the angle of incidence may give useful information for the interpretation of the 

resonance spectrum: for instance, any resonance of the equivalent sphere that is associated to a vanishing U^ is 
bound to disappear. 

4. Results and discussion 

Before we go to discuss the results of our specific calculations it may be useful to recall a few facts about the 
electromagnetic resonances. A resonance occurs in the extinction spectrum from a particle when, with varying 
wavelength, at least one of the elemnts of the transition matrix undergoes a fast change from a rather small value to 
a value of order unity. For a spherical scatterer, according to Section 3, the transition matrix is diagonal with non- 
vanishing elements given by Eq. (14), so that it is an easy matter to associate, according to Eq. (8), each resonance 
to one and only one of the elements of the matrix S. For a nonspherical scatterer, such as an aggregate of spheres, 
the transition matrix is no longer diagonal so that the association of the observed resonances to a particular element 
of the transition matrix requires a close examination of the behavior of all the relevant elements of S as a function of 
the wavelength. Anyway, we decided to label the resonances both of single and aggregated hemispheres as magnetic 
and electric resonances according to whether they are associated to the magnetic part, 5,m',,m;, or to the electric 

part, Sf,^„ ,, of the appropriate transition matrix; in this respect let us remark that for the scatterers that we are 

going to describe never occurred that a resonance was associated with the mixed elements Slr^Vm, or SXl^Vm,. 

A. Single hemispheres 

We report in Figs. 1 (a), (b), (c) and (d) the plots of uffi for / < 4, t] = 1,2 and p = 1, 2, as a function of #/. We 

notice in Figs. 1 (a) and (b) that at tf/ = 0° all the uff vanish for even / whereas all the uff do vanish for odd /. 

This result was expected because when »9/ = 0° the only non-vanishing amplitudes W}pjm are those with m = ±1. 
Therefore the above result is a consequence of the fact that the factor within square brackets in Eq. (6) reduces 

to 1 + (-)p+'. Although the preceding argument is based on the vanishing of the individual amplitudes W£
p lm at 

•dj = 0° the usefulness of the quantity l/ffi remains unaffected. In fact, the vanishing of U^' for / = 2 at i?/ = 45°, 

Fig. 1 (b), is due to the sum over m in Eq. (17). The plots in Figs. 1 (c) and (d) show that the behavior of U2
P is 

similar to that of u[p). We remark that again all the U^ vanish at tfj = 0° for even / whereas all the U%> vanish 

at the same incidence for odd / and, in particular, U$ turns out to be identically zero: these features were expected 
on the ground of the structure of Eq. (18). 

We report in Fig. 2 the quantity 



7ä, = 2Hm[(-)"-1/^v(kß,k/)], 

for T] = 1, for a hemisphere of radius p and (real) refractive index n0 = 3 on the reflecting surface; the homogeneous 
medium that fills the accessible half-space was assumed to be the vacuum (n = 1). jRn is plotted as a function of 
the size parameter x = nkp in the range from x = 1 to x = 3. The angle of incidence is i?/ = 0° in Fig. 2 (a), 45° in 
Fig 2 (b) and 70° in Fig. 2 (c), the latter choice being suggested by the fact that, according to Figs. 1 (a) and (b), at 

this incidence none of the quantities l/[, vanish although several of them assume a small value. The quantity JR^ is 
as meaningful as (TR^ because it gives the extinction coefficient of a low density dispersion of identical scatterers39. 

Now, according to the discussion in Section 3, it is quite natural to compare the spectrum from a hemisphere on 
the reflecting surface with the spectrum from the equivalent sphere whose transition matrix is given by Eq. (14) 
illuminated by the actual incident field only. Therefore, in each of Figs. 2 (a), (b) and (c) we also report the plot of 
the quantity 

7 = 2*Im[/„„ (k/,k7)], 

for the sphere illuminated by the incident field only. We recall that, in this case, /,,,, does not actually depend on 
the polarization so that the quantity 7 need not carry the subscript n. We also stress that, for our purposes, jRn is 
quite comparable to 7 because both quantities refer to forward scattering, according to the discussion in Section 3. 
All the resonances were classified with the help of the well known formulas.26,41 

The strict correspondence between the resonances that disappear and the vanishing of the respective t/j, is so 
evident that, in our opinion, no further comment would be necessary. However, we call the attention of the reader 
on the simultaneous disappearence, in Fig. 2 (a), of the two resonances at x = 1.3118, that is associated to p = 2 
and / = 1, and at x = 1.437, that is associated to p = 1 and / = 2: both peaks belong, in fact, to an odd value of 
p + I. The same mechanism explains also the simultaneous disappearence of the peaks at x — 2.2 and at x = 2.28. 
The former peak is associated with p = 2 and / = 3 whereas for the latter peak p = 1 and / = 4: again, both peaks 

f 2") 
belong to an odd value of p + I. Even the resonance spectrum for n — 2 strictly follows the behavior of the U2I so 
that we resolved not to report the specific plot that, in spite of its significance, do not add any further information 
worth of a separate comment. 

B. Binary clusters 

The lack of a general theory for the resonances of non-spherical particles makes rather difficult an unambiguous 
classification of their resonances. According to Eq. (8), the lack of diagonality of the transition matrix prevents 
a meaningful definition of a function analogous to the quantity C/^, that we defined above. Even in the case of 
aggregated spheres the transition matrix is not a diagonal matrix so that there is no one-to-one association of the 
multipole amplitudes of the exciting field to those of the scattered field; nor there is a simple relation between the 
resonances of the component spheres and those of the aggregate as a whole. Nevertheless, Eq. (9) does not depend 
on the shape of the particles so that the vanishing of any of the amplitudes of the exciting field is expected to affect 
the resonances even of a non spherical particle. To show that this is, indeed, the case we resolved to investigate 
the resonance spectrum of an aggregate of two identical mutually contacting hemispheres of radius p on a perfectly 
reflecting surface and to compare the results with those from the aggregate of the equivalent spheres illuminated by 
the incident field only. In this respect we recall that the procedure for the calculation of the transition matrix of 
aggregated spheres is outlined in Ref. 22. Even in this case the medium that fills the accessible half-space was chosen 
to be the vacuum (n = 1); for the refractive index of the component hemispheres was assumed the unusually high 
value of no = 1Ü7T « 31.4. According to Newton39 and to our prevous experience26, this choice makes the resonances 
of the aggregate as a whole, as well as of its components, to occur at so small values of x = nkp that fully convergent 
values of the scattered field are obtained for / = /' = 1 only. As a result, the resonances of the aggregate as a whole 
can surely be associated to the multipole amplitudes with / = 1. In view of the anisotropy of any aggregate of spheres 
its orientation with respect to the incident field must be stated. The axis of the binary aggregates of spheres that 
we consider was chosen to be along the x axis of the frame of reference that we introduced in Section 2. The plane 
of incidence, in turn, always coincide with xz plane. 

In Fig. 3 (a) we report, for both values of 77, the quantity 



7„ = 2fcIm[/,i,(k/Iic/)], 

for the aggregate of spheres referred to above illuminated by the incident field only, whereas in Fig. 3 (b) we report 
jRn for the aggregate of hemispheres on the reflecting surface. All the plots are reported as a function of x = nkp 
and the angle of incidence is di = 70°. 

