
User Process Checkpoint/Rest art

AfiSgove« tax g-afcis: ieiao&si

Tera Computer Company
2815 Eastlake Ave E
Seattle, WA 98102

October 9, 1995

1 Introduction

This document describes the design of the Tera user process checkpoint facility. Checkpoint is
a means for saving the state of an executing process or group of processes and restarting them
later on demand. The motivation for providing checkpoint on the Tera is to allow long running
computationally intensive jobs to be restarted after scheduled system down-time or unanticipated
system faults. Here are some of the ways that we envision the checkpoint facility might be used:

• application directed

• user command

• automatic checkpoint and recovery

• automated periodic checkpointing
19970512 071

Application directed recovery is provided by system calls embedded in the user application pro-
gram. User level utilities will be provided to enable users or the system administrator to manually
checkpoint a process or group of processes (interface to be designed).

Automatic recovery of batch jobs across scheduled system shutdowns could be provided via an
NQS daemon process running as root; of course, this requires integration with NQS. Automatic
checkpoint when the system crashes is more problematic; since the system may be in a corrupted
state, it might not be possible to checkpoint user programs. To protect against unanticapated
system failures, the user may want to periodically checkpoint a job. One way of doing this is via
the Unix signal SIGALRM, which periodically sends a signal to the process. The user program would
need to register a signal handler for SIGALRM that calls the ckpt.create system call.

2 Interface

An important goal of the design is to provide transparent checkpoint and recovery; it should not be
necessary to modify the user program in order for it to be checkpointable. Any user level support
that is required should be provided by the standard user runtime that is linked with every user
executable by default.

KHC QUALITY mSPEUESD 8

The system call interface is based on POSIX P1003.1a/Draft 12, January, 1995. Note that this is
a preliminary draft and has not yet been approved for inclusion in the POSIX standard. Where
the POSIX specification is vague regarding state restoration policies, we will attempt to follow the
Cray implementation, to ease the conversion process for our customers. The four system calls are
described in detail in the subsections below.

2.1 ckpt_setup

This system call sets checkpoint attributes which control the behavior of the ckpt.create system
call. The attributes are applied to all future checkpoints of the calling process.

^include <ckpt.h>
int ckpt_setup(struct ckpt_args *args[],

size_t nargs);

Parameter descriptions:

• args: array of pointers to checkpoint attribute structures

• nargs: the number of elements in array args.

Types of attributes:

• CKPT.ID: If the system is unable to restore the process ID or pgrp ID any checkpointed process,
the checkpoint and restart shall fail.

• CKPT_L0CK: If the system is unable to restore the process ID or pgrp ID any checkpointed
process, the checkpoint and restart shall fail.

• CKPT_SIGNAL: all checkpointed processes shall receive the specified signal number before re-
suming execution via restart.

Implementation sketch: Store the attribute list in the proc structure of the calling process. Look
up the attributes in ckpt.create and store a copy in the checkpoint file. In ckptjrestart, read
in the attributes from the file and reattach to the proc structure.

2.2 ckpt .create

This system call initiates a checkpoint of a process or group of processes.

int ckpt_create(const char *path,
pid_t id,
unsigned long type,
struct ckpt_args *args[],
size_t nargs); s

Parameter descriptions:

Revision: 1.1 2 Checkpoint/Restart

• path: checkpoint file name

• id: specifies either a process id, pgrp id, or session id, depending on the value of type. If
type == CKPT.PROCESS and id == 0, the calling process is checkpointed.

• type: specifies whether to checkpoint a single process, a process group, or a session.

• args: checkpoint attributes Question: do these override attributes specified via ckpt_setup?
(not specified in POSIX) For now, assume these override.

• nargs: the number of elements in array args.

The call fails if any of the target processes cannot be checkpointed for any reason (see the man
page for specific error codes). In order for the calling process to have permission to checkpoint a
process, the real or effective user ID must match the id of the subject process, or the calling process
has appropriate privileges (e.g. super user).

