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Abstract 

This paper describes memory scheduling for the Tera MTA (Multi Threaded Architecture) computer 
system. The Tera MTA is intended to support a mixture of large and small tasks running in parallel, and 
ensure that they all make progress commensurate with their importance. We describe the memory 
scheduling algorithms used to schedule these tasks fairly. Some of the issues encountered and solutions 
proposed are novel, due in part to the highly multiprogrammed nature of our architecture. In particular, 
we present an algorithm for swapping a set of tasks to and from memory that achieves minimal 
overhead, largely independent of the order in which tasks are swapped. 

1. Introduction 
The Tera MTA implements a multi-user system in which many parallel jobs may execute concurrently. 
Each multi-threaded processor can support up to 16 jobs simultaneously that dynamically compete for 
the processor's instruction streams. Memory must be scheduled for these jobs because there are 
competing jobs executing in parallel and because of the broad spectrum of job memory requirements. 

The workload anticipated for the MTA is varied. We expect most sites to have large, parallel jobs 
intermixed with interactive work. The operating system scheduler must excel in this environment. Large 
parallel jobs require high throughput, while short, interactive jobs require quick response. Also, the 
scheduler must prevent starvation and ensure some measure of fairness among jobs of similar 
characteristics; to facilitate this, we provide a mechanism for job differentiation. 

This paper describes the memory scheduling issues associated with a multipurpose high performance 
parallel computer system like the Tera MTA. A brief discussion of the architecture is followed by a 
section on the operating system that describes the overall goals of job memory scheduling. The next 
section describes in detail the algorithms used for memory scheduling. We end with a few conclusions 
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and a list of references. 

2. Architecture 
The Tera MTA architecture is described in Alverson et al. It implements a true shared-memory 
multiprocessor with multithreaded computational processors (CPs) and interleaved memory units 
connected by a packet-switched interconnection network. All memory units are addressable by each 
processor. There are no data caches; memory latency is tolerated through a combination of 
multithreading and register prefetching. Programmable input/output processors (IOPs) transfer data to 
and from the memory and the attached peripheral devices. The network has enough bisection bandwidth 
to support one request and one response from each processor per cycle. 

A CP supports 16 protection domains, each of which has a memory map. Multiple hardware threads can 
be executing in each protection domain of a CP simultaneously. One domain is used for operating 
system daemons, so the remaining 15 protection domains let a processor execute as many as 15 distinct 
parallel user applications at once. The address space is segmented, with up to 16K segments per 
protection domain in sizes varying from 8 Kbytes to 256 Mbytes. Contiguous 256 Mbyte segments 
generate a contiguous, shared virtual address space of up to 4 Tbytes. The current implementation of the 
architecture supports 512 Gbytes of physical memory. It was the need for a large virtual address space 
that led us to choose segmentation rather than paging for address mapping. 

An IOP deals with one input segment and one output segment at a time. An IOP instruction is used to 
switch segments. Peripheral devices are connected to IOPs via duplex 64-bit HIPPI channels capable of 
200 Mbyte/s in both directions at once. The disk arrays (RAIDs) used for the file system and backing 
store can achieve over 150 Mbyte/s. IOPs not attached to peripherals are used in loopback mode to copy 
data from one part of memory to another at 1.3 Gbyte/s. Good copying bandwidth helps deal with the 
external fragmentation that non-paged segmentation gives rise to. 

3. Operating System 
The operating system allocates the resources of the system among tasks competing for these resources. 
The memory scheduler determines which subset of the ready tasks to load into memory. The processor 
scheduler then determines the subset of in-memory tasks to load onto the available protection domains. 
This document deals with the memory scheduler; the processor scheduler is the subject of a companion 
paper. 

Multi-threaded tasks running on a shared memory multiprocessor like the Tera often communicate and 
synchronize frequently. If a thread faults and waits for the virtual memory system to load an unmapped 
region of memory, the remaining threads are likely to block soon thereafter, waiting to synchronize with 
the faulting thread. Thus demand-mapped virtual memory can generate performance problems on 
multiprocessors - see Burger et al. We avoid these problems by swapping entire tasks, running a task 
only when all of its segments are loaded. 