Figures 4 (a) and (b) are identical to Figs. 3 (a) and (b), respectively, except that the angle of incidence is di = 0°. 
On the whole, Figs. 3 and 4 present three peaks at x1 - 0.09629, x2 = 0.09813 and x3 = 0.10183. Since for 

/ = 1 the component spheres have a single resonance at x = 0.1, Figs. 3 and 4 confirm our previous results26,40 that 
the multiple scattering processes within an aggregate produce resonances whose location cannot be related to the 
locations of the resonances of the component spheres. 

The dependence of the resonanace spectrum of an aggregate on the polarization of the incident light can be 
understood only through a close examination of the features of the transition matrix and of the amplitudes of the 
exciting field. In this respect it is important to recall that the matrix S does not depend on the polarization so that 
the dependence on the polarization of the spectra in Figs. 3 and 4 are entirely due to the properties of the incident 

amplitudes W^,m. 

Now, at xi the largest elements of S are S^if1;!,-! « — •S'i*±i;i,i so tIiat a magnetic resonance (p = 1) is expected; 

at xi the leading elements are S^i.o and S?,±l,i,-i ^ ■s'i?±i;i,i so that an electric resonance (p = 2) is expected; 

finally at x3 the leading elements of S are s[]£}fi and S$)±i;i _i « S[]£l1A thus suggesting that this resonance is a 
magnetic one. Nevertheless by comparing Figs'. 3 and 4 one'sees that not all the possible resonances actually occur. 
This is due to the dependence of the amplitudes wfflm both on the polarization and on the angle of incidence ■dI. 

As an example let us discuss the behavior of the resonance at x2 that appears in Fig. 3 (a) for any choice of the 
(2*1 (2") 

polarization. According to Eq. (8) the implied amplitudes of the incident field are the W)n[tm, with W)2\a = 0 and 

W\2\ ! = {-)nw\2\ _v Therefore, when »7=1, the peak at x2 belongs to m = 0 whereas for 77 = 2 it belongs to 

m = ±1.  When the reflecting surface is present, the implied amplitudes of the exciting field are the WEr)lm, but 

only W$x 0^0. This is enough to explain why the peak at x2 may appear in Fig. 3 (b) only for 77 = 1. 
When i)'i = 0° the appropriate resonance spectra are those in Fig. 4. The behavior of the peak at x2 is easily 

understood when one considers that at t?/ = 0° we have W^lfi - W$A 0 = 0. Therefore this resonance can occur 
in Fig. 4 (a) for rj = 2 only and cannot appear at all in Fig. 4 (b). 

The behavior of the resonances at xi and at x3 that appear in Figs. 3 and 4 can be understood through a quite 
similar analysis. 

5. Conclusions 

The results that we presented in Section 4 show that the resonance suppressing effect of a perfectly reflecting surface 
is effective both for single and for aggregated hemisferes. 

For the case of single hemispheres the introduction of the function U^, yields a full and satisfactory explanation 
of the behavior of the extinction spectrum as a function of the direction of propagation and of the polarization of 
the incident wave. 

For the case of aggregated hemispheres the effect of the dependent scattering gratly complicates the spectrum, 
so that, unlike the case of single hemispheres, the resonance suppressing mechanism cannot be discussed on general 
grounds. Nevertheless, the discussion of the limiting case that we dealt with in Section 4.B yields the guidelines for 
the dicussion of the problem for more complicated cases of aggregation and, in general, for anisotropic particles. 
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Fig. 1. Plot of the quantity l/ff(&i) for I < 4. In (a) p = 1 and n = 1; in (b) p = 2 and n = 1; in (c) p = 1 and n = 2; in 
(d) p = 2 and 77 = 2. In this paper we adopted the convention that p = 1,2 classifies the multipoles as magnetic or electric, 
respectively; in turn i\ — 1,2 indicates that the polarization is parallel or orthogonal to the plane of incidence, respectively. 

Fig. 2. 7Hr7 (solid curve) for a homogeneous hemisphere of radius p and refractive index no = 3 on a reflecting surface as 
a function of 1 = nkp for n = 1. The medium that fills the accessible half-space is assumed to be the vacuum (n = 1). The 
angle of incidence is «9/ = 0° in (a), tii = 45° in (b) and ■di = 70° in (c). For comparison we also report 7 (dotted curve) for 
the equivalent sphere illuminated by the incident wave only. The resonances are labelled with (p, /)„, where n distinguishes 
different resonances with the same value of p and I. 

Fig. 3. 7,, for the aggregate of two identical mutually contacting spheres of radius p and refractive index no = 31.4 (a) 
and fRr) for the binary aggregate of hemispheres with the same radius and refractive index on a reflecting surface (b) as a 
function of x = nkp. The medium that fills the accessible half-space is assumed to be the vacuum (n = 1). The axis of the 
aggregate lies in the xz plane and is parallel to the x axis. The plane of incidence coincides with the xz plane and the angle of 
incidence is ■dj = 70°. The solid and the dotted curves refer to polarization parallel and orthogonal to the plane of incidence, 
respectively. We notice that the spike at 1 = 0.09813 in Fig. 3 (a) appears for both choices of the polarization, although they 
are hardly discernible on the scale of the figure. 

Fig. 4.      Same as Figure 3 except that the angle of incidence is here t?j = 0°. 
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The full scattering pattern from a sphere in the vicinity of a plane surface is calculated through an 
approach based on the expansion of the electromagnetic field in terms of vector multipole fields and 
on the imposition of the boundary conditions. Our approach does not invoke any approximation but 
can easily incorporate the simplifying assumptions of Bobbert and Vlieger [Physica 137, 202-249 
(1986)] and of Johnson [J. Opt. Soc. Am. A13, 326-337 (1996)] whose results are compared with our 
ones. A real progress is achieved as, unlike the previous theories but in agreement with the available 
experimental data, a non vanishing field is allowed to propagate along the surface even when the 
latter is non-perfectly reflecting . 



1. Introduction 

The optical properties of a particle in the vicinity of a plane surface are known to be rather 
different from the properties of the same particle in free space. The actual calculation of these 
properties requires to impose the boundary conditions both across the surface of the particle and 
across the plane surface so that one has to resort to more complicated approaches than those that 
are customarily used for isolated particles.1 The mathematical development of such approaches 
is often so cumbersome that it is necessary to resort to suitable approximations or to restrict 
the investigation to limiting cases. For instance Bobbert and Vlieger2 formulated a theory that 
succeeds in the exact calculation of the scattered field from a sphere near a non-perfectly reflecting 
plane surface; these authors, however, resort to a suitable approximation to get the observed field 
in the far zone. Johnson,3 in turn, besides the approximation of Bobbert and Vlieger, resorts to 
the so-called Yousif-Videen4'5 approximation to simplify the imposition of the boundary conditions 
on the surface of the scattering sphere; both Bobbert and Vlieger's approach and the approach 
of Johnson become exact in the limit of a perfectly reflecting surface. A quite different kind of 
approach is the one used by Lindeil et al.6 and by Muinonen et al.7 to describe the scattering from 
a particle of arbitrary shape in the presence of a non-perfectly reflecting surface. They resort, in 
fact, to the exact-image theory8 but they restrict their investigation to particles so small that the 
Rayleigh approximation applies. Anyway, their approach shares in common with the approaches 
of Bobbert and Vlieger and of Johnson the rather unphysical result that no field can propagate 
along the surface. 

