
Simulating Soft Shadows
with Graphics Hardware

Paul S. Heckbert and Michael Herf

January 15, 1997

CMU-CS-97-104

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

email: ph@cs.cmu.edu, herf+@cmu.edu
World Wide Web: http://www.cs.cmu.edu/�ph

This paper was written in April 1996. An abbreviated version appeared in [Michael Herf and Paul S. Heckbert, Fast
Soft Shadows, Visual Proceedings, SIGGRAPH 96, Aug. 1996, p. 145].

Abstract

This paper describes an algorithm for simulating soft shadows at interactive rates using graphics hardware. On current graphics
workstations, the technique can calculate the soft shadows cast by moving, complex objects onto multiple planar surfaces in
about a second. In a static, diffuse scene, these high quality shadows can then be displayed at 30 Hz, independent of the number
and size of the light sources.

For a diffuse scene, the method precomputes a radiance texture that captures the shadows and other brightness variations on
each polygon. The texture for each polygon is computed by creating registered projections of the scene onto the polygon from
multiple sample points on each light source, and averaging the resulting hard shadow images to compute a soft shadow image.
After this precomputation, soft shadows in a static scene can be displayed in real-time with simple texture mapping of the
radiance textures. All pixel operations employed by the algorithm are supported in hardware by existing graphics workstations.
The technique can be generalized for the simulation of shadows on specular surfaces.

This work was supported by NSF Young Investigator award CCR-9357763. The views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed or implied, of NSF or the U.S. government.

Keywords: penumbra, texture mapping, graphics workstation,
interaction, real-time, SGI Reality Engine.

1 Introduction
Shadows are both an important visual cue for the perception of

spatial relationships and an essential component of realistic images.
Shadows differ according to the type of light source causing them:
point light sources yield hard shadows, while linear and area (also
known as extended) light sources generally yield soft shadows with
an umbra (fully shadowed region) and penumbra (partially shad-
owed region).

The real world contains mostly soft shadows due to the finite size
of sky light, the sun, and light bulbs, yet most computer graphics
rendering software simulates only hard shadows, if it simulates
shadows at all. Excessive sharpness of shadow edges is often a
telltale sign that a picture is computer generated.

Shadows are even less commonly simulated with hardware ren-
dering. Current graphics workstations, such as Silicon Graphics
(SGI) and Hewlett Packard (HP) machines, provide z-buffer hard-
ware that supports real-time rendering of fairly complex scenes.
Such machines are wonderful tools for computer aided design and
visualization. Shadows are seldom simulated on such machines,
however, because existing algorithms are not general enough, or
they require too much time or memory. The shadow algorithms
most suitable for interaction on graphics workstations have a cost
per frame proportional to the number of point light sources. While
such algorithms are practical for one or two light sources, they are
impractical for a large number of sources or the approximation of
extended sources.

We present here a new algorithm that computes the soft shad-
ows due to extended light sources. The algorithm exploits graphics
hardware for fast projective (perspective) transformation, clipping,
scan conversion, texture mapping, visibility testing, and image av-
eraging. The hardware is used both to compute the shading on
the surfaces and to display it, using texture mapping. For diffuse
scenes, the shading is computed in a preprocessing step whose cost
is proportional to the number of light source samples, but while the
scene is static, it can be redisplayed in time independent of the num-
ber of light sources. The method is also useful for simulating the
hard shadows due to a large number of point sources. The memory
requirements of the algorithm are also independent of the number
of light source samples.

1.1 The Idea
For diffuse scenes, our method works by precomputing, for each

polygon in the scene, a radiance texture [12,14] that records the
color (outgoing radiance) at each point in the polygon. In a diffuse
scene, the radiance at each surface point is view independent, so it
can be precomputed and re-used until the scene geometry changes.
This radiance texture is analogous to the mesh of radiosity values
computed in a radiosity algorithm. Unlike a radiosity algorithm,
however, our algorithm can compute this texture almost entirely in
hardware.

The key idea is to use graphics hardware to determine visibility
and calculate shading, that is, to determine which portions of a
surface are occluded with respect to a given extended light source,
and how brightly they are lit. In order to simulate extended light
sources, we approximate them with a number of light sample points,
and we do visibility tests between a given surface point and each
light sample. To keep as many operations in hardware as possible,
however, we do not use a hemicube [7] to determine visibility.
Instead, to compute the shadows for a single polygon, we render
the scene into a scratch buffer, with all polygons except the one
being shaded appropriately blackened, using a special projective
projection from the point of view of each light sample. These views
are registered so that corresponding pixels map to identical points on

the polygon. When the resulting hard shadow images are averaged,
a soft shadow image results (figure 1). This image is then used
directly as a texture on the polygon in order to simulate shadows
correctly. The textures so computed are used for real-time display
until the scene geometry changes.

In the remainder of the paper, we summarize previous shadow
algorithms, we present our method for diffuse scenes in more detail,
we discuss generalizations to scenes with specular and general re-
flectance, we present our implementation and results, and we offer
some concluding remarks.

