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1.  INTRODUCTION. 

This report summarizes the work we have performed for the project entitled "A New Paradigm for 

Fast, Interactive Simulation". The objective of this effort has been to investigate and develop 

specific algorithms and demonstrations establishing the feasibility and value of novel techniques 

for (a) sensitivity estimation, (b) response surface generation, (c) parallel simulation, (d) ordinal 

optimization, and (e) interfaces in hierarchical simulation, to be used towards the creation of a fast, 

interactive simulation environment for C3I systems. Towards this objective, several specific tasks 

were performed intended to investigate new approaches and to demonstrate their capability to (a) 

provide substantial improvement in simulation time, (b) preserve statistics in hierarchical 

simulation models, and (c) facilitate design and decision making processes based on simulation. 

In what follows, so as to place our work in the proper context, we first identify some of the 

major challenges faced by simulation technology today and the approaches we are proposing to 

follow (Section 1.1). We then describe the organization of this report (Section 1.2). 

1.1. Issues in Discrete Event Simulation. 

Simulation is widely recognized as one of the most versatile and general-purpose tools available 

today for modeling complex processes and solving problems in design, performance evaluation, 

decision making, and planning. This includes C3I environments, where most problems confronted 

by designers and decision makers are of such complexity that their analysis and solution far 

surpass the scope of available analytical and numerical methods; this leaves simulation as the only 

alternative of "universal" applicability. 

The importance of discrete event simulation has given rise to a number of commercially 

available software packages (e.g., SIMAN, SLAM, SIMULA, SIMSCRIPT, MODSIM, 

EXTEND) whose applicability ranges from very generic to highly specialized. However, the use 

of typical simulation software is limited by factors such as the following: (a) One must have 

thorough knowledge of the specific tool at a detailed technical level before attempting to use it in a 

modeling effort, (b) One must be an experienced programmer, in addition to a decision maker, (c) 

In order to make decisions based on simulation, one usually needs to run a large number of 

simulations and then carefully manage all output data collected on a case-by-case basis, (d) The 

field of simulation was developed primarily as a special branch of statistics involving dynamical 

phenomena. Manual handling and analysis of input/output data is still the norm, while design of 

interfaces, componentware interoperability, intelligent and automated analysis of output have been 

neglected. For example, the practice of Object Oriented Programming (OOP), with few exceptions, 
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is still nascent in simulation languages despite the fact that the OOP idea actually originated in 

simulation. In addition, hardware advances, such as massively parallel computers and workstation 

networking, are only beginning to be noticed in simulation theory and practice, (e) The ultimate 

purpose of simulation is often system performance evaluation and optimization. However, 

simulation is notoriously computer time-consuming when it comes to parametric studies of system 

performance. Unless substantial speedup of the performance evaluation process can be achieved, 

systematic performance studies of most real-world problems are beyond reach, even with 

supercomputers. 
With this brief discussion in mind, we identify below four issues that we believe constitute the 

major challenges faced by simulation technology today, and introduce some key ideas which have 

been the subject of further study in this project. 

1. "What if capability. 
One of the main goals of simulation is to set up a model and then ask many (say N) "what if" 

questions. This normally requires a nominal simulation run and then N additional runs, one for 

each "what if. Given that in many cases even a single simulation run can be an extremely time- 

consuming process, this basic "what if capability is severely limited and often infeasible. There is, 

therefore, a need for developing "intelligent" schemes through which "what if information can be 

extracted from a small number of simulation runs. In many cases, it is indeed possible to answer 

multiple "what if questions from data obtained from the nominal simulation run alone. The basis 

of this capability lies on the theory of Perturbation Analysis (PA) developed over the past several 

years, now well-documented in the technical literature, including several books [l]-[3]. Traditional 

PA theory has focused on "small" changes in continuous parameters of a model and is frequently 

aimed at estimating sensitivities (i.e., derivatives) of particular performance measures with respect 

to certain model parameters. This project has been aimed at building on principles of PA theory in 

order to develop methodologies and specific algorithms with the capability to obtain answers to 

multiple "what if questions from a single simulation run. This has given rise to concurrent 

simulation techniques which will be further discussed in this report. 

2. Optimization. 
Often, the purpose of simulation is to compare many alternatives in order to identify the optimal 

one. In evaluating multiple designs or decisions so as to select the "best" one, traditional 

techniques rely on computing the cardinal values of a performance (or cost) objective function over 

all possible alternatives. This process is clearly infeasible when analytical expressions of the 

objective function are unavailable or too hard to estimate (usually requiring enormous numbers of 

long simulation runs). In contrast, ordinal optimization is driven by the relative order of estimates 
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of the objective function -- not their absolute values. The advantage here is that we can exploit 

inherent robustness properties of these order statistics with respect to substantial estimation noise. 

In simple terms: why waste time to get "good" performance estimates, when relatively "poor" but 

quickly obtained estimates can be provably adequate to order these performance estimates? [4] The 

result is a new design evaluation and optimization framework. Combined with concurrent 

simulation capabilities (described above), we believe this framework explicitly tackles the problem 

of complexity by rapidly narrowing down a potentially very large set of alternative designs which 

are candidates for the global optimum. 

3. Hierarchical   decomposition. 

One way to reduce complexity is through hierarchical decomposition of a simulation model. The 

challenge here is to do it without sacrificing accuracy. By "accuracy" we mean that the statistical 

information generated at the low level, high resolution simulation model should be preserved 

accurately at the higher level models. Our emphasis is in the area of battle simulations such as those 

discussed in [26]-[29]. Concurrent and parallel simulation is one way to break down the 

complexity of simulating a large size battle simulation model. However we have found that it is 

quite difficult to completely parallelize a battle simulation model which usually has many parts that 

are intrinsically sequential. One such example is the sorting of the importance of the weapons. We 

have therefore concentrated on the preservation of the stochastic fidelity in hierarchical battle 

simulation models. We have worked with a concrete battle simulation model [29] and analyzed 

various approaches for the preservation of stochastic fidelity for this specific model. We believe 

that the main ideas and results presented in this report can be useful for other battle simulation 
models as well. 

4. Interactive  use  of simulation. 

Simulation remains a tool which, as a rule, one cannot use in interactive mode. A simulation run is 

typically set up and, while it is running (possibly for a long time), a user cannot conveniently 

observe its progress or alter the model. Clearly, this imposes serious limitations to the usefulness 

of simulation. For example, a simple input error may not be detected until after the completion of a 

simulation run, rendering the output useless and wasting a significant amount of computer time. To 

transform simulation into an interactive design and decision making tool requires a combination of 

new analysis techniques such as the ones discussed above with new software capabilities, 

including OOP and Graphical User Interfaces (GUI). Although the latter are not within the scope 

of this project, we have made a significant effort to develop software demonstrations of our new 

approaches in the context of OOP and GUI-based software. 
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1.2. Report Organization. 

The contents of this report may be outlined as follows. 

• Section 2: The basic structure of a discrete event simulator is presented to provide the 

framework for explaining the concurrent simulation algorithms we have 

developed and contrast them to "brute force" simulation. Two general 

approaches are described: the Standard Clock (SC) approach and Augmented 

System Analysis (ASA). The concept of "speedup" is also introduced in order 

to provide a clear quantitative measure of the improvement provided by these 

concurrent simulation techniques. 

• Section 3: A testbed model is introduced in order to illustrate the use of the concurrent 

simulation techniques described in Section 2. A detailed comparative study 

between "brute force" simulation and the SC and ASA techniques is then 

provided, focusing on the amount of speedup generated by these techniques in 

answering multiple "what if' questions. 

• Section 4: Optimization schemes making use of concurrent simulation are presented. 

Using the testbed model of Section 3, two such schemes, the Stochastic 

Comparison and Stochastic Descent algorithms, are compared. 

• Section 5: A concrete hierarchical battle simulation model is introduced and the stochastic 

fidelity preservation issue is discussed in detail. We recommend a scenario 

grouping approach to tackle this issue and also present an innovative scheme to 

implement the recommended algorithms. 

• Section 6: A brief introduction to the use of rational approximation techniques is presented 

and applied to a class of computationally complex performance analysis 

problems in stochastic discrete event systems such as computer systems and 

communication networks. 

• Section 7: We present the main conclusions of our study, including lessons learned and 

recommendations. We also outline our ongoing work and some future research 

directions. 
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2.  CONCURRENT SIMULATION. 

As already mentioned in Section 1, a major objective of this project is motivated by the time 

consuming nature of system performance exploration through simulation: to obtain answers to N 

"what if questions, (N+l) simulations are needed. Therefore, our goal is the following: From a 

single simulation, obtain answers to all N "what if questions simultaneously. The basic 

framework for dealing with this problem is presented in Section 2.1. In Section 2.2, we outline the 

functionality of a typical discrete event simulator, in order to subsequently contrast it to the 

techniques we develop. In Sections 2.3 we briefly review the "brute force" method for solving the 

problem above, and then introduce concurrent simulation techniques in Section 2.4. Finally, in 

Section 2.5 we describe means for quantitatively evaluating the efficiency of concurrent simulation 

methods compared to "brute force" simulation. In doing so, we introduce the "speedup factor" as a 

basic measure of efficiency and identify some fundamental bounds this measure satisfies. 

2.1. The Basic Framework. 

The concurrent simulation methodology we have developed is based on using all possible data 

involved in one simulation to drive N simulations concurrently (in parallel). This is illustrated in 

Figure 1, where it is assumed that a system model is given and a set of parameters (actions, 

designs) 0 = {6i,...,6m} is specified. The problem then is to observe the system under 6i and 

from the observations made to estimate/predict/infer/learn the performance under all 62,...,6m on 

line and in parallel. This is also referred to as the sample path constructability problem, since it 

requires the construction of m-1 sample paths from data extracted from the nominal sample path 

observed under 6^. 

In discussing this approach, it is important to distinguish between the following different 

views: 

1. BRUTE-FORCE REPETITIVE SIMULATION: 

simulate a system N times sequentially 

2. PARALLEL SIMULATION OF ONE SYSTEM: 

distribute the simulation code over N processors or a network of N workstations 

3. PARALLEL SIMULATION OF MANY SYSTEMS WITH THE SAME STRUCTURE, BUT 

DIFFERENT SETTINGS: 

share simulation data to perform N simulation experiments concurrently, either on a single 

processor or over N processors 

To clearly differentiate between the second and third viewpoints above, we will reserve the term 
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"parallel (or distributed) simulation" for the case where N processors are used to simulate one 

system (2 above). We will use the term "concurrent simulation" for the case where N simulation 

experiments are performed simultaneously (3 above). 

Control 
Action 
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observations 
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Control Action 
were to be... 

h e m 

SYSTEM 
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Performance 
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« ESTIMATOR/ 
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Figure 1: Concurrent simulation framework 

We will also sometimes refer to concurrent simulation as "multithread simulation". This 

captures the idea that in this approach multiple concurrent threads unfold, all driven by common 

data. The main steps in this approach are as follows: 

1. Set up a single simulation 

2. Generate multiple simultaneous simulation threads 

3. Each thread corresponds to a different system (same structure, but different design) 

When implementing such an approach on sequential computers, processing is serial, but all 

simulation threads unfold in parallel. The main benefit here lies in sharing of data and of some data 

structure maintenance. On parallel computers, on the other hand, one processor is allocated to each 

simulation thread. In this case, the additional benefit is that all system state updates are also 

parallelized (e.g., see [14]-[15]). In this project, we have developed concurrent simulation 

techniques which may be implemented on either sequential or parallel processing computing 

environments. However, all numerical testing is limited to concurrent simulation on sequential 

computers. 
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2.2. Functionality of a Discrete Event Simulator. 

We begin by outlining the main components of discrete event simulation in order to contrast 

various approaches for parallelizing the generation of simulation runs over different parameter 

settings. 

1. Clock Structure (or Clock Mechanism) 

Every discrete event model to be simulated involves a set E of events (see also [5]-[7]). For 

example, in a communication system, "arrival of message at point A to be transmitted to point B", 

"message successfully received at point B", and "equipment at point A has failed" are such typical 

events. The evolution of the system's state is entirely driven by the occurrence of such events over 

time. We associate with every event ie£a clock sequence v(- = {vtj, vi2, ...}, where, v,- ■ is the 

y'th lifetime of event i. These lifetimes are the random variates generated through a computer's 

random number generation mechanism. For example, in a communication system, lifetimes for 

event "message successfully received at point B" correspond to random times required for the 

system to transmit a message from point A (where it originated) to point B. In actual simulation 

software, the sequence v,- is not predetermined; a new lifetime is generated as needed based on the 

concept of feasible events explained next 

2. Feasible Event Set for every state and Event Calendar 

Let x denote the state of the system being simulated. At any state x there is a set T\x), a subset of 

E, which represents all those events feasible at that state. For example, if the state of a 

communication system is such that the transmitter at point A is currently idle, then event "message 

successfully received at point B" is obviously not feasible. In typical simulation software, one uses 

the set Ux) to create a data structure known as the Event Calendar. Specifically, when an event i 

becomes feasible at some state x and is assigned some lifetime v,-, its scheduled time to occur is 
given by 

ti = t + Vi (1) 

where t is the current simulation time. The Event Calendar is a list of all events in TQc) 

accompanied by their corresponding scheduled times r,- ordered on a smallest scheduled event time 

first basis. In other words, the first item in this list is always the next event scheduled to occur. 

3. Triggering Event 

Given the Event Calendar at state x, the triggering event e' is the event which occurs next at that 

state, i.e., the event with the smallest scheduled time value: 
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e' =arg min  {r,-} (2) 

When the triggering event is determined, the simulation clock is simply updated so that t := tp 

where i - e'. 

4. State Transition Mechanism 

When a new event is selected from the Event Calendar, a state transition takes place. 

Mathematically, the state transition mechanism is simply expressed through a state transition 

function that maps the current state x and triggering event e' into a new state x'\ 

x' =f(x, e') (3) 

In practice, the actual state transition mechanism corresponds to all operational rules characterizing 

the model being simulated. For example, in a communication system the next state may depend on 

complex protocols for selecting the next message type to be processed. 

In summary, the main functions of a discrete event simulator (other than data collection and 

report generation which are largely application-dependent) are: 

(Fl) Maintain an Event Calendar which is updated through the triggering event mechanism 

(F2) Update the simulation clock 

(F3) Update the state after every event occurrence 

(F4) Generate random variates corresponding to various event lifetimes. 

In parallelizing simulation runs, we wish to perform a number of simulation experiments pertaining 

to a particular system with each experiment performed under different parameter settings. 

Sometimes the changes in these parameter settings are very simple, such as "reduce the average 

transmission time by 10%", but they can also be quite complex such as replacing a First-Come- 

First-Serve scheduling discipline by a new rule such as Shortest-Time-to-Deadline-First. In what 

follows, we describe three approaches we have studied in this project. The first is the obvious 

"brute force" approach whereby each simulation experiment is separately performed without any 

effort to share data among experiments. The remaining two are two specific concurrent simulation 

schemes. 

2.3. Trivial Parallelization  (Brute-Force) Method. 

This is the obvious approach to carrying out a parametric design study: for each desired parameter 

setting (or alternative design), a separate simulation experiment is performed. In the case of a 

sequential computer, one has to serially perform the experiments. In the case of a Multiple- 
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Instruction-Multiple-Data (MIMD) parallel computer, one may be able to utilize each processor for 

each simulation run without any interaction or coordination among processors. 

2.4. Concurrent Simulation Methods. 

In order to explain the key ideas involved in the two methods described in Sections 2.4.1 and 

2.4.2, we begin by returning to Figure 1, where the basic concurrent simulation framework is 

set. In seeking conditions under which the sample path constructability problem depicted in this 

figure can be solved, we find that there are two aspects of the problem that need to be addressed. 

First, the structure of the system itself may or may not be conducive to sample path 

constructability. Second, the stochastic characteristics of the lifetime sequences driving the model 

are critical in ensuring that the sample path we construct is indeed a valid one. A formal 

"constructability condition" that reflects these two aspects is described in [3]. We will omit here 

technical details (which can be found in [8]-[10]) and limit ourselves to an intuitive explanation of 
this condition. 

Let Zl denote the simulation model already available (i.e., the sample path generated under the 

parameter setting 6l in Figure 1) and I^,...,I^ the additional simulation models to be run. Let 

{x'f,} be the state sequence corresponding to Zj. Now suppose that state x\ is observed after the kxh 

state transition in Zl. The corresponding feasible event set is I\x]). At the same time, suppose the 

state of some Zj,j = 2....JV, is xj, with corresponding feasible event set IJ^). Now, if !"(*£) 

^T(xk), then all events required in Zj to determine the next state transition are "observable" in the 

observed set I\xk). This lends its name to the term "observability condition" for 

T(4) £ T\xl) for all k = 1,2,... (4) 

Unfortunately, this simple structural condition is not sufficient to guarantee that the sample path 

constructability problem is solved. In addition to it, one must ensure that the residual lifetimes of 

all events in T(^) and r(xk) have the same probability distribution. Thus, in general, the 

constructability condition is not easy to satisfy for most systems of practical interest. The issue 

then becomes the development of schemes whereby this condition can be enforced at some cost. 

This leads to two different ways to solve the sample path constructability problem, which are 
described next. 

2.4.1. Standard Clock (SC) Method. 

This approach was first proposed in [11]. The main idea is to try to bypass the observability 

problem when (4) is not satisfied by creating a fictitious system, denoted by ZQ, in which all 

10 
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events are always feasible, i.e., by setting T\x) = E for all possible states x. Then, by construction, 

(4) is always satisfied, since rQcj) ££ by definition. Whenever an event is observed in the 

simulated system ZQ which is actually not feasible in the real system 2^, it is simply ignored. This 

leads to a stochastically correct sample path of 1\ as long as all event lifetimes are exponentially 

distributed. This obviously imposes a constraint on the types of systems for which this technique 

can be applied; in particular, it assumes that the system being simulated is modeled as a Markov 

chain. There are, however, a number of extensions and approximations one can use to overcome 

this problem (see [12]-[13]). We have obtained some very good results along these lines, but have 

not spent a significant amount of time in this particular direction. 

Let us now briefly describe the SC method. Assuming that every event i e E has exponentially 

distributed lifetimes, it suffices to associate with it a single parameter Xh the rate characterizing this 

distribution. It is then well known (e.g., see [3],[16]) that when the system enters state x, the 

distribution of the ensuing interevent time is exponential with rate given by: 

A(x)=  2 *» (5) 

is T\x) 

Moreover, when the state is x, the distribution of the triggering event is given by: 

p(i,x) = -k-,        ieTXx) (6) 
A(x) 

where p(i, x) is the probability that the triggering event is i when the state is x. Another well 

known property of Markov chains is also exploited, known as uniformization: regardless of the 

actual event rate A(x) for any state x in (5), we use a uniform rate given by 

A = J>(. (7) 
ieE 

and treat all events which are not feasible in x and contributing the event rate A - A(x) as "fictitious 

events". If such an event is observed in the simulation when the state is x, it is simply ignored. 

Note that the mechanism through which the triggering event at any state is determined now 

becomes independent of the state. Specifically, in (6) we can now set A(x) = A for all x. 

Therefore, the triggering event distribution at any state is simply /?,- = XJA. 

The algorithm through which we may obtain N simulation runs in parallel using the SC method 

is presented below. The state of the y'th simulation, j = l,...,N, is denoted by xj and the 

corresponding total event rate (which may differ across experiments) by Ay 

11 
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Standard Clock Algorithm 

Step 0. Initialize: x> to a desired initial value for ally =1,...J\f. 

Repeat the following steps for ally = 1,...^V: 

Step 1. Generate an interevent time V with distribution 1 - e'\ t > 0. 

Step 2. Generate an event type e with distribution p{ = A/A., / e E. 

Step 3. Check for event feasibility: if ee r(xJ), then go to Step 4, else skip it. 

Step 4. Update state:        (x>)' =fj{xK e). 

Step 5. Rescale interevent time:   V> = V/Aj and return to Step 1. 

The SC algorithm is also presented in Figure 2, in order to contrast it to the conventional 

simulation approach. Observe that the determination of event times is totally shared by all 

simulations; in a Single-Instruction-Multiple-Data (SIMD) parallel computer, for example, the 

generation of interevent times may therefore be performed at the front-end computer. In addition, 

Steps 2,3,5 above can be executed by a single instruction. In many cases, the parameter A- is 

unchanged across simulations, so it is not needed; in this case, the distribution used in Step 1 is 
simply 1 - e'At, t > 0. 

We can now see how concurrency can be exploited in the SC Algorithm: 

• Sequential processing: In this case, one has to serially perform the experiments, but only the state 

update function (F3) (i.e., Step 4 above) needs to be repeated for each of the N simulation runs. 

