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A Temporal Cascade Approach for Staircase 

Linear Programs with an Application to Air Force 

Mobility Optimization 

Dissertation Proposal by Steven F. Baker 

Operations Research Department, 

Naval Postgraduate School 

May 22, 1996 

Abstract 

This research outlines a method by which a staircase linear program that op- 

timizes decisions over a finite time horizon can be approximated and bounded. 

A feasible solution is derived by a Temporal Cascade Heuristic, which sequen- 

tially solves overlapping subsets of the model's time periods. In turn, that 

approximation is bounded by a Lagrangian Cascade, which penalizes infeasi- 

bility by incorporating dual information provided by the heuristic's solution. 

A large temporal LP developed for USAF mobility planners provides the case 

study for the method's development. Early results from the Temporal Cas- 

cade Heuristic show the feasible solution to be of good quality, although the 

Lagrangian Cascade bounding scheme has not yet been implemented. 
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INTRODUCTION 

Large linear programs (LP's) often require indirect solution methods that exploit 

the problem's structure. Models that incorporate time frequently contain such a 

structure, commonly known as a staircase. A staircase structure is formed when 

a linear program contains variables and constraints that directly affect only nearby 

time periods. This is easy to grasp intuitively in a scheduling situation; a dispatcher's 

decisions on the first day of the month will not have a major effect on the vehicle fleet 

by the 30th day, assuming the round trip times are only a day or so. The purpose of 

this research is to formalize one of the heuristics currently used to approximate the 

solution of a staircase LP, and provide a bound for that heuristic's accuracy. 

The success of LP in aiding schedulers is well known. It offers the ability to enlarge 

the planning horizon (the number of time periods considered by the scheduler), as 

well as methodically compute the best option within a horizon. Unfortunately, LP's 

are limited by temporal considerations in at least two ways: 1) future uncertainty 

makes gathering accurate data for the latter periods of a planning horizon problem- 

atic; and 2) a sufficiently large planning horizon may produce a model which is too 

large to solve with current technology. A human scheduler faces the same difficulties, 

namely reconciling the increasing number of options with decreasing certainty as the 

planning horizon grows. For either scheduler or LP, perhaps the most straightforward 

way of dealing with the difficulties incurred by a large planning horizon is to focus se- 

quentially on a subset of the planning horizon's periods, then move forward in time to 

a new subset. This temporal "myopia" degrades the solution quality, but makes the 

problem simple enough to solve. Moreover, a model which is used to mimic schedul- 

ing, but not produce schedules, is best if it can incorporate the realism of nearsighted 

scheduling. For example, when choosing fleetsize or infrastructure for use in future 

dispatching, an LP wishes to optimize given the current scheduling capabilities, in- 



stead of a Utopian capability. Nonetheless, knowledge of a truly optimal solution is 

insightful, so any heuristic which degrades solution quality should be supplemented 

by an optimistic bound, in order to quantify myopia's cost. 

As shown by the dispatcher problem, scheduling myopia is acceptable (and some- 

times desirable for model realism), provided the commitments initiated by decisions 

are short relative to the myopia. Once a schedule is produced for a limited number 

of periods, the process can be cascaded forward in order to solve for a later set of 

periods. Mathematically, this implies generating a feasible solution by successively 

solving for only a subset of rows and columns, then moving to a set of rows and 

columns corresponding to later time periods. Each of these subproblems should over- 

lap the previously solved subproblem in order to minimize the end effects caused by 

the temporal limitation. Fortunately, this methodology is facilitated by the structure 

of a staircase LP. The linkage of a time period's variables and constraints only to 

nearby periods manifests itself as an overlapping "staircase" along the main diago- 

nal of the constraint coefficient matrix. The width of the overlap gives the number 

of time periods directly affected by the decisions (variable levels) made in a given 

time period. The rest of the coefficient matrix is relatively sparse, since variables 

(columns) associated with the early time periods rarely appear in constraints (rows) 

corresponding to the later time periods. This well known methodology is known as 

either the rolling horizon, or temporal cascades heuristic. However, the heuristic is 

sparsely documented, and is theoretically incomplete, since no scheme to bound the 

solution quality has been offered. 

The quality of the solution produced by the above scheme is dependent on many sce- 

nario specific factors, and cannot be stated theoretically for most problems. However, 

this research intends to develop an optimistic bound (lower bound for a minimiza- 

tion problem) by exploiting information derived from this heuristic solution. Since 

many temporal LP's have only direct variable linkage between adjacent (or nearby) 



time periods, relaxing the rows associated with certain time periods can decouple an 

otherwise linked monolith. As with most decompositions however, the success of this 

scheme is dependent on the ability to compute accurate prices for resource consump- 

tion of the relaxed constraints. With such prices, a Lagrangian penalty can be applied 

to the subproblems, and a lower bound can be derived. Often price selection is com- 

putationally intensive, which makes Lagrangian methods undesirable. However, in 

this case, reasonable prices are readily available from the cascade heuristic described 

above. This proposal explores the use of temporal cascades on a model currently in 

use by the Pentagon's mobility planners, and provides a bounding methodology for 

the quality of the heuristic's solution. 

LITERATURE REVIEW 

The topics germane to the proposed research include decomposition of large LP's, 

cascade heuristics, Lagrangian relaxation, and military mobility optimization. While 

there is a wealth of literature on decomposition and Lagrangian relaxation, cascading 

and military mobility optimization are less well documented. Below is a summary of 

the literature. 

The notion of incorporating dual information to decompose large linear programs 

into smaller, structured LP's originated with Dantzig & Wolfe (6), and Benders (4). 

With respect to transportation related problems, Geoffrion & Graves (7) used Ben- 

ders' decomposition in a resource directed scheme to reduce a mixed integer, mul- 

ticommodity flow problem into separable single commodity problems. Brown et al 

(8) extended this technique using elastic constraints to insure feasibility as well as 

speed convergence. Decomposition has also been applied to staircase linear programs 

by Glassey (10) as well as Ho and Manne (15). This method repeatedly applies the 

Dantzig-Wolfe technique to succeeding (or preceding) levels of a staircase LP, form- 

ing a "nested" decomposition. A staircase LP can also be decomposed by Benders' 



method, as given by Van Slyke & Wets (27) for 2 stage stochastic programming, 

then later by Birge (5) in multistage stochastic programming. Finally, methods of 

advanced basis selection and preliminary cut generation for nested models are offered 

by Morton (21), who offers one of many applications to stochastic programming in 

the current literature. 

Although not a decomposition technique, the solution of large scale LP's can also be 

accomplished by aggregation of time periods until developing a problem of workable 

size. Zipkin (31) describes a methodology for bounding the error incurred by such 

aggregation in some problems. 

Lagrangian relaxation is widely used in many applications of optimization, includ- 

ing vehicle routing, travelling salesman, and network design problems (1). Common 

to these methods is a multiplier search, which has proved the most difficult aspect 

of the overall method. A summary of search techniques is given in Parker & Rardin 

(24), as well as Bazaraa et al (3). Subgradient search techniques are perhaps the most 

common, although ensuring movement along a good, or even improving subgradient 

is computationally expensive. Progress in this area was reported from Kim & Ahn 

(18), who modified the traditional method (given in Held et al (14)) by developing 

a convergence scheme based on a weighting of all previous iteration's subgradients. 

Hearn & Lawphongpanich (13) also reported an improved multiplier search, but took 

an outer linearization approach which included an aggregate of previous cuts in each 

iteration's cut set. Finally, both Han (12) and Tseng (25) developed multiplier search 

methods based on a successive projection algorithm, which employs proximal penalty 

terms to drive the convergence of linking primal or dual variables within subproblems 

that are otherwise separable. 

The use of temporally progressing heuristics in optimization is of two varieties; 

cascading and forward optimization. Cascading, or successively solving only a portion 

of the time periods in order to produce an advanced basis was used and reported by 



Brown et al (9). Jayakumar & Ramasesh (16) analyzed the computational savings 

of this technique on a number of test problems. Forward optimization as outlined by 

Morton (23) involves solving successively longer (more time periods) problems until a 

decision horizon is reached. A decision horizon is a point beyond which solving larger 

problems will not alter the decisions of the first time period. This method shows that 

(for some problems) an optimal solution can be reached by solving a succession of 

small LP's, and recording the values of the first time period within each as optimal. 

Aronson et al (2) develop and test this idea for certain classes of problems, notably 

from the area of production scheduling and inventory control. Related work is done 

by Manne (20), who provides sufficient conditions for optimality when truncating 

infinite horizon LP's whose coefficients do not change in the latter periods. Walker 

(28) extends this idea to bound the error produced by. truncating infinite horizon LP's 

prior to Manne's criteria. • Unfortunately, the forward and infinite horizon methods 

require either an unchanging (homogeneous) or some other special structure, which 

does not exist for many staircase problems. There is not a body of literature on the 

solution and bounding of large, but still finite LP's by a temporal cascade heuristic- 

which successively solves a portion of a nonhomogeneos staircase LP in order to 

approximate an otherwise intractable problem. 

Until recently, the computational demands of LP in modelling large scale military 

contingency deployments allowed an insufficient level of detail to be useful. As such, 

simulation was the method of choice for analyzing fleet mix and infrastructure re- 

quirements of such a deployment. Wing et al (29) developed an LP as a response to 

the Mobility Requirements Study mandated by the National Defense Authorization 

Act of 1991. Yost (30) continued the introduction of LP into the mobility modelling 

arena with the development of THRUPUT in 1994, which provided greater detail for 

the airlift aspect of the deployment scenario. Concurrent with this work, the RAND 

Corporation developed CONOP (17), which also focused on airlift, but initially was 



used to examine the efficacy of aerial refueling of airlift aircraft in a contingency. Lim 

(19) extended THRUPUT with the development of THRUPUT II, which incorpo- 

rated the multiple time periods of a contingency. Subsequently, Goggins (11) studied 

the effects of uncertainty on THRUPUT II, and Turker (26) examined the impact of 

airfield and route fidelity of the same model. Other THRUPUT II enhancements are 

ongoing, including the research described in this proposal. 

