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PREFACE 

Trichloroethylene (TRI), a common industrial solvent, is metabolized to 
trichloroacetic acid (TCA), trichloroethanol (TCOH), dichloroacetic acid (DCA), and 
other compounds. Some rodents have developed hepatic tumors after exposure to TRI, 
TCA and DCA. The focus of this technical report is to describe the metabolism of DCA. 
The information contained in this report was presented as a poster at the 34th Annual 
Meeting of the Society of Toxicology in Baltimore, MD, March 1995. This work was 
supported by DoD Contract No. F33615-90-C-0532 and funded by Strategic 
Environmental Research and Development Program (SERDP). 

The animals used in this study were handled in accordance with the principles 
stated in the Guide for the Care and Use of Laboratory Animals, prepared by the 
Committee on Care and Use of Laboratory Animal Resources, National Research Council, 
DHHS, National Institute of Health Publication #86-23, 1985, and the Animal Welfare 
Act of 1966, as amended. 
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INTRODUCTION 
Dichloroacetic acid (DCA) arises metabolically from trichloroethylene (TRI), a 

common industrial solvent and a groundwater contaminant (IRP Guide, Vol. 1). DCA is 
also a byproduct of chlorination. Although TRI itself has not been shown to be directly 
mutagenic (Greim et al., 1975; Waskell, 1978) it appears that TRI's toxicity is linked to its 
metabolites. 

While DCA has been shown to be carcinogenic, neither its mode of action nor its 
metabolism have been well studied. Mice have developed hepatocarcinomas after 
exposure to DCA (Herren-Freund et aL, 1987), and rats have shown similar 
histopathological changes, but not to the same extent (DeAngelo, 1991). DCA has also 
caused developmental toxicity in rats (Smith et al, 1992). Little is known about the 
metabolism of DCA beyond the identification of its metabolites (glyoxalate, glycolate, 
oxalate, C02). Rodents given DCA in water by gavage had low, but detectable, blood 
levels of monochloroacetic acid. Glyoxalate, glycolate and oxalate were identified as 
urinary metabolites (Larson and Bull, 1992). It has been speculated that DCA is 
reductively dechlorinated via cytochrome P-450 (Larson and Bull, 1992). However, we 
have shown that mammalian (rat, mouse, human) DCA degradative activity is localized to 
the cytosolic subcellular compartment and is therefore, not P-450 dependent (Mahle et al 
1994; Lipscomb et aL, 1995). To understand the metabolism of DCA better, experiments 
were conducted to determine the effects of varying cofactors and potential inhibitors. The 
results from these experiments are now being used to support the further investigation of 
DCA metabolism. 

METHODS 
Hepatic Preparations: B6C3F1 mice were euthanized and their livers perfused in situ 
with ice cold 5 mM Tris/ 154 mM KC1 buffer, pH 7.4. Perfused livers were homogenized 
using a cold glass and teflon homogenizer in 4 volumes of Tris-KCl buffer. Homogenate 
was centrifuged at 9000 X g for 20 minutes. The resulting S9 fraction was then 
centrifuged at 105,000 X g for 1 hour. The cytosolic supernatant was re-centrifuged to 
remove any contaminants. Some cytosolic samples were gel-filtered (de-salted) on a 
Sephadex G-25 column with a 10,000 MW cutoff (Pharmacia) to remove endogenous 
salts. Cytosolic protein content was determined using a BCA protein kit from Sigma. The 
volume of all incubations was 1 mL. 

GC Conditions: Incubation media (containing any of the following: cytosol, cofactor, 
DCA or buffer) was derivatized with dimethyl sulfate, following a modified method of 
Maiorino et aL (1980). One microliter of derivatized sample was injected on a Hewlett- 
Packard 5890 GC/ECD fitted with a DB-Wax column (J&W Scientific). 

