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1 Introduction

Consider the multiple regression model

Y, =XuB + e, (L.1)

where X, is an n x p matrix, 3 is a p-vector of unknown regression parameters and e, is
a random error vector. Each component of 8 may be zero or nonzero. Each subset M of
{1,2,---,p} is called a sub-model. It is obvious that there are 2 possible sub-models for the
multiple regression problem. A sub-model is called a true model if 3; = 0 for all ; g M. The
problem is to find the smallest true model which is defined to be the one whose all proper

sub-models are not true models.

Many model selection rules have been proposed in the literature for choosing the smallest
true model of the multiple regression problem. Cross-validation is a popular method for
selecting the true model, which selects the sub-model such that it gives the best average
prediction error for the observations. Reference may be made, among others, to Stone (1974,
1977a,b), Geisser (1975), Efron (1983, 1986), Picard and Cook (1984) and Rao (1987). When
the number k of predictors is fixed, the cross-validation is equivalent to Akaike’s AIC which
does not provide a consistent procedure. Shao (1993) showed that k/n — 1 as n — oo is
needed to guarantee the selected model to be asymptotically correct. When £ is large, the
amount of computation required for the cross-validation approach is in fact impractical. For
reducing the computations with cross-validation for large k, several approaches have been

proposed in Shao (1993) and their performances are examined by simulation studies.

Based on the prediction errors, the FPE, criterion is suggested. For references, see Akaike

(1970, 1974), Atkinson (1980), Shibata (1986), and others.

An alternative procedure of model selection is the so-called general information criterion

(GIC), dating back to Akaike’s AIC (1970, 1973). Further work in this direction can be
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found in Mallows (1973), Schwartz (1978), Hanna and Quinn (1979), Shibata (1984) and
Zhao et al. (1986).

Regarding the relation between FPE, and GIC, it seems that GIC is more general than
FPE,. For example, the criterion proposed in Rao and Wu (1989) is an FPE,, but it can
also be viewed as a case of GIC. For the performance of the criterion, it is shown in Rao
and Wu (1989) that if o is chosen such that a/n — 0, and a/loglogn — oo, then the
criterion selects the smallest true model with probability one under some mild conditions.
In this paper, the restriction on e, will be relaxed to allow for the components of e, to be
nonidentically distributed. Accordingly, some adjustments will be made in the criterion. It

will be shown that the new procedure is also strongly consistent.

The paper is organized as follows: The proposed criteria will be stated and investigated
in Section 2, by establishing some general theorems on the strong consistency. Section 3
is devoted to the development of sample-dependent penalty functions. Some applications
to the general case will be discussed in Section 4. The simulation results are presented in
Section 5. Discussions and comments are given in Section 6. Some technical lemmas are

presented in the Appendix.

2 General Model Selection Criteria

Consider the regression model (1.1). Denote X,, = (i, - - - @,,) = (2. .. z(™)’". Through-
out this paper, F; stands for the orthogonal projection operator onto the space spanned by

Tin,...,Tin. The following assumptions are needed for establishing our main results.
AsSUMPTION 1. There are constants a; and a; such that
0 <ain < A(X,X,) < M(X)X,) < apm (2.1)
where \;(X] X.) is the i-th eigen value of X! X,,.
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AsSUMPTION 2. There is a constant § > 0 such that for each 1 <7 < p,

(21.)° = Ol(@}@in)*/?/ log ' +¥ (@}, 2:n)] (2.2)

1

n
J=

where z, is the jth component of z,, = (z},,---,z% ).

AssUMPTION 3. The components of e, = (ey,...,e,)" are independently distributed

with zero mean and satisfy the moment conditions
0<v?*<E(e}), E(ef)<m <o (2.3)
foralll <i<n.

We first consider the p consecutive sub-models {M,..., M,}, where M denotes the

model 8 = (By,...,Bk #0,0,...,0)". Let Sk be the residual sum of squares under the model

M;.. Define the following criterion functions:
(1) GO(k) = Sk + kC.S,/(n—p), k=1,...,p;
(2) GA(k) = Sk + kCy, k=1,....,p.
(3) GQ(k) = nlog Sk + kCyy k=1,...,p;
where C, is a function of n satisfying the conditions

Cn 0, Cn — 00. (2.4)
n log log n

We propose the following selection rules based on the criteria G{)’s; the selected model is
defined by M; for which v
(L) = a6 (1
Gn (l"") lglklgp Gn (}")

In the sequel, we shall call the so-defined selection procedure the Criterion (i).

