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Abstract

This paper presents the technique of operator sifting as a new way of understanding both breadth-first
and depth-first approaches to BDD construction. A new algorithm is also proposed to capture the
breadth-first approach’s advantage of memory access locality, while keeping the depth-first approach’s
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approaches while keeping memory overhead comparable to that of depth-first approaches.
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1 Introduction

Binary Decision Diagrams (BDDs) have been proven successful in representing and manipulating
Boolean functions symbolically [5] in a variety of application domains. This success has led to
several efforts [3, 13, 14, 1, 11, 10, 15] to provide efficient BDD implementations. Conventional BDD
algorithms[3, 11] are based on depth-first traversal of the BDD graphs. This approach has the advantage
of small memory overhead. Recently, there have been many implementations based on breadth-first
traversal [13, 14, 1, 10, 15], which have found that the breadth-first approach has better memory access
locality and thus better performance. However, the breadth-first approach can have a large memory
overhead, especially when the BDDs involved are large. This extra memory overhead can result in an
increase of the number of page faults.

In this paper, we present the technique of operator sifting as a new way of understanding both
breadth-first and depth-first approaches to BDD construction. This operator sifting concept is inspired
by MORE [10] which constructs BDDs by sifting down temporary variables as existential quantifiers.

We then describe a new hybrid algorithm for BDD construction by combining depth-firstand breadth-
first approaches. This algorithm has good memory access locality while keeping the memory overhead
below a fixed fraction of the total memory usage. Combining of breadth-first and depth-first approaches
to bound memory overhead has been proven successful in the parallel computation communities [7,
2, 12]. Experimental results on ISCAS85 [4] and multiplier circuits [6] show that our new approach
is generally faster than other breadth-first and depth-first implementations, while keeping memory
overhead comparable to the depth-first approach. In particular, for the 13-bit multiplier circuit, our
package finished building the output BDDs in about 2 hours of elapsed time while other packages did
not finish after 6 hours.

The rest of this paper is as follows: Section 2 presents our view of the depth-first and the breadth-
first approaches to BDD construction. In Section 3, we qualitatively compare the depth-first and the
breadth-first approaches to BDD construction. Section 4 describes our new algorithm. We compares our
design with two other breadth-firstapproaches in Section 5. Section 6 presents preliminary performance
results. Finally, in Section 7, we conclude and present some directions for future work.

2 Depth-First and Breadth-First BDD Constructions

In this section, we introduce a framework under which both the breadth-first and the depth-first ap-
proaches to BDD construction can be viewed as sifting down Boolean operators. Given an ordering
of variables and a Boolean operatios f <op> ¢, the result BDD for- is constructed based on the
Shannon expansion

r=f<op>g = T-(fr=0<0P> go=0) + T - (fr=1<OP> go=1) (1)

wherez is the variabletop variable) with the highest precedence among all the variablesaridg.
fz—0 and f,._; are the cofactor functions gf with respect to the Boolean variabi€(i.e., the function
f with the variablex restricted to 0 and 1, respectively). Similarly.o andg.—, are the cofactor
functions ofg.



Following the given variable order, this expansion process repeats recursively for all the Boolean
variables inf andg. The base case (also called teeminal case of this recursive process is when the
result of the operation can be trivially evaluated. For example, the Boolean operathdD f” is a
terminal case because it can be trivially evaluatefl tS8imilarly, “ f ANDO” is also aterminal case. The
recursive process will terminate because restricting all the variables of a function produces a constant
function and all binary Boolean operations involving constant operand(s) can be trivially evaluated. At
the end of the expansion process, there may be unreduced subexpressignsfikex - ~). Thus, a
reduction step is necessary to red(ceh + x - h) to h.
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Figure 1:Operator Sifting View of BDD Construction: The dashed edge represent the 0-branch of a
variable and the thick solid edge represents the 1-branch

Figure 1 illustrates the Shannon expansion (Equation 1) for the operatiofi <op> ¢g. On the
left side of this figure, the operation is represented withoperator node which refers to BDD
representations of andg as operands. The right side of this figure shows the Shannon expansion of
this operation with respect to the variableln this figure, the dashed edge is the 0-branch and the thick
solid edge is the 1-branch. Notice that this expansion is very muchifikeg down the operator node
along both the left and right branches. After this sifting process, the original operator node becomes
anunreduced node(since neither of the children is a reduced BDD node). This sifting process is very
similar to thelevel exchangemethod [9] in dynamic variable reordering. The main difference here is
that the level exchange method sifts down variable nodes, while BDD construction sifts down operator
nodes.