2 Previous Work
2.1 Shadow Algorithms

Woo et al. surveyed a number of shadow algorithms [19]. Here
we summarize soft shadows methods and methods that run at inter-
active rates. Shadow algorithms can be divided into three categories:
those that compute everything on the fly, those that precompute just
visibility, and those that precompute shading.

Computation on the Fly. Simple ray tracing computes everything
on the fly. Shadows are computed on a point-by-point basis by
tracing rays between the surface point and a point on each light
source to check for occluders. Soft shadows can be simulated by
tracing rays to a number of points distributed across the light source
[8].

The shadow volume approach is another method for computing
shadows on the fly. With this method, one constructs imaginary
surfaces that bound the shadowed volume of space with respect
to each point light source. Determining if a point is in shadow
then reduces to point-in-volume testing. Brotman and Badler used
an extended z-buffer algorithm with linked lists at each pixel to
support soft shadows using this approach [4].

The shadow volume method has also been used in two hardware
implementations. Fuchs et al. used the pixel processors of the
Pixel Planes machine to simulate hard shadows in real-time [10].
Heidmann used the stencil buffer in advanced SGI machines [13].
With Heidmann’s algorithm, the scene must be rendered through
the stencil created from each light source, so the cost per frame
is proportional to the number of light sources times the number
of polygons. On 1991 hardware, soft shadows in a fairly simple
scene required several seconds with his algorithm. His method
appears to be one of the algorithms best suited to interactive use on
widely available graphics hardware. We would prefer, however, an
algorithm whose cost is sublinear in the number of light sources.

A simple, brute force approach, good for casting shadows of
objects onto a plane, is to find the projective transformation that
projects objects from a point light onto a plane, and to use it to
draw each squashed, blackened object on top of the plane [3], [15,
p. 401]. This algorithm effectively multiplies the number of objects
in the scene by the number of light sources times the number of
receiver polygons onto which shadows are being cast, however,
so it is typically practical only for very small numbers of light
sources and receivers. Another problem with this method is that
occluders behind the receiver will cast erroneous shadows, unless
extra clipping is done.

Precomputation of Visibility. Instead of computing visibility on
the fly, one can precompute visibility from the point of view of each
light source.

The z-buffer shadow algorithm uses two (or more) passes of z-
buffer rendering, first from the light sources, and then from the
eye [18]. The z-buffers from the light views are used in the final

1

Figure 1: Hard shadow images from 2�2 grid of sample points on light source.

Figure 2: Left: scene with square light source (foreground), triangular occluder (center), and rectangular receiver (background), with shadows
on receiver. Center: Approximate soft shadows resulting from 2�2 grid of sample points; the average of the four hard shadow images in
Figure 1. Right: Correct soft shadow image (generated with 16�16 sampling). This image is used as the texture on the receiver at left.

pass to determine if a given 3-D point is illuminated with respect to
each light source. The transformation of points from one coordinate
system to another can be accelerated using texture mapping hard-
ware [17]. This latter method, by Segal et al., achieves real-time
rates, and is the other leading method for interactive shadows. Soft
shadows can be generated on a graphics workstation by rendering the
scene multiple times, using different points on the extended light
source, averaging the resulting images using accumulation buffer
hardware [11].

A variation of the shadow volume approach is to intersect these
volumes with surfaces in the scene to precompute the umbra and
penumbra regions on each surface [16]. During the final rendering
pass, illumination integrals are evaluated at a sparse sampling of
pixels.

Precomputation of Shading. Precomputation can be taken fur-
ther, computing not just visibility but also shading. This is most
relevant to diffuse scenes, since their shading is view-independent.
Some of these methods compute visibility continuously, while oth-
ers compute it discretely.

Several researchers have explored continuous visibility methods
for soft shadow computation and radiosity mesh generation. With
this approach, surfaces are subdivided into fully lit, penumbra, and
umbra regions by splitting along lines or curves where visibility
changes. In Chin and Feiner’s soft shadow method, polygons are
split using BSP trees, and these sub-polygons are then pre-shaded
[6]. They achieved rendering times of under a minute for simple
scenes. Drettakis and Fiume used more sophisticated computational
geometry techniques to precompute their subdivision, and reported
rendering times of several seconds [9].

Most radiosity methods discretize each surface into a mesh of
elements and then use discrete methods such as ray tracing or
hemicubes to compute visibility. The hemicube method computes
visibility from a light source point to an entire hemisphere by pro-
jecting the scene onto a half-cube [7]. Much of this computation
can be done in hardware. Radiosity meshes typically do not resolve
shadows well, however. Typical artifacts are Mach bands along the
mesh element boundaries and excessively blurry shadows. Most
radiosity methods are not fast enough to support interactive changes
to the geometry, however. Chen’s incremental radiosity method is
an exception [5].

Our own method can be categorized next to hemicube radiosity
methods, since it also precomputes visibility discretely. Its tech-
nique for computing visibility also has parallels to the method of
flattening objects to a plane.