The operating system memory scheduler distinguishes between tasks with large and small memory 
usage. Typically, large memory tasks execute for a long time, can tolerate being swapped out for a long 
time, and are usually submitted via a batch system such as the Network Queueing System (NQS). 
Swapping large memory tasks must be infrequent because of the high overhead per swap. When such a 



task is interactive, its presence in memory must be explicitly arranged for. 

Small-memory tasks have the inverse characteristics: they are short-lived or use resources in bursts (are 
interactive), do not tolerate being swapped out for long, and are usually submitted from a command 
shell. Small memory tasks may be swapped in and out of memory more frequently. However, for 
interactive computing, the user expects an immediate response to a keystroke. These tasks require 
frequent access to the processors to enjoy good interactive response. 

Because large-memory and small-memory tasks differ in their memory usage patterns, we introduce 
mechanisms for scheduling memory that differentiate these two classes of workload. Studies of 
interactive and batch workloads by Ashok and Zahorjan support this differentiation. The memory 
resources are thus divided between large, batch oriented tasks and short, interactive tasks. Two memory 
schedulers are employed, the MB-scheduler for large (big) memory tasks and the ML-scheduler for 
small memory (little) tasks. Data memory is statically partitioned at boot time into two parts; one part 
for each scheduler. There is one MB-scheduler and one ML-scheduler per machine. 

A new task is scheduled by the MB-scheduler if its memory requirement exceeds a site-defined value, 
otherwise it is scheduled by the ML-scheduler. When a task is swapped in, it is assigned to a processor 
scheduler. If a task scheduled by the ML-scheduler requests more memory than a site-specific threshold, 
it is handed over to the MB-scheduler when it is next swapped out. A task scheduled by the 
MB-scheduler whose memory requirements drop below the threshold remains under the control of the 
MB-scheduler. This avoids thrashing between the two memory schedulers. 

4. Memory Scheduling 
Despite its 1-2 GB of memory per processor, large applications will make memory a scarce resource 
(possibly the scarce resource) on the machine. Therefore, good performance requires efficient memory 
utilization. Starvation avoidance is also important, especially for tasks with large memory requirements. 

As discussed in the previous section, memory is controlled by two schedulers: the MB-scheduler for 
tasks with large memory requirements and the ML-scheduler for small interactive tasks with small 
memory requirements. We assume large memory tasks have long execution times and can tolerate being 
swapped out for long periods of time. We assume small memory tasks are interactive, require frequent 
access to processor resources, and therefore cannot be swapped out for extended periods. Each site 
designates what portion of memory is controlled by which scheduler. Generally, most memory will be 
given to the MB-scheduler. Both schedulers execute the same algorithm to schedule the memory within 
their domains. 

The memory scheduling algorithm in general must divide available memory among the set of tasks over 
time. Thus the scheduling space can be represented in two dimensions, with memory on the horizontal 
axis and time on the vertical axis. A schedule consists of a partitioning of memory over time among a 
subset of ready tasks in the system. An allocation to task j assigns some m(j) units of memory for some 
period of time. A valid schedule ensures that the total memory allocated at any moment does not exceed 
system capacity. The goals of the memory scheduler are to minimize the total unallocated memory over 
time and to ensure high task throughput. 

Both memory schedulers maintain a ranking of tasks within their domains. A ranking or priority of tasks 
is commonly used in schedulers to provide a way for users to specify the relative importance of task 



resource allocation decisions and to avoid starvation by changing a task's ranking as it acquires 
resources. The memory schedulers use the ranking to determine the order in which tasks are considered 
for scheduling. The manner in which task ranking is defined is discussed below. 

A memory schedule defines a set of tasks that will be resident at any one time. For each task, the 
scheduler determines when the task is scheduled to be in memory and for how long. The time during 
which a task is in memory is called its dwell time. The length of time tasks are in memory is dependent 
in part upon the overhead cost of swapping the task. 

As discussed previously, the operating system requires that the entire address space of a task be resident 
while the task is executing. Thus, our model of I/O assumes that no task can start executing until its 
entire address space is swapped in, and no tasks can continue to make progress once any of its address 
space is swapped out. 

Before describing the memory scheduling policy, we define a model for swapping overhead applicable 
to the MTA and many other parallel systems and use this model to define the cost of swapping 
overhead. We show that based on the overhead of swapping, it is appropriate for a task's dwell time to 
be set in proportion to the amount of memory the task requires. 

