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Kolti-Group, Multi-fief lector Pile Theory 

1,    Introduction     The differential equations Involved in 

the «mlti-group, «ulti~reflector pile theory studied in th1» paper 

are he«»geneous partial differential equation» of the second order. 

ABBOelated with the pile or any of the reflector« ie a system of 

at many equations ae there are groups»    Thus,  if there are   n    groups 

aadt)  reflectors there is a systen of   n    second order equations in 

each of the J-t- 1 regions,  the solutions of the J-t-1 systeas 

satisfying appropriate continuity conditions at the boundaries, 

There are three types of piles considered:    the infinite slab» 

the infinite cylinder,, and the sphere.    Moreover,  syoaetrical 

characteristics of the problea» are such that the partial differential 

equations reduce to ordinary differential equation»,    although the 

equations are linear,  the coefficients are constant only in the case 

of the slab pile, otherwise,   they are functions of the independent 

variable, 

Ordinarily,   the problea» to be solved is to find the neutron 

density at any point within the region bounded by the outermost 

reflector and to find the critical size of the pile,  after the 

dimensions of the reflectors have been assigned,     In all three cases 

aentioned the general solution of the set within each region is 

easily written down,  even where the coefficients are variable. 

Thereafter,  a difficulty arises in that the location of the 

boundaries is not assigned but is dependent upon the else of the 
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pile. Thus, a procedure for the solution of the problen is to 

solve the equations sequentially from the pile through all of 

the reflector» in term» of a fixed but unapeolfled critical «lie 

(radius or half-width) until the outer boundary is reached, 

Then, the outer boundary conditions together with require*ents 

of synnetry within the pile provide sufficient specification» 

for the determination of critical pile else and the coaplete 

solution of the probleo. 

In a prevloue report, Mon P-202, the two-group theory for 

the case of multiple reflectors, without multiplication in the 

reflectore, and an infinite slab pile is discussed.  In the 

determination of critical else it is found that the contribution 

of each reflector to the solution of the problen le independent 

of pile eise, The equation which finally yields the critical 

else involves a single fourth order determinant, whoee first two 

columas only involve the pile size» and whose last two columns 

are obtainable as a product of 0 = 1 fourth order matrices and 

one UK2 oatrix (four rows and two columns), all independent of 

pile siae= 

In thie paper the problea is discussed from a more general 

point of view which includes the consideration of possible 

Bultiplication in the reflectors and three different rolle shapes. 

First of all, the sysfcen of n second order differential 

equations is replaced by a system of 2n first order differential 



equation». Ibis procedure embraces all of the advantages of 

the first study while further providing better general 

perspective on the problem and simplifying somewhat certain 

eoaputational aspects of the problem The slapliclty first 

achieved in the infinite slab case is preserved in the nev 

procedure, but does not persist in the spherical and 

cylindrical cases for either sethod. However, ia all cases 

it is possible to reduce the order of the fundaaental 

deterninant for the determination of critical pile else to 

exactly the nuober of groups involved in the problea. 

In %  2 a special exasple is provided for the case of two 

groups and an arbitrary number of reflectors in an infinite 

slab pile, with multiplication in the reflectors, In ^ 3 the 

case of the infinite slab pile is treated with fall generality, 

General treatments of the spherical and cylindrical cases are 

given in ^ h and \  5 respectively, ffinally, in ^ 6» a study Is 

Bade of the limiting situation in the case of the Infinite slab 

pile and the spherical pile to provide on n - group theory with 

a reflector of variable density,, 

2u 2,k£ two-group. iaaltl--Jeflector problea for the Infinite 

slab pile, 

2*1., The differential equations and boundary conditions. 

Let j,  with an appropriate subscript to represent a particular 

group, represent the flux of the neutrons of this group in any of 



the ■)* 1 regions consisting of the pile and the reflectors. 

Let 7- represent the flux of thermal neutrons and yp the flux 

of non-thermal neutrons» The equations in any region hare 

the form 

.2 

where the constant k  is sero in & reflector without multiplication. 

The boundary conditions prescribe the continuity of yt and 

dr 
>H ^1 , for 1 a 1, 2, at the intermediate boundaries and the 

dz 
Tauishing of y, at the outer boundary„ 

2« 2. Beduction to a system of first order differential 

equations. If in (2.1.1) the substitutions 

y3 m \ 7[    . 

are aade, the system of first order equations which follow is 

obtained? 
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yl 

-1 

(2.2.1) 
72**2      \    • 

Bow, let the synbol   y   without & subscrlot denote the column 

▼ector of componente y,,    y,    y,    y       Then,  the equations 
*       «=       3       k 

(2,2,1) can he written in the matrix form 

y° a My , 

where 

ml      o 0 

0 

->\2Kf 

V*2 

X 
»1 

0 

0 

> .1 

0 

0 

Solution of the problem for the case of no 

Multiplication In the reflector«.    Solution* of the for« 

yt    e A   •'-'■* i i s 1, 2, J, k, are now sought.    Subetitution 

in (2.2,1) yields the equations 



.g~ 

v-1 

~1 
V=   *2      \      * 

Vs ViS-vh • 
2                   2 

4^A»   - k \^x *1+ *2*2 *2 » 

which hare a noa=triTial solution In A^, Ag, A*8 A^ provided that 

= /u                         0                 A^ 
I 

0 s   0   • 

(2o3.D 0                          = /^               0 A2 

X1X1                  -X2^2            "/*- 0 

- kV^X*          X21<|                0 •A 
This is the characteristic captation of the eyetem (2.2^1). 