Macromolecular experiments: Isoquick nucleic acid extraction kit (Microprobe) was 
used to determine the amount of DNA and RNA in the cytosol. Cytosol was diluted with 
buffer to yield 4 mg/ml protein content and pre-incubated with 100 ul of 2 mg/ml protease 
(Sigma, Type I: Crude from Bovine Pancreas), 100 ul of 0.001 mg/ml DNase 



(Boehrmger-Mannheim, DNase 1, Grade II) or 100 ul of 0.1 mg/ml RNase (B-M, dry 
powder) for 30 min at 37°C. After 30 min an NADPH regenerating system and 100 uL of 
a 200 ug/ml DCA stock solution were added to the samples and incubation continued for 
10 min at 37°C. Samples were heat inactivated and analyzed for DCA content by GC. 

Cofactor determination: 
Flavin - Cytosol and de-salted cytosol at 4 mg/ml protein content were incubated 

with 30 ug/ml DCA for 3, 5, 10, 15, 20, 25, 30, 35, 40 and 45 min at 37°C. Heat 
inactivation was used to stop any reaction. A second set of cytosol and de-salted (gel- 
filtered) cytosol samples was incubated with 30 ug/ml DCA for 25 min. At 25 min 100 ul 
of 8.8 mM FAD or FMN were added to the samples, and incubation continued for 30, 35, 
40 and 45 min. longer. Samples were heat inactivated and analyzed for DCA content by 
GC. 

Nicotinamide - Cytosol (4 mg/ml protein) was pre-incubated with 50 ug/ml DCA 
for 25 min at 37°C. At 25 min 100 uL of 0.9 mM NAD, NADP, NADH or NADPH was 
added to each sample and incubation continued for 20 min at 37°C. A control set of 
cytosol was run without any added cofactor. The samples were heat inactivated and 
analyzed for DCA content. Cytosol and de-salted cytosol at 4 mg/ml protein content were 
incubated with 50 ug/ml DCA for 3, 5, 10, 15, 20, 25, 30, 35, 40 and 45 min at 37°C. 
Heat inactivation was used to stop any reaction. Next, cytosol and de-salted cytosol 
samples were incubated with 50 ug/ml DCA for 25 min. At 25 min 100 ul of 8.8 mM 
NADPH were added to the samples, and incubation continued for 30, 35, 40 and 45 min 
longer. Samples were heat inactivated and analyzed for DCA content by GC. 

Glutathione experiments: 
A. Two sets of cytosol (4 mg/ml protein) were incubated with 50 ug/ml DCA and 0.25, 1 
or 5 mM GSH. One set contained 200 ul of NADPH regenerating system, the other set 
had no cofactor. The samples were incubated for 3, 6, 10, 20 and 30 minutes at 37°C. 
Samples were heat inactivated, and DCA was quantitated by GC. 

B. Cytosol ( 4 mg/ml protein) was pre-incubated with 50 ug/ml DCA for 25 min at 
37°C. At 25 min an aliquot of DCA was added to yield a concentration of 20 ug/ml, 
assuming that the majority of the 50 ug/ml was degraded. At the same time 0.5, 1, 2.5 or 
5 mM GSH was added to each sample. Incubation continued for 15 min at 37°C. 
Samples were heat inactivated, and DCA was quantitated by GC. 

C. Cytosol ( 4 mg/ml protein) was pre-incubated with 50 ug/ml DCA for 25 min at 
37°C. At 25 min an aliquot of DCA was added to increase rerriaining DCA concentration 
to a final concentration of 20 ug/ml DCA. At the same time 0.5, 1, 2.5 or 5 mM GSH, in 
combination with 5 mM diethyl maleate (DEM) or 0.5 mM chlorodinitrobenzene (CDNB), 
was added to each sample. Incubation continued for 15 min at 37°C. Control sets were 
run with 0.5 mM CDNB or 5 mM DEM (both in the absence of GSH) or no addition 
beyond substrate. Samples were heat inactivated, and DCA was quantitated by GC. 



