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Abstract 

The understanding of the fundamental mechanisms involved in the interaction between bubbles/free- 
surfaces and vortical flows is of relevance to many important naval applications. Classical assump- 
tions of bubble sphericity and decoupling between bubble and flow behavior prevent one from cap- 
turing essential elements of the interaction, and might lead to incorrect conclusions with serious 
consequences. Bubble motion and deformation are seen to be of great importance for most bubbles 
in the size spectrum. In this report studies on various aspects of bubble interaction with vortical 
flows, and the appearance of sheet cavitation on hydrofoils in vortical flows are reported. 
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Chapter I 

INTRODUCTION 

1 Overall summary 

This report summarizes work focused on the development, validation, and application of numerical 
and asymptotic methods for the description of the microscale dynamics of bubbles in non-uniform 
flow, and the modelling of cloud cavitation inception.   Specific areas addressed include: 

• The modeling of the dynamic behavior of a bubble in a vortex. This considers a one- 
way interaction model, with the large bubble deformation and dynamic behavior described 
numerically using a three dimensional boundary element method (Chapter 2). 

• The inception of cavitation in line vortices using a fully viscous model (Chapter 3). 

• The development of a new coupled Boundary Element/ Vortex Element method for modeling 
the interaction of bubbles and vortical structures. This model is then used to study the two- 
way interaction between a bubble and a ring vortex, and between a bubble and a columnar 
vortex (Chapter 4). 

• A model for the inclusion of the dynamics of cavitation nuclei in the liquid and their inter- 
action with the flow-field and structures such as attached cavities on submerged structures 
(Chapter 5). 

• The modeling of cavitation inception and cavity dynamics over hydrofoils or propeller blades 
(Chapter 6). 

2 Summary of the approaches used 

The following briefly summarizes the methods used. These methods are discussed in greater detail 
in the following chapters. 
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2.1 Axisymmetric bubble vortex interaction 

The dynamics of a bubble centered on a line vortex was studied using successively two approaches. 
In a first approach the influence of the vortical flow field on the dynamics of the captured bubble 
was studied using an axisymmetric boundary element method. In this case the interaction con- 
sidered was one-way in that the vortical flow field affected the bubble behavior while the basic 
vortex flow remained unaffected by the bubble dynamics which was not allowed to generate any 
additional vorticity. In a subsequent approach the influence of the dynamics of the captured bub- 
ble on the vortical flow field was studied using a singular perturbation technique, in which the 
influence of the axisymmetric bubble was modeled using the Navier-Stokes' equation under the 
assumption that the bubble radial dimension was much smaller than the vortex core character- 
istic size. Both approaches indicated that there was strong interaction, and pointed to the need 
for more sophisticated modeling of the complex dynamics. The two-way interaction can be used 
to generated engineering curves for cavitation inception in vortical field more adapted than the 
classical pressure / radius diagram for static spherical bubble equilibrium. 

2.2 3D two-way vortical flow field / bubble interaction 

To describe the two-way interaction between the bubble dynamics and a vortex field around it, a 
coupled boundary element/vortex element code was developed and implemented. DYNAFLOW'S 

boundary element method code 3DynaFS was coupled with our implementation of a vortex 
element method that models the evolving vorticity field. 

• In the time stepping procedure, the coupling between the two methods is achieved through 
the velocity and the pressure fields which are used at each time step to update the positions 
of the vortices and the cavity free nodes. 

• In our early approach we used a potential representation of the vorticity outside of the 
vortical region, which allowed us through application of a modified Bernoulli equation for 
the vortical field to compute the pressure field due to the vorticity and use only the BEM. 
Since such an approximation neglects any modification of the vorticity field by the bubble 
presence and behavior, the new coupled BEM/VEM formulation allows for a more precise 
description. In this formulation, the dynamic pressure at a field point is found to satisfy a 
Poisson type equation. 

• This Poisson equation is solved with the same BEM method used for the velocity potential, 
with the right-hand-side handled by a so-called dual reciprocity method. The right hand 
side of the Poisson equation is represented by a sum of basis functions (here the same as 
those used to represent the vorticity field) which satisfy the Laplace equation and result 
in elimination of the volume integral terms in Green's equation. This results again in a 
boundary only formulation and a modified and still efficient boundary element method. 
Such complementary usage of the same methods results in a very efficient computational 
code which adds the advantages of both boundary element and the vortex element method. 
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• The model accounts for viscous effects through vorticity generation from a solid surface and 
vorticity decay with time. This allows us to model the interaction of bubbles and the vortical 
boundary layer of an airfoil. 

Results to date show potential for significant effects of the bubbles on the vortex field and vice 
versa. The unsteady effects are not negligible and hence has significant implications on cavitation 
phenomena where the bubbles find themselves in intense time varying vortical regions. 

2.3    Modeling of unsteady sheet cavitation and cloud inception on an 
airfoil 

We have initiated a detailed investigation of cavity formation on an airfoil or propeller blade, 
which would include the interaction with the boundary layer, and a stream of travelling nuclei in 
the flow. The above mentioned BEM and coupled BEM/VEM codes are used to model this type 
of flow and the phenomena involved. The main components of our model are the following: 

• The surface of the blade is discretized with surface panels. The potential flow around this 
geometry is found using the boundary element method. 

• Panels are turned into free surface panels if the pressure on the corresponding nodes drop 
below the vapor pressure. 

• These free panels then form the surface of a sheet cavity that is allowed to behave dynamically 
as a highly distorted bubble but these panels are prevented from penetrating the actual blade 
surface. 

• The vorticity field, shear and boundary layer around the body are modeled by distributed 
vortex elements in the flow region. Their subsequent evolution is determined by solution of 
the vortex element method problem. 

• The body with the attached cavity sheds vorticity into the flow which are subsequently 
modeled by vortex elements. 

• Any freely travelling bubbles or nuclei are modeled by singularity distributions and by an 
asymptotic multipole expansion scheme. 

This effort is our first attempt to model the unsteady three-dimensional flow around an airfoil 
with sheet and travelling bubble cavitation and the breakup of the sheet into bubble clouds at the 
end of the cavity. 

Parts of the above described codes have been adapted to specialized super-computer architec- 
tures (CRAY and SGI power challenge). 
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Chapter II 

BUBBLE VORTEX ONE WAY 
INTERACTION1 

1    Introduction 

The simultaneous presence of bubbles and vortices is typical of many high velocity turbulent 
flows. Spectacular examples can be observed with propellers, where at high rotational speeds 
the helicoidal tip vortices formed at the tip of each blade 'cavitate' and become sites of bubble 
concentration and fluid vaporization into 'tip vortex cavities' (see photograph in Figure II.1 a). 
While for practical reasons engineers tend to superficially address the fundamental problem - by 
stating, for example, that cavity formation in the vortex will occur if the pressure on the center line 
drops in the monophase model below the liquid vapor pressure-, a closer look at the fundamental 
processes at work reveals that the actual phenomenon is rather very complex and very poorly 
understood. Questions such as how does a microscopic bubble behave in the presence of the 
vortex ..., or how and to what extent the presence of bubbles modifies the flow field of the vortex 
... have, at this point, only preliminary answers or no answers at all. 

The interaction between bubbles and vortex flows is in fact of relevance to several fluid en- 
gineering problems. Important examples include cavitation in shear layers, boundary layers, tip 
vortex cavitation, bubbles in the shear layer of submerged jets, cavitation behind orifices, bub- 
bles in separated flow areas (see Figure 11.16), microbubbles in boundary layers, ...etc. In the 
above mentioned flows, bubbles are held responsible for dramatic effects such as noise generation, 
materials erosion, and bubble drag reduction. These effects, experimentally observed and widely 
accepted, are not yet completely understood. Therefore, a satisfactory control of the corresponding 
deleterious effects is not presently possible. 

This chapter will try to model the problem and present some proposed explanations and 
methods for solution. Some of these methods of solution are reconsidered further in the following 
chapters. 

lrThis chapter is adapted directly from our publication in Reference [1], 
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tim^mm 

Figure II.l: Practical examples of bubbles and vortices, a) Tip vortex cavitation on a propeller 
[2]. b) Vortex cavitation in the separated region behind a cylinder (courtesy cc. J.Y Billard, Ecole 
Navale, Brest, France [3]). 

1.1    Mechanistic Description 

When a bubble approaches a region of high vorticity in a liquid, it is accelerated towards the 
center of the vortex. The asymmetric pressure field pushes the bubble towards the vortex axis 
while it is swirling. On its path the bubble experiences a decreasing ambient pressure which can 
lead to an increase in the bubble size. Simultaneously, since the non uniformity of the pressure 
field around the bubble increases with proximity to the vortex axis, bubble shape deformation 
increases. An explosive bubble growth is provoked if the pressure in the vortex field drops below 
the bubble 'critical pressure', pc. For a spherical bubble of equilibrium radius r0 when the ambient 
pressure is P0, this pressure is defined as the pressure below which an equilibrium bubble radius 
does not exist. In cavitation studies within the assumption of an isothermal law of behavior of 
the gas included in the bubble this pressure is defined by2 

Pc = Pv 
4a 
3rv' 

where a is the surface tension parameter, and rc is the ' critical radius' given by 

r, = 
2a Po-Pv + 

2(7 
1/2 

(II.l) 

(II.2) 

where Pv is the liquid vapor pressure (see for example  [5]). 

2This is obtained by considering Equation 11.38, writing V =§7rrf and Vo=f 7rr$ , and solving for the minimum 
of the function PL{V). 
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Over the last decade several investigators have addressed the phenomenon of bubble capture 
by a vortex [6]-[10]. However, these studies made the strong simplifying assumption that the 
bubble, even though able to undergo volume changes, remains spherical. In addition, the type of 
interactions they considered was one-sided, since they did not consider vortex flow modification 
by the presence and behavior of the bubble. More recently, [11] considered a broader approach 
where bubble deformation and motion were coupled while neglecting flow field modification by 
the bubble presence. This study showed that the pressure gradient across the bubble can lead 
to significant departure from bubble sphericity, and led to the suggestion that the deformation 
and later splitting of the bubble during its motion towards the vortex center is, in addition to its 
volume change, the main source of noise in vortex cavitation. This appears to explain the reason 
for the location of tip vortex noise at cavitation inception very close to the blade [12], and is in 
agreement with recent observations by [13] about bubble capture in tip vortex cavitation. We will 
consider the details of such approaches in the following sections. 

One can distinguish three phases in the interactive dynamics of bubbles and vortices: 

a) bubble capture by the vortex, 

b) interaction between the vortex and an initially quasi-spherical bubble on its axis, and 

c) dynamics of elongated bubbles on the vortex axis. 

After some phenomenological and order of magnitude considerations of the phenomena at 
hand, we will consider each of the three phases and the method of solution proposed for their 
study. 

2      Order of magnitude considerations 

In order to analyze the problem of bubble capture and behavior in a line vortex let us consider as 
an example the Rankine vortex flow field. Let us denote as V the vortex circulation, Rc the radius 
of the viscous core, and u0 the only non-zero velocity component. For distances r smaller than Rc 

the flow has a solid body rotation behavior (velocities vary as r), while for distances r larger than 
Rc the flow behaves as in an ideal inviscid irrotational vortex (velocities vary as 1/r). For such a 
flow the pressure field is known. A key parameter which appears in the pressure expression is the 
"swirl parameter", £2, defined as: 

O = 2ES21M- f (II.3) 
Poo 

which characterizes the intensity of the pressure drop due to the rotation relative to the ambient 
pressure, p^. To illustrate the importance of this parameter, we normalize the pressure with p^,, 
to obtain the following nondimensional expressions for the pressure and the pressure gradient: 

ft dp     2tt 
r"' df      r6 

dp 

df 
p(f)   =   l-ft(2-r2);        f? = 2ftr;        r < 1, (Ü.4) 
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with , . 

~r = h      ^ = T1- (IL5) 
■tic Poo 

Note that the pressure on the vortex axis is (1 - 2Ü) and goes to zero when Q approaches 1/2. 
The pressure gradient steepens in the inviscid region when the viscous core is approached, 

achieves its maximum at r = 1, and levels off in the viscous core close to the vortex axis. If a 
bubble is subjected to such a pressure field, it will experience a higher liquid pressure on its right 
side than on its left side, the difference being greater the larger the bubble is. Similarly, the bubble 
is 'sheared', since fluid particles on the bubble / liquid interface experience different velocities. 
The type of shearing action depends on the position of the bubble relative to the viscous core and 
inviscid fluid boundary, Rc. If the bubble is fully immersed in the inviscid region of the flow, fluid 
particles on its left side will experience larger velocities, while if it is fully immersed in the solid 
body rotation region of the flow fluid particles on its right side will experience larger velocities. 
The most complex situation is when the bubble is partly in the viscous core and partly in the 
inviscid region. In that case, it is expected that the bubble behavior will be vortex flow model 
dependent, since in fact the sharp separation between the two regions is purely mathematical, and 
is a very schematic representation of the physical reality. 

Due to the pressure and velocity gradients the bubble is accelerated toward the axis while 
somewhat growing and deforming. Therefore, depending on its size and position, the bubble 
experiences a pressure variation along its surface and a slip velocity relative to the surrounding 
fluid. This results in some degree of bubble shape deviation from sphericity. The importance of 
this deviation is a function of the relative orders of magnitude of the pressure gradient, the bubble 
wall acceleration due to volume change, and surface tension forces. 

An evaluation of the bubble wall acceleration can be obtained from a characteristic bubble 
radius, Rb, and from the Rayleigh time, rR, time needed for a empty bubble to collapse from its 
radius Rb to 0, under the influence of the pressure outside the bubble [14]. For the present problem 
let's take for characteristic outside local pressure the pressure at r = Rc, that is (p = 1 - f2) as 
the typical local ambient pressure, the Rayleigh time is then: 

T* = W    M    or (IL6) 

The characteristic bubble wall acceleration, ^growth, at r = Rc is then: 

This value is to be compared with the acceleration force gradient due to the pressure gradients 
expressed in (IV.39): 

_iap 
^gradient —       p.    i 

lgradient\r=Rl. —        D     > V    •   ) 
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The ratio between these two accelerations can be evaluated, for instance at r = Rc , to yield the 
simple expression: 

^gradient 

^growth 

2Rb    n pLgj 

r=Äc    Rc   i-n 

This expression underlines the relative importance between the characteristic bubble size Rb, 
and the viscous core size Rc. Keeping the surface tension parameter the same (see discussion on 
the Weber number below), the larger the ratio (II.9) is, the more important bubble deformation 
will be. This remark has important implications concerning scale effects where Rb and Rc do not 
increase in the same proportion between scale and model, since in most practical cases bubble 
distributions and sizes are uncontrolled and typically cannot be scaled much, while the size of the 
vortical regions depend on the selected geometry and velocity scales. 

The ratio (II.9) is only an indication of the relative importance of bubble growth and slip 
forces at a given position. In fact the relative importance of these competing forces changes 
during the bubble capture process. For instance, the acceleration of the bubble toward the vortex 
axis increases with its proximity to the viscous core while the growth rate tends toward a constant 
value (decreasing pressure gradient). This indicates that strong deformation becomes predominant 
relative to volume change when either the bubble is very close to the axis or the vortex circulation 
(the uswirl parameter", ft) becomes large. 

Another important physical factor which affects bubble shape is the surface tension. A nor- 
malized value of the corresponding pressure, a Weber number, can be constructed by combining 
the surface tension pressure (coefficient, a) with either the pressure difference between the inside 
and the outside of the bubble, or the amplitude of the variations of the local pressures (pressure 
gradients) around the bubble. The first number, Wei, is given by: 

= ft-Poo(i-Q)> (mo) 
a I Kb 

where p{ is the pressure inside the bubble. The second number, We2, is given by: 

'C2 
a/Rb' 

which can be written for r = Rc 

Poo    )("b\        W 
2Ü Rb 

^-^\a/Rb)\Rc)      %*-(!-ft)   Rc 

For small values of either of these two numbers tension forces are predominant and prevent bubble 
distortion and deviation from sphericity. Expressions (11.12) shows that this is possible only if ft 
is small and if Rb is much smaller than Rc. Therefore, as for the discussion on the acceleration 
forces, one should expect larger bubble deformations for stronger vortex circulations and larger 
bubbles. 
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3     Bubble capture by a vortex 
Despite several significant contributions to the study of bubble capture in a vortex, to our knowl- 

edge, no complete approach has yet been undertaken. While the overall approach, in terms of 
the investigation of the bubble motion has several similarities to the problem of the interaction 
between vortices and solid particles, the bubbles, unlike solid particles, will deform and change 
volume while interacting with the vortex flow field. The complexity of the problem has led the 
various contributors to neglect one or several of the factors in play, and therefore to only in- 
vestigate the influence of a limited set of parameters. The first approaches to the problem were 
attempted independently at about the same time by Bovis [6] and Latorre [15]. While both studies 
accounted for volume change during bubble motion, the basic assumptions and effects taken into 
account were quite different. Bovis [6, 7] considered the case where the flow velocities in the vortex 
flow are large enough to justify the assumptions of inviscid potential flow. This simplification, 
valid for instance in tip vortex cavitation where very large tangential velocities come into play, 
and when the bubble is not too close to the vortex axis, allows one to consider other important 
effects. For instance, one can then consider in a consistent fashion important phenomena such 
as the modification of the vortex flow by the presence of the bubble and the volume change and 
shape deformation of the bubble [16]. On the other hand, Latorre et al. in [15] and in following 
studies [10], in a more pragmatic approach, considered real fluid effects to determine the bubble 
motion equation, neglecting bubble shape deformation and modification of the flow by the bubble 
behavior. They coupled these equations with a spherical bubble dynamics model to deduce noise 
emission in tip vortex cavitation. 

In the potential flow approach, the expression of the modified flow field due to the presence of 
a spherical bubble is based on Weiss' theorem [17]. In a spherical system of coordinates centered 
at the sphere center, if the undisturbed potential flow in absence of the sphere of radius a, is 
$o(r,0,0),the velocity potential of the modified flow due to the presence of the fixed sphere is 
<&(r, 9, <j>) given by the equation: 

•(r, t, A = *„(<-, «,♦) + ! / *a<Mg;MW (H.13) 
0 

Using the notations in Figure II.2, the expression of the velocity potential of the vortex flow 
is* 

/    „   ,s      r i       rsin0sin</> m-m 
Mr,0,<ß) = — tan"1 -7^- .   J      , (H-14) 

2-K C(t) + r sm 0 cos <p 

where V is the vortex circulation and £(£) is the instantaneous distance between the vortex and 
the bubble center. 

Similarly, the expression of the velocity potential of the flow due to the bubble radius time 
o     .   .       . 

variations, a [t), is 

«,(,,«,«=-53älM, tins) 
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Vortex 
uris 

Figure II.2: Sketch of the geometric quantities involved in the analytical description of bubble 
capture in a vortex line. 

where ° indicates time differentiation. If we account for a relative velocity (V - VB) between the 
spherical bubble and the fluid the modified bubble velocity potential becomes: 

a2(t) a (t)     a3(t) 
$6(r,M) ^■(V-VB), (11.16) 

r 2r3 

where V(t) and VB(t) are the instantaneous fluid and bubble center velocities. The absolute 
velocity potential in the fixed coordinate system attached to the vortex, $a, which accounts for 
bubble motion and radius variations is then: 

$„ $o- 
o? a     a?(t) 
— —] 

r 2r3 

a2/*-2 

.(v-vB) + i/x d$o(x,e,<i>) 
dx 

dx. (11.17) 

The equation of motion of the sphere can now be obtained by using Bernoulli's equation and 
integrating the pressure over the surface of the sphere. The resulting force leads to the following 
dynamic equation: 

4    3   <*VB 

3™ Pb~dT "If dt 2 
nds, (11.18) 

where p and pb are the liquid and bubble content density, a the bubble radius, n the normal vector 
to the bubble surface, and dV-ß/dt the bubble acceleration. The evaluation of the expression 
(11.18) in the general case is rather complex. A simplified asymptotic expression can however be 
obtained when the radius of the bubble is small relative to the distance from the vortex axis, 

e = — < 1. 
Co 

The expression of the two nondimensional components of the acceleration are then: 

d%r 3 
P      2. dt 2C3 + {p+2jc      a' 

(11.19) 

(11.20) 
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dVb9 (11.21) 
dt c 

where the velocities are normalized by the tangential velocity at the location Co of the center of the 
bubble at t = 0, and time by the ratio between the distance Co, and that characteristic velocity, 

Vt = Vi   I 
2-KCO 

t = t   I 27TC (11.22) 

Similarly, C is normalized with the initial position, C = C/ Co- Note that V* = d(/dt, and that for 
a bubble pb/p is negligible. The third component along <f> is obviously zero due to the symmetry 
of the problem (see [31], for further discussions and derivations of the above equations). 

In the studies of [10] the bubble equation (11.18) is replaced by an empirical force balance 
equation first given by [18]: 

dVB 

dt 
3(V ■VB)- a 

3^ + ^|V-VB| 
p       4a 

(11.23) 

where Cd is a viscous drag coefficient. The first two terms on the right hand side come from 
inviscid flow considerations and are therefore included more formally and more accurately in 
Equation (11.18). The first term which results directly from the integration in (11.18) of the third 
term in Equation (11.17). It reflects the fact that any slip velocity between the bubble center and 
the surrounding fluid increases with an increase of the bubble wall velocity and a decrease of the 
bubble radius. Therefore, the bubble center decelerates during bubble growth and accelerates very 
much during the bubble collapse where both a and a"1 are very large. The second term is in fact 
an acceleration term of the relative or slip velocity, (V - VB), whose expression has been often 
debated in the multiphase flow community [19]. The third term is a viscous drag term where 
the drag coefficient Cd depends on the Reynolds number of the relative flow, Keb. [10] used the 
expression: 

C,= 
24 

n [1 + 0.197ft°f3 + 2.6 x KT4?^38] ;       with Keh = 
2a|V-VB| (11.24) 

■eb 

Other authors add a memory term (Basset term) which accounts for the full history of the slip 
velocity through an integration between 0 and t. Based on equation (11.23) the equations of motion 
of the bubble become for a Rankine vortex of viscous core radius, Rc: 

dVb br 

c 

dt 

dVbe 

dt 

dVbz 

dt 

= cyZe-w* a | Cd\6V\ 
a 4a 

3r2     /C. 

=   -2CH9 + 3£ 
a | Cd\SV\ 
a 4a 

(11.25) 

=   -3z 
a | Cd\6V\ 
a 4a 
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with 

\sv\ = K + vb] + vbl)\ 
f,   =   i-     f = JE^--C^;       C<^c (H.26) 

#c'      
S        27TÄ2       S   dt 

f   -   ?     *--I-_Ä-      OR 

Both approaches of [6] and [15] used the spherical bubble dynamics equation - known as the 
Rayleigh Plesset Equation [20] - to determine the bubble radius variation with time: 

P (a a +1 a) - 4^ = -P^t) + Pv - 21- + Pgo föf , (11-27) 

where \i is the dynamic viscosity, Pgo the initial gas pressure with k the polytropic gas constant, 
Pv the vapor pressure, and 7 the surface tension coefficient. Assumptions leading to this equation 
are described further below. 

