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1    Introduction 

This document describes a feature to enhance the debugging facilities of the Tera operating system. 
In particular, it details a mechanism to log kernel events with minimal overhead and in a way that 
is non-intrusive to the developer or system administrator. 

Tera kernel tracing currently consists of a large set of macros that under certain conditions, result 
in a message being displayed on the console. The conditions which cause a kernel trace message to 
be displayed involve the compile-time define TOSJDEBUG as well as a set of flags that are checked at 
runtime. These runtime flags are contained in the DebugFlags D array and can be used to enable 
or disable three categories of traces; terse, verbose, and prolog. A developer would enable the 
terse traces of a given system component to get the overall gist of processing in that area. If more 
detailed information is needed, the verbose flag is enabled. Finally, the prolog flag can be used 
to trace C++ member function entries and exits (another compile-time define, T0S_DBG_PR0L0G, 
comes into play here - see debug.w for more details). In addition, if further control is desired, the 
0S_CCB-k: :traceFlag can be set to enable tracing on a per-chore basis. 

The use of printf () s to debug code is only useful if the amount of information being relayed is 
minimal. Unfortunately, trace output from TOS (or any operating system for that matter) is not 
minimal. While it may suffice while debugging the operating system within a simulator, it should 
be apparent that the use of printf ()s on the real hardware will be more difficult if not impossible. 
In addition, sites will not want these traces flooding the console screen but there must still be some 
way to gather trace information when a site sends in a dump for analysis. 

For these and other reasons, a kernel event logging mechanism will be implemented along with the 
means of controlling it and displaying its output in a comprehensive way. Since events may be 
logged at a very low-level of the kernel where performance is crucial and not all features of TOS 
may be available, the logging mechanism will be kept simple and consist of a set of circular buffers 
to store, pertinent information. 

The following sections will give the requirements of this feature as well as detail the actual imple- 
mentation. 
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2 General Requirements 

The original requirements and background to OS event logging can be found in "os/design/eventTracing. evei 
While more details can be found in that document, the following is a summary of the requirements: 

• Minimal overhead. 

• Dynamic enable/disable of logging events. 

• Static configuration of number of buffers and their sizes. 

• Customizable buffer management policies. 

• Live system and dump file event processing capabilities. 

3 User Level Event Tracing 

The Performance and Debugging group currently has an event logging mechanism for the user level 
runtime as well as user applications. The original intent of this feature was to leverage off of this 
work and reduce duplicated effort. 

The runtime Event Tracing implementation (see "system/doc/perf/perf .ps) provides the ability 
to register filter functions for specific logging identifiers as well as an optional guaranteed logging of 
all events to a specified file. Since the main requirement of this feature is minimal overhead, logging 
all kernel events to a file (at least from within the kernel) is not practical. Not only would this be 
an expensive operation, but there would be certain places in TOS where file system access would 
be unavailable (at boot time for example). While this is an optional feature of Event Tracing, the 
registration of filter functions which would be invoked upon every trace request is also unnecessary 
overhead. In fact, only a small fraction of the user level event logging code is needed for the OS 
(approximately 10 lines of buffer management code). 

For these reasons, a new set of operating system functions and macros will be created to provide 
OS event logging. It will use some of the low level event logging code from the user level feature, 
but will also contain kernel specific optimizations and display routines. The record header format 
of the log records will be compatible with the user level event feature in order to make use of any 
visualization tools that are developed for it. 

4    Event Buffer 

Since the event logging feature must be usable by both C and C++ code, C structures and functions 
will be implemented. 

The primary structure that controls the event buffer is KLog.   The format of this structure is as 
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follows: 

typedef struct _J CLog{ 

int64 subsystem; 

char* name; 

int64 num_recs; 

int64 rec_size; /* # words per record */ 

int64 header; / * Formatted header for EvtTr compat */ 

int64* buffer; 
int64 buffer_size_l; /* Total number of words in buffer - 

int64 next_write; 

} KLog; 

1*1 

Each KLog buffer will contain events from a specific subsystem. The numerical identification of 
the subsystem is saved in the subsystem field of the KLog structure and will be one of the existing 
debug classes (i.e. DBG_SCHED, DBG.FS, etc.). The name field contains the string representation of 
the subsystem which will be the subsystem name without the DBG_ prefix. For example, the name 
of the DBG_SCHED subsystem will be "SCHED". 

