
Parallelization of File Descriptor Management

Tera Computer Company
400 N. 34th St.

 __ Seattle, WA 98103

ÄBpco*«d tat jmcisc zeieaasj '•, June 4, 1993

j—— *iil—iIWI urn inhMMHIiwtii i^niWi*^^

1 Introduction

When a task opens a file, the operating system returns a file descriptor and provides an index into
a pool of file structure pointers referenced from the task's file descriptor table. Each task has its
own file descriptor table.

Under BSD4-4 the size of a pool of file structure pointers may grow during runtime bounded by an
upper limit. During the time when the pointer list is expanded, all activities must be suspended
till the old list has been copied into the new list and all future references are directed to the new
list.

A file structure may be pointed to from one or more file descriptor tables as a result of a fork, dup,
or dup2 system call.

There is a chain list of active files maintained within the entire system. This list is accessed by a
variable named filehead which points to file structures that are linked via /_/?/e/and f.fileb pointers.
This list is used in particular by the unp^gcQ routine for garbage collection of lost references to
files that are present in the Unix domain socket.

2 File Descriptor Table

In parallelizing accesses to a task's file descriptor table, a simple spin lock named fdspLock is used
to protect all fields in the filedesc structure. In particular, fdspLock is used to protect the allocation
and deallocation of a file structure pointer.

A pointer is added into the filedesc structure that addresses a list of counters for all file descriptors.
This pointer named fd.othreadCount addresses pointers each of which is used to keep count of the
number of threads that are actively doing io on a specific file descriptor. A thread that calls close()
will wait for all threads that are currently doing io to complete by sleeping on a global sleep channel
named closeSleepChan. The last thread that accesses this file descriptor will wake up the thread
that is sleeping in the closeSleepChan sleep channel.

A global sleep channel named openSleepChan is used by all system calls that reference a specified
file descriptor to wait until a file has completely opened. Basically, flags in fd.ofileflags are set to
UF-OPENING or UF-WAITOPEN to indicate that a file descriptor is in the process of an open or
that a thread is waiting for open to complete, respectively.

BTIC QTJALPfV TORPSCTBD S

A global sleep channel named jd.allocatingSleepChan is used to synchronize the expansion of a file
descriptor table and will be further described in the section on allocation of a file structure.

3 File Structure

First, a simple spin lock named fspLock is used to protect all accesses for the following members
in a file structure. These members include f-count, f-flag, fjmsgcount, f.cred, f-offset, and f.data.
The rest of these members are set at allocation, but are never altered until deallocation. These
members include: fJype, and f.ops.

The system's active file linked list fields fifilef and f.fileb are manipulated via a global spin lock
named activeFile.spLock. This is discussed further in a later section on active file list.

A file's offset f-offset is accessed via a spin suspend lock named /.spinSuspendLock. This essentially
serializes read, write, and Iseek accesses to the same file descriptor and provides consistency to a
file's offset for Unix read, write, and Iseek system calls.

A global sleep channel named uf.allocatingSleepChan is used to synchronize the allocation of a new
file descriptor file structure. Further description can be found in the next section.

4 Allocation of a File Descriptor

To allocate a new file descriptor requires first reserving a free file structure pointer in the file descrip-
tor table by calling fdallocQ. If a file descriptor table is full and is still below the current allowable
limit the list of file structure pointers will be expanded. To avoid other threads from waiting during
the expansion of the table's pointer list, a new flag named fd-flag is set to FD-ALLOCATING to
let other fdallocQ calls know that a current expansion is ongoing. The caller then gives up the
fdspLock and calls the potentially blocking MALLOCfunction. On return, it wakes up all threads
that are waiting on the fd-allocatingSleepChan such as a caller of dup2().

After an index is reserved in the file descriptor table, a file structure is allocated via MALLOC and
inserted into the reserved fd-0files[index] location. In order to avoid races with the dup2 system
call, the specific fd.ofileflags is set to UF-ALLOCATING. On return from MALLOC, it wakes up
all threads that are waiting on uf-allocatingSleepChan.

5 Deallocation a File Descriptor

When a task closes a file, a file descriptor pointer would be marked NULL in the file descriptor
table and the file structure which it points to may become deallocated. When closefQ is called, it
checks whether the fd.othreadCount for the file descriptor is zero and if so proceed with the actual
close. Otherwise, it sleeps on the global closeSleepChan until the thread count for the descriptor
goes to zero. This ensures all threads that are currently using the file descriptor to complete before
close can proceed. At the point when all threads within a task have completed their io on the
particular file descriptor close then checks the task count fdjcount. If it is zero this indicates all
tasks accessing this file descriptor have completed and that it is safe to free the memory for the file
descriptor.