D. Cytosol ( 4 mg/ml protein) was incubated with 20 ug/ml DCA and either 50 ug/ml 
TCA or 20 ug/ml MCA. NADPH (0.9 mM) was present as cofactor. Samples were 
incubated for 10 min at 37°C and heat inactivated. DCA content was quantitated by GC. 
Cytosol was also incubated with 20 ug/ml DCA and 0.1, 0.5, 1 or 5 mM DEM for 20 min 
at 37°C. NADPH regenerating system was present as cofactor. Samples were heat 
inactivated, and DCA was quantitated by GC. 

RESULTS and DISCUSSION 
The potential for human exposure to DCA is high because of the multiple sources 

of the carboxylic acid. The mechanism responsible for DCA-induced toxicity is not fully 
understood; therefore, the focus of these studies was to identify the factors that influenced 
the metabolism of DCA. Degradation of DCA was measured as disappearance of parent. 

After incubation with nuclease or protease, DCA removal from the samples was 
quantitated, and the results were compared to control samples (Table 1). In both control 
and nuclease-treated samples approximately 50% of the DCA was degraded, indicating 
that DNA or RNA do not play a role in the loss of DCA from the cytosolic sample. When 
cytosol was pre-incubated with protease, less than 5% of the DCA was degraded. This 
demonstrates that DCA degradation is dependent on cytosolic protein. 

Table 1. Cytosolic degradation of DCA. (Results are 
presented as ug DCA degraded by cytosolic protein, mean ± S.D., n=3) 

Treatment DCA Degraded 
Control cytosol 11.1 ±0.9 
DNase-treated cytosol 13.2 ±0.6 
RNase-treated cytosol 12.7 ±0.07 
Protease-treated cytosol 0.48 ±0.7 

After determining that nuclease interaction was not accountable for DCA 
loss some experiments were performed to determine what factors influenced DCA 
degradation. Metabolism of DCA in cytosol that was incubated with 30 ug/ml DCA 
peaked at approximately 20 mm; with about 50% of the dose being removed (Fig. 1). An 
aliquot of the same batch of cytosol was gel-filtered to remove endogenous compounds of 
low molecular weight. This de-salted cytosol degraded less than 10% of the DCA dose 
over 30 min of incubation. As the de-salted protein content was identical to non de-salted 
cytosolic protein content, these results indicate that the removal of some endogenous low- 
molecular weight component inhibited DCA degradation. The possible argument that the 
gel-filtering of cytosol damaged its metabolic capability is addressed below. Addition of 
FAD or FMN to either cytosol or de-salted cytosol did not stimulate DCA degradation. 

To determine which (if any) nicotinamide cofactor best stimulated DCA 
degradation, cytosol was spiked with each of the four nicotinamide cofactors after a 25 
min pre-incubation with 50 ug/ml DCA (Table 2, Fig. 2). Incubations containing NADP 



and NADPH displayed the greatest DCA loss, both stimulating the degradation of 
approximately 75% of the dose. Degradation of DCA by de-salted cytosol was evaluated 
under the same conditions with NADPH as cofactor. (Data not shown). De-salted cytosol 
degraded approximately 25% of the dose; the addition of NADPH at 25 min increased 
degradation by about 20%. The mechanism for this stimulation is as yet undetermined. 
For the remaining experiments NADPH or NADPH regenerating system was included. 

Table 2. Cytosolic degradation of DCA (Results are presented as ug DCA degraded by 
cytosolic protein, mean ± S.D, n=3.) 
Treatment DCA degraded  
NAD 
NADP 
NADH 
NADPH 

11.1 ±0.5 
37.3 ±0.8 
14.7 ±1.7 
34.5 ±1.9 
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Figure 1. Effect of flavin cofactors on DCA 
degradation. 

Figure 2. Effect of nicotinamide cofactors on 
DCA degradation. 