In the present paper we deal with the optical properties of a spherical scatterer in the vicinity 
of a plane surface through an approach that does not require to invoke any approximation. To 
perform our task, we make extensive use of the expansion of all the fields in terms of spherical 
vector multipoles9'10 and of a general addition theorem that effects the translation of the origin 
of the spherical vector multipole fields according to the need.11 We also use our generalization to 
vector multipole fields of a formula that yields the expansion of a spherical scalar multipole in 
terms of inhomogeneous plane waves.2 The use of the above mentioned ingredients yields a theory 
that is suitable for actual calculations and that does not imply any approximation or any limitation 
to the refractive indices of the homogeneous isotropic media that are separated by the surface. 

In Section 2 we describe our approach by recalling first how the problem of the reflection of a 
vector plane wave of arbitrary polarization can be formulated in terms of spherical vector multipole 
fields. Next, we consider the reflection on the plane surface of the field that is scattered by a sphere: 
as usual, the scattered field is assumed to be a superposition of spherical vector multipole fields 
that include only outgoing waves at infinity. The reflection of the scattered field is dealt with 
through the above mentioned expansion of a vector multipole field in terms of vector plane waves 
with complex propagation vectors.12 Ultimately we are able to show that, in the vicinity of the 
surface of the sphere, the total field, i. e. the superposition of the incident, reflected, scattered and 
reflected-scattered fields, can be given as a linear combination of vector multipole fields with origin 
at the center of the sphere itself. Imposition of the boundary conditions across the surface of the 
sphere then yields a system of linear non-homogeneous equations for the multipole amplitudes of 
the scattered field. 

In Section 3 we establish the exact expression of the far field by invoking our recent result12 

that each of the multipole fields chat form the field scattered by the sphere yields, by reflection, a 
superposition, with known coefficients, of vector multipole fields with origin at the mirror image of 
the center of the sphere. Since all the implied multipole fields behave as outgoing waves at infinity, 
we get the far-zone expression of the reflected-scattered field without introducing any simplifying 
assumption. It is then an easy matter to get also the transition matrix13 for a sphere in the 
presence of the plane surface in a form that is suitable for the extension to the case of aggregated 
spheres. 

In Section 4 we show how the approximations that were used by Bobbert and Vlieger2 and by 
Johnson3 can readily be incorporated into our theory; therefore we were able to reproduce the 
approximate results of these authors and to compare them with the exact results of our approach. 



In particular we show that, unlike the above mentioned theories, our approach yields a non- 
vanishing field that propagates along the surface. Finally, we present our specific results for the 
full scattering pattern from a sphere deposited on a surface: by considering three values of the 
refractive index we study the evolution of the pattern and show that the latter becomes identical 
to the pattern that is yielded by image theory when the surface becomes perfectly reflecting. 

In order to ensure a straightforward development of the theory, a number of related procedures 
and formulas are summarized in Appendices A and B. 

2. Theory 

Let us assume that a plane surface separates a semi-infinite homogeneous isotropic medium of 
real refractive index ri from another semi-infinite isotropic homogeneous medium of (possibly 
complex) refractive index n". Hereafter we will refer to the region filled by the former medium 
as the accessible half-space. According to our statement in Section 1, our present purpose is the 
calculation of the scattering pattern from a particle embedded into the former medium. To this 
end, by assuming that a plane wave propagates in the accessible half-space, we need to determine 
the total field at any point P in the same half-space: we will refer to the total field either as E nt 

or as EBxt according to whether P is internal or external to the particle. Now, if no particle were 
present, the total field, EExt, would be the superposition of the incident wave, E7, and of the field 
that has been reflected by the surface, ER; these fields are related to each other by the reflection 
conditions on the plane surface. To take account of the presence of a scattering particle we add 
to E7 and ER the field that is scattered by the particle itself, E5, as well as the field that, after 
scattering by the particle, is reflected by the plane surface, ERS: even the latter two fields are 
related to each other by the reflection conditions. Ultimately, we have 

EE*t _ E7 + Eß + Es + ER5, C1) 

and E5 is determined by imposing to EExt the appropriate boundary conditions across the surface 
of the scattering particle. It is just the need to impose the latter boundary conditions that makes us 
restrict our present investigation to the determination of the scattering properties of a homogeneous 
sphere. The case of a radially non-homogeneous sphere requires our formalism to undergo minor 
changes that will be outlined at the end of Subsection 2.C. 

The geometry that we adopt for our study is devised so as to make full use of the symmetry of 
the problem while preserving the generality of our approach. With reference to Fig. 1, the surface 
on which the reflection occurs coincides with the plane z = 0 of a cartesian frame of reference, of 
origin O, whose z axis is characterized by the unit vector z: the accessible half-space thus coincides 
with the region z < 0. We also define two further frames of reference whose respective axes are 
parallel to the axes with origin at O. The origin of the first frame, O', coincides with the center 
of the sphere at a distance a from the surface; the origin of the second frame, O", is the mirror 
image of O' with respect to the surface. We will denote with R' = -az and R" = az the vector 
position of the origins O' and O" in the frame of reference with origin at O, respectively, whereas 
the vector position of a point P in the three frames defined above will be denoted with r, r' and 
r", respectively. 

A. Reflection of the incident plane wave 

We assume that all the fields depend on time through the factor exp(-iwt) and define the propa- 
gation constant in vacuo k = u/c. The electromagnetic plane wave 

E7 = E0eIexp[ikI • r], (2) 

that propagates through the halfspace z < 0, is reflected into the plane wave 



ER = E'0eRexp\ikR-r], (3) 

where e/ and eR are the (unit) polarization vectors of the incident and of the reflected wave, 
respectively, and k/ = n'kki and kR = n'kkR are the respective propagation vectors. In order to 
impose the reflection condition on the surface we define two pairs of unit vectors, ü/,, and üRn, 
whose index 77 distinguish whether they are parallel (77 = 1) or perpendicular (77 = 2) to the plane 
of incidence, i. e. to the plane that contains k/, kR and the z axis; the orientation is chosen so 
that u/2 = üß2 and 

Ü/1  X Ü/2 = k/, URi  X UR2 = kfi. 

Accordingly, E7 and Eß can be rewritten as 

E7 = EQ ^(e/ • ü/„)ü/^ exp[ik/ ■ r], (4) 
v 

ER = E'0 ^(eß • üRr,)üRr] exp[ikR • r], (5) 
v 

i. e. as a superposition of components that are parallel and perpendicular to the plane of incidence. 
Then by imposing the reflection condition and denoting with dt the angle between k/ and z we 
get the relation 

E'0eR • ÜRr, = £ojF,,(tf/)ej • ü/,,. 

