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PREDICTIVE MODEL OF A PARACHUTE RETRACTION SOFT 
LANDING SYSTEM 

Introduction 

The U.S. Army Soldier Systems Command's Natick Research, Development 
and Engineering Center (NRDEC) is currently examining a concept for reducing 
the impact shock sustained by airdropped payloads upon ground impact. A device, 
called a parachute retractor, is placed between the payload and parachute 
confluence point, and when activated, accelerates the parachute and payload toward 
each other; slowing the payload prior to ground impact. The goal is to eliminate 
the cushioning material currently placed under airdrop loads, and thus eliminate the 
time-consuming, labor-intensive process of rigging payloads for airdrop, while 
providing a roll-on/roll-off (RO/RO) capability for vehicles. 

The concept of parachute retraction to soft land cargo is not new. Its origins 
date back to a 1956 report on airdrop cushioning prepared by the University of 
Texas for NRDEC, then known as the Quartermaster Research and Development 
Command1. In that report, the characteristics of an elastic spring-type device for 
use with parachutes, dubbed a landing snubber, were described and a theoretical 
analysis of its operation presented. A further expansion of the concept, known as 
Parachute Reel-In Reel-Out, was examined by NRDEC in the 1960's. In addition 
to soft landing cargo, this concept envisioned use of retraction/unreeling of the 
lines connecting the parachutes and payload in order to maintain high relative 
velocities of the airstream with respect to the parachutes, and to relieve unwanted 
high forces on the cargo at appropriate times during airdrop descent. Use of a 
powered winching device located between the recovery parachutes and the cargo 
to either decrease or increase the distance between the parachutes and cargo during 
the trajectory was envisioned. None of these concepts ever reached the prototype 
stage or were tested. 

In the spring of 1994, instrumented airdrop tests of a novel retraction device 
invented by John Lanza of Natick were conducted for the first time at Tustin 
Marine Corps Air Station (MCAS), Santa Ana, CA. Experimental data obtained 
in these tests showed that the Natick parachute retractor could slow or even stop 
payloads just before landing. The retractor consisted of a pneumatically driven 
piston connected by cables to upper and lower pulley blocks; all enclosed within 
a cylinder. The pulleys are used to increase the length of retraction compared with 



the stroke of the piston, as is shown schematically in Figure 1. 

The benefit of developing a model, which can predict the performance of this 
Parachute Retraction Soft Landing System (PRSLS) for all airdrop configurations, 
including large, yet to be investigated (experimental) systems, was recognized early 
in the program. Therefore, as part of this exploratory development effort, a 
computational model was developed to determine the optimal activation height, to 
conduct system trade-off studies, and to investigate scaling effects. This report 
reviews the development of that computer model. 

The report begins with a review of the model's underlying theory and 
assumptions. Applying the principles of thermodynamics, kinetics, kinematics, 
fluid mechanics and numerical methods, key mathematical relationships used in 
modeling the system as a three-mass, three-degree-of-freedom system are first 
derived. Derivations are given exhaustive treatment in order to enhance the 
reader's understanding of the theory, principles, and assumptions that provide the 
foundation for model development. Rigorous treatment is given to the development 
of expressions for the forcing fruitions, i.e., force acting on the piston, the work 
done by the expanding gas on the piston, the differential equations of motion of the 
discrete masses, the governing nonlinear differential equation of motion of the 
system, and the recurrence formulas used to integrate the motion equation. 
Solution of the equation of motion and the trial and error iterative scheme used to 
reconcile the system's thermodynamics and kinetics and arrive at the time values 
are discussed next. Finally, FORTRAN computer model predictions are compared 
to the data obtained during experiments conducted at Tustin MCAS on 20 April 
1994, and conclusions are drawn concerning model accuracy. 
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Figure 1:  Schematic Diagram of Parachute Retractor 



Thermodynamics 

The principles of thermodynamics2'3 are applied in this section to the 
development of expressions for the force exerted on the piston, and the work 
produced by the expanding gas, upon valve opening. The piston/cylinder 
mechanism is assumed to be frictionless. Force and work expressions are derived 
as a function of piston displacement, y, for the processes of both adiabatic and 
isothermal ideal gas expansion within the cylinder. Constants include the tank 
volume, V; , initial tank pressure, P; , specific heat ratio, k, (adiabatic only) and 
piston radius, r. Derivations for each process begin with an examination of the 
First Law of Thermodynamics, which in differential form, is written as follows: 

dQ=dW+dU 

This states that the heat entering the system, dQ, is equivalent to the work done 
against the atmosphere, dW, plus the internal energy accumulation, dU. 

Adiabatic Expansion Process 

An ideal gas expands from initial state (1) to final state (2) in a cylinder 
which is completely insulated so that there is no heat exchange with the 
surroundings;  that is: Q=0. 

The First Law of Thermodynamics in differential form is written as: 

dQ=dW+dU=Q 

or 

dW=-dU 

which indicates that the work effect is produced at the expense of the system's 
internal energy. 

For an ideal gas, the enthalpy, H, which is equal to U+PV, and internal energy, U, 
depend on the temperature only and are independent of pressure. 



Therefore, the following relationships hold true at all pressures: 

"'«k^ 

W^^QcJT 

where cp and cv are respectively the specific heats at constant pressure and constant 
volume, and R, the universal gas constant, is equal to cp-cv. It should be apparent 
from the above relationships that for isothermal processes (i.e., constant 
temperature, AT=0), both the change in enthalpy, AH, and internal energy change, 
AU, are equal to zero. Returning to the adiabatic case, it follows that for gas 
expansion within the cylinder: 

Wf-U-tcfc-Tj 

or 

dWq=PdV=-ncvdT 

where n is the number of moles of gas present. Upon differentiating the Ideal Gas 
Law equation: 

PV=nRT 

one obtains the following: 

PdV+VdP=nRdT 

Upon substituting (-PdV/ncv) for dT in the above equation one obtains: 

PdV+VdP=-nR 
(PdV^ 

KncVJ 

Rearranging terms results in the following expression: 



l+—]pdV=-VdP 
vJ 

But R=cp-cv.  Therefore: 

dV=_dP 
V      P 

Integrating between states (1) and (2): 
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where k = cp / cv. 
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It should be noted that for a Monatomic Gas: 

cp = 5/2 R 
cv = 3/2 R 

and for a Diatomic Gas: 

cp = 7/2 R 
cv = 5/2 R 

Since PjV^ = nRTj and P2V2 = nRT2, upon substitution of nRI^ / V1 and 
nRT2 / V2 respectively for Pj and  P2 in the above equation one obtains: 

'nRTx *_ v= (nRT^ 

H_TI/H T VK~l=T V 

ft 
\k-l 

(1) 
V   <*/ 

Similarly, if one substitutes nRTj / Pj and nRT2 / P2 respectively for Vj and 

(nRTA1 
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The adiabatic Volume-Temperature and Pressure-Temperature relationships 
shown respectively in (1) and (2) were not incorporated into the model. These 
equations were derived and are presented nonetheless, since they would be needed 
to develop expressions to predict the gas temperature from valve opening up to the 
full piston stroke, if desired at some later time. 