All other functions are common to all. The cost for this sharing is contained in Step 3 above, where 

one needs to check whether an event generated can indeed be used in theyth simulation (for eachy 

= 1.....A0 or should be ignored. A quantifiable measure of this cost is described in Section 2.5. 

Clearly, however, this cost is generally smaller than that of one complete simulation time T. Thus, 

as shown in some of our numerical results, the time required to perform N simulations through the 
SC approach is much smaller than AT. 

• Parallel processing: Observe that the determination of event times is totally shared by all 

simulations; in a SIMD parallel computer, the generation of interevent times may therefore be 

performed at the front-end computer. In addition, Steps 2-5 above can each be executed by a single 

program statement. Therefore, referring to the four simulation functions presented earlier, (F2) and 

(F4) are performed at the front end computer, while (Fl) is eliminated. Instead, Steps 2-3 are 

performed in parallel through common instructions. Finally, only (F3) remains unique to each of 

the N simulation runs considered (however, it can be carried out via a common instruction). It 

should be emphasized that this form of parallelization is drastically different from the approach of 

distributing simulation code for a single simulation over multiple processors (see also [17] and 
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selected papers in [18]). 
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Figure 2. The SC Concurrent Simulation scheme compared to conventional simulation 

2.4.2.  Augmented  System  Analysis  (ASA). 

Unlike the SC approach, in Augmented System Analysis (ASA) the parallel sample path 

construction process is driven by a specific simulation run already available [3],[8]-[10]. This 

presents the practical advantage of not having to redesign a simulation software environment to 

accommodate the SC setup described in the last section. To describe the ASA approach, consider 

the joint state (xk, x
J

k) following the kth transition at systems Zl and X- respectively. The 

evolution of this joint state (xk, x
J

k), k = 0,1,..., is viewed as the sample path of an "augmented 

system" which is driven by the exact same event sequence as the observed system 2^. As long as 
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the observed state and the state of some Zpj = 2,...//, satisfy the "observability condition" I\^k) 

^r(xk) in (4), then every observed event in I\ is simply used to concurrently update the state of 

Zj. Intuitively, the observability condition indicates that the observed simulation experiment 

contains at every state all the event information necessary to proceed with state updates. If, 

however, r\x!k) =>r(xk) for some state, then there is missing information and the simulation run 

corresponding to Zj must be "suspended" until some later time when the observability condition is 

again satisfied. The resulting procedure is known as event matching. It can be shown that this 

suspension preserves all statistical properties of the sample path being constructed in this fashion 

as long as all event lifetime distributions are exponentially distributed [3]. 

In order to describe the ASA event matching procedure more precisely, let us define a set A = 

{2,...,iV}, i.e., A contains the indices of the AM simulation experiments to be constructed in 

parallel. Let us also limit ourselves to parameters which do not affect event lifetime distributions; 

these are typically structural parameters such as the capacity of a queue or the population size of a 

closed queueing network. If following a state transition, [Jx/k) or(;cJ) for some je A, then j is 

removed from A until some future transition which causes I\^k) cT\x\) to be satisfied; at this 

point, A is updated to include; once again. In other words, A represents the set of "active" 

simulation runs at any given time. In what follows we drop the subscript k and denote the current 
and next state of Zj by x* and (xty respectively. 

ASA -   Event Matching Algorithm 

Step 0. Initialize: x! = xl for ally = l,...Jf, and set A = {2,...^V}. 

Repeat the following steps for ally = 2,.. JV with every event e observed in I\: 

Step 1. Update state:        (*/')' =ffti, e) for ally such that ye A 

Step 2. Check for observability: if r[(XJ)'] z>r[(pc1)r\, then go to Step 3, 

else skip it and return to Step 1. 

Step 3. Remove y from A and return to Step 1. 

The ASA procedure is also shown in Figure 3, in order to contrast it to the conventional 

simulation approach. In this case, it is assumed that a simulation is already being performed, so 

that the objective is to generate a number of additional simulation runs in parallel. Similar to the SC 

method, ASA is based on the assumption that event lifetimes are exponentially distributed 

(actually, at most one non-exponential event lifetime distribution is allowed). In addition, there are 

cases where this assumption is not required; specifically, in the case where the system of interest is 
such that T\x) = E for all states (see [19]). 
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Figure 3. The ASA Concurrent Simulation scheme compared to conventional simulation 

Let us now see how concurrency is exploited in the case of the ASA approach: 

• Sequential processing: One has to serially perform all N experiments, but only the state update 

function (F3) needs to be repeated for each of the N simulation runs. All other functions are 

performed only once for the given nominal simulation. As in the SC method, however, this 

efficiency comes at some cost, which is contained in Steps 2-4 of the Event Matching algorithm: 

one needs to check whether the feasible event set at the observed state (x1)' contains the feasible 

event set at state (xty. If this is not true for some;', note that the/th simulation run is effectively 

suspended, since its state is forced to remain unchanged until the condition above is satisfied. This 

cost may be quite small, but there are also cases where it can be large. A quantifiable measure of 

this cost is provided in Section 2.5. As shown in some of our numerical results, the time required 

to perform N simulations through the ASA approach is much smaller than NT. 

• Parallel processing: The implementation of the ASA approach on parallel computers is not entirely 

obvious. This is because here we assume that an existing simulation run is observed and the 

parallelism is exploited by extracting information from this run and using it to perform N additional 
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ones. However, in a parallel processing environment the nominal run must be executed on one of 

the processors. This leaves open the issue of how to use the front end computer in a SIMD or 

MIMD setting to synchronize the simulation runs executed in parallel. 

There is one additional feature of the ASA approach that opens up some interesting 

possibilities. In a simulation environment, the choice of the nominal system is arbitrary. Depending 

on this choice, the computational cost incurred by Steps 2-4 may be large or may be totally 

eliminated if the selected nominal system is such that the condition r[(xÖ'] z>r[(xly] is never 

satisfied. Therefore, determining appropriate choices that lead to elimination of Steps 2-4 altogether 

is a critical issue further discussed in subsequent sections. 

2.5. Quantifying Efficiency in Concurrent Simulation Methods. 

During the course of this project, we implemented both the SC and ASA approaches described 

above and applied them to various problems in order to evaluate their efficiency relative to the 

"brute-force" method which we have taken to be the obvious baseline approach. As mentioned 

earlier, we have limited ourselves to sequential computers, since access to a parallel machine was 

not feasible in this project. However, it is easy to extrapolate to parallel computers, since one can 

only further benefit from a parallel processing environment. In this respect, the results included in 

this report may be viewed as lower bounds to the speedup that can be achieved. 

To obtain a measure of "efficiency" for the concurrent simulation techniques under 

investigation, the following simple measure, referred to as the speedup factor for N parameter 
settings, is an obvious starting point:: 

SPEEDUP FACTOR/ N) = Brute force simulation time for N runs 
Concurrent simulation time for N runs 

By "brute force simulation time" here we mean the time to obtain N simulations on a sequential 

computer. That is, if the average simulation time for a single run is T, then the numerator in (8) is 
given by NT. 

Although this appears to be a reasonable metric for a comparative study, it has several 

drawbacks. The most important drawback is that the speedup factor, as defined above, also 

depends on the specific number of events involved in the N simulation runs. In other words, the 

measure is dependent upon the "stopping condition" used in our simulation experiments. In 

particular, suppose each of the N simulation runs performed by "brute force" is defined to end after 

M events are generated and processed. In order for the speedup factor above to be well defined, we 

need to assume that the same is true for each of the runs generated through a concurrent simulation 
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technique. This is not generally true, however. In general, if a single run is ended after M events, 

they'th simulation run obtained through SC or ASA has processed a random number M} of events 

which is generally not equal to M. Therefore, it makes sense to use the "simulation time per event" 

as a normalized measure, rather than the total simulation time. 

To gain a better understanding of the speedup any of the proposed concurrent simulation 

techniques can achieve, let us return to the four simulation functions identified earlier (see Section 

2.2). Consider a conventional discrete event simulation set to run until a total number of M events 

is generated. We can then define C(M) to be the total time devoted to clock updates, S(M) the total 

time devoted to state updates, R(M) the total time devoted to generating random variates, and E(M) 

the total time spent maintaining the Event Calendar (EC). Thus, when the Brute Force method is 

used forJV simulations of M events each, the total number of events generated is NM, and the total 

time per event is given by N-[C(M) + S(M) + R(M) + E(M)]/NM, or 

^C(M) + S(M) + R(M) + E(M) 
BF M 

Let us now obtain the corresponding simulation time per event metrics, Tsc and TASA, for the SC 

and ASA techniques respectively. We will consider first the case of sequential processing and then 

parallel processing. 

• Sequential processing: Starting with the SC approach, recall that all functions except state updates 

are shared by all concurrent simulations. Moreover, there is an inefficiency resulting from events 

which are not feasible, i.e., wasted random numbers. Let the time spent generating such infeasible 

events be denoted by WSC(M), where M is the number of events generated in the particular 

simulation. Let us adopt the convention that when simulations are concurrently performed, every 

individual simulation that reaches M events is stopped. Therefore, if N is the total number of 

simulations to be run, the total simulation time is given by [C(M) + R(M) + E{M) + WSC(M)] + 

N-S(M), or, in terms of the total simulation time per event metric as in (9) above: 

= [C(M) + R(M) + E(M) + WSC(M)] + N ■ S(M) 
sc NM 

A similar argument for the ASA approach gives 

T     _[C(M) + R(M) + E(M) + WASA(M)] + N -S(M) 
1ASA

~ NM K 

where WASA(M) is the corresponding potential inefficiency of ASA discussed in Section 2.4.2. 
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We can now obtain the speedup factors of SC and of ASA as a function of N. For simplicity, 

set B(M) = C{M) + R(M) + E(M), and we get 

SC SPEEDUP(N) = N B(M) + S(M)  
[B(M) + WSC(M)] + N-S(M) K   } 

ASA SPEEDUP(iV) = N B(M) + S(M)  
[B(M) + WASA(M)] + N-S(M) K   J 

Taking the limit as N ->oo, it is interesting to observe that the speedup is independent of the 

approach used and is given by 

SPEEDUP(oo) = 1 + ^Ml (U) 
S(M) K   } 

which provides a fundamental upper bound to the speedup we can attain for our concurrent 

simulation techniques. Observe that if B(M) » S(M), i.e., the time spent in state updates is small 

relative to the remaining simulation functions, then SPEEDUP(oo) can be very large. Conversely, 

if B(M) « S(M), then the speedup achieved will be minimal. Interestingly, the quantities B{M) 

and S{M) can be estimated from a single simulation run, so one can a priori predict the speedup 

expected (or at least an upper bound) by a given technique when N is large. 

♦ Parallel processing: In this case, the state update function corresponding to S(M) can be 

parallelized (i.e., N processors can perform the updates in parallel). Accounting for some 

inefficiency due to communication delays across processors and synchronization, denoted by 

PSC(M) and PASA{M) respectively, (12) and (13) become: 

SC SPEEDUP(W) = iV B{M) + S{M)  
[B(M) + WSC (M) + S(M)] + N- Psc (M) V   ' 

ASA SPEEDUP(AO = N B(M) + S{M)  
[B(M) + WASA(M) + S(M)] + N-PASA(M) K    } 

In this case, letting N ->°<>, we may again obtain upper bounds for the speedup factor. This time, 

however, this bound depends on the specific technique used which may incur different types of 
communication and synchronization costs: 

SC SPEEDWM=B(M) + Sm,       ASA SPEEDUP(~) .*"> + *"> (17) 

Note that if the communication and synchronization delay is « B(M)+S(M) (i.e., negligible 
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compared to the time required to simulate M events at any processor), then speedup can become 

extremely large. This motivates us to seek techniques designed to minimize these delays in order to 

maximize the speedup attained. 

2.6. A Universal Concurrent Simulation Method. 

The concurrent simulation methods presented in Section 2.4 are limited to models with Markovian 

event lifetime distributions. As already mentioned, several techniques mat be used to provide 

extensions and approximations. It is reasonable, however, to seek a concurrent simulation method 

"universally" applicable to arbitrary models. 
During the course of this project, such a method was developed and a preliminary analysis of 

its properties carried out. In this section, we will limit ourselves to a description of this method, 

which is still the subject of ongoing research. The main idea of this new concurrent simulation 

approach lies in a fundamental change in processing the Event Calendar (see Section 2.2) of a 

discrete event simulator: Current practice is based on discarding all information related to an event 

as soon as this occurs; our approach is to save this information until all concurrent simulations 

have made effective use of it. This is tantamount to introducing some "memory" into concurrent 

simulation schemes described earlier. 
A key element in the new approach is the concept of "time warping". This concept is 

encountered in some software environments where distributed processing takes place (e.g., [20]), 

resulting in occasional loss of synchronization across these processes. When this happens, one 

may "time warp" or "roll back" to a point where data consistency is guaranteed. As it applies to the 

ASA concurrent simulation approach discussed earlier, the idea of "time warping" is the following. 

We have seen that when an unobservable event is encountered, we need to suspend the sample 

path construction at some time instant tx. While the nominal simulation evolves, several events may 

occur and their lifetimes recorded. When the unobservable event finally becomes feasible, at some 

time t2 > h, it is possible to utilize much of this information, collected over [rl512]. In particular, 

we may be able to perform several state updates from time tx onwards, possibly constructing an 

entire piece of the desired sample path all the way up to the current time t2. This is what we refer to 

as "time warping". 
Time warping is equivalent to delaying the construction of a sample path until adequate 

information is collected from observed data, in order to correctly update the state, and possibly 

generate several state updates during the time warp. It should be clear that while this mechanism 

allows for generality in the system model, it involves additional storage requirements for various 
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observed event lifetimes, as well as some extra data processing. Therefore, a key issue that 

remains to be investigated in depth is the tradeoff between the speedup attained due to concurrency 

vs. the additional data storage requirements. We expect that specific implementations of our basic 
concept may be crucial. 

To describe the time-warping mechanism, let x be the current state of the nominal system being 

simulated, t the current time, and e the current event. For a sample path denoted by £(0m), let xm 

be the state, and tm the time of the most recent event in the construction. In general, tm < t, since 

violating observability may have forced us to suspend construction at a time instant tm. In 

conventional simulation, note that an event is discarded from the Event Calendar as soon as it 

occurs and has been used to update time and the system state. Now, suppose that we are willing to 

maintain a list of unprocessed events, instead of immediately discarding them: 

Am= i(ei,h),(e2, r2), ... } (18) 

where (eh tk) are all events observed over the interval (tm, t ], which have yet to be used in our 

construction. Next, if the constructed sample path is suspended at state xm, let: 

nxm)=  {&,&,...,&} (19) 

where r(xm) is the feasible event set at state xm (see Section 2.2). Since the construction is 

suspended due to unobservable events, the only way to continue is if: 

ßk = ej   for all ßke IJxJ and some (ep tfie Am (20) 

Thus, the construction proceeds only when information about an event ßk can be found in the set 

Am, for all k = 1,...,L. Let lm be the set of all indices j of elements in Am that satisfy this 

condition. At this point, a time warp can take place. First, we can determine the next event for the 

constructed sample path, which is simply the triggering event arg minjeIm {tß. We can then update 

the state and determine its feasible event set. It is possible that all events in this set still satisfy (20), 

in which case we update the state once again, and so on. The time warp comes to an end when 

either condition (20) is no longer satisfied or the construction has caught up with the observed 

sample path, i.e. Am = 0 or tm = t. It should be clear that this approach is completely general. 

Preliminary numerical results obtained in the latter stage of this project have yielded speedup 

factors in the neighborhood of 2 for a large class of models. We have found that the speedup is 

dependent on some basic structural features of the models being simulated. However, there remain 

several issues to investigate beyond this project, including (a) The tradeoff identified between 

speedup and storage requirements, (b) The development of an explicit prototype algorithm, and (c) 

Extensive testing of the approach through several types of models from C3I application areas. 
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3. COMPARATIVE STUDIES ON CONCURRENT SIMULATION 

EFFICIENCY. 

In this section, we introduce a testbed problem (Section 3.1) based on which we evaluate the 

concurrent simulation methods described in Section 2. In sections 3.2 and 3.3 we present several 

numerical results applicable to this problem intended to quantify the efficiency of such methods 

vis-a-vis "brute force" simulation and provide a comparison between different methods. 

3.1. A Basic Resource Allocation Problem. 

The problem considered here is motivated by resource allocation issues which are frequently 

encountered in C^I systems. We begin by introducing the problem in a generic way and then 

provide different interpretations for specific applications. Consider N users and M resources to be 

allocated to these users. In our particular problem, the users may be thought of as processors in a 

computer system or switches in a communication network; the resources are memory or buffer 

slots to be allocated over the users. Adopting a standard queueing model, the system of interest is 

depicted in Figure 4. 

bi buffer slots 

m   •   « 

bN buffer slots 

Figure 4. A Basic Resource Allocation Problem 

In this model, we may think of tasks submitted to a system in order to be executed by one of 

the N processors in parallel. A task is sent to one of these processors in some arbitrary fashion (for 

simplicity, by randomly routing a task to one of the processors; however, the precise routing 

mechanism is not important as we will see). Tasks are queued at each processor, provided there is 
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buffer space, otherwise they are discarded and lost. An allocation is a vector vector b = 

[b1,...,bN], where bt is the number of buffer slots at processor / and bx+...+bN = K. The 

cardinality of the set of all possible allocations, B, can be shown to be {K+N-\)\/K\(N-l)\ As an 

example, for N = 6 servers and K = 20 buffer slots, the size of the search space is 151 = 53,130 

possible allocations. The problem of interest here is 

find b* € B to minimize /(b) = E[L(b)] (P) 

where we are careful to distinguish between L(b), the performance obtained over a specific sample 

path of the system (e.g., a single simulation run over some period of time), and /(b), the 

expectation over all possible sample paths. It is clear that this problem is combinatorially hard. If 

an analytical expression for /(b) is not available, one needs to simulate this system over all 

possible allocations in order to determine the optimal one b*. We will address problem (P) in more 

detail in Section 4. 

In the next sections we concentrate first on any one of the branches in Figure 4 and then on 

the entire system. In the former case, we are interested in a simulation-based parametric study over 

different buffer capacity values. In the latter, we are interested in a similar study over different 

allocation vectors. 

3.2. Concurrent Simulation for a Single-Server Model. 

Consider a single-server model representing any one of the branches in Figure 4. Thus, we 

obtain the simple system shown in Figure 5, where the number of buffer slots is denoted by k. 

Assume we can simulate the corresponding queueing model for an arbitrary arrival and service 

process under a particular value of k, say k = b.We are then interested in evaluating the system's 

performance under values of k * b. This would allow us to predict the behavior of the queueing 

model under different parameter settings. As we will see in Section 4, this information is essential 
in solving problem (P). 

In the case where the task arrival process and the service process are arbitrary, this model is the 

well-known G/G/l/k queueing system. If either one of these processes is characterized by an 

exponential (Markovian) distribution, then the 'G' is replaced by an 'M'. In view of the discussion 

of Section 2.2, a G/G/l/k queueing system is simulated as a process driven by an event set E = {a, 

d], where a denotes a task arrival and d denotes a task departure. Letting X denote the number of 

tasks present in the system, note that the state transition mechanism is particularly simple: if a 

occurs, the X is increased by 1, and if d occurs X is decreased by 1 (provided X > 0). It is also 
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clear that the feasible event sets in this system are such that HX) = {a,d} for all X > 0, and I\0) 

{a}, since no departure is feasible when the system is empty. 

*# 
k =1,2,.. •         w. 

• • • 

, , /*"">v task departures task arrivals f       \ *1 -O 
Figure 5. Single-Server Model 

Our objective here is to apply the Standard Clock (SC) method of Section 2.4.1 and the ASA 

method of Section 2.4.2, and compare them to each other and to the brute-force repetitive 

simulation method (Section 2.3) over a number of values of k. The basis of this comparison is the 

speedup factors defined in (12) and (13). Obviously, we expect the values of these speedup factors 

to be greater than 1 if the concurrent simulation techniques are indeed efficient. There are, 

however, a number of additional issues that this comparative study has addressed: 

1. Comparing the speedup factor of SC vs. ASA to determine which method is more efficient. 

2. Studying the effect of model parameters on the speedup factor. For example, if the 

utilization of the queueing system increases, how does that affect speedup? 

3. Recall that in the case of ASA, we have the additional degree of freedom in selecting the 

nominal system to simulate, from which others are concurrently simulated. Therefore, there 

is the additional issue of studying the effect of such a choice, and selecting the best possible 

such system, if possible. 
In the subsections that follow we present the results of this comparative study. Since the SC 

method is limited to Markovian models, the model considered in this study is the M/M/l/fc, where 

the range of k is {1,2,... ,5000}. 

