
March 1981 Report. No. STAN-CS-81-847 

PB96-150685 

The Optimal Locking Problem 
in a Directed Acyclic Graph 

by 

Henry F. Korth 

Research sponsored in part by 

Air Force Office of Scientific Research 

Department of Computer Science 

Stanford University 
Stanford, CA  94305 

19970423 213 

DTK QUALITY mSEEOEBD. 



THE OPTIMAL LOCKING PROBLEM IN A DIRECTED ACYCLIC GRAPH 

Henry F. Korthf 

ABSTRACT 

We assume a multiple granularity database locking scheme similar to that of Gray, et al. [1975] in which a 

rooted directed acyclic graph is used to represent the levels of granularity. We prove that even if it is known 

in advance exactly what database references the transaction will make, it is MP-complete to find the optimal 

locking strategy for the transaction. 

§1  INTRODUCTION 

Relatively little is known about the compilation of database transactions. One problem that a transac- 

tion compiler might want to solve is the determination of the locks required by the transaction in order to 

observe the locking protocol of the database system. We shall be using the unbiased DAG protocol of Korth 

[1981a] which, like the protocol of Gray, et al. [1975], uses a rooted directed acyclic graph of lockable entities. 

We show that it is }JP-comp\ete to design an optimal locking strategy for a transaction in this model even 

if all database references by a transaction are known in advance. 

This rather negative result is best interpreted not as an indictment of the model, but rather as a 

•statement that it is best to look for good heuristics for transaction compilation than to engage in the almost 

certainly futile search for a polynomial time algorithm to produce optimal locking strategies. 

§2  THE MODEL 

We shall give a brief definition of our model here. Gray, et al. [1975] provides a more detailed and better 

motivated discussion. 

We associate a lock with each database entity. Entities are the smallest units of data we are willing to 

lock. There may be many types, or modes of locks. Korth [1981a] describes many classes of lock modes. For 

the purposes of this paper it suffices that We are given a set of lockmodes {Xi,..., Xn, Ix1, ■ ■ ■, ixn }> where 

the Xi are called access modes and the Ix{ intention modes. We shall explain the use of intention modes 

shortly. Access modes permit their holder some sort of access to the locked entity. Typically, { X\,..., Xn } 
is { read, write }. 

It is useful to have locks associated with collections of database entities. The granularity of an entity 

is the amount of data associated with that entity. If the amount of data is relatively large we say the 

granularity is coarse. Likewise, if the amount of data is relatively small, we say the granularity if fine. 

It is simple to design transactions that benefit from fine granularity and likewise for coarse granularity. 

Indeed no one granularity is ideal for all cases. System/i? offers transactions variable granularity: a transac- 

tion may lock using granularities ranging from very coarse (the entire database) to relatively fine (records). 

t Work partially supported by AFOSR grant AFOSR-80-0212 



Database 

Areas 

Files 

I Relations 

Pages 

Records 

Fig. 2.1. A Lattice of Granularities. 

Variable granularity is implemented by means of a rooted directed acyclic graph, (DAG). The leaves 

of the DAG (nodes without any out-edges) represent the finest granularity. Each datum at this finest level 

of granularity is associated with exactly one leaf. The remaining nodes of the DAG (the interior nodes) 

represent the coarser granularities. A node n is associated, for purposes of granularity, with all leaves I 

such that there is a path in the DAG from n to I. Thus, the root node of the DAG represents the coarsest 

granularity of all: the entire database.! 

Example 2.1: (Gray, et al. [1975]). Suppose that we wish to offer the following granularities: records, 

relations, pages, files, areas, and the entire database. The database consists of a collection of areas. Areas 

are subdivided into files and relations, but relations may span more than one file. Files contain pages. The 

smallest unit, records, are contained in pages and in relations. This collection of granularities is shown 

diagramatically in Fig. 2.1. The DAG used to implement variable granularity has a node n for each record; 

Pi for each page; f{ for each file; t{ for each relation; at for each area and R for the root node. The edges 
of the DAG are: 

• {Pi>rj) f°r each page p; and record r, such that ry is in p;. 

• {£iirj) for each relation li and record r, such that ry is in £;. 

• ifi,Pj) f°J" each file f{ and page p, such that p.j is in file fr. 

• (ai> fj) f°r each area a, and file j3 such that fj is in area a;. 

• (aii^j) for each area Oj and relation lj such that tj is in area o,-. 

• (R,ai) for each area a;. I 

In order to lock data, a transaction may explicitly lock the leaf nodes associated with the desired data. 

Alternately, the transaction may implicitly lock the requisite leaf nodes to be locked by locking a certain 

number of parents of the node (Korth [1981b]). The exact number of parents required for implicit locking 

may depend on the lock mode desired. In this paper, however, we shall require that a majority of parents 

be locked regardless of the lock mode desired. Implicit locking does not apply to the intention modes. 