Given an initial tank pressure, P; , and tank volume, V; , the gas volume at some 
later time during the expansion is given by the expression: 

F{y)=P;.+ic#^y 

where r is the Piston Radius and y is the Piston Displacement. 

From the previously derived Pressure-Volume relationship for adiabatic ideal gas 
expansion it is evident that: 

PtV^Piy)V(y)k 

Upon substitution of the above expression for V(y) one obtains the following: 

py* 
P(y)=-      ' ' 

(V^rty* 

Noting that the force, F, acting on the piston is equal to TCi^PCy) it follows that: 
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F(y) = 
Tir2Py* 

(3) 

But dV/dy = TO
2
 or dV = JcrMy. Therefore, the work done on the piston during the 

adiabatic expansion of the gas within the cylinder is given by the following: 

•s  ptv; 
W= ( SPdV= ( S ^— nr2dy 

where S is the piston stroke and  0 <  y < S. 

Upon collecting and rearranging terms, one obtains the following expression: 

-^2DT/*fS... ._L Wq=*r*PtV*fo 
(K.+irr^) 

-dy 

or 

Wq=nr2PiV?fQ
S(Vi+nr2y)-kdy 

Let u = V; + KJ^J . Then du = rcrMy or dy = du / 7er2.  Upon substitution into the 
above equation for Wq one obtains the following: 

rkcsu_kdu _D „*/•«,.-*, 
'0 ? '   'JO nr2       l   lJo 

Integrating the above expression results in: 

W =PV 
/ l-k\ u 

Substituting Y{ + ra^y for u in the above equation results in: 



W =PV T,q   * ir i 
k(Vt+nr*yf-* 

(1-k) 

Evaluating the above integral results in the following equation: 

W =PV "q      Vi 

t(Vj+*r*tf-* 

1-k 
Eli 
[l-kj 
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_PiVl

k(Vi
+Ttr2Sf-k-PiVi 
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The total adiabatic work done by the expanding gas up to some displacement, y, 
during piston movement, is similarly obtained by evaluating the above integral 
between zero and the value of y.   Thus: 

WJy)=   l lK l y-l L_i        (4) 
qU1 (1-k) W 

where 0 < y < S. 

Isothermal Expansion Process 

An ideal gas expands from initial state (1) to final state (2) in a cylinder. 
The temperature remains constant throughout the process. The volume of the gas 
increases as the pressure of the gas decreases. The cylinder is in contact with a 
constant temperature bath which adds heat to the system as the system does 
expansion work. 

The First Law of Thermodynamics requires that: 

dQT=dW+dU 

Since temperature is constant, i.e., dT=0, dU of the ideal gas is equal to zero, and 
all the heat entering the system leaves as work.  Therefore: 

10 



dQT=dW 

and the Ideal Gas Law in differential form is: 

PdV+VdP=Q 

Therefore: 

dV=_dP 
V      P 

Integrating between states (1) and (2); 

v2\ „r  fP2   1 r>±dv=r*-±dp 
Jvl v      JPi   P 

lnK|^=-lnP|^ 

(ln72-lnF1)=lnP1-lnP2 

/v\ 
In 

lKJ 
=ta (

pi\ 

\P2 

vx P2 

• P V =P V 

Given an initial tank pressure, P{ , and tank volume, Vj , the gas volume at some 
later time during the expansion is given by the expression: 

where r is the Piston Radius and y is the Piston Displacement. 

11 



From the Ideal Gas Law for a constant temperature process, it is evident that: 

Wem®) 

Substitution of the previously derived expression for V(y) into the isothermal Ideal 
Gas relationship results in the following: 

P(yy       l l 

Noting that the force, F, acting on the piston is equal to ra^Pfy) it follows that: 

Tir2Py. 

^l^t   (5) 

From the volume expression it follows that dV/dy =7cr2 or dV = ra^dy. Therefore, 
the work done on the piston during the isothermal expansion of the gas within the 
cylinder is given by the following: 

WT=(SPdV=(S    PiVi    nr2dy 

where S is the Piston Stroke and 0 < y < S. 

Let u = Vj + rcrV.   Then du rsjc^dy or dy = du / 7er2.   Upon substitution into the 
above equation for WT one obtains the following: 

J0 Uur2 
\S 
lo 

Substituting the expression for u back into the above equation and evaluating the 
integral results in the following: 
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W^Pyp^V^r^y) U^K^+iir^-lnFj 

w^pyH ( V;+nr2s) 

'     / 

The total isothermal work done by the expanding gas up to some displacement, y, 
during piston movement, is similarly obtained by evaluating the above integral 
between zero and the value of y.  Thus: 

W£)=PtV}n 
K+icr2)? 

»     ) 

(6) 

The above work expression can be derived alternatively by noting that the Ideal 
Gas expression PV = nRT permits the elimination of either P or dV from the work 
expression: 

W=f2PdV 

From the Ideal Gas Equation it is apparent that: 

nRT  RT P=- 
V      v 

or 

where 

dV=—dP+-dT 

n 

is defined as the volume per mole or molar volume. 
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Upon substitution of the above expressions into the work equation, one 
obtains the following: 

W=(RT^ 
J     v 

or 

w-j -RT 
dP+RdT 

But dT = 0.  Therefore: 

2dV WT=nRT[ —=nR1\n 1        h   V 

or 

2dP WT=-nRTf —=nR1\n T h  p 
(pi) 

KP2 

Let PJVJ = nRT = PJVJ. One will note that the judicious substitution of P;, V; and 
the previously derived expressions for V(y) and P(y) respectively for Pl ,V1 , V2 

and P2 in either of the above work expressions results in the previously derived 
work equation (4) for isothermal gas expansion in a cylinder. 

14 



Development of the Differential Equations of Motion 

The PRSLS was modeled as a three mass, three degree-of-freedom (DOF) 
rigid body system. Assumptions made in order to simplify modeling of the system 
included the following: 

(1) Piston and pulley movement is frictionless. 
(2) Pulley cables are inextensible, i.e., cable length remains constant. 
(3) System orientation remains vertical throughout the retraction. 
(4) The apparent mass of the parachute, which consists of air inside the canopy, 
as well as that in the immediate vicinity, is constant and equal to the mass of air 
contained within a hemisphere of nominal parachute diameter. 
(5) The parachute drag coefficient, based on the nominal parachute diameter, 
remains constant during retraction. 

The PRSLS model, as previously noted, is comprised of three discrete 
masses. They include: (1) the piston and any upper retraction device cross 
members and upper pulley blocks that move along with the piston; defined as 
MPIST , (2) the payload and the retraction device cylinder, tank, lower pulley blocks 
and structure that move with the payload; defined as MP , and (3) the parachute 
with mass concentrated at the parachute confluence point; defined as Mc. The 
three degrees-of-freedom (DOF) considered are the vertical, i.e., Y-direction, 
displacements of the piston, payload and parachute confluence point; defined 
respectively as y, yp and yc. 

