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Abstract

I review the Liskov and Wing subtype de�nition that takes into consideration the problem of subtyping in

the presence of mutable objects. I then show how this notion of subtyping is relevant to the design of the

TOM object repository whose main application today is a data type conversion service accesssible through

the Web.
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1 Introduction

The programming language community has come up with many de�nitions of the subtype relation. The goal

is to determine when this assignment

x: T := E

is legal in the presence of subtyping. Once the assignment has occurred, x will be used according to its

\apparent" type T , with the expectation that if the program performs correctly when the actual type of x's

object is T , it will also work correctly if the actual type of the object denoted by x is a subtype of T .

The question of when is one type a subtype of another is especially tricky to answer in the presence

of shared mutable objects. For example, in the context of programming languages, we have the common

situation where during the course of executing a program, two or more pointers reference the same object

in the heap. A change to the object accessed by one pointer will be re
ected in any further access to that

object made through the other pointers. In Fig. 1, for example, x and y are pointers of type T and subtype

S, respectively, that refer to the same object; this aliasing means that a change made through y will be

visible through x.

Relevant to this workshop's theme, the above aliasing situation is a special case of what happens in

a distributed environment where objects are stored in persistent repositories. Generalize the notion of

\pointer" to a notion of \handle," e.g., an index entry of a persistent database, a �le name in a distributed

�le system, or a URL for the Web. Generalize the notion of a programming language's run-time heap to the

notion of a persistent object store or a distributed �le system. Generalize the notion of multiple uses of an

object during the execution of a single program to the notion of multiple users (or equivalently to multiple

independent programs) that share access to the object. The situation in a distributed environment is more

general since unlike a program's heap, objects live inde�nitely, and do not disappear when the program

terminates. Moreover, unexpected behavior that can result from one user changing an object with respect

to another user's viewpoint is more likely since users may be unaware of each other's existence.

Programmers make two kinds of changes to a supertype de�nition when de�ning a subtype: they add new

methods and they change old methods of the supertype. Unconstrained, however, both kinds of modi�cations

can can lead to surprising behavior. Consider a type fat set that has only create, insert, and size methods.

If we were to de�ne a subtype, set, by adding a new method, delete, then suddenly the fact that a fat set

object can only grow in size no longer is true, surprising users who think they have a fat set object when it

really is a set object. So, we cannot just add methods willy-nilly. Similarly, consider a plain elephant type

that has just one method, get color, which always returns gray. If we were to de�ne a subtype royal elephant

and correpondingly change the behavior (e.g., through overriding) of get color to return blue, then users who

think they have a plain elephant object may see later that its color has changed. So, we cannot just change

methods willy-nilly either.

What we need is a subtype requirement that constrains the behavior of subtypes so that users will not

encounter any surprises:

No Surprises Requirement: Properties that users rely on to hold of an object of a type T should

hold even if the object is actually a member of a subtype S of T .

The property users rely on for fat sets is that they only grow and never shrink in size; the property users

rely on for plain elephants is that their color is always gray.

In their 1994 TOPLAS paper \A Behavioral Notion of Subtyping" Liskov and Wing [8] addressed the

problem of what subtyping means, especially in the presence of shared mutable objects. They provide two

alternative de�nitions in their paper. In this extended abstract, I summarize only one of these de�nitions,

to highlight their main points. I then describe an object repository that the TinkerTeach Project built at

Carnegie Mellon and use it to explain what relevance this subtyping notion has in practice.

2 Review of the Liskov and Wing Notion of Subtyping

Key to understanding the Liskov and Wing notion of subtyping is the use of the speci�cation of an object's

type. Determining when one type is a subtype of another is based on showing that certain properties hold
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x: T y: S

heap

Figure 1: Shared Access to Mutable Objects in a Heap

between the two type speci�cations.

2.1 Type Speci�cations

A type speci�cation contains the following information:

� The type's name.

� A description of the set of values over which objects of the type ranges.

