
ONR POST TENURE SUPPORT
DEVELOPMENT OF A MASSIVELY PARALLEL PARTICLE-MESH

ALGORITHM FOR SIMULATIONS OF GALAXY DYNAMICS AND PLASMAS
Final Report

GMU PROPOSAL NUMBER 093148
GOVERNMENT GRANT NUMBER: N00014-93-1-0193

PI: John Wallin, George Mason University

Introduction
Particle-mesh calculations treat forces and potentials as field quantities which are

represented approximately on a mesh. A system of particles is mapped on to this mesh as a density
distribution of mass or charge. The Fourier transform is used to convolve this distribution with the
Green's function of the potential, and a finite difference scheme is used to calculate the forces
acting on the particles. The computation time scales as the Ng log Ng, where Ng is the size of the
computational grid. In contrast, the particle-particle method's computing time relies on direct
summation, so the time for each calculation is given by NP2, where Np is the number of particles.

The particle-mesh method is best suited for simulations with a fixed minimum resolution
and for collisionless systems, while hierarchical tree codes have proven to be superior for
collisional systems where two-body interactions are important. Particle mesh methods still
dominate in plasma physics where collisionless systems are modeled.

The CM-200 Connection Machine produced by Thinking Machines Corp. is a data parallel
system. On this system, the front-end computer controls the timing and execution of the parallel
processing units. The programming paradigm is Single-Instruction, Multiple Data (SIMID). The
processors on the CM-200 are connected in an N-dimensional hypercube; the largest number of
links a inessage will ever have to make is N. As in all parallel computing, the efficiency of an
algorithm is primarily determined by the fraction of the time spent communicating compared to that
spent computing. Because of the topology of the processors, nearest neighbor communication is
more efficient than general communication.

Program Structure
Under this grant, a parallel version of the particle-mesh algorithm was implemented on the

CM-200 Connection Machine at the Naval Research Laboratory. This algorithm was developed in
the C* programming language that is designed for easy implementation of SIMD codes. Figure 1
shows a flow chart of this algorithm.

In PM codes, there are two fundamental computational units, namely the computational
grid and the array of particles. This program represented each of these two computational units as
processor shapes. The C* language groups sets of virtual processors - data units which have
common characteristics- into user defined processor shapes. These shape can be added as
variables, or directly and indirectly addressed.

The grid in PM codes is used to calculate the potential and the forces, while the particles are
moved according to the forces determined from the grid. Every timestep requires a mapping of the
particles to the computational grid, and a mapping of the grid's forces back to the particles (see
Figure 2). Since particles can move throughout the computational grid, general communications
must be used to connect the particle shape to the grid shape. Global communications must also bt
used to create the Fourier transform of the particle density and the inverse transform of the
potential. Besides the global communications, local communications between neighboring
particles must be used for the finite difference scheme to determine the forces from the convolved
potentials.

Two schemes were investigated for mapping the particles to the grid. The nearest grid
point scheme (NGP) maps each particle into a single cell, while the cloud-in-cell scheme (CIC)
maps the density of each particle into four weighted parts and spreads them between cells. The*
CIC scheme has generally higher accuracy since it creates a linearly interpolated density

!7Fz



distribution (see Figure 3). The price of this higher accuracy is the additional time spent mapping
the particles to the grid and interpolating the force back to the particles.

Research Results
Timing tests of the PM algorithm show that for simulations with less than 512K particles,

the execution time scales linearly with the number of particles. Figure 4 shows the total cpu time
per algorithm timestep as a function of the number of particles.

Most of the time in the algorithm is spent in the parts of the code which require general
communication between processors. Since the CM-200 is optimized for local communication, the
mapping between the particles and the grid is especially time consuming.

Table 1 contains the results from the timing test on the system for five different runs using
the NGP method. Communication time begins to dominate the execution time for runs with more
than 512K particles. The largest time portion of the communication time is spent calculating the
forces on the particles. Since each particle must access the force from grid cells, two way
communications must be used in this section of the code. The FFT routine on the CM-200 is very
efficient, and only takes up about 2.5 seconds to transform the grid used in this study.

When the CIC scheme was tested, the communications became significantly slower.
Mapping the particles to the grid took more than four times longer, because each particle had to be
mapped four times. Force calculations and interpolation also increased in complexity. No
significant increase in the simulation accuracy was seen because of these changes.

One area that was not investigated is the effects of a non-uniform distribution of particles.
If most of the particles must be mapped to a single grid cell and virtual processor, a
communications bottleneck will occur in this algorithm. Although this is less important for plasma
and cosmology simulations, simulations of interacting galaxies have highly variable densities
which can create this bottleneck.

Conclusions
The PM method can be efficiently implemented on a SIMD parallel computer with relatively

simple data structures and communications. Fine grain parallelism can be effectively used in this
type of algorithm if general communication between processors has been optimized. This type of
algorithm will be very effective for plasma and cosmological simulations, which are both
collisionless and have relatively uniform densities. No significant increase in accuracy was seen
when the CIC method as used, and a significant increase in computational cost was associated with
its implementation.

Publications Resulting from this Study

Wallin, J. And Shah, I., Design and Performance of a Parallel Particle-Mesh Code as a Solution to
the N-body Problem, abstract in the Bulletin of the American Astronomical Society (June
1993)



Figure 1 - Flow chart for the parallel particle mesh algorithm

Initialize particle
positions and grid

map particle to grid
using CIC or NGP
scheme

convolve particle distribution

with Green's function using
FFT to obtain potential

use finite differencing to calculate
forces from the potential

interpolate forces using
NGP or CIC kemal

move particles using Leap-
Frog routine

check conservation of
energy and momentum

Flow of control in
Particle Mesh Codes



Figure 2 - Mapping the particles to the computational grid

Communication between the particle
and grid processor shapes

particle shape

Com0m it b t grid shape

4

7

Communication between the particle and grd processe
geometries requires general communication. The same 8k
physical processors are used for all computations, but the
virtual shapes define the control flow for the data.



Figure 3 - Assignment Function Geometry

ASSIGNMENT FUNCTION GEOMETRY

/
+

NGP METHOD

In the NGP scheme, all the mass of the particle is
distributed into the nearest adjoining cell

+

CIC METHOD

In the CIC scheme, the mass of the particle is distributed
into groups of adjoining cells based on gemoetry weighting
of the cloud shape



Figure 4 - Timing test results

3.5

Timing Test Results -

3 Grid Size= 128x1 28

2.5
CL

CO

E 2

CL

V)1.5
C
0

CO 1

0.5

0 .I i . I . ' I , .

0 100 200 300 400 500 600

number of particles



Table 1: Execution time of the particle PM code.

16K 32K 64K 128K 256K 512K

Front end 10.8 14.4 17.8 24.1 37.0 59.4

Comm 3.6 6.9 12.8 24.3 37.8 75.2

CM CPU 1.6 2.8 5.3 11.4 18.5 35.2

CM total 5.5 10.2 18.2 37.6 59.5 116.4

Each column represents the number of seconds for a single simulation, with the top row
indicating the total number of particles in each simulation. The grid was fixed at 1282 for these
simulations. The time on the front end includes time to read data and execute any serial
instructions. The Comm row is the total time spent communicating. The CM CPU is the total
amount of time executing on the Connection Machine CPU, while CM total is the total cpu and
communication time.