During the recursive step, we can choose to sift down the operator nodes in any order we like. In
particular, if we always choose the operator node with the greatest depth, then we will be performing the
Shannon expansion in the depth-first manner. Similarly, if we always choose to sift down the operator
node with lowest depth, then we will be sifting the operations in the the breadth-first manner.

For the rest of this paper, we will refer to the Boolean operations issued by the user of the BDD
package as theop level operationsto distinguish them from operations generated by the Shannon
expansion process.

2.1 Depth-First BDD Construction



df_op(op, f.9)
if (terminal case) return simplified result;

if (op,f,g) is in computed cache, return result found in cache.
letx be the top variables of andg.

€= df_Op(Op, foOa gx:O);

1= df_Op(Op, flea gx:l);

if (¢ == e) returnt,;

result =: find or add, ¢, ¢) in the unique table;

insert ¢p, f, g, result) into the computed cache;

return result;
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Figure 2: Depth-First BDD Algorithm

A typical depth-first BDD algorithm is shown in Figure 2. This algorithm constructs BDDs by
recursively sifting down operations in the depth-first manner. The depth-first algorithm does not
explicitly store the operations in operator nodes. Instead, the operation is implicitly stored in the
arguments to the recursive calls. This recursive process ends when the new operation created is a
terminal case (line 1) or when it is cached in twnputed cachgline 2). In the depth-first approach,
the computed cache preserves the previous computation results (line 8) to avoid redundant computations
(line 2). Line 6 is the reduction step which ensures the BDD result is a reduced BDD node.

2.2 Breadth-First BDD Constructions

A typical breadth-first BDD algorithm is shown in Figure 3. The breadth-firstapproach constructs BDDs

by repeatedly sifting down operator nodes in breadth-first manner. The breadth-first algorithm can be
divided into two phases: a sift-down phase (line 3, 4, and 5) which repeatly sifts down the operator
nodes starting from the top variable, and a reduction phase (line 6, 7, 8, and 9) which applies reduction
rules to the unreduced nodes to ensure the result BDD is in reduced form. In this algorithm, there

is oneoperator queueassociated with each variable. Every operation is queued in its top variable’s
operator queue. These operator queues enable the sift-down phase to process the operator nodes in the
breadth-first manner based on the fixed variable order.

Figure 4 illustrates the breadth-first algorithm using an example operatiofiOR g. The shaded
nodes in this figure are the newly allocated nodes. In Figure 4(a), an operator node (the shaded node) is
created to store the information for this operation and it is inserted into the operator queue of variable
(line 2). During the sift-down phase, the operator nodes are sifted down beginning from the top variable
of this operation (line 3). Each sift will create two operations as shown in Figure 1. New operator
nodes will be created only if the operations generated are new aopexator unique table is used
to guarantee this. Each of the new operator nodes created will be inserted into the operator queue of
its top variable (line 5). Figure 4(b) shows the unreduced BDD graph after all the operator nodes are
sifted down.

During the reduction phase (line 6, 7, 8, and 9), when the result of a reduction already exists, the



bf-op(op, f.9)

1 if (terminal case) return simplified result;
2 create an operator node= (op, f, g) and insert it into
the operator queue for the top variablef / andg;
3 for each variable’s operator quegstarting from variable,
4 sift down all operator nodes nand

5 if the newly created operations are unique,
gueue the operations based on the top variable of the operands.
6 for each variable starting from the bottom variable,
7 Apply reduction to each unreduced BDD node of that variable;
8 if the result bdd from the reduction already exists, set the unreduced node to a forwarding node
9 else insert the result into the BDD unique table.
returnr;

Figure 3: Breadth-First BDD Algorithm

unreduced BDD node is changed tdoawarding node (line 8) which forwards the reference to the
existing BDD node. Otherwise, the corresponding unreduced BDD node is used to store new BDD
result and is inserted to the BDD unique table (line 9).

Figure 4(c) shows the BDD graph after applying the reduction to variapighere the shadeds;
node in Figure 4(b) is changed to the forwarding nodé in the Figure 4(c). Figure 4(d) shows the
result of applying reduction to variable. Here, one of the unreduced nodes in the Figure 4(c) is
changed to a forwarding node because the result BDD (marked with “*”) already exists as a subgraph
(marked with “*” in Figure 4(a)) off’s BDD. Finally, Figure 4(e) shows the result after the reduction
phase.

