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Abstract 

The research performed under the above titled ONR grant has resulted in a number of 

important advances in the treatment of integrodifferential transport equations, such as those 

obtained when the Fokker-Planck coefficients depend on the "temperature" of the particle 

distribution, as defined by a suitable integral. In summary, we have developed a new technique 

for independently determining the temperature as a function of time using the energy moments 

of the initial distribution. This is equivalent to decoupling the original integrodifferential problem 

into two parts: (i) determination of the temperature variation, and (ii) determination of the 

particle distribution as a function of time and energy. This represents a major advance 

in the treatment of integrodifferential Fokker-Planck equations because the two 

problems obtained can be solved separately without recourse to traditional predictor- 

corrector alogorithms. The technique has been applied with success to the problem of self- 

consistent Comptonization in astrophysical plasmas. The theoretical approach utilizes a novel 

combination of physics, applied mathematics, and advanced symbolic computational techniques, 

and shows good promise for generalization to the treatment of other integrodifferential systems of 

interest to the Navy. The multi-disciplinary CSI program at George Mason University has proven 

an ideal venue for this investigation. 
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I. Introduction 

During radiation-dominated X-ray transients in AGNs, energy is rapidly transferred 

between the photons and the electrons until the electron temperature (Te) has equilibrated to the 

inverse-Compton temperature of the radiation (Tic). This occurs on a much shorter timescale 

than the equilibration of the radiation into a Wien distribution. Once the temperatures have 

equilibrated, the condition Te = Tic continues to be enforced by the Compton exchange of energy 

between the photons and the electrons. The radiative transfer problem then becomes highly 

nonlinear, since the variation of the electron temperature determines the spectrum (through the 

Kompaneets equation), while the spectrum determines the electron temperature (through the 

condition Te = Tic). It is therefore extremely useful to develop techniques for independently 

calculating the electron temperature as a function of time for an arbitrary initial radiation 

spectrum. 

In the research carried forth here, we have developed a general technique for determining 

the electron temperature by using the energy moments of the initial spectrum to construct a 

continued fraction with dramatic convergence properties. The electron temperature so obtained 

is then folded back into the PDE to compute the spectral solution. Hence the original integrodifferential 

problem is decoupled into two parts: (i) determination of the electron temperature as a function 

of time, and (ii) determination of the photon spectrum as a function of time and energy. 

II. Time-Dependent Comptonization 

In radiation-dominated, fully-ionized plasmas, photon creation and destruction are 

unable to establish local thermodynamic equilibrium, and the photons and electrons interact 

primarily via Compton scattering. Neglecting thermal opacity sources, the temporal evolution 

of a distribution of photons in an infinite, homogeneous plasma with electron number density ne 

and electron temperature Te is governed by the Kompaneets (1957) Fokker-Planck equation 
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where n(u, t) is the photon occupation number, u is the photon frequency, and the terms on 



the right-hand side express the effects of .recoil losses and energy diffusion, respectively. Note 

that the properties of the electrons need not be constant, and as we argue below, the electron 

temperature will track the inverse-Compton temperature of the photons during radiation- 

dominated flares. 

A Maxwellian distribution of electrons will exchange no net energy with the photons if 

Te = Tic, where 
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is the inverse-Compton temperature of the radiation, denned here without regard to stimulated 

processes. In a radiation-dominated plasma, energy is rapidly transferred between the photons 

and the electrons until Te = Tic- This occurs on a much shorter timescale than the equilibration 

of the radiation into a Wien distribution n <x exp(-hv/kTe). If the cooling timescale is much 

shorter than the diffusion timescale (td > tc), then most of the spectral evolution takes place 

aßer the electron and inverse-Compton temperatures have equilibrated. During this later phase, 

the condition Te = Tic is enforced by the Compton exchange of energy between the two species 

(Becker & Begelman 1986), and Compton scattering drives the photon distribution toward a 

Wien distribution. 

