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1     Introduction 

Consider the multiple regression model 

yn = Xnß + en (1.1) 

where Xn is an n x p matrix, ß is a p-vector of unknown regression parameters and en is 

a random error vector. Each component of ß may be zero or nonzero. Each subset M of 

{1) 2, • • • ,p} is called a sub-model. It is obvious that there are 2P possible sub-models for the 

multiple regression problem. A sub-model is called a true model if /?,- = 0 for all i g M. The 

problem is to find the smallest true model which is defined to be the one whose all proper 

sub-models are not true models. 

Many model selection rules have been proposed in the literature for choosing the smallest 

true model of the multiple regression problem. Cross-validation is a popular method for 

selecting the true model, which selects the sub-model such that it gives the best average 

prediction error for the observations. Reference may be made, among others, to Stone (1974, 

1977a,b), Geisser (1975), Efron (1983, 1986), Picard and Cook (1984) and Rao (1987). When 

the number k of predictors is fixed, the cross-validation is equivalent to Akaike's AIC which 

does not provide a consistent procedure. Shao (1993) showed that k/n -> 1 as n -> oo is 

needed to guarantee the selected model to be asymptotically correct. When k is large, the 

amount of computation required for the cross-validation approach is in fact impractical. For 

reducing the computations with cross-validation for large k, several approaches have been 

proposed in Shao (1993) and their performances are examined by simulation studies. 

Based on the prediction errors, the FPE„ criterion is suggested. For references, see Akaike 

(1970, 1974), Atkinson (1980), Shibata (1986), and others. 

An alternative procedure of model selection is the so-called general information criterion 

(GIC), dating back to Akaike's AIC (1970, 1973).   Further work in this direction can be 



found in Mallows (1973), Schwartz (1978), Hanna and Quinn (1979), Shibata (1984) and 

Zhao et al. (1986). 

Regarding the relation between FPEa and GIC, it seems that GIC is more general than 

FPEa. For example, the criterion proposed in Rao and Wu (1989) is an FPEa, but it can 

also be viewed as a case of GIC. For the performance of the criterion, it is shown in Rao 

and Wu (1989) that if a is chosen such that a/n -» 0, and a/ log log n -► oo, then the 

criterion selects the smallest true model with probability one under some mild conditions. 

In this paper, the restriction on en will be relaxed to allow for the components of en to be 

nonidentically distributed. Accordingly, some adjustments will be made in the criterion. It 

will be shown that the new procedure is also strongly consistent. 

The paper is organized as follows: The proposed criteria will be stated and investigated 

in Section 2, by establishing some general theorems on the strong consistency. Section 3 

is devoted to the development of sample-dependent penalty functions. Some applications 

to the general case will be discussed in Section 4. The simulation results are presented in 

Section 5. Discussions and comments are given in Section 6. Some technical lemmas are 

presented in the Appendix. 

2     General Model Selection Criteria 

Consider the regression model (1.1). Denote Xn = (xin ■ ■ ■ xpn) = (aj(J) • • • a»(n))'. Through- 

out this paper, P, stands for the orthogonal projection operator onto the space spanned by 

«in, • • •, «in- The following assumptions are needed for establishing our main results. 

ASSUMPTION 1. There are constants ax and a2 such that 

0 < axn < \v{X'nXn) < \x(X'nXn) < a2n (2.1) 

where X^X^Xn) is the z'-th eigen value of X'nXn. 



ASSUMPTION 2. There is a constant S > 0 such that for each 1 < i < p, 

B4J3 = 0[(x'tnxinf» I \og^{x>nxln)) (2.2) 

where x\n is the jth. component of xin = (x}n, • • • ,x"n)'. 

ASSUMPTION 3. The components of en = (eu...,en)' are independently distributed 

with zero mean and satisfy the moment conditions 

V<v2<E{e}),    £(|e,f) < r3 < oo (2.3) 

for all 1 < i < n. 

