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PIEZOELECTRICITY: VENERABLE EFFECT, MODERN THRUSTS 

Abstract 

A synopsis of the piezoelectric effect is presented in the context of 
its history, traditional uses, and relation to crystal symmetry. Associated 
effects are briefly noted. Future prospects, particularly in the area of 
microelectromechanical systems/structures (MEMS), are discussed. 

Introduction 

Piezoelectricity was discovered by the brothers Curie in 1880. They 
found that, in certain materials such as zincblende, tourmaline, cane 
sugar, topaz, and quartz, mechanical stresses were accompanied by the 
production of electric surface charges. The following year, Lippmann, from 
thermodynamic considerations, predicted the converse effect: an 
imposed voltage produces mechanical deformations. The name "piezo" 
derives from the Greek, meaning "to press"; in more modern terminology, 
we say that the effect couples electric and elastic phenomena, as 
discussed below. (It is interesting to note that, in the 19th Century, when 
mechanics reigned supreme, luminaries like Kelvin and Maxwell 
"explained" light phenomena in terms of mechanical models such as 
coupled gyroscopes. Today, electromagnetism and electronics reign, and 
the art of mechanics seems in many respects an all-but-forgotten 
discipline. To present the workings of modern mechanical structures such 
as microactuators to the "real world," we now make use of equivalent 
electrical circuits!) 

The piezoelectric effect remained a curiosity until the early 1920s 
when its presence in quartz was utilized to realize crystal resonators for the 
stabilization of oscillators, thereby launching the field of frequency 
controlJ With the introduction of quartz control, timekeeping moved from 
the sun and stars to small, man-made sources that exceeded astronomy- 
based references in stability. Since then, devices based on 
piezoelectricity have expanded dramatically in application. The quartz 
resonator has continued to evolve to become a device capable today of 
precision one million times greater than the original, and serves as well as 
the "flywheel" in atomic frequency standards, which make frequency the 
most accurate entity known.2 



Piezoelectric devices are additionally used as transducers in 
applications from telephone speakers to sonar arrays; a newer and 
rapidly burgeoning area of utilization is the integral incorporation of 
mechanical actuation and sensing microstructures into electronic chips. 
These microelectromechanical structures/systems (MEMS) promise signal 
sensing, processing, and outputting features unattainable by exclusively 
electronic/photonic means. In many traditional applications, applied 
voltages conform to the norms for electronic circuits; accompanying 
mechanical displacements are then usually nanometers or less. Newer 
configurations available today for actuators often have much larger 
amplitudes at comparable voltages. Key to MEMS exploitation is the 
piezoelectric cantilever bimorph, consisting of a two-layer laminate, 
fashioned like a subminiature diving board.3-5 Usually the bimorph 
substrate is silicon, with thin patches of piezoelectrically active films of 
materials such as aluminum nitride or zinc oxide to drive the structure into 
flexural motion. This bending mode delivers the greatest possible 
displacement for a given driving voltage, so, for example, a proof mass 
located at the "diver's" position provides the greatest sensitivity to 
accelerations; lenses/mirrors so situated yield maximal photonic 
excursions, while FET gates or optical waveguides at the support end 
experience mechanical stress maxima for modulating the electronic or 
optical variables. The bimorph MEMS devices provide otherwise 
unavailable capabilities, and require piezoelectricity as the transduction 
mechanism. An alternative configuration is the laminated plate, where 
aluminum nitride or zinc oxide thin-film layers drive silicon plates for 
integrated frequency control devices.* 

One of the most appealing aspects of piezoelectricity for modern 
applications is the compelling immediacy and simplicity of the 
transduction mechanism. Micro- and nano-electronics are built upon the 
behavior of charged species subjected to electric fields; the extreme 
miniaturization of these structures is owed in large measure to their ability 
to take on a capacitor-like form.7 Bulky inductors are banished and done 
without, and thin, planar electrodes introduce the electric fields to operate 
the circuits. These fields also provide the forces required to drive 
mechanical motions in a piezoelectric device. Elastic field/mechanical 
considerations are therefore incorporated into the operations of modern 
electronic components in a clean, efficient, and very direct manner, by 
making use of the voltages resident on the chips, via the piezoeffect. 



Material Constitutive Equations 

Formally stated, piezoelectricity couples the mechanical stress (T) 
and strain (S) fields with the electric intensity (E) and displacement (D) 
fields. Depending on variable choice, four sets of material constitutive 
relations are defined for the linear case of insulating dielectric materials; 
these are, in compressed matrix form:8"10 

[T]-[cE][S]- [e ]• [E] (la) 

[D] = [ e ][S] + [eS] [E] (lb) 

[T] = [cD] [S]-[ h ]'[D] (2a) 

[E]--[ h ][S] + [ßS][D] (2b) 

[S] = [sE ][T] + [d r IE] (3a) 

[D]-[ d im + lJ]   [E] (3b) 

[S]=   [sD] [T] + [ g ]' [D] (4a) 

[E]--[g] [T]+ [ßT] [D] (4b) 

Because the electric variables [ E ] and [ D ] are tensors of rank 1 
(i.e., three-dimensional vectors), and the mechanical variables [ T ] and 
[ S ] are tensors of rank two which have been converted to six-dimensional 
vectors, [ cE ], [ cD ] and [ sE ], [ sD ] are (6 X 6) symmetric matrices 
representing the elastic stiffnesses and compliances at constant E and D; 
[ es ], [ eT ] and [ ßs ], [ ßT ] are symmetric (3 X 3) dielectric permittivity 
and impermeability matrices at constant S and T, while [ e ], [ h j, [ d ], and 
[ g ] are (3 X 6) piezoelectric matrices. A prime denotes transpose. 
Alternative formulations, using the electric polarization vector [ P ] in place 
of [ D ], are sometimes used, particularly in electrooptic applications; the 
piezoelectric polarization [ a ] and [ b ] matrices are then used.11 We 
subsequently drop the matrix brackets [   ] for simplicity. 