The retraction device modeled contains two banks of upper and lower 
pulleys, and two sets of pulley cables. Each of the pulley cables, which converge 
at the parachute confluence point, by symmetry carry one-half the tension, Tc, at 
the parachute confluence point at any instant in time during the system's descent, 
just prior to and during retraction. Formulation of the differential equations of 
motion was carried out by applying the concept of dynamic equilibrium or 
Newton's second law of motion to the system4. For this purpose, the three masses 
were first isolated showing all of the forces acting on each mass, including internal 
forces, externally applied forces and inertia forces. A detailed examination of the 
forces acting on the piston and payload masses, i.e., MPIST and MP , revealed two 
important factors concerning internal forces developed within the retractor's pulley 
subsystem. First, for a pulley arrangement of a given mechanical advantage, N, the 
force on the piston tending to resist piston movement is equal to 2 x N x (Tc/2) 

15 



= N x Tc. Second, for a mechanical advantage, N, the force tending to accelerate 
the payload upward is equal to 2 x (N+l) x (Tc/2) = (N+l) x Tc. 

Applying Newton's second law of motion, the equation of equilibrium for the 
piston in the vertical direction, +T E Fv = ma, is written as: 

F-NTc-WplST=MplSTy        (7a) 

Similarly, the equilibrium equation for the payload in the vertical direction, 
+T E Fv = ma, is written as: 

(N+l)Tc-F-Wp=Mpyp       {lb) 

The force, F, in the above equations of motion, varies with time, i.e., F = F(t), and 
is the force applied to the piston by the expanding gas upon valve opening. 

Finally, applying the principles of dynamic equilibrium at the parachute 
confluence point in the vertical direction, +i E Fv = ma, results in the following 
equilibrium equation: 

TC+Wc-FParacluae=M^C 0*0 

The parachute drag force and apparent mass terms, FParachute and Mc , in the 
above equation are given by the expressions5: 

izrpCDp m  2 
FParachute=        ~        (^c) (*0 

and 

2 3 
Mc=3*p/>        (9) 

where rP is the nominal parachute radius, which is equal to one-half the nominal 
parachute diameter, CD is the drag coefficient based on the total canopy surface 
area, and p is the density of air. In order to simplify analysis, the parachute model 
therefore assumes that both the apparent mass and drag coefficient remain constant 
during retraction. 

16 



If one defines the constant, Cj , where: 

Ct=        D (10) 

Then it follows that: 

Fpanc^Cifpc?        (ID 

Substituting the above expression for FParachute into (7c) and noting the weight 
of the air in the parachute, Wc , is negligible and can be ignored, one obtains the 
following: 

T^C^cf+MJc        (12) 

Substituting the above expression for Tc into (7a) and (7b) results in the 
following expressions: 

F-NC$cf-NMJc-WPIST=Mpmy       (13a) 

(fl+iyCJfcf+Qt+WJc-F-W^Mfr       (13b) 

Dividing both sides of (13a) and (13b) respectively by MPIST and Mp result 
in the following expressions for the piston and payload accelerations: 

„_\F-NC^cf-NM^c-WplsT 

MPIST 
(14a) 

Mp 

The next step is to define the retraction, retraction rate, and retraction 
acceleration in terms of the displacements, velocities, and accelerations at the 
piston, payload and parachute confluence point. Based on the sign convention used 
in deriving the differential equations of motion, the following relationships are 
defined: 

17 



L=Ny=yc+yp (15a) 

L=Ny=yc+yp (156) 

L=Ny=yc+yp       (15c) 

Therefore, it is evident that: 

yP=Hy-yc 

Substituting the above expression for the payload acceleration into (13b) and 
dividing both sides of (13a) and (13b) respectively by MPIST and NMP results in the 
following expressions upon collecting and rearranging terms: 

MPIST  MPIST 

NC.      ,   NMC 

Vcf-^Sc 
W, PIST 

M, PIST M =y (16a) 
PIST 

JVM, W (N+1)MC+Mf 

NML 

WD 
yc- NMp   NMp 

=y (16b) 

Equating (16a) and (16b) results in the following expression: 

MpjST   MpiST 

NC.       ,   NMC 
(ycf-^yc-8- M PIST NMa   

vc> 

(N+l)Mc+Mf 

NMt 
yc 

_   F   _g 
NMp   N 

where MPISTg and MPg have been substituted respectively for WPIST and WP, 
cancelling out the mass term in the last entry on both sides of the expression. 

The following nonlinear differential equation of motion for the parachute 
retraction soft landing system is obtained upon collecting and rearranging terms in 
the previous expression: 

18 



(iV+l)C    NC,  i+ i. 
NMp      MpIST 94 

(N+1)MC+Mp   NMC 

NMK M P1ST 
v N 

1 1  +  

\MPJST    NMP 

Multiplying both sides of the equation shown above by NMpMPIST results in 
the following motion equation: 

+[NMpMpi^-MpMpJSJg]=F[NMp+MpIST]        (17) 

Define the following constants: 

C.HN^C.Mp^N^Mp 

C3=(F+l)M(MPjSr+MpMmT+N2M(Mp        (18) 

C^NMpMpIS7g-MpMpJS1g=(N-l)MpMpIslg 

C5=NMp+MpiST 

Then the nonlinear differential equation of motion shown in (17) can be 
expressed as follows: 

c2(ycf
+c^c^c5F 

or 

yc 
jt <¥-<WcT-<:*] (19) 
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Linear-Acceleration Method 

Integration of the nonlinear differential equation of motion developed in the 
previous section was carried out using the Linear-Acceleration method6,7. As 
implied by its name, this method assumes that the acceleration varies linearly 
between time stations as shown in Figure 2. 

acceleration, x 

actual x 

time, t 

Figure 2:   Linear-Acceleration Method; Actual vs. Assumed Acceleration 

The acceleration between time stations s and s+1  would therefore be 
approximated by the expression: 

At 

where the superscript enclosed by parentheses, by definition, represents the 
particular time station. 
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The 
following: 

velocity at any time within this interval 

x=x®+('xdt 

may be obtained from the 

or 

,,>    v(s+1) -rC*), »• «1 

2Af 

which at station s+l becomes: 

The displacement at s+l is given by: 

Jt(ß) 

or 

6  v ' 

where from the general velocity expression: 

x(s)=x(S-i)+M(x®+x<-s-V)        (20) 

The recurrence formula shown above can be expressed as follows: 

x(s)=A(s-l)+x.(s)*t (2l) 

where 
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Ä<ß-t>=jt<ß-i)+x<ß-r>£*        (22) 

From the previous discussion it can similarly be reasoned that: 

x^=x(.s-i)+jt(.s-i)At+{^fi^.(s-i)+-.(S^        (23) 

6 

This equation may be expressed in terms of the acceleration at time station s as 
follows: 

^)_6(^-*<*-'>)   «™ ^ 

(At)2 Ar 

Substituting the above expression for the acceleration at time station s into 
the previous equation for the velocity at time station s results in the following: 

je(,)=je(,-i)+_l(JCW-^(^-i))_3i(5-i)_A^(5-i)+Arjf(5-i) 
Ar 2 

or 

and 

Ar      Ar 2 

3^ = 3^^^^*-«^« 
Ar      Ar 2 

Therefore 

£«=£(*-!) + 

l3f 6 
^w 
13 

The above recurrence formula can be expressed as: 
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x(s)=B(s-l)+jt(s)bt Q~ 