3.2.1.   CPU  Times. 

We begin with a set of simulation results intended to measure the CPU time observed for different 

methods. In all cases, the system is simulated for a total of 10,000 events (arrivals and departures). 

For consistency, all simulations were carried out on the same computer workstation. 

We use the following notation in the figures referenced thereafter, where our results are 

summarized: 
•   BF denotes the Brute-Force method, i.e., if N different values of k are of interest, then N 
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separate simulation runs were performed. 

• SC denotes the Standard Clock method. 

• ASA-MIN denotes the ASA method (i.e., the Event Matching algorithm of Section 2.4.2) with 

the nominal system selected to be the one with the smallest value of k. For example, if the 

range of k is {1,...,5000}, the ASA-MIN algorithm is based on an M/M/l/1 system as the 

nominal one. 

• ASA-MAX denotes the ASA method with the nominal system selected to be the one with the 

largest value of k. For example, if the range of k is {1,.. .,5000}, the ASA-MAX algorithm is 

based on an M/M/l/5000 system as the nominal one. 

In order to study the effect of the model parameter values, we have defined p to denote the 

utilization in our queueing model, i.e., the ratio of the task arrival rate over the service rate. The 

values of p are then varied as indicated in what follows. 

Figure 6 shows CPU times obtained as a function of the "degree of concurrency", i.e., the 

number of systems simulated concurrently, which varies from 1 to 5000. For each of the four 

methods considered, four different values of p were also considered: p = 0.2, 0.5, 0.8, 1.1. The 

efficiency of all three concurrent simulation methods applied here compared to the BF method is 

clearly illustrated. For example, the simulation of 5000 systems through BF requires about 1100 

sec, compared to about 100 (an order of magnitude less) required by the ASA-MAX method. It is 

also clear that the ASA-MAX method is the most efficient one. 

Another interesting observation is that the effect of p on the SC method is much more 

pronounced than it is on the ASA method. This is easier to see in Figure 7, which is simply a 

magnified version of Figure 6 limited to a CPU time range that does not exceed 390 sec. In both 

figures "0.2 to 1.1 down" means that within the group of curves corresponding to the four values 

of p for a particular method the one on top is for p = 0.2 and the one at the bottom is for p = 1.1. 

Conversely, "0.2 to 1.1 up" means that within the group of curves corresponding to the four 

values of p for a particular method the one at the bottom is for p = 0.2 and the one at the top is for 

p = 1.1. The fact that the SC method is so sensitive to p is not surprising if one recalls the main 

source of inefficiency in the SC algorithm: One needs to check if an event is feasible and if it is not 

that event is simply discarded; in our case, d events generated by the simulator when the system is 

empty are the ones to be discarded. Clearly, when p is large, the queue is hardly ever empty and 

few d events need to be discarded; however, at low utilizations, such events are often infeasible, 

resulting in more wasted events and hence higher CPU times. 
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ASA-MIN simulation time (0.2 to 1.1 up) 
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Figure 6: CPU Times for Single Server Model (10,000 events per run) 
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Figure 7: CPU Times for Single Server Model (magnification) 
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3.2.2.  Speedup  Factors. 

Although the CPU time plotted in Figures 6-7 provides an indication of the relative efficiency of 

the various methods considered, the speedup factor, as defined in Section 2.5, gives a much more 

direct quantifiable measure. 
In Figure 8, the SC speedup factor is plotted as a function of the degree of concurrency (as in 

the previous section) for different values of the utilization parameter p. Note that this factor can be 

as high as 10, but subsequently goes down. It is conjectured that this is due to the fact that for a 

large number of concurrent simulations, memory limitations cause a large number of page faults, 

which in turn affects the CPU times involved. These memory limitations are entirely hardware- 

dependent and out of our control for the purpose of this study. 

In Figures 9-10, similar results are shown for the ASA-MIN and ASA-MAX methods 

respectively. As already observed, the ASA-MAX approach is the most efficient one, as well as the 

most robust with respect to changes in p. 

3.3. Concurrent Simulation for iV-Parallel Server Model. 

We now return to the iV-parallel server model of Figure 2, with N = 6. We have performed a 

number of concurrent simulation experiments for this model in order to obtain results similar to 

those of Section 3.2. In the results reported next, the arrival rate considered was fixed at / = 10 

tasks/sec. Each arriving task is routed to the ith branch with probability q, i = 1,.. .,6. In particular: 

cx = 0.1, c2 = 0.2, c3 = 0.1, c4 = 0.2, c1 = 0.2, cx = 0.2. The service rates at the branches were 

set to mx = 3 tasks/sec, m2 = 2 tasks/sec, m3 = 2 tasks/sec, m4 = 3 tasks/sec, m5 = 3 tasks/sec, m6 

= 2 tasks/sec. As in the previous section: 

• BF denotes the Brute-Force method, i.e., if M different values of k are of interest, then M 

separate simulation runs were performed. 

• SC denotes the Standard Clock method. 

• ASA denotes the ASA method (i.e., the Event Matching algorithm of Section 2.4.2) with the 

nominal system selected so that each queue has a capacity of 21 buffer slots (including the 

server itself). That is, each of the branches is an M/M/l/21 queueing model. 
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3.3.1.   CPU  Times. 

We begin with a set of simulation results intended to measure the CPU time observed for different 

methods. In all cases, the system is simulated for a total of 5,000 events (arrivals and departures 

from the six branches in the model). Our intent here is to simulate the system under different buffer 

allocations, i.e., vectors of the form [bv...,bN], where b{ is the number of buffer slots at 

processor /. 
Figure 11 shows CPU times obtained as a function of the "degree of concurrency", i.e., the 

number of systems simulated concurrently, which varies from 1 to 10,000. In this plot, the CPU 

time was recorded every 100th simulated system (by each method). In Figure 12 this was done 

every 10th simulated system without showing significant variability in the observed CPU times. 

We can clearly see that ASA is somewhat more efficient than SC at these parameter settings. 
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3.3.2.  Speedup  Factors. 

Speedup factors corresponding to the results shown in Figures 11-12 are shown in Figures 

13-14 respectively. As in our earlier results, we observe that the speedup factor reaches a 

maximum value and subsequently decreases with the degree of concurrency. Again, our conjecture 

is that for a large number of concurrent simulations, memory limitations cause a large number of 

page faults, which are purely hardware-dependent. Note also that the speedup factor here reaches a 

value of about 6, as opposed to about 10 in Section 3.2.2. An explanation of this fact is provided 

when one considers the four basic functions of a simulator described in Section 2.2 and repeated 

here: 

(Fl) Maintain an Event Calendar which is updated through the triggering event mechanism 

(F2) Update the simulation clock 

(F3) Update the state after every event occurrence 

(F4) Generate random variates corresponding to various event lifetimes. 

The main benefits from concurrent simulation come from the computational savings mostly in (F4) 

and to some extent in (Fl) and (F2), where only one Event Calendar and one clock are needed in 

the SC or ASA methods. On the other hand, (F3) is a function that has to be performed in either 

BF simulation or in SC or ASA. Now, if the system being simulated is such that (F3) is the most 

computationally intensive component, relative to the other three, obviously this affects the 

corresponding speedup factor (see also the analysis of Section 2.5 which captures this fact). Thus, 

if a system involves very complicated state transition mechanisms and relatively few random 

phenomena to be simulated, the speedup factor may be lower. Conversely, if state transitions are 

simple to describe and a large amount of random phenomena must be simulated, the speedup 

benefits become very substantial. 

To further quantify these observations, we have repeated the simulation experiment above, 

except that we allowed for significantly longer runs of 100,000 events per simulation run. We have 

estimated the CPU time dedicated to different routines in the simulator by observing it over sample 

periods, and have specifically identified the following five routine types: (1) State updates, (2) 

Random variate generation, (3) Memory allocation, I/O, and other maintenance routines, (4) Event 

Calendar updates, (5) Simulation clock updates. The first corresponds to function (F3), the second 

to function (F5), the third to function (Fl), the fifth to function (F2), and the fourth covers all 

other functionality. 

The results for the BF simulation method are shown in Figures 15-16. In Figure 15, we 
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plot the fraction (%) of CPU time dedicated to each of the five components above as a function of 

the number of systems simulated. The values are essentially fixed, since all we do here is repeat a 

simulation experiment (with different parameter values) in the exact same fashion 5,000 times. In 

Figure 16, the same results are shown over 250 systems only. We can clearly see that more that 

50% of the simulation effort goes into random variate generation, whereas state updates represent 

less that 10% of the effort. 
The corresponding results for the SC method are seen in Figures 17-18. What is interesting 

here is the asymptotic behavior of the % CPU time plotted: In Figure 17, one sees that almost 

100% of the simulation effort is ultimately devoted to state updates! The computation time for the 

remaining four components becomes relatively unimportant, since it is shared by all concurrently 

constructed sample paths. Figure 18 gives us a better idea of how fast the sharing due to the SC 

method becomes efficient over the degree of concurrency desired. 
Similar results for the ASA method are shown in Figures 19-20. Once again, almost 100% 

of the simulation effort is ultimately devoted to state updates as the degree of concurrency 

increases. 
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Figure 13: Speedup Factors for Parallel Server Model (recorded every 100 runs) 
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Figure 16: CPU Time Allocation in BF Simulation (magnification) 
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3.4. Software Tools for Concurrent Simulation. 

In Section 1.1, the development of interactive capabilities for simulation was identified as a key 

issue. This requires the development of appropriate software environments for simulation that are 

only recently beginning to emerge. Although such an effort is not within the scope of this project, 

some of the concurrent simulation algorithms described above were implemented within the 

environment of a commercial simulation tool with interactive capabilities. Our objective here was to 

test the ease of incorporating concurrent simulation methods into existing simulators and test their 
efficiency in such a setting. 

In particular, the results shown in the previous sections were obtained using simulation code 

that we developed explicitly for the purpose of the efficiency studies. An alternative is to develop 

such code within an existing simulator. Thus, we adopted the recent commercial simulation tool 

EXTEND in the Macintosh environment, and developed some simple "objects", i.e., software 

modules, that can be easily added onto simulation models created through this tool. Our goal here 

was twofold: (a) Use the resulting software environment for proof-of-concept purposes, and (b) 

Perform an efficiency study similar to the one reported above in a commercial software simulation 
setting. 

We will limit our results to the simple model considered in Section 3.2, i.e., an M/M/l/k 

queuing model. The actual EXTEND model is shown graphically in Figure 21. In this model, 

there are two functional blocks used for random variate generation purposes: the one labeled "New 

customers arrive" and the one marked "Rand" which is used to assign processing times to tasks. 

The two blocks marked "Exit" are used to count the number of blocked tasks (due to finding a full 

queue) and the number of departures. The simulation is set up to stop after a given number of 
departures. 

In this effort, we considered only the ASA approach which is much easier to integrate into a 

conventional simulation tool such as EXTEND. In order to implement the ASA scheme, we created 

a block referred to as the "ASA block", and connected it to the model of Figure 21 as shown in 

Figure 22. Specifically, the block was designed to detect every arrival and departure event from 

the actual model (in which a buffer capacity value is set) and evaluate the state of the system and 

the numbers of blocked tasks and of departures for any desired number of systems with the buffer 
capacity value modified. 
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Figure 22. Single Server Model with ASA Block Added for Concurrent Simulation 
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Two different versions of the ASA block were implemented. In the first, referred to as 

"ASAl", the ASA procedure used takes advantage of the known structure of the actual system. 

This "customization" of the ASA block makes it particularly efficient. In the second version, the 

ASA block (refereed to as "ASA2") was not customized; instead, it was designed to process the 

arrival and departure events it detected without any additional knowledge of the structure of the 

system. This obviously reduces its efficiency, but makes it a more general-purpose module one can 

insert into a large class of models simulated. A few representative results of this study are shown 

in Figure 23 (where the total CPU time for the brute force simulation approach and AS Al, ASA2 

are shown) and Figure 24 (where the speedup factors of ASA1 and ASA2 are shown as a 

function of the degree of concurrency, as in earlier similar plots). In the latter, we can see that the 

customized ASA algorithm accomplishes higher speedups, as expected. 
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4. OPTIMIZATION SCHEMES USING CONCURRENT SIMULATION. 

As mentioned in Section 1.1, the purpose of simulation is often to seek improvements in the design 

or operational control of a complex system (where analytical tools are simply unavailable), and 

ultimately optimize it. This requires a computationally intensive process of comparing many 

alternatives in order to identify the optimal one. In the effort to develop systematic methods for 

such a process, traditional techniques rely on estimating the cardinal values of a performance (or 

cost) objective function over all possible alternatives. In contrast, ordinal optimization is driven by 

the relative order of estimates of the objective function - not their absolute values. This exploits 

inherent robustness properties of these order statistics with respect to substantial estimation noise. 

In practice, this means that short simulation runs may be perfectly adequate to establish an ordering 

of performance estimates and hence identifying a set of the best alternatives. Combined with the 

concurrent simulation capabilities described in previous sections, this framework explicitly tackles 

the problem of complexity by rapidly narrowing down a potentially very large set of alternative 

designs which are candidates for the global optimum. 

Clearly, this principle needs to be put to the test for problems of interest in the C3I 

environment, and explicit techniques need to be developed to implement it. This section represents 

an effort in this direction. In Section 4.1, we will describe the framework of Ordinal Optimization 

(OO) in some more detail and apply it to the testbed problem introduced in Section 3.1. In Section 

4.2, we present an explicit optimization scheme, the Stochastic Comparison (STC) algorithm, and 

apply it to the same problem. Finally, in Section 4.3, we present another scheme, the Stochastic 

Descent (SD) algorithm, specifically developed for resource allocation problems, which we also 
apply to the testbed problem. 

4.1. Ordinal Optimization Basics. 

For ease of exposition, let us recall the problem introduced in Section 3.1: 

find b* £ B to minimize /(b) = E[L(b)] (P) 

where the vector b = [bx,...,bN] represents an "allocation", bx is the number of buffer slots at 

branch i in Figure 4, and bx+...+bN = K. Here, B is the set of all possible allocations. For the 

problem used in our numerical example, we use 6 parallel branches and K = 20 buffer slots, which 

results in a search space with 151 = 53,130 possible allocations. Therefore, in a simulation-based 

approach for solving (P), 53,130 simulations have to be performed, each of which may be quite 

long to obtain a sufficiently accurate estimate of/(b). 
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In ordinal optimization one possible starting point is to consider the set of all possible 

performance values 7(b) for all b e B and define a subset Gg of B to contain the top g/\B\ values of 

7(b) (see also [4],[21]). This is referred to as the set of "good enough" performance points, thus 

softening the original requirement for determining a point b*. Next, the search space is uniformly 

sampled and M elements selected. The corresponding performance values are estimated (through 

simulation) and the estimates are ordered. A set Sh, referred to as the "selected" set is defined by 

the points that give the top h values of these estimates. Now, given an integer k, k e {1,.. .,h], the 

alignment probability P(\GgnSh\ > k) is the probability that at least k elements in the selected set Sh 

belong to the "good enough" set Gg. Because of the robustness of order statistics with respect to 

the estimation noise involved, it is often the case that short sample paths can provide alignment 

probabilities very close to 1 for small values of k. The idea is that if one can quickly narrow down 

a search to a small set in which at least one "good enough" point exists with high probability, then 

the optimization process can proceed within Sh to determine the optimal point within this smaller 

set. Clearly, by adjusting the parameters g, M, and h, one can obtain different values of P(\GgnSh\ 

>k),k= l,...,h- Depending on the confidence level required, given by P(\Ggr\Sh\ > k), and the 

desired proximity to optimality, given by g, the ordinal optimization approach aims at identifying 

points in B with sufficiently high PQGgnSh\ >k),k=l,...,h for a given g. 

In this section, we illustrate the principles of this approach through our testbed problem. We 

select a value for M to uniformly sample over the search space of all allocations B. We then exploit 

concurrent simulation (in this case, we use ASA) to simultaneously obtain all M resulting estimates 

of a given performance measure 7(b) using simulation. We thus obtain a selected set Sh and simply 

identify the estimate with the smallest value. Our numerical results are for the same model as the 

one specified in Section 3.3: the arrival rate considered was fixed at X = 10 tasks/sec. Each arriving 

task is routed to the ith branch with probability c-v / = 1,.. .,6. In particular: cl = 0.1, c2 = 0.2, c3 = 

0.1, c4 = 0.2, ci = 0.2, Ci = 0.2. The service rates at the branches were set to jix = 3 tasks/sec, fi2 

= 2 tasks/sec, n3 = 2 tasks/sec, jiA = 3 tasks/sec, p5 = 3 tasks/sec, /i6 = 2 tasks/sec. We have 

limited ourselves to a Markovian model so as to be able to solve problem (P) analytically, hence 

checking the validity of our approach. By selecting the performance measure 7(b) to be the total 

blocking probability of tasks, the optimal allocation b* was determined by evaluating the steady- 

state blocking probability of the corresponding Markov chain over all 53,130 possible values of the 

vector b. We found that b* = [2, 4, 2, 4, 4, 4] and 7(b*) = 0.095081. The worst allocation was 

found to be [0, 0, 20, 0, 0, 0] with corresponding performance 0.393333. 

Following the discussion above, we first selected 1000 allocations at random (out of 53,130). 

In Table 1, the last column shows the top-10 allocations among these and their performance 
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obtained from the analytical model. By using the same ASA concurrent simulation algorithm as in 

Section 3.3, we then simulated all 1000 systems and recorded performance estimates as a function 

of the simulation run length. The first seven columns in Table 2 show our results for simulation 

run lengths determined by the total number of events counted, varying from only 10 to 107. In 

each column, the top-10 allocations determined by the concurrent simulations are shown. The 

number in parenthesis is the actual order of the corresponding allocation analytically determined. 

Note that when the runs are so short that very limited information is actually available, the 

performance estimates are useless in a cardinal sense; however, one can still use them to create an 

ordering (in case of identical estimates, the order is determined randomly). We can observe that 

with simulation runs as short as 100 events, one can still determine some of the best allocations (all 

but one within the top 10%), including the second best one showing as the sixth estimated best in 

the list. With 106 events, all top-10 allocations are identified in the correct order, except for the 7th 

one (this is just a random effect with no special significance to be attributed to the fact that it is the 
7th ordered allocation). 

The process above started out by limiting the search space from 53,130 to a samples subspace 

of 1000 allocations. In Table 2, we show results where this is no longer the case. Instead, the last 

column displays the actual order of the top-10 allocations among the 1000 samples. Note that this 

random sampling by itself has identified 10 allocations in the top 0.18% of all possible choices. 

Then, note that even with as few as 100 events we can identify an allocation in the top 3.2% of all 

choices (the 1680th one). With 105 events, we can identify the one in the top 0.18% (the 52nd 
one). 

To better visualize the speed with which ordering of estimates becomes accurate, we have 

plotted the relationship between actual order of an allocation and estimated order (as determined 

through the ASA concurrent simulation algorithm). In Figure 25, this is shown for simulation 

run lengths of only 10 events over the subspace of 1000 allocations used in Table 1. Thus, if a 

point in this plot has coordinates, for example, (10, 100) this means that it gives an allocation 

estimated to be the 10th best, but is actually the 100th best. Obviously, if all points were to form a 

line with a slope of 1, this would give the ideal situation where all estimated orders correspond to 

actual orders; we shall refer to it as the "ideal alignment line". In Figure 25, where the run length 

is extremely short (10 events), the points appear randomly scattered. In Figure 26, the run length 

is still, by all standards, very short (1000 events), but one can already see an alignment being 

formed around the "ideal alignment line". In Figure 27, the run length is increased to 10,000 

events and all points are clearly aggregated around the "ideal alignment line". Figures 28-29 

correspond to run lengths of 106 events and 107 events respectively. Figure 30 is a magnification 
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of Figure 29 that indicates an almost perfect order alignment over the top 50 allocations^ 
Nummary, by exploiting concurrent simulation techniques and the speed wtth whrch ordenn 

alignments take p!ace, one can rapidhy reduce an exmemely large search space to a much smal er se 
wiL which the optimal point lies with high probabi.ity. As already menttoned, thts rnvoh,es a 

softening of the original hard optimization problem (P): determining an allocation wttan the top 

x% with probability y. One can then select as sma.1 a value of, and as large a value of y to trade 
off Luly with computational complexity. An important aspect of the 00 framework: „    e 
explicit quantification of the relationship between , and y. Preliminary results truncate that th 

strength of 00 lies in the fact that by softening the optimization requirement by a very small 
amount (i.e., specifying a very small value of,), the corresponding va.ue of y can be kept very 
Ise to 1. This analysis is outside the scope of this project and is currently the subject of ongomg 

research. 
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4.2.  Stochastic Comparison  Algorithms. 