The above algorithm can be modified to allow queuing multiple top level operationki{ssue)
before beginning the sift-down phase. Figure 5 shows a graph of 11 operations issued before performing
the actual breadth-first BDD computations. During the breadth-first BDD computations, the operator
nodes will be sifted down layer by layer starting from the lowest layer (layer 1). Simultaneously sifting
down multiple top level operations on the same layer is called is caliperscalarity in [15]. For
example, in Figure 5, operator nodes, opi, op2, ops, opa, op1o, @aNdops1 in layer 1 can be sifted down
simultaneously (with the assumption that all the operations in layer 1 have the same top variable). The
main advantage of the superscalarity is the complete caching among these top level operations.

With multi-issue, multiple layers of operator nodes can be sifted dowrpipained fashion [15].

For example, to pipeline two layers of operator nodes in Figure 5, we will first sift down the operator
nodes in layer 1 by one variable (under the assumption that all the operations in layer 1 have the same
top variable). We will then sift down the operator nodes in layer 2 on the unreduced nodes which were
just produced by sifting layer 1's operator nodes. Then we will sift the operator nodes generated from
sifting layer 1's operator nodes. And then we will sift the operator nodes generated from sifting layer
2's operator nodes. This process repeats until all of the operator nodes generated by sifting layer 1 and
2 are sifted. Then, we pipeline any remaining layers two at a time. The main advantage of pipelining
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Figure 4: Example of Breadth-First BDD Construction. The shaded nodes are newly allocated
nodes. (a) the initial graph (b) the unreduced graph after the sift-down phase (c) the graph after
applying reduction on variable; (d) the graph after applying reduction on variable(e) the final
reduced graph
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Figure 5: Example of Multi-Issue

is better locality of memory access because the operations in the higher layers of the pipeline will be
processing unreduced nodes which were just produced by sifting the operations in the lower layers.

3 Depth First vs. Breadth-First

The main advantage of the depth-first approach is that memory overhead is lomew@y overhead

in BDD construction is all the extra memory usage that is not associated with storing BDD nodes. In
the depth-first approach, the two sources of memory overhead are the computed cache and the recursion
stack. The size of the computed cache can be kept as a small fraction (e.g., 10%) of the total memory
allocated and the size of the recursion stack is bounded by the number of Boolean variables. Thus, the
memory overhead of the depth-first approach can be kept below a fixed percentage of total memory
usage.

In contrast, even though the breadth-first approach does not keep a computed cache, it must create one
operator node for each distinct operation and the number of the distinct operations in a BDD construction
can be quadratic in the size of BDD graphs. The main source of memory overhead associated with
the breadth-first approach is memory allocated to those operator nodes whose corresponding operations
do not result in new BDD nodes. (Those operator nodes whose corresponding operations do result in
new BDD nodes can directly reuse the operator nodes by changing the operator nodes into BDD nodes.
Therefore, they do not incur memory overhead.) In practice, we observe at least 20% of the operator
nodes do not resultin new BDD nodes. This is the main reason why the breadth-firstapproach generally
uses more memory than the depth-first approach.

Without a computed cache, the breadth-first approach cannot avoid duplicating computations across
different sift-down phases. Thus, simultaneously sifting down a large number of top level operations is
necessary to ensure good performance. Sifting down a large number of top level operations increases
the number of operator nodes generated, and thus the memory overhead will also increase. Because
pipelined operations work directly on unreduced BDD nodes, the number of the operator nodes will
increase. Thus pipelining will further increase the memory overhead.

The main advantage of the breadth-first approach is memory access locality. During a breadth-first
sift-down phase, all the BDD nodes of the same variable are accessed together. Thus, the memory
allocated for all the BDD nodes of the same variable can be clustered to improve locality.
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Another advantage of the breadth-first approach igtta#ligent cachingof the computation results.