In the preceding equation the quantities F,,(tfj) are the Fresnel coefficients15 for the reflection of 
a plane wave with polarization along ü/^ 

n2 cos!?/-/? cos di-ß 
Fl('/)=nW, + /?'     W/)=c^7T^' 

where n = n"/n' and 

ß = v
/'(n2-l) + cos2^/. 

As a result, the reflected plane wave, Eq. (5), can be rewritten as 

ER = E0 2(e/ • Ü/^J^tf/JÜÄ, exp[ikß • r]. (6) 
v 

Since E7 and ER must satisfy the boundary conditions also on the surface of the scattering 
sphere, it is convenient to expand both fields in terms of spherical vector multipole fields with 
origin at the center of the sphere, O'.To this end we use the multipole expansion for a vector 
plane wave, Eq. (Al), and get the incident and reflected fields, Eqs. (4) and (6), in the form 

E7 = exp(ik/ - R/)£ E0n £ J&V, n'k)W&\uIn, £,), (7) 
T] plm 

ER = exp(tkÄ • K')J2Fr,(^i)E0nJ2j(i^'^'k)W^\üRT,,kR), (8) 
1} plm 

respectively, where the vector multipole fields J^ and the amplitudes wf£ are defined in Eqs. (A2) 
and (A3), respectively, and E0n = (e/-ü/,)^0; the phase factors exp(z'k/-R') and exp(ikB-R') effect 

the transfer of origin from O to O'. We notice that the amplitudes W^u/^kj) are related by 

Eq. (A6) to the amplitudes wf£(üRn,kR) so that the latter never need to be calculated explicitly. 



B. Reflection of the scattered field 

The field that is scattered by a particle that lies entirely in the accessible half-space can always be 
expanded in a series of vector multipole fields that satisfy the radiation condition at infinity. The 
component of the incident field that is polarized along Ü/,, yields, indeed, a scattered field that, 
with respect to an origin O' within the particle, can be written as 

Ej^^HiV.n'i)^, (9) 
plm 

where the multipole fields H are identical to the J fields, Eq. (A2), except for the substitution of 
the spherical Hankel functions of the first kind hi(n'kr') for the Bessel functions ji(n'kr'). The 
amplitudes A are as yet unknown but will be calculated by imposing the appropriate boundary 
conditions at the surface of the particle.9 The scattered field incides on the plane surface and, by 
reflection, yields a field that can be obtained through a technique that we described elsewhere in 
full detail12 and whose guidelines are summarized in Appendix B. Here we state the result that 
the reflected-scattered field in the vicinity of the surface of the particle can be written as the 
superposition of J multipole fields with origin at O' 

E, 
RS - ^EEJ^^'.^^^'L (10) 

plm p'l' 

where the quantities T, whose expression is given in Eq. (B4), are the elements of a matrix that 
effects the reflection of the H multipole fields on the plane surface and thus yields the required 
relation between the scattered and the reflected-scattered field. We remark that in Eq. (10) we 
used the property, Eq. (B5a), that the elements T vanish unless m' = m. 

C. Amplitudes of the scattered field 

The results in Subsections 2.A and 2.B show that the fields that contribute to EBlt, Eq. (1), in 
the vicinity of the surface of the particle, according to Eqs. (7), (8), (9) and (10), are all expressed 
in terms of vector multipole fields with origin at 0'\ EExt is thus suitable for the imposition of the 
boundary conditions. The multipole expansion of the magnetic field BExt, that is also needed to 
impose the boundary conditions, is readily obtained through the Maxwell equation16 

iBExt = jV x Ef*. 

We now assume that the scattering particle is a homogeneous non-magnetic sphere with (possibly 
complex) refractive index n0 and radius p. The field within the sphere must be regular at 0' and 
can thus be taken in the form 

E^=^£j£V,no^, (11) 
plm 

and the corresponding magnetic field is 

iBint _ 1 v x E/»t_ 

In order to impose the boundary conditions across the surface of the scattering sphere we apply 
to E and B the procedure that we described elsewhere in full detail.9 This procedure yields, for 
each p, I and ?n, four equations among which the amplitudes of the internal field C can be easily 
eliminated. As a result we get, for each m, a system of linear non-homogeneous equations for the 

amplitudes A^im 
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p'i' 

where 

[M-%% = {R-lplto6«>+J?f2, (13) 

W$l = [«PC*/ • R-'rfCü/» - k/) + F, exp(ikR ■ R')W&\üRn, £Ä)], (14) 

and 

,(p) _  (1 + n6pi)u',(nokp)u,(n'kp) - (1 + n^2)"f("oM»)(w,M 

(1 + nipiJu^noM^'^'M _ (1 + n6P2)ui(n0kp)w'l(n'kp) 
R)y,= 

with 

n = -£ - 1,     u/(a;) = xji(x),     wi(x) = xhi(x). 

The quantities R^ and J?|2) coincide with the Mie coefficients 6/ and at, respectively, for a homo- 
geneous sphere of refractive index no embedded into a homogeneous medium of refractive index 
n'. We remark that our theory can easily deal also with radially nonhomogeneous spheres; even in 
this case, in fact, one gets Eq. (12) although the quantities R^ in Eq. (13) must be redefined.17'18 

3. Scattering amplitude and transition matrix 

Once the amplitudes A^lm of E^ have been calculated by solving Eq. (12), the reflected-scattered 

field, E^5, is also determined by Eq. (10). The latter equation, however, gives an expression of 
E,^s that is valid only in the vicinity of the surface of the sphere as it includes multipole fields that 
do not satisfy the radiation condition at infinity. Nevertheless, our recent study of the reflection of 
spherical vector multipole fields on a plane surface,12 whose guidelines are summarized in Appendix 
B, led us to conclude that, at any point of the accessible half-space, E*5 is given by the equation 

Ef = Fo^H^(r">n'fc)4t, (15) 
plm 

where 

7<P)   _ Y^n(py)>i(p') (16) Ar,lm  -  Z^al,l';mA7,l'm- . V      > 
p'V 

The amplitudes a that are defined in Eq. (B9), are determined, with the help of a suitable addition 
theorem for vector multipole fields,11 by the condition that the fields described by Eqs. (10) and 
(15) coincide on the surface of the scattering sphere. Therefore, the superposition of E^, Eq. (9), 
and of E^s, Eq. (15), yields the field that would be observed by an optical instrument in the far 
zone; the reflected field E^ would be observed in the direction of reflection only. Since E^ and 
E^s are given as expansions in terms of H multipole fields with origin at O' and O", respectively, 
it is convenient to use again the addition theorem of ref. 11 to refer both fields to a common origin 
that, for symmetry reasons, we choose to be the point O that is defined in Fig. 1. The observed 
field then becomes 

E,°"=i;Hg(r,n'i)>l,«, 
plm 



where 

41 = E kr#(«*. n'k)A%l+$$(-<*,»'*$£> 
p'i' 

m (17) 

We notice that the quantities J in Eq. (17) are the elements of the matrix that effects the transla- 
tion of origin of the vector multipole fields;11'14 when, as in the present case, the translation takes 
place along the z axis they have the property 

jfcpm,(±az,n>k) = jft$(±az,n'k)6mm,. 