2.3 ckpt_restart

This system call restarts the process or processes defined by the checkpoint file specified via path.
POSIX specifies that there may be dependencies on the system state that make it impossible to
restore the processes, in which case the restart fails and returns an error code (see the man pages
for details on the error codes).

pid_t ckpt_restart(const char *path);

2.4 ckpt_remove

POSIX does not specify the checkpoint file implementation. It leaves open the possibility that when
a checkpoint file is created, some residue of the checkpointed process may be left in the system.
The ckptjremove system call provides a means for the system to remove any remaining system
residue of the checkpointed process when the checkpoint file is removed.

int ckpt_remove(const char *path);

The following list summarizes resources that are considered to be unrecoverable. A process owning
such resources cannot be checkpointed.

• Processes with open pipes connecting to processes outside the set of processes being check-
pointed.

• Processes with open socket connections.

The following will result in restart failure:

• open file has been removed

• lock file is not available

Revision: 1.1 3 Checkpoint/Restart

• original executable file has been removed

• file access denied (non-POSIX)

The current design imposes the following additional limitations:

• Shared data is not supported.

• The checkpoint must be restarted on the same OS release. Otherwise shared OS data/program
memory may change. This would not matter if restart did not depend on old pointers/stack.
(This may not be relevant if we can expunge the checkpoint file of all system state.)

• The system clock will have changed at restart time, disrupting any timings that were in
progress when the checkpoint was taken.

3 Checkpoint File Format

POSIX does not specify the checkpoint file format, leaving it up to the implementation. The
Tera implementation uses ELF files for both swap and checkpoint images. The name of the file is
specified as an argument to the ckpt_create system call. Checkpoint is an all-or-nothing operation;
if the checkpoint fails for any reason, the target process is not harmed and continues execution.
If an error occurs during checkpoint the partially created checkpoint file is removed, to avoid the
possibility of leaving a checkpoint file in an incomplete or indeterminate state. Thus the system
can assume that if a checkpoint file exists, the checkpoint was completed and all of the necessary
information to restore the process is contained in the file.

The checkpoint file contains various system internal state information, and must be protected
against user modification, to ensure that the integrity of the operating system is not compromised
by a corrupted or deliberately modified checkpoint file. POSIX specifies that no restrictions may
be placed on user access to the checkpoint file, although the implementation is permitted to detect
modification of the file and deny restart. However, there is no easy way of detecting modification,
unless the system maintains a record of all checkpoint files when they are created, which leaves a
system residue that must be garbage collected at some point. Also, it is not clear what the benefits
are of allowing the user full access to the file if any modifications will result in denial of restart.

An alternative (the approach taken in the old POSIX interface and in the Cray implementation)
is to allow renaming of the file, but disallow modifications of the file. One way of doing this is to
protect the file via the file permissions mode together with a special file attribute bit. For instance,
file mode 0400 allows read-only access by the owner; setuid processes are protected against user
read access via checkpoint file permission mode 000. The special file attribute bit prevents the
owner from changing the file permissions mode (i.e. prohibits chown(2) and chmod(2)); kernel
modifications are necessary to implement the file attribute bit and to enforce the restrictions on
file access.

4 Summary of Recoverable Resources

Various resources held by the process or group of processes when the checkpoint occurs must be
restored when the process is restarted. This includes open file state, memory state, and various

Revision: 1.1 4 Checkpoint/Restart

process state. In addition, the checkpoint must handle any system calls that are blocked while
waiting for I/O when the checkpoint occurs. These requirements are discussed in detail in the
subsections below.

4.1 Open File State

Saving and restoring of open file state is typically the most complex part of checkpoint implemen-
tations. The current design attempts to push the complexity up to the user level, to minimize the
kernel internal modifications. A user level implementation is easier to debug, maintain, and extend.

Each process has an open file table that is allocated in user memory. The user level wrappers
for various I/O related system calls record information about the operation in the table. When a
process is checkpointed, the system sends the process a SIGCKPT signal. The user signal handler
for SIGCKPT updates the information for each entry in the table by calling stat(2) and lseek(2)
to obtain the current file offset pointer. When the checkpoint is restarted, the system sends the
restarted process a SIGCKPTRESTART. The user signal handler for SIGCKPTRESTART is responsible for
restoring the open file state as recorded in the table. The table contents are in user memory, thus
are saved and restored automatically. When a process calls execve(2), the file state information
is automatically transferred to the new memory image.

For each open file, the following information is saved and restored.

• file path

• file descriptor number

• file offset

• flags given to open

• access mode

• fstat information (not restored; used only for verification)

In addition to the open file state, the following information is saved and restored.

