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Abstract

We consider a parallel Algol-like language, combining procedures with
shared-variable parallelism. Procedures permit encapsulation of common
parallel programming idioms. Local variables provide a way to restrict in-

terference between parallel commands. We provide a denotational semantics
for this language, simultaneously adapting \possible worlds" [Rey81, Ole82]
to the parallel setting and generalizing \transition traces" [Bro93] to the
procedural setting. This semantics supports reasoning about safety and live-
ness properties of parallel programs, and validates a number of natural laws

of program equivalence based on non-interference properties of local vari-
ables. The semantics also validates familiar laws of functional programming.
We also provide a relationally parametric semantics, generalizing [Bro93]
to permit reasoning about relation-preserving properties of programs, and
adapting work of O'Hearn and Tennent [OT95] to the parallel setting. This
semantics supports standard methods of reasoning about representational

independence, adapted to shared-variable programs. The clean design of
the programming language and its semantics supports the orthogonality of

procedures and shared-variable parallelism.



1 Introduction

The programming language ALGOL 60 has had a major inuence on the

theory and practice of language design and implementation [OT97]. ALGOL

shows how to combine imperative programming with an essentially functional

procedure mechanism, without destroying the validity of laws of program

equivalence familiar from functional programming. Moreover, procedures

and local variables in ALGOL can be used to support an \object-oriented"

style of programming: an abstract \object" can be represented by a collection

of local variables together with procedures or \methods" used to read or write

them. Although ALGOL itself is no longer widely used, an idealized form
of the language has stimulated a great deal of innovative research [OT97].
Idealized Algol, as characterized by John Reynolds [Rey81], augments a sim-
ple sequential imperative language with a procedure mechanism based on
the simply-typed call-by-name �-calculus; procedure de�nitions, recursion,
and the conditional construct are uniformly applicable to all phrase types.

Reynolds identi�ed these features as embodying the \essence" of Algol.
ALGOL 60 and Reynolds' Idealized Algol are, of course, sequential pro-

gramming languages. Nevertheless the utility of procedures and local vari-
ables is certainly not limited to the sequential setting. Nowadays there is
much interest in parallel programming, because of the potential for imple-

menting e�cient parallel algorithms by concurrent processes designed to co-
operate in solving a common task. In this paper we focus on one of the
most widely known paradigms of parallel programming, the so-called shared-
variable model, in which parallel commands interact by reading and writing
to shared memory. The use of procedures in such a language permits encap-

sulation of common parallel programming idioms. Local variable declarations

provide a way to delimit the scope of interference: a local variable of one pro-
cess is not shared by any other process, and is therefore una�ected by the
actions of other process running concurrently.

For instance, a procedure implementing mutual exclusion [And91] with a
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binary semaphore could be written (in sugared form) as:

procedure mutex(n1; c1; n2; c2);

boolean s;

begin

s:=true;

while true do

(n1; await s then s:=false;

c1; s:=true)

k while true do

(n2; await s then s:=false;
c2; s:=true)

end

Here c1 and c2 are parameters representing \critical" regions of code, and
n1 and n2 represent non-critical code. The correctness of this procedure, i.e.
the fact that the two critical regions are never concurrently active, relies on
the inaccessibility of s to the procedure's arguments.

For another example, suppose two \worker" processes must each repeat-

edly execute a piece of code, can and should run concurrently, but need to
stay in phase with each other, so that at each stage the two workers are
executing the same iteration. If the parameters c0 and c1 represent the two
workers' code, one way to achieve this execution pattern is represented by
the following procedure:

procedure workers(c0; c1); while true do (c0kc1)

However, this program structure incurs the repeated overhead caused by cre-
ation and deletion of a pair of threads each time the loop body is executed.

Although this defect has no e�ect on the overall correctness of the proce-

dure, since it is obvious that the intended pattern of execution is achieved,
for pragmatic reasons it might be preferable to design a program that cre-

ates two perpetually active threads, constrained to ensure that the threads
stay in phase with each other. One way to achieve this, known as barrier
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synchronization [And91], uses a pair of local boolean variables:

procedure barrier(c0; c1);

boolean flag0; flag1;

procedure synch(x; y); (x:=true; await y; y:=false);

begin

flag0:=false; flag1:=false;

while true do (c0;

synch(flag0; flag1))

k while true do (c1;

synch(flag1; flag0))
end

The correctness of this implementation relies on locality of the ag variables.

The two procedures workers and barrier are equivalent, in that for all possible
arguments c0 and c1 the two procedure calls exhibit identical behaviors.

It is well known that parallel programs can be hard to reason about, be-
cause of the potential for undesirable interference between commands running
in parallel. One might expect this problem to be exacerbated by the inclusion

of procedures. Indeed, semantic accounts of shared-variable languages in the
literature typically do not encompass procedures; the (usually implicit) at-
titude seems to be that concurrency is already di�cult enough to handle by
itself. Similarly, existing models for sequential Algol [Rey81, Ole82, OT95]
do not handle parallelism, presumably because of the di�culty even in the
sequential setting of modelling \local" state accurately [HMT83]. Never-

theless it seems intuitive that procedures and parallelism are \orthogonal"
concepts, so that one ought to be able to design a programming language

incorporating both seamlessly. This is the rationale behind our design of an

idealized parallel Algol, blending a shared-variable parallel language with the
�-calculus while remaining faithful to Reynolds' ideals.

Even for sequential Algol the combination of procedures and local vari-
ables causes well known semantic problems for traditional, location-based

store models. Such models typically fail to validate certain intuitive laws of
program equivalence whose validity depends on \locality" properties of local

variables [HMT83], such as the following law:

new[int] x in P = P;
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when P is a free variable of type comm (representing a command). In-

tuitively, introducing a local variable x and never using it should have no

e�ect, so that whatever the interpretation of P the two phrases should be

indistinguishable; however, in a simple location-based semantics the presence

of command meanings whose e�ect depends on the contents of speci�c lo-

cations will cause this equivalence to break. A more satisfactory semantics

was proposed by Reynolds and Oles [Rey81, Ole82], based on a category of

\possible worlds": a worldW represents a set of \allowed states"; morphisms

between worlds represent \expansions" corresponding to the declaration of

new variables; types denote functors from the category of worlds to a category
of domains and continuous functions; and well-typed phrases denote natural

transformations between such functors. A commandmeaning at worldW is a
partial function from W to W . Naturality guarantees that a phrase behaves
\uniformly" with respect to expansions between worlds, thereby enforcing
locality constraints and validating laws such as the one discussed above.

The parallel setting requires a more sophisticated semantic structure be-

cause of the potential for interference between parallel commands. We adapt
the \transition traces" semantics of [Bro93], modelling a command at world
W as a set of �nite and in�nite traces, a subset of (W �W )1. The trace se-
mantics given in [Bro93] covered a simple shared-variable parallel language,
without procedures, with while-loops as the only means of recursion, as-
suming a single global set of states. This semantics was carefully designed

to incorporate the assumption of fairness [Par79]. It is far from obvious
that this kind of trace semantics can be generalized in a manner consistent
with Reynolds' idealization, to include a general procedure mechanism, and
a conditional construct and recursion at all types. Similarly, it is not evi-
dent that the possible worlds approach can be made to work for a parallel

language. We show here that these approaches can indeed be combined.
The resulting semantics brings out the stack discipline clearly yet models

parallelism at an appropriate level of abstraction to permit compositional
reasoning about safety and liveness properties of programs. Our categorical

recasting of [Bro93] permits an improved treatment of local variables. The

semantics for the �-calculus fragment of the language is completely standard,

based as usual on the cartesian closed structure of the underlying category.

Thus our semantics supports the claim that procedures and parallelism are
\orthogonal".

Since we are interested in proving liveness and safety properties of parallel
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programs it is vital to deal accurately with in�nite traces. In particular, in

our setting it is inappropriate to treat divergence as \catastrophic" or \unde-

�ned", and it is wrong to equate all forms of divergence, as is typically done

in a conventional least-�xed-point semantics (where a single distinguished

semantic value ? represents divergence). Instead, our treatment of recursion

uses Tarski's theorem on greatest �xed points of monotone functions on com-

plete lattices[Tar55]. Roughly speaking, a least-�xed-point semantics for our

language would capture only the �nite behaviors of programs, thus ignoring

the potential for divergence; a greatest-�xed-point semantics captures both

�nite and in�nite aspects of a program's behavior.
As we have remarked, our possible worlds semantics of Parallel Algol

validates familiar laws of functional programming, as well as familiar laws
of shared-variable programming, and equivalences based on locality proper-
ties. When applied to the examples listed earlier it produces the intended
results; for instance, the workers and barrier procedures are indeed seman-
tically equivalent. However, just as for the Reynolds-Oles possible worlds

model of sequential Idealized Algol, certain laws of program equivalence in-
volving the use of local variables and procedures to represent abstract data
objects fail to hold, because of the presence in the model of certain insuf-
�ciently well behaved elements. These equivalences typically embody the
principle of \representational independence" familiar from structured pro-
gramming methodology: a program using an \object" (perhaps a member

of some abstract data type) should behave the same way regardless of the
object's implementation, provided its abstract properties are the same. Such
equivalences are usually established by relational reasoning, typically involv-
ing some kind of invariant property that holds between the states of two
programs that use alternative implementations. These problems led O'Hearn

and Tennent to propose a \relationally parametric" semantics for sequential
Idealized Algol [OT95], building on foundations laid in [Rey83]. In this se-

mantics a type denotes a parametric functor from worlds to domains, and
phrases denote parametric natural transformations between such functors.

