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Abstract 

A key ingredient in simulation of flow in porous media is accurate determination of the 
velocities that drive the flow. Large-scale irregularities of the geology (faults, fractures, and 
layers) suggest the use of irregular grids in simulation. This paper presents a control-volume 
mixed finite element method that provides a simple, systematic, easily implemented proce- 
dure for obtaining accurate velocity approximations on irregular block-centered grids. The 
control-volume formulation of Darcy's law can be viewed as a discretization into element- 
sized "tanks" with imposed pressures at the ends, giving a local discrete Darcy law analogous 
to the block-by-block conservation in the usual mixed discretization of the mass-conservation 
equation. Numerical results in two dimensions show second-order convergence in the veloc- 
ity, even with discontinuous anisotropic permeability on an irregular grid. The method 
extends readily to three dimensions. 
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Figure 1: Logically rectangular grid of irregular quadrilaterals 

1    Introduction 

As techniques of reservoir description become more sophisticated, it becomes increasingly 
important to model flows of reservoir fluids accurately. In particular, it is desirable to 
accurately represent large-scale irregularities of reservoir geology in models. The control- 
volume mixed finite element method allows the use of irregular grids while maintaining 
many of the familiar properties of block-centered finite difference methods for rectangular 
grids. For example, it preserves the notion of block-by-block material balance, with physical 
interblock-flow terms. It also yields an analogue of the local discrete Darcy law (relating a 
combination of fluxes to a pressure drop between blocks) on a block-sized "tank" between 
two pressure nodes. The method can be applied to any "logically rectangular" grid of 
irregular quadrilaterals in two dimensions, or analogous hexalaterals in three dimensions. 
In two dimensions, "logically rectangular" means that each grid block can be assigned an 
index (i,j) such that it shares an edge with the usual (i±l,j) and (i,j± 1)- An example of 
such a grid is shown in Figure 1. Even on rectangular grids, the control-volume mixed finite 
element method can be more accurate than finite differences. However, its main advantage 
is that it can be applied in a simple, straightforward way to obtain accurate results on 
irregular grids, allowing the permeability coefficient to be anisotropic and discontinuous. 
Formulations in common use in the petroleum industry, such as corner-point geometry [18], 
are well-known to be inconsistent on general logically rectangular grids. Since the motivation 
for irregular grids is the accuracy of the discretization, such formulations are best limited 
to careful, restricted use in practice. 

We describe the method for rectangular grids in Section 2, and for irregular quadrilateral 
grids in Section 3. The method is presented in the context of a model pressure equation. 
Section 4 contains results from numerical experiments, including a comparison to block- 
centered finite differences and numerical convergence results. Section 5 is a summary. 

We conclude this introductory section with brief descriptions of mixed and control- 
volume finite element methods, two methods that provide some of the building blocks for the 



control-volume mixed finite element method. Between these descriptions we also summarize 
some other methods recently proposed for irregular grids in porous media. These other 
methods share our goal of circumventing the inconsistencies of approaches such as corner- 
point geometry. 

Mixed finite element methods. We recall some of the essentials of mixed finite- 
element methods. The idea is to represent a partial differential equation as a system of 
lower-order equations, solving these for multiple variables of physical interest. To keep the 
description simple, assume incompressible single-phase flow, neglecting gravitational effects, 
so that the pressure equation takes the form 

-V-(-Vp) = ?)        xefi, (i) 
r 

where k (scalar or anisotropic tensor) is the permeability, p, the fluid viscosity, p the pressure, 
q a source/sink (e.g., well) term, and fi is the reservoir with boundary dfi. Also for simplicity, 
take the no-flow boundary condition 

Vp-n = 0,        xedfi. (2) 

A mixed method separates Darcy's law, 

i- 
v = Vp, (3) 

where v is the velocity vector, from conservation of mass, 

V-v = g, (4) 

and solves the system Eqs. (3)-(4) for v and p, instead of solving Eq. (1) for p and applying 
Eq. (3) to obtain v. 

For the standard (not control-volume) mixed method, following [19], write Eq. (3) in the 
form {p/k)\ + Vp = 0, multiply by a vector test function w, integrate over fi, and integrate 
by parts to obtain 

/  —\ ■ wrfx-   /  V • wpdx = 0. (5) 

Multiply Eq. (4) by a scalar test function z and integrate over fi to see that 

/  V -vzdx =       qzdx. (6) 

The requirements of w and z are that z and the components of w be square-integrable, that 
the divergence V • w be square-integrable, and that w • n = 0 on the boundary <9fi. At this 
point, the differential equations are still being viewed continuously, with p and v satisfying 
the same conditions as z and w, respectively. 

In two dimensions, the discrete Raviart-Thomas elements can be rectangles or triangles. 
In either case, for the lowest-order elements that are analogous to block-centered finite 



Figure 2: Velocity basis functions on rectangles and triangles 

differences, p and z are piecewise-constant. The velocity functions v and w can best be 
viewed by associating a degree of freedom with the flux (normal component times edge 
length) on each inter-block edge; this covers both the rectangles and the triangles. Velocity 
functions for which the flux is 1 on one edge (hence the normal component is 1/\E\, where 
\E\ is the length of the edge) and 0 on other edges are pictured in Figure 2. Fluxes vary 
linearly in the direction of the velocity. Continuity of flux is assured in either case. 

There are two principal advantages to this approach. First, with piecewise-constant z, 
Eq. (6) yields conservation of mass on an element-by-element basis, in analogy with block- 
centered finite differences. Second, approximating v directly by finite elements can be much 
more accurate than solving for p and invoking Eq. (3), especially when the mobility k/fi is 
not smooth. An example of the importance of this appears in [11], where a mixed method 
avoided spurious viscous fingering effects that had appeared in Galerkin finite-element results 
for miscible displacement. On standard grids, a mixed method has also reduced numerical 
dispersion in an industry simulator [10]. For standard grids, the convergence and accuracy of 
these mixed methods are well-established, both independently [19] and as part of a coupled 
system for miscible displacement [15]. This theory extends in a straightforward way to a 
grid of parallelograms, which are linear images of rectangles. 

For arbitrary quadrilateral grids, Raviart and Thomas [19] and Thomas [23] defined 
appropriate pressure and velocity spaces via the Piola mapping (see Section 3.1). Stability 
and convergence were demonstrated more recently by Wang and Mathew [25] and Shen [22]. 
These error estimates are of significant interest mathematically, but of limited practical 
value in the geological context motivating our work, because they depend on continuity 
of the normal and tangential components of v at an interface; at interfaces where k is 
discontinuous, the tangential component of v will also be discontinuous. Farmer et al. [12] 
have applied these methods to petroleum reservoir simulation. 