3.1      Capture time 

In order to get an idea about the characteristic time for bubble capture by the vortex let us 
consider equations (11.20) and (11.21). If one considers - for an order of magnitude evaluation- 
the case where the rate of change of the bubble volume is negligible relative to the other terms, 
then the two equations of motion degenerate to: 

,d3l   =   _ J_ +MS 
dt 2C C 

dt 

where 

dt 2C 

dVb$    _      VwVbr (jj 28) 

M = ^ + l (II-29) 
P      2 

Equations (11.28) can be integrated to give the position of the non deforming bubble relative to 
the vortex axis versus time. Using dC/dt as an intermediary variable to express d/dt as d/d(-d(/dt, 
and assuming that the bubble center has no initial radial velocity (vro = 0), while the initial 
tangential velocity is v6o, Equation (11.28) leads to: 

Weit) = ^ and C© 
1      \      ol1/2 

(11.30) 

Equation (11.30) is very instructive in terms of the motion of a particle of density pb in a 
vortex flow field. Depending on the sign of (v^2 - ^the particle will be attracted or repelled 
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by the vortex. This term in fact expresses a balance between inertial (centrifugal) and pressure 
forces. For bubbles entrained in the flow field of the vortex, ve0 is between 0 and 1, and M is very 
close to |, since pb/p <1. As a result, 

C(t) c± ^/l + (^2-3)t2 < \A - 3t2. (11.31) 

The capture time, Tc, for a bubble initially at rest in the fluid (ve^(0) = 0) is therefore 

or       Tc = ^$. (11.32) 

In fact, for a sphere, only viscous effects can be responsible for bubble entrainment with the flow, 
since with the inviscid model Equations (11.18) clearly indicate that only radial forces on the 
sphere are non-zero. In the presence of viscosity friction forces enable entrainment of the bubble 
with the fluid. The characteristic time of viscous effects, or the order of magnitude of the time 
needed for the bubble to be entrained in the flow being 

Tv = £ (11.33) 
v 

the qualitative nature of the capture depends on the relative size between Tc and Tv. 

If Tc » Tv the capture time is too long, viscous effects are strong enough for the bubble 
to be entrained relatively rapidly by the liquid and it starts swirling around the vortex. 
It approaches the vortex axis little by little but very slowly. 

If Tc <C Tv the opposite situation occurs: viscous effects are very slow to take effect and 
the bubble is practically sucked into the vortex moving towards its center almost in a 
purely radial fashion. 

Finally, for Tc « Tv entrainment by the liquid and attraction towards the center of the 
vortex occur on the same time scale. Therefore, the bubble approaches the axis in 
a spiral fashion. The above reasoning allows one to define a "violent capture radius" 
around the vortex which is bubble radius dependent. A bubble of radius a0 will be 
sucked in by the vortex if it is within the radial distance Rapture '■ 

2-KV 
Rcapture = a0    \j   n_     . (11.34) 

4     Numerical study 

Due to the difficulty of the problem at hand and to the improved performance of high speed 
computers, numerical methods offer presently the best hope for solutions. Coupled with guidance 
from analytical, experimental and order of magnitude or phenomenological studies, a numerical 
approach can enable minimization of the number of physical phenomena to take into account. 
One of the numerical methods that has proven to be very efficient in solving the type of free 
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boundary problem associated with bubble dynamics is the Boundary Element Method. Among 
others, Guerri et al. [33], Blake et al. [65, 34], and Wilkerson [74] used this method in the 
solution of axisymmetric problems of bubble growth and collapse near boundaries. This method 
was extended to three-dimensional bubble dynamics problems by Chahine et al. [26, 21]. We 
describe here the model, then apply it to the case of bubbles in a vortex flow. ■ 

4.1     Bubble flow equations 

Let us consider the cases where the presence of a bubble in the flow has significant effects, that 
is cases where bubble volume time variations are not negligible. This implies large but subsonic 
bubble wall velocities. Therefore, one can neglect viscosity and compressibility effects on the 
bubble dynamics. These assumptions, classical in cavitation bubble dynamics studies, result in a 
flow that is potential, (velocity potential, $), and which satisfies the Laplace equation, 

V2$ = 0. (11.35) 

The solution must in addition satisfy initial conditions and boundary conditions at infinity, at the 
bubble walls and at the boundaries of any nearby bodies. 

At all moving or fixed surfaces (such as a bubble surface or a nearby boundary) an identity 
between fluid velocities normal to the boundary and the normal velocity of the boundary itself is 
to be satisfied: 

V$ • n = Vs • n, (11.36) 

where n is the local unit vector normal to the bubble surface and Vs is the local velocity vector 
of the moving surface. 

The bubble is assumed to contain noncondensible gas as well as vapor of the surrounding 
liquid. The pressure within the bubble is considered to be the sum of the partial pressures of 
the noncondensible gases, Pg , and that of the liquid vapor, Pv. Vaporization of the liquid is 
assumed to occur at a fast enough rate so that the vapor pressure may be assumed to remain 
constant throughout the simulation and equal to the equilibrium vapor pressure at the liquid 
ambient temperature. In contrast, since time scales associated with gas diffusion are much larger, 
the amount of noncondensible gas inside the bubbles is assumed to remain constant and the gas 
is assumed to satisfy the polytropic relation, 

PgV
k = constant, (11.37) 

where V is the bubble volume and k the polytropic constant, with k = 1 for isothermal behavior 
and k = cp/cv for adiabatic conditions. 

The pressure in the liquid at the bubble surface, PL , is obtained at any time from the following 
pressure balance equation: 

PL^Pv + PgoPQ)     -CO-, (IL38) 

where Pgo and Vo are the initial gas pressure and volume respectively, a is the surface tension, C 
is the local curvature of the bubble, and V is the instantaneous value of the bubble volume. In 
the numerical procedure Pgo and Vo are known quantities at t = 0. 
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4.2    Boundary integral method for three-dimensional bubble dynamics 

In order to render possible the simulation of single or multiple bubble behavior in complex geome- 
try and flow configurations including the full non-linear boundary conditions, a three-dimensional 
Boundary Element Method was developed and implemented by Chahine et al. [26, 67]. The 
Boundary Element Method was chosen here because of its computational efficiency. By consid- 
ering only the boundaries of the fluid domain it reduces the dimension of the problem by one. 
This method is based on Green's equation which provides $ anywhere in the domain of the fluid 
(field points P) if the velocity potential, $ , and its normal derivatives are known on the fluid 
boundaries (points M), and if $ satisfies the Laplace equation: 

_!_$ (   ) 
1      a~. M iv/rr>   / ds = air$(P), (11.39) 

On |MP |        dnK\MP 

where air = 0, is the solid angle under which P sees the fluid, 

a = 4, if P is a point in the fluid, 
a = 2, if P is a point on a smooth surface, and 
a < 4, if P is a point at a sharp corner of the surface. 

If the field point is .selected to be on the surface of any of the bubbles or on the surface of 
the nearby boundaries, then a closed set of equations can be obtained and used at each time step 
to solve for values of d$/dn (or $) assuming that all values of $ (or d$/dri) are known at the 
preceding step. 

To solve Equation (11.39) numerically, it is necessary to discretize each bubble into panels, 
perform the integration over each panel, and then sum up the contributions to complete the 
integration over the entire bubble surface. To do this, the initially spherical bubbles are discretized 
into a geodesic shape using flat, triangular panels. This discretization of a bubble shape is described 
in Chahine et al. [26, ?]. Equation (11.39) then becomes a set of N equations (JV is the number 
of discretization nodes) of index i of the type: 

£ (Aijl^) = £ {BiJ*j) ~ 07r$i;        * = *' "'N (IL40) 

where A{j and B{j are elements of matrices which are the discrete equivalent of the integrals given 
in Equation (11.39). 

To evaluate the integrals in (11.39) over any particular panel, a linear variation of the potential 
and its normal derivative over the panel is assumed. In this manner, both $ and d$/dn are 
continuous over the bubble surface, and are expressed as a function of the values at the three 
nodes which delimit a particular panel. Obviously higher order descriptions are conceivable, and 
would probably improve accuracy at the expense of additional analytical effort and numerical 
computation time. The two integrals in (11.39) are then evaluated analytically. The resulting 
expressions, too long to present here, can be found in [26]. 

In order to proceed with the computation of the bubble dynamics several quantities appearing 
in the above boundary conditions need to be evaluated at each time step.  The bubble volume 
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presents no particular difficulty, while the unit normal vector, the local surface curvature, and the 
local tangential velocity at the bubble interface need further development. In order to compute 
the curvature of the bubble surface a three-dimensional local bubble surface fit, f{x, y, z) = 0, is 
first computed. The unit normal at a node can then be expressed as: 

n = ±1L (11.41) 
|V/|' v 

with the appropriate sign chosen to insure that the normal is always directed towards the fluid. 
The local curvature is then computed using 

C = V-n. (H-42) 

To obtain the total fluid velocity at any point on the surface of the bubble, the tangential 
velocity, Vt , must be computed at each node in addition to the normal velocity, Vn = d$/dn 
n. This is also done using a local surface fit to the velocity potential, $; = h(x,y,z). Taking 
the gradient of this function at the considered node, and eliminating any normal component of 
velocity appearing in this gradient gives a good approximation for the tangential velocity 

Vt = n x (V$i x n). (H.43) 

The basic procedure can then be summarized as follows. With the problem initialized and 
the velocity potential known over the surface of the bubble, an updated value of d$/dn can be 
obtained by performing the integrations in (11.39) and solving the corresponding matrix equation 
(11.40). D$/Dt is then computed using a "modified" Bernoulli equation (see Equation (11.51) 
below). Using an appropriate time step all values of $ on the bubble surface can then be updated 
using $ at the preceding time step and D$/Dt, 

°*     » + f»» + V.Vv». (11.44) 
Dt       dt      \dn 

In the results presented below the time step, dt, was based on the ratio between the length of 
the smaller panel side, lmin and the highest node velocity, Vmax. This choice limits the motion of 
any node to a fraction of the smallest panel side. It has the great advantage of constantly adapting 
the time step, by refining it at the end of the collapse - where lmin becomes very small and Vmax 
very large - and by increasing it during the slow bubble size variation period. New coordinate 
positions of the nodes are then obtained using the displacement: 

dM = C|^n + VtGt + Vo] dt, (11.45) 

where n and et are the unit normal and tangential vectors.   This time stepping procedure is 
repeated throughout the bubble growth and collapse, resulting in a shape history of the bubble. 



DYNAFLOW,   INC.   —Technical Report 94003.fin- p.   17 

4.3    Pressure / velocity potential relation 

Let us consider the case of a bubble growing and collapsing in a nonuniform flow field ("basic 
flow") of velocity V0 that is known and satisfies the Navier Stokes equations: 

^+V0-Wo = --VPo + ^V2V0 . (IL46) 
at p 

Also assume that in presence of the oscillating bubbles, the resulting velocity field, given by 
V, also satisfies the incompressible Navier Stokes equation: 

^X + V • VV = --VP + iA72V . (11.47) 
dt p 

Both V and V0 also satisfy the continuity equation. We can now define bubble flow velocity 
and pressure variables, Vb and Pb, as follows: 

V6 = V-V0, Pb = P-P0. (IL48) 

If we consider the case where "bubble flow" field is potential3 : 

V6 = V$6, V2$6 = 0, (11.49) 

and subtract (11.46) from (11.47) accounting for (11.49) we obtain 

V# = V 
9$b _i_ 1  I V   |2 _i_V     V   J- Pb = Vbx(VxV0). (IL50) 

The assumption of potential "bubble flow" implies that, even though the basic flow is allowed to 
interact with the bubble dynamics and be modified by it, no new vorticity can be generated by the 
bubble behavior with the chosen model. Equation (11.50) can be integrated to obtain an equation 
similar to the classical unsteady Bernoulli equation. For the particular case of the Rankine vortex 
Equation (11.51) can be written in cylindrical coordinates, when the "bubble flow" does not have 
any e$ components: 

In this case the Bernoulli equation is to be replaced by: 

fifty -I p            p 

—- -j— | Vb j2 H  = constant in any radial direction. (11.51) 

Accounting for at-infinity conditions, the pressure in the liquid at the bubble wall, PL, given 
by (11.51) is related to $b and the pressure field in the Rankine vortex P0 by: 

PL      P0     d$b     1 ,        2 
Vfi (11.52) 

at bubble wall p       p       dt      2 

3This is obviously a simplifying assumption which is removed at the end of this chapter and in the following 
chapters. 
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4.4    Specialization to axisymmetric problems 

In axisymmetric problems, the physical variables (velocity potential and pressure) are independent 
of the angular coordinate. Thus the angular coordinate only enters the formulation through the 
argument of the Green's function in Equation (11.39) 

G(MP) = 1/ | MP | . (11.53) 

The integration of these dependent quantities can be explicitly carried out. Let C represent the 
trace of the geometry under consideration in a meridian plane. Let (r, 9, z) be the cylindrical 
coordinates of point M, running point on the boundary, and without loss of generality we select 
the coordinates of P to be (R, 0, Z). The integral equation (II.39)can then be written 

«R, 0, Z) = I r«r, ,)£ {£ ft») „,„ - jT ^-r [ GÖB äsu. (11.54) 

In writing the above expression the fact that the normal to an axisymmetric surface is independent 
of the angular coordinate has been used. Thus, integration over the angular variable is reduced 
to evaluation of one integral 

1=1    G(r,6,z;R,Z)d9 = -— . 0    n n      .     ,_      ,9, (H.55) 
J0       

v '  '   '   '   ' 4TT J0    y/ffi + r2 - 2ri?cos 6 + (Z - z)2 

which is nothing but the complete elliptic integral of the first kind, K(m), with 

m = ^r;        A = y/(R + r)* + {Z-z)*. (H.56) 

The equation for the potential may then be written as: 

^^«'•'^(^"♦X^'^"-   (IL57) 

Further details of the method can be found in [73]. 

5    Numerical results and discussion 

5.1    Validation of numerical codes 

The use of the Boundary Element Method to study axisymmetric bubble dynamics has been 
validated by the various authors quoted earlier. This has included both comparisons with a quasi- 
analytical solution for spherical bubbles - Rayleigh-Plesset Equation (11.27) - and experimental 
validation for the relatively simple cases of spherical and axisymmetric bubble collapse near flat 
solid walls. Figures II.3a and 11.36 show comparative results between the codes used below (ax- 
isymmetric 2DYNAFS and fully three-dimensional 3DYNAFS) and the semi-analytical results. 

Comparison of the results of the 3D code used in the examples shown below against previously 
published and confirmed results in the literature for the relatively simple cases have been very 
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Figure II.3: Comparison between Rayleigh-Plesset solution and the axisymmetric BEM code 2DY- 

NAFS and the 3D BEM code 3DYNAFS. Computations started with an initial bubble pressure 
584 times larger than the ambient pressure, a) Over bubble period, b) End of collapse. 

favorable. For spherical bubbles, comparison with the Rayleigh-Plesset "exact" solution revealed 
that numerical errors for a "coarse" discretization of a 102-node bubble (not shown in the above 
figures) was about 2 percent of the achieved maximum radius, but was very small, 0.03 percent, of 
the bubble period. The error on the maximum radius was less than 0.14 percent for a discretized 
bubble of 162 nodes (320 panels), and dropped to 0.05 percent for 252 nodes (500 panels). Com- 
parisons were also made with studies of axisymmetric bubble collapse available in the literature 
[33, 65, 34], and have shown, for the coarse discretization, differences with these studies on the 
bubble period of the order of 1 percent. Finally, comparison with actual test results of the complex 
three-dimensional behavior of a large bubble collapse in a gravity field near a cylinder shows very 
satisfactory results [26, 67]. The observed difference in the period was shown to be related to the 
confinement of the experimental bubble in a cylindrical container. 

5.2    Bubble capture 

Large bubble growth rate, low surface tension case 

As expected from the mechanistic considerations analysis presented in Sections II.1.1 and II.1.2 
numerical simulations using the fully three-dimensional numerical approach reveal potential for 
strong bubble deformation during capture by a vortex. The numerical results indicate that this is 
the case for a very wide range of bubble sizes and initial values of the pressure difference between 
the inside and the outside of the bubble. 

Figure II.4 shows three-dimensional bubble behavior in the case where the ratio between the 
pressure inside the bubble and the ambient pressure is significantly large, Pi/p^ = 584.3. This 
would be the case where the bubble in equilibrium in a high ambient pressure environment is 
suddenly subjected to the flow field of a vortex, as for instance when a propeller tip vortex 
suddenly captures a cavitation bubble (see [13, 70]). In a Cartesian system of coordinates, OXYZ, 
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Figure II.4: 3D bubble shapes at various times. Bubble initially at the origin of the cartesien 
coordinate system, and vortex at X = 2Rmax. fi = 0.474, pi/p^ = 584.3, Rc/Rmax = 4. Projected 
view a) in the XOY plane; b) in the XOZ plane. 

the bubble is initially centered at (0,0,0), and the line vortex is located parallel to the Z axis, at 
X = X/Rmax = 2 (two times the maximum size, Rmax, the considered bubble would have if allowed 
to grow under the same pressure difference in an infinite medium). The core size considered here 
is ARmaa;. With this geometry the bubble center remains in the plane Z = 0. 

Figure UAa gives a projected view of the bubble in the XOY plane at different instants. The 
observer is looking down on the XOY plane from very far on the Z axis. The bubble is seen 
spiraling around the vortex axis ( perpendicular to the figure) while approaching it. At the same 
time, due to the presence of the pressure gradient, the bubble strongly deforms and a reentrant 
jet is formed directed towards the axis of the vortex, thus indicating the presence of a much larger 
dynamic pressure on the bubble side opposite to the vortex axis. 

Figure 11.46 shows projected view of the same bubble in the YOZ plane seen from the OX 
axis. Here some moderate elongation of the bubble is observed along the axis of the vortex as 
well as a very distinct side view of the re-entrant jet. This result is totally contrary to the usually 
held belief that bubbles constantly grow during their capture until they reach the axis and elongate 
along it. 

Figure II.5 shows in the XOY plane perpendicular to the vortex axis the motion of two 
particular points on the bubble, A and B, initially along OY. Also shown is the motion of the 
midpoint, C. While C seems to follows a path similar to the classical logarithmic spiral, A and B 
can follow more complicated paths, even moving away from the vortex axis at some point in time 
for case (6) where the vortex axis was initially at X = 1. 
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Figure II.5: Motion of the two points initially on axis OX, A and B, and the mid point C between 
A and B, versus times, ft = 0.474, Pi/p^ = 584.3, dc/Rmax = 4. Vortex located at a) X = 2Rmax 

; b) X = Rmax- 

Small growth rate and surface tension 

Figure II.6 considers the influence of bubble size on bubble behavior during the capture process. 
In all three cases shown in the figure a ratio between the pressures inside and outside the bubble 
equal to one is considered, Pi/poo = 1. In all cases, the viscous core radius is chosen to be Rc = 2.2 
mm, while the initial distance between the vortex center and the center of each bubble is chosen 
to be £0 ~ 1.5RC — 3.2 mm. The dimensions shown are normalized values with the initial bubble 
radius for each case. The circulation in the vortex is chosen to correspond to a practical value for 
the case of a tip vortex behind a foil, such as that used in the experiments described by Maines and 
Arndt [13] and Green [70], T = 0.152 m2/s. Three bubble sizes are considered: 10 psm, 100 yun 
and 1000 ßm. As expected, bubble deformation increases with the bubble size. The deformation 
is small for oo=10 fj,m, becomes very significant for ao=100 fim, and is extremely important for 
ao=1000 fj,m. In all cases, the bubbles while remaining in the inviscid region, are seen to be sheared 
very strongly by the flow. The smaller bubbles appear to deform in the expected way in a shear 
flow. The computations were stopped when significant bubble shape deformations necessitated 
finer time steps. The larger bubble case (ao=1000 ßm) shows extreme bubble elongation and 
wrapping around the viscous core region. 

5.3    Multiple bubbles 

One of the key question that one needs to address in bubble/vortex interaction practical studies is 
how does a distribution of bubbles modify the flow field in a vortex line. In order to address such 
a problem the program 3DYNAFS was modified for effective implementation on a supercomputer. 
Indeed one of the difficulties of such a study is the required large number of discretization points 
which prevents significant runs on typical memory and speed limited computers. Figure II.7 shows 
a case run in the case of a field of bubbles in absence of a vortex field on a Cray machine. In the 
figure case two planes of symmetry were assumed to minimize computation times. In the presence 



DYNAFLOW,  INC. -Technical Report 94003.fin- p.   22 

2 

0 

-2 

-4 

-6 

O 
-5   -8 

-10 

-12 

-14 

-16 

-18 

-i 1 1 1 1 1 r- 

10   -8     -6-4-2     0       2        4 

x/ao 

-20 

Figure II.6: Bubble contours at various times. T = 0.1527m2/s, Pi/pQ 

located at X = 3.2mm, with a0 = a) 10/xm, b) 100/jm, c) 1000//m. 
1, ac = 2.2mm, vortex 

x/a0 b 

Figure II.7: Simulation of the dynamical interactions between a cloud of 21 bubbles using 3DY- 

NAFS on a Cray. Two planes of symmetry are used. Each bubble has 102 nodes and 200 panels, 
a) Growth, b) Collapse. 
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of a vortex line use of such a symmetry is not warranted since, due to various rates of rotation 
of each bubble in the vortex field, the symmetry is not preserved during the bubble motion. In 
addition, due to the high shear rates that bubbles can experience, a relatively large number of 
discretization points is needed to describe each bubble. 

Figure II.8 shows the case of a 5-bubble configuration. This run has the advantage of including 
both vortex / bubble and bubble / bubble interactions. All five bubbles are chosen such that in 
absence of the vortex flow field, the pressures inside and outside each bubble are the same and 
equal to 0.74 atm, Pi/poo = 1- The viscous core radius and the circulation are again chosen to be 
in the same ranges as those in the experiments described by Maines and Arndt [13] and Green 
[70]. The viscous core is chosen to be Rc = 2.2mm, while T = 0.1573 m2/s, Q, = 0.872. The 
initial bubble centers are selected to be on OY axis at the coordinates: Y = 0,2,3,4 and 5 mm. 
The vortex line is parallel to OX axis and is centered on7 = 1.5 mm. As a result, bubbles No. 
1, 2 and 3 are initially located in the viscous core, while bubbles No. 4 and 5 are located in the 
inviscid flow region. All five bubbles considered have an initial radius of 100 /im. Figure II.8 shows 
contours of the bubbles as they rotate around the vortex axis at various times This figure clearly 
shows the presence of a nonuniform flow field. Indeed, Bubble No. 3 which is the closer to the 
region of highest angular velocity of the "basic flow" is seen to swirl around the vortex center at 
the fastest rate, while Bubble No. 2, which is the closest to the vortex center is seen to practically 
rotate around itself. Similarly, the highest shear is seen to occur close to the viscous core edge 
where the pressure gradients and their variations are steeper. 