2.2 Graphics Hardware
Current graphics hardware, such as the Silicon Graphics Reality

Engine [1], can projective-transform, clip, shade, scan convert, and
texture tens of thousands of polygons in real-time (in 1/30 sec.).
We would like to exploit the speed of this hardware to simulate soft
shadows.

Typically, such hardware supports arbitrary 4�4 homogeneous
transformations of planar polygons, clipping to any truncated pyra-
midal frustum (right or oblique), and scan conversion with z-
buffering or overwriting. On SGI machines, Phong shading (once
per pixel) is not possible, but faceted shading (once per polygon) and
Gouraud shading (once per vertex) are supported. Phong shading

2

V

can be simulated by splitting polygons into small pieces on input. A
common, general form for hardware-supported illumination is dif-
fuse reflection from multiple point spotlight sources, with a texture
mapped reflectance function and attenuation:

Ic(x; y) = Tc(u; v)
X
l

cos �l cos �0e
l Llc

�+ �rl + r2
l

where c is color channel index (= r, g, or b), Ic(x; y) is the pixel
value at screen space (x; y), Tc(u; v) is a texture parameterized
by texture coordinates (u; v), which are a projective transform of
(x; y), �l is the polar angle for the ray to light source l, �0

l is the
angle away from the directional axis of the light source, e is the
spotlight exponent, Llc is the radiance of light l, rl is distance to
light source l, and �, �, and are constants controlling attenuation.
Texture mapping, lights, and attenuation can be turned on and off
independently on a per-polygon basis. Most systems also support
Phong illumination, which has an additional specular term that we
have not shown. The most advanced, expensive machines support
all of these functions in hardware, while the cheaper machines do
some of these calculations in software. Since the graphics subrou-
tine interface, such as OpenGL [15], is typically identical on any
machine, these differences are transparent to the user, except for
the dramatic differences in running speed. So when we speak of a
computation being done “in hardware”, that is true only on high end
machines.

The accumulation buffer [11], another feature of some graphics
workstations, is hardware that allows a linear combination of images
to be easily computed. It is capable of computing expressions of
the general form:

Ac(x; y) =
X
i

�iIic(x; y)

where Iic is a channel of image i, and Ac is a channel of the
accumulator array.

3 Diffuse Scenes
Our shadow generation method for diffuse scenes takes advantage

of these hardware capabilities.
Direct illumination in a scene of opaque surfaces that emit or

reflect light diffusely is given by the following formula:

Lc(x) = �c(x)

�
Lac +

Z
lights

cos+� cos+�
0

�r2
v(x;x0)Lc(x

0) dx0

�
;

where, as shown in Figure 3,
� x = (x; y; z) is a 3-D point on a reflective surface, and x0 is

a point on a light source,
� � is polar angle (angle from normal) at x, �0 is the angle at x0,
� r is the distance between x and x0,
� �, �0, and r are functions of x and x0,
� Lc(x) is outgoing radiance at point x for color channel c, due

to either emission or reflection, Lac is ambient radiance,
� �c(x) is reflectance,
� v(x;x0) is a Boolean visibility function that equals 1 if point
x is visible from point x0, else 0,

� cos+� = max(cos �; 0), for backface testing, and
� the integral is over all points on all light sources, with respect

to dx0, which is an infinitesimal area on a light source.
The inputs to the problem are the geometry, the reflectance �c(x),
and emitted radiance Lc(x

0) on all light sources, the ambient radi-
ance Lac, and the output is the reflected radiance function Lc(x).

receiver R

x'li x
θ' θ

light l

r

Figure 3: Geometry for direct illumination. The radiance at point
x on the receiver is being calculated by summing the contributions
from a set of point light sources at x0

li on light l.

3.1 Approximating Extended Light Sources
Although such integrals can be solved in closed form for planar

surfaces with no occlusion (v � 1), the complexity of the visibility
function makes these integrals intractable in the general case. We
can compute approximations to the integral, however, by replacing
each extended light source l by a set of nl point light sources:

Lc(x
0) �

X
l

nlX
i=1

ali Lc(x
0) �(x0

� x
0

li);

where �(x) is a 3-D Dirac delta function, x0

li is sample point i on
light source l, and ali is the area associated with this sample point.
Typically, each sample on a light source has equal area: ali=al=nl,
where al is the area of light source l.

With this approximation, the radiance of a reflective surface point
can be computed by summing the contributions over all sample
points on all light sources:

Lc(x) = �c(x)Lac

+ �c(x)
X
l

nlX
i=1

ali
cos+�li cos+�

0

li

�r2
li

v(x;x0

li)Lc(x
0

li):
(1)

The formulas above can be generalized to linear and point light
sources, as well as area light sources.

The most difficult and expensive part of the above calculation
is evaluation of the visibility function v, since it requires global
knowledge of the scene, whereas the remaining factors require only
local knowledge. But computing v is necessary in order to simulate
shadows. The above formula could be evaluated using ray tracing,
but the resulting algorithm would be slow due to the large number
of light source samples.

