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Malii-Group, Multi-Reflector Pile Theory

1. Introduction. The differential squations involved 1a

the mlti.group, wvlti-reflector pile theory studied in th's paper
are rhemngencous partial differential equations of the second order.
Associated with the pile or any of the reflectors is a system of

as many equations = there are gZroups. Thus, if thers are n groups
and v roflectors tharo is s system of 2 3econd order equations in
each of the Y+ 1 reglons, the solutions of the Y+ 1 systems
satistying appropriate continuity conditions at the boundaries.

There are three types of piles considersd: the infinite slabd,
the infinite cylinder, and ths sphere. Moreover, symmetrical
charactaristics of the problems are such that the partial differentiasl
equations reduce to ordinary differential equatlons. Although the
equations ars linear, the coefficients are constant oaly in the case
of the sladb pile; otherwiese, they are functions of the independent
variable.

Ordinarily, the problem %o be solved is to find the neutron
density at any point within the region bounded by the ocutermost
reflactor and to find the critical size of the pile, after the
dimensions of ths reflectors have been zasigned. In all three cases

mentioned the gensrsl solution of the set within each region is

easily wristen down, even vhere tha coefficlents sre variable,
Thereafter, a difficuliy arises in thet the location of the

boundaries is not awsigned but is depondent upon the sizes of the
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pils. Thus, a procedure for the solutlon ¢f the problem is to
volve the equations sa2quenilially from the pile through all of
the reflectors in terms of a fixed but unspocifiecd critical sisze
(radius or half-width) until the outer boundary is reached,
Then, the outer boundary conditions together with requirements
of syometry within the pile provide sufficient specifications
for the determination of cr1t1¢a1 pile sige and the complete
solution of the problen.

In a previoue report, Moa P-202, the two-group theory for
the case of mltiple reflectors, without maltiplication in the
reflectore, and an infinitc sladb pile im discussed. In the
determination of critical size it is found that the contridbution
of each reflector to the solution of the problem iec irdependent
of pile sigse., The equation which finally yields the critical
slze involves a single fourth order determinant, whose first two
columas only involve the pile size, and whose last %two columns

are obtainable as a product of v ~ 1 fourth order matrices and

one 42 matrix (four rows and two colusms), all independent of
pile esize.

In this paper the protlem is discuszed from a more general
poiant of view which includes the consideration of possible
sultiplication in the reflectors and three differant pile shapes.
Pirst of 2ll, the system of n second order differential

equations is replaced by a system of 2n first order differential
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equations. This procedure embraces all of ths advantages of
the first study while further providing better general
perespective on the problgm and simplifying somevhat certaln
computational aspects of the problem. The simplicity first
achieved in the infinite slad case is preserved in She nevw
procedure, but does not persist in the spherical and
cylindrical cases for either msthod. Howover, in ail cases
it is poseidble to reduce the order of the fundamental
detarminant for the determination of critical pile sise to
exactly the number of groups involved in the problen.

In § 2 a gpecial example 1s provided for the case of tw
groups and an arbitrary puxber of reflectors in an infinite
slab pils, with multiplication in the reflectors. In § 3 the
case of the.infinife Qlab pile is treatod with full generslity.
Gensral treatments of the spherical and oylimdrical cases are
given tn § 4 and § 5 respectively. PFinally, in § 6, a study is
made of the 11misingbsituatlon in the case of the infinite slab
pile and the spharical pile to provide an n . group theory with

a reflector of variable demsity.

2. The two-group. mmlti-reflector problem for the infinite

slad pile.
2.1. The differential equations and boundary conditions.

Let y, with an sppropriate subacript to represent a particular

group, represent the flux of the neutrons of this group in any of
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the » + 1 reglons coneisting of the pile and the reflectors.
Let n represent the flux of thermal nreutrons and s the flux
of non-thermal nentrons. The equations in any region have

the form

¥ 2 2 _
RS 21 SN R N ERKE Y, = 0,
ax
(2.1:1‘) 2
7‘21._’_2_._7\';«234-1:)\1, y = 0,
dx® 272 2 111

vhere the constant k is zero in a reflector without smltiplication.
The boundary conditions prescribe the continuity of yy and

Ny ary , for i =1, 2, at the intermediate boundaries and the

dx
vanishing of b 2 at the outer boundary.

2.2, Reduction to a system of first order differential

equations. If in (2.1.1) the substitutions
73 =5 }\1 71 []

b
Y, :?\2 5

are made, the system of firast order egnations vhich follow is

obtalned’
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(2.2.1)

N S 2
T3z MKy Tp=n Koy,

2y, .

' ) 2

How, let the symbol y without a subscriot denote the columm

vector of components ¥y ’2‘ y}. ’ﬁv Then, the cquations
(2.2.1) can be written in the matrix form
[
y 3.,
where
\ =1
M= 0 0 7\ 0
1
0 0 )KEI
k2 2
1% ALK
272 0 0
2
..k)\l'Kl 7\2‘1(5 0 0

Solution of the problem for the case of no

multiplication in the reflectors. Solutions of the form

Ty = A e~X , 121, 2, 3, 4, are now sought. Substitution

in (2.2.1) yields the squations
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MK = \';1 A
=l
52/‘: )‘2 Au °

2 2
Ayaz WK A =N KD h

Bz BN N NKE A
which have a non=trivial solution 1in 4, A5, Ag Ah provided thst
= g ] \;ﬁ 0 \ zZ 0 o
(2.3.1) 0 - 0 A
nKS NRE e o
B N SO WS 0 -

Phis is the charasteristic equation of the system (2.2.1).