Other methods for irregular grids. In the petroleum industry, Aavatsmark et al. [1, 
2] have proposed and tested a block-centered finite-difference method involving partitioned 
fluxes between subdivisions of irregular blocks.    The objective is continuity of pressure 



and velocity with suitable interpolation between nodes; this would be overdetermined, so 
some constraints are relaxed. Of a similar flavor is a method proposed and analyzed by 
Thomas and Trujillo [24], which is a mixed discretization with Eq. (3) written in the form 
v + (k/fi)Vp = 0 instead of (n/k)\ + Vp = 0. In both methods there is, in essence, a dual 
velocity grid whose blocks are associated with the corners of pressure blocks. In contrast, 
as Sections 2 and 3 will show, our velocity grid elements (control volumes) are associated 
with the edges (or faces in three dimensions) of pressure blocks, as are the velocity degrees 
of freedom (e.g., Figure 2). We also retain the integration of Zr1 as in Eq. (5), which will 
generalize the usual harmonic averaging of k in a simple way. 

An expanded mixed method, reducible to a finite-difference scheme by low-order inte- 
gration, has been formulated, analyzed, and tested by Arbogast et al. [3, 4]. The method is 
expanded in the sense that it introduces an additional variable corresponding to Vp, sub- 
sequently eliminating it under some circumstances. A key to the method is the assumption 
that there is a global C2 mapping from the irregular grid to a regular grid, which is not the 
case for a grid such as that in Figure 1. At non-smooth grid interfaces, or at interfaces with 
coefficient discontinuities, the method must introduce Lagrange multipliers that correspond 
physically to pressures on block edges (faces in three dimensions). With these Lagrange 
multipliers, the method obtains numerically the theoretical convergence rate of ft3/2 for ve- 
locities at midpoints of edges [3], where h is the grid size. The method and its theory are 
based on the framework of standard mixed methods. Our method, based on the alternative 
control-volume framework, is considerably simpler, as its degrees of freedom are merely the 
block pressures and the edge fluxes, with no Lagrange multipliers. Edge pressure values 
(analogous to Lagrange multipliers) do appear in the derivation in Section 3.2, but they are 
eliminated before the final system of equations is reached. The resulting method shows a 
convergence rate of h2 for velocities (fluxes across edges) in all of the tests performed so far 
(e.g., those in Section 4), except where the solution is singular. 

Control volume finite elements. To obtain a local discrete Darcy law and to avoid 
the complexities that appear to be necessary with standard mixed methods, we consider 
procedures based on control-volume finite-element methods [5, 17]. Such schemes have been 
considered in the petroleum literature [14, 20, 13], but only in a "point-centered" framework. 
This means that mass conservation is not enforced on the blocks designated by the user, but 
rather on dual blocks centered about the vertices of the user blocks. Since the vertices are 
presumably often located at geological interfaces, and since the designated blocks may be 
of significance to the user, the most desirable approach would be one that conserves mass 
on the user blocks. 

We briefly summarize the point-centered approach. If Eq. (1) is integrated over a volume 
(area in two dimensions) V and the Gauss divergence theorem is applied, we obtain 

— /     —Vp-nds =   /   qdx, 
Jdv V Jv 

(7) 

where dV is the boundary of V and ds is the measure on dV. A mesh of triangles is defined, 
where p will be computed at the vertices. With each vertex, one associates a control volume, 
usually found by taking the Voronoi volume bounded by the perpendicular bisectors of the 
sides of the triangles.   Then Eq. (7) is posed for each control volume, where p is linearly 
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Figure 3: Unknowns and control volumes for rectangular grid 

interpolated from the vertices to the interior of each triangle. Thus, p is represented by a 
standard finite-element shape function, but instead of integrating against the usual weighting 
functions one integrates over control volumes. This is equivalent to integrating against 
weighting functions that are 1 on one control volume and 0 on the others. Convergence 
theories [6, 8] exist for quite general triangulations. 

2    Rectangular Grid 

We formulate a control-volume mixed finite-element procedure for the system Eqs. (3)-(4), 
using appropriate shape functions to represent the solution and integrating over appropri- 
ate control volumes.   We first illustrate this for a rectangular grid, where the details are 
straightforward and we can use Raviart-Thomas elements as described above. 

In Figure 3, we show typical unknowns and control volumes. Let 

Qij      -      (Xi-i/2,Xi + i/2) x (2/,--l/2, J/j + 1/2), 

Qi+l/2,j      =      (xi,Xi + 1) X (j/j_l/2,2/j + l/2)i 

Qi,j + l/2      =      (xi-l/2,%i + l/2) X (%'>% + l)- 

where (xi,yj) is the center of the block Qij. As in the standard mixed method, we associate 
pressure unknowns ptj with block centers («,:,%), and a flux unknown (normal component 
of v times cross-sectional area or length) with each face (edge in two dimensions). On a 
vertical edge centered at («i+1/2,2/j)> the normal component is the «-component, so we can 



denote the unknown by (fx)i+i/2,j- Similarly, on a horizontal edge centered at (xt, 2/j+i/2), 
we associate (fy)ij+i/2- The natural control volumes corresponding to pij, {fx)i+i/2,j, 
and (fy)iij+i/2, respectively, are Qi:j, <3,;+i/2j, and <2;J+i/2, as seen in Figure 3. From a 
physical point of view, we can think of Qi+i/2,j as a "tank" with pressures pij and pi+i:j 

imposed at the two ends, and similarly for Qitj+1/2- 
We wish to integrate Eq. (3) over control volumes to obtain local discrete Darcy laws 

on the "tanks." Note that Eq. (3) is a vector equation that can be resolved into the two 
components 

A-V + g    =    0, (8) 
,   1 dp A    Vy + fy    =    °' (9) 

where A = k/ß. We integrate Eq. (8) and Eq. (9) over Qi+i/2,j and <2;J+i/2, respectively, 
because these equations involve vx and vy. Integrating out the partial derivatives of p, this 
yields 

/ / X~1vx(x,y)dydx + (p(xi+1,y)-p(xi,y))dy    =    0,        (10) 
Jx,      Jyj-i/-2 Jyj-i/2 
ry,+i   rx,+i/2   _ r*,+i/2 

X     vy{x,y)dxdy+ (p(x,yj+1) - p(x,yj)) dx    =    0.        (11) 

Using the shape functions forp, vx, and vy as described above, the integrals in Eqs. (10)—(11) 
are readily expressed in terms of the unknowns Piij, pi+hj, piJ+1, (/:,)j_1/2j, (fx)i+i/2,j, 