3.2 Soft Shadows in Hardware
Equation (1) can be rewritten in a form suitable to hardware

computation:

Lc(x) = �c(x)Lac

+
X
l

nlX
i=1

�
ali �c(x)

�� cos+�li cos+�
0

li Lc(x
0

li)

�r2
li

�
v(x;x0

li):

(2)

Each term in the inner summation can be regarded as a hard
shadow image resulting from a point light source at x0

li, where x is
a function of screen (x; y).

That summand consists of the product of three factors. The first
one, which is an area times the reflectance of the receiving polygon,
can be calculated in software. The second factor is the cosine of
the angle on the receiver, times the cosine of the angle on the light

3

x=0

b

b+ex

b+ey

b+ex+ey

a x=w

y=w

y=0

w=1

w=0

xo

yo

zo

Figure 4: Pyramid with parallelogram base. Faces of pyramid are
marked with their plane equations.

source, times the radiance of the light source, divided by r2. This
can be computed in hardware by rendering the receiver polygon
with a single spotlight at x0

li turned on, using a spotlight exponent
of e = 1 and quadratic attenuation. On machines that do not support
Phong shading, we will have to finely subdivide the polygon. The
third factor is visibility between a point on a light source and each
point on the receiver. Visibility can be computed by projecting all
polygons between light source point x0

li and the receiver onto the
receiver.

We want to simulate soft shadows as quickly as possible. To take
full advantage of the hardware, we can precompute the shading for
each polygon using the formula above, and then display views of
the scene from moving viewpoints using real-time texture mapping
and z-buffering.

To compute soft shadow textures, we need to generate a number
of hard shadow images and then average them. If these hard shadow
images are not registered (they would not be, using hemi-cubes),
then it would be necessary to resample them so that corresponding
pixels in each hard shadow image map to the same surface point in
3-D. This would be very slow. A faster alternative is to choose the
transformation for each projection so that the hard shadow images
are perfectly registered with each other.

For planar receiver surfaces, this is easily accomplished by ex-
ploiting the capabilities of projective transformations. If we fit a
parallelogram around the receiver surface of interest, and then con-
struct a pyramid with this as its base and the light point as its apex,
there is a 4�4 homogeneous transformation that will map such a
pyramid into an axis-aligned box, as described shortly.

The hard shadow image due to sample point i on light l is created
by loading this special transformation matrix and rendering the
receiver polygon. The polygon is illuminated by the ambient light
plus a single point light source at x0

li, using Phong shading or a
good approximation to it. The visibility function is then computed
by rendering the remainder of the scene with all surfaces shaded as
if they were the receiver illuminated by ambient light: (r; g; b) =
(�rLar; �gLag; �bLab). This is most quickly done with z-buffering
off, and clipping to a pyramid with the receiver polygon as its base.
Drawing each polygon with an unsorted painter’s algorithm suffices
here because all polygons are the same color, and after clipping,
the only polygon fragments remaining will lie between the light
source and the receiver, so they all cast shadows on the receiver.
To compute the weighted average of the hard shadow images so
created, we use the accumulation buffer.

3.3 Projective Transformation of a Pyramid to a Box
We want a projective (perspective) transformation that maps a

pyramid with parallelogram base into a rectangular parallelepiped.
The pyramid lies in object space, with coordinates (xo; yo; zo). It

has apex a and its parallelogram base has one vertex at b and edge
vectors ex and ey (bold lower case denotes a 3-D point or vector).
The parallelepiped lies in what we will call unit screen space, with
coordinates (xu; yu; zu). Viewed from the apex, the left and right
sides of the pyramid map to the parallel planes xu = 0 and xu = 1,
the bottom and top map to yu=0 and yu=1, and the base plane and
a plane parallel to it through the apex map to zu = 1 and zu =1,
respectively. See figure 4.

A 4�4 homogeneous matrix effecting this transformation can be
derived from these conditions. It will have the form:

M =

8>>>>>>:
m00 m01 m02 m03

m10 m11 m12 m13

0 0 0 1
m30 m31 m32 m33

9>>>>>>; ;

and the homogeneous transformation and homogeneous division to
transform object space to unit screen space are:8>>>>>>:

x
y
1
w

9>>>>>>; =M

8>>>>>>:
xo

yo

zo

1

9>>>>>>; and

8>>>:
xu

yu

zu

9>>>; =

8>>>:
x=w
y=w
1=w

9>>>; :

The third row of matrixM takes this simple form because a constant
zu value is desired on the base plane. The homogeneous screen
coordinates x, y, and w are each affine functions of xo, yo, and zo

(that is, linear plus translation). The constraints above specify the
value of each of the three coordinates at four points in space – just
enough to uniquely determine the twelve unknowns inM.