Since NADPH increased DCA degradation and NADPH is involved in the 
reduction of oxidized glutathione (a major anti-oxidant), we sought to determine whether 
GSH influenced DCA metabolism. After cytosol was incubated with 50 ug/ml DCA and 
GSH (with and without nicotinamide cofactor), the amount of DCA removed from the 
samples was quantitated (Fig. 3 a, b, c). Cytosol incubated with 0.25 mM GSH (with and 



without cofactor) degraded approximately 6 % of the DC A after 6 min as compared to the 
control. Samples incubated with 1 and 5 mM GSH showed essentially no difference 
between the group containing cofactor and the group without cofactor. Cytosol incubated 
with 1 and 5 mM GSH degraded an average of 8% and 9.5% more DC A than control, 
respectively. Essentially, the addition of GSH did not increase the metabolism of DCA 
with or without NADPH. 

H «o 

control 
cofector + SmMGSH 
SmMGSH 

■ ccrtrd 
■ cofectcr* 0.25 mM GSH 
• 0.25 mM GSH 

10 15 20 25 30 35 
10 15        20 

(a) 
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(b) (c) 

Figure 3. Effect of glutathione on DCA degradation   a) 5 mM, b) 1 mM, c) 0.25 mM. 

To further investigate the contribution of GSH to DCA degradation, cytosolic 
samples were pre-incubated with 50 ug/ml DCA for 25 min and then spiked to yield 20 
ug/ml DCA and increasing concentrations of GSH (Fig. 4). Removal of DCA increased 
with increasing GSH concentration.   To challenge the effect of GSH, cytosolic samples 
were incubated with CDNB which enzymatically conjugates with GSH or DEM which 
depletes GSH by non-enzymatic conjugation. Cytosolic samples that were incubated with 
only DEM or CDNB degraded approximately the same amount DCA Methanol was run 
as a vehicular control for CDNB. Samples that were incubated with GSH and DEM or 
CDNB removed approximately 41 ug of DCA. 



Figure 4. Glutathione effect on 
DCA degradation. 

Figure 5. Diethyl maleate effect on 
DCA degradation. 

The effect of DEM-induced GSH depletion on DCA degradation was further 
investigated. After incubation of cytosol with 20 ug/ml DCA and increasing 
concentrations of DEM, the removal of DCA was quantitated (Fig. 5). DCA degradation 
in the presence of DEM demonstrated a clear dose-dependent decrease, which was evident 
at 0.1 mM DEM. Although GSH increases the removal of DCA, even in the presence of 
GSH depletors, the mechanism is unclear. 

Since MCA, TCA and DCA are products of TRI metabolism, we attempted to 
determine if the presence of TCA or MCA influenced metabolism of DCA. Cytosolic 
degradation of DCA in the presence of 50 ug/ml TCA (Table 3) equaled that of the 
control; TCA did not inhibit DCA metabolism Cytosolic samples containing 20 ug/ml 
MCA degraded only 1.5 ug DCA; the presence of MCA inhibited the breakdown of DCA. 
As extremely low levels of MCA are observed in vivo, it is unclear whether this in vitro 
effect is predictive of the in vivo situation Future experiments should elucidate the 
potential impact of physiologically relevant concentrations of MCA on DCA degradation. 

Table 3. Inhibition of cytosolic DCA degradation. (Results are presented as ug DCA 
degraded by cytosolic protein, mean ± S.D., n=3.) 

Treatment DCA degraded 
DCA control 
DCA + TCA 
DCA + MCA 

11.7±0.2 
11.5 ±0.4 

1.5 ±1.1 



There is on-going work to understand the metabolism of TRI and DCA and the 
link between metabolism and toxicity. The goal of these studies was to investigate the 
effect of enzyme systems, cofactors and inhibitors on DCA metabolism. The findings of 
these studies help clarify the degradation of DCA in cytosolic systems and are being used 
to support further investigation of the products of DCA metabolism 

CONCLUSIONS 

• DNA and RNA interaction does not play a role in DCA loss. 

• Of the nicotinamide cofactors, NADP and NADPH, best stimulate DCA degradation 

• GSH stimulates DCA degradation through an unknown mechanism 

• Compounds which deplete GSH decrease the amount of DCA degraded by cytosol. 

This effect is negated in the presence of exogenous GSH. 
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