3 

where 

B(s-i)=x(s-i)+2jt(.s-i)^i+xiS-i){^f        (25) 

3 6 

In applying this method, equations (21) and (24) are used in succession. 
Since the value of the acceleration at time station s is not known in advance, the 
solution must be iterative within each step. This iterative process is not self- 
starting, however, since it requires a supplementary formula to determine the first 
estimate of the velocity at time station s in each time step. First estimates of this 
velocity were obtained using the formula: 

i«=i(f-i)+i(.-i)Ar        (26) 

in which the acceleration is assumed constant during the time interval and equal to 
the initial value. 
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Integration and Solution of the Nonlinear Differential 
Equation of Motion 

Using the thermodynamic and kinetic relationships and numerical recurrence 
formulas derived in the previous sections, a FORTRAN computer model was 
developed to perform a time history analysis of the Parachute Retraction Soft 
Landing System (PRSLS). This model uses a two-step iterative procedure to 
integrate the nonlinear differential equation of motion in time; providing a time 
history of the motion of the piston, pay load and parachute confluence point, i.e., 
displacements, velocities and accelerations, force exerted on the piston by the 
expanding gas, gas expansion work, line tension, parachute force, and retraction, 
retraction rate and retraction acceleration from valve opening up through full piston 
stroke. The FORTRAN coding for this computer model is listed in Appendix A 
of this report. 

Model inputs include the initial tank pressure, tank volume, piston radius, 
specific heat ratio, weight of piston including cross member and top pulleys, 
payload weight including retractor, piston stroke, step increment of piston 
displacement at which time history values are desired, gas expansion process, i.e., 
adiabatic or isothermal, parachute diameter, mechanical advantage of pulley system, 
and  parachute drag coefficient. 

Using the above model inputs, the program begins the analysis by first 
computing the three mass terms, the terminal descent velocity of the system, and 
the constant terms used in the differential equation of motion. The mass at the 
parachute confluence point is computed using equation (9). Values of the constant 
terms, Cl through C5, are computed using equation (10) and equations (18). The 
terminal descent velocity of the PRSLS is computed from the well known parachute 
expression: 

V
TERM

Z 

\ 

2 (Wp+WPISr) 

TzrPCDp 
(27) 

where WP, WPIST, rP, CD, and p are as previously defined in this report. 

The program next computes the initial conditions at time equals zero, i.e., 
when the valve opens and retraction begins.  Gas expansion work, piston velocity 
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and the displacements of the piston, payload, and parachute confluence point are 
all set equal to zero at time equals zero. Although the payload and parachute 
confluence point are both initially assumed to be moving downward at terminal 
descent velocity, as an acknowledgment of the sign convention used in model 
development, their respective velocities are taken to be equal to plus and minus the 
value computed using equation (27). The force exerted on the piston by the 
expanding gas is computed next using either equation (3) or equation (5), 
depending upon whether adiabatic or isothermal gas expansion is assumed in the 
analysis. Using the model inputs supplied, and the values computed for the 
constant terms, the force acting on the piston, and the displacements and velocities 
of the three masses, the program is now able to compute all of the remaining 
forces, displacements, velocities and accelerations at time zero using previously 
derived expressions. The accelerations of the parachute confluence point, piston 
and payload are first computed using equations (19), (14a), and (14b) respectively. 
With the motion of the three masses now completely described at time equals zero, 
the remaining values for the line tension, parachute force, retraction, retraction rate, 
and retraction acceleration can then be computed respectively using equations (12), 
(11), (15a), (15b), and (15c). 

Integration of the PRSLS's nonlinear differential equation of motion in time 
begins by first computing the piston force and gas expansion work when the piston 
has moved a distance, Ay, the step increment chosen by the program user. Force 
and work values are computed using either equations (3) and (4) or equations (5) 
and (6), depending upon whether adiabatic or isothermal gas expansion has been 
assumed in the analysis. Using recurrence formulas analogous to those shown in 
equations (20) through (26) and the differential equation of motion, equation (19), 
the displacement, velocity, and acceleration of the parachute confluence point are 
determined iteratively using the following procedure. 

Assuming a value for the change in time, At, equal to 0.1 seconds, A and B 
are computed at the beginning time station of the time interval, in this case, time 
equals zero, using equations (22) and (25) respectively. One will note that all of the 
motion values needed to compute A and B are known; having been previously 
computed. The velocity, displacement, and acceleration of the parachute 
confluence point, at the end of the time interval, are then computed respectively 
using equations (26), (24), and (19) in that order. Using the acceleration value 
previously computed, updated estimates of the velocity, displacement, and 
acceleration are then obtained respectively from equations (21), (24), and (19). The 
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latest and previously computed values of displacement at the parachute confluence 
point are then compared. If the absolute value of the difference is greater than 
0.00001 inches, velocity, displacement and acceleration values are updated, once 
again using equations (21), (24), and (19), and confluence point displacements are 
again compared. This procedure is repeated until the absolute value of the 
difference between these displacements is less than 0.00001 inches. At that point 
the nonlinear motion equation is considered solved for the assumed At. 

Once the differential equation of motion has been solved for the assumed At 
value, the piston acceleration and piston displacement respectively are computed 
using equation (14a) and an equation analogous to equation (23). One will recall 
that the force exerted on the piston by the expanding gas, F, is not known as a 
function of time, but was computed from previously derived thermodynamic 
relationships at a specified value of piston displacement. Therefore, the specified 
and computed values of the piston displacement have to be compared, and the 
change in time, At, adjusted by means of a second iterative procedure in order to 
reconcile any differences. This process begins with an examination of the 
difference between displacement values, i.e., computed piston displacement minus 
the specified value. If this value is greater than the user-specified step increment, 
Ay, the At value assumed in the solution of the equation of motion is halved, and 
the equation is solved once again using the iterative procedure previously 
described. Specified and computed values of the piston displacement are compared 
and the process is repeated continuously until the difference is less than the step 
increment, Ay. At that point, updated values of At are obtained by means of 
extrapolation using the FORTRAN formula: 

Af=Af-Af 
{ *y. 

where yDIFF is obtained by subtracting the specified value of the piston displacement 
from the computed value during each iteration8. The equal sign in the above 
FORTRAN formula by definition means "is replaced by". Thus, estimates of At 
are either increased or decreased prior to again solving the motion equation, 
depending respectively upon whether one has undershot ( yDIFF is negative) or 
overshot (yDIFF is positive) the value of At during the previous iteration. 