CASE STUDY FOR CASCADE IMPLEMENTATION 

Background 

The airlift mobility model currently under development for the Air Force Studies 

and Analysis Agency (AFSAA) provides the need for the temporal cascades heuristic 

outlined above. Our first full scale runs produced model instances with nearly 3 

million nonzeros. After some variable consolidation and fidelity coarsening, the same 

scenario was reduced to 1.7 million nonzeros. Unfortunately, this is still large given 

AFSAA's limited on-site computing. Fortunately THRUPUT II is a good candidate 

for the temporal cascades heuristic, as it fits the scheduler's paradigm with minimal 

alteration. 

THRUPUT II Model Formulation 

Prior to describing the proposed solution strategy in detail, below is the complete 

formulation of the Air Force mobility model, as given by Morton et al (22): 

Indices 

u       Military units to be moved 

a       Aircraft types 

t, t'    Time periods 



/ 

i 

k 

r 

All airfields (origins, enroutes and destinations) 

Origin airfields 

Destination airfields 

Routes 

Index sets 

F 

ICF 

K CF 

A 

Abulk C A 

■ft-ovr  _ -ri-bulk 

■ft-out   ~= -ft-ovr 

R 

Ra C. R 

Raf Q Ra 

DRi C R 

RRk ^ R 

T 

T     C T -1- uar i= -1- 

Available airfields 

Origin airfields 

Destination airfields 

Aircraft types 

Bulk cargo capable aircraft 

Oversize cargo capable aircraft 

Outsize cargo capable aircraft 

Available routes 

Available routes for aircraft a 

Available routes for a that use airfield / 

Available routes for a with origin i and destination k 

Delivery routes from origin i 

Recovery routes from destination k 

Time periods 

Allowable launch times for u, a, r combination 

Data 

movepaxuik 

moveueUik 

prooveru 

prooutu 

Troop movement requirement of u from i to k 

Cargo movement requirement of u from i to k 

Proportion of u's cargo that is oversize 

Proportion of it's cargo that is outsize 



latepenueu 

latepenpaxu 

nogopenueu 

nogopenpaxu 

max late 

dayslateuart 

preservea 

uesqftu 

paxwt 

supplyat 

cumsupat 

maxpaxa 

paxsqftu 

acsqfta 

loadeffa 

uratea 

mogcapft 

mogreqaf 

mogefff 

maxloadar 

gtimeafr 

rctimeafr 

flttimear 

ctimepar 

rctimepar 

mtimeart>t 

maxflt 

Daily lateness penalty per ton of ix's cargo 

Daily lateness penalty per it's pax 

Non-delivery penalty per ton of u's cargo 

Non-delivery penalty per it's pax 

Maximum allowed lateness for any u 

Days late of u if launched on t along r by a 

Nominal cost (penalty) for aircraft usage 

Ft2 per ton of w's cargo 

Passenger weight 

New aircraft supply available at time t 

Cumulative supply of new aircraft by time t 

Passenger capacity of aircraft a 

Ft2 per passenger 

Ft2 available per aircraft a 

Proportion of available aircraft space 

Daily fraction of aircraft availability 

Airfield capacity of narrow body aircraft 

Airfield space used by an aircraft in narrow body units 

Airfield space utilization efficiency 

Max payload of a on route r 

Ground time of a at / flying route r 

Rounded cumulative time to / by a flying on r 

Flight time of a flying on r 

Cumulative time to offload by a flying r 

Rounded cumulative time to offload by a flying r 

Time flown in t of mission launched at t' by a along r 

Maximum mission duration 
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m max fit — 1 

Variables {ALL 

■A-uart 

* art 

ALLOTait 

RELEASEait 

Hait 

HPakt 

NPLANESat 

CONSUMEat 

TONSUEuart 

1 rAJiuart 

UENOGOu 

PAXNOGOu 

VARIABLES ARE NON-NEGATIVE) 

Missions launched at t for u flown by a along r 

Recovery missions launched at t flown by a along r 

New aircraft allotted to airfield i at t 

Surplus aircraft released from airfield i at t 

Aircraft held overnight at airfield i at t 

Aircraft held overnight at airfield k at t 

Aircraft in the airlift system at t 

revised form of N PLAN ES (discussed in text) 

Tons of u moved by a along r at t 

Pax of u moved by a along r at t 

Cargo of u not moved 

Pax of u not moved 

Formulation 

Z = min    2~]   (latepenueu ■ dayslateuart ■ TONSUEuart 

u,a, 
r£R(a), 
tST(uar) 

(1) 

+latepenpaxu ■ dayslateuart ■ TPAXuart) 

+ ~S~^(nogopenueu • UENOGOu + nogopenpaxu ■ PAXNOGOu) 
u 

+ ^2preservea ■ NPLANESat 
a,t 

OBJECTIVE: Minimize the sum of late and undelivered cargo, plus a nominal 

tie breaking penalty for aircraft used. 
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Subject To 

ZacA(buik), TONSUEuart + UENOGOu = moveueuik 

reÄ(atfc), (2) 
t£T(uar) v   ' 

Vu, i,k : moveueuik > 0 

DELIVERY REQUIREMENTS:  The sum of on-time, late, and undelivered 

cargo must equal the delivery requirements for each unit. 

Y,aeA(out), TONSUEuart + UENOGOu > prooutu ■ moveueulk 

r&R{aik), (g\ 
teT(uar) \   ' 

\/u, i, k : moveueUik > 0 

OUTSIZE DELIVERY : At least the required portion of delivered cargo must 

be outsize. 

Y,a&A{ovr), TONSUEuart + UENOGOu > (prooveru + proouQ ■ moveueuik 

r£R(aik), (£\ 
t£T(uar) \   ' 

Vti, i, k : moveueuik > 0 

OVERSIZE DELIVERY : At least the required portion of delivered cargo must 

be oversize. 

Y,     a,     TPAXuart + PAXNOGOu = movepaxuik 
r&R(aik), /r' 
t€T(uar) \°. 

\/u,i, k : movepaxuik > 0 

PAX DELIVERY REQUIREMENTS: The sum of on-time, late, and unde- 

livered pax must equal the delivery requirements for each unit. 

^2u,reDR(i) Xuart + Hait + RELEASEait 

Haitt-i + ALLOTait + £     reR(aik),     Yart>        \fa,i,t 
t'+rctimep{ar)=t 
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ORIGIN FLOW BALANCE : The sum of departing plus layover aircraft must 

equal returning and newly available aircraft, plus layover aircraft from the previous 

period. 

Y,   Yart + HPakt = HPak,t-1+        Y,        Xuart'    Va>fc>* (7) 
r£RR(k) u,reR(aik), 

t'£T(uar), 
t'+rctimep(ar)=t 

DESTINATION FLOW BALANCE : Same as above without allotments and 

releases 

Y^LLOTait< supplyat   Va,t (8) 
i 

AIRCRAFT ALLOTMENT : Only supplied aircraft can be allotted.. 

NPLANESat = Y ALLOTait> - ^ RELEASE*«    Va,i (9) 
i,t'<t i,t'<t 

AIRCRAFT COUNT : Planes in the system equal allotments minus releases. 

J2r€R(a), Tartt'  Xuart> + ^r£Ä(a), Tartt1  Yart' + z2i,t'<t ^ait' + 2_^k,t'<t HPakt' 
t'<t,u t'<t (10) 

<Y,t><tNPLANES«t'    Va,i 

where 
(t - t' + 1        if i! <t <t' + ctimepar - 1 

ctimepar        if t > t' + ctimepar — 1 

AIRCRAFT CONSUMPTION : Reduce discretization effects in aircraft usage. 

TONSUEuart + paxwt ■ TPAXuart < maxloadar ■ Xuart    V«,a,r,t :t £ Tuar    (11) 

AIRCRAFT WEIGHT : Do not overload aircraft. 
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paxsqftu ■ TPAXuart + uesqftu ■ TONSUEuart < acsqfta ■ loadeffa ■ Xuart 

Vii,a,r,t :t £ Tuar 

AIRCRAFT SPACE : Do not "overbulk" aircraft. 

TPAXuaH < maxpaxa ■ Xuart    Vu, o,r,f:te Tuar (13) 

AIRCRAFT SEATS: Do not overfill aircraft with passengers 

V^ mogreqaf ■ gtimeafr ■ Xuart> (14) 
u,a,r£R(a), 
t'ST(uar), 

t'+rctime(afr)=t 

+ y^ mogreqaf ■ gtimeafr ■ Yart> 
a,r€R(a), 

t'+rctime(afr)=t 

< mogefff ■ mogcapß       V/, t 

AIRFIELD CAPACITY LIMITIATIONS: The number of aircraft using an 

airfield must be less than an airfield's capacity.  It is enforced each period for each 

airfield. 

E«,refi(a), flttimear ■ Xuart + Er£Ä(a),t ßttimear ■ Yart 
t€T(uar) (15) 

< Y,t 
urate» ■ NPLANESat   Va 

AIRCRAFT UTILIZATION RATE: Over the course of the entire run. aircraft 

cannot be flown more than is historically reasonable from a maintenance standpoint. 

Enforced for each aircraft type. 