• current working directory

• root directory

• file creation mask

The root directory is the starting point for path searches of pathnames beginning with "/"- Only
the superuser is allowed to change the root directory of a process (via chroot(2)). When the root
directory is changed, all the saved file paths become invalid. So, if a process opens a file then
changes its root directory, the restart will fail because the saved file path is no longer valid.

When a file is open by some process, but has been removed, the file is considered to be unlinked.
An unlinked file is marked for destruction when the last process that has the file open closes the
file or exits. A fairly common use of unlinked files is temporary files (i.e. files residing on /tmp).
Unlinked files require special treatment for checkpoint/restart, since the file could disappear when

Revision: 1.1 5 Checkpoint/Restart

the original process completes execution and closes the file. A subsequent restart would then fail,
since the file would no longer exist. A possibility is to provide a user option for saving a copy of
all unlinked files as part of the checkpoint.

Another potential problem occurs when a process opens a file, then renames it. The renaming
invalidates the original path, so the restart will fail. This is similar to the case where the file is
renamed after the checkpoint completes. When the checkpoint is restarted, the original path is no
longer valid.

The mmap and mmap_f sblk system calls are another area of difficulty.

In addition to regular files, file locks, terminal, and network connections must also be saved and
restored:

• file locks: reacquire the lock (Tera OS does not support mandatory locks, so this only applies
to advisory locks).

• controlling tty: if the checkpointed process had a ctty, the restarted process inherits the ctty
of the process that called ckpt_restart.

• pseudo ttys: save/restore data in the tty queue

• pipes: save/restore data in the pipe

• sockets: not recoverable

• NFS files: do these require any special support?

4.2 Blocked System Calls

When a checkpoint is requested, the target process may have multiple concurrent system calls
executing, some of which may be blocked within the OS. The checkpoint cannot simply take a
snapshot of the blocked calls, since the calls may be holding system resources, such as locks, that
will not be available at restart. Thus, all system calls must either be allowed to complete, or be
interrupted and reissued after the checkpoint.

A system call can be blocked interruptibly or non-interruptibly. Non-interruptible waits are for
atomic operations, such as disk I/O. This type of wait is implemented via sleepQ or suspend
locks. The checkpoint will not occur until all such calls are unblocked and complete. Happily,
this is already ensured by the signal delivery mechanisms, and checkpoint is initiated via a signal
(SIGCKPT), so nothing special needs to be done.

[TODOSC: currently, there is no mechanism in place for resending the signal when the SPChore
becomes unblocked; Rich will add this support.]

Interruptible waits are usually due to slow I/O (e.g. reading from a tty), or waiting for an event
to occur (e.g. sigpause(2)). This type of wait is implemented as a call to tsleep with PCATCH
set. These calls are interrupted and transparently restarted if possible. Note that system calls that
have already committed cannot be restarted, but instead return a partial success (e.g. a short read
count) or an error code. The BSD4.4 code already takes care of this case (examines the error code
returned by tsleep and converts it if necessary).

In order for calls to be restarted, the user process must have called sigaction(2), specifying SA_RESTART
for the SIGCKPT signal (should be done automatically by user runtime when registering the SIGCKPT

Revision: 1.1 6 Checkpoint/Restart

handler). The following system calls may be restarted: wait, ioctl, read, write, sendto, recvfrom,
sendmsg and recvmsg on a communications channel or a slow device (e.g tty, but not a regular
file).

The implementation leverages the signal delivery code to interrupt all SPChores that are blocked
interruptibly and return ERESTART. When the unblocked SPChore returns to the supervisor call
entry wrapper, the the error code is converted to ECKPTAGAIN and the chore returns to the
user level system call wrapper. The OS maintains an internal flag that indicates checkpoint is in
progress, so all system calls are caught in the OS svc.entry wrapper and return ECKPTAGAIN. The
chore loops in the user wrapper, retrying the system call, until domain signal is set when suspending
the task in preparation for checkpoint. The user chore state is saved in the checkpoint file as part
of the user memory image, and the system call is automatically restarted when the checkpoint is
restarted. Blocking in user mode has the benefit of reducing the amount of system state that must
be stored in the checkpoint file.

userfooQ {
do {

result = system_foo();
} while (errno == ECKPTAGAIN);
return result; s

}

CAUTION: this requires that user chores must not have domain signal masked when calling the user
system call stub. Otherwise, the team will not respond to domain signal, and the system will eventu-
ally kill the task. There are a few exceptions, notably the system calls used for handshaking between
the user runtime and OS during pm-swap (task_swapsave_complete, team_swapsave_complete,
tera_return_stream). The OS never returns ECKPTAGAIN for these calls.