The w coordinate, for example, has value 1 at the points b,
b+ex, and b+ey, and value 0 at a. Therefore, the vector nw =
ey�ex is normal to any plane of constant w, thus fixing the first
three elements of the last row of the matrix within a scale factor:
(m30;m31;m32)

T =�wnw. Settingw to 0 ata and 1 atb constrains
m33=��wnw �a and �w=1=nw �ew, where ew=b� a. The first
two rows of M can be derived similarly (see figure 4). The result
is:

M =

8>>>>>>:
�xnxx �xnxy �xnxz ��xnx �b

�ynyx �ynyy �ynyz ��yny �b

0 0 0 1
�wnwx �wnwy �wnwz ��wnw �a

9>>>>>>; ;

where

nx = ew�ey

ny = ex�ew

nw = ey�ex

and
�x = 1=nx �ex

�y = 1=ny �ey

�w = 1=nw �ew

:

Blinn [3] uses a related projective transformation for the genera-
tion of shadows on a plane, but his is a projection (it collapses 3-D
to 2-D), while ours is 3-D to 3-D. We use the third dimension for
clipping.

3.4 Using the Transformation
To use this transformation in our shadow algorithm, we first fit

a parallelogram around the receiver polygon. If the receiver is a
rectangle or other parallelogram, the fit is exact; if the receiver is
a triangle, then we fit the triangle into the lower left triangle of the
parallelogram; and for more general polygons with four or more
sides, a simple 2-D bounding box in the plane of the polygon can
be used. It is possible to go further with projective transformations,
mapping arbitrary planar quadrilaterals into squares (using the ho-
mogeneous texture transformation matrix of OpenGL, for example).
We assume for simplicity, however, that the transformation between
texture space (the screen space in these light source projections) and
object space is affine, and so we restrict ourselves to parallelograms.

4

3.5 Soft Shadow Algorithm for Diffuse Scenes
To precompute soft shadow radiance textures:

turn off z-buffering
for each receiver polygon R

choose resolution for receiver’s texture (sx�sy pixels)
clear accumulator image of sx�sy pixels to black
create temporary image of sx�sy pixels
for each light source l

first backface test: if l is entirely behind R
or R is entirely behind l, then skip to next l

for each sample point i on light source l
second backface test: if x0

li is behind R then skip to next i
compute transformation matrix M, where a=x0

li,
and the base parallelogram fits tightly around R

set current transformation matrix to scale(sx; sy; 1)�M
set clipping planes to zu;near=1 � � and zu;far=big
draw R with illumination from x0

li only, as described in
equation (2), into temp image

for each other object in scene
draw object with ambient color into temp image

add temp image into accumulator image with weight al=nl
save accumulator image as texture for polygon R

A hard shadow image is computed in each iteration of the i loop.
These are averaged together to compute a soft shadow image, which
is used as a radiance texture. Note that objects casting shadows need
not be polygonal; any object that can be quickly scan converted will
work well.

To display a static scene from moving viewpoints, simply:

turn on z-buffering
for each object in scene

if object receives shadows, draw it textured but without illumination
else draw object with illumination

3.6 Backface Testing
The cases where cos+� cos+�

0=0 can be optimized using backface
testing.

To test if polygon p is behind polygon q, compute the signed
distances from the plane of polygon q to each of the vertices of
p (signed positive on the front of q and negative on the back). If
they are all positive, then p is entirely in front of q, if they are all
nonpositive, p is entirely in back, otherwise, part of p is in front of
q and part is in back.

To test if the apex a of the pyramid is behind the receiver R that
defines the base plane, simply test if nw �ew�0.

The above checks will ensure that cos �>0 at every point on the
receiver, but there is still the possibility that cos �0

� 0 on portions
of the receiver (i.e. that the receiver is only partially illuminated by
the light source). This final case should be handled at the polygon
level or pixel level when shading the receiver in the algorithm above.
Phong shading, or a good approximation to it, is needed here.

3.7 Sampling Extended Light Sources
The set of samples used on each light source greatly influences the

speed and quality of the results. Too few samples, or a poorly chosen
sample distribution, result in penumbras that appear stepped, not
continuous. If too many samples are used, however, the simulation
runs too slowly.

If a uniform grid of sample points is used, the stepping is much
more pronounced in some cases. For example, if a uniform grid of
m�m samples is used on a parallelogram light source, an occluder
edge coplanar with one of the light source edges will cause m big

steps, while an occluder edge in general position will cause m2

small steps.
Stochastic sampling [8] with the same number of samples yields

smoother penumbra than a uniform grid, because the steps no longer
coincide. We use a jittered uniform grid because it gives good results
and is very easy to compute.

Using a fixed number of samples on each light source is ineffi-
cient. Fine sampling of a light source is most important when the
light source subtends a large solid angle from the point of view of
the receiver, since that is when the penumbra is widest and stepping
artifacts would be most visible. A good approach is to choose the
light source sample resolution such that the solid angle subtended
by the light source area associated with each sample is below a
user-specified threshold.

The algorithm can easily handle diffuse (non-directional) light
sources whose outgoing radiance varies with position, such as
stained glass windows. For such light sources, importance sam-
pling might be preferable: concentration of samples in the regions
of the light source with highest radiance.