The 00 approach discussed in the previous section is based on a softening of the requirement for 

the determination of the global optimum of a problem. In this and the next section we will discuss 

two schemes which, while exploiting the 00 principles and concurrent simulation, still provably 

guarantee the determination of a global optimum for problem (P). 

The first scheme is based on the Stochastic Comparison (STC) algorithm proposed in [22] (see 

also [42]). For our problem, this algorithm iterates on allocations, where the allocation vector at 

iteration k is denoted by x* and allocation vectors in B are denoted by bt, i = 1,.. .,151: 

Stochastic  Comparison Algorithm 

1. Initialize: x0 = b(, and k = 0 

2. Given x^ = b„ choose a next candidate allocation zk fromB-{b,} 

with probabilities R(iJ), b^eß-fb,-} 

3. For a selected zk = b,, set 

[zk with prob. pk 

[xk with prob. (1-pk) 

where pk = [P[L(by)< L(b,)]]M* 

4. Replace kby k+l and go to step 2. 

In step 3, the probability pk is actually not calculable, since we do not know the underlying 

probability functions. However, it is realizable in the following way: both /(b,) and /(by) are 

estimated Mk times. If L(by) < L(b,-) every time, then we set xk+1 = zk. Otherwise, we set xk+l = 

xk. This corresponds to Mk independent "trials" where pk is the probability of Mk successes. It can 

be shown [22] that this algorithm converges to an optimal allocation as long as the sequence {Mk} 

increases logarithmically. 

The Generalized STC (G-STC) algorithm that we developed is a modification of the procedure 

above (see [23]), with the single candidate allocation zk in step 2 replaced by a set of allocations, 
ck = (by : by-e5-{b,-}}. Using a concurrent simulation technique, a set of estimates {L(b,-): b; 

eCjiJ is concurrently obtained. These estimates are ordered and the smallest (assuming we are 

minimizing) is selected as the candidate new allocation zk used as before in step 3. 

x*+i —' 
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To place the STC and G-STC algorithms in the context of related work in the field of stochastic 

optimization, we note that they are significantly different from algorithms such as Simulated 

Annealing [43], which relies on accurate evaluation of a performance measure, and closer in nature 

to the Stochastic Ruler algorithm in [44]. For more details see [22],[41]. 

The STC and G-STC algorithms were applied to our testbed problem. The concurrent 

simulation technique used was the ASA Event Matching algorithm of Section 2.4.2. Results are 

shown in Figure 31, where the optimal performance value (analytically determined) is also 

indicated, as a function of allocation updates with 500 events observed between updates. Note that 

both algorithms rapidly approach the optimal performance, but they generally take a long time to 

converge to it. This is typical behavior of such algorithms as also reported in [22],[24]. 

An interesting question that arises is "how can we compare the performance of the STC vs. G- 

STC algorithm?" In Figure 31, it appears that G-STC generally converges faster, but a way of 

quantifying this behavior is not obvious. A reasonable measure of the performance of such an 

iterative algorithm is the area under the corresponding curve, which represents the accumulated 

cost of the algorithm relative to the optimal performance. Using this metric, Figure 32 shows the 

accumulated costs corresponding to Figure 31 for the two algorithms, which clearly shows the 

improvement generated through G-STC. 
Another way to evaluate the behavior of the two algorithms is shown in Figure 33. Here, on 

the vertical axis we show allocations ordered from the best (at the bottom) to the 53,130th (worst), 

with only the top 8500 allocations shown. Starting with a random initial allocation, we have plotted 

the updates performed by the STC and G-STC algorithms. Observe that within approximately 500 

updates (equivalently: 250,000 events), both algorithms determine one of the top-100 allocations. 

A magnification of this plot is shown in Figure 34, where we can see that the G-STC algorithm 

determines one of the top-20 (i.e., within 0.03% of the optimal) allocations. 

Since the STC and G-STC algorithms depend on a randomly selected initial allocation and on 

the randomness of the simulations whose data they use to perform allocation updates, we have 

repeated the process above three additional times, each time showing the performance of the two 

algorithms and accumulated costs. The results shown in Figures 35-37 are similar to those of 

Figures  31-32. 
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Figure 31: STC and G-STC Algorithms:  Convergence to Optimal Performance 
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Figure 32: STC and G-STC Algorithms: Accumulated Coast Comparison 
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Figure 35: STC and G-STC Algorithms (Simulation Experiment 2) 
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Figure 36: STC and G-STC Algorithms (Simulation Experiment 3) 
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4.3.  Stochastic Descent Algorithm. 

The second optimization scheme is based on an algorithm developed in [25] for deterministic 

models. Here, an allocation vector is denoted by b = [nh...,nN], where nt is the number of buffer 

slots allocated to branch i. The allocation at the ton iteration is denoted by b*. We also define 

ALi(ni) = Li(ni)-Li(ni-l),    i = l,...,K 

where we have assumed that the performance measure is additive, i.e., Linx,...,nN) = ££,<";)• 

1.     Initialize: b° =[<,...,<],   C° = {1,...,JV},   k = 0 and evaluate 

[ALl{nf),...,ALN(nk
N)]. 

If \Ck\ = 1 go to step 4, else go to step 2.1. 

2.1. Set i* = argmaxf^(nf),...,4L„(n„)} 

2.2. Set / =argmin{zlL1(n1':),...,^(<)}-Evaluate AL,(nk. -1), AL,(nk. +1) 

2.3. If AL, (nk, +1) < AL, (nk.), go to step 3.1, else go to step 3.2. 

3.1. Update allocation: n*.+1 = nk. -1, nk/x = nk, +1, «*+1 = nk
m for all me C , m * i J 

Replace k by k+l and go to step 2.1. 

3.2. Replace Ck by &-{/}. If IC*I = 1 go to step 4, else go to step 2.2. 

4.      b* =[n,\...,/£]. Stop. 

Under technical conditions presented in [25], this algorithm converges to the actual optimal 

allocation. However, in the stochastic setting we are considering, the algorithm needs to be 

modified to take into account that the comparison in step 2.3 involves noisy estimates obtained 

through simulation. The new algorithm is what we refer to as the Stochastic Descent algorithm (see 

also [23]). The major difference is a randomization mechanism for determining the set C at every 

iteration. In particular, we define a vector P* = [/>*,.. .,Pk
N] and determine the set Ck by including 

branch / with probability P- . Moreover, we define a sequence {qk}, k = 0,1,... for all i, which 

represents a "penalty" associated with branch / at the kth iteration. 
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Stochastic Descent Algorithm 

1.     Initialize: b° =[n1°,...,<],   C° = {1,...,N],   k = 0 

and P° = [P?,...,P°N], P? = 1 for all i e C°. Evaluate [AL.inf),..., ALN(nk
N)]. 

2.1. Set /* = argmax{4Z1(«1
t),...,4LJV«)} 

2.2. Set f=digmm{ALl(nf),...,ALN(nk
N)}. Evaluate AL..(nk -1), 4L..(/i*. +1) 

2.3. If 4Lr (»*. +1) < AL.. (nk), go to step 3.1, else go to step 3.2. 

3.1. Update allocation: nk.+1 = n\ -1, n*.+1 = nk. +1, «*+1 = n* for all me Ck, m * i*f 

Set P + = P and evaluate Ck+l. Replace k by £+1 and go to step 2.1. 

3.2. Set Pk:x = Pk. - qk, and evaluate Ck+l. 

4.     If Pk > Ofor one / only, stop. Else, replace k by k+1 and go to step 2.1. 

A rigorous convergence analysis of this algorithm is the subject of ongoing research. In this 

project, it has been applied to the same buffer allocation problem as in previous sections, and does 

converge to the actual (analytically obtained) optimal allocation b*. In Figure 38, we can see how 

the algorithm rapidly converges to the optimal performance as a function of allocation updates with 

5000 events observed between updates. This is more clearly shown in Figure 39, where in the 

vertical axis we show allocations ordered from the best (at the bottom) to the 53,130th (worst), 

with only the top 13,000 allocations shown. Starting with a random initial allocation, we have 

plotted the updates performed by the Stochastic Descent algorithm. Observe that convergence to the 

optimal allocation occurs after a remarkably fast 3 iterations. 

Since the speed of convergence depends on the initial allocation chosen (which was done 

randomly in Figure 39), we have repeated the simulation experiment above with an initial 

allocation explicitly selected to be the 53,130th, i.e., the worst possible one. As shown in 

Figures 40-41, convergence now occurs after 17 iterations (equivalently, 85,000 events). This 

is to be compared to a brute force approach which would require a minimum of 53,130 iterations 

or the STC and G-STC algorithms of the previous section which are also significantly slower. The 

reason for the performance of the Stochastic Descent algorithm lies in the fact that it is designed to 

fully exploit the structure of the resource allocation problem on hand, whereas the STC and G-STC 

algorithms are much more general-purpose in scope. 
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Figure 38: Stochastic Descent Algorithm: Convergence to Optimal Performance 
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Figure 39: Stochastic Descent Algorithm: Convergence to Optimal Allocation 
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5.      STOCHASTIC FIDELITY ISSUES IN HIERARCHICAL COMBAT 
SIMULATION MODELS 

The basic elements of a combat simulator include a terrain simulation, an attrition calculation, a 

high-resolution engagement simulation, and a Forward Edge of Battle Area (FEBA) calculation. 

Among these elements, the engagement simulation and the related attrition calculation form the 

fundamental dynamical part that is the driving force of the whole system. 

Combat simulation models usually have a hierarchical structure. It would be ideal if the high- 

resolution battalion level engagements can be simulated directly at the bottom level of the hierarchy. 

However, this would require long execution times, since such a high-resolution simulator would 

be called thousands of times for each replica of a battle simulation. Thus, these high-resolution 

simulations are typically carried out separately. The results are then aggregated into some form of a 

weapon-attrition score board, which summarizes the statistics of the high-resolution simulation and 

estimates parameters such as target availability, shooting rate, probability of kill given a hit, target 

priorities, etc. These parameters are then used to determine the coefficients for a set of nonlinear 

equations that relate the average number of weapons on each side and attrition for each type of 

weapon. This approach is usually referred as "calibration". The calibrated equations are solved 

numerically to get the average attrition. Due to the consideration of execution time, usually the 

dynamic process of the battle is aggregated in the time axis as well to form time-average quantities. 

In this process, one usually assumes an exponential decrease of the weapon numbers. This 

approach has been the working horse for some military analysis units and is an excellent piece of 

work for the case where computing power is rather limited (see, for example, Concept Evaluation 

Model, U.S. Army Concept Analysis Agency (CAA), 1985). Nowadays, with the available 

computing power increased significantly, one can expect significant improvement. In the following 

5 subsections, we discuss the crucial issue of preserving the stochastic fidelity in a hierarchical 

battle simulation model with CAA' s Concept Evaluation Model as the concrete example: 

5.1. Overview of A Hierarchical Battle Simulation Model; 

5.2. Mathematical Review of the Simulation Model; 

5.3. Stochastic Differential Equation Modeling for High Level Attrition Process; 

5.4. Scenario Grouping Approach; 

5.5. DDA Neural Net for Distribution Learning and Cluster Analysis; 

5.6. Summary. 

5.1.Overview of A Hierarchical Battle Simulation Model. 

Our work on stochastic fidelity preservation is based on a concrete hierarchical battle simulation 
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model, the COSAGE-ATCAL-CEM model. COS AGE, ATCAL and CEM are the abbreviations 

of COmbat SAmple GEnerator, ATtrition CALculation and Concept Evaluation Model, 

respectively. A version of this model is used in the United States Army Concept Analysis Agency. 

Conceptually this model can be described in the following Figure 42. 

COSAGE 

High 
Resolution 
Simulation 

ATCAL-P1 

Calculating 
Calibration 
Parameters 

CEM 

ATCAL-P2 eng.l 

ATCAL-P2 
eng.2 

LATCAL-P2 
eng.n 

Figure 42. A hierarchical battle simulation model 

In the following we explain each component in this system in more detail. 

COSAGE: COSAGE is a high-resolution stochastic simulation model of combat between two 

forces. Typically, the Blue force is sized as a division, and the Red force is scaled from a fraction 

of a division to a combined arms army. The model simulates periods (normally 48 hours) of 

combat and produces expenditures of ammunition by round type and losses of personnel and 

equipment. Maneuver unit resolution is typically down to Blue platoon versus Red company. In 

the case of close combat, resolution is to the individual equipment and weapon level. 
• Input and Output of COSAGE 

• Input: 

Forces, and their organizational structures; 

Equipment, weapons, personnel and the characteristics (e.g., strengths, availability, types, 

densities); 

Munitions types and technical characteristics; 

Probability values used in simulation; 

Priotities,sequences,rules of engagement (tactics and doctrine) 

Sensor definition; 
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Operation concepts. 

• List of COSAGE input data files: 
Air defense sensor; Aircraft munitions; Battery; Category type unit; Counterfire radar, Decision; 

Equipment; Fire direction center; Forward area rearming and refueling point; Forward observer; 

High explosives lethal area; Illumination; Mine; Munitions; Orders; Passive detection base; Phased 

off-line attrition; Posture, environment and mission; Probability of kill; Rules of engagement; 

Sensor; Smart munitions; Smoke; Sub munitions; System; Tactical aircraft; Target report; Battery 

type; Battlefield type; Sensor type; Unit; Unmanned air vehicles; Visibility; Weapon. 

• Output 

Unit movement; 

Ammunition expenditures; 

Equipment and personnel losses (Killer/Victim scoreboard); 

Shot summary 

Equipment initial density 

• List of   COSAGE output files: 
Replication shot summary; Posture shot summary; Killer/victim summary; Direct fire summary; 

Indirect fire summary; TACAIR/AIRDEF; Target report; Mines; Helicopter/SMARTMUNS report. 

COSAGE is a discrete event simulation model with stochastic phenomena modeled through 

events and processes. A single COSAGE run uses 53 million UfO.ll random numbers. 

Representative combat samples can be produced from COSAGE using skillful and ingenious 

construction of input files. COSAGE can be used to simulate: 

(1) Most types of offensive and defensive operations. 

(2) The operations of US, allied, joint, combined (excluding naval), and threat forces from 

the individual to a combined arms army. 

(3) The effects of terrain, weather, and obscurants on combat operations. 

(4) The movement of combat and combat support units on the battlefield 

(5) The performance and effects of most current and future weapons and equipment. 

(6) The major aspects of target acquisition such as ground surveillance radar, forward 

observers, flash and sound sensors, counter mortar and counter battery radar, and 

remotely piloted vehicles. 

(7) The direct fire battle effects due to small arms, tanks, fighting vehicles, antitank guided 

missiles, and mines. 

(8) The indirect fire effects from tube artillery, mortars, and multiple launch rockets — to 

include the effects from conventional and improved conventional munitions, precision 
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guided munitions, laser guided munitions and mines. 

The objectives of COSAGE are: 

(1) To calculate expected ammunition expenditures and equipment/personnel losses for 

both sides. 

(2) To provide a record of killer/victim relationships to the ATCAL for calibration. 

(3) To provide a record of losses and expenditures to the simulation post processors. 

Generally, six different combat operations are modeled for a study using one or more of the 

following types of terrain. 

• Terrain Types: 

A. Flat to gently rolling with minimum obstacles. 

B. Gently rolling terrain with some obstacles and vegetation. 

C. Mountainous with steep slopes and/or dense forestation or swamps. 

• Combat Operation Types: 

(1) Blue Intense Defense (I): The blue division in a prepared defense against an attacking 

Red force. 

(2) Blue Delay (D): The Blue division conducting a delay or a defense on alternate or 

successive defense positions against an attacking Red force. 

(3) Blue Hasty Defense (H): The Blue division in a hasty defense against an attacking Red 
force. 

(4) Static (L): The Blue division and a Red force are at parity and are both in defensive 

positions. Both sides are conducting patrols, probes, and reconnaissance. 

(5) Blue Attack (F): Multiple Blue divisions conducting an attack against a Red division in a 

prepared defense. 

(6) Red Hasty Defense (N): Multiple Blue divisions conducting an attack against a Red 
division in a hasty defense. 

The results of the division combat simulations are called combat samples. Combat samples 

represent the expected results, during a theater campaign, for division combat for 2 days of the 

posture simulated. The combat sample is not intended to represent the first high-intensity period 

nor the last period when intensity is expected to be low. 

Combat samples are analyzed to ensure that the military aspects of combat are adequately and 

faithfully portrayed in the model. The ammunition expenditures and equipment losses for both the 

Red and Blue forces are determined, and killer/victim relationships are established. 

ATCAL: A key function of any combat simulation is the calculation of losses of equipment 

and personnel in the engaged forces. In simulations of small-scale engagements, this can be 
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accomplished through a detailed treatment of all shooters and their potential targets, with each 

firing opportunity examined as to its feasibility and outcome. The high-resolution simulation 

(resolved down to the interactions between individual weapons) can be done readily at battalion 

level but only with great computer time and resource penalties at division level. Although this 

approach gives the most realism, it cannot be considered for the large-scale combat occurring at 

theater level. Here one must use attrition equations to compute the interactions between Blue and 

Red weapons. These attrition equations are of various forms, all attempting to relate numbers of 

shooters and numbers of targets to losses in engagements. Attrition equations always contain 

parameters which are difficult to determine, such as allocations of fire to various target types or 

maximum rate at which a given type of shooter can kill a given type of target. They also make use 

of aggregation, the grouping together of weapons and targets in some logical way in order that the 

losses inflicted by each of the groups upon each group in the opposing force can be computed. The 

Concepts Evaluation Model (CEM) aggregates the weapons into Blue and Red heavy armor 

(tanks), light armor (APCs), soft (dismounted personnel), artillery, helicopter, and fixed-wing 

categories. Other theater models aggregate into vehicle types: several tank types, several APC 

types, several artillery types, etc. When the parameters of an attrition equation are chosen in such a 

way that aggregated combat results agree with the results of a high-resolution simulation, for a 

particular mix of weapons on the two sides, the equation is said to be calibrated. A large part of 

chronic dissatisfaction with large-scale simulations is due to the failure of attrition equation results 

(with a fixed set of parameters) to track well with high-resolution results (or with judgemental 

expectations) as the composition of the forces is varied. 
ATCAL is a method for calibrating a set of attrition equations to the results of sample high- 

resolution simulations. It uses auxiliary equations to feed the main attrition equations, modifying 

their parameters and thereby accounting for considerably more battlefield detail than heretofore. 

This added flexibility permits better portrayal of the results of force variations. The method uses 

high resolution results and provides useful side information in addition to the loss-by-cause table 

(commonly refereed to as a killer-victim scoreboard). This side information is the allocation of fire 

among all shooter and target types, the expenditures of ammunition, the relative importance of all 

weapons, and the force ratio in the engagement. 
The starting point of the new methodology is a pair of new attrition equations, one for point 

fire and one for area fire. Both equations compute losses by cause and are therefore fundamentally 

different from attrition equations which operate with aggregated firepower. The point-fire equation 

has two main calibration parameters: kills per round fired at the target and availability of a target to 

a shooter. These two parameters, each depending upon shooter and target type, can be uniquely 
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determined from two main output matrices of the high-resolution simulation: the firing matrix 

(shots fired by each shooter type against each target type) and the attrition matrix (or killer-victim 

scoreboard). Calibration for the point fire part consists of using the ATCAL methodology 

"backward" to determine the two parameters. To determine losses for a force of some different 

composition from the calibration force the ATCAL methodology is run "forward". The area fire 

equation utilizes two main calibration parameters also: the kills per round (given that the round is 

associated with the target) and a response factor for each tube type, which states the volume of fire 

delivered to satisfy the demand for fire (the demand being an internal ATCAL calculation). There 

are no time steps in ATCAL — the entire engagement is treated as a single time step and average 

numbers of participants are used, instead of starting numbers, to produce a decrease in fire as 

losses go up. 

Discussion of ATCAL: The ATCAL model is an implementation of a method which employs 

hundreds of interconnected equations. We are to describe the main equations of ATCAL and the 

reasoning behind; and to show how the equations are coupled together. The coupling is different in 

each of the two distinct parts of ATCAL. The two parts, called Phase I and Phase II, are what was 

referred to above as running the model backward and forward — for calibration of parameters and 

for prediction of results when new forces are employed. In our report, we concentrate on ATCAL 
phase II. 

• Importance of Weapons: Fire allocation is part of the ATCAL process. Since allocation goes 

preferentially to the more important targets, a means of quantifying the importance of targets is a 

necessary first step in fire allocation. The importance of weapons comes from a nonlinear operation 

on the killer-victim scoreboard and uses only the scoreboard itself. Since the scoreboard is a key 

element in ATCAL, the importance can be readily computed within ATCAL for the engagement at 
hand. 