Within a sift-down phase, the breadth-first approach does not generate duplicate operator nodes. The
uniqueness of operator nodes is often implemented using an operator unique table. This unique table is
identical to a complete computed cache in depth-firstapproach. (Note that this complete cache behavior
only holds within a sift-down phase and not across different sift-down phases.) Furthermore, the
variable-by-variable top-down sifting of the breadth-first approach guarantees that no new operations
generated will involve variables already sifted. Once an operation is sifted, its corresponding entry in
the operator unique table can be removed. Thus, the operator unique table intelligently caches only
what is necessary within a sift down phase. Since the depth-first approach does not process all the
operations of one variable together, it cannot cache as intelligently.

4  Our Approach to BDD Construction

Our design is a hybrid of the depth-first and the breadth-first approaches which captures the best of
both worlds — memory access locality and low memory overhead. When the memory overhead is low,
we rely on the breadth-first approach with the help of a computed cache. When the memory overhead
is high (due to large number of operator nodes created by the breadth-first phase), we switch to the
depth-first approach to avoid excessive memory overhead and thus avoid page faults.

In the following, we will first present the hybrid algorithm in more detail. Then we will describe
the top level nodes and our memory management strategy, both of which enable us to implement this
algorithm efficiently.

4.1 Memory Access Locality: Breadth-First Approach

The core of our design is to use the traditional breadth-first approach to capture memory access locality.
In traditional breadth-firstimplementations (as described in Section 2.2), whenever an operation’s result
is a new BDD node, this operation’s corresponding operator node is reused as this new BDD node and
all other operator nodes will become forwarding nodes. Thus, after the reduction phase, memory blocks
become fragmented because the newly created BDD nodes will be inter-mixed with the forwarding
nodes. Thus the newly created BDD nodes will not be as close together in memory as possible.
Furthermore, since the forwarding nodes are not part of any BDDs, they will eventually be freed. When
the memory of these freed nodes is subsequently reused, the nodes allocated will not be contiguous.

To avoid memory fragmentation, when an operation’s result BDD is new, we do not reuse the
corresponding operator node’s memory to represent the new BDD node as is done in the traditional
breadth-first implementations. Instead, we allocate new memory for this new BDD node and change
the operator node into a forwarding node to the new BDD node. Thus, all operator nodes will become
forwarding nodes at the end of the reduction phase and can be all freed at the same time. By allocating
memory for new BDD nodes with the help of a specialized memory manager, we can ensure that the
new BDD nodes will be contiguous in memory and that subsequent access to these nodes will have
good memory locality. However, since we always create new BDD nodes, the memory overhead of our
approach is all of the memory allocated to the operator nodes which can be quadratic in the size of the



BDD graph. In Section 4.3, we will present a way to bound this memory overhead.

4.2 Reduce Memory Usage: Computed Cache

As discussed in Section 3, the traditional breadth-first approach’s higher memory usage is partially
due to simultaneously sifting down a large number of top level operations. To reduce memory usage
without sacrificing performance, we add a computed cache to cache the previous computation results.
By using this computed cache, we can avoid duplicating some computations which were performed
in the previous sift-down phases. Thus we can sift down a smaller number of the top-level operations
simultaneously without sacrificing performance.

The operator unigue table in the traditional breadth-first approach can be naturally extended to
implement the computed cache. In our implementation, there are two types of cache nodes: the
operator cache nodestore the operations that are currently in progress as in the breadth-first approach
and thecomputed cache nodestore previously computed operations with their BDD results as in
the depth-first approach. The main difference between these two types of cache nodes is that for its
corresponding operation, an operator cache node stores a handle that will eventually be forwarded to a
BDD result while a computed cache node stores the actual BDD result.

During the sift-down phase, if an operation is not in the computed cache, a new operator cache node
is inserted to avoid duplicating computations within the same sift-down phase. During the reduction
phase, when the result BDD of an operation is constructed, this operation’s corresponding operator
cache node will be changed to a computed cache node by storing this result BDD into the cache node.
Future cache lookug$érom subsequent sift-down phases) on this operation will directly return the BDD
result.

The computed cache is implemented based on bucket hashing. Cache nodes that hash to the same
bucket will be chain together into a linked list. This hash table is automatically resized when the average
length of the chains exceeds a constant threshold.

4.3 Upper Bound on the Memory Usage: Depth-First Approach

During a sift-down phase, if the memory overhead of the operator nodes becomes too high, the number
of page faults will increase and the performance will degrade dramatically. We overcome this problem
by limiting the number of operator nodes to a fixed fraction of the physical memory. When the number
of operator nodes exceeds this limit, we sift down the remaining operator nodes in the depth-first manner.
Thus we can avoid page faults caused by breadth-first’'s excessive memory overhead.