The four equivalent pairs of material constituent equations (1) - (4) 
differ in their combinations of independent and dependent variables; the 
material constants used in the sets are interrelated. These relations may be 
determined by first pairing the equations sharing common variables: 

(la) and (3a): T, S, E 
(2a) and (4a): T, S, D 
(lb) and (2b): E, D, S 
(3b) and (4b): E, D, T 

One variable is then eliminated from each pair, yielding the required 
results. For example, from (la) and (3a) we have: 

T = cE S - e' E = cE (sE T + d' E) - e' E = cE SE T + cE d' E - e' E = T 

therefore 
cE sE = | and e = d cE or d = e sE. 

The full set obtained in this manner is: 

s+ ß+ = c* s* = I, where + is T or S, * is E or D, and I = unit matrix 

and 

e = es h = d cE;      d = eTg = e sE;        h = ßs e = g cD;    g = ßT d = h sD 

In addition to these multiplicative identities, there exist difference 
relations between the dielectric quantities at constant stress and at 
constant strain and between the elastic constants at constant electric field 
and at constant displacement. To obtain these, we equate the right hand 
sides of the following pairs of equations: (2b) = (4b); (lb) = (3b); (3a) = 
(4a); and (la) = (2a). These are then compared respectively to (-g) times 
(2a); (e) times (3a); (g*) times (3b); and (h') times (lb). After some algebra, 
the following are found: 

(cD - cE) = h' e = e" ßS e = h' es h 

(sE   -SD) = g-d = d' ßTd = g'sTg 

(sT -es) = ed' = esEe' = dcEd' 

(ßS • ßT) s 9 h' = h sD h' = g cD g' 



These relations show that the presence of piezoelectricity modifies the 
elastic and dielectric constants, that the mechanical (elastic) conditions 
must be specified for dielectric quantities, and that electric conditions 
must be specified for elastic quantities. To obtain an order of magnitude 
estimate of the size of the effect, we may neglect the matrix nature of the 
above equations and treat them as scalars. Then, using the symbol A to 
represent differences, we have, from the first difference relation: 

(Ac/c) = eßSe/c = e2/(sc) = k2, 

and similarly for the other relations. Thus the fractional differences are 
determined by dimensionless combinations of elastic, piezoelectric, and 
dielectric constants. We call each combination the square of a quantity, 
k, known as a piezoelectric coupling factor; these will be discussed 
subsequently. 

Units of the various quantities are as follows. 

Field tensors: 
Mechanical stress, S: 
Mechanical strain, T: 

pascal, Pa = newton/meter2 = N/m2 

meter/meter - m/m = dimensionless 

Electric intensity, E: 
Displacement, D: 

volt/meter = V/m 
coulomb/meter2 = C/m2 

Matter tensors: 
Permittivity, s^, e$: 
Impermeability, ßT,ßS 
Piezo constants:     e 

d 
h 

farad/meter = F/m = C/(m-V) 
meter/farad = m/F = (m-V)/C 
C/m2 = N/(m-V) 
m/V = C/N 
V/m = N/C 
m2/C = (m-V)/N 

Elastic stiffness, cE, cD     Pa = N/m2 = J/m3 

Compliance, sE, sD (Pa)-1 = m2/N - nvtyj 

The material constitutive relations given may be further broadened 
to include couplings to thermal, magnetic, and other fields. Figure 1 
depicts the phenomenology arising from the mutual couplings among the 
electric, elastic, and thermal fields. The outer quantities are the 
thermodynamic intensive variables (generalized forces); the inner 
quantities are the extensive variables (generalized displacements).!'12'13 



Piezoelectricity is a linear effect; reversal of the electric field 
reverses the mechanical deformation. Conditions for its existence in 
crystals are given below. Electrostriction, on the other hand, exists in all 
dielectric solids. It is a deformation quadratic in the polarization fieldJ4,15 
Biased electrostriction, where small field variations are superimposed on a 
constant component, is phenomenologically equivalent to linear 
piezoelectricity; this artifice may be used with nonpiezoelectric crystals 
such as silicon, but the coupling depends upon the bias, and is often not 
large. 

Resonance measurements on thickness mode plate vibrators and 
pulse-echo (transit-time) measurements determine values for the matrix 
elements [ c* ], [ e ], and [ e$ ] from which the other material parameter 
sets may be computed if desired. Resonance measurements on low 
frequency bar and rod specimens lead alternatively to determination of 
the [ sE ], [ d ], and [ sT ] set.16" 18 These dynamic techniques are both 
more accurate and more precise than static measurements. 

Electromechanical Coupling Factors 

Electromechanical coupling factors k (0 < k <1) are dimensionless 
measures of efficacy of piezoelectric transduction, and are far more 
important than the piezoelectric constants taken by themselves. They 
appear in considerations of bandwidth and insertion loss in transducers 
and signal processing devices, in location and spacing of critical 
frequencies of resonators, and in electrical/mechanical energy 
conversion efficiency in actuators. For high frequency plate resonators, 
coupling factors have the generic form k = e / V(sc); for low frequency bar 
and rod vibrators, the form becomes k = d / V(es); alternative forms using 
the "h" and "g" piezo parameters are used as we!lJ3,18 These quantities 
are also called piezocoupling factors; representative values are listed in 
Table 1. Additional material values are contained in Refs. 19-20. 