In order to make the model more tractable and conducive to the temporal cas- 

cades heuristic, several enhancements are appropriate. Although not the focus of this 

research, the next section describes the modifications which facilitate the heuristic. 
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Model Enhancements and Modifications 

In the midst of the AFSAA study, we decided to force aircraft allocations only on 

days where new supply became available. That allowed us to eliminate the relatively 

dense lower triangular structure of the constraint, and replace it with (8) above. We 

pay a minor objective function price for this; aircraft can no longer be allocated "just- 

in-time" for a peak movement requirement. This is a trivial concern given the nominal 

penalty on NPLANES. Furthermore, the change offers more than just reduction of 

(8)'s density; we can now eliminate the lower triangular structure of constraints (9) 

and (10). (9) now becomes a simple balance of flow constraint: 

NPLANESa,t-i + J2 ALL0Tait ~ Yl RELEASEait = NPLANESa,t       Va, t 
i i 

(16) 

However, the alteration described below removes this constraint altogether. 

As stated, (10) and (16) compute NPLANES, the number of aircraft in the sys- 

tem. The objective function assesses a nominal penalty against NPLANES, in order 

to favor a smaller fleet in case of tie. This is a sensible approach for civilian aircraft, 

whose release is a relatively permanent decision. However, it is not the most logi- 

cal approach for military aircraft, which may provide discontinuous support for the 

deployment under study. Moreover, even a few days "rest" at home station allows 

for periodic maintenance completion, and should therefore not be counted against 

NPLANES "in the system." In order to address this concern, define the variable 

CONSUMEat to be the sum of enroute aircraft plus the sum of those incurring 

an in-theater holdover (HP). Embarkation holdovers (H) can be loosely defined as 

in the continental United States, and therefore home-station holdovers. Thus, H 

should not be included in CONSUME (ideally, single period holdovers are proba- 

bly not productive from a maintenance standpoint, but the oversight is small). This 

modification is made to (10), discussed shortly.   Constraint (9) is replaced with a 
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new constraint which enforces the limit on total available aircraft, and consequently 

includes CONUS holdovers H : 

CONSUMEat + J2 Hat < cumsupat       Va, t (17) 
i 

So (10) now computes the number of aircraft supporting the scenario, and (17) will 

bound that number by the aircraft available. The NPLANES variable is eliminated, 

and the objective function substitutes CONSUME for it. Additionally, the allotment 

constraint (8) becomes an equality constraint, since all aircraft can be "inventoried" 

at a home station without a consumption penalty. 

Originally, (10) was designed to reduce discretization effects resulting from the fact 

that travel times are usually are not integer. However, these effects only concern 

missions currently being flown, and need not be enforced from the first time period. 

Given m =maxflt - 1, note that missions launched as long ago as t - m could be 

utilizing aircraft-days in time t. Summing all missions from t - m to t includes all 

such missions. The number of aircraft days used by Xuart> in time t is: 

0 if (£' + ctimep) < t 

1 if (t' + ctimep) > (t + 1) 

ctimep - (t - t'), if t < (f + ctimep) < (t + 1) 

This number is parameterized as mtimea^t>,t , the time incurred in period "t" by 

aircraft "a" launched along route "r" at time "t' ". Note that no rounding occurs, 

so discretization effects are removed, just as they were in the previous formulation of 

(10). The revised constraint is: 

^     mtimeart>t ■ Xuart'+ (18) 
u,r, 

(t-m)<t'<t 

15 



J2     rntimeart,t ■ Yart, + £ HPakt < CONSUMEat       Va, t 
r, k 

{t-m)<t'<t 

Since summing mtime over all time periods is equivalent to r in equation (10), the 

new formulation is at least as strong. Moreover, the revision precludes "borrowing" 

of consumption from previous time periods- a problem encountered with the original 

formulation. 

The motive for adjusting the aircraft consumption penalty is straightforward: the 

decision to release an aircraft is final, and therefore not conducive to a temporal 

cascades framework where the future is not known in all but the final cascade. The 

change is no more complex than the current formulation, and offers equal or greater 

realism. 

Finally, the model should enforce aircraft utilization rate (UTE) more frequently. 

The entire scenario length is far too long to allow aircraft to operate continuously. A 

more practical limit is between two and three weeks. Again there is an ulterior motive 

for this, since the temporal cascades approach lends itself to breaks of approximately 

this length. As such, the revised model enforces UTE rate at the end of each cascade, 

described in greater detail later. 

There is one additional major modification of the model undertaken prior to, but 

not in direct support of, the cascading methodology. To increase tractability, intra- 

theater airfields are frequently aggregated in order to reduce the number of routes 

generated. Unfortunately, this aggregation sharply reduces the fidelity of the model 

due to large disparities in the airfield capacities (known as Maximum on Ground, or 

MOG). This effect can be minimized by careful aggregation and set creation. In this 

scheme, first create subsets that contain units debarking at each theater airfield, say 

ku. Define MOG constraints as usual for each theater airfield k, but define routes 

and the destination balance of flow constraint for only one of the airfields (preferably 

16 



one that is geographically near the middle). Next, sum the MOG constraints only 

over those Xuart variables that move units into airfield k, not all the routes associated 

with the "centroid" airfield. Finally, include all Xuart variables (associated with the 

theater) in the single flow balance constraint. Using this approach, balance of flow 

is aggregated but MOG is not, so fidelity is retained without the explosion of route 

cardinality associated with multiple destinations. Of course, the technique sacrifices 

a minor amount of geographical fidelity, since route times to a centroid will vary 

slightly from the true time to destination. Additionally, the inclusion of Yart variables 

in MOG constraints is lost, since those variables are not tied to a unit. Fortunately, 

most situations do not require return routing through other destinations, so the loss of 

accuracy in assigning "Y" MOG is minimal. Implementation of the centroid scheme 

verified this; solution time was reduced and fidelity of intra-theater airfield capacity 

increased markedly. 

In summary, the model now consists of the objective and constraints (2-8), (11-15), 

(17), and (18). Additionally, (8) becomes an equality constraint, constraint (6) no 

longer includes the "RELEASE" term, and (1) and (15) substitute "CONSUME" 

for "NPLANES. " The above changes increase model tractability, and allow for a 

smooth transition to temporal cascades. They are used throughout the remainder of 

the paper. 

GENERIC CASCADES MODEL FORMULATION 

As seen above, the full structure of THRUPUTII is complex. However, for the pur- 

pose of describing the solution methodology, it can be simplified into a very few types 

of structural constraints. The demand satisfaction constraints (2, 3, 4, 5) typically 

span between 10 and 30 days. They are labeled "extended staircase" constraints, 

because when viewed in tableau form, they form a thick staircase band along the 

main diagonal. Additionally, the extended staircase constraints are characterized by 
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their elastic penalties. Many of the other constraints have a staircase structure, but 

only span 2 or 3 periods; hence they are called staircase constraints (6, 7, 14, 18). 

Still other constraints span only a single time period, and are the easiest to deal with 

in a temporal setting (8, 11, 12, 13, 17). Finally, there are "block" constraints, which 

span every time period of a three week interval, but do not overlap (15). 

In order to streamline the explanation of the temporal solution schemes, below is a 

greatly simplified version of the model. Gone are multiple aircraft types and routes, 

and infrastructure resource constraints (aircraft usage and MOG) are generic. 

Indices 

u € U       Units 

t £ T Time 

UTU C T Allowable movement times for u 

B C T        Blocks of time (utilization rate enforcement) 

Data 

du Demand for unit u 

st Resource supply (e.g. planes, MOG) 

fu,au Utilization factors (e.g. mission time) 

g(st),h(52st)     Functions of st (e.g. space available) 

maxflt Mission duration (defined as a constant generically) 

m maxflt—1 

Variables 

Xu>t Missions of unit u flown at time t. XUit is only defined for t G UTU 

Pu Nondelivered units of u 

Formulation 

Z — min y^ Pu 
u 

ST        y~] Xut + Pu> du       Vu Extended Staircase 
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/ J fu ■ Xuj-m + 2_^ fu ' Xut < st Vi Staircase 

^au-Xut <g(st)       Vt Sing: le Period 

J2X*^h(52St)      yB      Block 

The above formulation has a structure which can be exploited using the strategies 

described in the remainder of this paper. That structure is best illustrated by the 

following tableau with m = 1, | U |= 4, | T |= 5 : 

X11 X21 X12  X22  X32 X13  X23 X33 X43 X24  X34  X44 X25 X45 P1   P2 P3  P4       RHS 

Obj ' X         X X      X 

u1 X X X X > d1 

u2 X X X X X X >d2 

u3 X X X x        > d3 

u4 X                                    X X x    > d4 

t1 X X <s1 
t2 X X X           X           X < s2 

t3 X           X           X          X         X X X    ; < s3 
t4 X         X X x   !   x       x       x < s4 

t5 i    X           X           X X           X < s5 

t1 
t2 
t3 
t4 

X X 

XXX 

X          X X X 
XXX 

<9(s1) 
< g(s2) 

< g(s3) 
< g(s4) 

t5 x        x; < g(s5) 

b1 X X XXX < h(s1)i 

b2 X           X X X XXX X              X <h(s2)J 

Extended 
Staircase 

Staircase 

Single 
Period 
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TEMPORAL CASCADES UPPER BOUND 

The combination of constraint elasticity and staircase structure allow a feasible 

solution of THRUPUT II by temporal cascades yielding an upper bound. This sec- 

tion outlines this decomposition, first by describing the heuristic generically, then by 

giving the specific implementation for the Air Force model. The section ends with a 

discussion and verification of solution feasibility. 

As stated above, the characteristics of this model make it very conducive to tempo- 

ral cascades. The "staircase" constraints contain variables which span a maximum of 

maxflt periods, (usually about 3 days in THRUPUT II, but shown as 2 in the tableau 

above). This limited constraint span with respect to time is key to the facilitation 

of feasibility in a suitably implemented temporal cascading scheme. The "extended 

staircase" constraints span many more periods, but will not violate feasibility because 

they are elastic. The single period constraints pose no difficulty, as they are com- 

pletely separable. The "block" constraint is patterned after THRUPUT IPs aircraft 

utilization constraint, which originally spanned the entire scenario length, but (as 

previously discussed) is only enforced with modeler discretion at regular intervals. 