Since all bubbles were chosen to have the same initial radius and internal pressure, the natural 
period of oscillation of each of the selected bubbles increases with the proximity to the vortex axis. 
As a result, the farthest bubble from the axis, Bubble No. 5, collapses first while stretching and 
deforming. In order to be able to continue the computation following break up of a bubble, that 
bubble was removed and the computation was continued with the bubbles left. 

Figure II.9 shows two thee-dimensional views of the bubbles before the collapse of bubble No. 
1. These views enable one to have a better idea of the bubble shape deformation and elongation 
during the capture phenomenon. 

Figure 11.10, courtesy of Sheldon Green, is an unpublished photo of a bubble in the viscous 
core of the trailing vortex of a NACA 66-209 hydrofoil (see [70], for details of the experiment). 
The photograph is a double exposure, the time of separation between the two pictures being 150 
fj,s. The three bubble shapes in the top of the figure are aligned along the axis of the vortex. The 
diameter of these shapes is of the order or 200 \xm. The bottom two shapes are those of the same 
bubble at two instants 150 /zs, and illustrate clearly the large deformations of the bubble during 
its capture by the vortex. As in the numerical simulations presented above, this behavior appears 
to be related to the large shear stresses experienced by the bubble while approaching the vortex 
axis. In the first of the two pictures the bubble is very elongated due to shear, while 150 fis later, 
it appears to have grown in size - due to the pressure drop in the vortex- while conserving a 
strong deformation on its downstream surface. 
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Figure II.8: Dynamical behavior of 5 bubbles in a vortex line flow - Bubble contours at various 
times. The vortex line is perpendicular to the page and centered on Y = 1.5mm. Rc = 2.2mm, 
T = 0.1573m2/s- A = 0.872. All bubbles have a0 = 100/xm. 

Figure II.9: 3D bubble shapes in the vortex line flow field of Figure II.8 before collapse of buble 
No. 1. View from a) OZ axis, b) OX axis. 
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Figure 11.10: Double exposure photo of a bubble in the viscous core of the trailing vortex of a 
NACA 66-209 hydrofoil (see [70]). Time of separation between two exposures =150 fj,s. Scale 190 
Aim./cm. Re = 6.8105, T = 0.232m2/s. Courtesy of Sheldon Green. 

5.4    Bubble on vortex axis 

Let us consider now the case where the bubble is placed at the vortex axis at t = 0 and starts 
to grow due to the excess between the internal pressure and the local ambient pressure. Such a 
problem was considered earlier by Crespo et al. [69] who studied the dynamics of an elongated 
bubble. Unfortunately, his model neglected essential elements in the bubble / line vortex dynamics: 
i.e. the presence of an azimuthal velocity flow field, a rotational and viscous flow, and a pressure 
"well" on the axis. Crespo obtained a strong jet which initiated at both extreme points of the 
bubble along the axis of symmetry. As shown in Figure Ulla such a behavior is reproduced using 
the program 2DYNAFS when the vortex flow field is neglected. However, the opposite effect is 
in general obtained when the rotation in the vortex flow is included. Figure II.lift illustrates this 
for particular values of the circulation, T, (or the swirl parameter, Q.) and the normalized core 
radius, Rc = Rc/Rmax- Modifications in the results when 0 and Rc are changed are discussed in 
the following paragraph. 

In both cases shown in Figures Il.lla and 11.116 the initial bubble shape elongation ratio, 
bubble length to radius, was three. It is clear from the comparison that the swirl flow has a 
conclusive effect on the bubble dynamics. Bubble surface portions away from the vortex axis 
experience much higher pressures than bubble surface portions on and close to the vortex axis, 
and therefore move much faster during the collapse phase generating, instead of the sharp jets on 
the axis as in Figure II. 10a, a constriction in the mid-section of the bubble. This generates an 
hourglass shaped bubble which then separates into two tear-shaped bubbles. 

In the following figures II. 12a — c, the dynamics of initially spherical bubble positioned at 
t = 0 on the vortex axis are studied. The initial internal pressures inside the bubbles are taken 
to be larger than the pressure on the vortex axis, and the bubbles are left free to adapt to this 
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Figure 11.14: Cavitation bubble shapes observed at the exit of a vortex tube. 
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pressure difference. The figures strongly indicate that the bubble behavior_depends significantly 
for a given value of the swirl parameter, Cl, on the normalized core radius Re, ratio of Rc to Rmax, 
the maximum radius the bubble would achieve if it was in an infinite medium with an ambient 
pressure equal to that on the vortex axis. In all cases where the bubble maximum radius, Rmax is 
larger than Rc it appears that the bubble tends to adapt to the vortex tube of radius Rc. This could 
lead to various bubble shapes as shown in the following figures ending up with a very elongated 
bubble with a wavy surface for large values of Rmax/Rc- 

Figures II. 12a — c show bubble contours at various times during growth and collapse for 
increasing values of the core radius, Rc, and decreasing values of Pi/poo- Also shown are selected 3D 
shapes of the bubbles at various times which have the advantage of being much more descriptive. It 
is apparent from these figures, that during the initial phase of the bubble growth, radial velocities 
are large enough to overcome centrifugal forces and the bubble first grows almost spherically. 
Later on, the bubble shape starts to depart from spherical and to adapt to the pressure field. The 
bubble then elongates along the axis of rotation. Once the bubble has exceeded its equilibrium 
volume, bubble surface portions away from the axis - high pressure areas - start to collapse, or 
to return rapidly towards the vortex axis. To the contrary, points near the vortex axis do not 
experience rising pressures during their motion, are not forced back towards their initial position, 
and continue to elongate along the axis. As a result, a constriction appears in the mid-section of 
the bubble. The bubble can then separate into two or more tear-shaped bubbles. It is conjectured 
that this splitting of the bubbles is a main contributor to cavitation inception noise. This behavior 
is very similar to that observed for bubble growth and collapse between two plates [21], which 
results in the formation of a vortex line! (see Figure 11.13). 

Keeping Q constant while reducing the core size Rc has the effect of steepening the radial 
pressure gradient along the bubble surface and increasing the rotation speed inside the viscous 
core. This enhances the deviation of the bubble shape from a sphere, and increases the centrifugal 
force on the fluid particles closer to the vortex axis. This has the consequence of increasing 
the elongation rate of the bubble and results in more and more complex dynamic shapes of the 
elongated bubbles. The bubble can then become subdivided into three, four or more satellite 
bubbles during the collapse. The elongated and wavy shapes obtained have been observed in 
unpublished tests that we have conducted on cavitation on the axis of the vortex formed in a 
vortex tube (see Figure 11.14). 

5.5      Bubble on vortex axis perpendicular to a wall 

The series of Figures II.15a—c show the collapse of a bubble trapped in a line vortex perpendicular 
to a solid wall at various distances from this wall. The boundary is at y = 0 and its distance to 
the initial bubble center, L, is normalized with Rmax- The presence of the wall is accounted for 
by the incorporation of an image bubble. The uneventful growth phase ends with the elongated 
spheroid shaped contours shown at the center of each figure. Then, the overall bubble behavior 
appears to be similar to that in absence of the wall; namely, bubble elongation along the axis 
followed by a splitting into two bubbles. The presence of the wall is felt by an asymmetry between 
the two secondary bubbles. In all cases, computation was stopped at bubble splitting. A special 
treatment to the bubble shape discretization needs to be done after that point (panel removal). 
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Figure 11.15:   Influence of solid wall distance on bubble collapse in a line vortex,   fi = 
Pi/Poo = 584, ac = 1.18. L/Rmax = a) 4; b) 3; c) 2.5. 

.475, 

It is speculated, based on previous bubble dynamics observations, that very strong jets bringing 
back the two pointed tips (in the splitting region) of the two secondary bubbles inside each bubble 
will be generated. This phenomenon is expected to be stronger for the secondary bubble close to 
the wall since that bubble has a much more elongated tip. 

Figure 11.16 shows the influence of the circulation parameter, Cl, on the bubble behavior 
for fixed values of the core radius and the distance to the wall. This figure contains significant 
information on the scaling of bubble behavior in a vortex flow. Three characteristic dimensions 
of the bubble are shown as a function of time. These are the bubble radius along the plane 
perpendicular to the line vortex, Rn, and the distances between the initial bubble center and the 
two extreme points on the vortex axis, Zn{\) and Zn(100). Figure 11.16 shows time variation of 
these three quantities normalized with Rmax- Time is normalized with the Rayleigh time based on 
Rmax and the pressure difference between Pgo and the pressure on the vortex axis. It is apparent 
from this figure that Rn follows the classical Rayleigh model. Variations of 0, between 0.1 and 0.94 
modify the normalized bubble period by less than 10 percent. One should notice, however, that 
bubble period is here defined as the time needed for the bubble to subdivide into two secondary 
bubbles, and that no bubble surface instability, as described earlier, occurred in that case. Bubble 
elongation, on the other hand, depends strongly on O, as can be seen from the Zn curves. The 
elongation of the bubble part close to the wall is seen to be affected for large values of £2. 

6      3D Validation study: bubble/vortex ring interaction 

6.1      Experimental study 

In order to validate the numerical studies on bubble / vortex interactions, a fundamental exper- 
imental and numerical study was conducted. This consisted of the controlled observation of the 
interaction between a vortex ring and a bubble. The results of the experiment were then compared 
with those obtained with the 3D free surface dynamics numerical code 3DYNAFS described above 
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Figure 11.16: Influence of Q on the motion of bubble axial and longitudinal dimensions versus time 
for a bubble trapped in a line vortex perpendicular to a solid wall. Distances are normalized with 
Rmax and times are normalized with Rayleigh time. Pi/poo = 584, dc/Rmax — 0.4, L/Rmax = 4. 

[22]. 
A vortex ring was generated in a Plexiglas tank using a cylinder equipped with a 2.5 cm radius 

piston. The cylinder has an sharp lip exit to enhance the roll up of the fluid vortex generated 
at the lip. This results in a vortex ring with a diameter slightly larger than that of the cylinder 
[23]. The water in the tank is degassed using a vacuum pump and a spark generated bubble is 
produced using two tungsten electrodes submerged in the tank which can be manipulated from 
outside the tank to be placed where desired. The spark is produced by discharging during a very 
short time period (~ 10-4s) a high voltage (6000 volts) from a series of capacitors. The interaction 
between the generated ring and bubble was then observed. A spark generating the bubble has the 
advantage of simulating cavitation bubbles and allowing one to choose precisely when and where 
the bubble is generated, which is essential to coordinating the positions of the bubble and the 
ring, and the starting time of a high speed camera. A triggering line allows one to synchronize 
the departure of the piston and the triggering of the spark generator using pressure transducers 
to precisely detect the vortex ring motion. As the piston starts to move down, a pressure pulse 
is created in the tank by the fluid impulsive motion. This is detected by the transducer probe 
and amplified to trigger a delay generator. The output signal (a very short pulse) then triggers 
the spark generator. Visualization was performed using a Hycam II high speed camera capable of 
11,000 frames per second. 

On several of the motion pictures taken very small gas bubbles were present under the piston. 
The visualization of the motion of these bubbles allows one to observe their trajectory around the 
vortex ring. The existence of a "viscous core" was apparent from the velocity profile obtained 
by tracing the microbubbles' motion, whether or not the vortex ring was cavitating. For the 
cavitating cases, the "viscous core" surrounded the vaporous/gaseous core. A typical trajectory 
of the small bubbles is shown in Figure 11.17. Also shown in this figure is a sketch of a bubble 
and the particle trajectory line (T). Figure 11.17 also shows the geometric characteristics of the 
bubble/ring positions. D\ is the distance between the bubble center and the viscous core center 
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Figure 11.17: Particle trajectory around the ring viscous core. 

when the bubble is at its maximum volume and has the equivalent maximum radius R^. D2 is 
the horizontal distance between the bubble and the center of the viscous core. The normalized 
quantities Dx = A/Äma* and D2 = D2/Rmax characterize the bubble / vortex ring interactions. 
As expected, it is observed that smaller A and D2 correspond to stronger interactions and larger 
bubble deformations. 

Figure II. 18a - c drawn in the ring reference frame shows the bubble motion and deformation 
with time for three selected cases of increasing bubble/shear interaction. The electrodes position 
shown on each graph is the one at the instant of the spark generation. The vortex ring side view 
indicates the position of the reference frame. 

As can be seen from the pictures in Figure II. 19a ( Dl = 2.16, ~D2 = 0, Vring = 0.28m/s) and 
from the contours in Figure II.20o , the bubble remains practically spherical during its growth. 
The interaction is weak due to the relatively large distance between the bubble and the ring, 
and also due to the relatively small circulation of the ring. The first collapse is too fast, and no 
significant deformation of the bubble is seen until the rebound when a reentrant jet appears on 
the bottom face of the bubble followed after the rebound by an outgoing jet on the top face. It 
appears that during the first bubble oscillation period the bubble translation velocity is smaller 
than the vortex generated fluid velocity. The bubble therefore sees a flow moving upward. The 
jet direction (including the reentrant and the outside jet) is on a pathline of shear flow, and the 
bubble motion after the collapse follows a particle path line while oscillating and cutting itself in 
two. 

In Figure 11.206 (p = 2.38, ~D2 = 1.5, Vring = 0.78m/s) the bubble first grows spherically, 
then it starts to stretch into an ovoid shape: the bottom face is less curved and the top face more 
curved than in the spherical case. Here the distance Dx is not too different from the previous 
case but the circulation in the vortex ring is about three times larger. When the bubble volume 
decreases, the stretching due to the shearing action becomes more pronounced and a constriction 
along the bubble periphery appears along the pathlines (T). The bubble then rebounds with a 
dumbbell shape. 

In Figure II.19c (pi = 1.1, D~2 = 0.37, Vring = 0.82m/s) the bubble appears to be stretched 
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Figure 11.18: Bubble contours at various times from High Speed sequences of Figure 19.19. a)Di = 
2.16, Ä = 0, Vring = 0.28m/s, b) D[ = 2.38, D^ = 1.5, Vring = 0.78ra/s, c) A = 1.1, T72 = 0.37, 
Vring = 0.82ra/s. 
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more and more in the pathlines' direction during its growth, with the top region more stretched 
than the bottom one, and the top right part growing more than the left one. When the bubble 
collapses, its left side continues to be sheared by the flow into a pathline direction and a 'beak' 
forms at the top left part and becomes more pronounced once the volume of the bubble starts to 
decrease. Then, there is a constriction all around the bubble which appears first on the top face 
of the bubble. The bubble then cuts itself in two and rebounds as two side-by-side very distorted 
bubbles (or bubble clouds). The left one then touches the cavitating ring and splits again into two 
parts. The deformations of the bubble are more significant in this case than in the two previous 
cases, because the bubble is closer to the center of the ring core and experiences a strong shear 
flow. In addition, there appears to be a "venturi effect" between the bubble and the viscous core 
that further increases the stretching of the left part of the bubble 

Within the margin of errors of the measurements, comparison of the time variation of the 
average radius of each bubble shows no significant effect of the presence of shear on the bubble 
period. However, indications of a lengthening effect of the bubble period can be seen on the 
characteristic distances between the bubble 'center' and the two upstream and downstream points 
along a particle pathline (direction (T)) . This effect however seems small in the cases presented 
here and should be investigated further. 

Physical explanations 

The observations made above can be qualitatively understood by considering the velocity and 
pressure fields around the bubble. The motion of each point on the surface of the bubble is the 
result of the combination of the underlying (shear) fluid velocity and of the velocity due to the 
bubble growth or collapse. The effect of the underlying fluid flow (whose characteristic speed is 
about 2m/s) is minor during initial bubble growth and later bubble collapse phases, but becomes 
most important at the end of the growth and at the beginning of the collapse where bubble wall 
velocities reach a minimum. Indeed, right after the spark generation, the speed of each point of the 
bubble surface is very high (about 40m/s). It then decreases to zero at about the maximum radius, 
and then increases during the bubble collapse. For a bubble in a uniform flow, the existence of the 
flow reflects on the bubble shape by a larger bubble growth in the downstream direction and by a 
flattening of the bubble shape in the upstream direction. Later on due to inertia, the downstream 
part that has extended further collapses faster forming a reentrant jet directed upstream in the 
plane of symmetry of the bubble. 

When the flow is not uniform, a similar phenomenon occurs but is stronger on one side of the 
bubble than on the other due to the typical asymmetry of a shear flow. In addition, the possibility 
that the underlying shear flow becomes at some point during the bubble history stronger than the 
bubble wall velocity creates the possibility of a jet generated by the underlying flow, which can 
be opposite to the one described above and directed downstream. In the case of the figures shown 
here, the velocity profile seen by the bubble decreases from left to right. When the bubble starts 
to grow, the speed of each point is much more important than the velocity of the fluid flow: the 
bubble is therefore almost spherical. Then, when the speed of each point decreases, the influence 
of the fluid flow increases. The top part of the bubble grows more than without the presence of 
the basic flow and, due to the shear, the left part grows more than the right one. In addition, the 
top face is more stretched than the bottom face because on the top face the speeds add up, while 
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Figure 11.19:  High Speed Movie sequences of bubble / vortex ring interaction.   a)£>i = 2.16, 
W2 = 0, Vring = 0.28m/s, b) D[ = 2.38, A = 1.5, Kmfl = 0.78m/s, c)Di = 1.1, D2 = 0.37, 
Vr ring 0.82m/* 
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they subtract on the bottom. The opposite is true during the collapse where velocities add up on 
the bottom part of the bubble and subtract on the top. 

As the fluid flow moves upward in the case shown in the figure, the reentrant jet is expected to 
appear on the top face. However, due to the strong shear, the left part of the bubble is prevented 
from collapsing forcing a compensating middle of the bubble constriction all along the bubble, with 
a tendency to form reentrant jets on both ends of the bubble along the pathline. This constricted 
shape of the bubble is similar to that obtained with a bubble collapsing between two walls. 

6.2 Numerical Modeling 

In order to model the bubble/shear flow interaction described above, the Boundary Element 
Method (BEM) code described above, 3DYNAFS, was used. The flow field of the moving vortex 
ring was modeled using the following classical expression for the velocity potential at the point M 
produced by a vortex ring (7Z): 

W-s//wd,J" (II58) 

where S-n is any surface limited by the ring vortex ring line (TZ), and et is the tangential direction 
along (TZ). This enables one to determine the velocity and pressure field outside of the viscous 
core region of the vortex ring. 

6.3 Numerical Results 

Figure II.20c shows simulations for these same experimental conditions as in Figure II. 19c with 
T = 0.12m2/s, while Figures II.20a and 11.206 show the same conditions but for T = 0.25m2/s and 
T = 0.10m2/s. As in the experiment Figure II.20c shows elongation of the left side of the bubble in 
the shear flow direction. The formation of a beak at the end of the bubble growth is also evident 
but not as pronounced as in the experiment. Later a constriction in the bubble shape along the 
fluid pathline is also apparent. The overall comparison between this numerical modeling and the 
experiment is encouraging. However, the strong shearing effect on the beak preventing the bubble 
top from collapsing from the left side is not as strongly reproduced in the numerical simulation. 
This is most probably due to the fact that the simulation neglected the vortex bubble ring behavior 
and did not include any modification of the flow due to the growth of the ring bubble near the 
spark-generated bubble creating the venturi effect we mentioned earlier. 

At the smaller circulations the tendency of the bubble to elongate and then cut itself into two 
is also clearly apparent as in the experiments. 
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Figure 11.20: Numerical simulations of bubble / vortex ring interaction.. Di — 1.1, D2 = 0.37, 
K-inp = 0.82m/s.; T = a) 0.025m2/s; b) 0.10m2/s; c) 0.12m2/s which corresponds to Figure       c. 
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Chapter III 

CAVITATION INCEPTION ON THE 
AXIS OF A LINE VORTEX —FULL 
VISCOUS INTERACTION 

1 Introduction 

This chapter reconsiders the interaction between a bubble and a vortex line in the case where the 
bubble is located on the axis of the vortex [2]. Here, we will include viscous effects and determine 
the conditions for bubble explosive growth. We will consider not only the response of the bubble 
to the basic flow field, but we also include the influence that the bubble has on the flow. The 
first part of the study will consider an infinitely elongated bubble on the axis of a Rankine vortex. 
Due to the symmetry of the problem, a one-dimensional solution is possible, and this gives us the 
variations along the r-axis in a cylindrical frame of reference. Then, criteria for explosive bubble 
growth or cavitation inception are deduced. In the last part of the study we consider that the 
bubble has a finite length along the axis of the vortex. This leads to a two-dimensional problem 
that we solve using an asymptotic approach. 

2 Full Viscous Interaction Between a Cylindrical Bubble 
and a Line Vortex 

A weakness of the numerical approaches presented in Chapter II is the fact that the modification 
of the flow by the bubble's presence and dynamics was restricted to the case where the "bubble 
flow" is potential. This restriction will be removed here for the case of a line vortex which has the 
central part of its viscous core gaseous or vaporous. As illustrated below, such an analysis enables 
one to determine criteria for unstable bubble growth (cavitation inception), and to describe how 
the bubble dynamics affects the viscous flow itself. For illustration, we consider the case where, 
at t = 0, the vortex line is a Rankine vortex, and where the elongated bubble is of initial radius 
a0. The vortex then diffuses with time and interacts fully with the axial bubble. The generated 
flow satisfies the axisymmetric incompressible Navier-Stokes equations in cylindrical coordinates. 
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With all derivatives with respect to z and 6 being null, the continuity and momentum equations 

reduce to: 
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Denoting the radius of the bubble as a (t), and its time derivative, a{t), the continuity equation 

leads to: 0 
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Replacing ur by its expression in (III.2) and (III.3) one obtains: 
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(III.5) 

(III.6) 

This set of coupled equations allows one to describe both the bubble dynamics and the flow field 
modification with time accounting for the interaction with the bubble. 

2.1      Method of Solution 

In order to obtain a differential equation for the bubble radius variations, similar to the Rayleigh 
Plesset Equation (11.27), Equation (III.5) is integrated between r = a(t) and a very large radial 
distance r = Rinf, beyond which the vortex flow is assumed to be inviscid and of vortex circulation 
T. To simplify the numerical solution, the domain of integration is made time independent by 
using the following variable change: 

8 = J-y (III.7) 
a(t) 

The integration region becomes for all times [1; sinf], with Rmf(t) = a(t)sinf, and Equation (III.5) 
becomes: 
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with 
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With o, a known at a given time step through the solution of (III.8), Equation (III.6) becomes: 
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2.2      Initial and Boundary Conditions 

The initial conditions considered are as follows. For the bubble, 

a(0) = a0,        a (0) = 0. (HL12) 

For the line vortex, the equation at t = 0, is that of a Rankine vortex with 

Up(r>t = 0)=0. (111.13) 

The condition of normal stress balance is imposed at the bubble interface: 

where // is the dynamic viscosity, and the gas compression law is given by: 

ft =».(£)* ('HIS) 

In addition, the following 'at-infinity' condition is imposed on the pressure at the distance, Rinf : 

«^-*(4)! (IIU6) 

2.3      Some Preliminary Results 
The system of equations (III.8) and (III. 10) is solved using a Runge-Kutta procedure for a(t) and 
a space and time integration of Equation (III. 10) which enables one to compute the integral term 
containing uj. This is obtained using a Crank-Nicholson finite difference integration scheme of the 
partial differential equation (III.6). 
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Figure III.l: Dynamics of the interaction between a cylindrical bubble and a line vortex. V = 0.5 
m2/s, Pgo =5xl03Pa, P^ = 1.3 x 105Pa. a) Bubble radius, value of maximum azimuthal velocity 
«ornax, and position of Rem^- b) Bubble radius versus time with and without viscous interaction. 