The equation (2„301) can he written in the form 

(             °                             °                    ^l* 
0 I    =  o   . 

0                               0                        0 \?\ 

.*! 
(Xj=A

2)          -\2"K|             -/- 0 

k>0<? X2CK|-^
2
) '1   2 •A 



and consequently 

*i    A ,X2 2 

X| -/-1 

or 

(2.3-2) CKj./c*) CK|./t8) -k-Kj-K«   -   0 

In the pile k > 1 and the equation (2.3.2) in ^c2 has one 

positive and one negative root. Thus, the four roots of (2.3.2) 

nay be «ritten in the form tl^j, tAp» «here //u. and ^p are 

real and positive numbers. In this section it is assumed that 

k a 0 in the reflectors, and the corresponding roots of (2.3»2) 

are tKj, fK . In either case there exists a set of four 

independent solutions of the system (2.2 1). Let each solution 

of any independent set of solution« be made a column of a 

\ * h matrix T . To illustrate• a matrix Y> corresponding to 

the * - th region of the pile is constructed. One uses a 

solution of the form y^ - A* C x • taking A, B 1, in the 

equations (2.2.1) to get the first column in Tti . In this 

case it is found that A, - 1-0 . The substitution j^  e AjC 

gives the second column, and so on, The final result for * >  0 is 

until further notice in this section a subscript shall 
henceforth designate a particular region inetead of a particular group. 
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0 • • • 

Al^l XI Xl*2 12 

^212 1212 

which 1» a non-eiiigular matrix«    By taking appropriate linear 

combination» of the column« of this matrix one may replace the 

above matrix Y* by a new one 

t <u>« 

thX x                         ihXi dhYjX                       ehKgjt 

0                              V^g* 0                          V**/ 

^1^1*           *l"*2AV *1X1ÄV               V^V 

0 ^ 1X2AX2X ° ^nVVy 

where 

^.W^xf-x«, 
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For later reference the matrix T0,  corresponding to the pile, 

it computed to be 

*0 (x) * 

/ cos/^x eh/^gX ain/c x •h/CgX 

^oot/* x *J*/o* r«ltt/«** rehxcx 
ec 11 2       2 

AlAl.l»Alx XlA2ehAgx X^co./^x Xx/^*^8« 

•r^^si«^, ^X^.h^x ^X^co.^x r^^ch^ 

«here 

x    \ »1    »2     2 2 

v«l    -2      2        2 
r2sX1^2'K2 <*1 -A2)   • 

One hear» In mind that the parameter*-,and> which occur here are 

thoee characterising the material of the pile and are distinct 

from those occurring in the matrix T* written ahore. 

In general, then, the matrix T(x) for each region is a 

non-singular matrix of functions of x satisfying the matrix 

nation 

T8 e MT, 

Since H is a constant matrix the related system of equations hare 

constant coefficients,  it i» then clear that if in the matrix 
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T(s}t the independent variable x is everywhere replaced V 

x » x ,., the resulting matrix l(x - xQ) ie aleo a matrix of 

indspeadeat eolutione if xQ designates any point within or on 

a boundary of the region (pile or reflector) over which the 

differential equation» are defined, Indeede the replacement 

a* 2 by x - x is aerely a transformation o? the independent 

variable which has no effect upon ths form of the equations- 

Moreover^ every solution of the ©quatione i» expreeeible in 

th* fo.rs 7 a' ^6, tfhere c ie a col won vector of four elements,- 

On© now takes the origin as the center of the pile <ind 

x   and x„,  as the bounds of the c*. - th region.. Accordingly» 
*-l * 

the satrix T^ »ay be ^afeen as a function of x =  x        ,   that is» 
(X =1 

of the distance fron the inner boundary of th© region to &» 

arbitrary point of the region« 

The conditions of continuity at the pile and reflector 

boundaries require that 

y , (x-- x    ) -y   , (o) 

or, if      '* ^ x^- s  , > 

Botice that in the last equation neither xx nor x  . appears, 

but only the thickness t«. of the eC - th region. 

Suppose now that a solution y0 were given for the pile.. 



This could bo expressed In the form 

yo * To co 

*here T0 it the particular matrix of fundamental solution» which 

ha» been choeen within the region of the pile« lov, the eolation 

yl * *1 °l in tn* fir** Tttlwtot met eatiefj the relation 

7X{0) * 70(n) 

where a s *0 is the half-thickness of the pile. 

Hence« 

and« since all of the T^    • ■ hare been chosen non-singular» one 

obtains 

Cj^ s TJ (C)T0(a)o0    o 

Again« at the next boundary, 

y2(o> a Jx(\)   . 

or 

so that 

T2(0)e2 s T1(t1)o1 

-1 
ög st T2 (o)T1(t1)o1    . 
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or 

e2 . ^
1(0)Ii(t1)T-1(0)TeU)co 

If this procedure it continued one obtains 

(2.3.U) V)T       (t       )T~   (0)o o o T 
(<=1    •<• -X    * -1 ,'•". • 

Thu«. it «he rector e^ (or the solution y0 within the pile) and 

the half-thieknesi i a of the pile were known, the solution within 

«11 of the reflector» could be obtained. 