Then, on account of the asymptotic form of the H fields for large values of n'kr and of their 
transversality in the far zone, we are led to write E°bs as 

0bs _ exp(m'fcr) 
N        -   " ^Of,!,,, 

where we define the scattering amplitude15 f„ that, in terms of the transverse vector harmonics 

Z^(f), Eq. (B4), reads 

f, = iEH)P+'Z^(r)41 n'k 
plm 

Therefore, the intensity that would be detected in the direction k0 with polarization along ücv is 

where 

/,., = f, -üo,. = -^E^^^Kl- (18) 
plm 

The efficiency of Eq. (18) can be improved when, as we assumed throughout, the refractive 
index n' is real. In this case, indeed, a consequence of the addition theorem of ref. 11 is the pair 
of identities12 

exp[tk.R]W&>(ü,fc)=   £ j£A(B-.»'*)W?J(fi.t), ("«0 
p'l'm' 

exP[-ik • R]w£*(ü,£) = £ tftfi-^gj-R.^). (19b) 
p'l'm' 

where, as in Section 2, k = n'kk. Equations (19) are valid for any choice of the translation vector 
R but, when the latter is parallel to the z axis the elements J do vanish unless m' — m, as 
we mentioned above. Now, with the help of Eq. (19b), the multipole transfer elements J that 
are included into the definition of the amplitudes A can be eliminated, so that Eq. (18) can be 
rewritten as 

/„,„ = -_i_ V W^üo^Mexpttko -™)A% + exp(-»k0 -za)Ä%}. (20) 
47T71 ft *—* 

plm 

Equation (20) is the one that we actually used for our calculations. 
We proceed now to a further modification of Eq. (18) that leads to the definition of the transition 

matrix for a particle in the presence of a plane interface. To this end let us recall that the formal 
solution to Eq. (12) is 



A(P)   - _VJU
(P,P

'
)
W

(P
'
) (21) 

p'V 

where M is the inverse to the matrix A4-1, Eq. (13). In this respect we notice that, on account of 
the symmetry properties of the elements JF, Eq. (B5b), the inversion of the matrix M_1 need to be 
performed for m > 0 only. With the help of Eq. (19a) and of the relation between the amplitudes 
of E^ and E£, Eq. (A6), we transform the amplitudes W, Eq. (14), into the form 

^ = £^#(-«M'*)<'L, 
p'i' 

where we define the multipole amplitudes of the exciting field 

Substitution of the latter equation into Eq. (21) allows us to write the scattering amplitude as 

pp'   IV     m 

where the quantities 

q(.P,p') _ V^ V^ 
21,1' ;m  —  / j / j 

qL   q'L' 

+ Jl,L;m\-a£<n L)   2^  aL,L";mJVlL",L';n J{Jßl(-™,n'k) 

can be interpreted as the elements of the transition matrix for the spherical scatterer in the presence 
of the plane surface.13 

Using the transition matrix to get the observed field does not yield any advantage in the case that 
we deal with in this paper; in fact, as we stated above, Eq. (20) is computationally more effective. 
However, when dealing with non spherical particles such as, for instance, with aggregated spheres, 
the transition matrix proves to be a useful tool on account of its transformation properties under 
rotation. In practice, the transition matrix includes all the structural and orientational information 
of a nonspherical scatterer whereas all the information on the polarization and on the direction 
of incidence and of observation is included in the multipole amplitudes of the exciting field and 
of the observed field. As a result it is an easy matter to perform averages over the orientation of 
the particles along the lines of our preceding papers;14,17'19,20 work on this subject is presently in 
progress. 

4. Results and discussion 

The theory that we developed in sections 2 and 3 will now be applied to the same systems that 
were dealt with by Bobbert and Vlieger2 and by Johnson3 in order to assess how the approximate 
results of these authors compare with our ones. In this respect we remark that, although our ap- 
proach needs not invoke any simplifying assumption, it can readily incorporate the approximations 
that were described in refs. 2 and 3. We will also add to the comparison the results of two fur- 
ther approximations that we developed as variants to the approximations of the above mentioned 
authors. The results of Muinonen et al.7 for small particles will also be compared with our ones. 

According to the approximation devised by Bobbert and Vlieger (hereafter referred to as Ap- 
proximation BO), the far zone expression of E^s equals that of the scattered field, calculated for 
the direction 7r - d0bs, where ti0bs denotes the direction of observation, with its amplitude scaled 



by the factor F,,(ir - dobs)- Approximation BO has been tested together with our variant (Ap- 
proximation Bl) that assumes that E^5 equals the field that is obtained by scaling by the factor 

(-)')_1Fr)(^ois), the field that would come from the image sphere with center at O" if the surface 
were perfectly reflecting. In practice, this is achieved by calculating, for the direction dobs, E,, as 

given by Eqs. (15) and (16), but scaling by the factor (-)''~1Ftl(jdobs) the amplitudes a, Eq. (B9), 
evaluated for a perfectly reflecting surface. 

Next we considered the approach of Johnson who, beside using Approximation BO to get the 
far zone expression of ERS, introduces a further approximation that affects the imposition of the 
boundary conditions that yield the equations for the amplitudes A, Eq. (12). In the framework 
of the present theory Johnson's procedure (hereafter referred to as Approximation JO) stems from 
the equation 

£ £ JÖ(r^n^)w[^;,;f;2(-2^,n'fc)I<;;;L 
p"l" p'l'm' 

= EEÄV,»'i*)^1 (22) 
plm p'V 

that is a consequence of Eqs. (10) and (B8), and is valid on the surface of the scattering sphere. 
Equation (22) shows that the calculation of the elements T can be overcome provided that the 
amplitudes A and A can be related through some ^"-independent equation. Johnson, by invoking 
the so-called Yousif-Videen approximation,4,5 states such a relation in the form 

that becomes exact in the limit of a perfectly reflecting interface. Johnson's Approximation JO 
has been tested together with a variant (Approximation Jl) that keeps in Eq. (B4) the Fresnel 
coefficients to the value Fv($k =0°) to get approximate values for the elements T. 

All the approximations that were described above, as well as our exact theory, where applied 
to the calculation of the scattered intensity from the systems that were considered by Johnson. 
Doing this has the further advantage that our results can also be compared with the experimental 
results of Wojcik, Vaughan and Galbraith21 as well as with the ab initio simulation of Lee et 
al.22 Accordingly, the scattered intensity from a sphere of radius p — 0.27/im, illuminated by a 
radiation of wavelength A = 0.6328/xm, is reported as a function of the angle of observation for 
parallel polarization in Fig. 2(a) and for perpendicular polarization in Fig. 2(b). Analogous results 
for a sphere of radius p — 0.38/«m are reported in Figs. 3(a) and 3(b). In all the figures #/ = 0°, 
n0 = 1.59, n' = 1 and n" = 3.8; the angle of observation is measured from the negative z axis. The 
result that we report in Figs. 2 and 3 required to extend the multipole expansions up to I Max = 10 
to achieve an accuracy to four significant digits. 