� For each of the type's methods:

{ Its name.

{ Its signature, i.e., the types of its arguments (in order), result, and signaled exceptions.

{ Its behavior in terms of pre-conditions and post-conditions.

� A type constraint.

Fig. 2 gives an example of a type speci�cation for bounded bags. To the spirit of the theme of this

workshop, I give formal speci�cations, written in the style of Larch [6], but I could just as easily have written

informal speci�cations. Since these speci�cations are formal we can do formal proofs, possibly with machine

assistance like with the Larch Prover [5], to show that a subtype relation holds [10].

The BBag Larch Shared Language trait and the invariant clause together describe the set of values over

which bag objects can range. The requires, modi�es, and ensures clauses specify the methods' pre- and

post-conditions. The constraint clause speci�es the type constraint.

A type invariant constrains the value space for a type's objects. In the bag example, the type invariant

says that the number of integers stored in a bag in any state, �, is always less than or equal to the bag's

(�xed) bound.

To ensure that the speci�cation is consistent, the speci�er must show that (1) each constructor of an object

of the type establishes the invariant and (2) each of the type's methods preserves it. (For methodologically

reasons, Liskov and Wing specify constructors separately from the other type's methods so none are shown

in Fig. 2.)

The inclusion of pre- and post-conditions in the speci�cation of a type's methods allows us to relate the

two types' behaviors; this is the main di�erence between the Liskov and Wing de�nition of subtyping and

those that rely on just signature information (e.g., Cardelli [2]). For example, two methods with the same

signature (e.g., get and card for bags) may have dramatically di�erent behavior. Relying on just signature
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bag = type

uses BBag (bag for B)

for all b: bag

invariant j b�:elems j � b�:bound

constraint b�:bound = b :bound

put = proc (i: int)

requires j bpre:elems j < bpre:bound

modi�es b

ensures bpost:elems = bpre:elems [ fig ^ bpost:bound = bpre:bound

get = proc ( ) returns (int)

requires bpre:elems 6= fg

modi�es b

ensures bpost:elems = bpre:elems � fresultg ^ result 2 bpre:elems ^

bpost:bound = bpre:bound

card = proc ( ) returns (int)

ensures result = j bpre:elems j

equal = proc (a: bag) returns (bool)

ensures result = (a = b)

end bag

Figure 2: A Type Speci�cation for Bags
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information identi�es these methods that behave di�erently; thus, �ner subtyping distinctions can be made

when behavioral information is used in addition to signature information.

The inclusion of the type constraint is what distinguishes the Liskov and Wing work from all others (e.g.,

America [1], Cusack [3], Leavens [4, 7]) that also include some kind of behavioral information. To foreshadow

what is coming in the next section: Not only must a supertype's type invariant and methods be preserved

by the subtype's, but so must its type constraint.

The type constraint is intended to capture certain kinds of properties of an object that are required to

remain invariant over the inde�nite lifetime of the object. Liskov and Wing call them history properties. For

example, if a window's size, an elephant's color, or a bag's bound is to remain constant, then these properties

should be stated as type constraints; if the size of a set can only grow and never shrink or a counter's value

only monotonically increases, then these properties should be stated as type constraints.

Stating history properties through type constraints is exactly how Liskov and Wing deal with mutable

objects. Formally, a type constraint is a two-state predicate, C(�;  ), where � and  are any two successive

states in any computation. A type constraint is similar to a type invariant except a type invariant is a

single-state predicate{a property that holds in every state, �, of a computation. Since a type constraint is a

property relating two successive states, it captures what behavior may not change from state to state; hence

it captures additional \invariant" properties of mutable objects.

2.2 The Subtype Relation

The subtype relation is de�ned in terms of a checklist of properties that must hold between the speci�cations

of the two types, S and T . Since in general the value space for objects of type S will be di�erent from the

value space for those of type T we need to relate the di�erent value spaces; we use an abstraction function,

A, to de�ne this relationship. Also since in general the names of the methods of type S can be di�erent from

those of type T we need to relate which method of S corresponds to which method of T ; we use a renaming

map, R, to de�ne this correspondence. (In a programming language like Java, this is just the identity map,

as realized though method overloading.)