The parametricity constraints enforce the kind of relation-preserving proper-

ties needed to establish equivalences involving representation independence.

We show how to construct a relationally parametric semantics for Parallel Al-

gol, generalizing the O'Hearn-Tennent model to the parallel setting. We thus
obtain a semantics that validates reasoning methods based on representation

independence, as adapted to deal with shared-variable programs.
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2 Syntax

2.1 Types and type environments

The type structure of our language is conventional [Rey81]: datatypes rep-

resenting the set of integers and the set of booleans; phrase types built from

expressions, variables, and commands, using product and arrow. We use �

as a meta-variable ranging over the set of datatypes, and � to range over the

set of phrase types, as speci�ed by the following abstract grammar:

� ::= exp[� ] j var[� ] j comm j (� ! �0) j � � �0

� ::= int j bool

Let � range over the set of identi�ers. A type environment � is a partial
function from identi�ers to types. We write dom(�) for the domain of �, i.e.

the set of identi�ers for which � speci�es a type. Let (� j � : �) be the type
environment that agrees with � except that it maps � to �.

2.2 Phrases and type judgements

A type judgement of form � ` P : � is interpreted as saying that phrase P has
type � in type environment �. A judgement is valid i� it can be proven from
the axioms and rules in Figure 1. We omit the rules dealing with phrases
of type var[� ] and exp[� ], except to remark that the language contains the
usual arithmetic and boolean operations. We let FV(P ) denote the set of

identi�ers occurring free in P .
In addition, for convenience, we add the following rule; this allows us

to elide the otherwise necessary projection for extracting the \R-value" of a
variable:

� ` P : var[� ]

� ` P : exp[� ]

The syntax used here for phrases is essentially a simply typed �-calculus

with product types, combined with a shared-variable parallel language over
ground type comm. Note that, in the spirit of Algol, the conditional con-

struction if B then P1 else P2 and recursion rec �:P are available at all
phrase types �. We restrict the use of a \conditional atomic action" await B then P

to cases where P is \atomic", i.e. a �nite sequence of assignments (or skip),
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� ` skip : comm

� ` X : var[� ] � ` E : exp[� ]

� ` X:=E : comm

� ` P1 : comm � ` P2 : comm

� ` P1;P2 : comm

� ` P1 : comm � ` P2 : comm

� ` P1kP2 : comm

� ` P : exp[bool] � ` P1 : � � ` P2 : �

� ` if P then P1 else P2 : �

� ` B : exp[bool] � ` P : comm

� ` await B then P : comm
(P atomic)

� ` B : exp[bool] � ` P : comm

� ` while B do P : comm

�; � : var[� ] ` P : comm

� ` new[� ] � in P : comm

� ` � : � (when �(�) = �)

� ` P : �0 � �1

� ` fst P : �0

� ` P0 : �0 � ` P1 : �1

� ` hP0; P1i : �0 � �1

� ` P : �0 � �1

� ` snd P : �1

�; � : � ` P : �

� ` rec �.P : �

�; � : � ` P : �0

� ` �� : �:P : (� ! �0)

� ` P : � ! �0 � ` Q : �

� ` P (Q) : �0

Figure 1: Type judgements
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so that it is indeed feasible to implement this construct as an indivisible ac-

tion. The special case await B then skip may be abbreviated by await B.

In displaying examples of programs it is often convenient to use a sugared

form of syntax. For instance, we may write

integer z;

begin P end

for new[int] z in P . Similarly we may write

procedure f(x); P0;
begin P end

instead of (�f:P )(rec f:�x:P0). With this convention it is straightforward to
de-sugar the examples discussed earlier into the formal syntax described here.
When f does not occur free in P0 the de-sugaring can go a little further: when
the procedure is not recursive this notation corresponds to (�f:P )(�x:P0).

3 Possible worlds

The category W of possible worlds [Ole82] has as objects countable sets,
called \worlds" or \store shapes", representing sets of allowed states. We
let Vint = f: : : ;�1; 0; 1; : : :g and Vbool = ftt; ffg. Intuitively, the world V�
consists of states representing a single storage cell capable of holding a value
of data type � . We will use V;W;X; and decorated versions such as W 0, as
meta-variables ranging over Ob(W).

The morphisms from W to W 0 are pairs h = (f;Q) where f is a func-
tion from W 0 to W and Q is an equivalence relation on W 0, such that the

restriction of f to each equivalence class of Q is a bijection with W :

� 8x0; y0:(x0Qy0 & fx0 = fy0 ) x0 = y0);

� 8x 2W:8y0 2 W 0:9x0:(x0Qy0 & fx0 = x):

Intuitively, when (f;Q) :W ! W 0, we think of W 0 as a set of \large" states
extending the \small" states ofW with extra storage structure; f extracts the
small state embedded inside a large state, and Q identi�es two large states

when they have the same extra structure. We will often �nd it convenient to
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blur the distinction between a relation Q on a set W 0 and its graph, i.e. the

set f(x; y) j xQyg � W 0 �W 0.

The identity morphism on W is the pair (idW ;W �W ), where idW is the

identity function on the set W . For each pair of objects W and V there is

an \expansion" morphism �� V :W !W � V , given by

�� V = (fst :W � V ! W;Q); where

Q = f((w0; v); (w1; v)) j w0; w1 2 W & v 2 V g:

The composition of morphisms h = (f;Q) :W ! W 0 and h0 = (g;R) : W 0 !

W 00, denoted h;h0 :W !W 00, is the pair given by:

(f � g; f(z0; z1) 2 R j (gz0; gz1) 2 Qg):

As Oles has shown[Ole82], every morphism of worlds is an expansion com-
posed with an isomorphism. Of particular relevance are structural isomor-
phisms reecting the commutativity and associativity of cartesian product.
For all worlds W;X; Y let

swapW;X :W �X ! X �W

assocW;X;Y :W � (X � Y )! (W �X) � Y

be the obvious natural isomorphisms. When equipped with the appropriate
universal equivalence relation, so that there is a single equivalence class, these
functions become isomorphisms in the category of worlds. For instance,

(swapW;X ; (W �X) � (W �X))

is an isomorphism from X �W to W �X. Thus the nature of morphisms

in this category captures the essence of local variable declarations in a clean

and simple manner, and facilitates a \location-free" treatment of storage.

4 Semantics of types

Each type � will be interpreted as a functor [[�]] from W to the category D
of domains and continuous functions. As shown by Oles [Ole82], the cat-

egory whose objects consist of such functors, with natural transformations
as morphisms, is cartesian closed. We will use the categorical product and
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exponentiation in this ccc to interpret product types �0� �1 and arrow types

�0 ! �1, respectively. The main di�erences between our parallel interpreta-

tion and the model developed by Oles and Reynolds concern the functorial

treatment of the ground types comm and exp[� ].

4.1 Commands

We interpret the type comm using \transition traces" [Bro93], but instead

of assuming a single global state set we parameterize our de�nitions in terms

of worlds. For each world W , [[comm]]W will consist of sets of traces over
W . A �nite trace (w0; w

0

0
)(w1; w

0

1
) : : : (wn; w

0

n) of a command represents a

terminating computation from state w0 to w0n, during which the state was
changed externally n times (by interference from another command running
in parallel), the ith interruption changing the state from w0i�1 to wi. An
in�nite trace h(wn; w

0

n)i
1

n=0
of a command represents an in�nite execution,

again assuming repeated interference.

When A is a set, we write A� for the set of �nite sequences over A, A+

for the set of non-empty �nite sequences over A, A! for the set of (count-
ably) in�nite sequences over A, and A1 = A+ [ A!. Clearly, each of these
operations extends to a functor (on Set), the morphism part being the ap-
propriate \map" operation, which applies a function to each element of a

sequence. Concatenation is extended to in�nite traces in the usual way:
�� = � when � is in�nite. The empty sequence, denoted �, is a unit for
concatenation. We extend concatenation, and �nite and in�nite iteration, to
trace sets and to relations over traces, in the obvious componentwise manner;
for instance, when R;S � A1 �A1, we let

R � S = f(�0�0; �1�1) j (�0; �1) 2 R & (�0; �1) 2 Sg:

Using this notation, then, a command denotes a subset of (W �W )1.
However, as in [Bro93], we let a step (w;w0) in a trace represent a �nite

sequence of atomic actions, rather than a single atomic action. The trace set

of a command is therefore closed under two natural operations: stuttering

and mumbling1. Intuitively, stuttering involves the insertion of \idling" steps

1The use of closed sets of traces guarantees full abstraction for the simple shared-

variable language [Bro93]. The closure conditions correspond, respectively, to reexivity

and transitivity of the !� relation in a conventional operational semantics.
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of the form (w;w) into a trace, while mumbling involves the collapsing of

adjacent steps of the form (w;w0)(w0; w00) into a single step (w;w00). We

formalize this as follows.