This two-step iterative procedure continues until the absolute value of yDIFF 

is less than 0.00001 inches. At that point, the equation of motion is assumed to be 
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solved for that time step, having closely coupled the kinetic, kinematic and 
theimodynamic relationships on which system behavior is based. The remaining 
force, displacement, velocity, and acceleration values can now be computed. 
Payload acceleration is computed first using equation (14b). Piston and payload 
velocity are then computed using recurrence formulas analogous to equation (20); 
followed by the payload displacement using a recurrence formula similar to 
equation (23). The line tension, parachute force, retraction, retraction rate, and 
retraction acceleration are then obtained respectively, once again, from equations 
(12), (11), (15a), (15b), and (15c). Next, the elapsed time up to the time station 
is computed by adding At to the elapsed time at the previous time station. Finally, 
values are written to an output file, the piston displacement is increased by the 
user-specified step increment, Ay, and the two-step iterative procedure, described 
here, is carried out at the next time station, using the displacements, velocities, and 
accelerations from the most recently computed time station as initial conditions. 
The time history analysis continues one step at a time, at Ay increments, until 
either the time reaches the maximum input value specified or the piston 
displacement reaches its full stroke. The analysis is terminated once one of these 
parameters has been exceeded. 
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Comparison of Experimental Data with Model Predictions 

To test the computer model's ability to predict system performance, 
FORTRAN model predictions were compared with experimental data obtained from 
tests conducted of a prototype PRSLS at Tustin MCAS in April 1994. A complete 
verification and validation of the computer model at the present time, however, is 
not possible. This is due to the fact that the Tustin experiments remain the only 
instrumented tests conducted to date on a PRSLS of this kind, and the amount of 
data gathered was limited. Therefore, only a cursory check of the computer 
model, based on this limited test data, can be made here. 

Data recorded in the 20 April 1994 Tustin experiment are presented in Figure 
3. This figure shows both the line tension and payload descent velocity plotted 
verses time. The retraction begins at approximately 7.5 seconds into the system's 
descent and ends at approximately 9.0 seconds; therefore, the total retraction takes 
approximately 1.5 seconds. One will observe that at 7.5 seconds, the line tension, 
or tension at the parachute confluence point, rises almost vertically from 62.5 
pounds, the suspended weight, to about 100 pounds, and then decreases in a non- 
linear manner to about 50 pounds at 9.0 seconds. The payload velocity, 
meanwhile, decreases nonlinearly from the terminal descent velocity of 
approximately 21 feet per second at the beginning of retraction to around one-third 
that value at the end. 

In order to compare FORTRAN computer model predictions with the 
experimental data from Tustin, the program was run with input parameters that 
closely approximate those of the prototype PRSLS tested at Tustin9. Input 
parameters specified in these runs were as follows: 

Initial Pressure - 220 psig. 
Tank Volume - 212 cubic inches 
Piston Radius -   1.25 inches 
Specific Heat Ratio - 1.4 
Weight of Piston, Cross Member, and Top Pulleys - 1.0 pound 
Weight of Payload and Retractor - 62.5 pounds 
Piston Stroke - 24.0 inches 
Step Increment - 0.1 inches 
Gas Expansion Process:   (1) Adiabatic  (2) Isothermal 
Parachute Diameter - 14 feet 
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Parachute Retractor Performance Test, 20Apr94 
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Figure 3:  Tustin Experimental Data 
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Mechanical Advantage of Pulley System - 10 
Drag Coefficient of Parachute - 0.75 
Maximum Run Time - 4 seconds 

The model was run twice; first assuming adiabatic expansion of the ideal gas, 
and then isothermal gas expansion. Although adiabatic expansion of the gas was 
expected to be closer to actual gas behavior, isothermal gas expansion was also 
investigated to determine whether appreciable difference between the two processes 
can be expected over the anticipated short duration in which retraction occurs. 
Model results were summarized in a series of plots using the MATLAB computer 
program10. A listing of this MATLAB program is shown in Appendix B. This 
program allows the user to selectively view results by choosing from a list of 20 
available plots of various model output data. Model predictions of payload velocity 
and line tension vs. time are presented in the plots shown in Figure 4. Although 
no attempts were made to refine any of the model inputs, there appears to be close 
correlation between computer predictions assuming adiabatic gas expansion and the 
observed test behavior. 

Although not shown in the line tension plot, one will observe that since the 
system is initially at terminal descent velocity, the tension at the parachute 
confluence point prior to retraction is equal to the suspended weight; in this case, 
62.5 pounds. Therefore, at time equals zero, when retraction begins, the tension 
at the parachute confluence point is predicted to rise vertically from the suspended 
weight up to approximately 108 pounds. This overprediction of the peak tension 
at the start of retraction is undoubtedly due to the instantaneous start assumed in 
the development of the model. The predicted tension is then observed to decrease 
nonlinearly to 54.6 pounds at the end of the retraction. The payload velocity, 
meanwhile, is shown to decrease nonlinearly from the computed terminal descent 
velocity of 256 inches per second (21.3 feet per second) to a minimum of 
approximately 81.4 inches per second (6.8 feet per second). The payload velocity 
then increases slightly before the piston reaches its full stroke. Full retraction of 
the parachute is predicted to take place in just under 1.5 seconds. Thus, close 
agreement between experimental test data and model predictions assuming adiabatic 
gas expansion was obtained in terms of not only the magnitude of values, but also 
the shapes of the curves. One will further observe that significant differences 
between adiabatic and isothermal computer model predictions are obtained despite 
the short duration of the retraction. These differences become more pronounced 
toward the end of the retraction; a product of the isothermal process's larger amount 
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Figure 4:   Model Predictions of Line Tension and Payload Velocity vs. 
Time 
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of available energy as compared with that of the adiabatic process. 

The reader's attention is directed next to Figure 5, showing FORTRAN model 
predictions of both parachute force vs. time, and payload velocity vs. payload 
displacement. Though not directly used in the comparisons of experimental data 
with model predictions, Figure 5 is presented here, nonetheless, by way of example, 
to provide the reader a greater appreciation of the model's capabilities. The intent 
is to demonstrate the model's usefulness and flexibility, by showing how the 
computer model can be used by system developers and end users alike, and not just 
as a research tool. Plots of the parachute force, as well as other force and 
acceleration time histories provided by the model, for example, can be used by 
system developers to check and refine the design of the retractor mechanism and 
parachutes, prior to system fabrication and testing. Therefore, much of the costly, 
time consuming need to build, instrument and test prototypes, could be eliminated 
during the Engineering and Manufacturing Development (EMD) phase of system 
development, by using the model as a design tool. Similarly, given a PRSLS of 
some known capacity, one can quickly compute the pressure and activation height 
required to soft land a payload of some lesser weight from plots of the payload 
velocity vs. payload displacement. Therefore, the model potentially could be used 
as a simulation tool to support PRSLS airdrop operations by providing the end user, 
i.e., troops in the field, the ability to quickly determine soft landing requirements 
for cargo of varied weights. 
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Figure 5: Model Predictions of Parachute Force vs. Time and Payload 
Velocity vs. Payload Displacement 
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Conclusions and Recommendations 

This report has traced the development of a predictive, time history model 
of the NRDEC Parachute Retraction Soft Landing System (PRSLS); describing the 
model's underlying theory and current status. Based on comparisons of 
experimental data with model predictions, it was concluded that this computer 
model, in its current form, can predict, with a fair degree of accuracy, the system's 
motion and forces during retraction. The model, once validated, possesses the 
flexibility and capability to serve as a research, design, and simulation tool that will 
further our understanding of system behavior, simplify the design process, and aid 
in the selection of pressures and activation heights. As such, this model represents 
an enabling technology that can be used to speed introduction of the PRSLS into 
the Army's inventory. Therefore, it is recommended that more experimental data 
be obtained to validate the model over a range of payload weights and pulley ratios 
and/or provide a foundation for further model refinements. 