We first consider the p consecutive sub-models {M\,..., A/p}, where Mk denotes the 

model ß = (ßu ..., ßk ^ 0,0,..., 0)'. Let Sk be the residual sum of squares under the model 

Mfc. Define the following criterion functions: 

(1) (#>(*) = Sk + kCnSp/(n-p),    k = l,...,p; 

(2) GW(k) = Sk + kCn,    *=l,...,p. 

(Z)GW(k) = n\ogSk + kCn,    k=l,...,p; 

where Cn is a function of n satisfying the conditions 

^-0,     p^-^oo. (2.4) 
n log log n ' 

We propose the following selection rules based on the criteria C^'s; the selected model is 

defined by M-k   for which 

G'('>a«) =  min Ci?(*). 

In the sequel, we shall call the so-defined selection procedure the Criterion (i). 

We first establish the following theorem of the strong consistency of the above criteria. 



THEOREM 2.1. Suppose that the assumptions 1-3 hold for n = 1,2,... and Mk is the 

smallest true model. If Cn satisfies (24), then with probability one, for all large n, the 

criterion (I) chooses the smallest true model. The same is true for the criterion (2). 

In order to prove this theorem, we need the following lemma. 

LEMMA 2.1.    Suppose that the assumptions 1-3 hold for n = 1,2,..., then 

(LI) a2n > x'inxin > ain,    as n -* oo,     1 < i < p; 

(L2) a2n > x'in(I - />•_,)xin > aAn > 0,     1 < i < p; 

(L3) x'inen = 0{{n log log n)1/2), a.s.    \<i< p; 

(L4) e'nPien = O(loglogn),  a.s.    1 < i < p; 

(L5) YA=\ 
el/n = is bounded away from 0 and oo almost surely. 

(L6) SPl(n — p) is bounded away from 0 and oo almost surely. 

PROOF. Using (2.1), (LI) and (L2) have been proved in Lemma A.l. The assertions 

(L3) and (L4)follow from Assumptions 2-3 and Lemmas A.2-A.3. Noting that 

it«? 4 £>?-*«?)+;£««?■ 
n ;=i n i=i n ,=i 

by Assumption 3, (L5) is a consequence of Lemma A.4.  Finally, one can derive (L6) from 

(L4) and (L5). 

PROOF OF THEOREM 2.1. Consider the case that k < kQ. By (L1)-(L4) of Lemma 2.1 

and Cauchy-Schwarz inequality, we have 

G(
n
l)(h) - (%\ko) = Sk - ,S',0 + (k - k0)CnSp/(n - p) 

> /^n-f/^Oanloglogn)1/2) - (*„ - k)CnSp/(n-p)   a.s. (2.5) 



By the condition that n 1Cn -► 0 of (2.4) and using (L6) of Lemma 3.1, one shows that 

Gi1)(k)-Gil\ko)>0   a.s. 

Hence 

lim inf kn > k0   a.s. (2.6) 

Then, consider the case k > kQ. By (L4) of Lemma 2.1, with probability one, for all large 

n, we have 

Gil)(k)-G[l\k0) 

=   (k - k0)CnSp/(n - p) + 0(log log n) (2.7) 

This, together with the condition C„/log log n -> oo of (2.4)and (L6) of Lemma 3.1, implies 

that 

Gil)(k) - (%){ko) < 0. 

This proves 

lim sup £n < k0, a.s. (2.8) 

Combining (2.6) and (2.8), we ultimately obtain 

Similarly, the second assertion of the theorem can be proved. The proof of Theorem 2.1 

is complete. 

The following theorem is concerned with the strong consistency of the third criterion. 

Although its statement is similar to those of the previous criteria, there are some differences 

in the proof and thus we state and prove it separately. 

THEOREM 2.2. Suppose that the assumptions 1-3 hold for n = 1,2,... and Mko is the 

smallest true model. If Cn satisfies (2J,), then the criterion (3) is strongly consistent. 