‘The equation (2.3.1) can be written in the fora
0 0 )\;1 0 = 0
0 0 0 \21
7‘1“‘5 -1 = N2 N °
KR (K E kB 0 - p




and consequently
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kK7 k2.2

or
”

(2.3.2) (K =p?) (K2-pud) -k KT KE = 0.
In the pile k> 1 and the egquation (2.3.2) in /‘2 has one
positive and one negative root. Thue, the four roots of (2.3.2)
may be written in the form 1 auy, T4, wt;ern pq a0l s, are
real and positive numbers. In this section it is assumed that
k=2 0 in the reflectors, and the corresvonding roots of (2.3.2)
are tK,, t’Ka,. In either case there exists a set of four
independent solutione of the system (2.2 1). Let each solution
of any independent set of solutions be made a column of a
§ » § matrix Y . To illuetrate, 2 matrix Y. corresponding to
the X = th region .ot the pile is constructed. One uses a
solution of the form y; s Aiﬁm 1* » taking A, 5 1, in the '
equations (2.2.1) to get the first column in Y. . In this
case it is found that 13 = Al& = 0 . The substitution Y= Lifl:klx

gives the second column, and s¢c on. The £final result for x > 0 1is

L)
Until further notice ix this section a subscript shall
henceforth designate a particular region instead of a particular group.
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Ty (x) =
'Kll Xlz sz
e ]
el =2, 2 2 Y&
0 0 M Az Ko (Ky =X e
X ,'\‘\1: Kax
1
}\1‘\(10 - ?*1‘\(10 )\1 Ka'
N - 2 'sz
0 0 7\1'&(2 (Kl «»'Ka)s

which is a non-sisgular matrix,

Koz

-

- A
\1)\2 Rg \'Kl ..2)0
-Kex
- e
: )\1-‘ 2

KX
X RHKE KBy 2
1 2 1 2

By %aking appropriate linear

combinations of the columns of this matrix one may replace the

above mairix Y, by a new one

¥ < (x)=

'h'Klz

A Kpeh 'le

where

sh sz oh‘le
sllhxzx | 0
,\l'chh“Kax A¥ lalﬂ(lx
o sl'\(zch'\(zx o}

-l -2 . 2 2
o h Ay Ky (KD =KDy o

oh'\(ax o
oloh'Kax
)‘1'\( 2lll'l(ax

)\2 il.Kzah RZ’
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For later reference the matrix T4+ corresponding to the pile,

is computed to Dbe

Yy (x) =
com fe X ch g sin ,«.lx sh 2:
T, 008 v = : rach ,u,zx rllin #4 x rauh /4.2:
- ) 1'”’1'1“/“'1: xl/.‘,zah,«-zx xlf“loo./&lx xlﬂ,ech/,.,zx

=Ty N i Blnu X r2x2'“'2.h'“'21 VL L oM g oCh X
vhere
VAT 12

Fp=tg A Ky (K iegd s

TpaN Ay Ky (Ky mps)
Cne bears in mind that the parameters™ and Awiich occur here are
those characterising the material of the pile and are distinct
from those occurring in the matrix Y. written sbove.

In general, then, the matrix Y(x) for each region 18 a

non-singular matrix of functions of x satisfying the matrix

<Guation

Y « M.

Since M is a constant matrix the related system of equations have

constant coefficlents. It is thea clear that if in the matrix
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Y(x)}. the independent variadle x 18 everywhers replaced by
x - x,, the resulting mabrix I(x - xo) ie sleo & matrix of
indsnerdent solutione if %, designntes any point within or on
a boundary of the reglon (pile or reflscicr) over which the
differentisl equations are defined. Indeed, the replacement

&

of = by x-x,1s gergly a transformation of the independent
variadle which bas mo effect upen ths form of ¢tho equations,
Moreover, evary sclution of the equations is expressible in
the form y - Ye¢, vhere ¢ is 2 colwsn vactor of four elements.

Cne now takes the origin ass the center of the plle und

x N and x, as the bounds of theo - th region. Accordingly,
K.:

the matrixz Y may be taken as a function of x - xm « that is,
of the distance frorm the inner bdundary of the reglon %o an
arbitrary point of the reglon.

The conditions of cortinuity =t the pile and reflector

boundarieg reguire that
T (x,-x )

or, 1f i DX~ K

. Gd=y L, () .

1

Hotice that in the lapt squation neither x, nor LY appears,

but only %tho thickness %, of the < .- th reglon.

Suppose now thai a solution y, wers given for the pile.
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This could be expressed in the form

where Y, is the particular matrix of fundamental solutions which
has bdeen chosen within the region of the pile. Now, the solution

n s !1 Y in the first reflector must satisfy the relation
7,(0) = 7 (a)

vhere a = t, 1s the half-thickness of the pile.

Hence,
!1(“-»)91 2 !o(l)co '

and, since all of the Y, 's have been chosen non..singvlar, one

obtains
<l
cl = rl (0)!0(.)00 [
Again, at the next bdoundary,
72(0) = 7, (%)

!2(0)322 1(t1)°1 ’

so that

-1




: alh"’

or

(s )!"1 (o )!o (a)e,

1
- Yo
oy s T (00T, (%01,

If thies procedure is continued one obtains

(¢ )Y -1
A o

-1
@38 o, 2T O (5

1(0)\. o o !o(.)co .