We de�ne relations stutA;mumA � (A�A)+ � (A�A)+ by:

stutA = f(��; �(a; a)�) j a 2 A & �� 2 (A�A)+g

mumA = f(�(a; a0)(a0; a00)�; �(a; a00)�) j �� 2 (A�A)� & a; a0; a00 2 Ag:

Let idleA = f(�;�) j � 2 (A�A)1g denote the identity relation on (A�A)1.

We then extend these relations to arbitrary traces, de�ning the relations

stut1A ;mum1A � (A�A)1 � (A�A)1 by 2:

stut1A = stut�A � idleA [ stut!A
mum1

A = mum�

A � idleA [mum!
A:

We say that a set T of traces over W is closed if

� 2 T & (�; �) 2 stut1W ) � 2 T ;
� 2 T & (�; �) 2 mum1

W ) � 2 T:

We write T y for the closure of T , that is, the smallest closed set of traces
containing T as a subset.

Let }y((W�W )1) denote the set of closed sets of traces overW , ordered
by set inclusion. This forms a domain, in fact a complete lattice, with least
element fg, greatest element the set of all traces, and lubs given by unions.
For a morphism h = (f;Q) : W ! W 0, [[comm]]h should convert a set c of
traces over W to the set of traces over W 0 that \project back" via f to a

trace in c and respect the equivalence relation Q in each step. We therefore

de�ne

[[comm]]W = }y((W �W )1);
[[comm]](f;Q)c = f�0 j map(f � f)�0 2 c & map(Q)�0g;

where map(Q)�0 indicates that each step in �0 respects Q. It is straightfor-

ward to check that this is indeed a functor.

2Equivalently, these relations can be characterized as the greatest �xed points of the

monotone functionals
F (R) = idleA [ stutA �R

G(R) = idleA [mumA �R;

which operate on the complete lattice of relations over traces, ordered by set inclusion.
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Note that if c is a closed set of traces so is [[comm]]hc as de�ned above.

Moreover, the de�nition of [[comm]]h is also applicable to a general trace

set, and it is easy to see that for any set c of traces [[comm]]h(cy) =

([[comm]]hc)y, so that the action of [[comm]] on morphisms interacts smoothly

with closure. This observation is sometimes helpful in calculations.

The case when the morphism h is an expansion from W to W � V is

worth particular attention; when c is a trace set over W , [[comm]](�� V )c

is the trace set over W � V consisting of traces that look like a trace of c

augmented with stuttering in the V -component:

[[comm]](�� V )c = f((w0; v0); (w
0

0
; v0)) : : : ((wn; vn); (w

0

n; vn)) j
(w0; w

0

0
) : : : (wn; w

0

n) 2 c & 8i � n: vi 2 V g

[ f((w0; v0); (w
0

0
; v0)) : : : ((wn; vn); (w

0

n; vn)) : : : j

(w0; w
0

0
) : : : (wn; w

0

n) : : : 2 c & 8i � 0: vi 2 V g

This is as intended: here c represents the meaning of a command that uses
part of the store represented byW , so when we expand the shape of the store

the extra structure represented by the V -component should not be a�ected
by the command's behavior, nor should it a�ect the command's behavior.

4.2 Expressions

Our treatment of expressions is similar, using a slightly simpler form of trace
to reect the assumption that expression evaluation does not cause side-
e�ects, but with enough structure to permit a �ne-grained semantics in which
expression evaluation need not be atomic. We also allow for possible non-
termination, and for the possibility that expression evaluation may be non-

deterministic.

A �nite trace of the form (w0w1 : : : wn; v) represents an evaluation of
an expression during which the state is changed as indicated, terminating

with the result v. It su�ces to allow such cases only when n is �nite, since
we assume fair interaction between an expression and its environment: it is

impossible for the environment to interrupt in�nitely often in a �nite amount

of time. On the other hand, if an expression evaluation fails to terminate the
state may be changed arbitrarily many times and no result value is obtained;
we represent such a case as an in�nite trace in W !. Note in particular

that the trace w! represents divergence when evaluated in state w without
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interference. Thus we will model the meaning of an expression of type � , in

world W , as a subset e of W+ � V� [W !; this subset will be closed under

the obvious analogues of stuttering and mumbling 3. Let }y(W+�V� [W
!)

denote the collection of closed sets of expression traces, ordered by inclusion.

Accordingly, we de�ne

[[exp[� ]]]W = }y(W+ � V� [W !)

[[exp[� ]]](f;Q)e = f(�0; v) j (mapf�0; v) 2 eg [ f�0 2 W 0! j mapf�0 2 eg:

Again, functoriality is easy to check.

4.3 Product types

We interpret product types in the standard way, as products of the corre-
sponding functors:

[[� � �0]]W = [[�]]W � [[�0]]W

[[� � �0]]h = [[�]]h� [[�0]]h:

4.4 Arrow types

We interpret arrow types using functor exponentiation, as in [OT95]. The
domain [[� ! �0]]W consists of the families p(�) of functions, indexed by

morphisms from W , such that whenever h : W ! W 0, p(h) : [[�]]W 0 !

[[�0]]W 0; and whenever h0 : W 0 ! W 00, p(h) ; [[�0]]h0 = [[�]]h0; p(h ; h0): This
uniformity condition amounts to commutativity of the following diagram,
for h : W ! W 0 and h0 : W 0 ! W 00:

[[�]]W 00 [[�0]]W 00

[[�]]W 0 [[�0]]W 0

?

[[�]]h0

-

p(h)

?

[[�0]]h0

-

p(h ; h0)

The domain [[� ! �0]]W is ordered by

p(�) v q(�) () 8W 0:8h :W !W 0:p(h) v q(h);

3For instance, for all �; � 2 W � and all v 2 V� ; w 2 W , (��; v) 2 e ) (�w�; v) 2 e, and

(�ww�; v) 2 e) (�w�; v) 2 e. Similarly for in�nite expression traces.
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the obvious parametrized version of the pointwise ordering. It is easy to

check that with this ordering [[� ! �0]]W is indeed a domain, assuming that,

for each W 0, [[�0]]W 0 is a domain.

The morphism part of [[� ! �0]] is de�ned by:

[[�! �0]](h :W ! W 0)p = �h0 :W 0
!W 00:p(h ; h0):

This kind of �-abstraction for denoting indexed families (here, elements of

[[� ! �0]]W 0) is a convenient notational abuse.

4.5 Variables

For variables we give an \object-oriented" semantics, in the style of Reynolds
and Oles. A variable of type � is a pair consisting of an \acceptor" (which
accepts a value of type � and returns a command) and an expression value.

This is modelled by:

[[var[� ]]]W = (V� ! [[comm]]W )� [[exp[� ]]]W
[[var[� ]]]h = �(a; e):(�v:[[comm]]h(av); [[exp[� ]]]he):

This formulation is exactly as in [Ole82], although the underlying interpre-
tations of comm and exp[� ] are di�erent.

5 Semantics of phrases

A type environment � determines a functor [[�]] as an indexed product. A
member u of [[�]]W is an environment mapping identi�ers to values of the

appropriate type: if �(�) = � then u� 2 [[�]]W .

When � ` P : � is a valid judgement, P denotes a natural transforma-
tion [[P ]] from [[�]] to [[�]]. That is, for all environments u 2 [[�]]W , whenever

h : W ! W 0, [[�]]h([[P ]]Wu) = [[P ]]W 0([[�]]hu). This is expressed by commu-

tativity of the following diagram for all h :W ! W 0:

[[�]]W 0

[[�]]W [[�]]W

[[�]]W 0
-

[[P ]]W 0

?

[[�]]h

-

[[P ]]W

?

[[�]]h
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We provide a denotational description of the semantics, beginning with the

de�nitions for the simple shared-variable language constructs, adapting the

de�nitions of [Bro93] to the functor category setting. In the following se-

mantic clauses, assume that � ` P : � and u ranges over [[�]]W . In each

case naturality is easy to verify, assuming naturality for the meanings of

immediate subphrases.