The situation last considered does not generally arise, and 

both y0 and a must be obtained from other conditions» The 

physical situation requires that the solution be symmetric within 

the pile. Accordingly, the last two components of the vector y0 

must Tanish at the outer boundary; that ie. the first two component» 

of the vector y^ must Tanish at the outer boundary. To express 

these requirements in symbolic form let T0 and Ty be partitioned 

into 2 x k matricees 

VTo2 ■to ■ 

and then require that 

(2.3.5) To2(o)e,o * ° * 

(2.3.6) W** )°*   ~  ° • 

If the matrix T i» writt« in the form (2,3.3) the requirement (2.3.5) 
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is met by sreking the last two co»poneots of the vector c0 equal 

to scro,    The end result is the saae if one drope out the ITS* 

two column« of TQ thuB mateing it a k x 2 oatrix composed of the 

first two columns of (2,3.3).  and it will De aBBuned thit thia 

has been done in what follow«. 

Ho»,  in (2„3<lj).   set « - J and nultiply on the left by 

Iv j^Ctj ).    Then it follows from (2,3,6) that 

*»!<»* *>~XM\ =i<\> ^f,X^    •  - To<*>co s  ö     • 

The «atrlx T    (Oft        (t        )l"       (0),   =   ,  TÄ(fti is a U x 2 aatrix 

since T0(s) ie a k x 2 matrix,  and T^ j^tj ) 1» a 2 x U raatrix= 

Then the product is a 2 x 2 aatrix..,    The equations are consistent 

if and only if the determinant of the coefficient« vanishes; 

(2 ,3,7)     ^^(t^W^S^»^(0).  -   , ltfU)\   s0 

The deterninant ie of order two and the solution of the equation 

gives the critical pile eise a . 

The computation is simplified in a numerical T>roblesa if 

Y,f (x ~ s        } is replaced hy T^ (x .-- x^ )„    This ha« the effect 

of staking the last two coar^nents of the vector c j equal to sero0 

and condition (2,, 3» 6) becomes 

Equation (2,3.7) *s Qow written 



~1& 

»1 
'V2* 

A.» a natter of record the following formula« are listed: 

T^(0) £ 

^1*1 y-*X 

0 

T/l(0) =      /   0 

T. {%, )Io'l(0) s 

cfc-K^ 

1N2 

^2 •i'K2 0 * / 

0 \  I 

0 0 
= lv,=l^,l \ 

•l   ^2   \ 

-1 
0 0 

«1 

Bi 2 1 

caXgt.j 

/ 

1 8i X 2      'K g 1<X 
! 

X2X2 

\1'X1BhX1t^ 

^l " X 81>2 / 

X21Vh"l<2t^ «**   tj . / 

The first two rove only occur In the deterrainant of  (2„3-7). 
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1%  should be emphasized that In the preceding formula» the 

subscripts on the Y'« and t's refer  to a particular region (pile 

or reflector) and the subscripts elsewhere designate a particular 

group.  When these formulas are used for actual comnutation a 

double subscript notation (1J) ehould be us^d, where i designate» 

the region and J designate» the group. 

2 U. further observations on the solution.  It is possible 

that the computation in the problem of the preceding section can 

be simplified by making the matrix T s (0) of initial values the 

identity matrix.  It is clear that if Y  . (x ~ x.vo.j_) is *»y n°n= 

singular matrix of solutions then so also Is the matrix 

**<* - V-i5 s T* U *" *,. ~1>Y •"1<0)  ' 

and moreover 

«., (0) 3 I   , 

Then,   the fundamental equation (2,3-7) becomes 

Kl**; ^^V«!^   -   •  Wo2(a)l       *    0      ■ 

where W^ iCt^ ) consists of the first two rows of W^ (tj ) and 

tf g(a) consists of the first two columns of V0(&)* 

In the preceding section the formula 

(2,l».l) ^--I^OJV^^JljijtO). . , T0U)o0S Po0 

wae obtained without imposing any restriction on the matrix of 
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solutions 7^ beyond its non-singularity. It is now observed 

that (2.U.1) can be written In the equivalent form 

Oo a TO (a^tOYi (tx) . . . YH(0)eH 5 p"1^ 

Accompanying conditions required that 

<0g . XgfrotO)^   s   0      , 

(Ig • VW«*   s   0      • 

where 0g and Ig are 2 x 2 sero - and identity - natrleet. 

respectively, By the special choice of TQ whpreby a t>artitlontn£ 

of T0 (0) has the for« 

0   C 

the condition on the rector Cg alone la equivalent to the 

requirement that the last two components of c0 be sero« The 

subsequent elimination of the two vectors c0 and c- was found to 

yield a determinant of order two in the final equation of the 

problem. A similar special choice of Tj is useful when the outer 

reflector is Infinite in the x - direction. To this end one 

chooses the first two columns of T« to be a set of solutions of 

the differential equations which vanish at infinity. Hence, the 

last two components of og  are both sero and there remains the 
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determinantal equation 

-1 
(2.U.2)     \^2(0)TB,1(tjh.1)  .   ,  . JolU)\    *     o      . 