Thus, if the vector o, (or the solution y, within the pile) and
the half-thickness a of the pile were known, the solution within
all of the reflectors could be odtained.

The situation last considered does not generally arise, and
both y, and a must be obtained from other conditions. The
physical situation requires that the solution be symmetric within
the pile. Accordingly, the last two components of the vector y,
oust vanish at the outer boundary: that is, the first two components
of the vector y, must vanish at the outer boundary. To express
these requirements in symbolic form let Y, and Y, be partitioned

into 2 x 4 matrices:
Y
ol J1
g = . Y ) .

and then require that
(2.3.5) Y,o(0)0, = 0
(2-3.6) '.Dl(‘.) )cg =0 .

If the matrix Y, ir written in the foram (2.3.3) the requirement (2.3.5)
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ig met by making the last two components of the vector o, equal
to scro. The end resuilt is the same if one drope out the st
bwo columng of T, thus making it a 4 x 2 matrix commosed of the
first %wo columns of (2.3.3), and it will Do assumed that thia
has been done in what follows.

Bow, in (2.3.h), set x ».) and miltiply on the left by

Y,3;{y ). Then &t follows from (2.3.6) that
-1 el o

“1 R N S1 N N
The matrix ¥ (Oyré.ml(tv aLJ?O m1(0j= - Yo(s) 18 a 4 x 2 masrix
since Yo(a) te a 4 x 2 matrix, ard Y, l(tg ) is a 2 x 4§ matrix.
Then the product is & 2 z 2 natrix, The equetions are consietent

i? and only if the determinant of the coefficients vanishes:

2 =1 w \ .
(2.3.7) \Y’)l(t‘) i, (O)Y_) al(tﬁ)t_lﬁ}, .80 o s Yo(a)\ =0

The determinant {e of order two and thas solutiob of the equation
gives the critical pile sise s .

The computation is eimplified in a2 numerical problem if
Y, (x = z 31) is replaced by Y 3(x - x ) ). Thies has tho effect
of making the last two commonents of the vector ¢ , equal to mero,

and conditlion {2,.3,6) becomes
T,,(0c 50

Equation (2.3.7) is now written
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.1 )
\'!1, NIRRT NRTCNN . S R Yo(“)\ T -

As a matter of record the following formulas are licted:

Y, (0) = 0 0 1 2 0
0 0 o o
>‘1K1 N X 0 0
0 Na '1’K2 0 0
s oo g
“ ° o
L ) 8;1 \ )
Y 511 0 0

T, (6,01 H0) =

L ah'kat,) sh K ‘-.,)\

) , 1
ch ¥, ¢ wao(enrX ty - chK ty) ary ty ( - -}
17 5 ;
i
N N f2he
1

q P f_( X 13 At'c!-ﬂ’._l_-u £ ‘/
,\I"Klshklto ; K oh K8y 'Klnh'\klt.)) ch"‘,(ltd s (enX b chklt,))

] 172 )

0 ,\2’1{23&‘1(2\3; 0 ctﬂ‘at._) . /

The first twe rowa only occur in the determinant of (2.3.7).
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It shonld be emvhasized that in the preceding formulas the
subecripts on the ¥'s and t'e refer to s particular region (pile
or reflector) and the subscripte elsewhere designate a particular
group. Wnen these formulas are used for actual comvutation a
double subscrint notation {i}) should be used, where 1 desipnates
the region and J decignates the group.

2.4. Further observations on the solution. It is pogsivla

that the computation in tie prodlem of the preceding section can
be eimplified by making the matzrix Y (0) of initial values the
identity matrix. It is clear that &£ Y (x - x.\ml) is any non.

gingular matrix of solutions then so also is the matrix

¥, (x - x )Y, (x «x )4 .51(0') v

oL 4-’-’1 . '_"'1

and moreover
¥v.(0)=1

Then, the fundnmental equation (2.3.7) becomes

Lw, g€y 0w, (e 0o '62‘“’\ o

vhere W 1(tv ) consiets of the first two rows of W, (t, ) and
W o(a) consists of the firet two columns of ¥,(a).

In the preceding section the formula

(2.h.3) oy 5 vy 07y g (4. Wyea(0). . . T (a)o, & P o

wae obtained without impoeing any restriction on the matrix of
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eolutions Y, beyond its non-singularity., It is now observed

that (2.4.1) can be written in the equivalent form

=1 - -
G = YO (Q)!l(O)YII(tl) o ¢ » Y‘(O)Qu ",,-,‘- P lﬁg

Accompanying conditions required that
(02 . 12)!0(0)% 2 0 ¢

(12 ] 02)!,(‘])% = O ’

where 0, and I, are 2 x 2 sero -~ and identity - matrices,
respectively. By the special choice of Yo whereby a martitioning
of Y, (0) has the form

the condition on the vector ¢, alone is equivalent to the
requirement that the last two components of ¢, be sero. The
subsequent elimination of the two vectors Co 3nd cy was found to
Yield a determinant of order two in the final equation of the
probles. A similar special choice of Yy is useful when the outer
reflector is infinite in the x -~ direction. To this end one
chooses the first two columas of Yy to be a set of eolutions of
the differential equations which vanish at infinity. Eence, the

last two components of oy are both sero and there remains the
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determinantal equation

(2.4.2) \!;;(o)rngl(tncl) o s e rol(.)\

- 0 .

where T;3(0) 1s the lover half of the matrix Y5;1(0) ana

!ol(a') the left-hand half of the matrix Y, (a).