Revision: 1.2 2 File Descriptors

In order to guarantee that no other threads are going to do further io on the same file descriptor,
close must first set fd.ofiles for the file descriptor to NULL. This will ensure all future system calls
that access the file descriptor to return an error at examining its fd.ofiles field. In addition, we
must prevent a file descriptor from being freed when io is ongoing within the same file descriptor.
This is ensured by requiring every system call that accesses its file descriptor fields to increment
its thread count in fd.othreadCount. In fact, every system call that accesses a file structure must
increment fd.othreadCount at the beginning of the call and decrement it before returning to caller.
At the time of decrementing fd.othreadCount, it is the responsibilty of each caller to check and
see if fd-.othreadCount has gone to zero, and if so the caller must wakeup those sleeping on the
closeSleepChan sleep channel.

The following listing consists of code for incrementing and decrementing fd.othreadCount on entry

Revision: 1.2 3 File Descriptors

and exit to system entry routines that access its file descriptor table.

/ * Parallel: lock file descriptor table, then increment
* thread count for the file descriptor.
* If successful returns 0 and file structure
* pointer. Note: if returned successfully
* fd_spLock will be acquired after the call. s
* Otherwise, returns EBADF, file structure ptr
* is NULL and fd_spLock is released.

7
fd checkCountLock(struct filedesc * fdp, int i, vfileptr *fp)

{"
Spin_lock((SpinLock_k *)&fdp->fd_spLock);
if ((unsigned) i >= fdp->fd_nfiles ||

(*fp = fdp->fd_ofiles[i]) == NULL) {
Spin_unlock((SpinLock_k *)&fdp->fd_spLock);
return (EBADF); w

}
assert_k(fdp->fd_othreadCount[i] >= 0);
fdp - >fd_othreadCount [i]++;
return (0);

"l 20

/ * Parallel: lock file descriptor table, then decrement
* thread count for the file descriptor. If
* thread count goes to 0 wakeup who may be in closef
*l 25

int fd_countUnlock(struct filedesc *fdp, int i)

{

if (!Spin_holdingLock((SpinLockk *)&fdp->fd_spLock))
Spin_lock((SpinLock_k *)&fdp->fd_spLock); so

assert_k(fdp->fd_othreadCount[i] > 0);
fdp- >fd_othreadCount [i] —;
if (fdp->fd_othreadCount[i] <= 0)

wakeup(&closeSleepChan);
Spin_unlock((SpinLock_k *)&fdp->fd_spLock); 35

return (0);

} '

6 Active File List

A global spin lock named activeFilespLock is used to protect the entire system's active file list.
The primary users of this spin lock is the open and close system call, and the uipc garbage collector.

Revision: 1.2 4 File Descriptors

Since this global spin lock could become a source of contention for open and close system calls, the
mark-and-sweep algorithm in unp.gcQ must be revisited in the future.

In the unp.gcQ function activeFile.spinLock must be taken since filehead, /.file/ and /.fileb are
examined. However, unp.gc assumes that while examining each file structure in the list that each
entry will not be deallocated by ffreeQ since this is guaranteed by a nonpreemptive kernel. The
/.spLock must be taken prior to manipulatin f.flag. Note that unp.gc only calls closefQ if and only
if /_count is not zero.

To prevent a file descriptor from being freed when we are in unp.gc we first take the active-
FilcspLock, and then we lock the file structure's /.spLock guaranteeing /.count to remain unchanged.
If and when /.count is zero then unp.gc do not take any action with the file structure examined.
In fact, unp.gc calls close/() if and only if /.count is not zero. We need to revisit unp.gcQ in the
future!

7 Hierarchy of Locks

The following lock hierarchy must be observed in order to avoid deadlock.

1. /dspLock has precedence over activeFilespLock

2. activeFileSpLock has precedence over /.spLock

3. /d.spLock has precedence over /.spLock

4. /dspLock has precedence over /.spSuspendLock

8 Future Parallelization Improvements

The system's active file list used specifically for uipc garbage collection must be redesigned to
prevent a single source of contention. A possible solution is to keep a separate active file list for all
files that have /.type equal to DTYPE.SOCKET.

The expansion of the file structure pointers list requires serializing accesses to all file descriptors.
To eliminate this bottleneck, we may want to eliminate expansion all togther or design a different
scheme for list expansion, such as use a forwarding bit for the last entry in the first list and so on.

Revision: 1.2 5 File Descriptors