In Section 4.1, we pointed out that our approach could potentially require more memory than
traditional breadth-firstimplementations because we always allocate new memory for new BDD nodes
instead of reusing the operator nodes. By limiting the number of the operator nodes, we can place an
upper bound on how much extra memory our package will use. To be precise, the memory overhead
of our design will be bounded by the memory allocated for the computed cache (which is a small
percentage of the total memory usage) and the operator nodes (which has a constant upper bound). In
practice, we found that we can limit the computed cache to be less than 1% of total memory usage



and the number of operator nodes to less than 20% of available physical memory without adversely
affecting running time in BDD construction.

4.4 Separation from the External World: Top Level Nodes

Top level nodesare handles to BDD nodes used by external users. This level of indirection allows us
to transparently change which node a given handle refers to. Thus, after the reduction phase, we can
automatically update all the top level nodes to reference BDD nodes and then free all memory blocks
associated with the operator nodes.

Without this level of indirection, the external users will need to directly refer to the operator nodes
to issue multiple top level operations. Since some of these exported operator nodes can become
forwarding nodes, we cannot free all the memory associated with the operator nodes after the reduction
phase. Therefore, memory fragmentation can occur.

In the future, this mechanism will allow us to relocate BDD nodes during memory compaction when
memory becomes fragmented after garbage collection or dynamic variable reordering.

4.5 Memory Management

To ensure memory access locality, we use memory managers to customize memory allocation. We
associate a memory manager for each of the following four node types: top level, BDD, operator,
and cache. A memory manager tracks all the memory blocks allocated to its associated node type.
When the size of the associated node type is a multiple of 16 bytes, the memory manager ensures each
node allocated is 16-byte aligned. This alignment enables us to use the last 4 bits of each pointer for
complement and marking flags. In our current implementation, the sizes of the top level nodes, the
BDD nodes, and the operator nodes are 16 bytes, and the cache nodes are 20 bytes.

We use different garbage collection strategies for different node types:

Top Level: Garbage collection of top level nodes is based on reference counting. When a top level
node’s reference count reaches zero, it is placed in its memory manager’s free list to be reused
later.

Operator: Right after the reduction phase, all the top level nodes are updated to refer to BDD nodes
and all the operator cache nodes are changed to the computed cache nodes so that there are no
more references to the operator nodes. Therefore, all of the memory blocks for operator nodes can
be freed at the end of this updating process.

Cache: In our design, cache garbage collection occurs whenever the cache’s memory usage increases
by a fixed constant. Cache nodes are garbage collected by freeing the oldest memory blocks one
at a time until the memory usage of the cache nodes is less than a fixed percentage of the total
memory usage of the entire BDD package.

Currently, we allow a larger cache in the depth-first mode than in the breadth-first mode because
the depth-first approach has less temporal locality in processing operations. The breadth-first
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approach processes all the operations for one variable at a time and thus does not require a large
computed cache. Since the depth-first approach has less memory overhead than the breadth-first
approach, a bigger cache will not adversely increase memory requirement in comparison to a pure
breadth-first approach.

In our implementation, the default behavior in the breadth-first approach is to garbage collect when
the computed cache’s memory usage increases by 2 MBytes and the garbage collector frees the
computed cache’s memory blocks until the computed cache uses less than 1% of the total memory
usage. The default behavior in the depth-first approach is to garbage collect when the computed
cache’s memory usage increased by 8 MBytes and the garbage collector frees the computed cache’s
memory blocks until it uses less than 1% of the total memory usage.

All cache nodes are managed by one memory manager without distinguishing between the operator
cache nodes and the computed cache nodes. Thus, our breadth-first approach no longer has a
complete cache as in other breadth-first packages.

BDD: We use a mark-and-sweep garbage collector to recycle BDD nodes. We chose the mark-and-
sweep over the reference-count method because the mark-and-sweep uses less memory per node
(no need to store the reference count) and is less bug-prone and cumbersome to implement. To
avoid dangling references, we also garbage collect any cache node that references garbage collected
BDD nodes.

4.6 Implementation Support for Future Extensions

We designed this BDD package to facilitate future extension to KFDD [8] and *BMD [6]. To support
*BMD without exceeding 16 bytes per BDD node on 32-bit machines, we are unable to improve
memory access locality by placing both left and right children’s variable orders in a BDD node as it
was done in [15]. To support *BMD and KFDD, we allow simultaneously sifting down different types
of operations. For BDD, we currently supp&iD and XOR For *BMD, we will supportADD and
MULT.