Were it not for flexibility of this constraint, the proposed method would not work, so 

a partitioning of any constraint which spans the entire scenario is critical. 

Below is the revised formulation which implements the temporal cascades upper 

bound: 

20 



TCAS(L) 

AGG(L) 
TNAG(L) 

Aggregate    Fixed 

4- 
Re- 
Optimize Optimize 

Ignore 

it 

TOAGG(L) 
TOFIX(L) 

Temporal Cascades Notation.— 

L     Cascade Index 

firstperL    First period in cascade L 

lastperL    Last period in cascade L 

TCASL = {t : firstperL <t< lastperL} Time periods in the current cascade 

TNAGL = {t : firstperL -m<t< lastperL} The current unaggregated periods 

TOAGGL = {t : firstperL - m < t < firstperL - 2m} The periods to be aggre- 

gated at the end of the current cascade. 

TOFIXL = {t :e TNAGL,t <£ TCASL} The periods to be fixed at the end of the 

current cascade 

AGGL = {t :t < firstperL_i - m} The periods previously aggregated 

requagu<L : Aggregated amount of unit u moved from tG AGG 

Summary of the Temporal Cascades Heuristic.— 

0) Set L=l, establish the size of each cascade | TCAS |. Also set firstperi — 1, 
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lastperi = \ TCAS |. Establish other sets as described above. 

1) Solve for variables and constraints in the current cascade window (TCAS). 

2) Set requagUtL =T,tcTOAGG(L) Xu,t + requagL^ for all units. TOAGGL includes 

all time periods not previously aggregated, but prior to t £ TOFIXL 

3) Fix variable levels for all t £ TOFIXL. This ensures that staircase constraints 

associated with the early periods of the next cascade accurately reflect previously 

committed resources. 

4) If lastperL >\ T \, terminate and report current solution. Otherwise, set 

firstperL+1 =firstperL+ | TCAS | -m, and lastperL+1 = lastperL+ | TCAS | -m. 

5) Set L = L + 1. Update sets TCAS,TNAG,TOAGG,TOFIX,AGG as de- 

scribed. 

6) Return to 1). 

Temporal Cascades Formulation.— 

ZL = min J^ Pu 
u 

OBJECTIVE: Minimize the sum of nondelivery penalties. The overall solution is 

given by Z = Zmax(L), which is the objective function value of the final cascade in 

the iteration. 

ST 22     xut + Pu>du- requag^L-!        \/u    (au) 
t<=TNAG(L) 

EXTENDED STAIRCASE: Include only columns of TNAGL, and reduce the RHS 

requirement by deliveries aggregated from the previous cascades. au represents the 

dual variable associated with this constraint. 

Y^ /« ■ X^~m + /2fu-Xut< st       Vt £ TCASL    (ßt) 
U u 

STAIRCASE: Enforce for t £ TCASL, thus a minimum of m periods prior to 
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firstperL must remain unaggregated for this cascade (although they will be fixed). 

ßt represents the dual variable associated with this constraint 

u 

SINGLE PERIOD: Same as basic formulation, but define only for t G TCASL. 

£ Xut < M£>)     VBCTCASL 
u,t€B 

BLOCK: Enforce only the block constraints whose columns are subsets of TCAS. 

This assumes the block constraints can be partitioned in this manner. 

Note that the staircase constraint specifies the minimum number of overlap periods 

as m. The overlap should rarely be set at this minimum, since solution quality will 

suffer considerably at the minimum value. However, the minimum value ensures that 

model variables will only be fixed when all constraints that they appear in have been 

feasibly generated once. Given a sufficiently small feasible region, this might not 

be enough to ensure feasibility of subsequent constraints (pathologically, the feasible 

region could consist of only 1 point, which might not be found without solving the 

monolith). Fortunately, the structure of THRUPUTII precludes this, and is discussed 

later. However, it appears that defining an overlap to ensure feasibility is rather model 

specific, and cannot be stated generally. 

Aside from the issue of feasibility, overlap size plays a role in the heuristic's solution 

quality. Large overlaps provide a smoother transition between cascades, and result in 

a closer approximation of the optimal solution. Intuitively this is clear; a scheduler 

can do better if presented with updated requirements at more frequent intervals. 

Thus the overlap m should be established as a compromise between solution time 

and solution quality. 

A cascade consists of running the model for only a subset of the scenario's time 

periods.  An iteration is complete when all time periods have been addressed by a 
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cascade. A unit's delivery requirement (extended staircase constraint) is not included 

in the iteration until its delivery window overlaps a time period of a cascade. Still, 

early cascades are likely to incur large penalty costs, since units may have only a few 

delivery periods available prior to the end of the cascade. Preliminary experiments 

reduced the nondelivery penalty for these Units (by an amount proportional to the 

reduction of the units' delivery window), although further research will determine the 

efficacy of this technique. To date, the temporal cascades method works well when 

applied to the THRUPUTII model, producing feasible solutions with objective values 

only a few percent over the known optimal when the overlap (m) is large. Below is 

an in depth description of the THRUPUT II implementation. 

THRUPUT II Specific Upper bound 

Temporal Cascades Formulation.— 

Below is the THRUPUT II formulation altered to implement the temporal cascades 

heuristic. The index sets are omitted for brevity except as they apply to the cascades. 

ZL = min      y^     (latepenueu ■ dayslateuart ■ TONSUEuart (19) 

t£TNAG(L) 

+latepenpaxu • dayslateuart ■ TPAXuart) 

+ 22(nogopenueu • UENOGOu + nogopenpaxu ■ PAXNOGOu) 
u 

+       2_j      preservea • CONSUMEat + agglate + aggcon 
a,t£TNAG(L) 

where     agglate = J^   u>a>r>    (latepenueu ■ dayslateuart ■ TONSUEuart 
t£AGG(L) 

+latepenpaxu ■ dayslateuart ■ TPAXuart) 

and     aggcon =      ^     preservea ■ CONSUMEat 

a,t£AGG{L) 
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OBJECTIVE: Similar to (1), but terms ate delineated between aggregated and 

unaggregated time periods. A99late and «con ate the aggregated .ate and con- 

sumption penalties from earlier cascades. As before, the overall solntion is given by 

-Z = W„ which is the objective function value of the final cascade in the iterarion. 

Subject To (for each cascade L) 

£ ^<«>.  TONSUEmrt + UENOGO« = rnoveve^ - «,«*,„,-, ^ 
r,t&TNAG(L) 

Mu,i,k : moveueuik > U 

where   re„„,w=     £     TONSUEuart 
aeA(bulk), 

r,t£AGG(L) 

DELIVERY REQUIREMENTS: Original formulation of (2), but altered for 

equipment delivered in previous cascades. 

E  rfEAtout),   TONSUEuart + UENOGOu > prooutu ■ moveueuik - oureqagu^ 

(21) 

r,t£TNAG(L) „ 
Vu, i, k : moveueuik > U 

where    oureqag^ =      £     TONSUE^ 
aeA(out), 

r.teAGG(L) 

OtfTSIZE DBLIVEBY : Original formulation of (3), but altered for previous 

cascades' outsize delivery. 

E  aeAiovr),   TONSUEuart + UENOGOu > 
r,t£TNAG{L) 

{prooveru + prooutu) ■ moveuemk - ovreqagu,L^       V., i, fc : m^eue«,, > 0 
(22) 
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where    ovreqagu>L-i =      2_j     TONSUEuart 

a&A{ovr), 
r,t€AGG(L) 

OVERSIZE DELIVERY : Original formulation of (4), but altered for previous 

cascades' oversize delivery. 

y      a,r,      TPAXuart + PAXNOGOu = movepaxuik - preqagUtL_i 
^teTNAG(L) (23) 

Vu,i,k : movepaxuik > 0 

where   preqagUtL-\ =       2_^      TPAXuart 

q.,r,teAGG(L) 

PAX DELIVERY REQUIREMENTS: Original formulation of (5), but altered 

for previous cascades' pax delivery. 

Y,Xuart+Hait = Haht.1+ALLOTait+       £        Yart>       Va,i, t e TCASL (24) 
u,r ' > 

t +rctimep(ar)=t 

ORIGIN FLOW BALANCE : Original formulation of (6), but defined only for 

current cascade. 

Y,Yart + HPakt = HPak^1+        J2        X™rf    Vö> fc>* e TCASL (25) 

t'+rctimep(ar)=t 

DESTINATION FLOW BALANCE : Original formulation of (7), but defined 

only for current cascade. 

J2ALLOTait = supply at   Va,teTCASL (26) 
i 

AIRCRAFT ALLOTMENT : Original formulation of (8), but defined only for 

current cascade, and set to equality (as previously addressed). 
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CONSUMEat + ]T Hait < cumsupat       Vo, t E TCASL (27) 
i 

MAXIMUM PLANES : Equation (17), defined only for current cascade. 

^     mtimeart>t ■ Xuart>+ (28) 
u,r, 

(t-m)<t'<t 

Y,     rntimeart,t ■ Yart, + ^ HPau < CONSUMEat       Va, t G TCASL 
r, fc 

(t-m)<t'<t 

PLANES CONSUMED : Equation (18), defined only for current cascade. 