We first establish the following theorem of the strong consistency of the above criteria.




THEOREM 2.1. Suppose that the assumptions 1-3 hold forn = 1,2,... and M,, is the
smallest true model. If C, satisfies (2.4), then with probability one, for all large n, the

criterion (1) chooses the smallest true model. The same is true for the criterion (2).
In order to prove this theorem, we need the following lemma.
LEMMA 2.1. Suppose that the assumptions 1-3 hold forn = 1,2, ..., then
(L1) agn > ), ®in > ain, asn — o0, 1<i<yp;
(L2) azn > 2! (I — Poy)zin 2 an >0, 1<i<p;
(L3) x! e, = O((nloglogn)'/?), a.s. 1 <i<p;
(L4) e, Pie, = O(loglogn), a.s. | <i<p;
(L5) T, e} /n = is bounded away from 0 and oo almost surely.
(L6) S,/(n — p) is bounded away from 0 and co almost surely.

Proor. Using (2.1), (L1) and (L2) have been proved in Lemma A.1. The assertions

(L3) and (L4)follow from Assumptions 2-3 and Lemmas A.2-A.3. Noting that

1 n l n l n

SV e = SN (e — Be) 4+ -5 e
n § Cl n g(ez et) + n ,§=:; 61,
by Assumption 3, (L5) is a consequence of Lemma A.4. Finally, one can derive (L6) from
(L4) and (L5).
PROOF OF THEOREM 2.1. Consider the case that k& < ko. By (L1)-(L4) of Lemma 2.1
and Cauchy-Schwarz inequality, we have
GO (k) = G (ko) = Sk — Sk, + (k = ko)CS,/(n — p)
> B arn + B, O((nloglog n)/?) — (ko — k)C,.S,/(n — p) a.s. (2.5)



By the condition that n='C,, — 0 of (2.4) and using (L6) of Lemma 3.1, one shows that
GM(k) = GW (ko) >0 aus.

Hence

liminf k, > ko a.s. (2.6)

Then, consider the case k > ko. By (L4) of Lemma 2.1, with probability one, for all large
n, we have
GO (k) — GV (ko)
= (k= ko)C,Sp/(n —p) + O(log log n) (2.7)

This, together with the condition C,,/loglogn — oo of (2.4)and (L6) of Lemma 3.1, implies
that

GI(k) = GV(ko) < 0.
This proves
lim sup k, < ko, a.s. (2.8)

Combining (2.6) and (2.8), we ultimately obtain
ki — k, a.s.

Similarly, the second assertion of the theorem can be proved. The proof of Theorem 2.1

is complete.

The following theorem is concerned with the strong consistency of the third criterion.
Although its statement is similar to those of the previous criteria, there are some differences

in the proof and thus we state and prove it separately.

THEOREM 2.2. Suppose that the assumptions [-3 hold forn = 1,2,... and My, is the

smallest true model. If C, satisfies (2.), then the criterion (3) is strongly consistent.

)




*f

ProoF. Note that

B X (I — P))XaB +28'X(I - P))en + €. (I — Pj)e,, ifj < ko,

e, (I — P))en,, if § > ko.

By (L4)-(L5) of Lemma 2.1, we have, for 1 < j < p,

v+ 0o(1) < S;/n < ag|B]* + v2 4+ 0(1) a.s. (2.10)
and
>4 0,,(1), if 7 < ko,
Sj - S
I . e 2.11
- (2.11)

Oas.(n""loglogn), if j > ko,

where 1 = a,8%, /(a2|B|? + v?) is a positive constant.

Let k > ko. Then, by (2.10), (2.4) and (2.11), we conclude

GO(k) — GO(ko) = nlog =& + (k — ko)Cn

: ’ko

=n (BB g (BB,
S S,

= O(loglogn) + (k — ko)C,, >0  as.
which implies that

limsup k, < ko a.s. (2.12)

Next let k < ko. Since log(1 + ) is an increasing function of z, by (2.11) and (2.4) we

have

GO(k) = G (ko) = nlog g—k = (ko = k)C.

ko
2 nlog (1 + 14 045.(1)) — (ko — £)C\, > 0, as.
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which implies that
liminf k, > ko  as. (2.13)

The results (2.12) and (2.13) establish the theorem.