The Piezoelectric Effect and Crystal Symmetry^-25 

Crystallographers have, over the centuries, cataloged the various 
geometrical arrangements of atoms that can exist in crystal structures. The 
starting point is the unit cell, which normally contains the smallest 
grouping of atoms representing the chemical formula of the substance. In 
a crystal, this cell, with its particular size, shape, and arrangement of 
atoms within it, is repeated over and over in three dimensions. The result is 



an orderly stacking of cells that has translational invarlance, meaning that 
moving one's observation point by an integral number of cells in any 
direction yields a completely equivalent view. The shapes of the unit cells 
suitable for such stacking fall into seven general types, or systems. These 
are: triclinic, monoclinic, orthorhombic, tetragonal, trigonal, hexagonal, 
and cubic (also called isometric). When the actual arrangements of 
atomic species possible within the unit cell is compounded with the 
possible shapes of unit cells, the total number of independent geometrical 
arrangements available in three dimensions is 230. These are the space 
groups. 

In most practical situations, one deals with a continuum 
approximation, where considerations of the exact placement of atoms in 
the cells are not important, and the situation simplifies considerably. For 
example, elasticity is described by the few phenomenological stiffness 
and compliance constants used in the equations above. These numbers 
arise from a "smearing-out" of the effects of the individual interatomic 
potentials; only important are the directional aspects stemming from the 
atomic arrangements, not the arrangements themselves. Variation with 
direction of continuum properties such as acoustic wave speed is known 
as anisotropy. All the requisite geometric information specifying the 
varieties of anisotropy reside in the classification that the crystallographers 
call the point groups. These are only 32 in number, and arise simply from 
three types of symmetry elements: pure rotation axes (1-, 2-, 3-, 4-, or 6- 
fold), planes of reflection (mirror) symmetry, and axes of rotatory inversion 
(rotation followed by inversion through a center). The point groups are 
described by their Hermann-AAauguin symbols; these are shorthand 
listings of the symmetries. The names "point group" and "crystal class" are 
used synonymously. The classes are arranged in Table 2 according to the 
seven crystal systems, labeled "I" through "VII." Systems IV through VII are 
further subdivided into "a" and "b" categories; these are discussed briefly 
below. 

The crystallographic point-group symmetry elements completely 
determine the form and symmetries of the elastic, piezoelectric, and 
dielectric matrices that appear in the constitutive relations given earlier. 
The specific values of the individual components result, of course, from the 
particular substance considered. The piezoelectric [ e ] and [ h ] matrix 
forms for each point group are identical; the [ d ] and [ g ] are likewise the 
same, but differ from the [ e ], [ h ] sets by factors of 2 for certain matrix 
elements in classes 3, 32, 3m, 6bar, and 6bar m2 because of the 
conversion between the tensor and matrix formulations. 



That the material tensor term schemes are determined by the point 
group symmetry is a manifestation of Neumann's Principle which may be 
stated in several equivalent ways:22 

• The symmetry elements of any physical property of a crystal must 
Include all the symmetry elements of the point group of the crystal. 

• Every physical property of a crystal must possess at least the 
symmetry of the point group of the crystal. 

• Any kind of symmetry which is possessed by the crystallographic 
form of a material is possessed by the material in respect of every 
physical property. 

Of the 32 point groups, 11 have centers of symmetry (these are 
referred to as the Laue groups), and therefore cannot be piezoelectric, 
because piezoelectricity is a polar effect; see the column of Table 2 
labeled "centric." The division of crystal systems IV, V, VI, and VII into "a" 
and "b" categories is based upon X-ray patterns. Classical X-ray 
diffraction has the effect of adding a center of symmetry to the intrinsic 
symmetry of the crystal under study; each acentric point group appears 
as one of the eleven centric Laue groups. The groups that appear as 
holohedral under X-ray examination are assigned to the "b" category; the 
remainder are put in the "a" category. The structure in each of the seven 
systems that possesses the highest point group symmetry compatible with 
that system is the holohedral class; these are denoted by the letter "h." 
Class 432 lacks a center of symmetry, but has other symmetries that, 
taken together, preclude the existence of piezoelectricity. The 20 piezo 
classes are: triclinic class 1; monoclinic classes 2 and m; orthorhombic 
classes 222 and mm2; tetragonal classes 4, 4bar, 422, 4mm, and 4bar 2m; 
trigonal classes 3, 32, and 3m; hexagonal classes 6, 6bar, 622, 6mm, and 
6bar m2; and cubic classes 23 and 4bar 3m. See the columns of Table 2 
labeled "acentric." 

Tables 3-18 give the [ e ] forms of the piezoelectric matrices (also 
called "term schemes") for the twenty piezo classes; four pairs share the 
same schemes, so that there are but sixteen independent matrices. Tables 
15, 14, 11, and 18 are, respectively, the piezo schemes of four popular 
crystal classes: 3m (the strong piezoelectrics lithium niobate and lithium 
tantalate), 32 (quartz and langasite), 6mm (AIN and ZnO, used in thin-film 
form on Si for MEMS devices, and transversely isotropic, poled 
polycrystalline ceramics such as lead zirconate titanate), and 4bar 3m. 

8 



Nearly all compound semiconductors, such as gallium arsenide, indium 
phosphide, and silicon carbide, are members either of class 6mm or of 
class 4bar 3m. Class 4mm, which includes the popular piezoelectric 
transducer and filter material lithium tetraborate, has an [ e ] matrix 
identical in form to that of class 6mm. 

The matrices are to be read in conjunction with equations (1) to (4) 
as follows. An applied electric field, Ej, directed along the Xj axis, 
produces, according to the constitutive relations given earlier, 
mechanical stresses, T^ equal to (- ej^ Ej). The axis index "i" takes the 
values 1,2,3; these correspond to orthogonal X,Y,Z axes assigned to each 
crystal class by standard convention. The index "X" takes on values 
1,2,...,6; these represent the tensor indices according to the scheme: 1 -» 
11; 2 -> 22; 3 -> 33; 4 -> 23 or 32; 5 -> 13 or 31; 6 ^ 12 or 21. Each of the 
three rows of the [ e ] matrix is "driven" by a different electric field 
component, and each will produce up to six stress components. For 
example, in class 3m materials (Table 15), an electric field along the Y 
axis (E2) will produce, according to equation (la), compressive or tensile 
stresses along both the X and Y axes, but not along the Z axis. Moreover, 
the X- and Y-directed stresses are equal and opposite in sign, because 
e21 ~ " e22- Tne longitudinal stress along Z vanishes because e23 s 0. In 
addition, E2 produces a shear stress T4 = T23 = T32, via the constant e24, 
which, for this class, equals e-\$. 