• Vehicles and their average number: Each vehicle, used to denote a killable entity on the 

battlefield, can be both shooter and target and, in general, each will have several weapon types on 

it. The average numbers of vehicles of each type in the engagement are used in the attrition 

equations to produce a dynamic model which responds appropriately to changes in engagement 

length. For an engagement with heavy attrition of some systems, it is very wrong to use the 

number present at the beginning in computing fire allocations. Fire allocation to a target type 

should decrease as the target is depleted. Similarly, the fire from that depleted vehicle type should 

decrease. Using an average number, which can assume arbitrarily small values, in the attrition 

equations is a way of taking a vehicle out of the picture in response to its depletion. The straight 

line average cannot assume arbitrarily small values, therefore the average is computed from an 
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assumed exponential decrease in weapon count during the course of the engagement. 

Suppose the starting number of weapons is AT (see Figure 43). After time t, the remaining 

number becomes N(t) = Ne~h'. Therefore, if we denote the attrition by AN, the average number of 

-     1    T _ 
weapons during the engagement period T, N = —N\e~  dt can be expressed as 

N = -AN/ln(l- —) 
N 

(21) 

N(t)=Ne -Jtt 

Figure 43: Attrition Process over Time 

Note that in the above equation AN and Ndepend upon each other in an inverse sense (an 

increase in one results in a decrease of the other), it is clear that there must be a solution in which 

the two are in equilibrium. Therefore, in ATCAL phase II, we take N = N initially and iterate to 

solve for AN. 
We note that there are actually some justifications for the exponential decay assumption for the 

point fire. Denote by R and B the average strength of the red army and blue army, respectively. 

Then according to the Lanchester equation, 

R = -cr * B 

B = -cb*R 

from which we can get 

R(t) = R0*e 

B(t) = B0*e 

-^cr*cbt 

-jcr*cbt 
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Ro 

• Target priorities: Each weapon or round type must have its targets prioritized so that the 

model can compute allocations of fire to targets for point fire or allocations of rounds by type for 

area fire. Target priority is computed as the product of kills per round and target importance. Thus 

a target only becomes lucrative to a weapon if it is both important in itself and more easily killed 

than other targets available to the weapon. 

• Attrition equation for direct fire: Consider a property of a shooter-target pair to be target 

availability, defined as the fraction of time a particular target (of a type) can be fired upon by a 

particular shooter (of a type). The quantity can be thought of as averaged over all shooters and 

targets ( of the types in question). Denote this quantity by Aijk — the fraction of time that k-th 

target is available fory'-th weapon of j'-th vehicle. If there are Nk targets of type k, the fraction no 

target is available is (1 - Aijk)
Nk t so 1 - (1 - Aijk)

Nk is the fraction of time at least one target is 

available. Now each weapon; of all the Ni shooters is capable of firing (RATE)ij rounds during 

the engagement, and it will fire at vehicle k if no other target with higher priority is available. If the 

vehicles with higher priorities are index by k, and the probability of kill per round is Pijk, then we 

can write the attrition equation for point fire as 

(ANk)ij=Ni(RATE)ijPijk[l-(\-Aijkf
k]Il[l-A.jl.f

k (22) 

Rewrite equation (21) as 

ANlc=a-e-AN*/~N')Nk (23) 

Given the starting number of vehicles, the calibrated parameters (RATE)ij, Pijk, Aijk, we can then 

solve the nonlinear equations (22) and (23) by iteration to obtain ANk. The importance index k 

changes along with each iteration. This process is summarized as the following steps: 

• Iterative Algorithm   for ANk   and Nk (ATCAL II) 

StepO: Set#£=Ak,(f = 0); 

Stepl:   Calculate (AA^+1)' = /(]v7,ivi,Ä^) using (22); 

SteP2:   AiVr^tl-e^"1^^]^; 

Step3:   Calculate /y'+1 = /V< *A7Vl+1 /ANi, 
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Step4:   Check if \N[+l - N^/N,, < £ or t < 15. If not, set t = t+1 and go back to step 1. 

Remarks: 
1 Note that the purpose of the iterations above is to solve the nonlinear equations, not to simulate 

the evolution of the system over time. In another word, there is no time steps in ATCAL; the entire 

engagement is treated as a single time step and average numbers of participants are used, instead of 

starting numbers, to produce a decrease in fire as losses go up. 

2. The weapon importance changes during the course of the iteration. This is due to the fact that the 

importance of a weapon is unknown to us and it depends on the number of kills and the importance 

of kills inflicted by this weapon. Therefore, as the attrition happens, the importance of the weapons 

is also adjusted. Eventually, the weapon importance converges because the attrition values 

converge to their solution. 
• Area Fire Attrition Equations: As the model sequentially processes the weapon type on 

each shooting vehicle, it encounters an indicator which tells it whether the weapon is to be 

processed with point-fire or area-fire. The attrition equations are different for these two types of 

fires and so are all the parameters that go into them. 
The problem for area-fire is to account for (a) the amount of firing that is to be done; (b) the 

apportionment of the firing among the different round types; (c) the effects of the firing on the 

target arrays. 
The computation of the attrition due to area-fire involves many intermediate steps, which we do 

not describe here. We merely list the attrition equation in the following and note that the principle 

of solving the nonlinear equations for area-fire is no different from that for point fire. The area-fire 

attrition equation is 

(ANk)ij = (RSPNS)i (DEMAND^ (Allocation^ (FRAC)ijk (Nk/Nk)L//fc (24) 

where (RSPNS)i, Lijk are calibration parameters obtained from ATCAL phase I, while 

(DEMAND)i, (Allocation)ij, (FRAC)ijk are obtained from the above and another calibration 

parameter (BIAS)ij in the intermediate steps. With the assumption that the number of vehicles 

decreases exponentially, we can still use equation (23) and thus solve the nonlinear equations (23) 

and (24) recursively to obtain the attrition due to area-fire. 

The flow chart of the ATCAL Phase 2 main cycle is shown in Figure 44. 
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Figure 44. Flow Chart for ATCAL PHASE II 
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5.2. Mathematical Review of CEM and STOCEM. 
. A comment on the nonmonotonic behavior of CEM: The nonmonotonic behavior or 

"structural variance" has occurred in the CEM, stemming from the use of decision thresholds; a 

slight increase in strength of one side may alter the force ratio that is compared to a decision 

threshold, resulting in a different allocation of forces and a significantly different outcome. This 

phenomenon deserves much more research but it is beyond the scope of this project. Next we try 

to review the underlying philosophy of the COSAGE-ATCAL-CEM from its mathematical 

formulation. We start with the ultimate goal of a hierarchical battle simulation model. 

. What do we really want from CEM? What we wish to obtain through a battle simulation 

model is the high resolution simulation estimates for the mean (and higher moments of, if possible) 

attrition at the theater level. We denote the mean attrition for the "throughout high resolution 

simulation (THRS)" as 
E[g(w)) 

where g(w) is the sample THRS output with seed w. 
. CEM approach:    The COSAGE-ATCAL-CEM approach to this problem can be divided into 

two steps: 
a) Run COS AGE to get samples of "calibration" parameters such as 

probability of kills per round P(co); 

availability (co); 

firing rate R(co); 

response factor F(co), 

bias B(co);. 

Then estimate their mean values P, A, R, F, B (ATCAL I) 
b) Use a Lanchester-like attrition equation to calculate the mean  attrition, i.e., approximate 

E[g(co)] by 
AN=f(P, A, R, F, B)    (ATCAL II) 

We now discuss the limitations of the CEM approach. 
. General Limitation of CEM approach: Current CEM model has fixed engagement 

duration and can not be interrupted. More seriously, although CEM accepts different initial 

mixtures as input, the execution of ATCAL Phase II inside CEM uses the output from COSAGE 

with a single initial posture. This is due to the fact that setting up an initial mixture for COSAGE 

takes a long time and a lot of effort. Needless to say this situation is not satisfactory and more 

research is needed to handle this.   Finally, as we explained before, in ATCAL Phase II one 
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averaged the attrition over the whole duration of the engagement and assumed exponential decrease 

of the attrition. Since each engagement always consists of an initial search period with not much 

firing, an intensive firing period and an ending period when one side or both sides decide to quit 

the engagement, to average over time is hardly descriptive of the attrition process. In summary the 

current CEM approach has the following limitations: 

(1) fixed engagement duration, 

(2) no interruptibility, 

(3) fixed initial mixture for a given posture in COSAGE.. 

(4) averaged over time 

Next we discuss the central issue of our report, the preservation of the stochastic fidelity in CEM 
model. 

• Preservation of Stochastic Fidelity Issues in CEM Approach: The following are the 

two major points in these issues. 

• COSAGE runs generate drastically different scenarios, and using the overall mean of 

the calibration parameters over all the scenarios as the input parameter to ATGAT. 

Phase 2 mav not give good attrition estimates. 

• COSAGE sample shows that the attrition dynamics are clearly different during different 

engagement periods. So use of the average over time mav not be appropriate 

These points have been observed and there have been attempts to overcome some of these 

problems. One such approach being considered is the STOchastic CEM (STOCEM) approach. 
We now discuss this approach. 

• STOCHASTIC CEM (STOCEM) approach: The stochastic fidelity issue has been 

noticed in the battle simulation society and a certain amount of effort has been devoted to resolve 

the issue. Stochastic CEM (STOCEM) is one such approach. The basic idea of STOCEM is to use 

each COSAGE sample as the input to the ATCAL Phase 2. The output of the CEM is considered as 

one sample of the stochastic output. The final result is the distribution of, say, the attrition, rather 

than their mean values as in the case of CEM. 10-12 replications from COSAGE is considered 

good enough in the current version of STOCEM. For each replication, STOCEM still uses the 

original calibration procedure. Experimental results show that sometimes the original CEM outputs 

he out of the confidence interval of the corresponding STOCEM results. 

We think STOCEM is a commendable effort. However since for each replication STOCEM 

still uses the original calibration procedure, one has to ask the fundamental question whether the 

mean value-based Lanchester Law is valid for samples. To answer this question we need to 

review the mathematical description of the STOCEM approach. 
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• Review of STOCEM Approach: STOCEM begins by running COSAGE to get samples for 

"calibration" parameters such as probability of kills per round P(co); availability (a>); firing rate 

R(co); response factor F(co); bias B(co); others. Then, STOCEM uses a Lanchester-like attrition 

equation to obtain samples of the attrition, i.e., approximate g(co) by f(P(aJ), A(co), R(co), F(co), 

B(coJ). Finally, when a mean value is desired, STOCEM estimates E[g(co)] by averaging over 

f(P(co), A(co)Jl((o),F(a)),B(co)). 
The major question we have for the STOCEM approach is whether the Lanchester attrition 

equations are valid for samples of COSAGE. One could argue that there is considerable averaging 

in COSAGE over many possible battle scenarios already, so the Lanchester Law could be applied 

to the COSAGE output. However to average over scenarios generated from a given initial mixture 

along time is different from averaging over scenarios with more rational weights. This is because 

the weights attached to the former approach are determined by the battle evolution along time. 

Such an average could be more wrong than uniform weighted average, let alone a rational choice of 

the weights. The latter should be what we would like to achieve. 

In summary we have the following observations regarding the STOCEM approach. 

. Lanchester-like equations are based on the idea that average attrition is proportional to 

enemy's average strength, which makes sense only for the mean values. 

• Note E\f(X)] #f(E[X]) where/is ATCALII which does not make much sense to 

the samples X! 
• Even if we know the distribution of P, A, etc., we still don't know how to incorporate 

them (or just the second moment) into the attrition equation to reflect their impact on 

E[g{co) 

• Over the range of starting points that ATCAL II must address, the calibration parameters 

remain constant for the posture. 

• CEM 12 hours engagement is actually a kind of average over (unspecified) phases of a 48 

hour combat process. 

Mathematically the fundamental issue with the preservation of the stochastic fidelity lies in the 

inequality E\f{x)] *f{E[x\) with nonlinear/(•)• We give several examples to illustrate this 

inequality. Our first example is extremely simple: 

Example 1: f(x)=x2 => E[x2] = *2 + E[x]2 

Our second example is closer to the equations used in ATCAL for computing the attrition. 

Examples f(x) = ax,   0<a<l 

Note that in ATCAL we need to use the power function to compute probabilities involved in the 
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attrition calculation.  In the following we illustrate the inequality E\f(x)] *f(E[x]) for several 

different distributions forx 

Example 2a. 

Example 2b. 

Pr(X = l) = /?,   Pr(X = 0) = l-p 

E[X] = p 

f(E[X]) = ap 

E[f(X)] = pa1 + (1 - p)a° = pa + l-p 

Pr(X = k) = qkp,   q = l-p,   k = 0,l,K 

E[X] = 1 

Example 2c. 

f(.E{X}) = aP 

E[f(X)] = pa0 + qpa1 + fpcf+K 
l-qa 

Pr[X = Jk]: 

E[X] = l 

f(E[X]) = a' 

k\ 
,   for k = 0,l,K 

ElfiXV = l^-a° + l-^-al + l-^a2
+K = e~lela = e4* ~ a) 

J 0! 1! 2! 

We now turn to another approach for preserving the stochastic fidelity. This approach has 

been studied in [26,27]. 

5.3. Stochastic Differential Equation Modeling for High Level Attrition Process. 

Several researchers have suggested to use the Ito type of stochastic differential equations to model 

the attrition process in battle simulation. The main idea is to let the deterministic part of the 

stochastic differential equation model the Lanchester attrition computation process and let the 

Wiener process-driven part represent the stochastic component of the engagement. [26] and [27] 

are two nice references on this methodology. 

One key issue of implementing this idea on a digital computer is the discretization of the 

continuous Ito stochastic differential equation. Fortunately, in the last 15 years numerical solutions 

for stochastic differential equations have drawn considerable research attention. It is now feasible 

to simulate stochastic differential equations on a digital computer efficiently. Note that the 

discretization of Ito stochastic differential equations is not as trivial as  for the deterministic 
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differential equations, due to the sophistication of the definition of the Ito calculus. [28] is a nice 

reference for this issue. We now briefly discuss the mathematical formulation of this approach. 

The basic Stochastic Lanchester Attrition Equation takes the following form. 

dxi =f{xij.2.~*n)dt + gij(xiJC2,...,xn)dwi(t),   i=l,...,n; 

where xi (t), i = 1,2,..., n   is the strength of the i-th weapon. The method consists of the followig 

steps: 

• Choose/Q and #(•) to fit the mean and the covariance of the lower level output; 

• Choose a numerical scheme to simulate the system equation. 

We point out that to use stochastic differential equations for attrition modeling we need to 

discretize it and fit the time varying coefficients. . This last requirement makes it difficult to 

implement in practice. On the other hand we believe that to fit the time varying coefficients 

eventually yield essentially the same thing as the following "scenario grouping" scheme, which is 

easier to implement. So we now turn to the discussion of the scenario grouping approach. 

5.4. Scenario Grouping Approach 
• Basic Idea: Since different random seeds in COSAGE shall result in different scenarios, the 

correct thing to do is to group the results of COSAGE into scenarios, 5;, S2,..., Snt and calculate 

E[g] = E[g\S1]*Pr(S1)+E[g\S2]*Pr(S2)+...+E[g\Sn]*Pr(Sn) 

For each scenario Si, we can get the calibration parameters Pi Ai, etc. and then use/(P; Ai,.. •) to 

approximate E[g\Si\. 

Professor S.M. Robinson (University of Wisconsin) made the following remarks in [29]: 

"Note that this use of an expected value performance measure is not at all the same thing as the 

common use of "expected value models" in which stochastic elements are individually and 

systematically replaced by their expected values. That procedure is invalid as a method for 

modeling anything, since the outcome can not be reliably related to the average of the outcomes 

under the individual scenarios, or to any other quantity of interest. Rather, the expected value 

performance measure that we are using corresponds to use of a Monte Carlo simulation process, 

but (as we shall see below) with a certain degree of increased structure." 

In the following we use a queueing model example to show that different random seeds result 

in different function g(-). 

The example performance function we use is the mean waiting time of the 5th customer in an 

M/M/l queue. For each random seed, we get the samples of the interarrival time 

a1(w),a2(w),K ,a5(w) and the samples of the service time s1(w),s2(w),K ,s5(w). The waiting 
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time of the 5th customer is the sum of the service time of all the previously arrived customers who 

are in the same busy period as itself. So if we define Si as the scenario that i customers are in front 
of the 5th one and are in the same busy period, then we have 

4 
W5(a(w)J(w)\Si) = fw(a(w),kw)\Si) = £sk 

k=5-i 

Hence different random seeds not only result in different a(co), s(co) but also different functions. 

We show pictorially in Figure 45 that different random numbers could generate different 
scenarios. 

W5 = sl+s2+s3+s4 W5 = s2+s3+s4 

n 

W5 = s3+s4 

r^    rrf~L^ 

W5 = s4 

H h i    i r~      i 

Figure 45. Four Scenarios for A Simple Queueing Sample Path 

Now we use a simple queueing example to illustrate the scenario grouping idea. Consider a 
M/M/l/K queue with utilization r .The probability of buffer full is calculated by the mean formula 

P (o)-V-P)P (25) 

This formula is valid only when r is a constant. When used in a simulated model, r has to be 
estimated accurately. Using (25) with a sample of r is not justified. 

We compare this queueing example with the battle simulation model CEM: 
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»/M/l/K Queue CEM 

P (0)    (!-p)P AN=f(P,A,...) 

r P,A,... 

The question is : Can we use (25) when r is a random variable? Suppose we have a 

MMPP/M/1/K queue shown in Figure 46. We want to estimate r and use it as the calibration 

paramemter and then use equation (25) to estimate PK Suppose also that we have chosen K = 8, m 

= 10, and obtained eight estimates of r: 1,2,3,4,5,6,7,8. Now we estimate PK using four different 

schemes: 
1) Treat all the estimates as one group (a la CEM), i.e. calculate the mean of r, 4.5, then (25) 

gives PK =0-93 * 10"3 

2) Divide the estimates into two groups: {1,2,3,4} and {5,6,7,8}, compute their respective mean 

value: 2.5, 6.5 and then use (25) to get 

PK =PK (2.5) * 0.5 + PK (6.5) * 0.5 = 5.7 *10-3 

3) Divide the estimates into four "scenario groups": {1,2}, {3,4}, {5,6}, {7,8} and then use (25) 

to get 
PK=PK (1.5) * 0.25 +P K (3.5) * 0.25 +P K (5.5) * 0.25 +P K (7.5) * 0.25 = 7.7 * KT3 

4) Divide the estimate into eight groups (a la STOCEM), i.e., plug each estimate into (25) and 

then compute the average. In this case we get PK = 8.2 * 10 

The question is: Which scheme is "more correct"? 

p = X,/jLt 

MMPP 

Figure 46. MMPP/M/1/K Queue 
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Suppose the arrival process is modulated by a two-state continuous time Markov chain. The 

mean sojourn time of each modulating state is 50, the arrival rate associated with each modulating 

state is 2.5, 6.5, respectively. By simulation, PK = 5.5 * 10~3. So method 2) above gives a good 

estimate (Because 3) and 4) did not adequately "smooth" the samples and 1) fails to convey the 

impact of the two scenarios). 

Suppose the arrival process is modulated by a four-state Markov chain. The sojourn time of 

each modulating state is still 50, the arrival rate associated with each modulating state is 1.5, 3.5, 

5.5, 7.5, respectively. By simulation, PK =7.6*10~3. So method 3) above gives a good 

estimate. 

Let us now return to the COSAGE-ATCAL-CEM model. The key question is how to do the 

grouping. The answer of this question depends on the computational power available to us. 

Basically we could have four levels of grouping. 

• Level 1: Group according to time: first, second, and last period of a battle; 

• Level 2: Group according to the ATCALI output; 

• Level 3: Group according to several key quantities in COS AGE output; 

• Level 4: Clustering analysis of COSAGE output (using large neural net). 

Note that in this approach we also need to estimate the probability of each group. For example, 

in dealing with different initial mixture, we need to assume these probabilities. To estimate these 

probabilities from simulated data we need to perform clustering analysis. We consider the 

following clustering analysis algorithm via iterative partitioning. 

• Iterative Partitioning Clustering Analysis Algorithm : 

1. Select an initial partition with K clusters; 

Repeat Steps 2 through 5 until the cluster membership stabilizes. 

2. Generate a new partition by assigning each pattern to its closest cluster center, 

3. Compute new cluster centers as the centroids of the clusters; 

4. Repeat steps 2 and 3 until an optimum value of the criterion function is found; 

5. Adjust the number of clusters by merging and splitting existing clusters or by removing 
small, or outlier, clusters. 

6. Cluster validation: both statistical methods and expert knowledge are needed. 

References [30,31] give more details on clustering analysis algorithms. 