Figures III. la and III. 16 illustrate both the bubble / vortex flow field interaction and a case 
where there is a need to include this full interaction in the dynamics. In these two figures, the 
bubble has an initial radius of 1mm, while the viscous core of the vortex has an initial radius of 
lcm. The initial circulation in the vortex is 0.5 m?/s, and the initial pressure in the bubble is 
5xl03Pa, while the ambient pressure is 1.3 xlO5Pa. Therefore, the bubble starts its dynamics 
by collapsing. Figure III.la shows simultaneously three characteristic quantities of the problem 
versus time. The first quantity is the bubble radius versus time, while the other two quantities 
are the radial position, Remax, of the maximum azimuthal velocity, u0max, and the value of this 
velocity. In the previous Chapter, these two last quantities remained constant with time. A very 
important first result very clearly shown in Figure IILla is that both the position of R#max, and 
the value of ugmax, depend directly on the variation of a(t). The viscous core (of radius Rema.x) is 
seen to decrease with the bubble radius during bubble collapse, and to increase with the bubble 
radius during bubble growth. This tendency of the viscous core to get displaced with the bubble 
wall, corresponds to intuition, but is proven numerically to our knowledge for the first time in 
[27, 1]. 

Viscous effects appear more prominently when following the bubble dynamics over more than 
a single period of oscillation. Both maximum values of Äemax and u9max are seen to decrease with 
time. Through conservation of momentum, the azimuthal velocity follows an tendency opposite to 
the core size. As the bubble wall moves inward the viscous core shrinks, simultaneously increasing 
the tangential velocity to a maximum when the bubble reaches maximum size. As the bubble grows 
again, the core expands and the tangential velocity decelerates to a minimum at the maximum 
bubble radius. When the fluid particles are pulled in towards the vortex axis they accelerate 
tangentially. This is similar to the phenomenon of vortex stretching. 
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Figure III.2: Dynamics of the interaction between a cylindrical bubble and a line vortex. 
Paxis =7xl05Pa. a) Influence of the initial bubble pressure, Pgo, on bubble radius and posi- 
tion of .Römax- Rc/o-o = 2. b)Influence of Rc/a0 on the bubble radius and position of Remax- 
Pgo=l.5xl05Pa. 

Figure III.lft shows the importance of the inclusion of full viscous flow / bubble interaction in 
the dynamics. One graph in the figure considers the case where the underlying flow field is forced 
to remain that of a Rankine vortex. In that case, as apparent in the figure, the bubble oscillations 
are repeatable with time, and no viscous decay of the amplitude of the oscillations is visible. To 
the contrary when the underlying flow is modified through viscous diffusion and interaction with 
the bubble, the bubble radius oscillations decay substantially after the first collapse, and the flow 
field characteristics are modified as shown in Figure III.la. 

Figures III.2a and 111.2ft show, respectively, the influence on the dynamics of the initial gas 
pressure inside the bubble, Pgo, and the ratio of initial core radius to initial bubble radius, Rc/a0. 
For an initial pressure on the vortex axis of 7xl05Fa, Figure III.2a shows the dynamics of the 
bubble and the viscous core size when the initial pressure in the bubble decreases from 5 xlO5 Pa 
to 1.5xl05Pa. For PQO = 5xl05Pa the bubble collapse is very weak, and the core radius is 
seen to follow the bubble wall oscillations. For all three other larger values of Pgo starting from 
Pgo =4xlO5Pa the bubble collapse is strong enough to entrain a full collapse of the viscous core 
which practically disappears (maximum azimuthal velocity at the bubble wall) during the later 
phases of the bubble collapse. This is followed by a much stronger rebound of the viscous core 
than the bubble rebound. 

Figure 111.26 shows a behavior similar to the previous figure when the ratio, Rc/a0, increases. 
Here again a strong core collapse and rebound is observed when the initial distance between the 
bubble wall and the core radius is decreased. 
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3    Criteria for Cavitation Inception 

Present criteria for cavitation inception are based on the dynamics of spherical bubbles in uniform 
flow fields. This ia satisfactory for travelling bubble cavitation inception, but is not necessarily 
adequate in turbulent flows where nuclei are captured in vortical structures where they explosively 
grow. In order to consider such cases, we will follow the example of the spherical bubble studies 
and consider, in a first approach, the static equilibrium equations of an elongated bubble on a 
vortex line. Then, we will consider the dynamic case and analyze the behavior of the bubble for 
different variations of the parameters. 

3.1    Static Equilibrium 

When one considers the static equilibrium conditions, all time derivatives in Equations (III.8) and 
(III.6) vanish, and these equations degenerate to the following simple forms: 

1 dp _ U
2
Q 

pdr      r' 
(111.17) 

!(;!<"*>]-<>• <IIU8> 
For a Rankine vortex of core size, ac, the velocity is given by: 

r_ 
27ra2'' 

ue   =   7.—7r>        r ^ ac 
c 

ue   =   -—,        r > ac, 
Z7IT 

ur   =   uz = 0, (111.19) 

which using (III. 17) and (III. 18) gives the following expressions for the pressure: 

v - *■-- jpi*1 - a'1     forr-°° 
P   =   P~-8&- forr>ac. (111.20) 

On the bubble wall, at r = a, we have the condition: 

p(a) = Pv + Pgo(-)
2k--, v y    a a 

where Pgo is the gas pressure for the bubble of equilibrium radius radius a0 when the ambient 
pressure is Pooo- 

Using equation (III.20), we can now write for r = a < ac: 
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Figure III.3: Cylindrical bubble static equilibrium in a line vortex. Relationship between ambient 

pressure and bubble radius for different values of a0. 

This expression enables one to plot the curve P«, = f{a), (see Figure III.3), which allows one 
to investigate the bubble stable equilibrium. One can notice, as for spherical bubble equilibrium 
curves, the existence of a critical radius acrit above which the bubble equilibrium is unstable. All 
the nuclei, whatever may be their initial size, will grow at a moderate rate, until they reach the 
radius acrit. Similarly, the pressure in the flow field must drop below the critical pressure Pcriu in 

order to lead to an explosive bubble expansion. 
If we consider cases where a/ac « 1, we can obtain an expression of acrit by finding the 

minimum of the curve P«, = f(a) as: 

Q>crit a 

2k 
1 

2fc-l 

By replacing a by ac in (111.21) one can also obtain the curve Pcrit as a function of a0 for different 

values of Pa 

Static Equilibrium Examples 

Figures III.3 and III.4 illustrate cylindrical bubble equilibrium curves in a line vortex. Figure 
III.3 shows the relationship between the ambient pressure and the equilibrium bubble radius for 
different values of a0. The curves are qualitatively very similar to those obtained for spherical 
bubbles. We observe the same tendency for the critical pressure to approach pv for large values 
of the initial bubble radius. Similarily, the critical pressures can be very small and even negative 
for small values of a0. Figure III.4 illustrates the influence of the circulation, I\ on the critical 
pressure for various initial bubble radii. As expected, bubble explosive growth occurs for larger 
ambient pressures when the basic flow circulation is increased. 
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Figure III.4: Influence of the circulation, T, on the critical pressure versus the initial bubble radius. 

Dynamic Behavior Examples 

Solution of the full equations (III.8) and (III. 10) provided a dynamic criterion for bubble explosive 
growth. This is illustarted in Figure III.5 which shows two types of behavior of a bubble of initial 
radius 60 ßm and internal gas pressure 105 Pascals when the bubble is 'released' in a fluid where 
the ambient pressure, Pamb) is either 8000 Pascals or 1850 Pascals. The two types of behavior are 
dramatically different: in the 8000 Pa case, due to the competing forces of surface tension, viscous 
forces, circulation and the pressure difference between gas nad ambient pressures, the bubble 
oscillates between its initial value and a maximum value about eight time larger. In the second 
case, the bubble is typically unstable, and the dynamics is controlled by the pressure difference 
at the interface that leads to an explosive growth. The value of Pamb that indicate the passage 
between the two type of behavior can be considered as the dynamic equilibrium critical pressure 
for cavitation. Figure III.6 illustrates again, for another set of initial conditions, the two types of 
behaviors but in a bubble wall velocity versus bubble radius plot. Such a plot results in a closed 
shape curve when bubble oscillatory behavior is observed. Instead the curve has an open shape 
with a continually increasing bubble radius with an almost contanst bubble growth rate when the 
bubble is in an explosive growth mode. Let us note that during oscillations the bubble radius 
may grow beyond ac without resulting into explosive bubble growth or cavitation. In comparison 
with the static equilibrium criteria, Pc was always found in the cases we have studied, lower in 
the dynamic case than in the static case. 

The influence of the circulation T on the ambient pressure which results for a given bubble in 
explosive growth can be seen in Figure III.7. As in the static case, when the circulation T increases, 
bubble explosive growth occurs for larger values of the ambient pressure. The curve III. 16 shows 
the iterative method used to find Pc: the curve Pc is that separating regions of bubble oscillations 
from bubble explosive growth. Figure III.8 shows similar results for the surface tension paramater 
7.   Note that for the conditions shown in the figure, a order of magnitude larger values of the 
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Figure III.5:   Bubble radius versus time for two values of the ambient pressure.    ao=60/xm, 
Pgo=le5Pa, ac=le - 2m, pv=2S00Pa, T = 0.1, 7 = 0.7. 

SPEED OF THE BUBBLE WALL ä 
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T = 0.05 
&c — 0.5E — 3m 
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BUBBLE RADIUS 

Figure III.6:  Velocity of the bubble wall versus radius of the bubble for different values of P. 
ao=60/im, Pgo=le5Pa, ac=le - 2m, pv=2S00Pa, T = 0.05, 7 = 0.7. 
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Figure III.7: The influence of the circulation T on the ambient pressure which results for a given 
bubble in an explosive growth. ao=60/im, Pgo=le5Pa, ac=le — 2m, pv=2300Pa, 7 = 0.7 . 

surface tension were neede to show a perceptible effect of 7 on Pc. An increase in 7 opposes bubble 
growth and therefore cavitation inception. 

The study of the dynamic equations enables one to also follow the evolution of the core radius. 
As illustarted in Figures III.9a and b, the core radius follows the variations of the bubble wall. 
Two types of behaviors are seen depending on whether the bubble oscillate of grows explosively. 

In the case of the oscillating bubbe, the growth of the bubble imparts a radial velocity to the 
different layers of fluid, and the core also expands. When the bubble radius decreases, the opposite 
phenomenon is observed, however inertia of the fluid leads to a stronger reduction of the core size 
than of the bubble radius. As shown in Figure III.10, in the case of an explosive growth the ratio 
between the core radius and the bubble radius remains practically constant. For an oscillating 
bubble, this ratio is constant during bubble growth but decays strongly during bubble collapse. 

4    Two-dimensional Study of a Bubble on the Axis of a 
Line Vortex 

4.1     Presentation of the problem 

Let us consider now the case of a bubble of a finite size, located on the axis of a line vortex. The 
flow in the vortex line is known at t = 0 then as it interacts with the bubble it evolves with time. 
The bubble is assumed to be axisymmetric and the variations of its shape with time is also sought. 
Its shape equation is: 

F(r,t,z) = 0 (111.22) 

It can take one of the following forms. 

r = a(z,t) — 0,        or        z = b(r,t) (111.23) 
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Figure III.8: The influence of the surface tension 7 on the ambient pressure which results for a 
given bubble in an explosive growth. ao=60//m, Pgo=le5Pa, ac=le — 2m, pv=2300Pa, T = 0.05 
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Figure IIL9: a)Bubble radius versus time,  b) Core radius versus time.  ao=60//ra, Pgo=le5Pa, 
ac=le - 2m, pv=2300Pa, T = 0.05, 7 = 0.1. 
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Figure III. 10:   Ratio between the core radius and the bubble radius.   ao=60/xm, Pgo=le5Pa, 
ac=le - 2m, pv=2300Pa, T = 0.05, 7 = 0.1. 

Kinematic condition at the interface 

Neglecting any mass exchange between gas and liquid at the interface, the kinematic condition at 
the interface between the bubble and the liquid is that of a free surface: 

DF 
Dt 

da , „. , m da (111.24) 

where u is the velocity of the liquid at the free surface, and S refers to the bubble surface. 
Another expression of this condition using b(r, t) is: 

db .  . .  .db 
- = Uz(S)-ur(S)-. 

Dynamic condition at the interface 

The balance of stresses at the interface can be written: 

f, = Ts + 7(V-n), 

(111.25) 

(111.26) 

where indices I and g refer to the liquid and the gas respectively, n is the normal vector to the 
bubble surface and 7 is the surface tension. By considering the ratio between the liquid and gas 
viscosities to be very small {jig <///), the gaseous stresses can be neglected: 

Tg = -ipv+pg)L 

The projection of the stress balance equation along the bubble yields: 

Pv +Pg = Ps - 2/xj (Dw ■ n) .n + a V-n, 

(111.27) 

(111.28) 
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where Dw is the deformation tensor. The projection along the tangential direction , t, also gives: 

(Z?tt.n).t = 0, (111.29) 

4.2    Matched asymptotic expansions approach 

Problem decomposition 

Since an analytical solution of the problem is not presently possible, we will use the following 
asymptotic approach. The fluid domain of interest is decomposed into three sub-regions, resulting 

into three sub-problems: 

1. an outer problem with characteristic length scale given by the viscous core radius, (Rout = 
ac), and characteristic velocitry scle related to acand the vortex circulation, T, (V^t = r/oc), 
which leads to a characteristic time scale, (Tout = ac/T). 

2. an equatorial inner problem which describes the region near the bubble plane of sym- 
metry. Here the length scale along r is the initial bubble radius, a0, and the characteristic 
time scale is that connected to the bubble dynamics, (Tin = a0y/AP/p),where AF is the 
pressure difference between the ambient pressure and the pressure inside the bubble, which 
drives the bubble dynamics. 

3. an axial inner problem which describes the region near the bubble poles (near the axis 
of symmetry). Here the length scale along z is the initial bubble length , l0, and the charac- 
teristic time scale is that connected to the bubble dynamics, Tin. 

Although the scales of the two sub-problems are identical, their analysis lead to two solutions 
of the bubble and flow dynamics which are matched by the fact that both problems should give 
the same bubble volume. 

The outer problem is associated with the macroscopic behavior of the bubble in a vortex flow. 
The bubble then appears as a perturbation to the viscous line vortex flow. The inner problems 
provides the microscopic details of the vortex behavior as influenced by the bubble dynamics. In 
the neighborhood of the plane of symmetry, the bubble can be seen as quasi-cylindrical, and the 
bubble dynamics as that of a cylindrical bubble. On the other hand, near the axis of symmetry 
(i.e. near the bubble top), it appears quasi-flat, and its dynamics as that of a moving piston. 

All these problems are inter-connected and provide boundary conditions to each other. To 
match the different problems, we write that they give the same solution in an intermediary zone. 

* between the inner and the outer problem: 
for Rim < (r, z) < Rout we must have 

Pinner {r,z)= Pouter (r,z), Uinner (r, z) = Uouier (r, z) . (111.30) 

* between the two inner problems: 
These are linked through the stress balance equations at the bubble interface, and the assump- 

tion of uniform pressure inside the bubble. The identity of the internal pressure and the bubble 
volume allow matchings between these two subproblems. 
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Small parameters of the problem. 

The main small parameter of the problem is the ratio between the two length scales: 

e = ?™L = f^. (111.31) 
Rout        ac 

Another parameter of importance is the ratio between the bubble initial longitudinal and radial 

(111.32) dimensions: oo 
a = T u0 

4.3    The outer problem. 

Normalization. 

We normalize the equations of the outer problem using the following scales: 

r = acf ac, length scale along er. 

z = ac~z ac, length scale along ez. 

a = a0a a0, initial bubble radius. 

ur = UoutWr Uout, order of magnitude of the velocity along er (unknown a priori). 

Uo = VoutUe      Vout=2^- 

uz = Woutth    Wont, order of magnitude of the velocity along ez (unknown a priori). 

t = Touit Tout = ac/r 

p = APoutP       APout = pV<Lt 

This normalization introduces the following physical parameters. 

Reo = sa-Vout the Vortex flow Reynolds number 

yye = 9üAS. the Bubble Weber number 

Basic equations for the outer problem. 

Consideration of the normalized continuity equation 

^-10(^ + ^^ = 0, (IH.33) 
a0 rof l0    oz 

and application of the least degeneracy principle leads to a similar choice for the ratio of the radial 

and axial velocities: TT u™t ^ £o     =a (111.34) 
Wout h 

With these normalizations the basic equations of the outer problem become: 
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• Continuity and Navier-Stokes: 

ldjfü;)     dih   _ 
f    df dz 

du;      «dvTr     u
2

e       _dü; 
d£ df       r 

due .    _ due 

_ 3p       1 
df If    of   )      dz2 

1 ix« ^u,y       wrWö  ,    _ due 
dt df r oz Jtieo 

d_ (id(me)\    <rüe_ 
df\f    df dz2 

düz 
dt 

a-r=- + OL^ür-Tdr + otuz 

düz 

df 

duz 

dz 
=   _5 + J_ 

dz       Reo 

d2uz 

rdf V df )      dz2 

* Dynamic conditions at the interface: 

_d (üe\       da due 
r"df\f)~£dzdz 

du;     düz 

~d¥ + ~df 
?V-i dz) 

= 0, 

=   2e 
da 
~dk 

dü~T    dü£ 
~df~~~dJ' is 

PS = Pv + =fc + 

2a 
Reo #_eäil"öf +  &r)^5   \9z)    dz 

du 
df 

K*  (i+e2(i)2) 
* Kinematic condition at the interface: 

-M1 P2 3±ä 

i+-2(i) 

da    _ , v      _ , vöä 

(111.35) 

(111.36) 

(111.37) 

(111.38) 

Legist degeneracy 

In order to keep the largest number of terms in the differential equtaions (principle of least degen- 
eracy) we need to chose a2 = O (e). The equations then become, written in powers of e: 

* Navier-Stokes: 

ld(r%:)     du; 
f    df dz 

%&      rduT ,     (_dur    _duT 

0, 

dt df dz r 

due 
öt V     df        r dz 

M + ^l 
df       Reo 

d   (Id{für) 
df \r    df 

+ d
2ur w 

r-1 - due     urue , _ düe 
1 

t*-eo 

rdüz _düz , _ düz\ dp      1    /- 

of \f    df   J      d*2 

1 a  / du.. 

dt   ' ~ \~" df   ' ~* dz ) dz     Reo 

Dynamic conditions (Boundary conditions at the bubble interface) 

_d /«e\       da due 
7df \fj       <9z <9z 

rdr V   of 
+ 9V 

dz2 .(III.39) 
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(111.40) da   fdüT     dih 
W \df~~dz7 

_      _,   Pgo    , 
PS = Pv + =k + 

2y/E 
Reo -W-esi\dz + dr)^e  \dz)   dz 

%" (i+^(i)2) 
* Kinematic conditions: 

we • V5    ^(m) 

B,.(S)-^i-^(5)S = 0. 
'öt dz 

(111.41) 

(111.42) 

4.4    The inner problem. 
We nondimensionalize the inner problem equations as follows: 

r = a0f, a0, the initial bubble radius along er. 

z = l0z, k,   the initial bubble radius along ez. 

a = a0a, a0, the initial bubble radius along   er. 

b = l0b, k,  the initial bubble radius along ez. 

uT = Uinur, Uin, order of magnitude for the radial velocity. 

Ug = VinÜe, Vin = 2^fa0- 

Uz = Winu~z,       Win, order of magnitude for the axial velocity. 

p = APinp,    APin = pVl 

t = Tini,        Tin = aoJld^, Rayleigh time of a bubble subjected to a pressure variation 

equal to APin. 

This normalization introduces the following physical parameters. 

Re. = ss-Vin Cavity Reynolds number 

yye _ ao&Pm Cavity Weber number 

We will consider the case where a = Ö (e) or l0 = Ö (ac). 

The inner sub-problem near the vortex axis. 

In this region close to the bubble poles, the radial velocity due to the bubble dynamics is very small 
{Uin < Vin) and can be neglected while both the axial and tangential velocities can be considered 
of the same order {Uin ~ Vin). Therefore, we will consider the cases where, 

Ur, 
Vir 

(111.43) 
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• Navier-Stokes: 

ed(rtir)     dü^ 
f    df dz 

0, 

2dür      4_öur     üö      3 

r dt   '     ^ df      f dz, 

dür   _   _dp    £_ 
8f       Rei 

d_ fld{rur)\      2d
2ür 

dr[f    df       +£  dz2 

dug      o- düe ,   2urue 

dt dr + e'ür-^r + ^-^r + £Üz~d2 r 

>_ düz 

due 
: dz 
du. 

d (\d{füe)\ , „2d
2üe 

dz2 df \f    df 
1 

+ e< 

düz      2_ düz      _ düz dp yd2Üz 1 d (~düz\      2U ""* 
for Töf J+     Ö52 (111.44) 

* Dynamic conditions: 

röf [TJ df        dz 

3 ÖWr        dÜz 

dz      df 

0, 

=   Is1 

~      .       ~     (l\k, 2 Jl  (db\      Our 
PS=Pv+P9a(V)    + Rev^lm^   [£   W     * 

a6 
of 

><9«z 

Öf 05 

+ £ä7 l£  "öl" +   Sf J + £ .3 957 
95- + 

r2 8^6 

£2 + (ft)' 

• Kinematic condition: 

^ = uz (S) - eur (5) —. 

(111.45) 

(111.46) 

(111.47) 

The inner sub-problem near the plane of symmetry. 

In this region, the bubble is almost cylindrical and the axial velocity is very small. Therefore, the 
ratio between Winn and Uinn is very small. However, we will consider there that & = Ö (1). This 
leads to the following equations: 

• Navier-Stokes: 

f    df 
dür      - dür     ü\ 

— + u. 

1 d (rür)       düz 

dt df 
T "0 

f 
-^■ + eüz 

dz 
dÜr 

~~dz~ 

=   0, 

9f       i?ei 

_a fld(rur)\       2d
2ür 

df \f    df   ) dz2 

due     _ due , ürüe ,    _ öüg 1 
dt dr        r dz tiei 

d (\d{füe)\     c2d
2üe 

df \f    df   )     E  df J 

du 

di 

duz 

dr 
'■£■ + Ur-TTZ- + SU 

duz 

dz 
'Z 

'Z    <-.- 

_ dp   J_ 
dz     Rei 

1 d („du 

fdf\Tdf)    £  dz2 

>d2uz (111.48) 
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• Dynamic conditions: 

_ d füg\      2dädüe 
Tdr \TJ ~£ dz dz 

düT     düz 

dz  .   df 

~\ 2 

"i)-1 
0, 

=   2e 
da   fdür       düz_ 
dl' \~dr~~£~dz~ 

-3 fdä\2 da; 
dz 

IS 

+ 

-2z± 

* Kinematic condition: 
da     _  , oN       _  / cx da -^=ur(S)-euz{S)—. 