Alternatively, an applied strain S^ produces a dielectric 
displacement Dj via the Dj = ej^S^ portion of constitutive equation (lb). 
Continuing the example of a class 3m material, it will be seen that a shear 
strain S4 = S23 = S32 leads, because of the presence of the piezo 
coefficient e24, to a component of dielectric displacement D2, and 
consequent polarization charge accumulation on* free surfaces having 
normals in the X2 (Y) direction. 

Piezoelectric Forces 

The volumetric force density is given by 

Fj-aTg/aXi. 

Piezoelectric force density components may be found from (la) as 

-a(e|aEk)/3Xj. 



This means that piezoelectric forces may arise either from spatial 
gradients of the piezoelectric constant, or from spatial gradients of the 
electric field. In single crystal materials such as quartz, it is not usual that 
the piezoelectric "constant" will vary from place to place, although the 
presence of microtwins, etc., makes this a possibility. In polycrystalline 
materials such as ceramics, and in ferroelectric single crystal materials 
such as lithium niobate and lithium tantalate (see below), this situation 
arises in practice, sometimes by design. 

Usually, piezoelectric forces arise because of spatial gradients in 
the applied electric field. An excellent example of this is the use of 
interdigital transducer (IDT) electrode arrays to produce surface acoustic 
waves (SAWs) and related acoustic wave types. From the electrode array 
placement, and the crystal term scheme (rotated, if necessary, to the 
orientation of the crystal surface), one may find the force-components, 
and infer qualitatively if a particular type of wave motion may be driven 
piezoelectrically by the electrode array .2^ 

Enantiomorphism 

Eleven crystal classes are devoid of a plane of symmetry. These are 
1, 2, 222, 4, 422, 3, 32, 6, 622, 23, and 432. In these classes, two structures 
of the same kind can exist; each is the mirror image of the other. These 
are known as enantiomorphic pairs; quartz (class 32) is probably the most 
famous example, with "left-" and "right-handed" varieties. The handedness 
arises at the atomic level from the spiral arrangement of the SiÜ2 
molecules in the crystal, but from Neumann's Principle, the external 
appearances of the facets in completely developed specimen-pairs 
exhibit the mirror-symmetric aspect macroscopically. The enantiomorphic 
groups are indicated in Table 2 by the symbol "e." 

Optical Behavior 

The first-order optical behavior of materials is governed by the 
dielectric permittivity tensor. In crystals, three cases are distinguished, 
depending on whether the principal dielectric constants are all equal 
(isotropic medium), two are equal, and one is unequal (uniaxial medium), 
or all are unequal (biaxial medium); the corresponding crystal class 
distributions are indicated in Table 2 in the last column. 

10 



One second-order optical effect of Importance Is that of optical 
activity, or gyration. In optically active substances, the passage of plane 
polarized light is accompanied by a rotation of the direction of the 
polarization vector. The effect comes about from the chiral nature of the 
molecules comprising the material. A common example is a sugar-water 
solution. Molecules of sugar (dextrose or levulose) are chiral in nature; a 
solution comprised of sugar of either handedness rotates a light beam 
accordingly, despite the fact that the molecules are randomly oriented in 
the solution. This is because reversal of the axis of a spiral does not reverse 
its handedness, so no cancellation of the effect takes place. Optical 
activity is characterized phenomenologically by an axial second rank 
tensor called the gyration tensor. Only crystals that lack a center of 
symmetry can be optically active (gyrotropic). Crystals that are 
enantiomorphic are necessarily gyrotropic; in these eleven classes the 
gyration tensor determinant is nonvanishing. Optical activity also exists in 
four nonenantiomorphic classes: m, mm2, 4bar, and 4bar 2m; in these 
classes the gyration tensor determinant vanishes. The symbol "o" denotes 
these groups in Table 2. 

Two effects that are closely associated with piezoelectric materials 
are pyroelectricity and ferroelectricity. 

Pyroelectricity 

Of the 20 piezoelectric point groups, 10 contain a unique polar axis. 
In Table 2, the symbol "p." appears in the polar column to indicate that the 
classes therein are both piezoelectric and pyroelectric, while the symbol 
"p" in the nonpolar column indicates piezoelectric classes onlyJ The entry 
"p" with an overbar, appearing with class 432, indicates that this class is 
nonpiezoelectric. Crystals in the polar classes possess electric dipole 
moments along their polar axes. When the crystals are subjected to a 
uniform change of temperature, electric charges accumulate on the ends 
of the polar axes. This phenomenon is known as pyroelectricity; because 
a temperature change (a scalar) produces a charge separation, and 
consequently an electric field (a vector), the pyroelectric coefficients 
form a tensor of rank 1, i.e., a vector, and would be represented as a 
(3X1) matrix if we were to extend the constitutive equations given earlier 
to include this effect. 

The pyroelectric classes are: 1, 2, m, mm2, 4, 4mm, 3, 3m, 6, and 
6mm. Thus, a-SiC and lithium niobate are pyroelectric, while ß-SiC, 
quartz, and gallium arsenide are not. The presence of piezoelectricity is 
necessary but not sufficient for a crystal to be pyroelectric. 