The rec_size field contains the size in int64 words of each event record. This is currently hard- 
coded to 8 words. The num_recs field contains the number of events that this particular subsystem 
can hold in its circular buffer. There is a set of defines that determine the size of each subsystem's 
buffer. These defines will need to be tuned as experience with kernel logging progresses. 

The header field is written as the first word of each event record. It is there for compatibility with 
the user-level event logging feature and contains a magic number, size of the record, and record 
identifier which in this case is the subsystem number. 

As expected, the buffer field points to the top of this subsystem's circular buffer. The buffer 
itself is currently statically allocated in supervisor memory. Additional work will be needed to 
support dynamic reconfiguration of buffer sizes. The buf f er_size_l field contains the total size 
of the buffer in words minus one. The current implementation requires power-of-2 size buffers and 
thus buff er_size_l is used to wrap the current record pointer using a single AND operation. This 
restriction could be removed by using the modulus operation if performance is not impacted. 

Finally, the next_write field is used as the current pointer into the buffer. This field is atomically 
incremented using the TERA_INT_FETCH_ADD() operation to insure buffer integrity. 

The global array of KLogs, one per subsystem, will be statically allocated and initialized so that 
event logging can take place immediately upon kernel startup. To make things easier to initialize, 
a macro will be available so that the declaration will look like so: 

KLog KLogs[DBG_MAX] = { 
KLOG_CREATE(NONE), 
KLOG_CREATE(PARCHORE), 
KLOG_CREATE(FS), 
KLOG_CREATE(SCHED), 
KLOG_CREATE(VM), 
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The KLOG_CREATE macro will expand to fill in all the correct data into each KLog field. 

The buffers themselves are allocated from one large buffer named KLogBuff er. This buffer is also 
located in supervisor memory and is declared as follows: 

int64 KLogBuffer[KLOG_REC_SIZE * KLOG_TOTAL_RECS]; 

Where KL0G_T0TAL_RECS is the sum of all subsystem records. The only piece of data that could 
not be statically initialized in each KLog structure is the buffer pointer. Therefore, all KLogs are 
statically initialized to point to the start of the KLogBuff er. Then, at runtime, the kloglnitO 
function invoked from debug_init() sub-divides the KLogBuff er and updates each KLog subsys- 
tem's buffer pointer. Any kernel event tracing that occurs before kloglnitO is not lost though as 
it will be placed in the DBGJfONE's subsystem buffer. 

5    Event Records 

An event record is generated by using one of the KLOG macros (explained in a later section). The 
record is stored in a circular buffer referenced from the KLog structure. Each record contains 8 
words of data as follows: 

I'* MAGIC:RECSIZE:subsystem */ 
j* thisChoreQ */ 
I* thisProcessor():thisDomain() */ 
/* teraClockQ */ 

typedef struct JKLogRec { 
uint64 header; 
uint64 id; 
uint64 proc_dom; 
int64 clock; 
int64 desc; 
int64 datal; 
int64 data2; 
int64 data3; 

} KLogRec; 

The first 4 words of the record are event independent. The header word is filled in with the header 
field of the corresponding KLog structure. It consists of a magic number, record size in words, and 
the subsystem identifier. It is stored for compatibility with the user level event tracing feature. 

The next word contains the chore control block pointer of the chore logging the event (thisChoreO). 
The proc_dom word contains the processor number and domain that the chore is running in. The 
combination of these two words identifies a unique chore. The clock field contains a time stamp 
of the event as returned by teraClockO. This allows debugging utilities to properly merge all 
subsystem logs into the correct chronological sequence. 