PROOF.   Note that 

ß'X'n(In - Pj)Xnß + 2ß'X'n(I - P,-)c» + e'n(I - Pj)en,    if j < £0, 

e'n(/-/>,>», 

By (L4)-(L5) of Lemma 2.1, we have, for 1 < j < p, 

if j > k0. 

v2 + o(l) < Sj/n < a2\ß\2 + v2 + o(l)    a.a. 

and 

Sk0 

>V + °a.3.(l), if j  < k0, 

, 0o...(n  'log log n),     if j > fc0, 

where T? = a1/9^o/(a2|/3|2 + v2) is a positive constant. 

Let k > k0. Then, by (2.10), (2.4) and (2.11), we conclude 

G(n](k) - GS\ko) = n log ^- + (k- ko)Cn 

= n S* ~ '^o    ,   _ (Sk ~ $k0 

s\0 
+ 0 

Sk ko 
+ (& — ko)Cn 

which implies that 

= O(log log n) + (fc - A0)Cn > 0     a.s. 

lim sup kn < k0     a.s. 

(2.9) 

(2.10) 

(2.1i; 

(2.12) 

Next let k < k0. Since log(l + x) is an increasing function of x, by (2.11) and (2.4) we 

have 

<$>(*) - GW(ko) = n log |i - (A* - Jb)CB 

> nlog(l + r/ + Oa.sXl)) - {k0 - k)Cn > 0, a.s. 



which implies that 

liminf kn > k0     a.s. (2.13) 

The results (2.12) and (2.13) establish the theorem. 

3    Data-Oriented Penalty Criteria 

In the criteria proposed in Section 2, the selection of Cn is essential. When Cn = 2, 

Criterion (1) reduces to the well known AIC, which has been proved to be inconsistent. 

Furthermore, the choice Cn = logn, known as the BIC, is a special case of Theorem 2.1., 

which is strongly consistent. Hannan and Quinn (1979) argued that the minimal choice of Cn 

to guarantee strong consistency is c log log n for some positive constant c. Although this result 

is not a special case of Theorem 2.1. or 2.2, by using the upper bound in our proofs, results 

similar to Hannan and Quinn can be obtained. However, this does not suggest an "optimal 

choice" of Cn in any particular case. In Bai, Krishnaiah and Zhao (1989), it is proved that 

higher the rate of the order of C„ the better is the performance of the criterion. However, 

this is only an asymptotic result. Choice of a large Cn usually gives serious underestimation 

of the order of the model. From the theorems in Section 2, the constant Cn needs only to 

satisfy the conditions Cn/n -> 0 and C„/ log logn -► oo to guarantee strong consistency. 

However, these conditions do not give any range of the choice of Cn for a given n. In other 

words, except for the AIC and BIC, the selection of the penalty is not clearly specified. 

Noting that the AIC is inconsistent and the BIC does not give the best convergence rate 

of the probability of wrong determination of the model, the problem of optimal selection of 

the penalty function Cn remains unsolved. Rao and Wu (1989) proposed a data-oriented 

penalty for model selection in linear models. Later, Chen ct al (1992) used a data-oriented 

penalty to select models for AR time series. In this section, we shall further investigate the 

model selection with data-oriented penalty. 



As an example, we consider the Criterion (1). Similar results are true for the other 

two criteria and the details are omitted. Let a sequence of experimental measurements 

{(t/i, ajt1)),..., (yn, a;(n))} be available. Define, for a given integer q with 1 < q < p, 

Xn(g) = (*,„.-. *,B),     ß(q) = (ßu...,ßqy. 

If the model Mq is true, it can be written as 

yn = Xn(q)ß(q) + en. 

We shall use the following steps to choose the penalty Cn. 

1. Compute any consistent estimate ßn = (ßUl,..., ßpn)' of ß.   For example, let ßn he 

the least square estimate of ß in the model Mp. 

2. Compute <r£ = Sp/(n - p). Let ßn = (ßln,..., ßpn)' be defined as follows: 

f Ä„, if I/Li > K, 
ßin = < ^ _ for i = l,...,p, 

[ Ksign(/?,-n),   if |^in| < Ac, 

where K is a constant. 