5.1 Expressions

We omit the semantic clauses for expressions, except for two representative
cases to illustrate the use of expression traces. The expression 1 always

evaluates to the corresponding integer value, even if the state changes during
evaluation:

[[1]]Wu = f(w0 : : :wn; 1) j n � 0 & 8i:wi 2 Wg

The following clause speci�es that addition is sequential and evaluates its
arguments from left to right:

[[E1 + E2]]Wu =

f(�1�2; v1 + v2) j (�1; v1) 2 [[E1]]Wu & (�2; v2) 2 [[E2]]Wugy

[ f�1�2 j (�1; v1) 2 [[E1]]Wu & �2 2 [[E2]]Wu \W !gy

[ f� 2W ! j � 2 [[E1]]Wugy

Other interpretations are also possible, including a parallel form of addition.
Let �W :W ! W �W denote the diagonal map: �W (w) = (w;w). This

may be used to coerce expression traces into command-like traces in cases

(such as assignment, or conditional) where a command has a subphrase of

expression type.

5.2 skip

skip has only �nite traces consisting of stuttering steps:

[[skip]]Wu = f(w;w) j w 2 Wgy

= f(w0; w0)(w1; w1) : : : (wn; wn) j n � 0 & 8i:wi 2 Wg:

15



To show naturality of this de�nition, consider a morphism (f;Q) : W ! W 0.

We have

[[comm]](f;Q)([[skip]]Wu) = [[comm]](f;Q)f(w0; w0) : : : (wn; wn) j n � 0 & 8i:wi 2Wg

= f(w0
0
; w0

0
) : : : (w0n; w

0

n) j n � 0 & 8i:w0i 2 W
0g

= [[skip]]W 0([[�]](f;Q)u)

because f puts each Q-class in bijection with W , so that for each wi there is

a w0i such that f(w0i) = wi, and such a state w0i is the unique member of its

Q-class with this property.

5.3 Assignment

We specify a non-atomic interpretation for assignment, in which the source
expression is evaluated �rst:

[[X:=E]]Wu =

f(map�W�)� j (�; v) 2 [[E]]Wu & � 2 fst([[X]]Wu)vgy

[ fmap�W� j � 2 [[E]]Wu \W !gy:

Note the use of map�W to convert expression traces into command-like
traces.

For instance, the assignment x:=x+ 1, interpreted at world W � Vint in

an environment u in which x corresponds to the Vint component of state, has
the following traces:

[[x:=x+1]](W�Vint)u = f((w0; v0); (w0; v0))((w1; v1); (w1; v0+1)) j w0; w1 2W & v0; v1 2 Vintg
y;

showing the potential for interruption after evaluation of the source expres-
sion x+1 but before the update to the target variable. Closure, in this case,

implies that the command also has traces of the form ((w; v); (w; v+1)), rep-

resenting execution without interruption. In addition, closure permits the
insertion of �nitely many stuttering steps.

5.4 Sequential composition

Sequential composition corresponds to concatenation of traces:

[[P1;P2]]Wu = f�1�2 j �1 2 [[P1]]Wu & �2 2 [[P2]]Wugy:
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It is convenient to introduce a semantic sequencing construct: for arbitrary

trace sets T1 and T2 we de�ne T1;T2 = (T1 � T2)
y. Thus [[P1;P2]]Wu =

[[P1]]Wu; [[P2]]Wu.

Naturality of this de�nition follows because for all trace sets T1 and

T2 over W and all morphisms h : W ! W 0 we have [[comm]]h(T1;T2) =

([[comm]]hT1); ([[comm]]hT2):

5.5 Parallel composition

Parallel composition of commands corresponds to fair interleaving of traces.
For each set A we de�ne the following sets:

bothA = f(�; �; ��); (�; �; ��) j �; � 2 A+g

oneA = f(�; �; �); (�; �; �) j � 2 A1g

fairmergeA = both�A � oneA [ both!A;

where � represents the empty sequence and we use the obvious extension of
the concatenation operation on traces to sets of triples of traces:

t0 � t1 = f(�0�1; �0�1; 01) j (�0; �0; 0) 2 t0 & (�1; �1; 1) 2 t1g:

Similarly we use the obvious extensions of the Kleene iteration operators
on traces. Thus, for instance, both�A is the set of all triples obtained by
concatenating together a �nite sequence of triples from bothA.

4

Intuitively, fairmergeW�W is the set of triples (�; �; ) of traces over W

such that  is a fair merge of � and �. Note that fairmerge satis�es the
following \natural" property: for all functions f : A! B,

(�; �; ) 2 fairmergeA ) (mapf�;mapf�;mapf) 2 fairmergeB:

We then de�ne

[[P1kP2]]Wu = f� j 9(�1; �2; �) 2 fairmergeW�W : �1 2 [[P1]]Wu & �2 2 [[P2]]Wugy:

Again it will be convenient to introduce a semantic parallel composition
operator: for trace sets T1 and T2 over W let T1kT2 = f� j 9(�1; �2; �) 2

4Equivalently, fairmergeA can be characterized as the greatest �xed point of the mono-

tone function F (t) = bothA � t[oneA on the complete lattice }(A1�A1�A1). The least

�xed point of this functional is the subset of triples (�; �; ) from fairmergeA in which one

or both of � and � is �nite.
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fairmergeW�W : �1 2 T1 & �2 2 T2g
y. Naturality of [[P1kP2]] follows from

naturality of [[P1]] and [[P2]], since

[[comm]]h(T1kT2) = ([[comm]]hT1) k ([[comm]]hT2);

for all trace sets T1; T2 over W and all morphisms h : W ! W 0.

5.6 Local variables

A trace of new[� ] � in P at world W should represent an execution of P in
the expanded worldW�V� , with � bound to a fresh variable of type � ; during
this execution, P may change this variable's value but no other command has
access to it. Only the changes to the W -component of the world should be
reected in the overall trace. We say that a trace (wn; w

0

n)
1

n=0
is interference-

free i� for each n, w0n = wn+1. Thus the traces of new[� ] � in P in world
W and environment u should have the form map(fst � fst)�, where � is a
trace of P in world W � V� (and suitably adjusted environment) such that
map(snd � snd)� is interference-free:

[[new[� ] � in P ]]Wu = fmap(fst� fst)� j
� 2 [[P ]](W � V� )([[�]](�� V� )u j � : (a; e)) &
map(snd� snd)� interference-freeg

where the \fresh variable" (a; e) 2 [[var[� ]]](W � V� ) is de�ned by:

a = �v0:V� :f((w; v); (w; v
0)) j w 2 W & v 2 V�g

y

e = f(�hw; vi�0; v) j ��0 2 (W � V� )
� & w 2W & v 2 V�g

y:

5.7 Conditional

For conditional phrases we de�ne by induction on �, for t 2 [[exp[bool]]]W
and p1; p2 2 [[�]]W , an element if t then p1 else p2 of [[�]]W .

� For � = comm, if t then p1 else p2 is

f(map�W�)�1 j (�; tt) 2 t & �1 2 p1g
y [

f(map�W�)�2 j (�; ff) 2 t & �2 2 p2g
y [

fmap�W� j � 2 t \W !g:
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� For � = (�0 ! �1), (if t then p1 else p2)(�) is the indexed family

given by

(if t then p1 else p2)(h) =

�p:if [[exp[bool]]]ht then p1(h)p else p2(h)p:

� For � = var[� ] we de�ne

if t then (a1; e1) else (a2; e2) =

(�v:V� :if t then a1v else a2v; if t then e1 else e2):

We then de�ne

[[if B then P1 else P2]]Wu =
if [[B]]Wu then [[P1]]Wu else [[P2]]Wu:

Naturality is easy to check, by induction on the type.

5.8 Conditional atomic action

We give a \busy wait" interpretation to an await command: if the test expres-
sion B evaluates to tt it executes the body P without allowing interference;
if the test evaluates to ff it waits and tries again; if evaluation of the test
diverges so does the await command.

[[await B then P ]]Wu =

f(w;w0) 2 [[P ]]Wu j (w; tt) 2 [[B]]Wugy

[ f(w;w) j (w; ff) 2 [[B]]Wug!

[ fmap�W� j � 2 [[B]]Wu \W !gy:

Recall that P is assumed to be a �nite sequence of assignments or skip, so
that [[P ]]Wu is a set of �nite traces. The singleton traces (w;w0) 2 [[P ]]Wu

thus represent \atomic" executions of P , during which no external state
changes are permitted. If the test expression B always terminates, as is

common, the third part of the clause becomes vacuously empty.
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5.9 while-loops

The traces of while B do C are obtained by iteration. De�ne

[[B]]
tt
Wu = fmap�W� j (�; tt) 2 [[B]]Wug

[fmap�W� j � 2 [[B]]Wu \W !g

[[B]]
ff
Wu = fmap�W� j (�; ff) 2 [[B]]Wug

[fmap�W� j � 2 [[B]]Wu \W !g

Then we de�ne

[[while B do C]]Wu =
([[B]]

tt
Wu; [[C]]Wu)�; [[B]]

ff
Wu [ ([[B]]

tt
Wu; [[C]]Wu)!