The last four words of the record are event specific as specified by the parameters to KL0G(). The 
first, desc, is the character pointer to the format string describing the event. The datal, data2, 
and data3 words contain the optional pieces of data associated with the event. 
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6    Enabling/Disabling OS Event Logging 

Kernel tracing is currently accomplished through debugging printf _k statements sent to the system 
console. Whether a debugging statement is printed or not depends on two things; the intensity 
level specified by the trace statement and the settings of the DebugFlags array. 

The existing kernel printf traces are controlled through fields in the DebugFlags array, indexed 
by subsystem id. This feature adds two new flags, d_klog and dJilogprintf to the Dbg_Intensity 
typedef: 

typedef struct _Dbg_Intensity { 
unsigned int     d_prolog:l; 
unsigned int 
unsigned int 
unsigned int 
unsigned int 

} Dbg_Intensity; 

d_terse:l; 
d_verbose:l; 
d_klog:l; 
d_klogprintf:l; 

/* debugging intensity */ 
I* log function entry/exit */ 
I* important trace messages */ 
I* detailed trace messages */ 
/* enable event logging */ 
I * print events to the console */ 

If the d_klog flag is true, KL0G() events from this subsystem will be logged in the appropriate 
buffer. By default all subsystems will have the d_klog flag enabled. If d_klogprintf is true, the 
KLOGO events from this subsystem will be printed on the console if the appropriate intensity flag 
is also set. This way, the existing kernel traces can be replaced by KL0G() requests without losing 
the ability to see the trace on the console (see examples in the following sections). 

In addition to the d_klog flag check, this feature also includes a log level check. A new global 
variable, klogLevel, controls which events get recorded. The current log levels are the following: 

enum { 
KLOG.OFF, 
KLOG.TERSE, 
KLOG.VERBOSE, 
KLOG_PROLOG, 
KLOG ALL 

/* 0: No KLOG event logging */ 
1*1: Terse events logged */ 
I* 2: Verbose events logged */ 
I* 3: Prolog events logged */ 
I* This enum should always be last */ 

}; 

It is important to note that the check for the d_klog flag and other d_xxx intensities is only done if 
TOSJCLOGJDEBUG is defined. If it is not defined, the intensity level given on the KLOGO invocation 
will only be checked against a static level of our choosing (i.e. KLOG_TERSE). This will decrease the 
performance impacts of the logging feature by effectively removing all KLOGO invocations above 
the chosen level. 

7    Logging an Event 

The actual insertion of a log record will be done through the KLOG macro set created by this 
feature. The format of the macro is: 

KLOG(subsystem, level, desc, dl, d2) 
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The subsystem parameter is one of the DBG_xxxx enumerated constants. The level argument 
should be one of the klog intensity constants such as KLOG_TERSE. The desc is a pointer to the 
text format describing the event. Finally, dl and d2 are the additional data to be logged with this 
event. 

For example, the following two traces would produce the same result except one would be recorded 
for later playback: 

DBG_SCHED_V(("postProcess: task:'/.d curPD:'/.d\n",taskIndex,curPD)); 

KLOG(DBG_SCHED, KLOG_VERBOSE, "postProcess: task:" HEX64FORMAT 
" curPD:" HEX64FORMAT, tasklndex, curPD) 

Note: The reason HEX64F0RMAT is used as the formating option is so that the correct data is 
displayed in the Awesime world. Since each data item under awesime is stored in 32 bit words, a */,d 
conversion would only display the top 32 bits of the 64 bit data item. Using HEX64F0RMAT insures 
the proper data is displayed under both worlds. 

To make life easier (or more difficult depending on how you look at it), there are numerous KLOG 
macro variations to shorten the actual KLOG invocation. Available KLOG macros are: 

KLOG[TVP][012](area, [level,] desc, [dl,] [d2]) 

The [TVP] characters represent KLOG_TERSE, KLOG.VERBOSE, and KL0G_PR0L0G respectively and 
if used, negate the need for the level parameter. If no character is specified, then the level 
specification must be given. 

The [012] digits indicate the number of data items to be logged. If '0' is used, dl and d2 are not 
given, if '1', only dl is specified, and if '2', both dl and d2 must be given. If no digit is specified, 
'2' data items are assumed. 