This document reports research undertaken 
at the U.S. Army Soldier Systems Command, 
Natick Research, Development and Engineering 
Center and haa been assigned 
No. NRDEC/TR-<///oiHin the series of reports 
approved for publication. 
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Appendix A 

C PROGRAM: 'RETRACTOR' 
C 
Q   ******************************************************************* 
C THIS PROGRAM MODELS BOTH THE LANDING RETRACTOR MECHANISM AND THE 
C PARACHUTE CANOPY.  OUTPUT INCLUDES A COMPLETE DESCRIPTION OF THE 
C DYNAMIC MOTION OF THE SYSTEM INCLUDING DISPLACEMENT, VELOCITY AND 
C ACCELERATION OF THE PISTON, PAYLOAD AND CANOPY, LINE TENSION 
C PARACHUTE FORCE, PISTON WORK, RETRACTION RATE, ETC. VS. TIME 
C ******************************************************************* 

IMPLICIT DOUBLE PRECISION(A-H,J-M,O-Z),INTEGER (I,N) 
DIMENSION Y(0:5000),YC(0:5000),YP(0:5000),VY(0:5000),VYC(0:5000) 
DIMENSION VYP(0:5000),AY(0:5000),AYC(0:5000),AYP(0:5000) 
DIMENSION F(0:5000) 
DIMENSION PWORK(0:5000),T(0:5000),FPAR(0:5000),DL(0:5000) 
DIMENSION VL(0:5000),AL(0:5000),A(0:5000),B(0:5000) 

Q     ******************************************************************* 

C TO EXECUTE PROGRAM TYPE 'RETRACTOR' AND HIT THE RETURN KEY 
C TYPE IN VALUES FOR THE FOLLOWING VARIABLES SEPARATED EITHER BY 
C A SPACE OR COMMA: 
C 
C INITIAL PRESSURE IN PSI. (GAUGE) 
C INITIAL VOLUME IN CUBIC INCHES 
C PISTON RADIUS IN INCHES 
C SPECIFIC HEAT RATIO, k=Cp/Cv 
C WEIGHT OF PISTON, CROSS MEMBER AND TOP PULLEYS IN LBS 
C WEIGHT OF THE PAYLOAD AND RETRACTOR IN LBS. 
C PISTON STROKE IN INCHES 
C INCREMENT OF Y IN INCHES 
C GAS EXPANSION PROCESS: (1) ADIABATIC (2) ISOTHERMAL 
C PARACHUTE DIAMETER IN FEET 
C MECHANICAL ADVANTAGE OF PULLEY SYSTEM (EVEN INTEGER) 
C DRAG COEFFICIENT OF PARACHUTE 
C MAXIMUM RUN TIME IN SECONDS 
c ******************************************************************* 

READ * , PIN,VIN,R,k,WPIST,WP,STROKE,DELTAY,IPROC,DPAR,N,CD,TMAX 

C WRITES VARIABLE VALUES TO OUTPUT FILE 
C 

OPEN(24,FILE='OUTPUT') 
WRITE(24,50)PIN 

50 FORMAT('INITIAL PRESSURE IN PSI.'/ 
2      5X,F13.5) 
WRITE(24,51)VIN 

51 FORMAT('INITIAL VOLUME IN CUBIC INCHES'/ 
2      5X,F13.5) 
WRITE(24,52)R 

52 FORMAT('PISTON RADIUS IN INCHES'/ 
2      5X,F13.5) 
WRITE(24,53)k 

53 FORMAT('SPECIFIC HEAT RATIO, k=Cp/CV/ 
2      5X,F13.5) 
WRITE(24,54)WPIST 

54 FORMAT('WEIGHT OF PISTON, CROSS MEMBER AND TOP PULLEYS IN LBS '/ 
2      5X,F13.5) 
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WRITE(24,55)WP 
55 FORMAT('WEIGHT OF THE PAYLOAD AND RETRACTOR IN LBS.'/ 

2      5X,F13.5) 
WRITE(24,56)STROKE 

56 FORMAT('PISTON STROKE IN INCHES'/ 
2      5X,F13.5) 
WRITE(24,57)DELTAY 

57 FORMAT('INCREMENT OF Y IN INCHES'/ 
2      5X,F13.5) 
IF(IPROC.EQ.l) THEN 
WRITE(24,58) 

58 FORMAT('ADIABATIC GAS EXPANSION PROCESS') 
GO TO 61 
ELSE 
CONTINUE 
ENDIF 
IF(IPROC.EQ.2) THEN 
WRITE(24,60) 

60 FORMAT (' ISOTHERMAL GAS EXPANSION PROCESS') 
GO TO 61 
ELSE 
GO TO 31 
ENDIF 

61 WRITE(24,62)DPAR 
62 FORMAT('PARACHUTE DIAMETER IN FEET'/ 

2      5X,F13.5) 
WRITE(24,63)N 

63 FORMAT("MECHANICAL ADVANTAGE OF PULLEY SYSTEM'/ 
2      5X,I4) 
WRITE(24,64)CD 

64 FORMAT('DRAG COEFFICIENT OF PARACHUTE'/ 
2      5X,F13.5) 
WRITE(24,65)TMAX 

65 FORMAT('MAXIMUM RUN TIME IN SECONDS'/ 
2      5X,F13.5) 

C 
C DEFINE AND COMPUTE CONSTANT TERMS USED IN THE DIFFERENTIAL 
C EQUATIONS OF MOTION 
C 

g=32.174*12.0 
pi=3.141592654 
PA=14.7 
RPAR=DPAR/2. 
WAIR=0.07648 
rho=WAIR/32.174 
VTERM=12.0*SQRT(2.0*WP/(pi*RPAR**2.*CD*rho)) 
WP=WP-WPIST 
MP=WP/g 
MPIST=WPIST/g 
MC=(2.*pi*rho*RPAR**3.)/(3.*12.) 
Cl=pi*RPAR**2.*CD*rho/(2.*144.) 
C2=N**2*C1*MP+(N+l)*C1*MPIST 
C3=(N+1)*MC*MPIST+MP*MPIST+N**2*MC*MP 
C4=(N-l)*g*MPIST*MP 
C5=N*MP+MPIST 
PIN=PIN+PA 
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c 
C BEGINNING OF COMPUTATIONS AT FIRST TIME STATION, Y(0)=0., TIME=0. 
C 

YPIST=0. 
1=0 
TIME=0. 
Y(I)=YPIST 
YC(I)=0. 
YP(I)=0. 
VY(I)=0. 
VYC(I)=VTERM 
VYP(I)=-VTERM 
PWORK(I)=0. 
IF(IPROC.EQ.l) THEN 
F(I) = (PIN*VIN**k*pi*R**2./(VIN+pi*R**2.*Y(I))**k)-PA*pi*R**2. 
GO TO 11 
ELSE 
GO TO 10 
ENDIF 