4.5    Resolution at order zero (e°). 

The outer problem. 

At order zero, the equations of the problem degenerate to: 

< dpö 
r df ' 

düe0 1 
\d fid (ruBo)^ 

+ 
d2u6o 

dt ■tteo df [f df    J dz2 

dpo = n. 
dz 

so that 2finMwith(III.53) 

We must finally solve: 

u2e0 _ dpö 
r        of' 

dz 

1   9 fld(fu0o) 
RPOdf \r    df 

düe0 

di 

(111.49) 

(111.50) 

(111.51) 

(111.52) 

(111.53) 

(111.54) 

(111.55) 

(111.56) 

We can find a self similar solution, tf (f ) = rüg0. This leads to solve the following equation: 

(111.57) tf* + iW = 0. 

which can be directly integrated to obtain 

\f. (   Reor
2 

u8o = - [ 1 - exp 4   t 
(111.58) 
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which satisfies a decay towards zero for large times, and is a Helmolthz vortex at t = 0. 
The corresponding pressure expression is: 

R,0r>\   . (   Reor>\\   ,  Reo». (R^\ _ R, (?*£\ . 

(111.59) 
where the exponential integral function _i(a) is defined as : 

^) = jT__iz_d, (IIL60) 

A Taylor's series expansion indicates that the solutions are matched with the boundary conditions 

(see below). 

The inner problem in the neighborhood of the axis of symmetry. 

The equations are at order zero: 
*Navier-Stokes: 

duZo 

dz 
du6o 

_         < _ dpo 
           U,                                _                  Q~    ) r        or 

1   d  nd(fü6o) 

di ~   Reidf \f    df 

düZo 

di 

1  1 d f-duZ0\ 
Reirdr \   df ) 

•kKinematic condition: 
db0     _   /Cs 
—j = uzo (S). 
dt 

(111.61) 

Solution of üeQ.    Here also a self similar solution of the form *x (f) = fü9o can be obtained: 

1 
«00   =    ~ 

1 I 'e2 1 - exp 
Ren r 

4   t 
(111.62) 

and satisifies a decay towards zero for large times, and is a Helmolthz vortex at t - 0. 
The resulting pressure equation is: 

Ä.-Ä-- 2^ I1 -2exp [-4T) +exprs-))' _ r HH"" V * 
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Solution of üzo.    Concerning the equation in üZo (IHM) we can also find a function *2 such that 

vj>2 (ii\ = iüzo, so that we obtain for üzo : 

üzo = — exp |exp(-^V (IIL64) 

where Ais a constant that is not determined at this point. We can also obtain the equation of the 

bubble bo (i,f) as: 

fS2 U 

Expression of the volume.    The boundary conditions on the bubble surface can now be applied. 
The pressure on the bubble surface at the vortex axis is given by (111.63): 

•   26 In 2 
Palong the vortex axis       Poo r 

This leads to a relationship for the bubble volume: 

261n2      _   ,   _   (Vo\ 
Poo t~=V       9o\V)   ' 

or 
k - 261n2 

The inner problem in the neighborhood of the plane of symmetry. 

The equations at order zero become: 
•kNavier-Stokes: 

1 d (nZro)    =   0 

f    df 
du~0       _ duro     ü

2
9o dp0  ,    l_d_ fld(ruro) ■TQ       .         ~     " "10    _         PQ __ __iJl   _1 I  

"öT    Uro df        f 9r      Rei df \f    df 
düe0  ,-dü^     u~0ue0 = J__ö (ld(fü9o) 

~W + Uro df  +     f Reidf\f    df 
duz„„   du^ _ J_l_9 /ööjj," 

+ "ro    ov~ — r>     ~ Qc: \ ffi        ro df Reifdf\   df 

■^Dynamic conditions: 

(%\k      2 düro       1   1_ 

(111.66) 

(111.67) 

M   _P°o--T"~P" (111.68) 
V / Pso 

(111.69) 

(111.70) 
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-kKinematic condition: 

^=üro(a). (111.71) 

Integrating the continuity equation over f and replacing in the other equations, we obtain: 

o 

o0 d0 
ur0   = ~      1 r 

o 2 oo «>   ° ~ 9 ~ 
a0       a0 a0 _ a0  a0   _ «^   _   _9po 

r f f3 f 9f 

dÜ0o     dododüeo , äo^o- 1   d  fl d ,      . 
3t r     dr r2 Äeiör \r<9r 

O 

fo£0     QQ QQdt£0 _     113 f~9uZ0\ (HI 72) 
di r     dr Reir dr \   dr 

and at the bubble surface: 

*<*>=*+*(t)'-£f-«k (IIL73) 

Solution for the bubble radius    Using a similar approach as in Section ULI, we make the 
following change of variables to transform the integration domain into a fixed domain: 

8 = 4. (111.74) 
d0 

This leads to the following equation for the evolution of the bubble radius with time. 

g= _^2_ + ^L__ (       1     +    U Jl       ^4 - —i— (po(w) -Po(ao)),    (IIL75) 
a0      a0lnsmax \   2s^ax     2/       a0msmax       a0lnsmax 

where smax is the cutoff distance far from the bubble wall for the numerical integrations. 
This expression is very similar to that obtained for an infinitely long bubble on the vortex axis, 

(III.8). However, her the value of po(do) is given by the stress balance equation at the bubble wall 
which involves the bubble volume, and po(-Smax) is obtained by its limit expression in the outer 
problem. 

In order to solve this equation, we need to use the expression of the volume found at the 
bubble poles from the previously described inner problem near the vortex axis. This provides a 
key coupling between the two inner sub-problems. 

These equations can be solved numerically using a time and space discretization scheme. Cen- 
tered differences are used for the space integrations, while a Crank-Nicholson scheme and Runge- 
Kutta integartion are used for the time stepping. 
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Some example cases and discussion 

Because of the nature of the solutiou of the outer problem, (HUB).M£ not possiblet<.start the 
nroblem at t = 0 (Physically, this is due to the fact that we imposed that at t - 0 the vortex une 
fs th^nan idem flula. Therefore, it is not possible to haye a finite bubble at eqmhbnum on the 
:^1 aTwhte the pressure is infinitely negative). Therefore we will «?*£*£££* 
finite time, * = *„. The considered bubble will then be assumed of volume, V„, and the rotatmg 

flow Held will have an Oseen form: 

The bubble behavior once allowed to interact with the vortex strongly depends on the rela- 
tionship between V0 and an equilibrium volume, Veq, defined as follows: 

v _ (       **> ^k, (ni-77) 
\p~-Pv--trJ 

with V0 = 1, (using Va as the volume scale). 

1 If V0 is much greater than Veg,then the bubble undergoes a violent collapse (Figure III.ll) 
with the speed of the bubble wall becoming increasingly negative until touchdown. 

2 For smaller values of V0 , but still higher than Veg,the bubble radius begins by dropping, but 
then the bubble grows back to a large value before violently collapsing (Figure 111.12). 

3 When V0 is inferior to Veq, the bubble first grows, and then collapses (Figure 111.13) but 
' always in the same violent way. The smaller V0 is, compared to Veg,the more important is 

the initial growth of the bubble (Figure 111.14). 

It is important to notice that in all cases the bubble wall speed become infinite and the radius 
goes to zero. All attempts to systematically reduce the time step when the radius decreases failed 
in showing a bubble radius rebound. This illustrates the absence of a restoring force during the 
collapse of the bubble. This is due to the fact that the variations of the volume m time are in tact 
verv small, which make the influence of compression of the inner gas neghgeable. 

This leads us to the numerical study of the bubble behavior on a vortex axis as described in 
Chapter II. There it was seen that as the initial pressures in the bubble was higher than that on 
the vortex axis, the bubble first elongates along that axis and does not encounter any significant 
resistance in that direction. However, after the bubble has exceeded its equilibrium volume, the 
portions of its surface farther from the axis start to collapse, i.e. return towards the axis. The 
points near the axis only experience a very slow pressure increase due to viscous diffusion^ 
no force opposes their motion, the bubble continues to elongate. This leads to bubble sphtting. 
As the asymptotic model described in this section give only the bubble position m the plane of 
symmetry and on the axis, we observe instead of the detailed splitting of the bubble its expression 
along the two main direction: i.e. increasing elongation along the axis and radial dimension 

tending to zero. 
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Figure III.ll: Bubble radius versus time for an initial bubble volume much larger than the equi- 
librium volume. Veq/Vx = 0.063, t0 = 100, ao=500/im, Pgo=5.105Pa, ac=0.025m, pv=2300Pa, 
T = 0.1, 7 = 0.7. 
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Figure 111.12: Bubble radius versus time for an initial bubble volume much larger than equilibrium 
volume, a. Full curve, b. Blow up of initial region. Veq/Vx = 0.63, t0 = 100, ao=500/im, 
Pflo=5.105Pa, t0 = 100, ac=0.025m, p„=2300Pa, V = 0.1, 7 = 0.7. 
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Figure 111.13: Bubble radius versus time in the case of bubble growth and collapse. Veg/V, = 1.75, 
to = 100, ao=500fim, Pgo=5.105Pa, ac=0.025m, pv=2S0QPa, T = 0.1, 7 = 0.7. 
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Figure III. 14: Bubble radius versus time for various values of the initial bubble volume all smaller 
than the equilibrium volume. t0 = 100, ao=500//ra, Pgo=b.W5Pa, ac=0.025m, pv=2300Pa, T = 
0.1, 7 = 0.7. 
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Figure 111.15: Bubble radius and viscous core radius versus time in the case of a strong bubble col- 
lapse. VejVi = 0.063, to = 100, ao=500/xm, Pgo=5.105Pa, Poo=1.104Pa, ac=0.025m, p„=2300Pa, 

r = 0.1, 7 = 0.7. 

Figures 111.15,111.16,111.17, illustrate the interactions between the bubble and the flow. In the 
case of a bubble collapse Figure 111.15 shows that the viscous core radius decreases as the bubble 
radius and even more rapidly. Through conservation of momentum, the tangential velocity follows 
the opposite tendency to the core size. As the bubble wall contracts, the core shrinks, and the 
vorticity increases. Both the maximum of the vorticity, V x u, (Figure III. 16), and the maximum 
of the tangential velocity (Figure III. 17) grow exponentially when the bubble collapses violently. 

On the contrary, when the bubble has an explosive growth, the core grows in the same way 
(Figure III. 18). It is important to notice that the ratio between the core radius and the bubble 
radius remains constant. We find here the same result as in the section on cavitation inception 
using the infinitely elongated bubble approach. The maximum of the tangential velocity (Figure 
111.19) and the maximum of the vorticity (Figure 111.20) drop to asymptotic values very close to 
zero. 

Although these interactions, as well as the tendency of the core radius to get displaced with 
the bubble wall, correspond to intuition, they are still quite unknown and need to be studied more 
thoroughly. Poo 

4.6    Resolution at the following orders 

The outer problem at the order e1/2. 

We collect now all the terms at the following order, here e1/2 for the outer problem. 
-kNavier-Stokes 

ld(rü^) düTx    _ 
f    dr dz 

dv^l _ ü$oü(k   _ 
dt r 

.^1 + J_ 
dr      Reo 

d fld(füri)\     d2ü 
dr dr 

+ *ri 

dz2 
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Figure III.16: Bubble radius and maximum tangential velocity versus time in the case of a strong 
bubble collapse. ■ V^/Vj = 0.063, t0 = 100, ao=500/zm, Pflo=5.105Pa, Poo=1.104Pa, ac=0.025m, 
p„=2300Pa, T = 0.1, 7 = 0.7. 

NON-DIMENSIONAL BUBBLE RADIUS MAXIMUM OF VOIITICITY 

Ao=0.5c-S m 
P„0 = 50000 Pa 
P„ = 2300 Pa 

P„ = 10000 Pa 

r = 0.1 
Ac=2.5e-2 m 
<r = 0.7 
la = 100 

0.000 0.004 0.008 0.012        0.016 

6=6.53«-' 

=1 1 1 1000 
0.020        0.024        0.028 

NON-DIMENSIONAL TIME 

Figure III. 17: Bubble radius and maximum vorticity versus time in the case of a strong bubble col- 
lapse. Veq/Vi = 0.063, t0 = 100, ao=500/im, PflO=5.105Pa, Poo=1.104Pa, ac=0.025m, p„=2300Pa, 
r = 0.1, 7 = 0.7. 
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Figure III. 18: Bubble radius and viscous core radius versus time in the case of an e xplosive bubble 

growth. Veq/Vx — 145, t0 - = 100, ao=500/xm, P5O=7.104Pa, P^ =1.104Pa, ac=0.025m, p„=2300Pa, 

r = 0.1, 7 = 0.7. 
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Figure III. 19: Bubble radius and maximum tangential velocity versus time in the case of an explo- 
sive bubble growth. Veq/Vi = 145, t0 = 100, ao=500fim, Pgo= 7.104Pa, Poo=1.104Pa, ac=0.025m, 

pv=2300Pa, T = 0.1, 7 = 0.7. 
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Figure 111.20: Bubble radius and maximum vorticity versus time in the case of an explosive bubble 
growth. Veg/Vi = 145, to = 100, ao=500/zm, PflO=7.104Pa, Poo=1.104Pa, ac=0.025m, p„=2300Pa, 
T = 0.1, 7 = 0.7. 

du6l     _   &üe0     urouo0     _   &üg0 
^= r Uro   ^^     r       _       "r Uz 
dt df 

MZQ dz RP 

d fld(fü9iy\ | d2ü6l 

df df dz2 

du 'ZQ 9pi 
dt dz' 

Using the zero order solution, we obtain in a similar fashion for «^: 

(111.78) 

r 
a + ßexp 

7^2 Reor 
' 4   t 

where a, ß are constants. But, since we need to satisfy (ug1 = 0 when t 
solution degenerates to a = ß — 0. This, therefore, also gives pi = 0. 

(111.79) 

0 and t —> oo), the 

The outer problem at the order e 

In order to find the perturbation due to the presence of the bubble on the line vortex flow we have 
to expand to the second order. We can explore an expression of the radial velocity by analogy 
with the expression we found near the plane of symmetry at order zero, (i.e. we have a source of 
intensity ^ at the origin). Let us set: 

dVn f 
Uri~ di (f2 + z2Y 

where the volume V0is known at the previous order. Using the equation of continuity, the axial 
velocity at order one is then: _ 

dVo z 
u ■z\ di   (f2 + z2) 
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The boundary conditions due to the presence of the bubble can now be introduced. This enables 

one to write an equation with üe2 only: 

düg2    _  M9o ,ue0,      1 d_ fld{rü62)\     früh 
df\r    df    )      dz2 

The inner problem near the axis of symmetry. 

At order zero, the bubble appears without geometrical curvature.   Now, we will consider the 
variation according to the two dimensions. The various equations at this order are: 

• Navier-Stokes: 

ld(rüro)     duZl 

f    df dz 

r 
düei  , _   du + uzo — 

= o, 
Ü0oü9l   _   djh 

df ' 
i d fid(fü6ly 

dt 
du 

dz 

dt -+«^ dz 

Rei df \f    df    ) ' 

dz     Reifdf V   df 

-k Dynamic conditions: 

\d_ füeA djh     ~d_ (jhA dbo 
rdf\f)dfdf\f) df 

du ■Z\ 

df 
dbo 
df 

Ä+Ai.y) +- 2 
du 'ZO 

"■•ei (*) *     w. (ff) 

^düzo   dbQdbi 
df     df df 

äi dbo     JL dbi 

=   0, 

o, 

OQ df     äo df 
P 's- 

* Kinematic condition: 
db\ dbo 
—l = üZl (S) - üro (S) — 
dt df 

The inner problem near the plane of symmetry. 

•kNavier-Stokes: 

duT 

% 'öi 

dt 
+ ü 

di 
dÜ6o 

Tl   df 

+ u 
du 

Tl df 
'^r + ü To 
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düz 

df dz 
dpi       1 

' dz     Re 

ld_ 
f df ,    df 

*Dynamic conditions: 

du~    . du "ro 

p~v+p~9°\vs) +R^- 

dz 

du 

+ 'Zl 

df 
+ 2 

df \ f ) 
däo duro 

dz   df 

Tl dä~o du. ZQ 

df       dz   df 
+ 1  ä\ 

= o, 

=   0, 

=   PS 

•kKinematic condition: 
däi      _    . „.     -    / cv däo 
Qt ■■"   ' —   '   dz 

These equation can be solved using a finite difference scheme such as the Alternating Direction 

Implicit (ADI) method. 
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Chapter IV 

THREE-DIMENSIONAL 
BUBBLE-VORTICAL FLOW 
INTERACTION — A NUMERICAL 
STUDYl 

1    Introduction 

Simulation of vortical liquid flow fields with free surfaces is important in many fields such as.naval 
hydrodynamics and two-phase flows, and still presents many challenges despite extensive investi- 
gations. The simulation requires satisfaction of free surface boundary conditions, incorporation 
of the vorticity dynamics in the presence of free surfaces, and description of the dynamics of the 
surface deformation. 

In this contribution we present a numerical scheme that we have developed for such three- 
dimensional vortical flows by coupling a vortex element method (VEM) for the vortical part of 
the flow with a boundary element method (BEM) for the potential part. We describe this new 
formulation, and present application of the scheme to some relatively simple cases, where we 
investigate the bubble deformation due to the flow field, and the effects of the bubble deformation 
on the flow field. 

The BEM has been successfully applied to many inviscid potential flow computations with 
free boundaries (e.g., bubbles, drops, water waves). The chief advantage of this method is that 
only the boundary is discretized instead of the complete domain therefore achieving a considerable 
reduction in the number of unknowns and an increase of accuracy at the free surface. Moreover the 
movement of the boundary is easily followed in a Lagrangian fashion using the local velocity. The 
axisymmetric formulation of this method has been widely applied in the literature for the study 
of bubbles and surface waves,[34], [35], [36], [37]. We have implemented and systematically used 
both an axisymmetric as well as a three-dimensional boundary element formulation for simulating 
cavitation and underwater explosion bubbles near solid boundaries and deformable structures, and 
for studying multi-bubble interaction ([40], [41] &[42], [l], [43]). Similar bubble-bubble interaction 

'This chapter is adapted directly from our publication in Reference [64]. 
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problems were studied by [75] [76] using expansions in special functions. 
The vortex element method has also been applied to many free and bounded flow problems 

([45], [44]). The modern version of this method pioneered by [49], represents the vorticity field by 
distributed vortex elements while the induced velocity field is obtained by integration ([46] & [47], 
[48]). There are three main advantages to this method compared to more traditional methods. 
First, it eliminates the pressure from the equations with incompressibility automatically satisfied. 
Second, the dynamics are described by following the movement of the vortex elements, and by 
solving ordinary differential equations to evaluate their intensities. Finally, only the region in the 
fluid where the vorticity is nonzero is discretized effecting a substantial saving in computation. 
Recently, several viscous vortex element schemes have been suggested and successfully imple- 
mented in simple geometries making these methods attractive alternatives to more traditional 

finite difference methods ([49], [50]&[51] , [52] & [53]). 
We have coupled the BEM and VEM methods into a numerical scheme that will ultimately be 

capable of handling general vortical flows with free boundaries while retaining the advantages of 
the individual methods. In earlier studies of bubbles in a vortical field, the effect of the flow on the 
bubble was accounted for while neglecting modification due to the bubble of the vortical part of 
the flow ([1]). The present technique removes this restriction by calculating an evolving vorticity 
field and incorporating two-way interaction between the bubble dynamics and the vorticity. 

The difficulty in implementing the coupled description is the need to compute the pressure on 
the free surfaces. This difficulty is solved by a formulation with a Poisson equation for a scalar 
quantity involving the pressure (similar to the expression appearing in the Bernoulli equation), 
which satisfies a normal derivative boundary condition on the free boundary. The solution of this 
equation is obtained using a dual reciprocity boundary element method (DRM), ([54]) using the 
same BEM matrices calculated for the velocity potential. This provides the time derivative of the 
potential at the bubble nodes and therefore enables computation of the full interaction between 
the bubble dynamics and the flow. 

We describe the mathematical formulation in section 2 and the numerical implementation in 
section 3. Then in section 4 we apply the method to obtain the dynamics of a bubble in a column 
vortex flow and a bubble in a vortex ring structure. Conclusions are given in section 5. 

2    Mathematical formulation 

2.1     Kinematic Equations 
In order to proceed with a BEM/VEM mixed approach we use the fact that the velocity field u(x) 
can be expressed via the Helmholtz decomposition as the sum of the gradient of a scalar potential 
(f) and the curl of a vector potential A : 

u(x) = u6(x) + u^x) = V0(x) + V x A(x). (IV.l) 

Restricting our study to the case where the flow is incompressible, we have 

V20 = 0. (IV.2) 
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Given (IV.2), a boundary element formulation to express 4> in the fluid domain D is obtained 
by applying Green's identity 

a0(x) =  / [4>(x')n ■ V'G(x,x') - n • V,0(x')G(x)x')] dS(x!), (IV.3) 

where G(x, x') = —[47r|x — x'|]_1 is the free space Green's function, a is the solid angle subtended 
by the fluid at the point x, normalized by 4n, S is the surface of the boundary delineating the 
domain D, including wetted and submerged bodies, bubbles and free surfaced; n  is the local 
outward normal at the surface, and V is the gradient operator in the primed variable. 

Taking the curl of (IV. 1) we see that A is related to vorticity u> by 

V2A = -u, (IV.4) 

where we have assumed that the vector potential A is solenoidal (V • A = 0) (For further detail 
see [30], p. 86). We will seek the field A, in an unrestricted domain D (D is D minus the volume 
of the included body or bubble) with no boundary contribution, since the vorticity field decays 
sufficiently fast far away. Consequently A is given by a volume integral over the vorticity 

A(x) = - / G(x, x> (x') dV(x!). (IV.5) 
J D 

The velocity uw induced by the vorticity is given by the Biot-Savart integral obtained by taking 
the curl of A 

uw(x) = -Vx (G(x,x')u(x')rfV(x'). (IV.6) 
J D 

The effect of any boundaries that may be present in the problem will therefore be accounted for 
by the ub term in (IV.l) by (IV.3). 

2.2     Dynamic Equations 

The evolution of the flow field is governed by the motion of the bounding surfaces as much as 
by the change in vorticity w. The change in vorticity field is governed by the vorticity transport 
equation 

Du „ 
— = u ■ Vu + vV2u). (IV.7) 

where D/Dt represents the material time derivative following the local fluid velocity u, and v is 
the kinematic viscosity. 