This de�nition can also be characterized as the closure of the greatest �xed
point of the functional

F (t) = [[B]]
tt
Wu � [[C]]Wu � t [ [[B]]

ff
Wu;

which operates on the complete lattice of arbitrary trace sets overW , ordered
by set inclusion. The reason for taking the closure only after constructing
the �xed point, rather than taking the �xed point of the closure-preserving
version of the functional (which uses ; rather than �), is shown by the special

case of the loopwhile true do skip. A similar issue will arise later in a more
general context, in our treatment of recursion. We include the semantics of
while-loops here explicitly, even though it will turn out to be a familiar special
case of the use of recursion, because of the simplicity of the de�nition and
the obvious connection with operational intuition. Notice also that taking

the least �xed point of the above functional would yield only the �nite traces
of the loop, ignoring any potential for in�nite iteration.

5.10 �-calculus

The semantic clauses for identi�ers, abstraction, and application are stan-

dard:
[[�]]Wu = u�

[[�� : �:P ]]Wuh = �a : [[�]]W 0:[[P ]]W 0([[�]]hu j � : a)
[[P (Q)]]Wu = [[P ]]Wu(idW )([[Q]]Wu);
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where, in the clause for abstraction, h ranges over morphisms fromW to W 0.

The clauses for pairing and projections are also standard, using the cartesian

structure of the functor category:

[[hP0; P1i]]Wu = ([[P0]]Wu; [[P1]]Wu)

[[fst P ]]Wu = fst([[P ]]Wu)

[[snd P ]]Wu = snd([[P ]]Wu):

5.11 Recursion

It is possible to give a least-�xed-point interpretation for recursion, as noted
above for while-loops, but this would only account for �nite traces and would
therefore preclude reasoning about safety and liveness properties of programs.
Instead we make use of greatest �xed points to obtain a model containing

both �nite and in�nite traces.
We know from Tarski's theorem [Tar55] that every monotone function

on a complete lattice has a greatest �xed point. This might suggest that
we begin by establishing that each domain [[�]]W is a complete lattice. Un-
fortunately this is not generally true. Although [[comm]]W is a complete

lattice for each world W , with top element the set of all traces over W ,
the functions [[comm]]h do not generally preserve top. For instance, when
h = (f;Q) : W ! W 0 is a non-trivial expansion morphism, so that Q has
more than one equivalence class,

[[comm]]h(top
[[comm]]W ) = [[comm]]h(}((W �W )1))

= f�0 2 [[comm]]W 0 j map(Q)�0g
6= top

[[comm]]W 0 :

As a consequence, [[comm! comm]]W is not a complete lattice, because

it does not possess a top. We can see this as follows. The obvious order-
theoretic candidate for top of [[comm! comm]]W , i.e. the family top(�)
such that for all h :W ! W 0,

top(h) = �d0 : [[comm]]W 0:top[[comm]]W 0;

lacks the naturality property required for membership in [[comm! comm]]W ,

as was just shown above. Furthermore, the obvious natural candidate for

tophood, i.e. the family top(�) given by

top(h) = �d0 : [[comm]]W 0:[[comm]]h(top
[[comm]]W );
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is not the order-theoretic top, since it does not dominate the identity family

id(h) = �d0 : [[comm]]W 0:d0.

The resolution of this dilemma is suggested by the operational behavior

of the command rec �.�; this command simply diverges, without ever chang-

ing the state, no matter how its environment tries to interfere. Its trace

set should therefore consist of the in�nite stuttering sequences. This trace

set is not the greatest �xed point of the identity function on [[comm]]W; as

might be suggested by the syntactic form of the command. Instead it can

be characterized as (the closure of) the greatest �xed point of the monotone

functional �c:f(w;w)� j w 2 W & � 2 cg, operating on the complete lattice
}((W � W )1) of arbitrary trace sets; intuitively, the extra initial stutter

mimics an operational step in which the recursion is unwound. It is easy
to prove that the greatest �xed point of this functional does indeed consist
of the in�nite stuttering sequences. Clearly this trace set is also closed un-

der stuttering and mumbling, so belongs to the sublattice }y((W �W )1).

Moreover, when h :W ! W 0 we have

[[comm]]h([[rec �.�]]Wu)
= [[comm]]h(f(w;w) j w 2Wg!)
= f(w0; w0) j w0 2W 0g!

= [[rec �.�]]W 0([[�]]hu);

so that [[rec �.�]] is indeed a natural transformation.

A similar argument can be given for a recursive phrase rec �.P at general
type �. The key to a general de�nition of [[rec �.P ]]W is to embed each [[�]]W
in a suitable lattice [�]W , and generalize the insertion of an initial stutter,
and the notion of closure, to all phrase types. For each type � we de�ne a
functor [�] from the category of worlds to the category of complete lattices

and monotone functions; in essence, [�] is like [[�]] as de�ned before, except
that we relax the naturality requirements at arrow types and the closure

requirements at ground types. For each type � we de�ne a natural transfor-
mation stut� from [�] to [�]; at ground types this inserts a stuttering step

at the beginning of all traces in a trace set, and at arrow types it produces

a procedure meaning that induces an extra initial stuttering step at result

type, whenever the proecedure is called. We then de�ne a natural transfor-

mation clos� from [�] to [[�]] that restores closure. The semantic de�nitions
given earlier, modi�ed to omit the use of closure, serve to de�ne a semantic

function [P ] such that, when � ` P : � and u 2 [�]W , we have [P ]Wu 2 [�]W .
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In particular, when �; � : � ` P : � and u 2 [[�]]W , the function F (p) =

stut�W ([P ]W (u j � : p) is a monotone map on the complete lattice [�]W . Its

greatest �xed point, which we denote by �p:F (p), is in [�]W , and the closure

of this �xed point is in [[�]]W . We therefore take

[[rec �.P ]]Wu = clos�W (�p:stut�W ([P ]W (u j � : p)):

This de�nition is natural, in that [[�]]h([[rec �.P ]]Wu) = [[rec �.P ]]W 0([[�]]hu).

Stuttering plays a crucial role in the proof of this result. Indeed, in the

absence of stut�W naturality would fail, as seen when P is �. The Appendix
contains further details.

Note that this semantic de�nition does indeed provide the command

rec �.� with the desired denotation, i.e.

[[rec �.� : comm]]W = f(w;w) j w 2Wg
!:

Moreover, the analogous recursion at procedure type comm! comm de-
notes the family

�h : W ! W 0:�a : [[comm]]W 0:f(w0; w0) j w0 2 W 0
g
!;

corresponding to a procedure that causes divergence whenever called. Again
this conforms with our operational expectations.

It is also easy to verify that the meaning given to

rec c.if B then C; c else skip

coincides with the semantics given earlier for the loop while B do C, pro-

vided c 62 FV(C).

6 Reasoning about program behavior

The semantics validates a number of natural laws of program equivalence,
including (when � does not occur free in P 0):

new[� ] � in P 0 = P 0

new[� ] � in (PkP 0) = (new[� ] � in P )kP 0

new[� ] � in (P ;P 0) = (new[� ] � in P );P 0:
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Similarly the semantics validates laws such as the following, which show that

the order in which local variables are declared is irrelevant:

new[�1] �1 in new[�2] �2 in P = new[�2] �2 in new[�1] �1 in P

new[�1] �1 in new[�2] �2 in P (�1; �2) = new[�1] �1 in new[�2] �2 in P (�2; �1)

These laws amount to naturality (for a phrase P of the appropriate type)

with respect to the natural isomorphism of worlds (W �V�1)�V�2 and (W �

V�2)�V�1, this isomorphism being a composition of suitably chosen swap and

assoc morphisms as discussed earlier.
The semantics also validates familiar laws of functional programming,

such as �-equivalence and the usual recursion law:

(�� : �:P )(Q) = P [Q=�]
rec �.P = P [rec �.P=�];

where P [Q=�] is the phrase obtained by replacing every free occurrence of �
in P by Q, with renaming when necessary to avoid capture.

Similarly the model validates laws relating the conditional construct with

functional abstraction and application:

(if B then P1 else P2)(Q) = if B then P1(Q) else P2(Q)
�� : �:if B then P1 else P2 = if B then �� : �:P1 else �� : �:P2 if � 62 FV(B);

and the semantics validates laws familiar from imperative programming, such
as

(if B then X1 else X2):=E = if B then X1:=E else X2:=E

while B do C = if B then C;while B do C else skip

skipkC = Ckskip = C

skip;C = C; skip = C

Our semantics also equateswhile true do skip and await false then skip;

because of our busy-wait interpretation of conditional atomic actions.