We first notice that Figs. 2(a) and 2(b) seem to report three curves only: in fact, the pair of 
Approximations B0-B1 and J0-J1 yield identical results to a high degree of precision. This is not 
surprising when one recalls how these approximations are defined. Anyway, the approximate results 
compare well with the results of our theory provided that flobs is not near to 90° because our theory 
predicts the occurrence of a nonvanishing field that propagates along the interface. The situation 
is analogous in Figs. 3(a) and 3(b): even in this case our theory is the only one that gives a non 
vanishing field that propagates along the interface. Moreover, the minima of the intensity occur at 
different angles of observation when different approximations are used. The best coincidence with 
our results is attained by Approximation B0-B1 for both choices of the polarization. The different 
result yielded by Approximations J0-J1 was to be expected because the latter, besides including 
Approximation B0 to get the far zone expression of Efl5, also resort to a further approximation 
to simplify the imposition of the boundary conditions. 

When we come to compare our results with the experimental data of Wojcik, Vaughan and 
Galbraith21 and the simulation of Lee et al.,22 that Johnson reports in Figs. 3 and 4 of his paper, 
we see that a fair agreement is attained not only in the position of the minima but also in our 



prediction that the field along the surface does not vanish. Of course the computer time that is 
needed for our calculations is several orders of magnitude smaller than the time that is needed to 
complete the simulation.22 

In Fig. 4 we report the results of the application of our theory as well as of Approximations BO, 
Bl, JO and Jl to the case of a small particle in the vicinity of a plane interface that Muinonen 
et al.7 deal with by means of the exact-image theory. Actually, these authors consider a small 
sphere, with polarizability a, for several values of the distance from a plane surface that separates 
the vacuum from a homogeneous dielectric medium with z = 2.4. The results are normalized so 
as to ensure their independence of the choice of a, the angle of incidence is held fixed at di — 45° 
and the incident light is assumed to be unpolarized. The results that we report in Fig. 4 refer to a 
distance such that ka = ir/2 and their convergency to four significant digits is ensured by including 
terms up to I Max — 6 both in our exact theory and in the approximations BO, Bl, JO and Jl. The 
need to use so high a value for IMOX in spite of the smallness of the scattering particle stems from 
the fact that the particle itself is not in contact with the surface. In fact, ERS was shown to be 
a superposition of multipole fields with origin at the image point O", Eq. (15) so that the larger 
the distance of this point from the surface the larger must be IMUX to get fairly convergent values 
for ERS as seen from the point O on the surface, Eq. (17). This fact is quite analogous to the 
behaviour of the far field that we already discussed for the case of a perfectly reflecting surface.14 

Actually, Fig. 4 seems to report two curves only but this is due to the almost perfect coincidence 
of all the approximate results that, in turn, agree fairly well with the results that Muinonen et al. 
report in Fig. 2 of ref. 7. In particular this coincidence suggests that the further approximation 
that is included in JO and Jl beyond the approximation implied in BO and Bl has little effect on 
the results on account of the distance between the particle and the surface.3 The results of our 
theory have the general shape of the results cited above but for the fact that the observed field do 
not vanish for grazing angle of observation. 

For a last comparison we consider the ellipsometric experiment that was performed on small 
mercury spheres deposited on a dielectric substrate of carbon embedded into a liquid electrolyte.23 

In such an experiment the quantity of interest is the ratio 

Eg/Ej, — tan ipexp(—iA) 

where the angles ip and A are directly comparable with the results of the measurements. We remark 
that this experiment is not appropriate to show the differences between theory and experiment 
that are instead detectable through an angular analysis. For this reason we do not report a specific 
figure for this comparison but only state that, in the range of size parameter that was considered 
by Bobbert, Vlieger and Greef,23 our results coincide fairly well with the ones of these authors 
with the same choice of I Max- 

Finally we come to discuss our specific results for the full scattering pattern from a sphere of 
radius p = 126 nm and refractive index no = 3 in contact with the surface. We already presented 
the scattering pattern from such a sphere on a perfectly reflecting surface14 so that for the sake of 
comparison our present results are plotted in the same frame of reference that is depicted in Fig. 1 
of ref. 14. In this respect we recall that the interface coincides with the x-z plane and that the 
plane of incidence is chosen to be the plane ti = 90°; accordingly, the angle of incidence is denoted 
with ipj and can range in the interval 180° < <pi < 360° whereas the polar angles of the direction 
of observation can range in the intervals 0° < i?oi« < 180° and 0° < fobs < 180°. Even in the 
present case we chose n' = 1, A = 0.6283 /im and <pi = 225°. In Fig. 5(a) n" = oo, in Fig. 5(b) 
n" = 9 and in Fig. 5(c) n" = 1.3; in all the figures we report 7-27vv,/70¥,, where Iov is the intensity 
of the incident plane wave, i. e. both the incident and the observed field are polarized along (p. 
We first notice that the plot in Fig. 5(a) is identical to the one in Fig. 2(a) of ref. 14. We stress, 
however, that in the present case we did not use image theory but calculated the scattered field 
by putting in Eq. (13) the elements of the multipole reflection matrix to the value that is obtained 
from Eq. (B4) when the Fresnel coefficients take on the values Fn = (—)T'_1 that are appropriate to 
a perfectly reflecting surface. The plots in Figs. 5(b) and 5(c) show the evolution of the scattering 
pattern when the refractive index n" of the medium that fills the half-space z > 0 becomes smaller 
and smaller. 
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We notice that the present case of a non-perfectly reflecting surface shares in common with 
the case of a perfectly reflecting surface some features that do not depend on the refractive index 
but are due to the geometry only. In fact, when ■dobs reaches its limiting values, dobs = 0° and 
■dobs = 180°, the angle tp0bs is still well defined as this angle characterizes an observation with a 
well defined choice of the polarization along the parallels. Thus, the limiting curves of our patterns 
(tfobs = 0° and ■dobs = 180°) describe the observation of the scattered beam that propagates along 
the surface at right angles to the plane of incidence with a polarization that depends on (fobs' so, 
for the ^-polarized component of the observed wave, when tpobs = 0° or (fobs = 180°, E * is 
orthogonal to the surface, whereas, when <pobs = 90°, Eois is parallel to the surface. As a result, 
for any given polarization, the four extreme vertices of the pattern correspond to the same physical 
situation, so that the observed intensity must have the same value at all these extreme points; a 
further consequence is that e. g. Uv(tiobs = 0°,<PObs - 90°) = I^'dobs = 0°,<PObs = 0°). We 
do not report the patterns for the other possible choices of the incident and observed polarization 
because, at least for a single sphere, they do not show any significant new feature worth of a 
separate comment. 

5. Conclusions 

The exact theory that we described in this paper proved to yield reliable predictions for the 
scattering pattern from a sphere on a dielectric surface. On the contrary, on account of the 
comparisons that we presented in Section 4, it can be stated that the approximations that were 
assumed by other authors may affect the predicted spectrum not only quantitatively but also 
qualitatively. In this respect, a careful examination of Figs. 5(a), 5(b) and 5(c) shows that, when 
the refractive index of the medium beyond the surface is comparable with the refractive index of 
the sphere, the intensity of the field that propagates along the surface becomes so relevant that 
the pattern predicted by approximate approaches may be unacceptable. 