10 F(I)=(PIN*VIN*pi*R**2./(VIN+pi*R**2.*Y(I)))-PA*pi*R**2. 
11 AYC(I)=(C5*F(I)-C2*VYC(I)**2.-C4)/C3 

AY(I)=(F(I)-N*C1*VYC(I)**2.-N*MC*AYC(I)-WPIST)/MPIST 
AYP(I)=((N+1)*C1*VYC(I)**2.+(N+1)*MC*AYC(I)-F(I)-WP)/MP 
T(I)=C1*VYC(I)**2.+MC*AYC(I) 
FPAR(I)=C1*VYC(I)**2. 
DL(I)=YC(I)+YP(I) 
VL(I)=VYC(I)+VYP(I) 
AL(I)=AYC(I)+AYP(I) 
GO TO 30 

C 
C  END OF COMPUTATIONS AT FIRST TIME STATION, Y(0)=0., TIME=0. 
C 
20 IF(IPROC.EQ.l) THEN 

F(I)=(PIN*VIN**k*pi*R**2./(VIN+pi*R**2.*Y(I))**k)-PA*pi*R**2. 
PWORK(I)=(PIN*VIN**k*(VIN+pi*R**2.*Y(I))**(1-k)-PIN*VIN)/(1-k) 
PWORK(I)=PWORK(I)-PA*pi*R**2.*Y(I) 
GO TO 22 
ELSE 
GO TO 21 
ENDIF 

21 F(I)=(PIN*VIN*pi*R**2./(VIN+pi*R**2.*Y(I)))-PA*pi*R**2. 
PWORK(I)=PIN*VIN*DLOG((VIN+pi*R**2.*Y{I))/VIN) 
PWORK(I)=PWORK(I)-PA*pi*R* *2.*Y(I) 

22 DELTAT=0.1 
25   A(I-l)=VYC(I-l)+AYC(I-l)*DELTAT/2. 

B(I-l)=YC(I-l)+2.*VYC(I-l)*DELTAT/3.+AYC(I-l)*DELTAT**2./6. 
VYC(I)=VYC(I-1)+AYC(I-1)*DELTAT 
YC(I)=B(1-1)+VYC(I)*DELTAT/3. 
AYC(I)=(C5*F(I)-C2*VYC(I)**2.-C4)/C3 
PREVYC=YC(I) 

23 VYC(I)=A(I-l)+AYC(I)*DELTAT/2. 
YC(I)=B(1-1)+VYC(I)*DELTAT/3. 
AYC(I)=(C5*F(I)-C2*VYC(I)**2.-C4)/C3 
IF((DABS(YC(I)-PREVYC)).LT.0.00001) THEN 
GO TO 24 
ELSE 
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PREVYC=YC(I) 
GO TO 23 
ENDIF 

24   AY(I)=(F(I)-N*C1*VYC(I)**2.-N*MC*AYC(I)-WPIST)/MPIST 
Y(I)=Y(I-l)+VY(I-l)*DELTAT+(2.*AY(I-l)+AY(I))*DELTAT**2./6. 
YDIFF=Y(I)-YPIST 
IF(YDIFF .GE. DELTAY) THEN 
DELTAT=DELTAT/2. 
GO TO 25 
ELSE 
CONTINUE 
ENDIF 
IF((YDIFF.LT.DELTAY).AND.((DABS(YDIFF)).GT.0.00001)) THEN 
DELTAT=DELTAT-DELTAT*(YDIFF/DELTAY) 
GO TO 25 
ELSE 
VY(I)=VY(I-1)+DELTAT/2.*(AY(I)+AY(I-1)) 
AYP(I)=((N+1)*C1*VYC(I)**2.+(N+1)*MC*AYC(I)-F(I)-WP)/MP 
VYP(I)=VYP(I-1)+(AYP(I-1)+AYP(I))*DELTAT/2. 
YP(I)=YP(I-1)+VYP(I-1)*DELTAT+(2.*AYP(I-1)+AYP(I))*DELTAT**2./6 
T(I)=C1*VYC(I)**2.+MC*AYC(I) 
FPAR(I)=C1*VYC(I)**2. 
DL(I)=YC(I)+YP(I) 
VL(I)=VYC(I)+VYP(I) 
AL(I)=AYC(I)+AYP(I) 
TIME=TIME+DELTAT 
ENDIF 

C 
C WRITE RESULTS TO OUTPUT FILE AND COMPARE TIME AND PISTON 
C DISPLACEMENT RESPECTIVELY TO MAXIMUM TIME AND PISTON STROKE 
C 
30 IF(TIME .GT. TMAX) GO TO 31 

WRITE(24,66)I,F(I),DELTAT,TIME,Y(I),YC(I),YP(I),AY(I),AYC(I), 
2AYP(I),VY(I),VYC(I),VYP(I),PWORK(I),T(I),FPAR(I), 
3DL(I),VL(I),AL(I) 

66   FORMAT(2X,I5,18(2X,E13.5)) 
IF(Y(I) .LT. STROKE) THEN 
1=1+1 
YPIST=YPIST+DELTAY 
Y(I)=YPIST 
GO TO 20 
ELSE 
CONTINUE 
ENDIF 