A procedure which simplifies the computation of Y;]é(O)

in equation (2.4.2) has Deen suggested by B, Spinrad. 4

special choice of the last two columns in Yy 1is made o that

the task of comruting !;1(0) is made as simple as possibdle.

One writes Yx(x) in the form

Y‘(x) =
- K lx =K 2x .hklx
[ [ ]
YRS
- X
o} s e a 0
=K% = KX
0 - )\2.1'](20 0
80 that Y,(O) takes the form
A 0
B I

the inverse of which is readily computed.

of this inverse which is used in (2.4.2).

It ie the lower half




In case the pile is not symmetric there {2 no requirement
of symmelry ad the center. Ineteamd, if O and K designsgte the

two outer reflectors, it is required that

:}
o
-

(1, 05)%,(0)c,

e

provided that both ocuter reflectors are finite. The swecial cloice
of both Y, vad T, results in Y (0) and Yx(t]') having the partitioned

fora

Thie means that the first two columns of each vanish in their first
two components at the outer boundaries, In c.se eit.er reflector
is infinite in the x - direction the requirements on Y,(0) or
YH(QE) are meaningless, but in this case the first two columns of
the Y matrix are chosen to vanish at infinity. In either case,

the last two componente of ¢, arnd ¢y are zero. Note that if the
sero .. reflector is infinite, the origin mmst be moved to its inmer

boundary. Now, if co and 1 dencte the two-vectors of non-gero

1
components there results eilther of the ajquivalent sets of 2 x 2

equations of the form

%ol ey 0 L] Hcﬂl = 0 f

from which ons oblains either of the equivalent determin-nt.]

equations



If it {s assumed for the sake of simpliociiy that all of the
reflectors are finite, note that 1t makes little difference
which of the N regions is left with its thickness undetermined.
The unknown thickness & . {& involved in only a single matrix of
the product %, or R. This m:trix is multiplied on the left Dy o
constant matrix of dimensions 2 x 4 and on the right by one of
dimensions 4 x 2,

2.5. Multiplicstion ia the reflectors. In this section the

case of multiplication in the reflectors is considered, If k= 0
in the characterietic equation (2.3.2) there results the foregoing
situation in which there are two positive vilues of/cz. 1f
0<k 41l the w~'s ~re still positive nnd the metrix Y, is as
before, If k = 1, there is one poaitive,«.z and one ser0/¢29

The matrix Y, bYakes the form

Y. =
| (X Frwda ~(X§ + ¥
i x L o
1<,2+’kz (K22
;\ﬂ‘(f )\]_'fo ro( 1 2 re( 1+
e 2
(1’\f+’l<g)x w(Ky+ K
0 )\lx se -Be
K2 K2 XK2+KE
2 ( )x =(KE+KSx
0 )‘11‘1!_ ~88 ! 2 se : 2




or
Y, =
/ 2 2. 2 e
x 'h(Kl‘\"Ke)x i ch(%l*"Ke)x
)\lk% S et hY Ka 2 2,
—3 r eh(K < +=5he 1l r (K S+ % Six
heX3 T N to2
, 2
M ] ch(l\f«-"‘K 2)x o s ‘h(Kfﬁ.«g)x
e
)\IKI
; e, .y L 2 2
mﬂz -8 ch(“Kl+ Ke)x 0 8 sh('xl-w&a)x
vhere

» [2 2 2,
P g wmemts (K = (KE+ KE) .
N xg@{ 1 1 e

Ifk) 1. Y (x) takes the form of Y,(x) a8 in (2.3.3).

3. Tho mmlti-group. multi-reflector problem for the infinite

8lab pile.

3.1. The general formulation. As in§2, let y, with an

appropriate subecript to represent a particular group, represeat the
flux of tho neutxors of this group in any of the - J+ 1 regions
consisting of the pile and the reflector. The subscripts are chosen
s0 at Yo incrense with the mean energy of the group, that is, 1
represents the flux of thermal neutrons, y, that of ths slowest
group of fast meautrons, and ¥p that of the fastest group (the fission

peutrons). The differential equations in any reglon have the form
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2 : 2 - ,
\1 J yia.)\ ‘“1%‘“>\1f1 tvqT1eq = o ., (i<al}
(3.1.1)
2 2 2y =
g yn+k\1’K1 ) - - N XZy, o

whare the conatant k i3 sero in a reflector without sultiplication.

The boundary conditiont prescribe the contimuity of vy and of
N 1‘\7 yt at the intermediate boundaries and the vanishing of ¥; at
the outer boundary or houndariss.