S is a subtype of T if the following three conditions hold (informally stated):

1. The abstraction function respects the invariants. If the subtype invariant holds for any subtype value,

s, then the supertype invariant must hold for the abstracted supertype value A(s).

2. Subtype methods preserve the supertype methods' behavior. If m is a subtype method then let n be

the corresponding R(m) method of the supertype.

� Arguments to m are contravariant to the corresponding arguments to n; m's result is covariant

to the result of n.

� Any exception signaled by m is contained in the set of exceptions signaled by n.

� n's pre-condition impliesm's and m's post-condition implies n's (under the abstraction function).

3. Subtype constraints ensure supertype constraints. S's type constraint implies T 's type constraint

(under the abstraction function).

Why does this subtype relation guarantee that the No Surprises Requirement holds? Recall that the

Requirement refers vaguely to \properties." What this de�nition of subtype guarantees is that certain prop-

erties of the supertype{those that are stated explicitly or provable from a type's speci�cation{are preserved

by the subtype. The �rst and third conditions directly relate the invariant and history properties; the second

condition relates the behaviors of the individual methods, and thus preserves any observable behavioral prop-

erty of any program that invokes those methods. Though the Liskov and Wing paper focuses on only these

kinds of behavioral properties, it would be reasonable to extend this de�nition to other kinds of properties

by extending the scope of what is included in a type speci�cation.

Consider the type family of bags in Fig. 3. The constraint for a supertype, varying bag, of the bag type

given in the previous section is that the bound may change or stay the same. Another subtype of varying bag

could be dynamic bag, with the trivial contraint true (thus saying its bound may change). Dynamic bag

would have an additional method, change bound,
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varying_bag

dynamic_bag bag

bigbag smallbag

(bound may change or stay the same)

(bound may change) (bound stays the same)

(1000 <= bound(b) <= 10000) (bound(b) = 20)

Figure 3: A Type Family for Bags

change bound = proc (n: int)

requires n � jbpre:elemsj

modi�es b

ensures bpost:elems = bpre:elems ^ bpost:bound = n

which would not make sense for the bag type to have.

Further subtyping the bag type we can, for example, de�ne bigbag with a constraint that its bound be

within a certain range and smallbag with a constraint that its bound be �xed to be 20.

This de�nition of subtyping supports multiple supertypes. If S is a subtype of both T and U , then

the designer is obligated to show the above checklist of conditions holds between S and T and between S

and U . Implementation problems that arise because of multiple inheritance are irrelevant; subtyping is a

relationship between speci�cations, not implementations.

3 An Example Object Repository: The TOM Server

How does understanding the subtype relation help the system designer? In the second half of this extended

abstract I describe an object repository that the Carnegie Mellon TinkerTeach Project built and its key

design principle. This project was done independently of the work on subtyping, but in retrospect two

lessons can be learned from the implementor's design decision as related to the Liskov and Wing notion of

subtyping:

� Avoiding mutability simpli�es de�ning a subtype hierarchy.

� Mutability cannot be completely avoided in an open distributed environment.

Before I explain these seemingly inconsistent statements, I describe the object repository's functionality.