31 CLOSE(24,STATUS='KEEP') 
STOP 
END 
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Appendix B 

MATIxAB Program Listing 

clear 
load -ascii PLRl.mat 
load -ascii PLR2.mat 
who 
clg 
hold off 
k = menu('CHOOSE PLOT 
'PISTON ACCELERATION VS. TIME 
'CONFLUENCE POINT ACCELERATION VS. TIME 
'PAYLOAD ACCELERATION VS. TIME 
' PISTON VELOCITY VS . TIME 
'CONFLUENCE POINT VELOCITY VS. TIME 
'PAYLOAD VELOCITY VS. TIME 
'PISTON DISPLACEMENT VS. TIME 
'CONFLUENCE POINT DISPLACEMENT VS. TIME' 
'PAYLOAD DISPLACEMENT VS. TIME 
'PISTON WORK VS. RETRACTION' 
'PISTON FORCE VS. DISPLACEMENT 
'PISTON WORK VS. DISPLACEMENT 
'PISTON FORCE VS. TIME 
'PISTON WORK VS. TIME 
'CONFLUENCE POINT TENSION VS. TIME 
'PARACHUTE FORCE VS. TIME',... 
'RETRACTION VS. TIME 
■RETRACTION VELOCITY VS. TIME' 
'RETRACTION ACCELERATION VS. TIME 
■PAYLOAD VELOCITY VS. PAYLOAD DISPLACEMENT' 
'QUIT') 
if k == 1 
clg 
plot(PLRl(:,4),PLRl(:,8), '-r' , PLR2(:,4),PLR2(:,8) , ' -w' ) 
title{'PISTON ACCELERATION VS. TIME') 
xlabel('TIME SECONDS') 
ylabel('ACCELERATION INCHES PER SEC 2') 
% 
elseif k == 2 
clg 
plot(PLRl(:,4),PLR1(:,9),'-r',PLR2(:,4),PLR2(:,9),'-W) 
title('CONFLUENCE POINT ACCELERATION VS. TIME') 
xlabel('TIME SECONDS') 
ylabel('ACCELERATION INCHES PER SEC 2') 
% 
elseif k == 3 
clg 
plot(PLRl(:,4),PLR1(:,10),'-r',PLR2(:,4),PLR2(:,10),'-w') 
title('PAYLOAD ACCELERATION VS. TIME') 
xlabel('TIME SECONDS') 
ylabel('ACCELERATION INCHES PER SEC 2') 
% 
elseif k == 4 
clg 
plot(PLR1(:,4),PLR1(:,11),■-r',PLR2(:,4),PLR2(:,11),'-w') 
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title('PISTON VELOCITY VS. TIME') 
xlabel('TIME SECONDS') 
ylabel('VELOCITY INCHES PER SEC) 
% 
elseif k == 5 
clg 
plot(PLRl(:,4),PLR1(:,12),'-r',PLR2(:,4),PLR2(:,12),'-W) 
title('CONFLUENCE POINT VELOCITY VS. TIME') 
xlabel('TIME SECONDS') 
ylabel('VELOCITY INCHES PER SEC) 
% 
elseif k == 6 
clg 
plot(PLRl(:,4),PLR1(:,13),'-r',PLR2(:,4),PLR2(:,13),'-W) 
title('PAYLOAD VELOCITY VS. TIME') 
xlabel('TIME SECONDS') 
ylabel( 'VELOCITY INCHES PER SEC) 
% 
elseif k == 7 
clg 
plot(PLRl(:,4),PLR1(:,5),'-r',PLR2(:,4),PLR2(:,5),'-W') 
title('PISTON DISPLACEMENT VS. TIME') 
xlabel('TIME SECONDS') 
ylabel('DISPLACEMENT INCHES') 
% 
elseif k == 8 
clg 
plot(PLRl(:,4),PLR1(:,6), '-r',PLR2(:,4),PLR2 ( : ,6), '-w' ) 
title('CONFLUENCE POINT DISPLACEMENT VS. TIME') 
xlabel('TIME SECONDS') 
ylabel('DISPLACEMENT INCHES') 
% 
elseif k == 9 
clg 
plot(PLRl(:,4),PLR1(:,7), '-r',PLR2(:,4),PLR2(:,7), '-w' ) 
title('PAYLOAD DISPLACEMENT VS. TIME') 
xlabel('TIME SECONDS') 
ylabel('DISPLACEMENT INCHES') 
% 
elseif k == 10 
clg 
plot(PLRl(:,17),PLR1(:,14),'-r',PLR2(:,17),PLR2(:,14),'-W) 
title('PISTON WORK VS. RETRACTION') 
xlabel('RETRACTION INCHES') 
ylabel('WORK INCH|POUNDS') 
% 
elseif k == 11 
clg 
plot(PLRl(:,5),PLR1(:,2),'-r',PLR2(:,5),PLR2(:,2),'-W) 
title('PISTON FORCE VS. DISPLACEMENT') 
xlabel('DISPLACEMENT INCHES') 
ylabel('FORCE POUNDS') 
% 
elseif k == 12 
clg 
plot(PLRl(:,5),PLR1(:,14),'-r',PLR2(:,5),PLR2(:,14),'-w') 
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title('PISTON WORK VS. DISPLACEMENT") 
xlabel('DISPLACEMENT INCHES') 
ylabel('WORK INCH|POUNDS') 
% 
elseif k == 13 
clg 
plot(PLRl(:,4),PLR1(:,2),'-r',PLR2(:,4),PLR2(:,2),'-w') 
title("PISTON FORCE VS. TIME") 
xlabel('TIME SECONDS') 
ylabel('FORCE POUNDS") 
% 
elseif k == 14 
clg 
plot(PLRl(:,4),PLR1(:,14),"-r■,PLR2(:,4),PLR2(:,14),'-W) 
title("PISTON WORK VS. TIME") 
xlabel('TIME SECONDS') 
ylabel('WORK INCH|POUNDS') 
% 
elseif k == 15 
clg 
plot(PLRl(:,4),PLR1(:,15),"-r",PLR2(:,4),PLR2(:,15),'-W) 
title('CONFLUENCE POINT TENSION VS. TIME") 
xlabel('TIME SECONDS') 
ylabel('TENSION POUNDS") 
% 
elseif k == 16 
clg 
plot(PLRl(:,4),PLR1(:,16),"-r",PLR2(:,4),PLR2(:,16),"-W) 
title('PARACHUTE FORCE VS. TIME") 
xlabel('TIME SECONDS") 
ylabel('FORCE POUNDS") 
% 
elseif k == 17 
clg 
plot(PLRl(:,4),PLR1{:,17),'-r',PLR2(:,4),PLR2(:,17),"-W) 
title('RETRACTION VS. TIME') 
xlabel("TIME SECONDS') 
ylabel('RETRACTION INCHES') 
% 
elseif k == 18 
clg 
plot(PLRl(:,4),PLR1(:,18), '-r',PLR2(:,4),PLR2(:,18) , ' -W ) 
title('RETRACTION VELOCITY VS. TIME') 
xlabel('TIME SECOND') 
ylabel('VELOCITY INCHES PER SEC") 
% 
elseif k == 19 
clg 
plot(PLRl(:,4),PLR1(:,19),'-r',PLR2(:,4),PLR2(:,19),'-w') 
title('RETRACTION ACCELERATION VS. TIME") 
xlabel("TIME SECONDS') 
ylabel('ACCELERATION INCHES PER SEC 2') 
% 
elseif k == 20 
clg 
plot(PLRl(:,7),PLR1(:,13),'-r',PLR2(:,7),PLR2(:,13),'-W) 
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title('PAYLOAD VELOCITY VS. PAYLOAD DISPLACEMENT') 
xlabel('DISPLACEMENT INCHES') 
ylabelCVELOCITY INCHES PER SEC) 
end 
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List of Symbols 

cD parachute drag coefficient 
F force exerted on piston by expanding gas 
x Parachute parachute force 
H enthalpy 
L retraction, i.e., L=Ny=yc+yp 

Mc parachute apparent mass 
MP mass of payload and retractor components that move with payload 
MPIST mass of piston and retractor components that move with piston 
N mechanical advantage 
P pressure 
Pi initial tank pressure 
Pi initial pressure 
P2 

final pressure 
Q heat 
R universal gas constant, where R = cp - cv 

S piston stroke 
T temperature 
T, initial temperature 
T2 final temperature 
Tc tension at parachute confluence point 
U internal energy 
V volume 
^ initial volume 
v2 final volume 
Vi tank volume 
w work 
wq adiabatic work 
WT isothermal work 
wc weight of air in the parachute;  assumed negligible 
WP weight of payload and retractor components that move with payload 
WPIST weight of piston and retractor components that move with piston 
CP specific heat at constant pressure 
Cv 

specific heat at constant volume 
k specific heat ratio, Cp/cv 

n number of moles of gas 
r piston radius 
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rp nominal parachute radius 
t time 
V

TERM terminal descent velocity 
x some generalized displacement 
y piston displacement 
yc displacement at parachute confluence point 
yP payload displacement 
yDlFF computed minus specified piston displacement 
AHIdeal Gas     change in enthalpy of an ideal gas 
AUIdeal Gas     change in internal energy of an ideal gas 
At change in time over interval 
Ay input step increment of piston displacement 
p density of air 

Throughout this report, a dot or double dot notation over any of the 
displacements (x, y, yc , yp or L) will be used to designate the first and second 
derivatives of that displacement with respect to time, or in other words, the velocity 
and acceleration. 
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