(fx)i+3/2,j, (fy)i,j-i/2, (fy)i,j+i/2, and (fy)ij+3/2- We then obtain the discrete Darcy 
equations on the "tanks": in the ^-direction on Qj+i/2,j, 

ai+l/2,j;i-l/2,j(fx)i-l/2,j + <li + l/2,j;i + l/2,j(fx)i + l/2,j 

+ai+l/2tj-i+3/2,j(U)i+3/2,j +Pi+l,j -Pi,j      =      0, (12) 

where 

1  A-1 

a;+i/2,j;;-i/2,j    =    --r~ri(xi+l/2-xi_1/2)2, (13) 
es Jl 

3   \j    . 2 
ai + l/2,j;i+l/2,j      -       g |^—-AXi + l/2-Xi-l/2) 

3   A-1 

ai+l/2,j;i+3/2,j      =       gj^ —AXi+3/2-Xi+l/2), (15) 

and in the y-direction on Qij+1/2, 

ai,j + l/2;i,j-l/2{fy)i,j-l/2 + ai,j + l/2;i,j + l/2(fy)i,j + l/2 

+ai,j + l/2;i,j+3/2(fy)i,j+3/2+Pi,j + l-Pi,j      =      0, (16) 



where coefficients in Eq. (16) are obtained by equations analogous to Eqs. (13)—(15). On 
each block Qij, p is constant, fx varies linearly with x and is constant in y, and fy is 

constant in x and varies linearly with y. 
We also integrate Eq. (4), this time over the control volumes Qtj. Applying the Gauss 

divergence theorem to convert the left-hand side into a boundary integral (four edge inte- 

grals), we have 

/ vx(xi+i/2,y)dy-  / vx(xi-1/2,y)dy+  / vy(x,yj+1/2)dx 
Jyj-i/2 Jy,-i/2 J^i-i/2 

- vy(x,yj-.1/2)dx= / q(x,y)dxdy. (17) 
Jxi-l/2 Jyj-1/2     Jzi-1/2 

Again, the integrals are expressed in terms of (fx)i-i/2,j, (fx)i+i/2,j, {fy)i,j-i/2, and 
(fy)i,j+i/2, yielding the discrete mass conservation: 

(fx)i-l/2,j - (fr)i + l/2,j + (fy)i,j-l/2 ~ (fy)i,j + l/2 = -\Qi,j\li,j- (18) 

Eqs. (12), (16), and (18) thus give rise to a symmetric system of linear equations that is 
solved for the pressures at block centers and the fluxes across edges: 

(19) 

where Mj is tridiagonal (for unknown ordering by horizontal rows, so that (i - 1/2, j), 
(i+ 1/2, j), (i + 3/2, j) are consecutive), M^ is tridiagonal (ordering by vertical columns 
so that (i,j - 1/2), (i,j + 1/2), (i,j + 3/2) are consecutive) and each row of NT and Ny 

contains one +1 and one —1, corresponding to the two adjacent block pressures. 
It is instructive to relate this control-volume mixed finite-element method to the familiar 

block-centered finite-difference approach. Eq. (17) would be the usual block-centered mass- 
balance equation if the normal velocities on edges were given by discrete pressure gradients 
multiplied by harmonically averaged mobilities. Examining Eqs. (10)—(11), we see that this 
would be the case if the vx and vy integrals approximated vx and vy by constants on their 
respective control volumes (or, equivalently, if a midpoint integration rule were used). In 
matrix terms, Mx and M} would become diagonal, so the system would have the form 

Mx 0 Nx Jx 0 
0 My N„ fy = 0 

N£ N'1' 1 y 0 P -101« 

M' N 
0 

0 
-101? 

with M' diagonal, and elimination of / would yield 

NTM'_1Np= \Q\q. 

(20) 

(21) 

This demonstrates the close relationship between the control-volume mixed method and 
block-centered finite differences. Both methods involve local mass conservation and a local 



Figure 4: Reference quadrilateral Q and quadrilateral Q 

Darcy law. The mixed method's higher-order approximation of vx and vy, each varying 
linearly in its own direction, couples the velocities in Eqs. (10)—(11) and makes the methods 
different. This increases the accuracy of the solution (for example, see Problem 1 of Section 
4), but makes it more expensive to solve the discrete system. 

It is also useful, for the sake of generalization to irregular grids, to take a vector point of 
view of Eqs. (10)—(11). In passing from Eq. (3) to Eq. (8), we took the x'-component of Eq. 
(3); this is equivalent to taking the dot product of Eq. (3) with the unit vector x = (1,0). In 
Eq. (10) we restricted the integration to the control volume Qi+\/2,j- Thus, we can obtain 
Eq. (10) by taking the dot product of Eq. (3) with a vector field that is x on Qi+\/2,j and 
zero elsewhere, then integrating over £}. This vector field is the finite-element vector "test 
function" corresponding to Eq. (10). Similarly, Eq. (11) relates to a vector test function 
that is y = (0,1) on Qij+1/2 and zero elsewhere. This perspective seems pointless on a 
rectangular grid, where components are easy to work with, but it will be helpful otherwise. 

3    Irregular Quadrilateral Grid 

With the rectangular case as a guide, we develop a formulation for general quadrilaterals. 
One important step is to be able to relate a general quadrilateral to a reference one. Consider 
the quadrilateral Q in Figure 4, which is assumed to have vertices at (#oo,2/oo), (£01,2/01), 
(#10,2/10), and (#11,2/11).  Let the reference quadrilateral Q be the unit square.  There is a 



Figure 5: Velocity basis function on quadrilaterals 

unique bilinear mapping of Q onto Q that sets up coordinates on Q: 

x(x,y)    =    xoo +(xio-x0o)x +(xoi-x00)y 

+(xn - Kio - «01 + xoo)£y, 

y(x,y)    -    j/oo + (yio - 2/oo)£ + (2/01 - 2/00)2/ 

+(2/11 - yio - J/01 + yoo)xy. 

(22) 

(23) 

The resulting coordinate lines are as depicted in Fig. 4. The pressure in Q is associated 
with the image of the center of Q, i.e., with the node (x{\,\), y{\, \)) indicated by x in 
the figure. Note that this is not generally the centroid of Q. As long as Q is a convex 
quadrilateral (all angles less than 180 degrees), the bilinear mapping has an inverse. We 
assume henceforth that the quadrilaterals are convex so that for each (x, y) G Q the inverse 
mapping gives an associated (x,y) G Q- There is thus a one-to-one correspondence between 
points in the physical space Q and the reference space Q. 