3.8 Texture Resolution
The resolution of the shadow texture should be roughly equal to

the resolution at which it will be viewed (one texture pixel mapping
to one screen pixel); lower resolution results in visible artifacts such
as blocky shadows, and higher resolution is wasteful of time and
memory. In the absence of information about probable views, a
reasonable technique is to set the number of pixels on a polygon’s
texture, in each dimension, proportional to its size in world space us-
ing a “desired pixel size” parameter. With this scheme, the required
texture memory, in pixels, will be the total world space surface area
of all polygons in the scene divided by the square of the desired
pixel size.

Texture memory for triangles can be further optimized by packing
the textures for two triangles into one rectangular texture block.

If there are too many polygons in the scene, or the desired pixel
size is too small, the texture memory could be exceeded, causing
paging of texture memory and slow performance.

Radiance textures can be antialiased by supersampling: gener-
ating the hard and initial soft shadow images at several times the
desired resolution, and then filtering and downsampling the images
before creating textures. Textured surfaces should be rendered with
good texture filtering.

Some polygons will contain penumbral regions with respect to
a light source, and will require high texture resolution, but others
will be either totally shadowed (umbral) or totally illuminated by
each light source, and will have very smooth radiance functions.
Sometimes these functions will be so smooth that they can be ad-
equately approximated by a single Gouraud shaded polygon. This
optimization saves significant texture memory and speeds display.

This idea can be carried further, replacing the textured planar
polygon with a mesh of coplanar Gouraud shaded triangles. For
complex shadow patterns and radiance functions, however, textures
may render faster than the corresponding Gouraud approximation,
depending on the relative speed of texture mapping and Gouraud-
shaded triangle drawing, and the number of triangles required to
achieve a good approximation.

3.9 Complexity
We now analyze the expected complexity of our algorithm (worst

case costs are not likely to be observed in practice, so we do not
discuss them here). Although more sophisticated schemes are pos-
sible, we will assume for the purposes of analysis that the same set

5

plane R

light
sample

object

Figure 5: Shadows are computed on plane R and projected onto the
receiving object at right.

of light samples are used for shadowing all polygons. Suppose we
have a scene with s surfaces (polygons), a total of n=

P
l
nl light

source samples, a total of t radiance texture pixels, and the output
images are rendered with p pixels. We assume the depth complexity
of the scene (the average number of surfaces intersecting a ray) is
bounded, and that t and p are roughly linearly related. The average
number of texture pixels per polygon is t=s.

With our technique, preprocessing renders the scene ns times.
A painter’s algorithm rendering of s polygons into an image of t=s
pixels takesO(s+t=s) time for scenes of bounded depth complexity.
The total preprocessing time is thus O(ns2+nt), and the required
texture memory is O(t). Display requires only z-buffered texture
mapping of s polygons to an image of p pixels, for a time cost
of O(s+p). The memory for the z-buffer and output image is
O(p)=O(t).

Our display algorithm is very fast for complex scenes. Its cost is
independent of the number of light source samples used, and also
independent of the number of texture pixels (assuming no texture
paging).

For scenes of low or moderate complexity, our preprocessing
algorithm is fast because all of its pixel operations can be done in
hardware. For very complex scenes, our preprocessing algorithm
becomes impractical because it is quadratic in s, however. In such
cases, performance can be improved by calculating shadows only on
a small number of surfaces in the scene (e.g. floor, walls, and other
large, important surfaces), thereby reducing the cost toO(nsst+nt),
where st is the number of textured polygons.

In an interactive setting, a progressive refinement of images can
be used, in which hard shadows on a small number of polygons
(precomputation with n= 1, st small) are rendered while the user
is moving objects with the mouse, a full solution (precomputation
withn large, st large) is computed when they complete a movement,
and then top speed rendering (display with texture mapping) is used
as the viewer moves through the scene.

More fundamentally, the quadratic cost can be reduced using
more intelligent data structures. Because the angle of view of most
of the shadow projection pyramids is narrow, only a small fraction
of the polygons in a scene shadow a given polygon, on average.
Using spatial data structures, entire objects can be culled with a few
quick tests [2], obviating transformation and clipping of most of
the scene, speeding the rendering of each hard shadow image from
O(s+t=s) to O(s�+t=s), where � � :3 or so.

An alternative optimization, which would make the algorithm
more practical for the generation of shadows on complex curved or
many-faceted objects, is to approximate a receiving object with a
plane, compute shadows on this plane, and then project the shadows
onto the object (figure 5). This has the advantage of replacing
many renderings with a single rendering, but its disadvantage is that
self-shadowing of concave objects is not simulated.

3.10 Comparison to Other Algorithms
We can compare the complexity of our algorithm to other algo-

rithms capable of simulating soft shadows at near-interactive rates.
The main alternatives are the stencil buffer technique by Heidmann,
the z-buffer method by Segal et al., and hardware hemicube-based
radiosity algorithms.