11 



Ferroelectricity27,28 

The name ferroelectricity is given to those polar crystals capable of 
having the spontaneous polarization along the polar axis reversed, 
usually in response to an applied electric field. The name is derived by 
analogy with ferromagnetism, but in the magnetic case the very atoms 
themselves possess permanent magnetic moments; in the electric case, 
the permanent electric moment is a property of the placement of the 
atoms within the unit cells of the structure. The orientations of the intrinsic 
atomic magnetic moments permitted in ferromagnetic crystals, in addition 
to the spatial atomic arrangements allowed, produce additional 
complexity with regard to crystal symmetry. When the spin orientations 
are taken in combination with the thirty-two conventional point groups, 
the result is ninety crystallographic magnetic point groups. Coupling to the 
magnetic field variables is not considered further here. 

The presence of the ferroelectric state requires that the crystal be of 
a pyroelectric class; the converse is, however, not true. One cannot 
conclude a priori that a pyroelectric crystal is ferroelectric; one must settle 
this issue experimentally or by numerical simulation. The ferroelectric state 
usually exists only below a certain critical temperature, called the Curie 
temperature or Curie point. Above this point, the material may belong to 
a class that is not pyroelectric, or even piezoelectric. Upon cooling 
through the Curie point, the crystal undergoes a phase transition (which 
may be either first- or second-order), where the atoms of the structure shift 
their positions slightly and the crystal changes its symmetry, usually from a 
nonpolar form, to the symmetry of a pyroelectric class. 

Since the ferroelectric state has reversible dipoles, upon cooling it is 
a matter of chance which polarity will be assumed; near the Curie point 
the structure is very susceptible to disturbance. Because the lattice is 
relatively unstable around this point, small forces can produce large 
effects; this is the case with the dielectric constant. This quantity is the 
measure of dielectric displacement produced in response to an applied 
electric field. Near the Curie point, dielectric constants assume very large 
values; this behavior ("dielectric anomaly") led to the initial discovery of 
this class of materials. Very often ferroelectrics have large piezoelectric 
coupling values. 
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The archetypical ferroelectric is Rochelle salt (KNaC^^^h^O). 
This crystal is unusual in that it possesses two Curie points. When cooled 
into the ferroelectric phase, it passes from class 222 to class 2. Its piezo 
effect was established by the Curie brothers in 1880. Pockels found the 
dielectric anomaly in 1894. It was used for ultrasonics applications in the 
early 20th Century, but because of its solubility in water it is not considered 
any longer to be a practical material for these uses. 

Barium titanate, another historically important material, exists in the 
nonpiezoelectric perovskite class m3m above its upper Curie point, and 
undergoes a succession of structural phase transformations, passing 
through 4mm and mm2 classes before reaching 3m symmetry as the 
temperature is reduced. 

Piezoelectric ceramics, such as lead zirconate titanate (Pb(Ti,Zr)03), 
are solid solutions comprised of microscopic crystallites, each of which is 
ferroelectric; the material originally is macroscopically isotropic at all 
temperatures because of the random orientations of the crystallites. When 
cooled through the Curie point in the presence of a static electric field (a 
process called "poling"), the domains are preferentially oriented and 
frozen into a configuration where the body is macroscopically 
piezoelectric. It remains isotropic perpendicular to the field axis, but the 
isotropy is destroyed in the parallel direction. The result is cylindrical polar 
symmetry (transverse isotropy), represented by the symbol oomm; as far as 
the elastic, piezoelectric, and dielectric matrices are concerned, the 
schemes of coefficients are identical to those for the class 6mm. In fact, 
for all tensors up to and including rank five, the schemes of coefficients 
are identical to the corresponding class 6mm schemes;24 one may, 
therefore, differentiate transversely isotropic substances from 6mm crystals 
by measuring higher-order effects, e.g., third-order elastic constants 
(tensor of rank six). 

Above the Curie point, most (but not all) ferroelectrics belong to 
one of three classes: 222 (e.g., Rochelle salt), 4bar 2m (e.g., potassium 
dihydrogen phosphate, KDP), and m3m (e.g., BaTiC»3). In the ferroelectric 
state, most of the practically important compounds likewise fall into three 
classes: 4mm, 3m, and mm2. 

Unpoled single crystal ferroelectrics such as lithium niobate are 
comprised of domain regions where the directions of polarization are 
collinear, but oppositely directed. The presence of domains can alter 
various macroscopic properties (e.g., piezoelectric voltage), and not 
change others (e.g., index of refraction). 
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Piezoelectric Polymers^' 

Certain polymers, such as polyvinyl chloride (PVC), polyvinyl 
fluoride (PVF), and polyvinylidene fluoride (PVF2 or PVDF) can be made 
piezoelectric by a combination of mechanical stretching and electric 
field poling at elevated temperatures. The induced anisotropy varies with 
the polymer and the subsequent treatment; polymethyl glutamate, for 
example, has symmetry QO22, which is equivalent to class 622 for the 
properties discussed here. PVDF sheet, poled along the thickness, belongs 
to class 00mm (equivalent to 6mm); uniaxial stretching or rolling converts it 
to orthorhombic class mm2, while a biaxial stretching again produces 
class oomm. 

Piezoelectric Semiconductors29-31 

In the case of semiconductors, the piezoelectric equations are 
broadened to incorporate the further coupling to charge transport 
mechanisms. It is apparently not well appreciated how widespread is the 
phenomenon of piezoelectricity in semiconductors. The single-element 
semiconductors silicon and germanium have, of course, no piezo effect 
because of the inherent symmetry by which the atoms are arrayed in 
their crystals; they share with diamond the perovskite structure of point 
group m3m. Binary semiconductors, however, because of the 
dissymmetry of the two atomic species, are generally piezoelectric. Figure 
2 provides a partial listing of these materials, grouped according to the 
columns of the periodic table; it is seen that the compounds fall into two 
categories: those marked "c" belong to the cubic point group 4bar 3m, 
the sphalerite or zinc blende structure, while those indicated with "h" 
belong to the hexagonal point group 6mm, the wurtzite structure. 