3.2. The infinite slad pile. PFor the infinite slad pile

the ¢ifferential equations are eszpecially simple in form gince
‘i‘)ay1 becomes merely the second derivative wiih rssvect to 2 and
all coafficientc of the ¥4 and their derivatives are constant,

IV 15 convenlient to introduce the additional variables

4

yn.‘,Jg \J J'J [ (J:n) s

which m-k2e it possible to replace the system of n eecond order

eguations by the Zn firet order equations

& =] <
¥y = \J nvy sy
8 = , @
(3.2.1) Toey = ., '\(1 7y - }\1+1’f«1+]. Yiez (i<n)y ,

2
= = KRN
lklyl-r)\ "Kn n

Ton
If the sywbol y without a subscript denotes the column vector of
commonents Jy» Fop o 2 o 8 Fppe these equaltions can be written in

the matrix form




-2Y.

(3.2.2) y= N o,

vhére the 2n x 2n matrix M can be partitioned in the fora

o AT\ ,
n =
II1 0
with
\;" 0 - 0
- =)
Al : 0 )\2 Ly ® < 0
-1
0 0 N
ang
2 n 2
- 0 .
2 2
R EA-TEER LS
2
ale"Kl 0 0 s

The characteri stic equation

]ux,hxi = 0
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of the equation (3.2.2) is easily written down with the atd of the

relation
1 0 0 At
'

Y -ul POVISES ¢ ul-/."’A -1

where the first matrix on the left is M - I and the second has

the deterninant unity., Hence

|n-/~1\ g | v«"’AHA"l( s 'flllt_.l./\'_=1 -2 x\

- 2 2 2
: *l 9/“' -’ka O o o o 0
0 K3-uf -'K§ e 0 .
2 - 2 2
-k kl 0 0 e ° o kn /"

The last determinant can be expanded immediately to yield the

squation

(3.2.3) (K2-u?) (kBp?) .o (WP mekfx2. Lo KE

It is clear that when k = O the roots of the characteristic
equation are t'"Ki, To investigate the case k )0 ccnsider the
graph of the left member of (3.2.3) plotted agauut/wz. Thise
crosses the «€ - axis at'Kf and crosses the vertical axis at

y e~y 2 2 AT 2
xe . ., ., . KEWE .,
Kl > Kn The effect of subtracting k KIW5 ¥
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'fmm the funetion is to raise the/ua - axis by this amount,
Hence, 1f k<1 the resl roots of the equation 1n,u? are all
positive; if k 2 O there is one zero root and all other real
roots ars positive; 4f k> 1 there 18 one negative root and all
other real roots are positive. However, ome cannct be assured
in general, for n> 2, that the roote 1n__.d~2 are all real since,
for any k> 0, by miking the diffarenco between any pair of Kig
sufficiently small one may introduce a palr of complex roots,

Whatever the nature of the characteristic roots, one can
always employ them to write down a set of 2n independent
solutions of the differential equations. If sach ofktheaa
solutions ie made a2 column of a 2n x 2n matrix Y, as 1nf 2,
then Y 1s a non-singular matrix satiefying the matrix

equation

From this point on the discussion for the case of two
egroups given in 32 applies without significant changes for the
ci8e of n groups. The equation for the detérmination of critieal
pile size for all of the situstions considered will involve a
determinant of order exactly m ., The fundamental determinantal
equation may of course be used to find k if the pile and

reflector dimensions are fixed.

4, The multi-group, multi.reflector problem for the

spherical pile,




holo

conditions.

The differential eguations and boundary

If the spherical pile has reflectors in the
form of spherical shells, such as to provide coamplete

spherical symmetry, then

e
rveyzm

dra

L3

Then the substitution

ys
it

e ryi R

' (1 £ n)
ned® MV

in the differential equations (3.1.1) ylelds 2n differential

equations in vy, Var g of exactly the same foerm as those in

Ty Tpud for the slab pile. Howaver, in the epherical case,
the boundary conditions which ifpose continuity upon y; and

§
Aiyi’ wvhen axpressed in terms of ¥so Tequire the continuity

of A and

i ar r r2

at the pile and reflector boundaries. Fote in paseing that

vhen the )\1°l are equel the vn4_1ﬂa are also continuous and
the procedure is in all respects similar to the slad case.

4.2. Solution for the general case.

The formation

of a fundamental set of solutions v constituting s non-singular




matrix V does not differ in any respect from the form=tion of
such 2 matrix Y in the case of the slab pile. These solutions
can be expressed as functions of r or of p==r= rJg " wheres

« designates the ~ - th region, since any fundsmantal set
expressed as functions of r remalns a fundamentsl set when is
Teplaced throughout by o. In this procedure it must be noted
that one may obtain solutions y, = vy/r which decome infinite

under certain circumstances.

It is suprosed now that i{n each reglonx a matrix of
solutions V. has dbeen found and, for the sake of convenience,

that thie 18 20 chosen that
v».w( (rot ‘=l) = I, (X & 10 20 6 o o .1)) °

Since none of the r, ‘s is known until the critical radius
¥y = & is found, this choice involves expressing the solutions
v ag funotions of P=T = T -1 and choosing V. to be the
identity matrix when p = 0.