TONSUEuart + paxwt ■ TPAXuart < maxloadar ■ Xuart   Vu,a,r,te TCASL   (29) 

AIRCRAFT WEIGHT : Original formulation of (11), but defined only for current 

cascade. 

paxsqftu ■ TPAXuarf +uesqftu ■ TONSUEuart < acsqfta ■ loadeffa ■ Xuart 

Vu,a,r,teTCASL 

AIRCRAFT SPACE : Original formulation of (12), but defined only for current 

cascade. 

TPAXuart < maxpaxa ■ Xuart   Vu, a,r,t <E TCASL (31) 

AIRCRAFT SEATS: Original formulation of (13), but defined only for current 

cascade. 

y^ mogreqaf • gtimeafr ■ Xuart> (32) 
u,a,r, 

t'+rctime(afr)—t 
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+ ^ mogreqaf ■ gtimeafr ■ Yart> 
a,r, 

t'+rctime(afr)=t 

< mogefff ■ mogcapß       V/, t € TCASL 

AIRFIELD CAPACITY LIMITIATIONS: Original formulation of (14), but 

defined only for current cascade. 

/^ flttimart't ■ Xuart> + 2_^ flttimart't • Yart< 
u.r, 

{t-m)<t'<t, (t-m)<t'<t, 
firstper(L)<t<firstper(L+l) firstper(L)<t<firstper(L+l) 

(33) 

< J2 uratea-CONSUMEat       Va 
firstper(L)<t<firstper(L+l) 

where flttimart't is defined as mtimeart>t, minus any ground time spent during t' 

minus any ground time spent during {£', t}. This is a slightly more complex definition 

than flttimear, to account for block overlap. 

AIRCRAFT UTILIZATION RATE: Enforce once per cascade, and include all 

flight time of the cascade, minus any overlap with the succeeding cascade. 

Discussion.— 

Consider a 90 period temporal cascades model with 25 periods in each cascade, and 

single day time steps. Given maxflt = 3, the minimum overlap (m) is 2. However, 

for greater solution quality, choose an overlap of 3. After optimal completion of the 

first cascade, the end effects must be considered. Conceivably, resources for the time 

periods just beyond the current cascade (26, 27 in this example, where lastper = 25) 

could have been committed in excess of their availability. MOG, for example, is 

committed up to 2 days in advance, since the longest mission time of this scenario 

is 3. However, MOG is constrained in the period in which it is consumed, not the 
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period in which it is commuted. Since we have chosen to extend the overlap, the 

second cascade starts with firstper = 23. This permits reconsideration of period 

23-25 decisions (permitting redress of MOG violations in periods 26,27), as well as a 

first look at MOG constraints in subsequent periods. 

With a smooth transition between cascades ensured by overlapping the last three 

periods (23-25), decisions of periods 1-22 can be fixed. Variable levels in the first 

19 of these periods are written to disk to conserve memory. Note that the resources 

consumed by period 1-19 decisions do not directly effect future cascade decisions, 

since resource commitments in these periods cannot reach period 23. However, unit 

cargo and pax delivered during the first 19 periods must be aggregated and subtracted 

from the requirements for those units (done in constraints (20) - (23)). Additionally, 

the penalties accrued for aircraft consumption and late cargo must be summed and 

appended to the next cascade's objective function. Nondelivery on the other hand, 

is not explicitly carried over, since all delivery constraints defined in the first cascade 

will be defined in subsequent cascades. Only the right hand sides of these constraints 

change to account for cargo delivered in the aggregated periods. 

Finally, there are the periods just prior to firstper of the next run (periods 20-22). 

These periods cannot yet be aggregated, since doing so would erase the fidelity of the 

resources committed in those periods. For example, a mission launched on period 22 

will commit MOG in different periods than the same mission launched on period 21. 

Thus, the two must remain distinct. Aggregation of these periods will not come until 

after completion of the second cascade, since they do not have a direct impact on the 

third cascade. 

An iteration terminates once all time periods have been addressed. The final ob- 

jective function value is the upper bound for the entire problem. The solution is 

recorded piecemeal by saving the variable values of each run prior to aggregation. 

29 



"Null" Soiution Feasibility   The nature of the airlift problem enures feasibility 

of the heuristic if m > ™*-l. To illustrate, suppose the heuristic has just solved 

for the periods of cascade I. Consider a nnU, or »state department» solution for cas- 

cade L + 1   iec launch no more missions, and move no more cargo (X„t, T.rt, 

TONSUEmr„ TPAXmrt = 0 for t > firstPerL+1). Constraints (20-23) are elastic, 

and cannot be violated.  Constraint (26) can force allocations arbitrarily, smce the 

aircraft will be put in inventory at home station and consume no resources.  Con- 

straints (29-31) are of the form »<», have 0 on the left hand side using the null 

solution, and have a nonnegative right hand side . Thus they are not violated. Usmg 

the null solution, constraints (32) and (33) have temporally nonincreasing left hand 

sides since returning missions cease to use MOG and flying hours. Therefore they 

remain feasible. Feasibility of (24), (25) is retained by holding as inventory (mcreas- 

ing variables H and HP) all aircraft as they complete their missions.   (28) defines 

CONSUME, which is only used in the objective and in (27), and so cannot be m- 

feasible by itself. The maximum planes constraint, (27) ensures the total aircraft on 

the ground plus those in the air do not exceed the supply.  Since holding returnmg 

aircraft in inventory is a valid »use » an infeasibility here would portend a flaw m the 

basic (but not temporal cascades) formulation. Unfortunately, this is the ease wath 

the time discretization of THRUPUT II. 

Time Discretized Feasible Solution In addition to other difficulties, time dis- 

cretion effects can manifest themselves as "feasibility spoilers" in a temporal cas- 

cades formulation of THRUPUT II (specifically equation (27)). Under the "state 

department", or null solution, consider a mission fixed in cascade L - 1 that lands in 

cascade L. Further, suppose (27) is bmding. The solver may be forced to immediately 

"launch" another mission of short duration; one that takes just less than 1 penod. 

Otherwise, the aircraft is either held in inventory or flown on a longer mission, each 
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at a cost of 1 to the left hand side of (27). Thus a "fly" decision is feasible while 

a "wait" decision is not. Note this is a problem only when the mission duration is 

between half a time period and a full period. Interestingly, very short missions (less 

than 1/2 period) do not contribute to discretization infeasibility. These missions are 

rounded to zero, and will be forced by the balance of flow constraints to either be 

held in inventory or flown again. Each of these raises the LHS of (27), and would not 

occur in a fixed solution, where (27) is binding. 

Showing feasibility of THRUPUT II under the temporal cascades scheme requires 

modification of the "null" solution. Infeasibility due to time discretization occurs 

when aircraft "savings" can be feigned by generating short duration "X" and nYn 

missions, instead of full period "tf" and »HP» holdovers. In the modified null solu- 

tion, missions are flown (without cargo for simplicity) in cascade L if and only if: 1) 

they are in the (unfixed) overlap between L - 1 and L; and 2) the mission duration 

ctimep is less than a time period. Otherwise, the mission is cancelled and the aircraft 

held over. That way, the savings reaped by not flying aircraft meets or exceeds that 

incurred by increasing holdovers. Algebraically, we must demonstrate that the levels 

of H and HP forced in (24) and (25) do not contribute to an increase in the level of 

(27). First, define C as the set of cancelled missions: 

C = {XuarU Yart : t E {TCASL-i n TCASL}, ctimePar > 1} 

U {Xuart, Van : t e TCASL)t > lastper^} 

Plainly stated: cancel all but short missions during the overlap, and schedule no 

more thereafter. Assuming there are no additional allotments (which complicate the 

notation but do not alter the result), equation (24) becomes: 

Haü = H^ - £ Xuart + £        Yart,    Va, i, t e {TCASL-I n TCASL} 
•f 

t'-\-rctimep(ar)=t 
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Which can be separated by the cancellation criterion: 

= Haitt-l —        2_^/       Xuart —       2-^1       Xuart + 

X(uari)£C X(uari)£C 

Y    y-*,+    !C    Yart' 
t' +rctimep(ar)=t 

Y(art)<£C 
t' +rctimep(ar)=t 

Y(art)<=C 

Similarly, equation (25) becomes: 

HPakt = HPak,t-i-    Yl    Yart~    Yl    Yart+ 

Y(art)<£C 
r, 

Y(art)eC 

/  j XUart' + 2^ ^ uart' 
u,r, 

t'+rctimep(ar)=t 
X{uart)$C 

t'+rctimep(ar)=t 
X{uart)&C 

(34) 

(35) 

Since cascade L-l produces a feasible solution (say X, Y, H, HP) for T G {TCASL^ n TCASL}, 

we can combine (34), (35), and (28) into (27), separating elements of C: 

cumsupat > 

\ 

S~]     mtimeart't ■ Xuart> +     ^     mtimeart>t ■ Xuart> 
u,r, 

(t-m)<t'<t 
\x{uart')$C 

( 

(t-m)<t'<t 
X{uart')£C 

\ 

y^     mtimeart>t ■ Yart> +     ^     mtimeart>t ■ Yart> 

{t-m)<t'<t 
\ Y{art')£C 

+ 

(36) 

E^.t-i-  E x 

\ 

uart 
u,r, u,r, 

X{uart)<£C 

(t-m)<t'<t 
Y(art')eC 

Y   xuart+     Y,     Yart'+     S     Y 
r, r, 

X(uart)&C t'+rctimep(ar)=t t'+rctimep(ar)=t 
Y(art)(£C Y(art)£C 

\ 

art' 
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\ 

THP^U-I- E y«*- E y-t+    E    x-t,+    E    X-*' 
■        "™ „ 7/7* U,/1, 

Y(art)gC y(ort)eC t'+rctimep(ar)=t 
X(uart)iC 

u,r, 
t' +rctimep(ar)=t 

~X(uart)£C 
\ 

Since cancelled missions use the full period t,     mtimeart<t = 1 for Xuart,Yart e C. 