3 Data-Oriented Penalty Criteria

In the criteria proposed in Section 2, the selection of C, is essential. When C, = 2,
Criterion (1) reduces to the well known AIC, which has been proved to be inconsistent.
Furthermore, the choice C, = logn, known as the BIC, is a special case of Theorem 2.1.,
which is strongly consistent. Hannan and Quinn (1979) argued that the minimal choice of C,
to guarantee strong consistency is clog log n for some positive constant c. Although this result
is not a special case of Theorem 2.1. or 2.2, by using the upper bound in our proofs, results
similar to Hannan and Quinn can be obtained. However, this does not suggest an “optimal
choice” of C, in any particular case. In Bai, Krishnaiah and Zhao (1989), it is proved that
higher the rate of the order of C,, the better is the performance of the criterion. However,
this is only an asymptotic result. Choice of a large C,, usually gives serious underestimation
of the order of the model. From the theorems in Section 2, the constant C, needs only to
satisfy the conditions C,/n — 0 and C,/loglogn — oo to guarantee strong consistency.
However, these conditions do not give any range of the choice of C, for a given n. In other
words, except for the AIC and BIC, the selection of the penalty is not clearly specified.
Noting that the AIC is inconsistent and the BIC does not give the best convergence rate
of the probability of wrong determination of the model, the problem of optimal selection of
the penalty function C, remains unsolved. Rao and Wu (1989) proposed a data-oriented
penalty for model selection in linear models. Later, Chen et al (1992) used a data-oriented
penalty to select models for AR time series. In this section, we shall further investigate the

model selection with data-oriented penalty.



As an example, we consider the Criterion (1). Similar results are true for the other
two criteria and the details are omitted. Let a sequence of experimental measurements

{(y1,2M),..., (yn,z™)} be available. Define, for a given integer ¢ with 1 < ¢ < p,

Xn(q) = (#1n - 2gn), Blg) = (Br,-..,8,)"

If the model M, is true, it can be written as

Y. = Xa(9)B(q) + en.

We shall use the following steps to choose the penalty C,,.

1. Compute any consistent estimate Zin = ([}1,‘,...,/},,")’ of B. For example, let 3, be

the least square estimate of 3 in the model M,,.
2. Compute 52 = Sp/(n —p). Let B, = (B,,,,.-.,B,,) be defined as follows:

_ E,‘n, 1f |Bin[ 2 K,
ﬂinz _ 5 fori:lv"'vpv
ssign(Bin), if |Bin| < &,

where & is a constant.
3. Compute &, =y, — X,.8,.
4. Let
un(h) = X, (R)B, (k) + &,,
for h =1,...,p. Denote
D.(q,h) = S,(h) — Si(h),

where Sg(h) = (wn(h))'(I — P)u, (k). It can be shown that S,(k) = S, if B, = 3, .

Deﬁne
Ay, = minggy, { (fn—qu,)li;‘ } ’
P
Agp = maxgsp {(f%qq»_)};%} .
p
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Let Ay = (A1n + Asn)/2.

5. Define
O(R) _ average of {An, h=1,...,p}

144/]0.01n]

where |b] denotes the integer part of b.

Then, C, is set to be C(R),

REMARK. The constant & used in the definition is determined by the practical requirement

on the distinguishability of the regression coefficients from zero. Intuitively, a small choice

of it will over estimate the model and vice versa.

We establish the following theorem to show that the procedure is asymptotically consis-

tent.

THEOREM 3.1.  Under the assumptions of Theorem 2.1, with probability one, the Criterion

(1) eventually selects the smallest true model if C,, is chosen as C{P).

PROOF. By Theorem 2.1, we need to show that

C(R) C(R)
“— —0, and, -
n log log n

By definition, we have

Du(q, k) = (un(h))(Po = Py)un(h)
= (Xn(h)ﬁn(h) + )(n(kO)ﬁ(kO) - ‘X,nzén + en),(Ph - Pq)
(Xn(R)B,u(R) + Xo(ko)B(ko) — X, + €1).

Note that X, (ko)B(ko) = X,8 and by Lemma 2.1,

En = (B(ko)' 0') + (Xi X)) ' Xl e, = (B(ko) 0') 4+ O,5.(y/n=1loglogn),

(3.1)




which implies that
Xn(ko)B(ko) — XuB,, = Ou..(y/loglogn).
Consider the following two cases for each fixed A.
Case 1. ¢ > h.
In this case, (P, — P;)Xn(h) = 0. Then, (3.2) turns out to be

Du(q,h) = —(Xa(ko)B(ko) — XuB, + €.)' (P = Pu)(Xn(ko)B(ko) — X0 B, + €2)

= —0q,.(loglogn).