In the pile (x = 0) y must remain finite at r = 0, so that
out of the 2n solutions n can be pliminated Accordingly, the

required solution is of the form

whare S, is an n - vector of constants and Vol igs the 2n x n

matrix of vis (exrreesed in tarms of trigonometric and hyperbolic
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aines) swhose first B Tows vanish at = 0 . The Fank of

v gt Do n,

The continuity reguirement involves the continnous

ol
vestor
/1
(uaaﬂl) =
T A
1 0 n
0 i 5
0 0 -
N
ot o .
r2
0 _h2
2
¢ 0 o

Thug, 1t 1s first of

0
v
1y
.0
. 0
1
, o]
c 0
Np

L I

a2ll required that

'91 (“)% k3

o ,
o o o
0 > o
o (LI )
- S
r

ﬁ 1T o>

X
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providad thet V1 =1 at r =X =g -

o
Bote that
1 0 7 0 ] X 0
azaA\l a8l - £=§’X1 ézl I _ 0 1

eo that (4.2.1) may be written as

I 4] 1 0
Vop(aicy = wy ‘
s\, al gaEAo sty
or
' 1 0
(4.2.2) Voy(miey - 6 -

& (A=A, T
\

Bext, if the notation €, = r, =r

=3

all v s are expressed as functiona of e T - T x the
[} s

continuity requiremsnt at the eecond boundary yields

I 0 _ I
vl(t:i}g =

=} =g
(M—tl) I :z(a-ftl) A2 (a+t

or

0

1

=3
J

is introduced and if

1

\

c2




(4.2.3) Wil s o
atr tl)gl(Aa awf\l) 1

Then from (4.2.2) and (4.2.3} it follows that
vl(tl) 701(3)00 ? 32 ]
(a-rtl)gltAe ATY I :1(/\.1 =) 1
The next etep gives
. Va(ta)ea == 03 P}
(ave tt) (/\3 =Ny 1

which i» uned to eliminmte <, in the last two sguatione. If this

procedure 1o continued one obtalne finally

/ 4 0 _ 1 0
(4.2.4) v_) f’l(t‘) S s v (a)oo -

=1 =3
E’) al(Aoc /\J=1) I 8 (Al ‘Ao) I

- b P 1
where E,, o AR sty

This matrix equation expresses the 2n components of ¢, in
terms of the n components of c, and the unknown critical radlus
&. An sdditionsl matrix relation is needed for ths elimination
of Sy and this is found in the raquirement that the solution

v, shpll vanish in its first n comrmonents atl the cuter boundary.
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Bow, v, =V, ¢, ., vhence, 1f V_,, denotes the aatrix of the

first n rows of V, , the condition in Queation takes the form
vv 1“1) )ow‘ = 0 2

Accordingly, if the equation (4.2.4) is multiplied on the left

by ¥ J1° there results the squation

/ I o | I 0 .
v, 10, LAY L IS I ¥oy{aicg

- .ﬂ =
\r:il(Af'Aaal) ! \Eo Moy A 1

The matrix coefficient of °6 isn xn and i1ts deterninant ouet

vanish, that i,

\v.‘)l(t_)) s w o 701(33\ =z 0 -

Hote azain that it hqs been presupposed that V_ (0) - 1. 1If
this novmalisation is aot made the matrices V. 51(0) znet also be
included in the matrix prodmct. Note also that a does not occur
in any of the V. ts for »> % but only in the elemenis of the
fovm fa4+ v o +% . }’:1 mltiplied by a difference of /\ts in
consecutive regions. HNote finally that V_ (¢, ) 1s of the same

form ag in the slad case.

5. The mmlti-group, multi-reflector problem for the

infinite cylindrical pile.

=

[—3

0
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5.1, The differential eguations and boundary conditlons.

If the cylindrical pile has reflectors in the form of cyliadrical

shell-, such as to provide axial syameiry, then
_a% .19y
q?y ~ 2’ r ar )

The differentisl equations in any reglon may be written in the

form

a dysg 2 2 - :
N T N Tt M@ 7 0 (¢ < =l

“p &, (r Yn) N Kery. <) K2 z
ndr(rdz.)-rk\ ’Kiryi "nK Ty 0

i R n

The boundary conditiconc requirs the continuity of y; and
Ny -g;é at tho intermediate boundaries and the vanishing

of 3y at the outer boundexry or toundaries.

5.2. Solution for the general case. The introduction

of the variables

n

u .
I+J;‘7 )\erj ° (Jén)o
hes the effsct of replacing tha system of n secord order
equations (5.1.1) by tho 2n first order edquations

NG S0t
y; = \"‘i T Yo+t ) (L2 n),

3

4 2 N
(5.2.2) Jn+1 ‘Ai”“f’?z - \"i+ 1¥1+ 11 ® (5 < nj,

2 2
Top £ BN NG,



o 3he

If the esymbol y without a mabacript denotes the column vector

of componeate ¥3, ¥ou o - o o ¥y» then the equations (5.2.2)

can be written in the matrix form y' = My, where M is the

non=constant matrix of coefficients in the equations,
Solutione of the system (5.2.2) of the form

Y = J(/‘L!‘) '
(5.2.3) 128 % (2 n),

yn.‘-i z ‘_a* i r Jl(/'br)

are now sought. Substitution of (5.2.3) into (5.2.2) gives
=3,
"‘ﬁ/«a: Xi ‘n+1 0 (iin)o

.2,
(5.2.4; 2

2 .
Berz KB = \1*111*15“1 » (1 <m),
& 2
Oan e = KN K B e N Kpmy
These equations have ~ non.trivial solution in 8y provided that

(5.2.5)
'31 ==/~.I
where
Acl = 7—\;1 0 o o O i
cl
ST 0




and
e 2
My - Na¥o ° - °
E 2 2
2 2
-~k \lkl 0 0 N N Xap

Ty a reduction cimilar to that used imn § 3.2 the characteristic

equation (5.2.5) becomss

. 2 2oy 2 e e 2y . 2 2 2
(5.2.6) (K{+ M UTe ) o Ko+ T) skKIXKS .. Ky
Rote that the roots of this equation in‘/ca ave the negatives

of the roote of (3.2.2) in/uzu

B

If J, and Jl are replaced by Y, and Y1 respectively in
(5.2.3), the system (5.2.4), and consequently the equation
(5.2.6), remaing unchanged. However. if the combinations

I, Ii or K . K. are used the effect is the expected ona of

1
changing the signs of the roots of (5.2.6) in,u-au or of

replacing by 4 4.