The physical requirement that Te = T1C in the Kompaneets equation increases 

the complexity of the problem, since the equation becomes integrodifferential in 

nature. The temperature must therefore be computed self-consistently along with the spectrum, 

starting from a specified initial radiation distribution. The coupled integrodifferential system 

is usually solved numerically using predictor-corrector techniques. However, we show here 

that the variation of the electron temperature can be determined in advance using 

only the initial spectrum itself. With the electron temperature independently determined, 

the solution for the spectrum can be generated straightforwardly by numerical integration of the 

Kompaneets equation. In § III we develop a new technique for computing the perturbation series 

for the temperature using only the energy moments of the initial spectrum. In § IV the resulting 

(divergent) power series is transformed into a (convergent) continued fraction and evaluated for a 

variety of initial spectra. 
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III. Perturbation Method 

The Kompaneets equation can be rewritten in terms of the dimensionless energy 

hv 
x = 
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where 

6S*±m. (6) 
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Next we introduce the energy moments of the radiation spectrum, defined as 
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and note that the photon energy and number densities can be expressed as 
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We also note that the condition Te = T1C requires that 
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and the Compton y-parameter (essentially the dimensionless time) 

y^f^n^cdt', (4) 
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and operate on equation (5) with /0°° xe dx to obtain the differential recurrence relation 

dy l h 

Since there can be no net energy exchange between the photons and the electrons (Te = TIC), 

it follows that J3 =constant. Equations (10) and (11) can therefore be applied recursively to 
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obtain the y-derivatives of 0 in terms of the moments of the radiation spectrum. In particular, 

the derivatives of 0 evaluated at y = 0 can be expressed in terms of the moments of the initial 

radiation distribution, which are known. For example, the zeroth and first derivatives of 0 at 

y = 0 are respectively 
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etc. In Figure 1 we plot the Taylor series for 0(y) obtained in the case of a bremsstrahlung initial 

spectrum, 

n(x,y)\y=0 = x-3e-*/4°°. (14) 

The series is obviously divergent beyond a small radius of convergence. However, we show in § IV 

that the series can be recast as a convergent continued fraction. 

IV. Continued-Fraction Representation 

Although the perturbation series obtained using the energy moments of the initial 

spectrum is often quite divergent, useful information about the temperature variation can 

nonetheless be recovered by using the power-series coefficients to construct the continued-fraction 

representation 

6{y) = ä , (15) 
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which is simply a rational function approximation to the unknown function 0(y). The continued- 

fraction coefficients CQ, ... ,cN are computed using the algorithm derived by Becker (1988). The 

resulting sequence of continued fractions is plotted in Figure 2 for the case of a bremsstrahlung 

initial spectrum. In contrast to the highly divergent Taylor series, the sequence of continued 

fractions is uniformly convergent to a unique limit function. The general form of the temperature 

variation is in good agreement with the numerical calculations and semi-analytic models of 
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Becker & Begelman (1986). Furthermore, the run of 0(y) computed by substituting the resulting 

solution for the photon spectrum n(x,y) into equations (7) and (10) agrees nearly perfectly with 

the limit function depicted in Figure 2. 

We have also obtained results for monochromatic initial spectra and for combinations of 

power-laws and exponentials, and we find that the sequence of fractions is convergent in all cases, 

although uniform convergence is achieved only when the initial photon number spectrum diverges 

logarithmically at low energy. The observed X-ray spectrum for fast (unresolved) transients can 

be computed by averaging n(x,y) over the characteristic diffusion time for the photons. 

V. Summary 

• We have developed a new technique for independently determining the self-consistent 

variation of the electron temperature in Comptonizing plasmas. 

• The method assumes that Te  = Tlc at all times, and utilizes only the information 

contained in the energy moments of the initial spectrum. 

• The sequence of continued fractions obtained in the case of a bremsstrahlung initial 

spectrum demonstrates uniform convergence to a unique limit function 9(y), which is the correct 

temperature variation. 

• The technique essentially decouples the integral and differential parts of the 

original integrodifferential Kompaneets equation, thereby eliminating the need to use 

a conventional predictor-corrector algorithm. 

• The method can be generalized to treat other integrodifferential equations of 

special interest to the Navy. 
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Fig. 1. — Sequence of Taylor series approximations of 

order 0 through 24 for the temperature function theta[y] 

for a bremsStrahlung initial spectrum. 
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Fig. 2. — Sequence of continued-fraction approximations 
of order 0 through 24 for the temperature function theta[y] 
for a bremsStrahlung initial spectrum. 