Note that D,(q,k) is a negative number of order O,, (loglogn). Thus, Ay, is a positive

number of order O, , (log log n).
Case 2. ¢ < h.

Note that 8, (k) = B(h)+Oq.,.(V/n loglog ), where 3 is the p-vector whose ith element
is sign(;) max(|B;], ). By Lemma A.1, n='B(h)' X,.(h) (P, — P,) X,.(h)B(h) is bounded away

from both zero and infinity. Therefore,

Da(g,h) = B(hY Xu(hY (Py = P)Xu(R)B(A)(1 + o(1)) ass. (3.3)

which is positive and has the exact order as n. Combining the both cases, we conclude that
C{P) has the exact order as /. This shows that (3.1) is true and hence completes the proof

of Theorem 3.1.

For the Criteria (2) and (3), similarly defining the data-oriented penalty C{®. we can

n

establish results similar to those stated for Criterion (1) in Theorem 3.1.

The small sample behavior of the proposed procedures is studied by Monte Carlo simu-

lation in Section 5.
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4 Extensions of the Model Selection Criteria

In Section 2, we discussed the model selection from the p consecutive sub-models { My, ...,
M,} associated with the multiple regression model (1.1). As mentioned there, we actually
have 27 sub-models since each component of 8 may be zero or not. In this section, we shall
extend the model selection for all these possible sub-models. For any true 3, rearranging
the components of 8 and the columns of the design matrix X,, we can get an equivalent
regression model whose smallest true model is one of the sub-models {M,,..., M,}. Then,
we can apply the criteria introduced in Section 2. Since the assumptions do not change under
the rearrangement, the estimated model is still consistent. Select the smallest & among the
model selections for all rearrangements. However, this approach involves a huge amount of
computation if p is large. In fact, there are 27 residual sum of squares to be computed. Here,
we suggest leave one approach (see Rao and Wu (1989)) to select the smallest true model

which needs only the computation of p + 1 residual sum of squares.

For each 1 < ¢ < p, denote

13-{ = (ﬂl,'-"ﬁi—la/3i+1s"'alfjp),

and
Xonmi = (Zin Bicin@igim Tpn)-
Consider the model
Y, = Xu-iB_; +en.
Write the corresponding usual residual sum of squares by S_;. Define, for | <i < p,

G&”(—i) =5 =5, —-C.5/(n—)p) (4.1)

where C,, may be chosen in accordance with the condition (2.4), or as the random penalty

CR) defined in last section.
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Then, choose the model as

Bi=0 ifGU(~i)<0 and B;#0 if GW(=i)>0

i=1,...,p. (4.2)

We now establish the following theorem.

THEOREM 4.1. Under the conditions of Theorem 2.1, the estimated model by the rule

(4.2) is strongly consistent for the smallest true model.

PROOF. Suppose that in the true model 3; # 0. By (2.5) with ko = pand k = p—1, (L6)
of Lemma 2.1 and (2.4), we have G{)(=i) > 0 almost surely. Therefore, with probability
one, f; is taken to be non-zero in the selected model. Conversely, suppose that in the true
model §; = 0. By (2.7) with ko = p ~ 1 and k = p, (L4) and (L6) of Lemma 2.1 and (2.4),
we have G{!)(—i) < 0 almost surely, which implies that with probability one, f3; is excluded

in the selected model. This completes the proof of the theorem.

Similar to (4.1), one may define for each 1 < i < p,

GO (=i) = Soi = 5, — Cy,
or
GPO(=i) = n(log S—; — log S,) = Ch,
respectively. Then choose the model by letting
Bi=0 ifGY(=i)<0 and B;#£0 if GY(=i)>0
t=1,...,p,

j=2or3.

Under the conditions of Theorem 2.1, one can show that with probability one these

12




criteria will eventually select the smallest true model. The proofs are similar to those of

Theorems 2.2 and 4.1, and thus are omitted.