It is also possible to use a neural network for clustering analysis, since clustering analysis is 

essentially an optimization problem. We need to explore this type of clustering algorithm in future 

research. The following subsection describes a large stochastic neural network as a tool to "learn" 

the statistics of the high resolution battle simulation model COSAGE. Such large stochastic neural 
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network could also be useful in clustering analysis. 

5.5. Use of a Large Stochastic Neural Net to Learn COSAGE 

In the scenario grouping approach described above we need to run COSAGE many times to obtain 

the statistical data. It is very difficult to store these data in appropriate data structures. It is 

therefore useful if we can build a device that can generate data that obey the same distribution as 

COSAGE does very quickly when we need them. We propose to use a large size stochastic neural 

network to do this. The basic idea is like the following: 

The terminology "learning" here is the same as "estimation of distributions from samples". We 

need to estimate the distribution of the COSAGE output. In other words, we need to "draw" the 

histogram of the COSGAE output. As [32,33] point out, a multilayer feedforward neural network 

is the only tool to circumvent the complexity problem. 

The following is the procedure for using a neural network to obtain the output distribution from 

the high resolution simulation samples. 

• Generate COSAGE samples "off-line" to train the learning system; 

• Replacing COSAGE by a trained learning system in "on-line" simulation; 

• Learning time would not be excessive: after certain time the "fresh data" from COSAGE do 

not add much. Higher level dynamics in CEM dominates the final output distribution. 

• Verification of the trained model: Use pairwise joint distribution test 

We describe such a stochastic neural network proposed by Wong in 1991 which he named 

"diffusion machine" [34]: 

• Diffusion Machine [34]: The state of the machine at time t is denoted by 

v/(r). i = 1,2,..., n; 

and the output of the neuron is 

ui   =g(vi),   i = l,2,...,n; 

1 cv; Mg\ui{t)) 

whereE[v(t )] is the function to be optimized. 

Following are some of the examples for function g : 

1.        g(x) = 2(l + tanhfy 
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' 1 
\-^7T-rr-T X>0 

2. g(x) = < 

~2{\-xla) 

1 
2{\+xla) x<0 

To implement the neural network on a digital machine we have to first discretize the stochastic 

differential equation involved. We adopt the approach developed by Kloeden and Platen [28]. 
The discretized stochastic differential equation becomes: 

uij(k+l) = uiß) - ^P-At + 2 <äQ*ß®k Awik) 

Aw(k) = r (ik)VÄt; 

r(Jc) e {+1,-1} is an i.i.d. random sequence with two point distribution. 

a = 0.02, At = 0.01 or 0.001. 

To verify the usefulness of the approach with high dimensional distributions we apply this 
neural network in an image segmentation problem where the image has 10x10 pixels: 

V={vij,iJ,=l,...,10) 

The objective function to be minimized is chosen as 

E(v)=2^v*2 -^V
M+MU(vij - viJ+1)2 

ZO
    ij a    ij i=lj=l 

+ii(vij - vy-o2
+ii(Vij -vi+1J)

2
+xi(Vij - vi+1J)

2 

i=l j=l i=lj=l i=ij=i 

+^SEvija-vij) 
i=lj=l 

The segmentation results are quite good, verifying that the neural network based on the 

diffusion machine proposed by Wong could indeed work well with high dimensional random 
vectors. 

• A Three Network Learning System: As Wong proposed, learning, or estimation of a high 
dimensional distribution, can be achieved by a device consisting of three connected stochastic 
neural networks. Each network has n nodes, divided into 2 groups: 

V = {vji = l,2,...,nv} : Visible Nodes 
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H = {hi,i = nv+1,...,n} : Hidden Nodes 

The goal is to find {wy} for the "free running network" such that the stationary p0(v;w) is as 

close as possible to a pre-given Po(v;w). 

. Mathematical formulation of the learning network: The joint density on VxH for one 

network is p0(v,h;w), veV,heH,w   is the weight. The marginal density on V  for one 

network is 
p0(v;w)=Jpo(v,h;w)dh. 

H 

Our goal is to find w to minimize the "Kullback information" 

G(w)4jpln 
H 

P(v) dv. 
p0(v;w) 

Probability densities of the system can be written in terms of the "energy function" E(v, h; w): 

p0(v,h;w) = 

and the marginal density on v is 

--E(v,h;w) 

J VxHe 
■—E(v,h;w) 
T dvdh 

E(v,h;w) 
r iHe T dh 

PO(V;W) = J Po(v»h'w)dh = i_, .   , ^ , --E(v,h;w) 

A 
B 

i VxHe dvdh 

If E(v,h;w) is a quadratic function of v,h then we are using Gaussian density to approximate 

the real density. 
• Derivation of the Learning Operation: Note 

8Po(v;w)     AB ~BA 

Po(v;w) 3w 
Po(v;w)   Po(v;w) 

B^ 
A 
B 

B__A_ 
B     A 

We have 

and 

G(w) = jvp(v)ln P(v) 

Po(v'w). 
dv 
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3G(w)     r   _, . 
-3 = JvP(v)ln 

ow 
Po(y;w) 

Po(v) 
dv = Jp(v) 

V 
A 

ET 

B 

Or, 

3G(w) _ 1 r 9E(v,h;w) 

'3E^ 

3w 
-E 

awjj 
(  u   \    ( \Po(v'h;w) p0(v,h;w)-p(v)-^- -^ 

Po(v;w) . 
dvdh 

yy 7W 
yy 

Then, we can use the Langevin Machine [34] to minimize G(w): 

dwiiW = —-^dt + V2sdzij(t). 
aWij 

J 

PreHminary experiments have shown that this approach is indeed effective. However, substantially 

more work in both theory and experiments need to be done before this approach can be effectively 
used in practice. 

Although the learning machine based on Wong's diffusion network could be very useful in 

collecting distribution information from the samples for high dimensional random vectors, it has to 

be implemented on parallel machines to be efficient. Actually many similar research efforts have 

been devoted to the sequential simulation study of neural networks whose unique advantage is the 

parallelism ! Since it is not feasible to use big parallel machines for our purposes (also due to the 

realization that big, general purpose parallel machines may not be very efficient for codes that are 

only partially parallelizable), we have devoted significant effort to the development of a special 

purpose parallel computing device, based on the Digital Differential Analyzer (DDA) proposed by 

some Russian scientists in the 1960s for other purposes. We first discuss how to use DDA to 

implement the basic component in a neural network, the sigmoid function. 

• DDA Implementation of Sigmoid Function: We choose the sigmoid function as 

l + e 
This is illustrated in the following Figure 47. 

The basic idea of the Digital Differential Analyzer (DDA) can be described as follows. Suppose 

we want to calculate the function y = g(u). In the DDA computation, one performs 

dy = g\u) du . 
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ig(u) 
1 

u 

0 

Figure 47. Sigmoid Function 

For a simple but useful example let's look at the function y = eu.  In the DD A computation 

one does the following instead: 

dy = e u du = y du. 

In the digital implementation one uses the following difference approximation 

yn = yn-l+yn-ldu 

with, for example, the following two possible choices of du:: 

binary: du = [+0.0001, -0.0001], 

ternary: du = [+0.0001, 0,-0.0001}. 

The DDA implementation of a sigmoid function can be derived as follows: 

y = 2g(u)-l = 

1 

1- 

l + eu 

dy = [-(1 + y)(l - y)]du = wdu 

dw = -ydy 

v = (y + l)/2 

v = g(u)    <   dy- wdu 

dw = -ydy 

This implementation can be illustrated in the block diagram shown in Figure 48. This DDA 

sigmoid function was used in the image segmentation problem and the results are very good. 
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1/2 I" dw 
-<£>*#- 

dy 

D 

t 

du 

w 

D 

Figure 48. Block Diagram for DDA Implementation of A Sigmoid Function 

5.6  Summary. 

Through this project we have gained a thorough understanding of the importance of preserving the 

stochastic fidelity in hierarchical battle simulation models. The Lanchester equation and similar 

equations can only be used for average values and has little value in preserving the stochastic 

fidelity. Ito type of stochastic equations can be used to enhance the deterministic Lanchester 

equation. However the computational complexity involved could be insurmountable. Scenario 

grouping approach seems to be computationally feasible and bears strong "physical" meaning to 

render it easy to implement in practice. On the other hand, since we will have to deal with random 

vectors with huge dimension, stochastic neural networks seem to be the only feasible computation 

tool for estimating the distribution of the output quantities of the high resolution simulation models. 

We recommend to implement Wong's diffusion machine on special purpose parallel processors 

(DDA) for such "learning" purposes. Such a stochastic neural network can also be used for 

clustering analysis for high dimensional stochastic data, which is also important for the scenario 

grouping approach. Based on our experience with applications in image processing we believe that 

the stochastic neural network as we described can be effectively used for the battle simulation 

models. 
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6. RATIONAL APPROXIMATIONS FOR STOCHASTIC DISCRETE EVENT 
SYSTEMS. 

The rational approximation approach for performance analysis of stochastic discrete event systems 

including computer and communication networks is proposed in [35,36]. This approach may form 

powerful new tools for the metamodeling of large-size stochastic discrete event systems when the 

so-called "curse of dimensionality" occurs. 
The curse of dimensionality is a major difficulty in the analysis and design of many 

computer/communication systems. Examples among many of such systems are: communication 

networks consisting of hundreds of nodes; multiprocessor computing systems having thousands of 

processors; closed queueing systems with the circulating population in the hundreds or thousands; 

models using phase type distributions involving large or infinite dimensional Markov chains; etc. 

The essential difficulty to analyze these systems is that the computational complexity grows rapidly 

with the size of the system or the dimension of the system model. They are otherwise quite 

tractable. In other words, the concerned performance function can be evaluated accurately when the 

system size is small. The situation looks so hopeless that the research effort in analytical modeling 

of such systems is fading away. Simulation becomes the standard approach in the research 

literature to justify the new designs. In this project, we tried to tackle this problem using the 

Newton-Pade Approximants. This approach is motivated by our earlier work on applying the Pade 

approximants to queueing networks [35] and is based on the following observations. 

• Performance functions of many computer/communication systems have nice shapes as a 

function of the system size. They are very often provably monotonic, convex or concave, 

having known or easily obtainable asymptotic behavior when the system size goes to 

infinity; 
• These functions can be evaluated via analytical formulas when the system size is small. The 

calculation becomes impractical only when the system size becomes large; 

. For functions having features described in 1 and 2, it is possible to obtain simple 

approximants that are virtually exact for all engineering purposes. In other words, in these 

situations if we only ask for accurate approximants for large size systems we can have easy 

solutions to the otherwise impossible problems. 
The idea is easy to understand intuitively. Think about a real-valued function defined on the set 

of non-negative integers,/(n), n = 0,12,. -. Assume, for example, that we can prove this function 
is monotonically increasing and concave and converges to a known constant when n -» «. On top 

of these properties we also know, say,/(0)/(/),.../(9)  exactly.  Imagine that we have to draw 

two different curves going through the 11 known points (including/(<>o)) exactly and that are both 
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monotonic and concave. It is clear that the requirement of monotonicity and concavity significantly 

narrows down the possibilities. The question is how to combine the given knowledge to form an 

easily calculable approximant. We have shown in [35-41] that the rational approximants fit a set of 

initial function values and the asymptotics are very effective. 

The performance functions studied in [35-41] include waiting time in some classical queueing 

systems, processing power for multiprocessor systems, key quantities in the queue inference 

engine problem, cell-loss probability in high speed communication networks, among others. We 

believe that this approach could form a powerful tool for many performance analysis problems 
complementing simulation. 
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7. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS. 

In this section, we summarize the main findings, lessons learned, and recommendations for future 

directions that have resulted from this project. 

• Concurrent and Parallel Simulation. Computer simulation has emerged as the only tool of 

universal applicability when it comes to modeling complex systems. However, systematic design 

and performance studies of such systems require a large number of time-consuming simulation 

runs: to ask N "what if questions, a nominal simulation run is needed, followed by N additional 

runs, one for each "what if". One of the main goals of this project has been to establish the 

feasibility of the idea that multiple "what if questions can be answered from data obtained from the 

nominal simulation run alone. This approach has been termed "concurrent simulation" when 

applied to conventional sequential computers, in contrast to "parallel simulation" when applied to 

parallel computers or networks of workstations. We believe this feasibility objective was 

successfully met through (a) The development of two specific algorithms for implementing 

concurrent simulation, the Standard Clock (SC) method (see Section 2.4.1) and Augmented 

System Analysis (ASA) (see Section 2.4.2), and (b) Software demonstrations and explicit 

numerical results indicating significant speedup factors provided by these algorithms over 

conventional repetitive simulation (see Section 3). 
We summarize next some lessons we have learned from this work, which also suggest 

directions for future research: 
(1) Implementation of the conceptual algorithms we developed is critical. We have found that the 

speedups achieved by concurrent simulation are significantly affected by such factors as the 

particular computer hardware used and the data structures selected. This suggests the need for 

a synergistic collaboration of hardware and software expertise with the analytical expertise 

required to develop new simulation techniques. 
(2) Parallel simulation (as defined above) promises at least one additional order of magnitude in 

speedup over concurrent simulation. In this project, we were limited to the use of sequential 

computers, which gave us speedup factors in the range of 5 to 10 (see Section 3.2 and 3.3). It 

became clear, however, that the state update component of a simulation process (the one we 

cannot "parallelize" through concurrent simulation) can become large; yet, this is precisely the 

component which can be easily and naturally "parallelized" through the use of parallel 

processors. The speedup analysis performed in Section 2.5 substantiates this observation (see 

also [18]). We believe that the investigation of our techniques implemented in a parallel 

computing environment is a direction that holds great promise. 
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(3)  The two main concurrent simulation algorithms studied in this project impose some limitations 

on the nature of the event lifetime distributions allowed. In particular, while the structure of 

systems to be simulated may be arbitrarily complex, the SC and ASA methods are based on 

Markovian assumptions (with some extensions possible, e.g., see [9],[19]). Structural 

complexity is indeed the major challenge we need to confront, compared to distributional 

information. What we have found is typical in the development of engineering methodologies: 

there is a tradeoff between the generality of a technique and its computational efficiency. In the 

late stages of this project, we initiated the study of a new "universal" concurrent simulation 

scheme (see Section 2.6) based on a "time warping" idea. The price to pay for such 

"universal" applicability is a reduction in efficiency, measured through the speedup factor we 

have defined in this project. Additional research remains to be carried out in this direction, in 

order to (a) Fully develop explicit algorithms, (b) Study their properties and limitations, and 

(c) Efficiently implement them, especially in view of observation (1) above. 

• System Optimization. The ultimate goal in designing complex systems is to optimize their 

performance. When simulation is used in this process, traditional techniques rely on computing the 

cardinal values of a performance measure over all possible alternatives. In contrast, ordinal 

optimization is driven by the relative order of estimates of the objective function -not their 

absolute values. The advantage here is that we can exploit inherent robustness properties of these 

order statistics with respect to substantial estimation noise. In simple terms, the idea we set out to 

explore in this project is "why waste time to get "good" performance estimates, when relatively 

"poor" but quickly obtained estimates can be provably adequate to order these performance 

estimates?" Our results, based on a testbed problem (see Section 3.1), indicate that this novel way 

of viewing optimization processes indeed provides powerful means for solving combinatorially 

hard problems. Based on this principle, two specific types of algorithms were presented, 

Stochastic Comparison (STC) (see Section 4.2) and Stochastic Descent (see Section 4.3). Both 

exploit concurrent simulation by extracting performance estimates over multiple alternatives from a 
single simulation run. 

This component of the project has led to some findings of interest which are summarized next: 

(1) The combination of ordinal optimization principles and concurrent simulation holds the 

promise of a new paradigm for simulation-based system optimization, one where so far 

intractable problems may be solved. Even a simple procedure (such as the one described in 

Section 4.1) readily revealed the power of this approach to rapidly identify a small subset of 

alternatives within which the optimal solution to a complex problem lies with high probability. 

102 



Final Report UMass CODES Lab., 9/95 

The more sophisticated techniques developed in Sections 4.2 and 4.3 systematize this 

approach. Clearly, more research is needed to gain a better understanding of the capabilities 

and limitations of ordinal optimization and to develop a rigorous and complete framework. 

(2) Ordinal optimization involves a basic engineering tradeoff between "near optimality" and 

"computational complexity": through a small compromise in the quest for "the optimal" large 

gains result in the effort to find a "good enough" solution. "Near optimality" means that a 

solution within x% of the optimal with probability y may be found. "Computational 

complexity" is measured by the amount of time required to reach such a solution. The crucial 

finding is that this relationship is highly nonlinear: a very small value of x combined with a 

value of y very close to 1 can provide a reduction in computational complexity of orders of 

magnitude. This has been demonstrated in a number of application areas (e.g., see selected 

papers in [18]). It is precisely this tradeoff that needs to be further studied and explicitly 

quantified, a task that we see as the main challenge in this area. 

(3) Although the key principles of this approach are simple to apply, rigorous analysis involves a 

high degree of technical complexity. In this report, we have spared the reader of technical 

details (e.g., in proving convergence of the algorithms developed), a flavor of which may be 

found in related published work [22]-[25]. 

• Stochastic Fidelity in Hierarchical Simulation. In this project, we studied the 

hierarchical decomposition of a simulation model as one way to reduce complexity. The analysis of 

a concrete hierarchical battle simulation model convinced us that the preservation of stochastic 

fidelity from the high resolution simulator to the more abstract attrition calculation is the crucial 

issue in hierarchical modeling for large stochastic simulation models. The challenge here is to deal 

with a huge dimensional model under realistic computation time constraints. Our main 

recommendation is to use the scenario grouping approach to combine data analysis and expert 

opinions on the weighting probabilities for each scenario that could be generated by the high- 

resolution simulator. Such weighting probabilities could also be obtained (more objectively) by 

some learning and clustering analysis procedures using large size stochastic neural networks. We 

recommend to implement such stochastic neural networks on special purpose parallel processors 

made of Digital Differential Analyzers (DDA), since mainstream general-purpose parallel 

computers are not easily available; in addition, the overhead involved in implementing such special 

neural networks on general-purpose parallel machines could be unrealistically high. Our 

preliminary experiments support this recommended approach. We suggest to pursue the directions 

described in the report, especially a concrete implementation of the scenario grouping approach to 
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the battle simulation model and the application of stochastic neural networks in learning and 

clustering analysis for the data generated from this model. 

• Other Means for Tackling System Complexity. Concurrent/parallel simulation, ordinal 

optimization, and hierarchical decomposition all represent efforts to tackle the basic problem of 

system complexity. One component of this project was devoted to exploring alternative methods. 

One such method is based on the use of rational approximation techniques. We introduced these 

techniques in the context of computationally complex performance analysis problems in stochastic 

discrete event systems, such as computer systems and communication networks. Analysis and 

experiments show that this approach could form a powerful tool for metamodeling of stochastic 

discrete event systems. In this report, we limited ourselves to a brief overview in Section 6; 

technical details may be found in the published literature [35]-[41]. 

Clearly, further research on the theoretical foundations and more concrete application examples 

based on rational approximation techniques are needed, which were not within the scope of this 

project. In the course of this work, however, we were led to some observations we hope will form 
the basis of further investigation: 

(1) Metamodeling techniques based on simulation are well worth exploring (see also [45]-[47]) 

and may hold significant promise when combined with some of the ideas discussed in this 
report. 

(2) Other ways of decomposing a complex system are also worth exploring. In particular, besides 

their hierarchical structure, another common feature of C3I systems is their decentralized 

nature (i.e., the fact that such systems usually consist of numerous interconnected components 

intended to operate autonomously whenever possible). Although we did not pursue this 

direction, we carried out some work [48] demonstrating the natural use of perturbation 

analysis techniques in this context. 

• Interactive Use of Simulation. As pointed out earlier, the implementation of many of the 

techniques studied and developed in this project is an important and nontrivial task, greatly 

dependent on hardware and software technologies at one's disposal. Although we demonstrated 

the interactive use of some of these techniques using a commercial simulation environment (see 

Section 3.4), this task was outside the scope of the project. We do wish to stress, however, that 

concurrent simulation and ordinal optimization methods are ideally suited for emerging 

technologies, such as parallel processing, and new software capabilities that include Object 

Oriented Programming (OOP) and Graphical User Interfaces (GUI). 
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/************************************************************************ 
* * 

SC algorithm of multithread sample path generation 
for systems consisting of parallel M/M/l/K queues 

Performance of interest: blocking probability 

Jie Pan Last revised: 9/27/95 

* 
* 
* 
* 
* 
* 
* 
* 
* 

   * 
* ' * 
************************************************************** 

CODES Laboratory 
Department of Electrical and Computer Engineering 
University of Massachusetts 
Amherst, MA 01003 

~/post/nwang/simu/sc/para/pan/fig/para_sc.c 

Stopping criterion: 

7 

#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 

#define NUM_Q   6 
#define TOTAL_B 2 0 
#define MAX_SP  10001 

#define ARRIVAL 6 
#define TRUE 1 
#define FALSE   0 

struct event{ 
double evtime; 
int evtype; 
} *evnext; 

int SP_NUM; 
int EV_NUM; 

The total number of events, i.e., both 
arrivals (including rejected ones) and 
departures, in each sample path of the 
constructed systems is 'EV_NUM'. 