«here Tj2(0) is the lower half of the matrix ljl(0) and 

Tol(a) the left=hand half of the matrix TQ(a), 

A procedure which simplifiet the computation of Twp(O) 

la equation (2„U„2) haa been «uggetted by B. Spinrad.    A, 

special choice of the last two columns in Y_ it aade so that 

the task of conroutin« T~ (0) is made at simple at possible, 

Oae write* Tjj(x) in the for« 

T,(x)   s 

( .-%>z 
.-** 

ah'Kix 
^i^l 

0 .-K2« 
V 0 

Ki*i9' 
"Kl* 

ch^x 

0 0 

^ifKf*--(Kl**2*-*2.*Vr 

ahXgX 

^2    2 

v   Ü-(chl< _x- eh«.*) 
X2 »1 

chXgX 

so that Tg(0) takes the for« 

the inverse of which ie readily computed.    It ie the lower half 

of this inverse which ie ueed in (2oU.2)„ 
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In case the pile is cot symmetric there is no requirement 

of symmetry at the center. Instead, if 0 and H designate th« 

two outer reflectors, it is required that 

<i2. o2)r0(o)c0 ,. o . 

(Ig. 02)Tj|(%)ci £ 0  . 

provided that both outer reflector* are finite. The special choice 

of both T0 md Tg results in Yo(0) and T (tg) having the partitioned 

form 

0   B 

A   C 

This means that the first two columns of each vanish in their first 

two components at the outer boundaries,    In a-j.se eitj.er reflector 

is infinite in the x - direction the requirement a on T0(0) or 

Tjj(t^) are meaningless,  but in this case the first two columns of 

the I matrix are chosen to vanish at infinity.     In either case, 

the last two components of cQ and c_ are xero«,    Hote that if the 

aero - reflector ie infinite,  the origin must be moved to its inner 

boundary.    How,   if c ,   and cu,   denote the two-vectors of non~sero 

components there results either of the equivalent sets of 2 x 2 

equations of the forza 

Qo0l a 0    .    HCJU 9 0      „ 

from which  one obtains either of the equivalent determln ait ,1 

equations 
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If it is assumed for the sake of simplicity that all of the 

reflectors are finite, note that it Bakes little differenoe 

which of the H regions ie left with its thickness undetermined. 

The unknown thickness t* is involved In only a single matrix of 

the product -i or S, This m-.trix is multiplied on the left "by & 

constant matrix of dimensions 2 x k  and on the right by one of 

dimensions U x 2a 

2„5o KultiplicstioB la the reflectors.  In this section the 

case of multiplication in the reflectors is considered. If k s 0 

in the characteristic equation (2o3»2) there results the foregoing 

situation lu which there are two positive v..lues of/t .  If 

Ock<l the/"- * ß ".re still positive rmd the mt.trix 1^  Is as 

before» If k a 1, there is one positive/*£ and one sero/<-2. 

The matrix Y^  takes the form 

V   s 

1 X 
CK?+"*i)x 

e 
-("Kf ^|)x 

V*f Xx-Kf« 
(Kf + -K|>x 

re re 

0 

XgK| 
(•K|+--K|)X 

se ^se 

\° 31* 
^2 

-se 8© 
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or 

TA   * 

N2"K| '        - VgX 

1 •ch(K1 + ,Kg)* 0 • sb(X f+"K |)X 

X2xf 
n<2 

= 8   Ch(X*+'K§)X o ~S8h(X^^|)^ 

vhere 

Xp"X< 

If k > 1, T^ (x) takes the form of Y0(x) at in (2,3*3)„ 

3» üfe® molti-group, coltl-reflector problem for the Infinite 

»lab gile» 

3„1, The general fo relation, j,8 in § s, iet. y, with an 

appropriate subscript to represent a particular group, represent the 

flux of th© neutrons of this group In any 0f tbe-0 + 1 regions 

consisting of the pile and the reflector,,  The subscripts are chosen 

so as to Increase with the mean energy of the group., that is, yj 

represents the flux of thermal neutronB, yg that of the slowest 

group of fast neutrons, and ya that of the fastest group (the fission 

neutrons), The differential equations in any region have the forns 



Vi V \  -\"KJyi*-XlrlXj-rl y1 + 1 a 0  .  (i< a)  , 

(3-i.D 

«hare the constant k Is »ero in a reflector without multiplication. 

The boundary condition* prescribe the continuity of y, and of 

> ±3 yt at the intermediate boundaries and the vanishing of jx  at 

the outer boundary or boundaries. 

3'2* "Shi laflal*» «lab pilt. Jor the infinite »lab pile 

the differential equation* are pspecially simple \n form since 

SJ ^y    becomes merely the eecond derivative with respect to X  and 

all coefflciente of the y4 and their derivatives are constant. 