3. Compute en = yn - Xnßn. 

4. Let 

un(h) = Xn(h)ßn(h) + en, 

for h = 1,..., p. Denote 

Dn(q,h) = Sq(h)-Sh(h), 

where Sq(h) = (un(h))'(I - Pq)un(h).  It can be shown that Sp(h) = Sp if ßn = ßn . 

Define 



Let Ah = (Au + A2/l)/2. 

5. Define 

C(ß) = average of {A/l' ^ = !»■••»?} 
1 + ^10-OlnJ 

where |_6J denotes the integer part of b. 

Then, Cn is set to be CJW 

REMARK. The constant K used in the definition is determined by the practical requirement 

on the distinguishability of the regression coefficients from zero. Intuitively, a small choice 

of it will over estimate the model and vice versa. 

We establish the following theorem to show that the procedure is asymptotically consis- 

tent. 

THEOREM 3.1. Under the assumptions of Theorem 2.1, with probability one, the Criterion 

(1) eventually selects the smallest true model if Cn is chosen as C^R). 

PROOF.    By Theorem 2.1, we need to show that 

C(R) C(R) 
— -> 0,      and ,     —f > co. (3.1) 

n log log n v      ; 

By definition, we have 

Dn(q,h) = (un(h))'(Ph-Pq)un(h) 

= (Xn(h)ßn(h) + Xn(ko)ß(ko) - Xnßn + en)'(Ph - P„) 

(Xn(h)ßn(h) + Xn(ko)ß(k0) - Xnßn + en). (3.2) 

Note that Xn(k0)ß{k0) = Xnß and by Lemma 2.1, 

ßn = (ß(k0)' 0')' + (X'nXn)-
lX'nen = (ß(k0)' 0')' + Oa..Xy/n-*\oglogn), 



which implies that 

Xn(k0)ß(k0) - Xnßn = Oa...(0oglogn). 

Consider the following two cases for each fixed h. 

Case 1. q > h. 

In this case, (Ph - Pq)Xn(h) = 0. Then, (3.2) turns out to be 

Dn(q,h)   =   -(Xn(k0)ß(k0)-Xnßn + en)'(Pq-Ph)(Xn(ko)ß(k0)-Xnßn + en) 

=    -Oa.4.(loglogn). 

Note that Dn{q,h) is a negative number of order 0o.,.(loglogn). Thus, A2h is a positive 

number of order Oa.3.(log logn). 

Case 2. q < h. 

Note that ßn(h) = ß{h) + Oa.s.(\/
n~l log logn), where ß is the p-vector whose ith element 

issign(Ä-)max(|Ä-|,«). By Lemma A.1, n-lß(h)'Xn(h)'{Ph-Pq)Xn(h)ß(h) is bounded away 

from both zero and infinity. Therefore, 

Dn(qth) = ß{h)'Xn{h)\Ph - Pq)Xn(h)ß(h)([ +o(l))    a.s. (3.3) 

which is positive and has the exact order as n. Combining the both cases, we conclude that 

C^ has the exact order as y/n. This shows that (3.1) is true and hence completes the proof 

of Theorem 3.1. 

For the Criteria (2) and (3), similarly defining the data-oriented penalty C[R\ we can 

establish results similar to those stated for Criterion (1) in Theorem 3.1. 

The small sample behavior of the proposed procedures is studied by Monte Carlo simu- 

lation in Section 5. 

10 



4    Extensions of the Model Selection Criteria 

In Section 2, we discussed the model selection from the p consecutive sub-models {Mi,..., 

Mp} associated with the multiple regression model (1.1). As mentioned there, we actually 

have 2P sub-models since each component of ß may be zero or not. In this section, we shall 

extend the model selection for all these possible sub-models. For any true ß, rearranging 

the components of ß and the columns of the design matrix Xn, we can get an equivalent 

regression model whose smallest true model is one of the sub-models {Mi,..., Mp). Then, 

we can apply the criteria introduced in Section 2. Since the assumptions do not change under 

the rearrangement, the estimated model is still consistent. Select the smallest h among the 

model selections for all rearrangements. However, this approach involves a huge amount of 

computation if p is large. In fact, there are 2P residual sum of squares to be computed. Here, 

we suggest leave one approach (see Rao and Wu (1989)) to select the smallest true model 

which needs only the computation of p + 1 residual sum of squares. 