Thus, (36) can be simplified by cancellation: 

^2     rntimeart't • Xuart> +     J^     mtimeart/t ■ Yart<+ 
u,r, 

(t-m)<t'<t 
X(uart')<£.C 

r, 
(t-m)<t'<t 
Y(art')fC 

I \ 

E#«.t-i-  E *-* +    E    y-*'+    E    Y 

i u'r> 
X{uart)$C 

art1 

u,r, r, ri 
t'+rctimep(ar)=t t'+rctimep{ar)=t 

Y{art)iC Y(art)eC 

+ 

\ 

J^HPakt-l-       E      Yart+ E X™rt' + 'E XvarV 

V 
r, «,?*, 

Y{art)£C t1+rctimep{ar)=t 
X{uari)$C 

t'+rctimep(ar)—t 
~X{uart)£C 

which is greater than or equal to: 

> ^2        mtimeart>t • ^uart' +        E        mtimeart't ■ ^art' + 

(t-m)<t'<t 
X(uart')<£C 

r, 
(t-m)<t'<t 
Y(art')$C 

\ 

}j Haitt-\ -        2_^,       Xuart + 2_^ Yart' 

\ 

I 

u,r, 
X(uart)(£C t' +rctimep{ar)=t 

Y{art)iC 

+ 

\ 

^HPak.t-1-      E      Y*«+ E X uart' 

u,r, 
Y(art)<£C t'+rctimep(ar)=t 

X(uart)(£C 
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By (24) and (25), the parenthetical terms above equal the period t inventory under the 

modified null solution, say H, HP. Along with the modified null's mission variables, 

X, Y , the above equals: 

=      ^2     rntimeartH • XuaH> +      JZ     ™timeart't ■ Yart> + 22 HO,ü + 2_^ HPakt 

u,r, ri i k 
{t-m)<t'<t (t-m)<t'<t 

which is less than or equal to cumsupat, demonstrating feasibility of (27) using the 

modified null solution. 

While THRUPUT II always has a feasible solution using the temporal cascades 

heuristic, this does not generalize well, and must be considered for every model where 

the temporal cascades heuristic is employed. 

When the temporal cascades heuristic was implemented in GAMS on a large 

THRUPUT II data set (dual major regional contingency), an IBM RS6000 allowed 

about 25 periods per cascade without core dumping. However, that was without 

incorporating any of the streamlining changes suggested above. Those changes will 

allow considerable lengthening of each cascade, or permit an increase in model fidelity 

through less aggressive unit and airfield aggregation. 

GAMS implementation of this technique to date was somewhat cumbersome. The 

current cascade's results were written to a file, which was then read by the next 

cascade. The cascade loop was conducted by a script file executed by the operating 

system. This technique ensured GAMS freed the memory of variables once they 

had been aggregated- a difficulty encountered when running a large data set. The 

method proposed by GAMS Development Corporation is to write the variable levels 

not needed in subsequent cascades to a file, then release those variables' memory for 

the next cascade. This sparsely documented feature allows the cascades to be run 

within a GAMS loop statement, which is faster and more reliable. Another potential 

advantage of this method lies in the computational savings derived from both upper 

and lower bound problems using similar bases.   If these improvements still prove 
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unwieldy, the method could be implemented without GAMS, which will speed the 

solution, but reduce its attractiveness to AFSAA. 

CASCADING LOWER BOUND 

This section considers four principle strategies for computing the lower bound of 

a model with the structure described: 1) decomposition; 2) demand relaxation; 3) 

temporal relaxation; and 4) aggregation. Below is an outline of these ideas. 

Decomposition 

At first, the notion of decomposition is appealing because of structural charac- 

teristics of the model. Benders' decomposition could be performed using fleets of 

aircraft as subproblems, with delivery requirements and MOG constraints providing 

the cuts. Although aircraft fleets provide good subproblems from the standpoint of 

model structure, they unfortunately still require LP, rather than network solution 

algorithms. Because of the large number of side constraints, it appears unlikely that 

network algorithms can be exploited in the Air Force problem. Also, this approach 

forsakes any computations made by the temporal cascades heuristic. Additionally, 

the amount of memory consumed by the cuts becomes very large, which could lead 

to the core dumping already plaguing the model: Finally, the MOG constraints ap- 

pear to be the most binding for typical instances of the model. Thus, convergence 

could be-very slow, as the hardest decisions are "in the cuts." Consequently, Benders' 

decomposition is probably not the most effective method for this problem.. 

Demand Relaxation 

Since the THRUPUT II objective function consists almost entirely of penalty terms 

from the extended staircase constraints, reducing the number of demand constraints 
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(the number of units requiring movement) is a model relaxation. Solving several such 

problems which together consider all units exactly once is also a relaxation, since 

only a subset of units "compete" for infrastructure resources in each problem. A 

careful partition of units (one that groups units which tend to compete for the same 

infrastructure resources) should result in a fair lower bound, and one that can be 

strengthened by Lagrangian multiplier search. Lagrangian relaxation has a lot of 

merit, since the upper bound method (temporal cascades) provides the required mul- 

tiplier search. For demand relaxation, the relaxed constraints consist of the aircraft 

and (perhaps) the airfield constraints, which are of the staircase and single period 

variety. Unfortunately, there are many aircraft capacity constraints. Additionally, 

the airfield constraints tend to be the most binding. Consequently, a formulation 

which avoids relaxing all of the infrastructure constraints should produce better re- 

sults. The next method pursues such a scheme; it relaxes none of the single period 

constraints and only a subset of the staircase constraints. In return, it relaxes the 

extended staircase constraints, which are left intact in the demand relaxation scheme. 

Time Based, or Lagrangian Cascade 

In order to incorporate the temporal nature of the upper bound heuristic, the 

model's time periods can be partitioned into subproblems. In turn, these subproblems 

can be solved by relaxing constraints that include variables from overlapping time 

periods. The structure of the problem lends some advantage to this technique, since 

most constraints have a minimal overlap. Additionally, the constraints with large 

overlaps (extended staircase) have bounded duals, so the associated penalties in the 

relaxed problem will stay within reasonable limits. Most importantly, however, is the 

availability of excellent dual variables from the associated temporal cascade heuristic. 

These are very compelling reasons to consider this technique. Of course, the duals 

from the temporal cascades are available to both relaxation methods, but the demand 
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method relaxes many more constraints than the time based method. 

Despite the advantages, Lagrangian relaxation across time is not without diffi- 

culty. Foremost is the issue of the "most binding" constraints, which tend to be the 

staircase type in THRUPUT II (specifically the MOG constraints). Hopefully, the 

price accuracy (due to the accuracy of the temporal cascades) and minimal overlap 

will ameliorate this drawback. In contrast, most every extended staircase (demand) 

constraint has to be relaxed, since they frequently "cover" 20 or more time periods. 

Another difficulty lies in the block constraints, which may not be conveniently par- 

titioned into the Lagrangian subproblems. This is a small concern in the Air Force 

problem, since there is no consensus as to how to model aircraft utilization limits. 

Finally, there is not yet a method to feedback information gleaned from the lower 

bound back into the upper bound problem, should the user desire a second iteration 

to tighten the bounds. Fortunately, knowledge of the most "violated" extended stair- 

case constraints may provide an excellent basis to "tune" the penalties in the next 

temporal cascade iteration. There are numerous possibilities. 

Below is a schematic, notation and formulation for the proposed method of La- 

grangian relaxed cascade: 

RCAS(L) 

LCAS{L)      - -  

' _BLCAS(L).             

Iqnore 
Relax & 
Optimiz« ) Optimize Ignore 

3 

Q. 
05 

CD 
Q. 
to 

RRCAS L) RRCAS( L) 
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Lagrangian Cascade Notation.— 

firstperL    First period in cascade L 

lastperL    Last period in cascade L 

RCASL = {t : firstperL < t < {firstperL+ m),L ^ 1} The overlap period at the 

beginning of the current cascade 

LCASL = {t : max{t £ RCASL) < t < lastperL} The non-overlapping period of 

the current cascade 

RLCASL = {RCASL U LCASL} All time periods solved for in the current cascade 

RRCASL = {RCASL U {t : lastperL < t < lastperL + m}} RCAS plus the 

succeeding overlap periods. These are included since Lagrange multipliers from these 

periods will be applied against WAS variables 

ULL = {u : UTU n RLCASL + 0, UTU n RLCASL+I = 0} Partition of U into the 

cascades L. This scheme places u into the last cascade in u's delivery window 

Summary of Lagrangian Cascade Algorithm.— 

0) Set L = 1, | RLCAS \=\ TCAS \ - m (from temporal cascades model). Set 

firstperi = 1, lastpen =| RLCAS \ . Establish other sets as described in notation. 

1) Solve Lagrangian cascade subproblem using the dual variables au, ßt from the 

associated temporal cascades solution. 

2) If lastperL >\ T \ , terminate and report sum of objective values across all 

iterations as the lower bound. Otherwise, set firstperL+1 = firstperL+ | RLCAS |, 

and lastperL+i = lastperL+ \ RLCAS \. 

3) Set L = L + 1, update sets RCASL, LCASL, RLCASL, RRCASL. 

4) Return to 1. 

Lagrangian Cascade Formulation.— 
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Z = min Y^ pu+ 
u 

Y, au(du -Y,Xut~ p^ +    Z)    ßt(st-Y,f«- x^-m ~/Z^-x^ 
u t t£(ULRCAS(L)) u u 

OBJECTIVE: Minimize the sum of nondelivery penalties, plus Lagrangian penal- 

ties. Here au is the extended staircase dual variable associated with the last cascade 

overlapping of «'s delivery window in the temporal cascades' solution. ßt is the stair- 

case dual variable associated with the corresponding time period of the temporal 

cascades' solution. 