The potential part of the flow is affected by the movement of any free surface through the 
boundary conditions. The momentum equation can be written by decomposing u into its com- 
ponents as in (IV.l): 

dub     duw 

\H ■— +i/V2u. (IV.8) 
P 
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Expressing U;, in terms of the scalar potential <j>, a modified Bernoulli type equation can be 

obtained from (IV.8), 

V* = V (d4 + IM2 + E) = ~ - u x W+i/V2u. (IV.9) 
\dt     2 pj at 

where o,      , 
„ = ^ + huf + E. (IV.10) 

at     2 p 

By taking the divergence of (IV.9) we obtain the following Poisson equation 

V2* = V.(uxw) = |w|2-u • (V x w) =fl, (IV.ll) 

in the entire fluid domain D. We find from (IV.9) that <£ satisfies on the boundary 

n.V$ = n.(-^-uxU+i/V2u)E(J. (IV.12) 

In the case where we consider a bubble and vortical field in an infinite medium, (f> and u decay 
to zero at infinity and <3> tends to Poo/p. Such a Poisson equation with the boundary conditions 
provides a well-posed problem for the scalar function <3>. Note that by taking the divergence of 
the momentum equation and using the incompressibility one may also obtain the familiar Poisson 
equation for the pressure. However, here we have chosen the above form which is convenient for 
the numerical solution adopted below. 

If the flow field due to the vortical part of the flow is assumed to be steady or to have a 
predetermined time evolution Equation (IV.8) may be given the form ([l]) 

v (m+\]v^+Uw'w+V~y±)= ~w x u- (IV-13) 

This corresponds to assuming that the vortical flow field is not modified by the bubble flow, and 
that the pressure pw due to the vortex field is known beforehand. In that approximation, each 
field, u^, or ub, was assumed to satisfy the momentum equation individually with separate pressure 
fields pu or p&(= p — pw) associated with them. The right hand side in (IV.13) may be taken to 
be zero under certain special paths of integration, leading to a Bernoulli integral on the bubble 

*0 = f* + W + ^.v* + ^-S=^M, (iv.i4) 
at     2 p p 

where oo denotes the value far away. This provides an expression for d(j)/dt which was used by [l] 
for updating the values of <f) at the bubble surface. However the right-hand side of (IV. 13) cannot 
be set to zero for integration of a general evolving vortical flow, and for an interacting vorticity 
the vortical pressure field pw is not generally definable. These issues are satisfactorily resolved 
here in the new coupled formulation by solving the additional Poisson equation for $. In order to 
obtain <3> we apply Green's identity to find 

atf(x)=  /[*(x')n-V'G(x,x')-n-V,*(x')G(x,x')]dS(x/)+ / G(x,x,)fl(x')dV(x').  (IV.15) 
Js JD 
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Because the right hand side in (IV.ll) gives rise to an additional volume term in the corre- 
sponding Green's identity (IV. 15), Eq. (IV.ll) cannot be solved using information only at the 
boundary and the regular BEM. This can be overcome by applying the so-called "dual reciproc- 
ity" boundary element method to solve these equations as shown below. Once we obtain ^ and 
the pressure p on the bubble surface from the dynamic boundary condition [see (IV.17) below], 
(IV.10) provides an expression for d<f)/dt there. Comparing with regular irrotational flows with 
free surfaces, we note that the solution for \I> effectively achieves an integrates the momentum 
equation similar to arriving at the Bernoulli integral. 

2.3    Boundary Conditions 

The kinematic boundary condition on the free surface <S(x) = 0 is given by 

f=0, (IV.16) 

i.e., the points on the free boundary follow the fluid particles. 
The dynamic boundary conditions are the balance of normal and tangential stress. In the 

examples presented below, the fluid motion inside the bubble is neglected. We have also neglected 
the viscous part of the normal stress which can be included in a straightforward manner. The 
pressure inside the bubble is then given by the sum of the vapor pressure pv inside the bubble, 
and the non-condensible gas pressure pg, assumed to change by a polytropic process (exponent k) 
with the bubble volume V, pgV

k — P9OVQ ([40]). The pressure balance at the interface can then 
be written as 

p = pi-C1 = pv+pg0(^j   -C7. (IV.17) 

Here pg0 and Vo are the initial gas pressure and the volume of the bubble, p^ the internal pressure, 
7 the surface tension, and C the local surface curvature. Here it was assumed that the internal 
pressure pi is spatially uniform, that the time scale of the dynamics is fast enough so that the 
amount of non-condensible gas remains constant, and that vaporization occurs fast enough to keep 
the vapor pressure constant at its equilibrium value at the liquid ambient temperature. 

3     Numerical Procedure 

3.1     Vortex Element Method 

The vortex element method starts by representing the vorticity in terms of vortex particles or 
blobs. As is well known, a point vortex method gives rise to an unbounded velocity when one 
particle comes close to another ([49], [47]). To remedy this situation [49] suggested a core function 
that desingularizes the velocity kernel by modifying the near field contribution of the particle. 
There have been several studies to prove convergence of such methods with various core functions; 
see [55] for a review.  Here we apply the core function suggested by [56] and used among others 
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by [57] and [58]. The vorticity is discretized introducing overlapping vortex blobs /A of spatial 
extent A at locations {Xi}> * — 1> • • • > N, 

N 

w(x,t) = £wi(i)dVr
i(t)/A(x-;fc). (IV.18) 

»=i 

If the distributed vortex blobs are aligned along lines as is the case for the examples presented 
below, we may use the fact that the volume of the blob dVi = dA{ • dXi, and rewrite (IV.18) as 

N 

w(x,i) = £r'(*)d;&W/A(x-X*), (IV.19) 

where 

/A(r) = 4^e"(r/A)3' (IV-20) 

dXi is length of the vortex element, dAj its area, and I\ = u>\ ■ dA, the circulation. Using 
the circulation T» instead of u)i eliminates the need for solving the vorticity transport equation 
(IV.7), if the liquid viscosity is neglected, and therefore when the circulation Tj of a fluid particle 
is conserved. The vortex particles move with the local fluid velocity. Therefore the vorticity 
dynamics is governed by the advective stretching of the element dx^ The vector stream function 
A may be found by applying the relation (IV.5). The vorticity induces the velocity field (IV.6), 
which after performing the volume integration analytically may be written as: 

Mx.^Er/*;^;/-'*^). (iv.21) 

where 
K(r) = 1 - e~r\ (IV.22) 

We use overlapping blobs (i.e., A > h, h being the separation between neighboring particles) as 
this choice has been shown to achieve second order accuracy ([56], [55]). 

3.2     Boundary Element Method 

Discretization of the free surfaces by triangular elements, together with the BEM formulation 
(IV.3) for (j> generates a set of linear equations relating <ß and d(\)jdn   at the nodes, 

E Mx^)^^) - B^x^)^] 0. (IV.23) 

Here the functions <ß and d(j>/dn are linearly interpolated inside each panel using their values at 
the nodal points of the panel, namely the vertices of the triangle. A^ and Bij are geometry 
dependent matrices relating the 'influence' of the j—tb. node at the i—th node. They are obtained 
by analytically integrating the surface integral in (IV.3) over each panel separately. When the 
problem has only free surface boundaries as in the examples below, 0 is known on the free surfaces, 
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and this set of equations is solved for d<f>/dn at the boundary. If in addition solid boundaries are 
present, a mixed formulation is obtained where (f> is known on the free surface and d(j)/dn is known 
on the solid boundaries. The equations are then solved for d(p/dn on the free surface and for 0on 
the solid boundaries. The formulation was described in detail previously by [40], and [42]. 

3.3 Time Integration 
The time evolution of the flow is governed by the boundary conditions. We may obtain the updated 
values of the velocity potential (f) by integrating 

^ = ^ + u.V^^-^|u|2-^ + u.V0) (IV.24) 
Dt      at 2 p 

where the material derivative is used as the surface moves with the fluid. Then, equation (IV.16) 
is integrated to determine the motion of the bubble surface nodes. The vortex elements follow the 

fluid velocity 

^=n(Xi,t), (IV.25) 

while the circulation Tj of each element remains the same. These integrations are performed 
with an explicit Euler scheme. An adaptive time stepping is executed by making the time step 
proportional to the ratio of the smallest internodal distance to the largest nodal velocity over all 

nodes. 

3.4 Solution of the Poisson Equation for ^ 

To update the nodal values of 0 at the free surface at successive time steps by (IV.24) we need to 
solve (IV.ll) for * with the boundary condition (IV.12). We note that the inhomogeneity R in 
(IV.ll) is "supported" on the vorticity u>, i.e., the two terms of R involve u>. This indicates that 
a similar discretization for R and u> may be sufficient to accurately describe their effects. We 
expand the term R in a way similar to that for a> in (IV. 18) using the same core functions and 
with the same particle positions {X;},% = 1,... ,N 

N N 

Ä(x) = Y, ^/A(* -**) = £ ^V2<?(x - Xi), (IV.26) 
i=l i=\ 

where 

^-U = ~^r/A)3- (IV.27) 

Upon integration of (IV.27), assuming g to be spherically symmetric (depending only on 7') and 
regular at the origin we obtain the same expression that was used in the discretized Biot-Savart 
law (IV. 21) for the vortex induced velocity 

8l = —, f 1 - e-(r/A)") = A" f x) • (IV-28) dr      47T7-2 V /      4-nr2    \AJ v ' 
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We then find the following analytical expression for g, 

1 
5 = 

47IT 
1 <r/Ay   ,   J_ 

+ x£   Ö. 3'A3 

where ß(m,x) is the incomplete Gamma function: 

/•oo 

/0(m,x)=  /    e-vym~ldy,    m > 0. 
Ja: 

(IV.29) 

(IV.30) 

The constant of integration is obtained by requiring that g vanish at infinity. Therefore the solution 
to (IV.ll) may be written as 

otf(x)   =    / [*(x')n-V'G(x,x') - n-V'*(x/)G'(x,x/)]rf5(x') 

N 

+ £> / v'2p(x'-Xi)G(xJx')^(x'). (IV.31) 
*=i      JD 

We know n • V^(x') from (IV.12).  We may hence use this equation for finding ^ (x').  For 
the volume integral term, we perform integration by parts twice to obtain 

/ v'^(x'-Xi)G(x,x')dV(x/) = a#(x - Xi) 
JD 

- J [g(x' - Xi)n ■ V'G(x, x') - n • V'.9(x' - Xi)G(x, x')] dS(x!) , (IV.32) 

where 
v°{*-*<) = B£rir- '•• = ix-Xii. (IV.33) 

We have thus converted the volume integral into integrals over the surface bounding the domain, 
here the bubble surface. By collecting similar terms together, it may be seen that using the 
expansion (IV.26) the Poisson equation (IV.ll) has been transformed into the following Laplace 
equation: 

V2 ttM-^Ä^x-Xi = 0. (IV.34) 

Green's identity now involves only the usual surface integrals as in (IV.3). Essentially this is 
the underlying principle of the dual reciprocity method [54], where basis functions satisfying 
the relation (IV.27) are applied to solve a Poisson equation by the boundary element method. 
(Incidentally one could interpret the vortex element method as being based on the same principle 
which solves the Poisson equation (IV.5) representing the vorticity by the particle core functions.) 
Now we may use a BEM scheme similar to that for </>, and obtain an expression for the field ^ 
analogous to (IV.23). The matrix elements .4V B,, depend only on the geometry, and hence 
they are the same as before. Also, since we used the same functions g as for the vortex method, 
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these functions need to be evaluated only once every time step. This makes the present scheme 
attractive, as it uses the BEM and VEM in an efficient complementary manner. 

It is to be noted that the above formulation including the expansion (IV.26) with the coefficients 
{Ri} is implemented at every time step. Our attempts to determine the coefficients by evaluating 
-R(x) at N particle centers {Xi}> an<^ solving a linear system of equations for {Ri} (see the method 
for determining {Ti} in the following section) were not successful to date, and resulted in an ill- 
conditioned matrix. Therefore we applied the following approximate way to obtain the coefficients. 
The function i?(x) may be written as 

r N 

Ä(x)=     R(x)6(x-x)dVix)"Y,Rte>dV<XiWx-Xi), (IV.35) 
-' i=\ 

giving Ri(t) = R(Xi,t)dVi, where we have used the fact that the blob function /A(X — X) 
ls a 

smoothed Dirac delta function <5(x — %), i.e., 

Hm/A(x-x)-*«(x-x). (IV.36) 

Such approximations have been made in vortex element applications for determining the strengths 
of the elements (see the discussion in [57]). 

To reemphasize the generality of our approach we note that for a viscous implementation, 
this part of the algorithm involving the normal stress condition at a free boundary would remain 
largely unchanged. We believe that this mathematical formulation in terms of the Poisson problem 
is crucial for a full coupling of the potential and the vortical parts of the flow field. More specifically, 
for a viscous simulation the solution of the vorticity transport equation (IV.7) would have to be 
implemented in full, as the particle circulation is not conserved. This part has been discussed in 
detail by various authors and several schemes are available ([50]& [51]; [52] &; [53]). However, the 
Poisson problem for the dynamic pressure ^ will change only so far as the viscous term in the 
boundary condition (IV. 12) has to be taken into account. It may be computed directly at little 
extra cost. The dynamic boundary condition will have two parts. The existing pressure condition 
(IV. 17) will be replaced by a normal stress condition where the normal viscous stress has to be 
added to the fluid part of the equation. The tangential stress condition in the present case, with 
the motion inside the bubble neglected, will give rise to zero stress on the fluid side. Imposing 
this condition will necessitate generation of fresh vorticity from the bubble surface, as in [60]. 
As the vortex fields of interest considered here are relatively large scale structures, e.g.. propeller 
tip vortex, boundary layer hair-pin vortex, or other coherent structures, where the inertial forces 
dominate the flow and hence fluid viscosity has been justifiably neglected. 

4    Numerical Examples 

In the following, the method developed is applied to study the interactions between a bubble and 
the flow fields of a column vortex and of a vortex ring. For each of these cases we performed 
computations with different discretizations to ensure convergence. 
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4.1    Bubble Dynamics in a Columnar Vortex 

The dynamics of a bubble entrapped in a column vortex can be considered as a simplified model 
of a cavitation nucleus in the core of a tip vortex (e.g., of a propeller). 

Numerical Details 

We discretize the column vortex, with initially circular cross-section, as a distribution of line 
vortices in its core. On each line the vortex elements are distributed equi-spaced along the line. 
The vorticity distribution, ux is chosen to be Gaussian in the cross-sectional plane of the column 

ux = —,~^\ (IV.37) 
r2 7T<7* 

where £ is the radial distance from the column vortex axis in the cross-sectional plane, and a is the 
physical viscous core of the vortex column (not to be confused with the core A, in Eq. (IV.20), of 
the vortex elements). The total circulation for the column is V. The vortex elements on the same 
line will be of the same circulation Tk and 

r = J]rfe, (iv.38) 

where the summation is over all the line vortices. The initial discretization is done by choosing the 
line vortices to be placed in the cross-sectional plane in circular arrays following [57], (see Figure 
IV.l). 

The rys are found by solving a set of linear equations, that is obtained by imposing that 
the vorticity is correctly represented at the vortex nodes according to (IV. 18). This procedure is 
iterated by varying the core radii A so that the total circulation value T is correctly represented 
by (IV.38). We also ensure that the particle overlap condition A > /). is satisfied, where h is the 
maximum distance between neighboring particles either along a given line or between two lines. 
The line vortices, in this case, are extended to infinity in both directions, and the discrete vortex 
elements are placed only on a finite extent of these infinite lines. This is justified since in reality the 
vortex lines deviate from being straight only near the bubble. The contribution of the rectilinear 
vortex lines extending to infinity are computed analytically and added to the contribution of the 
discrete vortex points. The bubble surface is discretized by triangular elements as described in 
[40]. 

Convergence Study 

We have chosen an example case of an initial bubble radius of 10 /j,m in a liquid at atmospheric 
pressure placed in a vortex column. The core of the column a — 120 /mi. The initial gas pressure 
inside the bubble pgo =5xl06 Pa., i.e., initial pressure inside the bubble is fifty times the pressure 
at infinity, P«,, and the circulation of the vortex is 0.0015 m'2/sec. The bubble is initially off- 
center and located at a distance of 30 //m from the center of the column. Figure IV.l (a) shows 
the geometry and its discretization, IV.l(b) shows the geometry of the discretized problem at the 
cross-sectional plane, normal to the column axis and going through the bubble center, and IV.l 
(c) shows the geometry of the discretized bubble and column at a later time. 
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The vortex core is discretized, with a single line at the center of the vortex column and a set 
of circular arrays of line vortices around it. In the cases considered we typically used two circular 
arrays with 6 and 12 lines, i.e., 19 line vortices in total to represent the column core. Forty 
vortex elements and two semi-infinite line vortices are used for each line. To reduce the size of 
the numerical problem advantage is taken of the plane of symmetry that is perpendicular to the 
line vortices. The bubble is discretized with 41 nodes and 64 panels above the symmetry plane. 
Extensive convergence results for the boundary element method used have been presented in [42], 
and [43]. 

The bubble expands due to the large pressure inside it, exceeds the equilibrium size, and then 
collapses back towards its initial volume while interacting with the vortex column. A convergence 
study is performed by varying the number of elements along a line and the number of line vortices 
used to represent the vortex core. Figure IV.2 shows the bubble equivalent radius Req (of the 
sphere giving the same volume) with time. The radius was normalized by the initial bubble 
radius, R0, while time was normalized by the Rayleigh time, given by R0/\/Poo/p- The dotted line 
is the case with 7 vortex lines (1 at the center and 6 in a circular array), and the solid line is that 
with 19 lines. For the geometry considered here with the bubble inside the core of the vortex the 
bubble dynamics is strongly coupled with and determined by the spatial vorticity distribution in 
the column core. Therefore it is expected that a 1 line representation of the column vortex would 
not be able to represent the bubble collapse. This is shown by the dashed line representing a single 
vortex line representation, where the bubble experienced unbounded growth. Very close results 
are seen between the cases with 7 and 19 vortex lines. For studying convergence with varying 
number of elements along a vortex line, cases were run with 19 vortex lines and 40, 20, and 10 
elements in a single line. The results coincide with each other, and are therefore not shown. 

Description of the Interaction Between a Bubble and a Vortex Column 

Figure IV.3 displays for the same bubble and vortex flow conditions as in Figure IV.2, the time 
evolution of the bubble shape, and the trace of the line vortices in the plane of symmetry of the 
problem passing through the center of the bubble. In absence of the bubble the line vortices 
move around the central line at a fixed velocity dependent on the radial distance. In presence of 
the oscillating bubble, these circular trajectories are distorted by the bubble growth and collapse 
indicating one effect of the bubble dynamics on the underlying flow field. The bubble is seen to 
grow to an oblong shape elongated towards the center of the vortex column where the pressure 
is the lowest (Figure IV.3a). During collapse (Figure IV.3b), as often is the case with unsteady 
bubble dynamics ([3], [34]), the part of the bubble that moved the farthest during the growth, 
forms a reentrant jet during the collapse that moves faster than the rest of the bubble nodes and 
penetrates the bubble. 

The vorticity field is perturbed by the bubble dynamics, with the vortex lines (and the vorticity) 
pushed away from the bubble during the growth and pulled by it during collapse. This results 
in non-circular motion of the vortices during the dynamics. These observations are qualitatively 
similar to those obtained when one-way interactions, namely that of the vortex field on the bubble 
dynamics, are accounted for ([l]). A vorticity contour plot (component normal to the plane of 
the cross-section) and the vorticity induced velocity vectors uw (components in the cross-sectional 
plane) are plotted in Figure IV.4 at six different times, three during growth and three during 
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collapse. This figure shows that in this case the overall basic flow (vorticity and induced velocity) 
is little affected in a global sense by the bubble dynamics. A closer look at the change in these 
quantities shows, however, a different picture. 

To bring out the significance of the bubble's presence in the flow field, Figure IV.5 shows the 
change in the vorticity and in the vortical velocity fields due to the bubble (i.e., the difference in 
the computed fields with the bubble and without it). We see that near the bubble the vorticity 
has decreased by as much as 5 % compared to the case without the bubble (shows a negative 
component in the plot), and that farther away the opposite has happened. This could be expected 
as the bubble motion moves the vortical fluid away from it. Because of the position of the bubble 
off-center and in the lower half of the vortex core, its presence and dynamics appear also to have 
modified the vortical component of the velocity in a fashion leading to the superposition to the 
basic columnar vortex of two weaker column vortices of opposite signs. This is illustrated by the 
positive vorticity represented by the yellow color, which has a top-down asymmetry, and appears 
clearest in the last two frames during the bubble collapse where the secondary vortex structure 
is clearly visible. It is seen to be rotating in a clock-wise direction, i.e., opposite to the original 
column. Apart from continual modification of the vortex field by the interacting bubble this result 
suggests that the bubble could trigger secondary vortex generation by initiating asymmetry in the 
vorticity field. 

To further examine the change in the vorticity field, the normal component of the vorticity 
along a straight line going through the centers of the bubble and vortex columns at different times 
is plotted in Figure IV.6. The bubble traces are shown for the corresponding times. The solid, 
dotted and dashed lines are during growth. The dash and dotted, solid with squares, and dotted 
with stars lines are during collapse. They are at the same times as in Figure IV.4 and in the 
same sequence. As expected the vorticity is pushed away from the bubble as the bubble grows 
and then pulled back into the original configuration as the bubble collapses. Figure IV.7 displays 
the difference in the vorticity with and without the bubble along the same center line using the 
same line types as in Figure IV.6. Here we clearly see that the decreases near the bubble during 
its growth and comes back up during collapse, while a compensating opposite effect is seen away 
from the bubble. 

Analysis of the pressure field shows an overall decrease in pressure during bubble growth and 
then a large increase during bubble collapse. The pressure field due to the bubble dominates 
during the violent bubble collapse. It is known that such high pressures associated with cavitation 
are responsible for damage to nearby solid bodies such as propeller blades. 

Parametric Study 

To perform a parametric study of the interaction between a bubble and a column vortex we must 
determine a consistent set of non-dimensional parameters characterizing the motion. In order 
to do so the bubble dynamics length and time scales are determined using the oscillation of a 
spherical bubble with the same bubble initial conditions and placed in a quiescent fluid at a 
pressure corresponding to that in the vortex flow field at the location of the bubble center. This 
leads to a length scale given by a maximum radius, üJmax, and to a time scale given by the Rayleigh 
time, TR, which is the time needed for an empty bubble to collapse from the radius i?max to 0, 
under the influence of the pressure outside the bubble (Rayleigh 1918). 
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The flow field in the core of the vortex may be approximated as a solid body rotation, with a 
core radius Rc, and the same circulation as the discretized vortex. The pressure field inside the 

vortex core is known as ([l]) 

p(f) = l-0(2-r2);        % = 2ür-        r < 1, (IV.39) 

with 
r 
Rr 

df 

p(f) = ^. (IV.40) 

and fi the "swirl parameter", defined as 

Q = i^Rc'    ^ (IV.41) 
Poo 

which characterizes the intensity of the pressure drop due to the rotation relative to the ambient 
pressure, p,». Note that the pressure on the vortex axis is (1 - 20.) and goes to zero when Cl 
approaches 1/2. We define the pressure drop parameter V as the relative drop in the pressure 

from the ambient, so that 
V = n(2-r2), (IV.42) 

and the Rayleigh time is then:   

Y Poo (l - V) 

If a bubble is subjected to such a pressure field, it will experience a higher liquid pressure on 
its side away from the vortex center than on its side closer to the vortex center, the difference 
being greater the larger the bubble is. The effect of this pressure difference is to cause the bubble 
to migrate towards the vortex center. Additionally the bubble is 'sheared' since different locations 
on its surface experience different fluid velocities. As we have seen in the previous section this 
results in bubble shape deviation from sphericity. The importance of this deviation is a function 
of the relative orders of magnitude of the pressure gradient, the bubble wall acceleration due to 
volume change, and surface tension forces. 