For each 1 < il < p, denote 

ß.i = (ßl,...,ß,^,ßl+u...,ßpy 

and 

Xn,-i  = («In • • • «<-l,n«.+ l,7i ' ' ' Xpn). 

Consider the model 

yn = XUi_,/3_; + en. 

Write the corresponding usual residual sum of squares by ,$'_,. Define, for 1 < i < p, 

GP(-i) = S-i - Sp - CnSp/(n - p) (4.1) 

where C„ may be chosen in accordance with the condition (2.4), or as the random penalty 

C^ defined in last section. 

11 



Then, choose the model as 

ßi = 0    i(G[x\-i)<0  and    ßi^O    ifC^(-0>0 

i = l,...,p. (4.2) 

We now establish the following theorem. 

THEOREM 4.1. Under the conditions of Theorem 2.1, the estimated model by the rule 

(4-2) is strongly consistent for the smallest true model. 

PROOF. Suppose that in the true model ß, ^ 0. By (2.5) with k0 = p and k = p- 1, (L6) 

of Lemma 2.1 and (2.4), we have G^(-i) > 0 almost surely. Therefore, with probability 

one, ßi is taken to be non-zero in the selected model. Conversely, suppose that in the true 

model ßi = 0. By (2.7) with k0 = p-\ and k = p, (L4) and (L6) of Lemma 2.1 and (2.4), 

we have G^\-i) < 0 almost surely, which implies that with probability one, /?, is excluded 

in the selected model. This completes the proof of the theorem. 

Similar to (4.1), one may define for each 1 < i < /;, 

G^(-i) = S ■ - S - C 

or 

GW(-i) = n(\ogS„t-\ogSp)-Cn, 

respectively. Then choose the model by letting 

ßi = 0    if Glp(-i) < 0  and    ßi ^0    if Glpi-t) > 0 

i= l,...,p, 

j = 2 or 3. 

Under the conditions of Theorem 2.1, one can show that with probability one these 

12 



criteria will eventually select the smallest true model. The proofs are similar to those of 

Theorems 2.2 and 4.1, and thus are omitted. 

5    Monte Carlo Study 

In this section, by computer simulations, we verify the small-sample performance of the 

model selection rules proposed in this paper. The regression model is assumed to be: 

Vi = ß\X\i + ßi-xa + ß3x3i + ß4x4i + ßsxSi + et-,     i = 1,..., n, 

where xi,-,.. .,x5l-, i= 1,... , n, are iid N(0,1) random variables. In the simulations, n is set 

to be 0.01. In Tables 4.1 and 4.2, eu... , en are chosen to be independently distributed as 

N(0,u2) where u is a discrete random variable uniformly distributed within {1,...,5}. In 

Tables 4.3, 4.4 and 4.5, ex,... ,e„ are chosen to be independent and identically distributed 

as A^O, 1) random variables. In the tables, RC(1) denotes C(l) with the use of C£R> of 

Section 3 as the choice of C„ and the numbers shown in the tables are the counts of the 

correct selection of the smallest true model based on 1,000 replications. In simulation, IMSL 

subroutines DRNNOF and RNUND were used to generate the random numbers. 

From the Table 4.1, it is seen that with the same C„, the criterion C(l) is superior to the 

others and that the RC(1) is comparable with C(l). The criteria AIC, SW and HQ based 

on Akaike (1970), Schwarz (1978) and Hannan k Quinn(1979) respectively, do not perform 

as well as C(l) and RC(l). Table 4.2 shows that for the general multiple regression model, 

the performance of RC(1) is very good, absolutely superior to all the others. Comparing 

Tables 4.1 and 4.2, one finds that the criterion C(l) with Cn = 5(logn)3 performs for the 

two models quite differently but the performance of RC(1) is very stable for different models. 