Swapping Overhead 

Periodically, the memory scheduler will reassign a subset of memory to a different set of tasks. The cost 
of memory scheduling is determined by the cost of swapping out a set of tasks and swapping in another 
set of tasks at these memory quantum intervals. 

We use a simple model of I/O that defines a constant available swapping bandwidth r, and computes the 
time to swap m memory units as m /r. Thus, we assume large memory tasks utilize all the I/O 
bandwidth that is available for swapping if there are no other swapping activities in progress 
simultaneously. We define the overhead of swapping out a set of tasks and swapping in another set of 
tasks as the total space-time (e.g., byte-seconds) that memory is not available for execution. 

We define the following swapping algorithm for swapping out a set of tasks and swapping in another set 
of tasks. 

1. Choose inTask, the first task to be swapped in, and outTask, the first task to be swapped out, 
arbitrarily. Stop outTask by notifying its processor scheduler. 

2. Begin swapping outTask out, and continue until either 
O there is enough room for inTask or 
O outTask is fully swapped out. 

3. Swap all or part of inTask in to fill the memory vacated by outTask. 
4. If inTask is now fully swapped in, notify its processor scheduler that it is ready to begin execution, 

and choose another inTask, if there is one. 
5. If outTask was fully swapped out, choose another outTask, if there is one, and stop it. 
6. While there is work remaining, return to step 2. 

We alternate in this fashion between inTask and outTask to: 

• start each inTask as early as possible, and 



• stop each outTask as late as possible. 

The overhead of the swapping algorithm is depicted in Figure la illustrates the overhead of swapping 
when these tasks are chosen for swapping (in or out) in ascending order of size. The total space-time 
overhead required to start a task consists of the time to swap out the task or tasks currently allocated the 
memory and the time to swap in the new task. 

For example, to swap out task dl of size m requires m/r time during which m units of memory is 
unavailable. Each swap (in or out) of size m consumes an overhead depicted as a lightly-shaded 
rectangle of width m and height m /r for a total memory-time overhead area of m*m /r. 

To swap in task al of size m requires additional overhead of m*m /r for a total overhead cost of 2*m*m 
/r to swap out one task for another of the same size. The total overhead cost of swapping is the 
summation of the overheads of the individual swapping events. 

Figure lb illustrates the swapping overhead for a different ordering of tasks swapped in. Each partial 
swap-out is accompanied by a partial swap-in of the same size. The lightly shaded rectangles in the 
figure depict the overhead of these swapping events. As before, the combined time space-time for a 
partial swap-out/swap-in pair of an amount of memory m is 2*m*m/r, but total cost of this overhead is 
different from that in Figure la since the values of m reflect a partial swap-in or swap-out of a task. 

The partial swap-out/swap-in pairs occur sequentially. The northeast and southwest vertices of the 
swap-in/swap-out rectangles form a line with a slope of 2 /r. The dark-shaded area above this line 
represents the time during which a portion of unutilized memory is allocated to an incoming task. This 
memory is not utilized because the entire task is not memory resident. Similarly, the dark-shaded area 
below the line represents the time during which a portion of unutilized memory is allocated to an 
outgoing task; the memory is not utilized because the task is suspended while it is being swapped out. 

The arrows indicate times at which a task is entirely swapped in (and can start execution) or at which a 
task to be swapped out stops executing. 

The total overhead of swapping is the summation of the space-time overhead above and below the line. 
This space pictorially forms a staircase shape, where the width of each step is the size of memory for the 
incoming or outgoing task. The height of each step can be computed from the slope of the line. 

If we let / be the set of tasks to be swapped in and D be the set of tasks to be swapped out. The total area 
representing the overhead above the line is the sum over all i in I of m(i)*m(i) /r, where m(i) is the 
memory size of task /. Similarly, the area below the sloped line is the sum over all d in D of m(d) *m(d) / 
r. Thus, the total overhead incurred is the sum over all k in / U D of m(k)*m(k) /r. 
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Figure 1. Swapping Overhead 

It is easy to see that this algorithm achieves the minimal swapping overhead. Certainly, there is no 
benefit in discontinuing swapping out one task in order to swap out another, or discontinuing swapping 
in one task in order to swap in another; these actions only increase the overhead. Also, no benefit is 
gained by swapping multiple tasks simultaneously. (In fact, although our simple I/O model does not 
reflect it, additional overhead would be incurred from contention between two simultaneous swapping 
events.) 