3.1    Shape functions and unknowns 

Now consider the extension of the control-volume mixed formulation to general quadrilater- 
als. To maintain continuity of flux, we want the normal component of a velocity function to 
be constant on each edge. Then we can associate degrees of freedom with fluxes on edges, 
as in the rectangle and triangle cases. In Figure 5 we show two adjacent quadrilaterals with 
the coordinates determined by the mapping Eqs. (22)-(23). The velocity vector function 
that has normal component l/\E\ on the common edge of length \E\ (hence has flux 1) 
and 0 on the other edges is pictured. It is oriented along, say, ^-coordinate lines, and has 
constant normal component on each complementary y-\me, with the magnitude of the flux 
varying linearly in the «-direction. We now describe this vector function analytically. 

First we identify significant directions in the quadrilateral. Referring to Eqs. (22)-(23), 



define 

x(£>y) =    är.äz 

Y(i,y)    =       £,^ 

dx   dys 

dx' dx / 

(«10 - a?oo + («11 - «10 - «oi + «00)2/, 

2/10 - 2/00 + (2/11 - 2/10 - 2/01 + 2/00)2/), 

dx   dys 

dy' dy, 

(«01 - «00 + («11 - «10 - «01 + «00)«, 

2/01 - 2/00 + (2/11 - 2/10 - 2/01 + 2/oo)«)- 

(24) 

(25) 

These can be viewed as the images of the vectors (1,0) and (0,1), respectively, under the 
mapping from Q to Q. We have defined them for («, y) in the reference quadrilateral, but 
because of the one-to-one correspondence mentioned previously, we can just as well consider 
them defined for («, y) in the physical quadrilateral. In the physical space, they point in the 
directions of the coordinate lines pictured in Figure 4. However, they are not unit vectors; 
their length depends on the size of Q and they have the dimensions of length. Define also 
the corresponding unit vectors and normal vectors: 

(26) 

y   = ^—"  ,.,„ (27) 

(28) 

(29) 

Here x and y are unit vectors in the directions of X and Y, respectively, nr is a unit vector 
normal to Y, and n,, is a unit vector normal to X. Figure 5 shows x and y, while Figure 6 
shows vyT and ny. 

Returning to the vector function v in Figure 5, let Q be the left-hand quadrilateral. To 
evaluate v at (x,y), first use the inverse mapping to find the corresponding (x,y). Then 
v(x, y) is the vector in the direction of X whose iiy-component (i.e., v-nj is equal to «/||Y|| 
(so that the flux across the "vertical" line through (x,y) is «).  After some manipulation, 

10 
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Figure 6: Control-volume mixed finite elements on quadrilaterals 

one can show that this is given by 

v(x,y) 
i;X 

J(x,y) 
(30) 

where 

J(x,y) 
dx dy     dx dy 

dx dy     dy dx 

=    [(a?io - £00X2/01 - 2/00) - (*oi - «00X2/10 - J/00)] 

+ [(a,-10 - £00X2/11 - J/oi) - (*ii - «oi)(j/io - 2/oo)]i 

+ [(xn - Z10X2/01 - 2/oo) - (*oi - !Koo)(2/ii - 2/io)J2/ (31) 

is the Jacobian of the mapping in Eqs. (22)-(23) from Q to Q. Note that J(x,y) = 
||X||||Y||sin0, where 0 is the angle between X and Y. For a rectangular grid, this an- 
gle is 90 degrees, so that nx = x and we obtain v(a;, y) = £x/||Y||, as we would expect. In 
the right-hand quadrilateral, everything is the same except that 1 - x replaces x. Similar 
expressions hold for a velocity basis function corresponding to a "horizontal" edge, with x, 
X, and x replaced by y, Y, and y, respectively. 

The unknowns that we use to describe the velocity are the fluxes across edges, namely 

\Ei+1/2,j\(v-nx)i+1/2j and \Ei>j+1/2\(v ■ny)ij+1/2, which we abbreviate to (fx)i+i/2j and 
(fy)ij+i/2 in analogy with the rectangular case. These velocity shape functions and un- 
knowns can be obtained from those on rectangles by a so-called Piola transformation [7]. 

11 



For pressure, the natural choice of shape functions is still piecewise constants, introducing 
no additional complications, and the unknowns are pij as in the rectangular case. 

3.2    Test functions and control volumes 

To obtain discrete equations from which we can solve for pressures at block centers and fluxes 
across edges, we must choose suitable control volumes and mimic the integrations leading 
to Eqs. (10)-(11) and (17). For the integrations of Eq. (3), we use images of rectangular 
control volumes Q,+i/2,j and Qij+1/2 under the mapping in Eqs. (22)-(23). This is pictured 
in Figure 6, where the control volume associated with the common edge consists of the 
image of (i, 1) x (0,1) under the mapping to the left-hand quadrilateral and the image of 
(0,|) x (0,1) under the mapping to the right-hand quadrilateral. In physical space, this 
can be described by taking the midpoints of the four edges adjacent to the common edge in 
question, then joining the two pairs of midpoints by line segments. We denote such control 

volumes by Qi+i/2,j and Qij+1/2, as we did previously for the rectangular grid. Qi+i/2,j 
in Figure 6 will be the "tank" with pressures pij and pt+ij at the two ends. For the 
integrations of Eq. (4), we simply take the quadrilateral blocks Qij as control volumes. 

Continuity equation. For the integrations, we also require test functions. For Eq. (4), 
these are simply scalar characteristic functions of the control volumes, i.e., functions that 
are 1 on one volume and zero elsewhere. If we denote the edges of Qij by -Ei+i/Tj, etc., 
and integrate Eq. (4) over the control volume, the Gauss divergence theorem (using the fact 
that the normal velocity component is constant on each edge) yields 

(v ■ii3.)i+1/2,j\Ei+1/2j\ - (v ■nx),-_i/2j|£'i_i/2,j| + (v •ny)iij+1/2\Eiij+if2\ 

-(\ ■ny)iij_1/2\Eij_1/2\= qdz, (32) 

so that Eq. (18) is obtained for quadrilaterals as well as rectangles, where dz is the two- 
dimensional measure on Qij- The equation is easily incorporated into the discrete system 
as before. 

Darcy equation. For Eq. (3), the situation is more complicated. On the rectangular 
grid, the test function given by x on Q,:+i/2,j and zero elsewhere allowed the .x*-partial 
derivative of p to be integrated out, leaving integrals of p on lines that were interior to the 
constant-pressure blocks. This is the desired outcome, and we show how to achieve this on 
a general quadrilateral grid. 