5 Comparison with Two Other Breadth-First Implementations

Our design is influenced by both of the MORE package [10] and the CAL package [15]. The concept
of viewing BDD constructions (either breadth-first or depth-first) as sifting down operators is inspired
by MORE. MORE introduces new temporary variables to represent existential quantification and these
new temporary variables are sifted down to construct BDDs. This sifting scheme is very similar to
sifting down anOR operator. Our framework generalizes this sifting scheme to cover any operation.
This generalization is especially importantin supporting *BMD [6] and KFDD [8]. MORE's support for
parallel operations is identical to breadth-first’'s multi-issue with superscalarity and pipelining. MORE'’s
ability to allow dynamic reordering without loss of intermediate results is quite novel and useful. We
plan to incorporate the same mechanism into our breadth-first stage of BDD construction.
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CAL's design and implementation to explore memory locality has greatly influenced our design and
implementation. Our memory management strategy is very similar to that of CAL's. We have also used
CAL's power-of-2 hashing strategy to replace the usd@D operation with the bit-wis@ND and have
observed a visible performance gain. The superscalar and pipeline concepts come directly from CAL's
design. However, unlike our package, the CAL package does not support simultaneously sifting down
different types of Boolean operations. Therefore, the CAL package cannot support the *BNIDE
operation, which generaté®D operations as it is sifted down.

The introduction of the top level nodes, the computed cache, and the breadth-first/depth-first hybrid
approach sets our work apart from all other breadth-first implementations. Currently, our package
supports superscalar feature without pipelining.

6 Experimental Results

We performed our experiments on a Sun Sparc20 workstation with 64 MB RAM of main memory and
300 MB of swap space. In order to compare our results with other BDD packages, we built a platform
to ensure that all the BDD operations will be issued in the same order. Our measurements include
initialization of the BDD package and the computation of the BDD outputs. The initialization of our
platform and parsing the input files are not part of the measurements. The memory usage we measured
is the heap usage of the BDD packages. The time limit for our measurements is 6 hours of elapsed time.

We chose two packages as the basis for comparison. The choice was made based on the results
of a recent study by Sentovich [16]. The first package is CAL version 1.1 from UC Berkeley. This
package implements the breadth-first algorithm for the BDD construction. In the Sentovich study, CAL
generally outperforms other depth-first packages. The second package chosen is CUDD version 1.1.1
from the University of Colorado at Boulder. This package implements the depth-first algorithm for
BDD construction and in the Sentovich study, it generally performs better than Long’s depth-first BDD
package [11] for constructing output BDDs. For both CUDD and CAL, we used all the default settings,
but we turned off their dynamic variable reordering features.

For the CAL package, we used the pipeline and superscalar features in the same way as the SIP
package (which is released with the CAL package and uses CAL to perform BDD computations). The
SIP package first multi-issuedl Boolean operations simultaneously and then starts the breadth-first
BDD computation. For pipelining, the default pipeline depth is four. Since CAL's multi-issue feature
cannot support issuing different types of Boolean operations at the same time, we decomposed all
Boolean operations intAND with the complement edge for negation.

Currently, our package has support for the superscalar feature, but no support for pipelining. Itis our
experience that the addition of the computed cache eliminates the need for the superscalarity. Therefore,
all of the results for our package are obtained without superscalarity and pipelining. In the breadth-first
mode, we garbage collect the computed cache whenever the cache’s memory usage increases by 2
MBytes to keep its memory usage under 1% of total memory usage. In the breadth-first mode, we
garbage collect the computed cache whenever the cache’s memory usage increases by 8 MBytes to
keep its memory usage under 1% of total memory usage. We switch from the breadth-first mode to
the depth-first mode when the operator nodes use more than 10 MBytes (15% of available physical
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memory). The computed cache table will automatically grow when its average bucket chain length is
greater than 4.

The following sections show the performance result for the ISCASS85 circuits [4] and some multiplier
circuits. For the ISCASSS circuits, we used two variable orderings: one is obtained from Hett [10] and
the other is generated loyder_dfsin SIS [17]. The purpose of using two different variable orderings
is to observe whether the relative performance is influenced by the different orderings.