The rulesl   that the unbiased DAG protocol imposes on transactions are the following: 

1.     The first lock is taken on the root. 

t We emphasize that the DAG represents granularities as opposed to the DAG (or tree) used by Silberschatz and Kedem [1979]. 
In that paper, the DAG represents a hierarchical data organization. 

t For simplicity, we have omitted some constraints of the protocol that are not relevant to our result. A precise statement of 
the protocol appears in Korth [1981a]. 



5 6 

7   8 9   10 11    12    13 

Tig. 2.2. DAG for Example 2.0.1. 

lock 1 in Iyp. 

lock 2 in ly$. 
lock 3 in R. 
lock 5 in lyy. 
lock 6 in lyy. 

lock 8 in W. 
lock 7 in R. 

Fig. 2.3. Sample transaction for Example 2.2 

2.     Before requesting a lock on node n in mode Ixt or Xi, the transaction must hold a majority of the 
parents of n in mode Ix{. 

We shall not justify these rules here. The relevant correctness proofs appear in Korth [1981b]. The rules 
do indicate the purpose of intention modes. Mode Ix{ serves to warn of the intent to lock a descendant node 
in mode Ixt or Xi. 

Example 2.2: Suppose a transaction wishes to read data nodes 7, 11, 12, and 13 and write node 8 in the DAG 
of Fig. 2.2. The locking steps of this transaction could be as shown in Fig. 2.3. Note the need to lock both 
nodes 5 and 6 in Jyj mode in order to lock node 8 in W mode. Locking only one of the nodes 5 and 6 would 
not provide a majority of the parents of node 8. Also note the use of implicit locking by the transaction 
when it implicitly locked nodes 11, 12, and 13 in R mode by locking node 3 in R mode. | 

§3  THE OPTIMAL LOCKING PROBLEM 

In general, it is not known at compile time which data the transaction will reference. The best example 
of this fact are transactions entered interactively by a user at a terminal. It is interesting, however, to ask 
how well we can optimize transaction lock requests if we know exactly what data the transaction will lock. 

We shall make two assumptions that make the problem "easier." First, we assume that we know exactly 

the set C of nodes to be locked in access modes. Second, we asssme that there is only one access mode (X). 

Our problem is to determine what nodes of the DAG G need to be locked in Ix mode so as to minimize the 
number of nodes locked. Formally, the Optimal Locking Problem is stated as follows: 



Given a rooted DAG G, and integer k, and a subset C of the nodes of G, is there a subset L of the nodes of 

G of cardinality k such that the unbiased DAG protocol can be observed in locking exactly the members of 

L, and exactly members of C are explicitly locked in an access mode? 

We shall show that this problem is i/P-complete. The theory of i/P-cornpleteness is presented in Aho, 

Hopcroft, and Ullman [1974] and Garey and Johnson [1979]. Although it is not known whether .V/'-complete 

problems have polynomial time algorthms, it is highly unlikely that they do. Before proving that this problem 

is .MP-complete, we shall consider an apparently simpler problem, the majority hitting set problem. 

Definition: The Majority Hitting Set Problem is stated as follows: 

Given a set S, a collection { Cit..., Cn } of n subsets of S, and an integer k, is there a subset T of S such 

that |T| = k and for all i, T contains a majority (i.e. more that half) of the members of Ci. 

Lemma 3.1: The majority hitting set problem is HP-comphte. 

Proof: In HP: Nondeterministically guess a subset of S of cardinality k and check to see if it is a majority 

hitting set. 

HP-hard: We shall make use of the (standard) hitting set problem which is known to be .VP-completef. 

Let (S, {Clt...,Cn}, k) denote an instance of the hitting set problem. We construct an instance (£', 

{ C'1,..., C'n+1 }, k') of the majority hitting set problem as follows: Let M be the cardinality of the largest 

Ci, and let { ax,..., aM } and { &i,..., bM—I } be sets of distinct elements not in S. 

S' = S U { au ..., aM } U { bu..., 6M_i } 

C'i = Ci U {oi,...,a|Ci|}, i = 1, ...,n. 

Cn+i = {h,..., 6M—i } U { ax,..., aM } 

k' = k + M 

It is clear that the above construction takes only deterministic polynomial time. If there is a hitting set H of 

cardinality k for S, then there is a majority hitting set H' for S' of cardinality k'. H' is H U { au ..., aM }. 

It remains to be shown that if there is a majority hitting set H' of cardinality k' for 5", then there is a 

hitting set H of cardinality k for S. If it happens that H' contains all of the ait then it is clear that such 

a hitting set H is H' — {ax,..., aM } — { bu ..., 6Af_t }. Assume that H' does not contain all of the o;. 

In order for the majority hitting set to have a majority of the members of C'n+l, it must have M members 

of { o1(..., aM, &!,..., 6M—l }• Since the bi appear nowhere else, any b, in the majority hitting set may be 

replaced with some a,. Therefore, if there is a majority hitting set of cardinality k' then there is a majority 

hitting set of the same cardinality that contains all of the a{, and we can find a hitting set of cardinality k 

for 5. I 

Theorem 3.1: The optimal locking problem is i/P-complete. 