Let Qi+1/4j and Qi+3/4j denote the "left-hand half" and "right-hand half," respectively, 

of Qi+i/2,j- Then Qi+1/4j is the image of the right-hand half, (1/2,1) x (0,1), of Q under 
the mapping Eqs. (22)-(23). Using X as the test function, the p integral analogous to the 
one in Eq. (10) is 

/ Vp-Xdz    =     I 

L Q,+i/i,j 

12 

dp dx     dpdys, 

dx dx     dy dx / 

dp 

dx 



Jo   J\l 
—J dxdy 

/2 ox 

where J = Jij is the Jacobian of the mapping from Q to Qij, as in Eq. (31).  Since J is 
linear in x, dJ/dx = b is constant, and Eq. (33) becomes 

/ Vp-Xdz    =     [ [J(l,y)p(l,y)-J(l/2,y)p(l/2,y)]dy 

-% I    [    pdxdy. (34) 
ox J0  J1/2 

Now we suppose that p is approximated by a linear (not bilinear) polynomial in x and 
y, an approximation of error 0(h2), where h is the diameter of Qi+1/4j. This will allow us 
to reduce the above expression to an appropriate numerical scheme. Since J is also linear, 
the Jp integrals can be evaluated by Simpson's rule in y: 

J  J(l,y)p(l,y)dy    =    ± J(l, 0)p(l, 0) + |j(l, l/2)p(l, 1/2) 

+^J(l,l)p(l,l), 

y   J(l/2,y)p(l/2,y)dy    =    ij(l/2,0)p(l/2,0)+|j(l/2, l/2)p(l/2,1/2) 

+ ij(l/2,l)p(l/2,l). (35) 

For the p integral, we use the trapezoidal rule in x and Simpson's rule (higher order than 
necessary, but easier to combine with the other terms) in y: 

fX.[L
PdXdij    =    ^WV2>0) + p(l,0)) + if(p(l/2,l/2) + p(l,l/2)) 

+^(p(l/2,l) + p(l,l)). (36) 

Substituting Eqs. (35)—(36) into Eq. (34) and collecting coefficients, we have 

L„..,Vp^a'= G•'(l'o)-^S)',(l'o, 

|j(i,i/a)-i^)^i,i/a) 
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-(i'OAl/s)+±£)rfl/s.l/i0 

>/»■!>+sis) rfl Al) 
=    ij(3/4,0)(p(l,0)-p(l/2,0)) 

+| J(3/4, l/2)(p(l, 1/2) - p(l/2,1/2)) 

+| J(3/4, l)(p(l, 1) -p(l/2,1)), (37) 

where the last step uses the linearity of J with respect to x. With p being linear, dp/dx is 
constant, so that the three p differences just obtained are all equal; hence, using the linearity 
of J with respect to y, Eq. (37) reduces to 

/ Vp • X dz = Jij(3/4, l/2)(p,-+1/2j- - Pi 3J> (38) 
■ + 1/4, i 

recalling that Pij = p(l/2,1/2) and letting pi+1/2,j = p(l, 1/2) be a pressure value on the 
edge Ei+i/2j. The value Pi+i/2,j is not one of the desired block-center pressure unknowns 
and we wish to eliminate it. A similar derivation for Qi+3/4j- leads to 

L Vp • Xdz = Ji+lij(l/4, l/2)(p,-+lj- -pi+i/2,i). (39) 
Q. + 3/4.J 

Hence, by choosing the test vector field 

[ X/J!J(3/4,l/2)       onQi+1/4J, 
W.-+1/2J = <   X/Ji+lj(l/4,l/2)    on Qi+3/4J, (40) 

[   0 elsewhere, 

we combine constant multiples of Eqs. (38)-(39) into 

Vp • wi+i/2,j dz = pi+1J - pt- j, (41) 
/ Q.- + 1/2.J 

and the edge value P;+i/2,j has been eliminated. Note that we did not have to require that 
p be piecewise constant in this derivation, though we will generally think of the numerical 
approximation of p in this way. 

The step just completed is the elimination of the analogues of the Lagrange multipliers 
of Arbogast et al. [3, 4], mentioned in the discussion of other methods for irregular grids 
in Section 1. The ability to carry out this step is a special property of the control-volume 
mixed method, as opposed to the standard framework in which the vector shape and test 
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functions are the same. In the latter case, the test function must have continuous normal 
flux, and there is no freedom to choose weights as in Eq. (40) above. There is no physical 
reason for this constraint (unlike flux continuity for the shape functions), which is an artifact 
of the numerical approach. The control-volume formulation allows (indeed, compels) flux 
discontinuities in the test functions. 

At this point we have chosen a test function and have integrated the p term of Eq. (3). 

For the v term, we consider 

f A-'vwi+^jdz    =     I A7Jv.X/Jij(3ß,l/2)dz 
Jet JQi+i/4,j 

+ I Ar^.v • XM+lj-(l/4,1/2) dz, (42) 

where A may be a full anisotropic tensor. To find the desired coefficients, write 

V      =      (/r)i-l/2,jVj_l/2,j + (fx)i + l/2,j^i+l/2,j + (fx)i+3/2,j vi+3/2,j 

+(fy)i,j + l/2^i,j + l/2 + (fy)i,j-l/2^i,j-l/2 

+ (/y)« + l,j + l/2vi+lj + l/2 + (/i/)t + l,j-l/2vi + l,j-l/2 

+ other terms, (43) 

where (for example) Vj+1/2,j is the velocity field with flux 1 across Ei+i/2,j and 0 across all 
other edges. Then, substituting for v, we obtain the discrete Darcy equation analogous to 

Eq. (12) 

ai + l/2,j;i-l/2,j(fx)i-l/2,j + ai + i/2J;i + l/2,j(fx)i+l/2,j + a» + l/2,j;j+3/2,j(/x)i+3/2,j 

+ai+l/2,j;i,j + l/2(fy)i,j + l/2 + ai + l/2,j ;i ,j-l/2(fy )i,j-1/2 

+ai+l/2,j;i + l,j + l/2(fy)i + l,j + l/2 + <li + l/2,j;i + l,j-l/2(fy)i + l,j-1/2 

+Pi+lj-PiJ=0, (44) 

where (for example in analogy with Eq. (14)) 

ai+i/2,j;i+i/2,j    =     / A7jv'+i/2,j ■ X/Ji,j(3/4,1/2) dz 
jQi + l/4,j 

+ I Ar+
1
lj.vi+1/2J • X/Ji+lij(l/4,1/2) dz. (45) 

+3/4, j 

To evaluate the Qj+1/4,,7 integral in Eq. (45), first note that vi+1/2j is parallel to X. Thus, 
the unit vectors "Vi+i/2,j /\\vi+i/2,j\\ and X/||X|| point in the same direction, and are there- 
fore equal. Also note that J = ||X||||Y||(vi+i/2,j • na,)/||vi+1/2j||, because the angle 6 
between X and Y (hence between v<+1/2,j and Y) is the complement of the angle r\ be- 
tween Vi+i/2,j and nx, so that sin# = cos?7 = (VJ+1/2J- • Hr)/||vj+i/2,j||- Furthermore, 
||Y||(v,-+i/2,j • nr) is the flux that varies linearly across QJ+i/4j-, being equal to 1 at the 
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right edge and 1/2 at the left (the "vertical" center line of Qij); hence, the flux is equal to 
x. Finally, recall that Av • w = v • ATw if A is a square matrix with transpose AT. Thus: 

' + 1/4,3 ,/V. + l/4,j- 

/ A-/v8+1/2!i.X^    =     / \\vi+1/2J\\^+1/2'j   .(A-}fXdz 

/ ||X||||Y||(v,-+1/3|J-.na!)   X     ,._1VrY , 

L,  J M'( ij) 

\Y\\(yi+1/2ij.nx)(A-jX)-X^dz 

'Q, + l/4,j 

f IIVII/,,.        . „    \/A-l- 

JQ. 