6.1 Small Circuits: ISCAS85

This section presents results for ISCASS85 circuits to study the effectiveness of our design for small
circuits where our package does not switch into depth-first mode. First, we use Hett's variable orderings
to perform our experiments for ISCASS85 circuits. Table 1 shows the CPU time in seconds and memory
requirements in megabytes (MB). Normalization of these results based on our results are shown in
parenthesis.

Circuit CPU Time (seconds) Memory (MB)

Ours

CAL

CubD

Ours

CAL

CubD

C432
C499
C880
C1355
C1908
C2670
C3540
C5315
C7552

2.10 (1)
0.50 (1)
0.27 (1)
2.19 (1)
0.60 (1)
0.34 (1)
13.8 (1)
2.36 (1)
0.62 (1)

2.46 (1.17)
1.29 (2.58)
0.31(1.14)
3.11 (1.42)
0.76 (1.26)
0.60 (1.76)
19.5 (1.41)
2.83(1.19)
0.70 (1.16)

4.29 (2.04)
0.95 (1.90)
0.55 (2.03)
4.48 (2.04)
1.38 (2.30)
0.55 (1.61)
24.5 (1.76)
4.88 (2.06)
0.85 (1.37)

6.56 (1)
3.01 (1)
1.94 (1)
6.75 (1)
3.37 (1)
2.27 (1)
21.0 (1)
7.37 (1)
3.35 (1)

7.43 (1.13)
6.97 (2.31)
4.15 (2.13)
12.6 (1.87)
4.68 (1.38)
7.54 (3.32)
28.0 (1.33)
11.5 (1.56)
6.84 (2.04)

6.99 (1.06)
1.67 (0.55)
1.38 (0.71)
7.10 (1.05)
1.88 (0.55)
2.85 (1.25)
20.1 (0.95)
7.50 (1.01)
3.01 (0.89)

Table 1:ISCAS85 Results with Hett's Orderings. The parenthesized number is the result normalized
based on our package.

Our package consistently performs better than the other packages in terms of CPU time. On average,
the CUDD package is at least 50% slower than ours because our package has better memory locality.
The CAL package is about 20% slower than ours, on average. This is mainly due to lower memory
usage because we rely on the computed cache instead of multi-issue to avoid redundant computations
across different sift-down phases.

For C499, the CAL package is more than 100% slower than ours. This is partially caused by a large
number ofXOR operations, which are decomposed into thA&D operations in the CAL package.
(Note: The only other circuit in ISCASS85 that hX®Roperations is C432.) Since both CUDD and
our package can handle different operations, no decomposition is necessary.

The CAL package consistently uses more memory than our package, especially for C2670 (3.32
times). Its large memory usage is caused by the multi-issue feature. In comparison with the CUDD
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package, our package uses comparable memory size except when the memory usage is small (< 2MB).
This is mainly due to a larger constant overhead in the breadth-first approach.

Next, we used the variable ordering generated by SIS to do another round of experiments on the
ISCASSS5 circuits. None of the packages were able to run C2670, C3540, and C7552 due to memory
or time limitations. Table 2 shows the results of these packages. In general, the relative performance is
the same as using Hett’s variable ordering.

Circuit CPU Time (Seconds) Memory (MB)

Ours

CAL

CubD

Ours

CAL

CubD

C432

C499

C880
C1355
C1908
C5315

2.10 (1)
0.47 (1)
0.26 (1)
1.13(1)
0.55 (1)
0.69 (1)

2.46 (1.17)
1.07 (2.27)
0.31(1.19)
1.73 (1.53)
0.65(1.18)
0.79 (1.14)

4.29 (2.04)
0.82 (1.74)
0.49 (1.88)
2.40 (2.12)
1.25 (2.27)
1.21 (1.75)

6.56 (1)
2.67 (1)
1.78 (1)
4.65 (1)
3.09 (1)
3.64 (1)

7.43 (1.13)
6.04 (2.26)
4.15 (2.33)
8.67 (1.86)
4.38 (1.41)
7.02 (1.92)

6.99 (1.06)
1.63 (0.61)
1.28 (0.71)
3.79 (0.81)
1.65 (0.53)
2.79 (0.76)

Table 2:1ISCASS85 Results with SIS’s orderings.The parenthesized number is the normalized result
based on our package.