Results: As the pressure drop parameter, V, is increased the bubble is in a stronger vortex field, 
and is entrained further in the vortex. Significant departure from the Rayleigh Plesset behavior 
is seen, and the bubble deforms and grows further. Figure IV.8 compares the effects of modifying 
the pressure drop parameter V by considering 3 different values of the parameter. The bubble 
equivalent radius is scaled on the Rayleigh-Plesset maximum radius, and the time is normalized 
with the corresponding Rayleigh time. The effect of increasing V is seen to cause a slight increase 
in the maximum radius achieved, and a much larger increase in the bubble period (time to first 
collapse). This can be explained by considering the fact that the bubble now undergoes motion 
in the vortical flow-field. Since the collapse occurs on the side of the bubble closer to the center, 
the collapse speed is reduced the higher V is, or the lower is the pressure on the reentrant jet 
side.   This fact is demonstrated in Figure IV.9 which presents the scaled bubble cross-sections 
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in the plane of symmetry. As can be seen the increase in V is also accompanied by an increase 
in rotation of the bubble free surface points, and an increased asymmetry in the bubble collapse 
profile. As we have seen in Figure IV.3, the motion of the bubble significantly affects the motion 
of the vortex elements. In the last row of Figure IV.9 we show a case where the pressure drop 
parameter is very large (V = 0.8295). In this case the bubble undergoes significant rotation, and 

collapses in a highly distorted fashion. 
Figure IV.10 shows the influence of the parameter V on the out of plane vorticity (u)x) and 

the in-plane velocities (uy and uz) for the cases in Figure IV.9.. Here the line vortex is parallel 
to the x axis, and the bubble is along the y axis, so that initially the velocity uz is zero. The 
figure shows these quantities at three different times (corresponding to an initial stage, bubble 
maximum volume, and the collapse stage). The asymmetry in the bubble shape is directly related 
to the velocity field induced in the plane. The figures also show contours of the bubble shape at 
the corresponding time. The maximum vorticity is seen to be reduced further when V increases 
during the bubble growth and recovers to its original value following collapse. Deformation of the 
vortex element by the bubble growth and motion cause a marked change in the vortical velocity 
field. During bubble growth the change in uy is positive all along y, while during collapse the 
shape of the curve is very much affected by the bubble deformation and again reflects the creation 
of a secondary vortex field. This effect is seen to increase with increasing rotation. 

We next present some results on the effects of the variation in the bubble over-pressure pg0 

normalized by the ambient pressure. Figure IV.ll presents a comparison of the nondimensionalized 
equivalent bubble radius with time. Increasing the initial bubble overpressure causes the bubble 
collapse to be sharper. This quicker collapse has an influence on the instant at which the jet 
formed in the bubble reaches the other side. Contours of bubble growth and collapse for the 
three cases are shown in Figure IV. 12. In the case with the highest pressure the bubble becomes 
multiply connected at an instant close to the minimum volume of the bubble. In the case with 
the lowest bubble over-pressure the jet does not reach the other side until the bubble has begun 

a rebound. 

4.2      Bubble Dynamics in a Vortex Ring 

A second illustrative example considered is a bubble growing and collapsing in the flow field of a 
vortex ring. The vorticity distribution in a cross-sectional plane of the ring is given by the same 
function (IV.37), similar to the column. The vortex discretization is also similar to the column, 
except that the lines close on themselves. The values of the circulation for each line are obtained 
by solving a linear system and ensuring that the total circulation is recovered. 

Figure IV. 13 shows the bubble placed near the ring but outside its core at a distance of 150 
/an from the core center. The bubble size is 10 /mi, the radius of the ring is 80 /an, whereas 
the radius of the core of the ring is 30 //m. The circulation is 0.00045 m2/sec, P^ = 105 Pa and 
pg0 =5xl06 Pa. The ring core is discretized similar to the columnar case with 19 lines vortices. 
Each line has 40 elements. The bubble is discretized with 66 nodes and 128 panels. 
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Convergence 

In Figure IV.14, we show a convergence study for the discretization of the ring core with 1 (dashed), 
7 (dotted), 19 (solid) and 37 (1+6+12+18) line ring vortices (dash-and-dotted) by plotting the 
equivalent bubble radius Req nondimensionalized with the initial bubble radius versus time. Fast 
convergence is seen already while using 7 lines instead of one. Figure IV. 15 shows the effects of 
varying the number of elements along one ring line. We compared the case of the 40 elements 
with 20 and 100 elements along a line with satisfactory convergence. The cases with 40 (dotted) 
and 100 elements (solid) coincide, while the one with 20 elements slightly overpredicts the bubble 

volume. 

Description of the Interaction Between a Bubble and a Vortex Ring 

Figure IV. 16 a and b show in a cross-sectional plane the growth and collapse of the bubble, 
for the case of Figure IV. 13. The movement of the vortex elements in the plane is also shown. 
During growth, the vortex ring pulls the bubble into a teardrop shape as the ring itself executes its 
translational motion. This shape is very similar to our experimental observations of the interaction 
of a spark generated bubble with a travelling vortex ring ([l]), reproduced here in Figure IV.17. 
During the collapse phase the bubble starts forming re-entering regions. The most extended parts 
of the bubble form two jets which cut the bubble in two along the trajectory lines as observed 

experimentally. 
Figure IV.18 shows the vorticity field and the induced vortical velocity uw vectors at six dif- 

ferent times during growth and collapse. Figure IV. 19 shows the difference in the same quantities, 
namely vorticity and vortical velocity with the bubble and without. As expected the arm of the 
ring nearer to the bubble is seen to undergo substantial change in its vorticity field. In this region 
formation of a secondary vortex is clear from the vortical velocity vector plots. Depletion of neg- 
ative vorticity near the bubble and corresponding enhancement away from the bubble is clearly 
visible. Here again, one observes the superposition to the basic vortex ring of two ring vortices of 
opposite signs. Furthermore it is seen that the difference is more pronounced at later times. This 
is expected as the translational motion of the ring will be cumulatively affected by the bubble. 

Parametric Study 

The non-dimensional parameters for the bubble dynamics in the vortex ring are obtained by 
assuming that outside the viscous core, the behavior of the ring may be approximated by that 
of a potential vortex ring with the same circulation. As before we choose for the length scale 
the maximum radius the bubble would achieve when subjected in a quiescent liquid to the same 
pressure, and for the time scale the corresponding Rayleigh time, TR. In the cases considered 
below the bubble is outside the core of the vortex. The velocity potential due to a vortex ring of 
intensity T is given by ([62]) 

T A     f°° 
0r(r, x) = sgnpto - x)—- /     [exp(-fc \X0 - x\)J0(kr),h{kA0)} dk, {IVM) 

2    Jo 
where, J 's are the Bessel functions, x is the coordinate perpendicular to the plane of the ring, r is 
the radial coordinate in the plane of the ring. XQ denotes the x—coordinate of the ring on the axis 
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of the symmetry, and AQ denotes the radius of the ring. Calculating the velocities induced at the 
bubble location, evaluating dcjf /dt, and substituting in the Bernoulli equation we can calculate 
the ambient pressure at the location of the bubble. This pressure is used to compute i?max and 

the time, TR, scale using Eq. (IV.43). 
Figure IV. 20 shows the effect of varying the pressure drop parameter on the bubble equivalent 

radius variation with time. Compared to the case of the vortex column, the data for different 
values of V scale less well with the Rayleigh non-dimensionalization. We ascribe this to the fact 
that the pressure and the flow experienced by the bubble changes much more in this case due to 
the motion of the ring, and the associated flow field. 

In Figure IV.21 and IV.22 we present a comparison of the bubble behavior for different initial 
bubble over-pressures. As the over-pressure increases the bubble collapses in a more violent fashion, 
and the bubble period is reduced. As shown in Figure IV.22, the bubble gets more distorted at 
collapse, and the jet gets more pronounced and occurs earlier in the cycle. 

Next we consider one case of a bubble inside the core of the vortex ring. The ring geometry 
and the strength are the same as before. The bubble is made smaller RQ = 1 /an, and the inside 
gas pressure pg0 =7.0xl06 Pa, and is placed inside the left arm of the vortex ring at a distance 
of 5 (J,m from the center of the section. The growth and the collapse phases in the cross-sectional 
planes are plotted in Figure IV.23. As expected, the dynamics is very similar to the bubble inside 
the vortex column, the only difference coming from the curvature of the vortex lines in the ring 
without formation of a strong reentrant jet. The bubble after executing the collapse shown in the 
Figure IV.23 (b) started a second growth phase without formation of a re-entering jet. Finally 
Figure IV.24 shows the modification of the vorticity field and the vortical velocity field due to the 
presence of the bubble. 

5     Summary and Discussions 

The boundary element method has been coupled with the vortex element method to handle ro- 
tational flow fields containing deformable bubbles. This method accounts for the modification of 
the vorticity field by the bubbles. The coupling between the two methods is obtained by solving 
a Poisson equation for the pressure. The Poisson solution is attained efficiently by using a dual 
reciprocity boundary element method using the same BEM matrix coefficients as those for the 
velocity potentials, and the same vortex core functions as those used as dual reciprocity basis 
functions. 

The method developed was applied to the cases of a bubble in the field of a column vortex 
and a vortex ring. The shapes of the bubble during growth and collapse, as well as the evolution 
of the velocity and vorticity were computed. The analysis has shown that bubble growth and 
collapse is significantly affected by the presence of the vortical field. The bubble elongates in the 
direction of the vortex center (direction of lower pressure) and then collapses with a reentrant jet 
that initiates from the vortex center side and advances through the bubble to the outside of the 
vortex region. This effect is stronger with increasing vortex circulation and increasing initial gas 
pressure. Increasing the circulation also has the effect of increasing the bubble rotation in the 
vortex field and therefore enhances bubble shape distortion. The vortical field is also very much 
affected in the neighborhood of the bubble. Vorticity is pushed away during bubble growth, and 
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then sucked in during bubble collapse. In addition the asymmetric flow due to the reentrant jet 
formation results in the redistribution of the vorticity and its concentration in the reentrant jet 
region. Including the effect of the bubble on the underlying flow field, which was not previously 
done, is shown to be relevant in the cases considered. This underscores the need for accurate 
modeling of two-way interactions between bubbles and the flow field in future efforts to describe 

bubbly flows. 
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Figure IV. 1: a) Geometry of the discretized bubble and column vortex, b) Plot at a cross-sectional 
plane through the bubble center, the dotted lines represent the core A of the cross-marked vortices, 
c) Geometry of the discretized bubble and column at a later time. 
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Figure IV.2: Convergence study for different discretization of the core of the vortex column. Time 
evolution of the equivalent bubble radius Req for three discretization schemes with 1 line (dashed), 
7 line vortices (dotted), 19 line vortices (solid). The curves for different number of elements along 
a vortex line (10,20 or 40) coincided with each other. Initial bubble radius: 10 /^m, column core 
radius: 120 /im, pfl0=5xl06 Pa, P^ = 105Pa, and 17=0.0015 m2/sec. 
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Figure IV.3: Growth (a) and collapse (b) of the bubble in a columnar vortex for the conditions 
of Figure 2. Time evolution of bubble cross-sections and traces of the vortex lines in the plane of 
symmetry perpendicular to the vortex axis. The vortex lines move outward during growth, and 
inward during collapse in an anti-clockwise manner. 
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Figure IV.4: The vorticity field LU normal to the plane and the induced vortical velocity vectors uw, 
i.e., u-uf) in a cross-sectional plane at six different times, three during growth at £=1.03,2.28,4.79, 
and three during collapse at t=7.29,9.78,10.79. The conditions are the same as in Figure 2 and 3. 
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Figure IV.5: The difference in the normal component of the vorticity field u> and in the vortical 
velocity vectors uw with and without the bubble at the same times and the same cross-sectional 

plane as in Figure 4. 
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Figure IV.6: The normal component of the vorticity Lü along a straight line going through the 
centers of the bubble and the column core at the same times as in Figure 4. The traces of the 
bubble at those times are also shown. 
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Figure IV.7: The difference in the normal component of the vorticity field u along the same line 
as m Figure 6 with and without the bubble. 
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Figure IV.8: Study of the evolution of the non-dimensionalized equivalent bubble radius, Reg/Rmax, 
for several values of the pressure drop parameter V. In each case the bubble initial radius 10 /im, 
and the initial gas pressure is 4.742 X 106 Pa, the pressure at infinity is 105 Pa, and the bubble 
is placed 60 //m away from the center of a vortex of core size 120 ßm. The circulation, T, for the 
three cases is 0.0015, 0.003, and 0.0045 m2/s respectively. 
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Comparison of growth and collapse contours for four V s 
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Figure IV.9: Contours of bubble growth, and collapse, for four values of the pressure parameter 
V. The top three cases correspond to the cases in Figure 8, while the last case is for a higher value 
of V. 
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Vorticity and velocity along the y axis for four T s 
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Figure IV. 10: The out-of-plane vorticity (left column) and in-plane velocities (right column) along 
a line joining initial bubble and vortex centers, for the cases of Figure 9. The curves display the 
value at the initial time (dashed line), at bubble maximum (longer dashes) and at the instant of 
bubble collapse (solid line). In the velocity plots the component uz is indicated with lines with 
circles. 
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Figure IV.ll: Study of the influence of the bubble over-pressure, Pg = Pg/Poo, on the dynamics. 
The non-dimensionalized equivalent bubble radius , RCq/Rmax, ls plotted versus time for three 
values of Pg. In each case the bubble initial radius is 10 //m, and is placed 30 //m away from the 
center of a vortex of core size 120 //m, and circulation 0.0015 m2/s. The initial gas pressures are 
1.2279xl06 Pa, 4.7417xl06 Pa, and 1.138xl07Pa, and the pressure at infinity is 105 Pa. 
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Comparison of growth and  collapse contours for three  P 
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Figure IV. 13: Geometry of the discretized bubble and the vortex ring. 
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Figure IV. 14: A convergence study for the dynamics of a bubble in the flow field of a vortex ring. 
Four different discretizations, with 1 (dashed), 7 (dotted), 19 (solid), and 37 (dash-and-dotted) 
lines for the ring core are used. Time evolution of the bubble equivalent radius Req/Ro is shown. 
Initial bubble radius: 10 yum, ring radius: 80 /um, ring core radius: 30 /um, pyO^5xl06 Pa, and 
r=0.00045 m2/sec. 
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Figure IV. 16: Growth (a) and collapse (b) of the bubble in the ring vortex for the conditions 
of Figure 13. Time evolution of bubble cross-sections and traces of the vortex lines in a plane 
perpendicular to the column are shown. The scale is non-dimensionalized with the initial bubble 
radius. The ring is moving downward due to its own induced velocity. 
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Figure IV. 17: Experimental observations of a bubble collapsing in the field of a vortex ring fr 
Chahine (1995). The vortex ring is cavitating and is in the upper left corner of each fr- 

om 
rame. 
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Figure IV.18: The normal component of the vorticity field u and the tangential components of 
the induced vortical velocity vectors u^, i.e., u - ub in a cross-sectional plane at six different 
times, three during growth, /,=1.022,2.27,4.77, and three during collapse. 1=1.27,8.52,10.92. The 
conditions are the same as in Figure 13. 
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Figure IV. 19: The difference in the normal component-, of the vorticity field LU and the tangential 
components of the vortical velocity vectors uw with and without the bubble at the same times and 
the same cross-sectio4nal plane as in Figure 18. 
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Variation of equivalent bubble radius with the pressure ratio 
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Figure IV.20: Modification of the bubble dynamics with varying vortex ring circulation, as shown 
by the variation of the bubble equivalent radius. Äeg/ßmax,with time t/rH. In each case the bubble 
initial radius is 10 /mi, and is at an initial pressure of 4.6716x 106Pa, and is placed 300 /mi away 
from a vortex ring in its plane. The ring has a radius of 80 /mi and a core radius of 30 /mi. The 
circulations corresponding to the four cases are respectively 4.5 x 10~5, 0.0009, 0.0025, and 0.0045 
m2/s. 
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Equivalent radius versus time for different bubble overpressures 
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Figure IV.21: Modification of the bubble dynamics in a vortex ring flow field with varying initial 
bubble overpressure, as shown by the variation of the bubble equivalent radius. Req/Rm^M^ 
time t/rR. In each case the bubble initial radius is 10 /zm, and is placed 150 /im away from a 
vortex ring in its plane. The ring has a radius of 80 /mi, a core radius of 30 /mi, and a circulation 
of 0.00045 m2/s. The initial bubble pressures are 1.2279xl06 Pa, 4.6716xl06 Pa, and 1.138xl07 

Pa. 
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Comparison of growth and collapse contours for three P„ s 
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Figure IV.22: Contours of bubble growth (left column) and bubble collapse (right column) for the 
cases of Figure 21. 
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Figure IV. 23: Growth (a) and collapse (b) of a bubble placed inside the core of the ring. Ro =l/xm, 
the inside gas pressure pgo=7xl06 Pa. The vortex parameters are ring radius: 80 /zm, ring core 
radius: 30 ßm, pp0=5xl06 Pa, P^ = 105 Pa and T=0.00045 m2/sec. The bubble is placed 5 /zm 
away from the ring core center. 
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Figure IV.24: The change in the vorticity and the vortical velocity field in the cross-sectional 

plane for the conditions of Figure 23 at six different times, /;—1.02,2.27,4.77 during growth, and 

1=7.27,11.02,12.27 during collapse. 



DYNAFLOW,   INC. —Technical Report 94003.fin- p.   109 

Chapter V 

SHEET CAVITATION INCEPTION 

1 Introduction 

The inception and subsequent dynamics of cavitation on a body moving through the fluid is an 
important problem that is not yet fully understood. This flow can display a variety of cavitation 
types for different flow speeds, including travelling bubble cavitation, sheet cavitation, unsteady 
separated sheet cavitation, cavity break-up into bubbles and bubble clouds. These can be char- 
acterized by strong interactions between the intense flow field and the time-dependant moving 
cavity boundaries. 

In this chapter, we present a simulation model for the appearance and the subsequent dynamics 
of the sheet cavity, that we have implemented in the boundary element codes described in the 
previous chapters. The code is then exercised to study sheet cavitation on a sphere. 

In the first part of the study the flow is considered potential. The model is then extended 
to include general vortical flows by decomposing the complete flow field into a vortical part and 
a potential part. The potential part is computed by the boundary element method while the 
rotational part is modeled by a vortex element method (VEM). The results of the present study 
will provide guidelines for the future development of a coupled numerical simulation. 

2 Mathematical Formulation 

2.1     Basic Equations and Boundary Conditions 

The relevant equations are those described in the previous chapters. In addition, here we incor- 
porate in the vortex dynamics study the diffusion of vorticity. This requires explicit solution of 
the transport equation: 

— = OJ ■ Vu + iA72u>. (V.l) 

Furthermore, the tangential component of the no-slip condition on a solid surface and the zero 
tangential stress condition at the free surface necessitates vorticity creation at those surfaces that 
has to be addressed. 
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2.2     Cavity Model 
The precise conditions under which a cavity forms on a solid boundary is not yet well understood. 
Recently in a careful experiment Mrch & Song [61] have shown that a perfect contact between 
a solid boundary and the liquid cannot exist and that nanoscopic cavities always exist and form 
potential cavitation regions. We will use this to justify the use of the following model that 
postulates growth of a cavity when the pressure at the solid surface drops below a critical pressure 
such as the vapor pressure pv. If the pressure at any region is below a critical pressure pc, we make 
that part of the surface free to move with the pressure thereafter set equal to pc. This part of the 
body surface becomes a part of a dynamically behaving cavity. 

The cavity surface moves with the local fluid u. However the cavity surface is obviously not 
allowed to penetrate the surface of the body. This corresponds to the physical fact that the 
collapse of the cavity will be hindered by the solid surface underneath. In this case, the nodes in 
the corresponding cavity region are made solid again. 

3    Implementation of the VEM 

3.1    Vortex Elements 

For three dimensional general body shapes the vorticity of the flow field is modeled by distributing 
three-dimensional vortex elements in the fluid. The expression of the vorticity field is then 

« = ^ai/A(|x-Xi|)l (V.2) 
i 

where a; is the strength of the i-th element positioned at Xii with /A the core function of the 
element with cut-off length A, 

These expressions are similar to those in Chapter 4, except that we have used there a connected 
filament approach writing the vorticity strengths in terms of circulation of a cylindrical length 
elements. The velocity due to this vorticity distribution is given by the Biot-Savart law, 

u, ,M i^sjic^A^n (v.4) 
4TT^     |x-Xi|3      y J 

and the time evolution of the vorticity field is given by the transport equation 
With the expression (V.2), we obtain the following evolution equation for the vortex element 

strengths 

d^ = ccl.V
Tu(X..) + utfVMxd-, (V.5) 

where we have chosen the transpose scheme (involves VTu in the right-hand-side) as prescribed 
by Winckelmans & Leonard [48]. 
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In the above equation V2u> is computed directly applying Laplace operator to (V.2). The 
gradient of the vortical velocity uw is computed by applying the gradient operator to the velocity 
field (V.4). The corresponding gradient for the potential part is obtained by computing </> in a 
grid of points around the location of interest and then fitting a 2nd order polynomial function for 
(f>in that region. 

3.2     Generation of Vorticity at Solid Boundaries 

Vorticity is created at boundaries by viscous effects through the no-slip condition, and diffuses 
into the body of the fluid. The method described above requires the knowledge of vorticity in all 
space. This requires inclusion of the generation of vorticity at the boundaries in the model. 

Let us consider an initial time t where the no-slip condition holds, and the potential and 
vortical parts of the flow field are known throughout the domain. We then march the solution 
from this known stage using a time stepping procedure, to compute the state of the system at 
time t + At. At a given time step, after the velocity potential has been advanced via the BEM 
solution, the tangential component of the velocity at the body surface does not satisfy the no-slip 
condition. The vortical part of the flow field must be modified to ensure that this condition holds. 
This temporary slip velocity can be expressed as 

uslip = [V0 + U]tangential. (V.6) 

This slip velocity is spurious, and to cancel it a vortex sheet of strength 7 per unit area must be 
placed on the surface, 

7 = n x Urfip. (V.7) 

Every time this condition is enforced fresh vorticity is introduced. 
In the present vortex element method, the vorticity is approximated using concentrated vortex 

elements. Generation and diffusion of vorticity in this scheme will be accounted for by a combi- 
nation of changing the strengths and location of the existing vortex elements, and by introducing 
new vortex elements to satisfy the boundary condition (V.7). 

One possibility is introducing a set of vortex elements from the surface every time step, and 
letting these elements convect in the fluid at future steps. However, such a scheme soon becomes 
unwieldy as in every step the number of elements in the approximation (V.2) would increase, and 
make the method useless. Instead we follow a two step approach to the process. 