Comparing Table 4.3 with Table 4.4, it can be seen that in either case, RC(1) shows a very 

good performance. From Tables 4.3 and 4.5, it can be seen that for different signal-to-noise 

13 



ratios, the performance of C(l) depends on the choice of Cn but RC(1) automatically adapts 

to the optimal choice of Cns for different signal-to-noise ratios. 

14 



Table 4.1 C, a = 5(log n)3 and ß = (6370 0)' 

Sample size C(l) C(2) C(3) RC(1) AIC SW HQ 

15 993 973 876 923 683 714 592 

20 998 975 917 951 705 743 630 

25 1,000 975 924 969 752 786 683 

30 1,000 975 918 982 726 769 667 

35 1,000 981 935 992 747 792 678 

40 1,000 978 935 995 769 804 698 

45 1,000 985 940 1,000 767 819 713 

50 1,000 976 926 997 741 779 682 

Table 4.2 ß = (6300 7)' 

Sample size 15 20 25 30 35 40 45 50 

C(l) 5(logn)3 23 11 23 48 80 95 130 251 

C(l) 4(logn)2 293 287 464 625 754 824 876 955 

C(l) (logn)3 322 182 191 212 221 186 181 273 

RC(1) 801 792 897 955 967 960 946 986 

15 



Table 4.3  ß = (6300 7)' 

Sample size 15 20 25 30 35 40 45 50 

C(l)5(logn)3 946 995 1,000 1,000 1,000 1,000 1,000 1,000 

C(l)logn 752 737 747 740 731 773 742 733 

C(2)5(logn)3 999 1,000 1,000 1,000 1,000 1,000 1,000 1,000 

C(2) logn 786 773 764 763 770 782 753 734 

RC(1) 998 999 1,000 1,000 1,000 999 1,000 1,000 

Table 4.4 ß = (6037 0)' 

Sample size 15 20 25 30 35 40 45 50 

C(l)5(logn)3 557 983 995 1,000 1,000 1,000 1,000 1,000 

C(l)logn 699 718 708 720 736 770 729 763 

C(2)5(logn)3 524 1,000 1,000 1,000 1,000 1,000 1,000 1,000 

C(2) logn 743 748 739 747 754 778 747 767 

RC(1) 470 963 975 1,000 1,000 999 1,000 1,000 

Table 4.5  /3 = (1.2 1.500 1.3)' 

Sample size 15 20 25 30 35 40 45 50 

C(l)5(logn)3 34 24 86 184 310 388 515 596 

C(l) logn 752 737 747 740 731 773 742 733 

C(2)5(logn)3 0 0 3 44 209 320 478 581 

C(2) logn 786 773 764 763 770 782 753 734 

RC(1) 912 923 980 994 992 996 993 994 
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6    Discussions and Conclusions 

To remedy the inconsistency of AIC, various criteria were proposed in the literature. The 

cross-validation has been proved to be equivalent to the AIC. Most other criteria use a fixed 

choice of the penalty function Cn such that c log log n < Cn = o(n), for some constant c > 0, 

to guarantee strong consistency. However, a fixed choice may be good in some situations and 

bad in some other situations. As shown in our simulation, the criterion with a data-oriented 

penalty has some advantages. 

7    Appendix. Preliminary Lemmas 

Denote the eigenvalues of a symmetric matrix A of order k by Xi(A) > ... > Xk(A). The 

following lemmas are used in the proofs of the main results. 

LEMMA A.l.    Let b\,... ,bp be n-vcctors and denote W{ = B\B{ where 

Bi = {bl>--bi),   ;. = i,...,P. 

// there exist constants T/I and 7/2 such that 

0<r/l<Ap(^p)<A1(H/p)<r/2, 

then 

(1) Vi < b-bi < V2,     \<i<p, 

(2) m < b'&i-xbi < 7/2,     1 < 1 < ;;, 

(3) m<K-3(B'i(Pt-P])Bt)<Xx(B'l(Pl-PJ)Bl)<V2,    j<i, (A.l) 

where Pi is the projection matrix onto the space spanned by 61,..., 6,- and Qi = I — f,. 