Our approach may appear to be complicated by the introduction of the multipole reflection 
matrix T: the calculation of the elements of this matrix proved, however, to add little to the 
computational effort. In this respect we stress that integrals that are involved in the calculation 
of T can be computed with high precision through the Gauss-Laguerre method.12,24 On the other 
hand, according to our tests, Approximations B0 and JO are computationally somewhat faster than 
our exact approach but, on account of the considerations that we made in Section 4, the reliability 
of the results that they yield need to be carefully checked. We are thus led to conclude that the 
approximations above do not present substantial computational advantages over our approach. On 
the other hand, the results of the simulation of Lee et al.22 agree fairly well with our predictions 
but require a heavy computational effort. Therefore, both on the side of the computations and on 
the side of the reliability of the results our theory appears to be more expedient than the methods 
of the other authors. 

Appendix A: Multipole expansion of the incident and reflected plane wave 

The multipole expansion of a vector plane wave of wavevector K = KK and polarization vector ü 
is 

E = £0üexp[iK • r] = E0 £ wfc\ü, K)j£>(r. K), (Al) 
pirn 

where 

J^(r, K) = j,(Kr)Xlm(v),    J&}(r, K) = ^V x j,{Kr)Xlm(v) (A2) 

are spherical vector multipoles and 
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wfc\ü, K) = 47rfP+'-1(-)m+1Z/
(f2m(K) • ü (A3) 

are their amplitudes. In Eq. (A2) the superscripts 1 and 2 are the values of a parity index p that 
distinguishes the magnetic multipoles (p = 1) from the electric ones (p = 2), the symbol ji(Kr) 
denotes the spherical Bessel functions and the functions X;m are vector spherical harmonics. Using 
the notation and the phase conventions of Jackson,15 the latter functions can be defined in terms 
of the spherical harmonics Y}m (f) as 

X,m(f) = [/(/ + l)]-1/2LY,m(f), 

where L = —z'r x V is the angular momentum operator. In Eq. (A3), in turn, the symbol Z^ 
denotes the trasverse vector harmonics 

Z£2(K) = X,m(K),    Z&>(K) = X,m(K) x K. (A4) 

The vector spherical harmonics, and the transverse vector harmonics as well, have useful trans- 
formation properties both under rotation and under reflection of their argument across the x-y 
plane.25 Using these properties it is an easy matter to show that 

nnn • z£>(kÄ) = (-)"+"+'+mü/r, • z£>(£7) (A5) 

and thus also 

W$l(üR„kR) = (-y+p+,+mW$l(üIvM (A6) 

Appendix B: Reflected scattered field 

We expand each of the H multipole fields in Eq. (9) as a superposition of vector inhomogeneous 
plane waves as 

H&.V, n'k) = (~°9
P+'"1   / £[ü„ • Z«(k)] u„ exp(tk • r) exp(-tk • R') rfk, (Bl) 

where the domain of integration V is defined as 0 < ipk < 27T and 0 < dk < T/2—ioo. Equation (Bl) 
is the generalization to the vector case12 of the integral expansion of Bobbert and Vlieger2 for 
scalar multipole fields. All the vector plane waves in the integrand are polarized either parallel or 
perpendicular to the plane through the z axis and the integration wavevector k and can thus be 
reflected by the Fresnel reflection rule to yield the reflected field 

„(P) _H)P+M 
'- / E WO [ü" • Z'm(k)] ÜÄ,exP(ikÄ • r)exp(-ik • R')dk. (B2) 

By referring the integrand back to the origin O' by the phase factor exp(ikß • R') we get 

r(p) _H)P+'-1 
nRlm ^{Ewlv«)] 

xüfl, exp(ikR • r') exp[i(kß - k) ■ R'] dk. (B3) 

Now, substituting into Eq. (B3) the multipole expansion of a vector plane wave, Eq. (Al), we are 
led to write the reflected field in the form reported in Eqs. (10) with 
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Jv  v 

x [ÜÄ„ • Z^2m,(kfl)] exp(2m'fca cos tft) dt. (B4) 

It is useful to notice that the quantities T have the properties 

jr(p',p)   _T(P'.P)5     , (B5a) 

*•(?'.p)   _ -rip*') (B5b) 

that can be proved by performing the integration over ipk with the help of the properties of the 
transverse vector harmonics. 

Equation (10), in spite of its usefulness to impose the boundary conditions at the surface of 
the sphere, has the drawback that the J multipole fields do not satisfy the radiation condition 
at infinity. As a result, this equation cannot yield the reflected scattered field in the far region. 
Nevertheless, we remark that in Eq. (B3) the phase factor 

exp[i(kü — k) • R'] = exp(2in'ka cos'dk) 

effects the translation of origin from the image point O" to the actual center of the sphere O': with 
the help of Eq. (A5) we can write 

= Hr-(-r'+"- j £<_,*.,,(,,, [&R,.z«fco] 

xuÄ1|exp(ikÄT")dk, (B6) 

so that the integrand contains only reflected plane waves that are referred to the origin O". Now, 
in the limiting case of a perfectly reflecting interface, the Fresnel coefficients take on the value 

Fr,  =  (-)"-\ 

so that, except for a sign, Eq. (B6) represents in the accessible half-space the multipole field 

HJj2(r",n'ifc) with origin at the image point O". We are thus lead to assume that when the 
interface has general dielectric properties Eq. (B6) represents in the accessible half-space the linear 
combination of multipole fields with origin at O" 

H (p)    _ 
Rim  — 

p"l" 

£    HÖ,(r",n'*)«&;im. (B7) 

The amplitudes a can be determined by expressing the H multipole fields with origin at 0" as a 
combination of appropriate multipole fields with origin at O'. By defining It = R' - R" we get 
for the region inside the spherical surface with center at 0' and radius R, i. e. for r' < R, 

K%1=    E     E3v2^y^^m„(Kyk)a^J?M, (B8) 
p"l"m"p'l'm' 

where the quantities 7i are the elements of the matrix that effects the translation of origin of the 
vector multipole fields. The explicit expression of these quantities as well as of the quantities J 
was originally given, though in a different notation, in ref. 11, and in the present notation in ref. 14. 
When the translation takes place along the z axis the elements % do vanish unless rri = m", as it 
was already stated for the elements J. Therefore, by comparing Eq. (B8) and Eq. (10) and taking 
into account that both the origins O' and O" lie on the z axis, we get for the coefficients a the 
expression 
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n(.p",p)     -VfW-M(p"'pV(p'p)-fl
(p"'p)i     « (B9) al"m",Jm  - 2s\n      )l",l';m^l',l,m   — al",l;m°mm", \Dy) 

p'l' 

so that, even these coefficients do vanish unless m = m". 

1. H. C. van de Hülst, Light scattering by small particles (Wiley, New York, 1957), Chap. 9, pp. 119-121; 
Chap. 15, pp. 297-301; Chap. 16, pp. 329-334. 

2. P. A. Bobbert and J. Vlieger,"Light scattering by a sphere on a substrate," Physica 137A, 209-242 
(1986). 

3. B. R. Johnson, "Calculation of light scattering from a spherical particle on a surface by multipole 
expansion method, " J. Opt. Soc. Am. A 13, 326-337 (1996). 