ST      X> ' x«-*-m + X>'Xut - *     vteuLLCASL      (A) 
u u 

STAIRCASE: Enforce for the constraints which do not overlap a relaxed window 

(RCAS). 

^2au- Xut<g(st)       Vt 
u 

SINGLE PERIOD: These never overlap. 

u,t£B 

BLOCK: Enforce all block constraints. This assumes the block constraints can be 

partitioned in such a manner. 

This formulation is decomposed into | L | distinct subproblems with Z = EL ^- 

Note au is bounded by the coefficient on Pu (1), thus the Pu term is not favorable, 

and will remain at 0. It is left in the formulation for completeness: 

ZL = min    J^    Pu ■ (1 - au) +    ]P   au ■ du -       ]P      au ■ XUit 

ueUL(L) uGUL(L) t&RLCAS(L) 
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+        ^2        ßf St~ E ßt'fu' Xu,t-m -        22        Pi' In' Xv,t 

teRCAS(L) t£RRCAS(L), t&RCAS{L) 

(t-m)&RLCAS(L) 

ST      X>-xu,(t_m) + ]T/u-xut<Si      VteLCASL      (ßt) 
u u 

Y;au-Xut<g(st)      VteRLCASL 

Y, Xut < h(Y^ st)       Vß C RLCASL 

u,teB 

Lagrangian Cascades Formulation of THRUPUT II.— 

Implementation of THRUPUT II by Lagrangian cascade is straightforward, but 

notationally cumbersome. The only problematic constraint is utilization rate en- 

forcement, which is addressed below. The objective function for the Lagrangian 

formulation is: 

Z = min \] (latepenueu ■ dayslateuart + TONSUEuart (37) 
u,a,r,t 

+latepenpaxu ■ dayslateuart • TPAXuart) 

J2(nogopenue ■ UENOGOu + nogopenpaxu ■ PAXNOGOu) 
u 

+ ^2preservea ■ CONSUMEat 

a,t 

+ J2 awfc,«(E moveue^ - E TONSUEuart - UENOGOu) 
u i,k a,r,t 
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aktj 

r, k 
(t-m)<t'<t 

+ Y ßMOGjt(mo9efffmo9caPft-        Y mogreqaf-gtimeafr-Xuart' 

f,te(ULRCAS(L)) t'+rcUmer(kfr)=t 

—      ■ V^ mogreqaf ■ gtimeafr ■ Yau') 
a,r, 

t'+rctime(afr)=^t 

where abulk,u, aout>u, <w,„ are the dual variables associated with the temporal cas- 

cades solution of the DELIVERY, OUTSIZE DELIVERY, and OVERSIZE 

DELIVERY constraints, respectively. Similarly, ßof>aiti ßdf,akt, ßPc,au PMOGJI 
are 

the dual variables associated with the temporal cascades solution of the ORIGIN 

FLOW, DESTINATION FLOW, PLANES CONSUMED, and AIRFIELD 

CAPACITY constraints, respectively 

This objective can be decomposed and rewritten into \L\ distinct subproblems with 

Z = Y,L ZL. Together with the appropriate constraints, the formulation becomes: 

ZL = min       Y       preservea-CONSUMEat+ (38) 
a,t£RLCAS(L) 
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+ Y aouttU{prooutu ■ Y moveueulk -     Y     TONSUEuart - UENOGOu) 
u i,k r,t,a£A(out) 

I \ 
+ Ya°vr>u    {vrooveru+prooutu)-Y

moveueuik-    Y   TONSUEuart - UENOGOu 

.. i,k r>* , 
•      \ • a&A(ovr) ) 

+ Y <W.«(E ™vepaxuik - Y TPAXuart - PAXNOGOu) 
u i,k art 

+    Y    ßofMH^-i+ALL0T°« +    Y   Y^' - E x™rt -Ha^ 
a,i,te(ULRCAS(L)) t'+rctime(ar)=t 

+ Y ßdfMHP^+ E Xuart,-Y
Yart-HPakt) 

a,k^(ULRCAS(L)) t'+rct^e(ar)=t 

+ Y ßpc,at{C0NSUMEat~ E        mtimeart>t ■ Xuart> 
a,t£(ULRCAS{L)) (t-m)<f<t 

-     V^     mtimeart't ■ Yart' - Y/ ^^' 



Y^   E moveueuik(abulk<u + aout,u ■ prooutu + aovr}U(prooutu + prooveru)) 

ueUL(L)   i,k 

+ S2movepaxuik ■ apax,u + UENOGOu(nogopenueu - abuik)U - a0ut,u - aovr,u) 

i,k 

+PAXNOGOu(nogopenpaxu - apax,u)] + 

V"      TONSUEuart(latepenueu-dayslateuart-abuik:U)-     Y2      TONSUEuart-aouttU 

u,r,a£A(bulk), u,r,a&A(out), 
tGRLCAS(L) teRLCAS(L) 

V      TONSUEuarfaovr,u+     Y2      TPAXuart(latepenpaxu-dayslateuart-apaX:U) 

t&RLCAS(L) t£RLCAb{L) 

+ E ßof,aifHai,t-l+        E        ßof,ait(ALLOTaü~J2Xuart~Hai^ 
a,i,t£RRCAS(L), <M, u<r 

{t-l)€RLCAS(L) t€RCAS(L) 

E ßof,aü-Yart'+ E ß#,akfHPak,t-l-       E        ßdf,akt(J2 ^rt+tf^a**) 
a,i,r a,k, o.,k, r 

t&RRCAS{L), teRRCAS(L), t£RCAS(L) 
t'eRLCAS(L), (t-l)GRLCAS(L) 

t' +rctimep(ar)=t 

+        E        ßwY,X™«+      E      ßpc,at(CONSUMEat-Y,HPaki) 
a,k, u,r a,t&RCAS(L) k 

t£RRCAS(L), 
t'eRLCAS(L), 

t1 +rctimep(ar)=t 

-       YJ       ßvc,at ■ mtimeart't ■ Xuart> -       Y2       @Pc>at ' mtimeart>t ■ yart> 

t£RRCAS(L), t€RRCAS(L), 
t'eRLCAS{L), t'£RLCAS{L), 

(t-m)<t'<t (t-m)<t'<t 

+      E      ßMOGjfmo9efffm°9capft-        E ßMOGjfm°9re(lafgtimeafr-Xuart, 
f,t£RCAS{L) u,a,r,f 

t£RRCAS{L), 
t'GRLCAS(L), 

t''+rctime(afr)=t 

- E ßMOGjt ■ mogreqaf ■ gtimeafr ■ Yart> 

teRRCAS(L), 
t'£RLCAS(L), 

t'+rctime(afr)=t 
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OBJECTIVE : All terms are partitioned into 1 cascade. Again, the unconstrained 

(except non-negativity) penalty terms will not have a favorable coefficient and will 

remain at 0. 

Subject To (for each subproblem L) 

{all delivery constraints are relaxed] 

y£x^rt+Haü = Hai^l+ALLOTait+       ]T        Yart,       Va,i,tcLCASL (39) 
r, 

' t'+rctimep(ar)=t 

ORIGIN FLOW BALANCE : Original formulation of (6), but defined only for 

those constraints of cascade L which are not in the relaxed region, RCASL. 

Y/Yart + HPakt = HPak^1+        £        X^'    ^k,teLCASL (40) 
u,r, 

t'+rctimep(ar)=t 

DESTINATION FLOW BALANCE : Original formulation of (7), but defined 

only for those time periods of cascade L which are not in the relaxed region, RCASL. 

^ALLOTaü = supply at   Va,teRLCASL (41) 
i 

AIRCRAFT ALLOTMENT : Original formulation of (8), defined only for those 

constraints of cascade L (none are relaxed). 

CONSUMEat + Y^ Hait < cumsuPat       Va, t G RLCASL (42) 
i 

MAXIMUM PLANES : Equation (17), defined only for those constraints of 

cascade L (none are relaxed). 
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y^     mtimeart't • Xuart>+ (43) 

(t-m)<t'<t 

Y,     rntimeart,t ■ Yart. + £ # Pafct < CONSUMEat       Va, t £ LCASL 

r, k 
(t-m)<t'<t 

PLANES CONSUMED : Equation (18), but defined only for those time periods 

of cascade L which are not in the relaxed region, RCASL. 

TONSUEuart + paxwt • TPAXuart < maxloadar ■ Xuart    Vu, a,r,t e RLCASL (44) 

AIRCRAFT WEIGHT : Original formulation of (11), defined only for those 

constraints of cascade L (none are relaxed). 

paxsqfU ■ TPAXuart + uesqftu ■ TONSUEuart < acsqfta ■ loadeffa ■ Xuart 

Vu, a,r,te RLCASL 

AIRCRAFT SPACE : Original formulation of (12), defined only for those con- 

straints of cascade L (none are relaxed). 

TPAXuart < maxpaxa ■ Xuart   Vu, a, r, t e RLCASL (46) 

AIRCRAFT SEATS:  Original formulation of (13), defined only for those con- 

straints of cascade L (none are relaxed). 

y^ mogreqaf ■ gtimeafr • Xuart> (47) 
u,a,r, 

t'+rctime(afr)=t 

+ y^ mogreqaf ■ gtimeafr ■ Yart> 
a,r, 

t' +rctime (afr)=t 
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< mogefff ■ mogcapft       V/, t € LCASL 

AIRFIELD CAPACITY LIMITATIONS: Original formulation of (14), but 

denned only for those time periods of cascade L which are not in the relaxed region, 

RCASL. 