5 Monte Carlo Study

In this section, by computer simulations, we verify the small-sample performance of the

model selection rules proposed in this paper. The regression model is assumed to be:
Yi = Bizri + Paxai + Pz + Pazai + Pszsi+ e, i=1,...,n,

where zy;,...,2s5, i =1,...,n, are iid N(0, 1) random variables. In the simulations, x is set
to be 0.01. In Tables 4.1 and 4.2, ¢,,...,e, are chosen to be independently distributed as
N(0,u?) where u is a discrete random variable uniformly distributed within {1,...,5}. In
Tables 4.3, 4.4 and 4.5, ey, ..., e, are chosen to be independent and identically distributed
as N(0,1) random variables. In the tables, RC(1) denotes C(1) with the use of C{R) of
Section 3 as the choice of C, and the numbers shown in the tables are the counts of the
correct selection of the smallest true model based on 1,000 replications. In simulation, IMSL

subroutines DRNNOF and RNUND were used to generate the random numbers.

From the Table 4.1, it is seen that with the same C,,, the criterion C(1) is superior to the
others and that the RC(1) is comparable with C(1). The criteria AIC, SW and HQ based
on Akaike (1970), Schwarz (1978) and Hannan & Quinn(1979) respectively, do not perform
as well as C(1) and RC(1). Table 4.2 shows that for the general multiple regression model,
the performance of RC(1) is very good, absolutely su’perior to all the others. Comparing
Tables 4.1 and 4.2, one finds that the criterion C(1) with C,, = 5(logn)? performs for the
two models quite differently but the performance of RC(1) is very stable for different models.
Comparing Table 4.3 with Table 4.4, it can be scen that in either case, RC(1) shows a very

good performance. From Tables 4.3 and 4.5, it can be seen that for different signal-to-noise

13




ratios, the performance of C(1) depends on the choice of C,, but RC(1) automatically adapts

to the optimal choice of Cys for different signal-to-noise ratios.
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Table 4.1 C, = 5(logn)® and 8 =(63700)

Sample size | C(1) | C(2) | C(3) | RC(1) | AIC | SW | HQ
15 993 | 973 | 876 | 923 | 683 | 714 | 592
20 998 | 975 | 917 | 951 | 705 | 743 | 630
25 1,000 | 975 | 924 | 969 | 752 | 786 | 683
30 1,000 | 975 | 918 | 982 | 726 | 769 | 667
35 1,000 | 981 | 935 | 992 | 747 | 792 | 678
40 1,000 | 978 | 935 | 995 | 769 | 804 | 698
45 1,000 | 985 | 940 | 1,000 | 767 | 819 | 713
50 1,000 | 976 | 926 | 997 | 741 | 779 | 682
Table 4.2 3=(63007)
Sample size 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50
C(1) 5(logn)®| 23 | 11 | 23 | 48 | 80 | 95 | 130 | 251
C(1) 4(logn)? | 293 | 287 | 464 | 625 | 754 | 824 | 876 | 955
C(1) (logn)® | 322|182 191 | 212|221 186|181 | 273
RC(1) 801 | 792 | 897 | 955 | 967 | 960 | 946 | 986




Table 4.3 8= (63007

Sample size 15 | 20 30 35 40 45
C(1) 5(logn)® | 946 | 995 | 1,000 | 1,000 | 1,000 | 1,000 | 1,000
C(1) logn 752 | 737 740 | 731 | 773 | 742
C(2) 5(logn)* [ 999 | 1,000 | 1,000 | 1,000 | 1,000 | 1,000 | 1,000
C(2) logn 786 | 773 763 | 770 | 782 | 753
RC(1) 998 | 999 | 1,000 | 1,000 | 1,000 { 999 | 1,000
Table 4.4 3=(60370)
Sample size 15 20 30 35 40 45
C(1) 5(logn)® | 557 | 983 1,000 | 1,000 { 1,000 | 1,000
C(1)logn | 699 | 718 720 | 736 | 770 | 729
C(2) 5(logn)* | 524 | 1,000 | 1,000 | 1,000 | 1,000 | 1,000 | 1,000
C(2) logn 743 | 748 747 | 754 | 778 | 747
RC(1) 470 | 963 1,000 { 1,000 { 999 | 1,000
Table 4.5 8= (1.21.500 1.3)
Sample size 15 25 | 30 | 35 | 40 | 45 | 50
C(1) 5(logn)® | 34 86 | 184 | 310 | 388 | 515 | 596
C(1) logn 752 747 | 740 | 731 | 773 | 742 | 733
C(2) 5(logn)®* | 0 3 | 44 | 209 | 320 | 478 | 581
C(2) logn 786 764 | 763 | 770 | 782 | 753 | 734
RC(1) 912 980 | 994 | 992 | 996 | 993 | 994
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6 Discussions and Conclusions

To remedy the inconsistency of AIC, various criteria were proposed in the literature. The
cross-validation has been proved to be equivalent to the AIC. Most other criteria use a fixed
choice of the penalty function C, such that cloglogn < C,, = o(n), for some constant ¢ > 0,
to guarantee strong consistency. However, a fixed choice may be good in some situations and
bad in some other situations. As shown in our simulation, the criterion with a data-oriented

penalty has some advantages.