As part of his Ph.D. thesis, John Ockerbloom invented a Typed Object Model [9], a data model involving

objects, types, and their associated metadata. He implemented an instance of this model, a TOM server,

which currently supports the ability for users in a distributed environment to store data types and data

conversion functions, to register new ones, and to �nd existing ones. The kinds of data types TOM supports

today are di�erent kinds of document types (e.g., Word, LaTex, PowerPoint, binhex, html) and \packages"

of such document types (e.g., a mail message that has an embedded postscript �le, a tar �le, or a zip

�le). The kinds of data conversions TOM supports are o�-the-shelf converters like postscript2pdf (i.e.,

AdobeDistillerTM ), o�-the-Web ones like latex2html, and some home-grown ones like powerpoint2html.1 As

1The conversion of a PowerPoint document to an .html �le is actually done through the application of nine di�erent

intermediate steps going through di�erent intermediate types like rtf, postscript, and ppm. These intermediate converters do

things like converting postscript �les to ppm �les, resizing and rotating ppm �les, and converting ppm �les to gif �les. Users

see none of these intermediate steps.
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of mid-March, 200 sites from over 20 countries in 6 continents have accessed TOM.2

Today a speci�c application of TOM is to handle type conversion tasks, which includes a Web-based

user interface built for the TinkerTeach Project. This user interface hides much of the complexity of type

conversion from the user, in three ways:

� TOM is a system of type brokers. If a user makes a request to one instance of a TOM server, S, and

S does not know about the data type or converter in question, but does know of another instance, T,

that does, then completely transparently to the user, S will contact T to process the request. Thus,

there can be multiple instances of a TOM server where each knows about a few types and converters;

collectively all the TOM servers comprise a distributed object server.

� TOM can compose converters to do conversions. Given a source type and a target type (by the user),

TOM can �gure a plan of conversion steps to apply. It can make such plans on the 
y, such as when

it composes an rtf2html converter with an html2text converter.

� Given an object (e.g., a Word document) to convert, TOM uses heuristics to guess what the type of

the source object is. It can also tell a user when a requested conversion is unsupported or meaningless.

3.1 Simplify Life: Avoid Mutability

When Ockerbloom originally designed TOM, he made the following critical design decision:

All objects are immutable.

The rationale behind the decision is that he wanted to treat arbitrary information in a distributed

environment like the Web as objects. If objects can change in value, then issues of storage, update, and

concurrency control must be resolved, perhaps using standard distributed �le system or distributed database

techniques. If objects cannot change in value, then TOM does not have to worry about how they are stored,

where they are stored, how they are updated, if and how they are copied or replicated, and how to coordinate

concurrent access to them. Rather, objects can live anywhere, be created by anyone, and be shipped around

freely.

In principle, by deciding that no object can be mutable, Ockerbloom is able to avoid the problem of

shared access to mutable objects. Thus, TOM does not have to worry about what subtyping means in the

presence of mutability. As a corollary, showing the subtype relation holds of TOM's type hierarchy is simpler

since showing constraints are preserved is trivial.

TOM does support an interesting subtype hierarchy. Figure 4 gives a subgraph of the TOM type hierarchy.

For example, TOM makes a distinction between a package type that has clear delimiters (delimited package)

and one which is just a mail message, which contains a mail header and some uninterpreted contents. A

parsed mail message is distinct from a mail message because the type of the message's contents has been

determined (e.g., a postscript �le). Also TOM supports packages of packages, and so for example, a mail

message can contain a forwarded mail message which itself contains a MIMEmultipart �le; TOM is \smart"

enough to unwrap these packages and present their contents in a way that users can meaningfully interact

with the individual pieces.

Notice two examples of multiple supertypes in this subgraph. The parsed mail message type is a subtype

of both mail message and delimited package, and a mail message itself is a subtype of both package and

communication.

Ockerbloom carefully designed his type hierarchy so that each subtype either only adds new methods or

changes (by overriding) old methods in a constrained way. Thus, proving that the Liskov and Wing subtype

conditions hold for the TOM hierarchy is relatively easy:

� If no changes to old methods are made then the proof is trivial. Since each object is immutable, neither

old nor new methods can be mutators, so constraints are trivially preserved. Since no old method is

overridden, invariants are preserved and the behavior of old methods is preserved. In the typical

case, the subtype object simply has more state information, e.g, extra attributes, and the abstraction

2I use it on a daily basis. The Web site is: http://tom.cs.cmu.edu/.
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communication package

mail_message delimited_package

parsed_mail_message uuencodingzipfile tarfile MIMEmultipart

zephyrgram

same mixed alternatives

Figure 4: Part of TOM's Type Hierarchy

function is the obvious many-to-one function that throws away the extra state information. In their

paper, Liskov and Wing call these extension subtypes since the subtype extends the supertype by

providing additional methods and possibly additional state.