The semantics supports compositional reasoning about safety and liveness

properties. For instance, it is possible to show the correctness of the mutual
exclusion procedure discussed earlier, and to show the equivalence of the

workers and barrier procedures.
For a more complex example involving parallelism, consider the following

implementation of a synchronization \object", exploiting two local boolean
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variables and a pair of procedures which can be invoked to set up synchro-

nization:

boolean flag0; flag1;

procedure synch(x; y); (x:=true; await y; y:=false);

flag0:=false; flag1:=false;

P (synch(flag0; flag1); synch(flag1; flag0))

Here P is a free identi�er of type (comm� comm! comm). Since P is a

non-local identi�er, the only way for this phrase to access the ag variables is
by one of the two pre-packaged ways to call synch. Intuitively, the behavior
of this phrase should remain identical if we use a \dualized" implementation
of the ags, interchanging the roles of the two truth values. Thus, this phrase

should be equivalent to

boolean flag0; flag1;

procedure synch(x; y); (x:=false; await :y; y:=true);
flag0:=true; flag1:=true;
P (synch(flag0; flag1); synch(flag1; flag0))

This is an example of the principle of representation independence. Our se-
mantics for Parallel Algol validates this equivalence, by virtue of the existence
of a suitable isomorphism of worlds that relates the two implementations.
To be speci�c, for all worlds W there is an isomorphism dual :W � Vbool !

W � Vbool involving the function �(w; b):(w;:b);equipped with the universal

equivalence relation on W � Vbool . Naturality of the meaning of P with re-
spect to this morphism is enough to establish the desired equivalence. Note
that this is an equivalence between two terms containing a free identi�er. In

essence, no matter how the \rest" of the program is �lled in, provided it is
only allowed access to the two ags by calling one of the supplied procedures,

the two implementations are indistinguishable. For example, if we substitute
for P the procedure

�(left; right): (while true do (c0; left) k while true do (c1; right))

we recover the barrier synchronization example discussed earlier.

Although the above semantics validates many laws of program equivalence
related to locality in parallel programming, there remain equivalences for
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which we can give convincing informal justi�cation, yet which are not valid

in this model. Consider for example the following phrase:

new[int] x in (x:=0; P (x:=x+ 1));

where P is a free identi�er of type comm ! comm. No matter how P

is instantiated this should have the same e�ect as P (skip). As observed

by O'Hearn and Tennent, this equivalence holds for the sequential language

yet is not validated by the sequential possible worlds semantics. Indeed, the

equivalence should still hold in the parallel setting, because the two phrases

obviously treat the non-local part of the state the same way. This argu-
ment may be formalized by establishing an invariant relationship between

the states arising during executions of the two phrases; however, the preser-
vation of this invariant does not follow immediately from naturality of [[P ]].

Similarly, and exactly as in the Reynolds{Oles semantics of Idealized
Algol, our semantics typically fails to support proofs of representation in-
dependence involving non-isomorphic representations. This is illustrated by

the following example, adapted from [OT95]. Consider an abstract \switch"
object, initially \o�", with two capabilities which can be thought of as a
method for turning the switch \on" and a test to see if the switch has been
turned on. One implementation uses a boolean variable:

boolean z;
procedure flick; (z:=true);
procedure on; return z;
z:=false;

P (flick; on)

Another implementation uses an integer variable, and treats all positive in-
tegers as \on", zero as \o�":

integer z;
procedure flick; (z:=z + 1);

procedure on; return (z > 0);
z:=0;

P (flick; on)

Intuitively, even if P is allowed to use parallelism, and even though assign-

ment is not assumed to be atomic, these two phrases will always be equiv-
alent. Yet the possible worlds semantics fails to validate this equivalence.
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Informally an argument supporting the equivalence can be given, by estab-

lishing an invariant relation between the states produced during execution

of the two phrases. The problem is that naturality is not a su�ciently strin-

gent requirement on phrase denotations, since it does not imply the kind of

relation-preserving properties necessary to justify equivalences such as this.

7 Relational parametricity

In response to this inadequacy O'Hearn and Tennent [OT95] formulated a
more re�ned semantics for Idealized Algol embodying \relational parametric-

ity", in which values of procedure type are constrained by certain parametric-
ity properties that guarantee good behavior. This parametric model of Ideal-
ized Algol then supports relational reasoning of the kind needed to establish
program equivalences based on representation independence. We will show
how to generalize their approach to the shared-variable setting. We �rst
summarize some background material from [OT95].

7.1 Relations between worlds

We introduce a category whose objects are relations R between worlds; we
write R : W $W 0 or R �W �W 0. For each world W we let �W : W $ W

denote the identity relation on W , i.e. �W = f(w;w) j w 2Wg.
A morphism from R : W0 $ W1 to S : X0 $ X1 is a pair (h0 : W0 !

X0; h1 : W1 ! X1) of morphisms in W, such that, letting h0 = (f0; Q0) and
h1 = (f1; Q1),

� for all (x0; x1) 2 S, (f0x0; f1x1) 2 R;

� for all (x0; x1) 2 S, x
0

0
2 X0 and x0

1
2 X1, if (x

0

0
; x0) 2 Q0 & (x0

1
; x1) 2 Q1

then (x0
0
; x0

1
) 2 S.

Loosely, we refer to these properties as saying that h0 and h1 respect R and
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S. We represent such a morphism in the following diagrammatic form:

W1

W0

6

R

?

X1

X0

6

S

?

-

h0

-

h1

The identity morphism from R to R corresponds to the diagram

W1

W0

6

R

?

W1

W0

6

R

?

-

idW0

-

idW1

Composition in this category of relations is de�ned in the obvious way,
building on composition in the category of worlds: when (h0; h1) : R $

R0 and (h0
0
; h0

1
) : R0 $ R00 the composite morphism is (h0; h1); (h

0

0
; h0

1
) =

(h0;h
0

0
; h1;h

0

1
).

7.2 Parametric functors and natural transformations

For each type � we de�ne a parametric functor [[�]] from worlds to domains,

i.e. a functor [[�]] from W to D equipped with an action on relations, such
that:

� whenever R : W0 $ W1, [[�]]R : [[�]]W0 $ [[�]]W1;

� for all W , [[�]]�W = �[[�]]W ;

� whenever

W1

W0

6

R

?

X1

X0

6

S

?

-

h0

-

h1
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holds then so does

[[�]]W1

[[�]]W0

6

[[�]]R

?

[[�]]X1;

[[�]]X0

6

[[�]]S

?

-

[[�]]h0

-

[[�]]h1

by which we mean that

(d0; d1) 2 [[�]]R ) ([[�]]h0d0; [[�]]h1d1) 2 [[�]]S:

The �rst two conditions above say that [[�]] constitutes a \relator" [MS93,
AJ91]. The last condition is a parametricity constraint.

Each well-typed phrase denotes a parametric natural transformation [[P ]]

between the parametric functors [[�]] and [[�]], i.e. a natural transformation
obeying the following parametricity constraints: whenever R : W0 $ W1,
(u0; u1) 2 [[�]]R ) ([[P ]]W0u0; [[P ]]W1u1) 2 [[�]]R, as expressed by the follow-
ing diagram:

[[�]]W1

[[�]]W0 [[�]]W0

[[�]]W1
-

[[P ]]W1

?

[[�]]R
6

-

[[P ]]W0

?

[[�]]R
6

Parametric natural transformations compose in the usual pointwise man-

ner. The category having all parametric functors from W to D as ob-

jects, and all parametric natural transformations as morphisms, is cartesian

closed [OT95].

Hence we may use the cartesian closed structure of this category in a
perfectly standard way to interpret the �-calculus fragment of our language,

exactly along the lines developed in [OT95]. To adapt these ideas to the
parallel setting, we must give trace-theoretic interpretations to types comm,

var[� ], and exp[� ]. We give details only comm and exp[� ], the de�nitions
for var[� ] then being derivable.
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7.3 Commands

We de�ne [[comm]]W and [[comm]]h as before. To de�ne [[comm]]R :

[[comm]]W0 $ [[comm]]W1, when R : W0 $ W1, let map(R) be the obvious

extension of R to traces of the same length, so that map(R) � W1

0
�W1

1
.

We then de�ne

(c0; c1) 2 [[comm]]R ()

(8�0 2 c0: 8�1: (map fst�0; �1) 2 map(R))

9�1 2 c1: map fst�1 = �1 & (mapsnd�0; mapsnd�1) 2 map(R))

& (8�1 2 c1: 8�0: (�0; map fst�1) 2 map(R) )
9�0 2 c0: map fst�0 = �0 & (mapsnd�0; mapsnd�1) 2 map(R)):

This is intended to capture the following intuition: [[comm]]R relates two
command meanings i�, whenever started in states related by R and inter-
rupted in related ways, the commands respond in related ways. This, in-

formally, expresses the idea that a trace set represents a (nondeterministic)
state-transformation \extended in time".