Piezosemiconductors have an encouraging future because of the 
appealing promise of monolithic, integrated, mixed-effect devices; for 
example, electronic drivers that modulate photonic processors via 
submicroscopic mechanical actuators containing optical components. 

Quantum Effects in Piezosemiconductors 

References 32-36 discuss new acoustic wave anomalies in 
experiments with surface acoustic waves on GaAs/AIGaAs 
heterostructures driven by their piezoeffect. These experiments are carried 
out at low temperatures; one may anticipate future areas of application. 
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Wide Bandgap Semiconductors37-40 

A growing number of advanced applications, particularly those 
involving high power and high temperature devices require 
semiconductors with wide bandgaps. For a variety of reasons, silicon 
carbide and diampnd are particularly apt candidates for these uses; see 
Figure 3.41 Diamond is nonpiezoelectric in both its crystalline (m3m) and 
amorphous forms, whereas both the cubic and hexagonal forms of silicon 
carbide are piezoelectric in nature. In those applications necessitating 
mixed-effect devices that incorporate traditional semiconductor ideas 
with mechanical forces and motions, the piezosemiconductors are highly 
commended; where, in addition, these devices are required for high 
temperature operation, then silicon carbide is a material of choice. The 
cubic form, ß-SiC, has a bandgap energy of 2.2 eV, while the hexagonal 
form, a-SiC, has a bandgap energy of 2.9 eV; these are significantly 
higher than that of GaAs, with a value of 1.43 eV. The piezocoupling 
values are comparable; see Table 1. As material quality continues to 
improve with attainment of lower impurity and defect levels, and as 
semiconductor processing skills increase with silicon carbide, one may 
anticipate the extension of smart MEMS technology to a variety of hostile 
but environmentally important areas. 

Polytypism in Silicon Carbide42-44 

Alpha-SiC, of symmetry 6mm, exhibits a curious variety of forms 
known as polytypes. Polytypism arises because the molecules may be 
stacked in an infinite variety of zig-zag sequences, while preserving the 
point group symmetry. Theoretically, the number of polytypes is 
unbounded; practically, hundreds are known, each with a different unit 
cell, and with a variety of space groups and X-ray diffraction patterns. 
Condensation under different growth conditions is thought to determine 
the polytype produced; the most common varieties are known as 6H and 
4H. Each polytype can theoretically differ in its phenomenological 
constants, because some bond angles and lengths vary; in most cases 
the differences are imperceptible, but differences of several percent in the 
elastic constants of 6H and 4H material have been reported.38 Beta-SiC, 
because of its 4bar 3m symmetry, cannot have polytypes. 
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High Power Devices 

For applications such as acoustic resonators, the power level is 
usually low. Here silicon carbide ot either the alpha or beta variety is an 
attractive choice for high temperature operation. The acoustic losses are 
at present not very high, so the quality factor (Q) is quite acceptable; as 
the material quality continues to improve with attainment of lower and 
lower impurity levels and defects, Q values will substantially increase in 
the future, leading to higher stability oscillators for "hot" environments. 

For acoustic transducer operation, where power levels are a 
concern at any temperature, silicon carbide, in the beta (cubic) form, is a 
desirable material because of its structural stability, and its 
nonferroelectric nature. Lithium niobate and lithium tantalate, strongly 
piezoelectric ferroelectrics commonly used as transducers, can 
experience depoling and consequent loss of efficiency at very high 
power and temperature levels. 

Conclusion 

The piezoelectric effect has been briefly reviewed from the 
standpoints of origin, traditional uses, connection with associated effects, 
and relation to crystal symmetry. Sample material coefficients are given, 
with ample references to the pertinent literature. Future prospects for use 
of the piezoeffect appear bright because it mediates directly between the 
elastic and electronic variables in the rapidly growing area of MEMS 
devices and technology. 

16 



References 

[01] W G Cady, Piezoelectricity, McGraw Hill, New York, 1946; Dover, 
New York, 1964. 

[02] E A Gerber and A Ballato, eds., Precision Frequency Control, Vol. 1 
and 2, Academic Press, New York and Orlando, 1985. 

[03] J G Smits, S I Dalke, and T K Cooney, "The constituent equations of 
piezoelectric bimorphs," Sensors and Actuators, Vol. A28,1991, pp. 41-61. 

[04] J G Smits and W S Choi, 'The constituent equations of 
heterogeneous piezoelectric bimorphs," IEEE Trans. Ultrason. Ferroelec. 
Freq. Contr., Vol. 38, No. 3, May 1991, pp. 256-270. 

[05] A Ballato and J G Smits, "Network representation for piezoelectric 
bimorphs," IEEE Trans. Ultrason. Ferro. Freq. Contr., Vol. 38, No. 6, 
November 1991, pp. 595-602. 

[06] Y-K Yong, J T Stewart, and A Ballato, "A laminated plate theory for 
high frequency, piezoelectric thin-film resonators," J. Appl. Phys., Vol. 74, 
No. 5, 1 September 1993, pp. 3028-3046. 

[07] US Congress, Office of Technology Assessment, "Miniaturization 
Technologies," OTA-TCT-514 (Washington, DC: US Government Printing 
Office, November 1991), 48pp. 

[08] "IRE Standards on Piezoelectric Crystals, 1949," Proc. IRE, Vol. 37, No. 
12, December 1949, pp. 1378-1395. 

[09] "IEEE Standard on Piezoelectricity," IEEE Standard 176-1978, IEEE, 
New York, 55pp. 

[10] B A Auld, Acoustic Fields and Waves in Solids, 2nd edition, Vol. I and 
II, R. E. Krieger Pub. Co., Malabar, FL, 1990. 

[11] A Ballato, "Polarization matrices of lithium niobate," Technical Report 
SLCET-TR-89-1, U. S. Army Laboratory Command, Fort Monmouth, NJ, April 
1989,30 pp. 

[12] J F Nye, Physical Properties of Crystals, Clarendon Press, Oxford, 
1957; Oxford University Press, 1985. 