7 Appendix. Preliminary Lemmas

Denote the eigenvalues of a symmetric matrix A of order k by A\;(A) > ... > Ak(A). The

following lemmas are used in the proofs of the main results.

LEMMA A.1. Letb,,...,b, be n-vectors and denote W; = B!B; where

If there exist constants n, and 1, such that
0 <m < Ap(W,) S M(W,) <y
then

(1) m<bbi<m, 1<i<yp,

(2)  m<bQinibi <y, 1<i<p,

()  m <A (BUP: = Py)Bi) < M(B{(P: = P)B;) <ma,  j <1, (A.1)
where P; is the projection matriz onto the space spanned by by,... b; and Q; = [ — P..
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PRrROOF. For any vector « such that @’ = 1, we have
m < (W) < @'Woz < A(W,) < s

Then the result (i) follows by choosing &’ = (0,...,0,1,0,...,0) where the number 1 is in
the z-th position.

By the interlace theorem (see Sturmian Separation Theorem in Rao (1973, page 64)),
(W) 2 M(Wiet) 2 A (Wa), =1,..,i— 1. (A2)
Note that

Wil (W) X(W5)

Y - bi= =
Qi1bi = gy = W) e (W)

so that by (A.2)
Ai(Wi) < 8Qiby < M (W)).

The assertion (2) then follows, since, using (A.2) once again

A(Wp) < XM(Wh) and A(W) < M (W,) fori < p.

Since M((I — P;)BiB}) = M(Bi(I — P;)B;) and \(B;B!) = M(B!B;), for k = 1,...,1,
by the interlace theorem, it follows that

Ai(B;Bi) < Ai(Bi(P: = Pj)Bi) < M(Bi(P; — P;)B:) < \i(B;B;)

which, together with (A.2), implies the conclusion (3).

LEMMA A.2. Let X, = (&1, - Tk), where x;, s are n-vectors. Assume that e,,’s are

n-dimensional random vectors, n = 1,2,..., such that

z! e, = O(nloglogn)'/?, a.s

m

. 1<i<k (A.3)
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and

0 < cn < A(X! Xo). (A4)

Then
e, P.e, = O(loglogn), a.s.

where P, = X, (X! X,) 1 X!.
PROOF. Let v;, be thei-th eigenvector of X} X, and A, = diag(M (X, X,), ..., (XL X,.)).
Then the (7, j)-th element of (X! X,,)! is
VinA7 Y = O(n7")
using the condition (A.4).

Now by (A.3) and (A.4), it follows that

e, Pre, = e, X, (X! X,)"' X e, = O(log log n)

since each component of e}, X, is O((n log log n)'/?) and each element of (X, X)) tisO(n™Y).

The lemma is proved.

LEMMA A.3. Letey,€,,... be a sequence of independent variables with zero mean such
that 0 < v? < E(e?) = o} and E(lei’) <73 < 00 fori=1,2,.... I[f ay,ay, ... is a sequence

of constants such that
2

(I A=Y ,a? 500, asn — oo;

(II) Ty lai®* = O(A3(log A2)~(48)) for some § > 0,

then, almost surely,

Zaiai = O(A? loglog A2)!/?). (A.5)
i=1
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PROOF. Let B} = T, 0?a? and let F, and & denote the distributions of B! "%, ase;
and the standard normal random variable respectively. Since 0 < v? < ¢? and E(|e;]?) < 73

for: =1,2,..., by the Theorem 3 of Petrov (1975, page 111) and Assumption (IT), we have,

for some constant M > 0,

sup, |[Fa(2) — ®(z)| £ MBI T, ailP Eleif®
= O(A° L, lai’) = O((log A7)~'~*). (A.6)

Now from Assumptions (I) and (II), it follows that

A Tndy

By Assumption (I), (A.6) and (A.7), (A.5) follows from Theorem 3 of Petrov (1975, page
305).

LEMMA A.4. Suppose that £,§,,. .. are independently distributed random variables with

zero means and bounded (1 + §)th moments for some § > 0. Then

! Y &i—0 as.
n i=1

A proof of this lemma can be found in Chung (1974).
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