It is straightforward to verify that [[comm]] is indeed a parametric functor.
In particular, since map�W is the identity relation on W1, and two traces
�0 and �1 overW�W are equal i� map fst�0 = map fst�1 and map snd�0 =
mapsnd�1, it is easy to see that

(c0; c1) 2 [[comm]]�W () c0 = c1;

as required. Now suppose (h0; h1) : R ! S and (c0; c1) 2 [[comm]]R. We
must show that

([[comm]]h0c0; [[comm]]h1c1) 2 [[comm]]S:

This follows by a routine calculation, using the fact that the morphisms h0
and h1 respect the relations R and S.

As an example to illustrate this de�nition, suppose x is a variable of data

type int corresponding to the Vint -component in states of shape W � Vint .
Let u be a corresponding environment. Let c0 and c1 be the trace sets

corresponding to x:=x+ 1 and x:=x� 1, respectively, i.e.

c0 = f((w0; v0); (w0; v0))((w1; v1); (w1; v0 + 1)) j w0; w1 2W & v0; v1 2 Vintg
y

c1 = f((w0; v0); (w0; v0))((w1; v1); (w1; v0 � 1)) j w0; w1 2W & v0; v1 2 Vintg
y
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Let R be the relation on W � Vint given by

(w; v)R(w0; v0) () w = w0 & v = �v0:

Then (c0; c1) 2 [[comm]]R.

As a further example, let c 2 [[comm]]W and de�ne the relation R :W $

W � V by

wR(w0; v) () w = w0:

Then (c; [[comm]](�� V )c) 2 [[comm]]R.

Note also that the above de�nition of [[comm]]R makes sense even when

applied to arbitrary trace sets, i.e. closure is not crucial for the de�nition.
Clearly we have

(c0; c1) 2 [[comm]]R) (c
y
0 ; c

y
1 ) 2 [[comm]]R:

We also have

(p0; q0) 2 [[comm]]R & (p1; q1) 2 [[comm]]R ) (p0; p1; q0; q1) 2 [[comm]]R
(p0; q0) 2 [[comm]]R & (p1; q1) 2 [[comm]]R ) (p0kp1; q0kq1) 2 [[comm]]R

so that sequential and parallel composition (and hence also iteration) interact
smoothly with the action of [[comm]] on relations.

7.4 Expressions

For expressions, we de�ne [[exp[� ]]]W and [[exp[� ]]]h as before. When R :
W0 $W1 we de�ne

(e0; e1) 2 [[exp[� ]]]R ()

(8�0 2 e0 \W !: 8�1: (�0; �1) 2 map(R) ) �1 2 e1
& 8(�0; v) 2 e0: 8�1: (�0; �1) 2 map(R) ) (�1; v) 2 e1)

& (8�1 2 e1 \W !: 8�0: (�0; �1) 2 map(R) ) �0 2 e0
& 8(�1; v) 2 e1: 8�0: (�0; �1) 2 map(R) ) (�0; v) 2 e0)

Intuitively, two expression meanings are related if when evaluated in related

ways they either terminate together with the same answer, or both fail to
terminate.
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As an example, suppose again that x is a variable of type int correspond-

ing to the Vint component in states of shapeW�Vint. Using the same relation

R as above, so that

(w; v)R(w0; v0) () w = w0 & v = �v0;

and assuming that u is a suitable environment, we have

([[x]](W � Vint )u; [[�x]](W � Vint)u) 2 [[exp[int]]]R:

7.5 Semantic de�nitions

The possible worlds semantics given above can be adapted immediately to the
parametric setting, provided we show that each phrase denotes a parametric
natural transformation. This is straightforward, using structural induction.
For instance, it is easy to see that when R : W $ W 0, parametricity of

[[skip]] amounts to the fact that

(f(w;w) j w 2 Wg
y; f(w0; w0) j w0 2 W 0

g
y) 2 [[comm]]R;

which holds obviously. Similarly, for the parallel construct the parametricity
of [[P1kP2]] follows from parametricity of [[P1]] and [[P2]], since interleaving of
trace sets respects [[comm]]R. Recursion requires a careful argument based
on co-inductive properties of greatest �xed points.

To show the parametricity of recursion, let �; �:� ` P : � and assume that
P denotes a parametric natural transformation. We need to show that for
all R :W0 $ W1, whenever (u0; u1) 2 [[�]]R,

([[rec �.P ]]W0u0; [[rec �.P ]]W1u1) 2 [[�]]R:

This may be achieved by means of a temporary detour using the parametric

analogues of the functors [�] used earlier. Let F0 and F1 be given by:

F0(p0) = stut�W0([[P ]]W0(u0 j � : p0));

F1(p1) = stut�W1([[P ]]W1(u1 j � : p1)):

By assumption on P , whenever (p0; p1) 2 [[�]]R it follows that (F0(p0); F1(p1)) 2

[[�]]R. Consequently the functional F : [�]W0� [�]W1 ! [�]W0� [�]W1 given

by

F (p0; p1) = (F0(p0); F1(p1))
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is a monotone function on a complete lattice, and maps [[�]]R into itself. One

can then show that the closure of its greatest �xed point is in [[�]]R, and

coincides with the pair ([[rec �.P ]]W0u0; [[rec �.P ]]W1u1).

7.6 Examples of reasoning

In addition to the laws and examples listed earlier, the relationally parametric

semantics also validates the problematic equivalence discussed above:

new[int] � in (�:=0; P (�:=�+ 1)) = P (skip);

where P is a free identi�er of type comm ! comm. To prove this, one
can use a relation of form R : W $ W � Vint , given by wR(w0; v) ()

w = w0 2 W & v 2 Vint : It is easy to show that, when u is a suitable
environment in [[�]]W and u0 binds x to the \fresh variable" represented by

the Vint component of state, we get

([[skip]]Wu; [[�:=� + 1]](W � Vint)u
0) 2 [[comm]]R:

The desired result follows by parametricity of [[P ]].
Similarly, the parametric semantics validates the following equivalence,

new[int] � in (�:=1;P (�)) = P (1);

when P is a free identi�er of type exp[int]! comm.
Recall that we showed earlier that, when u is a suitable environment in

which x denotes the Vint component of states of shape W � Vint , and R is

the relation

(w; v)R(w0; v0) () w = w0 & v = �v0;

we have

([[x:=x+ 1]](W � Vint )u; [[x:=x� 1]](W � Vint)u) 2 [[comm]]R

([[x]](W � Vint)u; [[�x]](W � Vint )u) 2 [[exp[int]]]R

It follows by parametricity of [[P ]] that

new[int] x in (x:=0; P (x:=x+ 1)) = new[int] x in (x:=0; P (x:=x� 1));

whenever P is a free identi�er of type comm! comm. Similarly,

new[int] x in (x:=0; P (x; x:=x+1)) = new[int] x in (x:=0; P (x; x:=x�1))
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when P is a free identi�er of type (exp[int]�comm! comm). This exam-

ple shows the equivalence of two implementations of an abstract \counter".

This was shown for the sequential language by O'Hearn and Tennent[OT95].

To illustrate the subtle di�erences between sequential and parallel set-

tings, consider the following phrase

new[int] x in (x:=0; P (x=2; x:=x+ 2));

which amounts to yet another representation for an abstract counter, and

is equivalent to both versions discussed above. In sequential Algol it is also

equivalent to

new[int] x in (x:=0; P (x=2; x:=x+ 1;x:=x+ 1));

but this equivalence fails in the parallel model. The reason lies in the in-
equivalence of x:=x+ 1;x:=x+ 1 and x:=x+ 2, and the ability, by looking
at the value of x in the intermediate state, to detect the di�erence.

Despite this example, the phrases

new[int] x in (x:=0; P (x:=x+ 1;x:=x+ 1))

and
new[int] x in (x:=0; P (x:=x+ 2))

are equivalent in sequential Algol and in parallel Algol, even though x:=x+
1;x:=x + 1 and x:=x + 2 are not semantically equivalent in the parallel
model; no matter how P uses its argument, the only di�erences involve the

local variable, whose value is ignored. To establish the equivalence, one can
use the relation R : W $ W � Vint given by (w; (w0; z)) 2 R () w = w0.

In contrast the phrases

new[int] x in

(x:=0; P (x:=x+ 1;x:=x+ 1);

if even(x) then diverge else skip)

and
new[int] x in

(x:=0; P (x:=x+ 2);
if even(x) then diverge else skip);
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where diverge is a divergent command, are equivalent in sequential but not

in parallel Algol. For example, if P is �c:ckc, then the �rst phrase has an

execution in which each argument thread reads x as 0, then each sets x to

1, and then the two �nal increments occur sequentially, leaving x with the

value 3, causing termination; the other phrase, however, must diverge. The

relation (w; (w0; z)) 2 R () w = w0 & even(z) works for the sequential

model but not for the parallel.

Indeed, in sequential Algol, the phrase

new[int] x in
(x:=0; P (x:=x+ 2);
if even(x) then diverge else skip)

discussed above is equivalent to diverge. This is because the semantics of a
command is taken to be a state transformation, and matter how many times

P calls its argument the value of the local variable x stays even, causing the
phrase to diverge. This equivalence fails for parallel Algol, because our se-
mantics \observes" intermediate states during execution. Instead the phrase
is equivalent to P (skip);diverge.