A set of 3D vortex elements are distributed at a small distance e away from the surface along 
the normal at every surface node. In the current code £ is a user-defined parameter, and is the 
same for every node. These elements are taken to be fixed at this location, and their strength is 
changed every time step to cancel the spurious slip velocity. The strength of a given element, c*j, 
will be changed by an amount Ac*; in a given time step, with 

Aa,= liÖAi (V.8) 

where 8Ai is the area of the surface element on the body surface associated with the given node, 
and is computed from the total area of the panels surrounding the node divided among the nodes 
having these panels in common. 
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While it is true that application of Equation (V.5) would redistribute the vortex strengths, 
the continuous addition of vorticity to the fixed elements, and the convection of the free elements 
away from the surface, would cause the strengths of the fixed elements to grow and affect the 
quality of the approximation (V.2). To avoid this, every A£sUot, we introduce Lagrangian vortex 
elements with the strength of the corresponding bound vortex element are allowed to follow the 
fluid velocity u, i.e., they are "free" to move. The strength of the corresponding bound element is 
set to zero. In this way we control the number of actual moving Lagrangian elements introduced 
into the fluid. The bound elements only purpose is to represent the correct vorticity field satisfying 
the no-slip condition in between two shedding events. 

3.3    Algorithm Summary 

1. Given a flow at infinity solve the BEM satisfying the normal boundary condition at the body 
surfaces 

2. Introduce free vortex elements at each body node with strengths computed from the slip 
velocity at that node 

3. Compute the total velocity at the free vortex elements 

4. Compute the total velocity at the body nodes 

5. Compute the time derivative of the strengths of the vortex elements using Equation(V.5). 

6. Update the positions and strengths of the vortex elements. 

7. Update the strengths of "bound" vortex elements at each nodes with strengths computed 
from the slip velocity at the body surface using Equations (V.7), and (V.8). 

8. Update the time to t + At. 

9. If t is a multiple of Atshed shed free vortex elements at each node with the same strengths 
as the fixed vortex elements and set the strengths of the fixed vortex elements to zero. 

10. Solve again the potential part using the BEM. 

11. go to step 3 and calculate for the next time step 

3.4    Free Surface Time Evolution 

The cavity geometry is updated with the local flow velocity. In order to update the value of the 
potential cj> we use the dynamic boundary condition or the Bernoulli equation 

d(f>      04>T      1,       ,,      1 

=   -V0 • V4T - V ■ (V* + Vtf) + ^^ - g(z - z„), 



DYNAFLOW,   INC. —Technical Report 94003.fin- p.    113 

where (j/ represent any other potential flow perturbation such as due to the vortex elements. This 
relation is applied to update the values of ^ at a moving surface using the material derivative of 

£ = t + -W. ' (V,0, 
Upon substitution in (V.9), we obtain 

The above expression provides the evolution of </> at the free surface [11, 39]. 
Such a Bernoulli relation should be modified for general vortical flow fields. In such a case a 

Poisson equation is obtained for $ 

*-i+5i"i,+>*- (v-12) 

The solution procedure of this equation is described in detail in chapter 4. 

4    Boundary Element Method 
Discretization of the 3D surface by triangular elements,  together with the boundary element 
formulation for (f) generates a set of linear equations relating <f> and d<p/dn   at the nodes, 

E ^'(x*>x;)f^(4) - %(^,x;)0(x;.) ü. (V.13) 

Here the functions cf> and 84>/dn are linearly interpolated inside each panel by using their values at 
the vertices of the triangle. A+j and B{j are geometry dependent matrices relating the influence of 
the j—th node at the i—th node. They are obtained by integrating the surface integrals analytically 
over each panel separately. In general some region of the boundary is solid while the other is part 
of a deforming cavity. We solve for <fi on the solid part knowing dcjj/dn, while we solve for d<fi/dn 
on the free surface using the knowledge of 4>. 

5      Axisymmetric Vortex Rings 
For the special case of a flow around a sphere we resort to a simpler representation of the vorticity 
by axisymmetric rings. As a preliminary approach we model this process by satisfying every Aished 

the no-slip condition on the surface of the sphere. Every A£shed, N vortex rings are emitted at N 
different locations along the circumference of the sphere. The ring strengths, T, are obtained by 
satisfying the no-slip conditions at those N locations. Once emitted the vortices follow the local 
fluid velocity and affect the dynamics of the complete flow field. Another simplification in the 
example is that we will ignore the viscous diffusion and consider inertial forces to be dominant. 
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The velocity potential due to a vortex ring of intensity T is given by a velocity potential outside 
the ring [62] 

f(r,z) = sgn(Z0-z) 
TAo 

2   .,o 
[exp(-fc \Z0 - z\)J0(kr)Ji(kAo)] dk, (V.14) 

where, J 's are the Bessel functions, z is the coordinate perpendicular to the plane of the ring, r 
is the radial coordinate in the plane of the ring, Z§ denotes the z—coordinate of the ring on the 
axis of the symmetry, and A§ denotes the radius of the ring. The velocities induced by the ring 
at a field point (r, z) are given by 

and 

u7 = 
T_ 

2n 

where 

V Z-z (\       1 \ / „     1 + m _ 

Zn    r     \ri     r2/\ 1 — in 

r-Ap  |  r-Ao}(K        E 

n ^2 

Ey/m fr — A0      r — A0 

r2 1 — ml      1 — m V     T\ 

(V.15) 

(V.16) 

m 
r-i -n 

r{2 = (Z- zf + (r ± A))2- (V.17) 
j2 + ri 

The functions K and E1 are the elliptic integrals. The self propagation velocity of the ring is given 

by 

uf{ = 
4nAo 

log 
8A)      1 

where b is the core radius. The expression for dcjf/dt is obtained as follows: 

where (Vz, VA0) are the velocities for updating the ring , and 

84>r _     TAp \Z - z\ 

8A0 ~ 27rrf 
K(m) + 

E(m) 

1 — m 

(V.18) 

(V.19) 

(V.20) 

6    Example 

The code is used to study the flow around a sphere moving through the water. For a sphere in a 
steady translational flow with velocity U, it may be shown that the translational velocity has to 
satisfy the following condition for the inception of cavitation (pc = pv) 

U > 
'8(Poo - pv) 

5p 
(V.21) 



DYNAFLOW,   INC. —Technical Report 94003.fin- p.   115 

With £00=101230 Pa, p„=2300 Pa, and p=1000 kg/m3, the cavitation inception occurs at U =12.58 
m/sec. We first consider the case of totally irrotational flow outside the sphere, without the vortex 
emission. The translational basic flow field has U = 19 m/sec, and R = 1.0 m is the sphere radius. 
Figure V.l shows a color contour plot of the pressure field around the sphere. The figure shows 
that the pressure drops below the critical value pv in the region near the middle part of the sphere 
where the velocity is highest and correspondingly the pressure is lowest. Figure V.2 shows the 
dynamics of the resulting cavity obtained with the BEM code 3DynaFS. One can see the trace of 
the sphere as well as the evolving cavity in a cross-sectional plane through the center of the sphere. 
The flow is from the left to right. The cavity grows and gets sheared off in the flow direction. 
In these preliminary runs, the computation could not continue due to the excessive distortion of 
the mesh where the cavity is sheared by the flow. Clearly remeshing with a significantly larger 
number of panels in the cavity region is necessary for further simulation. Figure V.3 presents a 
superposition of the three-dimensional discretization of the sphere and the evolving cavity shapes. 

The vortex emission part of the code is then tested first without the cavity part. The time 
history of the traces of the vortex rings are shown in the Figure V.4. The resulting recirculating 
zone behind the sphere is clearly visible. The translation velocity of the sphere is U = 19 m/sec. 

We then consider the cavity dynamics with vortex emission. To describe the cavity shape 
deformation the time stepping needed refinement compared to the case when there were only 
vortices. In Figure V.5 we present the cavity dynamics with vortices. Here we postponed the 
cavity initiation until the flow developed with a large number of vortices. After that the surface 
pressure is checked and the cavity is switched on wherever the pressure went below the critical 
value. Figure V.5 shows the small cavities and the recirculating region. The near field of the 
sphere including the cavity is depicted in Figure V.6, where the cavity seems to appear in two 
disconnected toroidal regions around the sphere. It may seem that the vortex field has substantially 
modified the pressure field around the sphere to cause such a change of behavior. The case needs 
to be studied in detail before any rigorous conclusion can be drawn. 

7    Conclusions 

A simple model has been formulated for separated cavitation on a solid body moving through the 
water. If the hydrodynamic pressure in the fluid at any part of the body goes below a critical 
value, say the saturated vapor pressure, a cavity is assumed to initiate and grow there. A boundary 
element code is used to compute the potential flow around the body and the cavity. Here the code 
was applied to predict the growth of a cavity over a solid sphere. 

The vorticity in the field is modeled by three-dimensional vortex elements. The vorticity 
generation is linked to the no-slip condition on the solid surface. The vortex element strengths 
are obtained by solving vorticity transport equation at every time step. For a simpler case of a 
sphere the vorticity of the field is simulated by axisymmetric vortex rings. 

The model was able to describe qualitatively the formation of the cavity in the low-pressure 
zone. A reliable simulation will need adaptive remeshing capability to resolve the cavity dynamics. 
This is a preliminary study aiming at creating a complete computational model using coupled 
BEM-VEM viscous formulation that will address all these shortcomings and accurately predict 
the cavitation dynamics on an arbitrary body. 
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Figure V.l: Pressure field around the sphere: sphere radius R = 1 m, pressure at infinity=101230 
Pa, and vapor presure p^=2300 Pa, velocity U=19 m/sec. 
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Figure V.2: Dynamics of the cavity in a cross-sectional plane: Different curves represent the shape 
of the cavity at subsequent times. 
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Figure V.3: Three dimensional discretization of the sphere and the cross-sections of cavity at the 
various times. 
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Figure V.4: The vortex structure behind the spher: In the cross-sectional plane the contour of the 
spher and the time history of the traces of the vortex rings are presented. 
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Figure V.5: The time history of the cavity with vortex emissin: The cavity computation is started 
after the vortical flow is developed. The subsequent cavity shapes and the traces of vortex rings 
are shown. 
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Figure V.6: Near field of the sphere from Figure 6.5 showing detail of the cavity shape. 
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Chapter VI 

CONCLUSIONS 

In this study we considered the problem of cavitation dynamics from the standpoints of the 
dynamics of the interaction between bubbles and nonuniform flow fields and sheet cavitation 
inception and dynamics. We have considered first the dynamics of the two-way interaction between 
deforming bubbles and vortical flow fields. Then, we proposed a model for the study of large scale 
cavitation inception and development on submerged bodies. The models developed and presented 
here should form a basis for future efforts. These should take advantage of the specialized and 
efficient nature of the methods we developed for free surface flows, and couple them with powerful 
but more general methods used to describe the complex flow field around propeller blades, such 
as hydrocodes and Navier Stokes solvers. 

Asymptotic Approach: The dynamics of a bubble captured in the core of a line vortex was 
studied using asymptotic and numerical approaches. The influence of the vortical flow field on the 
dynamics of a captured bubble was first studied using an axisymmetric boundary element method. 
In this case the interaction was one-way in that the effects of the bubble on the vortical component 
of the flow field were not considered. In a subsequent approach the influence of the dynamics of the 
captured bubble on the vortical flow field was included using a singular perturbation technique. 
This was possible in an axisymmetric configuration - that of an axisymmetric bubble located at 
the center of a line vortex structure - and the viscous flow was modeled using the Navier-Stokes' 
equations under the assumption that the bubble radial dimension was much smaller than other 
length scales of the flow. Both approaches indicated that there is a potential for strong interaction, 
and pointed to the need for more sophisticated modeling to include these interactions. 

Numerical Approach: To address the problem in a more general and three-dimensional 
fashion, and to describe more fully the two-way interaction between bubble dynamics and vortical 
flow fields, we used a numerical approach. We implemented a Lagrangian vortex element method 
that modeled the time evolving vorticity field and coupled it with our boundary element method 
code 3DYNAFS. 

In the time stepping procedure, the coupling between the two methods was achieved through 
matching the velocity and pressure fields used to update at successive time steps the position of 
the free surfaces and the vortices. 

A potential flow representation of the vorticity outside the vortical region was used and allowed 
application of a modified Bernoulli equation to compute the pressure field due to the vorticity. 
In the coupled formulation the dynamic pressure at a field point satisfies a Poisson type equation 
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which is solved again with the BEM method with the right-hand-side handled by the so-called 
dual reciprocity method. This right hand side is represented as the sum of basis functions (here 
the same as those used to represent the vorticity field) which satisfy the Laplace equation. This 
results in the transformation of the domain terms in Green's equation into surface integrals. This 
results in a modified but still efficient boundary element method. Such complementary usage of 
the same basis functions results in a very efficient computational code and retains the advantages 
of both boundary element and vortex element methods. 

The developed model was applied to the investigation of the interaction between bubbles and 
the viscous / vortical flow fields due to a line vortex and a vortex ring. The results showed 
potential for significant effects of the bubbles on the vortex field and vice versa. These effects can 
have significant implications for applications where cavitation occurs and where the bubbles find 
themselves in intense time varying vortical regions. 

Sheet cavitation: In the last part of the report, we presented the first steps of the modeling of 
the inception of a leading edge cavity on a submerged body interacting with a two phase medium 
(stream of traveling nuclei) flowing near it. The coupled vortex element boundary element code 
described above is used to model the corresponding flow. The main components of the model are 
as follows: 

• The flow is decomposed into a potential and a vortical part. 

• The potential part of the flow around the submerged body and the attached sheet cavity is 
described using the boundary element method. 

• The vorticity field, shear and boundary layer around the body is modeled by distributed 
vortex elements in the flow region. Their subsequent evolution is determined by the vortex 
element method. 

• The freely traveling bubbles are modeled by singularity distributions and by an asymptotic 
multipole expansion scheme. 

This effort is our attempt to model the unsteady three-dimensional flow around airfoil with 
sheet and traveling bubble cavitation and the breakup of the sheet into bubble clouds at the end 
of the cavity. Some limited examples were presented concerning the development of such cavities 
around a sphere. We are presently actively pursuing the study of this aspect of the problem. 
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Appendix A 

INCLUSION OF NUCLEI DYNAMICS 

1 Introduction 
This appendix describes how the presence of nuclei in the flow field can be accounted for in the 
codes we have developed. This method has been implemented as an option in the codes, and is 
presently being tested for accuracy and computational efficiency. 

2 Problem considered 
Let us consider the case where the liquid contains M microbubbles or nuclei distributed in the 
flow field. To account for the motion and volume oscillations of these nuclei without resorting 
to a detailed description of their shape oscillations via the BEM method, we consider them as 
moving singularities with properties to be determined by the solution. We decompose the velocity 
potential component of the flow, <f>, into that due to boundaries, submerged bodies and finely 
described cavities, <f>b, and a potential 4>n due to the nuclei dynamics. The presence of a vortical 
component would be handled as in the previous chapter. To account for the presence of the nuclei 
as isolated point singularities with specified source and dipole strengths, rrij and dj, the equation 
for (j) is modified to: 

VV = 47rmJ-E6(x-xJ)+^V.X    Xj' ^(*    *j),        k = 1,2,3, 
~^ ^|x-Xj|       dxk 

(A.l) 

where x.,- indicates the location of the microbubble.    A model for providing the singularities 
strengths is needed to close the system, and is provided below. 

On the surface of the body we require the normal derivative of the total potential, <f>, to vanish. 
Accordingly, <f>n should satisfy 

dn dn 

Let us denote the fundamental solution to Laplace's equation by G, so that 

V2G(x,y) = 47T(5(x-y), where G = -|x-y|_1 (A.3) 
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Green's identity is : 

a^x) = / W(y)G(x, y)dVy + / n, ■ [^(y)VG(x, y) - G(x, y) W(y)] dS. (A.4) 
ivv Js 

Equations (A.l) can be reformulated as 

M       „ r or -I /• 

a7r</»(x)   =   53 / G(x, y)   47rm/ (y - x,) + difc— (y - x,)   dVy +  / n, • [0VG - GV0] d.S„ 

- £ 
M 

r-ll 1 

+ / n,.[0(y)VG(x,y)-G(x,y)V0(y)]^) 47rmjG(x,xi) - difc —(x,Xj) 
5 

The dipole term can be explicitly evaluated as 

8G d 1        _ (a;fc ~ xj) 

dxk dxk |x — xJ|       |x — xJ|3 (A.6) 

Following a collocation approach, by selecting the points x to be the nodes on S, a linear system 
of equations of the form 

A^ + r = B0 (A.7) 
on 

results. Here A and B are matrices corresponding to the discretization and integration with the 
Green's function and its derivative, while r is the vector obtained by evaluating the source and 
dipole terms at the collocation points. 

3     Nuclei local model 

With Rj being the instantaneous radius of the jth bubble, the source term is given by 

rrij = RtRj, (A.8) 

where the dot superscript indicates time differentiation. 
The dipole terms are given by 

djh = -^-yj-ek,        k = 1,2,3. (A.9) 

where VJ is the slip velocity between the liquid and the bubble center, and ek is the unit vector 
in the k direction. 

Thus if we have evolution equations which provide the variation of (irij,djk,xfy with time we 
in terms of the other variables of the problem we can close the system of equations. 
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3.1     Evolution of the source term 

Dynamic Evolution 

The spherical bubble oscillations and radius variations with time can be obtained using the 
Rayleigh Plesset equation: 

RjRj + \R)=Pl-P^\ (A.10) 

where P(?i-j) is the pressure in the liquid at the nuclei center location in its absence.   Pi is the 
pressure in the liquid at the surface of the bubble.   It is connected by the continuity of normal 
pressures to the partial pressures of gas and vapor inside the bubble, p3 + pv. and to the surface 
tension: 

2a 

Rj 

Quasi Static Bubble Model 

P^fg+'Pv--^- (A.ll) 

In practice, the above bubble model causes numerical difficulties due to the large differences in 
time scales between the nuclei dynamics characteristic time and the overall flow characteristic 
time. This would results in an enormous amount of small time steps to integrate the Rayleigh 
Plesset equations along the path of the nuclei. Most of this time would be in fact wasted in minute 
bubble oscillations around the bubble equilibrium value. Instead, a simple static equilibrium model 
should be used as long as the liquid pressure does not drop below the nuclei corresponding critical 
pressure. To do this we use the static equilibrium equation: 

1    Pv~    R*        Rj' 

where Rj0 and p3
go are a reference (initial) radius and gas pressure of the bubble. We can solve 

this equation for a given Pi using a Newton method and rejecting radius values larger than the 
critical bubble radius, Rc 

Rc P'-Pv + 
2a   V "     Rj. 

When the bubble radius approaches the critical radius we switch to solving the Rayleigh Plesset 
equation. 

3.2     Evolution of the dipole term 

The dipole is that due to the relative motion of a sphere of the same radius as the bubble. If 
along the x direction the liquid velocity is U, and the bubble of radius a moves at a velocity v. 
the corresponding velocity potential is: 

a3 (U - v) x A  - V ' (A.12) 
(x2 + y2 + z2)3/2 ' 
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when we take the center of the bubble as the origin of coordinates.   The strength of the corre- 
sponding dipole is: 

d = aA(U-v). (A.13) 

To determine the bubble velocity we have to solve an equation of motion of the bubble. This 
can be written using a classical formation [77] as: 

2?r^3   -PCD-KR) |U' - v^'l (u' - v') - 2nR)S/P + 2TTP (U' - v*) Ä*Ä, 

;CD 
lu' - v» 

Rj      (u'-vV^P + 3(u'-v^)| (A.14) 

where CD is a drag coefficient and u' is the liquid velocity at the nucleus center location if the 
nucleus were not present. 

The pressure to which the bubble is subjected, P' is given by: 

(A.15) 

where primes denotes quantities computed at the corresponding nuclei center in its absence.  Fi- 
nally: 

-dF = v- (A-16) 
To compute the time derivative by finite differences at the microbubble location, we need to 

account for the microbubble motion 

d£   =    <P(x,t)-<f/(x,t-h) _ <^0M) - [</>' (x -6,t-h) + d<f//dx\x_Sjt_h 8 
dt ~       '  h h 

=   /T1 [4/ (x, t)-<f>'(x-6,t- h) - u"' ■ 6j] 

=   h"1 [(/,' (x, t) - <// (x -6,t-h)- u'J • V'7i] 

=   /T1 (<f>' (re, t)-$(x-6,t- h)) , where $ = <fj (a; - 6, t - h) + hulj ■ Vj    (A.17) 

4    Code organization 
(a)  Given 

- flow at infinity; 

- location of body; 

- location, radius, radial and translational velocity of microbubbles 

(a) Compute source and dipole strengths 

(b) Compute A and B 

(c) Compute rhs due to boundary conditions 
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(d) Add to rhs the term r due to the sources and dipoles 

(e) Solve and get <fr on the surface 

(f) Get pressures on the surface 

(g) If below vapor pressure convert to free surface for future steps 

(h) Evaluate </>' on the microbubbles 

(i)  Evaluate u' at the bubbles using finite-differences in space 

(j)  Get dft/dt at the bubbles using finite-differences in time 

(k)  Get pressure at the bubble location 

(1)  Get static radius of the bubbles and check for near criticality 

(m)  Get VP' at the bubble location using finite-differences in space 

(n) Time step the radius 

(o) Time step the velocity 

(p) Time step the bubble location 

(q) Time step free surface locations 

(r) Goto step 2 and repeat 

5    Analytical Solutions to check the code 

Consider a flow with potential fa. One can determine the potential for the perturbed flow caused 
by introduction of a fixed sphere of radius a at the origin by using the sphere theorem [17]: 

a     fa2   \       2    fa        /A2   \ 
</> = fa + -fa (^xj - - ^  \<f>0 ^_XJ d\. (A.18) 

Here we develop the solutions for a uniform flow, source and dipole for comparison with the 
numerical code. The developed code was found to be succesful in recovering the anlaytical solution 
in each case. 

Consider the velocity potential of a uniform flow 

fa = Ux. (A.19) 

Using Equation (A.18) the corresponding potential, cf>, in the presence of a sphere of radius a at 
the origin is 

ar J0   H ^       r-2      2 r f 

In the case of a source of strength q located at (-x0, 0, 0) the potential 0O is 

fa = , q       =■ (A.21) 
<(z + x0)2 + yi + z* 
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Using Equation (A. 18) the corresponding <fi is 

/ 1       r 1     a2 + xxp + \/(a4 + r2x2
0 + 2xx0a

2) 

~    9\ \A2 + 2xx0 + x2      yV + 2xx0a
2 + r2x2     a U (x + r) x0 

(A.22) 
In the case of a dipole of strength A directed along the x axis and located at (—#0,0,0) the 

potential 4>Q is 

Using Equation (A. 18) the corresponding <f) is 

, _ _ A I  (x + x0) a (a2x + r2x0) a/x0 
*r ~~ . « .i/o    ' 

((z + x0)
2 + y2 + z2)m      (a4 + 2a2xx0 + x2r2f2      ^(a* + r2x2 + 2xx0a

2) 

(A.24) 
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