/* number of systems to be constructed */ 
/* number of events for each systems */ 

int complete, finish[MAX_SP]; 

long int num_ev[MAX_SP]; 
long int num_waste; 
int num_a[MAX_SP][NUM_Q], num_d[MAX_SP][NUM_Q]; 
int buf[MAX_SP][NUM_Q], q_l[MAX_SP][NUM_Q]; 

int SIZEV; 

double tnow; 
doub1e 1ambda; 
double mu[NUM_Q] = {3.0, 2.0, 2.0, 3.0, 3.0, 2.0}; 

double RATE; /* 
int evtype[25] = {0, 0, 0, /* 

1, 1, /* 
2, 2, /* 
3, 3, 3, /* 
4, 4, 4, /* 

5, 5, /* 

RATE = SUM(mu[i]) + lambda */ 
departure from Ql */ 
departure from Q2 */ 
departure from Q3 */ 
departure from Q4 */ 
departure fromvQ5 */ 
departure from Q6 */ 
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6, 6, 6, 6, 6,  /* external arrival */ 
6 ,6, 6, 6, 6}; /* external arrival */ 

double unif0; 
double expo(); 

void init(); 
void arrv(); 
void arrv_to_q(); 
void dept(); 
void gene_event(); 
void gene_random_alloc(); 

int route[10] = {0, 1,1, 2, 3, 3, 4, 4, 5, 5}; 

long int ISEED[5] = {1397, 2171, 5171, 7147, 9913}; 

main(', 
{ 

int i ; 
long int tern, sem; 

init 0 ; 

while (complete < SP_NUM) 

tnow = evnext->evtime; 

switch(evnext->evtype) 
{ 
case ARRIVAL:   arrv(); 

break; 
default:       dept(evnext->evtype); 

break; 
> 

gene_event( 
} 

for (i = 0; i < SP_NUM; i++) tern += num_ev[i]; 
sem = (int) (num waste * 1.0 / SP_NUM); 
nrintf "\t %ld %Id %d%% \n", tern, sem, (int) (sem * 100.0 / tern)), 
printt( \t oia oxu ou   \t Record the sum of all real events in 

the simulation run, the average number 
of fictitious events per system, and tne 
percentage */ 

} 

void init() 
{ 

int i, 3; 

SIZEV = sizeof(struct event); 

scanf("%d", &SP_NUM); 
scanf("%d", &EV_NUM); 

gene_random_alloc(SP_NUM); 

num waste = 0; , 
for (i = 0; i < SP_NUM; i++) 

finish[i]   =  FALSE; 
num_ev[i]   =0; , 
for   (j   =   0;   j   <  NUM_Q;   D++) 
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} 

tnow = 0.0; 
lambda = 10.0; 
RATE = 25.0; 

complete  =  0; 

{ 
q_l[i][j]   = 0; 
num_a[i][j] =   0; 
num_d[i][j] =   0; 

/*  RATE  =   SUM(mu[i])   +   lambda   */ 

} 

void 
{ 

} 

void 
{ 

evnext = (struct event *) malloc(SIZEV)• 
gene_event(); ' ' 

gene_event() 

double x; 
int key; 

X = expo(RATE, 3); 
evnext->evtime = tnow + x- 
key = (int) (25.0 * unif(6)); 
evnext->evtype = evtype[key]; key is from 0 to 24 */ 

arrv() 

} 

void 
{ 

/* pick_num is from 0 to 9 */ 
/* arrive in which queue? */ 

/* if not finish */ 

} 

void 
{ 

double x; 
int pick_num; 

pick_num = (int) (10 * unif(l))- 
arrv_to_q(route[pick_num]); 

arry_to_q(int qid) 

int i ; 

for (i = 0; i < SP_MUM; i++) 
if (ifinishfi]) 

{ 
num_ev[i]++; 
num_a[i][qid]++; 
if   (q_l[i][qid]   <  buffi][qid])   q_l[i][qid]++; 

if (num_ev[i] == EV NUM) 
{ 
finish[i] = TRUE; 
complete++; 

} 

dept(int qid) 

int i ; 

for (i = 0; i < SP_NUM; i++) 
if (!finish[i]) 

if (q_l[i][qid] > 0) 
/* if not a fictious event */ 

num_ev[i]++; 
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num_d[i][qid]++; 
q_l[i][qid]--; 

if (num_ev[i] == EV_NUM) 
{ 
finish[i] = TRUE; 
complete++; 
} 

} 
else num_waste++; 

/* NOTE: this is an extra counter compared to ASA */ 
} 

double unif(int i) 
{ 

long int a, b, c; 
double tern; 

a = ISEED[i] / 16384; 
b;= ISEED[i] % 16384; 
c = (13205 * a + 74505 * b) % 16384; 
ISEED[i] = (c * 16384 + 13205 * b) % 268435456; 

tem = ISEED[i] / 268435456.0; 
return(tem); 

} 

void gene_random_alloc(int num) 
{ 

int   i,   j ; 
double  sum; 
double  p[NUM_Q]; 

for   (i   =   0;   i  <  num;   i++) 
{ 
sum  -   0; 
for   (j   =   0;   j   <  NUM_Q;   j++) 

{ 
p[j]   =  unif(2); 
sum += p[j]; 
} 

buf[i][NUM_Q   -   1]    =   TOTAL_B; 
for   (j   =   0;   j   <  NUM_Q   -   1;   j++) 

buf[i][j]    =    (int)    (p[j]    *   TOTAL_B   /   sum); 
buf[i][NUM_Q  -   1]   -=  buf[i][j]; 
} 

for(j   =   0;   j   <  NUM_Q;   j++)   buf[l][j]++; 
} 

} 

double expo(double lambda, int i) 
{ 

double tem; 

tem = - 1.0 / lambda * log(unif(i)); 
return(tem); 
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/************************************************************************ 

ASA algorithm of multithread sample path generation * 
for systems consisting of parallel M/M/l/K queues * 

* 
Performance of interest: blocking probability * 

* 
* * 
* Jie Pan Last revised: 9/12/95 * 

CODES Laboratory * 
Department of Electrical and Computer Engineering * 
University of Massachusetts * 

* Amherst, MA 01003 * 
* * 
*************************************************************** 

~/post/simu/asa/asa.c 

In this 'max' version of ASA algorithm, the buffer size of each 
queue in the additional 'nominal' system is set to be the number 
of all buffers available to the whole system. 

Stopping criterion:    The total number of events, i.e., both 
arrivals (including those rejected) and 
departures, in each sample path of the 
constructed systems is 'EV_NUM'. 

V 

Buffer allocations for constructed systems may be generated 
randomly. 

#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 

#define NUM_Q   6      /* number of queues in one system */ 
#define TOTAL_B 20     /* number of total buffers in one system */ 
#define MAX_SP 53131   /* maximum number of multithread systems */ 

#define ARRV 6 
#define TRUE 1 
#define FALSE  0 

struct event{ 
double evtime; 
int evtype; 
struct event *next;    /* one direct link */ 
} *evlist; 

int SP_NUM; /* number of systems to be constructed */ 
int EV_NUM; /* number of events for each system */ 

int IRN; 

int complete, finish[MAX_SP]; 

long int num_ano, num_dno; 
long int num_ev[MAX_SP]; 
int num_a[MAX_SP] [NUM_Q] , num_d[MAX_SP] [NUM_Q], num_bk[MAX_SP] [NUM_Q] ; 
int bufno[NUM_Q], q_lno[NUM_Q]; 
int buf[MAX_SP][NUM_Q], q_l[MAX_SP][NUM_Q]; 

int SIZEV; 
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double tnow; 
double lambda; 
double mu[NUM_Q] {3.0, 2.0, 2.0, 3.0, 3.0, 2.0}; 

doubl e unif(); 
doubl e expo(); 

doubl e power() / 

void init(); 
void arrv () ; 
void arrv_to_q 0; 
void dept () ; 
void gene_new_ arrv() 
void gene_new_ dept() 
void det buf_a llocO 
void rdm buf_a llocO 
void instevl() / 
void output(); 

int route[10] {0, 1, 1, 2, 3, 3, 4, 4, 5, 5}; 

long int ISEED[11] = {1397, 2171, 5171, 7147, 9913, 4353, 3347, 6123, 
8749, 5371, 2789}; 

main() 
{ 

struct event *evptr; 
int i ; 
long int tern, sem; 

init(); 

while (complete < SP_NUM) 
{ 
evptr = evlist; 
evlist = evlist->next; 
tnow = evptr->evtime; 

switch (evptr->evtype) 
{ 
case ARRV: 

default: 

} 

free(evptr); 
} 

/* pick first event */ 
/* remove first event from list */ 
/* update time to next event time */ 

arrv(); 
break; 
dept(evptr->evtype); 
break; 

output 

tern = 0 t 

for (i =   0; l < SP NUM 
sem = ( int) ((num_ano 
printf( '\t %ld %ld %ld the 

} 

void init() 
{ 

i++) tern += num_ev[i]; 
num_dno) * 100.0 / tern); 

'$   \n" , tern, num_ano, sem) ; 
record the sum of all real events in 
simulation run, the actual number of 
arrivals in the additional 'nominal' 
sample path, and the percentage of the 
actual number of arrivals and departures 
in the 'nominal' over the first sum */ 
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} 

int i, j; 

SIZEV = sizeof(struct event); 

scanf("%d", &IRN); 
scanf("%d", &SP_NUM); 
scanf("%d", &EV_NUM); */ 

IRN = 4; 
SP_NUM = 1000; 
EV_NUM = 100000000; 

det_büf_alloc(); */ 

rdm_buf_alloc(SP_NUM); 

num_ano = 0; 
num_dno = 0; 

/* NOTE: these two are extra counters compared to SC */ 
for (i = 0; i < SP_NUM; i++) 

{ 
finish[i] = FALSE; 
num_ev[i] = 0; 
for (j = 0; j < NUM_Q; j++) 

{ 
q_l[i][j] = 0; 
num_a[i][j] = 0; 
num_d[i][j] = 0; 
num_bk[i][j] = 0; 
} 

} 

for (j = 0; j < NUM_Q; j++) q_lno[j] = 0; 

tnow = 0.0; 
lambda = 10.0; 
evlist = NULL; 

complete = 0; 

gene_new_arrv(); 

void gene_new_arrv() 
{ 

double x; 
struct event *evptr; 

x = expo(lambda, 0); /* use seed 0 */ 
evptr = (struct event *) malloc(SIZEV); 
evptr->evtime = tnow + x; 
evptr->evtype = ARRV; 

} 
instevl(evptr); 

void arrv() 
{ 

double x; 
int pick_num; 

pick_num = (int) (10 * unif(l));        /* pick_num is from 0 to 9 */ 
/* use seed 1 */ 

arrv_to_q(route[pick_num]);     /* arrive in which queue? */ 

gene_new_arrv(); 
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} 

void arrv_to_q(int qid) 
{ 

int l ; 

num ano++; /* nominal sample path */ 
~~   /* NOTE: this is one of extra counters compared to SC */ 

if (q_lno[qid] < bufno[qid]) 
{ 
q_lno[qid]++; 
if (q_lno[qid] == 1) gene_new_dept(qid); 
} 

for (i = 0; i < SP_NUM; i++)    /* perturbed sample paths */ 
if (!finish[i])        /* if not finish */ 

{ 
num_ev[i]++; 
num_a[i][qid]++; 
if   (q_l[i][qid]   <  buf[i][qid]) 

q_l[i][qid]++; 
G1 SG 

num_bk[i][qid]++; 

if (num_ev[i] == EV_NUM) 
{ 
finish[i] = TRUE; 
complete++; 
} 

} 

void gene_new_dept(int i) 
{ 

double x; 
struct event *evptr; 

x = expo(mu[i], 2);     /* use seed 2 */ 
evptr = (struct event *) malloc(SIZEV); 
evptr->evtime = tnow + x; 
evptr->evtype = i; 

instevl(evptr) 
} 

void dept(int qid) 
{ 

int i ; 

num dno++; /* nominal sample path */ 
/* NOTE: this is one of extra counters compared to SC */ 

q_lno[qid]--; 
if (q_lno[qid] > 0) gene_new_dept(qid); 

for (i = 0; i < SP_NUM; i++) /* perturbed sample paths */ 
if (!finish[i]) /* if not finish */ 

if (q_l[i][qid] > 0) 
{ 
num_ev[i]++; 
num_d[i][qid]++; 
q_l[i][qid]--; 

if   (num_ev[i]   ==  EV_NUM) 
{ 
finish[i]    =   TRUE; 
complete++; 
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} 

void instevl(struct event *p) 

struct event *q; 

q = evlist; 
/* q points to the head of the list in which p inserted */ 

if (evlist == NULL)     /* list is empty */ 

evlist = p; 
p->next = NULL; 

else 

} 

void output() 
{ 

{ 
if (p->evtime < evlist->evtime)        /* head of list */ 

p->next = evlist; 
evlist = p; 

else /* middle or end of list */ 

while ((q->next <= NULL) && (q->next->evtime < p->evtime)) 
q = q->next; 

p->next = q->next; 
q->next = p; 
} 

} 

int i, j , optimal; 
double qbkop[NUM_Q], qbk[NUM_Q]; 
double sbkop, sbk[MAX_SP], sbk_theo[MAX SP1• 
double tern, sem; ~ 

sbkop = 9.0; 

for (i = 0; i < SP_NUM; i++) 

tern = 0.0; 
sem = 0.0; 
for (j = 0; j   <  NUMJ2; j++) 

if   (!num_a[i][j]) 
oi0Q qbk[j]   =  l.o   *  num_bk[i][j]   /  num_a[i][j]; 

qbk[j]    =   0.0; 

printf Cbuf [%d] [%d]   =   %d  \t   qbk[%d][%d]   =   %f   \n" 
i,   j,   buf[i][j],   i,   j,   qbk[j]);   */ 

tern +=  num_a[i][j]■ 
sem +=  num_bk[i][j]■ 

sbk[i] = sem / tern; 
printf("sbk[%d]   =  %lf   \n  \n",   i,   sbk[i]);   */ 

sbk_theo[i]   = 0 1   *   (2.0   /   (power(3.0,   buf[i][0]   +  1)   -  1   0) 
+   1.0 / (power(2.0/   buf[i][2]   +   1)   -   1   0)) 
+   0.2 * (1.0   /   (buffi][1]   +   1.0) 
+  0.5 / (power(1.5,   buffi][3]   +  1)   -  1.0) 
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} 

+ 0.5 / (power(1.5, buf[i][4] + 1) - 1.0) 
+ 1.0 / (buf [i] [5] + 1) ) ; 

if (sbk[i] < sbkop) 
{ 
optimal = i; 
sbkop = sbk[i]; 
} 

} 

printfC'The optimal buffer allocation is the following: \n"); 
for (j = 0; j < NUM_Q; j++) . 

printf("\t The buffer size of queue %d = %d \n , j , 
buf[optimal] [j] ) ; . 

printfC'The optimal system blocking probability is %f \n", sbkop); 
printf("\t at the %d-th system \n \n", optimal); */ 

for (i = 0; i < SP_NUM; i++) 
printfC %f \n", sbk_theo [I] ) ; 

£or (i "PSLMI-VK '«vt %d \t %d   %d   %d   %d   «Sd\n-, 
sbktheo[i],   unif(4),   sbk[i],   i,   buf[i][0],   buf[i][l], 
buf[i][2],   buf[i][3],   buf[i][4],   buf[i][5]);   */ 

printf("\n  %ld  \t   %ld  \t   %ld  \n",   IRN,   SP_NUM,   EV_NUM); 

double unif(int   i) 
{ 

long  int  a,   t>,   c; 
double  tern; 

a   =   ISEED[i]   /   16384; 
b   =   ISEED[i]    %   16384; 
c   =   (13205   *   a  +  74505   *  b)   %   16384; 
ISEED[i]   =   (c   *   16384   +  13205   *  b)   %   268435456; 

tern  =   ISEED[i]    /   268435456.0; 
return(tern); 

} 

void rdm_buf_alloc(int num) 
{ 

int i, 3; 
double sum; 
double p[NUM_Q]; 

for   (j   =   0;   j   <   NUM_Q;   j++)   bufno[j]    =   TOTAL_B   +   1; 

for   (i   =   0;   i  <  num;   i++) 
{ 
sum =   0; 
for   (j   =   0;   j   <  NUM_Q;   j++) 

{ 
p[j]   -  unif(IRN); 
sum += p[j ] ; 
} 

buffi][NUM_Q   -   1]    =   TOTAL_B; 
for   (j   =   0;   j   <  NUM_Q  -   1;   j++) 

buf[i][j]    =    (int)    (p[j]    *   TOTAL_B   /   sum); 
buf[i][NUM_Q  -  1]   -= buf[i][j]; 

/*   this  is  not  a  truely random allocation  for  each queue  */ 
for   (j   =   0;   j   < NUM_Q;   j++)   buf[i][j]++; 
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} 

void det_buf_alloc() 
{ 

int   i,   j,   k,   1,   m,   n,   num_sys; 
double  tern; 

for   (i  =  0; 

num_sys 
for   (i   : 
for 
for 
for 
for 

(j 
(k 
(1 
(m 

i   <   NUM_Q;   i++)   bufno[i]    =   TOTAL_B   +   1; 

= 0, 
= 0; 
= 0; 
= 0; 
= 0; 
--   0; 

{ 
n  = 
if 

TOTAL 
j   < 
j   + 
j   + 
j   +k+l+m<  TOTAL  B 

_B + 1; i++) 
TOTAL_B + 1; j++) 
k < TOTAL_B + 1; k++) 
k + 1 < TOTAL B + 1; 1 + +) 

+ 1; m++) 

- l k - 1 TOTAL_B 
(n >= 0) 

{ 
buf[num_sys][0] = i 
buf[num_sys][1] = j 
buf[num_sys][2] = k 
buffnum_sys][3] = 1 
buf[num_sys][4] = m 
buf[num_sys][5] = n 

m; 

tern =   0 *   (2.0   /   (power(3.0,   buf[num_sys][0]   +1)   -   1   0)   +10 
/    (power(2.0,   buf[num_sys][2]   +   1)   -   1.0))   +02*   (10 
/   (buf[sys_num][1]   +   1.0)   + power(2.0,   buf[sys  num][31) 
/   (power(3.0,   buf[sys_num][3]   +   1)   -  power(2.07 
buf[sys_num] [3]   +   1))   + power(2.0,   buffsys  num] [4] 
(power (3.0,   buf [sys_num] [4]    ■   1 ^         '-""- 
buf[sys_num][4]   +  1))   +   1.0 

printf("\t   %lf   \n",   tern);   */ 

+   1)   -  power(2.0, 
/   (buf[sys_num][5] 

) / 

+ D) 

} 

num_sys++; 
} 

} 
SP_NUM = num_sys; 

double expo(double lambda, int i 
{ 

double tern; 

} 

tem = - 1.0 / lambda * log(unif(i)); 
return(tem); 

double power(double base, int i) 

double tem; 

tem = 1; 
while (i-- > 0) 

tem = tem * base; 
return(tem); 
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Generalized Stochastic Comparison Algorithm for Parallel 
*      Queueing Systems. 
* 

/ * 
* 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

* Jie Pan Last revised: 9/27/95 
* 
* CODES Laboratory 
* Department of Electrical and Computer Engineering 
* University of Massachusetts 
* Amherst, MA 01003 
* 

#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#define NUM_Q  6 
#define TOTAL_B 20 
#define MAX_SP 5000 