It is convenient to introduce the additional variables 

yn + J s   \j 7\      * (J = n)  , 

wiitah wiese it possible to replace the system of n eecond order 

equations by thn en first ordpr equations 

(3,2.1)        i+1=\Tcfyi->1+1Vf-viyi+1       . <!<»>       . 

4    -   ^VlS^nX      • 
If the symbol y without a subscript denotes the column vector of 

components y^, y?, . , „ , y^, theB« equation* can be written in 

the matrix form 
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(3.2,2) y s Hr  , 

where the 2D x 2a natrix H can be partitioned in the for« 

with 

0 Ji. 
M s 

V1 
\ o 

A -l o Y* 

\ \:1 

«nd 

\xxf -\ 'K2 2 2 

S TC! Vl 

k-*yx£ 

The characteristic equation 

*«**f / 

I1» /-I | s 0 



ol the equation (3.2.2) is easily written down with the aid of the 

relation 

sC1 

t^ -^A.   -/~I 

where the first aatrix on the left is M -/cl and the seeond his 

the deterainant unity. Hence 

M -/~I 

«, ■  2   2 

\\v?M\A-l\ =  XA:1-^ i\ 

-XI 

K2 -> 

-k XJ 0 T/2 2 

Xa-A 

The last determinant can be expanded immediately to yield the 

equation 

(3»2o3)    (X^-A2) Uf-/«.2)  -  -   •   (Xf ^2)sk-K2K| .   .   . X: 

It is clear that when k s 0 the roots of the characteristic 

equation are   ±.X,„    To investigate the case k>0 consider the 

graph of the left member of (3°2,3) plotted against/«-  .    This 

crosses theA2 - axis atK? and crosses the vertical axis at 
2X2 .   .   , X2.    The effect of subtracting k K2K2 ,   .   . X 2 

1    2 n id" X 
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froai the function is to raiee the/«-2 ~ axis by this amount. 

Hence, if k<l the real roots of the equation in/*2 are all 

positive; if k a 0 there is one »ero root and all other real 

roots are positiv«; if k > 1 there is one negative root and all 

other real roote are positive. However, one cannot be assured 

in general, for n> 2, that the roote ln^2 are all real eince, 

for any k > 0. by miking the difference between any pair of "K » n 

sufficiently small one may introduce a pair of cosrolex root», 

Whatever the nature of the characteristic roote, one can 

always employ them to write down a set of 2n independent 

solutions of the differential equations» If each of these 

solutions is made a column of a 2n x 2n matrix T, as in £ 2, 

then T is a non-singular matrix satisfying the matrix 

equation 

I'sW 

From this point on the discussion for the case of tv»o 

eroups given in j2 applies without significant changes for the 

eise of n groups. The equation for the determination of critical 

pile eise for all of the situations considered will involve a. 

determinant of order exactly n . The fundamental determinantal 

equation may of course be used to find k if the pile and 

reflector dimensions are fixed* 

**" ?ii* ^ltl-grottP» ttttltjUreflector problem for the 

spherical pile. 
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U<,1.    The differential equation» ^nd boundary 

conditioner    If the spherical pile ha» reflector» In the 

form of spherical ehellst such a» to provide complete 

spherical symmetry, then 

rV2ys iLisd     , 
dr2 

Then the substitution 

Vj^ryj      . 

vn + l s  \ ▼!      . 

(i £ n)    , 

in the differential equations (3„1,1) yields 2n differential 

equations In T^( T   . of exactly the sane forn as those in 

y., y  . for the slab pile» However, in the spherical case, 

the boundary conditions which i«pos« continuity upon y^ and 

X.y., when expressed in terms of v^, require the continuity 

of 7. and 

>.     d<Vr> Vfci Alii 
*       dr        "       r      "       r2 

at the pile and reflector boundaries» ffote in passing that 

when the \*** ara equal the Ta+.i'
8 a1« &l*o continuous and 

the procedure is in all respects similar to the slab case. 

^•2° Solution for the general case. The formation 

of a fundamental set of solutions T constituting & non~singular 
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matrix 7 ioet not differ In any respect from the formation of 

such i matrix I in the case of the slab pile. These solutions 

can be expressed as functions of r or of P %  r - r   , where 

<*.  designates the x - th region, since any fundaaantal set 

expressed as functions of r remains a fundamental set «hen r is 

replaced throughout by/>„ in this procedure it must be noted 

that one may obtain solutions yj^ «. Tj/r which become infinite 

under certain circumstances» 

It is suptKJsed now that In each region* a matrix of 

solutions 7X has been found and, for the sake of conTenience, 

that this is so chosen that 

Y<  <r*-iJ s  I» Us 1. 2, ...,,> ) „ 

Since none of the r« »a 1« known until the critical radiuB 

r0 = a i« found, this choice involTes expressing the solutions 

T as functions of f> -s r .= r    and choosing V. to be the 

identity matrix when f>  a 0, 

In the pile {« a 0) y must remain finite at r a 0, so that 

out of the 2n solutions n can be eliminated  Accordingly, the 

required solution is of the form 

To * Voi co  • 

where oQ  isaan. vector of constants and V0l is the 2n x n 

matrix of T»B (expressed in terms of trigonometric and hyperbolic 
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•lues) «hose first a row« vanish at r e Ö . The rank of 