The stencil buffer technique renders the scene once for each light
source, so its cost per frame is O(ns+np), making it difficult
to support soft shadows in real-time. With the z-buffer shadow
algorithm, the preprocessing time is acceptable, but the memory
cost and display time cost are O(np). This makes the algorithm
awkward for many point light sources or extended light sources
with many samples (large n). When soft shadows are desired, our
approach appears to yield faster walkthroughs than either of these
two methods, because our display process is so fast.

Among current radiosity algorithms, progressive radiosity using
hardware hemicubes is probably the fastest method for complex
scenes. With progressive radiosity, very high resolution hemicubes
and many elements are needed to get good shadows, however. While
progressive radiosity may be a better approach for shadow genera-
tion in very complex scenes (very large s), it appears slower than
our technique for scenes of moderate complexity because every
pixel-level operation in our algorithm can be done in hardware, but
this is not the case with hemicubes, since the process of summing
differential form factors while reading out of the hemicube must be
done in software [7].

4 Scenes with General Reflectance
Shadows on specular surfaces, or surfaces with more general

reflectance, can be simulated with a generalization of the diffuse
algorithm, but not without added time and memory costs.

Shadows from a single point light source are easily simulated
by placing just the visibility function v(x;x0) in texture memory,
creating a Boolean shadow texture, and computing the remaining
local illumination factors at vertices only. This method costsO(sst+
t) for precomputation, and O(s+p) for display.

Shadows from multiple point light sources can also be simulated.
After precomputing a shadow texture for each polygon when illu-
minated with each light source, the total illumination due to n light
sources can be calculated by rendering the scene n times with each
of these sets of shadow textures, compositing the final image using
blending or with the accumulation buffer. The cost of this method
is nt one-bit texture pixels and O(ns+np) display time.

Generalizing this method to extended light sources in the case of
general reflectance is more difficult, as the computation involves the
integration of light from polygonal light sources weighted by the
bidirectional reflectance distribution functions (BRDFs). Specular
BRDF’s are spiky, so careful integration is required or the highlights
will betray the point sampling of the light sources. We believe,
however, that with careful light sampling and numerical integration
of the BRDF’s, soft shadows on surfaces with general reflectance
could be displayed with O(nt) memory and O(ns+np) time.

5 Implementation
We implemented our diffuse algorithm using the OpenGL sub-

routine library, running with the IRIX 5.3 operating system on an
SGI Crimson with 100 MHz MIPS R4000 processor and Reality
Engine graphics. This machine has hardware for texture mapping
and an accumulation buffer with 24 bits per channel.

The implementation is fairly simple, since OpenGL supports
loading of arbitrary 4�4 matrices, and we intentionally cast our

6

shading formulas in a form that maps cleanly into OpenGL’s model.
The source code is about 2,000 lines of C++. Our implementation
renders at about 900�900 resolution, and uses 24-bit textures at
sizes of 2kx �2ky pixels, for 2 � kx; ky � 8. Phong shading is
simulated by subdividing each receiver polygon into a grid of 8�8-
pixel parallelograms during preprocessing.

Our software allows interactive movement of objects and the
camera. When the scene geometry is changed, textures are recom-
puted. On a scene with s= 749 polygons, st = 3 of them textured,
with two area light sources sampled with n= 8 points total, gen-
erating textures with about t = 200; 000 pixels total, and a final
picture of about p= 810; 000 pixels, preprocessing has a redisplay
rate of 2 Hz. For simple scenes, the slowest part of preprocessing
is the transfer of radiance textures from system memory to texture
memory.

When only the view is changed, we simply redisplay the scene
with texture mapping. The use of OpenGL display lists helps us
achieve 30 Hz rates in most cases. When we allocate more radiance
texture memory than the hardware can hold, however, paging slows
redisplay.

Since we know the size and perceptual importance of each object
at modeling time, we have found it convenient to have each receiver
object control the number of light source samples that are used to
illuminate it. The floor and walls, for example, might specify many
light source samples, while table and chairs might specify a single
light source sample. To facilitate further testing of shadow sampling,
a slider that acts as a multiplier on the requested number of samples
per light source is provided. More automatic and intelligent light
sampling schemes are certainly possible.

6 Results
The color figures illustrate high quality results achievable in a few

seconds with fine light source sampling. Figure 6 shows a scene
with 6,142 polygons, 3 of them shadowed, which was computed in
5.5 seconds using n= 32 light samples total on two light sources.
Figure 7 illustrates the calculation of shadows on more complex
objects, with a total of st=25 shadowed polygons. For this image,
7�7 light sampling was used when shadowing the walls and floor,
while 3�3 sampling was used to compute shadows on the table top,
and 2�2 sampling was used for the table legs. The textures for
the table polygons are smaller than those for the walls and floor, in
proportion to their world space size. This image was calculated in
13 seconds.

7 Conclusions
We have described a simple algorithm for generating soft shadows

at interactive rates by exploiting graphics workstation hardware.
Previous shadow generation methods have not supported both the
computation and display of soft shadows at these speeds.

To achieve real time rates with our method, one probably needs
hardware support for transformation, clipping, scan conversion, tex-
ture mapping, and accumulation buffer operations. In coming years,
such hardware will only become more affordable, however. Soft-
ware implementations will also work, of course, but at reduced
speeds.