=     /   /    x(Kj]X)-Xdxdy, (46) 
JO    Jl/2 

where the last step is a change of variable. Similarly, we find that 

/ K+ijVi+i/2,j -Xd== f    f     (1 - £)(A,r \ -X) • Xdxdy. (47) 
JQ, + 3/4,j Jo    Jo 

Hence, combining Eqs. (45)-(47), 

8,+1/2jii+1/2j     =     ^-(3/4,1/2)/   //2*(ATiX).X«tedy 

+ ^u(lkl/2)l71/a(1-')(Ar+lljX)-X</'^     (48) 

Next, consider v,:_1/2j- in order to obtain ai+1/2,j;i-i/2,j in analogy with Eq. (13). Of the 
two "halves" Qi+i/4j and Qi+3/4tj where wi+1/2j- does not vanish, VJ_I/2J- is nonzero only 
on <5,:+i/4jj. Reasoning as above, 

a;+i/2,j;i-i/2j = j. .(3/4 ^2) y   y ,^ ~ £)(Ar/X) -Xdidy- (49) 

Similarly, v,-+3/2j- is nonzero only on Qi+3/4j, and Eq. (15) has the analogue 

1 z1 /1/2 
a'-+V2,i:.-+3/2J-=i/.+i.(1/4)1/2)yo   jo      x{A^ltjX)-Xdxdy. (50) 

The logic is slightly different if the term for a horizontal edge, e.g. vij+1/2 to obtain 
ai+i/2,j;i,j+i/2, is considered. These terms were 0 in the rectangular case. Here again 
only one of the "halves" is relevant, in this case Qi+1/4j. Now vij+1/2 is parallel to Y, 
so that vij+1/2/||Vi,i+1/2|| = Y/||Y||, and J = ||X||||Y||(vi|i+1/2' • ny)/||vii>+1/2||; also, 
||X||(vij+1/2 -ny) = y. Then Eq. (46) is replaced by 

/ A-jvi>j+1/2-Xdz   =    I ||v,-i+1/2|| -^ •( ArjfXdz 
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1/ 

so that 

=     / \\X\\(viij+1/2-ny)(A-]Y)-Xjdz 
JQi + l/4,j 

=     11   y(A7}Y)-Xdxdy, (51) 
Jo  J\li 

«•^J^J-^J^J^)^ (52) 
1/2 

By analogous steps, the other three coefficients are: 

««/««-./. = i-mwJ! ij1-^^*^     (53) 

«ww = jWJw4,iß)j!rm+'jYyxi*di'  <54) 

This completes the description of the Darcy equation for the vertical edge Ei+1/2j- The 

Darcy equation for the horizontal edge Eij+1/2, 

ai,j + l/2;i,j-l/2(fy)i,j-l/2 + °-{j + l/2;j j + l/2(/y )*,j + l/2 + O» ,j + l/2;i,j+3/2(fy )i,j+3/2 

+ ai,j + l/2;i + l/2,j(fx)i + l/2,j + ai,j + l/2;i-l/2,j(fx)i-l/2,j 

+ ai,j + l/2;i+l/2,j + l(fx)i+l/2,j + l +ai,j + l/2;i-l/2,j + l(fx)i-l/2,j + l 

+Pij+i-Pij = 0, (56) 

is derived in a completely analogous fashion. The coefficients are defined by equations 
similar to Eqs. (48)-(50) and (52)-(55). 

Assuming that the reciprocal mobility A-1 is a constant tensor on each grid block, the 
integrals in the a coefficients are straightforward to evaluate analytically. The dot products 
in these integrals are simply quadratic polynomials in x and y (total degree 2, so that the 
highest-order terms are x2, xy, y1). Explicit expressions for the a-coefficients can be found 
in [21]. These can be evaluated once and stored for use throughout the life of the grid 
block in the simulation. Even in multiphase or variable-viscosity flow, where A-1 is time- 
dependent, the dependence is restricted to a scalar multiple of the tensor, so that the above 
double integrals can be stored and later multiplied by a variable scalar. 

3.3    Discrete system of linear equations 

The discrete system of the control-volume mixed finite element method, with irregular 
quadrilateral grid and full anisotropic tensor permeability, consists of "vertical"-edge Darcy 
Eq. (44), "horizontal"-edge Darcy Eq. (56), and continuity Eq. (18).  The non-symmetric 
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linear system can be written in the form 

Wl-XT -*■ *-*■£■?/ Nr " fx \    ° 
MyX Myv Nv fv = 0 
NÜ' lly 0 p I -\Q\q 

(57) 

where Mxx and Myy are tridiagonal with the same nonzero pattern as in the rectangular 
case Eq. (19) (though with different values), and N^ and Nj, have the same ±1 entries as in 
Eq. (19). MJJ and Myx each have four nonzero bands, corresponding to the four nonzero 
a-coefficients involving (A~XY) • X for M^ and (A_1X) • Y for M^. 

Note that the a-coefficients in Eqs. (48)-(50), (52)-(55) amalgamate the complexities of 
distorted grids and of anisotropic tensor permeabilities. With a scalar permeability and an 
orthogonal grid, one sees that a dot product such as (A_1X) • Y vanishes, because A-1X 
is parallel to X (due to the scalar A-1) and hence perpendicular to Y (by orthogonality). 
Then the matrix M of a-coefficients reduces to tridiagonal form, as observed previously 
for the rectangular case. If either condition fails to hold, (A_1X) ■ Y can be nonzero, and 
additional bands can appear in M. The nonzero pattern with both distortion and anisotropy 
is the same as with either one alone. Within the bounds of consistent discretization, the 
expressions in Eqs. (18), (44), (48)-(50), (52)-(56) seem as simple as one could reasonably 
hope. Given a tensor A-1, there is a theoretical possibility of choosing distorted X and Y 
such that (A_1X) • Y vanishes, resulting in a sparser M, but the practical significance of 
this is not clear. 