With these macros in mind, it should be easy to see how the existing TRACER macro could be 
modified to use KL0G(): 

#define  TRACEK(area,string) KLOGP0(area, string); 

Here are some more examples of existing trace code and the corresponding KL0G() invocation that 
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could replace it: 

DBG_SCHED_T(("doloadTask -> '/,s\n",ccb)); 

KLOGTl(DBG_SCHED, "doloadTask -> y.sM,KLOG_STR(ccb)); 

IF_DEBUG(DBG_VM,d_verbose) { 
printf k("DataSegment_k: : extend succeeded\n"); 

} 

KLOGV0(DBG_VM, "DataSegment.k::extend succeeded"); 

IF.DEBUG(DBG.NET, d.verbose) { 
addLogC&NetLockTrace,  "read lock ", file, line); 

> 

KLOGV(DBG.NET,  "read lock %s, line %d", KLOG_STR(file), line); 

Note the use of the KL0G_STR() macro above. When running the Tera system, this macro does 
nothing. But, when simulating under Awesime, the macro moves the character pointer to the upper 
32 bits of the int64 word. This allows '/,s formating to pick up the correct string address. 

8    Trace Tools 

The klogPrint(subsys, type) function is provided by this feature to view the contents of the 
trace buffers. The subsys parameter indicates which subsystem buffer you would like dumped. If 
the subsystem given is 0, all trace buffers will be merged and dumped in reverse chronological order 
(most recent to least recent traces). 

The type parameter indicates how the data should be displayed. Here is an example of output 
from merged traces using the KLOGJPRINT.FULL display type: 

[KP:0,0,50000010][0,0,ALARM] Entering function "AlarmlD.k :: AlarmlD.k" 
[PC:0,0,300001bf][0,0,KLIB] Entering function "klib.entry" 
[PC:0,0,300001bf][0,0,IPC] Entering function "Message: :Message" 
[PC:0,0,300001bf][0,0,UTIL] Entering function "HashChainlnt: :hash" 
[PC:0,0,300001bf][0,0,UTIL] Entering function "HashChainlnt: :insert" s 

[KP:0,0,50000010][0,0,ALARM] Entering function "AlarmPool.k :: free" 
[KP:0,0,50000010][0,0,UTIL] Entering function "HashChainlnt::hash" 
[KP:0,0,50000010][0,0,UTIL] Entering function "HashChainlnt::remove key" 

In addition, a user-level program (crash(8)?) will be developed to gather all kernel trace buffers, 
merge them in chronological order, and display them in human readable form. This tool may be 
developed by the kernel group or perhaps, since the format of these buffers is compatible with the 
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user level Event Tracing feature, tools developed for that product could also be used on kernel 
buffers. 

A    Issues and Alternatives 

A.l    Trace Description 

Logging a pointer to a string obviously assumes more than the trace buffer itself must be available 
for display purposes. If this proves to be a problem, here are a couple of alternatives: 

• A short 8 character trace description can be logged instead of a pointer to a full character 
array. 

• A minor event ID could be logged instead of the character pointer. This minor number would 
then correspond to some text string declared elsewhere. 

While this is a viable option, it may prove to be a bother maintaining the trace and description 
in two separate places. 

A.2    Buffer Distribution 

As mentioned, the intention is to have a trace buffer per major subsystem. Other possibilities 
exist such as grouping a number of subsystems into one trace buffer or having a trace buffer per 
processor. 

In addition, the buffers themselves will initially be static since I'm sure there will be a number of 
traces occurring before dynamic kernel memory allocations are available. Obviously this will be a 
waste of space if dynamic resizing of the buffers is made available. This issue can be addressed at 
that time. 

A.3    Performance Considerations 

This feature will require a good deal of tuning to be sure the performance impact is minimal. 
Evaluations will need to be made on the logging level the system should be released at as well as 
the size of each subsystem's buffer. 

The contents of the buffer are important considerations too. While the feature is currently logging 
the full 2 word OS_ChoreID_K, perhaps this should be changed to save just the CCB pointer. This 
will require only one store operation verse at least 3 loads and stores when using the getChorelDO 
function. 
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