V , oust "bo n„ 
01 

The continuity roquireaent Involves the continuous 

vector 

/ 

(u.2«i) 
, r~?A   r~2 1 

0   0 

0   0 o  o  o 

0 

V 

^2 

0   0 

0 

0 

o  a  A 

o  o  o 

0 

0 T   •■>  O 
1 

Thus,,  it is first of all required that 

I 0 
TÖ1C»)% -£ 

o\ 

%.       Cxt   I \.»-2Ax     .-h 
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provided th<>* *x & 1 at r s r   e a 

Hot© that 

1 

& Aj       a"A i / \ o       I 

BO that  (U.2.,1) may be written as 

/ 

V 

i o \ /        I 

•=3, 
A,      ft i / \ « &~£\        aT1 

o 

or 

Kext.  If th© notation t^   « r„ ~r ie introduced and if 

all T^ 
J e are expressed as f unotiona of /"' - r - r        ,  the 

continuity requirement at the eecond boundary yields 

I 0     \ I I 0       \ 
\   VV°i * I 

(a( - v'-^i   (n-v-1! 1 V(*+Yr^2 u+yr1* 

or 



I 0 
tt.2,3)/ iVhhs ^ 

?hen from (H»2„2) and (h<2>3) it follow that 

I 0 
Tol<a>co r e2 

.u+t1r
l(A2 -Ai>   i /       V^CAI -A»)   * 

The next etep glTea 

VVe2 - o3      . 
tf*-»-t1+t2>'*tA3-A2>      I 

which is usod to eliminate c2 is the last two aquation».    If this 

procedure lo continued one obtains finally 

,/ 
0 

where f    = a+t^ + t   + ■>  .-.  <■ **„> 

This matrix equation expresses the 2n components of e_j In 

terms of the n components of cQ and the unknown critical radius 

*. An additional matrix relation is needed for the elimination 

of c , end this is found in the requirement that the solution 

T , shall vanish in its first n components at the outer boundary,, 
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How, T , a 7V cv , whence, If V^j denote» the aatrlx of the 

first n rove of Yj    , the condition In question takes the for« 

Accordingly, If the equation (U*2,,U) la multiplied on the left 

by Tj,, there result» the equation 

ft      c      o 

The matrix coefficient of e   is n z n and its determinant must 

vanish,  that la. 

Vvl(t.; )  .   .   o T01U)\     s 

Hote again that it has been presupposed that 7^ (0) ~ I,    If 
=•1 this noaraallsafcioa is not made the matrices Tx     (0) oast also he 

included in the matrix product„    Bote also that a does not occur 

In my of the V*. es for*? 0     tout only in the elements of the 

J.c;:-» fä->-t   + -vtrf },    multiplied by a difference of A ' s in 

consecutive regions,    Hote finally that 7^ (t^ ) is of the same 

form aa in the siah case, 

5J    S5 «ultUgroup. multUraflector problem for the 

infinite cylindrical pile,, 



5ol,    The differential equations gnd boundary conditions. 

If the cylindrical pile ha» reflector« In the form of cylindrical 

sheik, such as to provide axial eyometry, then 

«       d 2y   l dy 

dr2 

The differential equation» in any region «ay be written in the 

for« 

n i- <r S»)i-kVx5ry   ■»**? **„ S   ° dr       dr 111        nan 

The boundary conditions require the continuity of yt and 

\. J^A  at the intermediate boundaries and the vanishing 
1  dr 

of y. at the outer boundary or boundaries 

5-2, Solution for the general case. The Introduction 

of the variables 

has the effect of replacing the system of a second order 

equation» (5.1,1) by tho 2a first order equation« 

y£ =■ \t r  ya^4  . U« n), 

(5*2=2)    yn + lS   \lftjt-■   \+l"*l+1*1+1      . (i<»i- 

2 2 
y'     »   - k V'K . ry. + X /K   *yn       . *2a =» 1    i    i       n   a    a 
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If the synbol y without a subscript denotes the coluem vector 

of component» yx, yg,   „   „  „  „ ya„  then the equation» (5.2=,2) 

can he written in the matrix for« y" e Hy.  where M It the 

non-constant matrix of coefficients in the equation». 

Solutions of the «yotem (5-2o2)  of the for» 

(5-2.3) <<■ --. n), 

are now »ought. Substitution of (5*2,3) into (5.2.2) givea 

»1 \^s \ a^ (i £ n), 
(5.2,4) 

2 . .. 2   • 
■W+1/" = VA- V^n'tu    •    (1<n>' 

°2nA 
kV4+XaXA 

These equations have a non-trivial 8o3ution in a.  provided that 

=1 
(5 2„5) 

where 

'/u- .A. 3      0 

VJ 

■V* 0 

-^ 

\ 

\. 0 .\ 
=5 
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and 

/    V"l 

h 

>2^2 

2 

V» 

kVi ^n^n 

By a reduction olmllar to th-.t used in  £ 3;2 *he characteristic 

equation (5»2«5) becomes 

(5,2,6) CKftA2>CV|*/-2).  •    rK2
+X)SkK2x| , X1 

Bote that the root« of this equation in /ACZ as*« the negative» 

of the roote of (3*2o2) in/«-2, 

If J0 and Jt   are replaced by Y0 and Y^    reepeetlvely in 

(5*2*3),   the eyeteo (5*2,4),  and consequently the equation 

(5:2-6),   remains unchanged,    However*   if the comblnatione 

L,,   I    orl , E    are used the effect ie the expected one of 
T>1     2, o      i 