3.4    Extension to Three Dimensions 

It is important to realize that the system obtained here on quadrilaterals extends readily in 
three dimensions to hexalaterals H that are trilinear images of a unit cube H = [0, l]3. The 
faces of such hexalaterals may not lie in a plane, but this is not a concern in principle because 
the curvilinear faces, normal vectors, and fluxes are uniquely determined. A "horizontaP- 
face Darcy equation similar to Eq. (44) or Eq. (56) would have the form 

ai,j,k + l/2;i,j,k + l/2(fz)i,j,k + l/2 

+ai,j,k + l/2;i,j,k-l/2(fz)i,j,k-l/2 + ai,j,k + l/2;i,j,k+3/2(fz)i,j,k+3/2 

+ di »J ,* + l/2;« + l/2j,fc(/x)j + l/2,j,fc + ai,j,k + l/2;i-l/2,j,k(fr)i-l/2,j,k 

+a',3,k + l/2;i + l/2,j,k + l(fr)i + l/2,j,k + l + ai,j,k + l/2,i-l/2,j,k + l(fx)i-l/2,j,k + l 

+ai,j,k + l/2;i,j + l/2,k(fy)i,j + l/2,k + «-i ,j,k + l/2;i ,j-l/2,fc(/y)jj-l/2,A 

+ ai,j,k + l/2;i,j + l/2,k+l(fy)i,j + l/2,k + l + ai,j,k + l/2;i,j-l/2,k + l(fy )i ,j-l/2,Jfc + l 

+Pi,j,k + 1-Pi,j,k = 0, (5c 

with, for example, 

ai,j,k + l/2;i + l/2,j,k 

ijMi/li/2,3/4) //211 wi.**) ■zdidydz-     ^ 
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The Darcy equations for "vertical" faces normal to z-fluxes and y-fluxes would be obtained 
analogously. The continuity equation would have the form of Eq. (18) with two additional 
fz terms, one with each sign. We note that the control-volume mixed finite element method 
has been used in three-dimensional astrophysical applications [9]. However, only Cartesian 
grids were considered and the mobility coefficient A was constant and scalar. 

3.5    Relation to Block-Centered Finite Differences 

On rectangles, we saw that the control-volume mixed method reduced to block-centered fi- 
nite differences if the normal fluxes were constant instead of linearly varying. The equivalent 
reduction in the present setting is to replace the factors x, 1-x, y, or l-y in Eqs. (48)-(50), 
(52)-(55) by 1 if they are greater than 1/2, and by 0 if they are less than 1/2. Then Mxx and 
Myy become diagonal (Eqs. (49)-(50) yield zeros), but Mxy and Myx do not vanish. This 
reflects the necessity of retaining cross-derivative information in a consistent approximation 
when grid distortion or anisotropy is present. The inconsistency of corner-point geometry 
[18] is a consequence of its suppression of this information, so as to work within a 5-point 
stencil in two dimensions and a 7-point stencil in three. If distortion and anisotropy are 
mild, then M is strongly diagonally dominant, and it should be reasonable to approximate 
M_1 by a matrix with the same sparsity pattern as M. The resulting analogue of Eq. (21) 
would have a 9-point stencil in two dimensions and a 19-point stencil in three, the same 
connection structure found by Arbogast et al. [4]. This has not been implemented at this 
writing and will not be discussed further here. 

4    Results 
The control-volume mixed finite element method has been tested on a variety of two- 
dimensional problems, involving uniform and irregular grids, scalar and tensor permeabil- 
ities, and constant and variable permeabilities. The velocities exhibit second-order con- 
vergence in all situations except where the exact solution has a singularity, in which case 
second-order convergence is not possible. Following is a representative sampling of these 
results. Additional results can be found in [21] and [16]. 

In most of the test problems, an analytical solution was known. Otherwise, a suitable 
fine-grid numerical solution was used for this purpose. Let p and (vx,vy) denote the exact 
pressure and velocity, respectively, with P and (Vx,Vy) being the corresponding numerical 
solutions. In the tables, pressure errors are measured by ep = \\p- P\\L2, the continuous L2 

norm of the difference. Because P is piecewise constant, first-order convergence is the best 
that can be expected. Velocity errors are calculated separately for vertical and horizontal 

edges: 

~A    VEi+i/'.i 

(v-V)-n^s , (60) 
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Control Volume Mixed Finite Difference 
Grid ^fx 

eVy IKII ^V x 
ev „ llev|| 

16x16 1.54E-4 9.41E-5 1.80E-4 5.65E-4 6.51E-4 8.62E-4 
32x32 8.50E-5 4.98E-5 9.85E-5 3.30E-4 3.72E-4 4.98E-4 
64x64 4.43E-5 2.51E-5 5.09E-5 1.90E-4 2.09E-4 2.82E-4 

128x128 1.90E-5 1.06E-5 2.17E-5 1.08E-4 1.17E-4 1.59E-4 
256x256 — — — 6.35E-5 6.69E-5 9.22E-5 

Table 1: Comparison of methods for uniform grids and variable permeability - entire domain 

i,j     \J^i,j+i/2 

-V). lly  dS 

1/2 

(61) 

Then ||ev|| = (e^ + e^)1/2 is equivalent to a discrete #(div) norm of the vector velocity 

error (which incorporates the L2 norms of (v - V)x, (v-V)y, and div(v - V), the last of 
which is zero by the local conservation property of the mixed method). 

Problem 1. We first compare the accuracy of the control-volume mixed method with 
that of block-centered finite differences on rectangular grids. Problem 1 subdivides the 
domain Q = [—1, l]2 into four quadrants and assigns a different value of A (a scalar) to each: 
0.01 for x > 0, y > 0; 0.05 for x < 0, y > 0; 10 for x < 0, y < 0; 33.33 for x > 0, y < 0. 
The source term was zero over the entire domain and the boundary conditions specified the 
normal component of the velocity on dQ. as follows: 

2000/1005 x = -l,y<0, 
10/1005 x = -l,y>0, 
6666/3334 x = l,y<0, 
2/3334 x=l,y>0, 

0 y = ±l. 

These boundary conditions specify both the total flux in at the left boundary and out at the 
right boundary to be equal to 2, and no flow at the top and bottom boundaries. Note that 
making the «-component of the velocity on the the left and right boundaries proportional 
to the permeability avoids singularities in the velocities at (±1,0); however there is still a 
singularity at the origin. Uniform grids from 16 x 16 to 256 x 256 were used. In the absence 
of an analytical solution, the 256 x 256 mixed solution was used for comparison. Velocity 
errors for the two methods are given in Table 1. The superiority of the mixed method is 
evident; the accuracy of its velocities on a 32 x 32 grid is similar to finite differences on a 
256 x 256 grid. This is not an artifact of the use of the 256 x 256 mixed solution as "exact," 
since the 128 x 128 and 256 x 256 finite difference solutions differ from each other by an 
order of magnitude more than the corresponding mixed solutions differ from each other. 