Our policy, which completes the swap-in of one task before starting the swap-in of another and 
completes the swap-out of one task before suspending another task to be swapped out minimizes the 
time during which memory is not utilized. Furthermore, our swapping algorithm yields the same 
overhead for any sequential ordering of jobs to be swapped out and any ordering of jobs to be swapped 
in. 

In summary, the swapping is simplified since the overhead of swapping is independent of the order with 
which tasks are swapped in or out. Memory scheduling is also simplified since the overhead of 
swapping out tasks whose dwell times expire concurrently is the same as the cumulative overhead of a 
schedule that staggers the expiration of dwell times. Furthermore, a task's contribution to the swapping 
overhead grows quadratically with its size. To maintain a constant percentage overhead per task, the 
dwell time of a task should be proportional to its size. 

Finally, our I/O model assumes that an entire task's address space must be resident in memory before a 
task can execute. While other systems may provide a memory replacement policy that allows tasks to 
continue executing with a partially resident working set (in spite of the performance problems that 
result), we believe the working set for parallel applications comprises a significant percentage of the 
total pages, implying the swapping overhead for demand-paged systems is similar. 

User Demand 

Typically, a task's importance is represented by the priority level it is assigned. Tasks at higher priority 



levels receive preferential consideration in the allocation of resources. In a pure priority system, high 
priority tasks can starve tasks of lower priority by consuming all the resources. When feedback 
mechanisms are introduced to prevent starvation by adjusting priority upward when a task doesn't run 
and downward when it does, relative task importance is muddied. The result is an imprecise quantitative 
relationship between priority and average rate of resource consumption. 

On the Tera MTA, a task's importance is expressed instead in terms of its nominal average resource 
allotment. The user defines a demand of memory resource consumption for a task, in units of space-time 
memory residency per unit time. This demand is the time-averaged nominal memory usage of the task. 
Presumably, higher demands justify increased monetary charges. If the system is saturated or 
underutilized, the demand will overestimate or underestimate, respectively, the average memory 
occupied by the task. The purpose of the demand parameter is to permit a quantifiable differentiation 
among tasks that is tied to system performance. The memory scheduler uses this demand to determine 
the order in which tasks are considered for execution. 

Tasks are ordered by rank. The memory scheduler defines a task's rank as a linear function of the ratio 
between its demand of memory consumption and its achieved consumption. A task's rank is 
re-evaluated as it accumulates time in memory. Let demand(i) be the demand for task i. Then the rank of 
task i at a time t is defined as the sum of two terms: 

rank(i,t) = timeAtCross(i,t) + (dwellTime(i) * memory(i)) /demand(i) 

Here dwellTime(i) is the dwell time for task i, memory(i) is the size of task i, and timeAtCross(i.t) for 
task / is the time at which the memory resource consumption acquired so far equals its demand: 

timeAtCross(i,t) = start(i,t) + totalConsumption(i,t) /demand(i) 

where totalConsumption(i.t) is the total memory consumption acquired by task / up to time t. When a 
task arrives, its timeAtCross is set to an initial value start(i,t); when a task swaps out, the memory 
resource just consumed is divided by the task's demand is added. This scheme is philosophically similar 
to fair share (Henry, Essick) and highest penalty ratio next (Finkel) scheduling. Unlike those methods, 
however, rank(i,t) only needs to be updated when a task is swapped out. 

Note that timeAtCross can be either in the past or in the future, depending on system load. The initial 
value of timeAtCross can therefore be used to regulate when new tasks begin to contend for memory. If 
start(i,t) is t, the current time, a lightly loaded system will swap in a new task immediately whereas a 
heavily loaded system will defer it until the older tasks have caught up. If start(i,t) is timeAtCross of the 
most recently scheduled task, the new task will immediately begin to compete with the older tasks. 
Finally, if we let start(i,t) be its smallest possible value, the new task will swap in and stay in. 
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Figure 2. Task Ranking Strategy 

To illustrate this ranking, Figure 2a shows an example memory schedule for two tasks with the same 
start(i,t). The shaded areas represent allocations to other tasks not of interest in this example. Figure 2b 
shows the memory resource consumption profile for tasks 1 and 2 as a result of the schedule. For 
example, after Task 1 executes for time t, it has acquired m * t memory resources where m is its size. 
Task 2 has acquired m * t /4 of memory-time by the same time, t. 