2 
changing the signs of the roote of  (5„2,,6) in/<-   „  or of 

replacing /^by i./*~ „ 

The notation fo? Sessel fxxnetion* used in this 
paper ie consistent with that found in theory of Beseel 
Functions by G   2?    tfatscn 
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If tu© roots of (5,2,6) In/uß are all r«al, then the 

funetione J0 and Y0 correspond to the positive roote and the 

functions 1Q  and 1^ to the negative roots. Thus, in thla ease 

at least, a set of 2a independent solutions of the differential 

equations can he found. As in the preceding sections, if each 

of these solutions is made a column of a 2n z 2n matrix V, 

then V is a non-singular matrix satisfying the matrix equation 

7 * S W . 

In the elan and spherical cases certain material 

simplifications were found by expressing the solutions in the 

oc - th region as functions of a coordinate originating at the 

lnnermoet boundary of the region, fhie simplification is not 

possible in the cylindrical eaee since the matrix H Is no 

longer a constant matrix, /iceordingly, the determination of 

critical pile else even in the simplest oasee becomes an 

extremely arduous and uninritiag task. The equation which 

yields the critical pile size may be written ae the n x n 

determinantal actuation 

(5.2.7) \TVX< I , )7„-l( ^ ^ _i( u _i)r;ij( u _2>. . ,Toi<^   = 0 

where [^ n a +^+ tg+ . „ a + t ,,,, 7     Is a 2n x n matrix of r»n 

expressed in terms of the functions J0 and I , which are finite 
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for rxO, and where ?^ •  is an n x 2ft matrix, the upper half 

of the matrix Vy .    Note that all of the matrices in (§.2.7) 

Involve the pile else a, 

6»    Maltl-gonp pile theory with continuously varying 

parameters in the refloetor. 

6.1.    The case of the Infinite slab pile»    In this 

discussion It is now assumed that the X «s and X •» of the 

multi»group pile theory equations are continuously varying 

parameters.    In | 3 the system of n second order differential 

equations «as replaced with a system of 2a first order equations 

with the aid of the substitution 

«here the "X^s are now functions of ■■.«    It follows then from 

(3.2.1) that the system 

( \lT% f -   \xf y4 * \ + XV *mhl Tt    x *   0 .  (i < n), 

(Xttya)" - Xn'K«ra+,e\"Ki'ri S   °     • 

replaces the original system of n second order differential 

equations» 

A convenient point of departure in this section is the 

consideration of the sequence of sets of equations 
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j*.   s **oc y»t 

wh«r« yx 1B the column vector of 2n components representing 

a solution of the equations in the <*. - th reflector, and M * 

Is a constant matrix composed of the parameters characteristic 

of that region. Heretofore no relation between the M^s for 

distinct regions was assumed. The solutions y^ , however, 

ware required in all oases to satisfy the continuity relations 

If y is expressed in terms of the fundamental matrices Y then 

the continuity relations take the form 

(6.1.1)   Y„(s„)cA a I* + i<**)cH + x  . 

It is supT)08ed now that the pile and reflectors constitute 

a single region with continuously varying parameters, or 

parameter» having at most a finite number of discontinuities. 

Then the several sets of equations with constant coefficients 

are replaced by a single set of equations 

T6 s K(x)y 

with varying coefficients«, Since the case in which M has 

components with discontinuities presents no essential 

complications» it will suffice to consider only the continuous 



ease» The interval fro» pile boundary to reflector boundary 

is broken up into »labe of thickness ^x and an approximation 

to the single set of equations with varying coefficients is 

achieved vith a sequence of *cte *!*& constant coefficients» 

This sequence of sets has the sane fore as the one previously 

considered vith 

M* * M( L ) .    x   c C i  x^ . 

that is to say vith M   of the forn trken by M{x) «hen the 

components are evaluated at an arbitrary but fixed point within 

the < =th region. 

The fundamental matrices Y*. are chosen as in \ Z.U so that 

Then, from (5*1.1) it follows that 

The matrix T    (x x ) may be expanded in powers of A x to give 

Tx(x-) £IX(*Xä1
+  **^ 

T-<**-X) + I*     -        AX OP I 

*n    ■■-******_!>   *«*X*»K       • 



then 

It will suffice in this discussion to keep oaly the first 

two terse of this series» 