Note: we rely on the user runtime to ensure that the task is quiescent, and that no system calls are
executing (i.e. all outstanding system calls are blocked) when tera_signal_number is invoked. If
the user runtime neglects to ensure this condition, the OS is still safe, since this will not result in
inconsistencies in the system state. However, the restarted process will likely not work correctly,
and this could be very difficult to debug. TODO: consider adding a mechanism to verify that no
calls are in progress, and deny checkpoint otherwise.

4.3 Memory

The memory image of a checkpointed task is saved in the same format as the swap image. This
allows the same mechanisms to be used when saving and reloading the memory image for both
checkpoint/restart and swapping. The swapin routine simply skips over ELF segments that are
specific to checkpoint files (such as the segments holding the saved process and open file state
information).

The program text is not saved in the image file. It is reloaded from the original executable when the
task is swapped into memory. When swapping a task out of memory, the file is marked in the file
system as busy: this prevents the executable from being removed prior to swapin. Unfortunately,
this cannot be done in the case of checkpoint, since there is no way to know when the busy flag
can be safely removed. Instead, either the executable must be saved as part of the checkpoint, or
sufficient information must be saved describing the executable to enable any modification of the

Revision: 1.1 7 Checkpoint/Restart

executable to be detected at restart. If restart detects modification of the file, restart is denied.
Restart will also fail if the executable references shared libraries, and the required library version
is not available. Shared library data is currently task-private data, thus is saved as part of the task
data memory image.

The POSIX draft specifies the following memory state shall be restored for restarted processes,
otherwise the restart shall fail.

• process memory image: saved via swapin/swapout mechanisms.

• locked memory regions: handle in DataAddressSpace restoration

• mapped memory regions: handled in the same manner as as for swapping.

• protected memory regions: handle in DataAddressSpace restoration

• shared memory regions: not applicable, since the Tera OS does not currently support System
V style shared segments.

4.4 Process State -*

The POSIX draft specifies that the following Unix process attributes shall be saved and restored.

• scheduling policy and priority

• real and effective user and group IDs and supplementary group IDs.

• file mode creation mask

• current working directory and root directory

• parent/child relationships between the restarted processes (only relevant when checkpointing
a process group or session)

• process signal state

- pending signals

- process signal mask (blocked and/or ignored signals)

- signal handlers: these are automatically saved as part of the user runtime memory image,
thus nothing special is required.

• process timer state, as if no time had passed since the process was checkpointed.

• message queue descriptors: not applicable since messages are not supported.

• thread attributes and execution state: these are saved as usual by the user runtime during
pm-swap, so nothing special is required.

• usage statistics (for accurate billing), specifically: tmsjutime, tms_stime, tms.cutime, tms_cstime
(user CPU time, system CPU time, user CPU time of terminated child processes, system CPU
time of terminated child processes)

Revision: 1.1 8 Checkpoint/Restart

• Controlling terminal: set to ctty of the process that called ckptjrestart. If the calling process
does not have a ctty and the checkpointed process did, the restart shall fail.

In addition to the Unix process state, information adequate to reconstruct the microkernel TaskControlBlock,
TeamControlBlock, SPTask, and SPTeam structures is saved.

• taskid

• parent taskid (not required to be recoverable)

• team attributes (for creating new teams)

• priority

• nice

• number of teams

• resource usage information

• per-team protection domain info (e.g. event and stream counters)

The ckpt_setup system call provides a means for the user to specify whether the process id and/or
lock file must be recovered. The default action is to return EBUSY to the ckptjrestart call if a
resource resource associated with the target process is in use by the system and thus not available
(for instance, the process id). An exception is the parent process id; this allows orphaned processes
to be restarted.

If this was a checkpoint of a process group, the process group id must be restored; likewise for
sessions. POSIX does not specify whether the process group id and session membership should be
saved and restored for a single process checkpoint. The Tera implementation will put the restarted
process in the process group and session of the caller of ckptjrestart; the caller will also be the
parent of the process.