.
The noctation for Reosel funclions used ia this
paper is conglgtent with thal found in Theory of Bessel
Punctions by G ¥ VWalsen
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I2 the roote kot (5.2.6) ia,«.a are all rsal, thenh the
functions J, and Yo correspond to the positive yoots and the
functions I, and K, to the negative roots. Thue, in thia case
at least, a set of 2n independent solutions of the differeatixl
oquations can de found. As in the preceding ssctions, if each
of these solutions is made a column of a 28 x 2n matrix V,

then V is a2 non-singular matrix satisfying the matrix equaticn

In the slab and spherical cases certain material
simplifications were found by expressing the solutions in the
« = th region as functions of a coordinate originating at the
innermost boundary of the region. This simplification is not
possible in the cylindrical case since the matrix M is no
longer a constant matrix. Accordingly, the determination of
critical pile size even in the simplest cases becomes an
extremely arduous and uninviting task. The equation which
yields the critical pile size may be written as the n x n

determinantal equation

(5.2.7) \vﬂﬂl(gx’)v“ €, - 2% SPERL 1( RPPYEE °v°1(‘)\’

vhers { = Bttt . art,, Vo 198 20 X n matrix of vie

expreesed in terms of the functions Jo and I,» which are finite

8




3=

for r = 0, and vhere V 1 is an n x 2n matrix, the upper half
of the matrix vV, . Note that all of the matrices in (5.2.7)
involve the pile sixze a.

6. Multi.group pile theory with continuously varying

varameters in the refloctor.

6.1. The case of the infinite slab pile. In thie

discussion it is nov assumed that the X ‘s and X 's of the
multi-group pile theory equations are continuously varyiag
paraneters. In § 3 the system of n second order differential
equations was replaced with s system of 2n first order equations

vith the aid of the subetitution

= \ (Jﬁn)o

yn.'.j JI‘LJ ®
vhere the 7‘;"' are now functions of . It followe then from
{3.2.1) that the system
(M) = MKEg o+ ne X2 vy .2 0, (1<)
1787 = M B ¥t M T i Ty Yo ’
2

17120 R

" 8
(Ng7p)' = }‘nkn’n“‘k\lhk

replaces the original system of n socond order differential
equations.
A convenient point of departure in this section is the

consideration of the segquence of sets of equations




e'%n
n =)
T =M T

vhere y, 18 the column vector of 2n components representing

a solution of tho equatione in the x -~ th reflector, and M«
18 a constant matrix composed of the parameters characteristic
of that region. Heretofore no relation between the M's for
distinct regions was assumed. The solutions y. , however,

were required in all cases to satisfy the continuity relations

yg((x*)ay*"l(x&) o

If y is expressed in terms of the fundamental matrices Y then

the continuity relations take the form

(6.1.1) Y.z e =2 T 3(xde, .y -

It 18 supnosed mow that the pile and reflectors conatitute
a single reglon with continvously varyiang parameters, or
parameters having st acet a finite number of discontinuities,
Then ths several sets of equations with constant cosfficients

are replaced by a single set of equations
Y = M=x)y

with varying coefficients. Since the case in which M has

components with discontinuitiss presents no sssential

complications, 1t will suffice to consider only the continuous
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case. The interval from pile bdoundary to reflector boundary
is broken up into slabs of thickness 2 x and an approximation
to the single oset of equations with varying coefficients 1s
achieved vith a sequence of sete with constant coefficiants,
This sequence of scts has the same form as the one previouely

considered with

that 1s to say with M of the fora trken by M{x) when the
components are evaluated at an arbitrary but fixed point within
the < =th reglon.

The fundamental matrices Y, are chosen as in § 2.4 so that
Ylx, 3031 .
Then, from (59]101‘) it follows that
0 ry ¥ oxden -
The matrix Y _ (x, ) may be expanded in powers of & x to give
Y, (x.) ‘EY,‘(x,( 't A x)

)+ Y, Ax .

o
2Y, (xa‘a <

1
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thon

Y$(1°‘)%1+“,‘A3+.oa o

It will suffice in this discussion to keep oaly the first
two terms of this geries.
By definition y_. (x) = Y, (x)c. . Then it follows
2 Ie, =0, - Hence, if y(x)

that y_ (x ) =T, (x

® =)

~=°1
represents the solutlion for the entire reflector, them y(x)