Proof: In HP: Nondeterministically guess a subset of the nodes of G of cardinality k. Verify that exactly 

the chosen subset locks exactly the members of C in an access mode and that this subset can be acquired in 

accordance with the protocol. 

.MP-hard: Let (5, { C\,..., Cn }, k') be an instance of the majority hitting set problem. We construct a DAG 

G of depth 3 as follows: 

•      There is one node at depth 1 (the root). 

fThe hitting set problem is stated as follows: Given a set S, a collection { Cj,..., Cn } of n subsets of S, and an integer k, is 
there a subset // of S such that \H\ = k and for all i, H contains at least one member of Cj? 



• There is one node at depth 2 for each member of S and edges from the root to each depth 2 node. 

• There is one depth 3 (leaf) node for each d. 

• For each depth 2 node o and depth 3 node 6, include edge [a, b) if o is in C\,. 

We now construct an instance of the optimal locking problem as follows: 

• G is the DAG defined above. 

• C is the set of all leaves of G. 

• k = k' + n + 1. 

If there is a solution to the optimal locking problem, the solution must lock the root, as well as the n members 

of C. Therefore, the solution locks exactly k' nodes at depth 2. A depth 2 node a is a parent of a depth 3 
node b if and only if a is in Cb. Since for each b the solution locks a majority of its parents, the set of depth 
2 nodes locked provides a majority hitting set. 

If there is a solution to the majority hitting set problem, then let T be a majority hitting set of cardinality 
k'. We solve the optimal locking problem by locking the root, the depth 2 nodes corresponding to T, and 
the leaves. ■ 

§4 DISCUSSION 

The MP -completeness of the optimal locking problem, despite the two assumptions we made to make 
the problem "easier," is not as disastrous as it initially appears. The DAG of the "^-completeness proof is 
"bushier" than the type of DAG that one might expect of real database management systems. As the sample 
lattice of granularities of Fig. 2.1 suggests, there is likely to be only a few paths from the root to a given 
node. In a real system, the choice of paths to a particular node may be aide by the semantics associated 
with the path. For example, one path may be associated with access to the file containing the datum and 
another to the relation containing the datum (see Fig. 2.1). In the extreme case that the DAG is actually a 
tree, it is trivial to solve the optimal locking problem. 

It is sometimes actually preferable to lock in a sub-optimal manner. It may be cheaper, in terms of 
overall system performance, to lock an entire file, for example, if many, though not all, records are actually 
needed. Gray [1981] describes the notion of lock escalation in which a transaction that has acquired many 
locks at a particular granularity trades those locks in for a single lock at a coarser granularity. Use of lock 
escalation in System/fl worked well from a practical point of view. 

In summary, although we certainly do not want transactions to acquire excessive numbers of unnecessary 
locks, we cannot demand that transactions do not ever acquire a larger than optimum number of locks, even 
under highly idealized assumptions. 

REFERENCES: 

Aho, A.V., J.E. Hopcroft, and J.D. Ullman [1974], The Design and Analysis of Computer Algorithms, 
Addison-Wesley. 

Garey,  M.R.,  and D.S.  Johnson [1979],  Computers and Intractibility:  A Guide to the Theory ofMP- 
Completeness, W.H. Freeman and Company, San Francisco, CA. 



Gray, J.N. [1978], "Notes on Database Operating Systems," RJ 2188, IBM Research Laboratory, San Jose, 

CA, also in R. Bayer, R.M. Graham, and G. Seegmuller, eds., "Operating Systems - An Advanced 

Course," Lecture Notes in Computer Science, Springer-Verlag, Berlin. 

Gray, J.N. [1980], "A Transaction Model," in "Automata, Lanugages, and Programming, Seventh Colloqui- 
um, Nuordwijkerhout," Lecture Notes in Computer Science, 85, Springer-Verlag, Berlin. 

Gray, J.N. [1981], "Experience With the System/H Lock Manager," Oral Presentation, 5 Berkeley Conference 

on Distributed Data Management and Compter Networks. 

Gray, J.N., R.A. Lorie, G.R. Putzolu, and I.L.Traiger [1975], "Granularity of Locks and Degrees of Consis- 

tency in a Shared Data Base" RJ 1654, IBM Research Laboratory, San Jose, CA. 

Korth, H.F. [1981a], "Locking Primitives In A Database System,"submitted for publication. 

Korth, H.F. [1981b], " Locking Protocols: General Lock Classes and Deadlock Freedom," Ph.D. dissertation, 

Princeton University, Princeton, NJ. 

Silberschatz, A. and Z. Kedem [1979], "Consistency in Hierarchical Database Systems," J. ACM 27:1, pp. 

72-80. 

Ullman, J.D. [1980], Principles of Database Systems, Computer Science Press. 