In addition to the POSIX requirements, it may be useful to save and restore the following state:

• NQS resource quota limits

• NQS resources consumed

4.5 Processor Context

The only processor context that needs to be saved and restored is the protection domain state
registers, such as the event and stream counters. This state is normally saved during pm-swap
into the TeamControlBlock structures. The register state of all executing user streams is saved by
the user runtime into the user private data area: this memory is saved and restored automatically.
Likewise, the register state of all SPChores is saved by the supervisor runtime into the supervisor
task-private data memory. So nothing special needs to be done.

Revision: 1.1 9 Checkpoint/Restart

5 Implementation Sketch

Checkpoint implementations can be fairly complex, mainly due to complications in the recovery of
the system state associated with a process. The Tera implementation leverages existing code paths
as much as possible, minimizing the amount of dedicated code that must be maintained. The user
level checkpoint and recovery routines are invoked via Unix signals. The usual pm-swap mechanism
is used to quiesce the user process prior to checkpoint, and the memory swap mechanisms are used
to write out and read in the memory image.

5.1 Checkpoint Mechanisms

The ckpt_create system call verifies the caller has the appropriate permissions, then generates a
SIGCKPT for the process to be checkpointed. When the signal handler has completed execution,
control is returned to the kernel, which then suspends the task and saves the task memory image
along with additional system state sufficient to restart the task. It is important that no other file
operations execute after the state has been saved, to prevent the saved state from becoming stale.
We accomplish this by transferring control directly to the system when the SIGCKPT signal handler
completes execution.

Brief summary of Tera signal handling mechanisms: The signal delivery code arranges to set domain
signal in all the user domains, emulating a pm-swap. The user saves its state, and the last user
stream calls task_swapsave_complete() to notify the OS. When task_swapsave_complete returns,
one stream on each team is created. One of those streams goes on to execute tera_signal_number ()
while the others spin, waiting for direction from that stream (to say that signal processing has
completed). The signal handling stream repeatedly calls tera_signal_number to obtain the pending
signal number, and invokes the handler, until all signals have been handled.

If there are multiple signals pending, the kernel ensures that the SIGCKPT signal is the first signal
to be returned to the user by tera_signal_number. When the signal handler completes execution
and calls tera_signal_number, control is returned to the kernel, which initiates checkpointing of
the task. Note that any additional pending signals are not delivered until after the checkpoint has
completed.

5.2 Restart Mechanisms

The Unix signal mechanism is used to invoke a user level recovery routine when the checkpointed
process is restarted.

• OS constructs the task and restores internal state.

• OS arranges to have a stream that is blocked in tera_task_swapsave_complete() return to
the user.

• The user stream calls tera_signal_number(), which returns SIGCKPTRESTART as the first
signal to handle.

• The user handler for SIGCKPTRESTART calls the user level recovery routine (e.g. restore open
file state).

Revision: 1.1 10 Checkpoint/Restart

The ckpt_setup and ckpt_create system calls have an option for the user to specify a signal to be
sent to a restarted process. Note that this signal is distinct from SICKPTGRESTART, which is used
explicitly for handshaking between the Tera OS and the Tera user runtime.

5.3 Staged Implementation

The first stage will focus on implementing the basic mechanisms to initiate a checkpoint, save the
process image, and restart it. In the second stage support will be provided for the more complicated
issues such as blocked system calls and recovery of I/O state.

• define the system call interface

• define the checkpoint file format

• define mechanisms to save/restore system state

• test, debug checkpoint/restart of a single process

• save/restore open file state

• handle blocked system calls

• support for checkpointing process groups and sessions (TODO)

Once a complete implementation exists, additional optimizations and/or extensions can be consid-
ered. For instance, these are some of the common optimizations implemented by existing systems
to reduce the checkpoint overhead. Note however, that these solutions are not necessarily suitable
for use on the Tera, so other solutions may need to be devised.

• user directed checkpointing: save only "inuse" memory (This seems like a reasonable opti-
mization on the Tera.)

• incremental checkpoint: via copy-on-write (copy-on-write is not currently supported in the
Tera OS)

• asynchronous checkpoint: main memory checkpointing via fork (without copy-on-write, this
may not help much)

Revision: 1.1 11 Checkpoint/Restart