17 



PROOF.    For any vector x such that x'x = 1, we have 

»7i < KiWv) < x'Wvx < \,(WP) < 772. 

Then the result (i) follows by choosing x' = (0,..., 0,1,0,..., 0) where the number 1 is in 

the z'-th position. 

By the interlace theorem (see Sturmian Separation Theorem in Rao (1973, page 64)), 

\i(Wd>\i(Wi-i)>\i+i(Wi),    i = 1 » — 1. (A.2) 

Note that 

|W,_,|      A1(W^_1)--.At-_1(W<_l) 

so that by (A.2) 

A,W-)<6;.Q1-_,6I-<AI(W^). 

The assertion (2) then follows, since, using (A.2) once again 

AP(WP) < Xi(Wi)    and    A^WJ) < \X(WP)    for i < p. 

Since Xk((I - Pj)BiBl) = Xk(B't{I - />,)£,) and A*(£,■£<) = Xk{B'tBi), for k = i,...,i, 

by the interlace theorem, it follows that 

XiiB'iBi) < Xi-AB'iiPi - Pj)Bi) < X,{B\{Pt - Pj)Bi) < XX(B\BX) 

which, together with (A.2), implies the conclusion (3). 

LEMMA A.2.    Let Xn = (xin ■ ■ • x^n), where x,-„ '$ are. n-vectors.  Assume that en 's arc 

n-dimensional random vectors, n — 1,2,..., such that 

icjBeB = 0(nloglogn)1/2,   a.s.,     \<i<k (A.3) 
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and 

0 < en < \k(X'nXn). (A.4) 

Then 

e'nPnen = O(loglogn),   a.s. 

where Pn = Xn(X>nXn)-*X'n. 

PROOF.    Let 7:n be the j-th eigenvector of X'nXn and An = diag(A1(X;Xn),..., \k{X'nXn)). 

Then the (i, j)-th element of (A^A'«)-1 is 

using the condition (A.4). 

Now by (A.3) and (A.4), it follows that 

e'nPnen = e'nXn(X'nXn)-\X'nen = O(loglogn) 

since each component of e'nXn is 0((?t log log n)1/2) and each element of (A^A^)"1 is 0(n_I). 

The lemma is proved. 

LEMMA A.3. Let ei,e2,... be a sequence of independent variables \uith zero mean such 

that 0 < v2 < E{e2) = a2 and £(|e,|3) < r3 < oo for i = 1,2,.... If au a2,... is a sequence 

of constants such that 

(I) An = £"=1 a
2 —► oo,     as 7i -> oo; 

(II)   ELM3 = 0[A3
n(\ogAl)-l"*)),     for some S > 0, 

</ien, almost surely, 

i£aiei = 0(Al\oglogA2
n)
l'i). (A.5) 

»=i 
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PROOF. Let B2 = £?=1 afaf and let Fn and $ denote the distributions of ß"1 J%=x ate, 

and the standard normal random variable respectively. Since 0 < v2 < a} and £(|e,|3) < r3 

for i = 1,2,..., by the Theorem 3 of Petrov (1975, page 111) and Assumption (II), we have, 

for some constant M > 0, 

sup, \Fn(x) - *(*)| < MB-^jyU \"i\3E\e,\3 

= 0(A~3 £?=1 N
3) = 0((log /£)-»-'). (A.6) 

Now from Assumptions (I) and (II), it follows that 

-y = l--J
A-r^L (A-7) 

By Assumption (I), (A.6) and (A.7), (A.5) follows from Theorem 3 of Petrov (1975, page 

305). 

LEMMA A.4.    Suppose that £1,62, ...are independently distributed random variables with 

zero means and bounded (1 + 6)th moments for some 6 > 0.   Then 

1   n 

-£&->0   a.s. n,tt 

A proof of this lemma can be found in Chung (1974). 
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