Above results show that CAL and our package generally perform better than CUDD because the
breadth-first approach has better memory locality. Our package consistently runs faster than CAL's
pure breadth-first implementation because the addition of the computed cache is effective in reducing
memory usage.

6.2 Multipliers

We used array multiplier circuits [6] to study the effects of building very large BDDs. Table 3 shows
results for the multiplier circuits from 10 to 13 bits, in terms of CPU time, elapsed time, memory usage,
number of page faults, and number of total BDD operations performed.

In general, our package uses around 10% more memory than the CUDD package and uses much less
memory than the CAL package. CAL performs at least 50% more operations than ours mainly due
to the pipelining and th&XOR decomposition. CUDD performs fewer operations than our package,
because of our smaller cache size (1% of total memory usage). For the CPU time and the elapsed time,
our package is at least 3 times faster than the CAL package and is generally better than the CUDD
package, except for the multipler of size 12. For this circuit, CUDD’s memory usage is low enough
that it barely fit into the main memory and thus there are no page faults. In contrast, our package uses
about 3 MB more than CUDD does and incurs over 1000 page faults. However, because we have better
memory locality, our elapsed time is only about 5% more than CUDD’s. For the same circuit, the CAL
package uses 90MB which causes more than 155000 page faults. This excessive memory usage is the
reason why CAL's elapsed time is so much higher than both that of CUDD and our package. The 12-bit
multiplier circuit clearly demonstrates the need to minimize memory overhead.
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Size 10 11 12 13
CPU Ours 8.50 (1) 36.98 (1) 142.40 (1) 505.66
Time CAL 38.20 (4.49) 136.26 (3.68) | 491.14 (3.44) >1443
(seconds)| CUDD | 12.45(1.46) 40.57 (1.09) 162.47 (1.14) >1101
Elapsed | Ours 9(1) 39(1) 183 (1) 7943
Time CAL 42 (4.66) 142 (3.64) 2457 (13.42) | > 6.5 hours
(seconds) | CUDD 13 (1.44) 43 (1.10) 177 (0.96) >6 hours
Memory | Ours 9.15(1) 20.27 (1) 52.92 (1) 117.73
(MB) CAL 13.48 (1.47) 34.22 (1.68) 90.80 (1.71) > 188.60
CUDD 8.63 (0.94) 19.19 (0.94) 49.02 (0.92) > 85.95
Page QOurs 0 0 1302 671704
Faults CAL 0 0 155405 N/A
CUDD 0 0 0 N/A
Total Ours | 1750084 (1) 7242125 (1) 24657288 (1) | 78779575
Operations| CAL | 3980442 (2.27) 12344081 (1.70) 38078748 (1.54 N/A
CUDD | 1720270 (0.98) 5418655 (0.74)| 21056572 (.85) N/A

Table 3: Multiplier Results. The number in parenthesis is normalized based on our rediksare
statistics that are not available because the time limit was exceeded.

For the 13-bit multiplier, our package finished the computation in about 2 hours of elapsed time. The
other two packages did not finished the job after 6 hours of elapsed time, and had used at least twice
as much CPU time as our package did. Furthermore, the fact that their CPU time is only around 1000
seconds after more than 6 hours of computation indicates these two packages have very poor paging
behavior. In all of our experiments, this is the only circuit that generated a large enough number of
operator nodes for our package to switch into depth-first mode. This result strongly suggests that our
hybrid design to limit the memory usage and improve memory locality is effective in avoiding excessive
page faults.

7 Conclusions and Future Work

We have presented the technique of sifting as a different way of understanding BDD construction for
both breadth-first and depth-first traversal. We have also described a new hybrid approach for building
BDDs by combining the breadth-first approach with the computed cache and switching to the depth-first
approach when the breadth-first approach’s memory overhead becomes too high. Experimental results
showed that in all but one case our package are better than the CUDD’s depth-first implementation
because our approach has better memory locality. For small circuits, the addition of the computed
cache to the breadth-first approach is effective in reducing memory usage which is the reason why our
package consistently runs faster than CAL's pure breadth-first implementation. For the large circuit,
the results show that bounding the memory with our hybrid approach is crucial to capturing memory
locality and minimizing page faults.
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In the future, we plan to extend our implementation to cover other features like KFDD, *BMD, and
dynamic variable reordering. We also plan to perform more studies on the effectiveness of this hybrid
design and different switching heuristics between breadth-first and depth-first modes.
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