For most scenes, realistic images can be generated by computing
soft shadows only for a small set of polygons. This will run quite
fast. If it is necessary to compute shadows for every polygon, our
preprocessing method has quadratic growth with respect to scene
complexity s, but we believe this can be reduced to about O(s1:3),
using spatial data structures to cull off-screen objects.

Once preprocessing is done, the display cost is independent of
the number and size of light sources. This cost is little more than
the display cost without shadows.

The method also has potential as a form factor calculation tech-
nique for progressive radiosity.

8 Acknowledgments & Notes
We thank Silicon Graphics for the gift of a Reality Engine, which

made this work possible. Jeremiah Blatz and Michael Garland
provided modeling assistance. This paper grew out of a project by
Herf in a graduate course on Rendering taught by Heckbert, Fall
1995.

References
[1] Kurt Akeley. RealityEngine graphics. In SIGGRAPH ’93 Proc., pages

109–116, Aug. 1993.

[2] James Arvo and David Kirk. A survey of ray tracing acceleration
techniques. In Andrew S. Glassner, editor, An introduction to ray
tracing, pages 201–262. Academic Press, 1989.

[3] James F. Blinn. Me and my (fake) shadow. IEEE Computer Graphics
and Applications, 8(1):82–86, Jan. 1988.

[4] Lynne Shapiro Brotman and Norman I. Badler. Generating soft shad-
ows with a depth buffer algorithm. IEEE Computer Graphics and
Applications, 4(10):5–24, Oct. 1984.

[5] Shenchang Eric Chen. Incremental radiosity: An extension of pro-
gressive radiosity to an interactive image synthesis system. Com-
puter Graphics (SIGGRAPH ’90 Proceedings), 24(4):135–144, Au-
gust 1990.

[6] Norman Chin and Steven Feiner. Fast object-precision shadow gen-
eration for area light sources using BSP trees. In 1992 Symp. on
Interactive 3D Graphics, pages 21–30. ACM SIGGRAPH, Mar. 1992.

[7] Michael F. Cohen and Donald P. Greenberg. The hemi-cube: A ra-
diosity solution for complex environments. Computer Graphics (SIG-
GRAPH ’85 Proceedings), 19(3):31–40, July 1985.

[8] Robert L. Cook. Stochastic sampling in computer graphics. ACM
Trans. on Graphics, 5(1):51–72, Jan. 1986.

[9] George Drettakis and Eugene Fiume. A fast shadow algorithm for area
light sources using backprojection. In SIGGRAPH ’94 Proc., pages
223–230, 1994. http://safran.imag.fr/Membres/George.Drettakis/
pub.html.

[10] Henry Fuchs, Jack Goldfeather, Jeff P. Hultquist, Susan Spach, John D.
Austin, Frederick P. Brooks, Jr., John G. Eyles, and John Poulton. Fast
spheres, shadows, textures, transparencies, and image enhancements
in Pixel-Planes. Computer Graphics (SIGGRAPH ’85 Proceedings),
19(3):111–120, July 1985.

[11] Paul Haeberli and Kurt Akeley. The accumulation buffer: Hardware
support for high-quality rendering. Computer Graphics (SIGGRAPH
’90 Proceedings), 24(4):309–318, Aug. 1990.

[12] Paul S. Heckbert. Adaptive radiosity textures for bidirectional ray trac-
ing. Computer Graphics (SIGGRAPH ’90 Proceedings), 24(4):145–
154, Aug. 1990.

[13] Tim Heidmann. Real shadows, real time. Iris Universe, 18:28–31,
1991. Silicon Graphics, Inc.

[14] Karol Myszkowski and Tosiyasu L. Kunii. Texture mapping as an
alternative for meshing during walkthrough animation. In Fifth Euro-
graphics Workshop on Rendering, pages 375–388, June 1994.

[15] Jackie Neider, Tom Davis, and Mason Woo. OpenGL Programming
Guide. Addison-Wesley, Reading MA, 1993.

[16] Tomoyuki Nishita and Eihachiro Nakamae. Half-tone representation
of 3-D objects illuminated by area sources or polyhedron sources. In
COMPSAC ’83, Proc. IEEE 7th Intl. Comp. Soft. and Applications
Conf., pages 237–242, Nov. 1983.

7

[17] Mark Segal, Carl Korobkin, Rolf van Widenfelt, Jim Foran, and Paul
Haeberli. Fast shadows and lighting effects using texture mapping.
Computer Graphics (SIGGRAPH ’92 Proceedings), 26(2):249–252,
July 1992.

[18] Lance Williams. Casting curved shadows on curved surfaces. Com-
puter Graphics (SIGGRAPH ’78 Proceedings), 12(3):270–274, Aug.
1978.

[19] Andrew Woo, Pierre Poulin, and Alain Fournier. A survey of shadow
algorithms. IEEE Computer Graphics and Applications, 10(6):13–32,
Nov. 1990.

8