Y^        flttimeart,fXuart'+        J2        flttimeart'fYart> (48) 

u.r, r, 
(t-m)<f<t, (t-m)&gl 
teWASCD t€LCAS{L) 

<     Y     uratea-CONSUMEat       Va 
t£LCAS(L) 

AIRCRAFT UTILIZATION RATE: Enforce once per cascade, but do not 

include t <= RCASL, which are the relaxed time periods. This does not produce a tight 

enforcement, since a few periods of the iteration do not have their utilization counted. 

Alternatively, the constraint could be relaxed and given a Lagrangian penalty in the 

objective, but this is probably not warranted in this model, since utilization rate is 

somewhat vague by the nature of the problem. 

Although the Lagrangian cascade method has not yet been implemented into a 

THRUPUT II model instance, it shows the most promise as a lower bounding tech- 

nique. However, for completeness, there is one additional lower bound technique 

whose description follows. 

Aggregation Sandwich 

The difficulties with the two methods described above (as well as others consid- 

ered) motivated the consideration of aggregation as a backup to determine a lower 

bound. Aggregation techniques have different problems, since temporal aggregation 

involves column reduction as well as row reduction, which potentially violates the 
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rules of strict relaxation. In fact, the THRUPUT II modelling team encountered a 

restricted solution when pursuing a two day, versus a one day time step. The restric- 

tion occurred due to rounding of mission times in the flow balance constraints, which • 

precluded vehicles from being relaunched until the period after the previous mission's 

termination. Thus, a two day time step conceivably requires more vehicle idle time, 

which degraded the objective. Other aspects of aggregation relaxed the model, such 

as the widening of unit delivery windows. So a general coarsening of the time step 

did not reliably produce a relaxation or restriction, just a more tractable solution 

with less fidelity! However, when the baseline time step is established (the time step 

with the minimum acceptable fidelity), a carefully constructed "sandwich" approach 

will hopefully produce a reasonable lower bound. 

Consider 20 or so time periods in the middle of the scenario. If we add an aggregated 

period at either end which together incorporate the remaining time periods, we can 

solve, one iteration at a time, for the middle of the "sandwich." Each iteration solves 

for the entire scenario horizon, but only looks closely at a subset of time periods. 

Thus, the lower bound is not computed by summing all objective functions, but by 

summing a portion of each. Every unit is partitioned into a host iteration, which 

provides that unit's penalties for the lower bound. Summing these subsets produces 

a lower bound that includes each unit only once. Similarly, the vehicle consumption 

penalties are derived from summing the consumption over just the unaggregated 

periods of all the iterations. 

For a lower bound, this scheme has not yet addressed the earlier concern of aggre- 

gated columns. Fortunately, some aggregations do not hurt the lower bound. If a 

mission is launched in the successor period of aggregation, it will consume resources 

only in that period, since all remaining periods are aggregated there. However, a 

mission launched in the predecessor period may or may not consume resources in 

the unaggregated period, depending on mission duration and time of launch.   The 

46 



potential exists to either "overcharge" the predecessor period or "overcharge" the 

unaggregated periods, either of which must be avoided for a good lower bound. As- 

suming the predecessor aggregates more than m periods (this is always the case), the 

unaggregated periods cannot be charged with resources committed in the predeces- 

sor. Similarly, the predecessor resources must either: 1) be buffered with additional 

resources; or 2) must never be charged with more than 1 unaggregated period of re- 

source utilization. Considering the former case, if the predecessor aggregates 20 days, 

it must receive 22 days of resources in order to compensate for missions which, in an 

unaggregated period, would optimally have launched on day 20 (and consumed re- 

sources of days 20-22). This should produce a better bound than the latter case, since 

most missions last longer than 1 period, and most missions cannot be launched on 

the last day of the predecessor aggregate. Other constraints are dealt with similarly. 

Below is the generic notation and formulation: 

ACAS(L) 

V A V^ 
PAGG(L) 

CO 
a. 

NCAS(L) 

SAGG(L) 

z 
h- 
C/D 
< 

Aggregation Sandwich Notation.— 
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firstnL    First unaggregated period in cascade L 

lastnL    Last unaggregated period in cascade L 

PAGGL = {t : t < firstnL}.   The periods prior to firstnL, which have been 

aggregated 

PTL = firstnL - 1. Predecessor aggregated time period 

SAGGL = {t:t> lastnL}. The periods after lastnL, which have been aggregated 

STL = lastnL + 1. Successor aggregated time period 

NCASL = {t : firstnL < t < lastnL}. Unaggregated time periods in the current 

cascade 

ACASL = {t : t e PTL U NCASL U STL}.  Aggregated and unaggregated time 

periods 

ULL = {u : UTU n NCASL ^ 0, UTU n NCASL+1 = 0}. Partition set of each unit 

into the last cascade in the unit's delivery window. 

Summary of Aggregation Sandwich Algorithm.— 

0) Establish the size of each cascade window \NCAS |. Set firstnx = 1, lastnx = 

| NCAS |. Set PAGG, = 0, SAGG, = t : t > lastnu PT1 = 0, ST, =| NCAS \ +1, 

ACASi = NCAS1uST1. 

1) Solve aggregation sandwich model. 

2) Let zL = Y,u£UL(L) P«- Note this is only a Portion of the total iteration objective 

function value. 

3) If lastnL >\T\, terminate and sum penalties computed in 2) over all iterations 

(since UL is a partition, each unit's penalties are counted only once). Otherwise, set 

firstnL+i = firstnL+ | NCAS |, lastnL+l = lastnL+ | NCAS |. 

4) Set L = L + 1. Update other sets and parameters as appropriate. 

5) Return to 1). 

Aggregation Sandwich Formulation.— 
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Z = y2,ZL     where   ZL = min   ^   Pu 

L uGUL(L) 

OBJECTIVE: yields a lower bound at algorithm termination, but where each iter- 

ation solves: 

min 2_j Pu 
u 

which is the sum of ALL unit penalties. 

ST Yl     Xut + Pu>du       Vu 
teACAS(L) 

EXTENDED STAIRCASE: same as basic formulation, but sum time over the cur- 

rent horizon plus the aggregated periods at either end. 

Y, U ■ Xut < sv | PAGGL + (m - 1) |        t = PTL 

u 

£ /« ■ X^t-nwcAsw + 5> * Xu,t <8t       Vt e NCASL 

u u 

Y /« • X»t < *" I SAGGL + (m - !) I t = STL 

u 

STAIRCASE: for t £ NCASL, note that we do not include any X's from PAGG. 

Also, the RHS in PT, ST must be increased by the amount of potential overlap. This 

overlap is m - 1, since missions are launched at the beginning of a period. Thus, they 

spend at least 1 period on the other side of the aggregation boundary. 

Yau-Xut<9(st)-\PAGGL\        t = PTL 

u 

Yau-Xut<g(st)     VteNCASL 
u 

Y,*u-Xut<g(sty\SAGGL\        Vt = STL 

u 
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SINGLE PERIOD: Same as basic formulation. 

£ xut < h(£*)• I B Q PAGGL '      t = PTL 

u 

£X*<MX>)       VBCNCASL 
u,teB 

BLOCK: Assume that aggregation boundaries and B are coincident. 

THRUPUT Specific Aggregation Sandwich Discussion.. 

Although the aggregation sandwich approach should provide a reasonable lower 

bound to the cascade, the formulation is tricky where aggregation transitions from 

disaggregation.   Additionally, aggregation can overstate a unit's " deliverability" in 

at least two ways. Since the end of a scenario tends to be less constrained than the 

beginning, the successor aggregate offers lots of resources that should not be used 

unless a unit's delivery window extends all the way to the end.  One can partially 

redress this by choosing each unit's "home" iteration as the one which includes the 

last feasible delivery day. This makes the unit ineligible for delivery variables in the 

successor, and looks most carefully at the period where late penalties may be incurred. 

The second, potentially gross relaxation involves the sparse staircase constraints with 

a constant RHS. MOG utility in the THRUPUT II model provides a good example. 

Assuming the above method for "hosting" a unit is observed, unit deliveries are 

often permitted in the predecessor period.   Aggregation may give this unit many 

more airfield-days for delivery, which could be significant in a MOG constrained 

destination.   Much of this is unavoidable, although when aggregating, MOG-days 

should be summed only across those periods which might have deliveries to that 

airfield. 

Despite its drawbacks, the aggregation sandwich approach has substantial merit. 
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While the Lagrangian technique probably holds more promise, the sandwich could 

serve as a backup should the other lower bound method fail. 

SUMMARY 

The methods described provide a solution to the tractability difficulties we have 

encountered with the THRUPUTII model. The upper bound heuristic finds a feasible 

solution on the first pass, and early research indicates that solution to be of high 

quality. Moreover, the upper bound method could potentially iterate by stiffening 

the elastic demand penalties whose constraints are found to be tight in a later cascade. 

Furthermore, the user noted that solving the whole monolith provides results that 

are "too good," indicating that planners never have as much future knowledge as we 

give the mathematical abstraction. Thus, the temporal cascades heuristic not only 

yields a computationally tractable solution, but a more realistic one as well. Since in 

general, this is not the case, the heuristic must be supported with an error bound. 

The bounding schemes are as yet untested, but the Lagrangian cascade method 

shows the most promise. It incorporates dual prices from the temporal cascades 

in serial fashion-which means much of an upper bound basis may be retained as 

a starting solution for the relaxation. Additionally, the bound could be improved 

by adjusting the Lagrangian penalties associated with the iterating upper bound 

heuristic. However, with sufficient overlap of the temporal cascades, iterating may 

not often be required, since the upper bound solution (and the associated duals 

feeding the lower bound) will be of demonstrably adequate quality. 

Together, the two methods used in concert appear to form a compatible and efficient 

solution strategy for THRUPUT II. Further research should verify this, as well as 

assert a variation of the strategy on more general staircase linear programs. 
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