17 



[13]    W P Mason, Crystal Physics of Interaction Processes, Academic 
Press, New York and London, 1966. 

[14] RE Newnham, "Tunable transducers: nonlinear phenomena in 
electroceramics," National Institute of Standards and Technology Special 
Publication 804, Chemistry of Electronic Ceramic Materials, Proceedings of 
the International Conference held in Jackson WY, August 17-22, 1990, 
issued January 1991. 

[15] V Sundar and R E Newnham, "EJectrostriction and polarization," 
Ferroelectrics, Vol. 135, 1992, pp. 431-446. 

[16] A Ballato, "Doubly rotated thickness mode plate vibrators," in 
Physical Acoustics: Principles and Methods, (W P Mason and R N Thurston, 
eds.). Vol. 13, Chap. 5. Academic Press, New York, 1977, pp. 115-181. 

[17] J F Rosenbaum, Bulk Acoustic Wave Theory and Devices, Artech 
House, Boston and London, 1988. 

[18] "IRE Standards on Piezoelectric Crystals: Determination of the Elastic, 
Piezoelectric, and Dielectric Constants - The Electromechanical Coupling 
Factor, 1958," Proc. IRE, Vol. 46, No. 4, April 1958, pp. 764-778. IEEE 
Standard 178. 

[19] Landolt-Börnstein, Numerical Data and Functional Relationships in 
Science and Technology, New Series, Group III: Crystal and Solid State 
Physics, Volumes lll/l, 1966; HI/2, 1969; III/3, 1969; III/9, 1974; 111/11, 1979; 
lll/16a, 1981; HI/16b, 1982; and HI/17a, 1982. Springer-Verlag, Berlin, New 
York. 

[20] J G Gualtieri, J A Kosinski, and A Ballato, "Piezoelectric materials for 
acoustic wave applications," IEEE Trans. Ultrason., Ferroelec, and Freq. 
Control, Vol. 41, No. 1, January 1994, in press. 

[21] M J Buerger, Elementary Crystallography, John Wiley and Sons, New 
York, 1956. 

[22]    S Bhagavantam, Crystal Symmetry and Physical Properties, 
Academic Press, London and New York, 1966. 

[23] M J P Musgrave, Crystal Acoustics, Holden-Day, San Francisco, 
1970. 

[24]     H J Juretschke, Crystal Physics, W A Benjamin, Reading, MA, 1974. 

18 



[25] T Ikeda, Fundamentais of Piezoelectricity, Oxford University Press, 
1990. 

[26] A Ballato and T J Lukaszek, "Shallow bulk acoustic wave progress 
and prospects," IEEE Trans. Microwave Theory Tech., Vol. AATT-27, No. 12, 
December 1979, pp. 1004-1012. 

[27] B Jaffe, W R Cook, Jr, and H Jaffe, Piezoelectric Ceramics, 
Academic Press, New York, 1971. 

[28] "IEEE Standard Definitions of Primary Ferroelectric Terms," ANSI/IEEE 
Standard 180-1986, IEEE, New York, 21pp. 

[29] J J Kyame, "Conductivity and viscosity effects on wave propagation 
in piezoelectric crystals," J. Acoust. Soc. Amer., Vol. 26, November 1954, 
pp. 990-993. 

[30] A R Hutson and D L White, "Elastic wave propagation in piezoelectric 
semiconductors," J. Appl. Phys., Vol. 33, January 1962, pp. 40-47. 

[31] A Ballato and C D Bosco, "Acoustic waves in cubic crystals: 
networks for semiconducting vibrators, and applications to gallium 
arsenide," Technical Report DELET-TR-79-9, April 1979, 45 pp., US Army 
Electronics Technology & Devices Laboratory, Fort Monmouth, NJ 07703. 

[32] B Schwarzschild, "Half-filled Landau level yields intriguing data and 
theory," Physics Today, Vol. 46, No. 7, July 1993, pp. 17-20. 

[33] B I Halperin, P A Lee, and N Read, "Theory of the half-filled Landau 
level," Phys. Rev. B, Vol. 47, No. 12, 15 March 1993, pp. 7312-7343. 

[34] R L Wiilett, R R Ruel, M A Paalanen, K W West, and L N Pfeiffer, 
"Enhanced finite-wave-vector conductivity at multiple even-denominator 
filling factors in two-dimensional electron systems," Phys. Rev. B, Vol. 47, 
No. 12, 15 March 1993, pp. 7344-7347. 

[35] R L Wiilett, M A Paalanen, R R Ruel, K W West, L N Pfeiffer, and D J 
Bishop, "Anomalous sound propagation at v = 1/2 in a 2D electron gas: 
observation of a spontaneously broken translational symmetry?," Phys. 
Rev. Lett., Vol. 65, No. 1, 2 July 1990, pp. 112-115. 

[36] A Wixforth, J P Kotthaus, and G Weimann, "Quantum oscillations in 
the surface-acoustic-wave attenuation caused by a two-dimensional 
electron system," Phys. Rev. Lett., Vol. 56, No. 19, 12 May 1986, pp. 2104- 
2106. 

19 



[37] R C Marshall, J W Faust, Jr, and C E Ryan, eds., Silicon Carbide - 
1973. Univ. of South Carolina Press, Columbia, SC 1974. 

[38] S Karmann, R Helbig, and R A Stein, "Piezoelectric properties and 
elastic constants of 4H and 6H SiC at temperatures 4 - 320 K," J. Appl. 
Phys., Vol. 66, No. 8, 15 October 1989, pp. 3922-3924. 

[39] M E Sherwin and T J Drummond, "Predicted elastic constants and 
critical layer thicknesses for cubic phase AIN, GaN, and InN on ß-SiC," J. 
Appl. Phys., Vol. 69, No. 12, 15 June 1991, pp. 8423-8425. 