The shaded rectangles in Figure 2b illustrate pictorially the computation of rank for Tasks 1 and 2 after 
the execution of the memory schedule. A task's demand is represented by a sloped line. Conceptually, 
the first term of rank, timeAtCross, attempts to order tasks according to their urgency in acquiring 
memory resources to meet their desired rate. This is determined by a horizontal line from the tasks 
memory consumption profile to its demand slope. Tasks with a earlier timeAtCross are considered more 
crucial. 

The second term of rank compensates for the different rate at which tasks acquire resources during a 
quantum (dwellTime) and their different resource demands. The shaded rectangles have height 
dwellTime(i) * memory(i); because their diagonals have slope demand(i), their width is dwellTime(i) * 
memory(i) /demand(i). Given two tasks with the same timeAtCross, the task with the higher ratio of 
per-quantum memory consumption to demand will be considered less crucial. It can wait longer before 
being scheduled and still achieve its demand. 

It is easy to see that rank(i,t) can be interpreted as the value timeAtCross(i,t) would assume if it were 
given another quantum. From this example, after the current schedule is complete, the rank for task 2 is 
less than the rank for task 1, indicating that task 2 will be considered for scheduling before task 1. 

Memory Scheduling Policy 



The MB-scheduler and the ML-scheduler use the same algorithm for allocating memory to a set of tasks. 
Each scheduler decides which tasks to move in or out of memory based on a ranking of the tasks in the 
system, where the ranking reflects the ratio of the task's demand and the achieved rate of memory 
consumption. The goal of the memory scheduler is primarily to provide high memory utilization while 
achieving the overall goal rate of execution for the tasks. 

We define a minimum dwell time t_min as the miniminum dwell time for the smallest task, a task of size 
m_min or less. As discussed above, a task's memory dwell time depends on its size; the larger the task 
the longer the dwell time. Specifically, the dwell time for a task with memory requirement m is bin(m) * 
t_min, where bin(m) is the smallest power of two greater than or equal to m /mjnin. Requiring dwell 
times to step by powers of two allows for buddy-style coalescing of memory-time allocations between 
small tasks allocations and large task allocations. 

The scheduler uses a first-fit strategy for scheduling available memory. The scheduler is invoked 
whenever a block of memory becomes available. A list of swapped-out but ready-to-run tasks is 
maintained, sorted by rank, where tasks with a lower rank are considered first. The scheduler selects the 
first task to be scheduled. If the memory available is greater than the task's memory requirement, the 
task is scheduled to be swapped in, the available memory is reduced by the size of the task, and the 
task's rank is updated to reflect its current residency. Otherwise, the next task in the list is examined. 
This procedure continues until either all the memory is scheduled or the available memory is less than 
the size of the smallest task. 

Thus the scheduler's job can be thought of as packing rectangular boxes along a single dimension M 
wide, where M is the amount of memory available. The scheduler sorts the scheduled tasks by dwell 
time expiration. When the dwell time expires for a set of tasks, a memory quantum has expired. At each 
quantum expiration, the scheduling algorithm is repeated to allocate the available memory to a 
(possibly) new set of tasks. The algorithm also ensures that the currently executing tasks are not 
swapped out if no higher ranking tasks is waiting to be scheduled. 

The memory scheduler is notified when an executing task blocks. If the task's memory residence time 
exceeds a minimum residency requirement, the task is swapped out and placed on a blocked list. When 
the task is unblocked, it is inserted in the ready-to-run task list. 
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Figure 3. Example Memory Schedule 

Figure 3 illustrates an example schedule for 7 tasks. The 7 tasks are listed in rank order by their sizes. 
The horizontal axis represents memory, and the vertical axis represents time. Each rectangle represents 
an allocation of memory to a task. The duration of the schedule varies with the dwell times of the tasks 
scheduled. Note that task 6 cannot be scheduled initially, since its size is greater than the memory 
available after tasks 1 through 5 are scheduled. Also, even though task 4 requires only slightly more 
memory than task 5, the dwell time of task 4 is twice the dwell time of task 5, since a task's dwell time 
is a factor of the smallest power of two greater than its size. 