By definition yjx)s T* (xjcÄ   0    Then it follows 

that y- (x,^) ä Tjx/aiK  «le^o.   .   Benee. if y(x) 

represents the solution for the entire reflector,  then y(x) 

is identified With f^x^) % o^, where x,, designates the inner 

boundary of the first reflector of the thicfcnese A x»    Morsorer, 

the entire approximation to the exact solution y(x) evaluated 

at x^   is given by 

y(x* )^/ c* +l %(I + MKAx)cx 

S <I-M*Ax)(I+>!        oi)0 

o       o       n 

(I+«Jx)(I+H     _Ax),  o  .(liHAx)c <* °1 1 

where esc, or 

2 
kx 

1* 
+   2     »W^«  A3x + „   0   0"\   O 

In the passage to the limit hold fixed the point x^, but 
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allow the mutter of subdivisions to increase without limit 

while A x approaches aero*    If the subscript <* is suppressed 

one obtains in the limit 

L     J«o J*oJxo 

fx ß K 
*o JX0 JXQ 

M(£ )K(j8)M(|»)dj''4i«d^  .   .   . | 

If the matrix 

(6,1,2/ K(x) c 1+ M<£ >df* 
/x 

*0   J 
M(£ )M( I» >a | d| o      a      o 

is int. • duced,   the solution becoues 

(6,1,3) y(x) s. K(x)c 

where K(x) is a matrix whose column» constitute a fundamental 

set of solutions and which reduces to the Identity at XQ* 

The solution (6., 1,3) can he obtained by a wellJcnown 

classical procedure.    First of all it is noted that the original 

equations 

y* s M(x)y y(xa) s e 

are equivalent to the set of equation» 

y(x) a 0 4- fX M(|)y(| )dj 



~U2- 

Thus. by repeated substitutions, one finde thai 

y(x)sc+j    M(^>fc+p      M(£«)y( !')d^<]   d^ 

*   \l+    f*M(£)df"lo +   fX     f   M( | )JI< |«>y< |»)df »d| 

This procedure gives rise once again to the matrix I. It it 

known that this series converges to the solution, for an 

arbitrary c, under very general conditions. The general 

matrix K(x) of solutions, or the particular solution y(x), 

could be approximated by computing a sufficient number of 

terms in the series (6,1*2), The repeated integrations may, 

however, become very laborious or totally impossible to 

carry out in closed form» numerical integration involves the 

breaking up of the range of integration into subintervals and 

the introduction of interpolation polynomials.,  It may be 

simpler and less laborious to apply the iiab procedure for 

obtaining the approximation. Since the slab procedure is 

no more complicated when the slabs are unequal in thickness, 

it should be especially advantageous when certain parameters 

vary at highly non-uniform rates, permitting greater thicknesses 

where the rates are all low, and requiring smaller subdivisions 

where some are high. 

It is worthy of particular note that this whole procedure 
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1« quite independent of the fom of M and can be applied to 

any »et whatBOeTer of linear equations. 

In the problem of determining the critical else of a 

pile, assumed to haTe a uniform Interior region within a 

reflector of continuously varying parameters. If T is the 

total thickness of the reflector the foregoing procedure 

yields a relation of the form 

(6.1*3)      y(8tT)U(atI)y(»)  . 

In this relation the a appears explicitly in y(a) a c, hut 

not at all in either y(a+T) or K(a^T), the a+-T being 

merely a place label, that is, y(atT) and K(a^-T) in (6.1.3) are 

functions of T alone«    The y(a-t-T) takes the place of 

Ij(tj )cj   in § 2.    Moreover, 

yU)»T0(a)o0si0U)j(O     . 

if To(0) s I. Accordingly, (5„1»3) can be written in the form 

y(a + T) 2 K(a«-T)To(a)y(0)  . 

where a occurs in T0 alone.    The first n components of y(a+T) 

are cero and the last n components of y(0) are sero.    Thus it 

follows that in the 2n x 2n matrix K(a+T)T0(a) the minor n x n 

matrix in the upper left-hand corner is singular.    This Is 

obtained by multiplying the upper half of K by the left hand 



half of T0, 

5«2„ The case of ths spherical pile. The discussion 

in the preceding section applies almost without change to the 

case of the spherical pile with a reflector with continuously 

varying parameters. There is, however, a significant difference 

in that the transformation employed above to obtain equations 

with coefficients that are constant within each spherical 

shell at the same tlae provides solutions which are discontinuous 

in their last n components at the boundaries. The substitution 

that provides continuity at the boundaries, rlz,  yn + j s ^^1 

yields a set of equations with coefficients which are functions 

of r eren within each uniform shell. 

The advantage of having equations with constant coefficients 

is. of course, that their solutions can be written down readily 

In terse of exponentials0 or trigonometric and hyperbolic sines 

and cosines. However, once solutions are given in these terms 

for the equations with constant coefficients (with discontinuities 

In the solutions at the boundaries) a simple transformation 

provides the corresponding solutions of the equations with 

variable coefficients (with solutions that are continuous at 

the boundaries), A. further readjustnent may be needed to 

provide a matrix of solutions reducing to I at the Inner boundary« 

but this can always be effected, Fron this point, the procedure 

is formally the same as for the slab case, and the spherical 
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shell approximation to the case of continuously varying 

paraaetere can be approximated by solving a finite number 

of sets of equation« for uniform shells., 

In conclusion It it noted that the form of the solution 

in the cylindrical case does not lend Itself to the type of 

analysis used In the preceding sections for the problem of 

continuously varying parameters,, At the present time then 

the cylindrical case «1th continuously Tarying parameters 

In the reflector constitutes an unsolved problem. 
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