In the O'Hearn-Tennent model if x = 0 then f(x) else 1 and if x =

0 then f(0) else 1 fail to be semantically equivalent, because the model in-
cludes procedure meanings that violate the irreversibility of state change [OT95],
yet the phrases behave identically in all sequential contexts. In contrast the
equivalence should (and does) fail in our parallel model, because expression
evaluation may not be atomic. For example, if f is �y:y and the phrase is

evaluated in parallel with a command that may change the value of x from
0 to 2, the �rst case might yield the result 2.

The two isomorphic implementations of synchronizers discussed earlier:

boolean flag1 = false; flag2 = false;

procedure synch(x; y) = (x:=true; await y; y:=false)
P (synch(flag1; flag2); synch(flag2; flag1))

and the dualized version, in which the roles of the two truth values are

reversed, can also be proved equivalent by an easy argument involving para-

metricity. Let X = (W � Vbool ) � Vbool , and de�ne the relation R : X $ X

by

((w; b1); b2)R((w
0; b0

1
); b0

2
) () w = w0 & b1 = :b0

1
& b2 = :b0

2
:
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The crucial step is to show that, when u is an environment binding flag1
and flag2 to variables corresponding to the intended components of state,

([[synch(flag1; flag2)]]Xu; [[synch(flag2; flag1)]]Xu) 2 [[comm]]R:

The desired equivalence then follows straightforwardly.

The two non-isomorphic implementations of a \switch", discussed earlier,

can be proved equivalent using the relation R : W � Vbool $ W � Vint given

by

(w; b)R(w0; v) () w = w0 & b = (v > 0):

8 Conclusions

We have shown how to give semantic models for a parallel Algol-like lan-
guage. The semantic models combine ideas from the theory of sequential
Algol (possible worlds, relational parametricity) with ideas from the theory

of shared-variable parallelism (transition traces) in a rather appealing manner
which, we believe, brings out the sense in which shared-variable parallelism
and call-by-name procedures are orthogonal. We have shown that certain
laws of program equivalence familiar from shared-variable programming re-
main valid when the language is expanded to include procedures; and certain
laws of equivalence familiar from functional programming remain valid when

parallelism is added. Although we do not claim a full conservative extension
property, these results suggest that our language Parallel Algol combines
functional and shared-variable programming styles in a disciplined and well-
behaved manner. We have discussed a variety of examples intended to show
the utility of the language and the ability of our semantics to support rigor-

ous arguments about the correctness properties of programs. Our parametric
model o�ers a formal and general way to reason about \concurrent objects".

Our semantics inherit both the advantages and limitations of the corre-
sponding sequential models and of the trace model for the simple shared-

variable language. At ground type comm we retain the analogue of the full

abstraction properties of [Bro93]: two commands have the same meaning if

and only if they may be interchanged in all contexts without a�ecting the

behavior of the overall program. The extra discriminatory power provided
by the �-calculus facilities does not a�ect this. However, like their sequen-

tial forebears, our models still include procedure values that violate the ir-
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reversibility of state change [OR95], preventing full abstraction at higher

types. Recent work of Reddy [Red96], and of O'Hearn and Reynolds [OR95],

incorporating ideas from linear logic, appears to handle irreversibility for

sequential Algol; we conjecture that similar ideas may also work for the par-

allel language, with suitable generalization; this will be the topic of further

research.
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10 Appendix: Naturality of recursion

Throughout this Appendix suppose �; � : � ` P : �.

With each phrase type � we associate a functor [�] from the category of

worlds to the category of complete lattices and monotone functions, de�ned

by induction on �:

[comm]W = }((W �W )1)

[comm]h = �c:f�0 j map(f � f)�0 2 c & map(Q)�0g

[exp[� ]]W = }((W+ � V� ) [W !)

[exp[� ]]h = �e:f(�0; v) j (mapf�; v) 2 eg [ f�0 j mapf�0 2 e \W !g

[�� �0] = [�]� [�0]
[�! �0]W = fp(�) j 8h :W !W 0:p(h) : [[�]]W 0 ! [�0]W 0g

[�! �0]hp = �h0 : W 0 ! W 00:p(h;h0)

Intuitively, [�]W is like [[�]]W without the closure requirements at ground
types and naturality requirements at arrow types. Again we use the pointwise
ordering on [�! �0]W . For each type � and morphism h, [�]h is continuous,

and [[�]]W � [�]W .
We de�ne, for each phrase type �, a natural transformation stut� from [�]

to [�], embodying what it means to insert an extra stuttering step at that
type. Again the de�nition is by structural induction on �:

stutcommWc = f(w;w)� j w 2W & � 2 cg

stutexp[� ]We = f(w�; v) j w 2 W & (�; v) 2 eg [ fw� j w 2 W & � 2 e \W !g

stut���0 = stut� � stut�0

stut�!�0Wp = �h :W !W 0:stut�0W 0 � (ph)

We de�ne induction on �, a natural transformation clos� from [�] to [[�]]:

closcommWc = cy

closexp[� ]We = ey

clos���0 = clos� � clos�0

clos�!�0Wp = �h :W !W 0:clos�0W 0 � (ph)

The semantic de�nitions given earlier (minus the use of closure) then yield

natural transformations [P ] from [�] to [�], such that [[P ]]Wu = clos�W ([P ]Wu)

for all u 2 [[�]]W . This may be shown by induction on the proof of the judge-
ment � ` P : �.
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For example, for sequential composition we put [P1;P2]Wu = ([P1]Wu) �

([P2]Wu) for all u 2 [�]W . When u 2 [[�]]W we then get

[[P1;P2]]Wu = [[P1]]Wu; [[P2]]Wu

= ([P1]Wu)y; ([P2]Wu)y

= ([P1]Wu � [P2]Wu)y

= [P1;P2]Wu)y

When �; � : � ` P : �, and u 2 [[�]]W , the function

F = �x : [�]W:stut�W ([P ]W (u j � : x))

is a monotone map on the complete lattice [�]W . Its greatest �xed point,
which we denote by �x:F (x), is in [�]W , and the closure of this �xed point
is in [[�]]W .

We therefore take

[[rec �.P ]]Wu = clos�W (�x:stut�W ([P ]W (u j � : x)):

This de�nition is natural, in that [[�]]h([[rec �.P ]]Wu) = [[rec �.P ]]W 0([[�]]hu).

To show naturality, let h : W ! W 0 and let F 0 : [�]W 0 ! [�]W 0 be given
by:

F 0 = �x0 : [�]W 0:stut�W
0([P ]W ([[�]]hu j � : x0)):

We must show that [�]h(�F ) = �F 0. We argue as follows.

� By de�nition of F 0, naturality of stut�, naturality of P (assumed as
induction hypothesis), and the �xed point property of F , we have:

F 0([�]h(�F )) = stut�W
0([P ]W 0([�]hu j � : [�]h(�F )))

= stut�W
0([�]h([P ]W 0([�; � : �]h(u j � : �F ))))

= [�]h(stut�W ([P ]W (u j � : �F )))
= [�]h(�F );

so that [�]h(�F ) is a �xed point of F 0. Hence [�]h(�F ) v �F 0.

� For the converse inequality, i.e. �F 0 v [�]h(�F ), we show that �F 0 v

[�]h(top
[�]W ), from which the result follows by continuity of [�]h, and

the fact that �F is equal to F �(top) for some ordinal �. We sketch the
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proof, focussing on the most di�cult case (when � is comm). In this

case we need to show that every trace of �F 0 respects (the equivalence

relation of) h. To prove this we �rst need some de�nitions. Say that a

value p0 2 [comm]W 0 respects h for n steps if each trace in p0 respects

the equivalence relation of h for its �rst n steps. We will also say

that a value p0 in [�0 ! �1]W
0 respects h for n steps if, for all h0 :

W 0 ! W 00, and all a 2 [�0]W
00, if a respects h;h0 for n steps then

so does p0h0a. We say that an environment u0 2 [�]W 0 respects h for

n steps if for all � 2 dom(�), u0(�) respects h for n steps. We then

prove, by induction on P , that whenever u0 respects h for n steps
so does [P ]W 0u0. It follows easily that when u0 and x0 respect h for

n steps, then stutcommW 0([P ]W 0(u0 j � : x0)) respects h for n + 1
steps. Clearly, when u 2 [[�]]W , [[�]]hu respects h for all steps. By the
�xed point property of �F 0 and the de�nition of stutcomm, the �rst
step of every trace in �F 0 is a stutter, which obviously preserves any
equivalence relation. Hence, �F 0 respects h for 1 step. Using the �xed

point property of �F 0 again one can then show by an easy induction
on n that �F 0 respects h for all steps, as required.

This proof extends to cover phrases of product type, arrow type, exp[� ]
and var[� ], in a straightforward manner.
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