Each horizontal line in Figure 3 represents a quantum expiration time at which a set of tasks becomes 
eligible to be swapped out of memory. At this time, the scheduling algorithm is repeated. Task 3's 
quantum expires first. Assuming there are no other tasks in the system, task 3 will be rescheduled (this is 
represented in the figure by a shaded rectangle). Similarly, tasks 2 and 7 will be rescheduled until time 
4. At that time, assuming tasks 3 and 5 drop in rank below task 6, tasks 3, 5 and 7 will be swapped out 
and task 6 will be scheduled. The next quantum expires at time 9, and the scheduling algorithm is 
repeated (scheduling decisions at time 9 and beyond are not shown in Figure 3). 

When a new task arrives, it is placed in the task list in sorted order using its assigned rank. When a task 
exits, the scheduler tries to fill the task's memory with another task on the task list if the remaining 
dwell time is long enough to support the overhead of swapping the new task into memory. 

The memory schedulers must also handle requests by the tasks for dynamic memory allocation. A subset 
of the available memory is reserved to handle these requests. Still, if a task's remaining dwell time is 
short or if the memory is not available, the task's memory allocation request fails. A message is sent to 
the task's processor scheduler to stop the task. Once the task is stopped, it is swapped out, and if it had 
sufficient remaining dwell time, another task from the task list is chosen, if possible, to occupy the 
vacated memory for the remaining dwell time. The total memory requirements for the task is 
incremented so that the next time the task is swapped in, it receives the larger allocation. If a small 



memory task requests a total allocation in excess of the class of tasks handled by the ML-scheduler, then 
the task is placed under the control of the MB-scheduler. 

When memory becomes available, either through a task's exiting or freeing memory, the MB-scheduler 
looks at the remaining dwell time of the freed memory. If a large fraction of the dwell time remains, the 
scheduler looks for an appropriately-sized task in the swapped-out task list. 

Starvation Avoidance 

The scheduler's first-fit scheduling strategy is a straightforward and simple policy designed to provide 
high memory utilization. However, this simple strategy alone is not sufficient to avoid starvation, since 
there is no guarantee that a large enough block of memory will eventually become available to schedule 
a large memory task. 

In order to avoid large task starvation, when the available memory is not sufficient to schedule the next 
task on the swapped-out task list, the earliest possible time is determined at which enough memory will 
be available to schedule the task, given the current schedule. The scheduler will refuse to schedule 
subsequent tasks that do fit in available memory if their dwell time would result in the higher ranking 
task not being schedulable at the later time. This gives huge jobs a chance to run within a time interval 
corresponding to their rank. 

Extensions 

The memory schedulers do not consider a task's processor requirements when scheduling tasks to be 
swapped in. An extension could consider the number of teams required by the task as well as the task's 
memory to try to schedule sets of jobs in memory concurrently that don't overutilize or underutilize the 
processing resources. 

Currently, memory is statically divided between the MB-scheduler and the ML-scheduler. To increase 
the utilization of memory, the MB-scheduler could release unallocated memory to the ML-scheduler for 
use until the next MB-scheduler quantum expires. Similarly, a more flexible partition could be 
implemented, where the amount of memory reserved for the small memory tasks varies with the 
changing load exerted on the system by the batch and interactive tasks. However, research by Ashok and 
Zahorjan suggests that the benefits of such dynamic partitions are not easily attained. 

5. Conclusions 

This paper discussed several novel characteristics of the Tera memory schedulers. Jobs are distinguished 
by rank, which is a function of its demand for memory and its current allotment. We described an 
algorithm for swapping jobs that minimizes overhead and showed that swapping overhead grows as the 
sum of the squares of the sizes of jobs being swapped. Perhaps surprisingly, the overhead is independent 
of the order of swapping; this means we can alter the order, should the need arise, without incurring 
additional overhead or computational effort. 
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