This is the one instance in which the mixed velocities do not show second-order conver- 
gence, the reason being that the true solution has a singularity at the origin. Excluding from 
the summation in Eq. (60) those edges Ei+1/2j that lie inside (-|, |)2 (and similarly in 
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Control Volume Mixed Finite Difference 

Grid evx 
eVy IM &vx 

eVy llev|| 
16x16 1.28E-4 9.12E-5 1.57E-4 5.57E-4 4.95E-4 7.45E-4 
32x32 3.69E-5 2.78E-5 4.62E-5 2.61E-4 2.38E-4 3.53E-4 
64x64 9.56E-6 7.46E-6 1.21E-5 1.29E-4 1.19E-4 1.75E-4 

128x128 2.06E-6 1.64E-6 2.63E-6 6.42E-5 5.99E-5 8.78E-5 
256x256 — — — 3.22E-5 3.02E-5 4.42E-5 

Table 2: Comparison of methods for uniform grids and variable permeability 

singularity 

away from 

(-1.D 

(-1,-1) (i.-i) 

Figure 7: Macro-blocks of distorted grids 

Eq. (61) excluding those edges -E,-,j+i/2 that lie inside (-|, |)2 ) we can see the behavior of 
the error away from this singularity. Table 2 shows the result when the errors are calculated 
over Q \ (—|, |)2, the domain minus a small square centered at the origin. From the table 
we see that the mixed method is still superior, and that the velocity errors for the mixed 
method seem to indicate second-order convergence away from the singularity whereas the 
finite difference velocity errors appear to be first-order convergent. 

It should be noted that while this problem demonstrates that the mixed method can 
produce more accurate velocity approximations than the finite difference method, the two 
methods exhibit comparable accuracy for the pressure. The remaining problems study the 
accuracy of the control-volume mixed method under various conditions. 

Problem 2. In this problem we study the effect of grid distortion and tensor perme- 
ability on the control-volume mixed method. Here the distortion is based on the angle ß 
shown in Figure 7, where finer grids are obtained by refining the four macro-blocks along 
bilinear coordinate lines. The coefficient A, a constant anisotropic tensor, is given by 

A = 
cos 9      sin t 

— sin 9    cos ( 
0 

0.01 
cos 9    — sin 0 
sin 9      cos 9 

(62) 
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/? = 80°, 0 = 0° /? = 80°,<? = 45° 
Grid Cp IKII 6p llevll 

16x16 2.506E-1 2.789E-3 2.256E+0 3.337E-1 
32x32 1.266E-1 7.414E-4 6.332E-1 1.174E-1 
64x64 6.353E-2 1.885E-4 1.736E-1 3.355E-2 

128x128 3.189E-2 4.734E-5 5.189E-2 8.740E-3 

/? = 6O°,0 = O° /? = 60°,6> = 45° 
Grid 6p l|ev|| ep l|ev|| 

16x16 2.611E-1 4.400E-3 3.081E+0 5.345E-1 
32x32 1.334E-1 1.230E-3 9.405E-1 2.338E-1 
64x64 6.970E-2 3.225E-4 2.675E-1 7.644E-2 

128x128 3.993E-2 8.208E-5 7.817E-2 2.101E-2 

Table 3: Mixed method accuracy for distorted grids, constant tensor permeability 

where 6 is the angle between the coordinate axes and the principal directions of permeability. 
No-flow boundary conditions were used and the source term was chosen to yield an exact 
solution 

p(x,y) = cos(7rx)cos(27T2/). (63) 

Table 3 presents results for the extreme values of 6 and several values of ß as in Figure 7. 
The second-order convergence of the velocity is clear, though with 9 = 45° and ß = 60° 
(serious anisotropy and distortion) the asymptotic regime is not reached until the grid is 
quite fine. We note that the accuracy degrades slightly as the grid becomes more distorted, 
which is no surprise. The degradation of accuracy due to lack of alignment of anisotropy 
with the grid is much more severe. This effect is greater in this test problem than would be 
expected in practice, since the 100:1 anisotropy ratio exceeds that of typical porous media, 
and a modeler would attempt to avoid the worst case of 6 = 4-5°. 

Problem 3. The last problem considers a distorted grid, based on the macro-blocks in 
Figure 8, along with variable tensor permeability. The tensor is given on Regions I, II, and 
III in Figure 8 by 

A, 
1/4    1/4 
1/4     4 A// = 

2    1 
1    1 

A /// 
2      1/2 

1/2    1/2 

Boundary conditions and the source term are specified so that the exact solution is 

Pl(x, y) = x2 - C,        PlI(x, y) = — y2 - C,        Piii(x, y) = -y2 - C, 

(64) 

(65) 

where C is chosen to make the integral of p vanish. The pressure and flux are continuous 
at interfaces. Table 4 reports the results, and again we see second-order convergence in the 
velocity. 
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Figure 8: Distorted regions for Problem 6 with variable tensor permeability 

Grid Cp £"V x 
evv Kll 

4x4 2.524E-1 7.226E-3 8.884E-3 1.145E-2 
8x8 1.302E-1 1.827E-3 2.580E-3 3.161E-3 

16x16 6.578E-2 4.777E-4 6.965E-4 8.445E-4 
32x32 3.331E-2 1.264E-4 1.861E-4 2.250E-4 
64x64 1.737E-2 3.355E-5 4.984E-5 6.008E-5 

Table 4: Mixed method accuracy for distorted grid, variable tensor permeability 
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5    Conclusions 

The control-volume mixed finite element method provides a simple, systematic, easily im- 
plemented means of obtaining accurate, locally conservative velocities on irregular block- 
centered grids, allowing for effects of anisotropy and heterogeneity. Degrees of freedom 
consist of block pressures and edge (two dimensions) or face (three dimensions) fluxes, with 
no additional complexities such as Lagrange multipliers, so that the method is strongly anal- 
ogous to block-centered finite differences from a modeler's point of view. Velocities obey 
a rigorously derived discrete Darcy law and exhibit second-order convergence as long as 
the exact solution has no singularities. Heterogeneities and reasonable distortions have only 
mild effects on the accuracy of the method. Severe anisotropy that is strongly oblique to the 
coordinates leads to significant increases in velocity errors, though they are still second-order 
convergent. 

The numerical results in Section 4 were obtained using a multilevel solver. The multilevel 
solver for the discrete control-volume mixed finite element equations is comparable in cost 
to a typical finite difference solver. This multilevel solver is discussed in [16] and will be the 
subject of a future paper. 
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