1s $dentified with yl(xo) 2 o vhere X, designates the inner
boundary of the first reflector of the thickness A x. Moreover,
the ontire approximation to the exsct solution y(x) evaluated

at x, 1is given by

(I+M_ Ax)c,

a0

7(x,< )M cg( +1

0¢

(I+ M A XN(I+ M.‘GIA x)o

(i

ne

(T+M, A x)(X+ M

*QIAx)Q o oI+ HIAx)c

vhere ¢ = cl., or

1,4 X
y(x*)~\ ZM Ax+ZHﬂMA;A:2r

ﬁ Y

2 Hpuﬁnp.a3x+noolc .

A>p'>p°
In the passage to the limit hold fixed the point x ., but

-}




wlde

gllov the number of suddivisions to increase withoud limit
wvhile A x spproaches gero., If the subscript « is suppressed

one obtains in the limit

X.

y(x) = [I-\-J
)

x E/g“ _ 1
(§IMCEPIM(E™M)afma gy ce o] o€
+L°L°x°u§n§u§a;dgdg+ 1

If the mtrix

X / .
M(§ )d§+J J MOE M(E¥)ageag
%o ‘%o

X

x (°
(6.1.2) K(x) = 1+J M€ ‘)dg+J J MCEM(§rlagaf 4+ o . o
%o J%o

Xo

is int. “duced, the soiution becomes

(6.1.3) y(x) = K(x)e

whore K(x) 15 a matrix whose columns constitute a fundamental
set of solutions and which reduces to the ldentity at x,.
The solutiorn (6.1.3) can be obtalned dy a well-known

claesical procedure. Firet of all it is noted that the original

equations
e H(x)y ° y(xo) g0 °
are equivalent to the set of equations

:r(,x)e-wj’ WCEr(gIal
%
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Thus, by repeated substitutione, one finds that

y(z) = ¢:+Jx M({ ) [ c+j§ MCE )y ( g")dg"} af
%o *o

[x»e J;mg n;\ §+ [:o fu(g)u( 9y §r)afraf
= - °

i

89

This procedure gives rise once again to the matrix XK. It is
known that this series converges to the solution, for an
arbitrary c, under very general conditions, The general
matrix K(x) of solutions, or the particular solution y(x),
could be approxizated by computing a sufficient mumber of
terms in the series (6.1.2), The repeated integrations may,
however, bacome very laborious or totally impossibdble to

carry out in closed form. Rumerical integration involves the

breaking up of the range of integration into subintervals and

the introduction of interpolation polynomials., It aay be
simpler and less laborious to apply the slab procedure for
obtaining the approximation, Since the slabd procedure 1is

no more complicated vhen the slabs are unequal in thickness,

1t should bde especially advantageous when certain paramceters
vary at highly noa-uniform rates, permitiing greater thicknesses
vhere the rates are all low, and requiring smaller subdivisions
vhere some are high,

It 18 worthy of particular note that this whole procedure
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is quite independent of the form of M and can be applied to
any set whatsoever of linear equations,

In the problem of determining the critical size of a
pile, assumed to have a unifora interior region within g
reflector of continuously varying parameters, if T i{s the
total thickness of the reflector the foregoing procedure

yielde a relation of the form
(6.1.3) y(a+T) = K(a+My(a) .

In this relation the a appears explicitly ia y(a) = ¢, but

not at all in either y(a+?) or E(a+T), the a+ T being

merely a place label, that is, y(a+7T) and E(a+T) in (6.1.3) are
functions of T alons, The y(a+T) takes the place of

Y,(t,)c, in § 2. Moreover,
7(a) 3 Y (a)c, = Y (a)y(7)

if Y,(0) = I. Accordingly, (5.1.3) can be written in the fors
y(a+ T) = E(a+T)T,(a)y(0) .,

vhere a occurs in Y, alone. The first n components of y(a+7T)

are gero and the last n components of y(0) are serc. Thus it
follows that in the 2n x 2n matrix K(a+ T)Yo(a) the minor n x n

matlrix in the upper left-hand corner is singular. This 1is

obtained by multiplying the upper half of K by the left hand

b



half of Y,.

5.2. The case of the spherical pile. The discussion

in the preceding section applies almost without changs to the
case of the spherical pile with a reflector with continuously
varying parametera. There is, hovever, a significant difference
in that the transformation smployed above to obiain equations
with coefficlents that are constant within each spherical

shell at the same time provides solutions which are discontinuous
in their last n components at the boundaries. The aubsututioh
that provides continuity at the boundaries, viz, y, 3= A Jy':;
Jields a set of equations with coefficients which are functions
of r even within each unifora shell,

The advantage of having equations with conetant coefficients
is, of course, that their solutions can be written down readily
in terms of exponentials, or trigonometric and bhyperbdolic sines
and cosines. However, once solutions are given in these terms
for the equations with constant coefficients (with discontinuities
in the solutions at the boundaries) a simple transformation
provides the corresponding solutions of the equations with
variable coefficients (with solutions that are continuous at
the boundaries). A further readjustment may be needed to

provide a matrix of solutions reducing to I at the inner boundary.

but this can always be effected. From this point, the procedure

1s formally the same as for the slab case, and the spherical
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shell approximation to the case of continuously varying
parameters can be approximated by solving a finite number
of sets of equations for uniform shells.

In conclusion it 1s noted that the form of the solution
in the cylindrical case doas not lend itself to the type of
analysis used in the preceding sections for the problem of
continuously varying parameters. At the present time then
the cylindrical case with continuoasly varying parameters

in the reflector constitutes an unsolved probdlesm.
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