� If changes to old methods are made, then Part 2 of the subtype de�nition applies: the contra/covariant

rules, the exception rule, and most importantly the pre-/post-condition rules must be shown. If

subtypes always only further constrain the behavior of the corresponding supertype methods, then it

is easy to show that invariants and constraints are preserved (given that Part 2 holds and that the

speci�cations are consistent). In their paper, Liskov and Wing call these constrained subtypes because

the degree of nondeterminism is reduced in the subtype. The abstraction function is usually into rather

than onto.

3.2 Life is Not So Simple: Context Matters

Since TOM's objects are all immutable, TOM can treat the values of these objects as the real \objects." In

other words, from TOM's view there is a huge value space, where each value can be considered an \object"

(an entity that provides a set of methods in the traditional sense). TOM also supports handles to objects,

e.g., �le names and URLs; handles are also TOM immutable objects and provide a dereference method. For

example, the contents of a �le is a TOM object, not the �le itself; a �le name is a TOM object, which when

dereferenced, refers to the contents of a �le.

By de�nition values of immutable objects cannot change. However, the binding between handles to val-

ues/TOM objects may change and TOM has no control over this binding. In particular, TOM's environment

can change the binding between handles and values, and so from the user's viewpoint, it looks as if these

objects are mutable. In other words, the dereference method on a handle might yield di�erent results at

di�erent times, such as when someone has edited the �le being referenced. And, two di�erent handles, e.g.,

two di�erent URLs, may dereference to the same �le contents. TOM cannot control or even know about

this binding. For example, it is common for many di�erent URLs to refer to the same �le on a given Web

site and it is common for system administrators to export a URL for remote access but use an internal �le

name for local access. Thus, from a more global perspective, TOM objects are shared and these objects are
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mutable. We are back to our original problem: what does subtyping mean in the presence of shared mutable

objects?

Unfortunately, as users of local and distributed �le systems, the Web, or publicly accessible persistent

object repositories, we have no control over the semantic guarantees that these di�erent contexts provide.

Unix-like �le systems, for example, provide no consistency guarantees; a change by one user to a �le may

not be seen by another who has a replica or cached copy of that �le. These weak consistency guarantees

mean that while the subtyping relation may hold from TOM's internal viewpoint, it can be intentionally or

inadvertently violated by someone who accesses a TOM object from outside of TOM, by implicitly changing

the binding between some handle and TOM object.

This situation is neither new nor surprising. For any persistent object repository that does not sit in

isolation, i.e., makes its objects available through means other than that repository's interface, the same

situation will arise. Thus, this situation simply serves as a warning to the user of that persistent object

repository and as a reminder to its designer: Context matters and must be taken into consideration when

accessing the repository's objects.

4 Summary

I reviewed the Liskov and Wing subtype de�nition that takes into consideration the problem of subtyping

in the presence of mutable objects. The key ideas behind their notion of subtyping are (1) to consider the

behavior of objects, as speci�ed through pre-/post-conditions for methods, and invariants and constraints

for data types; and (2) to consider history properties, as captured by type constraints.

I also showed how this notion of subtyping is relevant to the design of the TOM object repository whose

main application today is a data type conversion service. While TOM views all its objects as immutable,

its environment may indeed provide alternative means of access to these objects and thus users may make

changes to them. In TOM, this situation is realized by changing the binding between a handle and TOM

object; TOM has no control this binding. If users make such changes then they need either to ensure that the

changes are consistent with the behavior speci�ed for the objects' types or to realize that the No Surprises

Requirement can be violated.
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