4. H. Yousif, "Light scattering from parallel tilted fibers," Ph. D. dissertation (Department of Physics, 
University of Arizona, Tucson, Ariz., 1987). 

5. G. Videen, "Light scattering from a sphere on or near a surface,"  J. Opt. Soc. Am. A 8, 483-489 
(1991); 9, 844-845 (erratum) (1992). 

6. I. V. Lindell, A. H. Sihvola, K. O. Muinonen and P. Barber, "Scattering by a small object close to an 
interface. I. Exact-image theory formulation, "J. Opt. Soc. Am. A 8, 472-476 (1991). 

7. K. O. Muinonen, A. H. Sihvola, I. V. Lindell and K. A. Lumme, "Scattering by a small object close 
to an interface. II. Study of backscattering," J. Opt. Soc. Am. A 8, 477-482 (1991). 

8. I. V. Lindell and E. Alanen, 'Exact image theory for Sommerfeld half-space problem, part IILgeneral 
formulation," IEEE Trans. Antennas Propag. AP-32, 841-847 (1984). 

9. F. Borghese, P. Denti, R. Saija, G. Toscano and O. I. Sindoni, "Multiple electromagnetic scattering 
from a cluster of spheres. I. Theory," Aerosol Sei. Technol. 3, 227-235 (1984). 

10. F. Borghese, P. Denti, R. Saija, G. Toscano and O. I. Sindoni, "Use of group theory for the description 
of electromagnetic scattering from molecular systems," J. Opt. Soc. Am. Al, 183-191 (1984). 

11. F. Borghese, P. Denti, G. Toscano and O. I. Sindoni, "An addition theorem for vector Helmholtz 
harmonics," J. Math. Phys, 21, 2754-2755 (1980). 

12. E. Fucile, F. Borghese, P. Denti, R. Saija and O. I. Sindoni, "General reflection rule for electromagnetic 
multipole fields on a plane interface," IEEE Trans. Antennas Propag. (Submitted). 

13. P. C. Waterman: "Symmetry, unitarity and geometry in electromagnetic scattering," Phys. Rev. D 
3, 825-839 (1971). 

14. F. Borghese, P. Denti, R. Saija, E. Fucile, O. I. Sindoni "Optical properties of model anisotropic 
particles on or near a perfectly reflecting surface," J. Opt. Soc. Am. A 12, 530-540 (1995). 

15. J. D. Jackson, Classical electrodynamics (Wiley, New York, 1975), Chap. 9, pp. 432-435; Chap. 16, 
pp. 744-747. 

16. R. G. Newton, Scattering theory of waves and particles (Mc Graw-Hill, New York, 1966), Chap 1, p. 
1. 

17. F. Borghese, P. Denti, R. Saija, G. Toscano and O. I. Sindoni, "Extinction coefficients for a random 
dispersion of small stratified spheres and a random dispersion of their binary aggregates," J. Opt. 
Soc. Am. A 4, 1984-1991 (1987). 

18. M. Kerker, The scattering of light (Academic Press, New York, 1969), Chap. 5, pp. 232-238. 
19. F. Borghese, P. Denti, R. Saija, G. Toscano and O. I. Sindoni, "Macroscopic optical constants of a 

cloud of randomly oriented nonspherical scatterers," Nuovo Cim. 81, 29-50 (1984). 
20. E. Fucile, F. Borghese, P. Denti and R. Saija, "Effect of an electrostatic field on the optical properties 

of a cloud of dielectric particles, "Appl. Opt. 34, 4552-4562 (1995). 
21. G. L. Wojcik, D. K. Vaughan and L. K. Galbraith, "Calculation of light scatter from structures on 

silicon surfaces, " in Lasers in microlithography, J. S. Batchelder, D. J. Ehrlich and J. Y. Tsao, eds., 
Proc. Soc. Photo-Opt. Instrum. Eng. 774, 21-31 (1987). 

22. H. S. Lee, S. Chac, Y. Ye, D. Y. H. Pui and G. L. Wojcik, "Theoretical and experimental particle 
size response of wafer surface scanners," Aerosol Sei. Technol. 14, 177-192 (1991). 

14 



23. P. A. Bobbert, J. Vlieger and R. Greef, "Light reflection from a substrate sparsely seeded with spheres. 
Comparison with ellipsometric experiment," Physica 137A, 243-257 (1986). 

24. M. Abramowitz and I. A. Stegun, Handbook of mathematical functions, (Dover Publications, New 
York, 1972), Sec. 25.4.45, p. 890. 

25. E. M. Rose, Multipole fields, (Wiley, New York, 1956), Chap 2, pp. 16-31. 

Fig. 1.      Sketch of the geometry that we adopted in the present study. 

Fig. 2. Comparison of the results of our theory with those yielded by Approximations BO, Bl, JO 
and Jl (see text) for a sphere of radius p = 0.27/im, and refractive index no = 1.59, in contact with the 
surface, illuminated by light of wavelength A = 0.6328 /im. The sphere is embedded in vacuo, n' = 1, and 
the refractive index of the medium beyond the surface is n" = 3.8. We report, in /im and for direction 
of incidence normal to the surface, the quantity J\\ = r27n/7oi in (a) and J22 — r I22/I02 in (b), where 
7o,, is the intensity of the incident wave; 7n and 722 are the intensities that would be observed for parallel 
and perpendicular polarization, respectively. 

Fig. 3.      Same as Fig 2 but for a sphere of radius p = 0.38 /im. 

Fig. 4. Comparison of the results of our theory with those of Approximations BO, Bl, JO and Jl for a 
small sphere, with polarizability a, whose distance a from the surface is such that ka = x/2. The quantity 
that is actually reported is J = (7i + l2)/(2a2ki), where 7i and 72 are the intensities of the incident field 
for parallel and perpendicular polarization, respectively. The angle of incidence is held fixed at ■di = —45°. 

Fig. 5. Full scattering pattern from a sphere of radius p = 126.0 nm and refractive index no = 3 in 
contact with the surface. The quantity that is actually reported is J = r2Ivv/Iov in fim , where 7ov 

is the intensity of the incident light whose wavelength is A = 0.6283 ^m and whose angle of incidence is 
<pi = 225°. In (a) the surface is perfectly reflecting (n" = 00); the refractive index of the medium beyond 
the surface is n" = 9 in (b) and n" = 1.3 in (c). In all the figures n' = 1. 

15 



Tf 



3. 
i,i 

10" 

10'z   - 

io- 
30 60 e 

Obs 

3 



Obs 

F;< ih 



1,1 BO-Bl 
JO-Jl 
Present Theory 

Obs 

fu 3<% 



Obs 

T;<%\o 



5 

1.5   - 

0.5 

-90 -60        -30 0 30 60     9 Obs 

^ 



0.12 

180 

fioW^ 



> * 

0.08^ 

0.06 

0.04 

0.02 

180 

®o\ bs 
0    o 

<Pobs 

ty st> 



.vtMr 

Gb, bs 
0    o 

180 

9obs 

.'f>-,3V'l    . 