[40] T R Watkins, D J Green, and E R Ryba, "Determination of Young's 
modulus in chemically vapor-deposited SiC coatings," J. Am. Ceram. 
Soc, Vol. 76, No. 8, August 1993, pp. 1965-1968. 

[41] Based on material provided by Dr. Max N Yoder, Office of Naval 
Research, Arlington, VA 22217. 

[42] L S Ramsdell and J A Kohn, "Developments in Silicon Carbide 
Research," Acta Crystallographica, Vol. 5, Part 2, March 1952, pp. 215-224. 

[43] A Addamiano, "Speculations on the origins of the polytypism of SiC," 
in R C Marshall, J W Faust, Jr, and C E Ryan, eds., Silicon Carbide - 1973, 
Univ. of South Carolina Press, Columbia, SC 1974, pp. 179-205. 

[44] L L Hench and J K West, Principles of Electronic Ceramics, Wiley- 
Interscience, New York, 1990. 

20 



TABLE 1. REPRESENTATIVE VALUES OF PIEZOCOUPLING FACTORS 

Material Crystal Class   Substance       Orientation      Coupling 
Type Factor (%) 
++++++++++    ++++++++++    ++++++++++    ++++++++++    ++++++++++ 
Dielectrics 

3m lithium 
niobate 
(LiNb03) 

X-cut 
36° rotated- 
Y-cut 

k15 = 68.9 
k22 = 48.7 

32 quartz AT-cut 
BT-cut 

k'26 = 8-8 
k'26 = 5.0 

Ceramics 

(solid 
solutions) 

oomm lead titanate 
zirconate 

Z-cut k33 = 30 to 
60 

Piezoelectric 
polymers 

mm2 PVDF Z-normal 
sheet 

k31=16 

Binary semi- 
conductors 

4bar 3m gallium 
arsenide 

(110) cut 
(111) cut 

k'26 = 6.1 
k'!! = 4.3 

6mm a- silicon 
carbide 

X- or Y-cut 
Z-cut 

k15 =2.5 
k33 = 3.5 

4bar 3m ß- silicon 
carbide 

(110) cut 
(111) cut 

k'26 = ?* 
k'n= ?* 
* Estimated 
« a form 
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TABLE 3 POINT GROUP 1 {Triclinic, 1,1} 
en e12            e13            e^ 
e2i e22            e23            e24 
e31 ©32            e33            e34 

e15 e16 
e25 e26 
e35 ö36 

TABLE 4 POINT GROUP 2 [IEEE axial convention] {Monocllnlc, II, 3} 
0                0                0 ei4 0 e-\t 
e2i e22 e23 ° e25 ° 
0 0 0 634 0 e^6 

TABLE 5 
en 
0 

©31 

POINT GROUP m [IEEE axial convention] {Monocllnlc, II, 4} 
e12           e13 0 e15 0 
0 0 e24 ' 0 e26 
e32 e33 0 635 0 

TABLE 6 POINT GROUP 222 {Orthorhombic, III, 
0 0                0               ei4            0 
0 0                0                0               e25 
0 0                0                0                0 

6} 
0 
0 
«36 

TABLE 7 POINT GROUP mm2 {Orthorhombic, III 
0 0 0 0 eis 
0 0 0 e24 0 
e3i 632 633 0 0 

7} 
0 
0 
0 

TABLE 8 POINT GROUPS 4 (Tetragonal, IVa, 9} AND 6 {Hexagonal, Via, 21} 
0 0 0 ei4 ei5 0 
0 0 0 e-|5 -ei4 0 
e31 e31 e33 ° 0 ° 

TABLE 9 POINT GROUP 4bar {Tetragonal, IVa, 10} 
0 0 0 ei4 ei5 0 
0 0 0 -ei5 ei4 0 
e31 'e31 ° 0 0 ez6 
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TABLE 10      POINT GROUPS 422 {Tetragonal, IVb, 12} AND 
622 {Hexagonal, Vlb, 24} 

0 0 0 e]4 0 0 
0 0 0 0 -e]4 0 
0 0 0 0 0 0 

TABLE 11      POINT GROUPS 4mm {Tetragonal, IVb, 13} AND 
6mm {Hexagonal, Vlb, 25}; TRANSVERSE ISOTROPY 

0 0 0 0 eis 0 
0 0 0 eis ° ° 
eßi e3i ©33 ° ° ° 

TABLE 12 POINT GROUP 4bar 2m {Tetragonal, IVb, 14} 
0 0 0 ei4 0 0 
0 0 0 0 ei4 0 
0 0 0. 0 0 e3$ 

TABLE 13 POINT GROUP 3 {Trigonal, Va, 16} 
ell "ell 0 e14 e15 

-e22 e22 0 e15 - e14 
e31 ©31 «33 0 0 

e22 
©11 
0 

TABLE 14      POINT GROUP 32 {Trigonal, Vb, 18} 
ell -«11 0 e14 0 
0 0 0 0 -ei4 
0 0 0 0 0 

©11 
0 

TABLE 15 POINT GROUP 3m {Trigonal, Vb, 19} 
0 0 0 0 ei5 - e22 

• e22 e22 0 e15 0 ° 
e31 e31 e33 ° 0 0 

TABLE 16      POINT GROUP 6bar {Hexagonal, Via, 22} 
en -en 0 0 0 

"e22 ©22 0 0 0 
0 0 0 0 0 

-e22 
-en 

0 
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TABLE 17      POINT GROUP 6bar m2 {Hexagonal, Vlb, 26} 
en -en 0 0 0 0 
0 0 0 0 0 -en 
0 0 0 0 0 0 

TABLE 18      POINT GROUPS 23 {Cubic, Vila, 28} AND 
4bar 3m {Cubic, Vllb, 31} 

0 0 0 ei4 0 0 
0 0 0 0 ei4 0 
0 0 0 0 0 ej4 
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