#define ARRV 6 
#define TRUE 1 
#define FALSE 0 
struct event{ 

double evtime; 
int evtype; 
struct event *next;     /* one direct link */ 
} *evlist; 

int SP_NUM; 
int EV_NUM; 
int IRN; 
int complete, finish[MAX_SP]; 
long int num_ano, num_dno; 

int^um.a^MAX^SP] [NÜM_Q] , num_d[MAX_SP] [NUM_Q] , num_bk [MAX_SP] [NUM_Q] ; 
int bufno[NUM_Q], q_lno[NUM_Q]; 
int buf[MAX_SP][NUM_Q], q_l[MAX_SP][NUM_Q]; 
int SIZEV; 
double tnow; 
double lambda = 10.0; 
double mu[NUM_Q] = {3.0, 2.0, 2.0, 3.0, 3.0, 2.0}; 
int MK, OPTIMAL; 
double SBKOP; 

double unif(); 
double expo(); 
double power(); 
void initstartO; 
void initbegin(); 
void init(); 
void arrv(); 
void arrv_to_q(); 
void dept(); 
void gene_new_arrv() 
void gene_new_dept() 
void rdm_buf_alloc(). 
void rdm_buf_alloc_first(); 
void instevl(); 
void output(); 
int route[10] - {0, 1, 1, 2, 3, 3, 4, 4, 5, 5}; 
long int ISEED[11] = {1397, 2171, 5171, 7147, 9913, 4353, 3347, 6123, 
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8749, 5371, 2789}; 

main() 
{ 

struct event *evptr; 
int i, j, k; 
int ic, jc; 
double sbk[MAX_SP], tern, sem; 

initstart(); 
for (k = 0; k < 1201; k++) 

{ 
MK = 1 + k / 500; 
initbegin(); 
for (j = 0; j < MK; j++) 

{ 
mit () ; 

} 

while (complete < SP_NUM) 
{ 
evptr = evlist; 
evlist = evlist->next; 
tnow = evptr->evtime; 
switch (evptr->evtype) 

{ 
case ARRV:      arrv(); 

break; 
default:       dept(evptr->evtype); 

break; 
} 

free(evptr); 
} 

SBKOP = 9.0; 
for (ic = 0; ic < SP_NUM; ic++) 

{ 
tern = 0.0; 
sem = 0.0; 
for (jc = 0; jc < NUM_Q; jc++) 

{ 
tern += num_a[ic][jc]; 
sem +=  num_bk[ic][jc]; 
} 

sbk[ic] = sem / tern; 
if (sbk[ic] < SBKOP) 

{ 
OPTIMAL = ic; 
SBKOP = sbk[ic]; 
} 

} 

if (OPTIMAL == 0) break; /* break loop j */ 

if (j == MK - 1) 
for (i = 0; i < NUM_Q; i++) 

buf[0][i] = buf[OPTIMAL][i]; 
} /* end of loop j */ 

output(k); 
} /* end of loop k */ 

void initstart() 
{ 

SIZEV = sizeof(struct event); 
IRN = 3; 
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SP_NUM = MAX_SP * 2 - 2 ; 
EV_NUM = 500; 
rdm_buf_alloc_first(); 

} 

void initbeginO 

SP_NUM  =    (int)    ((float)    (SP_NUM)    /   2.0)    +   1; 
rdm_buf_alloc(SP_NUM); 

} 

void init() 
{ 

int   i,   j ; 
num_ano  =   0; 
num_dno  =   0; 
for   (i   =   0;   i   <   SP_NUM;   i++) 

{ 
finish[i]    =   FALSE; 
num_ev[i]   -  0; 
for   (j   =   0;   j   <  NUM_Q;   j++) 

{ 
q_l[i][j]    =   0; 
num_a[i] [j]   =   0; 
num_d[i] [j]   =   0 ; 
num_bk[i][j]   =   0; 
} 

} 
for   (j   =   0;   j   <  NUM_Q;   j++)   q_lno[j]    =   0; 
tnow = 0.0; 
evlist = NULL; 
complete = 0; 
gene_new_arrv(); 

} 

void gene_new_arrv() 
{ 

double x; 
struct event *evptr; 
x = expo(lambda, 0); /* use seed 0 */ 
evptr = (struct event *) malloc(SIZEV); 
evptr->evtime = tnow + x; 
evptr->evtype = ARRV; 
instevl(evptr); 

} 

void arrv() 
{ 

double x; 
int pick_num; 
pick_num = (int) (10 * unif(l));        /* pick_num is from 0 to 9 */ 

/* use seed 1 */ 
arrv_to_q(route[pick_num]);     /* arrive in which queue? */ 
gene_new_arrv(); 

} 

void arrv_to_q(int qid) 
{ 

int i ; 
num_ano++; 
if (q_lno[qid] < bufno[qid]) 

{ 
q_lno[qid]++; 
if (q_lno[qid] == 1) gene_new_dept(qid); 

for (i = 0; i < SP_NUM; i++)    /* perturbed sample paths */ 
123 



} 

if (!fimsh[i]) /* if not finish */ 
{ 
num_ev[i]++; 
num_a[i][qid]++; 
if   (q_l[i][qid]   <  buf[i][qid]) 

q_l[i][qid]++; 
else 

num_bk[i][qid]++; 
if   (num_ev[i]   ==  EV_NUM) 

{ 
finish[i] = TRUE; 
complete++; 
} 

} 

void 
{ 

gene_new_dept(int i) 

double x; 
struct event *evptr; 
x = expo(mu[i], 2);    /* use seed 2 */ 
evptr = (struct event *) malloc(SIZEV); 
evptr->evtime = tnow + x; 
evptr->evtype = i; 
instevl(evptr); 

void 
{ 

} 

dept(int qid) 

int i ; 
num_dno++; 
q_lno[qid]--; 
if (q_lno[qid] > 0) gene_new_dept(qid 
for (x = 0; i < SP_NUM; i++) 

if (!finish[i]) 
if (q_l[i][qid] > 0) 

{ 
num_ev[i]++; 
num_d[i][qid]++; 
q_l[i][qid]--; 
if   (num_ev[i]   ==  EV_NUM) 

{ 
finish[i] = TRUE; 
complete++; 
} 

} 

/* perturbed sample paths */ 
/* if not finish */ 

void 
{ 

instevl(struct event *p) 

struct event *q; 
q = evlist; 
if (evlist == NULL) 

{ 
evlist = p; 
p->next = NULL; 
} 

else 

/* list is empty */ 

{ 
if (p->evtime < evlist->evtime) 

{ 
p->next = evlist; 
evlist = p; 
} 

else /* middle or end of list */ 
{ 
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while ((q->next != NULL) && (q->next->evtime < p->evtime) 
q = q->next; 

p->next = q->next; 
q->next = p; 
} 

} 

void output(index) 
{ 

double sbkop; 

} 

sbkop  =   0.1   *   (2.0   /   (power(3.0,   buf[0][0]   +  1)   -   1.0)   +  1.0   / 
(power(2.0,   buf[0][2]   +  1)   -   1.0))   +  0.2   *   (1.0   / 
(buf[0][l]   +  1.0)   +  0.5   /   (power(1.5,   buf[0][3]   +  1)   - 
1.0)   +   0.5   /   (power(1.5,   buf[0][4]   +  1)   -   1.0)   +  1.0   / 
(buf [0] [5]   +  D) ; 

printf("%d \t  %lf  \t  %d %d %d %d %d %d  \n",   index,   sbkop, 
buf[0][0],   buf[0][l],   buf[0][2],   buf[0][3],   buf[0][4], 
buf[0][5]); 

void rdm_buf_alloc_first() 
{ 

int j ; 
double sum; 
double p[NUM_Q]; 

buf[0][NUM_Q   -   1]    =   TOTAL_B; 
sum  =   0; 
for   (j   =   0;   j   <  NUMJ2;   j++) 

{ 
p[j]   =  unif(IRN); 
sum +=  p[j]; 
} 

for   (j   =   0;   j   <  NUM_Q   -   1;   j++) 
{ 
buf[0][j]   =   (int)    (p[j]    *   TOTAL_B   /   sum); 
buf[0][NUM_Q   -   1]    -=  buf[0][j]; 
} 

for   (j   =   0;   j   <  NUM_Q;   j++)   buf[0][j]++; 
} 

void rdm_buf_alloc(int  num) 
{ 

int i, j; 
double sum; 
double p[NUM_Q]; 

for (j = 0; j < NUM_Q; j++) bufno[j] = TOTAL_B + 1; 
for (i = 1; i < num; i++) 

{ 
buf[i][NUM_Q   -   1]    =   TOTAL_B; 
sum  =   0; 
for   (j   =   0;   j   <   NUM_Q;   j++) 

{ 
p[j]    =   unif(IRN); 
sum +=  p[j]; 
} 

for   (j   =   0;   j   <  NUM_Q   -   1;   j++) 
{ 
buf[i][j]   =   (int)    (p[j]   *  TOTAL_B  /   sum); 
buf[i][NUM_Q  -   1]    -=  buf[i][j]; 
} 

for   (j   =   0;   j   <  NUM_Q;   j++)   buf[i][j]++; 
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} 

double expo(double lambda, int i) 
{ 

double tem; 
tem = - 1.0 / lambda * log (umf (i) ) ; 
return(tem); 

} 

double unif(int i) 
{ 

long int a, b, c; 
double tem; 
a = ISEED[i] / 16384; 
b = ISEED[i] % 16384; 
c - (13205 * a + 74505 * b) % 16384; 
ISEED[i] = (c * 16384 + 13205 * b) % 268435456; 
tem = ISEED[i] / 268435456.0; 
return(tem); 

} 

double power(double base, int i) 
{ 

double tem; 
tem = 1; 
while (i-- > 0) tem = tem * base; 
return(tem); 

} 
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/ 
* 
*      Stochastic Descent Algorithm for Parallel Queueing Systems 

tit********************************************************************** 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

Jie Pan Last revised: 9/27/95 
* 
* 
* 
* CODES Laboratory 
* Department of Electrical and Computer Engineering 
* University of Massachusetts 
* Amherst, MA 01003 
* 

iinclude <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#define NUM_Q   6 
#define TOTAL_B 20 
#define MAX_SP 13 

#define ARRV 6 
#define TRUE 1 
#define FALSE 0 
struct event{ 

double evtime; 
int evtype; 
struct event *next;     /* one direct link */ 
} *evlist; 

int SP_NUM; 
int EV_NUM, EV_NUMA; 
int IRN, JRN, KRN, LRN; 
int complete, finish[MAX_SP]; 
long int num_ano, num_dno; 
long int num_ev[MAX_SP]; 
int num_a[MAX_SP][NUM_Q], num_d[MAX_SP][NUM_Q], num_bk[MAX_SP][NUM_Q]; 
int bufno[NUM_Q], q_lno[NUM_Q]; 
int buf[MAX_SP][NUM_Q], q_l[MAX_SP][NUM_Q]; 
int SIZEV; 
double tnow; 
double lambda = 10.0; 
double mu[NUM_Q] = {3.0, 2.0, 2.0, 3.0, 3.0, 2.0}; 
int MK, UOPTIMAL, DOPTIMAL; 
double SBKOP; 

double unif(); 
double expo(); 
double power(); 
void initstart(); 
void init(); 
void arrv(); 
void arrv_to_q(); 
void dept(); 
void gene_new_arrv(); 
void gene_new_dept(); 
void buf_alloc_no(); 
void buf_alloc_all(); 
void det_buf_alloc_first(); 
void rdm_buf_alloc_first(); 
void instevl(); 
void output(); 
int route [10] = {0, 1, 1, 2, 3, 3, 4, 4, 5, 5}; 
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long int ISEED[11] = {1397, 2171, 5171, 7147, 9913, 4353, 3347, 6123, 
8749, 5371, 2789}; 

main() 
{ 

struct event *evptr; 
int i, j, k; 
int ic, jc; 
double sbk[MAX_SP], tern, sem; 

buf_alloc_no(); 
initstart(); 
for (k = 0; k < 101; k++) 

{ 
MK = 1 + k / 500; 
EV_NUMA = EV_NUM * MK; 
buf_alloc_all(SP_NUM); 
init(); 

while (complete < SP_NUM) 
{ 
evptr = evlist; 
evlist = evlist->next; 
tnow = evptr->evtime; 
switch (evptr->evtype) 

{ 
case 7ARRV:      arrv(); 

break; 
default:       dept(evptr->evtype); 

break; 
} 

free(evptr); 
} 

for (ic = 0; ic < SP_NUM; ic++) 
{ 
tern = 0.0; 
sem = 0.0; 
for (jc = 0; jc < NUM_Q; jc++) 

{ 
tern +=  num_a[ic][jc]; 
sem +=  num_bk[ic][jc]; 
} 

sbk[ic]   =   sem  /   tern; 
} 

SBKOP   =   9.0; 
for (ic = 0; ic < SP_NUM / 2; ic++) 

{ 
if (sbk[2*ic+2] < SBKOP) 

{ 
SBKOP = sbk[2*ic+2]; 
UOPTIMAL = ic; 
} 

} 
SBKOP = 9.0; 
for (ic = 0; ic < SP_NUM / 2; ic++) 

if (sbk[2*ic+l] < SBKOP) 
{ 
SBKOP = sbk[2*ic+l]; 
DOPTIMAL = ic; 
} 

output(k); 
} /* end of loop k */ 

} 
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void initstartO 
{ 

SIZEV =  sizeof(struct  event); 
IRN  =   4; 
JRN  =   2, 
KRN  =   3, 
LRN  =   1, 
SP_NUM   =   MAX_SP; 
EV_NUM  =   5000; 
det_buf_alloc_first() ; 

/* rdm_buf_alloc_first() ;   */ 
} 

void init() 
{ 

int i, j ; 
num_ano = 0 ; 
num_dno = 0; 
for (i = 0; i < SP_NUM; i++) 

{ 
finish[i] = FALSE; 
num_ev[i] = 0; 
for (j = 0; j < NUM_Q; j++) 

{ 
q_l[i][J] = 0; 
num_a[i][j] = 0; 
num_d[i][j] = 0; 
num_bk[i][j] = 0; 
} 

} 
for (j = 0; j < NUM_Q; j++) q_lno[j] = 0; 
tnow = 0.0; 
evlist = NULL; 
complete = 0; 
gene_new_arrv(); 

} 

void gene_new_arrv() 
{ 

double x; 
struct event *evptr; 
x = expo(lambda, KRN); /* use seed KRN */ 
evptr = (struct event *) malloc(SIZEV); 
evptr->evtime = tnow + x; 
evptr->evtype = ARRV; 
instevl(evptr); 

} 

void arrv() 
{ 

double x; 
int pick_num; 
pick_num = (int) (10 * unif(JRN));      /* pick_num is from 0 to 9 */ 

/* use seed JRN */ 
arrv_to_q(route[pick_num]); /*   arrive   in which queue?   */ 
gene_new_arrv(); 

} 

void arrv_to_q(int qid) 
{ 

int i ; 
num_ano++; 
if (q_lno[qid] < bufno[qid]) 

{ 
q_lno[qid]++; 
if (q_lno[qid] == 1) gene_new_dept(qid); 
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} 
for (i = 0; i < SP_NUM; i++)    /* perturbed sample paths */ 

if (!finish[i])        /* if not finish */ 
{ 
num_ev[i]++; 
num_a[i][qid]++; 
if   (q_l[i][qid]   < buf[i][gid]) 

g_l[i][qid]++; 
else 

num_bk[i][qid]++; 
if   (num_ev[i]   ==  EV_NUMA) 

{ 
finish[i] = TRUE; 
complete++; 
} 

} 

void gene_new_dept(int i) 
{ 

double x; 
struct event *evptr; 
x = expo(mu[i], LRN);   /* use seed LRN */ 
evptr = (struct event *) malloc(SIZEV); 
evptr->evtime = tnow + x; 
evptr->evtype = i; 
instevl(evptr); 

} 

void dept(int qid) 
{ 

int i ; 
num_dno++; 
q_lno[qid]--; 
if (q_lno[qid] > 0) gene_new_dept(qid); 
for (i = 0; i < SP_NUM; i++) /* perturbed sample paths */ 

if (!finish[i]) /* if not finish */ 
if (q_l[i][qid] > 0) 

{ 
num_ev[i]++; 
num_d[i][qid]++; 
q_l[i] [qid]—; 
if   (num_ev[i]   ==  EV_NUMA) 

{ 
finish[i] = TRUE; 
complete++; 
} 

} 
} 

void instevl(struct event *p) 
{ 

struct event *q; 
q = evlist; 
if (evlist == NULL)     /* list is empty */ 

{ 
evlist = p; 
p->next = NULL; 
} 

else 
{ 
if (p->evtime < evlist->evtime)        /* head of list */ 

{ 
p->next   =  evlist; 
evlist   = p; 
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else /* middle or end of list */ 
{ 

while ((q->next != NULL) && (q->next->evtime < p->evtime) 
q = q->next; 

p->next = q->next; 
q->next = p; 
} 

} 
} 

void output(index) 
{ 

double sbkop; 

} 

sbkop  =   0.1   *   (2.0   /   (power(3.0,   buf[0][0]   +  1)   -   1.0)   +  1.0   / 
(power(2.0,   buf[0][2]   +   1)   -   1.0))   +   0.2   *   (1.0   / 
(buf[0][l]   +   1.0)   +   0.5   /   (power(1.5,   buf[0][3]   +   1)   - 
1.0)   +   0.5   /    (power(1.5,   buf[0][4]   +   1)    -   1.0)   +   1.0   / 
(buf[0][5]   +   1)); 

printf("%d  \t  %lf   \t  %d %d  \t  %d %d  %d  %d %d %d  \n",   index,   sbkop, 
UOPTIMAL,   DOPTIMAL,   buf[0][0],   buf[0][l],   buf[0][2], 
buf[0][3],   buf[0][4],   buf[0][5]); 

buf[0][UOPTIMAL]    =  buf[0][UOPTIMAL]    +   1; 
buf[0][DOPTIMAL]    =   buf[0][DOPTIMAL]    -   1; 

void buf_alloc_no() 
{ 

int   j ; 
for   (j   =   0;   j   <   NUM_Q;   j++)   bufnofj]    =   TOTAL_B   +   1; 

} 

void det_buf_alloc_first() 
{ 

int j ; 

buf[0][0] = TOTAL_B; 
for (j - 1; j < NUM_Q; j++) 

{ 
buf[0][j] = 0; 
} 

for (j = 0; j < NUM_Q; j++) buf[0][j]++; 
} 

void rdm_buf_alloc_first() 
{ 

int j ; 
double sum; 
double p[NUM_Q]; 

buf[0][NUM_Q   -   1]    =   TOTAL_B; 
sum  =   0; 
for    (j   =   0;    j   <   NUM_Q;    j++) 

{ 
p[j]    =   unif(IRN); 
sum  +=   p[j]; 
} 

for   (j   =   0;   j   <   NUM_Q   -   1;   j++) 
{ 
buf[0][j]   =   (int)    (p[j]    *   TOTAL_B   /   sum); 
buf[0][NUM_Q   -   1]    -=  buf[0][j]; 
} 

for   (j   =   0;   j   <  NUM_Q;   j++)   buf[0][j]++; 

1 



void buf_alloc_all(int  num) 
{ 

int   i,   j ; 

for   (i   =  1;   i  <  num;   i++) 
for   (j   =   0;   j   <  NUM_Q;   j++) 

buf[i][j] = buf[0][j]; 

for   (j   =   0;   j   <   NUM_Q;   j++) 
{ 
buf[2*j+l][j]    =buf[0][j]    -   1; 
buf[2*j+2] [j]    =  buf[0][j]    +   1; 
} 

} 

double expo(double lambda, int i) 
{ 

double tern; 
tern = - 1.0 / lambda * log(unif(i)); 
return(tern); 

} 

double unif(int i) 
{ 

long int a, b, c; 
double tern; 
a = ISEEDfi] / 16384; 
b = ISEED[i] % 16384; 
c = (13205 * a + 74505 * b) % 16384; 
ISEED[i] = (c * 16384 + 13205 * b) % 268435456; 
tern = ISEED[i] / 268435456.0; 
return(tern); 

} 

double power(double base, int i) 
{ 

double tern; 
tern = 1; 
while (i-- > 0) tern = tern * base; 
return(tern); 

} 
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MISSION 
OF 

ROME LABORATORY 

Mission. The mission of Rome Laboratory is to advance the science and 
technologies of command, control, communications and intelligence and to 
transition them into systems to meet customer needs. To achieve this, 
Rome Lab: 

a. Conducts vigorous research, development and test programs in all 
applicable technologies; 

b. Transitions technology to current and future systems to improve 
operational capability, readiness, and supportability; 

c. Provides a full range of technical support to Air Force Material 
Command product centers and other Air Force organizations; 

d. Promotes transfer of technology to the private sector; 

e. Maintains leading edge technological expertise in the areas of 
surveillance, communications, command and control, intelligence, 
reliability science, electro-magnetic technology, photonics, signal 
processing, and computational science. 

The thrust areas of technical competence include: Surveillance, 
Communications, Command and Control, Intelligence, Signal Processing, 
Computer Science and Technology, Electromagnetic Technology, 
Photonics and Reliability Sciences. 


